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Abstract 

Accurate machine dynamic models are the foundation of many advanced machining technologies such 

as virtual process planning and machine condition monitoring. Viewing recent designs of modern high-

performance machine tools, to enhance the machine versatility and productivity, the machine axis 

configuration is becoming more complex and diversified, and direct drive motors are more commonly 

used. Due to the above trends, coupled and nonlinear multibody dynamics in machine tools are gaining 

more attention. Also, vibration due to limited structural rigidity is an important issue that must be 

considered simultaneously. Hence, this research aims at building high-fidelity machine dynamic 

models that are capable of predicting the dynamic responses, such as the tracking error and motor 

current signals, considering a wide range of dynamic effects such as structural flexibility, inter-axis 

coupling, and posture-dependency. 

Building machine dynamic models via conventional bottom-up approaches may require extensive 

investigation on every single component. Such approaches are time-consuming or sometimes infeasible 

for the machine end-users. Alternatively, as the recent trend of Industry 4.0, utilizing data via Computer 

Numerical Controls (CNCs) and/or non-intrusive sensors to build the machine model is rather favorable 

for industrial implementation. Thus, the methods proposed in this thesis are top-down model building 

approaches, utilizing available data from CNCs and/or other auxiliary sensors. The achieved 

contributions and results of this thesis are summarized below. 

As the first contribution, a new modeling and identification technique targeting a closed-loop control 

system of coupled rigid multi-axis feed drives has been developed. A multi-axis closed-loop control 

system, including the controller and the electromechanical plant, is described by a multiple-input 

multiple-output (MIMO) linear time-invariant (LTI) system, coupled with a generalized disturbance 

input that represents all the nonlinear dynamics. Then, the parameters of the open-loop and closed-loop 

dynamic models are respectively identified by a strategy that combines linear Least Squares (LS) and 

constrained global optimization. This strategy strikes a balance between model accuracy and 

computational efficiency. This proposed method was validated using an industrial 5-axis laser drilling 

machine and an experimental feed drive, achieving 2.38% and 5.26% root mean square (RMS) 

prediction error, respectively. Inter-axis coupling effects, i.e., the motion of one axis causing the 

dynamic responses of another axis, are correctly predicted. Also, the tracking error induced by motor 

ripple and nonlinear friction is correctly predicted as well. 
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As the second contribution, the above proposed methodology is extended to also consider structural 

flexibility, which is a crucial behavior of large-sized industrial 5-axis machine tools. More importantly, 

structural vibration is nonlinear and posture-dependent due to the nature of a multibody system. In this 

thesis, prominent cases of flexibility-induced vibrations in a linear feed drive are studied and modeled 

by lumped mass-spring-damper system. Then, a flexible linear drive coupled with a rotary drive is 

systematically analyzed. It is found that the case with internal structural vibration between the linear 

and rotary drives requires an additional motion sensor for the proposed model identification method. 

This particular case is studied with an experimental setup. 

The thesis presents a method to reconstruct such missing internal structural vibration using the data 

from the embedded encoders as well as a low-cost micro-electromechanical system (MEMS) inertial 

measurement unit (IMU) mounted on the machine table. It is achieved by first synchronizing the data, 

aligning inertial frames, and calibrating mounting misalignments. Finally, the unknown internal 

vibration is reconstructed by comparing the rigid and flexible machine kinematic models. Due to the 

measurement limitation of MEMS IMUs and geometric assembly error, the reconstructed angle is 

unfortunately inaccurate. Nevertheless, the vibratory angular velocity and acceleration are consistently 

reconstructed, which is sufficient for the identification with reasonable model simplification. 

Finally, the reconstructed internal vibration along with the gathered servo data are used to identify the 

proposed machine dynamic model. Due to the separation of linear and nonlinear dynamics, the 

vibratory dynamics can be simply considered by adding complex pole pairs into the MIMO LTI system. 

Experimental validation shows that the identified model is able to predict the dynamic responses of the 

tracking error and motor force/torque to the input command trajectory and external disturbances, with 

2% ~ 6% RMS error. Especially, the vibratory inter-axis coupling effect and posture-dependent effect 

are accurately depicted. 

Overall, this thesis presents a dynamic model-building approach for multi-axis feed drive assemblies. 

The proposed model is general and can be configured according to the kinematic configuration. The 

model-building approach only requires the data from the servo system or auxiliary motion sensors, e.g., 

an IMU, which is non-intrusive and in favor of industrial implementation. Future research includes 

further investigation of the IMU measurement, geometric error identification, validation using more 

complicated feed drive system, and applications to the planning and monitoring of 5-axis machining 

process. 



 

 viii 

Acknowledgements 

I would like to express my sincere gratitude to my supervisors, Professor Kaan Erkorkmaz and 

Professor John McPhee for the guidance, encouragement, and motivation they have provided over the 

past years. 

I would like to thank Dr. Serafettin Engin, Dr. Jochem Roukema and everyone at Pratt & Whitney 

Canada for their assistance and feedback in validating my research. It is a great pleasure and experience 

working with them. 

I would like to thank my thesis committee members: Professor Shreyes Melkote, Professor Glenn 

Heppler, Professor Kaan Inal, and Professor Behrad Khamesee for taking time reading my thesis and 

contributing constructive feedback. Special thanks go to Professor Melkote for his in-person visit to 

Waterloo.  

Sincere thanks go to our strong technical staffs: Mr. Jason Benninger, Mr. Karl Janzen, Mr. Robert 

Wagner and Mr. Neil Griffett. The experimental setup cannot be done without their tremendous 

technical support. 

Many thanks go to all the brilliant colleagues in the Precision Controls Laboratory. We learn from each 

other through the journey of Ph.D. program. 

Lastly, I greatly appreciate the encouragement and support of my dear family, which made my graduate 

studies possible. 

 

This research was sponsored by Natural Sciences and Engineering Research Council of Canada 

(NSERC) and Pratt & Whitney Canada (P&WC). 



 

 ix 

Table of Contents 

Examining Committee Membership ....................................................................................................... ii 

Author’s Declaration ............................................................................................................................. iii 

Statement of Contribution ..................................................................................................................... iv 

Abstract ................................................................................................................................................. vi 

Acknowledgements ............................................................................................................................. viii 

List of Figures ..................................................................................................................................... xiii 

List of Tables ...................................................................................................................................... xvii 

Chapter 1 Introduction ............................................................................................................................ 1 

1.1 Background and Research Motivation ......................................................................................... 1 

1.1.1 Virtual Machining with Digital Twin .................................................................................... 1 

1.1.2 Digital Twin Estimation for Multi-axis Machine in the Context of Industry 4.0 .................. 2 

1.2 Research Objective ....................................................................................................................... 3 

1.3 Thesis Layout ............................................................................................................................... 4 

Chapter 2 Literature Review .................................................................................................................. 6 

2.1 Introduction .................................................................................................................................. 6 

2.2 Modelling of Structural Dynamics of Machine Feed Drives........................................................ 7 

2.2.1 Rigid Body Dynamics ........................................................................................................... 7 

2.2.2 Vibratory Dynamics .............................................................................................................. 8 

2.2.3 Machine Structure Analysis by Finite Element Method (FEM) ............................................ 9 

2.2.4 Friction Modelling ............................................................................................................... 11 

2.3 Modelling and Identification of Feed Drive Control System ..................................................... 14 

2.3.1 Virtual CNC......................................................................................................................... 14 

2.3.2 Rapid Identification ............................................................................................................. 15 



 

 x 

2.4 Five-Axis Machine Tools ........................................................................................................... 18 

2.5 Multibody Dynamics .................................................................................................................. 20 

2.5.1 Multi-Rigid-Body Dynamics ............................................................................................... 20 

2.5.2 Multibody Dynamics Considering Mechanical Flexibility ................................................. 22 

2.5.3 Parameter Identification for Multi-Rigid-Body Dynamics.................................................. 24 

2.5.4 Parameter Identification for Multibody Dynamics with Structural Flexibility ................... 25 

2.6 3D Motion Sensing for Precision Engineering ........................................................................... 27 

2.6.1 A Survey on Candidate Position Sensors ............................................................................ 28 

2.6.2 Introduction to MEMS IMUs .............................................................................................. 29 

2.6.3 Sensor Fusion for Orientation Estimation ........................................................................... 30 

2.7 Conclusions ................................................................................................................................ 32 

Chapter 3 Identification of Open-Loop Dynamics of Multi-Axis Feed Drives .................................... 34 

3.1 Introduction ................................................................................................................................ 34 

3.2 Open-Loop Dynamic Model of Multi-Axis Feed Drives ........................................................... 34 

3.3 Parameter Identification ............................................................................................................. 40 

3.4 Experiment and Results .............................................................................................................. 44 

3.5 Conclusion .................................................................................................................................. 46 

Chapter 4 Identification of Multi-Axis Feed Drive Control System .................................................... 47 

4.1 Introduction and Motivation ....................................................................................................... 47 

4.2 Algorithm of MIMO Identification with Nonlinear Coupling ................................................... 48 

4.2.1 Decoupling of the Nonlinear and Linear Open-Loop Dynamics ......................................... 48 

4.2.2 MIMO LTI System Representation ..................................................................................... 51 

4.2.3 Parameter Identification of MIMO LTI System .................................................................. 55 

4.2.4 Proposed Model Estimation Procedure ............................................................................... 58 



 

 xi 

4.2.5 Novel Points and Advantages of the Proposed Algorithm .................................................. 59 

4.3 Experimental Validation ............................................................................................................. 59 

4.3.1 Five-Axis Laser Drilling Machine ....................................................................................... 60 

4.3.2 Experimental Trunnion Table .............................................................................................. 62 

4.4 Conclusion .................................................................................................................................. 70 

Chapter 5 Identification of Multi-Axis Feed Drive Control System Considering Mechanical Flexibility

 .............................................................................................................................................................. 71 

5.1 Introduction ................................................................................................................................ 71 

5.2 Classification of Vibratory Dynamics of a General Linear Feed Drive ..................................... 73 

5.3 Cases Studies on a Linear Drive Coupled with a Rotary Drive ................................................. 74 

5.3.1 Case 1: Flexible Linear Drive Rigidly Coupled with a Rotary Drive (Generalization of Type 

a, b, and c) .................................................................................................................................... 75 

5.3.2 Case 2: Linear Drive and Rotary Drive Connected by Flexible Structure (Type d) ........... 77 

5.4 Conclusion .................................................................................................................................. 82 

Chapter 6 Use of IMUs for Capturing the Vibration of Multi-Axis Drives ......................................... 83 

6.1 Introduction ................................................................................................................................ 83 

6.2 Experimental Setup .................................................................................................................... 83 

6.3 Measuring the Orientation by IMUs ........................................................................................... 86 

6.3.1 Predicting Orientation by Strapdown Integration ................................................................ 86 

6.3.2 Sensor Fusion ...................................................................................................................... 88 

6.3.3 Summary ............................................................................................................................. 90 

6.4 Data Mapping between CNC Data and IMU Data ..................................................................... 90 

6.4.1 Data Synchronization .......................................................................................................... 91 

6.4.2 Reconstruction of the Local Vibration Using an IMU ........................................................ 92 



 

 xii 

6.5 Experimental Validation ............................................................................................................. 97 

6.6 Conclusion ................................................................................................................................ 107 

Chapter 7 Experimental Results of the Identification Considering Mechanical Flexibility ............... 108 

7.1 Introduction .............................................................................................................................. 108 

7.2 Identification of Open-Loop Dynamics .................................................................................... 108 

7.3 MIMO Identification with Nonlinear Coupling ....................................................................... 112 

7.4 Dynamic Modelling Considering External Force ..................................................................... 115 

7.5 Conclusion ................................................................................................................................ 117 

Chapter 8 Conclusions and Future Work ........................................................................................... 118 

8.1 Conclusions and Contributions ................................................................................................. 118 

8.2 Future Work ............................................................................................................................. 120 

References .......................................................................................................................................... 123 

Appendix A Experimental Setup for the Study of Multi-Axis Flexible Drives ................................. 133 

Appendix B Estimation Results of IMU #2 ....................................................................................... 138 

Appendix C Validation of the identified model ................................................................................. 141 

 



 

 xiii 

List of Figures 

Figure 1-1 Virtual model and machining processes. .............................................................................. 1 

Figure 1-2 Performance trade-off of a machine tool feed drive control system [3]. .............................. 2 

Figure 2-1 A feed drive as an electro-mechanical system. ..................................................................... 7 

Figure 2-2 A two-mass model. ............................................................................................................... 8 

Figure 2-3 Hybrid model [12]. ............................................................................................................... 8 

Figure 2-4 8-mass model [13]. ............................................................................................................... 8 

Figure 2-5 Ball screw feed system, axial (a) and rotational (b) model [11]. .......................................... 8 

Figure 2-6 Identification and simulation result for a flexible drive [14]. ............................................... 9 

Figure 2-7 A FE-model of machine tool structure [17]. ....................................................................... 10 

Figure 2-8 Displacement portions analysis for three cutting load cases [18]. ...................................... 10 

Figure 2-9 Modal analysis of the whole machine structure [14]. ......................................................... 11 

Figure 2-10 Structural topology optimization of a machine tool head [19]. ........................................ 11 

Figure 2-11 A measuring system for the normal contact stiffness and damping [24]. ......................... 11 

Figure 2-12 Karnopp friction model [26]. ............................................................................................ 12 

Figure 2-13 Continuous friction function [28]. .................................................................................... 12 

Figure 2-14 Architecture of a virtual CNC system [36]. ...................................................................... 14 

Figure 2-15 Contouring simulation and validation [37]. ...................................................................... 14 

Figure 2-16 GUI of feed drive simulator [38]. ..................................................................................... 14 

Figure 2-17 A block diagram of FANUC controller built by a reverse engineering [14]. ................... 15 

Figure 2-18 Overview of identification scheme. .................................................................................. 16 

Figure 2-19 PID control system. .......................................................................................................... 16 

Figure 2-20 P-PI control system. .......................................................................................................... 16 

Figure 2-21 Candidate pole locations [7]. ............................................................................................ 17 

Figure 2-22 Regressors of LS [7]. ........................................................................................................ 17 

Figure 2-23 A flexible drive presented by a MIMO model [7]. ........................................................... 17 

Figure 2-24 Tracking error prediction based on experimental data from a machine tool and flexible 

fixture assembly [7]. ............................................................................................................................. 17 

Figure 2-25 Different distributions of A and C rotary axes [41]. ......................................................... 18 

Figure 2-26 Modern machine tool and process [45]. ............................................................................ 19 

Figure 2-27 Flexible joint model [54]. ................................................................................................. 22 



 

 xiv 

Figure 2-28 Extended flexible joints model [59]. ................................................................................. 22 

Figure 2-29 Flexible link model. .......................................................................................................... 23 

Figure 2-30 Three-mass flexible model for a single axis [77].............................................................. 26 

Figure 2-31 FRFs of a 6-axis manipulator, motor torque to motor acceleration [78]. ......................... 26 

Figure 2-32 Identification based on different model structures [82]. ................................................... 26 

Figure 2-33 Identification with extra motion sensors. .......................................................................... 27 

Figure 2-34 Grid encoder (KGM) [89]. ................................................................................................ 28 

Figure 2-35 Contouring error measured by KGM (left) and position feedback signal (right) [90]. .... 28 

Figure 2-36 Accelerometer assisted position feedback control [92]. ................................................... 28 

Figure 2-37 Positioning error inspected by IMU [95]. ......................................................................... 29 

Figure 2-38 IMU product line, Honeywell [97]. .................................................................................. 30 

Figure 3-1 Machine kinematic diagram. .............................................................................................. 35 

Figure 3-2 Z-B-C kinematic chain. ...................................................................................................... 35 

Figure 3-3 Normalized friction for the ith axis..................................................................................... 38 

Figure 3-4 Example of position-dependent disturbance by lookup table with linear interpolation...... 40 

Figure 3-5 The trajectory of 5-axis laser drilling process. ................................................................... 44 

Figure 3-6 Normalized 2-norm of error. ............................................................................................... 44 

Figure 3-7 SISO vs. MIMO dynamic model, B-axis. ........................................................................... 44 

Figure 3-8 Motor current prediction, C-axis. ....................................................................................... 45 

Figure 3-9 Torque ripple estimation, C-axis. ....................................................................................... 45 

Figure 3-10 Friction estimation, B-axis. ............................................................................................... 46 

Figure 4-1 A multi-axis feed drive control system. .............................................................................. 47 

Figure 4-2 LTI closed-loop dynamics and the generalized disturbance. .............................................. 51 

Figure 4-3 A general equivalent representation of a multi-axis feed drive control system. ................. 51 

Figure 4-4 LTI closed-loop dynamics. ................................................................................................. 53 

Figure 4-5 Pole search scheme. ............................................................................................................ 56 

Figure 4-6 An overview of the proposed model-building approach via in-process data. ..................... 58 

Figure 4-7 Predicted and experimental result for the X-axis servo control system. ............................. 61 

Figure 4-8 Predicted and experimental servo errors for coupled Z-B-axes. ......................................... 62 

Figure 4-9 In-house linear-tilt-rotary feed drive................................................................................... 63 

Figure 4-10 Position-dependent disturbance estimation, the linear axis. ............................................. 64 



 

 xv 

Figure 4-11 Position-dependent disturbance estimation, the tilting axis. ............................................. 64 

Figure 4-12 Prediction of tracking error and motor force/torque by the identified model. .................. 66 

Figure 4-13 Experimental result and prediction (zoom-in 3~5.3 [s]). .................................................. 67 

Figure 4-14 Decomposition of disturbances and the resultant tracking error....................................... 68 

Figure 4-15 Decoupled predicted disturbances and tracking error  (3~5.3 [s] section). ...................... 69 

Figure 4-16 Tracking error statistics during 3~5.3 [s] section. ............................................................ 70 

Figure 5-1 6-axis robot manipulators [114]. ......................................................................................... 71 

Figure 5-2 5-axis machines with different kinematic chains [45]. ....................................................... 71 

Figure 5-3 Multibody model with flexible joints of a 5-axis machine [115]. ...................................... 72 

Figure 5-4 Four types of vibratory dynamics for a general linear feed drive [117]. ............................ 73 

Figure 5-5 Moving column design [119]. ............................................................................................. 74 

Figure 5-6 Box-in-box design [45]. ...................................................................................................... 74 

Figure 5-7 A general expression of type (a), (b), and (c) vibratory dynamics. .................................... 75 

Figure 5-8 Expression of a linear flexible drive coupled with a rotary drive. ...................................... 75 

Figure 5-9 Block diagram for Case 1: flexible linear drive rigidly coupled with a rotary drive. ......... 76 

Figure 5-10 5-axis machining center with a moving trunnion unit [119]. ............................................ 77 

Figure 5-11 A linear drive and a rotary drive connected by a rigid link with connection flexibility. .. 78 

Figure 5-12 Block diagram for Case 2: linear drive and rotary drive connected by flexible structure. 79 

Figure 5-13 Equivalent model: MIMO LTI system coupled with generalized disturbance. ................ 80 

Figure 6-1 Experimental feed drive. ..................................................................................................... 83 

Figure 6-2 Installation of an IMU. ....................................................................................................... 84 

Figure 6-3 The kinematics of the experimental drive assembly. .......................................................... 85 

Figure 6-4 Global frame 𝑶𝑮 and sensor frame 𝑶𝑺 defined by an IMU. ............................................... 87 

Figure 6-5 Sensor fusion algorithm adopted from [102]. ..................................................................... 89 

Figure 6-6 Data synchronization flowchart. ......................................................................................... 91 

Figure 6-7 Coordinate frames of the machine and the IMU. ................................................................ 92 

Figure 6-8 The flowchart of estimating structural vibration 𝒒𝜹. .......................................................... 93 

Figure 6-9 Estimation of 𝑹𝑮/𝑴. ............................................................................................................ 93 

Figure 6-10 The flowchart for estimating 𝑹𝑺/𝑻. ................................................................................... 95 

Figure 6-11 Coordinate system representing the structural deflection. ................................................ 96 

Figure 6-12 Simultaneous motion trajectory. ....................................................................................... 98 



 

 xvi 

Figure 6-13 Raw measurement from the IMU. .................................................................................... 99 

Figure 6-14 Estimation result of sensor fusion expressed in global frame. ........................................ 100 

Figure 6-15 Synchronization of 22 tests using the absolute value of angular velocity. ..................... 100 

Figure 6-16 Estimation of 𝑹𝑮/𝑴 and 𝑹𝑺/𝑻 expressed by 𝑹𝒙(𝝓)𝑹𝒚(𝜽)𝑹𝒛(𝝍) Euler angles. ............ 101 

Figure 6-17 Estimation of 𝑹𝜹/𝒀 converted to Euler angles. ............................................................... 102 

Figure 6-18 Estimated angular velocity 𝒒̇𝝓, 𝒒̇𝜹, and 𝒒̇𝝍. ................................................................... 102 

Figure 6-19 Estimated angular acceleration 𝒒̈𝝓, 𝒒̈𝜹, and 𝒒̈𝝍. ............................................................ 103 

Figure 6-20 Two IMUs on machine table. ......................................................................................... 104 

Figure 6-21 Averaged angular velocity of IMU #1 and IMU #2. ...................................................... 105 

Figure 6-22 Averaged angular acceleration of IMU #1 and IMU #2. ................................................ 105 

Figure 6-23 Averaged angles of IMU #1 and IMU #2. ...................................................................... 106 

Figure 7-1 Prediction of motor force/torque by the identified open-loop dynamics. ......................... 111 

Figure 7-2 Simulation of tracking error and motor force/torque. ....................................................... 113 

Figure 7-3 Simulation of vibration velocity and angle (𝒒̇𝜹 and 𝒒𝜹). .................................................. 114 

Figure 7-4 Dynamic model considering external force. ..................................................................... 115 

Figure 7-5 Dynamic Simulation considering external force. ............................................................. 116 

Figure A-1 In-house linear-tilt-rotary feed drive. ............................................................................... 133 

Figure A-2 Candidate flexure designs. ............................................................................................... 134 

Figure A-3 Finalized flexure design. .................................................................................................. 134 

Figure A-4 FE model of the feed drive. ............................................................................................. 135 

Figure A-5 Stress concentration around the I-beam when subject to 1G linear acceleration. ............ 135 

Figure A-6 Experimental feed drive. .................................................................................................. 136 

Figure A-7 FEA simulation result of the bending mode. ................................................................... 136 

 



 

 xvii 

List of Tables 

Table 1-1 Research roadmap on digital twin estimation for multi-axis machines. ................................ 4 

Table 2-1 Summary of the identification methods for robots with flexible joints. .............................. 25 

Table 2-2 Summary of sensor fusion algorithms for IMUs. ................................................................. 31 

Table 3-1 Parameters of the dynamic model. ....................................................................................... 36 

Table 3-2 Number of parameters to be estimated for open-loop dynamics. ........................................ 42 

Table 4-1 System assumption and the resulting number of poles. ....................................................... 53 

Table 4-2 Parameter classification. ...................................................................................................... 58 

Table 4-3 Parameter number statistics for laser drilling machine model. ............................................ 60 

Table 4-4 Pole locations estimated by pole search with LS projection. ............................................... 65 

Table 4-5 Error of prediction. ............................................................................................................... 65 

Table 5-1 Descriptions of the parameters in Eq. (5.4) and Eq. (5.5). ................................................... 79 

Table 6-1 A summary of available data from the IMU and the sensor fusion algorithm. .................... 90 

Table 6-2 Kinematic limits of the experimental trajectory. .................................................................. 97 

Table 6-3 Estimated signal property of the Xsens MTi-630 IMU........................................................ 98 

Table 6-4 Critical specifications of the gyro from the product datasheet [99]. .................................... 98 

Table 6-5 RMS noise reduction by averaging 22 repeated tests. ......................................................... 99 

Table 6-6 Standard deviation of the 22 tests. ..................................................................................... 103 

Table 7-1 The identified dynamic parameters. ................................................................................... 109 

Table 7-2 RMS prediction error of motor force/torque. ..................................................................... 110 

Table 7-3 Estimated pole locations. ................................................................................................... 112 

Table 7-4 Error of prediction. ............................................................................................................. 114 

Table B-1 Signal property of IMU #2. ............................................................................................... 138 

 

 



 1 

Chapter 1 

Introduction 

1.1 Background and Research Motivation 

1.1.1 Virtual Machining with Digital Twin 

Nowadays, since most Computer-Aided Manufacturing (CAM) software can only simulate the “ideal” 

machining process, process planning therefore heavily relies on the experience of machine operators. 

Time-consuming trial cuts are necessary for verifying and adjusting the process until part quality 

requirements are satisfied. To mitigate such problems, the concept of virtual machining [1] was 

proposed, where the machining operation can be predicted by virtual machine models, i.e., digital twins 

[2] (see Figure 1-1). 

 

Figure 1-1 Virtual model and machining processes. 

A thorough modeling of the machine and process involves several aspects, such as the cutting 

mechanics, tool wear, tool flexibility, spindle dynamics, thermal expansion, etc. In particular, the 

dynamic behavior of the feed drives is one of the dominant factors impacting the productivity and 

resulting part quality in machining. With the aid of high-fidelity machine feed drive models, high-

productivity machining trajectory planning, without violating part tolerances, can be designed in a 

virtual environment, or in semi-real time (as a digital twin). If the model of the feed drive control system 

can be built, the production trade-off (see Figure 1-2) between production speed, contour accuracy, and 
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surface finish can then be predicted and optimized without time-consuming and expensive trials on real 

machines (see Virtual CNC in Section 2.3.1). 

 

Figure 1-2 Performance trade-off of a machine tool feed drive control system [3]. 

Furthermore, an accurate dynamic model of the feed drive mechatronic system can be used for 

monitoring the machining process, such as real-time estimation of the cutting forces through indirect 

methods (like Kalman filtering of motor current and/or low-cost accelerometer signals), without having 

to apply intrusive and expensive direct force measurement methods, such as using table or rotational 

dynamometers [4]. Lastly, a dynamic model of the machine tool multi-axis feed drive assembly can be 

used for machine condition monitoring, by tracking the evolution of key parameters, feed drive natural 

frequency, stiffness, and damping values. Such models can also be used to train machine learning 

methods, to help diagnose faults and root causes of error.  

On the other hand, the concept of Industry 4.0 aims to establish smart factories with integrated 

virtualization, monitoring, data integration, self-optimization, and control functionalities within and 

across manufacturing processes, taking advantage of increasing connectivity and automation 

capabilities [5]. In this context, developing the capability to identify realistic dynamic models of 

production machines, in a practical manner, is key to elevating the overall productivity, efficiency, and 

longevity in the operation of machine tools and other production equipment. 

1.1.2 Digital Twin Estimation for Multi-axis Machine in the Context of Industry 4.0 

Building a machine model via conventional bottom-up approach may require extensive investigation 

of every single component, which is time-consuming or sometimes infeasible (especially for machines 

already operational in industry). Alternatively, following the trend of Industry 4.0, commercial 

Computer Numerical Controls (CNCs) have been increasingly powerful to provide real-time in-process 

data, which can be used to estimate machine models in a top-down sense. Consequently, such a non-

intrusive model-building approach is more suitable for industrial implementation [2]. 

Speed

Surface
finish 

Accuracy
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Following the above concept, numerous top-down identification approaches, (i.e., referred to as ‘rapid 

identification’), have been developed [6][7][8][9]. The identified machine models can predict 

machining accuracy due to rigid body control, structural vibration, and nonlinear friction (see Section 

2.3.2). 

Overall, viewing the design of modern high-performance machine tools, the following trends can be 

observed: (a) To enhance the productivity, high-speed direct drive motors are becoming increasingly 

used. (b) To enhance the versatility, the configurations of machine axes are becoming more and more 

diverse and complex (see Section 2.4). Thus, coupled multibody dynamics needs to be carefully 

investgated and considered, to obtain realistic digital models of such machines. 

Regarding multi-axis machines, academic research in the past primarily focused on the kinematics and 

trajectory planning. Multibody dynamics in the context of multi-axis machines has been less studied. 

While machine model estimation with multibody dynamics is very much worth investigating, vibration 

response due to limited structural rigidity is also an important attribute that must be considered 

simultaneously, especially as it is prevalent in medium-to-large-sized multi-axis machine tools. 

Furthermore, when nonlinear multibody dynamics are invloved, the vibratory behavior also becomes 

nonlinear and posture-dependent. Hence, the machine vibratory dynamics should, in the ideal case, be 

studied hand-in-hand with multibody dynamics. 

However, rather than resorting to computationally expensive and highly complex flexible multi-body 

(FMB) approaches, which are typically generated via FEM and model truncation, a more practical and 

physically interpretable approach would successfully fill the gap between simple (rigid body) 

decoupled modeling and highly complex FEM approach, thereby allowing computationally efficient 

and sufficiently accurate models which can be readibly applied in industry as easy-to-identify, easy-to-

use and sufficiently accurate ‘digital twins’. This has been the primary motivation of this thesis 

research. 

1.2 Research Objective 

This thesis has focused on estimating dynamic models of multi-axis feed drive control systems, directly 

from field (i.e., in-process CNC) data, or sometimes non-intrusive instrumentation (e.g., low-cost 

sensors), which can be used for the purposes of process planning, optimization, and machine and  

process monitoring. Table 1-1 shows the roadmap of the conducted research. Specifically, this thesis 

has aimed at extending the earlier rapid identification methodologies [6][7][8][9], to consider dynamic 
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coupling effects between the axes and the structural flexibility. In addition to utilizing servo data from 

CNC, data from low-cost and practical auxiliary sensors, e.g., an IMU (Inertial Measurement Unit), has 

also been utilized for identifying a model which can capture both coupled multibody dynamics, and 

also structural vibrations.  

Table 1-1 Research roadmap on digital twin estimation for multi-axis machines. 

 Model assumption 

Erkorkmaz et al. [4] Decoupled single-axis Rigid body model 

Tseng et al. [7] Decoupled single-axis Flexible model 

Chapter 3 ~ 4 Coupled multi-axis Rigid body model 

Chapter 5 ~ 7 Coupled multi-axis Flexible model 

 

The major research contributions are two new identification methods listed as follows: 

A. A new identification method for closed-loop control system of coupled rigid multi-axis feed drives. 

This has been achieved by incorporating the identification for multibody dynamics, and the 

decoupling of the nonlinear open-loop MIMO (multiple-input multiple-output) dynamics from the 

closed-loop MIMO LTI (linear time-invariant) dynamics. This contribution is detailed in Chapter 3 

and Chapter 4. 

B. A new identification method based on Contribution A, where structural flexibility is also 

considered. In addition to considering the nonlinear multibody dynamics, the structural vibration is 

captured by extending the higher-order MIMO LTI portion of the model. In this step, it is seen that 

an IMU measurement is essential to reconstruct the internal vibration signal (as velocity and 

acceleration terms), as this response cannot be readily captured with the existing position feedback 

sensors on a servo control system. This contribution has been developed in Chapter 5 through 

Chapter 7. 

1.3 Thesis Layout 

Chapter 2 is a literature review covering relevant literature to this thesis, such as the modeling of 

machine tool feed drives, an overview of 5-axis machines, and an introduction to IMUs. 

Chapter 3 presents the identification of the open-loop (plant) dynamics. The identification takes 

numerous physical phenomena into account, such as multibody dynamics, motor ripple, and nonlinear 

friction. Although the methods reviewed in this chapter are prior art, they are essential to the 

methodologies developed in the later chapters. 
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Chapter 4 introduces a new identification method for closed-loop control system of coupled rigid multi-

axis feed drives. An equivalent dynamic model and the corresponding identification procedures are first 

elaborated, followed by experimental validation using two different multi-axis feed drives. 

Chapter 5 extends the method in Chapter 4 to also consider the structural flexibility. As structural 

flexibility can lead to a very broad set of dynamic system equations, the research scope is first defined 

and limited by analyzing the prominent types of vibratory dynamics in a general linear (translating) 

feed drive. Then, adding a rotary drive on top of a linear drive (which is common in machine tools), it 

is found that if there is significant structural flexibility between the linear and rotary drives, the model 

identification additionally requires a motion sensor, e.g., an IMU, to measure the internal structural 

vibration, which is missing from the feedback of regular position sensors. Then, this case has been 

experimentally studied in the following chapters. 

Chapter 6 first introduces the experimental feed drive with an I-beam type flexible connection element. 

As an IMU is intended to be used, its relevant fundamental utilization techniques, such as strapdown 

integration and sensor fusion, are reviewed and applied. Then, the missing vibration of the I-shaped 

flexible structure is reconstructed by a method by comparing the rigid and flexible kinematic models. 

Chapter 7 presents the results of the model identification for the experimental drive. The data from the 

CNC and the IMU are simultaneously utilized to identify the dynamic model. Not only inter-axis 

dynamic coupling effect, but also posture-dependent vibratory behavior can be accurately predicted by 

the identified model. Hence, the proposed identification methodology is validated been, which can be 

applied and extended for building comprehensive models of a coupled multi-axis feed drive control 

systems, with mechanical flexibility. 

Finally, the conclusions and future research directions are presented in Chapter 8. 
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Chapter 2 

Literature Review 

2.1 Introduction 

Establishing high-fidelity models of feed drive control systems is critical for virtual process planning. 

Using the models, the process planner can evaluate the cycle time and control system positioning 

accuracy. Such models can also enhance process monitoring and provide insight regarding the machine 

condition. 

To achieve higher productivity and versatility, in recent years high-speed machine tools with diverse 

axis configuration have emerged. Such design trend leads to more complex machine dynamics, as it 

involves structural vibrations, and also the interaction between axes. In the context of virtual process 

planning, the influence of these dynamic effects on the dynamic performance of the machine tool must 

be addressed. The literature review regarding the above research motivation is arranged as follows. 

In Section 2.2, literature on the structural dynamics of machine feed drives is presented. This topic is 

more or less foundational in machine tool research.  In addition to structural dynamics, this thesis aims 

at the modeling and identification of “the entire feed drive control system”, so that the control 

performance with respect to a certain inputs (such as command trajectory or disturbance forces) can be 

predicted. This is beneficial to the planning and monitoring of production systems. In Section 2.3, such 

a modeling concept (Virtual CNC) and an identification approach in a top-down sense (rapid 

identification) are presented. Section 2.4 introduces the configuration and recent design trends of high-

performance 5-axis machines. It is found that, in addition to mechanical vibration, the inter-axis 

dynamic coupling originating from multibody dynamics is critical. Since this issue has been 

investigated more thoroughly in robotics than in machine tools, Section 2.5 reviews the modeling and 

identification of multibody dynamics in the field of robotics. 

The proposed identification method for a multibody system with mechanical flexibility requires extra 

motion sensor(s), to capture missing internal structural vibration. A variety of motion sensors are 

surveyed in Section 2.6.1. As IMUs are suitable for this application, this sensor is introduced in Section 

2.6.2. To obtain the best estimated attitude information, the IMU signals have to be processed by a 

sensor fusion algorithm, reviewed in Section 2.6.3. 
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2.2 Modelling of Structural Dynamics of Machine Feed Drives  

2.2.1 Rigid Body Dynamics 

A feed drive including the mechanical structure (assumed to be rigid) and the current amplifier can be 

simplified as in Figure 2-1.  

A current command 𝐼𝑠 is sent to a current controller, which is usually embedded in an amplifier for the 

purpose of servomotor control. The current controller regulates the actual armature current 𝐼 in order 

to compensate the back electromotive force (EMF) voltage 𝐸𝑏  and the electrical dynamics 

characterized by inductance L and resistance R when the armature is rotating by (angular) velocity 𝜔. 

The bandwidth of the current control is substantially higher than that of velocity and position control. 

Therefore, when analyzing the mechanical response, it is common to neglect the current controller and 

electrical components’ dynamics , i.e. 𝐼𝑠 ≈ 𝐼. Then, the motor torque 𝜏 can be indirectly measured 

by 𝐾𝑡𝐼𝑠, where 𝐾𝑡 is the actuator torque constant. 

 

Figure 2-1 A feed drive as an electro-mechanical system.  

Assuming that the mechanical structure is sufficiently rigid and driven by a smooth trajectory (lacking 

high-frequency content which would excite structural vibrations), the mechanical plant can be 

simplified as a rigid body with inertia J  and viscous damping 𝐵. Then, the dynamic equation can be 

written as: 

 𝜔(𝑠) =
1

𝐽𝑠 + 𝐵
[𝜏 − 𝜏𝑑] (2.1) 

Assuming 𝜏𝑑  as a constant Coulomb friction, then 𝐽, 𝐵 , and 𝜏𝑑  can be simply estimated by Least 

Squares (LS) estimation using the measured 𝐼𝑠 and 𝜔, as such in [10]. 

1

 𝑠 +  
𝐾𝑡

𝐾𝑏

1

𝐽𝑠 + 𝐵
𝐾𝐼 +

𝐾𝐼𝐼

𝑠

𝐼𝑠 𝐸

𝐸𝑏

𝐼 𝜏 𝜔

-

-
𝜏𝑑

-

PI current controller Electrical dynamics Mechanical dynamics
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2.2.2 Vibratory Dynamics 

Vibratory dynamics are very essential characteristics for the machine tool feed drives, as the servo 

(actuation) force also excites the mechanical resonance. This constitutes a limit to allowable maximum 

acceleration and jerk values in trajectory planning. In addition, process (machining) forces also excite 

the vibratory dynamics, which leads to wavy surface finish or even unstable (chatter) machining 

conditions.  

In industrial machines, one of the most common actuation mechanisms is the ball screw drive, of which 

the flexibility is one of the primary issues causing machine tool vibrations. A flexible ball screw drive 

can be simply described by a two-mass spring-damper model in Figure 2-2, which captures the rigid-

body mode and the dominant vibratory mode. More complicated lumped models for capturing higher-

order axial and rotational modes [11][12][13] have also been proposed, as shown in Figure 2-3-Figure 

2-5. 

 
Figure 2-2 A two-mass 

model. 
 

Figure 2-3 Hybrid model [12]. 
 

Figure 2-4 8-mass model [13]. 

 

 

Figure 2-5 Ball screw feed system, axial (a) and rotational (b) model [11]. 

Machine frame vibration is more complicated and harder to describe by lumped models with physical 

meaning. Instead, it can be modeled by FEM. 

Alternatively, a generalized expression for servo systems with inherent vibratory modes can be 

described by the modal analysis technique, assuming proportional damping characteristics – which 

seems to agree well with most machine tool structures: 
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 𝐺(𝑠) =
1

𝐽𝑠2 + 𝐵𝑠
+∑

𝑠𝑖𝑔𝑛𝑖
𝑚𝑖
⁄

𝑠2 + 2𝜔𝑛𝑖𝜁𝑖𝑠 + 𝜔𝑛𝑖
2

𝑁

𝑖=1

 (2.2) 

This dynamic equation can be used for a single drive with one rigid-body mode and 𝑁 decoupled 

flexible modes, where 𝜔𝑛𝑖, 𝜁𝑖, and 𝑚𝑖 are natural frequency, damping ratio, and modal mas of the 𝑖th 

mode. Then, the parameters can be determined by system identification. Prior to the author’s PhD study 

at U.Waterloo, he successfully used this approach to identify feed drives in a 3-axis milling machine 

[14] (see Figure 2-6). The feed drive was excited by a swept-frequency sine torque input. The position 

feedback is measured for the curve fitting in the frequency domain to identify multiple flexible modes. 

Those modes could originate from the ball screw vibration, as well as the complex machine tool 

structure vibration. The identified transfer function 𝐺(𝑠) is later integrated with the controller model 

and friction model. Thus, the tracking error in the time domain can be predicted. The control parameters 

can also be automatically optimized based on the identified model. 

 
(a)The investigated 

machine. 
 

(b) Frequency domain response. 
 

(c) Tracking error prediction.  

Figure 2-6 Identification and simulation result for a flexible drive [14]. 

In general, lumped mass-spring-damper modeling is suitable for building a computationally efficient 

model, where the parameters can be identified by input/output signals collected from the CNC. But if 

the parameters in the model are constants, this type of model cannot consider the position-dependent 

dynamics problem, i.e., the natural frequency changing with axis travel [15]. 

2.2.3 Machine Structure Analysis by Finite Element Method (FEM) 

As shown in Figure 2-7, FEM can model the flexibility of the structures with complicated geometry. It 

is an essential tool to shorten the time-to-market during the product development stage and widely used 

in the machine tool industry [16][17].  
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Figure 2-7 A FE-model of machine tool 

structure [17]. 

 
Figure 2-8 Displacement portions analysis for 

three cutting load cases [18]. 

Generally, the complex machine structure is represented by 3D-solid elements, while the joints, 

including the guideways and bearings, are simplified by lumped elements for reducing the 

computational cost. Figure 2-8 demonstrates an example of FEM analysis, which evaluates the tool 

deflection contributed by each component [18]. This also reveals the necessity of using FEM, because 

the column and machine bed contribute considerable deflection, which cannot be easily analyzed with 

lumped models. For the purpose of analyzing the performance of the feed drive, in his earlier study, the 

author successfully used FEM to simulate mode shapes excited by the motor actuation force (see Figure 

2-9). This is important information, which can be used to optimize the machine tool structure. For 

example, the author applied structural topology optimization to a machine tool head structure (see 

Figure 2-10) [19]. These examples show the benefit of FEM in machine tool design.  

However, the accuracy of the simulation relies highly on the correctness of the properties of each 

component, e.g. contact stiffness and damping of the guideway, material density and Young’s modulus 

of the cast iron frame, etc. In addition, the contact stiffness and damping may change with the assembly 

processes and contact conditions, e.g. surface roughness, lubrication, preload, component wear, etc. 

Thus, these properties show noticeable variation [20]. They can be identified by dedicated experiments 

[21][22][23][24] under certain conditions. Figure 2-11 [24] is an example of measuring the equivalent 

contact stiffness and damping for a given component. The component tested has to be disassembled 

from the machine and mounted on a test bench. This approach, while being a valuable contribution to 

new fundamental knowledge, is difficult and intrusive to apply on machine tools already in use on a 

shop floor. 

Additionally, the FE analysis requires highly detailed machine design information, e.g., complete 

computer-aided design (CAD) models, which may not always be disclosed to the end users in industry. 

As a result, this type of bottom-up model-building approach is usually more suitable when the 
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machine is still in the design or development stage. The obtained results can guide the machine designer 

to understand and compare various sources of flexibility, vibratory response, and positioning error. It 

is no coincidence that majority of such research originates from countries with highly active machine 

tool industries. 

 
Figure 2-9 Modal analysis of the whole 

machine structure [14]. 

 
Figure 2-10 Structural topology optimization 

of a machine tool head [19]. 

 

Figure 2-11 A measuring system for the normal contact stiffness and damping [24]. 

2.2.4 Friction Modelling 

Friction is a result of complex interactions between two contacting surfaces with relative motion [25]. 

When machining accuracy tolerance is down to the micron-level, the friction in feed drives becomes 

one of the primary sources of positioning errors. Common undesired friction induced phenomena, 

which deteriorate the positioning accuracy, are outlined below. At velocity reversals, quadrant glitch is 

unavoidable due to the static friction. At extremely low velocity, stick-slip phenomenon may occur and 

even induce unwanted vibration. Thus, a limit cycle behaving as fluctuating motion around the 

positioning reference may occur due to the interaction between the integral control and nonlinear 

friction. The above phenomena can be represented by various friction models, as illustrated below. 
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Static (Classical) Friction Models 

In classical friction models [10][25][26], the friction force 𝐹𝑓(𝑣, 𝐹𝑎) is a function of the relative velocity 

𝑣 and the applied actuation force 𝐹𝑎 as: 

 𝐹𝑓(𝑣, 𝐹𝑎) = {

𝑠(𝑣) + 𝜎2𝑣
𝐹𝑎      

𝐹𝑠𝑠𝑖𝑔𝑛(𝐹𝑎)

𝑖𝑓 𝑣 ≠ 0

𝑖𝑓 𝑣 = 0 𝑎𝑛𝑑 |𝐹𝑎| < 𝐹𝑠
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.3) 

𝐹𝑠 is the breakaway force, and 𝜎2 is viscous friction coefficient. 𝑠(𝑣) can be a simple Coulomb friction 

model, such as  𝑠(𝑣) = 𝐹𝑐𝑠𝑖𝑔𝑛(𝑣), or a Stribeck curve as: 

 𝑠(𝑣) = 𝑠𝑖𝑔𝑛(𝑣)(𝐹𝑐 + (𝐹𝑠 − 𝐹𝑐)𝑒
−|𝑣̇ 𝑣𝑠⁄ |) (2.4) 

Above, 𝐹𝑐, 𝐹𝑠, and 𝑣𝑠 are Coulomb friction, Stribeck friction, and Stribeck velocity respectively. This 

model uses inequalities and if-else criteria to determine the friction at near-zero velocity, i.e. the stiction 

region. This model is simple, but has several drawbacks as illustrated in the following. 

Problems in Numerical Simulation 

In numerical simulation, it is difficult to find the exact zero velocity and the discontinuity due to the 

sign function. Numerous modifications have been proposed [25]. For example, Karnopp [27] proposed 

a modified friction law which sets a narrow region around zero velocity. In the slash region in Figure 

2-12, the velocity is considered to be zero, and the stiction is then determined by other forces in the 

system. Brown and McPhee [28] proposed an approximated continuous friction model as a function of 

velocity (see Figure 2-13). The model can avoid discontinuities and is differentiable. 

 
Figure 2-12 Karnopp friction model [26]. 

 
Figure 2-13 Continuous friction function [28]. 

Another major drawback is that, the friction acting on each body in a multibody system is dependent 

on the coupled constrained reaction forces. Thus, the analytical value of friction or stiction cannot be 
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determined explicitly [29]. Haug [26] demonstrated a simulation of a simple three-mass planar 

mechanism considering friction and stiction. Since the value of stiction and other applied forces should 

satisfy static equilibrium conditions, in the three-mass system, the analytical stiction criteria turns out 

to be a large number of inequalities. Hence, the extension of analytical stiction criteria to general 

multibody systems is still an open research area. 

Microscopic Displacement in the Pre-Sliding Regime 

It is important to recognize that Eq.(2.3) are not fully accurate, physics-wise, as a deflection is normally 

experimentally observed at the microscopic scale, even breakaway force is not reached, which is 

characterized as the pre-sliding regime. In this regime, friction tends to be a function of position [30]. 

Armstrong [25] has extended classical friction models and proposed a seven-parameter model, which 

captures the pre-sliding displacement and several friction behaviors. The model essentially integrates 

two separate models for pre-sliding and sliding regimes respectively. However, the transition between 

the two regimes is not obvious. As a result, this model has not found wide adoption in practical 

engineering applications. 

Dynamic Friction Models 

One of the earliest attempts to describe the friction in the pre-sliding regime was the Dahl model [31], 

proposed in the late 1960s. The Dahl model was further developed and refined by subsequent efforts, 

such as the LuGre friction model [32], which captures the Stribeck effect and stick-slip motion. Later, 

Swevers et al. [33][34] proposed a more elaborate model, called the Leuven model, which includes the 

frictional properties of the LuGre model and an accurate description of the pre-sliding regime using a 

hysteresis function with non-local memory. Building on these works, the generalized Maxwell-slip 

(GMS) model [35] is one of the most recent dynamic friction models, which best captures both the pre-

sliding and sliding dynamics of friction in mechatronic systems. This model is essentially a hybrid of 

the LuGre model and the Maxwell-slip model that was applied in the Leuven model. The GMS model 

is composed of N elementary slip-blocks and spring elements. It successfully captures the hysteresis 

effect and frictional memory observed during pre-sliding, and also the Stribeck-type velocity dependent 

behavior.  
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2.3 Modelling and Identification of Feed Drive Control System 

2.3.1 Virtual CNC 

In the context of machine tools and Industry 4.0 style manufacturing [5], having a virtual model of the 

control system, comprising the electromechanical ‘plant’ and the digital controller, is indispensable to 

enhance the machining productivity [1]. Following this concept, Erkorkmaz and Yeung [36] proposed 

a Virtual CNC system which contains digital models of the controller and the mechanical feed drive 

(see Figure 2-14). VCNC aims to emulate a real CNC so that its performance can be tested and 

predicted. Several applications are demonstrated, such as predicting the machining accuracy, modifying 

process planning (see Figure 2-15), and real-time monitoring [37]. Other research groups such as Sato 

[38] (see Figure 2-16) and the author [14] also developed similar simulation environments. 

 

Figure 2-14 Architecture of a virtual CNC system [36]. 

 
Figure 2-15 Contouring simulation 

and validation [37]. 
 

Figure 2-16 GUI of feed drive simulator [38]. 
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2.3.2 Rapid Identification 

Motivation 

In the above section, Virtual CNC has been shown to advance the performance of machine tools. 

However, building this model for a machine tool already commissioned in industry is a challenge. 

Regarding the mechanical model, as mentioned in Section 2.2.3, the bottom-up model-building 

approach using a high-order FE model (which requires disassembly of the physical machine structures 

for parameter tuning) is very costly and typically not practical. Building the models of commercial 

controllers is also challenging. Most commercial CNC providers, like FANUC, Siemens, and 

HEIDENHAIN, unfortunately do not disclose their control laws in full detail. In some cases, the 

controller model could be built by a bottom-up approach. 

As shown in Figure 2-17 [14], the author built a realistic FANUC controller model which operates 

according to the control parameters from the CNC panel by a reverse engineering approach. However, 

this approach is time-consuming and not universal. It involves decoding the control parameters and 

extensive investigation on the controller product itself. The model is specific only for this product. 

Therefore, once the control system is upgraded or changed, the investigation has to be repeated. 

 

Figure 2-17 A block diagram of FANUC controller built by a reverse engineering [14]. 

With the increasing accessibility of the data from commercial CNCs, an alternative approach of 

building a model is utilizing the input and output data of the control system collected during the 

machine’s operation. The data are used to fit simplified models with only sufficient fidelity in a top-

down sense. Such approach is non-intrusive and does not cause unproductive machine downtime on 

the shop floor. Thus, it is favorable and practical for the industry. 
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Rapid Identification 

 
Figure 2-18 Overview of identification 

scheme. 

 
Figure 2-19 PID control system. 

 

 

 
Figure 2-20 P-PI control system. 

 

The concept of rapid identification [4] (see Figure 2-18) considers the closed loop control system as a 

whole. This general expression can represent PID and P-PI control systems controlling decoupled axes, 

as shown in Figure 2-19 and Figure 2-20, which are commonly used in industry. In rapid identification, 

the actual (i.e., measured) position 𝑥 is considered as the response of the commanded position 𝑥𝑟𝑒𝑓 and 

disturbance 𝑑 in a general expression: 

 𝑥(𝑠) = 𝐺𝑡𝑟𝑎𝑐𝑘(𝑠)𝑥𝑟𝑒𝑓(𝑠) + 𝐺𝑑𝑖𝑠𝑡(𝑠)𝑑(𝑠) (2.5) 

The disturbance 𝑑(𝑠) usually refers to the friction which can be represented by various models, such 

as Coulomb friction, as a function of feed drive motion. It implies that the transfer functions, 𝐺𝑡𝑟𝑎𝑐𝑘(𝑠) 

and 𝐺𝑑𝑖𝑠𝑡(𝑠), as well as the friction model, can adequately capture the dominant dynamics of the feed 

drive control system. The commanded position 𝑥𝑟𝑒𝑓 and actual position 𝑥 are collected to identify the 

parameters of the transfer functions. In Eq.(2.5), 𝐺𝑡𝑟𝑎𝑐𝑘 and 𝐺𝑑𝑖𝑠𝑡 have different numerators but share 

the same denominator. Since the system involves a rigid body motion feedback controller with an 

integrator, the denominator assumes the structure of a 3rd-order polynomial as: 
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 𝐴(𝑠) = 𝑠3 + 𝑎1𝑠
2 + 𝑎2𝑠 + 𝑎3 = (𝑠 + 𝑝𝑟)(𝑠

2 + 2𝜁𝑐𝜔𝑐𝑠 + 𝜔𝑐
2) (2.6) 

To ensure that only stable models are estimated, which is a reasonable assumption, pole locations, as 

shown in Figure 2-21, can be found by imposing constraints, on global optimization methods, such as 

Genetic algorithm [39], Particle Swarm Optimization [9], or global search algorithms [7][8]. Then, the 

rest of the term (i.e., zeros and gain) in all the transfer functions and the parameters in the friction model 

can be estimated by Least Squares (see Figure 2-22). 

 
Figure 2-21 Candidate pole locations [7]. 

 
Figure 2-22 Regressors of LS [7]. 

 

 

Figure 2-23 A flexible drive presented by a MIMO model [7]. 

 

Figure 2-24 Tracking error prediction based on experimental data from a machine tool and 

flexible fixture assembly [7]. 

The expression Eq.(2.5) can be generalized as a high-order multi-input multi-output (MIMO) model 

[8], according to the user’s interest, to additionally consider vibratory dynamics [7]. A two-mass 
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flexible drive model (see Figure 2-23) has two inputs (𝑥𝑟, 𝑑1), and two outputs (𝑣1, 𝑒2). Figure 2-24 

shows that this model enables the prediction of vibratory behavior in tracking error. The real tool-

workpiece motion (red line) is very close to the prediction results (yellow and blue lines). 

Among all the published papers at present, MIMO high-order identification has not yet been applied to 

multi-axis machines with coupled dynamics. This is one of the contributions achieved in this PhD 

thesis. 

2.4 Five-Axis Machine Tools 

Machine Configuration 

Excluding the degree of freedom of spindle rotation (which becomes important only in specific 

operations, such as thread cutting), five degrees of freedom are the minimum requirement to define the 

relative position and orientation between the tool and workpiece. A five-axis machine tool can be 

composed of any combinations of five linear and/or rotational axes. Most of the existing 5-axis machine 

tools are composed of 3 linear axes X, Y, Z and 2 rotary axes AB, BC, or AC (A, B, and C designating 

rotations around X, Y, Z, rep). These five axes can be distributed in either the tool side or the workpiece 

side with different sequences. Figure 2-25 exemplarily demonstrates 3 different configurations for AC 

type rotary axes with XY axes at the workpiece side and Z axis at the tool side. According to the above 

classification, there are hundreds of possible configurations for 5-axis machine tools. The pros and cons 

of different configurations for 5-axis machine tools were investigated in [40][41]. 

 

Figure 2-25 Different distributions of A and C rotary axes [41]. 
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Recent Trends in Machine Tool Design 

In the past, a machine shop may have been equiped with multiple dedicated machines for different 

processes. However, this requires large investment, large footprints, and more time spent in loading 

and unloading workpieces between machines with low utilization rate. Koren, as a pioneer in the 90’s, 

proposed reconfigurable machine tools for realizing reconfigurable manufacturing systems (RMS), in 

order to handle fluctuating orders from the markets [42]. In practice, multi-functional machine tools 

gained popularity in the market after 2000 [43]. The concept of multi-functional machines is essentially 

integrating differents processes in one versitile machining center (see Figure 2-26 (a)). They can be 

designed originating from a turning machine or a milling machine (see Figure 2-26 (b) and (c)). The 

tooling is also changeable from milling, turning, boring, grinding, to gear skiving and gear hobbing. 

Such machines are sometimes also integrated with built-in part measurement (metrology) capabilities. 

Additionally, hybrid manufacturing capability can also be integrated by exchanging the conventional 

spindle used for subtractive machining with a laser nozzle for additive manufacturing [44]. Therefore, 

it is a clear and foreseeable trend that the configuration and kinematics of modern machine tools is 

becoming more complex and diversified. 

   
(a) Integrated machining 

process. 

(b) Turn-mill machine center. (c) Mill-turn machine center. 

Figure 2-26 Modern machine tool and process [45]. 

It should be noted that the application of direct drive motors has been one of the integrated features in 

the above new developments [43]. In the past, rotary axes were mostly driven by a motor with a speed 

reduction mechanism, such as a worm gear. However, these types of mechanisms exhibit large friction, 

backlash, and mechanical flexiblity. In contrast, direct drive motors have superior servo dynamic 

response, without the above drawbacks. They can achieve higher rotational speeds and accelerations 



 

 20 

compared to using a geared transmission, thereby allowing higher feedrates and productivty in part 

machining. However, due to the absence of a speed reduction mechanism, the feed drive becomes more 

sensitive to the forces resulting from the coupled dynamics between axes, and the disturbances such as 

machining forces and friction. As a result, the study of the dynamics of multi-axis machines is a highly 

relevant and important topic at the moment, in the manufacturing and machine tool research 

community. 

2.5 Multibody Dynamics 

In the past, the motion of machining processes was rather slow, due to the spindle speeds also being 

lower (in the order of a few thousand rpm, rather than over 15 thousand RPM). Also, rotary axes were 

mostly driven by geared mechanisms. Thus, the net force in an individual axis is dominated by its 

inertia and friction, with coupling effects being strongly mitigated due to the gearing. Thus, the 

dynamics of each feed drive could reasonably be modeled independently. 

However, in next generation machine tool design, as the factors illustrated in Section 2.4, the machine 

configuratrion is becoming more complex and diversified, and direct drive motors are more commonly 

used. Thus, the issue of coupled multibody dynamics in machine tools is gaining more attention and 

research importance. As studies on multibody dynamics in the field of machine tools are still relatively 

new, the review in this section focuses on the state-of-the-art in the field of robot manipulators. 

2.5.1 Multi-Rigid-Body Dynamics 

Both Newton-Euler equations and Euler-Lagrange equations are able to analyze the dynamics of a 

multi-axis feed drive [46]. Newton-Euler equations relate all the applied force and torque to the linear 

and angular momentum for each body. Thus, the internal constraint forces/torques for connecting the 

bodies have to be solved or eliminated during the computation. Additionally, each body is represented 

by its corresponding mass and complete inertia tensor. Therefore, all the parameters are required in 

order to formulate the equations.  

On the other hand, in Euler-Lagrange equations, the system dynamics is described by generalized 

coordinates 𝒒 and generalized forces 𝝉. The Lagrangian   is defined as:  

  (𝒒, 𝒒̇) = 𝐾(𝒒, 𝒒̇) −  (𝒒) (2.7) 
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𝐾 is the system kinetic energy from the translational and rotational motion of all the bodies.   is the 

system potential energy. In rigid-body systems, only the gravity contributes the potential energy. Then, 

the equation of motion of the 𝑗th coordinate can be derived in terms of work and energy as: 

 
𝑑

𝑑𝑡

𝜕 

𝜕𝑞̇𝑗
−
𝜕 

𝜕𝑞𝑗
= 𝜏𝑗 (2.8) 

Considering an 𝑛-axis machine tool feed drive system, if all the joint variables are chosen as the 

generalized coordinates 𝒒 = {𝑞1, … , 𝑞𝑛}
𝑇, the constraint forces for connecting bodies at the joints are 

in the orthogonal direction to the generalized coordinates (i.e., directions of movement). According to 

the principle of virtual work, this implies that the knowledge of constraint forces is not required in the 

analysis. Thus, the generalized forces can just include the joint actuator forces. Additionally, non-

conservative forces, such as friction, can also be included in the generalized forces term. Then, Eq. 

(2.8) can be written into the form as: 

 𝑴(𝒒)𝒒̈ + 𝑪(𝒒, 𝒒̇)𝒒̇ + 𝒈(𝒒) + 𝝉𝒇𝒓𝒊𝒄 = 𝝉 (2.9) 

𝑴 is the inertia matrix, which relates the mass and inertia in body-fixed frame to the generalized 

coordinates. So, 𝑴 can be position-dependent. The centrifugal and Coriolis terms are included in 

𝑪(𝒒, 𝒒̇)𝒒̇, while 𝒈 covers the gravity related terms. 𝝉𝒇𝒓𝒊𝒄 is the friction term, which can be represented 

by linear viscous damping, nonlinear Coulomb friction, Stribeck friction or other model. 

Newton-Euler equations vs. Euler-Lagrange equations 

For the purpose of control and system identification, Lagrangian formulation provides advantages over 

Newton-Euler formulation, due to the following reasons [46]. First, it is convenient to consider the 

elastic deformations of the links, simply by adding the potential energy stored by the elastic deformation 

to the Lagrangian. Second, since unknown internal constraint forces are automatically eliminated, it 

yields closed-form equations explicitly describing the input-output relationship. Third, the equations of 

motion only include non-redundant parameters, also called ‘base parameters’ or ‘identifiable 

parameters’ [47], which are linear with respect to the equations. Therefore, it is convenient to 

reformulate the equations of motion into linear regression form to identify the unknown base 

parameters. 
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2.5.2 Multibody Dynamics Considering Mechanical Flexibility 

In robot manipulators, there are numerous sources of flexibility such as gears and bearings at the joints, 

and the links. The joint flexibility is usually the dominant one. The modeling technique for the flexible 

joints and flexible links are introduced in the following section. It is noteworthy that a recent new 

application of robot manipulators is the machining operation [48][49][50][51]. Therefore, detailed 

studies related to the robot stiffness in different postures have been emerging recently [52][53]. 

Flexible Joint 

In robot manipulators, the motor in each joint is often equipped with a gearbox in order to generate 

sufficient torque. The gear teeth usually contribute most of the elastic deformation among the whole 

structure. Such joint stiffness can be represented by a torsional spring which connects the motor shaft 

with the actuated link (i.e., robot arm) (see Figure 2-27) [54][55]. Then, the equations of motion Eq. 

(2.9) can be extended as:  

 {
𝑴(𝒒)𝒒̈ + 𝑺(𝒒)𝒒̈𝒎 + 𝑪(𝒒, 𝒒̇)𝒒̇ + 𝒈(𝒒) + 𝑲(𝒒 − 𝒒𝒎) + 𝑫(𝒒̇ − 𝒒̇𝒎) = 0

𝑴𝒎𝒒̈𝒎 + 𝑺𝑇(𝒒)𝒒̈ + 𝑲(𝒒𝒎 − 𝒒) + 𝑫(𝒒̇𝒎 − 𝒒̇) + 𝝉𝒇𝒓𝒊𝒄 = 𝝉𝒎
 (2.10) 

The usual notation in this thesis follows the textbook written by Shabana [56]. Besides the joint 

coordinates 𝒒, the angular positions of motor shafts 𝒒𝒎 are further introduced into the model. 𝑴𝒎, 𝑺, 

and 𝝉𝒎 are the inertia of the motor shafts, coupling term, and the motor torque before transmitting to 

the link via the gearbox. 𝑲 and 𝑫 represent the stiffness and damping of the gearbox. 

 
Figure 2-27 Flexible joint model [54]. 

 
Figure 2-28 Extended flexible joints model [59]. 

Multi-dimensional 

spring-damper pairs

Flexible link
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Extended Flexible Joint 

The flexibility of bearings and the machine frame could also be considered by extending the above 

model in the following ways [57][58][59] (see Figure 2-28). For example, the original uni-directional 

spring-damper pairs in the actuated joints can be replaced by multi-dimensional spring-damper pairs, 

in order to capture the deformation perpendicular to the rotation direction. A rigid link can be divided 

into several links connected by multi-dimensional spring-damper pairs to represent the bending of a 

link. However, determining these non-actuated joints at suitable location and orientation is challenging, 

which may require some understanding of the vibration characteristics in advance. In this thesis, this 

approach has been followed in Chapter 5-Chapter 7 for the estimation of a multibody feed drive model 

with inherent flexibility. 

 

Figure 2-29 Flexible link model. 

Flexible Link 

The bending of the links could be represented by a distributed elasticity model, e.g. Euler–Bernoulli 

beam, which is described by partial differential equations with infinite dimension. In practical 

application, the dynamic equations are truncated to a finite dimension by the ‘Assumed Mode Method’ 

[60][61]. As described by the assumed mode method in [58] and shown in Figure 2-29, for a system 

with 𝑁  links, the bending deflection 𝑤𝑖  at a location 𝑥𝑖 ∈ [0, 𝑙𝑖] along the 𝑖 th link of length 𝑙𝑖 , is 

represented by 𝑁𝑒𝑖 separable vibration modes 𝜑𝑖𝑗 as: 

 𝑤𝑖(𝑥𝑖 , 𝑡) =∑𝜑𝑖𝑗(𝑥𝑖)𝛿𝑖𝑗(𝑡)

𝑁𝑒𝑖

𝑗=1

, 𝑖 = 1…𝑁 (2.11) 

𝛿𝑖𝑗 are the generalized coordinates. Then, the equations of motion Eq. (2.9) can be extended as:  
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 [
𝝉𝒂
0
] = [

𝑴𝑞𝑞 𝑴𝑞𝛿

𝑴𝑞𝛿
𝑇 𝑴𝛿𝛿

] [
𝒒̈

𝜹̈
] + [

𝑪𝑞
𝑪𝛿
] + [

0
𝑫𝜹̇ + 𝑲𝜹

] (2.12) 

𝜹 includes all 𝛿𝑖𝑗. The assumption is that the vibration is relatively small. Deflection due to the vibration 

does not affect the joint location for large body motion. Therefore, the rigid body motion can be 

separated from the small vibration, and the same kinematic models as for the rigid or flexible joint 

model can be used. Finally, the deformed angular position 𝑦𝑖 at the tip location 𝑙𝑖 of the 𝑖th link is the 

combination of the rigid body motion and the deflection angle as: 

 𝑦𝑖 = 𝑞𝑖 +
1

𝑙𝑖
[𝜑𝑖1(𝑙𝑖), … , 𝜑𝑖𝑁𝑒𝑖(𝑙𝑖)]𝜹𝑖 (2.13) 

The assumed mode method is based on the beam theory which is suitable for robot manipulators 

because the geometry of the links could be simplified as beam structures. However, it may not be 

suitable for modeling the machine tool structure as the geometry is rather complex and irregular. 

2.5.3 Parameter Identification for Multi-Rigid-Body Dynamics 

The research history and the principle of parameter identification, applied predominantly to rigid-body 

based robot dynamics, is summarized in this section. Some of the methodology reviewed on this topic 

has been applied in Section 3.3 of this thesis. 

In the late 80’s, several pioneer researchers, such as Mayeda [47], Khosla [62], Atkeson [63], Gautier 

[64], and Olsen [65] initiated the research on parameter identification for robot dynamics. The relevant 

identification schemes are summarized in [66][67][68]. A general approach is described as follows. 

First, the dynamic model in Eq. (2.9) is rearranged and expressed in linear form with respect to the 

parameters to be identified. As mentioned, the dynamic model derived by Lagrangian formulation 

yields the base parameter representation, convenient for parameter identification. Coulomb and viscous 

friction properties can also be added to the model since their parameters can also be incorporated into 

the equations in linear form [66].  

The position and the input torque of each joint are sampled while executing an excitation trajectory. 

Then, an overdetermined linear system is constructed from the sampled data. The base parameters can 

be estimated by several methods, such as LS, weighted LS [69], extended Kalman filtering [70], or 

maximum-likelihood estimation [71]. Other potential estimation techniques can be found in [72]. 
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To ensure that the system is fully excited, and that the sampled data is persistently exciting (i.e., 

informative) to identify the system, the command trajectory can be designed to minimize the condition 

number of the observation matrix by non-linear optimization methods. The excitation trajectory can be 

designed as a polynomial trajectory [73] or as a periodic Fourier series [71]. If the measured position 

signal is corrupted by noise and/or quantization error, when computing the velocity and acceleration 

by discrete differentiation, filtering techniques [69] are needed. Alternatively, the model can be derived 

from the energy approach [64][69] based on the principle of the applied mechanical energy equaling 

the sum of the kinetic and potential energy of the system. Such an energy model can avoid using joint 

accelerations. 

2.5.4 Parameter Identification for Multibody Dynamics with Structural Flexibility 

The identification of the robot flexibility is challenging and complex [59]. It is still an ongoing research 

topic. One of the reasons is that the encoder measurements at each joint only represent part of the states 

of the whole system. While model-based state observation is possible, when the model itself is the 

entity to be identified, accurate measurement of internal states becomes very important. Furthermore, 

the deflection of the flexible structure (e.g., link) is not directly detected. Also, the correctness of the 

identification relies on the assumed model structure, requiring significant mechanical flexibilities that 

contribute to vibratory behavior be identified ahead of time from modeling insight. Additionally, if 

nonlinear effects such as backlash, friction, nonlinear gear stiffness, etc. are considerable, then the 

frequency-domain identification approach and associated practices from modal analysis, which are 

based on the LTI assumption, cannot be directly adopted.  

Table 2-1 Summary of the identification methods for robots with flexible joints. 

 Time/frequency 

domain 

Algorithm Extra sensors SISO/ 

MIMO 

Albu-Schaffer et al. (2001) [74] Freq.-domain Nonlinear opt. Torque sensor SISO 

Pham et al. (2001) [75] Time-domain LS Extra encoder SISO 

Pham et al. (2002) [76] Time-domain LS Gyro / accel. SISO 

Ö string et al. (2003) [77] Time-domain Nonlinear opt. N/A SISO 

Ö hr et al. (2006) [78] Freq.-domain Nonlinear opt. N/A MIMO 

Lightcap et al. (2007) [79] Time-domain LS Marker & camera MIMO 

Oaki et al. (2009) [80] Time-domain Hybrid Gyro / accel. MIMO 

Wernholt et al. (2011) [81] Freq.-domain Nonlinear opt. N/A MIMO 

Moberg et al. (2014) [82] Freq.-domain Nonlinear opt. Gyro / accel. MIMO 

Gaz et al. (2014) [83] Time-domain LS Torque sensor MIMO 

Miranda et al. (2018) [84] Time-domain LS Extra encoder MIMO 
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In Table 2-1, the surveyed identification methods for robots with flexible joints are summarized. As 

seen, if employing extra sensors to capture missing variables, then identification by LS in the time 

domain becomes possible [75][76][79][80][83][84]. Otherwise, the model parameters have to be 

identified by nonlinear optimization methods, which are typically more time-consuming [77][78][81]. 

 

Figure 2-30 Three-mass flexible model for a single axis [77]. 

 
Figure 2-31 FRFs of a 6-axis manipulator, motor 

torque to motor acceleration [78]. 

 
Figure 2-32 Identification based on 

different model structures [82]. 

 

In the earlier research, the stiffness of each joint was locally identified by moving one axis at a time. In 

such cases, each joint is assumed as a decoupled SISO model. For example, Figure 2-30 is a three-mass 

decoupled model capturing the flexibility of the gear and the arm of a single axis [77]. However, lateral 

flexibility and coupling effects are ignored in this approach. To circumvent this problem, Ö hr et al. [78] 

performed a global MIMO identification in the frequency domain on a 6-axis manipulator. The 

measured and simulated frequency response functions (FRFs) are compared in Figure 2-31. The model 

considers the joint stiffness as well as unactuated bearing stiffness built by an extended flexible joint 
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model. Based on this approach, Moberg et al. [82] further investigated the influence of considering 

different numbers of extended flexible joints on the fitting of the cost function (see Figure 2-32). 

Regarding the use of additional motion sensors, as demonstrated in Figure 2-33, the deflection of the 

links can be measured by extra encoders mounted externally [75][84][85]. However, such sensor 

installation is sometimes impractical. Hence, gyroscopes or accelerometers are used [76][80][82] to 

capture the motion of the links or the end effectors. Alternatively, the torque transmitted to the links 

can be measured by torque sensors [74][83]. This information can also help identify the model. 

 
(a) Passive markers motion 

camera system [79].  

 
(b) Accelerometer & gyro 

sensors [80]. 

 
(c) Extra Encoder mounted 

externally [85]. 

Figure 2-33 Identification with extra motion sensors. 

Another concept to evaluate the stiffness of flexible robots is via Cartesian stiffness matrix [48]. It 

measures the joint’s deflection as well as the translational and rotational displacements at the end-

effector location with given applied forces and torques [86][87]. Such approach aims to correlate the 

stiffness at the end-effector with the stiffness at joints by the kinematic Jacobian matrix. 

2.6 3D Motion Sensing for Precision Engineering 

The research goal of this thesis is to build a machine model which is able to predict the tool-end and/or 

table-end motion, including vibration and rigid body motion in 3D space. However, the embedded 

encoder sensors for feedback control can only detect the motion at the encoder’s mounting location. 

The vibration in other locations is unknown. In order to capture this additional motion, extra sensors 

are required. Section 2.6.1 presents a survey on the available candidate sensors, and Section 2.6.2 

introduces MEMS IMUs, the auxiliary sensor adopted in this research. Such IMUs also require 

adequate sensor fusion, which is discussed in Section 2.6.3. 
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2.6.1 A Survey on Candidate Position Sensors 

 
Figure 2-34 Grid encoder (KGM) [89]. 

 
One division: 5µm 

Figure 2-35 Contouring error measured by KGM 

(left) and position feedback signal (right) [90]. 

 

A wide range of sensing technologies have been applied for precision positioning [88]. In machine 

tools, capacitive, eddy current, and inductive sensors are not applicable due to the limited measuring 

range, e.g. a few millimeters. Laser interferometers are capable of long-range measurement, e.g. tens 

of meters, but limited to one dimension at a time. In the machine tool industry, grid encoders (KGM) 

(see Figure 2-34) are mainly applied for testing contouring accuracy [89][90] in 2D planar motion. 

Figure 2-35 shows different contour errors measured by KGM and the position sensor for feedback 

control. It also demonstrates the necessity of using additional sensors for capturing the tool-workpiece 

relative motion more accurately, which cannot otherwise be picked by the servo feedback position 

encoders. Law et al. [91] applied high frame rate cameras to measure machine tool vibrations. However, 

this method is also confined to planar motion, unless stereoscopic vision is used, and requires dedicated 

image processing techniques. 

 

Figure 2-36 Accelerometer assisted position feedback control [92]. 

Abir et al. [92] use an IEPE (Integrated Electronics Piezo-Electric) accelerometer to capture the relative 

vibration of the machine frame (see Figure 2-36). An IEPE accelerometer is excellent in capturing 

vibration. However, it cannot accurately capture rigid body motion, due to its inherent behavior as a 
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high-pass filter. In the next section, IMUs (Inertial Measurement Units) are specifically introduced 

since it is more suitable for sensing rigid body motion in space. 

2.6.2 Introduction to MEMS IMUs 

An IMU (Inertial Measurement Unit) is an integrated sensor consisting of a triaxial accelerometer and 

a triaxial gyroscope, which together measure linear accelerations and angular velocities. The motion 

orientation can then be estimated by the measured information [93][94]. IMUs have been widely used 

in many applications, such as aircraft navigation, automobiles, control of mobile robots, locomotion 

recognition, etc. They have also has been integrated in cellphones for more functionalities. Regarding 

machine tool applications, IMUs have not yet been widely applied to this field. Vogl et al. [95] used an 

IMU as metrology equipment to inspect the positioning error of a feed drive (see Figure 2-37), 

investigating the practicality of replacing a laser interferometer system which is typically used for long 

measurement tasks. 

 

Figure 2-37 Positioning error inspected by IMU [95]. 

The behavior of angle random walk and bias instability are the main key performance metrics of an 

IMU [94][96]. There are a variety of IMUs designed for different applications (see Figure 2-38), and 

the size and price are typically inversely proportional to the performance. High performance (military 

grade) gyroscopes can be achieved by optical gyroscopes which are based on the Sagnac effect [98]. 

When two laser beams are travelling along the same path but in opposite directions, a rotational motion 

can cause a phase difference between the laser beams. However, optical gyroscopes, whether they are 

ring laser gyroscopes (RLG) or fiber-optic gyroscopes (FOG), are bulky and extremely expensive. 

Hence, they are primarily only applied to aircraft navigation. 
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Figure 2-38 IMU product line, Honeywell [97]. 

On the other hand, IMUs made by Microelectromechanical system (MEMS) technology are relatively 

small, lightweight, and inexpensive [93]. Over the past decade, the performance of MEMS IMUs has 

improved significantly. Following this trend, it can be anticipated that more applications will emerge 

in the future. 

The principle of MEMS gyroscopes is based on the Coriolis effect, where oscillating masses during a 

rotational motion induce a Coriolis force. MEMS gyroscopes sense the corresponding changes of 

capacitance. MEMS accelerometers also sense capacitance change due to the structural deflection 

caused by the inertial force.  

Regarding the frequency response of MEMS accelerometers and gyroscopes, they can measure 0 Hz 

motion such that gravity and constant acceleration are included in the measurement. The maximum 

bandwidth is however only up to a few hundred hertz [99]. Therefore, MEMS accelerometers and 

gyroscopes are only suitable for measuring motion with low frequency content. This is successful in 

capturing rigid body motion and structural vibrations of machine tools which lie in this range. 

2.6.3 Sensor Fusion for Orientation Estimation 

Orientation computation is very important for interpreting the IMU signals correctly. This can be 

achieved by numerically integrating the measured angular velocities. This step is also called ‘strapdown 

integration’. The main error sources for strapdown integration are angle random walk (ARW) and the 

bias instability of a gyroscope. ARW is the accumulated angular error due to the integration of 
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uncorrelated white noise. Bias instability refers to the random variation of the bias over time. These 

errors are further propagated in the acceleration estimation, when extracting the gravity portion from 

the measured acceleration.  

These errors can be reduced by sensor fusion, which estimates the sensor orientation by fusing the 

information from multiple sensors and/or prediction. For example, the inclination (the orientation 

except the rotation around the gravity vector, i.e., the pitch and roll angle) can be corrected by 

accelerometers which measure the gravity direction. If integrating a triaxial magnetometer, the 

measured magnetic field can help correct the heading direction (yaw angle). However, magnetic field 

measurement can be significantly affected by local magnetic disturbances, e.g., servo motors. Hence, 

magnetometers are not applicable to the machine tool application. 

Due to the significant improvement of MEMS IMUs over the past two decades, an extensive effort has 

also been made to develop orientation estimation techniques. Well-known and published sensor fusion 

algorithms for IMUs are summarized in Table 2-2 and discussed in the following. 

Table 2-2 Summary of sensor fusion algorithms for IMUs. 

 Orientation 
Fusion 

algorithm 

Bias 

estimation 

Body acc. 

rejection scheme 

Rehbinder et al. (2004) [100] DCM KF No Yes 

Luinge et al. (2005) [101] DCM IKF Accel. & gyro. Yes 

Sabatini (2006) [102] Quaternions KF Accel. only Yes 

Suh (2010) [103] Quaternions IKF Accel. & gyro. Yes 

Yoo et al. (2011) [104] Euler angle CF No Yes 

Lee et al. (2012) [105] Euler angle KF No Yes 

Valenti et al. (2015) [106] Quaternions CF No Yes 

KF: Kalman filter, IKF: indirect Kalman filter, CF: complementary filter 

 

Orientation expressions: As can be seen from the table, numerous equivalent expressions of the 

orientation [107] are employed. Euler angles is a sequence of three rotation angles, which are easy to 

denote and understand. However, this representation sometimes is not unique, and may lead to 

singularity condition, i.e., gimbal lock. In contrast, direction cosine matrix (DCM) and quaternions are 

robust, mathematically. A DCM is a three-by-three matrix; a quaternion contains one scalar and a three-

dimensional vector, i.e. four parameters in total, which is more efficient than DCM. In particular, a 

quaternion is a linear formulation of the orientation, which, for example, is commonly used when 

developing extended Kalman filters [102]. 
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Fusion algorithms: Three types of fusion algorithms are shown in Table 2-2. Non-model-based filters 

such as complementary filters, Mahony filter [108], and Madgwick filter [109] are computationally 

efficient, which favors the use of low-cost processors. However, complementary filters are generally 

not capable of dynamically estimating sensor biases and adjusting gains with respect to the nonlinear 

orientation kinematics. These drawbacks can be addressed by a model-based filter, i.e., Kalman filter, 

treating sensor biases as additional states in the system model. A typical Kalman filter implementation 

first predicts the orientation by the gyroscope output, and then corrects the predicted orientation using 

the accelerometer output. In contrast, an indirect Kalman filter estimates the error of orientation 

prediction. The estimated orientation is later obtained by this error estimation. 

Body acceleration rejection scheme: Another critical issue is to consider and reject the body (sensor) 

acceleration. When a body, where an IMU is attached, is subject to high accelerations, the orientation 

derived from accelerometer outputs is no longer accurate. Numerous strategies have been proposed (see 

Table 2-2). However, there is still no perfect solution to distinguish the body acceleration from the 

gravity among the accelerometer outputs. A general concept of all the proposed schemes is that it 

modulates the gains or switches the models with respect to the magnitude of the sensed acceleration. 

Therefore, when high acceleration is detected, orientation estimation relies mainly on the gyroscope 

outputs and bypasses the information from the accelerometers. When the sensor is at rest, more 

weighting is provided on the accelerometer measurement. Hence, even employing the current state-of-

the-art techniques, it is important to recognize that motion estimation for only short period acceleration 

periods is acceptable, due to accumulating drift. However, during each ‘rest’ position (which happens 

frequently in machine tools), the fusion algorithm can be reset and another packet of short movement 

can be monitored and estimated correctly. 

Another point to keep in mind is that the sensor fusion algorithm is just one contribution to the overall 

accuracy of an IMU. In addition, the design of the micro-structure, fabrication quality, signal processing 

pipeline from analog to digital signals, calibration for misalignment and temperature effect, etc. are all 

important factors which influence the accuracy of such a highly integrated measurement device [110]. 

2.7 Conclusions 

This chapter has presented a survey of the literature and current state-of-the-art industrial practices in 

modeling and identification of multi-axis machine tool and robot servo systems, including effects such 

as the control law, the friction and vibrations. Review of foundational theory in multibody dynamics is 
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also conducted, and the utilization of auxiliary motion sensors in the measurement of the dynamic 

response, which cannot be accurately detected by the servo control system’s own sensors, is discussed. 

Building on this knowledge, the proceeding chapters present the accomplished research in this 

dissertation.  
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Chapter 3 

Identification of Open-Loop Dynamics of Multi-Axis Feed Drives 

3.1 Introduction 

Understanding the structure of open-loop dynamics of the feed drive, i.e., the plant in a control system, 

is a fundamental step prior to building the model of the entire feed drive closed-loop control system in 

the next chapter. This chapter elaborates the procedure of the parameter identification for the open-loop 

dynamic model. 

An industrial 5-axis laser drilling machine is studied in this chapter. In Section 3.2, the open-loop 

dynamic model of the feed drive assembly is derived according to the machine configuration and 

characteristics. Section 3.3 presents the parameter identification via linear Least Squares (LS) with 

nonlinear optimization approach. Section 3.4 presents the experimental results. In the next chapter, the 

identification of the closed-loop control system will incorporate the results of this chapter.  

3.2 Open-Loop Dynamic Model of Multi-Axis Feed Drives 

The machine studied here is a 5-axis laser drilling machine. It can drill and penetrate holes by delivering 

laser pulses from the nozzle to the workpiece. Integrated with a 5-axis positioning configuration, holes 

on freeform shaped parts along any orientation can be drilled. Such a drilling process is applied in the 

aerospace manufacturing industry.  

The machine configuration is shown in Figure 3-1. The X and Y axes are placed on top of the machine 

frame to support the laser nozzle, while the Z, B, and C axes form a serial kinematic chain as shown in 

Figure 3-2. Considering the characteristics of machine dynamics, the following assumptions are made: 

1. The X and Y axes can be simply assumed as independent decoupled feed drives, due to their 

orthogonal configuration. 

2. In contrast, the Z, B, and C axes form a serial kinematic chain where the rotary axes make the 

kinematics and dynamics inherently coupled and nonlinear.  

3. It is given that the X, Y, B and C axes are all driven by direct drive motors. Therefore, substantial 

position-dependent force/torque ripples, acting as disturbances, should be taken into account. 



 

 35 

 
Figure 3-1 Machine kinematic diagram. 

 
Figure 3-2 Z-B-C kinematic chain. 

 

The dynamic equations for each axis are derived as follows. To make the equations easier to read, each 

characteristic is denoted in respective color as the sample equation Eq. (3.1). 

𝑢𝑖 = 𝑀𝑢𝑙𝑡𝑖𝑏𝑜𝑑𝑦 𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠 + 𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 + 𝑆𝑡𝑟𝑖𝑏𝑒𝑐𝑘 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + 𝑟𝑖𝑝𝑝𝑙𝑒 (3.1) 

X-axis: 

𝑢𝑋 = 𝑀𝑋𝑞̈𝑋 + 𝑉𝑋𝑞̇𝑋 + 𝐶𝑋𝑠𝑖𝑔𝑛(𝑞̇𝑋) + 𝑆𝑋𝑠𝑖𝑔𝑛(𝑞̇𝑋)𝑒
−|𝑞̇𝑋 𝑣𝑠𝑋⁄ | +  𝑋 sin(𝜔𝑟𝑋𝑞𝑋 + 𝜙𝑟𝑋) (3.2) 

Y-axis: 

𝑢𝑌 = 𝑀𝑌𝑞̈𝑌 + 𝑉𝑌𝑞̇𝑌 + 𝐶𝑌𝑠𝑖𝑔𝑛(𝑞̇𝑌) + 𝑆𝑌𝑠𝑖𝑔𝑛(𝑞̇𝑌)𝑒
−|𝑞̇𝑌 𝑣𝑠𝑌⁄ | +  𝑌 sin(𝜔𝑟𝑌𝑞𝑌 + 𝜙𝑟𝑌) (3.3) 

Z-axis:  

𝑢𝑍 = (𝑀𝑍 +𝑀𝐵 +𝑀𝐶 +𝑀𝑊 +𝑀𝑆𝐶)𝑞̈𝑍 + (𝑀𝑍 +𝑀𝐵 +𝑀𝐶 +𝑀𝑊)(−𝑔)

+ (𝑟𝐶𝑀𝐶 + 𝑧𝑊𝑀𝑊 + 𝑟𝐶𝑀𝑊 − 𝑟𝐵𝑀𝐵)(𝑐𝑜𝑠(𝑞𝐵) 𝑞̇𝐵
2 + 𝑠𝑖𝑛(𝑞𝐵) 𝑞̈𝐵)

+ 𝑦𝑊𝑀𝑊(−2𝑐𝑜𝑠(𝑞𝐵) 𝑐𝑜𝑠(𝑞𝐶) 𝑞̇𝐵𝑞̇𝐶 + (𝑞̇𝐵
2 + 𝑞̇𝐶

2) 𝑠𝑖𝑛(𝑞𝐵) 𝑠𝑖𝑛(𝑞𝐶)

− 𝑠𝑖𝑛(𝑞𝐵) 𝑐𝑜𝑠(𝑞𝐶) 𝑞̈𝐶 − 𝑐𝑜𝑠(𝑞𝐵) 𝑠𝑖𝑛(𝑞𝐶) 𝑞̈𝐵)

+ 𝑥𝑊𝑀𝑊(2 𝑐𝑜𝑠(𝑞𝐵) 𝑠𝑖𝑛(𝑞𝐶) 𝑞̇𝐵𝑞̇𝐶 + (𝑞̇𝐵
2 + 𝑞̇𝐶

2) 𝑠𝑖𝑛(𝑞𝐵) 𝑐𝑜𝑠(𝑞𝐶)

+ 𝑠𝑖𝑛(𝑞𝐵) 𝑠𝑖𝑛(𝑞𝐶) 𝑞̈𝐶 − 𝑐𝑜𝑠(𝑞𝐵) 𝑐𝑜𝑠(𝑞𝐶) 𝑞̈𝐵) + 𝑉𝑍𝑞̇𝑍 + 𝐶𝑍𝑠𝑖𝑔𝑛(𝑞̇𝑍)

+ 𝑆𝑍𝑠𝑖𝑔𝑛(𝑞̇𝑍)𝑒
−|𝑞̇𝑍 𝑣𝑠𝑍⁄ | 

(3.4) 
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B-axis: 

𝑢𝐵 = (𝐼𝐵𝑦𝑦 + 𝐼𝐶𝑥𝑥 + 𝐼𝑊𝑥𝑥 +𝑀𝐶𝑟𝐶
2 +𝑀𝐵𝑟𝐵

2 +𝑀𝑊𝑦𝑊
2 +𝑀𝑊𝑧𝑊

2 +𝑀𝑊𝑟𝐶
2

+ 2𝑀𝑊𝑟𝐶𝑧𝑊)𝑞̈𝐵 + (𝑟𝐶𝑀𝐶 + 𝑧𝑊𝑀𝑊 + 𝑟𝐶𝑀𝑊 − 𝑟𝐵𝑀𝐵)(𝑞̈𝑍 − 𝑔) 𝑠𝑖𝑛(𝑞𝐵)

+ (−𝐼𝑊𝑧𝑥 +𝑀𝑊𝑟𝐶𝑥𝑊 +𝑀𝑊𝑥𝑊𝑧𝑊)(𝑞̇𝐶
2 𝑐𝑜𝑠(𝑞𝐶) + 𝑞̈𝐶 𝑠𝑖𝑛(𝑞𝐶))

+ (𝐼𝑊𝑥𝑦 −𝑀𝑊𝑥𝑊𝑦𝑊)(2𝑞̇𝐵𝑞̇𝐶 − 2𝑞̈𝐵 𝑐𝑜𝑠(𝑞𝐶) 𝑠𝑖𝑛(𝑞𝐶)

− 4 𝑐𝑜𝑠(𝑞𝐶)
2 𝑞̇𝐵𝑞̇𝐶)

+ (𝐼𝑊𝑦𝑧 −𝑀𝑊𝑟𝐶𝑦𝑊 −𝑀𝑊𝑦𝑊𝑧𝑊)(𝑞̈𝐶 𝑐𝑜𝑠(𝑞𝐶) − 𝑞̇𝐶
2 𝑠𝑖𝑛(𝑞𝐶))

+ (𝐼𝑊𝑥𝑥 − 𝐼𝑊𝑦𝑦 −𝑀𝑊𝑥𝑊
2 +𝑀𝑊𝑦𝑊

2)(2 𝑐𝑜𝑠(𝑞𝐶) 𝑠𝑖𝑛(𝑞𝐶) 𝑞̇𝐵𝑞̇𝐶

− 𝑐𝑜𝑠(𝑞𝐶)
2 𝑞̈𝐵) + 𝑀𝑊𝑦𝑊(𝑔 − 𝑞̈𝑍) 𝑐𝑜𝑠(𝑞𝐵) 𝑠𝑖𝑛(𝑞𝐶)

+ 𝑀𝑊𝑥𝑊(𝑔 − 𝑞̈𝑍) 𝑐𝑜𝑠(𝑞𝐵) 𝑐𝑜𝑠(𝑞𝐶) + 𝑉𝐵𝑞̇𝐵 + 𝐶𝐵𝑠𝑖𝑔𝑛(𝑞̇𝐵)

+ 𝑆𝐵𝑠𝑖𝑔𝑛(𝑞̇𝐵)𝑒
−|𝑞̇𝐵 𝑣𝑠𝐵⁄ |

+  𝐵(1 + 𝛼𝐵|sin(𝑞𝐵 + 𝜀𝑟𝐵)|) sin(𝜔𝑟𝐵𝑞𝐵 + 𝜙𝑟𝐵) 

(3.5) 

C-axis: 

𝑢𝐶 = (𝐼𝐶𝑧𝑧 + 𝐼𝑊𝑧𝑧 +𝑀𝑊𝑥𝑊
2 +𝑀𝑊𝑦𝑊

2)𝑞̈𝐶 + (𝐼𝑊𝑥𝑦 −𝑀𝑊𝑥𝑊𝑦𝑊)(2 𝑐𝑜𝑠(𝑞𝐶)
2 − 1)𝑞̇𝐵

2

+ (−𝐼𝑊𝑧𝑥 +𝑀𝑊𝑟𝐶𝑥𝑊 +𝑀𝑊𝑥𝑊𝑧𝑊)𝑞̈𝐵 𝑠𝑖𝑛(𝑞𝐶)

+ (𝐼𝑊𝑦𝑧 −𝑀𝑊𝑟𝐶𝑦𝑊 −𝑀𝑊𝑦𝑊𝑧𝑊)𝑞̈𝐵 𝑐𝑜𝑠(𝑞𝐶)

+ (𝐼𝑊𝑥𝑥 − 𝐼𝑊𝑦𝑦 −𝑀𝑊𝑥𝑊
2 +𝑀𝑊𝑦𝑊

2)(− 𝑠𝑖𝑛(𝑞𝐶) 𝑐𝑜𝑠(𝑞𝐶)𝑞̇𝐵
2)

+ 𝑀𝑊𝑦𝑊(−𝑞̈𝑍 + 𝑔) 𝑠𝑖𝑛(𝑞𝐵) 𝑐𝑜𝑠(𝑞𝐶) + 𝑀𝑊𝑥𝑊(𝑞̈𝑍 − 𝑔) 𝑠𝑖𝑛(𝑞𝐵) 𝑠𝑖𝑛(𝑞𝐶)

+ 𝑉𝐶𝑞̇𝐶 + 𝐶𝐶𝑠𝑖𝑔𝑛(𝑞̇𝐶) + 𝑆𝐶𝑠𝑖𝑔𝑛(𝑞̇𝐶)𝑒
−|𝑞̇𝐶 𝑣𝑠𝐶⁄ |

+  𝐶(1 + 𝛼𝐶|sin(𝑞𝐶 + 𝜀𝑟𝐶)|) sin(𝜔𝑟𝐶𝑞𝐶 + 𝜙𝑟𝐶) 

(3.6) 

The parameters shown in the above dynamic equations are categorized in Table 3-1. 

Table 3-1 Parameters of the dynamic model. 

Type Notation Description 

Multibody 

𝑀𝑋, 𝑀𝑌, 𝑀𝑍, 𝑀𝐵, 𝑀𝐶, 𝑀𝑊, 𝑀𝑆𝐶 Mass of each axis, workpiece, and 

equivalent mass of the Z-axis ball screw 

𝑟𝐵, 𝑟𝐶, 𝑥𝑊, 𝑦𝑊, 𝑧𝑊 Location of the center of mass 

𝐼𝐵𝑦𝑦 , 𝐼𝐶𝑥𝑥 ,  𝐼𝐶𝑧𝑧 , 𝐼𝑊𝑥𝑥 , 𝐼𝑊𝑦𝑦 , 𝐼𝑊𝑧𝑧 , 

𝐼𝑊𝑧𝑥, 𝐼𝑊𝑥𝑦 𝐼𝑊𝑦𝑧 

Inertia of each axis and workpiece 

Friction 
𝑉𝑋, 𝑉𝑌, 𝑉𝑍, 𝑉𝐵, 𝑉𝐶 Viscous damping coefficient 

𝐶𝑋, 𝐶𝑌, 𝐶𝑍, 𝐶𝐵, 𝐶𝐶 Coulomb friction coefficient 
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𝑆𝑋, 𝑆𝑌, 𝑆𝑍, 𝑆𝐵, 𝑆𝐶 Stribeck friction coefficient 

𝑣𝑠𝑋, 𝑣𝑠𝑌, 𝑣𝑠𝑍, 𝑣𝑠𝐵, 𝑣𝑠𝐶 Friction velocity coefficient 

Ripple 

 𝑋,  𝑌,  𝑍,  𝐵,  𝐶 Ripple magnitude 

𝜔𝑟𝑋, 𝜔𝑟𝑌, 𝜔𝑟𝐵, 𝜔𝑟𝐶 Ripple frequency 

𝜙𝑟𝑋, 𝜙𝑟𝑌, 𝜙𝑟𝐵, 𝜙𝑟𝐶 Ripple phase 

𝛼𝐵, 𝛼𝐶 Ripple magnitude 2 

𝜀𝑟𝐵, 𝜀𝑟𝐶 Ripple phase 2 

 

The open-loop dynamics in Eqs. (3.2)-(3.6), can be rearranged into a general matrix form: 

 𝒖 = 𝑴(𝒒)𝒒̈ + 𝒉(𝒒, 𝒒̇) + 𝑪𝒒̇ + 𝒖𝑓(𝒒̇) + 𝒖𝑝(𝒒) (3.7) 

Above, 𝑴(𝒒) and 𝑪 are the mass and viscous damping matrices, respectively. 𝒉(𝒒, 𝒒̇) is the vector 

containing the Coriolis, centrifugal, and gravitational terms. 𝒖𝑓(𝒒̇) and 𝒖𝑝(𝒒) are nonlinear friction 

and position-dependent ripples, respectively. 𝒒 represents the measured position or angle of each drive. 

𝒖 is the measured motor current, which can be viewed as the equivalent motor force/torque related by 

the motor constant. Components of this equation can be broken down into the categories outlined below. 

Multi-Rigid-Body Dynamics 

The equations of multibody dynamics can be derived using the Euler-Lagrange equations. 

Alternatively, to avoid making mistakes in the derivation by hand, MapleSim, which is based on graph 

theory [111], can be applied to deriving the equations systematically. The multibody dynamics is 

depicted by 𝑴(𝒒) and 𝒉(𝒒, 𝒒̇), which are coupled and nonlinear due to the nature of Z-B-C-axis serial 

kinematic chain (see Figure 3-2). 

Joint Friction 

Friction at joints includes linear viscous damping 𝑪𝒒̇ and nonlinear friction 𝒖𝑓(𝒒̇). Coulomb friction, 

and Stribeck effect are considered in the nonlinear friction model. For the 𝑖th axis, the nonlinear friction 

𝑢𝑓𝑖 can be described as: 

 𝑢𝑓𝑖 = 𝑑𝑛𝑖(𝑞̇𝑖)[𝐶𝑖 + 𝑆𝑖𝑒
−|𝑞̇𝑖 𝑣𝑠𝑖⁄ |] (3.8) 

The associated parameters, 𝐶𝑖, 𝑆𝑖, and 𝑣𝑠𝑖 are described in Table 3-1.  
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             (a) Normalized friction vs. time                          (b) Normalized friction vs. velocity. 

Figure 3-3 Normalized friction for the ith axis. 

𝑑𝑛𝑖(𝑞̇𝑖) in Eq. (3.8) can be a saturation function [7] or a hyperbolic function [28] to describe a smooth 

transition of friction forces around zero velocity, such that numerical problems at pre-sliding region 

could be avoided. This thesis presents a model integrating a saturation function with a relay function 

shown below. At the kth discrete time step, 

If: 𝑠𝑖𝑔𝑛(𝑞̈𝑖𝑘) × 𝑠𝑖𝑔𝑛(𝑞̇𝑖𝑘) == −1 

𝑑𝑛𝑘 = 𝑑𝑛𝑘−1  

Else:   

𝑑𝑛𝑘 = 𝑠𝑎𝑡−1
1 (𝑑𝑛𝑘−1 + (𝑞̇𝑖𝑘 − 𝑞̇𝑖𝑘−1)/𝑣𝑛𝑖)   

(3.9) 

An example of this friction model is demonstrated in Figure 3-3. The output is bounded within ±1 and 

𝐶1-continuous within a small velocity band, ±𝑣𝑛𝑖. Comparing to the conventional sign function with 

discontinuous binary outputs, 1 or -1, such feature can help avoid numerical noise and limit cycles 

when running simulation. 

Due to the relay concept, it captures the effect that the friction remains constant if the feed drive stops 

momentarily and then moves toward the same direction, as shown in Figure 3-3 (a). This feature well-

describes the friction behavior of an actual feed drive. Although the proposed normalized friction may 

not be the most accurate model for describing friction around near-zero velocity [35], the proposed 

mathematical simplification was observed to yield simpler parameter identification, better 

computational efficiency, and still, sufficient modeling fidelity. 
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Force/Torque Ripple 

Direct drive motors exhibit substantial position-dependent ripple acting as an external disturbance. For 

the 𝑖th axis, the ripple can be described as:  

 𝑢𝑝𝑖
=  𝑖(1 + 𝛼𝑟𝑖|𝑠𝑖𝑛(𝑞𝑖 + 𝜀𝑟𝑖)|) 𝑠𝑖𝑛(𝑞𝑖𝜔𝑟𝑖 + 𝜙𝑟𝑖) (3.10) 

 𝑖 , 𝜔𝑟𝑖 , and 𝜙𝑟𝑖  are the magnitude, frequency, and the phase of the ripple. The term 

(1 + 𝛼𝑟𝑖|𝑠𝑖𝑛(𝑞𝑖 + 𝜀𝑟𝑖)|) is particularly included into the model to capture the effect of the imperfect 

motor assembly. In the case of linear (translational) motors, this term would be discarded. 

Position-Dependent Disturbance Model by Lookup Table with Linear Interpolation 

In some cases, the force/torque ripple cannot be accurately depicted by an ideal sinusoidal equation as 

Eq. (3.10). Additionally, there are other position-dependent disturbances. For example, the tension 

force from the motor cables and the varying guideway disturbance due to imperfect assembly are both 

position-dependent. Exact analytical expressions for the above disturbances may not exist. The author 

proposes a model based on a discrete lookup table, which can accommodate the position-dependent 

disturbances with any kind of distribution. 

The traveling range of the 𝑖th axis is discretized into 𝑁𝑔𝑖
 grids with the size 𝑙𝑔𝑖

. The grids should be 

sufficiently fine to describe the disturbance variation along the 𝑖 th axis. The position-dependent 

disturbance 𝑢𝑝𝑖 is defined as follows. 

 

∀ 𝑘 ∈ 1,… ,𝑁𝑔𝑖
 

𝐼𝑓: |𝑝𝑘𝑖 − 𝑞𝑖| < 𝑙𝑔𝑖
, 𝑡ℎ𝑒𝑛: 𝑤𝑘𝑖 = 1 −

|𝑝𝑘𝑖 − 𝑞𝑖|

𝑙𝑔𝑖
 

𝐸𝑙𝑠𝑒:𝑤𝑘𝑖 = 0  

𝑢𝑝𝑖 =∑𝑚𝑘𝑖𝑤𝑘𝑖

𝑁𝑔𝑖

𝑘=1

 

(3.11) 

Above, 𝑚𝑘𝑖 is disturbance magnitude coefficient for the 𝑘th grid at position 𝑝𝑘𝑖. 𝑤𝑘𝑖 is the positional 

weighting factor. 𝑚1𝑖  … 𝑚𝑁𝑔𝑖𝑖
 are the parameters that have to be identified.  𝑤1𝑖  … 𝑤𝑁𝑔𝑖𝑖

 are 

dependent variables determined by the feed drive’s location 𝑞𝑖. 
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To illustrate this idea, an example is shown in Figure 3-4. The position of the 𝑖th axis 𝑞𝑖 is located 

between 𝑝𝑘𝑖  and 𝑝𝑘+1𝑖 . In this case, 𝑤𝑘𝑖 = 0.4 and 𝑤𝑘+1𝑖 = 0.6. The disturbance is calculated as 

𝑢𝑝𝑖
= 𝑚𝑘𝑖 × 0.6 + 𝑚𝑘+1𝑖 × 0.4. 

 

Figure 3-4 Example of position-dependent disturbance by lookup table with linear 

interpolation. 

To achieve desirable modeling resolution, fine grids are required. This might result in an enormous 

number of parameters in this model. However, this is not a problem, since all the parameters 

(𝑚1𝑖, … ,𝑚𝑁𝑔𝑖𝑖
) are linear with respect to the position variable (𝑤1𝑖, … , 𝑤𝑁𝑔𝑖𝑖

). Therefore, they can be 

efficiently estimated by linear LS. In contrast, the force/ripple model proposed in Eq. (3.10) contains 

only three parameters. However, the three parameters are nonlinear and thus require nonlinear 

estimation techniques, leading to much higher computational cost. 

This model has been applied for the case study in Section 4.3.2, whereas the case study in this chapter 

has used the sinusoidal force/torque ripple model in Eq. (3.10). 

3.3 Parameter Identification 

The strategy of parameter identification in this research has considered the accuracy of the model, the 

efficiency of the computation, and the feasibility for industrial implementation. Hence, the proposed 

identification strategy illustrated in this section has several features. 

(a) Considering the feasibility for industrial implementation, the data for the identification were 

collected during the manufacturing process, such that the production was not interrupted. 

(b) Considering model fidelity, numerous dynamic effects were included in the model, e.g., multibody 

dynamics, nonlinear friction, and force/torque ripple. 

(c) Considering accuracy and efficiency, the parameters were identified via a tandem strategy 

combining linear Least Squares (LS) with nonlinear optimization. 
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On-the-Fly Data Collection and Data Selection 

The above dynamic models are intended to be identified using the data of the measured servo position 

and the motor current of all the five axes collected during a real laser drilling process.  

The laser drilling toolpath contains a large number of simultaneous 5-axis movements, generating rich 

data for model identification. The low velocity and acceleration components of the motion are less 

informative for identifying the inertia parameters. However, the friction phenomenon during the low 

velocity motion (in pre-sliding regime) is time-dependent. Considering the above issues, only the 

collected data with high-velocity or high-acceleration were selected by a velocity and acceleration 

threshold. 

Parameter Identification of Open-Loop Dynamics 

In order to identify parameters by a combination of linear Least Squares (LS) and nonlinear global 

optimization, Eqs. (3.2)-(3.6) should be first examined and expressed as the following equations. In the 

following,   𝑗
𝑖  and 𝑄𝑗

𝑖  denote parameters which appear as linear and nonlinear terms, respectively. 

These are henceforth referred to as ‘linear parameters’, and ‘nonlinear parameters’. 

X-axis: 

𝑢𝑋 =  1
𝑋𝑞̈𝑋 +  2

𝑋𝑞̇𝑋 +  3
𝑋𝑠𝑖𝑔𝑛(𝑞̇𝑋) +  4

𝑋𝑠𝑖𝑔𝑛(𝑞̇𝑋)𝑒
−|𝑞̇𝑋 𝑄1

𝑋⁄ | +  5
𝑋 sin(𝑄2

𝑋𝑞𝑋 + 𝑄3
𝑋) (3.12) 

Y-axis: 

𝑢𝑌 =  1
𝑌𝑞̈𝑌 +  2

𝑌𝑞̇𝑌 +  3
𝑌𝑠𝑖𝑔𝑛(𝑞̇𝑌) +  4

𝑌𝑠𝑖𝑔𝑛(𝑞̇𝑌)𝑒
−|𝑞̇𝑌 𝑄1

𝑌⁄ | +  5
𝑌 sin(𝑄2

𝑌𝑞𝑌 + 𝑄3
𝑌) (3.13) 

Z-axis: 

𝑢𝑍 =  1
𝑍𝑞̈𝑍 +  2

𝑍 +  3
𝑍(𝑐𝑜𝑠(𝑞𝐵) 𝑞̇𝐵

2 + 𝑠𝑖𝑛(𝑞𝐵) 𝑞̈𝐵)

+  4
𝑍(−2 𝑐𝑜𝑠(𝑞𝐵) 𝑐𝑜𝑠(𝑞𝐶) 𝑞̇𝐵𝑞̇𝐶 + (𝑞̇𝐵

2 + 𝑞̇𝐶
2) 𝑠𝑖𝑛(𝑞𝐵) 𝑠𝑖𝑛(𝑞𝐶)

− 𝑠𝑖𝑛(𝑞𝐵) 𝑐𝑜𝑠(𝑞𝐶) 𝑞̈𝐶 − 𝑐𝑜𝑠(𝑞𝐵) 𝑠𝑖𝑛(𝑞𝐶) 𝑞̈𝐵)

+  5
𝑍(2 𝑐𝑜𝑠(𝑞𝐵) 𝑠𝑖𝑛(𝑞𝐶) 𝑞̇𝐵𝑞̇𝐶 + (𝑞̇𝐵

2 + 𝑞̇𝐶
2) 𝑠𝑖𝑛(𝑞𝐵) 𝑐𝑜𝑠(𝑞𝐶)

+ 𝑠𝑖𝑛(𝑞𝐵) 𝑠𝑖𝑛(𝑞𝐶) 𝑞̈𝐶 − 𝑐𝑜𝑠(𝑞𝐵) 𝑐𝑜𝑠(𝑞𝐶) 𝑞̈𝐵) +  6
𝑍𝑞̇𝑍 +  7

𝑍𝑠𝑖𝑔𝑛(𝑞̇𝑍)

+  8
𝑍𝑠𝑖𝑔𝑛(𝑞̇𝑍)𝑒

−|𝑞̇𝑍 𝑄1
𝑍⁄ | 

(3.14) 

B-axis:  
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𝑢𝐵 =  1
𝐵𝑞̈𝐵 +  2

𝐵(𝑞̈𝑍 − 𝑔) 𝑠𝑖𝑛(𝑞𝐵) +  3
𝐵(𝑞̇𝐶

2 𝑐𝑜𝑠(𝑞𝐶) + 𝑞̈𝐶 𝑠𝑖𝑛(𝑞𝐶))

+  4
𝐵(2𝑞̇𝐵𝑞̇𝐶 − 2𝑞̈𝐵 𝑐𝑜𝑠(𝑞𝐶) 𝑠𝑖𝑛(𝑞𝐶) − 4 𝑐𝑜𝑠(𝑞𝐶)

2 𝑞̇𝐵𝑞̇𝐶)

+  5
𝐵(𝑞̈𝐶 𝑐𝑜𝑠(𝑞𝐶) − 𝑞̇𝐶

2 𝑠𝑖𝑛(𝑞𝐶))

+  6
𝐵(2 𝑐𝑜𝑠(𝑞𝐶) 𝑠𝑖𝑛(𝑞𝐶) 𝑞̇𝐵𝑞̇𝐶 − 𝑐𝑜𝑠(𝑞𝐶)

2 𝑞̈𝐵)

+  7
𝐵(𝑔 − 𝑞̈𝑍) 𝑐𝑜𝑠(𝑞𝐵) 𝑠𝑖𝑛(𝑞𝐶) +  8

𝐵(𝑔 − 𝑞̈𝑍) 𝑐𝑜𝑠(𝑞𝐵) 𝑐𝑜𝑠(𝑞𝐶) +  9
𝐵𝑞̇𝐵

+  10
𝐵 𝑠𝑖𝑔𝑛(𝑞̇𝐵) +  11

𝐵 𝑠𝑖𝑔𝑛(𝑞̇𝐵)𝑒
−|𝑞̇𝐵 𝑄1

𝐵
𝐵

⁄ | +  12
𝐵 sin(𝑄2

𝐵𝑞𝐵 + 𝑄3
𝐵)

+  13
𝐵 |sin(𝑞𝐵 +𝑄4

𝐵)| sin(𝑄2
𝐵𝑞𝐵 +𝑄3

𝐵) 

(3.15) 

C-axis: 

𝑢𝐶 =  1
𝐶𝑞̈𝐶 +  2

𝐶(2 𝑐𝑜𝑠(𝑞𝐶)
2 − 1)𝑞̇𝐵

2 +  3
𝐶𝑞̈𝐵 𝑠𝑖𝑛(𝑞𝐶) +  4

𝐶𝑞̈𝐵 𝑐𝑜𝑠(𝑞𝐶)

+  5
𝐶(−𝑠𝑖𝑛(𝑞𝐶) 𝑐𝑜𝑠(𝑞𝐶)𝑞̇𝐵

2) +  6
𝐶(−𝑞̈𝑍 + 𝑔) 𝑠𝑖𝑛(𝑞𝐵) 𝑐𝑜𝑠(𝑞𝐶)

+  7
𝐶(𝑞̈𝑍 − 𝑔) 𝑠𝑖𝑛(𝑞𝐵) 𝑠𝑖𝑛(𝑞𝐶) +  8

𝐶𝑞̇𝐶 +  9
𝐶𝑠𝑖𝑔𝑛(𝑞̇𝐶)

+  10
𝐶 𝑠𝑖𝑔𝑛(𝑞̇𝐶)𝑒

−|𝑞̇𝐶 𝑄1
𝐶⁄ | +  11

𝐶 sin(𝑄2
𝐶𝑞𝐶 + 𝑄3

𝐶)

+  12
𝐶 |sin(𝑞𝐶 + 𝑄4

𝐶)| sin(𝑄2
𝐶𝑞𝐶 + 𝑄3

𝐶) 

(3.16) 

The parameters in the above open-loop dynamic equations, Eqs. (3.12)-(3.16), are summarized in Table 

3-2.  

Table 3-2 Number of parameters to be estimated for open-loop dynamics. 

 X Y Z B C Total 

Linear parameters  𝑗
𝑖 5 5 8 13 12 43 

Nonlinear parameters 𝑄𝑗
𝑖  3 3 1 4 4 15 

 

In order to estimate linear parameters by linear LS, the observation matrix 𝑾 should be derived by 

differentiating the equations of motion Eq. (3.7) with respect to 𝝌𝐿: 

𝑾(𝒒, 𝒒̇, 𝒒̈, 𝝌𝑁𝐿) =
𝜕

𝜕𝝌𝐿
[𝑴(𝒒)𝒒̈ + 𝒉(𝒒, 𝒒̇) + 𝑪𝒒̇ + 𝒖𝑓(𝒒̇) + 𝒖𝑝(𝒒)] (3.17) 

𝝌𝐿 and 𝝌𝑁𝐿 are vectors of linear and nonlinear parameters, where ∀ 𝑗
𝑖 ∈ 𝝌𝐿 and ∀𝑄𝑗

𝑖 ∈ 𝝌𝑁𝐿.  

𝝌𝐿  contains all the parameters that differentiate Eq. (3.7) without leaving the parameter itself in 

𝑾(𝒒, 𝒒̇, 𝒒̈, 𝝌𝑁𝐿). In other words, 𝑾 is independent of 𝝌𝐿. On the other hand, the parameters excluded 

from 𝝌𝐿 are placed into 𝝌𝑁𝐿. 
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Per the dynamic model presented in Section 3.2, 𝝌𝐿 includes the parameters of the multibody model 

𝑴(𝒒) and 𝒉(𝒒, 𝒒̇), viscous friction term 𝑪, the Coulomb friction 𝐶𝑖 , the stiction 𝑆𝑖 , and the torque 

ripple magnitude  𝑖. 𝝌𝑁𝐿 contains 𝜔𝑟𝑖 and 𝜙𝑟𝑖 from the torque ripple model and 𝑣𝑠𝑖 from the Stribeck 

curve.  

Eq. (3.7) can then be re-written as a linear LS problem: 

 𝒖 = 𝑾(𝒒, 𝒒̇, 𝒒̈, 𝝌̂𝑁𝐿)𝝌𝐿 + 𝒆𝒓𝒓𝒐𝒓 (3.18) 

In this thesis, 𝝌̂𝑁𝐿 is searched using a nonlinear global optimization method, Global Search (GS) [112], 

which combines gradient-based optimization, yielding fast local minima convergence, with a 

systematic approach of trying multiple different initial values selected from a prescribed search space. 

In every iteration of the GS, a set of candidate 𝝌̂𝑁𝐿 is chosen first. Then, 𝝌𝐿 is estimated by the pseudo 

inverse of 𝑾 in the form (i.e., LS solution of Eq. (3.18)) 

 𝝌̂𝐿 = 𝑾†𝒖 = (𝑾𝑻𝑾)
−1
𝑾𝑻𝒖 (3.19) 

The predicted motor input 𝒖̂ can be obtained by  

 𝒖̂ = 𝑾𝝌̂𝐿 (3.20) 

Hence in each iteration of GS, ‖𝒖 − 𝒖̂‖2, which is the 2-norm of error of motor torque prediction, is 

minimized with the prescribed 𝝌̂𝑁𝐿. Thus, the objective function for GS is designed as 

 min
𝝌𝑁𝐿

‖𝒖 − 𝒖̂‖2 (3.21) 

Thus, 𝝌̂𝐿 and 𝝌̂𝑁𝐿 are estimated iteratively to produce the minimal prediction error in terms of motor 

torque. Such an approach is capable of solving problems with nonlinear parameters with efficiency, 

due to the tandem application of LS with GS, reducing the number of free-search parameter 

dramatically, per Table 3-2. 
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3.4 Experiment and Results 

 

(a) Toolpath & orientation. 

 

(b) Normalized axis velocity commands. 

Figure 3-5 The trajectory of 5-axis laser drilling process. 

The proposed method was applied to identify the model of a 5-axis laser drilling machine in industry. 

The motor current and measured (servo) position data were collected during a laser drilling process for 

producing a turbine engine component. The toolpath and the axial velocity of this drilling process are 

shown in Figure 3-5. For confidentiality, the data has been normalized without displaying absolute 

values. The toolpath contains a large number of simultaneous 5-axis movements, which can be regarded 

to show pseudo-random nature, thereby generating rich data for model identification. 

 
Figure 3-6 Normalized 2-norm of 

error. 

 

 
Figure 3-7 SISO vs. MIMO dynamic model, B-axis. 
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To prevent overfitting, the normalized 2-norm of error ‖𝒖 − 𝒖̂‖2/‖𝒖‖2 is plotted in Figure 3-6 to 

examine the convergence of the identification. The normalized 2-norm of error keeps rising in the first 

20 seconds. It implies that the amount of data collected within this period could be insufficient. After 

around 50 seconds, the normalized 2-norm of error converges at around 3.4%, which means the 

collected data is sufficiently long for the identification. 

To validate the superiority of the developed coupled nonlinear MIMO model, a SISO model is also 

identified as a baseline for comparison, which discards the dynamic coupling terms. Figure 3-7 shows 

the experimental data and model prediction results for the B-axis. During acceleration and deceleration 

periods, the SISO model has significantly larger estimation error, due to ignoring the dynamic coupling 

terms coming from the other axes. The result proves the advantage of using MIMO dynamic models 

for multi-axis machine tools with serial kinematic chains and direct drive rotary motors. 

 

Figure 3-8 Motor current prediction, C-axis. 

Figure 3-8 shows a comparison of C-axis motor current prediction with and without the torque ripple 

model. The position-dependent ripple is shown to be an apparent disturbance causing substantial motor 

current variation. Therefore, the torque ripple needs to be considered so that the estimation and 

simulation of other dynamic characteristics will not be corrupted due to this effect. 

 

Figure 3-9 Torque ripple estimation, C-axis. 
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Figure 3-9 shows the estimated torque ripple overlapping with the extracted ripple data from the 

measured motor current. It shows that the frequency of ripples is consistent, and the magnitude varies 

with the angle, which is most likely due to imperfect motor assembly. This magnitude variation is also 

captured by the proposed model. 

 

Figure 3-10 Friction estimation, B-axis. 

A distinct Stribeck curve is also identified. Figure 3-10 shows the estimated friction model overlapping 

with the extracted friction data from the measured motor current. Due to the fact that the data was 

collected from a real drilling process, not from dedicated experiments, steady state condition (i.e. 

constant velocity) is not satisfied. Nevertheless, this result still substantially captures the friction 

behaviour. 

3.5 Conclusion 

This chapter presents the identification of the open-loop dynamics of a multi-axis feed drive system. 

The methodology is demonstrated using an industrial 5-axis laser drilling machine. The derived 

dynamic model considers multibody dynamics, nonlinear friction, and motor ripple. The model 

parameters are identified by combining nonlinear global optimization with linear least squares, based 

on the servo data collected during a real laser drilling process, which contains a large number of 

simultaneous multi-axis movements. 

The identification results show that coupled multibody dynamics should be considered for accurate 

modeling of machine dynamics, especially for the acceleration and deceleration phases. Distinct 

Stribeck friction curve and motor ripple can also be identified from the gathered in-process data.  

The established open-loop dynamic model in this chapter is an essential step prior to the identification 

of the complete closed-loop control system, which is presented in the next chapter.    
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Chapter 4 

Identification of Multi-Axis Feed Drive Control System 

4.1 Introduction and Motivation 

 

Figure 4-1 A multi-axis feed drive control system. 

In Chapter 3, the open-loop dynamic model of a multi-axis feed drive system (𝒖 → 𝒒) was built. 

Machine tool end users and researchers are especially interested in the control accuracy with respect to 

a certain manufacturing process, or being able to use the complete system dynamics for virtual process 

optimization or real-time signal monitoring. Therefore, the model should be extended to include the 

closed-loop control system (𝒒𝒓 → 𝒒), which would further include the controllers for each axis (see 

Figure 4-1). However, the details of the commercial controllers are typically confidential and unknown 

to the end users. Thus, the controller dynamics, or its resulting impact on the closed-loop response, 

should also be identified. 

There are at two main identification approaches. The first approach is identifying the controller and the 

open-loop dynamics (the plant) individually, in a bottom-up sense, in two separated steps. The other is 

identifying the closed loop control system as a whole in a top-down sense. The first approach requires 

more effort to investigate each component and may lead to a less accurate result, due to the 

accumulation of the estimation error resulting from the two separated steps. 

The second approach, is also referred in CNC literature as ‘rapid identification’ [6] (see Section 2.3.2). 

Given that most of the industrial servo controllers are linear P-PI positive-velocity cascade structure 

with velocity and acceleration feedforward, the closed-loop control system of a single-axis feed drive 

can be described by a linear time-invariant (LTI) transfer function. However, when it comes to multi-

axis feed drives where the multibody dynamics is coupled and nonlinear, such methodology, developed 

for a decoupled single-axis feed drive, becomes inaccurate. 
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In this chapter, the above problem is resolved by a novel decoupling formulation. An equivalent 

dynamic model derived through this formulation and the corresponding parameter estimation strategy 

is detailed in Section 4.2. Experimental validation shown in Section 4.3 demonstrates that a high-

fidelity closed-loop response model for a multi-axis machine can be then established just with the 

knowledge of the kinematic configuration and collected CNC data. 

4.2 Algorithm of MIMO Identification with Nonlinear Coupling 

The proposed algorithm has two parts. First, an equivalent model representation to describe a general 

closed-loop control system is presented in Section 4.2.1 and Section 4.2.2. Second, the identification 

method of the above proposed equivalent model is presented in Section 4.2.3 and Section 4.2.4. 

In Section 4.2.1, a decoupling formulation is first presented. It treats all the non-LTI open-loop 

dynamics as a generalized disturbance. In Section 4.2.2, the rest of the LTI open-loop dynamics and 

the LTI controllers constitute an LTI closed-loop control system, which is viewed as a MIMO LTI 

system where the generalized disturbance vector is considered among the system inputs. 

Section 4.2.3 details the identification of the MIMO LTI system. Section 4.2.4 illustrates the overall 

model-building procedure, which utilizes and integrates the identification of the open-loop dynamics 

presented in Chapter 3. 

4.2.1 Decoupling of the Nonlinear and Linear Open-Loop Dynamics 

As discussed in Section 3.2, the open-loop dynamics of an 𝑁-axis feed drive can be modeled as: 

𝒖 = 𝑴(𝒒)𝒒̈ + 𝒉(𝒒, 𝒒̇) + 𝑪𝒒̇ + 𝑲𝒒 + 𝒖𝑓(𝒒̇) + 𝒖𝑝(𝒒) (4.1) 

𝒒 = {𝑞1  ⋯ 𝑞𝑖  ⋯ 𝑞𝑁}
𝑇and 𝒖 = {𝑢1  ⋯ 𝑢𝑖  ⋯ 𝑢𝑁}

𝑇  represent the actual position and control signal, 

respectively. 𝑴(𝒒)  is the mass matrix. 𝒉(𝒒, 𝒒̇)  is the vector containing Coriolis, centrifugal, and 

gravitational terms. 𝒖𝑓(𝒒̇)  and 𝒖𝑝(𝒒)  are nonlinear friction and position-dependent disturbances 

respectively. 𝑲 is the stiffness matrix if structural flexibility is considered. The examples demonstrated 

in this chapter (Section 4.3) are based on multi-rigid-body dynamics. Thus, while 𝑲 matrix is not used 

in this chapter, it will be included and discussed in detail in Chapter 5. 𝑪 matrix is linear viscous 

damping contributed by different joint interfaces, including prismatic joints (linear guideways), 

revolute joints (bearings), or flexible joints (in the case of a flexible structure). 

The terms 𝑴(𝒒)𝒒̈ in Eq. (4.1) can be re-written as: 
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𝑴(𝒒)𝒒̈ = [
𝑀1

⋱
𝑀𝑁

] 𝒒̈ + 𝑴̃(𝒒)𝒒̈ = 𝑴𝛥𝒒̈ + 𝑴̃(𝒒)𝒒̈ (4.2) 

𝑴𝚫 is a diagonal matrix which includes only the time-invariant and decoupled inertia terms. All the 

other nonlinear terms, such as trigonometric functions, are gathered in 𝑴̃(𝒒). Based on this separation, 

the Eq. (4.1) can be rearranged as: 

𝒖 = 𝑴𝜟𝒒̈ + 𝑪𝒒̇ + 𝑲𝒒 + 𝒅(𝒒, 𝒒̇, 𝒒̈) (4.3) 

𝑴𝜟𝒒̈ + 𝑪𝒒̇ + 𝑲𝒒 represents LTI dynamics, and 𝒅(𝒒, 𝒒̇, 𝒒̈), referred to in this thesis as the ‘generalized 

disturbance’, captures all significant nonlinearities, like coupled multibody dynamics, friction, and 

torque ripples. Considering Eqs. (4.1)-(4.3), it can be expressed as: 

𝒅(𝒒, 𝒒̇, 𝒒̈) = 𝑴̃(𝒒)𝒒̈ + 𝒉(𝒒, 𝒒̇) + 𝒖𝑓(𝒒̇) + 𝒖𝑝(𝒒) (4.4) 

In other words, 𝒅(𝒒, 𝒒̇, 𝒒̈) separates the nonlinearities from the rest of LTI dynamics. 

Decoupling Derivation for the 5-Axis Laser Drilling Machine 

To illustrate the above decoupling step, the 5-axis laser drilling machine introduced in Chapter 3 is used 

as an example. According to the multi-rigid-body dynamic equations (3.12)-(3.16), the general form of 

the decoupling expression Eq. (4.3) can be expressed as: 

{
 
 

 
 
𝑢𝑋 =  1

𝑋𝑞̈𝑋 +  2
𝑋𝑞̇𝑋 + 𝑑𝑋

𝑢𝑌 =  1
𝑌𝑞̈𝑌 +  2

𝑌𝑞̇𝑌 + 𝑑𝑌
𝑢𝑍 =  1

𝑍𝑞̈𝑍 +  6
𝑍𝑞̇𝑍 + 𝑑𝑍

𝑢𝐵 =  1
𝐵𝑞̈𝐵 +  9

𝐵𝑞̇𝐵 + 𝑑𝐵
𝑢𝐶 =  1

𝐶𝑞̈𝐶 +  8
𝐶𝑞̇𝐶 + 𝑑𝐶

 (4.5) 

As mentioned earlier, since structural flexibility is not considered in this chapter (but will be studied 

from Chapter 5), the 𝑲𝒒 term is excluded. The generalized disturbance 𝒅 = [𝑑𝑋 𝑑𝑌 𝑑𝑍 𝑑𝐵 𝑑𝐶]
𝑇  for 

each axis is then derived as follows. 

X-axis: 

𝑑𝑋 =  3
𝑋𝑠𝑖𝑔𝑛(𝑞̇𝑋) +  4

𝑋𝑠𝑖𝑔𝑛(𝑞̇𝑋)𝑒
−|𝑞̇𝑋 𝑄1

𝑋⁄ | +  5
𝑋 sin(𝑄2

𝑋𝑞𝑋 +𝑄3
𝑋) (4.6) 

Y-axis: 
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𝑑𝑌 =  3
𝑌𝑠𝑖𝑔𝑛(𝑞̇𝑌) +  4

𝑌𝑠𝑖𝑔𝑛(𝑞̇𝑌)𝑒
−|𝑞̇𝑌 𝑄1

𝑌⁄ | +  5
𝑌 sin(𝑄2

𝑌𝑞𝑌 + 𝑄3
𝑌) (4.7) 

Z-axis: 

𝑑𝑍 = + 2
𝑍 +  3

𝑍(𝑐𝑜𝑠(𝑞𝐵) 𝑞̇𝐵
2 + 𝑠𝑖𝑛(𝑞𝐵) 𝑞̈𝐵)

+  4
𝑍(−2𝑐𝑜𝑠(𝑞𝐵) 𝑐𝑜𝑠(𝑞𝐶) 𝑞̇𝐵𝑞̇𝐶 + (𝑞̇𝐵

2 + 𝑞̇𝐶
2) 𝑠𝑖𝑛(𝑞𝐵) 𝑠𝑖𝑛(𝑞𝐶)

− 𝑠𝑖𝑛(𝑞𝐵) 𝑐𝑜𝑠(𝑞𝐶) 𝑞̈𝐶 − 𝑐𝑜𝑠(𝑞𝐵) 𝑠𝑖𝑛(𝑞𝐶) 𝑞̈𝐵)

+  5
𝑍(2 𝑐𝑜𝑠(𝑞𝐵) 𝑠𝑖𝑛(𝑞𝐶) 𝑞̇𝐵𝑞̇𝐶 + (𝑞̇𝐵

2 + 𝑞̇𝐶
2) 𝑠𝑖𝑛(𝑞𝐵) 𝑐𝑜𝑠(𝑞𝐶)

+ 𝑠𝑖𝑛(𝑞𝐵) 𝑠𝑖𝑛(𝑞𝐶) 𝑞̈𝐶 − 𝑐𝑜𝑠(𝑞𝐵) 𝑐𝑜𝑠(𝑞𝐶) 𝑞̈𝐵) +  7
𝑍𝑠𝑖𝑔𝑛(𝑞̇𝑍)

+  8
𝑍𝑠𝑖𝑔𝑛(𝑞̇𝑍)𝑒

−|𝑞̇𝑍 𝑄1
𝑍⁄ | 

(4.8) 

B-axis: 

𝑑𝐵 =  2
𝐵(𝑞̈𝑍 − 𝑔) 𝑠𝑖𝑛(𝑞𝐵) +  3

𝐵(𝑞̇𝐶
2 𝑐𝑜𝑠(𝑞𝐶) + 𝑞̈𝐶 𝑠𝑖𝑛(𝑞𝐶))

+  4
𝐵(2𝑞̇𝐵𝑞̇𝐶 − 2𝑞̈𝐵 𝑐𝑜𝑠(𝑞𝐶) 𝑠𝑖𝑛(𝑞𝐶) − 4 𝑐𝑜𝑠(𝑞𝐶)

2 𝑞̇𝐵𝑞̇𝐶)

+  5
𝐵(𝑞̈𝐶 𝑐𝑜𝑠(𝑞𝐶) − 𝑞̇𝐶

2 𝑠𝑖𝑛(𝑞𝐶))

+  6
𝐵(2 𝑐𝑜𝑠(𝑞𝐶) 𝑠𝑖𝑛(𝑞𝐶) 𝑞̇𝐵𝑞̇𝐶 − 𝑐𝑜𝑠(𝑞𝐶)

2 𝑞̈𝐵)

+  7
𝐵(𝑔 − 𝑞̈𝑍) 𝑐𝑜𝑠(𝑞𝐵) 𝑠𝑖𝑛(𝑞𝐶) +  8

𝐵(𝑔 − 𝑞̈𝑍) 𝑐𝑜𝑠(𝑞𝐵) 𝑐𝑜𝑠(𝑞𝐶)

+  10
𝐵 𝑠𝑖𝑔𝑛(𝑞̇𝐵) +  11

𝐵 𝑠𝑖𝑔𝑛(𝑞̇𝐵)𝑒
−|𝑞̇𝐵 𝑄1

𝐵
𝐵

⁄ | +  12
𝐵 sin(𝑄2

𝐵𝑞𝐵 + 𝑄3
𝐵)

+  13
𝐵 |sin(𝑞𝐵 + 𝑄4

𝐵)| sin(𝑄2
𝐵𝑞𝐵 + 𝑄3

𝐵) 

(4.9) 

C-axis: 

𝑑𝐶 =  2
𝐶(2 𝑐𝑜𝑠(𝑞𝐶)

2 − 1)𝑞̇𝐵
2 +  3

𝐶𝑞̈𝐵 𝑠𝑖𝑛(𝑞𝐶) +  4
𝐶𝑞̈𝐵 𝑐𝑜𝑠(𝑞𝐶)

+  5
𝐶(−𝑠𝑖𝑛(𝑞𝐶) 𝑐𝑜𝑠(𝑞𝐶)𝑞̇𝐵

2) +  6
𝐶(−𝑞̈𝑍 + 𝑔) 𝑠𝑖𝑛(𝑞𝐵) 𝑐𝑜𝑠(𝑞𝐶)

+  7
𝐶(𝑞̈𝑍 − 𝑔) 𝑠𝑖𝑛(𝑞𝐵) 𝑠𝑖𝑛(𝑞𝐶) +  9

𝐶𝑠𝑖𝑔𝑛(𝑞̇𝐶) +  10
𝐶 𝑠𝑖𝑔𝑛(𝑞̇𝐶)𝑒

−|𝑞̇𝐶 𝑄1
𝐶⁄ |

+  11
𝐶 sin(𝑄2

𝐶𝑞𝐶 + 𝑄3
𝐶) +  12

𝐶 |sin(𝑞𝐶 +𝑄4
𝐶)| sin(𝑄2

𝐶𝑞𝐶 + 𝑄3
𝐶) 

(4.10) 
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4.2.2 MIMO LTI System Representation 

  

Figure 4-2 LTI closed-loop dynamics and the generalized disturbance. 

The structure of an industrial servo controller could be PID or P-PI position-velocity cascade control 

with optional feedforward terms and filters, which in general fits the LTI framework. Nonlinear effects, 

like sensor quantization or actuator saturation, are either negligible or avoided through careful trajectory 

planning. Hence, a general controller with an LTI feedback and feedforward control law (𝑲𝑓𝑏 and 𝑲𝑓𝑓) 

can be expressed as 

𝒖 = 𝑲𝑓𝑓𝒒𝒓 +𝑲𝑓𝑏𝒆 (4.11) 

𝒆 is the tracking error, i.e., 𝒆 = 𝒒𝒓 − 𝒒. Then, the open-loop dynamics (comprising LTI and nonlinear 

portions) and the LTI controller, i.e., Eq. (4.3), Eq. (4.4), and Eq. (4.11), can be combined as the block 

diagram shown in Figure 4-2, where the bottom green block represents LTI closed-loop dynamics, and 

the blue block on top represents the nonlinear effects, captured by the generalized disturbance 𝒅. 

 

Figure 4-3 A general equivalent representation of a multi-axis feed drive control system. 
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Signals which are directly measurable from CNCs, such as tracking error 𝒆 and motor force/torque 𝒖, 

are selected as the outputs of the system. Also, these signals are highly relevant for monitoring the 

dynamic positioning accuracy and machine / process condition. 

The LTI closed-loop dynamics, shown as the green block in Figure 4-2, can be viewed as a MIMO LTI 

system, where each axis is a 22 LTI subsystem, as shown in Figure 4-3. For the 𝑖th axis, the outputs 

are the servo error (𝑒𝑖) and motor torque (𝑢𝑖), and inputs are the generalized disturbance (𝑑𝑖) and 

trajectory position command (𝑞𝑟𝑖).  

The calculation of the generalized disturbance 𝒅 requires mechanical states variables [𝒒, 𝒒̇, 𝒒̈], which 

can be determined by Eq. (4.12) as additional outputs of the MIMO LTI closed-loop dynamics 

{
 
 

 
 
𝒒 = 𝒒𝒓 − 𝒆

𝒒̇ =
𝑑

𝑑𝑡
𝒒

𝒒̈ =
𝑑

𝑑𝑡
𝒒̇

 (4.12) 

For the 𝑖th axis, the LTI closed-loop dynamics is a 22 subsystem expressed as 

{
𝑒𝑖(𝑠) = 𝐺𝑒𝑖𝑑𝑖(𝑠)𝑑𝑖(𝑠) + 𝐺𝑒𝑖𝑞𝑟𝑖(𝑠)𝑞𝑟𝑖(𝑠)

𝑢𝑖(𝑠) = 𝐺𝑢𝑖𝑑𝑖(𝑠)𝑑𝑖(𝑠) + 𝐺𝑢𝑖𝑞𝑟𝑖(𝑠)𝑞𝑟𝑖(𝑠)
 

𝐺𝑒𝑖𝑑𝑖(𝑠) =
𝑁𝑒𝑖𝑑𝑖

(𝑠)

𝐷𝑖(𝑠)
;   𝐺𝑒𝑖𝑞𝑟𝑖(𝑠) =

𝑁𝑒𝑖𝑞𝑟𝑖
(𝑠)

𝐷𝑖(𝑠)
;   𝐺𝑢𝑖𝑑𝑖(𝑠) =

𝑁𝑢𝑖𝑑𝑖
(𝑠)

𝐷𝑖(𝑠)
;   𝐺𝑢𝑖𝑞𝑟𝑖(𝑠) =

𝑁𝑢𝑖𝑞𝑟𝑖
(𝑠)

𝐷𝑖(𝑠)
  

(4.13) 

The four transfer functions share the same characteristic polynomial 𝐷𝑖(𝑠): 

𝐷𝑖(𝑠) = 𝜫𝑚=1

𝑛𝑟𝑖 𝜫𝑘=1

𝑛𝑐𝑖 (𝑠 + 𝑝𝑚,𝑖) (𝑠
2 + 2𝜁𝑘,𝑖𝜔𝑛𝑘,𝑖𝑠 + 𝜔𝑛𝑘,𝑖

2) (4.14) 

𝑛𝑟𝑖  and 𝑛𝑐𝑖  are the numbers of real poles and complex pole pairs. 𝑛𝑝𝑖 = 𝑛𝑟𝑖 + 2 × 𝑛𝑐𝑖  is the total 

number of poles, i.e., the order of the linear closed-loop dynamic model. 𝑁𝑒𝑖𝑑𝑖(𝑠), 𝑁𝑒𝑖𝑞𝑟𝑖(𝑠), 𝑁𝑢𝑖𝑑𝑖(𝑠), 

and 𝑁𝑢𝑖𝑞𝑟𝑖(𝑠) are numerator polynomials of which the order and structure can be determined by 

deriving each of the symbolic transfer functions. For generality, the following equations represent the 

full-order expressions.  
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{
  
 

  
 𝑁𝑒𝑖𝑑𝑖(𝑠) = 𝑏0

𝑒𝑖𝑑𝑖𝑠
𝑛𝑝𝑖 + 𝑏1

𝑒𝑖𝑑𝑖𝑠
𝑛𝑝𝑖

−1
+⋯+ 𝑏𝑛𝑝𝑖−1

𝑒𝑖𝑑𝑖 𝑠1 + 𝑏𝑛𝑝𝑖
𝑒𝑖𝑑𝑖𝑠0

𝑁𝑒𝑖𝑞𝑟𝑖
(𝑠) = 𝑏0

𝑒𝑖𝑞𝑟𝑖𝑠
𝑛𝑝𝑖 + 𝑏1

𝑒𝑖𝑞𝑟𝑖𝑠
𝑛𝑝𝑖

−1
+⋯+ 𝑏𝑛𝑝𝑖−1

𝑒𝑖𝑞𝑟𝑖 𝑠1 + 𝑏𝑛𝑝𝑖

𝑒𝑖𝑞𝑟𝑖𝑠0

𝑁𝑢𝑖𝑑𝑖(𝑠) = 𝑏0
𝑢𝑖𝑑𝑖𝑠

𝑛𝑝𝑖 + 𝑏1
𝑢𝑖𝑑𝑖𝑠

𝑛𝑝𝑖
−1
+⋯+ 𝑏𝑛𝑝𝑖−1

𝑢𝑖𝑑𝑖 𝑠1 + 𝑏𝑛𝑝𝑖
𝑢𝑖𝑑𝑖𝑠0

𝑁𝑢𝑖𝑞𝑟𝑖
(𝑠) = 𝑏0

𝑢𝑖𝑞𝑟𝑖𝑠
𝑛𝑝𝑖 + 𝑏1

𝑢𝑖𝑞𝑟𝑖𝑠
𝑛𝑝𝑖

−1
+⋯+ 𝑏𝑛𝑝𝑖−1

𝑢𝑖𝑞𝑟𝑖 𝑠1 + 𝑏𝑛𝑝𝑖

𝑢𝑖𝑞𝑟𝑖𝑠0

 (4.15) 

  

Figure 4-4 LTI closed-loop dynamics. 

The LTI closed-loop dynamics (green block) in Figure 4-2 can, in a more general case, also be presented 

in Figure 4-4, where the linear open-loop dynamics is denoted as 𝑷(𝑠). Then, the transfer functions of 

the 22 system can be derived as follows.  

𝐺𝑒𝑖𝑑𝑖(𝑠) =
 𝑖(𝑠)

1 + 𝐾𝑓𝑏𝑖
(𝑠) 𝑖(𝑠)

    𝐺𝑒𝑖𝑞𝑟𝑖(𝑠) =
1 − 𝐾𝑓𝑓𝑖

(𝑠) 𝑖(𝑠)

1 + 𝐾𝑓𝑏𝑖
(𝑠) 𝑖(𝑠)

 

𝐺𝑢𝑖𝑑𝑖(𝑠) =
𝐾𝑓𝑏𝑖

(𝑠) 𝑖(𝑠)

1 + 𝐾𝑓𝑏𝑖
(𝑠) 𝑖(𝑠)

   𝐺𝑢𝑖𝑞𝑟𝑖
(𝑠) =

𝐾𝑓𝑏𝑖
(𝑠) + 𝐾𝑓𝑓𝑖

(𝑠)

1 + 𝐾𝑓𝑏𝑖
(𝑠) 𝑖(𝑠)

 

(4.16) 

Considering a typical industrial controller and plant, several assumptions can be made as listed in Table 

4-1. The numbers of poles of each component are determined accordingly. 

Table 4-1 System assumption and the resulting number of poles. 

 No. of poles  Assumption 

𝐾𝑓𝑏𝑖
(𝑠) 1 Considering an integral controller, one pole is assigned. 

𝐾𝑓𝑓𝑖
(𝑠)  2 

Velocity and acceleration feedforward is included. To realize a causal 

system, two high-frequency poles are configured. 

 𝑖(𝑠)  2+2n 
One rigid body motion is 2nd-order. If further considering n vibratory 

modes, 2n poles can be added into the system. 

 

According to the above assumptions, the general expressions of the numerator polynomial and 

characteristic polynomial, Eq. (4.14) and Eq. (4.15), can be determined and simplified. The following 

sections illustrate a rigid body case and a flexible structure with one vibratory mode respectively. 
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Rigid Body Case 

The rigid body motion and the integral control can be arranged as one real pole and one complex pole 

pair. The complex pair would automatically be identified as two real poles, in the case that the true 

servo system demonstrates overdamped behavior. The feedforward control contributes two real poles 

in the high-frequency region, in order to realize a causal system (i.e., low-pass filter implementation 

together with derivative). In total, the characteristic polynomial 𝐷𝑖(𝑠) can be configured as a 5th-order 

system with three real poles (𝑛𝑟𝑖 = 3 ) and one complex pole pair (𝑛𝑐𝑖 = 1 .) The respective 

characteristic polynomial and numerator polynomial structure can be derived and simplified as: 

{
 
 
 

 
 
 𝐷𝑖(𝑠) = 𝚷𝑚=1

3 𝚷𝑘=1
1 (𝑠 + 𝑝𝑚,𝑖) (𝑠

2 + 2𝜁𝑘,𝑖𝜔𝑛𝑘,𝑖𝑠 + 𝜔𝑛𝑘,𝑖
2)

𝑁𝑒𝑖𝑑𝑖(𝑠) = 𝑏1
𝑒𝑖𝑑𝑖𝑠1 + 𝑏2

𝑒𝑖𝑑𝑖𝑠0

𝑁𝑒𝑖𝑞𝑟𝑖
(𝑠) = 𝑏1

𝑒𝑖𝑞𝑟𝑖𝑠5 + 𝑏2
𝑒𝑖𝑞𝑟𝑖𝑠4 + 𝑏3

𝑒𝑖𝑞𝑟𝑖𝑠3 + 𝑏4
𝑒𝑖𝑞𝑟𝑖𝑠2 + 𝑏5

𝑒𝑖𝑞𝑟𝑖𝑠1

𝑁𝑢𝑖𝑑𝑖(𝑠) = 𝑏1
𝑢𝑖𝑑𝑖𝑠2 + 𝑏2

𝑢𝑖𝑑𝑖𝑠1 +𝚷𝑚=1
3 𝚷𝑘=1

1 𝑝𝑚,𝑖𝜔𝑛𝑘,𝑖
2

𝑁𝑢𝑖𝑞𝑟𝑖
(𝑠) = 𝑏1

𝑢𝑖𝑞𝑟𝑖𝑠5 + 𝑏2
𝑢𝑖𝑞𝑟𝑖𝑠4 + 𝑏3

𝑢𝑖𝑞𝑟𝑖𝑠3 + 𝑏4
𝑢𝑖𝑞𝑟𝑖𝑠2 + 𝑏5

𝑢𝑖𝑞𝑟𝑖𝑠1

 (4.17) 

It should be noted that the two real poles coming from the feedforward control, due to their fast 

response, will not cause significant impact on the overall dynamic responses. Hence, they can be 

preassigned as certain high-frequency values (such as a fraction of the Nyquist frequency) and do not 

need to be treated as unknown variables. 

Flexible Structure with One Vibratory Mode 

If taking one vibratory mode into account, the number of complex pole pairs 𝑛𝑐𝑖 can be configured as 

two, leading to a 7th-order system. The respective numerator polynomial can be derived as: 

{
 
 
 

 
 
 𝐷𝑖(𝑠) = 𝚷𝑚=1

3 𝚷𝑘=1
2 (𝑠 + 𝑝𝑚,𝑖) (𝑠

2 + 2𝜁𝑘,𝑖𝜔𝑛𝑘,𝑖𝑠 + 𝜔𝑛𝑘,𝑖
2)

𝑁𝑒𝑖𝑑𝑖(𝑠) = 𝑏1
𝑒𝑖𝑑𝑖𝑠3 + 𝑏2

𝑒𝑖𝑑𝑖𝑠2 + 𝑏3
𝑒𝑖𝑑𝑖𝑠1 + 𝑏4

𝑒𝑖𝑑𝑖𝑠0

𝑁𝑒𝑖𝑞𝑟𝑖
(𝑠) = 𝑏1

𝑒𝑖𝑞𝑟𝑖𝑠7 + 𝑏2
𝑒𝑖𝑞𝑟𝑖𝑠6 + 𝑏3

𝑒𝑖𝑞𝑟𝑖𝑠5 + 𝑏4
𝑒𝑖𝑞𝑟𝑖𝑠4 + 𝑏5

𝑒𝑖𝑞𝑟𝑖𝑠3 + 𝑏6
𝑒𝑖𝑞𝑟𝑖𝑠2 + 𝑏7

𝑒𝑖𝑞𝑟𝑖𝑠1

𝑁𝑢𝑖𝑑𝑖(𝑠) = 𝑏1
𝑢𝑖𝑑𝑖𝑠4 + 𝑏2

𝑢𝑖𝑑𝑖𝑠3 + 𝑏3
𝑢𝑖𝑑𝑖𝑠2 + 𝑏4

𝑢𝑖𝑑𝑖𝑠1 +𝚷𝑚=1
3 𝚷𝑘=1

2 𝑝𝑚,𝑖𝜔𝑛𝑘,𝑖
2

𝑁𝑢𝑖𝑞𝑟𝑖(𝑠) = 𝑏1
𝑢𝑖𝑞𝑟𝑖𝑠7 + 𝑏2

𝑢𝑖𝑞𝑟𝑖𝑠6 + 𝑏3
𝑢𝑖𝑞𝑟𝑖𝑠5 + 𝑏4

𝑢𝑖𝑞𝑟𝑖𝑠4 + 𝑏5
𝑢𝑖𝑞𝑟𝑖𝑠3 + 𝑏6

𝑢𝑖𝑞𝑟𝑖𝑠2 + 𝑏7
𝑢𝑖𝑞𝑟𝑖𝑠1

 (4.18) 
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4.2.3 Parameter Identification of MIMO LTI System 

In the last section, the equivalent model of a multi-axis feed drive control system was derived, 

comprising a MIMO LTI portion and the nonlinear dynamics. In this section, the identification of the 

MIMO LTI system is illustrated. 

There are two main steps in this identification. First, the predicted generalized disturbance is 

reconstructed from the estimated open-loop dynamic model. Second, the predicted generalized 

disturbance and the collected CNC data are used to identify the MIMO LTI system. The pole locations 

and numerator coefficients are iteratively estimated by constrained global optimization in conjunction 

with linear LS. This strategy accelerates and improves the convergence of the model identification. 

Generalized Disturbance Reconstruction 

In Section 3.3, the parameters of the open-loop dynamic model, i.e., 𝝌̂𝐿 and 𝝌̂𝑁𝐿, were estimated. By 

plugging 𝝌̂𝐿 and 𝝌̂𝑁𝐿 into Eq. (4.4), the predicted generalized disturbance 𝒅̂ can be reconstructed by 

the collected CNC data, 𝒒, 𝒒̇, and 𝒒̈, per the following equation: 

𝒅̂(𝒒, 𝒒̇, 𝒒̈, 𝝌̂𝐿 , 𝝌̂𝑁𝐿) = 𝑴̃(𝒒, 𝝌̂𝐿)𝒒̈ + 𝒉̃(𝒒, 𝒒̇, 𝝌̂𝐿) + 𝒖𝑓(𝒒̇, 𝜲̂𝐿 , 𝜲̂𝑁𝐿) + 𝒖𝑝(𝒒, 𝜲̂𝐿) (4.19) 

Pole Search with LS Projection Method 

Numerous approaches can be used to identify the parameters of the proposed closed-loop MIMO LTI 

model. Identifying all the parameters by least squares (LS) method can be very computationally 

efficient. However, since there is no constraint, this approach could lead to unstable poles due to noisy 

observed data. On the other hand, if all the parameters were found by constrained nonlinear 

optimization methods, this approach may require a high computational cost.  

Pole search with LS projection method [7][8] is a middle ground strategy that resolves the above 

dilemma. Essentially, it is a hybrid strategy where the poles are searched by constrained optimization, 

while the numerator coefficients are dependently solved for each candidate pole set using LS . In this 

thesis, a specific version of this approach has been derived for a 22 system, representing the 𝑖th axis. 

Considering the general full-order numerator polynomial in Eq. (4.15), the 22 LTI subsystem in Eq. 

(4.13) can be rearranged as: 
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{
 
 

 
 𝑒𝑖(𝑠) = (

𝑑̂𝑖(𝑠)𝑠
𝑛𝑝𝑖

𝐷𝑖(𝑠)
𝑏0
𝑒𝑖𝑑𝑖 +⋯+

𝑑̂𝑖(𝑠)𝑠
0

𝐷𝑖(𝑠)
𝑏𝑛𝑝𝑖
𝑒𝑖𝑑𝑖) + (

𝑞𝑟𝑖(𝑠)𝑠
𝑛𝑝𝑖

𝐷𝑖(𝑠)
𝑏0
𝑒𝑖𝑞𝑟𝑖 +⋯+

𝑞𝑟𝑖(𝑠)𝑠
0

𝐷𝑖(𝑠)
𝑏𝑛𝑝𝑖

𝑒𝑖𝑞𝑟𝑖)

𝑢𝑖(𝑠) = (
𝑑̂𝑖(𝑠)𝑠

𝑛𝑝𝑖

𝐷𝑖(𝑠)
𝑏0
𝑢𝑖𝑑𝑖 +⋯+

𝑑̂𝑖(𝑠)𝑠
0

𝐷𝑖(𝑠)
𝑏𝑛𝑝𝑖
𝑢𝑖𝑑𝑖)+ (

𝑞𝑟𝑖(𝑠)𝑠
𝑛𝑝𝑖

𝐷𝑖(𝑠)
𝑏0
𝑢𝑖𝑞𝑟𝑖 +⋯+

𝑞𝑟𝑖(𝑠)𝑠
0

𝐷𝑖(𝑠)
𝑏𝑛𝑝𝑖

𝑢𝑖𝑞𝑟𝑖)

 (4.20) 

Eq. (4.20) is a general full-order expression. Depending on the model assumptions, this can be 

simplified as, for example, Eq. (4.17) or (4.18). To keep the derivation general, the following 

illustration is based on the full-order expression. 

 

Figure 4-5 Pole search scheme. 

As seen in Figure 4-5, a candidate pole vector 𝝌𝑃𝑖 = [𝑝1,𝑖, … , 𝑝𝑛𝑟𝑖,𝑖, 𝜔𝑛1,𝑖, … , 𝜔𝑛𝑛𝑐𝑖,𝑖
, 𝜁1,𝑖, … , 𝜁𝑛𝑐𝑖,𝑖]

𝑇
 

can be searched within prescribed boundaries by constrained global optimization methods. The 

candidate characteristic polynomial 𝐷𝑖(𝑠) is constructed according to the candidate pole vector 𝝌𝑃𝑖.  

After constructing a candidate characteristic polynomial 𝐷𝑖(𝑠), 𝑑𝑖̂ and 𝑞𝑟𝑖 are used to compute   𝑤𝑘
𝑑𝑖(𝑠) 

and 𝑤𝑘
𝑞𝑟𝑖(𝑠) via the filter 

𝑠𝑘

𝐷𝑖(𝑠)
. 

{
𝑤𝑘
𝑑𝑖(𝑠) =

𝑠𝑘

𝐷𝑖(𝑠)
𝑑𝑖̂(𝑠)

𝑤𝑘
𝑞𝑟𝑖(𝑠) =

𝑠𝑘

𝐷𝑖(𝑠)
𝑞𝑟𝑖(𝑠)

; 𝑘 ∈ [0,… , 𝑛𝑝𝑖] (4.21) 

𝑤𝑘
𝑑𝑖(𝑠) and 𝑤𝑘

𝑞𝑟𝑖(𝑠) are called ‘filtered’ versions of inputs by the candidate characteristic polynomial. 

By plugging in 𝑤𝑘
𝑑𝑖(𝑠) and 𝑤𝑘

𝑞𝑟𝑖(𝑠), Eq. (4.20) can be derived as 

{
𝑒𝑖(𝑠) = (𝑤𝑛𝑝𝑖

𝑑𝑖 (𝑠)𝑏0
𝑒𝑖𝑑𝑖 +⋯+𝑤0

𝑑𝑖(𝑠)𝑏𝑛𝑝𝑖
𝑒𝑖𝑑𝑖) + (𝑤𝑛𝑝𝑖

𝑞𝑖 (𝑠)𝑏0
𝑒𝑖𝑞𝑟𝑖 +⋯+𝑤0

𝑞𝑟𝑖(𝑠)𝑏𝑛𝑝𝑖

𝑒𝑖𝑞𝑟𝑖)

𝑢𝑖(𝑠) = (𝑤𝑛𝑝𝑖
𝑑𝑖 (𝑠)𝑏0

𝑢𝑖𝑑𝑖 +⋯+𝑤0
𝑑𝑖(𝑠)𝑏𝑛𝑝𝑖

𝑢𝑖𝑑𝑖) + (𝑤𝑛𝑝𝑖

𝑞𝑟𝑖 (𝑠)𝑏0
𝑢𝑖𝑞𝑟𝑖 +⋯+𝑤0

𝑞𝑟𝑖(𝑠)𝑏𝑛𝑝𝑖

𝑢𝑖𝑞𝑟𝑖)
 (4.22) 
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The numerator coefficients 𝑏𝑘
𝑒𝑖𝑑𝑖 , 𝑏𝑘

𝑒𝑖𝑞𝑟𝑖 , 𝑏𝑘
𝑢𝑖𝑑𝑖 , and 𝑏𝑘

𝑢𝑖𝑞𝑟𝑖  are unknown and can be viewed as the 

participation factors of the filtered inputs 𝑤𝑘
𝑑𝑖(𝑠) and 𝑤𝑘

𝑞𝑟𝑖(𝑠) on the outputs 𝑒𝑖(𝑠) and 𝑢𝑖(𝑠). The 

unknown numerator coefficients are linearly arranged and therefore can be estimated by linear LS via 

the known signals of 𝑤𝑘
𝑑𝑖, 𝑤𝑘

𝑞𝑟𝑖, 𝑒𝑖, and 𝑢𝑖. 

While collecting the identification dataset, Eq. (4.22) can be constructed as an overdetermined system: 

{
𝒆𝑖
𝒖𝑖
} = [

𝑾𝒊 𝑶
𝑶 𝑾𝒊

] 𝝌𝐵𝑖 + 𝜺𝑖  (4.23) 

𝒆𝑖 and 𝒖𝑖 are 𝑁𝑡 samples of tracking error and motor current data, {
𝒆𝑖 = [𝑒𝑖(1) ⋯ 𝑒𝑖(𝑁𝑡)]1×𝑁𝑡

𝑇

𝒖𝑖 = [𝑢𝑖(1) ⋯ 𝑢𝑖(𝑁𝑡)]1×𝑁𝑡
𝑇  

𝑾𝒊 is the observation matrix composed of 𝑁𝑡 samples of filtered inputs 𝑤𝑘
𝑑𝑖 and 𝑤𝑘

𝑞𝑟𝑖: 

𝑾𝒊 = [

𝑤𝑛𝑝𝑖
𝑑𝑖 (1) ⋯ 𝑤0

𝑑𝑖(1) 𝑤𝑛𝑝𝑖

𝑞𝑟𝑖 (1) ⋯ 𝑤0
𝑞𝑟𝑖(1)

⋮ ⋯ ⋮ ⋮ ⋯ ⋮

𝑤𝑛𝑝𝑖
𝑑𝑖 (𝑁𝑡) ⋯ 𝑤0

𝑑𝑖(𝑁𝑡) 𝑤𝑛𝑝𝑖

𝑞𝑟𝑖 (𝑁𝑡) ⋯ 𝑤0
𝑞𝑟𝑖(𝑁𝑡)

]

𝑁𝑡×(2𝑛𝑝𝑖
+2)

  

𝝌𝐵𝑖 is the numerator coefficient vector: 

𝝌𝐵𝑖 = [𝑏0
𝑒𝑖𝑑𝑖 ⋯ 𝑏𝑛𝑝𝑖

𝑒𝑖𝑑𝑖 𝑏0
𝑒𝑖𝑞𝑟𝑖 ⋯ 𝑏𝑛𝑝𝑖

𝑒𝑖𝑞𝑟𝑖 𝑏0
𝑢𝑖𝑑𝑖 ⋯ 𝑏𝑛𝑝𝑖

𝑢𝑖𝑑𝑖 𝑏0
𝑢𝑖𝑞𝑟𝑖 ⋯ 𝑏𝑛𝑝𝑖

𝑢𝑖𝑞𝑟𝑖
]
1×(4𝑛𝑝𝑖

+4)

𝑇
 

Thus, for each candidate pole set 𝝌𝑃𝑖, the numerator coefficient vector 𝝌𝐵𝑖 is estimated by the pseudo 

inverse of 𝑾𝒊 in the form: 

𝝌𝐵𝑖̂ = [
(𝑾𝑖

𝑻𝑾𝒊)
−1
𝑾𝑖

𝑻 𝑶

𝑶 (𝑾𝑖
𝑻𝑾𝒊)

−1
𝑾𝑖

𝑻
] {
𝒆𝑖
𝒖𝑖
} (4.24) 

The best estimate for 𝜲𝐵𝑖  and 𝜲𝑃𝑖  are iteratively found by using a constrained global optimization 

method that minimizes the following objective function: 

min
𝝌𝑃𝑖

‖ {
𝒆𝑖
𝒖𝑖
} − [

𝑾𝒊 𝑶
𝑶 𝑾𝒊

] 𝝌𝐵𝑖̂  ‖
2
 (4.25) 
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4.2.4 Proposed Model Estimation Procedure 

Table 4-2 Parameter classification. 

Machine model Independent parameters Dependent parameters 

Closed-loop MIMO LTI 

dynamics 
Pole locations 𝝌𝑃 Numerator coefficients 𝝌𝐵 

Open-loop dynamics Nonlinear parameters 𝝌𝑁𝐿 Linear parameters 𝝌𝐿 

Method of parameter 

estimation 

Estimated by constrained 

global optimization 
Estimated by linear LS 

 

Per the classification shown in Table 4-2, the proposed entire machine model has two parts, MIMO 

LTI system and open-loop (generally nonlinear) dynamics, with four distinct sets of parameters 𝝌𝑃, 

𝝌𝐵 , 𝝌𝐿 , and 𝝌𝑁𝐿 . 𝝌𝑃  and 𝝌𝑁𝐿  are independent parameters which have to be found by constrained 

global optimization. Once 𝝌𝑃 and 𝝌𝑁𝐿 are determined, 𝝌𝐵 and 𝝌𝐿 are dependently estimated by linear 

LS. 

 

Figure 4-6 An overview of the proposed model-building approach via in-process data. 

The complete model estimation procedure is presented in Figure 4-6. The multibody dynamics is 

derived based on the given machine kinematic configuration (Step 1). Field data collection and analysis 

(Step 2) helps detect vibratory dynamics, inter-axis coupling, friction, and ripple effects. The parametric 

dynamic model is configured and derived according to the above information in Step 3. The parameters 

are iteratively solved in Step 4. In each iteration, at first, global search [112], which is a constrained 

global optimization method, is performed to find candidate independent parameters, 𝝌𝑃 and 𝝌𝑁𝐿. In 

Step 4.1, identification of open-loop dynamics is performed to estimate 𝝌𝐿 (see Section 3.3). In Step 

4.2, the predicted generalized disturbance 𝒅̂ is constructed based on the estimated 𝝌𝐿̂ and the candidate 

𝝌𝑁𝐿̂ (see Section 4.2.1). In Step 4.3, the identification of MIMO LTI system is performed to estimate 
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the numerator coefficients 𝝌𝐵  (see Section 4.2.3). Lastly. Step 4.4 monitors estimation error and 

terminates the iteration of global optimization when the optimum is found, or given search duration is 

exceeded. 

4.2.5 Novel Points and Advantages of the Proposed Algorithm 

The proposed idea has numerous novelties listed below: 

A. By separating the nonlinear and linear terms, both the nonlinear multibody dynamic model as well 

as the linear controller model can be identified together. 

B. The stability of the identified closed-loop system is guaranteed by using a constrained optimization 

method to search for the poles in the stable region. This approach is superior to linear least squares, 

where the parameters solution is unbounded. Additionally, the pole locations for the control systems 

in industrial machine tools are normally located within a certain range. This information facilitates 

easier bounding of the pole locations. 

C. The separation of the parameters into independent and dependent parameters greatly balances 

model accuracy and computational efficiency for identification. For example, as shown in Section 

4.3.1, an overall machine model with 143 parameters can be identified with this systematic solution, 

while requiring the simultaneous search of no more than 4-8 independent parameters at a time. 

D. In earlier methods [6][7][8][9], the disturbance only included Coulomb friction. In this work, the 

generalized disturbance additionally includes inter-axis coupling and/or ripple effects, which 

improves the persistence of excitation for the LTI model identification. 

E. The developed algorithm is systematic, and the model can be configured conveniently by the given 

machine kinematics, which is easily accessible documentation. Hence, this method is conducive to 

automated digital twin estimation for machine tool drive systems. 

F. The model can be extended for multi-axis drives with structural flexibility. This extension is 

discussed in Chapter 5 through Chapter 8. 

4.3 Experimental Validation 

The proposed model estimation method has been implemented and validated using the 5-axis laser 

drilling machine, introduced in Chapter 3, and an in-house 3-axis trunnion unit. The results are 

illustrated in the following subsections. 
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4.3.1 Five-Axis Laser Drilling Machine 

The parametric machine model was developed considering all the dynamic effects mentioned in Section 

3.2. Table 4-3 is a summary of all the parameters in the developed model. There are 143 parameters in 

total, where 34 (15+19) parameters are independent search parameters. However, as a main strength of 

the proposed systematic identification strategy, the number of simultaneously searched independent 

parameters for each axis remains only in the range of 4-8, which renders the proposed solution highly 

efficient. 

Table 4-3 Parameter number statistics for laser drilling machine model. 

 X Y Z B C Total 

Open-loop 

dynamics 

𝝌𝑁𝐿 

Stribeck Friction velocity const. 𝑣𝑠 1 1 1 1 1 

15 
Torque ripple spatial freq. 𝜔𝑟 1 1 - 1 1 

Torque ripple phase shift 𝜙𝑟 1 1 - 1 1 

Ripple amplitude phase 𝜖𝑟 - - - 1 1 

𝝌𝐿 

Diagonal inertia 1 1 1 1 1 

43 

Diagonal damping 1 1 1 1 1 

Coupled multibody dynamics - - 4 7 6 

Torque ripple amplitude   1 1 - 1 1 

Ripple amplitude modulation 𝛼𝑟 - - - 1 1 

Stribeck and Coulomb friction 2 2 2 2 2 

Closed-loop 

LTI dynamics 

𝝌𝑃 
Rigid body motion poles 𝑝1, 𝜔𝑛1, 𝜁1 3 3 3 3 3 

19 
Vibratory response poles 𝜔𝑛2, 𝜁2 2 2 - - - 

𝝌𝐵  

Numerator terms for 𝑁𝑒𝑖𝑑𝑖(𝑠) 4 4 2 2 2 

84 
Numerator terms for 𝑁𝑒𝑖𝑞𝑟𝑖

(𝑠) 6 6 5 5 5 

Numerator terms for 𝑁𝑢𝑖𝑑𝑖(𝑠) 4 4 2 2 2 

Numerator terms for 𝑁𝑢𝑖𝑞𝑟𝑖(𝑠) 7 7 5 5 5 

Independent parameters 𝝌𝑁𝐿 & 𝝌𝑃 8 8 4 7 7 34 

Dependent parameters 𝝌𝐿 & 𝝌𝐵 26 26 22 27 26 127 
 Total number of parameters 34 34 26 34 33 161 

 

The data was collected during the operation of the 5-axis laser drilling machine to produce a turbine 

engine component as shown in Figure 3-5. In total, estimating the full model took 623 seconds on a 3.6 

GHz personal computer. The model achieved 2.38% root mean square (RMS) error in predicting the 

servo errors and motor torques. The prediction results are presented in the following sections. 
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Linear X and Y Axes 

The X and Y axes were observed to exhibit a vibratory mode, and therefore their 22 LTI models were 

configured as 7th-order systems with 3 real poles and 2 complex pole pairs following Eq. (4.18). 

 

Figure 4-7 Predicted and experimental result for the X-axis servo control system. 

From the entire collected data, a 12-second data packet was adopted to identify the models for the X 

and Y axes. The prediction of tracking error and motor current in the X axis are shown in Figure 4-7. 

This linear axis feed drive is equipped with a direct linear drive motor. Strong force ripple is therefore 

taken into account. The green zone demonstrates the influence of the force ripple disturbance on the 

tracking error during sustained velocity motion. The wavy variation of the tracking error corresponds 

to the pattern of the force ripple disturbance. On the other hand, the orange zone highlights vibratory 

behavior resulting from the 29 Hz natural mode during a high-acceleration motion. 

The estimated generalized disturbance 𝑑̂𝑋  containing the nonlinear friction and force ripple is also 

shown in the top right figure in Figure 4-7. This term is critical for correct estimation of the LTI 

dynamics. The response to the force ripple and the structural resonance are both similar wavy patterns 

in the time domain. They are distinguished and identified separately by introducing a position-

dependent force ripple model in the generalized disturbance, and adding an additional pole pair in the 

LTI system. Otherwise, the response to the force ripple could be erroneously estimated as structural 

resonance. 

Coupled Z-B-C Axes 

The Z-B-C axes are considered a coupled dynamic system due to the nature of its kinematic 

configuration. No significant structural resonance was observed in the collected data, therefore, the Z, 
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B, and C axes are consequently considered rigid body. Their 22 LTI models were configured as 5th-

order following Eq. (4.17). The ball screw driven Z axis does not exhibit significant torque ripples. 

However, the direct drive B, and C axes do, which is accounted for in their models. 

 

Figure 4-8 Predicted and experimental servo errors for coupled Z-B-axes. 

A 20-second data packet was adopted to identify the models. The prediction results are shown in Figure 

4-8. It shows the proposed model’s ability to correctly estimate and predict the inter-axis coupling 

effects due to the coupled multibody dynamics. For example, described by the term  2
𝐵𝑞̈𝑍 𝑠𝑖𝑛(𝑞𝐵) in 

Eq. (3.15), the Z axis acceleration strongly influences the B axis motion. This relation can be observed 

during the time window in the highlighted green zone, corresponding to 14.0-14.2 s. Only the Z axis 

has a nonzero velocity command. However, the Z axis motion also causes considerable tracking error 

in the B axis, which is successfully predicted by the proposed model.  

Overall, this is a significant improvement over earlier top-down LTI approaches [6][7][8][9], which 

fall short of capturing such coupled multibody effects and various disturbances. 

4.3.2 Experimental Trunnion Table 

An in-house trunnion table in the author’s laboratory was also used to validate the proposed method. 

The feed drive is controlled by an ETEL controller, which contains a PID controller and feedforward 

velocity and acceleration compensation for the position control. As shown in Figure 4-9, the tilting axis 

is mounted on top of the linear axis, forming a coupled multibody dynamic system. Both linear and 

tilting axes are equipped with direct drive motors. Hence, the dynamic model takes position-dependent 

ripple into account. The tilting axis is supported by a pair of air bearings, and therefore no Stribeck 

effect is observed. 
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Figure 4-9 In-house linear-tilt-rotary feed drive. 

Considering the mechanical features mentioned above, the dynamic models of the linear and tilting 

axes are derived as follows. 

𝑢1 = 𝜒𝐿1𝑞̈1 + 𝜒𝐿2(𝑞̈2 cos(𝑞2) − 𝑞̇2
2 sin(𝑞2)) + 𝜒𝐿3𝑞̇1 + 𝜒𝐿4𝑠𝑖𝑔𝑛(𝑞̇1)

+ 𝜒𝐿5𝑠𝑖𝑔𝑛(𝑞̇1)𝑒
−|𝑞̇1 𝜒𝑁𝐿1⁄ | + 𝑢𝑝1 

(4.26) 

𝑢2 = 𝜒𝐿6𝑞̈2 + 𝜒𝐿2(𝑞̈1 cos(𝑞2) + 𝑔 sin(𝑞2)) + 𝜒𝐿7𝑞̇2 + 𝜒𝐿8𝑠𝑖𝑔𝑛(𝑞̇2) + 𝑢𝑝2 (4.27) 

𝑢1, 𝑢2, 𝑞1 and 𝑞2 are the force/torque and the position of linear and tilting axis respectively. 𝜒𝐿1, …, 

𝜒𝐿8 ∈ 𝝌𝐿 are the linear parameters. 𝜒𝑁𝐿1 ∈ 𝝌𝑁𝐿 is the nonlinear Stribeck friction velocity coefficient 

for the linear axis. 

𝑢𝑝1
 and 𝑢𝑝2

 represent all the position-dependent disturbance including motor force/torque ripple. In 

this case, the look up table approach, Eq. (3.11), proposed in Section 3.2 was employed. The sizes of 

grid are 1mm and 1 degree for the linear and tilting axis, respectively. A velocity threshold is applied 

so that the servo data in which the velocity of the linear axis is below 3 mm/s is excluded from the 

model identification.  
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Figure 4-10 Position-dependent disturbance estimation, the linear axis. 

 

Figure 4-11 Position-dependent disturbance estimation, the tilting axis. 

To demonstrate the proposed position-dependent disturbance model, the estimated disturbance (red 

line) overlapping with the extracted disturbance (blue dots) are shown in Figure 4-10 and Figure 4-11. 

The disturbance data were extracted from the motor force/torque signals by removing all other dynamic 

terms. As can be seen, the estimation well describes the extracted data. The pattern of the estimated 

force/torque ripple is not easy to describe with a simple analytical sinusoidal function. Irregular 

position-dependent disturbances at the travel ends of both axes are also observed. This could be 

attributed to the bent or stretched motor cable at these locations. This example shows that the proposed 

lookup table-based model is capable of estimating repeatable position-dependent disturbance with any 

arbitrary pattern. Since no structural resonance is observed, the mechanical structure is assumed rigid, 

and the MIMO LTI portion of the linear and tilting axes are both configured as a 5th-order 22 systems 

following Eq. (4.17). 

The experimental and prediction results are shown in Figure 4-12. The 11-second implemented 

trajectory contains consecutive random back-and-forth simultaneous motion, which induces inter-axis 

dynamic effects. The data of commanded and actual motion as well as the motor signal were collected 

via the ETEL control system. The sampling rate is 250 Hz. The original motor signal is electrical 

current. Since it is an in-house experimental feed drive, the toque/force constant are known parameters. 
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Thus, the electrical current signal was converted to force and torque. The collected data was used to 

identify the machine model.  

The pole locations estimated by the proposed pole search with LS projection method are listed in Table 

4-4. The identified model is used to predict the system responses, which are overlaid with the measured 

data in Figure 4-12. The prediction errors are listed in Table 4-5. The average of the normalized RMS 

prediction error is 5.26%. 

Table 4-4 Pole locations estimated by pole search with LS projection. 

 Pole locations Search bounds 

Min. Max. 

Linear axis (1) 𝑝1,1 [Hz] 62.96 1 100 

𝜔𝑛1,1 [Hz] 10.86 1 100 

𝜁1,1 [] 0.6739 0.1 1.5 

𝑝2,1 & 𝑝3,1 [Hz] 250, 250 Pre-assigned 

Tilting axis (2) 𝑝1,2 [Hz] 52.15 1 100 

𝜔𝑛1,2 [Hz] 7.61 1 100 

𝜁1,2 [] 0.8471 0.1 1.5 

𝑝2,2 & 𝑝3,2 [Hz] 250, 250 Pre-assigned 

 

Table 4-5 Error of prediction. 

 Linear axis Tilting axis 

 Tracking error Motor force Tracking error  Motor torque  

RMS error 1.490 [um] 2.631 [N] 2.22810-3 [deg] 1.12810-1 [Nm] 

Normalized RMS error 7.12% 5.12% 6.15% 2.63% 

Normalized RMS error = RMS error ÷ RMS magnitude 
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Figure 4-12 Prediction of tracking error and motor force/torque by the identified model. 
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Figure 4-13 Experimental result and prediction (zoom-in 3~5.3 [s]). 

Figure 4-13 is the highlighted orange zone in Figure 4-12. This figure showcases the capability of the 

proposed model to describe inter-axis coupled dynamics. In zone A (shown in yellow), linear axis 

velocity command is constant, which should have led to steady-state constant responses if it were a 

decoupled system. The tilting axis during this period is decelerating, then accelerating. The inertial 
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forces from the tilting axis, due to the coupled multibody dynamics, disturbs the tracking error and 

motor force in the linear axis. In zone B (shown in green), it is the opposite situation, where the inertial 

forces from the linear axis excites the tracking error and motor torque in the tilting axis. 

As the illustration in Figure 4-14, since the proposed physics-based model is derived based on the 

machine configuration and other considered mechanical factors (friction, ripples, etc.), the generalized 

disturbance model can actually be decomposed such that the disturbances from each mechanical factor 

can be calculated individually (as 𝑑1𝑖, 𝑑2𝑖, … in Figure 4-14). By integrating the identified transfer 

functions, the tracking error caused by each disturbance, as well as the position command, can be 

decomposed and calculated individually (as 𝑒𝑞̇𝑟𝑖 , 𝑒𝑑1𝑖 , 𝑒𝑑2𝑖 , … in Figure 4-14). 

 

Figure 4-14 Decomposition of disturbances and the resultant tracking error. 

Thus, each of the predicted disturbances and the resulting tracking error are plotted in Figure 4-15. The 

integration of the absolute values of each tracking error can also be displayed in pie charts (see Figure 

4-16). Three types of disturbances are shown in the figures. It should be noted that position-dependent 

disturbance in the tilting axis includes not only the motor ripple but also the gravity torque, which is 

also purely position-dependent. The small and jerky spikes are motor ripple, while the slowly varying 

wave is gravity torque. 

These figures become a useful tool for root cause analysis. For example, in Figure 4-15, at 3.2 seconds 

when both axes just start moving, the friction and the command tracking contribute almost the same 

amount of tracking error in the linear axis. In contrast, in the tilting axis, the command tracking is the 

dominant source of tracking error. Viewing the pie chart in Figure 4-16, for the tilting axis, friction is 

estimated to contribute very small (less than 1%) tracking error due to the air bearing mechanism, and 

position-dependent disturbance is comparatively a major source.  

This example showcases the value of modeling and identification to provide insight into the machine 

and the process for facilitating machine troubleshooting and process modification. Furthermore, such 
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an approach can also be used to dynamically analyze and budget the sources of positioning errors in 

machine tools and other precision positioning systems, similar to the concept and benefits of dynamic 

error budgeting [113], but also with extension to multibody dynamics. 

 

 

Figure 4-15 Decoupled predicted disturbances and tracking error  (3~5.3 [s] section). 
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Figure 4-16 Tracking error statistics during 3~5.3 [s] section. 

4.4 Conclusion 

This chapter has introduced a new approach to build high-fidelity dynamic models of coupled 

multibody feed drive systems. The proposed model is configurable so that it is applicable to a broad 

class of machine tools and robots, for example with serial kinematics. The model estimation is highly 

efficient and accurate, due to the proposed decoupling of nonlinear and linear dynamics. The new 

approach has been demonstrated for digital twin estimation for a 5-axis laser drilling machine, via short 

packets of in-process CNC data. The tracking error due to inter-axis coupling effect is accurately 

modeled. Another validation was performed using an in-house trunnion table. The tracking error and 

motor signal in relation to the command input, multibody dynamics, motor ripple, and nonlinear friction 

were accurately simulated. In addition, the tracking error resulting from each individual disturbance 

source can be decoupled. This analysis can also provide useful insights into the machine and the 

process, to facilitate machine troubleshooting and process improvements.  
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Chapter 5 

Identification of Multi-Axis Feed Drive Control System Considering 

Mechanical Flexibility 

5.1 Introduction 

The experimental validation presented in Chapter 4 assumes that the coupled multi-axis drives are rigid. 

However, this assumption may not be valid in situation where structural resonances are excited by the 

servo forces, especially in large-sized machine tools. This chapter illustrates how to extend the method 

proposed in Chapter 4 to further take into consideration the vibratory dynamics. 

 
Figure 5-1 6-axis robot 

manipulators [114]. 
 

Figure 5-2 5-axis machines with different kinematic chains [45]. 

 

The modeling and identification of multibody dynamics considering structural flexibility have been 

studied in the field of robotics. An articulated robot, as shown Figure 5-1, is typically composed of 

consecutive revolute joints and arms. Thus, their mechanical flexibility can be systematically modeled 

by the flexible joint model and/or Euler–Bernoulli beams [57]. 
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In contrast, the configuration of industrial machine tool is much more diverse. By observing existing 

5-axis machines, as shown in Figure 5-2, characteristics specific to the 5-axis machines can be found. 

These observations define the scope of the study on this topic. 

(a) In terms of the sequence of the kinematic chain of a multi-axis machine feed drive assembly, the 

rotary axes are normally placed on top of linear axes or just mounted on the fixed machine base 

frame. 

(b) Rotary axes are either trunnion table carrying the workpiece or swivel head carrying the spindle. 

Both units may contain only one or two consecutive rotary axes. 

(c) Rotary axes, whether they are a trunnion table unit or swivel head unit, are relatively rigid compared 

to the linear axes and machine frame. In other words, multi-axis machine tool drives can be assumed 

as flexible linear drives coupled with rigid rotary drives. This assumption corresponds to a recent 

study [115][116] which achieves accurate dynamic modeling by assuming rigid rotary axes, 

flexible linear axes, and a flexible machine base frame (see Figure 5-3). 

 

Figure 5-3 Multibody model with flexible joints of a 5-axis machine [115]. 

According to the above observations, in Section 5.2, a general linear feed drive structure is considered, 

where the vibratory dynamics can be classified into four different types. In Section 5.3, two cases of a 

flexible linear drive coupled with a rotary drive are discussed. Case 1, discussed in Section 5.3.1, covers 

the first three types studied in Section 5.2, and Case 2, discussed in Section 5.3.2, covers the fourth. It 

is found that if there is significant mechanical flexibility within the connection of a linear drive and a 

rotary drive, then the position data from CNC is insufficient for the proposed model identification 

method. An extra motion sensor is required to capture the relative vibration between the linear and 
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rotary axes. The case requiring an extra motion sensor is further studied and verified in the later 

chapters. 

5.2 Classification of Vibratory Dynamics of a General Linear Feed Drive 

A general flexible linear feed drive has four types of typical vibratory dynamics [117] which can be 

excited by the servo force (see Figure 5-4). 𝑢𝐿  and 𝑞𝐿  represent the servo force and the position 

measurement for the feedback control, respectively. 

𝒖𝑳: servo force            𝒒𝑳: position measurement for feedback control 

 
(a) Stiffness of the actuator. 

 
(b) Limited mass & stiffness of machine base 

 

 
(c) Stiffness of the frame. 

 
(d) Stiffness permitting rotation around lateral 

direction. 

Figure 5-4 Four types of vibratory dynamics for a general linear feed drive [117]. 

Type (a.): Stiffness of the actuator. This case refers to the stiffness of the structure connecting the motor 

and the load (table or spindle). The spring in the figure could refer to a ball screw, gear, or belt [118]. 

If the position of the load side is chosen to be the measurement feedback, such additional vibratory 

dynamics between the motor and the load may lead to 180-degree phase lag without anti-resonance. 

Type (b.): Limited mass & stiffness of machine base. When a machine tool is placed on the ground and 

supported by the leveling feet, its own weight is the normal force creating the contact stiffness. Then, 

such stiffness together with the entire machine mass lead to low-frequency vibratory mode, where the 

machine as a whole vibrates with respect to the ground.  
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Type (c.): Stiffness of the frame. The machine frame as an overhang structure carries the kinematic 

chains for the tool and the workpiece. Typically, larger workspace is achieved by a longer or higher 

overhang structure, thus leading to lower rigidity. Such resonance can be excited by the reaction of the 

servo force acting on the machine frame. 

Type (d.): Stiffness permitting rotation around lateral direction. If the servo force is not aligned with 

the center of mass (COM) of the moving part, such off-centered force generates a torque that could 

excite the rotational vibration mode. The stiffness to resist the applied torque could be the stiffness of 

the guideway or the stiffness of overhang structure of the moving part. Figure 5-5 is an example 

highlighting the off-centered servo force. The principle of Drive at the Center of Gravity (DCG) [120] 

is a way to circumvent this issue. Box-in-box design, as shown in Figure 5-6, is a design following this 

concept to generate the resultant driving force close to the COM, however, with the cost of one more 

servo system. 

 
Figure 5-5 Moving column design [119]. 

 
Figure 5-6 Box-in-box design [45]. 

5.3 Cases Studies on a Linear Drive Coupled with a Rotary Drive 

In this section, a rotary drive is added onto the general linear drive illustrated in Section 5.2. Type (a), 

(b), and (c) are discussed in Section 5.3.1. Type (d) is particularly discussed in Section 5.3.2 since it 

requires an extra motion sensor for the model identification. 
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5.3.1 Case 1: Flexible Linear Drive Rigidly Coupled with a Rotary Drive (Generalization 

of Type a, b, and c) 

 

Figure 5-7 A general expression of type (a), (b), and (c) vibratory dynamics. 

The vibratory dynamics of the type (a), (b), and (c) in Section 5.2 can be generally presented as Figure 

5-7. This flexible linear drive can be transformed into a equivalent 𝑁-degrees of freedom (DOF) 

(denoted as 1,2,… ,  , …𝑁) mass-spring-damper system, as conceptually shown in Figure 5-8. 𝑞𝐿 is the 

position measured by the linear encoder for the feedback control. If a translational mass 𝑚𝐿 is rigidly 

attached with a rotary drive (denoted as  ), the equations of motions can be derived as follows. 

 

 

Figure 5-8 Expression of a linear flexible drive coupled with a rotary drive. 

{
 
 

 
 
𝑢𝐿 = 𝑚1𝑞̈1 + 𝑐1(𝑞̇1 − 𝑞̇2) + 𝑘1(𝑞1 − 𝑞2)
                                  ⋮
0 = 𝑚𝐿𝑞̈𝐿 + 𝑏𝐿𝑞̇𝐿 − 𝑐𝐿−1(𝑞̇𝐿−1 − 𝑞̇𝐿) − 𝑘𝐿−1(𝑞𝐿−1 − 𝑞𝐿) + 𝑐𝐿(𝑞̇𝐿 − 𝑞̇𝐿+1) + 𝑘𝐿(𝑞𝐿 − 𝑞𝐿+1) + 𝑑𝐿
                                  ⋮
0 = 𝑚𝑁𝑞̈𝑁 − 𝑐𝑁−1(𝑞̇𝑁−1 − 𝑞̇𝑁) − 𝑘𝑁−1(𝑞𝑁−1 − 𝑞𝑁)

𝑢𝑅 = 𝑚𝑅𝑞̈𝑅 + 𝑏𝑅𝑞̇𝑅 + 𝑑𝑅

 

(5.1) 

The generalized disturbances, 𝑑𝐿  and 𝑑𝑅 , capturing all the nonlinear and coupling terms such as 

coupled multibody dynamics and friction, can be derived as 
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{
𝑑𝐿 = 𝜒𝑅(𝑞̈𝑅 cos(𝑞𝑅) − 𝑞̇𝑅

2 sin(𝑞𝑅)) + 𝑢𝑓𝐿
(𝑞̇𝐿) + 𝑢𝑝𝐿

(𝑞𝐿)

𝑑𝑅 = 𝜒𝑅(𝑞̈𝐿 cos(𝑞𝑅) + 𝑔 sin(𝑞𝑅)) + 𝑢𝑓𝑅
(𝑞̇𝑅) + 𝑢𝑝𝑅

(𝑞𝑅)
 (5.2) 

𝜒𝑅 is an inertial parameter, and 𝑢𝑓𝐿, 𝑢𝑓𝑅, 𝑢𝑝𝐿, and 𝑢𝑝𝑅 are nonlinear friction and position-dependent 

disturbance respectively. Eq. (5.1) and Eq. (5.2) can be visualized as the block diagram shown in Figure 

5-9 (a). The generalized disturbance block represents Eq. (5.2), where the inputs 𝑞𝐿  and 𝑞𝑅  can be 

measured via the feed drives’ encoders. Since the 𝑁-DOF mass-spring-damper system are linear, the 

relation between 𝑢𝐿 and 𝑞𝐿  can be expressed by a high-order transfer function  𝐿(𝑠) . The same 

expression applies to the rotary axis, denoted as  𝑅(𝑠). Then, Figure 5-9 (a) can be rearranged as Figure 

5-9 (b). 

 
(a) Open-loop dynamics. 

 
(b) Open-loop dynamics expressed by 𝑷𝑳(𝒔), 

𝑷𝑹(𝒔), and generalized disturbance. 

 
(c) LTI closed-loop dynamics coupled with 

generalized disturbance. 

Figure 5-9 Block diagram for Case 1: flexible linear drive rigidly coupled with a rotary drive. 

The open-loop dynamic model can be integrated with LTI feedback and feedforward controllers 𝐶𝐿(𝑠) 

and 𝐶𝑅(𝑠), as shown in Figure 5-9 (c), where the generalized disturbance is isolated from the LTI 
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closed-loop dynamics. This framework fits the proposed equivalent model representation illustrated as 

Figure 4-2 where the order of MIMO LTI model can be configured depending on the number of the 

observed vibratory modes. 

The model can be identified following the procedure illustrated in Section 4.2.4. Step one is the 

parameter identification of the open-loop dynamics, Eq. (5.1) and Eq. (5.2). If applying smooth (low-

jerk) trajectory where structural vibration would not be excited, Eq. (5.1) and Eq. (5.2) can be simplified 

as a rigid body model: 

{
𝑢𝐿 = 𝑚𝐿

′ 𝑞̈𝐿 + 𝑏𝐿𝑞̇𝐿 + 𝜒𝑅(𝑞̈𝑅 cos(𝑞𝑅) − 𝑞̇𝑅
2 sin(𝑞𝑅)) + 𝑢𝑓𝐿

(𝑞̇𝐿) + 𝑢𝑝𝐿
(𝑞𝐿)

𝑢𝑅 = 𝑚𝑅𝑞̈𝑅 + 𝑏𝑅𝑞̇𝑅 + 𝜒𝑅(𝑞̈𝐿 cos(𝑞𝑅) + 𝑔 sin(𝑞𝑅)) + 𝑢𝑓𝑅
(𝑞̇𝑅) + 𝑢𝑝𝑅

(𝑞𝑅)
 (5.3) 

Then, step one can be done by simply using the servo data 𝑞𝐿, 𝑞𝑅, 𝑢𝐿, and 𝑢𝑅 collected from the CNC. 

Step two is to build the predicted generalized disturbance 𝒅̂ by the collected data and Eq. (5.2). The 

identification of the MIMO LTI model, step 3, can be performed using the predicted 𝒅̂ along with the 

collected signals of 𝑞𝑟𝐿, 𝑞𝑟𝑅, 𝑒𝐿, 𝑒𝑅, 𝑢𝐿, and 𝑢𝑅 from the CNC. Therefore, in this case, no extra sensor 

is required. The servo data from the CNC is sufficient to build the feed drive’s model. 

5.3.2 Case 2: Linear Drive and Rotary Drive Connected by Flexible Structure (Type d) 

 

Figure 5-10 5-axis machining center with a moving trunnion unit [119]. 

A typical example of Case 2 is shown as Figure 5-10. A trunnion unit (A & C axes) together with a 

linear X axis are mounted on top of a linear Y axis driven by a ball screw at the bottom. Such driving 
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force is far away from the COM of the entire moving part. Additionally, Y-X-A axes are linked by two 

sets of linear guideways, causing considerable structural compliance. Therefore, the linear Y axis and 

the rotary A axis constitute a coupled multibody system with flexible connection, which falls into this 

category. 

This case can be expressed as a lumped mass-spring-damper model shown in Figure 5-11. The linear Y 

axis comprises a linear mass 𝑚𝑌 attached to a rigid link by a torsional spring-damper (𝑘𝛿 and 𝑐𝛿). The 

rotary drive (A axis) is attached to the link by a revolute joint. The deflection angle of the spring-damper 

joint is denoted as 𝑞𝛿. To avoid confusion, please note that 𝛿 is not Kronecker delta from tensor notation. 

 

Figure 5-11 A linear drive and a rotary drive connected by a rigid link with connection 

flexibility. 

The motion of the linear drive 𝑞𝑌 and the rotary drive relative to its support (rigid link) 𝑞𝐴 are measured 

by the encoders for the feedback control. However, the deflection angle of the rigid link 𝑞𝛿  is not 

detected. The angle of the rotary drive in a global inertial frame 𝑞𝐴′ is also not known, i.e., 𝑞𝐴′ = 𝑞𝛿 +

𝑞𝐴. Based on Figure 5-11, the dynamic equations of the three bodies can be derived as: 

{

𝑢𝑌 = 𝑚𝑌𝑞̈𝑌 + 𝑏𝑌𝑞̇𝑌 + 𝑑𝑌
−𝑢𝐴 = 𝐼𝛿𝑞̈𝛿 + 𝑐𝛿𝑞̇𝛿 + 𝑘𝛿𝑞𝛿 − 𝑏𝐴𝑞̇𝐴 + 𝑑𝛿
𝑢𝐴 = 𝐼𝐴𝑞̈𝐴′ + 𝑏𝐴𝑞̇𝐴 + 𝑑𝐴

 (5.4) 

The generalized disturbances 𝒅 = [𝑑𝑌 𝑑𝛿  𝑑𝐴]
𝑻 are derived as 

{
 

 
𝑑𝑌 = 𝜇(𝑞̇𝛿

2 sin(𝑞𝛿) − 𝑞̈𝛿 cos(𝑞𝛿)) + 𝜌(𝑞̈𝐴′ cos(𝑞𝐴′) − 𝑞̇𝐴′
2 sin(𝑞𝐴′)) + 𝑢𝑓𝑌 + 𝑢𝑝𝑌

𝑑𝛿 = 𝜆(−𝑞̈𝐴′ cos(𝑞𝐴) + 𝑞̇𝐴′
2 sin(𝑞𝐴)) − 𝜇𝑞̈𝑌 cos(𝑞𝛿) − 𝜑 sin(𝑞𝛿) − 𝑢𝑓𝐴 − 𝑢𝑝𝐴

𝑑𝐴 = 𝜆(−𝑞̈𝛿 cos(𝑞𝐴) − 𝑞̇𝛿
2 sin(𝑞𝐴)) + 𝜌𝑞̈𝑌 cos(𝑞𝐴′) + 𝜓 sin(𝑞𝐴′) + 𝑢𝑓𝐴 + 𝑢𝑝𝐴

 (5.5) 
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The physical significance of the parameters are listed in Table 5-1. Eq. (5.4) is the linear open-loop 

dynamics. Eq. (5.5) is  𝑑𝑌 , 𝑑𝛿 , and 𝑑𝐴  associated with each of the three bodies. They represent 

generalized disturbances containing the rest of nonlinear open-loop dynamics. 

Table 5-1 Descriptions of the parameters in Eq. (5.4) and Eq. (5.5). 

𝜇, 𝜌, 𝜆, 𝜓, and 𝜑 Machine inertial parameters 

𝑐𝛿 and 𝑘𝛿 Coefficients of the torsional spring-damper 

𝑏𝑌 and 𝑏𝐴 Viscous damping at the joints 

𝑢𝑓𝑌
 and 𝑢𝑓𝐴

 Nonlinear friction at the joints 

𝑢𝑝𝑌 and 𝑢𝑝𝐴 Position-dependent disturbances, Eq. (3.11) 

𝑚𝑌, 𝑚𝛿, and 𝑚𝐴 Mass 

𝐼𝛿 and 𝐼𝐴 Diagonal inertia 

 

Figure 5-12 Block diagram for Case 2: linear drive and rotary drive connected by flexible 

structure. 

After integrating general LTI feedback and feedforward controllers, 𝐶𝑌(𝑠) and 𝐶𝐴(𝑠), as Eq. (4.11), the 

system can be visualized by the block diagram shown in Figure 5-12. As can be seen, the motor torque 

of the rotary drive 𝑢𝐴 is computed by the controller 𝐶𝐴(𝑠). Then, this torque and its reaction are applied 

to the motor shaft 𝐼𝐴 and the rigid link 𝐼𝛿 fixed by the torsional spring-damper (𝑘𝛿 and 𝑐𝛿) respectively. 

Their relative motion at the revolute joint generates viscous damping torque, feeding back to these two 

bodies. 

As the identification procedure elaborated in Section 4.2.4, step 4.1 utilizes the collected data to 

perform the identification of open-loop dynamics. Viewing the dynamic equations Eq. (5.4) and Eq. 

(5.5), the required data are the motor inputs [𝑢𝑌, 𝑢𝐴] as well as the joint variables [𝑞𝑌, 𝑞𝛿, 𝑞𝐴, 𝑞𝐴′] and 
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their 1st 2nd time derivative terms. On the other hand, step 4.2 calculates the predicted generalized 

disturbance 𝒅̂ as Eq. (5.5), which again requires the joint variables [𝑞𝑌, 𝑞𝛿 , 𝑞𝐴, 𝑞𝐴′] and their time 

derivatives. 

𝑞𝑌 and 𝑞𝐴 are the axis encoder readings and can be directly accessed from the CNC. However, it is not 

possible to determine 𝑞𝛿 and 𝑞𝐴′ by 𝑞𝐴 = 𝑞𝐴′ − 𝑞𝛿 if only 𝑞𝐴 is given. Hence, unlike the previous Case 

1, the identification of this closed-loop system requires an extra motion sensor to measure 𝑞𝛿 and/or 

𝑞𝐴′. For this purpose, an IMU will be used to reconstruct the angular velocity and acceleration of the 

structural deflection angle, 𝑞̇𝛿 and 𝑞̈𝛿. Details of the measurement procedure will be presented in the 

next chapter. 

 

Figure 5-13 Equivalent model: MIMO LTI system coupled with generalized disturbance. 

According to the above discussion, the equivalent expression of this multi-axis control system can be 

expressed as Figure 5-13. The generalized disturbance block represents Eq. (5.5), containing the 

nonlinear dynamics of the three bodies. The MIMO LTI block contains the subsystems for the Y and 

A axes. Since there are two bodies (𝐼𝛿, and 𝐼𝐴) in the A-axis control loop, the disturbance inputs become 

𝑑𝐴 and 𝑑𝛿 for each body. 𝑞̇𝛿 is configured as an extra output of the A-axis subsystem. By integrating 

and differentiating 𝑞̇𝛿, then 𝑞𝛿 and 𝑞̈𝛿 can also be derived for the computation of 𝒅. 

The closed-loop LTI portion of the dynamics for the Y-axis is a 22 system as 

{
𝑒𝑌(𝑠) = 𝐺𝑒𝑌𝑑𝑌(𝑠)𝑑𝑌(𝑠) + 𝐺𝑒𝑌𝑞𝑟𝑌(𝑠)𝑞𝑟𝑌(𝑠)

𝑢𝑌(𝑠) = 𝐺𝑢𝑌𝑑𝑌(𝑠)𝑑𝑌(𝑠) + 𝐺𝑢𝑌𝑞𝑟𝑌(𝑠)𝑞𝑟𝑌(𝑠)
 

𝐺𝑖𝑗(𝑠) =
𝑁𝑖𝑗(𝑠)

𝐷𝑌(𝑠)
⁄ ;   𝑖 ∈ [𝑒𝑌 𝑢𝑌];   𝑗 ∈ [𝑑𝑌 𝑞𝑟𝑌] 

(5.6) 
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Regarding the order of the system (see the assumptions listed in Table 4-1), considering the velocity 

and acceleration feedforward control, two high-frequency real poles are pre-assigned. The integral 

control along with a rigid body contributes one complex pole pair and one real pole. In total, the 

characteristic polynomial 𝐷𝑌(𝑠) of the Y-axis subsystem can be configured as a 5th-order system with 

three real poles and one complex pole pair. According to the block diagram shown in Figure 5-12, the 

respective characteristic polynomials 𝐷𝑌(𝑠)  and numerator polynomials 𝑁𝑖𝑗(𝑠)  of each transfer 

function can be derived as: 

{
 
 
 

 
 
 𝐷𝑌(𝑠) = 𝚷𝑚=1

3 𝚷𝑘=1
1 (𝑠 + 𝑝𝑚,𝑌) (𝑠

2 + 2𝜁𝑘,𝑌𝜔𝑛𝑘,𝑌𝑠 + 𝜔𝑛𝑘,𝑌
2)

𝑁𝑒𝑌𝑑𝑌(𝑠) = 𝑏1
𝑒𝑌𝑑𝑌𝑠1 + 𝑏2

𝑒𝑌𝑑𝑌𝑠0

𝑁𝑒𝑌𝑞𝑟𝑌
(𝑠) = 𝑏1

𝑒𝑌𝑞𝑟𝑌𝑠5 + 𝑏2
𝑒𝑌𝑞𝑟𝑌𝑠4 + 𝑏3

𝑒𝑌𝑞𝑟𝑌𝑠3 + 𝑏4
𝑒𝑌𝑞𝑟𝑌𝑠2 + 𝑏5

𝑒𝑌𝑞𝑟𝑌𝑠1

𝑁𝑢𝑌𝑑𝑌(𝑠) = 𝑏1
𝑢𝑌𝑑𝑌𝑠2 + 𝑏2

𝑢𝑌𝑑𝑌𝑠1 +𝚷𝑚=1
3 𝚷𝑘=1

1 𝑝𝑚,𝑌𝜔𝑛𝑘,𝑌
2

𝑁𝑢𝑌𝑞𝑟𝑌(𝑠) = 𝑏1
𝑢𝑌𝑞𝑟𝑌𝑠5 + 𝑏2

𝑢𝑌𝑞𝑟𝑌𝑠4 + 𝑏3
𝑢𝑌𝑞𝑟𝑌𝑠3 + 𝑏4

𝑢𝑌𝑞𝑟𝑌𝑠2 + 𝑏5
𝑢𝑌𝑞𝑟𝑌𝑠1

 (5.7) 

On the other hand, due to the additional 𝑑𝛿 and 𝑞̇𝛿, the A-axis can be defined as a 33 system: 

{

𝑒𝐴(𝑠) = 𝐺𝑒𝐴𝑑𝐴(𝑠)𝑑𝐴(𝑠) + 𝐺𝑒𝐴𝑑𝛿(𝑠)𝑑𝛿(𝑠) + 𝐺𝑒𝐴𝑞𝑟𝐴
(𝑠)𝑞𝑟𝐴(𝑠)

𝑢𝐴(𝑠) = 𝐺𝑢𝐴𝑑𝐴(𝑠)𝑑𝐴(𝑠) + 𝐺𝑢𝐴𝑑𝛿(𝑠)𝑑𝛿(𝑠) + 𝐺𝑢𝐴𝑞𝑟𝐴(𝑠)𝑞𝑟𝐴(𝑠)

𝑞̇𝛿(𝑠) = 𝐺𝑞̇𝛿𝑑𝐴(𝑠)𝑑𝐴(𝑠) + 𝐺𝑞̇𝛿𝑑𝛿(𝑠)𝑑𝛿(𝑠) + 𝐺𝑞̇𝛿𝑞𝑟𝐴(𝑠)𝑞𝑟𝐴(𝑠)

 

𝐺𝑖𝑗(𝑠) =
𝑁𝑖𝑗(𝑠)

𝐷𝐴(𝑠)
⁄ ;   𝑖 ∈ [𝑒𝐴 𝑢𝐴 𝑞̇𝛿];   𝑗 ∈ [𝑑𝐴 𝑑𝛿  𝑞𝑟𝐴]  

(5.8) 

Compared to the Y-axis, the A-axis contains one more body (the rigid link and the rotary drive), 

resulting in one more complex pole pair. Hence, the characteristic polynomial 𝐷𝐴(𝑠)  of A-axis 

subsystem is configured as a 7th-order system with three real poles and two complex pole pairs. 

According to the block diagram shown in Figure 5-12, the respective characteristic polynomials 𝐷𝐴(𝑠) 

and numerator polynomials 𝑁𝑖𝑗(𝑠) of each transfer function can be derived as: 
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{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝐷𝐴(𝑠) = 𝚷𝑚=1

3 𝚷𝑘=1
2 (𝑠 + 𝑝𝑚,𝐴) (𝑠

2 + 2𝜁𝑘,𝐴𝜔𝑛𝑘,𝐴𝑠 + 𝜔𝑛𝑘,𝐴
2)

𝑁𝑒𝐴𝑑𝐴(𝑠) = 𝑏1
𝑒𝐴𝑑𝐴𝑠3 + 𝑏2

𝑒𝐴𝑑𝐴𝑠2 + 𝑏3
𝑒𝐴𝑑𝐴𝑠1 + 𝑏4

𝑒𝐴𝑑𝐴𝑠0

𝑁𝑒𝐴𝑑𝛿(𝑠) = 𝑏1
𝑒𝐴𝑑𝛿𝑠3 + 𝑏2

𝑒𝐴𝑑𝛿𝑠2 + 𝑏3
𝑒𝐴𝑑𝛿𝑠1

𝑁𝑒𝐴𝑞𝑟𝐴(𝑠) = 𝑏1
𝑒𝐴𝑞𝑟𝐴𝑠7 + 𝑏2

𝑒𝐴𝑞𝑟𝐴𝑠6 + 𝑏3
𝑒𝐴𝑞𝑟𝐴𝑠5 + 𝑏4

𝑒𝐴𝑞𝑟𝐴𝑠4 + 𝑏5
𝑒𝐴𝑞𝑟𝐴𝑠3 + 𝑏6

𝑒𝐴𝑞𝑟𝐴𝑠2 + 𝑏7
𝑒𝐴𝑞𝑟𝐴𝑠1

𝑁𝑢𝐴𝑑𝐴(𝑠) = 𝑏1
𝑢𝐴𝑑𝐴𝑠4 + 𝑏2

𝑢𝐴𝑑𝐴𝑠3 + 𝑏3
𝑢𝐴𝑑𝐴𝑠2 + 𝑏4

𝑢𝐴𝑑𝐴𝑠1 +𝚷𝑚=1
3 𝚷𝑘=1

2 𝑝𝑚,𝐴𝜔𝑛𝑘,𝐴
2

𝑁𝑢𝐴𝑑𝛿(𝑠) = 𝑏1
𝑢𝐴𝑑𝛿𝑠4 + 𝑏2

𝑢𝐴𝑑𝛿𝑠3 + 𝑏3
𝑢𝐴𝑑𝛿𝑠2 + 𝑏4

𝑢𝐴𝑑𝛿𝑠1

𝑁𝑢𝐴𝑞𝑟𝐴
(𝑠) = 𝑏1

𝑢𝐴𝑞𝑟𝐴𝑠7 + 𝑏2
𝑢𝐴𝑞𝑟𝐴𝑠6 + 𝑏3

𝑢𝐴𝑞𝑟𝐴𝑠5 + 𝑏4
𝑢𝐴𝑞𝑟𝐴𝑠4 + 𝑏5

𝑢𝐴𝑞𝑟𝐴𝑠3 + 𝑏6
𝑢𝐴𝑞𝑟𝐴𝑠2 + 𝑏7

𝑢𝐴𝑞𝑟𝐴𝑠1

𝑁𝑞̇𝛿𝑑𝐴(𝑠) = 𝑏1
𝑞̇𝛿𝑑𝐴𝑠3 + 𝑏2

𝑞̇𝛿𝑑𝐴𝑠2 + 𝑏3
𝑞̇𝛿𝑑𝐴𝑠1

𝑁𝑞̇𝛿𝑑𝛿(𝑠) = 𝑏1
𝑞̇𝛿𝑑𝛿𝑠4 + 𝑏2

𝑞̇𝛿𝑑𝛿𝑠3 + 𝑏3
𝑞̇𝛿𝑑𝛿𝑠2 + 𝑏4

𝑞̇𝛿𝑑𝛿𝑠1

𝑁𝑞̇𝛿𝑞𝑟𝐴
(𝑠) = 𝑏1

𝑞̇𝛿𝑞𝑟𝐴𝑠6 + 𝑏2
𝑞̇𝛿𝑞𝑟𝐴𝑠5 + 𝑏3

𝑞̇𝛿𝑞𝑟𝐴𝑠4 + 𝑏4
𝑞̇𝛿𝑞𝑟𝐴𝑠3 + 𝑏5

𝑞̇𝛿𝑞𝑟𝐴𝑠2

 

(5.9) 

In the later chapters, the identification of this case will be particularly studied and validated with the 

use of an IMU to capture the coupled feed drive structural vibration (𝑞̇𝛿 and 𝑞̈𝛿). 

5.4 Conclusion 

This chapter introduces structural flexibility into the model and identification method proposed in 

Chapter 4. By reviewing the 5-axis machine kinematics and the vibratory dynamics of a general linear 

drive, two cases of a linear drive coupled with a rotary drive are studied. It is found that if a rotary drive 

is rigidly attached to a flexible linear drive (Case 1), then the servo data from the CNC are sufficient to 

identify the dynamic model of this multi-axis feed drive control system. The machine flexibility is 

considered by a higher-order MIMO LTI model. 

However, if there is significant mechanical flexibility between a linear drive and a rotary drive (Case 

2), then the servo data from the CNC is insufficient for the proposed identification method. An extra 

motion sensor is required to capture the vibration between the linear and rotary axis, 𝑞̇𝛿.  

Case 2 which requires an extra motion sensor will be particularly studied in the following chapters. 

Chapter 6 will present the application of an IMU to capture the missing internal structural vibration. In 

Chapter 7, the servo data from CNC along with the vibration measured by the IMU will be applied to 

identify the dynamic model of the feed drive control system developed in this chapter.  
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Chapter 6 

Use of IMUs for Capturing the Vibration of Multi-Axis Drives 

6.1 Introduction 

The identification method proposed in Chapter 4 considers rigid multi-axis drives which, in reality, 

could be flexible. According to the analysis of Case 2 in Section 5.3.2, if there is significant mechanical 

flexibility between a linear drive and a rotary drive, the servo data from the CNC is insufficient for the 

proposed model identification method. The internal vibration between the linear and rotary drives are 

necessary information as well. Case 2 in Section 5.3.2 is experimentally studied in Chapter 6 and 

Chapter 7. In this chapter, a methodology to capture the internal vibration by an IMU is proposed and 

verified. 

 This chapter is organized as follows. Section 6.2 introduces an experimental setup prepared for this 

study. Section 6.3 introduces fundamental data processing techniques for MEMS IMUSs, e.g., 

strapdown integration and sensor fusion. Section 6.4 describes the procedure of reconstructing the 

internal structural vibration by incorporating the collected IMU data and encoder data. The 

implementation results are presented in Section 6.5. In the next chapter, the reconstructed vibration will 

be used in the identification for building the dynamic model of multi-axis flexible drives. 

6.2 Experimental Setup 

 

Figure 6-1 Experimental feed drive. 
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Figure 6-1 shows the experimental setup built for this study. The design and analysis of this setup are 

reported in Appendix A. It is a linear feed drive (Y-axis) connected with a trunnion unit (A- and C-

axis) by an I-shaped flexible structure. Such configuration induces a 35 Hz flexible bending mode with 

a 19 Hz anti-resonance. These values are similar to the characteristics of a medium- to large-sized 

industrial machine tool.  

This setup replicates the machine configuration of Case 2 discussed in Section 5.3.2 where significant 

flexibility exists between the linear drive and the rotary drive. Since the C-axis is a symmetrically 

cylindrical rotor which can be viewed as an independent dynamic system, therefore, the dynamic model 

in this case study considers only the coupled linear Y- and tilting A-axes. On the other hand, since the 

IMU is mounted on the table (C-axis), the kinematic model built in this case study includes the Y-A-C 

axes, in order to demonstrate successful vibration reconstruction even during Y-A-C axes simultaneous 

motion. 

 

Figure 6-2 Installation of an IMU. 

As shown in Figure 6-2, a Xsens MTi-630 IMU is firmly attached to the machine table. The IMU data 

is transferred via an USB cable to a laptop. While the feed drive is operating, both the servo data and 

IMU data are collected. The following items are the reasons for using an IMU for this application: 

(1) No kinematic constraint: position measurement instruments, for example, a grid encoder (KGM) 

or laser vibrometer, can only measure within limited travelling range along a specific direction. 

Measuring 3D simultaneous motion is not possible. In contrast, tri-axial accelerometers are non-

intrusive, easy to be attached/installed, and are without kinematic constraints. 

(2) Reliable static response: AC accelerometers inherently behave as high-pass filter which are not 

suitable for measuring feed drive motion which primarily lies in low frequency region. In contrast, 
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DC accelerometers, for example, MEMS IMUs, have stable static (0 Hz) response, which is ideal 

for this application. 

(3) 6-DOF measurement: with the integration of a tri-axial accelerometer and a tri-axial gyroscope, an 

IMU can measure both the orientation and translational acceleration, fully capturing the motion of 

multi-axis feed drives. 

(4) Future potential: IMUs made by MEMS technology are relatively inexpensive, and its performance 

has been improving over the past decade [93]. It is therefore foreseeable that high-accuracy and 

cost-effective MEMS IMUs can be realized in the coming future. Hence, it is time to explore its 

application to precision control engineering. 

  

Figure 6-3 The kinematics of the experimental drive assembly. 

The machine kinematics can be represented by Figure 6-3. 𝑶𝑀 is the fixed machine inertial frame. 𝑶𝑌, 

𝑶𝛿, 𝑶𝐴, and 𝑶𝑇 are the local moving frames attached to the linear table, the flexible machine frame, 

the tilting rotary feed drive, and the rotary table, respectively. The displacement of each feed drive is 

defined as 𝑞𝑌, 𝑞𝐴, and 𝑞𝐶, which can be directly measured by the axis encoders. The I-shaped flexible 

structure is modeled by a torsional spring-damper of which 𝑞𝛿 is the deflection angle. 

Machine Kinematics 

The machine kinematics from 𝑶𝑀 to 𝑶𝑇 can be described by a 4×4 transformation matrix 𝑯𝑇/𝑀:  

𝑯𝑇/𝑀 = [
𝑹𝑇/𝑀 𝑻𝑇/𝑀
𝟎1×3 1

] (6.1) 

𝑹𝑇/𝑀 is a 3×3 rotation matrix, and 𝑻𝑇/𝑀 is a 3×1 translational vector. 

Following the machine kinematic chain, the transformation matrix 𝑯𝑇/𝑀 can be derived as: 
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𝑯𝑇/𝑀 = 𝑯𝑇/𝐴𝑯𝐴/𝛿𝑯𝛿/𝑌𝑯𝑌/𝑀 (6.2) 

The corresponding rotation matrices are 𝑹𝑇/𝐴 = [
𝑐𝑜𝑠 𝑞𝐶 𝑠𝑖𝑛𝑞𝐶 0
−𝑠𝑖𝑛𝑞𝐶 𝑐𝑜𝑠 𝑞𝐶 0

0 0 1
] , 𝑹𝐴/𝛿 =

[
1 0 0
0 𝑐𝑜𝑠 𝑞𝐴 𝑠𝑖𝑛𝑞𝐴
0 −𝑠𝑖𝑛𝑞𝐴 𝑐𝑜𝑠𝑞𝐴

], 𝑹𝛿/𝑌 = [
1 0 0
0 𝑐𝑜𝑠 𝑞𝛿 𝑠𝑖𝑛𝑞𝛿
0 −𝑠𝑖𝑛𝑞𝛿 𝑐𝑜𝑠𝑞𝛿

], and 𝑹𝑌/𝑀 = [
1 0 0
0 1 0
0 0 1

] respectively.  

As translational vectors 𝑻 are not necessary for the reconstruction of the machine vibration, 𝑻 are not 

illustrated in this section. 

If only considering the rigid body kinematics, i.e., 𝑞𝛿 is neglected, then the transformation matrix 𝑯𝑇/𝑀 

becomes: 

𝑯𝑇/𝑀 = 𝑯𝑇/𝐴𝑯𝐴/𝑌𝑯𝑌/𝑀 (6.3) 

𝑶𝛿  is neglected and 𝑹𝐴/𝑌 = [
1 0 0
0 𝑐𝑜𝑠 𝑞𝐴 𝑠𝑖𝑛𝑞𝐴
0 −𝑠𝑖𝑛𝑞𝐴 𝑐𝑜𝑠𝑞𝐴

]. In the following sections, the above kinematic 

models covered from Eq. (6.1) to Eq. (6.3) have been applied to reconstruct the machine vibration with 

the collected data. 

6.3 Measuring the Orientation by IMUs 

The raw measurement data from an IMU are the linear acceleration (containing gravity) and angular 

velocity expressed in the sensor frame. Then, the sensor orientation, gravity-free linear acceleration, 

and angular velocity expressed in the global frame can be estimated by strapdown integration and 

sensor fusion. This section details these computation processes. 

6.3.1 Predicting Orientation by Strapdown Integration 

Definition of the Global Frame 

When an IMU starts operating, it establishes a fixed inertial global frame 𝑶𝐺  as a reference for 

expressing the orientation of the sensor frame 𝑶𝑆  attached to the IMU (see Figure 6-4.) Since the 

gravity direction can be indicated by the triaxial accelerometer, the vertical axis of 𝑶𝐺 is defined to be 

parallel to the gravity direction, and the other two unreferenced horizontal axes of 𝑶𝐺 are aligned with 
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the sensor frame 𝑶𝑆 at the beginning of the measurement. In other words, 𝑶𝐺 is dependent on the initial 

sensor orientation. 

 

Figure 6-4 Global frame 𝑶𝑮 and sensor frame 𝑶𝑺 defined by an IMU. 

Orientation Expression 

The orientation of frame 𝑶𝑆 with respect to frame 𝑶𝐺 can be expressed by a 33 rotation matrix 𝑹𝑆/𝐺, 

which is also called direction cosine matrix (DCM). More details about orientation expression can be 

found in [107]. An arbitrary position 𝑢 in space can be represented by vectors 𝒖𝐺 and 𝒖𝑆 with respect 

to 𝑶𝐺 and 𝑶𝑆 respectively. The vectors can be converted by 𝑹𝑆/𝐺 as: 

𝒖𝑆 = 𝑹𝑆/𝐺𝒖
𝐺  (6.4) 

Strapdown Integration 

The orientation 𝑹𝑆/𝐺 cannot be directly measured. Instead, the triaxial gyroscope measures the angular 

velocity of the sensor, 𝝎𝑆/𝐺
𝑆 = [𝜔𝑥 𝑤𝑦 𝑤𝑧]𝑇, with respect to the global frame (as the subscript 𝑆/𝐺) 

and expressed in the sensor frame (as the superscript 𝑆). 𝑹̇𝑆/𝐺 can be computed by 𝝎𝑆/𝐺
𝑆  as: 

𝑹̇𝑆/𝐺 = −𝜴𝑹𝑆/𝐺  (6.5) 

and 

𝜴 = [

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

] (6.6) 

𝜴 is the skew-symmetric matrix for rate angle 𝝎𝑆/𝐺
𝑆 . The complete derivation of Eq. (6.5) and (6.6) can 

be found in [94]. We can notice that Eq. (6.5) is essentially nine scalar 1st-order differential equations. 
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Since gyroscopes provide discretized data at a fixed sampling period 𝑡𝑠, the predicted DCM at the (𝑘 +

1)th time step is: 

𝑹𝑆/𝐺𝑘+1
= 𝑹𝑆/𝐺𝑘

+ 𝑹̇𝑆/𝐺𝑘
𝑡𝑠 (6.7) 

By plugging in Eq. (6.5) and Eq. (6.6), then 𝑹𝑆/𝐺𝑘+1
 becomes 

𝑹𝑆/𝐺𝑘+1
= (𝑰3 −𝜴𝑘𝑡𝑠)𝑹𝑆/𝐺𝑘

 (6.8) 

𝜴𝑘 is built by the 𝑘th sampled angular velocity. Eq. (6.8) is strapdown integration indicating that the 

orientation in the next time step is a function of the orientation and angular velocity at the current time 

step. 

6.3.2 Sensor Fusion  

Sensor Model 

As discussed in the introduction in Section 2.6.2, the output of a triaxial gyroscope 

𝒚𝐺 = 𝝎𝑆/𝐺
𝑆 + 𝒗𝐺 + 𝒃𝐺  (6.9) 

is the sum of the true angular velocity 𝝎𝑆/𝐺
𝑆 , the noise 𝒗𝐺, and the bias 𝒃𝐺 [96]. If using an IMU just 

for a short period of time, for example, the experiment in Section 6.5 where the total duration is 6.12 

seconds, 𝒃𝐺  can be assumed constant, and therefore can be calibrated when the sensor is at rest. 

However, gyroscope noise 𝒗𝐺  will lead to angle random walk (ARW) behavior while performing 

strapdown integration. 

On the other hand, the output of a triaxial accelerometer 

𝒚𝐴 = 𝒂𝑆/𝐺
𝑆 + 𝒈𝑆/𝐺

𝑆 + 𝒗𝐴 + 𝒃𝐴 (6.10) 

is the sum of the true sensor linear acceleration 𝒂𝑆/𝐺
𝑆 , the gravity 𝒈𝑆/𝐺

𝑆 , the noise 𝒗𝐴, and the bias 𝒃𝐴 

[96]. When 𝒂𝑆/𝐺
𝑆  is small enough to be negligible, the orientation predicted by gyroscope measurement 

can be corrected by fusing it with the accelerometer output since 𝒈𝑆/𝐺
𝑆  also indicates the inclination, 

i.e., the orientation except the rotation around the vertical (gravity) axis. 
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Sensor Fusion Algorithm 

 

Figure 6-5 Sensor fusion algorithm adopted from [102]. 

As the review presented in Section 2.6.3, various sensor fusion algorithms for orientation estimation 

have been developed. The differences between those algorithms are primarily the required 

computational costs and dynamic bias estimation. As the application in this thesis is off-line and short, 

such differences are rather minor. However, since the experimental trajectory is complex multi-axis 

simultaneous motion, rejecting the sensor acceleration from the gravity is more critical to this 

application. Therefore, an adaptive extended Kalman filter (EKF) [102] is adopted in this research (see 

Figure 6-5.) Jacobian computation is performed due to the nonlinear nature of the orientation. The 

estimated orientation 𝑹𝑆/𝐺 is then used to convert the measured angular velocity and linear acceleration 

in the sensor frame into the global frame, 𝝎𝑆/𝐺
𝐺  and 𝒂𝑆/𝐺

𝐺 . Since there is no way to distinguish the sensor 

acceleration 𝒂𝑆/𝐺
𝑆  from the gravity 𝒈𝑆/𝐺

𝑆  within the accelerometer outputs 𝒚𝐴 , the orientation 

estimation adopts an adaptive scheme to reject the impact of sensor acceleration 𝒂𝑆/𝐺
𝑆  such that the 

estimation with accelerometer measurement is enabled only when the magnitude of 𝒂𝑆/𝐺
𝑆  is negligible, 

i.e., |𝒚𝐴| ≅ 9.8 𝑚/𝑠2 . This step unfortunately makes the estimation solely rely on the gyroscope 

measurement when the sensor is in motion.  

As a side note, although most commercial IMUs have been equipped with embedded sensor fusion 

algorithms, the details are normally kept confidential. Due to not knowing how their body acceleration 

rejection scheme works, the above known sensor fusion algorithm is applied to process the raw data 

instead. 
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Averaging vs. the Standard Deviation 

If simply numerically integrating gyroscope data to obtain the angle without the correction by 

accelerometer measurement, then after time 𝑡, the gyroscope noise 𝑣𝐺 may lead to angle random walk 

(ARW) behavior. The standard deviation of the drift is  

𝜎𝑎𝑟𝑤 = 𝜎𝐺√𝑡𝑠𝑡 (6.11) 

𝑡𝑠 is the sampling period, and 𝜎𝐺 is the standard deviation of the gyroscope noise. 

To mitigate the above negative impact, it is possible to reduce the standard deviation of the gyroscope 

noise by taking the average of 𝑛 repeating measurements. The standard deviation of the averaged data 

𝜎𝐺𝑎𝑣𝑔 becomes 1/√𝑛 times of that of a single measurement, i.e., 𝜎𝐺𝑎𝑣𝑔 = 𝜎𝐺/√𝑛. 

To improve the root mean square (RMS) error due to the noise, the tests in this research have taken the 

average of the 22 repeating measurements to reduce the signal noise variance. 

6.3.3 Summary 

Overall, the data that can be accessed from the IMU and the sensor fusion algorithm are listed in Table 

6-1. In the next section, the data will be used to reconstruct machine local vibration. 

Table 6-1 A summary of available data from the IMU and the sensor fusion algorithm. 

𝒚𝐴 Accelerometer output 

𝒚𝐺 Gyroscope output 

𝑹𝑆/𝐺 DCM. Orientation of the sensor with respect to the global frame  

𝝎𝑆/𝐺
𝐺  Angular velocity of the sensor with respect to the global frame, expressed in the global 

frame 

𝒂𝑆/𝐺
𝐺  Gravity-free linear acceleration of the sensor with respect to the global frame, 

expressed in the global frame 

6.4 Data Mapping between CNC Data and IMU Data 

Before utilizing the CNC servo data and IMU data, they first have to be synchronized since they are 

collected by separated data acquisition systems. Section 6.4.1 presents a strategy to synchronize these 

two sources of data.  

Next, as described in the introduction in Section 6.3, the IMU provides the sensor motion expressed in 

its own global frame 𝑶𝐺 . However, the goal is to capture the structural vibration 𝑞𝛿  expressed in 

machine local frame 𝑶𝛿 as shown in the machine kinematic diagram, Figure 6-3. Therefore, there is a 
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need to transform the IMU data into the local frame. The proposed methodology for this purpose is 

illustrated in Section 6.4.2. 

6.4.1 Data Synchronization 

Since most of the commercial CNCs do not allow customized real-time data acquisition, the IMU 

measurement has to be taken by a separated data acquisition system. Therefore, there is a need to 

synchronize the data from the different acquisition systems. 

 

Figure 6-6 Data synchronization flowchart. 

Cross-correlation is used to synchronize the data. It is one of the most common synchronization 

approaches and has been used in various fields of science and engineering [121]. The proposed 

approach assumes that the rigid body motion is the dominant behavior exhibited in both the IMU and 

encoder data. The main discrepancy is the transient relative vibration between the two measurement 

locations. The vibration is assumed negligible, or it could be optionally removed by low-pass filters. 

The flowchart is shown in Figure 6-6. The absolute magnitude of angular velocity is chosen as the 

fitting variable to synchronize the two datasets. The magnitude of angular velocity measured by the 

IMU, |𝝎𝑆/𝐺
𝑆 |, should be equal to the magnitude of angular velocities measured by the rotary encoders. 

Considering the machine kinematic diagram in Figure 6-3, the magnitude of angular velocity is 

√𝑞𝐴̇
2 + 𝑞𝐶̇

2.  

Then, the synchronization time shift is estimated by the following two steps. First, a rough estimation 

is done by performing discrete cross-correlation of the two angular velocity magnitudes. The index 

with the highest correlation indicates the estimated time shift.  

However, the resolution of the time shift estimation is confined to the length of sampling period of the 

data acquisition. For example, the sampling period of Xsens MTi-630 is 2.5 [ms]. This may lead to 
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erroneous estimation of phase response of a closed-loop control system. This problem can be mitigated 

by fine-tuning the time shift with the following procedures. 

(1) Up-sample the two datasets by spline fitting to reduce the length of discrete time interval. 

(2) The estimated time shift is refined by performing the cross-correlation only over a unit sampling 

period. 

(3) Down-sample the datasets to the original sampling period. 

After finding the estimated time shift, this is used to shift the IMU data and CNC data so that they are 

synchronized. 

6.4.2 Reconstruction of the Local Vibration Using an IMU 

An IMU records the motion of the sensor frame 𝑶𝑆 with respect to the global frame 𝑶𝐺  while our 

interest is the structural vibration defined in local frames, i.e., 𝑞δ in 𝑶δ shown in Figure 6-3. This 

section presents a methodology to reconstruct such local vibration used for flexible joint model 

identification. 

   

 

Figure 6-7 Coordinate frames of the machine and the IMU.  

When an IMU is attached to the machine table, the relevant coordinates frames are shown in Figure 

6-7. There are two kinematic chains from 𝑶𝑀 to 𝑶𝑇. One chain is via the machine kinematics, which 

has been illustrated in Section 6.2. The variables of the rigid body kinematics, [𝑞𝑌, 𝑞𝐴, 𝑞𝐶], can be 

measured by the machine encoders. The local structural vibration 𝑞δ is the unknown variable. 
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The other chain is via the IMU measurements from the global inertial frame 𝑶𝐺 to the sensor frame 𝑶𝑆, 

which is rigidly attached to the table frame 𝑶𝑇. To relate the IMU and the machine kinematics, there 

are two unknown rotation matrices, 𝑹𝐺/𝑀 and 𝑹𝑆/𝑇 which must be solved. 

𝑹𝐺/𝑀 is the inertial frame transformation representing the orientation between 𝑶𝐺 and 𝑶𝑀. These two 

inertial frames are not identical because 𝑶𝐺 is defined depending on the initial sensor orientation. On 

the other hand, 𝑹𝑆/𝑇 is the mounting misalignment of the IMU with respect to the table frame. 

   

Figure 6-8 The flowchart of estimating structural vibration 𝒒𝛅. 

Following the flowchart in Figure 6-8, the following sections present the methods for estimating 𝑹𝐺/𝑀 

and 𝑹𝑆/𝑇 by utilizing the collected data from the machine encoders and the IMU. Once 𝑹𝐺/𝑀 and 𝑹𝑆/𝑇 

are estimated, the local structural vibration 𝑞δ can be reconstructed. 

Estimation of Inertial Frame Transformation 𝑹𝑮/𝑴 

 

Figure 6-9 Estimation of 𝑹𝑮/𝑴. 

Figure 6-9 shows the flowchart for estimating 𝑹𝐺/𝑀. Considering the machine rigid body kinematics 

in Section 6.2, the angular velocity of the table frame 𝑶𝑇 expressed in the machine inertial frame 𝑶𝑀 

can be derived as: 

𝝎𝑇/𝑀
𝑀 = [

𝑞̇𝐴
0
0
] + (𝑹𝐴/𝑌𝑹𝑌/𝑀)

𝑇
[
0
0
𝑞̇𝐶

] = [
𝑞̇𝐴
0
0
] + [

1 0 0
0 𝑐𝑜𝑠 𝑞𝐴 −𝑠𝑖𝑛𝑞𝐴
0 𝑠𝑖𝑛𝑞𝐴 𝑐𝑜𝑠𝑞𝐴

] [
0
0
𝑞̇𝐶

] (6.12) 

Computing 𝝎𝑇/𝑀
𝑀  via Eq. (6.12) requires [𝑞𝐴, 𝑞𝐶 , 𝑞̇𝐴, 𝑞̇𝐶], which are available data from the encoders 

of the rotary A and C axes. Since the IMU is rigidly attached to the rotary table, the angular velocities 

of 𝑶𝑆 and 𝑶𝑇 with respect to an arbitrary inertial frame, for example 𝑶𝑀, should be identical, i.e., 
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𝝎𝑇/𝑀
𝑀 = 𝝎𝑆/𝑀

𝑀  (6.13) 

On the other hand, the estimated 𝝎𝑆/𝐺
𝐺  remains the same if changing the referenced inertial frame, i.e., 

𝝎𝑆/𝐺
𝐺 = 𝝎𝑆/𝑀

𝐺  (6.14) 

Combining Eq. (6.13) and Eq. (6.14) and introducing 𝑹𝐺/𝑀, the following equation is derived as: 

𝝎𝑆/𝐺
𝐺 = 𝝎𝑆/𝑀

𝐺 = 𝑹𝐺/𝑀𝝎𝑆/𝑀
𝑀 = 𝑹𝐺/𝑀𝝎𝑇/𝑀

𝑀  (6.15) 

By gathering 𝑁𝑡 samples of data from the encoders and the IMU, the following 𝑿 and 𝒀 data matrices 

can be built. 

{

𝑿 = [𝝎𝑇/𝑀
𝑀

1
⋯ 𝝎𝑇/𝑀

𝑀

𝑘
⋯ 𝝎𝑇/𝑀

𝑀

𝑁𝑡
]
3×𝑁𝑡

𝒀 = [𝝎𝑆/𝐺
𝐺

1
⋯ 𝝎𝑆/𝐺

𝐺

𝑘
⋯ 𝝎𝑆/𝐺

𝐺

𝑁𝑡
]
3×𝑁𝑡

 (6.16) 

𝑿 is built by the encoder data while 𝒀 is built by the IMU data. According to Eq. (6.15), the estimation 

of the rotation matrix 𝑹𝐺/𝑀 can be formulated as the following optimization problem: 

Min
𝑹𝐺/𝑀∈𝑆𝑂(3)

∑‖𝝎𝑆/𝐺
𝐺

𝑘
− (𝑹𝐺/𝑀𝝎𝑇/𝑀

𝑀

𝑘
)‖

2
𝑁𝑡

𝑘=1

 (6.17) 

This can be solved in a least squares sense [122] by taking the singular value decomposition (SVD) of 

𝑿𝒀𝑻, 

𝑼𝚺𝑽𝑻 = 𝑿𝒀𝑻 (6.18) 

Then, the rotation matrix 𝑹𝐺/𝑀 can be estimated by 

𝑹̂𝐺/𝑀 = (𝑼𝑽𝑻)
𝑻
= 𝑽𝑼𝑻 (6.19) 
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Estimation of Mounting Misalignment 𝑹𝑺/𝑻 

 

Figure 6-10 The flowchart for estimating 𝑹𝑺/𝑻. 

Figure 6-10 shows the flowchart for estimating 𝑹𝑆/𝑇. Considering the machine rigid body kinematics 

demonstrated in Section 6.2, the orientation of the table 𝑶𝑇 with respect to machine inertial frame 𝑶𝑀 

can be derived from Eq. (6.3) as 

𝑹𝑇/𝑀 = 𝑹𝑇/𝐴𝑹𝐴/𝑌𝑹𝑌/𝑀 = [
𝑐𝑜𝑠 𝑞𝐶 𝑠𝑖𝑛𝑞𝐶 0
−𝑠𝑖𝑛𝑞𝐶 𝑐𝑜𝑠 𝑞𝐶 0

0 0 1
] [
1 0 0
0 𝑐𝑜𝑠 𝑞𝐴 𝑠𝑖𝑛𝑞𝐴
0 −𝑠𝑖𝑛𝑞𝐴 𝑐𝑜𝑠𝑞𝐴

] [
1 0 0
0 1 0
0 0 1

] (6.20) 

On the other hand, by incorporating 𝑹𝑆/𝐺 from the IMU and 𝑹̂𝐺/𝑀 estimated by Eq. (6.19), 𝑹𝑇/𝑀 can 

be derived as 

𝑹𝑇/𝑀 = 𝑹𝑇/𝑆𝑹𝑆/𝐺𝑹̂𝐺/𝑀 (6.21) 

Combining Eq. (6.20) and Eq. (6.21), the unknown 𝑹𝑆/𝑇 can be expressed as 

𝑹S/𝑇 = 𝑹𝑆/𝐺𝑹̂𝐺/𝑀𝑹𝑇/𝑀
𝑇  (6.22) 

Since 𝑹𝑆/𝐺  and 𝑹𝑇/𝑀  are given, and 𝑹̂𝐺/𝑀  has been estimated by Eq. (6.19), 𝑹𝑆/𝑇  can then be 

estimated. By gathering 𝑁𝑡 samples of data from the IMU and the encoders, 𝑹𝑆/𝑇𝑘
 for the kth sample 

can be computed as 

𝑹𝑆/𝑇𝑘
= 𝑹𝑆/𝐺𝑘

𝑹̂𝐺/𝑀𝑹𝑌/𝐴𝑘
𝑹𝐴/𝑇𝑘

 (6.23) 

Taking the SVD of the sum of 𝑹𝑆/𝑇𝑘
, 

𝑼𝚺𝑽𝑻 =∑𝑹𝑆/𝑇𝑘

𝑁𝑡

𝑘=1

 (6.24) 

then 𝑹𝑆/𝑇 can be estimated by normalizing the above summation as 
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𝑹̂𝑆/𝑇 = 𝑼𝑽𝑻 (6.25) 

This approach is taking the average of the estimation from each sample. 

Extraction of Structural Vibration 𝒒𝜹 

Now, introducing the structural vibration 𝑹𝛿/𝑌 into Eq. (6.20), 𝑹𝑇/𝑀 becomes 

𝑹𝑇/𝑀 = 𝑹𝑇/𝐴𝑹𝐴/𝛿𝑹𝛿/𝑌𝑹𝑌/𝑀

= [
𝑐𝑜𝑠 𝑞𝐶 𝑠𝑖𝑛𝑞𝐶 0
−𝑠𝑖𝑛𝑞𝐶 𝑐𝑜𝑠 𝑞𝐶 0

0 0 1
] [

1 0 0
0 𝑐𝑜𝑠 𝑞𝐴 𝑠𝑖𝑛𝑞𝐴
0 −𝑠𝑖𝑛𝑞𝐴 𝑐𝑜𝑠𝑞𝐴

] [

1 0 0
0 𝑐𝑜𝑠 𝑞𝛿 𝑠𝑖𝑛𝑞𝛿
0 −𝑠𝑖𝑛𝑞𝛿 𝑐𝑜𝑠𝑞𝛿

] [
1 0 0
0 1 0
0 0 1

] 
(6.26) 

Combining Eq. (6.26), Eq. (6.21), and the estimated 𝑹̂𝑆/𝑇, 𝑹𝛿/𝑌 can be reconstructed as 

𝑹𝛿/𝑌 = 𝑹𝐴/𝛿
𝑇 𝑹𝑇/𝐴

𝑇 𝑹̂𝑆/𝑇
𝑇 𝑹𝑆/𝐺𝑹̂𝐺/𝑀𝑹𝑌/𝑀

𝑇  (6.27) 

If representing 𝑹𝛿/𝑌 by Z-Y-X Euler angles: 

𝑹𝛿/𝑌(𝑞𝛿 , 𝑞𝜃, 𝑞𝜓) = 𝑹𝑥(𝑞𝛿)𝑹𝑦(𝑞𝜃)𝑹𝑧(𝑞𝜓) 

= (
1 0 0
0 𝑐𝑜𝑠 𝑞𝛿 𝑠𝑖𝑛 𝑞𝛿
0 −𝑠𝑖𝑛 𝑞𝛿 𝑐𝑜𝑠 𝑞𝛿

)(
𝑐𝑜𝑠 𝑞𝜃 0 −𝑠𝑖𝑛 𝑞𝜃
0 1 0

𝑠𝑖𝑛 𝑞𝜃 0 𝑐𝑜𝑠 𝑞𝜃

)(

𝑐𝑜𝑠 𝑞𝜓 𝑠𝑖𝑛 𝑞𝜓 0

−𝑠𝑖𝑛 𝑞𝜓 𝑐𝑜𝑠 𝑞𝜓 0

0 0 1

) 
(6.28) 

the deflection angles attributed to the connection of the tilt stage to the linear stage, 𝑞𝛿 can be solved 

(see Figure 6-11). 

  

Figure 6-11 Coordinate system representing the structural deflection. 
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𝑞𝜃 and 𝑞𝜓 are rotations along the other two orthogonal directions, which are assumed to be negligible 

for the I-beam connection, due to the corresponding rotational stiffnesses being much higher. The 

consideration of simultaneous vibrations in the additional degrees of freedom (i.e., 𝑞𝜃 and 𝑞𝜓) is also 

believed to be possible, but is considered as future research. 

6.5 Experimental Validation 

A simple command trajectory (Figure 6-12) was designed to test whether the proposed model 

estimation concept of fusing IMU and CNC signals is able to reconstruct the unknown internal vibration 

while the Y-A-C axes are moving simultaneously. The trajectory reaches high acceleration and high 

jerk (see Table 6-2) to excite the structural vibration, such that vibratory inter-axis dynamic coupling 

effects between the Y- and A- axes can also be observed. The commanded position 𝒒𝑟 =

[𝑞𝑟𝑌 𝑞𝑟𝐴 𝑞𝑟𝐶], actual position 𝒒 = [𝑞𝑌 𝑞𝐴 𝑞𝐶], tracking error 𝒆 = [𝑒𝑌 𝑒𝐴 𝑒𝐶], and motor inputs 𝒖 =

[𝑢𝑌 𝑢𝐴 𝑢𝐶] were collected at a sampling rate of 400 Hz. Time derivative terms [𝒒̇𝑟 𝒒̈𝑟 𝒒̇ 𝒒̈] are also 

derived. 

Table 6-2 Kinematic limits of the experimental trajectory. 

 
Speed 

[mm/s] or [°/s] 
Acceleration 

[mm/s2] or [°/s2] 
Jerk 

[mm/s3] or [°/s3] 

Y 2.77E+02 1.38E+03 1.06E+05 

A 1.10E+02 1.23E+03 7.67E+04 

C 6.76E+01 2.70E+02 2.70E+03 
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Figure 6-12 Simultaneous motion trajectory. 

An Xsens MTi-630 IMU is firmly attached to the rotary table. Table 6-3 lists the signal noise and bias 

estimated when the sensor was at rest. The sampling rate is 400 Hz. Considering the vibration to be 

captured is below 50 Hz, a low-pass filter with 100 Hz bandwidth is applied to reduce high-frequency 

noise. Other critical sensor specifications about the gyro of the Xsens MTi-630 IMU from the product 

manuals are listed in Table 6-4. It should be noted that the gyro biases have to be recompensated for 

each of the measurements. Otherwise, significant drifts will occur. 

Table 6-3 Estimated signal property of the Xsens MTi-630 IMU. 

Sampling rate 400 Hz X Y Z 

Gyro 
Bias [°/𝑠] 1.329E-01 4.537E-02 9.289E-02 

RMS noise [°/𝑠] 8.493E-02 7.997E-02 8.274E-02 

Accelerometer RMS noise [𝑚𝑚/𝑠2] 8.165 7.291 5.651 

 

Table 6-4 Critical specifications of the gyro from the product datasheet [99]. 

Scale Factor variation [] Non-orthogonality [°] Bias stability [°/𝑠] G-sensitivity [°/𝑠/𝐺] 
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0.5% 5E-02 2E-03 1E-03 

 

In order to reduce the impact of random noise, the experiment was repeated 22 times. Statistically, the 

RMS noise and ARW of the averaged results become only 21% (1/√22) of the original signal 

properties as listed in Table 6-5. The raw measurement data of the IMU is shown in Figure 6-13. The 

accelerometer data 𝒚𝐴 contain the gravity component overlapping with body acceleration. 

Table 6-5 RMS noise reduction by averaging 22 repeated tests. 

 X Y Z 

Gyro [°/𝑠] 1.674E-02 1.571E-02 1.617E-02 

Accelerometer [𝑚𝑚/𝑠2] 1.741 1.554 1.205 

 

 

Figure 6-13 Raw measurement from the IMU. 

By applying the sensor fusion algorithm introduced in 6.3.2, the raw measurement data is processed as 

shown in Figure 6-14. Due to the removal of the gravity component, structural vibration can be clearly 

seen in the linear acceleration data.  
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Figure 6-14 Estimation result of sensor fusion expressed in global frame. 

Figure 6-15 presents the synchronization of the 22 tests. The absolute value of angular velocity derived 

from the servo data and IMU data are used for the synchronization (see Section 6.4.1). The residual 

only exhibits structural vibration and does not appear to show rigid body motion, indicating successful 

synchronization. 

 

Figure 6-15 Synchronization of 22 tests using the absolute value of angular velocity.  

By applying the estimation technique presented in Section 6.4.2, 𝑹𝐺/𝑀 and 𝑹𝑆/𝑇 of each of the 22 tests 

were estimated accordingly (see Figure 6-16). 𝑹𝑆/𝑇  is more repetitive than 𝑹𝐺/𝑀  because 𝑹𝑆/𝑇 

represents the mechanical mounting of the sensor on the table. In contrast, 𝑹𝐺/𝑀 depends on the initial 

values of the IMU signals which could be affected by time-varying bias and noise. 
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Figure 6-16 Estimation of 𝑹𝑮/𝑴 and 𝑹𝑺/𝑻 expressed by 𝑹𝒙(𝝓)𝑹𝒚(𝜽)𝑹𝒛(𝝍) Euler angles. 

Then, following Eq. (6.27), structural vibration 𝐑𝛿/𝑌  can be reconstructed. Euler angles, 

𝑹𝑥(𝑞𝛿)𝑹𝑦(𝑞𝜃)𝑹𝑧(𝑞𝜓), are used to represent 𝑹𝛿/𝑌 where 𝑞𝛿  is the principal angle of the structural 

deflection, and  𝑞𝜙 and 𝑞𝜓 are the rotations along the other two orthogonal directions (see Figure 6-11). 

The results are shown in Figure 6-17, Figure 6-18, Figure 6-19, and Table 6-6.  

𝑞𝛿 shown in Figure 6-17 exhibits clear vibration excited by the motion of the Y- and A-axis. However, 

low-frequency perturbations with different patterns are observed in all the three angles. 
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Figure 6-17 Estimation of 𝑹𝜹/𝒀 converted to Euler angles. 

 

Figure 6-18 Estimated angular velocity 𝒒̇𝝓, 𝒒̇𝜹, and 𝒒̇𝝍. 
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Figure 6-19 Estimated angular acceleration 𝒒̈𝝓, 𝒒̈𝜹, and 𝒒̈𝝍. 

Angular velocities and acceleration are plotted in Figure 6-18 and Figure 6-19. Due to taking the time 

derivatives, structural vibration is much more pronounced in 𝑞̇𝛿  and 𝑞̈𝛿 , and low-frequency 

perturbation becomes insignificant. Non-repetitive noise is diminished by taking the average of the 22 

tests. 

Table 6-6 Standard deviation of the 22 tests.  

𝑹𝛿/𝑌(𝑞𝛿 , 𝑞𝜃, 𝑞𝜓) 𝑞𝛿 (X) 𝑞𝜃 (Y) 𝑞𝜓 (Z) 

Angle [˚] 8.150E-03 8.127E-03 8.000E-03 

Angular velocity [˚/s] 7.172E-02 1.247E-01 1.497E-01 

Angular acceleration [˚/s2] 1.650E+01 2.354E+01 2.732E+01 
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IMU #1: the original one 

IMU #2: the new one 

Figure 6-20 Two IMUs on machine table.  

To further investigate the consistency of the measurement, one more IMU is mounted on the table as 

shown in Figure 6-20. Complete estimation results of IMU #2 are reported in Appendix B. The averaged 

results of IMU #1 and IMU #2 are plotted in Figure 6-21, Figure 6-22, and  Figure 6-23. 

As shown in Figure 6-21 and Figure 6-22, the measurements of angular velocity and acceleration are 

consistent. The RMS error between the two measurements are 0.0474 ˚/s and 7.3323 ˚/s2, respectively. 

Repetitive vibration is observed in  𝑞̇𝛿 and 𝑞̈𝛿, and the velocity and acceleration along the other two 

orthogonal directions (𝑞̇𝜃, 𝑞̇𝜓, 𝑞̈𝜃, and 𝑞̈𝜓) are consistently close to zero. 
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Figure 6-21 Averaged angular velocity of IMU #1 and IMU #2. 

 

Figure 6-22 Averaged angular acceleration of IMU #1 and IMU #2. 
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Figure 6-23 Averaged angles of IMU #1 and IMU #2.  

However, the angles 𝑞𝛿 , 𝑞𝜃 , and 𝑞𝜓  are not consistent between the two measurements. Different 

patterns of the low-frequency perturbations can be seen. The following discusses the cause of this 

measurement discrepancy. 

First, low-frequency perturbations must exist because of the geometric imperfection error of the 

machine assembly, such as the linear axis also inducing parasitic rotational and off-axis movements, or 

the rotational axis not being perfectly perpendicular to the linear axis. However, even if geometric error 

exists, such perturbation behavior should be consistent and independent to the sensors and mounting 

locations.  

The author found that the scale factor variation of the IMUs could be the problem. Scale factor variation 

listed in the product specification in Table 6-4 is 0.5%. According to the results of multiple tests, the 

scale factors of the gyros are found to be random and time-varying. Such variation could be around 

0.2~0.5%. Hence, for example, assuming the error of scaling factor is 0.2%, and given that the 

maximum rotation speed of A-axis is 110 °/s (see the testing trajectory in Figure 6-12 and Table 6-2), 

rotation at 110 °/s for one second will lead to 0.22˚ error (110°/s × 0.2%× 1𝑠 = 0.22°). Furthermore, 

other sensor errors such as non-orthogonality and G-sensitivity will cause additional errors to the 
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measurements. Currently, the discrepancy of the experimental data shown in Figure 6-23 is around ±

0.04˚. Further reduction is very difficult and impractical because it is beyond the performance of this 

type of sensor. Alternatively, considering the cost, choosing higher-accuracy sensors such as fiber optic 

gyroscopes is also impractical for this application. Nonetheless, 𝑞̇𝛿  and 𝑞̈𝛿  can be consistently 

estimated, which are still very helpful in the dynamic model estimation presented in the next chapter. 

Also, it is acknowledged that it is difficult to verify the accuracy of the reconstructed 𝑞̇𝛿 and 𝑞̈𝛿 by 

another referenced instrument, due to the complex experimental trajectory containing both linear and 

rotary movements. Nevertheless, it is indirectly verified by the prediction accuracy of the identified 

dynamic model presented in the next chapter. 

6.6 Conclusion 

This chapter presents the use of a low-cost MEMS IMU to capture the machine structural vibration that 

cannot be detected by the embedded encoders. The proposed data processing technique first estimates 

the mounting orientation 𝑹𝑆/𝑇 and inertial frame orientation 𝑹𝐺/𝑀 of the IMU such that the estimated 

vibration is independent to the mounting location and the initial orientation of the IMU.  

A flexible multi-axis feed drive was built for the experimental validation. This experimental setup 

replicates the machine configuration discussed in Section 5.3.2 where significant flexibility is between 

the linear drive and the rotary drive. A multi-axis simultaneous trajectory was performed on the 

experimental drive. The structural vibration was excited by high acceleration and jerk. 

The test was repeated 22 times to eliminate the random noise and drift which is inherent in low-cost 

MEMS IMUs. The experimental results show that vibration in velocity and acceleration (𝑞̇𝛿 and 𝑞̈𝛿) 

can be consistently estimated. However, the estimated vibration angle 𝑞𝛿 is unfortunately corrupted 

with inconsistent low-frequency perturbation due to the sensor’s performance limitation. Nonetheless, 

𝑞̇𝛿 and 𝑞̈𝛿 is still helpful in the dynamic model estimation presented in the next chapter. 
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Chapter 7 

Experimental Results of the Identification Considering Mechanical 

Flexibility 

7.1 Introduction 

In Section 5.3.2, it is found that the case with missing internal structural vibration requires an additional 

sensor for the model identification. In Chapter 6, an experimental feed drive with an IMU was built for 

this study. In Section 6.5, a multi-axis simultaneous trajectory was tested on the experimental drive. By 

incorporating the collected servo data and IMU data, the velocity and acceleration of the structural 

vibration (𝑞̇𝛿 and 𝑞̈𝛿) have been reconstructed. In this chapter, the collected servo data as well as the 

reconstructed structural vibration will be used to identify the dynamic model derived in Section 5.3.2. 

The identification of the open-loop dynamics is presented in Section 7.2. Model simplification was 

made due to the lack of accurate measurement of 𝑞𝛿. In the next step, the identification of closed-loop 

LTO dynamics is presented in in Section 7.3. Lastly in Section 7.4, the identified model was validated 

by predicting the responses to external impulse hammer forces.  

7.2 Identification of Open-Loop Dynamics 

As the identification procedure in Section 4.2.4, the purpose of step 4.1 and 4.2 is to construct the 

predicted generalized disturbance 𝒅̂. The parameters of 𝒅 are obtained by performing the identification 

of open-loop dynamics, i.e., Eq. (5.4) and Eq. (5.5). However, 𝑞𝛿 and 𝑞𝐴′ (𝑞𝐴′ = 𝑞𝛿 + 𝑞𝐴) appear in 

these equations. The angle 𝑞𝛿 reconstructed in Section 6.5 is unfortunately corrupted by unwanted low-

frequency drift and cannot be directly used for model identification. Only the time derivative terms 𝑞̇𝛿 

and 𝑞̈𝛿 are consistent and accurate. The direct use of 𝑞𝛿 and 𝑞𝐴′ is avoided by the following approach. 

(1) First, given that 𝑞𝛿 is close to zero, the following approximations are made: 

{
 

 
𝑞̈𝛿 cos(𝑞𝛿) ≅ 𝑞̈𝛿
𝑞̇𝛿

2 sin(𝑞𝛿) ≅ 0

cos(𝑞𝐴′) = cos(𝑞𝐴 + 𝑞𝛿) ≅ cos(𝑞𝐴)

sin(𝑞𝐴′) = sin(𝑞𝐴 + 𝑞𝛿) ≅ sin(𝑞𝐴)

 (7.1) 
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(2) −𝜑 sin(𝑞𝛿) in Eq. (5.5) is the gravity force acting on the connection link. Since 𝑞𝛿 is small, this 

term can be approximated as −𝜑𝑞𝛿 and then merged with the linear spring term 𝑘𝛿𝑞𝛿 in Eq. (5.4). 

In other words, 𝜑 is not required to be identified. 

(3) The parameters of the equations of 𝑑𝛿 in Eq. (5.5) are 𝜆, 𝜇, and the parameters of 𝑢𝑓𝐴
 and 𝑢𝑝𝐴

. 

Since these parameters also appear in the equation of 𝑑𝐴 and 𝑑𝑌, the equations of motion for the 

connection link with flexibility can be excluded from the identification. 

(4) Regarding 𝑢𝑓𝑌
, 𝑢𝑓𝐴

, 𝑢𝑝𝑌
, and 𝑢𝑝𝐴

, Coulomb friction is considered, i.e, 𝑢𝑓𝑌
= 𝐶𝑌𝑑𝑛(𝑞̇𝑌) and 

𝑢𝑓𝐴
= 𝐶𝐴𝑑𝑛(𝑞̇𝐴), where 𝑑𝑛(𝑞̇𝑌) and 𝑑𝑛(𝑞̇𝐴) are the friction models (see Section 3.2). Hence, 𝑢𝑓𝑌

 

and 𝑢𝑓𝐴 are functions of 𝑞̇𝑌 and 𝑞̇𝐴. Position-dependent disturbances 𝑢𝑝𝑌 and 𝑢𝑝𝐴 are modeled by 

a lookup table with linear interpolation (see Section 3.2). Therefore, 𝑢𝑝𝑌 and 𝑢𝑝𝐴 are functions of 

𝑞𝑌 and 𝑞𝐴. 

Implementing the above simplifications, the parameters of 𝒅 in Eq. (5.5) can be obtained by the 

identification of the parameters in the following dynamic equations: 

{
𝑢𝑌 = 𝑚𝑌𝑞̈𝑌 + 𝑏𝑌𝑞̇𝑌 − 𝜇𝑞̈𝛿 + 𝜌(𝑞̈𝐴′ cos(𝑞𝐴) − 𝑞̇𝐴′

2 sin(𝑞𝐴)) + 𝑢𝑓𝑌 + 𝑢𝑝𝑌
𝑢𝐴 = 𝐼𝐴𝑞̈𝐴′ + 𝑏𝐴𝑞̇𝐴 + 𝜆(−𝑞̈𝛿 cos(𝑞𝐴) − 𝑞̇𝛿

2 sin(𝑞𝐴)) + 𝜌𝑞̈𝑌 cos(𝑞𝐴) + 𝜓 sin(𝑞𝐴) + 𝑢𝑓𝐴 + 𝑢𝑝𝐴

 

(7.2) 

As can be seen, 𝑞𝛿  and 𝑞𝐴′ do not appear in the above equation. All the variables are available as 

measurements or estimates. Thus, the data collected from the experiment in Section 6.5 was used to 

identify the dynamic parameters following the LS-based parameter identification approach illustrated 

in Section 3.3. To enhance the data quality for model identification, a velocity threshold is applied to 

remove the servo data of which the velocity of the linear and rotary axes are below 2 mm/s and 10-3 °/s 

respectively. The parameter estimates are summarized in Table 7-1. 

Table 7-1 The identified dynamic parameters. 

𝑚𝑌 [kg] 𝜇 [kg∙m] 𝜌 [kg∙m] 𝐼𝐴 [kg∙m2] 𝜆 [kg∙m2] 

5.57E+01 1.18E+01 8.86E-01 1.24E-01 2.57E-01 

𝜓  [N∙m] 𝐶𝑌 [N] 𝑏𝑌 [N/(m/s)] 𝐶𝐴 [N⋅m] 𝑏𝐴[N⋅m/s] 

8.47E+00 1.99E+01 4.95E+01 2.96E-01 3.63E-02 
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The motor force and torque predicted by the identified open-loop dynamic model are shown in Figure 

7-1. To demonstrate the necessity of considering the machine flexibility, the prediction of the identified 

model has been compared with the prediction of a rigid-body model, where the connection between the 

linear and rotary drives were assumed to be infinitely stiff, and thus the 𝑞̈𝛿 and 𝑞̇𝛿 related terms were 

neglected: 

{
𝑢𝑌 = 𝑚𝑌𝑞̈𝑌 + 𝑏𝑌𝑞̇𝑌 + 𝜌(𝑞̈𝐴 cos(𝑞𝐴) − 𝑞̇𝐴

2 sin(𝑞𝐴)) + 𝑢𝑓𝑌 + 𝑢𝑝𝑌
𝑢𝐴 = 𝐼𝐴𝑞̈𝐴 + 𝑏𝐴𝑞̇𝐴 + 𝜌𝑞̈𝑌 cos(𝑞𝐴) + 𝜓 sin(𝑞𝐴) + 𝑢𝑓𝐴

+ 𝑢𝑝𝐴
 (7.3) 

As seen from Figure 7-1, the oscillatory behavior for the motor force and torque cannot be captured by 

the rigid-body model, leading to larger prediction errors as compared in Table 7-2. On the contrary, the 

prediction of the proposed flexible model accurately captures the structural vibration.       

Table 7-2 RMS prediction error of motor force/torque.  

 Linear axis 𝑢𝑌 [N] Tilting axis 𝑢𝐴 [N⋅m] 

Rigid-body model 8.786 0.1314 

Flexible model 2.771 0.1050 
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Figure 7-1 Prediction of motor force/torque by the identified open-loop dynamics. 
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7.3 MIMO Identification with Nonlinear Coupling 

The MIMO LTI models of the closed-loop linear dynamics were developed in Section 5.3.2, where the 

Y-axis and A-axis were modeled by a 22 5th-order system and a 33 7th-order system, respectively. 

The predicted generalized disturbance 𝒅̂ is reconstructed with the help of the parameters identified in 

Section 7.2. Then, 𝒅̂ along with the collected 𝒒𝑟 𝒖 and 𝒆 are used as training data to identify the MIMO 

LTI model by the method of pole search with LS projection, as explained in Section 4.2.3.  

Table 7-3 presents the estimated pole locations. 𝑝2,𝑌   𝑝3,𝑌 , 𝑝2,𝐴 , and 𝑝3,𝐴  are pre-assigned high-

frequency poles for the velocity and acceleration feedforward control, to realize causal implementations 

of the time-derivative. 𝜔𝑛2,𝐴 and 𝜁2,𝐴 are complex pole pairs representing the structural resonance with 

low damping ratio. The same frequency was also verified by hammer tests (see Appendix A). The rest 

of the poles represent the dynamics from the interaction of the inertia with the decoupled servo feedback 

control laws. 

It is worth noting that the proposed approach did not directly identify the parameters of the stiffness 

and damping of the flexible connection. Instead, they are implicitly expressed by an equivalent complex 

pole pair in the MIMO LTI closed-loop dynamic model.  

Table 7-3 Estimated pole locations. 

 Estimated pole locations 
Search bounds 

Min. Max. 

Linear  

Y-axis 

𝑝1,𝑌 [Hz] 17.1 1 100 

𝜔𝑛1,𝑌 [Hz] 13.0 1 100 

𝜁1,𝑌 [] 0.628 0.1 1.5 

𝑝2,𝑌 & 𝑝3,𝑌 [Hz] 1200, 1200 Pre-assigned 

Tilting  

A-axis 

𝑝1,𝐴 [Hz] 33.6 1 100 

𝜔𝑛1,𝐴 [Hz] 7.84 1 100 

𝜁1,𝐴  0.884 0.1 1.5 

𝜔𝑛2,𝐴 [Hz] 19.5 10 50 

𝜁2,𝐴 [] 0.0538 0.01 0.7 

𝑝2,𝐴 & 𝑝3,𝐴 [Hz] 1200,1200 Pre-assigned 
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Figure 7-2 Simulation of tracking error and motor force/torque. 
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The model of the control system as Figure 5-13 can be assembled by integrating the identified MIMO 

LTI model of the closed-loop linear dynamics, with the generalized disturbance which captures all of 

the remainder open-loop nonlinear effects. Using this model, the simulation predictions for the servo 

error and motor actuation commands, in response to the trajectory used in the identification experiment, 

were obtained as shown in Figure 7-2 and Figure 7-3. The accuracy of the prediction is designated in 

Table 7-4, where the normalized RMS prediction errors are only 2~6%. 

Table 7-4 Error of prediction. 

 Y-Axis A-Axis 

 Tracking error 

𝑒𝑌 [mm] 

Motor force 

𝑢𝑌  [N] 

Tracking error  

𝑒𝐴  [˚] 

Motor torque  

𝑢𝐴 [N⋅m] 

RMS error 1.339E-03 2.106E+00 1.193E-03 9.874E-02 

Normalized RMS error 6.19% 3.89% 4.19% 2.03% 

Normalized RMS error = RMS error ÷ RMS magnitude 

In Figure 7-2, in Zone A and Zone B, the Y-axis is moving at constant velocity while the velocity of 

A-axis is varying. Acceleration of the A-axis causes considerable vibratory tracking error in the Y-axis. 

Thus, the model identified purely with CNC and IMU signals is able to accurately predict such inter-

axis vibratory coupling. In Zone C, the A-axis is gradually moving from 72˚ to 0˚. The tracking error 

of the A-axis induced by the back-and-forth motion of the Y-axis is growing accordingly. Such a 

posture-dependent effect is also accurately captured with the model identified according to the proposed 

method.  

 

Figure 7-3 Simulation of vibration velocity and angle (𝒒̇𝜹 and 𝒒𝜹). 

The structural vibration variables 𝑞𝛿 and 𝑞̇𝛿 are also simulated, as shown in Figure 7-3. However, large 

simulation error is found in 𝑞𝛿 due to measurement limitations of the IMU, as already discussed in 
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Section 6.5. Also, as discussed earlier, an accurate model can still be identified, which adequately 

replicates the observed behavior (in terms of tracking errors and motor actuation command) from all of 

the servo channels. 

To ensure that the identified model is accurate and not overfitting, the identified model is validated by 

another trajectory. The results are reported in Appendix C. The average of the normalized RMS error 

becomes 5.54%, which is only slightly higher the original one (4.08%). Overall, such accuracy in the 

validation is still well accepted for the application of process planning and monitoring. 

7.4 Dynamic Modelling Considering External Force 

 

Figure 7-4 Dynamic model considering external force. 

The physics-based model identified in Section 7.3, can also be applied to predict the response to 

external forces. This is done by considering the kinematic transformation [4] as shown in Figure 7-4. 

In the context of machine tools, the external force can refer to the cutting (or other process) forces. To 

validate such modeling, an external force has been injected by an impulse hammer, by hitting the left 

side and right side of the table at 32° and 73° tilting angles, respectively. The measured and simulated 

servo responses are shown in Figure 7-5. As a posture-dependent dynamic system, the vibratory 

responses are different, depending on the excitation locations and A-axis tilt angles. As can be seen, 

such behavior can be accurately simulated. This validation reveals that even only using the excitation 

of time-domain trajectory, a dynamic model for predicting the responses to both trajectory commands, 

and also external disturbance forces, can be successfully identified. 
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Figure 7-5 Dynamic Simulation considering external force. 
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7.5 Conclusion 

In this chapter, the dynamic model proposed in Section 5.3.2 is validated. Since the measurements of 

𝑞𝛿 and 𝑞𝐴 by the IMU are not accurate, the identification of open-loop dynamics is simplified to avoid 

using such data. The parameters of generalized disturbance 𝒅 can still be obtained from the simplified 

model. The prediction results show that the vibratory behavior observed in motor force/torque is 

captured by the open-loop dynamic model considering the structural flexibility. 

Then, the proposed MIMO LTI model is identified and validated. The identified MIMO LTI closed-

loop dynamic model integrated with the generalized disturbance is able to accurately simulate the 

tracking error and motor force/torque induced by inter-axis vibratory coupling effect and posture-

dependent effect, where the normalized RMS prediction errors are only 2~6%. Such simulation 

accuracy is well accepted for the application of process planning and monitoring. Lastly, the hammer 

test on the experimental feed drive reveals that the model identified by time-domain trajectory is also 

able to predict the responses to external forces. 
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Chapter 8 

Conclusions and Future Work 

8.1 Conclusions and Contributions 

This thesis has studied new modeling and identification techniques targeting high-speed multi-axis 

machine tools. The resulting techniques can be successfully applied for process simulation, 

optimization, and monitoring. The main conclusions and contributions of this thesis are summarized as 

follows: 

As the first main contribution, a new modeling and identification technique has been proposed in 

Chapter 4. The model can capture a wide range of dynamic effects, such as inter-axis coupling effects, 

the influences of actuator force/torque ripples and nonlinear friction, and feedforward/feedback control 

dynamics. In earlier proposed top-down identification approaches, the modeling was confined to single-

axis (decoupled) motion systems. In this thesis, by integrating multi-rigid-body dynamics into the 

model, multi-axis (coupled) motion control systems can also be modeled from in-situ data. 

The proposed method decouples the closed-loop linear dynamics from the open-loop nonlinear 

dynamics, and also strikes a good compromise between computational load (for parameter estimation) 

and model accuracy, by searching only for the independent parameters that cannot be solved directly 

with LS estimation, and directly solving all other dependent parameters for each candidate set of 

independent parameters, using LS. Although the searched independent parameters rely on global 

optimization of which the solution may be non-unique, a model that yields sufficiently accurate 

predictions is still obtained, which is beneficial for industrial application.  

This proposed method was validated using an industrial 5-axis laser drilling machine. The model was 

estimated by the servo data collected during the production, causing minimum machine downtime. 

Such an approach is in-line with the principles of Industry 4.0. The estimated model achieved 2.38% 

RMS error in predicting the servo errors and motor torques. Another experimental validation was 

performed using an in-house feed drive system, with linear and tilting motion. Since the model was 

built by a physics-based approach, the disturbances from each mechanical factor and their resulting 

servo error can be respectively predicted and evaluated. Such analysis provides insights into the 

machine and the process, facilitating machine trouble shooting and process optimization. 
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The second main contribution, presented in Chapter 5 through Chapter 7, is the extension of the method 

in Chapter 4 to also identify structural flexibility, which is a crucial characteristic of large-sized high-

speed machine tools. In Chapter 5, the interaction possibilities of a flexible linear drive coupled with a 

rotary drive are systematically analyzed. It is found that in the case where there is significant mechanical 

flexibility in the attachment between the linear and rotary drives, an additional motion sensor capturing 

the internal vibration between the feed drives is required for the model identification.  

The above requirement is fulfilled in Chapter 6, with the estimation of the relative vibration by fusing 

signals from a MEMS IMU, as well as servo measurements from the axis encoders. The proposed data 

processing technique first synchronizes these independent data sets, estimates the orientation of the 

IMU, calibrates the mounting orientation, and finally extracts the structural vibration between the two 

feed drives. To the best knowledge of the author, this is among the first studies in the literature where 

an IMU is used to measure and identify the multibody and vibratory dynamics in a machine tool 

application. 

An experimental feed drive with significant mechanical flexibility was built to validate the proposed 

dynamic model, measurement, and sensor fusion concept. The experiment shows that the angular 

velocity and acceleration of the vibration can be consistently estimated. The RMS error between 

measurements from two different IMUs are 0.0474 ˚/s and 7.33 ˚/s2 respectively. The vibration angle 

however cannot be successfully reconstructed, due to the geometric assembly error and the performance 

limitation of the MEMS IMU. Nonetheless, the estimated velocity and acceleration of the vibration is 

still very helpful for estimating the overall multibody motion control system model with inherent 

mechanical flexibility. 

Finally, in Chapter 7, the proposed identification method, utilizing the IMU data, is experimentally 

validated. Also, judicious simplification to the dynamic model helps circumvent the need to explicitly 

estimate and use the deflection angle data. As a result, the dynamic tracking error and motor 

force/torque could be predicted, by the identified ‘digital twin’, with 2-6% normalized RMS prediction 

error. This model, estimated only from a short packet of practical data, successfully considers multiple 

effects, such as vibratory inter-axis coupling, posture-dependent dynamics, as well as the experimental 

setup’s own disturbances (like friction, cable spring-back and torque ripples). The achieved prediction 

accuracy is well-acceptable for machining process planning, optimization, and monitoring in industry. 
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8.2 Future Work 

Ideas for future improvements to this work are proposed in the following: 

(a) Validation using non-symmetrical inertia for the rotary axis, and later on large-sized 

industrial 5-axis machine tools 

The proposed modeling and identification for multi-axis flexible drives was validated in this thesis 

using the lab’s experimental setup, a tilt-rotary drive stacked on top of a linear drive. The rotary axis, 

while contributing to a third degree-of-freedom trajectory and the IMU signal processing, due to its 

symmetrical nature, had not contributed to dynamic coupling with the tilt and the translating axes. A 

first step of future research could be to study the configuration where the rotary axis is also coupled 

with the tilt and linear axes, presumably by including a non-symmetrical inertia attachment. 

Afterwards, the overall methodology should be further extended and validated on a large-sized 

industrial 5-axis machines tool. In such situation, at least two IMUs are required, one at the workpiece 

side and the other at the tool side. By installing the IMUs at both sides, their relative motion can be 

captured. 

(b) Investigation of the measurement error of IMUs 

The angular measurement by IMUs presented in Chapter 6 exhibits undesirable low-frequency drift. 

Part of the reasons could be the measurement error of the IMUs used during the experiment (although 

significant care has been taken to select high quality IMUs at a reasonable price point). There are plenty 

of commercial MEMS IMUs on the market. Some of them claim better measurement accuracy. It is 

given that different designs of the MEMS result in different signal responses and sensitivities. Thus, it 

is worth testing other MEMS IMUs with claimed better measurement accuracy, to reduce the 

measurement error that originate from the sensors.  

(c) Measurement of the geometric error by IMUs 

As seen in the measurements in Chapter 6, the IMU also captures geometric errors of the machine 

assembly, which is beyond the scope of this thesis research. Geometric errors could be identified by 

further tests. For example, Vogl et al. [95] used an IMU to inspect the angular pitch error of a ball screw 

drive. Other geometric errors, such as squareness and straightness, could also be identified by different 

measurement strategies. In summary, if the dynamic error as well as the geometric error can both be 

identified by affordable MEMS IMUs in practical ways, this would be extremely beneficial in terms of 
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identifying further realistic machine tools digital twins, which not only predict the dynamic responses, 

but also volumetric positioning errors, and the influence of such errors on the dynamics (e.g., in exciting 

further vibrations) during high traverse rates. 

(d) Vibration reconstruction for multiple flexible joints  

The proposed vibration reconstruction method presented in Chapter 6 uses one IMU to reconstruct the 

motion of one internal flexible joint around one rotation axis (𝑞𝛿, per Figure 6-11). First extension 

would target reconstructing simultaneous vibrations around multiple axes (e.g., by also inducing 

flexibilities around 𝑞𝜃 and 𝑞𝜓 axes). Then, further research should focus on reconstructing the motion 

of ‘multiple’ internal flexible joints, for example, configured in a structure that connects multiple 

actuators and links. For such cases, multiple IMUs would be expected to be used on the links, with 

assumed dominantly rigid characteristics. This would also enable the extension of the proposed 

methodology to model identification for robots with multiple mechanical flexibilities. 

(e) Monitoring of high-speed 5-axis machining process 

The model built in this thesis can predict dynamic responses to trajectory commands and external 

(presumably cutting) forces. It offers a highly effective and versatile foundation of developing cutting 

force monitoring algorithms for high-speed 5-axis machining process. The inter-axis dynamic coupling 

effect and the dynamic responses to the external disturbances (i.e., cutting forces) can be both captured 

and predicted, allowing for tool tip forces to be reconstructed from limited and practical sensor data. 

(f) Integration with 5-axis trajectory planning 

5-axis trajectory planning is an under-determined problem. Various toolpath planning strategies can be 

chosen. On the other hand, 5-axis machine dynamics is coupled and posture-dependent, i.e., the motion 

of one axis can possibly induce tracking errors in another axis. With the aid of a dynamic model, 

obtained via the proposed method, such complex interactions can be simulated or predicted, enabling 

more optimal 5-axis trajectory planning. 

(g) Posture dependency of linear axes 

The proposed dynamic model can capture posture dependency of rotary axes. However, the posture 

dependency of linear axes is not discussed in this thesis. This could be achieved by building a more 

sophisticated multibody dynamic model as, for example as achieved by Huynh and Altintas (Figure 5-3 

[115]), where multiple flexible joints are used to connect bodies along different directions. 
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(h) Model identification using both command trajectory and disturbance force input 

So far in this thesis, the command trajectory has been the primary excitation source for the model 

identification, while an instrumented impact force hammer was used for the model validation (as shown 

in Section 7.4). To further improve the accuracy of the model identification, the command trajectory 

and an external disturbance force can be used together as the excitation sources [123]. Of course, safety 

considerations must still be kept in mind, e.g., impact hammer testing on a rapidly moving structure 

may not be practical or safe. However, a separate mount-on actuator, such as a small shaker or linear 

motor, with known inertia characteristics can be used for such a purpose. 
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Appendix A 

Experimental Setup for the Study of Multi-Axis Flexible Drives 

Introduction 

To model the dynamics of high-speed 5-axis machine tools, multibody dynamics and vibratory 

dynamics should both be taken into account. Theoretical investigation on this topic was carried out in 

Chapter 5. A critical finding from Section 5.3.2 is that if there is significant mechanical flexibility 

between a linear drive and a rotary drive, then model identification requires not only the servo data 

from CNC, but also an extra motion sensor to capture the vibration between the linear and rotary drives. 

To further investigate this particular case, an experimental feed drive with similar configuration was 

built. This appendix details the design and verification of this experimental feed drive. 

Designing the Experimental Setup 

 

 
(a) Real setup. (b) CAD model. 

Figure A-1 In-house linear-tilt-rotary feed drive. 

A linear-trunnion feed drive that was available in the lab is shown in Figure A-1. Since all the axes are 

driven by direct drive motors, and the machine fame supporting the trunnion is well designed, the system 

is considered rigid. To create vibratory mode similar to the case shown in Section 5.3.2, a flexure should 

be made to connect the linear axis and the tilting axis to introduce mechanical flexibility. 

Several design considerations are listed below. 

⚫ A bending mode can be excited by both the linear & tilting axis. 

⚫ The natural frequency should be around 30~50 Hz, similar to the characteristics of a medium or 

large-sized industrial machine tool. 
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⚫ The setup should be safe to use. Safety factor is specified to be at least 10 when subject to 1 G 

linear acceleration. 

⚫ The flexure should be reconfigurable for other research applications. 

  
 

(a) (b) (c) 

Figure A-2 Candidate flexure designs. 

Taking the above considerations into account, three concept design candidates (see Figure A-2) were 

proposed. The candidate (c) was chosen due to the convenience of fabrication. Essentially, this flexure 

is composed of three parts, one plate on the top and two I-beams at the bottom. The plate is connected 

to the trunnion base frame. The two I-beams are connected to the linear table. Hence, if the value of 

natural frequency needs to be adjusted, only the I-beams need to be replaced. 

  
(a) Full assembly (b) Flexure 

Figure A-3 Finalized flexure design. 

Figure A-3 is the final design of the flexure. Finite element (FE) analysis was performed using ANSYS 

Workbench. The geometric parameters of the design are iteratively adjusted according to the result of 

FE simulation. The FE model of the feed drives is shown in Figure A-4 (a). Some details about building 

the FE model are described as follows. 
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(a) The entire FE model. 

(b) Guide and rail connection by spring 

elements. 

Figure A-4 FE model of the feed drive. 

 

(1) To save the computational cost, the CAD model is simplified by removing small and trivial 

geometric features. If possible, hexahedral mesh is applied. 

(2) By performing a simple back and forth motion experiment on the linear axis, the total mass of the 

linear table and the entire trunnion unit is identified as 62.2 kg. According to the CAD model, the 

total mass of the same moving components is 62.5 kg, which is very closed to the identified value. 

This indicates high confidence in the fidelity of the mass matrix of the model. 

(3) Interfaces such as linear guideways and the air bearing for supporting the tilting axes are modelled 

by a series of spring elements. As shown in Figure A-4 (b), each coordinate represents one spring 

element. The equivalent stiffness parameters are set according to the product specifications. 

   

Figure A-5 Stress concentration around the I-beam when subject to 1G linear acceleration. 

When subject to 1 G static linear acceleration while the linear motor is constrained, the simulated 

maximum stress is 15 MPa (see Figure A-5). The material of the I-beams is aluminum alloy 6061-T6 
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of which the yielding stress is 240MPa. Hence, the safety factor under this extreme case is 16, which is 

sufficiently high in a common engineering sense. 

Validation 

  

Figure A-6 Experimental feed drive. 

 
The primary bending mode 

Lateral mode 
With motor constraint No constraint 

Mode shape 

   
Simulated / actual 

natural frequency 
23.8 / 20 [Hz] 39.5 / 34.6 [Hz] 81.5 / 75 [Hz] 

Simulation error 13% 14% 8% 

Figure A-7 FEA simulation result of the bending mode. 

Figure A-6 is the final assembly of the flexure. The I-beams were made by pocketing solid aluminum 

blocks. Tap testing was conducted to verify the actual natural frequencies. The simulated and actual 

natural frequencies of the feed drives are shown in Figure A-7. The simulation errors are 8~14%, which 
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are accurate considering such a complex system. All the measured frequencies are slightly lower than 

the simulated frequencies, probably because some of interface compliance were overestimated. 

The natural frequency of the primary bending mode without motor constraint is 34.6 Hz, which is a 

reasonable value for large industrial machine tools. The lateral bending mode (75 Hz) is not likely to 

be excited by the trajectory input since it is higher than a typical servo control bandwidth. Therefore, 

the experiments on this setup can only focus on the primary bending mode. 
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Appendix B 

Estimation Results of IMU #2 

Table B-1 Signal property of IMU #2. 

 X Y Z 

Gyro 
Bias [°/𝑠] -6.855E-02 3.738E-02 6.225E-02 

RMS noise [°/𝑠] 1.663E-01 9.148E-02 8.925E-02 

Accelerometer RMS noise [𝑚𝑚/𝑠2] 8.647 7.331 6.408 

 

 

Figure B-1 Estimation of 𝑹𝑮/𝑴 and 𝑹𝑺/𝑻 expressed by 𝑹𝒙(𝝓)𝑹𝒚(𝜽)𝑹𝒛(𝝍) Euler angles. 
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Figure B-2 Estimation of 𝑹𝜹/𝒀 represented with 𝑹𝒙(𝒒𝝓)𝑹𝒚(𝒒𝜹)𝑹𝒛(𝒒𝝍) Euler angles. 

 

Figure B-3 Estimated angular velocity 𝒒̇𝝓, 𝒒̇𝜹, and 𝒒̇𝝍. 
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Figure B-4 Estimated angular acceleration 𝒒̈𝝓, 𝒒̈𝜹, and 𝒒̈𝝍. 

 

  



 

 141 

Appendix C 

Validation of the identified model 

In Section 7.3, the dynamic model of the experimental feed drive was identified using the trajectory in 

the experiment in Section 6.5. To ensure that the identified model is accurate and not overfitting, the 

identified model was also validated by another trajectory, as shown in Figure C-1, where the kinematic 

limits are listed in Table C-1. The results of the simulation and experiment are compared in Figure C-

1 and Table C-2. 

Inter-axis vibratory coupling effect and posture-dependent effect are again induced by the validation 

trajectory due to the multi-axis simultaneous trajectory with high acceleration and jerk values. The 

simulation still accurately predicts the tracking error and motor force/current. The RMS error of 

simulation listed in Table C-2. The averaged normalized simulation error is 5.54%. 

 

Table C-1 Kinematic limits of the trajectory for validation. 

 
Speed 
[mm/s] or [°/s] 

Acceleration 

[mm/s2] or [°/s2] 
Jerk 

[mm/s3] or [°/s3] 

Y 2.85E+02 1.60E+03 9.03E+04 

A 1.87E+02 2.34E+03 1.17E+05 

 

Table C-2 RMS error of simulation for validation. 

 Y-Axis A-Axis 

 Tracking error 

𝑒𝑌 [mm] 

Motor force 

𝑢𝑌  [N] 

Tracking error  

𝑒𝐴  [˚] 

Motor torque  

𝑢𝐴 [N⋅m] 

RMS error 2.248E-03 4.775E+00 3.630E-03 1.671E-01 

Normalized RMS error 5.52% 6.63% 6.00% 4.02% 

Normalized RMS error = RMS error ÷ RMS magnitude 
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Figure C-1 Measurement and simulation results for validation. 


