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Abstract

In natural laminar flow design, aircraft manufacturers aim to delay the laminar-to-turbulent

transition by modifying the geometric features of the aircraft to stabilize the boundary

layer. Yet, the transitional process is highly sensitive to surface imperfections; the presence

of grooves, rivets or dimples, for instance, greatly affects the transitional properties of the

flow and need to be considered for accurate predictive modelling. To this end, the nonlinear

parabolized stability equations (NPSE) have shown promising predictive capabilities over

a wide range of operating conditions. The NPSE are less dependent on experimental data,

which is a step towards a generalizable transition model.

Here, we first present a novel NPSE-based numerical framework, developed in-house

but made open-source, to investigate transition in compressible flows. The code can handle

complex geometries and only requires the coordinates of the wall to generate an orthonor-

mal computational grid. The mesh spacing is refined based on the curvature of the wall.

The model is formulated in dimensionless variables, and the disturbances are discretized

using a finite-bandwidth approach. Written in Python and leveraging well-established li-

braries, the framework includes a laminar flow solver using the same numerical formulation

as the modal stability solver to remain consistent. The code is validated against published

cases and large-scale Direct Numerical Simulations (DNS). It can serve as the basis for the

future development of modal stability-based problems in aerospace engineering, geophysi-

cal, and multiphase flows.

The computational framework is used in combination with large-scale DNS to study

the effect of smooth two-dimensional surface roughness on the stability characteristics of a

canonical boundary layer flow under transonic conditions (M = 0.714). In particular, the

influence of two-dimensional smooth roughness on the stability of 2D Tollmien-Schlichting

(T-S) waves is investigated with a particular emphasis on frequency content generation.

The DNS reveals a stronger destabilizing effect of the disturbance higher frequencies for the

case featuring the highest roughness amplitude. This causes a rapid growth of secondary

instabilities which skips the standard T-S mechanism and give rise to a cyclical transitional

pattern in which both late K-type structures and premature bypass transition are observ-

able. The modal stability analysis also shows that, in the presence of two-dimensional
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smooth roughness, the mode experiencing the highest linear growth is three-dimensional.

Finally, the coupling effect between roughness and wall temperature inhomogeneities

is investigated at transonic condition using the nonlinear parabolized stability equations

(NPSE). To this end, the effect of localized heating and cooling strips on the stability of a

flat plate boundary layer with zero pressure gradient atM = 0.714 is first investigated and

confirms the stabilizing (destabilizing) effect of cooling (heating) strips. Then, the coupling

effect between the wall roughness and heating strips is addressed by superimposing the

effect of a smooth roughness patch, consisting of five sinusoidal, two-dimensional humps,

to the numerical setup. The NPSE study reveals a catalytic coupling effect between the

temperature strips and roughness. In other words, compared with the flat plate case, the

stability of the flow is decreased in the presence of heating strips and roughness, and,

inversely, increased in the presence of cooling strips and roughness.
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friends, who have endured me for the last 25 years. Vous êtes ma famille. My family, who
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∂y
/∂ulam

∂y
|> 0.05 . . . . 114

6.7 Contour plot of the temperature for the case with heating strips (top) and

cooling stips (bottom). Both cases features a sequence of 5 sinusoidal humps

of h = 0.33δ. The solid line is the boundary layer thickness (δ0.99) . . . . . 115

6.8 Disturbances Kinetic Energy (DKE) along the stream-wise direction . . . . 116

6.9 Contour plot of the Disturbances Kinetic Energy (DKE). The color range

from blue (DKE = 0) to red (DKE = 4× 10−6) and is the same for all plot. 117

6.10 fft(cf ) for different wall regions in absence of wall curvature, obtained with

NPSE. The colors indicate the temperature (cold, isothermal or hot). Each

linestyle corresponds to a different region ( is x ∈ [1600, 2140], is

x ∈ [1600, 2340], is x ∈ [1600, 2540], is x ∈ [1600, 2640]) . . . . . . 119

6.11 fft(cf ) for different wall regions in presence of humps, obtained with NPSE.

The colors indicate the temperature (cold, isothermal or hot). Each linestyle

corresponds to a different region ( is x ∈ [1600, 2140], is x ∈
[1600, 2340], is x ∈ [1600, 2540], is x ∈ [1600, 2640]) . . . . . . . . 120

xvi



List of Tables

5.1 q̂ and χ definition for different modal stability theories. α, β and ω are the

streamwise, spanwise and temporal wavenumbers. Complexity refers to the

computational complexity of the model . . . . . . . . . . . . . . . . . . . . 75

5.2 DNS grid resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Initial amplitude of the fluctuation, normalized by p̂wall, for the case 1 and

2. The values correspond to the finite-bandwidth area of the perturbation.

F = ω
Reδ

= 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xvii



List of Abbreviations

General

DNS Direct Numerical Simulations

CNSE compressible Navier-Stokes equation

RANS Reynolds Averaged Navier-Stokes Equations

CFD Computational Fluid Dynamics

LES Large Eddy Simulations

DES Detached Eddies Simulations

Modal Stability Theory

LST Linear Stability Theory

PSE Parabolized Stability Equations

NPSE Nonlinear Parabolized Stability Equations

LPSE Linear Parabolized Stability Equations

OWNS One-Way Navier-Stokes Equations

xviii



List of Symbols

Dimensionless Numbers

Reδ Reynolds number based on δ

Ma Mach number

Pr Prandtl number

Greek symbols

γ Heat capacity ratio

δ Length scale, proportional to boundary layer thickness
√

x0ν0
u0

λ Thermal conductivity

ρ Density

α Streamwise wavenumber

β Spanwise wavenumber

ω Temporal wavenumber

µ Dynamic viscosity

ν Kinematic viscosity

Letters

q Base flow vector {u, v, w, p, T}T

q′ Fluctuating flow vector {u′, v′, w′, p′, T ′}T

q̃ Fluctuating flow shape function vector {ũ, ṽ, w̃, p̃, T̃}T
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Chapter 1

Introduction

At the 41st Assembly of the International Civil Aviation Organization (ICAO), the ICAO

and its members agreed on “the necessity for the international air transport industry,

to continuously improve CO2 efficiency by an average of 1.5 percent per annum [...] and

achieve a long-term goal of net-zero carbon emissions by 2050” [133]. To this end, aircraft

manufacturers have made great efforts to reduce their dependence on fossil fuels. Among

the possible cleaner alternatives, hydrogen could be a game changer, but requires signif-

icant infrastructure [62]; new sustainable aviation fuels promise a significant reduction in

emissions, but can only provide an intermediate step toward carbon neutrality. On the

other hand, the energy density of lithium batteries, in the current state of the technology,

the energy density of lithium batteries is still an order of magnitude away from practical

use in civil aviation [38]. In this light, the path leading to carbon neutrality will most likely

involve technological advances in energy storage densities, which may include hydrogen,

in combination with a drastic reduction of energy consumption. In this regard, significant

gains in efficiency can be achieved through weight and drag reduction. Recent advances

in the development of second-generation aluminum alloys for additive manufacturing offer

more design freedom and should (hopefully) translate into more rigid structures at a frac-

tion of the weight of the current designs. On the aerodynamic side, the prediction of the

laminar-to-turbulent transition plays a key role in modern aerospace design. As the skin

friction greatly increases in turbulent flows, there is an increasing impetuous to maintain a
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stable laminar boundary layer over a large portion of the lifting surfaces and fuselage. Over

the past decades, design strategies to mitigate drag have continuously evolved, and the use

of topological optimization and laminar flow control (LFC) techniques is now becoming

more common. Although the use of favorable pressure gradients in aircraft design can help

in extending the laminar flow regions, geometric inhomogeneities and flow complexities—

characteristic of aerospace devices—usually destabilize boundary layer flows and promote

laminar-to-turbulent transition. The accurate prediction of transition in these complex

compressible regimes remains an outstanding problem in the aerospace industry.

Transition prediction is also central to other aspects of aerospace design, for example,

the prediction of engine stall under strong crosswind conditions. The efficiency of the

engine is strongly dependent on the uniformity of the flow entering the front of the fan;

at sufficiently high distortion levels, the fan blades may stall or encounter aerodynamic

instabilities. When the engine is in operation but the plane is idling on the runway,

a typical operating condition, severe crosswinds cause the flow entering the engine to

separate from the nacelle, which results in flow distortion to the engine. The size of the

flow separation is greatly affected by the location of the transition line on the nacelle,

as the flow accelerates from the stagnation point to the lip of the nacelle. As a result,

the size of the separation bubble and concomitantly the engine distortion level, is based

on an accurate prediction of the laminar-to-turbulent transition [159]. None of the most

existing RANS-based transition models is capable of accurately predicting the separation

and transition phenomena of this complex three-dimensional compressible flow [31]. The

aerospace industry requires a robust, yet high-fidelity, transition prediction tool to predict

laminar-to-turbulent transition on realistically complex geometries and flow configurations;

the present thesis contributes to this effort.

1.1 Motivation and objectives

Typically, the transition process in a subsonic laminar boundary layer along a wall is

dominated by the formation of two-dimensional streamwise instability modes, also termed

Tollmien-Schlichting (T-S) waves. For this class of flows at realistic operating conditions,
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Direct Numerical Simulations (DNS) are out of reach in terms of computational resources.

In this regard, an alternative is to use modal stability-based transition models which are up

to three orders of magnitude cheaper than the equivalent DNS [86]. This is mainly due to

the fact that in the PSE approach, the stability analysis is performed on the laminar base

flow, whereas the spatial and temporal discretization in a DNS must be sufficiently refined

to capture the nonlinearities and temperal fluctuations of the small scale turbulence after

the transition onset. For this reason, for a compressible flow over a complex geometry, the

PSE approach becomes even more advantageous.

The main goal of this research is to enhance transition prediction capabilities in realistic

aeronautical conditions with surface imperfections. To this end, the transition prediction

model must be applicable to handle complex flows that feature compressibility effects,

adverse pressure gradients, nonadiabatic surface effects, and roughness-induced bypass

transition over complex geometries. In this regard, the modal stability theory has shown

encouraging results in such complex flows. However, most modal-stability-based transition

models are highly dependent on experimental data (Linear Stability Theory, Linear Parab-

olized Stability Equations, Bi-Global) or have mostly been applied to simple geometries

such as flat plates, hypersonic cones, pipe flows, or axisymmetric jets (Nonlinear Parabo-

lized Stability Equations, Global stability theory). This research advances the prediction

of transitions in more realistic compressible high-speed flows in complex geometries using

a nonlinear modal stability approach in combination with high-fidelity simulations. From

a physical point of view, the proposed approaches will be used to study the nonlinear

growth and breakdown of wavepackets in the presence of roughness elements, pressure gra-

dient, and cross-flow. More specifically, the current research aims to answer the following

questions:

• Is the PSE framework a sufficiently accurate tool to study the evolution of modal-

like disturbances in complex compressible flows subject to smooth wall roughness (or

wavyness) and nonhomogeneous wall temperature effects?

• What is the impact of two-dimensional smooth roughness on the modal and nonmodal

growth of instability in transonic boundary layer flows?

3



• Is there an interdependence between wall roughness (or wavyness) and wall temper-

ature on the flow stability?

• Can smooth roughness be used in combination with localized heating or cooling to

enhance stabilization in transonic boundary layer flows?

To answer these questions, the following contributions are made in the present thesis.

1. Development of an open-source solver for the compressible Nonlinear Parabolized

Stability Equations (NPSE) in curvilinear coordinates capable of studying the modal

growth of instability in the presence of smooth roughness. To the best of our knowl-

edge, this is the only openly available modal stability code that combines

• Variable properties for both the fluctuations and the base flow

• A consistent base-flow and stability solver

• Consistent numerical stabilization

• Automatic orthonormal grid generation

• Automatic grid refinement based on the curvature of the wall

• Finite-bandwidth disturbance representation

2. Implementation of curvilinear coordinates in a massively parallel DNS code and con-

duction of large-scale simulations of a compressible transitional boundary layer flow

subject to smooth roughness. This objective serves three purposes:

(a) Assess the applicability of the NPSE to study the modal growth of instabilities

in the presence of two-dimensional smooth roughness

(b) Identify the role of roughness on the modal and nonmodal growth of distur-

bances.

(c) Determine whether the presence of two-dimensional roughness favors the onset

of span-periodic instability.
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3. Establishing, by means of an NPSE-based parametric study, whether there exists an

interdependence between wall roughness (or waviness) and wall temperature on the

flow stability?

4. Assessing, by means of an NPSE-based parametric study, the possibility of using

localized roughness to enhance the efficacy of temperature-based flow control devices.

1.2 Outline of the thesis

This thesis is organized as follows. Chapter 2 presents a brief review of the literature on

laminar-to-turbulent transition and discusses the main modeling strategies that are relevant

to the current research. Additionally, Chapters 4 to 6 are based on submitted or prepared

manuscripts, thus they contain a more specific review of the literature relevant to that

section. Chapter 3 defines the governing equations and presents the theoretical background

of modal stability theory. This is also where we present the numerical framework, the

curvilinear coordinate system implementation, and the resolution algorithms. The chapter

4 presents the main motivation behind the development of an open-source NPSE solver

and gives an overview of the main capabilities of the solver through some illustrative

examples. Chapter 5 discusses the role of two-dimensional roughness in the modal growth

of the T-S instability in compressible boundary layer flow. In this chapter, we present a

detailed description of the cases of interest, including a detailed description of the DNS

configuration. In Chapter 6, we investigate the intricate effect of heating and cooling on

the transitional characteristics of flows from the boundary layer subject to localized smooth

roughness. Finally, in Chapter 7 the major conclusions drawn from this body of work are

presented in addition to providing some suggestions for future research.
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The material presented in this thesis and the research contributions made during the

doctoral studies are summarized in the following works:

• Journal papers:

- Francis Lacombe and Jean-Pierre Hickey, ”Krypton: Nonlinear Parabolized Sta-

bility Equation solver for transonic flow in curvilinear coordinates”, SoftwareX,

Volume 20, 101206, (2022) - Chapter 4 in thesis

- Francis Lacombe, Subhajit Roy, Krishnendu Sinha, Sebastian Karl, and Jean-

Pierre Hickey, ”Characteristic Scales in Shock–Turbulence Interaction” AIAA

Journal 59:2, 526-532, (2021)

- Francis Lacombe and Jean-Pierre Hickey, ”The role of two-dimensional smooth

roughness on the modal growth of instability in compressible boundary layer

flow”, Journal of Fluid Mechanics, (under review) Chapter 5 in thesis

- Francis Lacombe and Jean-Pierre Hickey, ”Boundary layer stabilization via ther-

modynamic roughness,” Physical Review Fluid, (to be submitted) Chapter 6

in thesis

• Conferences:

- Francis Lacombe and Jean-Pierre Hickey, ”Roughness-induced laminar-turbulent

transition prediction over complex geometries”, American Physical Society- Di-

vision of Fluid Dynamics, Atlanta, Georgia (2018)

- Francis Lacombe and Jean-Pierre Hickey, ”Roughness-induced transition predic-

tion over complex geometries with linear parabolized stability equations (LPSE)”,

11th International Symposium on Turbulence and Shear Flow Phenomena, Southamp-

ton, UK (2019)

- Subhajit Roy, Krishnendu Sinha, Francis Lacombe and Jean-Pierre Hickey,

”Anisotropic turbulent heat flux modelling through shock waves”, AIAA Avia-

tion, Dallas, Texas (2019)
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- Sebastian Karl, Jean-Pierre Hickey and Francis Lacombe, ”Reynolds stress mod-

els for shock-turbulence interaction”, International Symposium on Shock Waves,

Nagoya, Japan (2017)

• Open-source contributions:

– Git repository : https://git.uwaterloo.ca/flacombe/krypton-softwarex.git

– Language: Python3

– Legal code license: GPL
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Chapter 2

Literature review

When I meet God, I am going

to ask him two questions: Why

relativity, and why turbulence?

I really believe he will have an

answer for the first.

Werner Heisenberg

In this chapter, we provide a brief review of the literature on the transition to turbulence

and discuss the main modeling strategies.

2.1 Transition to turbulence

There are multiple definitions of turbulence; the definition of Lewis Richardson is particu-

larly colorful: “Big whorls have little whorls, which feed on their velocity, and little whorls

have lesser whorls, and so on to viscosity” [153]. Taking this definition in a literary sense,

studying transition comes down to studying the formation of the very first ’big whorls.’

The underlying physics behind the formation of these first whorls is highly dependent on

the type of flow. Depending on the geometry and initial conditions, the transition to tur-
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bulence will occur following a given mechanism, or sometimes a combination of multiple

mechanisms. For boundary layers, the level of understanding behind each transition mech-

anism varies greatly from a nearly complete understanding (natural transition) to a more

limited understanding (bypass transition, especially in complex flows). Here, we describe

the main mechanisms that lead to transition in boundary layers.

2.1.1 Natural transition

The natural transition, also commonly called normal transition, occurs in flows where the

background noise or the turbulence level of the freestream is low [174] and generally follows

path A, in Figure 2.1. Typically, for low intensity of freestream turbulence (Tu < 1%) [156],

boundary layer transition over a perfectly smooth flat plate follows a natural transition. In

the subsonic regime, the normal transition commonly occurs in boundary layer flows and is

characterized by the formation and development of two-dimensional Tollmien-Schlichting

(T-S) waves. The term T-S wave is used to refer to the most unstable modal instability in

the flow. In subsonic flows over a zero-pressure gradient flat plate, it is commonly accepted

that the most unstable mode is two-dimensional and that its frequency mostly depends on

the Reynolds number. With that in mind, the transition process in boundary layer flows

is divided into two main steps. The first step is called receptivity, it is a mechanism by

which external perturbations enter the boundary layer and cause disturbance within it.

Possible sources of external disturbances include acoustic disturbances in the freestream,

vortical waves or even discretization errors in numerical simulations. Typically, acoustic

waves, present in the free stream, begin to interact with another disturbance, for example,

wall roughness. Their mixing produces a forcing term that excites the boundary layer and

generates the very first wave of instability [161]. This instability wave usually corresponds

to the most unstable eigenmode of the Orr-Sommerfeld equation, i.e., the mode that will

experience the highest amplification at a given location. The Orr-Sommerfeld equation is

an eigenvalue problem that describes the shape of a two-dimensional modal disturbance in

a parallel flow. The second step, characterized by the modal growth of the disturbances,

is divided into two sub-steps: the linear and the nonlinear growth of the disturbance

eigenmodes. The linear stability theory has proven to be successful at predicting the linear
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eigenmode growth in a variety of flows ranging from the typical Blasius boundary layer, to

more general shear flows such as in jets or channels. In the second sub-step, the amplitude of

the fluctuation eigenmodes will reach a point where the growth is predominantly governed

by nonlinear interactions. At this point, because of the rapid growth of higher harmonics,

the flow gradually develops a spanwise periodicity, visible by the formation of H-type,

or K-type structures, depending on the environmental disturbance intensity. H-type and

K-type structures are characterized by the formation of staggered and aligned Λ-shaped

vortices, respectively. Ultimately, the breakdown to turbulence will be triggered by the

rapid growth of broad-band perturbations [164].

Figure 2.1. Paths to turbulence in BL flows. Figure adapted from [161]

10



Figure 2.2. The natural transition process, reproduced from [60]
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2.1.2 Bypass transition

Bypass transition is a generic term used to describe any transitional process that bypasses

or skips the classical modal growth of the perturbation. The most common cause of by-

pass is free-stream turbulence [161] in which the perturbation follows path E in Figure

2.1. Under these conditions, the modal growth of the perturbations is skipped, and the

flow becomes turbulent extremely rapidly. An illustration of the bypassed regions of the

transition is shown on Figure 2.2. Bypass transition is still an area of ongoing research.

There exist multiple mechanisms and emergent structures that lead to a bypass transi-

tion, most of which are not fully understood, and many remain to be identified. Many

of these open questions are highlighted by the recent Annual Review of Fluid Mechanics

paper on transitional turbulent spots [212], one of the common structures arising in by-

pass transition. However, it is generally accepted that the initial conditions that lead to

the bypass transition cannot be studied with linear stability theory. Other examples of

bypass transition include Poiseuille pipe flow (although sometimes assumed to follow path

C), hypersonic blunt body paradox, distributed roughness effects on flat plates or cones,

and subcritical transition observed on spherical forebodies [141, 152]. In some cases, the

bypass transition is triggered by the interaction of a high-shear layer and streamwise vor-

tices caused by discrete roughness elements [131], suction/blowing at the wall, trip wires,

or body forces [215]. On a more nuanced note, transient growth has been suggested as

a precursor of bypass transitions in regions where disturbance growth is algebraic, but

modes are spectrally stable [198, 29, 152]. Bypass mechanisms could therefore be much

more prevalent than Figure 2.1 might suggest, as many low-disturbance environment prob-

lems, such as high-speed aeronautical flows, feature high shear layers, roughness or surface

inhomogeneities.

2.1.3 Compressibility and transition

Increasing the freestream Mach number results in an increase in the temperature in the

boundary layer. Under the action of shear forces, more energy of the boundary layer is

dissipated in the form of heat. The temperature reaches its maximum value in the near-

wall region and gradually decreases to its freestream value as the shear decreases. This
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has the effect of decreasing the density and increasing the viscosity in the lower region of

the boundary layer, resulting in a locally lower Reynolds number. In subsonic flows, this

stabilizing effect is subtle and tends (mostly) to reduce the frequency of the most unstable

T-S mode. For this reason, it is generally assumed that under the subsonic regime the

transition is delayed by compressibility, but its impact is too small to change the physical

mechanism leading to turbulence [49, 22]. If the Mach number increases to within the

supersonic regime, other factors will eventually come into play. The presence of a strong

shock near the leading edge, the emergence of an entropy layer, and high wall heating as

a result of strong viscous interactions are just a few examples of phenomena that impact

flow stability as the Mach number increases [5]. In the high supersonic regime, these

effects intensify and eventually impact the transition mechanism. Mack found that the

dominant waves of instability that lead to the transition to turbulence in smooth zero-

pressure gradient flat plate flows are the first and second modes [116]. The first mode is

essentially an inviscid instability related to the inflection of the velocity profile. The second

mode, also inviscid, originates from acoustic wave resonance that propagates between the

wall and the sonic line in the laminar boundary layer [49]. In the supersonic regime, the

damping effect of compressibility starts to progressively weaken. Above Ma > 1.6, the

inviscid instability increases and progressively manifests at lower Reynolds numbers. For

an insulated wall at Ma > 3.8, the dominant mode is the second mode [116].

2.2 Transition Modeling

Modeling transition is not an easy task, as multiple pathways can lead to turbulence. De-

pending on the geometry and flow conditions, one or the other of the transition modes

may dominate the process. On rare occasions, more than one transition mode may prevail.

Nevertheless, there exist three different approaches to studying laminar-to-transition. The

first consists in removing any additional modeling assumptions from the Navier-Stokes

equations through the use of Direct Numerical Simulations (DNS). Although DNS can

virtually simulate any type of transition process, this approach is extremely computation-

ally expensive and is rarely applied to industrial problems under realistic conditions. The

second approach consists of statistical-based models, which can be integrated into typical
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RANS frameworks. The main concept behind most RANS transitional models is to relate

local variables (velocity, vorticity, wall distance, etc.) to the kinetic energy production term

through an empirical correlation based on experimental data. RANS approaches usually

lead to acceptable results for the class of problems for which they were optimized. The most

notable model is the γ−Reθ model which solves two additional equations, for intermittency

(γ) and momentum thickness Reynolds Number (Reθ), to relate the onset of turbulence to

the local vorticity Reynolds number Reω. Although this model is still under development

and was recently extended to account for cross-flow instabilities [174], it presents some ma-

jor shortcomings. As the model was developed using experimental data, it makes it hard

to generalize as it is “virtually impossible to include all mechanisms into a physic-based

equation framework” [174]. Finally, the modal stability approach includes all the models

derived from Prandtl’s small disturbance hypothesis, including the Linear Stability Theory

(LST), the Parabolized Stability Equations (PSE), the Global stability theory and, more

recently, the One-way Navier-Stokes (OWNS) [195, 89]. In modal stability theory, the

perturbation vector is expanded in spectral space, and the stability analysis is performed

separately on each of its eigenmodes. Most linear-modal-stability-based models rely on

empirical correlations to relate the transition onset position to the amplification factor of

the most unstable mode. Nonlinear methods, such as the Nonlinear Parabolized Stability

Equations (NPSE), account for the nonlinear interactions between the eigenmodes and can

accurately predict the amplitude of the perturbations; the transition is thus triggered once

the perturbations’ amplitude reaches a certain threshold. There exist other methods, such

as the so-called laminar kinetic energy method[139] or nonmodal methods [166]; however,

these methods fall out of the scope of this research.

2.3 Transition over inhomogeneous walls

The effect of surface inhomogeneities on the transitional characteristics of boundary layers

has been addressed by several experimentalists. Klebanoff’s work [96] helped identify sta-

tionary disturbances and characterize their destabilizing effect on modal instability in the

wake of two-dimensional roughness elements. More recently, the work of Kotsonis suggested

a similar effect in the presence of discrete roughness elements [224]. Zoppini conducted a
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comparative study in a similar setup using a combination of experiments and NPSE and

observed more complex, possibly nonmodal mechanisms [223]. However, most experimental

studies on this topic were in the subsonic regime. On the DNS side, only relatively simple

flows are within reach of the current computing power, but with the continued technological

advancements, we are just beginning to see DNS at a practical transitional Reynolds num-

ber [7]. The first hydrodynamic instabilities studied by direct numerical simulations were

conducted by Fasel [51] in 1976 who characterized the stability of an incompressible Blasius

flow. In the following decades, others have investigated different aspects of the laminar

to turbulent transition [87, 88, 52, 76]. Such numerical experiments, although limited to

incompressible low-speed flows, have laid the groundwork for the observation of two basic

secondary instabilities. That is, fundamental and subharmonic breakdowns [19], which are

characterized by the formation of staggered or aligned Λ-structures. In the last decade, we

have seen increased interest from the modeling community toward the study of alternative

transition mechanisms such as bypass [165, 213, 171, 215] and, with growing interest for

military and space applications, hypersonic transition [220, 64, 40, 176, 192]. Transient

growth has been suggested as a possible route for multiple cases of bypass transition, many

of which feature discrete roughness elements [210, 141, 45, 152]. Direct numerical simula-

tions of transition in the presence of roughness have been studied mainly in the supersonic

[131, 175, 135, 10] and hypersonic [39, 220, 47, 184] regimes. On this topic, probably the

most relevant work for the current thesis is that of Suman [131], who studied the effect of

distributed surface roughness on the stability of supersonic (Ma > 2.9) boundary layers.

The results of his simulation show that the presence of wavyness tends to create a strong

shear above the boundary layer, and also generates streamwise vortices. The interaction

between the shear layer and these vortices causes the breakdown to turbulence. In the

subsonic regime, the transition to turbulence usually follows a normal path characterized

by the growth of two-dimensional T-S instabilities. In the supersonic regime, the most

unstable mode is usually three-dimensional, and the transition is ultimately caused by the

rise of secondary instabilities. Under hypersonic conditions, the most dominant instability

mode is two-dimensional [116], but the flow reacts differently to surface inhomogeneities.

For example, the effect of wall cooling is stabilizing for supersonic and subsonic boundary

layer flow, but it is destabilizing in the hypersonic regime [181, 118]. The effect of wall
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perturbations is, therefore, extremely dependent on the flow regime. This thesis seeks to

fill the literature gap in the investigation of surface inhomogeneities such as smooth rough-

ness or wavyness and nonadiabatic surface effects in the transonic regime. A more detailed

literature review on the topics of wall roughness and nonadiabatic effects in the context of

transition is given in Chapters 5 and 6.
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Chapter 3

Stability Theory: theory and

numerical tools

The motion of a fluid in continuum mechanics is governed by the Navier-Stokes equations.

These equations are, in fact, classical conservation laws and can be simplified, under appro-

priate assumptions, to develop different branches of the stability theory. The simplification

of the governing equations and the relevant assumptions are summarized in Section 3.1 af-

ter which the basis for local (Section 3.2) and nonlocal (Section 3.3) stability theory is

presented. This chapter concludes with a summary of the Parabolized Stability Equation

(Section 3.4) and Direct Numerical Simulations (Section 5.2.3) framework.

3.1 Governing equations

In this section, we describe the general derivation steps of various modal stability theories.

We begin by stating the governing equations. Here, we use the dimensionless compressible

Navier-Stokes equations (CNSE) in their non-conservative form. The non-conservative for-

mulation is selected as the focus is put primarily on subsonic flows (without shock waves)

and, more importantly, because of the convenience handling the primitive thermodynamic

variables, such as pressure, without conversions. The modified conservation of mass, mo-
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mentum, and energy, in non-conservative form, reads:
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Where the flow properties are governed by the dimensionless Ideal Gas Law equation. The

viscosity and conductivity are deduced from Sutherland’s law

ρ = γMa2
p

T
µ =

C1T
3/2

T + S
λ =

C2T
3/2

T + S
(3.4)

3.1.1 Dimensionless variables

The use of dimensionless variables can greatly simplify any mathematical problem to a min-

imum number of physically meaningful key variables. Equations (3.1)-(3.3) were nondimen-

sionalized using a classical approach[127] with the following set of dimensionless variables:

xi =
x∗i
δ

ui =
u∗i
u0

T =
T ∗

T0
p =

p∗

ps

µ =
µ∗

µ0

ρ =
ρ∗

ρ0
cp =

c∗p
cp0

λ =
λ∗

λ0
(3.5)

Where δ =
√

x0ν0
u0

is a length scale that is proportional to the inlet boundary layer thickness

and ps = ρ0u
2
0 is the pressure scale. The dimensional quantities are defined with the

asterisk (*). The subscript 0 represents the reference quantities, typically the conditions of
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the freestream. Therefore, the reference thermodynamic conditions must ensure that the

equation of state is satisfied.

p0 = ρ0R0T0 (3.6)

Reference Reynolds and Mach numbers are defined as

Reδ =

√
u0x0
ν0

Ma =
u0√
γR0T0

(3.7)

In practice, the following reference quantities are set to

Ma = Value Reδ = Value Pr = 0.71

ρ0 = 1. u0 = 1. T0 = 1.

The other reference quantities are deduced from the set nondimensional variables:

ν0 =
u0x0
Re2δ

ps = ρ0u
2
0 (3.8)

3.1.2 Modal stability equations

Modal stability theory is a branch of fluid mechanics that has been developed to study

the evolution of small-amplitude perturbations within a variety of flows. It is based on the

decomposition of flow quantities into a steady part q and an unsteady part q′ [86]:

q(x⃗, t) = q(x⃗) + q′(x⃗, t) (3.9)

Here, x⃗ is the spatial coordinate vector and t is the time. Substituting equation (3.9) into

the compressible Navier-Stokes equations and neglecting the product of fluctuating com-

ponents (nonlinear terms) leads to the Linearized Compressible Navier-Stokes Equations :
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The nonlinear vector F ′′ is defined as {C ′′,M′′, E ′′}T and the total derivative operator,
D
Dt
, is defined as:

D

Dt
=

∂

∂t
+ uj

∂

∂xj
(3.11)

In modal stability theory, the perturbations are assumed to be oscillatory in time and/or

space, and the stability is studied on a mode-dependent basis. In this regard, the pertur-

bation vector in equation (3.9) is assumed to be of the following form:

q′(x⃗, t) = q̂(x⃗)χ(x⃗, t) = q̂(x⃗)eiθ (3.12)

Where q̂ and χ are the amplitude and phase functions, respectively. This constitutes the

starting point of all modal stability theories. From there, different simplifications can be

made on the amplitude and/or phase functions and lead to different branches of modal

stability theory (local, nonlocal, global).

The perturbed flow properties are deduced from

ρ′ =
∂ρ

∂p
p′ +

∂ρ

∂T
T ′ µ′ =

dµ

dT
T ′ (3.13)

20



3.2 Local stability analysis

Assuming x⃗ = [x, y, z]T , where x, y, z represents the stream, normal, and span dimensions.

The local stability theory relies on the ansatz that the perturbation vector q′ grows (or

decays) following a quasi-static process. Thus, the stability analysis is carried out at a

specific local position and does not account for the evolution of the perturbation along its

path [86]. This approach is valid if we assume that the flow is parallel. Furthermore, in

a Blasius boundary layer, since the flow is also homogeneous in z, the amplitude function

can only vary in the normal direction. This leads to the following form for the perturbation

vector:

q′ = q̂(y) exp(i(αx+ βz − ωt)) (3.14)

Where q̂ is the perturbation shape function and exp(i(αx+βz−ωt)) is the phase function.
The shape function is what gives the perturbation its physical shape, i.e. this is what we

see in the root mean squared signal. The phase function is what gives the perturbation

its amplitude and oscillatory behavior. Substituting the perturbation vector (3.14) into

equations (3.10a)-(3.10c) and neglecting the nonlinear interactions leads to the following

system of equation:

Lϕ⃗+ Ly
dϕ⃗

dy
+ Lyy

d2ϕ⃗

dy2
= 0⃗ (3.15)

Where ϕ⃗ = [û, v̂, ŵ, p̂, T̂ ]T and the matrices L, Ly and Lyy depend only on the mean flow

quantities and wavenumbers (α, β, ω). The equation (3.15), is the basis of the linear local

stability theory –usually simply termed Linear Stability Theory. To solve this system, we

must first define boundary conditions that are consistent with the nature of the base flow.

The term base flow refers to the laminar flow on which the stability analysis is performed.

It is different from the mean flow, which includes both the base flow and the mean flow

distortion. This nuance will be discussed in Section 5.2.2. The LST is usually applied

to simple cases such as self-similar flows (Blasius, Falkner-Skan-Cooke, jets, etc.). Each

of these examples requires the definition of specific boundary conditions. Here, we focus

on general boundary layer flows and assume a disturbance-free freestream and vanishing

fluctuating velocities at the wall, due to the no-slip condition. Assuming an isothermal wall,
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the temperature fluctuation is also assumed to be null at the wall. The only inhomogeneous

boundary condition is the fluctuating wall pressure p̂(0). The boundary conditions read:

û(0) = v̂(0) = ŵ(0) = T̂ (0) = p̂(0)− 1 = 0 (3.16)

ûy(∞) = v̂y(∞) = ŵy(∞) = p̂y(∞) = T̂y(∞) = 0 (3.17)

The boundary condition on p̂ serves two purposes: (1) to avoid the trivial solution; and (2)

to provide a scaling to the solution. The main flaw in local stability theory is its inability

to account for the growth of the boundary layer and history effects of the perturbation.

The nonlocal stability theory circumvents these weaknesses.

3.3 Nonlocal stability analysis

In the nonlocal stability analysis, the history effects associated with the spatial variation

of the perturbations and the varying base flow properties are taken into account [86] which

results in a streamwise dependency of both the amplitude and the phase functions. The

motivation behind the development of the nonlocal stability theory was driven by the need

for an efficient tool to study the propagation of perturbations along the stream direction

but to avoid the necessity of solving an elliptic system of equations. This is only achievable

if the second derivative in the streamwise direction ∂2xq̂ is neglected, effectively transform-

ing the elliptic-nature of the partial differential equation set into a parabolic form. This

simplification only holds if the flow is slowly varying in the streamwise direction such as

in boundary layers, jets or channels. For example, in a Blasius boundary layer, ∂2xq̂, scales

with O(Re−2
δ ) and is negligible compared to ∂xq̂ which scales with O(Re−1

δ ). As a result,

it is possible to derive a parabolic system of equations that can be solved incrementally

along the streamwise direction to study the stability of downstream-propagating modal

perturbations. First introduced by Hall [65], the idea of studying the evolution of T-S

waves through the Parabolized Stability Equations (PSE) was further developed by Itoh

[83] and Bertolotti [15, 14, 193, 16], who extended the method further with the Nonlin-

ear Parabolized Stability Equations (NPSE), which can account for the modal interactions.

The nonlinear effects are addressed in Section 3.3.2, in the current section, we first focus
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on the Linear PSE. In the Linear PSE (LPSE) approach, the perturbation vector takes

the following form:

q′ = q̂(x, y) exp

(∫ x

iα(x)dx+ iβz − iωt

)
(3.18)

Introducing equation (3.18) into (3.10a)-(3.10c) leads to the following system of equations

Lϕ⃗+ Ly
∂ϕ⃗

∂y
+ Lyy

∂2ϕ⃗

∂y2
= Lx

∂ϕ⃗

∂x
(3.19)

Where the matrices L, Ly and Lyy are the same as in (3.15) while the matrix Lx accounts

for the streamwise derivatives. The boundary conditions are also similar to those of the

LST except that the condition on p̂ at the wall is relaxed since ∂p̂
∂x

is no longer neglected.

û(0) = v̂(0) = ŵ(0) = T̂ (0) = 0 (3.20)

ûy(∞) = v̂y(∞) = ŵy(∞) = p̂y(∞) = T̂y(∞) = 0 (3.21)

3.3.1 Normalization condition

In the PSE approach, the streamwise wave number α is also a variable in the problem

and thus the system lacks closure as we have more variables than equations. An addi-

tional equation is needed to close the system. For this purpose, we introduce the so-called

Normalization condition (or Auxiliary condition) [86, 218], given by equation (3.22). Phys-

ically, the role of the normalization condition is to transfer energy from the shape function

to the phase function, so that ϕ⃗xx ∼ O(Re−2
δ ).∫ ∞

0

ϕ⃗†∂ϕ⃗

∂x
dy = 0 (3.22)

This supplementary condition prevents the use of a central scheme due to its integral form.

We must therefore solve this system with a combination of numerical methods; a monolithic

discretization in the normal direction and an implicit marching scheme in the streamwise

direction.
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3.3.2 Nonlinear forcing terms

In Local Stability Theory and Linear Parabolized Stability Equations, as the modes do not

interact, we can only investigate the stability of the system for a range of individual modal

perturbations [79]. In other words, only the growth rate and the shape of the perturbation

vectors obtained with these methods have a physical meaning [32]. To circumvent this

shortcoming and in order to extend the validity of the theory, it is possible to account

for the nonlinear interactions. In the Nonlinear Parabolized Stability Equations (NPSE)

approach, mode interactions are no longer neglected. Therefore, instead of solving every

mode separately, all modes must be solved simultaneously, as they are coupled through

nonlinear forcing terms. In this sense, the disturbance vector must now be expanded

in terms of its truncated Fourier components. Assuming periodicity in time and in the

spanwise direction, ϕ′ now takes the following form:

ϕ′(x, t) =
M∑

m=−M

N∑
n=−N

ϕ̃m,n(x, y) exp i(mβz − nωt) (3.23)

ϕ̃(x, y) = ϕ̂m,n(x, y) exp

[
i

∫ x

x0

αm,n(x)dx

]
(3.24)

Indeed, since the NPSE accounts for the nonlinearities, the forcing terms F ′′ are no longer

neglected in equations (3.10a)-(3.10c). The nonlinear terms are defined as follows:

C ′′ = p′T ′∂ui
∂xi

+ p′T
∂u′i
∂xi

+ pT ′∂u
′
i

∂xi
+ p′T ′∂u

′
i

∂xi

+T ′
[
∂p′

∂t
+ ui

∂p′

∂xi
+ u′i

∂p

∂xi
+ u′i

∂p′

∂xi

]
(3.25)

−p′
[
∂T ′

∂t
+ ui

∂T ′

∂xi
+ u′i

∂T

∂xi
+ u′i

∂T ′

∂xi

]
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M′′ =
µ′

Re

[
∂2u′j
∂x2j

+
∂2u′j
∂xi∂xj

− 2

3

∂2u′k
∂x2k

δij

]
+

1

Re

∂µ′

∂xj

[
∂u′i
∂xj

+
∂u′j
∂xi

− 2

3

∂u′k
∂xk

δij

]
(3.26)

−ρ′
[
∂u′i
∂t

+ uj
∂u′i
∂xj

+ u′j
∂ui
∂xj

]
−ρu′j

∂u′i
∂xj

− ρ′u′j
∂u′j
∂xj

E ′′ =
λ′

RePr

∂2T ′

∂x2i
+

1

RePr

∂λ′

∂xi

∂T ′

∂xi
+ (γ − 1)Ma2

(
u′i
∂p′

∂xi

)
+
(γ − 1)Ma2

Re

[
µ

(
∂u′i
∂xj

+
∂u′j
∂xi

− 2

3

∂u′k
∂xk

δij

)
∂u′j
∂xj

]
+
(γ − 1)Ma2

Re

[
µ′
(
∂u′i
∂xj

+
∂u′j
∂xi

− 2

3

∂u′k
∂xk

δij

)
∂uj
∂xj

]
(3.27)

+
(γ − 1)Ma2

Re

[
µ′
(
∂ui
∂xj

+
∂uj
∂xi

− 2

3

∂uk
∂xk

δij

)
∂u′j
∂xj

]
+
(γ − 1)Ma2

Re

[
µ′
(
∂u′i
∂xj

+
∂u′j
∂xi

− 2

3

∂u′k
∂xk

δij

)
∂u′j
∂xj

]
−
[
ρ′cp

(
∂T ′

∂t
+ uj

∂T ′

∂xj
+ u′j

∂T

∂xj

)
+ ρcpu

′
j

∂T ′

∂xj
+ ρ′cpu

′
j

∂T ′

∂xj

]
The nonlinear system now reads:{

Lϕ⃗+ Ly
∂ϕ⃗

∂y
+ Lyy

∂2ϕ⃗

∂y2

}
m,n

= Λm,n exp

(
−i
∫
x

αm,ndx

){
F̃+ Lx

∂ϕ⃗

∂x

}
m,n

(3.28)

The system (3.28) is mode-specific and, therefore, must be solved for every {m,n} combi-

nation. Moreover, every mode is subject to the normalization condition (3.22). Concerning

the nonlinear forcing terms, they can be evaluated in physical or spectral space. The di-

rect method expands the nonlinearities and evaluates the forcing terms using a Cauchy

summation. The alternative is to use an Inverse Fast Fourier Transform (IFFT), compute
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the forcing terms in the physical space using equations (3.25)-(3.27) and finally use a Fast

Fourier Transform (FFT) to convert the forcing terms back into spectral space. The FFT

and IFFT algorithms are well optimized, while the direct method requires the derivation

and numerical evaluation of dozens of intermediate terms. Airiau even found that the FFT

method was not only simpler, but also faster [2]. For these reasons, we implemented the

FFT method for the forcing terms in the code.

The main advantage of integrating nonlinear effects and mode interactions within the

modal analysis is that the perturbation vector, ϕ′, is predicted with the correct amplitude.

In other words, one can simply use an IFFT to reconstruct the perturbation ϕ′ from its

eigenmodes and predict the transition based on the friction coefficient evaluated from the

Reynolds stresses or the turbulent kinetic energy.

3.3.3 Finite-bandwidth representation

In the classical PSE theory, the disturbance is given by (3.23) and thus each mode is

represented discretely, the disturbance is thus represented by a dominant mode and its

subharmonics. However, to properly represent nonlinear interactions and accurately pre-

dict the generation of frequency content, the whole frequency spectrum must be considered

[91]. A novel approach, developed by Kuehl[91], is to represent the wave packet using finite

bandwidth disturbances. In this approach, the perturbation vector ϕ′ is defined as

ϕ′(x, t) =

∫ ∞

−∞

∫ ∞

−∞
ϕ̃(ω, β, x, y) exp[i(mβz − nωt)]dωdβ (3.29)

Where ϕ̃(ω, β, x, y) is defined as

ϕ̃(ω, β, x, y) = W (ω, β)ϕ̂m,n(x, y) exp

[
i

∫ x

x0

αm,n(x)dx

]
(3.30)

This explicit dependence of the shape function ϕ̃(x, y) on ω enables better representa-

tion of the energy transfer between the modes [100]. In practice, it is indeed impossible

to represent the full spectrum of the perturbation, and thus the double integral (3.29) is
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truncated and represented by equation (3.31).

ϕ′(x, t) =
M∑

m=−M

N∑
n=−N

ϕ̃m,n(ω, β, x, y) exp i(mβz − nωt)∆ω∆β (3.31)

Similarly, certain terms can be grouped to lead to a perturbation formulation similar

to that of (3.23):

ϕ′(x, t) =
M∑

m=−M

N∑
n=−N

ϕ̃m,n(x, y) exp i(mβz − nωt)︸ ︷︷ ︸
from Equation (3.23)

W (β, ω)∆ω∆β︸ ︷︷ ︸
W̃ (ω,β)

(3.32)
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Figure 3.1. Illustration of the finite-bandwidth representation. The dotted line repre-
sents the frequency content of the perturbation. Each bar and gaussian function represent
the modes solved in the PSE using the delta (left) and normal (right) mode shape.

The main advantage of this formulation is that it allows for modeling of finite-bandwidth

disturbances. For example, a spectral shape function W̃ can be defined for each mode of

disturbance, and acts as a transfer function that redistributes energy between modes. By

defining W using the delta Dirac function W = δ(ω) · δ(β), it is possible to retrieve the

classical wave-packet approach. In the finite-bandwidth approach, W̃ can take any form,

as long as the energy is conserved, that is, the energy contained in each mode must remain

the same. The obvious choice for W in the context of the finite-bandwidth approach is
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a normal distribution. Figure 3.1 illustrates the difference between the delta and normal

finite-bandwidth representations. In Figure 3.1, the disturbance is only discretized in ω,

but the concept is easily generalizable to include both ω and β. Slight overlaps between

modes enhance the study of spectral broadening and low-frequency content generation [91].

On the algorithmic side, the main difference in the implementation is an additional loop

over the modes in the computation of the amplitude, as each mode now slightly contributes

to the growth of the other modes.

3.3.4 Measure of stability

The disturbance growth rate σ is calculated from α (streamwise wavenumber) and Ek

(disturbance kinetic energy) with equation (3.33). The first term, −Im(α), corresponds to

the contribution of the exponential part of the disturbances, while the second term is the

correction related to the change in the amplitude function [86].

σ = −Im(α) +
∂

∂x

[
ln
(√

Ek

)]
(3.33)

Ek =

∫ ∞

0

ρ
(
|û|2+|v̂|2+|ŵ|2

)
dy (3.34)

When σ > 0, the disturbances are amplified, when σ < 0 they are damped. Figure 3.2

shows the evolution of the growth rate along the x-direction. The results are compared

with Juniper’s (incompressible) results for a ZPG flat plate [86].

The neutral stability curve provides valuable information on the stability of the flow un-

der given conditions (Reδ, ω, β,Ma). The neutral stability curve is obtained by performing

multiple PSE simulations over a range of ω and β. In incompressible boundary layer flows,

the most unstable mode is two-dimensional, and thus it is common practice to simply set

β = 0 and investigate the spatial evolution of α by varying the temporal frequency (ω). As

seen in the Figure 3.3, the PSE results agree well with the experimental data, except for

the height of the teardrop peak. However, the PSE results are almost perfectly in agree-

ment with the previous DNS predictions. The disparities between the experiments and the

DNS/PSE results are probably due to the experimental setups themselves: background

28



Figure 3.2. Comparison of the growth rate in a laminar boundary layer obtained with
the LPSE approach at Mach 0.1 (F = 100), compared with incompressible results from
[86]
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Figure 3.3. (a) Neutral stability curve, Ma = 0.05 ZPG flat plate
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noise, wall vibration, and/or surface roughness may induce perturbation in the freestream

and extend the zone of instability further than the idealized DNS/PSE case.

3.3.5 N-factor

The eN method is widely used in aerodynamic design. Based on empirical measurements,

industry has made huge efforts to collect the experimental data needed for transition

correlations [72]. The n-factor can be seen as a measure of the amplification of a particular

mode along the stream path. However, it should be noted that the n-factor is a function

of the temporal and spanwise wavenumbers (ω and β); every combination of wavenumbers

has a corresponding n-factor curve that cannot be directly correlated with the transition

position.

n-factor = −
∫ xi

x0

σdx (3.35)

To remove this ambiguity, Ingen [80], [81] defined the N-factor, with a capitalized letter,

corresponding to the envelope of the n-factor curves (see Figure 3.4).

From a physical point of view, the eN method is nothing more than a correlation between

the transition position (obtained experimentally) and the N-factor (obtained with the

modal stability theory). The method is thus highly data-driven and specific to the geometry

of the experiment: a critical N-factor must be correlated for every geometry and flow

condition. The use of the method beyond its range of applicability may lead to considerable

errors. For the Blasius boundary layer, Ingen [81] reached the following critical N-factors

for the beginning and end of the transition.

NB = 2.13− 6.18 log10(Tu) (3.36)

NE = 5.00− 6.18 log10(Tu) (3.37)

where Tu represents the freestream turbulence intensity. The relations (3.36) and (3.37) are

based on the experiments of Schubauer and Skramstad [170] and are valid for Tu > 0.1%.

Combining the relations (3.36) and (3.37) and the results plotted on the Figure 3.4a, one

can obtain an estimate of the location of the transition. Figure 3.4b shows the prediction

of the transition location for an incompressible zero pressure gradient (ZPG) flat plate
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Figure 3.4. (top) N-factor versus n-factor, (bottom) PSE predictions of the beginning
and end of transition as a function of the turbulence intensity (Tu [%]), Ma = 0.1 ZPG
flat plate
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Figure 3.5. Illustration of the ortho-curvilinear coordinate system

boundary layer. The RANS, using the k − ω model supplemented with the 2 equations

γ−Reθ transition model, and the eN method lead to similar results for the End of transition

line, which is expected since both approaches have been optimized for this exact test case

(ZPG transitional flat plate boundary layer).

3.4 Parabolized stability equation framework

3.4.1 Curvilinear coordinates

One of the main objectives of the research is to develop a tool to predict the transition

in compressible flows over complex geometries. The marching procedure is performed in

the streamwise direction and is therefore incompatible with general Cartesian coordinates,

except in the case where x is perfectly aligned with the streamlines (which is the case for

very simple flows such as Blasius, Poiseuille and Couette flows). To overcome this difficulty,

we define the following orthocurvilinear coordinate system as illustrated in Figure 3.5.

For conciseness, the Cartesian and the translated Cartesian systems are referred to by

the superscripts ′′ and ′, respectively, while the ortho-curvilinear system is simply noted

{x, y, z}, without any superscript.
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x = x′ cos(θ(x))− y′ sin(θ(x)) (3.38)

y = x′ sin(θ(x)) + y′ cos(θ(x)) (3.39)

z = z′ (3.40)

The geometric Jacobian associated with equations (3.38) -(3.40) can be written in matrix

form:

J =


∂x
∂x′

∂x
∂y′

0
∂y
∂x′

∂y
∂y′

0

0 0 1

 (3.41)

where the coefficients are given by:

∂x

∂x′
=

cos θ

1 + y dθ
dx

= Jxx
∂x

∂y′
= − sin θ

1 + y dθ
dx

= Jyx (3.42)

∂y

∂x′
= sin θ + x

dθ

dx

∂x

∂x′
= Jxy

∂y

∂y′
= cos θ + x

dθ

dx

∂x

∂y′
= Jyy (3.43)

Using the chain rule, the Cartesian derivatives of a scalar function F can be expressed in

the curvilinear coordinate system using equations (3.44)-(3.48).

∂F

∂x′
=
∂F

∂x
Jxx +

∂F

∂y
Jyx (3.44)

∂F

∂y′
=
∂F

∂x
Jxy +

∂F

∂y
Jyy (3.45)

∂2F

∂x′2
=
∂2F

∂x2
J2
xx +

∂2F

∂x∂y
2JyxJxx +

∂2F

∂y2
J2
yx (3.46)

∂2F

∂y′2
=
∂2F

∂x2
J2
xy +

∂2F

∂x∂y
2JxyJyy +

∂2F

∂y2
J2
yy (3.47)

∂2F

∂x′∂y′
=
∂2F

∂x2
JxxJxy +

∂2F

∂x∂y
(JyyJxx + JyxJxy) +

∂2F

∂y2
JyxJxy (3.48)

The complete compressible Navier-Stokes equations as well as the modal stability equations

in curvilinear coordinates can be found in the appendix.

The geometric Jacobian is only defined for the normal and tangential directions. The

details of the numerical implementation of the modal stability equations as well as the
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compressible Navier-Stokes equations are addressed in the next section.

3.4.2 Numerical Methods

One of the main advantages of the parabolized stability equations is their ability to be

solved using a computationally advantageous marching procedure. This approach allows

for the use of two different numerical methods in the streamwise and normal directions.

For instance, we use a multi-element spectral collocation method in the normal direction

and Backward Differentiation Formulas (BDF) in the streamwise direction. This approach

was also preferred by several other authors [71, 117, 146].

Wall-normal discretization

The spectral collocation method is an accurate class of numerical techniques for the solution

of linear/nonlinear partial differential equations (PDE). The main idea behind the spectral

collocation method is to expand the solution in terms of global basis functions so that

the numerical solution satisfies the PDE at the so-called collocation points, or Chebyshev

Gauss-Lobatto points [78],

ξj = cos
πj

n
ξj ∈ [−1, 1] (3.49)

The general spectral representation of a solution to a PDE takes the following form:

u∗(ξ) =
n∑

j=0

ϕj(ξ)u(ξj) (3.50)

where ϕj(ξ) are the basis functions. In the case of modal stability theory, since the solution

is not periodic, we use Chebyshev polynomials of the following form:

ϕj(ξ) =

(
1− ξ2j
ξ − ξj

)
T ′
n(ξ)

n2cj
(−1)j+1; c0 = cn = 2, cj = 1 (3.51)
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where Tn and T ′
n are the Chebyshev polynomials

Tn(ξ) = cos(n cos−1 ξ) (3.52)

T ′
n(ξ) =

n sin(n cos−1 ξ)√
1− ξ2

(3.53)

The derivatives of the Chebyshev polynomials can be computed from the following expres-

sion:
du∗

dξ

∣∣∣∣
i

=
n∑

j=0

Φij(ξ)u(ξj) (3.54)

where

Φij =
ci
cj

(−1)i+j

ξi − ξj
, for i ̸= j (3.55)

Φii = − ξi
2(1− ξ2i )

(3.56)

Φ00 =
2m2 + 1

6
(3.57)

Φnn = −2m2 + 1

6
(3.58)

The collocation points ξj are defined on a domain from [−1, 1]. To compute the derivative

on the physical domain yj ∈ [y0, yf ], a scaling function, Si, must be applied.

du∗

dy

∣∣∣∣
i

=
du∗

dξ

dξ

dy

∣∣∣∣
i

=
n∑

j=0

SiΦiju(ξj) =
n∑

j=0

Diju(yj) (3.59)

Higher derivatives are defined through the powers of the matrix D. For example, the

second derivative is D2, the third is D3, and so forth [196]. For example,

d2u∗

dy2

∣∣∣∣
i

=
n∑

j=0

DikDkju(yj) (3.60)
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Finally, the solution and its derivatives can be represented in a more convenient matrix-

vector form:

u∗ = I · u du∗

dy
= D · u d2u∗

dy2
= D2 · u (3.61)

Multi-Domains Spectral collocation method

Due to its exponential convergence rate, the spectral collocation method is one of the most

accurate and efficient numerical schemes. However, in practice, the collocation points are

not necessarily well distributed for the shape of the solution. To deal with this problem,

we can increase the degree of the polynomial to within the range of 200-300, which usually

leads to numerical instabilities. Moreover, the classical spectral collocation method requires

the resolution of a dense matrix, which can be a problem for computational performance

optimization. The use of a multi-domain spectral collocation approach helps alleviate these

issues by converting the system matrix into a sparse matrix and allowing the user to define

a less stringent grid spacing. This approach was first used in the context of the PSE by

Malik [117] The general idea behind this approach is to divide the computational domain

into multiple subdomains and apply the classical spectral collocation method locally, on

every element. Appropriate boundary conditions at the interfaces of the elements ensure

the smoothness of the solution. Thus, it is possible to define a global differentiation matrix

D, composed of multiple sub-differentiation matrices. For example, for 3 subdomains D is

defined as

D =

D0 0 0

0 D1 0

0 0 D2

 (3.62)

To better illustrate this feature, a typical mesh for a forward facing step (FFS) is shown

in Figure 3.6. The irregular clustering is due to the spectral multi-element collocation

method. The first interface is visible near y = 5δ. Each element uses a polynomial of

degree 48. The main advantage of the multi-elements spectral collocation method is that
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one can choose the location of each element in order to ensure a minimum number of points

in the boundary layer.

Figure 3.6. A typical mesh for the forward facing step case (FFS), only a small portion
of the domain is displayed. The U-velocity profile is displayed in blue for scaling

Stream-wise discretization

Due to the elliptic nature of the steady-state Navier-Stokes equations, the laminar base

flow solver requires the use of an implicit (central) numerical scheme. To this end, we use a

high-order central finite-difference scheme. The coefficients are deduced from the Lagrange

polynomials, which allow the use of non-uniform grids and polynomials of arbitrary degree.

L(xi) =
k∑

j=0

yjℓj(xi) ℓj(xi) =
∏

0≤m≤k
m ̸=j

xi − xm
xj − xm

(3.63)

In practice, the finite difference coefficients are obtained by evaluating the derivative of

the Lagrange polynomials at the grid points using equation (3.64). The higher derivatives
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are obtained through recursion.

L
′
(x) :=

k∑
j=0

yjℓ
′

j(x) ℓ
(1)
j (x) :=

k∑
i=0
i ̸=j

 1

xj − xi

k∏
m=0

m ̸=(i,j)

x− xm
xj − xm

 (3.64)

We noticed that the multi-element method induced small oscillations in the solution

of the base flow, which were susceptible to tarnish the modal response of the flow. In

order to keep the robustness and accuracy of the modal solver, we decided to use a pure

finite difference approach for the base flow, but keep an hybrid spectral/BDF approach for

the fluctuating flow as it is the most accurate and robust method for the stability solver.

As a result, the base flow is solved using a different grid spacing in the normal direction;

this means that the solution must be interpolated at the spectral collocation points using

(3.63).

The PSE are solved using an implicit spatial-marching procedure. For this purpose,

we chose standard Backward Differentiation Formulas (BDF). The BDF coefficients are

computed with (3.64) using the points upwind of the query point, allowing the use of a

variable step size. To avoid numerical instabilities in the marching procedure when the

step size is reduced, Krypton uses the stabilization technique proposed by [6]. In Krypton,

the BDF order is arbitrary, but the stabilization term is only valid for first-order BDF.

3.4.3 Algorithm

In this section, we provide a brief overview of the code architecture, its main algorithms,

and provide an overview of the approaches used to discretize the governing equations.

Architecture

The program, Krypton, was developed with a strong emphasis on modularity and flex-

ibility, as it is the main framework for the current research. The paper describing the
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overview of the code implementation and usage is presented in the next chapter. Most

of the code is written in Python to take advantage of the numerous scientific computing

packages (NumPy, SciPy, Matplotlib). The vast majority of NumPy and SciPy functions

are, in fact, wrappers for lower-level functions and solvers, such as those contained in the

BLAS, LAPACK and Pardiso libraries. By default, the Anaconda distribution of Python

is compiled with the Intel Math Kernel Library (MKL), a highly optimized, threaded, and

vectorized library. In this way, we take advantage of a high-level programming language

(speed of development, flexibility, simplicity), as well as some advantages of mid-level lan-

guages (efficiency, threading, rapidity). It is important to point out that Krypton was

developed from scratch; everything from the numerical methods (which include the multi-

elements spectral collocation method, the finite difference scheme, and the BDF-based

marching procedure) to the flow solver (which include the compressible laminar Navier-

Stokes and the modal stability solver) were developed by the author, for the need of the

current research. Krypton was developed using an Object Oriented Programming (OOP)

philosophy; its architecture is described in the present section.

How it works

The figures 3.7 and 3.8 illustrate how the different modules communicate together within

Krypton. First, all the input of the simulation, including the flow properties (Re, Ma,

Tw, ω, β, crossflow intensity), and the specification of the numerical methods (BDF order,

discretization, geometry) are specified in the main.py module. These inputs are then passed

to the Discret.py module, which is used to compute the relevant differentiation matrices

(spectral collocation in y and FD/BDF in x). The Discret.py module also includes different

classes and methods for multidimensional interpolation and numerical integration that

were developed directly from the basis functions to ensure consistency with the numerical

schemes.

Base flow: Laminar Compressible Navier-Stokes Solver

The next step is to generate the base flow. For this purpose, the module LaminarFlow.py

first creates an object associated with the discretized Navier-Stokes equations. This ob-
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ject, defined in NS.py, contains all the relevant methods to build the linear operator and

iteratively solve the problem. The CNSE are solved using a Picard iterative method –also

referred to as the fixed-point algorithm. In the Picard method, the non-linear terms are

linearized with the solution at the previous step (k-1). For instance, the convective terms

in the momentum equation are defined as

ukj
∂uki
∂xj

≈ uk−1
j

∂ukj
∂xj

(3.65)

The Picard method is relatively simple and easy to implement but has only a linear con-

vergence. The present algorithm usually takes around 8 iterations to converge for the

computation of a simple zero pressure gradient (ZPG) flat plate simulation and has a time

complexity of O(n1.2), which means that if the number of equations is doubled, the com-

putation time will increase by a factor 21.2.

For the boundary condition, we impose a unitary velocity at the inlet while the pressure

is extrapolated from the solution. We impose a traction-free boundary condition, given by

equation (3.66), in the free-stream. The pressure is imposed at the outlet. In most cases,

the temperature of the wall is kept constant ( Tw

T0
= Tw

T∞
= 1).

µ

Re

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

∂uk
∂xk

δij

]
− pδij = 0 (3.66)

Fluctuating flow : Modal Stability Solver

Once the tolerance on the residual is met, the solution derivatives are calculated and

the base flow is transferred to the modal stability solver. The modal stability solver is, by

construction, very similar to the laminar flow solver, the main difference lies in the definition

of the object associated with the PSE. First, since the equations are parabolized, the

problem is essentially divided into several smaller problems that will be solved sequentially

through a marching procedure. Both the local (LST) and the nonlocal (LPSE) procedure

are implemented in the PSE.py module, since they roughly only differ from each other

by the addition of streamwise derivatives and a different convergence criteria. The local
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Figure 3.7. Krypton block diagram (part 1 of 2)
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stability problem is generally solved as a matrix eigenvalue problem [207, 86]:

[A]Φ = ω[B]Φ (3.67)

In such a case, the system can be solved with classical numerical methods, for instance,

the standard QZ algorithm or inverse Rayleigh iterations. However, these methods are

computationally expensive and often lead to inaccurate results. Instead, we chose to follow

a simpler and more robust algorithm: rather than finding ω such that (3.67) is satisfied,

we impose ω and find α such that the following boundary conditions are satisfied on the

shape functions:

û(0) = v̂(0) = ŵ(0) = T̂ (0) = p̂(0)− 1 = 0 (3.68)

ûy(∞) = v̂y(∞) = ŵy(∞) = T̂y(∞) = p̂y(∞) = 0 (3.69)

To do so, we impose the boundary conditions on all variables except v̂ at the wall and

iterate on α using the Newton-Raphson method until |v̂(0)|< ϵ. We usually set ϵ to some-

thin slightly larger than machine precision in our calculations. This approach is robust,

lightweight, and converges quadratically. The results obtained from the local stability

theory are then used as initial conditions for the PSE calculation.

The procedure for the PSE calculations is almost identical to the LST algorithm; there

are only slight procedural differences. First, the boundary conditions are slightly different:

v̂(0) is now explicitly set to zero, while the condition on p̂ at the wall is relaxed. In the PSE

approach, the normalization condition replaces the condition on v̂ at the wall in Newton’s

iterations, and thus the new objective is to find α for which the condition (3.22) is satisfied.

Once the solution is converged at the first station, the marching procedure begins. For this

purpose, we opt for an implicit BDF-based approach. We define a station as a position on

the x-axis.

The nonlinear algorithm is a bit more complicated, as it requires the use of two nested

loops to ensure the convergence of the solution. In other words, the new objective is to find

α that satisfies condition (3.22) for a given forcing term. The forcing terms are therefore

updated once α is converged for all the modes. In general, each iteration requires 2 to 3
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Figure 3.8. Krypton block diagram (part 2 of 2)
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sub-iterations to converge.

3.5 Direct Numerical Simulations

The direct numerical simulation of compressible boundary layer flow in complex geome-

tries with realistic Reynolds numbers requires the use of highly resolved grids in addition

to high-order numerical methods–generally the mesh resolution for DNS falls in range of

100M to 10B grid points. At such grid resolution, the question of scalability becomes

crucial. Most commercial software typically favours stability over high-order numerical

methods, and are ill-suited for DNS studies of transitional flows or turbulence. The main

reason for this is the same reason that CFD was once limited to academia: DNS in its

current state is tractable only for simple, idealized problems. On the academic side, the

obvious open source options are OpenFoam and Nektar++. While these softwares have

DNS –or quasi-DNS–capabilities and support arbitrary complex geometries, they also use

unstructured grids and/or implicit time integration, which is not adapted for the need

of the current research. Through long-standing collaboration, we have access to Hybrid,

an academic DNS code developed by Johan Larsson (University of Maryland) and Ivan

Bermejo-Moreno (USC) [12]. Hybrid is a massively parallelized code that uses a sixth-order

central finite-difference scheme coupled with high-order filtering for the spatial derivatives

and a fourth-order Runge-Kutta scheme for the time integration. At the fluid boundaries,

an NSCBC (Navier-Stokes Characteristic Boundary Condition) is enforced and is sup-

plemented by a sponge layer to dampen spurious oscillations of the finite computational

domain. The baseline code has been extensively used for shock turbulence interaction and

wall-bounded flow studies. Hybrid, however, uses Cartesian coordinates, and thus in order

to study the effect of smooth roughness on the boundary layer stability, we had to imple-

ment curvilinear coordinates. The mere implementation of curvilinear coordinates in such

a high-performance DNS code represents a substantial contribution that requires special

precautions to preserve the code efficiency and scalability. In this section, we summarize

the main steps to derived the N-S equations in curvilinear coordinates and discuss the

main implementation strategies into Hybrid.
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3.5.1 Governing equations

In the current section, the change of coordinates system is made following the method

described by [124]. Hybrid solves the compressible Navier-Stokes equations in conservative

form for a calorically perfect gas in Cartesian coordinates:

∂ρ

∂t
+
∂ρui
∂xi

= 0 (3.70)

∂ρui
∂t

+
∂

∂xj
(ρuiuj + pδij) =

∂σij
∂xj

(3.71)

∂E

∂t
+

∂

∂xj
(uj(E + p)) =

∂

∂xj

(
uiσij − κ

∂T

∂xj

)
(3.72)

where E corresponds to the sum of the internal and kinetic energy of the fluid. The

equations are appropriately and consistently non-dimensionalized, the details of which can

be found in the thesis of Daryan [126].

3.5.2 Coordinate transformation

The idea of a coordinate transformation is to uniquely map a rectangular mesh onto a

body of arbitrary shape. Here we use the following notation:

Forward transformation Backward transformation

x1 = x1(ξ1, ξ2, ξ3) ξ1 = ξ1(x1, x2, x3) (3.73)

x2 = x2(ξ1, ξ2, ξ3) ξ2 = ξ2(x1, x2, x3) (3.74)

x3 = x3(ξ1, ξ2, ξ3) ξ3 = ξ3(x1, x2, x3) (3.75)

where xi and ξi are the coordinates in Cartesian and curvilinear coordinates, respectively.

In general, the forward transformation can be written explicitly using a functional relation;

the backward transformation is usually more difficult to define due to its implicit relation-

ship to xi. The derivative of an arbitrary scalar function ϕ in Cartesian coordinates is
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defined by

∂ϕ

∂x1
=
∂ϕ

∂ξ1

∂ξ1
∂x1

+
∂ϕ

∂ξ2

∂ξ2
∂x1

+
∂ϕ

∂ξ3

∂ξ3
∂x1

(3.76)

∂ϕ

∂x2
=
∂ϕ

∂ξ1

∂ξ1
∂x2

+
∂ϕ

∂ξ2

∂ξ2
∂x2

+
∂ϕ

∂ξ3

∂ξ3
∂x2

(3.77)

∂ϕ

∂x3
=
∂ϕ

∂ξ1

∂ξ1
∂x3

+
∂ϕ

∂ξ2

∂ξ2
∂x3

+
∂ϕ

∂ξ3

∂ξ3
∂x3

(3.78)

In matrix form, the Jacobian of the backward transformation reads:
∂ϕ
∂x1
∂ϕ
∂x2
∂ϕ
∂x3

 =


∂ξ1
∂x1

∂ξ2
∂x1

∂ξ3
∂x1

∂ξ1
∂x2

∂ξ2
∂x2

∂ξ3
∂x2

∂ξ1
∂x3

∂ξ2
∂x3

∂ξ3
∂x3




∂ϕ
∂ξ1
∂ϕ
∂ξ2
∂ϕ
∂ξ3

 (3.79)

As mentioned earlier, the backward transformation is not known in its explicit form, and

thus the Jacobian of the backward transformation cannot be evaluated using (3.79). To

circumvent this problem, we begin with the Jacobian of the forward transformation:

x1 = x1(ξ1, ξ2, ξ3) −→ dx1 =
∂x1
∂ξ1

dξ1 +
∂x1
∂ξ2

dξ2 +
∂x1
∂ξ3

dξ3 =
∂x1
∂ξi

dξi

x2 = x2(ξ1, ξ2, ξ3) −→ dx2 =
∂x2
∂ξ1

dξ1 +
∂x2
∂ξ2

dξ2 +
∂x2
∂ξ3

dξ3 =
∂x2
∂ξi

dξi (3.80)

x3 = x3(ξ1, ξ2, ξ3) −→ dx3 =
∂x3
∂ξ1

dξ1 +
∂x3
∂ξ2

dξ2 +
∂x3
∂ξ3

dξ3 =
∂x3
∂ξi

dξi

Similarly, to the backward transformation, we know that:

dξ1 =
∂ξ1
∂xj

dxj dξ2 =
∂ξ2
∂xj

dxj dξ3 =
∂ξ3
∂xj

dxj (3.81)
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Substituting equations (3.80) into (3.81) leads to:

dx1 =
∂x1
∂ξ1

(
∂ξ1
∂xj

dxj

)
+
∂x1
∂ξ2

(
∂ξ2
∂xj

dxj

)
+
∂x1
∂ξ3

(
∂ξ3
∂xj

dxj

)
dx2 =

∂x2
∂ξ1

(
∂ξ1
∂xj

dxj

)
+
∂x2
∂ξ2

(
∂ξ2
∂xj

dxj

)
+
∂x2
∂ξ3

(
∂ξ3
∂xj

dxj

)
(3.82)

dx3 =
∂x3
∂ξ1

(
∂ξ1
∂xj

dxj

)
+
∂x3
∂ξ2

(
∂ξ2
∂xj

dxj

)
+
∂x3
∂ξ3

(
∂ξ3
∂xj

dxj

)
(3.83)

where x1, x2 and x3 form an orthonormal basis, therefore, dx1 cannot be written in terms

of dx2 and/or dx3 and the only way the equation (3.82) can be true is if:

dx1 =
∂x1
∂ξi

∂ξ1
∂x1

dx1 (3.84)

1 =
∂x1
∂ξi

∂ξ1
∂x1

(3.85)

Or, in matrix notation:
∂x1

∂ξ1

∂x1

∂ξ2

∂x1

∂ξ3
∂x2

∂ξ1

∂x2

∂ξ2

∂x2

∂ξ3
∂x3

∂ξ1

∂x3

∂ξ2

∂x3

∂ξ3


︸ ︷︷ ︸
Forward Jacobian=[Jac]


∂ξ1
∂x1

∂ξ1
∂x1

∂ξ1
∂x1

∂ξ2
∂x2

∂ξ2
∂x2

∂ξ2
∂x2

∂ξ3
∂x3

∂ξ3
∂x3

∂ξ3
∂x3


︸ ︷︷ ︸

Backward Jacobian=[Jac]−1

=

1 0 0

0 1 0

0 0 1

 (3.86)

Therefore, the next task is to find the inverse of the forward Jacobian [Jac]. Using Cramer’s

rule and stating that [K] = [Jac]−1, we arrive to the following :

[K] =
1

J

β11 β12 β13

β21 β22 β23

β31 β32 β33

 Where βij = Co-factors of [Jac] and J = det(Jac) (3.87)
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Thus, we have the following relationship.

∂ϕ

∂xi
=
βik
J

∂ϕ

∂ξk
(3.88)

Another way of writing this is
∂ϕ

∂xi
=

1

J

∂

∂ξk
(βikϕ) (3.89)

Alternatively, some authors use a more compact notation where βik = βik/J . Here, we

prefer to keep βik and J distinct, but we note that both approaches are equivalent. It is

possible to define the general second derivative as:

∂2ϕ

∂xi∂xj
=

1

J

∂

∂ξk

(
βik

∂ϕ

∂xj

)
(3.90)

∂2ϕ

∂xi∂xj
=

1

J

∂

∂ξk

(
βik

1

J

∂

∂ξk
(βjkϕ)

)
(3.91)

∂2ϕ

∂xi∂xj
=

1

J

∂

∂ξk

(
βikβjk

1

J

∂ϕ

∂ξk

)
(3.92)

Using equations (3.89)-(3.92), we can rewrite the governing equations in curvilinear

coordinates. For the continuity equation, we obtain the following expressions:

∂ρ

∂t
+
∂ρui
∂xi

= 0 (3.93)

∂ρ

∂t
+

1

J

∂

∂ξk
(βikρui) = 0 (3.94)

Expanding the terms, we can re-write the continuity equation as:

∂ρ

∂t
+

1

J

∂

∂ξ1
(β11ρu1 + β21ρu2 + β31ρu3) (3.95)

+
1

J

∂

∂ξ2
(β12ρu1 + β22ρu2 + β32ρu3) (3.96)

+
1

J

∂

∂ξ3
(β13ρu1 + β23ρu2 + β33ρu3) = 0 (3.97)
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The momentum and energy equations are derived using the same procedure. The complete

derivation steps, including the expanded terms, is given in the appendix.

For the momentum equations, we obtain the following expression:

∂ρui
∂t

+
1

J

∂

∂ξk
(βjk(ρuiuj + pδij)) =

1

J

∂

∂ξk
(βjkσij) (3.98)

where

σij =
µ

J

[
∂

∂ξl
(βjlui) +

∂

∂ξl
(βiluj)−

2

3

∂

∂ξl
(βkluk) δij

]
(3.99)

For the energy equation, we obtain the following relation:

∂E

∂t
+

1

J

∂

∂ξk
(βjk(uj(E + p))) =

1

J

∂

∂ξk

[
βjk

(
ujσij − κ

∂T

∂xj

)]
(3.100)

The modification of the governing equations were implemented into Hybrid.

3.5.3 Boundary conditions

From a physical standpoint, the difficulty associated with the definition of well-posed

boundary conditions for compressible flows often results in unnatural behaviors near the

limit of the domain [129]. The authors emphasize the importance of paying particular

attention to the nature of the problem and imposing physically coherent boundary con-

ditions. On the numerical side, the application of lower-order extrapolation at the ghost

points of the outflow boundary in the presence of convection or a high gradient favours the

onset of spurious inward propagating acoustic instabilities and, in turn, leads to numerical

stiffness and convergence challenges [134]. Identification and separation of the different

waves crossing the boundary allow an elegant adjustment of the amplitude of the incom-

ing waves to zero. This approach, first proposed by Poinsot & Lele [147], is commonly

referred to as Navier-Stokes Characteristic Boundary Conditions (NSCBC), makes use of

the Local One-Dimensional Inviscid (LODI) Relations to decompose the crossing waves

into a sum of characteristics acoustic waves. The extension of the method to curvilinear

–or generalized– coordinates is not straightforward. A comprehensive derivation of the
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LODI relations in curvilinear coordinates falls out of the scope of the project. Here, we

shall limit ourselves to the presentation of the overall implementation procedure rather

than the complete derivation of the NSBC. The final transformation matrices that were

implemented in the code are given in [94]. For a more complete derivation of the method,

we refer the reader to the work of [147] and [93, 94].

Let us start the derivation from the unsteady compressible Euler equations in their

differential form:
∂q

∂t
+
∂F

∂ξk
= Sν (3.101)

where

q = {ρ, ρui, ρE}T F = {cjk, fijk, Hjk}T (3.102)

and Sν is a source that includes the viscous flux derivatives for the N-S equations. This

term is null for the Euler equations. Here, k refer to the direction normal to the boundary

surface.

Based on equations (3.94), (3.98) and (3.100), cjk, fijk and Hjk are defined as:

cjk =
βjkρuj
J

fijk =
βjk(ρuiuj + pδij)

J
hjk =

βjk(uj(E + p))

J
(3.103)

Equation (3.101) can be transformed into a characteristic form in the direction normal

to the boundary.
∂R

∂t
+ L = SC (3.104)

where R and L are the vector of characteristic variables and convection term, respectively.

Equation (3.104) was obtained from the following identities :

P =
∂q

∂R
∂R = P−1∂q (3.105)

L = Λ
∂R

∂ξk
= P−1

(
ξi
∂F

∂ξk

)
(3.106)
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where Λ is the matrix containing the eigenvalues of the system (3.104). diag(Λ) =

[U,U, U, U + c
√
ξk

2, U − c
√
ξk

2]T , where c is the speed of sound and U = ξkuk. To apply

the boundary conditions, equation (3.104) can be recast in terms of primitive variables as

follows:

∂ρ

∂t
+ L1 +

ρ

2c
(L4 + L5) = SC1 +

ρ

2c
(SC4 + SC5) (3.107a)

∂ũ

∂t
+

1

2
(L4 − L5) =

1

2
(SC4 + SC5) (3.107b)

∂ṽ

∂t
+ L3 = SC3 (3.107c)

∂w̃

∂t
+ L2 = SC2 (3.107d)

∂p

∂t
+
ρc

2
(L4 + L5) =

ρc

2
(SC4 + SC5) (3.107e)

Here, the terms SC account for a viscous correction, but if we use the LODI relations,

the RHS of equations (3.107a)-(3.107e) is zero. Depending on the flow conditions and

the type of boundary condition, the value of the crossing waves Li must be set correctly.

At a subsonic outlet, we see that four characteristic waves leave the domain, while one

enters at a velocity of U − c
√
ξk

2[147]. Thus, to implement a nonreflective outflow, only

one condition is necessary, and one could simply set L5 to zero and deduce the boundary

conditions based on (3.107a)-(3.107e). In practice, although the use of NSBC is very

effective in reducing the rise of acoustic instabilities near the outflow plane, the method

is not perfect and the use of an additional sponge layer is usually required. This is the

approach we followed here. A detailed description of the numerical setup, including the

definition of the boundary conditions, is presented in Chapter 5.

52



Chapter 4

Open-source solver for the Nonlinear

Parabolized Stability Equations

This chapter has been adapted from Francis Lacombe and Jean-Pierre Hickey. ”Kryp-

ton: Nonlinear parabolized stability equation solver for transonic flow in curvilinear coor-

dinates”, SoftwareX, 20:101206, 2022.
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Abstract

Krypton is an open source framework to solve the linear and nonlinear Parabolized Sta-

bility Equations (PSE) on a curvilinear coordinate system as a predictive tool to estimate

the laminar-to-turbulent transition under transonic conditions. Written in Python and

leveraging well-established libraries, the framework includes a laminar flow solver using

a consistent numerical scheme as the modal stability calculations. The code is validated

against published cases and can serve as the basis for future development of modal stability-

based problems in aerospace engineering, geophysical, and multiphase flows.
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4.1 Motivation and significance

The accurate prediction of the onset of laminar-to-turbulence transition remains a topic of

active research in aerospace engineering. The Parabolized Stability Equations (PSE) are

a nonlocal stability analysis tool that changes the mathematical nature of the governing

equations, and allows the computation of the spatial evolution and interaction of distur-

bances in weakly nonparallel flows. The integration of nonlinear mode interactions and

their spatial evolution are some of the chief advantages of PSE compared to other stabil-

ity theory paradigms. PSE has shown excellent agreement with experiments and direct

numerical simulations (DNS) in boundary layer flows; although some shortcomings of the

method are reported [194].

PSE can be used as a standalone predictive tool [140], can be coupled to a higher-fidelity

simulation frameworks (such as Large Eddy Simulation, or LES) to set the laminar-to-

turbulent transition location [113], or can be integrated into aerodynamic optimization

frameworks [136]. Although it has a long history [83, 15, 14, 193, 16], its relevance for

predictive modeling of aerospace flows has increased in recent years, especially for aerospace

engineering problems where cross-flow instabilities [143], surface roughness [104], and/or

compressibility effects become non-negligible [188]. Several well-established stability codes

are actively being used by the transition community. Among them, we note institutional

codes such as LASTRAC from NASA [132] or NOLOT from DLR, commercial codes such

as STABL2D [202], and in-house codes such as EPIC [137]. The few open-source options

available are generally focused on incompressible flow transition which present inherent

differences to the transonic flow regime. It is the need for an open source comprehensive

predictive tool at these complex high-speed flow conditions that motivated the development

of the present framework.

Krypton is an open-source framework to compute linear and nonlinear PSE on a

quasi-three-dimensional, curvilinear coordinate system at transonic conditions relevant to

aerospace flows. The framework includes a laminar base flow solver with the exact same

numerical methods used for stability calculations. Krypton has been developed with a

strong emphasis on modularity and flexibility. The code is written in Python to take ad-

vantage of the numerous scientific computing packages (NumPy, SciPy, Matplotlib) and
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was developed using an Object Oriented Programming (OOP) philosophy. Although not as

computationally efficient as other programming languages, Python was nonetheless chosen

because it is well established, easy-to-use, and open source. Furthermore, the computa-

tional requirements for the laminar base flow calculations remain modest. In addition to

the classical flat-plate boundary layer transition, the framework can be used for the study

of cross-flow instabilities, effect of pressure gradient, surface roughness-induced transition,

and stabilization characteristics of nonadiabatic walls. Krypton’s theoretical underpinning,

architecture, and illustrative examples are described in the next sections.

4.2 Mathematical background

Krypton consists of segregated laminar base flow and modal stability solvers. The math-

ematical background of the latter, which is the main focus of the code, will be presented

here. The parabolized stability equations are derived from the compressible Navier-Stokes

equations in their nondimensional and nonconservative form; this equation set is closed

with the ideal gas equation of state.

As is common in modal stability theory, the flow quantities are decomposed into a

steady component, ϕ, and an unsteady component, ϕ′ where:

ϕ′ = ϕ̂(x, y) exp

(
−i
∫
x

αm,n + ωt

)
(4.1)

By applying the decomposition to the compressible Navier-Stokes equations, subtract-

ing the steady base flow, and lumping together the higher-order fluctuating components

into a nonlinear forcing term, we obtain the perturbation transport equation. This repre-

sents a linearized form of the compressible Navier-Stokes equations, which is forced with

a nonlinear forcing term. These nonlinear terms are neglected when considering the lin-

earized form of the stability equations, denoted either as Linear Stability Theory (LST) or

Linear Parabolized Stability Equations (LPSE). When the nonlinear forcing is included, we

obtain a form which is used for the Nonlinear Parabolized Stability Equations, or NPSE.

The detailed transport equations for the fluctuating components as well as the forcing term
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are provided in the technical documentation provided with the code.

In PSE, the history effects associated with the initial conditions and the spatially

varying properties of the perturbation and the base flow are taken into account [86] which

results in a streamwise dependency of both the amplitude and phase functions. However,

the evolution of the perturbation in the streamwise direction is considered small (weakly

non-parallel) and ∂2xϕ̂ is assumed to scale with O(Re−2
δ ), thus it is negligible compared to

its first derivative (O(Re−1
δ )), which leads to a system of parabolic equations.

In NPSE, a set of perturbation modes are simultaneously solved, and the nonlinear

interaction among the modes acts as a mode-dependent forcing term to the linearized

equations. In this sense, the disturbance vector is expanded in terms of its truncated

Fourier components and introduced into the parabolized governing equations, which leads

to the following system of equations:{
Lϕ̂+ S

∂ϕ̂

∂y
+T

∂2ϕ̂

∂y2
+P

dα

dx

}
m,n

= Λm,n exp

(
−i
∫
x

αm,ndx

){
F̂+M

∂ϕ̂

∂x

}
m,n

(4.2)

The exact definition of each of these terms is provided in the technical documentation as it

represents a well-established implementation of NPSE. The equation is mode-specific and

therefore must be solved for every {m,n} combination. Moreover, every mode is subject

to the normalization condition (details are provided in the code documentation). The

nonlinear forcing terms are evaluated using an approach inspired by [2].

4.2.1 Numerical Methods

One of the main advantages of the PSE is its ability to be solved using a computationally

advantageous marching procedure. This approach allows for the use of two different nu-

merical methods in the streamwise and wall normal direction. For instance, a high-order

spectral scheme in the normal direction and Backward Differentiation Formulas (BDF)

in the streamwise direction. This approach was also preferred by several other authors

[71, 117, 146]. Despite its name, the PSE still contains some ellipticity due to the ∂xp̂

term. To avoid numerical instabilities in the marching procedure when the step size is

57



reduced, Krypton uses the stabilization technique proposed by [6].

4.3 Software description

4.3.1 Software Architecture

Krypton first solves the laminar compressible Navier-Stokes base flow (in 2D or quasi-3D)

and then the corresponding stability problem (either linear stability theory, LST, LPSE or

NPSE). Here, quasi-3D means that the 3 velocity components (u,v,w) are solved, but only

2 directions are discretized. The code can thus handle three-dimensional flows, but the flow

in the span-direction is assumed homogeneous. The entire solution procedure integrates

both base flow and stability solvers and provides an integrated approach to the solution of

the stability calculations. Figure 4.1 describes the main architecture of the code.

First, all the input of the simulation, including the flow properties (Re, Ma, Tw, ω,

β, crossflow intensity), geometry, and the user-defined numerical methods (BDF order,

discretization), are specified in the main.py file. These inputs are then passed to the module

NumMethod.py which is used to compute the relevant differentiation matrices (spectral

scheme in y and FD/BDF in x). Once the initialization is complete in main.py and

NumMethod.py, the code sequentially proceeds to the base flow and stability solvers.

The module LaminarFlow.py first creates an object associated with the discretized

Navier-Stokes equations. This object, defined in NS.py, contains all the relevant methods

to build the linear operator and iteratively solve the set of discretized equations. The

governing equations are solved using a Picard iterative method–also referred to as the

fixed-point algorithm. For the boundary conditions, we impose (u = {1, 0, 0} and T = 1)

on at the inlet while the pressure is extrapolated from the solution. We impose a traction-

free boundary condition at the outlet and in the free-stream. The wall temperature is kept

constant ( Tw

T∞
= C), although this can be modified for nonadiabatic cases. Then, a base

flow solution is obtained.

The converged flow field is then passed to the modal stability solver FlucFlow.py.
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First, a linear stability theory (LST) problem is solved to provide a valuable starting point

for the PSE solvers (either LPSE or NPSE). Given the parabolic nature of the equations,

the modes (or mode, for LPSE) are advanced along the streamwise direction through a

marching procedure. Both the local LST and the PSE (LPSE/NPSE) procedures are im-

plemented within the PSE.py module. The local stability problem is solved as a matrix

eigenvalue problem [207, 86]: [A]Φ = ω[B]Φ. To solve the eigenvalue problem for the LST,

we impose the boundary conditions on all variables except v̂ at the wall and iterate on α

with a Newton method until convergence |v̂(0)|< ϵ.

The procedure for the LPSE/NPSE calculations is almost identical to the LST proce-

dure. First, the boundary conditions are slightly different: v̂(0) is now explicitly set to

zero, while the condition on p̂ at the wall is relaxed. In the LPSE approach, the normal-

ization condition replaces the condition on v̂ at the wall in the Newton iterative process;

the objective is to find α for which the normalization condition is satisfied. Once the so-

lution is converged at the first streamwise location, the marching procedure begins. For

this purpose, we opt for an implicit BDF-based approach. The comprehensive details of

the implementation are found in the documentation of the code.

4.4 Illustrative Examples

4.4.1 Computing the marginal stability curve

A first validation test case is the incompressible zero pressure gradient flat plate boundary

layer transition in which the Reynolds number, based on the inlet boundary layer thickness,

is Reδ = 250, the Mach number Ma = 0.1 and the dimensionless fluctuation frequencies

range from F = 20 to F = 300. The validation of the LPSE results is shown in figure 4.2.

This case can be run in examples/example2.py.

# Reference and local Reynolds number (Scale with sqrt(x)

setParam.dic['prop']['Re'] = Re0 # Re0 = 250
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Main.
py

Input conditions:
  -Ma, Re, Tw
  -Geometry
  -Wave numbers

Discret.
py

Setup differentiation:
-Spectral collocation
-Finite difference
-Backward difference

LaminarFlow.
py

NS.
py

Initialize
solution

Build
Linear
Operator

Solve
System

Update
Solution
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output
solution

FlucFlow.py
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Solve
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Compute

Initialize

Update

Figure 4.1. Algorithmic flow chart for Krypton.

# Reference Mach numbers

setParam.dic['prop']['Ma'] = 0.1

4.4.2 NPSE on smooth backward-facing step

Defining complex geometry

In the second illustrative example, we present a smooth backward-facing step (with the

step height h = δ) at Ma = 0.5 (see see examples/example3.py). Since Python scripts

are used as input files, it is possible to use numpy functions (or any other package) to define

the geometry of the case. To define the smooth step, we use the following:

# Nx, Ny : computational grid dimensions

# N : Length of coordinates vector
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Figure 4.2. Neutral stability curve of a flat plate boundary layer at Ma = 0.1.
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Figure 4.3. Curvilinear grid generated by Krypton using the Optimal algorithm from
Geom.py

h = 1.25e-3 ; a = 10 ; b = 2*X0

coords = np.vstack([x.reshape((1,N)), y.reshape(1,N)]).T

x = np.linspace(-5*X0, Xf, N) ; y = h*(-1-np.tanh(a*(x-b)))

Geom = Geom(coords, Lref, Nx, Ny, Optimal=True)

The module Geom.py will then generate a curvilinear grid based on the surface descrip-

tion (x, y). Using the option Optimal = True, Geom.py will automatically increase the

density of points in the region of high curvature, see figure 4.3.

Modal analysis

After running the base flow in the smooth backward step, the code will solve the desired

modal stability problem. Although it is recommended to solve all modes using the same

assumptions (local, linear, parallel), it is nevertheless possible to use different assump-

tions for each mode or position. As mentioned earlier, both the local LST and the PSE

procedures (LPSE / NPSE) are implemented within the PSE.py module. In this example,

we solve the NPSE equations, and thus local = False (except at first station), linear

= False and parallel = False.

These settings must be defined in the parameter input stage before any calculations

are performed using the following syntax:

# Setting up the initial conditions

for m, n in setParam.dic['modes'][i0]:
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# If True solved locally without

# implicit marching procedure

setParam.dic[(m,n)]['local'][i0] = True

# if True nonlinear terms are neglected

setParam.dic[(m,n)]['linear'][i0] = False

# if True Streamwise derivatives

# in the base flow field are neglected.

setParam.dic[(m,n)]['parallel'][i0] = False

# Initial amplitude of the fluctuations

setParam.dic[(m,n)]['A_0'] = Amplitude * 1/(n+1)

The fluctuation amplitude history (see Figure 4.4) predicts a transition shortly after the

step as the amplitude of the second mode increases drastically.

4.5 Impact

Although the theoretical framework for PSE has been developed for some time, there has

been growing interest in including these methodologies into a wider range of aerospace

applications such as the consideration of stability due to surface roughness, cross-flow in-

stability, transpiration cooling or to optimize natural laminar flow designs. The modal

stability framework, developed in Krypton, can be integrated into a number of subfields

within aerospace engineering, such as the consideration of higher fidelity stability calcu-

lations for a multidisciplinary design analysis and optimization (MDAO). Much of the

underlying PSE-based framework can also have a direct contribution to other fields such

as acoustics. The underlying equation set can be leveraged, with modest modifications, to

compute the propagation of wavepackets in acoustics [158, 85]. The extension of Krypton

for acoustic calculations will be a topic future research. Outside of aerospace engineering,

the use of the present modal stability framework can be extended, with some effort, to

compute liquid film instabilities in multiphase flows as well as interfacial wave dynamics

for geophysical flows.
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Figure 4.4. Mode amplification for the backward-facing step at x
δ
= 800, Ma = 0.5,

Reδ = 400, h = δ.

64



The barrier to entry for PSE-based modal stability calculations remains sizeable, es-

pecially for researchers outside the subdiscipline of transitional flows. Krypton aims to

address the need for an openly accessible compressible, curvilinear modal stability tool

that can be easily extended and adapted. The framework, which provides an integrated

support for base flow calculations, is designed with a high-level of modularity with object-

oriented coding written in Python. These features will help reduce the barrier to entry and

provide the opportunity for researchers to extend the present code. Krypton is the basis

for a number of ongoing publications on roughness-induced stability calculations [104], as

well as the consideration of wall-heating-induced transition cases.

4.6 Conclusions

Krypton is a comprehensive framework, written in Python, to solve modal stability-based

fluid dynamics problems. It aims to address the needs of the broad research community

focused on determining the stability characteristics of weakly nonparallel aerospace flows.

Krypton includes a base flow solver in 2D or quasi-3D along with a stability module that

includes the computation of the linear and nonlinear parabolized stability equations. The

main feature of the code is that it computes the compressible stability equations on a

curvilinear mesh, which enables the consideration of more complex geometries including

smooth surface roughness stability problems.
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Chapter 5

The role of two-dimensional smooth

roughness on the modal growth in

compressible boundary layer flow

This chapter has been adapted from Francis Lacombe and Jean-Pierre Hickey. ”The role

of two-dimensional smooth roughness on the modal growth of instability in compressible

boundary layer flow”, Journal of Fluid Mechanics, 2022 (under review).
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Abstract

The effect of smooth, two-dimensional surface roughness on the stability characteristics

at transonic conditions (M = 0.714) is investigated using a combination of parabolized

stability equations (PSE) and direct numerical simulations (DNS). In specific, the influence

of the two-dimensional smooth roughness on the stability of 2D T-S waves is investigated

with a particular emphasis on frequency content generation. Two variants of the same

setup consisting of an array of 5 sinusoidal humps of two different heights are considered.

The analysis of the wall friction spectrum reveals a stronger destabilizing effect on the

higher frequencies for the case featuring the highest humps. This causes a rapid growth of

secondary instabilities that skip the standard T-S mechanism and gives rise to a cyclical

transitional pattern in which both late K-type structures and premature bypass transition are

observable. The modal stability analysis also shows that, in the presence of two-dimensional

smooth roughness, the mode experiencing the highest linear growth is three-dimensional.

The results reveal that PSE is sufficiently accurate to be used in combination with more

sophisticated approaches (DNS or LES) in order to reduce the computation time, including

in complex flow situations featuring compressibility and boundary roughness.
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5.1 Introduction

For aircraft manufacturers, friction is the sinew of war; delaying the laminar-to-turbulent

transition–even over a short distance–can lead to important drag reduction and overall

performance improvements. Transition is important in the fully incompressible regime,

but is particularly critical at higher-speeds–in the limit of high-enthalpy conditions, the

transition location can affect the thermal loading and, thus, determine the characteristics

of the thermal protection system, which directly impacts the cost and weight of the entire

system [177]. The laminar-to-turbulent transition is thus a key feature to be characterized

in many aerospace flows, especially when compressibility effects are nonnegligible. In ex-

ternal flows with low freestream turbulence intensity over smooth walls with no crossflow,

the transition to turbulence is dominated by convective Tollmien-Schlicting (T-S) instabil-

ities which develop and grow until nonlinear interactions take hold as the flow transitions.

This transition pathway is common to both sub- and supersonic regimes. Under higher

freestream perturbations, the exponential growth of the instability modes is bypassed and

other transitional mechanisms dominate.

Although a smooth, flat plate boundary layer with zero pressure gradient represents

the most canonical setup to study the laminar-to-turbulent transition, such a simplified

setup is typically not encountered in aeronautical flows. The walls often have surface

imperfections such as dents, gaps, cavities, joints, or rivet heads, which directly impact

the transitional characteristics of the boundary layer. Surface imperfections, although

necessary for aircraft manufacturability, can lead to premature transition with all the

associated deleterious consequences of turbulent flow. For example, over the nacelle, the

transition to turbulence can be delayed by displacing downstream some of the geometric

features that may instigate transition; the nacelle and the inlet lip can be designed to ensure

that the gaps along the junction of the components do not induce a premature transition

to turbulence. These modifications, along with other boundary layer stabilization design

considerations, can delay transition to about 50% of the nacelle chord, which can result in

savings in aircraft fuel of the order of 1% [125, 216].

The role of surface imperfections on the transition to turbulence is more nuanced than

intuition would lead us to believe. [50] observed that the minimum height of a surface

68



imperfection (bulges, hollows, and ridges) that modifies the location of the boundary layer

transition is independent of its geometric shape, a result that was slightly corrected in

later work by [75]. Based on detailed experimental observations, [96] argued that two-

dimensional roughness does not introduce new disturbances into the flow but accelerates

the premature transition through the destabilization of the existing instability modes in

the boundary layer. The minor effect of surface roughness has also been observed in fully

turbulent boundary layer flows, in which the coherent structures remain, to a large extent,

invariant to the presence of roughness [203]. Although in a turbulent channel flow with

sinusoidal wall roughness, the compressibility and confinement effects of the setup make

the impact of surface waviness more apparent [201]. For transitional studies, 2D surface

waviness has been shown [211] to have an unconditionally destabilizing effect through a

selective amplification of the T-S waves. The work by Wie et al. [211] was primarily based

on a spatially-marching parabolized stability equation (PSE) and, thus, the receptivitity of

these instability modes could not be assessed. These investigations were extended by [190]

by comparing a linearized Navier-Stokes (LNS) with a PSE formulation. In a subsequent

work [191], it was found that the instabilities were amplified by deeper and wider gaps.

The transitional mechanism based on the growth of the T-S waves remains dominant as

long as the height of the roughness remains small. [37] estimated that as long as the

height of a surface step is less than approximately 1.5 times the displacement thickness of

the boundary layer, the underlying mechanism remains unchanged. Other types of surface

imperfections can modify the transitional mechanism, affecting the path to turbulence. For

example, [217] showed that the impact of a standing acoustic wave mode in a deep gap can

force different T-S modes in the boundary layer. This results in a premature transition for

a flat plate but can also delay transition, through destructive mode forcing, in a forward

facing step.

Surface waviness, a canonical type of smooth roughness, represents a generic set-up to

explore the effect of surface imperfection on the growth of instability modes in transitional

flows. Experimental works have shown that the 2D wavy roughness is more destabilizing

than a periodic array of 3D smooth roughness. This is due to the greater vertical displace-

ment over the 2D roughness, which promotes the emergence of an inflectional instability

which is not as prominent in the 3D staggered smooth array [66]. This contrasts with
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the effect of the 3D isolated roughness elements, which are known to admit additional

instability modes in the generated wake of the elements [112, 150, 24]. [35] experimentally

investigated, among others, the effect of bump height and Mach number on the transition,

with a separation region. It was observed that the Mach number effects were, for the

most part, small, although for a smaller bump height, the transition location was modi-

fied, although may have been tied to a concomitant increase in the wall temperature with

Mach number. In high-Mach number flows, smooth roughness with multiple wavelengths

can suppress the acoustic second mode [221], thus stabilizing the boundary layer. Other

works, such as [56] have suggested that alterations in the second-mode instability are tied

to the mean flow modification caused by smooth roughness. The understanding of the ef-

fects of smooth roughness-induced transition in the transonic regime remains incomplete,

especially with regard to the exact mechanism of transition and impact of compressibility.

To this end, we present a numerical work based on a combined study using the Parabo-

lized Stability Equations (PSE) and Direct Numerical Simulations (DNS) to investigate the

roughness-induced transition in transonic flows over surface waviness. There are typically

two families of modal-stability-based transition approaches: local and nonlocal methods.

The local stability analysis is carried out at a specific location in the flow, in opposition to

the nonlocal approach that takes into account the evolution of perturbations along their

path [86]. Traditionally, the local approaches, such as the Linear Stability Theory (LST),

of which the Orr-Sommerfeld equations (OSE) are most well known, perform particularly

well in incompressible flows over simple geometries. However, in realistic aeronautical

flows, compressibility, pressure gradients, cross-flow, and roughness effects promote pre-

mature transition and are no longer negligible. For this reason, nonlocal approaches, such

as the PSE, have received considerable attention in the last decades. [65] was the first

to study the evolution of Tollmien-Schlichting (T-S) waves through a set of parabolized

stability equations. [83] and [15] extended PSE to account for the nonlinear interaction

between a subset of eigenmodes. More recently, [99] and [130] used the Nonlinear PSE

(NPSE) approach to study the secondary instability of cross flow under hypersonic con-

ditions. [113] showed that NPSE are sufficiently accurate to be used as inflow boundary

conditions for Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES). In this

way, it is possible to significantly reduce the size of the computation domain by modeling
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the pre-transitional region using a simple boundary condition supplied from the NPSE.

Their work focused on an incompressible zero-pressure gradient boundary layer, without

any curvature, roughness, or compressibility effects.

The effect of distributed roughness on the transitional characteristics of the compress-

ible boundary layer was recently investigated by [185] who revisited the concept of rough-

ness shielding to reduce the receptivity of discrete roughness elements of large amplitude.

Using a hybrid DNS-experimental approach, they found that the use of continuous flat

roughness strips upstream or downstream of surface imperfections had a beneficial effect on

transition control. More recently, [128] and [69] investigated the effect of three-dimensional

discrete roughness elements on hypersonic flows using different approaches; Montero fo-

cused on a modal stability theory, while Hein used a nonmodal approach.

In the present contribution, we study the effects of an array of small, two-dimensional,

sinusoidal smooth wall roughness under transonic conditions using NPSE and DNS. The

purpose of this work is to: (1) validate the applicability of NPSE in the presence of cur-

vature and compressibility effects; (2) study the effect of two-dimensional smooth rough-

ness on the modal and nonmodal growth of instabilities in compressible boundary layers

subject to different levels of finite-amplitude disturbances; (3) investigate the effect of two-

dimensional roughness on the development of span-periodic instabilities. In the following

section, the numerical and theoretical background for both the modal stability theory

and the direct numerical simulations is presented. In Section 5.3, two cases of roughness-

induced transitions are presented and analyzed first using linear PSE and followed by a

combined study of the nonlinear PSE and DNS. Finally, Section 5.4 presents the main con-

clusions of this work. The effect of two-dimensional smooth surface roughness on stability

characteristics under transonic conditions (M = 0.714) is investigated using a combination

of parabolized stability equations (PSE) and direct numerical simulations (DNS). In par-

ticular, the influence of the two-dimensional smooth roughness on the stability of 2D T-S

waves is investigated with a particular emphasis on frequency content generation. Two

variants of the same setup consisting of an array of 5 sinusoidal humps of two different

heights are considered. The analysis of the wall friction spectrum reveals a stronger desta-

bilizing effect on the higher frequencies for the case featuring the highest humps. This

causes a rapid growth of secondary instabilities that skip the standard T-S mechanism
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and gives rise to a cyclical transitional pattern in which both late K-type structures and

premature bypass transition are observable. The modal stability analysis also shows that,

in the presence of two-dimensional smooth roughness, the mode experiencing the highest

linear growth is three-dimensional. The results reveal that PSE is sufficiently accurate to

be used in combination with more sophisticated approaches (DNS or LES) in order to re-

duce the computation time, including in complex flow situations featuring compressibility

and boundary roughness.

5.2 Numerical and theoretical background

The numerical tools and the necessary theoretical background are presented in this section.

First, the Parabolized Stability Equations (PSE), which is a subset of modal stability

theory, is discussed and the numerical solver used for this study is presented. Thereafter,

the numerical details of Hybrid, the direct numerical simulation (DNS) solver used in this

study, are discussed.

5.2.1 Dimensionless variables

In this work, all variables are non-dimensionalized following the method described in [127].

xi =
x∗i
δ

ui =
u∗i
u0

T =
T ∗

T0
p =

p∗

ps

µ =
µ∗

µ0

ρ =
ρ∗

ρ0
cp =

c∗p
cp0

λ =
λ∗

λ0
(5.1)

Here, dimensional values are defined with an asterisk (*), the subscript 0 represents refer-

ence values, δ =
√

ν0x0

u0
is a length scale proportional to the thickness of the inlet boundary

layer and ps = ρ0u0
2 is the pressure scale. In the PSE theory, the solution is sought using

a marching procedure, and the final location is often unknown, as the computation usu-

ally stops when the solution diverges. Thus, it is common to use the inlet quantities as

72



reference. The reference Reynolds and Mach numbers are therefore defined as

Reδ =

√
u0x0
ν0

Ma =
u0√
γR0T0

(5.2)

5.2.2 Modal stability theory

The modal stability theory is a branch of fluid mechanics that studies the evolution in time

and/or space of modal-like perturbations on a base flow. Starting from the compressible

Navier-Stokes equations in nonconservative form, the equations are linearized to obtain

the Linearized Compressible Navier-Stokes equations :

∂ui
∂xi

=
1

T

DT

Dt
− 1

p

Dp

Dt
(5.3a)

ρ
Dui
Dt

= − ∂p

∂xi
+

1

Re

∂τij
∂xj

(5.3b)

ρcp
DT

Dt
=

1

RePr

∂

∂xi

(
λ
∂T

∂xi

)
+ (γ − 1)M2

(
ui
∂p

∂xi

)
+ ϕij (5.3c)

where ui, ρ, γ, λ, p, and T represent respectively the velocity (vector), density, specific heat

ratio, thermal conductivity, thermodynamic pressure and temperature; τij is the viscous

stress tensor according to the usual definition and ϕij is the viscous heating term. In

the above equations, M , Pr, and Re are nondimensional Mach, Prandtl, and Reynolds

numbers. The above flow quantities can be decomposed into a steady, q, and a fluctuating

modal component, q′, such that: q(x⃗, t) = q(x⃗) + q′(x⃗, t). Thus, the decomposition of the

73



terms in the LCNSE equation (5.4a-5.4c) results in:

∂u′i
∂xi

+

(
T ′

T
+
p′

p

)
∂ui
∂xi

=
p′

pT

DT

Dt
+

1

T

[
DT ′

Dt
+ u′i

∂T

∂xi

]
− T ′

pT

Dp

Dt
− 1

p

[
Dp′

Dt
+ u′i

∂p

∂xi

]
+ C ′′ (5.4a)

ρ

[
1

p
p′ − ρ

T
T ′
]
Du

Dt
+ ρ

[
Du′i
Dt

+ u′j
∂ui
∂xj

]
= − ∂p′

∂xi
+

1

Re

∂τ ′ij
∂xj

+M′′ (5.4b)

ρcp

[
1

p
p′ − 1

T
T ′
]
DT

Dt
+ ρcp

[
DT ′

Dt
+ u′j

∂T

∂xj

]
=

1

RePr

∂

∂xi

(
λ′
∂T

∂xi
+ λ

∂T ′

∂xi

)
+ (γ − 1)M2

(
ui
∂p′

∂xi
+ u′i

∂p

∂xi

)
+

(γ − 1)Ma2

Re
ϕ′
ij + E ′′ (5.4c)

where C ′′,M′′ and E ′′ contain the nonlinear terms. The total derivative operator, D
Dt
, is

defined as
D

Dt
=

∂

∂t
+ uj

∂

∂xj
(5.5)
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In modal stability theory, the perturbation vector, q′, takes the form of q′(x⃗, t) =

q̂(x⃗)χ(x⃗, t), where q̂ and χ are the amplitude and phase functions, respectively. Depending

on the selected modal stability approach, q̂ and χ can have slightly different definitions. Ta-

ble 5.1 presents the definition of these terms for the main modal approaches. In the present

work, the focus is on the effect of 2D smooth roughness on the growth of compressible T-S

waves and thus we use the following Fourier decomposition of q′:

q′(x, t) =
M∑

m=0

N∑
n=0

q̂m,n(x, y)χm,n(x, z, t) + c.c. (5.6)

where c.c. refers to the complex conjugate and

χm,n(x, z, t) = exp(Γm,n) = exp

[
i

∫
x

αm,n(x)dx+ i(mβz − nωt)

]
(5.7)

In PSE, the growth of the perturbation is assumed to be mostly contained in the

phase function χm,n such that the amplitude function, q̂, can only grow slowly in the

streamwise direction (∂xq̂ >> ∂xxq̂), an assumption that results in a parabolized form

of the stability equations, hence the name Parabolized Stability Equations or PSE. In

summary, the following assumptions are made:

∂Γ

∂y
= 0

∂2Γ

∂y2
= 0

∂q̂

∂z
= 0

∂2q̂

∂x2
= 0 (5.8)

By substituting (5.6) into the LCNSE and using the PSE-2D assumptions, it is possible to

show that the PSE for a given mode {m,n} can be written in a matrix-vector system of

the form: {
Lq̂ + Lx

∂q̂

∂x
+ Ly

∂q̂

∂y
+ Lyy

∂2q̂

∂y2

}
m,n

=

{
exp

(
−i
∫
x

αdx

)
F ′′
}

m,n

(5.9)

where q̂ = [p̂, ûi, T̂ ]
T and F ′′ = [C ′′,M′′, E ′′]. Since α is variable, we need one more equation

to close the system and ensure the PSE-2D assumptions are met, this is where the so-called
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auxiliary condition come into play:

ρ

∫ ∞

0

q̂†m,n

∂q̂m,n

∂x
dy = 0 (5.10)

In linear stability theory, the base flow (q) does not depend on q′ and the origin of q is

of little importance. Therefore, one could choose to either use a standalone CFD solver,

interpolate the velocity field from experimental data, or solve a set of self-similar equations

(Blasius, Falkner-Skan-Cooke, etc.) to compute the base flow. However, if nonlinearities

are large enough, the mean flow distortion (MFD) becomes significant and the base flow

has to be redefined as q = qlam+ q̂(0,0). To maintain consistency, the numerical formulation

of qlam and q̂(0,0) should be the same. Therefore, the same governing equations (5.3a)-(5.3c)

should be solved for both the base flow and the derivation of the PSE.

Mean Flow Distorsion (MFD)

Physically, the Mean Flow Distortion (MFD) –or mode (0,0)– is a non-oscillatory per-

turbation resulting from the nonlinear interactions between the fluctuations and the base

flow. Since it does not have a complex conjugate, both q̂0,0 and χm,n are purely real,

and therefore α is purely imaginary. The rapid change in the shape function is mainly

caused by oscillatory behavior rather than growth [208] and the normalization condition

(5.10) serves this exact purpose by ensuring that the growth of energy is contained in the

phase function χ. However, because the MFD does not have a wavenumber, the use of the

normalization condition to redirect the energy from the amplitude function to the phase

function is therefore impossible. To bring closure to the problem, α0,0 is instead set to

0 and thus the growth of the perturbation is completely accounted for by the amplitude

function q̂.

PSE: Numerical considerations

Both the laminar base flow and the modal stability analysis were computed using Krypton

[105], an open-source framework to solve the compressible NPSE in curvilinear coordinates.
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The solver used herein, along with all input files, can be downloaded at: https://git.

uwaterloo.ca/flacombe/krypton-softwarex/. Krypton also solves the steady, laminar

base-flow solution in two dimensions, using numerical methods consistent with the NPSE

calculations. In Krypton, the steady laminar base flow is discretized using a central fourth-

order finite difference scheme. The governing equations are solved simultaneously using an

efficient fixed-point iteration method. For the evolution of the perturbation equations, a

first-order implicit marching procedure is used in the streamwise direction while a spectral

approach is favored in the wall-normal direction. The spectral collocation method is used

as it is well suited for the PSE and has been used by several other authors [16, 173,

190]. The main idea is to expand the solution in terms of global basis functions so that

the numerical solution satisfies the PDE at the collocation points, also termed Chebyshev

Gauss-Lobatto points [78], defined as: ξj = cos πj
n
. These points were chosen to minimize

Runge’s phenomenon at the boundaries of the domain and help stabilize the integration

of the PSE. The spectral collocation method has the advantage of greatly simplifying the

expression of the discretized equation with a compact matrix-vector notation in which the

solution and its derivative take the following forms.

u∗(ξ) =
n∑

j=0

ψj(ξ)u(ξj)
du∗

dξ
=

n∑
j=0

Ψiju(ξj) = Ψ · u⃗(ξ), (5.11)

where ψj is the Lagrange polynomial passing by the Chebyshev Gauss-Lobatto points. The

spectral convergence makes the method particularly efficient for simple problems in which

the location of the computational nodes is not crucial. However, to accurately capture the

physics of the problem near the wall, we use a multi-element spectral-collocation method

consisting of multiple lower order collocation subdomains. In this way, the problem can be

elegantly discretized using the following differentiation matrices:

D =

Ψ0 0 0

0 Ψ1 0

0 0 Ψ2

 D2 = D · D (5.12)
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where Ψi is the standard spectral differentiation matrix for the ith subdomain. In practice,

this method is more robust but also less memory-consuming than standard collocation

methods, as the resulting differentiation matrix is sparse. We typically use 12th-degree

polynomials and 20 subdomains with a stronger concentration at the wall, which results

in a sparsity index in the range of 0.95.

Using (5.12) and Backward Differentiation Formulas (BDF), the PSE system can be

written as: [
L+DLy +D2Lyy −

Lx

∆x

]
q⃗i = exp

(
−i
∫
x

αdx

)
F ′′ − Lx

∆x
q⃗i−1 (5.13)

where q⃗ = [û, v̂, ŵ, p̂, T̂ ]T , D is the differentiation matrix and the matrices depend only on

the base flow and the wavenumbers.

As mentioned earlier, the equations are parabolized as the second x-derivative of q⃗ was

eliminated using the normalization condition. However, there is still some ellipticity in the

system, mainly caused by the pressure gradient terms. The problem arises when the step

size becomes smaller than the wavelength of the mode, i.e., when ∆x < 1
|αr| [109], where

αr represents the phase of the fluctuation in the streamwise direction. To alleviate the

problem, one possibility is to define a minimal lower bound on the marching-step size. In

practice, it is not always possible, as complex geometries may require a smaller step size

to accurately represent regions of higher curvature. The stabilization technique proposed

by Andersson [6], although very efficient at suppressing the numerical instabilities as the

step size is reduced, does not garantee the validity of the PSE near discontinuities or sharp

corners. Further investigations to quantify this limit in terms of curvature of the wall or

temperature variation are needed. Here, we will limit ourselve to validate the PSE on two

cases using DNS. Alternatively, as shown by [109], it is possible to drop the ∂p̂
∂x

terms, in

which case the solution is significantly affected while the step size restriction is relaxed but

not eliminated. To avoid these workarounds, it is possible to add a stabilization term to

the system, as done in the current implementation in Krypton. The stabilizing term, µ, is

added to the system following the approach of [86]:

Lq̂ + µL
∂q⃗

∂x
= −Lx

∂q⃗

∂x
(5.14)
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Once discretized: [
L+

µ

∆x
L+

Lx

∆x

]
q⃗i =

[
−Lx − κL

∆x

]
q⃗i−1 (5.15)

where L = L+DLy+D2Lyy and κ is defined as max( 2
|αr|−2∆x, 0) and has the same order of

magnitude as the truncation error associated with the first-order backward differentiation

scheme.

5.2.3 Direct Numerical Simulation

In parallel to the PSE framework described above, a Direct Numerical Simulation (DNS)

of an identical roughness-induced transitional configuration was performed using Hybrid, a

high order finite difference code developed by Johan Larsson and Ivan Bermejo-Moreno [12].

Hybrid solves the compressible Navier-Stokes equations using a conservative formulation

with a skew-symmetric convective term for stability.

∂ρ

∂t
+
∂ρui
∂xi

= 0 (5.16a)

∂ρui
∂t

+
∂

∂xj
(ρuiuj + pδij) =

∂τij
∂xj

(5.16b)

∂E

∂t
+

∂

∂xj
(uj(E + p)) =

∂

∂xj

(
uiτij − κ

∂T

∂xj

)
(5.16c)

where the nomenclature is similar to the equations presented in the previous section, al-

though the last equation solves for the total energy (internal and kinetic), E = ρe+ 1
2
ρuiui,

of the fluid. The equation set is closed with the ideal gas law assuming a calorically perfect

gas. The viscosity is computed using a temperature-dependent power law, and a constant

Prandtl number of 0.7 is assumed. Hybrid classically solves the equations on a structured

Cartesian mesh but, for the needs of the current research, a curvilinear coordinate system

was implemented and validated.

Hybrid is a highly parallelized code that uses a sixth-order central finite-difference

scheme coupled with high-order filtering for the spatial derivatives. Although the code

has an adaptive scheme which can switch to a WENO scheme in regions of large spatial
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Figure 5.1. Characteristic features of the numerical setup for the DNS. The height of
the roughness array, h, is 0.33 δ (case 1) and 0.5 δ (case 2). Figure is not to scale.

h T.I. [%] Nx Ny Nz ∆x+ ∆y+ ∆z+

Case 1 0.33δ 0.18 6000 350 256 16 1 16
Case 2 0.50δ 0.36 6500 350 256 14 0.8 16

Table 5.2. DNS grid resolution

gradients, only the high-order finite difference schemes were used herein. The set of equa-

tions is advanced in time with an explicit fourth-order Runge-Kutta scheme. At the fluid

boundaries, an NSCBC (Navier-Stokes Characteristic Boundary Condition) is enforced and

is supplemented by a sponge layer to dampen spurious oscillations of the finite computa-

tional domain. At the solid walls, tangential, non-slip conditions are enforced on both the

flat plate and the wavy portions of the domain.The baseline code has been extensively used

for shock-turbulence interaction [107, 106] and wall-bounded-flow studies [197].

5.3 Results

In the present work, we investigate, using a combination of PSE and DNS, the effects of

a two-dimensional, sinuous roughness array on boundary layer transition at a freestream

Mach number of 0.714. A canonical setup of a spatially-evolving, zero-pressure gradient,
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flat plate boundary layer with a roughness array consisting of 5 successive sinusoidal humps

(see Figure 5.2) was simulated using NPSE and DNS. In particular, we targeted a setup

in which the smooth roughness resulted in a laminar-to-turbulent transition slightly down-

stream of the roughness patch. Thus, the roughness acts to perturb the already present T-S

instabilities in the base flow without causing an immediate transition above the roughness

array. This setup isolates effects of the roughness from the geometric complexities of the

smooth roughness elements. Given the computational expense of the DNS, preliminary

parametric studies using NPSE allowed us to define a geometric setup to characterize the

desired transitional effects. A near perfect match of the conditions between the NPSE and

DNS simulations enables a direct comparison between both computational approaches.

The main geometric features of the setup are shown in Figure 5.1; the PSE studies

only considered the two-dimensional setup, while the DNS was fully three-dimensional and

used periodic boundary conditions in the span-direction. The inlet consists of a Blasius

boundary layer with a Reynolds number of Reδ = uδ
ν
= 1600. The thickness of the inlet

boundary layer, δ, is used to nondimensionalize the spatial dimensions in the computational

domain. Thus, all dimensions, unless otherwise specified, are presented in terms of inlet

boundary layer height. An array of five sinusoidal humps, with a peak-to-peak distance

of 100, is defined, the first peak located at x/δ = 2140. The Reynolds number above the

roughness elements ranges from Reδ = 1850 to 2016. In the present study, two cases are

considered: in case 1, the dimensionless height of the roughness array h1/δ = 0.33; in Case

2, it is h2/δ = 0.50. Both cases have slightly different perturbation amplitudes at the inlet

of the DNS, as discussed later. Downstream of the roughness array, the flat plate extends

up to approximately x/δ = 4250. For all cases, we consider a constant wall temperature

of Twall

T∞
= 1. Recall that these dimensions were selected such that the roughness does not

trigger a transition, but instead causes a precocious transition downstream of the roughness

array. Figure 5.2 shows an overview of the base flow obtained using Krypton’s laminar

solver, which is then used for the PSE calculations.

Large-scale, three-dimensional direct numerical simulations of Cases 1 and 2 are used

as a comparative baseline with the NPSE results. As discussed in the previous section, a

high-order finite difference scheme is used on a curvilinear coordinate system in Hybrid.

The geometric dimensions of the sponge layer are shown in Figure 5.1. To resolve all scale
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Figure 5.2. Vorticity contour plot of the laminar base flow for Case 1 (top) and Case 2
(bottom). The y-axis is expanded for increased visibility of the roughness elements.

of the simulation, over 537 million grid points was required with a strong grid clustering

at the wall and over the roughness patch; this high resolution is required despite the

very high order of the numerical scheme. The characteristics of the DNS mesh are shown

in Table 5.2. The simulations, conducted on the Digital Research Alliance of Canada

systems of Niagara and Narval, were run until a statistically steady transitional state was

reached and the unsteady data was then averaged over 2 flow through times (we note

here the very long streamwise simulation domain). In order to match the NPSE results,

the freestream conditions were perfectly matched and the Blasius inflow conditions were

superimposed with the two most unstable harmonic perturbations computed from the PSE

results. In this section, we first present the results of the laminar PSE (LPSE) followed by

the comparison of the NPSE and DNS results.

5.3.1 Linear modal stability analysis

The growth rate can be seen as a mode-specific measure of flow stability [72] that combines

the effect of two components: first, the growth of the phase function χ and second, the

growth of the amplitude function q̂. Here, we use the definition from [86], to define growth
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σ:

σ = −Im(α) +
∂

∂x

[
ln
(√

Ek

)]
Ek =

∫ ∞

0

ρ
(
|û|2+|v̂|2+|ŵ|2

)
dy (5.17)

In linear PSE (LPSE), as the modes do not interact, we can only investigate the stability

of the system for a range of individual perturbations. Figure 5.3 shows the impact of

the roughness array on the local growth rate for a range of frequencies with LPSE. The

solid line corresponds to the neutral stability curve and delineates the instability regions,

in other words, the regions of positive growth. The red areas represent unstable regions,

whereas the blue areas indicate where the instabilities are damped. As expected, the convex

regions of the roughness array tend to destabilize the flow, while the concave regions cause

a re-stabilization. The height of the humps mostly impacts the bounds of the stability

region, since slightly higher frequencies undergo local growth in the convex regions. More

specifically, growth is maximum when v = 0, which happens slightly past the crest of

each hump. The same effect is observed slightly downstream of the roughness array, near

x̃/δ ≈ 2700, in Figure 5.4; in this so-called recovery zone where all modes experience a

higher growth rate. In their experiments on smooth roughness elements, [96] observed that

the immediate zone after a roughness array was significantly more unstable than a Blasius

flow. However, they theorized that this effect was mainly driven by nonlinear interactions.

Here, we observe a destabilizing effect at all frequencies in the linear analysis, yet the higher

modes remain damped in the recovery zone. In Section 5.3.2, we will see that although

the amplification of the higher modes is increased in the recovery zone, this effect cannot

be explained solely by nonlinear interactions.

Unlike linear stability theory, in the NPSE approach, particular attention should be paid

to both the relative and absolute initial amplitudes of the modes. Indeed, in the nonlinear

theory, the modal response of the perturbation is intrinsically tied to the boundary layer

properties through the MFD. If the MFD is neglected, assuming that the relative amplitude

between the modes remains the same, the solution is simply scaled by the initial conditions.

Here, we account for the MFD. To generate the initial conditions, we must first identify

the fundamental mode (or the most unstable mode) and its harmonics. To this end, in the

LPSE, we used the so-called n-factor, obtained by integrating the growth rate along the
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Figure 5.3. Neutral stability map for Case 1 (left) and Case 2 (right). Solid line indicate
neutral stability (σ = 0).
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Figure 5.5. Maximum amplification ratio for a range of dimensionless frequencies and
different roughness heights M = 0.714, Reδ = 1600, Twall

T∞
= 1

streamwise direction:

n-factor = −
∫ xi

x0

σdx (5.18)

The n-factor curves represent a mode-specific measure of the disturbance amplification

along the stream path. Figure 5.5 presents a sensitivity analysis of the maximum n-factor

downstream of the roughness array, for a range of frequencies and roughness heights. As

shown in Figure 5.5, the height of the roughness array only has a limited impact on the

frequency of the most unstable mode, at least for the roughness heights studied herein. In

other words, in Cases 1 and 2, the destabilizing effect of the roughness array only impacts

the ratio of amplification of the perturbations while the frequency of the most unstable

mode remains unchanged. At a higher roughness amplitude of h > 0.84δ, we observe a

slight increase in the frequency of the most unstable mode, but further investigations would

be needed to see if the trend continues. A more general stability indicator was introduced

by [80] with the concept of N-factor corresponding to the envelope of the n-factor curves,

i.e. the n-factor of the most unstable mode at a given position. Based on this concept, [80]
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Figure 5.6. N-factor curve for different roughness amplitudes. The hatched area corre-
spond to the expected transition location for case 1 and 2, based on equations (5.19) and
(5.20).

developed the eN method and, later, the enhanced eN method [81]. Both methods are based

on the same premise that the transition location, obtained experimentally, is correlated to a

critical N-factor value obtained with the linear modal stability theory. Indeed, the method

is tied to the geometry and flow regime of the experiments but can nonetheless be used

as a first approximation of the transition location. For an incompressible Blasius flow, the

enhanced eN method [81] predicts that the transition should begin (NB) and end (NE)

once the N-factor reaches certain thresholds, given by:

NB = 2.13− 6.18 log10(Tu) (5.19)

NE = 5.00− 6.18 log10(Tu) (5.20)

According to (5.20), in the current configuration, we expect that the transition should

occur in a region where the N-factor is in the range of N ∈ [6.7, 9.6] and N ∈ [4.9, 7.7], for

Cases 1 and 2, respectively. Figure 5.6 shows the curve of the N-factor for various heights

of roughness and the expected transitional region for Cases 1 and 2.
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5.3.2 Nonlinear modal stability analysis

In the classical NPSE approach, perturbations are discretely represented by a fundamental

mode and their harmonics (e.g. 1F , 2F , 3F , etc.). However, because of the presence of

viscosity, any disturbance will experience, to various degrees, spectral diffusion. At some

point, nonlinear interactions will eventually generate side lobes, and the discrete formula-

tion assumption will gradually become less accurate. This effect was reported by Kuehl

[100, 92] who quantified that the nonlinear feedback is overestimated by approximately

70% when using the discrete representation compared to the finite-bandwidth approach.

Here, we use the finite-bandwidth formulation described by [100] with the normal function

bandwidth.

Due to the vanishing velocity and temperature fluctuations at the isothermal wall, the

fluctuating wall pressure must be nonzero in order to satisfy continuity and avoid a trivial

solution. Thus, since p̂ is the only non-homogeneous variable in the system, setting the inlet

turbulence intensity comes down to imposing a different fluctuating wall pressure, coupling

two of the important variables in the system. Since the amplitude of û depends on p̂, the

incoming turbulence intensity can only be known a posteriori. The amplitudes of the initial

fluctuation for the two cases are given in Table 5.3 and correspond to the finite-bandwidth

area of the perturbation. The incoming flow consists of the superposition of the laminar

base flow and 2 T-S waves of frequencies F and 2F . The base flow field in the NPSE

is initialized following the procedure proposed by [100]. The mode F has a bandwidth

σF = 4.5 while σ2F =
√
2σF , or, equivalently σω = 0.0072 and σ2ω = 0.01018. The

perturbation is decomposed into 16 sinusoidal modes with ∆ω = 0.0072. Taking advantage

of the Hermitian symmetry, the mode-specific RMS value corresponds to
√
2|û|max and

thus, the total disturbance RMS value and turbulence intensity are given by:

u′
2
rms = 2

N∑
n=0

|Re(ûn)|2max (5.21)

Tu[%] =

√
2

3

(
u′2rms + v′2rms + w′2

rms

)
(5.22)
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F 2F Tu [%]
Case 1 1e-4 5e-5 0.18
Case 2 2e-4 1e-4 0.36

Table 5.3. Initial amplitude of the fluctuation, normalized by p̂wall, for the case 1 and 2.
The values correspond to the finite-bandwidth area of the perturbation. F = ω

Reδ
= 18.
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Figure 5.7. Skin friction coefficient obtained from the NPSE solver compared against
Direct Numerical Simulations (DNS). The gray area corresponds to the location of the
roughness array.

The methodology used to analyze the nonlinear PSE is quite different from linear

analysis. In fact, since the amplitude of the modes is known, it is possible to reconstruct

the fluctuations ϕ′, and analyze the results in a way similar to a DNS. That is to say,

we can reconstruct local indicators such as the wall friction coefficient (cf ), wall pressure,

and vorticity. For example, Figure 5.7 shows a comparison of the friction coefficient of the

wall skin obtained using NPSE and DNS. Regarding case 1, we denote a good agreement

between the cf estimated from the NPSE and the DNS. Although this is expected, since

both the amplitude of the fluctuations and the height of the roughness array are relatively

small. Nevertheless, it is a good indicator that the PSE remains valid even in presence

of wall curvature. For case 2, we note a close agreement between the NPSE and DNS
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until the amplitude of the fluctuations becomes sufficiently large to induce a periodic flow

reversal identified by a negative friction factor from x/δ > 2490. The fact that flow

reversal arises might rightfully raise some concerns regarding the validity of the PSE since

the solution is sought using a marching procedure in which the information can only travel

downstream. Nevertheless, if the flow reversal is caused by the harmonics themselves, the

information contained in the wavefront, is still progressing and the PSE remains valid. In

fact, [73] conducted a linear PSE-based stability analysis in separated flows and concluded

that, unless the reverse flow velocity is greater than the phase speed, the PSE is still

applicable. In the case of NPSE, we must also account for the stationary MFD, which

represents the modification of the base flow due to the effect of nonlinear interactions.

Therefore, if the phase speed of the fluctuations remains greater than the mean flow, i.e. if
ω

Re(α)
> ulam(x, y)+u0,0(x, y), the NPSE remains valid. Here, this condition is met for both

Cases 1 and 2. Thus, the fact that the friction coefficient computed from the NPSE begins

to deviate from the DNS when the flow is reversed is not tied to the validity of NPSE and

should rather be seen as an early indicator of the rapid growth of higher frequency modes.

These modes, characterized by sharp spikes in the skin friction coefficient downstream of

the roughness array, are addressed in the next section.

To better quantify the dominant instability frequencies, a one-dimensional Fourier de-

composition of the skin friction coefficient at various sections along the wall is shown in

figure 5.8 for both the NPSE and DNS. In order to distinguish the signal from the laminar

friction associated with the geometric wavelength of the roughness array, only the cf of

the fluctuating flow was used. Figure contains valuable information on the amplitude and

spectral evolution of the disturbances. First, we see that, in both cases, the frequency

content of the perturbations, in the region preceding the roughness array, contains a dom-

inant peak, centered at F = 18, and a second mode with a larger bandwidth near F = 36,

which are tied to the imposed T-S perturbations at the inlet. At this point, the modes

evolved linearly; the dominant mode was amplified, while the second mode was damped

but remains distinguishable in the Fourier decomposition. So far, the agreement between

the NPSE and DNS is good in both cases. Now, moving downstream of the roughness

array, the blue curves reveal the emergence of a third higher frequency peak near F ≈ 39,

which corresponds to the frequency associated with the wavelength of the roughness ar-
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ray. This peak, visible in both cases but more prominent in case 2, is almost absent of

the NPSE signals. At first glance, one could think that this is due to the inadequacy of

the discrete spectral representation–inherent in the modal stability theory–to study the

process of frequency band generation. However, for several reasons, we think that this is

not the case. First, we use a finite-bandwidth approach which considerably enhances the

study of spectral broadening and frequency band generation [100]. Second, the spectral

widths of the first and second harmonics predicted by the NPSE agree well with those of

the DNS, indicating that the spectral broadening is probably well estimated by the NPSE.

Third, the high-frequency content seems to increase with the height of the roughness array,

leading us to think that the phenomenon is intimately tied to the curvature of the wall

rather than spectral interactions. Yet, surface roughness tends to generate stationary, often

spanwise-varying, disturbances which can be adequately described by the transient growth

framework [152]. Transient growth may be defined as a rapid change of the fluctuating

energy resulting from the interactions between stable nonorthogonal modes [45]. It has

been suggested as a possible route for several cases of bypass transition, many of which

feature discrete roughness elements [210, 141, 45, 152]. The MFD, quantifiable by the

difference between the time-averaged and the laminar base flow, is a form of streamwise-

varying stationary disturbance. Although neglected in the present study, the stationary

spanwise periodic modes (i.e. (m, 0)) is another example of a periodic stationary distur-

bance. Figure 5.9 shows the time and span-averaged wall friction coefficient compared with

the laminar base flow and MFD of the NPSE calculations. We see that the roughness array

seems to promote the formation of stationary disturbances, particularly in regions of high

curvature, near the peaks and troughs. Once corrected by the MFD, the laminar friction

approaches the time-averaged DNS results, especially downstream of the roughness, where

the growth of the MFD is mostly driven by the increasing nonlinear interactions. We ob-

serve that both the DNS and the NPSE predict some spatial oscillations before the onset of

turbulence, but it seems that their amplitude and frequency are not quite the same. While

studying the effect of a smooth hump on hypersonic boundary layer instability, [144] noted

a phase synchronization of the mode S and F downstream of the humps. Their analysis

was conducted using the LST and thus in this context, the phase synchronization does not

have a physical meaning. In the nonlinear PSE, the phase synchronization, promoted by

91



Figure 5.8. fft(cf ) at different regions for Case 1 (left) and Case 2 (right). Solid line is
obtained from DNS and the dashed line from the NPSE. We used the cf of the fluctuations

the presence of curvature could induce oscillations in the nonlinear forcing term, and, in

turn, lead to spatial oscillations in the MFD. The observed difference in amplitude and

frequency between the DNS and NPSE could very well be related to the optimal growth

of spanwise instabilities inside and downstream of the roughness array. In this respect, in

the next section we show how the vortical structures develop and eventually breakdown to

turbulence downstream of the roughness array using the high-fidelity DNS data.

5.3.3 Transitional coherent structures

Figure 5.10 shows the isosurface of the Q-criterion (case 1), colored by the magnitude of the

velocity. The structures identified by Q-criterion are overlaid on the wall, which is colored

by the temperature at the plane of y = 0.2δ, this highlights the near-wall streaks. As we

can see, the T-S structures remain virtually unaffected by the presence of the roughness

array until very far downstream (recalling the roughness array ends at x/δ = 2540). The

first sign of the onset of transition is seen around x = 3620δ, and the transition occurs

over a range of ∆x ≈ 200δ. The transition is immediately preceded by what resembles

streamwise streaks, visible in the temperature field, which are generally associated with a

K- or H-type transition [77], depending on their alignment. These streaks are, however,
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Figure 5.9. Time-averaged wall skin friction coefficient obtained from the Direct Numer-
ical Simulations (DNS) and compared with the NPSE results. The gray area correspond
to the location of the roughness array.
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Figure 5.10. Iso-surfaces of Q-criterion (10−3) coloured by contours of streamwise veloc-
ity, the wall is colored by the temperature at y = 0.2δ (Case 1)

quite short, unlike those observed in [215], and bypass the formation of typical K or H

structures. The transitional patterns of Case 1 and Case 2 are surprisingly different from

each other despite their similarities in terms of geometry and flow conditions. Figure

5.11, shows the isosurface of the Q-criterion, colored by the magnitude of the velocity at

different time steps, for case 2. As seen in Figure 5.11, the recovery zone downstream of

the roughness array is still dominated by the presence of 2D T-S waves. At this point,

their amplitude is sufficiently high to induce a flow reversal in the vicinity of the wall. The

first turbulent spots appear near x = 3000δ where vortical structures begin to interact

with the edge of the boundary layer, bypassing the normal (H-type) transition process

that we would have expected without the presence of roughness. The growth of these

structures occurs over a relatively short distance of approximately half the wavelength of

the dominant mode; consistent with the results from Figure 5.8. From a modal stability

standpoint, under current flow conditions (Reynolds and Mach numbers), all modes with a

frequency (F > 30) are linearly stable over the roughness array (see Figure 5.3), and thus
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their growth can only be sustained by nonlinear interactions or a significant modification to

the base flow. In this regard, higher frequencies are generally the most strongly affected by

the MFD. Thus, other types of stationary disturbance, such as span-periodic disturbances,

could very well favor the early emergence of these secondary instabilities.

Interestingly, this transition path is not the only one in play, as we observe a cycli-

cal transitional pattern driven by the rise of both two-dimensional secondary instabilities

and lower-frequency T-S instabilities. For instance, we denote the presence of T-S waves

further downstream, near x/δ = 3200. These T-S waves gradually wrinkle and develop a

spanwise periodicity featuring aligned Λ-vortices near x/δ = 3300, typical in the K-type

transition scenario. As discussed in [215], [97] had already made the connection by asso-

ciating the term ’bypass’ to the emergence of a secondary instability of natural transition.

The shift from 2D to 3D instabilities was gradual and occurred over a distance of approx-

imately ∆x ≈ 250δ. Figure 5.12, displays the evolution of a typical vortical structure

starting near x/δ = 3000, at different time steps (∆t = 50). In the span direction, we

count approximately 5.5 wavelengths, over a span distance of 125δ, which corresponds to a

dimensionless spanwise wavenumber (B = β
Reδ

× 106) in the range of 25-30. It is generally

assumed that at subsonic conditions, the most unstable mode is the two-dimensional T-S

wave (spanwise wave number B = 0). This knowledge guided our decision to use this

perturbation at the inlet of our domain. However, in light of these DNS results, we ran

additional LPSE simulations with different spanwise wavenumbers in order to ascertain

this assumption. Figure 5.13 reveals that the mode experiencing the highest linear growth

inside the roughness array is the two-dimensional mode (B = 0) while the most amplified

mode is, in agreement with the DNS, a three-dimensional mode B = 25. The mode B = 0

experiences both the highest growth and simultaneously the largest damping, depending

on the local pressure gradient; this mutually cancelling effect allows for the growth of 3D

instabilities. The highest growth occurs in the regions with the highest concavity and may

therefore be related to the emergence of a Görtler instability. Another interesting finding

is that this effect is observed early in the domain, upstream of the roughness elements,

where the pressure gradient is already slightly favorable; due to the subsonic nature of

the boundary layer flow, we observe a very slight pressure rise ahead of the roughness

patch. This is consistent with the trend observed in the roughness array suggesting that
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Figure 5.11. Iso-surfaces of Q-criterion (10−4) coloured by contours of streamwise veloc-
ity at different time steps (∆t = 50) 96



Figure 5.12. K-type structures near x/δ = 3100. Iso-surface of Q-criterion (10−3),
colored by the velocity magnitude (Case 2). Flow direction: left to right. The sequence
follows the evolution of a given structure at different time-steps (∆t = 50), from x/δ ≈
3100, to x/δ ≈ 3300. The horizontal spacing is not representative of the distance travelled
between the time-steps. The width (span-direction) is 125δ
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Figure 5.13. Local growth rate in the roughness array (left) and comparative N-factor
curves (right) for F = 18 and a range of span-wise wavenumbers B. The red curves corre-
spond to the most unstable mode F = 18, B = 25.

the 3D instabilities are less affected by the damping effect of the slight favorable pressure

gradients.

This shift between 2D instabilities toward the most preferred spanwise periodic dis-

turbance was highlighted by Kang, although in the opposite direction, who studied the

combined effects of amplitude, frequency, and bandwidth on wavepackets in incompressible

laminar turbulent transition a over flat plate [90]. The DNS conducted by Kang revealed

that, depending on the frequency content of the incoming fluctuations, some cases exhibit

a continuous or abrupt shift in the dominant frequency toward the 2D frequency of the

lower branch. Kang speculated that the mechanism behind frequency shifting was caused

by a linear process driven by the large difference in growth between the modes at play.

Here, the difference in growth is small, almost marginal, and the frequency change is con-

tinuous and very gradual. Looking at the root mean squared of the streamwise fluctuation

profiles at different locations, we can better interpret how the instabilities evolve over and

downstream of the roughness array. Figure 5.14 shows the u′rms profiles in the troughs of

the roughness array. The solid lines come from the NPSE calculations, while the crosses

indicate the DNS. The first profile was taken just before the roughness array, at x = 2044δ.

At this location, in Cases 1 and 2, the DNS and the NPSE predict very similar RMS pro-

files (amplitude and shape), indicating a nearly typical 2D modal growth. In case 1, the

98



agreement remains until the end of the roughness array, highlighting the good performance

of the PSE in the presence of compressibility effects and moderate curvature. In case 2,

the results are mixed. The shape and amplitude of the RMS profiles computed from the

NPSE and the DNS tend to gradually differentiate themselves as the perturbations ad-

vance downstream. At x = 2189δ, the RMS profile extracted from the DNS already shows

a significant change in shape, compared to the RMS profile obtained with the NPSE. At

this point, the amplitude of the higher modes is negligible, as shown in Figure 5.8, and

cannot explain the difference in amplitude observed in Figure 5.14. Although not shown

here, we tried to run the NPSE using the same temporal frequency content, but with a

spanwise wavenumber of B = 25, to see if we could see any improvement in the shape

or amplitude of the RMS profiles. The increase in the growth rate was marginal and led

to similar amplitudes. We also tried with a range of five spanwise modes to see if the

nonlinear response would trigger the growth of 3D instabilities, but it also led to similar

outcomes.

Interesting work by [142] on the growth of optimal disturbances in hypersonic bound-

ary layers provides a relevant starting point for the investigation of transient growth in

the context of the modal stability theory. In his approach, Paredes uses the adjoint-PSE

to determine the disturbance that leads to the maximum energy amplification at a cer-

tain point. This approach could provide a comprehensive framework to study the gradual

passage from 2D to 3D instabilities observed in case 2. However, the coexistence of two

transitional mechanisms characterized by the presence of both early 2D secondary insta-

bilities and unstable K-type structures further downstream is in contradiction with the

main ansatz of the method, i.e., that the path leading to transition is intimately tied to

the growth of one optimal disturbance [187].

Alternatively, [36] studied the global energy balance in unstable boundary layers and

found that, at a sufficiently high disturbance level, a two-dimensional flow will establish a

catalytic feedback loop that leads to simultaneous growth of two-dimensional and three-

dimensional waves, bypassing the classical T-S mechanism [71].
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Figure 5.14. Root mean squared of stream-wise velocity profile in the roughness array,
taken at minimums (valleys)
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5.4 Conclusion

Numerical studies of a compressible laminar boundary layer in a normal transition scenario

(T-S waves) were performed using a combination of parabolized stability equations (PSE)

and Direct Numerical Simulations (DNS). A smooth roughness patch, consisting of five

sinusoidal two-dimensional humps, was added to a zero-pressure gradient flat plate bound-

ary layer in order to induce early transition. A parametric study was done to identify a

physical setup in which transition takes place downstream of the smooth roughness array.

The downstream transition in the setup allows a decoupling of the geometric complexity of

the roughness array from the transition process. Two cases, with varying waviness ampli-

tude, were studied using large-scale DNS. The main effect of compressibility is to dampen

the growth of instabilities by reducing the inflection of the velocity profile in the vicinity of

the wall. This effect is, however, marginal in region of high curvature as the height of the

roughness array induces a stronger inflectional instability. In the case featuring the lowest

roughness amplitude, the streamwise velocity profiles over the roughness array predicted

by the NPSE were in good agreement with the DNS, indicating that it could be used as

time-dependent boundary condition for DNS, DES or LES in order to reduce the size of the

computational domain. In the second case, featuring higher humps, the results are mixed;

the DNS suggests that strong curvature favors the nonmodal growth of higher-frequency

modes. The linear modal analysis reveals that although the two-dimensional instability

experiences the highest growth rate, it also experiences the largest damping in the regions

of locally favorable pressure gradients. This mutually canceling effect allows for the growth

of 3D instabilities, which are overall less impacted by the presence of curvature.

Despite the nearly identical setups, cases 1 and 2 showed surprisingly different transi-

tional mechanisms. Case 1, with a lower roughness amplitude, had a well-defined transition

path, similar to the main features of the classical T-S mechanisms. Case 2, with a slightly

higher roughness amplitude, displayed a cyclical transition pattern that periodically shared

features of the T-S mechanism and secondary instability bypass mechanism.
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Chapter 6

Boundary layer stabilization via

thermodynamic roughness

This chapter has been adapted from Francis Lacombe and Jean-Pierre Hickey. ”Bound-

ary layer stabilization via thermodynamic roughness,” Physical Review Fluid, 2022 (to be

submitted).
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Abstract

The coupling effect between roughness and temperature strips is investigated at transonic

condition (Ma = 0.714) using the nonlinear parabolized stability equations (NPSE). The

NPSE-based parametric study confirms the stabilizing effect of cooling strips and the desta-

bilizing effect of heating strips on the stability of T-S waves in the zero-pressure gradient

(ZPG) flat plate boundary layer. The effect of a smooth roughness patch, consisting of five

sinusoidal two-dimensional humps, is added to the zero-pressure gradient flat plate boundary

layer to study the coupling effect between roughness and wall temperature. The temperature

strips and the roughness elements are located after the onset of instability (branch I) and

extend for 500δ. Both the heating strips and the roughness patch are defined using the

same mathematical expression. The analysis reveals a catalytic coupling effect between the

temperature strips and roughness that could help improve temperature-based active laminar

flow control devices.
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6.1 Introduction

Drag reduction in aerospace is one of the main drivers of technological innovation. By

delaying the transition to turbulence, thus increasing the laminar footprint over the body,

a favorable reduction of the frictional forces can be obtained which directly translates

into improved operational efficiencies for the aircraft. Although it is desirable to delay

transition to turbulence, a robust, resilient, and energy efficient approach to stabilize the

boundary layer remains technically difficult to achieve. A number of physical mechanisms

can be used to stabilize the boundary layer; to this end, natural laminar flow (NLF) design

has shown the potential to deliver significant drag reduction. By considering the pressure

distribution on the wetted surface during the design stage, engineers can adjust the favor-

able pressure gradients in specific regions to stabilize the boundary layer, thus naturally

delaying the transition. NLF design considerations have been applied to airfoil shape opti-

mization in a number of works [46, 68]. Although the potential for significant improvements

through NLF is acknowledged, cross-flow-driven instabilities, which dominate swept wings

or nacelle transition, often limit the efficacy of the stabilizing effects of favorable pressure

gradients [26].

Although more complex than NLF, Laminar Flow Control (LFC) is another paradigm to

delay transition, which seeks to increase the resilience of the boundary layer to transitional

instabilities through active or passive means. Active flow controls have also shown a very

significant potential in delaying the boundary transition through the use of synthetic jets

and plasma actuation (e.g. [102]). Similarly, boundary layer suction targets inflectional

instabilities in the base flow, although it has been shown to be most effective in low-Mach

number regimes [119]. Recent numerical and experimental works showed the promise of

transpiration-aided drag reduction [70]. The slow adoption of active laminar flow control

approaches is attributable to the relative mechanical complexity of the systems and the

often unfavorable integrated energy balance. In this regard, passive laminar flow control

approaches remain particularly attractive. Bio-inspired leading edge design [55] or riblets

[17] have been utilized as passive flow control mechanisms that target the modification

of energetic turbulent structures in the boundary layer. These approaches tend to have a

small operational window, which can result in an enhanced drag outside of the target range.
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On the transitional side, Zahn [217] highlighted that surface imperfections, such as a deep

gap, could result in a standing acoustic wave that can be tuned to dampen T-S modes in

transitional flows. A more recent paradigm to delay transition combines both NLF and

LFC. The premise is to supplement the pressure gradient-based design with a laminar flow

control approach; this combined approach is often referred to as Hybrid Laminar Flow

Control (HLFC). HLFC has been used for several decades [9] with sustained promise.

Boundary layer control through localized heating or cooling represents one of the classi-

cal approaches to active flow control, which targets the instability modes and are therefore

less invasive to the base flow characteristics. As localized heating or cooling only slightly

modifies the local density and viscosity, it imparts a modest modification to the boundary

layer compared to more aggressive flow control technologies such as blowing or suction.

Further, localized heating can represent an energy neutral active flow control approach

through reuse of engine waste heat on the nacelle, for example. The use of thermodynamic

flow control has been proposed in both laminar and turbulent flows. In a fully turbulent

channel flow, for example, targeted heating can be used to modulate coherent structures

and reduce drag [74, 18]. In the transitional regime, a series of investigations have been

undertaken for over 40 years. As a general rule, uniform cooling has a stabilizing effect on

laminar boundary layers because the viscosity increases in the wall-normal direction which

dampens the viscous instabilities modes [148]. Inversely, uniform heating plays a destabi-

lizing role. Although the heating of a gas increases the local viscosity, thus reducing the

local Reynolds number, it can result in a local inflectional instability of the velocity profile,

which leads to a precocious transition to turbulence. In the case of a heated wall, the

viscosity is at its maximum value at the wall and decreases as the wall distance increases.

This has a destabilizing effect on the shape of the velocity profile. To better illustrate this

effect, Figure 6.1 shows the effect of cooling and heating on the velocity profile near the

wall. As seen on Figure 6.1, the wall cooling tends to create a more stable, thicker, velocity

profile, analogous to the effect of a favorable pressure gradient in a boundary layer, while

wall heating tends to create an ”S” shaped profile. Unlike uniform heating, strategically

placed strips of localized heating can help delay the transition. Dogval [44] experimen-

tally showed that localized heating delays transition in 2D and 3D boundary layers, but if

the transition mechanism is due to cross-flow instabilities, the heating remains ineffective.
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Figure 6.1. Effect of cooling and heating on the stream-velocity profile on a compressible
Blasius boundary layer flow at Mach 0.714. The dashed line represent the exaggerated effect
of cooling and heating

Physically, although localized heating is destabilizing when placed in regions of linear in-

stability growth, if the strips are placed upstream of this point, the downstream unheated

wall effectively becomes a cooled wall. The unheated wall acts to restabilize the boundary

layer and delay the overall transition to turbulence [111]. Localized heating strips have

been suggested as an active flow control approach for supersonic transport [25]. Heating

strips can also be used to stabilize the first mode in supersonic flows[120]. The stabilizing

effect was nuanced by [149] who suggested that the heating strip only had a stabilizing ef-

fect if the temperature of the ’cooled’ wall remained below the adiabatic wall temperature.

Several recent contributions have continued to optimize these flow stabilization strategies

[110, 178, 54, 138, 219].

The understanding of the effects of localized heating on the stabilization of the tran-

sitional boundary layer has greatly benefited from a number of theoretical and numerical

studies. Krad et al.[98] completed early DNS of periodic forcing due to wall heating on a
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flat plate boundary layer. Using PSE, [23] found that the optimal position of the heating

strips was upstream of the neutral point. Stabilization among multiple disturbance fre-

quencies remains an open question in their work. More recent work by [145] studied the

sensitivity of methods to determine the location of the transition.

The existing body of research provides a good physical understanding of boundary

layer stabilization through localized heating or cooling. However, most studies are applied

in the context of active flow control design. In most applied settings, the active flow

control device is operated in regions that have non-negligible wall curvature, for example,

on the nacelle or wing. As a result, the stabilization effects due to the presence of localized

heating are impacted by the local pressure gradients. In this context, assessing the effect of

curvature, or surface imperfection, on the efficacy of thermodynamic flow control systems

is not an easy task. Although some work has been done to investigate the effect of isolated

roughness in the presence of cooling or heating, recent work on this topic is scarce. Among

the most recent papers, Abid [1] investigated the effect of an isolated roughness element

in the presence of a cooling strip on the stability of an incompressible boundary layer.

Their LST results suggested that the presence of roughness was destabilizing regardless

of the strip location. However, the height of the investigated hump was on the verge of

causing flow separation. It was observed that cooling increases the growth rate near or in

separation bubbles [121, 3]. Continuous cooling, on the other hand, has a thinning effect

on the boundary layer and makes it more sensitive to roughness, as it artificially increases

the apparent height of incoming obstacles [121]. In that perspective, the effect of low-

amplitude roughness in the presence of short, localized, temperature strips on the modal

response of compressible Blasius flow remains unclear. To this end, we conduct a NPSE-

based parametric study on localized wall heating/cooling under high subsonic conditions.

Then, the focus is moved toward a comparative study of the coupling effect between the use

of roughness and cooling/heating strips. The potential benefits of distributed temperature

strips and physical smooth roughness on the transitional characteristics of a flat plate

boundary layer are explored and contrasted to the results presented in the previous chapter.
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6.2 Numerical tools

The stability of a zero pressure gradient flat plate boundary layer with nonuniform wall

heating is investigated using the nonlinear Parabolized Stability Equations (PSE). The

PSE are a subset of modal stability theory which can be used to investigate weakly non-

parallel flows such as the spatially evolving, laminar boundary layer. It was shown in the

previous chapter that PSE and Direct Numerical Simulations (DNS) are nearly indistin-

guishable when the surface roughness remains small. The main discrepancies between the

two approaches arise when nonlinear interactions cause a modification to the base flow. As

thermodynamic heating provides a very subtle change to the main flow characteristics and

the computational cost is about 4 orders of magnitude less than the equivalent DNS, the

present study focuses solely on the use of PSE to parametrically investigate the stability

characteristics of this flow.

To this end, we use Krypton [105], a new open source PSE code that integrates both the

base flow computations of the laminar compressible Navier-Stokes equations on a curvilin-

ear coordinate system; we use both the linear and nonlinear stability calculations of this

solver. Details on the code are provided in the previous two chapters and are not repeated

for brevity. The Reynolds and Mach reference numbers are defined on the basis of the inlet

state and are defined as

Reδ =

√
u0x0
ν0

Ma =
u0√
γR0T0

(6.1)

Where the subscript 0 represents the reference values of the freestream and δ =
√

ν0x0

u0
is

a length scale proportional to the thickness of the inlet boundary layer.

6.3 Effect of wall temperature on transition

The parametric investigation of the stability characteristics of spatially varying wall tem-

perature is investigated. First, we consider the case of a sinusoidal wall temperature

oscillations on a flat plate boundary layer and compare the stability characteristics with
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Figure 6.2. Diagram of the numerical setups. All the dimensions are scaled by δ. dT/T0
is varied from -0.33 to 0.33 and h = 0.33δ (corresponding to less than 1/10 of the boundary
layer thickness). Figure on the left shows the domain with only thermal roughness (Section
6.3), figure on the right shows the combination of smooth roughness and wall temperature
fluctuations (Section 6.4).

the smooth-roughness case investigated in the previous chapter, this corresponds to the

setup in figure 6.2 (left). In the following section, we combine both the sinusoidal wall

temperature variations with the smooth roughness to explore the stabilization effects, the

setup is shown in figure 6.2 (right).

In the present work, we focus on the effect of two-dimensional heating and cooling strips

on the boundary layer transition at a freestream Mach number of 0.714. The setup is very

similar to the one investigated in Chapter 5, consists of a canonical spatially evolving,

zero pressure gradient, flat plate boundary layer with 5 successive sinusoidal heating or

cooling strips. The location and amplitude of the wall temperature undulations are based

on the same mathematical function as the humps of Case 1, in Chapter 5, to facilitate

comparison with a validated case with smooth roughness. The wall temperature and the

roughness amplitude are illustrated in Figure 6.3, for completeness. Figure 6.4 shows the

contour of the temperature of two representative cases for which the parametric study is

conducted. In total, 9 different cases are investigated at various wall temperatures, ranging

from Twall/T∞ = 0.665, to Twall/T∞ = 1.335. The intensity of incoming turbulence is set

to 0.18% in all cases and the frequency content is the same as in the Case 1 in chapter 5.

As we can see, whereas the presence of heating or cooling strips has a very limited

impact on the thickness of the boundary layer (see comparative boundary layer thickness in
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Figure 6.3. Illustration of the numerical setup. ywall = h(x), Twall = 1± h(x)
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Figure 6.4. Contour plot of the temperature for the case with heating strips (Twall

T∞
=

1.335) and cooling stips (Twall

T∞
= 0.665). The solid line is the boundary layer thickness

(δ0.99)
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figure 6.4), the impact is most noticable on the wall friction coefficient, shown in figure 6.5.

In figure 6.5, both the laminar and mean flow distortion (MFD) skin-friction coefficients

are shown. These estimates can be used to determine the transition location. Adding

cooling strips stabilizes the boundary layer, and in contrast, the addition of heating strips

is drastically destabilizing. This result was expected because the location of the wall

temperature perturbations is in the modal growth region [44]. Although it is possible

to qualitatively estimate the transition location based on the wall friction in figure 6.5,

it is more convenient to define a quantitative criterion to better highlight any physical

trends that we could observe. Here, we define the beginning of transition based on the

MFD wall friction, transition to turbulence is triggered once the absolute of the MFD

wall friction exceeds 5% of the laminar friction, that is, when |∂û(0,0)

∂y
/∂ulam

∂y
|> 0.05. Figure

6.6 shows the relative transitional Reynolds number as a function of the heating strips’

temperature. ∆Retr is defined as the difference between the transition Reynolds number

with and without heat transfer strips. The linear trend gave the best fit, but could lead to

non-physical transition location prediction. For example, if used for temperatures higher

than ≈ 2.5, the fit predicts a transition before the heating strip. However, the slope of the

fit offers a good point of comparison.
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Figure 6.5. Effect of cooling and heating (without physical roughness) on the friction
coefficient along the stream direction. The coefficient of friction is computed based on the
sum of the laminar and MFD contributions.

6.4 Combined effect of temperature strips and smooth

roughness on modal stability

In laminar boundary layers, cooling strips help stabilize the flow by decreasing the viscous

instability. Other mechanisms can have a similar effect. In this regard, it was reported

that the stabilizing effect of cooling strips is similar to that of a smooth forward-facing step

(FFS) [3] while a backward-facing step (BFS) is analogous to wall heating, thus destabiliz-

ing. However, this conclusion is only valid for a smooth geometry, as the impact of discrete

FFS and BFS is always destabilizing and increases with step height [43]. Ultimately, a

smooth hump can be seen as a smooth FFS, immediately followed by a smooth BFS. Fol-

lowing this logic, a sequence of multiple humps could be seen as an alternating sequence

of heating and cooling strips. Since the effect of BFS is generally more destabilizing than

that of a FFS, a sequence of multiple humps is therefore considered to be destabilizing.
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Figure 6.6. Effect of cooling and heating on the transition location. ZPG flat plate at

M = 0.714. The transition criteria is met when |∂û(0,0)

∂y
/∂ulam

∂y
|> 0.05

Now, let’s say we add cooling strips at the most unstable points, i.e. at the crest of each

physical roughness hump. We now have a different sequence in which a favorable pressure

gradient enhances the stability, followed by a cooling strip which also has a beneficial effect,

and, finally, the descent of the hump which causes destabilization. In this context, it is not

clear whether the overall effect will be stabilizing or destabilizing. The quantification of

this effect is investigated in the present section. Figure 6.7 shows the temperature contour

of two representative cases of the same geometry.

Figure 6.8 shows the evolution of the disturbance kinetic energy (DKE) along the

streamwise direction for 6 representative cases. The red, blue, and black curves correspond,

respectively to the Twall/T∞ = 1.335, Twall/T∞ = 0.665 and isotherm cases. The solid line

represents the combination of physical (h = 0.33δ) and thermodynamic roughness, whereas

the dashed line corresponds to the DKE of only the thermodynamic roughness. Solid and
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Figure 6.7. Contour plot of the temperature for the case with heating strips (top) and
cooling stips (bottom). Both cases features a sequence of 5 sinusoidal humps of h = 0.33δ.
The solid line is the boundary layer thickness (δ0.99)

dashed black has no thermodynamic roughness. We see that the humps have a slightly

destabilizing effect in the isotherm and heated cases. Interestingly, the presence of physical

roughness (humps) and thermodynamic cooling tends to enhance the effect of the cooling

strips alone. One possible explanation is that the cooling strips stabilize the flow by acting

on two fronts: (1) it reduces the inflectional instability, by locally decreasing the viscosity;

(2) it induces a downward velocity by increasing the local density which partly cancels the

effect of the flow going down the valley.
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Figure 6.8. Disturbances Kinetic Energy (DKE) along the stream-wise direction

In figure 6.8, the scale is logarithmic and the damping is thus less apparent. The contour

plot of the Disturbance Kinetic Energy (DKE), shown on figure 6.9, offers a fairer view of

the stabilization caused by the combined cooling and roughness effects. For comparative

purposes, the color range is identical for all panels. As we can see, the cooling strips

are very effective at reducing the amplitude of the disturbances in the near-wall region,

but are even more efficient at eliminating the onset of instabilities in the region above

the boundary layer. The rise of disturbances above the boundary layer is particularly

destabilizing and usually indicates the rapid growth of secondary instabilities. The cases

featuring cooling strips are extremely efficient at neutralizing these freestream instabilities,
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Figure 6.9. Contour plot of the Disturbances Kinetic Energy (DKE). The color range
from blue (DKE = 0) to red (DKE = 4× 10−6) and is the same for all plot.
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suggesting a stronger damping effect on the higher frequencies. To verify this assumption,

the wall friction spectrum for different regions is shown in figures 6.10 and 6.11. The colors

indicate the wall temperature; each line style represents a different portion of the wall

and is identified in the caption. Starting with the effect of the heating strips alone, we

first observe on figure 6.10 that the heating strips tend to amplify the whole frequency

spectrum, but more specifically the off-peak frequencies, as we observe a broader peak

around the dominant frequency. This effect is even more noticeable at the 2F harmonic,

for which the neighboring frequencies experience a considerably higher amplification which

leads to the formation of a local minimum near F ≈ 32. The cooling strips induce the

opposite effect; we observe a dampening effect on the off-peak frequencies, which makes the

dominating frequency more easily distinguishable. However, this time we see the emergence

of a peak near F ≈ 32 and 45. Recalling that the inlet T-S frequency is F = 18, and its

harmonics are 36, 54, 72, etc. It is interesting to note that in the presence of cooling strips

we observe the formation of two other peaks at frequencies (32, 45) that are not multiples

of the fundamental T-S frequency (18), nor of the cooling strips (39). This effect is more

pronounced in the presence of roughness, as seen in Figure 6.11, but the frequencies remain

the same, leading us to think that the periodic excitation of the flow, whether by the use

of temperature strips or smooth wall roughness, induces the formation of off-harmonic

perturbations. The use of a finite-bandwidth approach was crucial to this observation, as

in a classical discrete representation, only the dominant mode and its harmonics are solved

(F, 2F, 3F, ...).

6.5 Conclusion

The coupling effect between the roughness and the temperature strips is investigated under

transonic conditions using the nonlinear parabolized stability equations (NPSE). To this

end, we first study the effect of heating and cooling strips on the stability of a zero-pressure

gradient flat plate boundary layer. The effect of a smooth roughness patch, consisting

of five sinusoidal two-dimensional humps, was added to the zero-pressure gradient flat

plate boundary layer in order to study the coupling effect between roughness and wall

temperature. The temperature strips and the roughness elements are located after the
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Figure 6.10. fft(cf ) for different wall regions in absence of wall curvature, obtained
with NPSE. The colors indicate the temperature (cold, isothermal or hot). Each linestyle
corresponds to a different region ( is x ∈ [1600, 2140], is x ∈ [1600, 2340], is
x ∈ [1600, 2540], is x ∈ [1600, 2640])
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Figure 6.11. fft(cf ) for different wall regions in presence of humps, obtained with NPSE.
The colors indicate the temperature (cold, isothermal or hot). Each linestyle corresponds
to a different region ( is x ∈ [1600, 2140], is x ∈ [1600, 2340], is x ∈
[1600, 2540], is x ∈ [1600, 2640])
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onset of instability (branch I) and extend over a range of 500δ. Both the heating strips

and the roughness patch are defined using the same mathematical expression. The NPSE-

based parametric study confirms the stabilizing effect of cooling strips and the destabilizing

effect of heating strips on the stability of T-S waves in the ZPG flat plate scenario. The

analysis reveals a spectral broadening in the presence of heating and a spectral narrowing

in the presence of cooling. The NPSE study reveals a catalytic coupling effect between

the temperature strips and roughness. In other words, when compared to the flat plate

case, the stability of the flow decreases in the presence of heating strips and roughness.

Inversely, in comparison with the flat plate case, the stability is increased in the presence

of cooling strips and roughness.

121



Chapter 7

Conclusion

The research was initially motivated by the lack of a sufficiently accurate and lightweight

transition prediction tool for Natural or Hybrid Laminar flow control design in aerospace.

Thus, the emphasis was placed on improving the transition predictions in complex aero-

nautical flows. More specifically, the research focuses on the effect of two-dimensional

roughness on the modal stability of transonic flows. The term roughness here is used in

the broad sense and regroups the effect of physical roughness, i.e. wall curvature, thermo-

dynamic roughness, i.e. non-homogeneous wall temperature, or both.

In Chapters 3 and 4, we developed a comprehensive framework to study the propagation

and amplification of modal-like perturbations in a variety of complex compressible flows.

The model, based on the nonlinear parabolized stability equations (NPSE), is sufficiently

exhaustive to be applied in realistic high-speed flow situations featuring wall curvature,

compressibility effects, cross-flow, adverse pressure gradients, and nonadiabatic surface

effects. The structure can be used to study acoustic propagation via PSE. The model

is validated against published experimental and numerical data. The project, which was

recently made open source [105], can serve as the basis for the future development of modal

stability-based problems in aerospace engineering, geophysical and multiphase flows. All

the necessary routines and methods included in the code allow for the extension of the

code to 3D simulations.

In Chapter 3, we also describe the implementation of curvilinear coordinates in the
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massively parallel DNS code Hybrid. The implementation of curvilinear coordinates in

Hybrid helped lay the foundations of a large-scale DNS-based canonical case of study

on the effect of smooth two-dimensional roughness on the stability characteristics of a

transonic (Ma = 0.714) boundary layer (Chapter 5. In particular, the influence of the

two-dimensional smooth roughness on the stability of 2D T-S waves is investigated using

two variants of the same setup consisting of an array of five humps of two different heights.

This case of study served three purposes. First, it helped validate the pertinence of the

NPSE framework in the presence of wall curvature and compressibility effects. Second,

DNS results revealed a stronger destabilizing effect on the higher frequencies for the case

with the highest humps. This effect is believed to be associated with a rapid growth

of secondary instabilities, which skips the standard T-S mechanism and gives rise to a

cyclical transitional pattern in which both late K-type structures and premature bypass

transition are observable. This numerical setup, at the limit between bypass and normal

transition, brings to light that the role of surface imperfections on transition to turbulence

is more nuanced than intuition would lead us to believe. Third, the DNS study helped

identify span-periodic disturbances downstream of the roughness array, suggesting that

at a sufficiently high curvature level, the mode experiencing the highest amplification is

three-dimensional. An observation that is also supported by the –linear– PSE.

In Chapter 6, the effect of localized heating and cooling on the stability of compressible

boundary layers under transonic conditions (Ma = 0.714) is investigated. More specifi-

cally, the scope is on the coupling effect between smooth roughness and temperature strips.

The numerical setup is identical to the one used in the previous DNS study, in order to

provide an additional layer of comprehension to the physics of the problem. The temper-

ature strips and the roughness elements begin after the onset of instability (branch I) and

extend for 500δ. Both the heating strips and the roughness patch are defined using the

same mathematical expression. The parametric study confirms the stabilizing effect of the

cooling strips and the destabilizing effect of the heating strips on the stability of the T-S

waves in the ZPG flat plate scenario. The analysis reveals a spectral broadening in the

presence of heating and a spectral narrowing in the presence of cooling, regardless of the

presence of roughness. The NPSE analysis reveals a catalytic coupling effect between the

temperature strips and the roughness. In other words, compared with the heated ZPG
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geometry, the stability of the flow decreases in the presence of heating strips and rough-

ness. Inversely, compared with the cooled ZPG geometry, the stability is increased in the

presence of cooling strips and roughness. This finding is important because it could help

improve temperature-based active laminar flow control devices.

7.1 Recommendations & future work

1. Chapter 5 discusses the effect of smooth, two-dimensional roughness on the stability

characteristics of a transonic boundary layer. In this chapter, two variants of the

same setup with two different heights are investigated. In the case featuring the

highest humps, the agreement between the DNS and the NPSE gradually decreases

as the perturbations progress downstream ; the DNS suggests that this increasing

discrepancy is linked to a rapid growth of the higher harmonics. From a modal point

of view, as seen in Chapters 5 and 6, higher modes are generally more sensitive to

base flow modifications, and the presence of roughness, in the broad sense of the term,

tends to promote the formation of such stationary disturbance. Now, if the height of

the roughness is sufficiently high, for example, in Case 2 (Chapter 5), the parabolicy

assumption becomes ill-suited to the problem. The use of a stabilization term in the

marching procedure helps alleviate this effect by ”removing” the remaining ellipticity.

By experience, we observe that even though stabilization is necessary when the step

size is reduced below a certain threshold regardless of the frequency, the problems

related to ellipticity usually affect the low-frequency mode first, as they have a larger

spectral radius. By definition, since the MFD is stationary, Re(α0,0) = ω0,0 = 0.

This implies that the MFD has an infinite spectral radius, in which case the use of a

stabilization term is pointless and the ellipticity can only be removed by dropping the

streamwise pressure gradient term completely. This assumption is questionable in

the presence of high curvature and should be revisited. In the current state of theory,

the MFD represents the accumulated effects of the nonlinear forcing on the base flow,

without the elliptic component. In this sense, an interesting approach could be to

separate the MFD into an elliptic component, which could be solved using a central

scheme based on a global approach, and a parabolic component, which would be
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solved using a similar marching procedure. The latter is important to maintain the

effect of nonlinear interactions. Without exactly using this approach, the nonmodal

stability theory and the One-Way Navier-Stokes equations represent steps in the same

direction.

2. In Chapter 6, we investigated the coupling effect between temperature and curvature

roughness. The analysis revealed that, when strategically located, the curvature of

the wall can enhance the stabilizing effect of the cooling strips. In this optic, it is

known that when placed before the onset of instability, i.e. before branch I, heating

strips can have a stabilizing effect. In the current study, the temperature strips were

defined using the same mathematical expression as the physical roughness and were

thus located in the region experiencing the highest growth, i.e. at the top of each

hump. It could be interesting to see if heating strips, when placed slightly upstream

of physical roughness, could lead to a stabilizing effect similar to what is observed

when placed upstream of branch I.
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[160] Bijaylakshmi Saikia, Leonard Dueñas, Niclas Dotzauer, and Christoph Brehm. Effect

of Parametric Variation of Sinusoidal Surface Roughness on High-Speed Boundary

Layer Stability. AIAA Aviation and Aeronautics Forum and Exposition, AIAA AVI-

ATION Forum 2021, pages 1–20, 2021.

[161] William S Saric, Helen L Reed, and Edward J Kerschen. Boundary-layer receptivity

to freestream disturbances. Annual Review of Fluid Mechanics, 34(1):291–319, 1

2002.

[162] William S. Saric, Helen L. Reed, and Edward J. Kerschen. Boundary-layer receptivity

to freestream turbulence. Annual Review of Fluid Mechanics, 34(1):291–319, 1 2002.

[163] William S. Saric, Helen L. Reed, and Edward B. White. Stability and transi-

tion of three-dimensional boundary layers. Annual Review of Fluid Mechanics,

35(1989):413–440, 2003.

[164] T Sayadi, JW Nichols, PJ Schmid, and MR Jovanovic. Dynamic mode decomposition

of h-type transition to turbulence. In Proceedings of the Summer Program, pages 5–

14. Center for Turbulence Research, 2012.

142



[165] Taraneh Sayadi, Curtis W Hamman, and Parviz Moin. Direct numerical simulation

of complete h-type and k-type transitions with implications for the dynamics of

turbulent boundary layers. Journal of Fluid Mechanics, 724:480–509, 2013.

[166] Peter Schmid. Nonmodal stability theory. Annual Review of Fluid Mechanics, 39:129–

162, 12 2006.

[167] Oliver T. Schmidt, Aaron Towne, Tim Colonius, André V. G. Cavalieri, Peter Jordan,
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APPENDICES

This document is intended to provide a clear derivation of the Compressible Navier-Stokes

Equations (CNSE) in curvilinear coordinates as implemented in HybridX.
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Appendix A

Governing equations

We begin with the compressible Navier-Stokes for a calorically perfect gas in cartesian

coordinates:
∂ρ

∂t
+
∂ρui
∂xi

= 0 (A.1)

∂ρui
∂t

+
∂

∂xj
(ρuiuj + pδij) =

∂σij
∂xj

(A.2)

∂E

∂t
+

∂

∂xj
(uj(E + p)) =

∂

∂xj

(
uiσij − κ

∂T

∂xj

)
(A.3)
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Appendix B

Coordinate transformation

The idea of a coordinate transformation is to map a rectangular on to a body of arbitrary

shape. Here we use the following notation:

Forward transformation Backward transformation (B.1)

x1 = x1(ξ1, ξ2, ξ3) ξ1 = ξ1(x1, x2, x3) (B.2)

x2 = x2(ξ1, ξ2, ξ3) ξ2 = ξ2(x1, x2, x3) (B.3)

x3 = x3(ξ1, ξ2, ξ3) ξ3 = ξ3(x1, x2, x3) (B.4)

Where xi and ξi are the coordinates in cartesian and curvilinear coordinates, respectively.

In general, the forward transformation can be written explicitly using a functional relation.

The backward transformation is usually more difficult to define (implicit relationship with

xi).
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B.1 Chain rule

∂ϕ

∂x1
=
∂ϕ

∂ξ1

∂ξ1
∂x1

+
∂ϕ

∂ξ2

∂ξ2
∂x1

+
∂ϕ

∂ξ3

∂ξ3
∂x1

(B.5)

∂ϕ

∂x2
=
∂ϕ

∂ξ1

∂ξ1
∂x2

+
∂ϕ

∂ξ2

∂ξ2
∂x2

+
∂ϕ

∂ξ3

∂ξ3
∂x2

(B.6)

∂ϕ

∂x3
=
∂ϕ

∂ξ1

∂ξ1
∂x3

+
∂ϕ

∂ξ2

∂ξ2
∂x3

+
∂ϕ

∂ξ3

∂ξ3
∂x3

(B.7)

In matrix form, the Jacobian of the backward transformation reads:
∂ϕ
∂x1
∂ϕ
∂x2
∂ϕ
∂x3

 =


∂ξ1
∂x1

∂ξ2
∂x1

∂ξ3
∂x1

∂ξ1
∂x2

∂ξ2
∂x2

∂ξ3
∂x2

∂ξ1
∂x3

∂ξ2
∂x3

∂ξ3
∂x3




∂ϕ
∂ξ1
∂ϕ
∂ξ2
∂ϕ
∂ξ3

 (B.8)

As mentioned earlier, the backward is not known in explicit form. The Jacobian of the

backward transformation can thus not be computed. To make it possible, we begin with

the Jacobian of the forward transformation:

x1 = x1(ξ1, ξ2, ξ3) −→ dx1 =
∂x1
∂ξ1

dξ1 +
∂x1
∂ξ2

dξ2 +
∂x1
∂ξ3

dξ3 =
∂x1
∂ξi

dξi

x2 = x2(ξ1, ξ2, ξ3) −→ dx2 =
∂x2
∂ξ1

dξ1 +
∂x2
∂ξ2

dξ2 +
∂x2
∂ξ3

dξ3 =
∂x2
∂ξi

dξi (B.9)

x3 = x3(ξ1, ξ2, ξ3) −→ dx3 =
∂x3
∂ξ1

dξ1 +
∂x3
∂ξ2

dξ2 +
∂x3
∂ξ3

dξ3 =
∂x3
∂ξi

dξi

Similarly, from the backward transformation, we know that

dξ1 =
∂ξ1
∂xj

dxj dξ2 =
∂ξ2
∂xj

dxj dξ3 =
∂ξ3
∂xj

dxj (B.10)
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Substituting equations (B.9) into (B.10) leads to

dx1 =
∂x1
∂ξ1

(
∂ξ1
∂xj

dxj

)
+
∂x1
∂ξ2

(
∂ξ2
∂xj

dxj

)
+
∂x1
∂ξ3

(
∂ξ3
∂xj

dxj

)
dx2 =

∂x2
∂ξ1

(
∂ξ1
∂xj

dxj

)
+
∂x2
∂ξ2

(
∂ξ2
∂xj

dxj

)
+
∂x2
∂ξ3

(
∂ξ3
∂xj

dxj

)
(B.11)

dx3 =
∂x3
∂ξ1

(
∂ξ1
∂xj

dxj

)
+
∂x3
∂ξ2

(
∂ξ2
∂xj

dxj

)
+
∂x3
∂ξ3

(
∂ξ3
∂xj

dxj

)
(B.12)

x1, x2 and x3 form an orthonormal basis, therefore, dx1 cannot be written in terms of dx2

and/or dx3 and the only way the equation (B.11) can be true is if

dx1 =
∂x1
∂ξi

∂ξ1
∂x1

dx1 (B.13)

1 =
∂x1
∂ξi

∂ξ1
∂x1

(B.14)

Or, in matrix notation
∂x1

∂ξ1

∂x1

∂ξ2

∂x1

∂ξ3
∂x2

∂ξ1

∂x2

∂ξ2

∂x2

∂ξ3
∂x3

∂ξ1

∂x3

∂ξ2

∂x3

∂ξ3


︸ ︷︷ ︸
Forward Jacobian=[J ]


∂ξ1
∂x1

∂ξ1
∂x1

∂ξ1
∂x1

∂ξ2
∂x2

∂ξ2
∂x2

∂ξ2
∂x2

∂ξ3
∂x3

∂ξ3
∂x3

∂ξ3
∂x3


︸ ︷︷ ︸

Backward Jacobian=[J ]−1

=

1 0 0

0 1 0

0 0 1

 (B.15)

Therefore, the next task is to find the inverse of the Forward Jacobian [J ]. Using the

Cramer’s rule and supposing [K] = [J ]−1:

[K] =
1

J

β11 β12 β13

β21 β22 β23

β31 β32 β33

 Where βij = Co-factors of [J] and J = det(J) (B.16)
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We thus have the following relationship

∂ϕ

∂xi
=
βik
J

∂ϕ

∂ξk
(B.17)

Another way of writing this is
∂ϕ

∂xi
=

1

J

∂

∂ξk
(βikϕ) (B.18)

Therefore

∂2ϕ

∂xi∂xj
=

1

J

∂

∂ξk

(
βik

∂ϕ

∂xj

)
(B.19)

∂2ϕ

∂xi∂xj
=

1

J

∂

∂ξk

(
βik

1

J

∂

∂ξk
(βjkϕ)

)
(B.20)

∂2ϕ

∂xi∂xj
=

1

J

∂

∂ξk

(
βikβjk

1

J

∂ϕ

∂ξk

)
(B.21)

B.2 Curvilinear Navier-Stokes

B.2.1 Continuity equation

∂ρ

∂t
+
∂ρui
∂xi

= 0 (B.22)

∂ρ

∂t
+

1

J

∂

∂ξk
(βikρui) = 0 (B.23)

Expanding the terms,

∂ρ

∂t
+

1

J

∂

∂ξ1
(βi1ρui) +

1

J

∂

∂ξ2
(βi2ρui) +

1

J

∂

∂ξ3
(βi3ρui) = 0 (B.24)
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∂ρ

∂t
+

1

J

∂

∂ξ1
(β11ρu1 + β21ρu2 + β31ρu3) (B.25)

+
1

J

∂

∂ξ2
(β12ρu1 + β22ρu2 + β32ρu3) (B.26)

+
1

J

∂

∂ξ3
(β13ρu1 + β23ρu2 + β33ρu3) = 0 (B.27)

B.2.2 Momentum equations

∂ρui
∂t

+
∂

∂xj
(ρuiuj + pδij) =

∂σij
∂xj

(B.28)

∂ρui
∂t

+
1

J

∂

∂ξk
(βjk(ρuiuj + pδij)) =

1

J

∂

∂ξk
(βjkσij) (B.29)

Where

σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ
∂uk
∂xk

δij (B.30)

σij =
µ

J

[
∂

∂ξl
(βjlui) +

∂

∂ξl
(βiluj)−

2

3

∂

∂ξl
(βkluk) δij

]
(B.31)

Expanding the terms,
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x-momentum

∂ρu1
∂t

+
1

J

∂

∂ξ1
(βj1(ρu1uj + pδij)) (B.32)

+
1

J

∂

∂ξ2
(βj2(ρu1uj + pδij)) (B.33)

+
1

J

∂

∂ξ3
(βj3(ρu1uj + pδij)) (B.34)

=
1

J

∂

∂ξ1
(βj1σ1j) (B.35)

+
1

J

∂

∂ξ2
(βj2σ1j) (B.36)

+
1

J

∂

∂ξ3
(βj3σ1j) (B.37)

∂ρu1
∂t

+
1

J

∂

∂ξ1
(β11(ρu1u1 + p) + β21ρu1u2 + β31ρu1u3) (B.38)

+
1

J

∂

∂ξ2
(β12(ρu1u1 + p) + β22ρu1u2 + β32ρu1u3) (B.39)

+
1

J

∂

∂ξ3
(βj3(ρu1u1 + p) + β23ρu1u2 + β33ρu1u3) (B.40)

=
1

J

∂

∂ξ1
(β11σ11 + β21σ12 + β31σ13) (B.41)

+
1

J

∂

∂ξ2
(β12σ11 + β22σ12 + β32σ13) (B.42)

+
1

J

∂

∂ξ3
(β13σ11 + β23σ12 + β33σ13) (B.43)
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∂ρu1
∂t

+
1

J

∂

∂ξ1
(ρu1(β11u1 + β21u2 + β31u3) + β11p) (B.44)

+
1

J

∂

∂ξ2
(ρu1(β12u1 + β22u2 + β32u3) + β12p) (B.45)

+
1

J

∂

∂ξ3
(ρu1(β13u1 + β23u2 + β33u3) + β13p) (B.46)

=
1

J

∂

∂ξ1
(β11σ11 + β21σ12 + β31σ13) (B.47)

+
1

J

∂

∂ξ2
(β12σ11 + β22σ12 + β32σ13) (B.48)

+
1

J

∂

∂ξ3
(β13σ11 + β23σ12 + β33σ13) (B.49)

Similarly, for the y-momemtum

∂ρu2
∂t

+
1

J

∂

∂ξ1
(ρu2(β11u1 + β21u2 + β31u3) + β21p) (B.50)

+
1

J

∂

∂ξ2
(ρu2(β12u1 + β22u2 + β32u3) + β22p) (B.51)

+
1

J

∂

∂ξ3
(ρu2(β13u1 + β23u2 + β33u3) + β23p) (B.52)

=
1

J

∂

∂ξ1
(β11σ21 + β21σ22 + β31σ23) (B.53)

+
1

J

∂

∂ξ2
(β12σ21 + β22σ22 + β32σ23) (B.54)

+
1

J

∂

∂ξ3
(β13σ21 + β23σ22 + β33σ23) (B.55)
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and for the z-momemtum

∂ρu3
∂t

+
1

J

∂

∂ξ1
(ρu3(β11u1 + β21u2 + β31u3) + β31p) (B.56)

+
1

J

∂

∂ξ2
(ρu3(β12u1 + β22u2 + β32u3) + β32p) (B.57)

+
1

J

∂

∂ξ3
(ρu3(β13u1 + β23u2 + β33u3) + β33p) (B.58)

=
1

J

∂

∂ξ1
(β11σ31 + β21σ32 + β31σ33) (B.59)

+
1

J

∂

∂ξ2
(β12σ31 + β22σ32 + β32σ33) (B.60)

+
1

J

∂

∂ξ3
(β13σ31 + β23σ32 + β33σ33) (B.61)

B.2.3 Energy equation

∂E

∂t
+

∂

∂xj
(uj(E + p)) =

∂

∂xj

(
ujσij − κ

∂T

∂xj

)
(B.62)

∂E

∂t
+

1

J

∂

∂ξk
(βjk(uj(E + p))) =

1

J

∂

∂ξk

[
βjk

(
ujσij − κ

∂T

∂xj

)]
(B.63)

∂E

∂t
+

1

J

∂

∂ξk
(βjk(uj(E + p))) =

1

J

∂

∂ξk

[
βjk

(
uiσij −

βjl
J

∂T

∂ξl

)]
(B.64)

Expanding the terms,

∂E

∂t
+

1

J

∂

∂ξ1
(β11u1(E + p) + β21u2(E + p) + β31u3(E + p)) (B.65)

+
1

J

∂

∂ξ2
(β12u1(E + p) + β22u2(E + p) + β32u3(E + p)) (B.66)

+
1

J

∂

∂ξ3
(β13u1(E + p) + β23u2(E + p) + β33u3(E + p)) (B.67)

= RHS (B.68)
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Where

RHS =
1

J

∂

∂ξ1

[
β11

(
u1(σ11 + σ21 + σ31)−

β11
J
κ
∂T

∂ξ1
− β12

J
κ
∂T

∂ξ2
− β13

J
κ
∂T

∂ξ3

)
(B.69)

+β21

(
u2(σ12 + σ22 + σ32)−

β21
J
κ
∂T

∂ξ1
− β22

J
κ
∂T

∂ξ2
− β23

J
κ
∂T

∂ξ3

)
(B.70)

+β31

(
u3(σ13 + σ23 + σ33)−

β31
J
κ
∂T

∂ξ1
− β32

J
κ
∂T

∂ξ2
− β33

J
κ
∂T

∂ξ3

)]
(B.71)

+
1

J

∂

∂ξ2

[
β12

(
u1(σ11 + σ21 + σ31)−

β11
J
κ
∂T

∂ξ1
− β12

J
κ
∂T

∂ξ2
− β13

J
κ
∂T

∂ξ3

)
(B.72)

+β22

(
u2(σ12 + σ22 + σ32)−

β21
J
κ
∂T

∂ξ1
− β22

J
κ
∂T

∂ξ2
− β23

J
κ
∂T

∂ξ3

)
(B.73)

+β32

(
u3(σ13 + σ23 + σ33)−

β31
J
κ
∂T

∂ξ1
− β32

J
κ
∂T

∂ξ2
− β33

J
κ
∂T

∂ξ3

)]
(B.74)

+
1

J

∂

∂ξ3

[
β13

(
u1(σ11 + σ21 + σ31)−

β11
J
κ
∂T

∂ξ1
− β12

J
κ
∂T

∂ξ2
− β13

J
κ
∂T

∂ξ3

)
(B.75)

+β23

(
u2(σ12 + σ22 + σ32)−

β21
J
κ
∂T

∂ξ1
− β22

J
κ
∂T

∂ξ2
− β23

J
κ
∂T

∂ξ3

)
(B.76)

+β33

(
u3(σ13 + σ23 + σ33)−

β31
J
κ
∂T

∂ξ1
− β32

J
κ
∂T

∂ξ2
− β33

J
κ
∂T

∂ξ3

)]
(B.77)

(B.78)

B.3 Verification

In Cartesian coordinates, βi ̸=j = 0, βii = 1 and J = 1. A first verification would be to

make sure that we can retrieve the Cartesian equations from the curvilinear system.
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B.3.1 Continuity

∂ρ

∂t
+

1

1

∂

∂ξ1
(1ρu1 + 0ρu2 + 0ρu3) (B.79)

+
1

1

∂

∂ξ2
(0ρu1 + 1ρu2 + 0ρu3) (B.80)

+
1

1

∂

∂ξ3
(0ρu1 + 0ρu2 + 1ρu3) = 0 (B.81)

∂ρ

∂t
+

∂

∂ξ1
(ρu1) +

∂

∂ξ2
(ρu2) +

∂

∂ξ3
(ρu3) = 0 (B.82)

B.3.2 Momentum

x-momentum

∂ρu1
∂t

+
1

1

∂

∂ξ1
(ρu1(1u1 + 0u2 + 0u3) + 1p) (B.83)

+
1

1

∂

∂ξ2
(ρu1(0u1 + 1u2 + 0u3) + 0p) (B.84)

+
1

1

∂

∂ξ3
(ρu1(0u1 + 0u2 + 1u3) + 0p) (B.85)

=
1

1

∂

∂ξ1
(1σ11 + 0σ12 + 0σ13) (B.86)

+
1

1

∂

∂ξ2
(0σ11 + 1σ12 + 0σ13) (B.87)

+
1

1

∂

∂ξ3
(0σ11 + 0σ12 + 1σ13) (B.88)

∂ρu1
∂t

+
∂

∂ξ1
(ρu1u1 + p) +

∂

∂ξ2
(ρu1u2) +

∂

∂ξ3
(ρu1u3) =

∂

∂ξ1
(σ11) +

∂

∂ξ2
(σ12) +

∂

∂ξ3
(σ13)

(B.89)
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y-momentum

∂ρu2
∂t

+
1

1

∂

∂ξ1
(ρu2(1u1 + 0u2 + 0u3) + 0p) (B.90)

+
1

1

∂

∂ξ2
(ρu2(0u1 + 1u2 + 0u3) + 1p) (B.91)

+
1

1

∂

∂ξ3
(ρu2(0u1 + 0u2 + 1u3) + 0p) (B.92)

=
1

1

∂

∂ξ1
(1σ21 + 0σ22 + 0σ23) (B.93)

+
1

1

∂

∂ξ2
(0σ21 + 1σ22 + 0σ23) (B.94)

+
1

1

∂

∂ξ3
(0σ21 + 0σ22 + 1σ23) (B.95)

∂ρu2
∂t

+
∂

∂ξ1
(ρu2u1) +

∂

∂ξ2
(ρu2u2 + p) +

∂

∂ξ3
(ρu2u3) =

∂

∂ξ1
(σ21) +

∂

∂ξ2
(σ22) +

∂

∂ξ3
(σ23)

(B.96)

z-momentum

∂ρu3
∂t

+
1

1

∂

∂ξ1
(ρu3(1u1 + 0u2 + 0u3) + 0p) (B.97)

+
1

1

∂

∂ξ2
(ρu3(0u1 + 1u2 + 0u3) + 0p) (B.98)

+
1

1

∂

∂ξ3
(ρu3(0u1 + 0u2 + 1u3) + 1p) (B.99)

=
1

1

∂

∂ξ1
(1σ31 + 0σ32 + 0σ33) (B.100)

+
1

1

∂

∂ξ2
(0σ31 + 1σ32 + 0σ33) (B.101)

+
1

1

∂

∂ξ3
(0σ31 + 0σ32 + 1σ33) (B.102)
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∂ρu3
∂t

+
∂

∂ξ1
(ρu3u1) +

∂

∂ξ2
(ρu3u2) +

∂

∂ξ3
(ρu3u3 + p) =

∂

∂ξ1
(σ31) +

∂

∂ξ2
(σ32) +

∂

∂ξ3
(σ33)

(B.103)

B.3.3 Energy equation

∂E

∂t
+

1

1

∂

∂ξ1
(1u1(E + p) + 0u2(E + p) + 0u3(E + p)) (B.104)

+
1

1

∂

∂ξ2
(0u1(E + p) + 1u2(E + p) + 0u3(E + p)) (B.105)

+
1

1

∂

∂ξ3
(0u1(E + p) + 0u2(E + p) + 1u3(E + p)) (B.106)

= RHS (B.107)

∂E

∂t
+

∂

∂ξ1
(u1(E + p)) +

∂

∂ξ2
(u2(E + p)) +

∂

∂ξ3
(u3(E + p)) = RHS (B.108)
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Where

RHS =
1

1

∂

∂ξ1

[
1

(
u1(σ11 + σ21 + σ31)−

1

1
κ
∂T

∂ξ1
− 0

1
κ
∂T

∂ξ2
− 0

1
κ
∂T

∂ξ3

)
(B.109)

+0

(
u2(σ12 + σ22 + σ32)−

0

1
κ
∂T

∂ξ1
− 1

1
κ
∂T

∂ξ2
− 0

1
κ
∂T

∂ξ3

)
(B.110)

+0

(
u3(σ13 + σ23 + σ33)−

0

1
κ
∂T

∂ξ1
− 0

1
κ
∂T

∂ξ2
− 1

1
κ
∂T

∂ξ3

)]
(B.111)

+
1

J

∂

∂ξ2

[
0

(
u1(σ11 + σ21 + σ31)−

1

1
κ
∂T

∂ξ1
− 0

1
κ
∂T

∂ξ2
− 0

1
κ
∂T

∂ξ3

)
(B.112)

+1

(
u2(σ12 + σ22 + σ32)−

0

1
κ
∂T

∂ξ1
− 1

1
κ
∂T

∂ξ2
− 0

1
κ
∂T

∂ξ3

)
(B.113)

+0

(
u3(σ13 + σ23 + σ33)−

0

1
κ
∂T

∂ξ1
− 0

1
κ
∂T

∂ξ2
− 1

1
κ
∂T

∂ξ3

)]
(B.114)

+
1

1

∂

∂ξ3

[
0

(
u1(σ11 + σ21 + σ31)−

1

1
κ
∂T

∂ξ1
− 0

1
κ
∂T

∂ξ2
− 0

1
κ
∂T

∂ξ3

)
(B.115)

+0

(
u2(σ12 + σ22 + σ32)−

0

1
κ
∂T

∂ξ1
− 1

1
κ
∂T

∂ξ2
− 0

1
κ
∂T

∂ξ3

)
(B.116)

+1

(
u3(σ13 + σ23 + σ33)−

0

1
κ
∂T

∂ξ1
− 0

1
κ
∂T

∂ξ2
− 1

1
κ
∂T

∂ξ3

)]
(B.117)

(B.118)

RHS =
∂

∂ξ1

[(
u1(σ11 + σ21 + σ31)− κ

∂T

∂ξ1

)]
(B.119)

+
∂

∂ξ2

[(
u2(σ12 + σ22 + σ32)− κ

∂T

∂ξ2

)]
(B.120)

+
∂

∂ξ3

[(
u3(σ13 + σ23 + σ33)− κ

∂T

∂ξ3

)]
(B.121)

(B.122)
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And finally,

∂E

∂t
+

∂

∂ξ1
(u1(E + p)) +

∂

∂ξ2
(u2(E + p)) +

∂

∂ξ3
(u3(E + p)) (B.123)

=
∂

∂ξ1

[(
u1(σ11 + σ21 + σ31)− κ

∂T

∂ξ1

)]
(B.124)

+
∂

∂ξ2

[(
u2(σ12 + σ22 + σ32)− κ

∂T

∂ξ2

)]
(B.125)

+
∂

∂ξ3

[(
u3(σ13 + σ23 + σ33)− κ

∂T

∂ξ3

)]
(B.126)

(B.127)
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Appendix C

Nonlinear Parabolized Stability

Equations (NPSE)

C.1 Compressible Navier-Stokes equations in curvi-

linear coordinates

Continuity

−pT
(
∂u

∂x
Jxx +

∂u

∂y
Jyx +

∂v

∂x
Jxy +

∂v

∂y
Jyy

)
= T

[
u
∂p

∂x
Jxx + v

∂p

∂x
Jxy

]
− p

[
(uJxx + vJxy)

∂T

∂x
+ (uJyx + vJyy)

∂T

∂y

]
(C.1)

166



Momentum - x’

ρ

[
(uJxx + vJxy)

∂u

∂x
+ (uJyx + vJyy)

∂u

∂y

]
= −∂p

∂x
Jxx +

1

Re

[(
4

3

∂µ

∂x
J2
xx +

∂µ

∂x
J2
xy +

4

3

∂µ

∂y
JxxJyx +

∂µ

∂y
JyyJxy

)
∂u

∂x

+

(
4

3

∂µ

∂x
JxxJyx +

∂µ

∂x
JyyJxy +

4

3

∂µ

∂y
J2
yx +

∂µ

∂y
J2
yy

)
∂u

∂y
+ 2µ

(
4

3
JxxJyx + JxyJyy

)
∂2u

∂x∂y

+ µ

(
4

3
J2
yx + J2

yy

)
∂2u

∂y2
+

(
∂µ

∂x
JxyJxx +

∂µ

∂y
JxxJyy

)
∂v

∂x
+

(
∂µ

∂x
JxyJyx +

∂µ

∂y
JyyJyx

)
∂v

∂y

+ µ
∂2v

∂x∂y
(JyyJxx + JyxJxy) + µ

∂v

∂y2
JyxJxy

]
(C.2)

Momentum - y’

ρ

[
(uJxx + vJxy)

∂v

∂x
+ (uJyx + vJyy)

∂v

∂y

]
= −∂p

∂x
Jxy +

1

Re

[(
4

3

∂µ

∂x
J2
xy +

∂µ

∂x
J2
xx +

4

3

∂µ

∂y
JxyJyy +

∂µ

∂y
JxxJyx

)
∂v

∂x

+

(
4

3

∂µ

∂x
JxyJyy +

∂µ

∂x
JxxJyx +

4

3

∂µ

∂y
J2
yy +

∂µ

∂y
J2
yx

)
∂v

∂y
+ 2µ

(
4

3
JxyJyy + JyxJxx

)
∂2v

∂x∂y

+ µ

(
4

3
J2
yy + J2

yx

)
∂2v

∂y2
+

(
∂µ

∂x
JxxJxy +

∂µ

∂y
JyxJxy

)
∂u

∂x
+

(
∂µ

∂x
JxxJyy +

∂µ

∂y
JyxJyy

)
∂u

∂y

+ µ
∂2u

∂x∂y
(JyyJxx + JyxJxy) + µ

∂2u

∂y2
JyxJxy

]
(C.3)
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Momentum - z’

ρ

[
(uJxx + vJxy)

∂w

∂x
+ (uJyx + vJyy)

∂w

∂y

]
= +

1

Re

[(
∂µ

∂x
J2
xx +

∂µ

∂x
J2
xy +

∂µ

∂y
JxxJyx

+
∂µ

∂y
JxyJyy

)
∂w

∂x
+

(
∂µ

∂x
JxxJyx +

∂µ

∂x
JxyJyy

+
∂µ

∂y
J2
yx +

∂µ

∂y
J2
yy

)
∂w

∂y

+ 2µ (JyxJxx + JxyJyy)
∂2w

∂x∂y

+ µ
(
J2
yx + J2

yy

) ∂w

∂2y2

]
−

(C.4)

Energy

ρcp

[
(uJxx + vJxy)

∂T

∂x
+ (uJyx + vJyy)

∂T

∂y

]
=

1

RePr

[(
∂λ

∂x
J2
xx +

∂λ

∂x
J2
xy +

∂λ

∂y
JxxJyx +

∂λ

∂y
JxyJyy

)
∂T

∂x

+

(
∂λ

∂x
JxxJyx +

∂λ

∂x
JxyJyy +

∂λ

∂y
J2
yy +

∂λ

∂y
J2
yx

)
∂T

∂y
+ 2λ (JyxJxx + JxyJyy)

∂2T

∂x∂y

+
(
J2
yx + J2

yy

) ∂T
∂y2

]
+ (γ − 1)Ma2 [uJxx + vJxy]

∂p

∂x

+
µ(γ − 1)Ma2

Re

[(
4

3
J2
xx + J2

xy

)(
∂u

∂x

)2

+ 2

(
4

3
JxxJyx + JxyJyy

)
∂u

∂x

∂u

∂y

+

(
4

3
J2
yx + J2

yy

)(
∂u

∂y

)2

+

(
4

3
J2
xy + J2

xx

)(
∂v

∂x

)2

+ 2

(
4

3
JxyJyy + JxxJyx

)
∂v

∂x

∂v

∂y

+

(
4

3
J2
yy + J2

yx

)(
∂v

∂y

)2

+
(
J2
xx + J2

xy

)(∂w
∂x

)2

+ 2 (JxxJyx + JxyJyy)
∂w

∂x

∂w

∂y

+
(
J2
yx+J

2
yy

)(∂w
∂y

)2

+2

(
JxxJyx

∂v

∂x

∂u

∂x
+JxxJyy

∂v

∂x

∂u

∂y
+JyxJxy

∂v

∂y

∂u

∂x
+JyxJyy

∂v

∂y

∂u

∂y

)]
(C.5)
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C.2 PSE in curvilinear coordinates

Continuity

−pT
[
Jxx

∂û

∂x
+ Jyx

∂û

∂y
+ iα(Jxxû+ Jxyv̂) + Jyy

∂v̂

∂y
+ Jxy

∂v̂

∂x
+ iβŵ

]
− (pT̂ + T p̂)

(
Jxx

∂u

∂x
+ Jyx

∂û

∂y
+ Jyy

∂v

∂y
+ Jxy

∂v̂

∂x

)
−
[
u

(
Jxx

∂p

∂x
+ Jxy

∂p

∂y

)
+ v

(
Jyy

∂p

∂y
+ Jxy

∂p

∂x

)]
T̂

− T

[
−ωip̂+ û

(
Jxx

∂p

∂x
+ Jyx

∂p

∂y

)
+ v̂

(
Jyy

∂p

∂y
+ Jxy

∂p

∂x

)
+ u

(
Jxx

∂p̂

∂x
+ Jyx

∂p̂

∂y
+ iαJxxp̂

)
+v

(
Jyy

∂p̂

∂y
+Jxx

∂p̂

∂x
+iαJxyp̂

)
+wβip̂

]
+

[
u

(
Jxx

∂T

∂x
+Jxy

∂T

∂y

)
+v

(
Jyy

∂T

∂y
+Jxy

∂T

∂x

)]
p̂

+p

[
−ωiT̂+û

(
Jxx

∂T

∂x
+Jyx

∂T

∂y

)
+ v̂

(
Jyy

∂T

∂y
+Jxy

∂T

∂x

)
+u

(
Jxx

∂T̂

∂x
+Jyx

∂T̂

∂y
+iαJxxT̂

)

+ v

(
Jyy

∂T̂

∂y
+ Jxx

∂p̂

∂x
+ iαJxyT̂

)
+ wβiT̂

]
= exp

(
−i
∫
x

αdx

)
NLTcont

(C.6)
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Momentum - x

ρ

(
p̂

p
− T̂

T

)[
u

(
Jxx

∂u

∂x
+ Jyx

∂u

∂y

)
+ v

(
Jyy

∂u

∂y
+ Jxy

∂u

∂x

)]
+ ρ

[
−ωiû+ u

(
Jxx

∂û

∂x
+ Jyx

∂û

∂y

)
+ v

(
Jyy

∂û

∂y
+ Jxy

∂û

∂x

)
+

(
iβw + iα(uJxx + vJyx) + Jxx

∂u

∂x
+ Jyx

∂u

∂y

)
û+

(
Jyy

∂u

∂y
+ Jxy

∂u

∂x

)
v̂

]
+ Jxx

∂p̂

∂x

+ Jyx
∂p̂

∂y
+ iαJxxp̂−

µ

Re

[
2iα

(
4

3
J2
xx + J2

xy

)
∂û

∂x
+ 2iα

(
4

3
JxxJyx + JxyJyy

)
∂û

∂y

+ (iαx − α2)

(
4

3
J2
xx + J2

xy

)
û− β2û+

(
4

3
J2
yx + J2

yy

)
∂2û

∂y2
+ 2

(
4

3
JxxJyx + JyyJxy

)
∂2û

∂x∂y

+
1

3

(
2iα(J2

xx + 2JxxJxy + J2
xy)

∂v̂

∂x
+ 2iα(JxxJyy + Jxy(Jxx + Jyy) + J2

xy) + J2
xy)

∂v̂

∂y

+ (iαx − α2)(J2
xx + 2JxxJxy + J2

xy)v̂ + 2(JxxJyy + J2
xy)

∂2v̂

∂x∂y

+ 2JyyJyx
∂2v̂

∂y2
+ iβJxx

∂ŵ

∂x
+ iβJxy

∂ŵ

∂y
− αβJxxŵ

)]
− 1

Re

(
Jxx

∂µ

∂x
+ Jyx

∂µ

∂y

)[
4

3

(
Jxx

∂û

∂x
+ Jyx

∂û

∂y
+ iαJxxû

)
− 2

3

(
Jyy

∂v̂

∂y
+ Jxy

∂v̂

∂x
+ iαJxyv̂ + iβŵ

)]
− 1

Re

(
Jyy

∂µ

∂y
+ Jxy

∂µ

∂x

)[
Jyy

∂û

∂y
+ Jxy

∂û

∂x
+ Jxx

∂v̂

∂x
+ Jyx

∂v̂

∂y
+ iαJxxv̂

]
− 1

Re

dµ

dT

(
Jxx

∂T̂

∂x
+ Jyx

∂T̂

∂y
+ iαJxxT̂

)[
4

3

(
Jxx

∂u

∂x
+ Jyx

∂u

∂y

)
− 2

3

(
Jy
∂v

∂y
+ Jxy

∂v

∂x

)]
− 1

Re

dµ

dT

(
Jyy

∂T̂

∂y
+ Jxy

∂T̂

∂x
+ iαJxyT̂

)[
Jyy

∂u

∂y
+ Jxy

∂u

∂x
+ Jxx

∂v

∂x
+ Jyx

∂v

∂y

]
+

1

Re

dµ

dT
T̂

[
4

3

(
J2
xx

∂2u

∂x2
+ 2JxxJxy

∂2u

∂x∂y
+ J2

yx

∂u

∂y

)
+ J2

yy

∂2u

∂y2
+ 2JyyJxy

∂2u

∂x∂y
+ J2

xy

∂2u

∂x2

+
1

3

(
JxxJxy

∂2v

∂x2
+ JyyJyx

∂2v

∂y2
+ (JxxJyy + J2

xy)
∂2v

∂x∂y

)]
= exp

(
−i
∫
x

αdx

)
NLTmom−x

(C.7)
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Momentum - y

ρ

(
p̂

p
− T̂

T

)[
u

(
Jxx

∂v

∂x
+ Jyx

∂v

∂y

)
+ v

(
Jyy

∂v

∂y
+ Jxy

∂v

∂x

)]
+ ρ

[
−ωiv̂ + u

(
Jxx

∂v̂

∂x
+ Jyx

∂v̂

∂y

)
+ v

(
Jyy

∂v̂

∂y
+ Jxy

∂v̂

∂x

)
+

(
iβw + Jxx

∂v

∂x
+ Jyx

∂v

∂y

)
û

+

(
iα(uJxx + vJyx) + Jyy

∂v

∂y
+ Jxy

∂v

∂x

)
v̂

]
+ Jyy

∂p̂

∂y
+ Jxy

∂p̂

∂x
+ iαJxxp̂

− µ

Re

[
2iα

(
4

3
J2
xy + J2

xx

)
∂v̂

∂x
+ 2iα

(
4

3
JxyJyy + JxxJyx

)
∂v̂

∂y
+ (iαx − α2)

(
4

3
J2
xy + J2

xx

)
v̂

−β2v̂+

(
4

3
J2
yy+J

2
yx

)
∂2v̂

∂y2
+2

(
4

3
JyyJyx+JxxJyx

)
∂2v̂

∂x∂y
+
1

3

(
2iα(J2

xx+2JxxJxy+J
2
xy)

∂û

∂x

+ 2iα(JxxJyy + Jxy(Jxx + Jyy) + J2
xy)

∂û

∂y
+ (iαx − α2)(J2

xx + 2JxxJxy + J2
xy)û

+ 2(JxxJyy + J2
xy)

∂2û

∂x∂y
+ 2JyyJyx

∂2û

∂y2
+ iβJxy

∂ŵ

∂x
+ iβJyy

∂ŵ

∂y
− αβJxyŵ

)]
− 1

Re

(
Jxx

∂µ

∂x
+ Jyx

∂µ

∂y

)[
Jxx

∂v̂

∂x
+ Jyx

∂v̂

∂y
+ iαJxxv̂ + Jyy

∂û

∂y
+ Jxy

∂û

∂x
+ iαJxyû

]
− 1

Re

(
Jyy

∂µ

∂y
+ Jxy

∂µ

∂x

)[
4

3

(
Jyy

∂v̂

∂y
+ Jxy

∂v̂

∂x
+ iαJxyv̂

)
− 2

3

(
Jxx

∂û

∂x
+ Jyx

∂û

∂y
+ iαJxxû+ iβŵ

)]
− 1

Re

dµ

dT

(
Jxx

∂T̂

∂x
+ Jyx

∂T̂

∂y
+ iαJxxT̂

)[
Jxx

∂v

∂x
+ Jxy

∂v

∂y
+ Jyy

∂u

∂y
+ Jxy

∂u

∂x

]
− 1

Re

dµ

dT

(
Jyy

∂T̂

∂y
+ Jxy

∂T̂

∂x
+ iαJxyT̂

)[
4

3

(
Jyy

∂v

∂y
+ Jxy

∂v

∂x

)
− 2

3

(
Jxx

∂u

∂x
+ Jyx

∂u

∂y

)]
+

1

Re

dµ

dT
T̂

[
4

3

(
J2
yy

∂2v

∂y2
+ 2JyyJxy

∂2v

∂x∂y
+ J2

xy

∂2v

∂x2

)
+ J2

xx

∂2v

∂x2
+ 2JxxJxy

∂2v

∂x∂y
+ J2

xy

∂2v

∂y2

+
1

3

(
JxxJxy

∂2u

∂x2
+ JyyJyx

∂2u

∂y2
+ (JxxJyy + J2

xy)
∂2u

∂x∂y

)]
= exp

(
−i
∫
x

αdx

)
NLTmom−y
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Momentum - z

ρ

(
p̂

p
− T̂

T

)[
u

(
Jxx

∂w

∂x
+ Jyx

∂w

∂y

)
+ v

(
Jyy

∂w

∂y
+ Jxy

∂w

∂x

)]
+ ρ

[
−ωiŵ+ u

(
Jxx

∂ŵ

∂x
+ Jyx

∂ŵ

∂y

)
+ v

(
Jyy

∂ŵ

∂y
+ Jxy

∂ŵ

∂x

)
+

(
iβw+ Jxx

∂v

∂x
+ Jyx

∂v

∂y

)
û

+

(
Jyy

∂v

∂y
+ Jxy

∂v

∂x

)
v̂ + (iα(uJxx + vJyx) + iwβ) ŵ

]
− µ

Re

[
2iαJ2

xx

∂ŵ

∂x
+ 2iαJxxJyx

∂ŵ

∂y

+ (iαx − α2)
(
J2
xx + J2

xy

)
ŵ − 4

3
β2ŵ +

(
J2
yy + J2

yx

) ∂2ŵ
∂y2

+ 2 (JyyJxy + JxxJyx)
∂2ŵ

∂x∂y

+
1

3

(
iβJxx

∂û

∂x
+ iβJyx

∂û

∂y
− αβJxxû+ iβJxy

∂v̂

∂x
+ iβJyy

∂v̂

∂y
− αβJxyv̂

)]
− 1

Re

(
Jxx

∂µ

∂x
+ Jyx

∂µ

∂y

)[
Jxx

∂ŵ

∂x
+ Jyx

∂ŵ

∂y
+ iαJxxŵ + iβû

]
− 1

Re

(
Jyy

∂µ

∂y
+ Jxy

∂µ

∂x

)[
Jyy

∂ŵ

∂y
+ Jxy

∂ŵ

∂x
+ iαJxyŵ + iβv̂

]
− 1

Re

dµ

dT

(
Jxx

∂T̂

∂x
+ Jyx

∂T̂

∂y
+ iαJxxT̂

)[
Jxx

∂w

∂x
+ Jxy

∂w

∂y

]
− 1

Re

dµ

dT

(
Jyy

∂T̂

∂y
+ Jxy

∂T̂

∂x
+ iαJxyT̂

)[
4

3

(
Jyy

∂w

∂y
+ Jxy

∂w

∂x

)]
+

1

Re

dµ

dT
T̂

[
J2
yy

∂2w

∂y2
+ 2JyyJxy

∂2w

∂x∂y
+ J2

xy

∂2w

∂x2
+ J2

xx

∂2w

∂x2

+ 2JxxJxy
∂2w

∂x∂y
+ J2

xy

∂2w

∂y2

]
= exp

(
−i
∫
x

αdx

)
NLTmom−z
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Energy

(C.10)

ρcp

(
p̂

p
− T̂

T

)[
u

(
Jxx

∂T

∂x
+ Jyx

∂T

∂y

)
+ v

(
Jyy

∂T

∂y
+ Jxy

∂T

∂x

)]
+ ρcp

[
−ωiT̂ + u

(
Jxx

∂T̂

∂x
+ Jyx

∂T̂

∂y

)
+ v

(
Jyy

∂T̂

∂y
+ Jxy

∂T̂

∂x

)

+

(
Jxx

∂T

∂x
+ Jyx

∂T

∂y

)
û+

(
Jyy

∂T

∂y
+ Jxy

∂T

∂x

)
v̂ + (iαJxxu+ iαJxyv + iβw) T̂

]

− λ

RePr

[((
iαx − α2

) (
J2
xx + J2

xy

)
− β2

)
T̂ + 2iα

(
J2
xx + J2

xy

) ∂T̂
∂x

+ 2iα (JxxJyx + JyyJxy)
∂T̂

∂y
+
(
J2
yy + J2

yx

) ∂2T̂
∂y2

+ 2(JxxJyx + JyyJxy)
∂2T̂

∂x∂y

]

− 2

RePr

dλ

dT

[(
Jxx

∂T

∂x
+ Jyx

∂T

∂y

)(
Jxx

∂T̂

∂x
+ Jyx

∂T̂

∂y
+ iαJxxT̂

)

+

(
Jyy

∂T

∂y
+ Jxy

∂T

∂x

)(
Jyy

∂T̂

∂y
+ Jxy

∂T̂

∂x
+ iαJxyT̂

)]

− 1

RePr

dλ

dT
T̂

(
(J2

xx + J2
xy)

∂2T

∂x2
+ 2(JxxJyx + JyyJxy)

∂2T

∂x∂y
+ (Jyy + J2

yx)
∂2T

∂y2

)
− (γ − 1)Ma2

[
u

(
Jxx

∂p̂

∂x
+ Jyx

∂p̂

∂y
+ iαJxxp̂

)
+ v

(
Jyy

∂p̂

∂y
+ Jxy

∂p̂

∂x
+ iαJxyp̂

)
+ wβip̂+

(
Jxx

∂p

∂x
+ Jyx

∂p

∂y

)
û+

(
Jyy

∂p

∂y
+ Jxy

∂p

∂x

)
v̂

]
+ 2

µ(γ − 1)Ma2

Re
Q1 +

(γ − 1)Ma2

Re
Q2 = exp

(
−i
∫
x

αdx

)
NLTener
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Where:

Q1 =

[(
4

3
J2
xx+J

2
xy

)
∂u

∂x
+

(
4

3
JxxJxy+JyyJxy

)
∂u

∂y
+
1

3
JxxJxy

∂v

∂x
+

(
J2
xy−

2

3
JxxJyy

)
∂v

∂y

]
∂û

∂x

+

[(
4

3
JxxJyx + JyyJxy

)
∂u

∂x
+

(
4

3
J2
yx + J2

yy

)
∂u

∂y
+

(
JxxJyy −

2

3
J2
xy

)
∂v

∂x

+
1

3
JyyJxy

∂v

∂y

]
∂û

∂y
+ iα

[(
4

3
J2
xx + J2

xy

)
∂u

∂x
+

(
4

3
JxxJyx + JyyJxy

)
∂u

∂y
+

1

3
JxxJxy

∂v

∂x

+

(
J2
xy −

2

3
JxxJyy

)
∂v

∂y

]
û+ iβ

(
Jxx

∂u

∂x
+ Jyx

∂u

∂y

)
û

+

[
1

3
JxxJxy

∂u

∂x
+

(
JxxJyy−

2

3
J2
xy

)
∂u

∂y
+

(
J2
xx+

4

3
J2
xy

)
∂v

∂x
+(JxxJxy+JyyJxy)

∂v

∂y

]
∂v̂

∂x

+

[(
J2
yx −

2

3
JxxJyy

)
∂u

∂x
+

1

3
JyyJyx

∂u

∂y
+

(
JxxJyx +

4

3
JyyJxy

)
∂v

∂x

+

(
J2
xy +

4

3
J2
yy

)
∂v

∂y

]
∂v̂

∂y
+ iα

[
1

3
JxxJxy

∂u

∂x
+

(
JxxJyy −

2

3
J2
xy

)
∂u

∂y

+

(
J2
xx +

4

3
J2
xy

)
∂v

∂x
+

(
JxxJxy +

4

3
JyyJxy

)
∂v

∂y

]
v̂

+ iβ

(
Jxx

∂u

∂x
+ Jyx

∂u

∂y

)
v̂ +

[(
J2
xx + J2

xy

) ∂w
∂x

+ (JxxJyx + JyyJxy)
∂w

∂y

]
∂ŵ

∂x

+

[
(JxxJyx + JyyJxy)

∂w

∂x
+
(
J2
yx + J2

yy

) ∂w
∂y

]
∂ŵ

∂y

+ iα

[(
J2
xx + J2

xy

) ∂w
∂x

+ (JxxJyx + JyyJxy)
∂w

∂y

]
ŵ

− 2

3
iβ

(
Jxx

∂u

∂x
+ Jyx

∂u

∂y
+ Jxy

∂v

∂x
+ Jyy

∂v

∂y

)
ŵ
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(C.12)

Q2 =
dµ

dT
T̂

[(
4

3

(
Jxx

∂u

∂x
+ Jyx

∂u

∂y

)
− 2

3

(
Jxy

∂v

∂x
+ Jyy

∂v

∂y

))(
Jxx

∂u

∂x
+ Jyx

∂u

∂y

)
+

(
Jxy

∂u

∂x
+ Jyy

∂u

∂y
+ Jxx

∂v

∂x
+ Jyx

∂v

∂y

)(
Jxy

∂u

∂x
+ Jyy

∂u

∂y

)
+

(
Jxx

∂v

∂x
+ Jyx

∂v

∂y
+ Jxy

∂u

∂x
+ Jyy

∂u

∂y

)(
Jxx

∂v

∂x
+ Jyx

∂v

∂y

)
+

(
4

3

(
Jxy

∂v

∂x
+ Jyy

∂v

∂y

)
− 2

3

(
Jxx

∂u

∂x
+ Jyx

∂u

∂y

))(
Jxy

∂v

∂x
+ Jyy

∂v

∂y

)
+

(
Jxx

∂w

∂x
+ Jyx

∂w

∂y

)2

+

(
Jxy

∂w

∂x
+ Jyy

∂w

∂y

)2
]
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