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Abstract

This thesis studies two problems relating to moduli spaces of vector bundles on non-Kähler

elliptic surfaces. The first project involves the holomorphic symplectic structure on smooth

and compact moduli spaces of sheaves on Kodaira surfaces. We show that these moduli

spaces are neither Kähler nor simply connected. Comparing to other known examples

of compact holomorphic symplectic manifolds, this shows that if the moduli spaces are

deformation equivalent to a known example, then they are Douady spaces of points on a

Kodaira surface.

The second problem deals with the interplay between singularities of moduli spaces of

rank-2 vector bundles and existence of stable Vafa–Witten bundles on non-Kähler elliptic

surfaces. By constructing a Vafa–Witten bundle in each filtrable Chern class of the elliptic

surface when the base has genus g ≥ 2, we show that such a moduli space is smooth as a

ringed space if and only if every bundle in the moduli space is irreducible.
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Chapter 1

Introduction

Moduli spaces of holomorphic vector bundles form a foundational part of algebraic and

complex geometry, as a classification tool as well as for the geometry of the spaces them-

selves. For instance, moduli spaces of vector bundles often inherit interesting geometric

structures from their base manifold (such as a holomorphic symplectic or holomorphic

Poisson structure [Muk84, Bot95]).

In the simplest cases of smooth projective curves of genus 0 and 1, complete classi-

fications of indecomposable vector bundles were described by Grothendieck [Gro57] and

Atiyah [Ati57], respectively. (Here indecomposable refers to bundles which cannot be writ-

ten as a direct sum of bundles of smaller rank.) Over curves of higher genus, attempting to

study indecomposable bundles leads to a moduli space which is non-separated and wildly

singular; to resolve this issue, the family of bundles is restricted to the smaller family of

(semi)-stable bundles, which are bundles E satisfying the property that for any subsheaf

F ⊆ E with 0 < rank(F) < rank(E),

deg(F)

rank(F)
< (≤)

deg(E)

rank(E)
.

Moduli spaces of stable bundles were constructed for curves of genus at least 2 by

Mumford [Mum63] and the topological invariants of these moduli spaces were described by
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Narasimhan and Seshadri via a correspondence between stable vector bundles and solutions

to the Hermitian Yang–Mills equations [NS65].

The problem of classifying vector bundles becomes more complicated when the base

manifold is no longer a curve. While in the curve case there is a canonical choice of degree

map corresponding to the natural ordering of the Néron–Severi group, surfaces generally do

not have such a canonical ordering. This problem can be resolved by defining an ordering

in terms of a choice of polarisation (either an ample line bundle H in the algebraic case,

or a Gauduchon metric g in the holomorphic case) [Tak72, Gie77, Kob82]. On a complex

n-manifold X, a choice of polarisation corresponds to a choice of positive (1, 1)-form ω on

X (either the Kähler form associated to the ample line bundle H, or the 2-form induced

from g by the complex structure), and the degree map is defined by

degω E :=
i

2π

∫
X

Fh ∧ ωn−1,

where Fh is the curvature of the Chern connection for some Hermitian metric h on det(E).
(While the exact value of Fh may vary by a ∂∂̄-exact form depending on the choice of h,

the overall value is independent of h due to the fact that ∂∂̄ωn−1 = 0.)

Moduli spaces of vector bundles over surfaces that admit fibrations are of particular

interest as the fibration structure can be leveraged to reduce stability problems to the

stability of the restrictions to fibres. Moduli spaces of vector bundles were studied over

ruled surfaces in [AB96, AB97], and on Kähler elliptic surfaces in [FM88a, FM88b].

The methods for studying moduli spaces of vector bundles on elliptic surfaces were

extended to non-Kähler elliptic surfaces by Braam–Hurtubise [BH89] and Moraru [Mor03]

in the Hopf case, and Teleman [Tel98] for bundles with trivial determinant on more general

elliptic fibre bundles.

One important application of moduli spaces of vector bundles is to the classification

of holomorphic symplectic manifolds. A holomorphic symplectic manifold is a complex

2m-dimensional manifold equipped with a closed holomorphic 2-form η such that ηm is a

nowhere-vanishing holomorphicm-form. Holomorphic symplectic manifolds of dimension 2
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have been fully classified into complex tori, K3 surfaces and Kodaira surfaces, but examples

in higher dimensions are sparse. One of the main tools for constructing such examples is

the fact that any smooth moduli space of vector bundles over a holomorphic symplectic

surface is itself holomorphic symplectic [Muk84]. In fact, every known deformation class

of Kähler holomorphic symplectic manifolds contains an example that can be obtained as

a moduli space of vector bundles over a holomorphic symplectic surface (i.e. a K3 surface

or a complex 2-torus) [O’G97, Yos01], or as a desingularisation of such a moduli space

[O’G99, O’G03].

In the non-Kähler case, there are three known ways of constructing compact holomor-

phic symplectic manifolds from primary Kodaira surfaces. Beauville showed in [Bea83]

that the Douady space of points on a Kodaira surface is again holomorphic symplectic.

Bogomolov and Guan constructed simply connected holomorphic symplectic manifolds of

non-Kähler type (now known as Bogomolov-Guan manifolds) by exploiting a natural foli-

ation structure on the Douady space of points of a Kodaira surface [Gua95, Bog96]. The

final method is due to Toma, who showed that a moduli space Mr,δ,c(X) of g-stable sheaves

of rank r, determinant δ, and second Chern class c on a non-algebraic compact holomor-

phic symplectic surface is a compact holomorphic symplectic manifold if and only if every

g-semi-stable sheaf F with rank(F) = r, det(F) = δ, c2(F) = c is g-stable [Tom01]. In the

case that X is a Kodaira surface, this only occurs if the moduli space is stably irreducible.

We say that a torsion-free coherent sheaf E is irreducible if every non-zero coherent sub-

sheaf F ⊆ E has rankF = rank E . A moduli space of sheaves is stably irreducible if it is

non-empty and every sheaf represented by the moduli space is irreducible. In fact, for such

moduli spaces, every sheaf is automatically stable independent of a choice of metric.

Closely related to vector bundles are the concepts of Higgs bundles, Vafa–Witten pairs,

and more generally stable V -pairs. Let X be a compact n-dimensional complex manifold

endowed with a Gauduchon metric g whose fundamental form is ω, and let V be a fixed

holomorphic vector bundle on X. Consider a pair (E, ϕ) consisting of a holomorphic vector

bundle E on X and a holomorphic section ϕ ∈ H0(X, End(E) ⊗ V ) such that ϕ ∧ ϕ = 0.

The section ϕ is called a Higgs field. The V -pair (E, ϕ) is then said to be g-stable if for
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any proper subsheaf S ⊂ E such that ϕ(S) ⊂ S ⊗ V (that is, S is ϕ-invariant), we have

degg(S)
rankS

<
degg(E)

rankE
,

in which case ϕ is a g-stable Higgs field.

Some important special cases of stable V -pairs are Higgs bundles, where V = T ∗
X , and

Vafa–Witten pairs, where V = KX . Higgs bundles were first introduced by Hitchin [Hit87]

on algebraic curves and generalised to higher dimensional varieties by Simpson [Sim92].

They also correspond to a special class of solutions of the Kapustin-Witten equations on

compact Kähler surfaces [Tan17]. Although Higgs bundles over curves have been exten-

sively studied over the past thirty-five years, less is known in the higher dimensional case.

Some results have nonetheless been obtained in higher dimensions by Biswas and Bottacin

[Bis94, Bis11, Bot00], among others.

The Vafa–Witten equations are a close relative of the Hitchin–Simpson equations for

Higgs bundles and have been studied in [VW94, Tan17, TT20]. Via a Kobayashi–Hitchin

type correspondence, solutions to these equations are given by stable KX-pairs (E, ϕ)

consisting of a vector bundle E and a global section ϕ ∈ H0(X, End0E ⊗KX) [LT06].

In this thesis, we focus on two problems related to vector bundles on elliptic surfaces.

The first problem considers smooth and compact moduli spaces of stable sheaves on a

primary Kodaira surface. As primary Kodaira surfaces have a natural holomorphic sym-

plectic structure, these moduli spaces are also holomorphic symplectic [Muk84, Tom01].

In the case that these moduli spaces have dimension two, it was shown that they are again

primary Kodaira surfaces by Aprodu, Moraru, and Toma [AMT12]. However, it is still

unknown what the possible deformation types are for higher dimensional moduli spaces of

stable sheaves on Kodaira surfaces. With respect to this problem, the goal of the thesis

is to rule out all but one of the known deformation families for holomorphic symplectic

manifolds.

The second problem addressed in this thesis is the smoothness of moduli spaces of stable

vector bundles over general non-Kähler elliptic surfaces. While stable vector bundles are

guaranteed to correspond to smooth points in a moduli space for primary Hopf surfaces or
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primary Kodaira surfaces [BM05b], singularities at stable points may occur for other non-

Kähler elliptic surfaces whose canonical bundles admit non-trivial sections. By standard

deformation theory arguments, obstructions to deformations of a vector bundle E on a

manifold X are valued in

H2(X, End0E) = H0(X, End0E ⊗KX)
∨.

The latter group is parameterised by solutions to the Vafa–Witten equations over E, so

finding singularities of moduli spaces of stable vector bundles is equivalent to finding solu-

tions to the Vafa–Witten equations.

The second goal of this thesis is thus to find smoothness conditions for moduli spaces

of rank-2 vector bundles on a non-Kähler elliptic surface π : X → B by studying existence

criteria for solutions to the Vafa–Witten equations.

Chapter 2 begins with a construction of non-Kähler elliptic surfaces and a review of

some useful geometric invariants. This chapter also includes an overview of the known

deformation families of compact holomorphic symplectic manifolds for comparison with

those constructed in Chapter 5.

Chapter 3 presents the concept of slope stability for Gauduchon manifolds, which is the

main stability criterion used in this thesis. In the case of non-Kähler elliptic surfaces, we

describe the destabilising bundle structure for reducible bundles and show the existence

of stably irreducible moduli spaces of vector bundles with arbitrary dimensions using a

numerical existence criterion due to Br̂ınzănescu [Br̂ı96, Lemma 4.30]. The main result of

this chapter is the following:

Proposition. Let π : X → B be a non-Kähler principal elliptic surface, and set

ν(X) :=

0, if NS(X) is finite,

min
α∈NS(X),α2 ̸=0

(−α2/2), otherwise.

If r ≥ 2, δ ∈ Pic(X) satisfies c21(δ) = −2ν(X), and(
1− r

r

)
ν(X) ≤ c <

(
2− r

r − 1

)
ν(X),
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the moduli space Mr,δ,c(X) of stable sheaves with rank r, determinant δ, and second Chern

class c is stably irreducible whenever it is non-empty. In this case, Mr,δ,c(X) has dimension

2r2∆(r, δ, c) = 2rc+ 2(r − 1)ν(X).

Since there are primary Kodaira surfaces X with arbitrary whole number values of

ν(X), this means that there are stably irreducible moduli spaces of vector bundles on

Kodaira surfaces in every even dimension. We end the chapter by extending the definition

of slope stability to V -pairs where V is an arbitrary vector bundle, including some simple

examples.

Chapter 4 discusses the spectral construction for non-Kähler elliptic surfaces. This

construction associates, to every vector bundle on an elliptic surface π : X → B, a divisor

in its relative Jacobian J(X). This invariant gives a natural way of describing a moduli

space of sheaves M2,δ,c as a flat family lying over the set Pδ,c of spectral curves known

as the graph map. In particular, if X is a primary Hopf surface or a primary Kodaira

surface, the graph map corresponds to an algebraically completely integrable system with

respect to the natural Poisson structure on the moduli space [BM05b]. In the case of

rank-2 sheaves which are stably irreducible, meaning that any sheaf with the same Chern

classes is irreducible, we show that the corresponding spectral curve has smooth irreducible

components. This result is applied in the main results of both Chapters 5 and 6.

In Chapter 5, we restrict ourselves to the case where moduli spaces of stables sheaves are

compact holomorphic symplectic manifolds, particularly stably irreducible moduli spaces

of stable sheaves on primary Kodaira surfaces. The main result of this chapter is the

following:

Theorem. Let π : X → B be a primary Kodaira surface, and let M2,δ,c(X) be a mod-

uli space of stable sheaves of rank 2, determinant δ, and second Chern class c such that

M2,δ,c(X) is stably irreducible. If dimM2,δ,c(X) is positive, then no connected component

of dimM2,δ,c(X) is simply connected or Kähler.

This result demonstrates that if M2,δ,c(X) is deformation equivalent to one of the

other known examples of holomorphic symplectic manifolds, then it must be deformation
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equivalent to a Douady space of points over a primary Kodaira surface. This result is

obtained by studying the Lagrangian fibration structure on the moduli space of sheaves

induced by its graph map. The remainder of the chapter considers methods by which we

could exploit this Lagrangian fibration structure to determine further topological invariants

of the moduli spaces and compare them to Douady spaces of points over Kodaira surfaces.

Chapter 6 studies solutions to the Hitchin–Simpson and Vafa–Witten equations over

non-Kähler elliptic surfaces. We begin with some general computations regarding stable

V -pairs for V an arbitrary vector bundle before specialising to the case of V = KX or

V = T ∗
X . In the Vafa–Witten case, we discuss the correspondence between the existence

of Vafa–Witten bundles and the deformations of the underlying vector bundles. The main

result of this chapter is the following:

Theorem. Let π : X → B be a non-Kähler elliptic surface with B of genus at least 2,

and let M2,δ,c(X) be the moduli space of stable vector bundles of rank 2, determinant δ,

and second Chern class c on X with δ ∈ Pic(X) and c ∈ Z such that ∆(2, δ, c) > 0. Then,

there is a non-trivial solution (E, ϕ) to the Vafa–Witten equations with E ∈ M2,δ,c if and

only if M2,δ,c(X) contains a reducible vector bundle. In particular, if every stable bundle

in M2,δ,c(X) is good in the sense of Friedman [Fri98, Definition 16], then M2,δ,c(X) is

stably irreducible.

By a good vector bundle we mean a vector bundle E such that H2(X, End0(E)) = 0,

or equivalently that E corresponds to a smooth point (as a ringed space) of dimension

h1(X, End0(E) in the corresponding moduli space. This result is an improvement on

[BM05b, Proposition 4.2], which previously obtained a weaker sufficient condition for un-

obstructed deformations involving a bound on the number of allowed jumps in the graph

of a vector bundle. In the process of obtaining the above result, we completely classify the

solutions (E, ϕ) to the Vafa–Witten equations on non-Kähler elliptic surfaces π : X → B

when E has rank 2 and is such that rank π∗(L⊗ E) ≤ 1 for all L ∈ Pic(X). In this case,

the set of Higgs fields on E is equal to the set of global sections of a line bundle on B

determined by the maximal destabilising bundles of E.

The Appendix of this thesis gives a brief overview of some results in homological algebra
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and deformation theory which will be used at various points in the document; this may be

useful for those less familiar with common notation and terminology used in homological

algebra.
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Chapter 2

Geometry of Relevant Examples

As the focus of this thesis is the subject of non-Kähler elliptic surfaces, we begin with

a survey of basic results on these surfaces in Section 2.1, both to familiarise the reader

with these surfaces and to fix notation. Sections 2.3 and 2.2 survey known results on

compact holomorphic symplectic manifolds in preparation for Chapter 5, in which we

study compact moduli spaces of sheaves on Kodaira surfaces, which admit a holomorphic

symplectic structure.

2.1 Non-Kähler elliptic surfaces

Through the course of this thesis, the main class of manifolds we study consists of elliptic

surfaces that are not Kähler.

Definition 2.1. An elliptic surface is a compact complex surface X together with a sur-

jective holomorphic map π : X → B, such that B is a complex curve and the general fibre

of π is a genus-1 curve. We say that an elliptic surface is an elliptic quasi-bundle if all

smooth fibres are isomorphic and the only singular fibres are multiples of the smooth fibre.

A principal elliptic surface is an elliptic quasi-bundle with no multiple fibres.
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Principal elliptic surfaces can be constructed as follows:

Proposition 2.2 (Teleman [Tel98]). Let π : X → B be a compact principal elliptic sur-

face. Then there is a positive integer d, a line bundle Θ ∈ Picd(B) of degree d, and a

complex number τ with |τ | > 1 such that X ∼= Θ∗/(τ), where Θ∗ is the principal C∗-bundle

corresponding to Θ, and (τ) is the subgroup of C∗ generated by τ , acting via the standard

action. Up to biholomorphism, the surface is determined uniquely by B,Θ, and τ . The

homeomorphism type of the surface is determined by d and the genus of B.

A similar result holds for Kähler principal elliptic surfaces with d = 0 instead of d > 0.

If π : X → B is a non-Kähler principal elliptic surface as described in Proposition 2.2,

where B is a genus-g curve, then X has the following invariants:

H1(X,Z) = Z2g+1, H2(X,Z) = Z4g ⊕ Z/dZ, H3(X,Z) = Z2g+1 ⊕ Z/dZ

H0,1(X) = Cg+1, H1,1(X) = C2g,

where Hp,q(X) = Hq(X,Ωp
X) [BHPV03]. (See Example A.12 for an explicit computation of

the singular cohomology.) The other Hodge numbers can be computed using the relations

Hp,q(X) = (H2−p,2−q(X))∨ and

Hk(X,C) = Hk(X,Z)⊗ C =
⊕
p+q=k

Hp,q(X),

since for all compact complex surfaces, the Hodge-de Rham spectral sequence degenerates

at page 1. This gives the Hodge diamond

1

g g + 1

g 2g g

g + 1 g

1

.

The Hodge numbers can also be directly computed using the following description of the

holomorphic cotangent bundle together with the Hirzebruch-Riemann-Roch theorem:
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Proposition 2.3. Let π : X → B be a principal elliptic surface. Then the holomorphic

cotangent bundle T ∗
X is isomorphic to OX⊕π∗KB if X admits a Kähler metric, and π∗(AK)

otherwise, where AK is the unique non-split extension

0 → KB → AK → OB → 0.

Proof. Let {Uα, φα} be an atlas of B such that {Uα, ψα} is a local trivialisation for Θ∗ and

set gαβ : φβ(Uα∩Uβ) → φα(Uα∩Uβ) to be the corresponding transition functions. We also

set V0 = {[w] ∈ C∗/(τ) : 1 < |w| < |τ |} and V1 = {[w] ∈ C∗/(τ) : |τ |−1/2 < |w| < |τ |1/2}.
Let fαβ be transition maps for Θ. Then {ψ−1

α (φα(Uα) × Vi)} gives an atlas for X with

transition functions ηij,αβ(z, w) = (gαβ(z), fαβ(z)τ
kw), where z is a local coordinate in B,

w is a coordinate of C∗, and

k =


1 i = 0, j = 1, |w| < 1

−1 i = 1, j = 0, |w| > |τ |1/2

0 otherwise

.

If we now compute the pullbacks η∗ij,αβ(dz̃) and η
∗
ij,αβ(

1
w̃
dw̃), we get

η∗ij,αβ(dz̃) = d(gαβ(z))

= g′αβdz,

η∗ij,αβ(
1

w̃
dw̃) =

1

fαβτ kw
d(fαβτ

kw)

=
1

w
dw +

f ′
αβ

fαβ
dz,

so T ∗
X has transition maps

[
g′αβ

f ′αβ

fαβ

0 1

]
. If the degree of Θ is zero (in which case X admits

a Kähler metric), the fαβ can be chosen to be constant, so T ∗
X splits as a direct sum

OX ⊕ π∗T ∗
B . Since the transition maps of T ∗

X depend only on z and since g′αβ are the

transition maps of π∗(T ∗
B ), we find that T ∗

X is the pullback of an extension in Ext1(OB, KB).

If degΘ > 0, then the extension does not split, and since Serre duality gives

Ext1(OB, KB) = (H0(B,OB))
∗ ∼= C,

11



T ∗
X is isomorphic to the unique non-split extension.

Remark 2.4. When B is P1, AK
∼= OP1(−1) ⊕ OP1(−1), and when B has genus 1, AK is

the Atiyah bundle.

For non-Kähler elliptic surfaces which are not principal, we have the following result.

Proposition 2.5 (Br̂ınzănescu [Br̂ı96]). Every non-Kähler elliptic surface is a quasi-

bundle.

To any non-Kähler elliptic surface π : X → B with multiple fibres {Fi = π−1(pi)}1≤i≤r
of orders mi respectively, we can associate to X a cyclic cover ρ : C → B of order

m := lcm1≤i≤r(mi) which has ramification of order mi at pi. There is then a principal

elliptic surface ψ : Y → C such that

Y X

C B

ρ̃

ψ π

ρ

(2.1)

is a commutative diagram [Br̂ı96, Proposition 3.18].

The Hodge diamond of a non-Kähler elliptic quasi-bundle is the same as that of a

non-Kähler principal elliptic surface over the same base, but the torsion components of its

singular cohomology may differ.

Remark 2.6. In general, if π : X → B is a non-Kähler elliptic surface possibly with multiple

fibres, we can use the natural exact sequence

π∗T ∗
B T ∗

X Ω1
X/B 0

together with the fact that π is a submersion to show that TX is a non-split extension of

the sheaf Ω1
X/B of relative Kähler differentials by π∗T ∗

B . In particular, since π : X → B is

an elliptic surface we have

Ω1
X/B = ωX/B ≃ OX

(
r∑
i=1

(mi − 1)Ti

)
,

12



where Ti are the multiple fibres of multiplicity mi and ωX/B is the relative dualising sheaf

of π which appears in the formulation of relative Serre duality (See Proposition A.12).

However, the fact that T ∗
X can be described in this way only uniquely determines the

bundle T ∗
X if π : X → B is principal.

Corollary 2.6.1. The canonical bundle KX of X is isomorphic to π∗KB ⊗ ωX/B.

Proof. The canonical bundle is defined as

KX := det(T ∗
X) ≃ det(π∗(T ∗

B ))⊗ det(Ω1
X/B) = π∗(KB)⊗ ωX/B.

2.1.1 The Picard group

Let π : X → B be a principal elliptic surface. In order to understand the Picard group of

X, we break up the problem into studying Pic0(X) and the Néron–Severi group NS(X) :=

Pic(X)/Pic0(X).

Any line bundle in Pic0(X) decomposes uniquely as the product of the pullback of

a degree zero line bundle on the base and a bundle with constant factor of automorphy

[Tel98, Proposition 1.6]. The line bundle Lα with constant factor of automorphy α is the

quotient of the trivial line bundle Θ∗ × C on Θ∗ by the Z-action

Θ∗ × C× Z → Θ∗ × C,

(z, t, n) 7→ (τnz, αnt).

Using these facts, one can also show that π∗Θ ≃ Lτ−1 [Tel98, Proposition 1.7], demonstrat-

ing that the first Chern class of a pullback bundle is torsion, and that

OX(miTi) ≃ π∗OB(pi)

for any multiple fibre Ti of multiplicity mi lying over a point pi ∈ B. Let P2 be the

subgroup of Pic(X) generated by line bundles associated to divisors on X. We can see

13



from the above computations that PicTors(X) ≃ P2 × C∗/(π∗Θ, Lτ ), where PicTors(X) is

the subgroup of Pic(X) consisting of line bundles with torsion first Chern class.

The family of line bundles with constant factor of automorphy is equipped with a

universal sheaf U on X × C∗ given as the quotient of the trivial line bundle Θ∗ × C∗ × C
on Θ∗ × C∗ by the group action

n · (z, α, t) := (τnz, α, αnt). (2.2)

This bundle will play a role in the classification of vector bundles over X via the spectral

construction in Chapter 4.

Since π : X → B is an elliptic fibration, we can understand Pic(X)/π∗ Pic(B) as a

group corresponding to families of line bundles on the smooth fibre T parameterised by

B. Since the line bundles with constant factor of automorphy contain a cyclic subgroup of

π∗ Pic(B), such families can be described by maps from B to T ∗ := Pic0(T ). Up to fixing

base points, we obtain the group Pic(X)/π∗ Pic(B) ≃ T ∗ × Hom(J(B), T ∗), where J(B)

is the Jacobian variety of B. (For a more detailed proof of this result, see [Br̂ı96, Section

3.2].)

Note that there is a one-to-one correspondence between T ∗×Hom(J(B), T ∗) and maps

from B to T ∗, as the Albanese map of B is b 7→ OB(b − b0) for a choice of base point

b0 ∈ B. This fact allows us to parameterise Pic(X)/π∗ Pic(B) by the set of sections of the

relative Jacobian πJ : J(X) → B when π : X → B is principal. (Note that the relative

Jacobian of a non-Kähler elliptic surface π : X → B with general fibre T is J(X) = B×T ∗,

with projection onto the first factor being the associated map to B.) Given a line bundle

δ ∈ Pic(X), we associate the section

Sδ = {(b, λ) ∈ J(X) : δ|π−1(b) ≃ λ},

called the spectral curve of δ.

Remark 2.7. If π has multiple fibres, for any δ ∈ Pic(X) the line bundle ρ̃∗δ has a spectral

curve Sρ̃∗δ on J(Y ), where ψ : Y → C is the principal elliptic surface defined as in (2.1).

We can define the spectral curve of δ as a section of the relative Jacobian J(X) by

Sδ := (ρ× IdT ∗)(Sρ̃∗δ).

14



Associated to any line bundle δ ∈ Pic(X), there is also a ruled surface Fδ given by the

quotient of J(X) by the Z/2Z-action sending (b, λ) to (b, δ|π−1(b) ⊗ λ−1). The e-invariant

eδ := max{−σ2 : σ is a section of Fδ} (2.3)

of Fδ, where σ2 is the self-intersection of the curve σ, appears in the existence criteria for

rank-2 vector bundles on X with determinant δ, as shown in [BM05a, Theorem 4.5].

2.2 The Douady space of points on a complex surface

This exposition is based mainly on [dCM00] and [Nak99].

If X is a complex surface, the Douady space of points X [n] is a moduli space parame-

terizing the coherent OX-modules with finite support of length n. The Douady space can

be defined locally using an analytic GIT-type construction for ∆[n], where ∆ is the holo-

morphic bi-disk {(z1, z2) ∈ C2 : |zα| < 1}, and gluing the ∆[n] via the induced transition

maps of a decomposition of X into a union of bi-disks.

In order to define ∆[n], we consider the set

U := {(A1, A2, t) ∈ GLn(C)×GLn(C)× Cn : [A1, A2] = 0 and |λ| < 1 for eigenvalues λ of Aα} .

We also set H to be the elements of U satisfying the stability condition that there is no

proper subspace of Cn containing t which is preserved by A1, A2. If we quotient by the

GLn(C)-action M · (A1, A2, t) = (MA1M
−1,MA2M

−1,Mt), we get H/GLn(C) ∼= ∆[n].

Example 2.1. To construct ∆[2], we can split into cases depending on whether or not Ai

has a unique eigenvalue for i = 1, 2. If at least one of A1, A2 has two distinct eigenvalues,

then A1, A2 can simultaneously diagonalised, and since we will be taking the quotient by

a GLn(C)-action, we can assume the corresponding elements of U are of the form(
A1 =

[
λ1 0

0 λ2

]
, A2 =

[
µ1 0

0 µ2

]
, t =

[
t1

t2

])
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for some λ1, λ2, µ1, µ2 ∈ BC(0, 1) and t1, t2 ∈ C with λ1 ̸= λ2 or µ1 ̸= µ2. If we assume this

element belongs to H, then up to the GLn(C)-action, we can assume that t =
[
1 1

]T
.

This piece of ∆[2] therefore corresponds to the complement of the diagonal in Sym2∆.

If instead both A1 and A2 have a unique eigenvalue, then they can be simultaneously

upper-triagularised and up to the GLn(C)-action we can assume elements of U have the

form (
A1 =

[
λ α

0 λ

]
, A2 =

[
µ β

0 µ

]
, t =

[
t1

t2

])
for some λ, µ ∈ BC(0, 1), α, β, t1, t2 ∈ C. If we assume that such an element belongs to

H, then up to the GLn(C)-action we will have t =
[
0 1

]T
and α, β not both zero. After

taking the quotient, the resulting set will be ∆× P1, meaning that ∆[2] ≃ Bldiag(Sym
2∆).

In the case that X has dimension 2, X [n] is itself a complex manifold, and a holomorphic

symplectic structure on X naturally lifts to X [n] [Bea83]. In the following, we compile some

known information about Lagrangian fibrations and holomorphic invariants of Douady

spaces over elliptic surfaces.

2.2.1 Lagrangian fibration structure for the Douady space of an

elliptic surface

The following is closely adapted from the discussion in [Leh11] of the Hilbert scheme of

points on a K3 surface.

If π : X → B is a principal elliptic surface with fibre T , there is an induced Abelian

variety fibration on the Douady space X [n] given by the composition π[n] := ϱ ◦ Symn(π),

where Symn(π) : Symn(X) → Symn(B) is the induced map of symmetric products and ϱ :

X [n] → Symn(X) is the Douady-Barelet morphism sending a finite subscheme to its support

with multiplicity. (As shown in [CC93], Symn(B) is isomorphic to the projectivisation of

an indecomposable bundle on B of rank n and degree −1.) We will focus on this fibration
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in the case of n = 2, as in this case ϱ is simply the blow-up of the diagonal ∆ in Symn(X).

If (b1, b2) ∈ Sym2(B) \∆B, the fibre (π[2])−1(b1, b2) is T × T . For a point (b, b) ∈ ∆B, the

fibre is given by the union of two irreducible components:

P(NSym2(X)/∆|(Sym2(π))−1(b,b))
∼= P(TX |Tb)

and Sym2(T ). The symmetric product Sym2(T ) can naturally be thought of as the set of

effective divisors of degree 2, and it has a ruled surface structure given by sending a divisor

to its linear equivalence class in Pic2(T ) ∼= T . The intersection of these components is

given by the diagonal of Sym2(T ) and the section P(TX/B|Tb) in P(TX|Tb). Since TX is

isomorphic to π∗A with A the Atiyah bundle, TX|Tb is trivial and TX/B|Tb is the mapping

onto the second factor.

2.2.2 Topology

Using a result of de Cataldo and Migliorini [dCM00] (due to Göttsche [Göt90] in the

projective case), we have that the Betti numbers of X [n] satisfy

∞∑
n=1

p(X [n], t)qn =
∞∏
k=1

4∏
j=0

(
1− (−t)2k−2+jqk

)(−1)j+1bj(X)
, (2.4)

where p(X [n], t) =
∑
j≥0

bj(X
[n])tj is the Poincaré polynomial. (Note that truncating the

product on the right at k = n gives the correct coefficient for qi for each i ≤ n, so the

Betti numbers of X [n] for a particular choice of n can be computed with this formula.) In

addition, we have from [Bea83] that π1(X
[n]) ∼= H1(X,Z).

If X is also Kähler, the formula (2.4) can be refined to also compute the Hodge numbers

by

∞∑
n=1

h(X [n], x, y)tn =
∞∏
k=1

2∏
p=0

2∏
q=0

(
1− (−1)p+qxp+k−1yq+k−1tk

)(−1)p+q+1hp,q(X)
, (2.5)

where h(X [n], x, y) =
∑

p≥0,q≥0

hp,q(X [n])xpyq is the Hodge-Poincaré polynomial.
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2.3 Compact holomorphic symplectic manifolds

Definition 2.8. A holomorphic symplectic manifold is a pair (X, η) consisting of X a

2m-dimensional complex manifold and η ∈ H0(X,Ω2
X) a closed holomorphic 2-form such

that ηm is nowhere-vanishing. A holomorphic symplectic manifold (X, η) is irreducible if

X is simply connected, admits a Kähler metric, and

H0(Z,Ωk
Z) =

0 k is odd,

C[η∧k/2] k is even,

for all 0 ≤ k ≤ 2m.

Remark 2.9. A holomorphic symplectic manifold of dimension 2m is irreducible if and only

if it is irreducible hyperkähler, meaning it is simply connected and admits a metric with

holonomy Sp(m).

The study of holomorphic symplectic manifolds began with Bogomolov’s classification

theorem for compact Kähler manifolds with trivial first Chern class.

Theorem 2.10 (Bogomolov [Bog74]). Let X be a compact Kähler manifold with c1(X) = 0.

Up to a finite étale cover X̃, X decomposes uniquely into a product

X̃ = T ×
k∏
i=1

Yi ×
ℓ∏

j=1

Zj,

where the Yi are irreducible Calabi-Yau manifolds, the Zj are irreducible holomorphic sym-

plectic manifolds, and T is a complex torus.

In the above statement, an irreducible Calabi-Yau manifold Y is a simply connected

Kähler manifold of dimension n ≥ 3 such that KY is trivial and H0(Y,Ωk
Y ) = 0 for

0 < k < n.

Holomorphic symplectic manifolds are also interesting from the standpoint of their de-

formation theory. The deformations of an irreducible holomorphic symplectic manifold
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(X, η) are always unobstructed, and are determined by the weight-2 Hodge structure to-

gether with the Beauville-Bogomolov-Fujiki form q : H2(X,Z)×H2(X,Z) → R,

q(α, β) = λ

∫
X

α ∧ β ∧ ηm−1 ∧ ηm−1 − λ(m− 1)

2m

(∫
X
α ∧ ηm−1 ∧ ηm

) (∫
X
β ∧ ηm ∧ ηm−1

)∫
X
ηm ∧ ηm

,

where λ is the unique positive real number such that q is integral and primitive.

Example 2.2. The simplest example of a compact holomorphic symplectic manifold is a

complex-2n torus. The fact that this is holomorphic symplectic follows immediately since

C2n has a translation-invariant holomorphic symplectic structure given by

η :=
n∑
k=1

dz2k−1 ∧ dz2k.

The Hodge diamond of a 2n-dimensional complex torus is given by

hp,q =

(
2n

p

)(
2n

q

)
since any Dolbeault cohomology class can be represented by a wedge product of p dzis and

q dzjs. In dimension 2, this gives the Hodge diamond

1

2 2

1 4 1

2 2

1

.

Example 2.3. A K3 Surface is a simply connected compact complex surface with trivial

canonical bundle. Surfaces of this type can be constructed as smooth degree-4 hypersur-

faces of P3 or as double covers of P2 branched along a smooth sextic curve. The holomorphic

symplectic form is given by choosing any non-zero section of the canonical bundle. The

Hodge diamond of a K3 surface is given by
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1

0 0

1 20 1

0 0

1

.

Example 2.4. A Primary Kodaira Surface (henceforth referred to as a Kodaira surface)

is a holomorphic symplectic surface that admits no Kähler structure. A Kodaira surface

can be constructed either as in Proposition 2.2 with a genus-1 base curve B, or as the

quotient of the nilpotent Lie group
1 z w

0 1 z

0 0 1

 : z, w ∈ C

 ⊆ GL(3,C)

by a subgroup Γ with generators g1, g2, g3, g4 such that the centre of Γ is < g1, g2 >

and g3g4 = gd1g4g3, where d is the same positive integer that appears in the statement

of Proposition 2.2. The fundamental group of this surface is Γ, and its abelianisation is

Z3 ⊕ Z/dZ. The Hodge diamond of a Kodaira surface is given by

1

1 2

1 2 1

2 1

1

.

The above three cases together give all possible examples in dimension two by the

Enriques–Kodaira classification of complex surfaces. To construct examples in higher di-

mensions, we can use the following two results:

Theorem 2.11 (Beauville [Bea83]). If S is a holomorphic symplectic surface, then the

Douady space of points S[n] is holomorphic symplectic.
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If the surface S is a K3-surface, the resulting Douady space is irreducible. Families in

this deformation class are called of K3[n]-type. Manifolds of this type have second Betti

number b2 = 23 when n ̸= 1. If S is a complex torus, the Douady space of n points admits

a map

Σ :S[n] → S

Z 7→
∑
z∈Z

ℓz(Z)z,

where the sum is taken with respect to the group structure on the torus. The general fibre

is irreducible holomorphic symplectic and is known as the generalised Kummer variety of

S[n]. The corresponding deformation class is called Kumn−1-type.

Theorem 2.12 (Mukai, [Muk84]). If S is a holomorphic symplectic surface, the moduli

space Mh
v(S) of h-stable sheaves E with ch(E) = v is holomorphic symplectic with symplec-

tic form

ηE : Ext1(E , E)⊗ Ext1(E , E) → Ext2(E , E)

given by the Yoneda product, where h is a polarisation/Kähler metric/Gauduchon metric

and we employ the isomorphisms (T Mh
v(S))E ≃ Ext1(E , E) and Ext2(E , E) ≃ C.

An analogous result also holds for moduli spaces Mh
r,δ,c(S) of h-stable sheaves E with

rank E = r, det(E) = δ, c2(E) = c.

Remark 2.13. Note that Theorem 2.11 is a special case of this result, as S[n] ∼= M1,OS ,n(S).

If S is a K3 surface andMr,δ,c(S) is compact of dimension 2n, it is of K3[n]-type [O’G97].

If S is a complex torus and Mr,δ,c(S) is compact of dimension 2n, there is an Albanese

map from Mr,δ,c(S) to S whose fibre is of Kumn−1-type [Yos01].

Outside of the irreducible holomorphic symplectic manifolds obtained via the previous

two results, there are two exceptional deformation families found by O’Grady. Examples

of type OG10 occur in dimension 10 as smooth compactifications of the moduli space

of stable sheaves on a K3 surface with Chern character divisible by 2 [O’G99]. A similar

construction in dimension 6 with an Abelian surface instead of a K3 surface gives examples
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of type OG6 [O’G03]. (The compactification is a symplectic resolution of the corresponding

moduli space of semistable sheaves.)

In the non-Kähler case, in addition to the spaces constructed via Theorems 2.11 and

2.12, we have the Bogomolov-Guan manifolds.

Example 2.5 (Bogomolov-Guan manifolds). Let π : S → B be a Kodaira surface. Then

S[n] is a holomorphic symplectic manifold with holomorphic symplectic form η and there is

a natural Lagrangian fibration π[n] : S[n] → B[n] as discussed in Section 2.2.1. After fixing

an elliptic curve structure on B, there is a natural summation map Σ : B[n] → B given by

{x1, . . . , xn} 7→
n∑
i=1

xi,

where the sum is taken with respect to the group structure on B. The manifold

Y := (π[n])−1(Σ−1(0))

is a smooth hypersurface of S[n] and therefore a co-isotropic submanifold. Quotienting by

the characteristic foliation of Y [Saw09] with respect to η results in a holomorphic sym-

plectic space of dimension 2n− 2 which admits a smooth and simply connected symplectic

resolution. (See [Bog96, Gua95] for more explicit constructions.)
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Chapter 3

Slope Stability for Vector Bundles

and V-Pairs

In order to study moduli spaces of vector bundles, it is necessary to restrict to those which

satisfy a stability condition to obtain a moduli space that is separated. This stability

condition involves a bound on the positivity (as defined with respect to a Gauduchon

metric or an ample line bundle) of subsheaves of a vector bundle. In this chapter, we

begin by giving an overview of stability conditions and degree computations following

[LT95]. In the particular case of vector bundles on non-Kähler elliptic surfaces, we discuss

reducibility of the vector bundles, which determines whether the stability condition is

trivial. For reducible bundles, we show how one can compute destabilising subbundles, and

we give a numerical criterion to determine which moduli spaces admit reducible bundles.

Finally, we end the chapter by extending our discussion of stability conditions from vector

bundles to V -pairs, which consist of a vector bundle E together with a holomorphic section

ϕ ∈ H0(X, End0(E)⊗ V ) for a fixed vector bundle V on X.
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3.1 Slope stability for Gauduchon manifolds

When studying moduli spaces of vector bundles on a complex curve C, in order to construct

a well-behaved moduli space it is necessary to restrict to those bundles which are (semi)-

stable: a vector bundle E is (semi)-stable if for every coherent subsheaf F with 0 <

rank(F) < rank(E) we have

deg(F)

rank(F)
< (≤)

deg(E)

rank(E)
,

where

deg(·) :=
∫
C

c1(·).

Note that the value of deg is invariant with respect to the form representing c1 by Stokes’

theorem.

For higher-dimensional complex manifolds, we can generalise this slope stability concept

in the presence of a Gauduchon metric g, i.e. a Hermitian metric on an n-dimensional

complex manifold whose associated 2-form ωg satisfies ∂∂̄ωn−1
g = 0. (Up to scaling by

a constant, there is a unique Gauduchon metric in the conformal class of any Hermitian

metric on a connected compact complex manifold of dimension n ≥ 2, so every complex

manifold admits a Gauduchon metric [Gau84].) Given a Hermitian vector bundle (E, h),

we can extend the degree function to

degg(E) :=
i

2π

∫
Tr(Fh) ∧ ωn−1

g ,

where Fh is the curvature of the Chern connection on (E, h). Varying the Hermitian metric

h will change Tr(Fh) by a ∂∂̄-exact 2-form, so degg(L) depends only on the Gauduchon

metric and the holomorphic isomorphism class of E. If g is a Kähler metric, the above

degree formula depends on E only up to its first Chern class, and is therefore a topological

invariant. When X is projective, we often ask that the metric g be taken to be the

restriction of the Fubini–Study metric under some closed embedding, which is equivalent

to asking that the Kähler form of g represents the first Chern class of some ample line
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bundle H. In this case, H is called a polarisation of X. We now say that a vector bundle

E is g-(semi)-stable if for every coherent subsheaf F with 0 < rankF < rankE,

µg(F) :=
degg(F)

rankF
< (≤)

degg(E)

rankE
=: µg(E).

Stable vector bundles are intimately related to solutions of the Hermitian-Einstein

equations which, given a holomorphic vector bundle E on a Gauduchon manifold (X, g),

asks for a Hermitian metric on E such that

iΛωgFh = γIdE

for some γ ∈ R, where Λωg is the adjoint of the map · ∧ ωg [LT95]. A vector bundle E

admits an irreducible Hermitian-Einstein metric with constant γ if and only if E is stable

with

γ =
2πµg(E)

(n− 1)!Volg(X)
.

This correspondence was demonstrated in [Don85, Don87] for projective manifolds, [UY86]

for compact Kähler manifolds, and [Buc88, LY87] for general compact complex manifolds.

If X is a non-Kähler complex surface, degg : Pic(X) → R is a smooth Lie group

homomorphism such that degg |Pic0(X) is surjective [LT95, Proposition 1.3.13]. In the case

where X is a non-Kähler elliptic surface, this property uniquely determines the degree

map up to scaling for line bundles with torsion first Chern class. Recall from Section

2.1.1 that any line bundle with torsion first Chern class on a principal elliptic surface

π : X = Θ∗/⟨τ⟩ → B can be written as π∗H ⊗ Lα, where H ∈ Pic(B), Lα is the line

bundle with constant factor of automorphy α, and π∗Θ ⊗ Lτ ∼= OX . Therefore, for any

Gauduchon metric on g, the degree map satisfies

degg(π
∗H ⊗ Lα) = c

(
deg(H)− d log |α|

log |τ |

)
(3.1)

for some c ∈ R>0, where d = deg(Θ). In the sequel we will assume that for principal elliptic

surfaces π : X → B, the metric g is chosen so that

degg(π
∗H) = deg(H)
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for all H ∈ Pic(B). The above still holds if π : X → B has multiple fibres, with the

additional constraint that for any multiple fibre Ti with multiplicity mi, degg(OX(Ti)) =

1/mi for any g which has been normalised as above.

3.2 Reducibility and destabilising bundles

For this section, we assume that X is a compact non-algebraic complex surface. Vector

bundles on these surfaces break up into two categories: those which are reducible, and

those which are irreducible.

Definition 3.1. A rank-r sheaf E is reducible if there is a subsheaf F ⊆ E such that

0 < rankF < rank E .

A rank-r sheaf is irreducible if every non-zero subsheaf has rank r.

Remark 3.2. This distinction is unique to non-algebraic complex manifolds; a coherent

sheaf defined over an algebraic variety is irreducible if and only if it has rank 1.

Clearly, if a sheaf is irreducible, then it is automatically stable with respect to any

Gauduchon metric. Stability of reducible bundles can be investigated using their maximal

destabilising bundles.

Definition 3.3. Let X be a compact complex surface with Gauduchon metric g, and let

E be a vector bundle on X. A locally-free subsheaf F ⊆ E is a maximal destabilising

bundle for E with respect to g if 0 < rankF < rankE, E/F is torsion-free, and for any

positive-degree line bundle L, Hom(F ⊗ L,E) = 0.

For certain classes of surfaces, one can compute the destabilising bundles, which sim-

plifies the process for checking stability.

Proposition 3.4 (Friedman [Fri98]). Let E be a vector bundle on X and let F ⊆ E be a

subsheaf with 0 < rankF < rankE. Then:
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1. There is an effective divisor D so that F∨∨ ⊗ OX(D) is a maximal destabilising

bundle.

2. If E has rank 2, for any maximal destabilising bundle L of E, there is a finite analytic

subspace Z ⊂ X such that

0 L E det(E)⊗ L−1 ⊗ IZ 0

is an exact sequence, where IZ is the ideal sheaf of Z.

Proposition 3.5 (Br̂ınzănescu–Moraru [BM05b], Proposition 3.3 and Theorem 3.5). If

π : X → B is a non-Kähler elliptic surface and E is a rank-2 vector bundle on X, then

E has at most two maximal destabilising bundles, and a maximal destabilising bundle K

for E is unique if and only if det(E) ⊗ K−2 ∈ P2. (Here P2 is the subgroup of Pic(X)

in correspondence with divisors.) If E is an extension of line bundles with two distinct

destabilising bundles K1, K2, they satisfy the relation

K1 ⊗K2 ⊗ det(E)−1 ≃ OX

 ∑
F∈A(E)

−F

 ,

where A(E) is the set of fibres F of π such that E|F is not split. When E is not an

extension of line bundles, there is an allowable elementary modification of E with the same

maximal destabilising bundles [BM05b, Theorem 3.5].

Elementary modifications will be discussed in detail in Section 4.2.

3.3 Stably irreducible moduli spaces

In order to construct compact moduli spaces of stable sheaves, we want to restrict to choices

of invariants which do not permit strictly semi-stable sheaves. As shown in [Tom01], the

correct condition to impose to get this result for non-Kähler surfaces is to require that the

moduli spaces are stably irreducible.
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Definition 3.6. A moduli space Mr,δ,c(X) is stably irreducible if it is non-empty and every

sheaf represented by Mr,δ,c(X) is irreducible.

Br̂ınzănescu gives a method for finding stably irreducible moduli spaces with the fol-

lowing result:

Proposition 3.7 ([Br̂ı96], Lemma 4.30). Let X be a compact complex surface, and let E
be a rank-r coherent sheaf with determinant δ and second Chern class c. If E is reducible,

then

∆(r, δ, c) ≥ t(r, δ) := −1

2
sup

k∈Z,0<k<r

(
1

k(r − k)
sup

α∈NS(X)

(
kc1(δ)

r
− α

)2
)
. (3.2)

Here ∆(r, δ, c) is given by

∆(r, δ, c) :=
c

r
− r − 1

2r2
c21(δ). (3.3)

The above proposition implies that in order to find stably irreducible moduli spaces of

sheaves, it is sufficient to check that the moduli space is non-empty and ∆(r, δ, c) < t(r, δ).

Proposition 3.8. Let π : X → B be a non-Kähler principal elliptic surface, and set

ν(X) :=

0, if NS(X) is finite,

min
α∈NS(X),α2 ̸=0

(−α2/2), otherwise.

If r ≥ 2, δ ∈ Pic(X) satisfies c21(δ) = −2ν(X), and(
1− r

r

)
ν(X) ≤ c <

(
2− r

r − 1

)
ν(X),

then the moduli space Mr,δ,c(X) is stably irreducible whenever it is non-empty.

Proof. Note that
1

k(r − k)

(
kc1(δ)

r
− α

)2
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is invariant under (k, α) 7→ (r − k, c1(δ)− α) and(
kc1(δ)

r
− α

)2

≤ α2 − k2

r2
c1(δ)

2

when k ≤ r/2 by negative semi-definiteness of the intersection product. By choosing δ so

that c21(δ) = −2ν(X), we obtain

t(r, δ) = −1

2
sup

k∈Z,0<k<r

(
1

k(r − k)
sup

α∈NS(X)

(
kc1(δ)

r
− α

)2
)

= −1

2
sup

k∈Z,0<k≤r/2

(
1

k(r − k)
sup

α∈NS(X)

(
kc1(δ)

r
− α

)2
)

= min
k∈Z,0<k≤r/2

(
kν(X)

r2(r − k)

)
=

ν(X)

r2(r − 1)
.

We then note that Mr,δ,c(X) is stably irreducible if 0 ≤ ∆(r, δ, c) < t(r, δ), and the

result follows after isolating c.

Remark 3.9. If X is a Kodaira surface, then ∆(r, δ, c) ≥ 0 is a necessary and sufficient

condition for Mr,δ,c(X) to be non-empty [ABT02]. Furthermore, since ν(X) corresponds

to the minimal degree of an isogeny between B and T , we can take ν(X) to be any non-

negative integer by choosing B and T appropriately. As an example of a choice of B and

T with ν(X) = k for some k ∈ Z+, take

B = C/
(
Z+

(√
−1
)
Z
)
, T = C/

(
Z+ k

(√
−1
)
Z
)
.

Remark 3.10. In the case where r = 2 and X has base of genus g ≥ 2, a sufficient

condition for the moduli space M2,δ,c(X) to be non-empty is that ∆(2, δ, c) ≥ −eδ/4
[BM05a, Theorem 4.5], where eδ is the invariant associated to the ruled surface Fδ as

defined in (2.3). Therefore, if ν(X) ≥ (2− eδ)/2, then there are choices of invariants which

give non-empty stably irreducible moduli spaces of sheaves over X.
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3.4 Stability for V-pairs

We also define slope stability for V -pairs, which consist of a pair (E, ϕ) with E a holomor-

phic vector bundle and ϕ : E → E ⊗ V a holomorphic map known as the Higgs field. In

the special cases where V = TX , V = KX , or V = T ∗
X , V -pairs are called co-Higgs bundles,

Vafa–Witten pairs, or Higgs bundles, respectively.

Definition 3.11. Let (E, ϕ) be a V -pair. A subsheaf F ⊆ E is ϕ-invariant if ϕ(F) ⊆
F ⊗ V . The V -pair (E, ϕ) is (semi)-stable if for any ϕ-invariant subsheaf F of E with

0 < rankF < rankE,

µg(F) < (≤)µg(E).

We equivalently say that ϕ is a stable Higgs field for E.

Example 3.1. Let E and V be vector bundles, and suppose E is stable. Then any Higgs

field ϕ : E → E ⊗ V is automatically stable.

Note that if (E, ϕ) is a V -pair and ϕ = IdE⊗σ for some section σ of V , then (E, ϕ) is g-

stable if and only if E is. Since V -pairs of this type are not interesting from a classification

point of view, we typically restrict to V -pairs which are trace-free. Here we are defining

the trace by

Tr
n∑
k=1

Ak ⊗ σk =
n∑
k=1

TrAk ⊗ σk,

where Ak ∈ End(E) and σk ∈ H0(X, V ).

Example 3.2. Let V be any positive-degree vector bundle on X. Although OX ⊕ V is

not a stable vector bundle,(
OX ⊕ V, ϕ :=

[
0 1

α 0

]
: OX ⊕ V → V ⊕ (V ⊗ V )

)

is a stable trace-free V -pair for any α ∈ H0(X, V ⊗ V ), as µ(OX ⊕ V ) > 0 and every

ϕ-invariant subsheaf factors through OX .
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Chapter 4

The Spectral Construction for

Non-Kähler Elliptic Surfaces

In the case that X is an elliptic fibration, one can obtain an intermediate classification

of vector bundles before the moduli space of sheaves using a method known as the spec-

tral construction, which assigns to each vector bundle a divisor (the spectral cover) in the

relative Jacobian J(X) of X. The map assigning to each vector bundle its spectral cover

provides a natural fibration structure on the moduli space of stable vector bundles, simpli-

fying some problems involving the topology of the moduli space. This chapter reviews the

spectral construction in the case of rank-2 vector bundles on a non-Kähler elliptic surface

as described in [BM05a, BM05b, BM06]. We then discuss the relationship between the

elementary modifications of a vector bundle and the jumps in its spectral cover in order to

prove technical results used in Chapters 5 and 6. (The jumps are irreducible components

of the spectral cover which correspond to fibres where the restriction to the fibre is not

semi-stable.) The most important of these technical results is that, when M2,δ,c(X) is a

stably irreducible moduli space of sheaves and Σ ⊂ J(X) is the spectral cover of a sheaf

in M2,δ,c(X), every irreducible component of Σ is smooth.
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4.1 The spectral construction

Suppose that X is a non-Kähler principal elliptic surface. If E ∈ Coh(X) is torsion-free,

we can associate to E its Fourier–Mukai transform

LE = R1p2∗(U ⊗ p1
∗E)

on B × C∗ ⊆ B × Pic0(X), where U is the universal line bundle on

X ×B (B × C∗) ⊆ X ×B (B × Pic0(X))

as discussed in Section 2.1.1, and the pi’s are the morphisms corresponding to the fibred

product. The resulting LE is a torsion sheaf supported on an effective divisor S̃E in X×C∗,

consisting of points (b, a) such that

h1(T, (E ⊗ La)|π−1(b)) ̸= 0,

possibly with higher multiplicity. Since Lτ ∈ π∗(Pic(B)) and all bundles on B pull back

to bundles which are trivial on all fibres of π, the divisor S̃E descends to a divisor SE on

the relative Jacobian J(X) = B × T ∗ of X, where T ∗ := Pic0(T ). We call SE the spectral

curve of E .

We can describe the spectral curve more concretely as

SE = {(b, λ) ∈ B × T ∗ : H1(T, E|π−1(b) ⊗ λ) ̸= 0},

with the multiplicity of (b, λ) given by h1(T, E|π−1(b) ⊗ λ).

Remark 4.1. The spectral curve of a sheaf E can also be constructed using a twisted

Fourier–Mukai transform between the category of coherent sheaves on X and the category

of twisted sheaves on J(X) as described in [BM06].

Since the restriction morphism

ι∗ : H2(X,Z) → H2(T,Z)
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is zero [Tel98], E|π−1(b)⊗λ is a degree zero bundle for all (b, λ) ∈ B×T ∗. This fact together

with the classification of vector bundles on genus 1 curves gives that SE ∩ {b} × Pic0(T )

contains at most rank(E) points if and only if E|π−1(b) is semistable. Thus the spectral

curve has the form

SE = C +
∑
b∈UE

ℓb({b} × T ∗)

for some integers ℓb, where C is an r-section of J(X) → B and

UE := {b ∈ B : E|π−1(b) is unstable}.

Remark 4.2. If π : X → B has multiple fibres, the spectral curve of a sheaf E can be

constructed via its cyclic cover

Y X

C B

ρ̃

ψ π

ρ

by computing the spectral curve of ρ̃∗E in J(Y ) and setting SE to be the image of Sρ̃∗E by

ρ× IdT ∗ .

Definition 4.3. We say that a vector bundle E has a jump at b if E|π−1(b) is unstable,

and the multiplicity ℓ(E, b) of the jump is the multiplicity ℓb of b× T ∗ in SE .

In the case of rank-2 sheaves, for each δ ∈ Pic(X), we can define an involution

ιδ : (b, λ) 7→ (b, δ|π−1(b) ⊗ λ−1)

on J(X). (This involution only depends on the class of δ in Pic(X)/π∗(Pic(B)).) The

rank-2 sheaves E with det E = δ ⊗ π∗(λ) for some λ ∈ Pic(B) are precisely the sheaves

whose spectral curves are invariant under the action of ιδ. Thus these spectral curves

descend to the ruled surface Fδ := J(X)/ιδ with induced projection ρ : Fδ → B. By

[BM05a], this ruled surface can be described as Fδ = P(Vδ), where

Vδ := q1∗
(
OJ(X) (SOX

+ Sδ)
)
,

and q1 : J(X) ∼= B×T ∗ → B is the projection map. The bundle Vδ is a rank-2 semi-stable

vector bundle on B of degree − c1(δ)2

2
[BM05a, Lemma 3.8].
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Remark 4.4. A rank-2 torsion-free sheaf E on X is irreducible if and only if

SE = C +
k∑
i=1

{bi} × T ∗

with C reduced and irreducible [BM05a]. If C = Σ1 + Σ2 for some sections Σ1 and Σ2 of

J(X) → B, then E has two destabilising bundles K1 and K2 with spectral curves SK1 = Σ1

and SK2 = Σ2, respectively. If C = 2Σ is non-reduced, then E has a unique destabilising

bundle K with spectral curve SK = Σ [BM05b, Proposition 3.4].

Definition 4.5. For any rank-2 torsion-free sheaf E with det(E) = δ, the graph of E is the

set SE/ιδ ⊂ Fδ, where Fδ is the ruled surface associated to δ as defined in Section 2.1.1.

Proposition 4.6 (Br̂ınzănescu–Moraru [BM05a]). Let E be a rank-2 torsion-free sheaf

with determinant δ and second Chern class c, and let G be the graph of E. Then G is an

effective divisor linearly equivalent to Aδ+ρ
∗b, where Aδ is the graph of OX⊕δ, ρ : Fδ → B

is the induced projection map, and b ∈ Picc(B).

Definition 4.7. Given a line bundle δ ∈ Pic(X) and an integer c, the space of graphs Pδ,c
is the set of all divisors in Fδ linearly equivalent to Aδ + ρ∗b for some b ∈ Picc(B). The

graph map G : M2,δ,c(X) → Pδ,c is the holomorphic map taking each sheaf E ∈ M2,δ,c(X)

to its graph. (Equivalently, G is the map sending each sheaf to its spectral curve. We use

these two definitions interchangeably.)

4.2 Spectral curves and elementary modifications

In order to understand vector bundles with jumps, the main method is to study their

elementary modifications. Given a rank-2 vector bundle E on a complex manifold X, a

smooth effective divisor D, a line bundle λ on D, and a surjective sheaf map g : E|D → λ,

the elementary modification E ′ of E by (D,λ) is the unique vector bundle satisfying the

exact sequence

0 E ′ E ι∗λ 0,
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where ι : D → X is the inclusion map. The invariants of an elementary modification are

given by

det(E ′) = det(E)⊗OX(−D), c2(E
′) = c2(E) + c1(E).[D] + ι∗c1(λ).

In the case that π : X → B is a non-Kähler elliptic surface and D is a prime divisor, the

divisor D is of the form π−1(b) for some b ∈ B. Since D has torsion first Chern class, the

determinant and second Chern class are related by

det(E ′) = det(E)⊗ π∗(OB(−b)), c2(E
′) = c2(E) + deg(λ)

and the elementary modification E ′ then has ℓ(E ′, b) = ℓ(E, b) + deg(λ) in this case.

If a vector bundle E has a jump at b, there is a unique elementary modification of E

along π−1(b) by a negative degree bundle, called the allowable elementary modification of

E at b [Mor03, Section 4.1.2]; in particular, since E|π−1(b) is unstable, it is of the form

λ⊕ (λ∗ ⊗ det(E)|π−1(b)) for some λ ∈ Pic−h(T ∗) with h > 0, with the map g : E|π−1(b) → λ

given by projection onto the first coordinate.

Proposition 4.8 (Br̂ınzănescu–Moraru [BM05a]). If E is a rank-2 torsion-free sheaf on

X, then E has finitely many jumps, and∑
b∈UE

ℓ(E , b) ≤ 2∆(E).

Proof. First, suppose that E is not locally free. In this case, E∨∨/E is a torsion sheaf

supported at m points with multiplicity, and E∨∨ is a vector bundle satisfying

∆(E∨∨) = ∆(E)− m

r
, SE∨∨ = SE −

∑
x∈Supp(E∨∨/E)

{π−1(π(x))} × T ∗.

Since ∆(E∨∨) ≥ 0, the support of E∨∨/E must be finite, so we can reduce to the case of

vector bundles. Now suppose that E is a vector bundle. If E|π−1(b) is unstable, it must split

by the classification of rank-2 bundles on elliptic curves with

E|π−1(b) = L⊕ (det(E|π−1(b))⊗ L−1
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for some L ∈ Pic−k(T ) with k > 0, and the allowable elementary modification

0 E E ι∗L 0

is a vector bundle with c21(E) = c21(E) and c2(E) = c2(E)− k, where ι : π−1(b) → X is the

inclusion map. Since ∆(E) ≥ 0, we must have k ≤ 2∆(E). We can iterate this process

across all unstable fibres to see that there can only be finitely many, as all vector bundles

have non-negative discriminant. Therefore, considering both cases, we have that E admits

finitely many jumps and the sum of their multiplicities is at most 2∆(E).

By contrast, elementary modifications by positive-degree line bundles are highly non-

unique; if a vector bundle E satisfies

E|π−1(b)
∼= L⊗ (L∗ ⊗ det(E)|π−1(b))

with

L ∈ Pich(T ∗), h ≥ 0, L ̸∼= L∗ ⊗ det(E)|π−1(b),

then E has an elementary modification at b by λ for every λ ∈ Picr(T ∗) with r ≥ h [Mor03,

Section 4.1.3]. Two elementary modifications by λ corresponding to maps

g1 : E|π−1(b) → λ, g2 : E|π−1(b) → λ

are isomorphic if and only if there is a bundle automorphism φ of E so that g1 = g2◦φ|π−1(b).

Finally, for the case of an elementary modification by a degree zero line bundle, the

behaviour of the elementary modification depends on whether the initial bundle is regular.

Definition 4.9. A rank-2 vector bundle E on X is regular at b for some b ∈ B if E|π−1(b)

is semi-stable and not isomorphic to λ⊕ λ for any λ ∈ Pic(T ). Moreover, E is regular if it

is regular at b for every b ∈ B.

The regular rank-2 vector bundles with fixed irreducible spectral curve C are classified

via the following result:
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Proposition 4.10 (Br̂ınzănescu–Moraru [BM06]). Let C be an irreducible bisection of

J(X) with normalisation C. If we set W to be the normalisation of X ×B C with induced

projections γ : W → X and ψ : W → C, then:

i. There is a line bundle L on W such that γ∗(L) is a regular rank-2 bundle on X with

spectral curve C.

ii. If L1, L2 ∈ Pic(W ) are such that γ∗(L1) and γ∗(L2) both have spectral curve C, then

L1 ⊗L−1
2 = ψ∗(λ) for some λ ∈ Pic(C), and γ∗(L1) ∼= γ∗(L2) if and only if L1

∼= L2.

Using the notation of the above Proposition, we also have that if L ∈ Pic(W ) is such

that γ∗(L) has spectral curve C and det(γ∗(L)) = δ, then for any λ ∈ Pic(C),

det(γ∗(L⊗ ψ∗(λ)))) ∼= δ ⊗ ηn(λ),

where η : C → B is the ramified covering induced from J(X), and ηn : Pic(C) → Pic(B)

is the norm homomorphism of η, which is the group homomorphism defined by

ηn(OC(p)) = OB(η(p))

for all p ∈ C. Because of this, the regular rank-2 bundles on X with determinant δ and

spectral curve C are of the form γ∗(L ⊗ ψ∗(λ)), where λ ∈ Prym(C/B) := ker(ηn). (See

[BM06, Theorem 4.5] for more details.)

An elementary modification of a vector bundle E at b by a degree zero bundle λ exists if

and only if E|π−1(b) is an extension of λ by another degree-zero line bundle λ′. If E is regular

at b, there is a unique surjection from E|π−1(b) to λ up to composing with an automorphism

of λ, so there is a unique elementary modification. If E admits an elementary modification

by λ at b but E is not regular at b, then E|π−1(b)
∼= λ ⊕ λ. In this case, the surjections

from E|π−1(b) to λ are parameterised by C2, and since constant multiples of a surjection

induce the same elementary modification, the elementary modifications of E by λ at b are

parameterised by P1.
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Lemma 4.11. Let E be a rank-2 vector bundle with spectral curve C, and let E ′ be an

elementary modification

0 E ′ E ι∗λ 0, (4.1)

where ι : π−1(b) → X is the inclusion map for some b ∈ B and λ ∈ Pic0(T ). Then E ′ is

regular at b if and only if E is.

Proof. If b is of the form π(c) where c is a smooth point of C, then every vector bundle

with spectral curve C is regular at b [Mor03], so we can restrict to the case where π−1(b)

contains a singular point of C. In this case, a vector bundle V with spectral curve C has

that V |π−1(b) is an extension of λ by itself, and

V is regular at b⇔ h1(T, V |π−1(b) ⊗ λ−1) = 1. (4.2)

Let L ∈ Pic0(X) be a bundle with constant factor of automorphy so that L|π−1(b) = λ−1.

Then taking the tensor product of the exact sequence (4.1) with L gives

0 E ′ ⊗ L E ⊗ L ι∗OT 0,

and pushing forward by π gives the long exact sequence

0 π∗(E
′ ⊗ L) π∗(E ⊗ L) (π ◦ ι)∗OT

R1π∗(E
′ ⊗ L) R1π∗(E ⊗ L) R1(π ◦ ι)∗OT 0.

If V is any vector bundle on X so that H0(T, V |π−1(p)) ̸= 0 for at most finitely many p ∈
B, then π∗V is zero, and R1π∗V is a torsion sheaf with stalks (R1π∗V )p ∼= H1(T, V |π−1(p).

(For details see [BM06].) Furthermore, it is easy to check that since π ◦ ι : π−1(b) → B is a

constant map, (π ◦ ι)∗OT
∼= R1(π ◦ ι)∗OT

∼= Cb, where Cb is the skyscraper sheaf supported

at b. From this, the above exact sequence reduces to

0 Cb R1π∗(E
′ ⊗ L) R1π∗(E ⊗ L) Cb 0.
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If we now consider the exact sequence induced from the stalks at b, we have

0 C H1(T,E ′|π−1(b) ⊗ λ−1)

H1(T,E|π−1(b) ⊗ λ−1) C 0,

so h1(T,E ′|π−1(b) ⊗ λ−1) = h1(T,E|π−1(b) ⊗ λ−1). Together with (4.2), this implies that E ′

is regular at b if and only if E is.

Pairing this lemma with Proposition 4.10 leads to the following result:

Proposition 4.12. If C is an irreducible bisection of J(X), then every vector bundle with

spectral curve C is regular.

Proof. Suppose that E is a bundle with spectral curve C. By [BM06, Theorem 4.1], there is

a vector bundle E0 with spectral curve C which is regular. E0 is an elementary modification

of the pushforward of a line bundle on W by a degree-zero bundle, so by Lemma 4.11 we

can assume that E0 = γ∗(L0) for some L0 ∈ Pic(W ). We also have that there is some L1 ∈
Pic(W ) so that E is an elementary modification of γ∗(L1) by a degree-zero bundle. Since

γ∗(L0) and γ∗(L1) have the same spectral curve, there is a line bundle H ∈ Pic(C) so that

L0 ⊗L−1
1

∼= ψ∗(H), where ψ : W → C is the map induced from the fibred product [BM06,

Theorem 4.5]. Choose effective divisors D0, D1 on C so that H = OC(D0 −D1). Since for

any c ∈ C, the pushforward γ∗(L ⊗ ψ∗(OC(−c))) is an elementary modification of γ∗(L)

by a degree-zero bundle, there are sequences of elementary modifications by degree-zero

bundles taking γ∗(L1⊗ψ∗(OC(−D1))) to E and E0 to γ∗(L0⊗ψ∗(OC(−D0))), respectively.

Since E0 is regular, we have that γ∗(L0⊗ψ∗OC(−D0))) ∼= γ∗(L1⊗ψ∗(OC(−D1))) is regular

by Lemma 4.11, and we similarly get that E is regular since there is a chain of elementary

modifications taking γ∗(L1 ⊗ ψ∗(OC(−D1))) to E.

Since all of the rank-2 bundles with irreducible spectral curve C can be expressed as the

pushforward of a line bundle on the normalisation of X×BC, the bundles with determinant

δ and spectral curve C are parameterised by Prym(C/B) [BM06, Theorem 4.5].
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In the case of a rank-2 vector bundle E with smooth and irreducible spectral curve C,

we have g(C) = 4∆(E) + 1 [BM05a, Lemma 3.10]. Similar computations give

pa(SE) = 4∆(E) + 1 (4.3)

for any rank-2 stably irreducible sheaf E .

Proposition 4.13. If E is a rank-2 stably irreducible sheaf, and the spectral curve SE

contains no jumps, then SE is smooth.

Remark 4.14. For the case of ∆(2, δ, c) = 1
4
with X a Kodaira surface, this result is given

in [AMT12, Corollary 4.4].

Proof. Let E be a rank-2 stably irreducible sheaf in M2,δ,c(X), and suppose for a contra-

diction that SE consists of a singular irreducible bisection with no jumps. Let C be the

normalisation of SE. Then g(C) ≤ 4∆(E) by (4.3), so dim(G−1(SE)) = dimPrym(C/B) ≤
4∆(E) − 1. Now take E ′ to be any sheaf in M2,δ,c(X) whose spectral curve is smooth.

Since the arithmetic genus of a spectral curve depends only on ∆(2, c1(E), c(E)), we have

g(SE′) = ρa(SE) = 4∆(E) + 1 from [BM05a, Lemma 3.10]. We assumed SE′ is smooth, so

we have dim(G−1(SE′)) = dimPrym(SE′/B) = 4∆(E). Since a general stably irreducible

sheaf has smooth spectral curve, the fibres of the graph map G : M2,δ,c(X) → Pδ,c have
dimension 4∆(E) outside a proper Zariski-closed subset of Pδ,c. This is a contradiction

since the fibre dimension of a holomorphic map is upper semi-continuous, so SE is smooth

when it has no jumps.
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Chapter 5

Moduli Spaces of Stably Irreducible

Sheaves on Kodaira Surfaces

The study of holomorphic symplectic manifolds began with Bogomolov’s classification of

compact Kähler manifolds with trivial canonical bundle. These manifolds decompose up

to finite étale cover as a product of a complex torus, irreducible Calabi-Yau manifolds,

and irreducible holomorphic symplectic manifolds [Bea11, Bog74]. It is generally very

difficult to construct compact examples of holomorphic symplectic manifolds; nearly all

constructions make use of the fact that the Hilbert scheme (or Douady space) of points

over a holomorphic symplectic surface is holomorphic symplectic [Bea83], as is a smooth

and compact moduli space of stable sheaves with fixed Chern character on a hyperkähler

surface [Muk84].

By the Enriques-Kodaira classification, all compact holomorphic symplectic surfaces

are complex tori, K3 surfaces, or primary Kodaira surfaces. Each of these holomorphic

symplectic surfaces generates an infinite family of holomorphic symplectic manifolds via

its Hilbert schemes (or Douady spaces) of points [Bea83]. These give rise to generalised

Kummer varieties in the case of complex tori, and Bogomolov-Guan manifolds in the case

of primary Kodaira surfaces [Bog96, Gua95]. For K3 surfaces and complex tori it has been

shown that the moduli spaces of stable sheaves with fixed Chern character are deformation
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equivalent to the product of a Hilbert scheme of points with the Picard group of the surface

[O’G97, Yos01] whenever they are smooth and compact. It is an open question whether

this result also holds for primary Kodaira surfaces.

In the case of primary Kodaira surfaces, Toma showed that the moduli space of stable

sheaves with fixed determinant and Chern character is holomorphic symplectic whenever it

is smooth and compact, and determined that a sufficient condition to guarantee smoothness

and compactness of the moduli space is for it to be stably irreducible [Tom01]. Aprodu,

Moraru, and Toma studied the two-dimensional moduli spaces of rank-2 stably irreducible

sheaves over primary Kodaira surfaces, and determined that they are also primary Ko-

daira surfaces [AMT12]. In higher dimensions, it is not yet known whether these moduli

spaces are always deformation equivalent to Douady spaces of points over primary Kodaira

surfaces.

In this chapter, we determine that there are compact moduli spaces of stably irreducible

sheaves on Kodaira surfaces of dimension 2n for every n. In addition, we show that these

moduli spaces are non-Kähler and have no simply connected components. Douady spaces

of points on Kodaira surfaces are the only other known examples of compact holomorphic

symplectic manifolds with these properties. An interesting question is to determine whether

these moduli spaces are deformation equivalent to Douady spaces of points on Kodaira

surfaces or form a new class of examples. Towards answering this question, we analyse a

natural fibration on these spaces, which is described in detail for dimensions 4 and 6 in

section 5.3.

Consider a general compact complex surface X with Gauduchon metric g, and consider

the moduli space Mg
r,δ,c(X) of g-stable coherent sheaves with rank r, determinant δ, and

second Chern class c on X. In his paper [Tom01], Toma gives a sufficient condition for this

moduli space to be smooth and compact:

Every g-semi-stable vector bundle E with

rank(E) = r, c1(E) = c1(δ), c2(E) ≤ c (∗)
is g-stable.
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When X has odd first Betti number, this criterion is equivalent to requiring that every

bundle E with rank r, c1(E) = c1(δ) and c2(E) ≤ c is irreducible. In this case, the

compactification of the moduli space of stable bundles with rank r, determinant δ, and

second Chern class c is isomorphic to the moduli space of stably irreducible torsion-free

sheaves. Using Br̂ınzănescu’s sufficient conditions for a sheaf to be irreducible [Br̂ı96], we

find a range of invariants for which (∗) is satisfied when X is a primary Kodaira surface.

In particular, we show that the moduli spaces of rank-two sheaves which are smooth and

compact can be of any even dimension.

In section 5.2, we review the construction of Br̂ınzănescu and Moraru [BM06] of the

fibres of the graph map above spectral curves without jumps, and describe the fibres of

the graph map above spectral curves with exactly one jump. Since spectral curves with

k jumps can only occur when the moduli space has dimension at least 4k, understanding

these cases allows us to describe all of the fibres of the graph map when the dimension

of the moduli space is less than 8. In order to look at the fibres above spectral curves

with one jump, we use elementary modifications to parameterise the locally free sheaves,

and the structure of the multiplicity one Quot scheme to parameterise the non-locally free

sheaves. We also determine which non-locally free sheaves can occur as limit points of

vector bundles in the same fibre.

In section 5.3, we use results from section 5.2 to prove the main result of the chapter:

Theorem 5.1. Let X be a primary Kodaira surface, and let (δ, c) ∈ Pic(X) × Z be such

that M2,δ,c(X) has positive dimension and contains stably irreducible vector bundles. Then

M2,δ,c(X) is a non-Kähler manifold with no simply connected components.

In this section we also describe the fibration structure of moduli spaces with dimension

at most 6 in more detail using the results from section 5.2, as for these dimensions there

are no spectral curves with more than one jump.

The remainder of Section 5.3 discusses comparisons between moduli spaces M2,δ,c(X)

and Douady spaces X [n], as well as the graph map corresponding to moduli of stable rank-2

sheaves on an elliptically fibred Abelian surface. Any moduli space of stable sheaves on
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an elliptically fibred Abelian surface is birational to a Hilbert scheme of points, and the

birational map can be constructed via allowable elementary modifications [Fri98, Chapter

8]. A similar situation does not occur in the Kodaira surface case as the general bundle does

not have allowable elementary modifications. We conclude with a discussion of possible

avenues to reconcile this discrepancy, including an analysis of moduli spaces of vector

bundles on a product of elliptic curves C1 × C2 where different choices of elliptic fibration

structure give a description of the moduli space both in terms of a graph map and the

birational map to Pic0(C1 × C2)× (C1 × C2)
[n].

5.1 The space of graphs

As shown in [Tom01, Remark 4.5], the moduli spaces of sheaves which are compact holo-

morphic symplectic manifolds are precisely those which are stably irreducible, and there

are numerous examples of such moduli spaces by Proposition 3.8. This section looks at the

graph map and space of graphs as defined in Chapter 4 in the particular case of Kodaira

surfaces, where we can obtain explicit descriptions.

Let M2,δ,c(X) be a stably irreducible moduli space of sheaves over a Kodaira surface

π : X → B. In this case, we have the following result:

Proposition 5.2 (Br̂ınzănescu–Moraru [BM05b]). The graph map G : M2,δ,c(X) → Pδ,c is
surjective whenever t(2, c1(δ)) > 0 and c < 0, where t(2, c1(δ)) is as defined in Proposition

3.7. In particular, the graph map is a Lagrangian fibration with respect to the holomorphic

symplectic structure on M2,δ,c(X).

Since in the stably irreducible case the graph map is a Lagrangian fibration ofM2,δ,c(X)

over Pδ,c, understanding the base and fibres of the fibration will allow us to determine

topological properties of M2,δ,c(X) in section 5.3. In the remainder of this section, we

investigate the structure of the Pδ,c by analysing the divisors of the form Aδ + ρ∗b for

b ∈ Picc(B).
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The following commutative diagram will be helpful to reference for the statement and

proof of the following proposition.

B ×B × T ∗

B ×B J(X)

B B T ∗

π23

π1

π12

p1 p2 q1 q2

Proposition 5.3. In the case that ∆(2, δ, c) > 0, Pδ,c ∼= P(Eδ,c), where

Eδ,c := (π1)∗
(
π∗
12Pc(b0)⊗ π∗

23

(
OJ(X) (S0 + Sδ)

))
,

Pc(b0) is the Poincaré bundle Pc = OB×B(∆ + (c − 1)B × {b0} − {b0} × B) of degree c

line bundles on B with base point b0 ∈ B, and the projections π1, πij are as in the above

commutative diagram.

Proof. Since π1 = p1 ◦ π12, we have

Eδ,c = (p1)∗
(
Pc(b0)⊗ (π12)∗

(
π∗
23OJ(X)(S0 + Sδ)

))
by the projection formula. Since q1 ◦ π23 = p2 ◦ π12, we can apply the base change theorem

to obtain

Eδ,c ∼= (p1)∗
(
Pc(b0)⊗ p∗2

(
(q1)∗(OJ(X)(S0 + Sδ)

))
= (p1)∗ (Pc(b0)⊗ p∗2Vδ) .

For any b ∈ B, (Pc(b0)⊗ p∗2Vδ) |{b}×B ∼= OB(b + (r − 1)b0) ⊗ Vδ, so since ∆(2, δ, c) > 0,

λb ⊗ Vδ has positive degree, Eδ,c is locally free, and the fibre above b in Eδ,c is indeed

H0(B,OB(b+ (r − 1)b0)⊗ Vδ).

From this we conclude that P(Eδ,c) ∼= Pδ,c.
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Lemma 5.4. For any choice of δ ∈ Pic(X), c ∈ Z, the bundle Eδ,c has no global sections.

Proof. Note that

H0(B,Eδ,c) = H0(B ×B × T ∗, π∗
12Pc(b0)⊗ π∗

23OJ(X)(S0 + Sδ))
= H0(J(X), (π23)∗(π

∗
12Pc(b0)⊗ π∗

23OJ(X)(S0 + Sδ))).

Using the projection formula, we have

H0(B,Eδ,c) = H0(J(X), (π23)∗π
∗
12Pc(b0)⊗OJ(X)(S0 + Sδ)).

From the base change theorem, (π23)∗π
∗
12Pc(b0) ∼= q∗1(p2)∗Pc. Since the restriction to any

fibre of p2 is a degree-0 line bundle which is trivial only for p−1
2 (b0), (p2)∗Pc = 0. From this

we conclude that H0(B,Eδ,c) = 0.

For the next proof, we will employ the notation of [CC93] of Er(b0) := (p1)∗(Pr(b0)),
which is a stable bundle of degree −1 and rank r for all r > 0.

Proposition 5.5. Let δ ∈ Pic(X) and c ∈ Z be such that ∆(2, δ, c) ≥ 0.

i. If ∆(2, δ, c) = 0, then Pδ,c consists of 2 points.

ii. If ∆(2, δ, c) > 0 and 4∆(2, δ, c) is odd, then Pδ,c ∼= P(Eδ,c), where Eδ,c is a stable

bundle of rank 4∆(2, δ, c) and degree -2.

iii. If ∆(2, δ, c) > 0 and 4∆(2, δ, c) is even, then Pδ,c ∼= P(Eδ,c), where Eδ,c is the direct

sum of two stable bundles, each of rank 2∆(2, δ, c) and degree −1.

Proof. We begin by constructing a long exact sequence involving the Eδ,c which will be

helpful in later computations. Note first that there is a natural exact sequence

0 Pc−1(b0) Pc(b0) OB×{b0} 0 (5.1)
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relating Poincaré bundles of adjacent degrees [CC93]. Pulling back by π12 and twisting by

the line bundle Lδ := π∗
23OJ(X)(S0 + Sδ) gives a new short exact sequence

0 π∗
12Pc−1 ⊗ Lδ π∗

12Pc ⊗ Lδ OB×{b0}×T ∗ ⊗ Lδ 0.

If we pushforward by π12, we get

0 Pc−1(b0)⊗ (π12)∗Lδ Pc(b0)⊗ (π12)∗Lδ

(π12)∗(OB×{b0}×T ∗ ⊗ Lδ) Pc−1(b0)⊗R1(π12)∗Lδ

from the projection formula. By the base change theorem,

R1(π12)∗Lδ ∼= p∗2R
1(q1)∗OJ(X)(S0 + Sδ) = 0,

so the previous exact sequence is short exact. Finally, we can pushforward by p1 to obtain

the long exact sequence

0 (p1)∗ (Pc−1(b0)⊗ p∗2Vδ) Eδ,c (π1)∗
(
OB×{b0}×T ∗ ⊗ Lδ

)
R1(p1)∗(Pc−1(b0)⊗ p∗2Vδ) R1(p1)∗(Pc(b0)⊗ p∗2Vδ) . . . .

Note that (Pc(b0)⊗ Vδ) |{b}×B is semistable of positive degree when ∆(2, δ, c) > 0, and

any rank-2 semistable vector bundle of positive degree on a genus one curve has trivial first

cohomology, so we have R1(p1)∗ (Pc(b0)⊗ p∗2Vδ) = 0. We also have

(π1)∗
(
OB×{b0}×T ∗ ⊗ Lδ

) ∼= (q1)∗(OB×T ∗(B × {0}+B × {δb0})) = (q1)∗q
∗
2OT ∗(0 + δb0),

so

(π1)∗
(
OB×{b0}×T ∗ ⊗ Lδ

)
) ∼= OB ⊕OB.

This gives the exact sequence

0 (p1)∗(Pc−1(b0)⊗ p∗2Vδ) Eδ,c

OB ⊕OB R1(p1)∗(Pc−1(b0)⊗ p∗2Vδ) 0.

(5.2)
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We now consider the case of ∆(2, δ, c) = 0. The exact sequence (5.2) for Eδ,c+1 is then

0 Eδ,c+1 OB ⊕OB R1(p1)∗(Pc(b0)⊗ p∗2Vδ) 0,

where R1(p1)∗(Pc(b0)⊗ p∗2Vδ) is a torsion sheaf whose stalk at b ∈ B is given by(
R1(p1)∗(Pc(b0)⊗ p∗2Vδ)

)
b
= H0(B,OB(b+ (c− 1)b0)⊗ Vδ).

Suppose for a contradiction that Vδ is an indecomposable bundle. Then

R1(p1)∗(Pc(b0)⊗ p∗2Vδ) = Cb

for some b ∈ B, and by [Boo21] we have Eδ,c+1
∼= OB ⊕ OB(−b), which has a non-zero

section. This contradicts Lemma 5.4, so Vδ is decomposable. Thus Vδ ∼= λ⊗ (L⊕L−1) for

some λ ∈ Pic−c(B) and L ∈ Pic0(B).

From the fact that M2,δ,c(X) is finite when ∆(2, δ, c) = 0, there must be a line bundle

λ′ ∈ Picc(B) such that H0(B, λ′ ⊗ Vδ) = C. This implies that L ̸∼= L−1, so Pδ,c consists of
two points corresponding to λ′ = λ−1 ⊗ L and λ′ = λ−1 ⊗ L−1.

In the case where ∆(2, δ, c) > 0 and 4∆(2, δ, c) is odd, the fact that Vδ is semistable

implies that Vδ ∼= λ ⊗ Fp, where λ ∈ Pic(−c
2
1−2)/4(B), and Fp is the unique non-trivial

extension of OB(p) by OB with p ∈ B. Thus Pc(b0)⊗ p∗2Vδ fits into the exact sequence

0 Pc(b0)⊗ p∗2λ Pc(b0)⊗ p∗2Vδ Pc(b0)⊗ p∗2(λ⊗OB(p)) 0.

Set r = 2∆(2, δ, c) − 1
2
. Then there exist points b1, b2 ∈ B and line bundles λ1, λ2 ∈

Pic0(B) such that Pc(b0) ⊗ p∗2λ = Pr(b1) ⊗ p∗1λ1 and Pc(b0) ⊗ p∗2(λ(p)) = Pr+1(b2) ⊗ p∗1λ2.

Pushing forward by p1 gives the exact sequence

0 (p1)∗(Pr(b1))⊗ λ1 Eδ,c ⊗ λ2 Er+1(b2)⊗ λ2

R1(p1)∗(Pr(b1))⊗ λ1 0,

since we showed previously that R1(p1)∗(Pc(b0)⊗ p∗2Vδ) = 0.
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If ∆(2, δ, c) = 1
4
and therefore r = 0, (p1)∗(Pr(b1)) = 0 and R1(p1)∗(Pr(b1)) = Cb1 .

Therefore when ∆(2, δ, c) = 1
4
, we have

Eδ,c ∼= E1(b2)⊗OB(−b1)⊗ λ2 ∼= OB(−b1 − b2)⊗ λ2

by [CC93]. Thus Eδ,c is some line bundle of degree -2 on B.

If instead ∆(2, δ, c) > 1
4
, (p1)∗(Pr(b1)) = Er(b1) and R

1(p1)∗(Pr(b1)) = 0, so Eδ,c is an

extension of Er+1(b2)⊗ λ2 ∼= Er+1(b
′
2) by Er(b1)⊗ λ1 ∼= Er(b

′
1).

The extension class corresponding to Eδ,c is an element of

Ext1OB
(Er+1(b

′
2), Er(b

′
1)) = H1(B,Er+1(b

′
2)

∨ ⊗ Er(b
′
1)).

The tensor product of a stable bundle of rank r + 1 with a stable bundle of rank r is

another stable bundle of rank r(r + 1) [Ati57, Lemma 28], so in particular there is some

point b′3 such that Er+1(b
′
2)

∨ ⊗ Er(b
′
1) = Er(r+1)(b

′
3). As shown in [CC93], Er(r+1(b

′
3) is an

extension

0 Er(r+1)(b
′
3) Er(r+1)+1(b

′
3) OB 0,

and the corresponding long exact sequence in cohomology induces an isomorphism

H0(B,OB) ∼= H1(B,Er(r+1)(b
′
3)).

Similarly, the extension class corresponding to Pc(b0)⊗ p∗2Vδ is a non-zero element of

Ext1OB×B
(Pc(b0)⊗ p∗2λ(p),Pc(b0)⊗ p∗2λ) = H1(B ×B, p∗2(OB(−p))).

Since p1 maps a surface to a curve, its Leray spectral sequence degenerates at page 2,

giving

H1(B ×B, p∗2(OB(−p))) = H1(B, (p1)∗(p
∗
2(OB(−p)))⊕H0(B,R1(p1)∗(p

∗
2(OB(−p))).

The base change theorem gives that Ri(p1)∗(p
∗
2(OB(−p))) is the trivial bundle on B

of rank hi(B,OB(−p)), so H1(B × B, p∗2(OB(−p))) = H0(B,OB). We now have an iso-

morphism mapping the extension class of Pc(b0) ⊗ p∗2Vδ to the extension class of Eδ,c via
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pushforward by p1, so Eδ,c is the unique non-split extension of Er+1(b
′
2) by Er+1(b

′
1). We

now show that this extension is a stable bundle. Suppose for a contradiction that F is

a non-trivial subbundle of Eδ,c with µ(F) ≥ µ(Eδ,c). Without loss of generality, we can

assume that F is stable. If F has degree −2, then µ(F) < µ(Eδ,c), so F can only be a

destabilising bundle of Eδ,c if deg(F) ≥ −1. No subbundle of Er(b
′
1) is destabilising, so

there must be a non-zero morphism f : F → Er+1(b
′
2) given by the inclusion of F into

Eδ,c followed by projection to Er+1(b
′
2). If f is surjective, Er+1(b

′
2) is a quotient of F and

µ(F) ≤ µ(Er+1(b
′
2)). Then F must be of the form Ek(q) for some 0 < k ≤ r+1 and q ∈ B.

Since f is surjective, this is only possible if F = Er+1(b
′
2). Since the only endomorphisms

of Er+1(b
′
2) are constant multiples of the identity, this would induce a splitting of Eδ,c, so

f cannot be surjective. Since f is not surjective, then µ(F) ≤ µ(im(f)) < µ(Er+1(b
′
2))

by indecomposability of F and stability of Er+1(b
′
2). We now have deg(F) ≥ −1 and

µ(F) < −1
r+1

, so µ(F) ≤ −1
r
< µ(Eδ,c). This implies that F cannot be a destabilising

bundle for Eδ,c, so Eδ,c is stable.

Finally, we consider the case of ∆(2, δ, c) > 0 with 4∆(2, δ, c) even. As shown in the

case where ∆(2, δ, c) = 0, Vδ = λ ⊗ (L ⊕ L−1) where λ ∈ Pic−
c21(δ)

4 (B) and L ∈ Pic0(B).

From this we conclude that

Eδ,c ∼= (p1)∗(Pc(b0)⊗ λ⊗ L)⊕ (p1)∗(Pc(b0)⊗ λ⊗ L−1).

Set r = 2∆(2, δ, c). Then there are b1, b2 ∈ B and λ1, λ2 ∈ Pic0(B) such that Pc(b0)⊗
λ⊗L ∼= Pr(b1)⊗ p∗1λ1 and Pc(b0)⊗ λ⊗L−1 ∼= Pr(b2)p∗1 ⊗ λ2, so Eδ,c ∼= Er(b

′
1)⊕Er(b

′
2) for

some b′1, b
′
2 ∈ B.

Remark 5.6. Recall that the natural Lagrangian fibration on the Douady space X [n] has

base Symn(B) ∼= P(En(u)) for some u ∈ B [CC93], so in particular Pδ,c can only be

isomorphic to Symn(B) when ∆(2, δ, c) = 1
4
.

Remark 5.7. We can write the space of graphs Pδ,c as the union

Pδ,c =
⌊2∆(2,δ,c)⌋⋃

k=0

Pkδ,c,
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where

Pkδ,c := {S ∈ Pδ,c : S = C +
k∑
i=1

{bi} × T ∗, C a bisection of J(X)}.

Note that
⋃
i≥k

Piδ,c is a closed subset of codimension k in Pδ,c, and since for any spectral

curve C +
k∑
i=1

{bi} × T ∗ ∈ Pkδ,c we have C ∈ P0
δ,c−k, there is an isomorphism

Pkδ,c ∼= P0
δ,c−k × Hilbk(B)

for every integer 0 ≤ k ≤ 2∆(2, δ, c).

In the next section, we compute the fibres of the graph map in order to study the

structure of M2,δ,c(X).

5.2 Fibres of the graph map

In this section, we parameterise the space G−1(G) of torsion-free sheaves on X with deter-

minant δ and spectral curve G, where G is of the form C +
k∑
i=1

{bi} × T ∗ with bi ∈ B for

each i, and where C is an irreducible bisection of J(X) with normalisation C.

In the case where G = C, every vector bundle E with spectral curve C can be described

as an elementary modification

0 E γ∗L ι∗λ 0 (5.3)

for some b ∈ B, λ ∈ Pic0(π−1(b)), L ∈ Pic(W ), where ι : π−1(b) → X is the inclusion, W

is the normalisation of X ×B C, and γ : W → X the map coming from the fibred product

[AT03]. Since γ∗L|b is a regular bundle by Proposition 4.12, every elementary modification

of the form (5.3) is itself the pushforward of a line bundle on W [AT03, Remarque 5]. We

then have that G−1(C) ∼= Prym(C/B) [BM06, Theorem 4.5]. Note that each connected
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component of Prym(C/B) has dimension g(C)− 1, and when C is an unramified cover of

degree 2, Prym(C/B) is the two-element group.

For the next simplest case, where G = C + {b} × T ∗ and C ∼= C, we can compute the

fibres of the graph map as in the following propositions:

Proposition 5.8. Take δ ∈ Pic(X), b ∈ B, and let C ⊂ J(X) be a smooth and irreducible

ιδ-invariant bisection. Then the torsion-free sheaves with determinant δ and spectral curve

C + {b} × T ∗ are parameterised by a union of two P1-bundles over Prym(C/B) × T that

intersect along |C ∩ {b} × T ∗| sections.

Remark 5.9. Since C is a bisection of pr1 : B × T ∗ → B, C ∩ {b} × T ∗ will always contain

one or two points.

Proof. The fibre of the graph map above a spectral curve of this type can be decom-

posed into two irreducible components, with one component containing the non-locally

free sheaves, and the other component containing the vector bundles. If E is a vector

bundle with determinant δ and spectral curve C + {b} × T ∗, then E|π−1(b) is a degree zero

vector bundle so that h1(T,E|π−1(b) ⊗ λ) = 1 for every λ ∈ T ∗ by Proposition 4.8, so there

is a line bundle L ∈ Pic1(T ) such that E|π−1(b)
∼= L⊕ (δb ⊗ L−1). There is a unique choice

of allowable elementary modification Ẽ given by

0 Ẽ E j∗(δb ⊗ L−1) 0 ,

where j : π−1(b) → X is the inclusion map. In particular, Ẽ has det(Ẽ) = det(E) ⊗
OX(−π−1(b)), c2(Ẽ) = c2(E) − 1, and spectral curve C. We then have a well-defined

projection E 7→ (Ẽ, L) ∈ G−1(C) × Pic1(T ) = Prym(C/B) × T . To determine the fibres

of this map, we notice that for any choice of bundle Ẽ with determinant δ ⊗ π∗OB(b) and

spectral curve C, L ∈ Pic1(T ), and surjective map f : Ẽ → j∗L, there is a vector bundle

E with determinant δ and spectral curve C + {b}× T ∗ such that E ⊗ π∗OB(−b) = ker(f).

Since C is smooth and irreducible, either

Ẽ|π−1(b)
∼= λ⊕ (δ|π−1(b) ⊗ λ−1)
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for some λ ∈ Pic0(T ) with λ⊗2 ̸= δ|π−1(b), or

Ẽ|π−1(b)
∼= λ0 ⊗ A,

where A is the unique extension of OT by OT and λ0 ∈ Pic0(T ) such that λ⊗2
0 = δ|π−1(b). In

both cases, Hom(Ẽ, j∗L) ∼= C2, and the non-surjective maps correspond to |{b} × T ∗ ∩ C|
1-dimensional subspaces. Thus the vector bundles with determinant δ and spectral curve

C + {b} × T ∗ are parameterised by a fibre bundle with base Prym(C/B)× T and fibre C
or C∗.

If E is a non-locally free sheaf with determinant δ and spectral curve C + {b} × T ∗,

then since the double dual of a torsion-free sheaf on a surface is locally free, E∨∨ is a vector

bundle with determinant δ and spectral curve C. Since E has exactly one singularity, E∨∨/E
is a torsion sheaf supported at a point x ∈ π−1(b). This gives a well-defined projection

E 7→ (E∨∨, supp(E∨∨/E)) ∈ Prym(C/B)× T . Since for any vector bundle E with spectral

curve C and determinant δ the sheaves E with E∨∨ = E which are singular at a point are

parameterised by Quot(E, 1) = P(E) with the projection map sending E to supp(E/E)
[EL99], the non-locally free sheaves with determinant δ and spectral curve {b} × T ∗ + C

are parameterised by a P1-bundle with base Prym(C/B)× T .

As the union of these two components is the fibre of a proper holomorphic map, the

union of the components must be compact, and therefore the closure of the locally free

component intersects with the non-locally free component along |C∩{b}×T ∗| sections.

In the previous proposition, we showed that for a spectral curve with a single jump, the

fibre of the graph map decomposes into two irreducible components. The following result

allows us to explicitly compute the intersection locus of these two components.

Proposition 5.10. In the context of Proposition 5.8, the intersection of the irreducible

components of the fibre consists of sheaves of the form ker(f ⊕ g) for E a vector bundle

with spectral curve C and determinant δ ⊗ π∗OB(b), f : E → j∗λ non-zero such that

(b, λ) ∈ C, and g : E → Ox with x ∈ π−1(b) such that g ◦ ker(f) ̸= 0. Furthermore, these

sheaves are determined up to isomorphism by (E, λ, x).
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Proof. Since the non-locally free component in Proposition 5.8 is compact, we can compute

the intersection by finding the limits of families of deformations within the locally free

component which are not locally free. Every vector bundle in the locally free component

is given by an elementary modification

0 Ẽ E j∗L 0 ,

where E is a vector bundle with spectral curve C and determinant δ ⊗ π∗OB(b), and

L ∈ Pic1(B). Fix a choice of E and L. For any λ such that (b, λ) ∈ C, there is a

surjective sheaf map α : E → j∗λ, which is unique up to multiplication by a scalar. Let

p be the unique point in T such that L is an extension in Ext1(Op, λ), and set x = j(p).

If we now choose sheaf maps h : E → j∗L and β : E → Ox so that h is surjective and

β ◦ ker(α) ̸= 0, we now have that for any map η : L → Op that there is a unique t ∈ C
satisfying t(η ◦ h) = β. Using these data, we can construct a deformation over Ext1(Op, λ)

whose non-zero elements are given as follows:

Given an extension

0 λ L Op 0
φ ψ

corresponding to a non-zero s ∈ Ext1(Op, λ), define the maps fs = φ ◦ α and gs = th,

where t is chosen so t(ψ ◦h) = β, and set Ẽs = ker(fs+ gs). Note that any other extension

corresponding to s will be given by maps zφ and 1
z
ψ for some z ∈ C∗, giving fs = zφ ◦ α

and gs = tzh, so (fs+gs) is unique up to multiplication by a scalar, and Ẽs is well-defined.

As s goes to zero, these maps become f0 = ι1◦α and g0 = ι2◦β, where ιi are the co-product
maps for j∗λ⊕Ox. This gives that Ẽ0 is of the desired form.

We now show that Ẽ0 is independent of the choice of β. Clearly, ker(f0 + g0) =

ker(α) ∩ ker(β). Since β vanishes away from x, Ẽ0 may only depend on β in the fibre

above x. The linear maps α|x and β|x both have rank one, so either ker(α|x) = ker(β|x) or
ker(α|x) ∩ ker(β|x) = 0. But ker(α|x) ̸= ker(β|x), since β ◦ kerα ̸= 0, meaning that all the

sections of Ẽ0 vanish at x. Thus Ẽ0 does not depend on β.
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5.3 Applications

In this section, we use Proposition 5.5 and the results of section 5.2 to prove some results

about the fundamental groups of moduli spaces of rank-2 stably irreducible sheaves, as well

as compute explicit data about the graph map fibration in the cases where the dimension

of the moduli space is at most 6. For this section, the invariants δ, c are assumed to be

such that a rank-2 sheaf E is stably irreducible whenever det(E) = δ and c2(E) = c.

5.3.1 The topology of the moduli spaces

The case of ∆(2, δ, c) = 1
4
was previously studied in [AMT12] leading to the following

result:

Proposition 5.11 (Aprodu–Moraru–Toma). Let δ ∈ Pic(X) and c ∈ Z be such that

M2,δ,c(X) is 2-dimensional and t(2, δ) > 1
4
. Then M2,δ,c(X) is a primary Kodaira surface

with the same base and fibre as X, and their Néron–Severi groups satisfy the relation

ord(Tors(NS(X)))| ord(Tors(NS(M2,δ,c(X)))).

Proposition 5.12. Let δ, c be such that ∆(2, δ, c) < t(2, δ).

i. If ∆(2, δ, c) = 0, then M2,δ,c(X) consists of four points.

ii. If ∆(2, δ, c) > 0, then the induced map of fundamental groups

π1(G) : π1(M2,δ,c(X)) → π1(Pδ,c) ∼= Z2

is surjective.

In particular, M2,δ,c(X) is not simply connected when ∆(2, δ, c) > 0.
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Proof. For the case of ∆(2, δ, c) = 0, every spectral curve is smooth by Proposition 4.8,

and the genus formula (4.3) gives that each spectral curve C in Pδ,c is an unramified double

cover of B. From this we can conclude that G−1(C) ∼= Prym(C/B) is the group with two

elements, giving the desired result.

The case of ∆(2, δ, c) = 1
4
is a direct corollary of Proposition 5.11, so for the remainder

of the proof we assume ∆(2, δ, c) ≥ 1
2
.

Recall that given any fibre bundle F ↪→ Y → Z, there is an induced exact sequence

π1(F ) → π1(Y ) → π1(Z) → π0(F ) (5.4)

of the homotopy groups [BT82, Section 17].

Using (5.4) we see that whenever (δ, c) are such that 1
2
≤ ∆(2, δ, c) < t(2, δ),we have

π1(Pδ,c) = π1(B) = Z2

since Pδ,c is a holomorphic fibre bundle with connected and simply connected fibres. In

particular this means that for any section σ : B → Pδ,c and any element [γ] ∈ π1(Pδ,c),
there is a representative of [γ] contained in σ(B). Let E be a regular rank-2 vector bundle

in M2,δ,c−1(X) with spectral curve C, and take the section σE : B → Pδ,c given by b 7→
C+{b}×T ∗. We will show that for any loop γ ∈ σE(B), there is a loop in M2,δ,c(X) which

maps to γ, demonstrating that π1(G) is a surjection. Consider the subset Quot(E, 1) ⊆
M2,δ,c(X) consisting of non-locally free sheaves whose double dual is E and which have

one singularity counting multiplicity. Since Quot(E, 1) ∼= P(E), the map G|Quot(E,1) is a

fibration over σE(B). Applying (5.4) again gives the exact sequence

π1(P(E|π−1(b))) π1(Quot(E, 1)) π1(σE(B)) 0.

Since every element [γ] ∈ π1(Pδ,c) can be represented by a loop in σE(B), factoring through

inclusion into M2,δ,c(X) gives that the map

π1(G) : π1(M2,δ,c(X)) → π1(Pδ,c)

is surjective.
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Remark 5.13. By using [Ara11, Lemma 3.5] we can improve the above result to get a

right-exact sequence

Z8∆(2,δ,c) π1(M2,δ,c(X)) π1(Pδ,c) 0

when ∆(2, δ, c) ≤ 3
4
. This result may also work in higher dimensions, but has not yet been

verified.

Proposition 5.14. Let δ ∈ Pic(X) and c ∈ Z be such that 0 < ∆(2, δ, c) < t(2, δ), where

∆(2, δ, c) and t(2, δ) are defined as in Proposition 3.7. Then M2,δ,c(X) does not admit a

Kähler structure.

Proof. The case of ∆(2, δ, c) = 1
4
follows immediately from Proposition 5.11. For the case

of ∆(2, δ, c) ≥ 1
2
, let E be a regular vector bundle in M2,δ,c−1(X). Then Quot(E, 1) ∼= P(E)

is a complex submanifold of M2,δ,c(X). Since P(E) is a fibre bundle with simply connected

fibre, b1(P(E)) ∼= b1(X) = 3, so P(E) does not admit any Kähler structure. Since any

complex submanifold of a Kähler manifold has an induced Kähler structure, M2,δ,c(X) can

not admit a Kähler structure.

Corollary 5.14.1. When 0 < ∆(2, δ, c) < t(2, δ), the moduli space M2,δ,c(X) is a non-

Kähler compact holomorphic symplectic manifold which is not deformation equivalent to a

Bogomolov-Guan manifold.

Proof. Since Bogomolov-Guan manifolds are simply connected, this follows immediately

from Propositions 5.12 and 5.14.

In particular, the above result implies that either M2,δ,c(X) is deformation equivalent

to a Douady space of points on a Kodaira surface, or M2,δ,c(X) belongs to a deformation

class separate from other known examples of compact holomorphic symplectic manifolds.
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5.3.2 4- and 6-dimensional moduli spaces

In the case where ∆(2, δ, c) ∈ {1
2
, 3
4
}, Proposition 4.8 gives that spectral curves in Pδ,c

contain at most one jump counting multiplicity. In these cases, we can describe the fibres

of the graph map above all spectral curves using Proposition 5.8 and [BM06, Theorem 4.5].

Proposition 5.15. In the case that ∆(2, δ, c) = 1
2
and t(2, δ) > 1

2
, the space of graphs Pδ,c

is a ruled surface with base B, and P1
δ,c is a bisection of Pδ,c → B. The fibres of G above

points in P0
δ,c are 2-dimensional Prym varieties, and the fibres above points in P1

δ,c are given

by a union of two ruled surfaces with base T ×{1,−1}, which intersect along two sections.

Remark 5.16. The set {1,−1} in the above statement corresponds to the Prym variety

Prym(C/B), where C is a bisection of J(X) such that C + {b}×T ∗ ∈ Pδ,c for some b ∈ B.

Proof. For these invariants, since ∆(2, δ, c) = 1
2
> 0, Proposition 5.5 gives that Pδ,c is a

ruled surface with base B, and as in Remark 5.7, the graphs with jumps are parameterised

by P0
δ,c−1 × Hilb1(B) = Pδ,c−1 × B. Since we have ∆(2, δ, c − 1) = 0, the space of graphs

Pδ,c−1 is a two point set by Proposition 5.5. Using the genus formula (4.3), we see that the

spectral curves in this scenario can be either a genus 3 curve C or a genus 1 curve C ′ plus

a jump of length one at some b ∈ B. This immediately gives that the fibres Prym(C/B)

above spectral curves C are 2-dimensional. For the fibres above graphs with a jump,

Proposition 5.8 gives that both the non-locally free component of the fibre and the closure

of the locally free component are ruled surfaces with base T ×Prym(C ′/B) ∼= T ×{1,−1},
and they intersect along |C ′ ∩ {b} × T ∗| sections. As any map from a genus 1 curve to B

is an unramified covering map, |C ′ ∩ {b} × T ∗| = 2 for all b ∈ B. This implies that the

locally free and non-locally free components will intersect along two sections of the ruled

surfaces, regardless of the position of the jump.

Remark 5.17. Note that in the 4-dimensional case the singular fibres of the graph map are

similar to those in the natural Lagrangian fibration on X [2] as discussed in Section 2.2.

Proposition 5.18. In the case that ∆(2, δ, c) = 3
4
, the space of graphs Pδ,c is a P2-bundle

with base B, and P1
δ,c is isomorphic to B × B. The fibres of G above points in P0

δ,c are
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3-dimensional Prym varieties, and the fibres above spectral curves C + {b} × T ∗ ∈ P1
δ,c are

given by a union of two P1-bundles with base T × T , which intersect along |C ∩ {b} × T ∗|
sections.

Proof. This case is analogous to Proposition 5.15. Proposition 5.5 gives that Pδ,c is a P2-

bundle with base B, and the spectral curves with a jump are parameterised by Pδ,c−1 ×B.

Since ∆(2, δ, c − 1) = 1
4
, we have Pδ,c−1

∼= B. The genus formula (4.3) gives that spectral

curves can be either a genus 4 curve C, or a genus 2 curve C ′ plus a jump of length one at

some b ∈ B. When C is genus 4, Prym(C/B) is 3-dimensional. For the fibres above graphs

with a jump, Proposition 5.8 gives that both the non-locally free component of the fibre and

the closure of the locally free component are P1-bundles with base T×Prym(C ′/B) ∼= T×T ,
and they intersect along |C ′ ∩ {b} × T ∗| sections.

Remark 5.19. For the case of Proposition 5.18, since C ′ → B is a degree 2 map from a genus

2 curve to a genus 1 curve, the map has ramification at two points. Thus |C ′∩{b}×T ∗| = 1

if b is the image of a ramification point of C ′ → B, and |C ′ ∩ {b} × T ∗| = 2 otherwise.

Remark 5.20. Note that in this case all of the singular fibres of the graph map have a similar

complexity, as the singular fibres correspond after allowable elementary modifications to

moduli spaces of sheaves of dimensions 6 − 4k, for some k ∈ Z>0, of which 2 is the only

non-negative value. This contrasts with the Douady space X [3], where the fibres above

points of the form 3p ∈ Sym3(B) have significantly different behaviour to the singular

fibres above points of the form 2p+q ∈ Sym3(B). This can be seen by comparing punctual

Hilbert schemes of 2 and 3 points as in [Bri77].

5.3.3 Higher dimensions

In general, when ∆(2, δ, c) > 0, the generic spectral curve is a smooth curve C of genus

4∆(2, δ, c) + 1, and the fibre above C is given by Prym(C/B). For a spectral curve

S = C +
k∑
i=1

ℓi{bi} × T ∗,
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the non-locally free component of G−1(S) can be found by describing Quot(E, h) for all

vector bundles E in M2,δ,c−h(X) with spectral curve

SE = S −
k∑
i=1

νi{bi} × T ∗

for {νi} with 0 ≤ νi ≤ ℓi and
k∑
i=1

νi = h.

The vector bundles with spectral curve S can be described by parameterising the se-

quences of elementary modifications taking a vector bundle with spectral curve C to one

with spectral curve S. This process is described in detail in [Mor03, Section 4] for Hopf

surfaces, and the method for Kodaira surfaces is similar. Because of this, the fibres of

the graph map above spectral curves with jumps must be computed inductively using in-

formation about moduli spaces of lower dimensions, so an understanding of the fibration

structure of M2,δ,c(X) requires a description of the fibration structure of M2,δ,c−k(X) for

all 0 ≤ k ≤ 2∆(2, δ, c).
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Chapter 6

Higgs Bundles and Vafa–Witten

Pairs on Non-Kähler Elliptic Surfaces

This chapter focuses on regularity conditions for moduli spaces of vector bundles on elliptic

surfaces, and the relation of this topic to the existence question for Vafa–Witten pairs.

When constructing moduli spaces of stable sheaves for a complex manifold, we want to

restrict to the case where every vector bundle E represented by the moduli space is good,

meaning that H2(X, End0(E)) = 0. Indeed, when all the stable bundles are good, the

locally-free locus of the moduli space is guaranteed to be smooth, as the Zariski tangent

space is then H1(X, End0(E)) ≃ C−χ(End0(E)) for any stable bundle E, since

χ(End0(E)) = h0(X, End0(E))− h1(X, End0(E)) + h2(X, End0(E)) = −h1(X, End0(E)).

To see which bundles are good, we can compute the space of Vafa–Witten pairs (E, ϕ):

for any vector bundle E that is not good, there will be a non-trivial Higgs field ϕ ∈
H0(X, End0(E) ⊗ KX) ≃ H2(X, End0(E))∗ corresponding to the obstruction class to de-

formations of E. Thus we are interested in choices of Chern character v so that no vector

bundle E with ch(E) = v admits a non-trivial KX-Higgs field.

Additionally, if π : X → B is a principal elliptic surface we show that there is a

natural correspondence between Vafa–Witten pairs and Higgs bundles, using the fact that
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the cotangent bundle of such a surface is a non-trivial extension of OX by the canonical

bundle (Proposition 2.3).

This chapter begins by studying stable V -pairs on non-Kähler elliptic surfaces for a

general vector bundle V , before focusing on the case where V is a pullback bundle. We

then apply these results to study Vafa–Witten pairs.

For nearly∗ all non-Kähler elliptic surfaces with Kodaira dimension 1, we show that

for any positive-dimensional moduli space of rank-2 vector bundles M2,δ,c(X) that con-

tains a reducible bundle, there is a Vafa–Witten pair (E, ϕ) such that E is represented

in M2,δ,c(X). (Here, the Kodaira dimension is given by the lowest possible degree d such

that H0(X,Kn
X) is bounded above by a polynomial of degree d in n, where the constant

function 0 is assigned degree −∞.) This implies that, for these surfaces, smooth moduli

spaces of rank-2 vector bundles occur only in the stably irreducible range.

In the process of proving the above result, we also classify the Vafa–Witten pairs in-

volving a reducible vector bundle that is regular in the sense of Definition 4.9 on its generic

fibre in terms of the sections of a line bundle on the base of X.

6.1 A necessary condition for trace-free Higgs fields

Let X be a compact complex manifold with Gauduchon metric g and V be a fixed holo-

morphic vector bundle on X. In this section, we derive some facts about V -pairs (E, ϕ)

where E is a holomorphic vector bundle on X and ϕ ∈ H0(X, EndE ⊗ V ).

We first consider the case where V is a line bundle.

Proposition 6.1. Let (X, g) be a compact Gauduchon manifold. If V is a line bundle on

X and (E, ϕ : E → E ⊗ V ) is a g-stable V -pair with ϕ ̸= 0, then deg V ≥ 0.

∗The methods used in this chapter cannot fully account for the case where X has base P1 or when the

genus of B is one with all multiple fibres of order 2.
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Proof. We first note that the Higgs field ϕ : E → E ⊗ V on E induces a Higgs field

ϕ′ := ϕ ⊗ IdV : E ⊗ V → (E ⊗ V ) ⊗ V on E ⊗ V . Moreover, since V is a line bundle,

P is a ϕ-invariant subsheaf of E if and only if P ⊗ V is a ϕ′-invariant subsheaf of E ⊗ V .

Therefore, (E, ϕ) is stable if and only if (E ⊗ V, ϕ′) is stable. Also note that kerϕ is

a ϕ-invariant subsheaf of E and imϕ is a ϕ′-invariant subsheaf of E ⊗ V . Moreover,

rank(E) = rank(E ⊗ V ) so that

µ(E ⊗ V ) = µ(E) + deg(V ).

Suppose that µ(imϕ) = µ(E ⊗ V ). By stability of (E ⊗ V, ϕ′), we must then have

rank(imϕ) = rank(E ⊗ V ) = rank(E).

However, imϕ ≃ E/ kerϕ and kerϕ is a torsion-free subsheaf of E if ϕ is not injective,

in which case rank(imϕ) < rank(E). Hence, kerϕ = 0, implying that imϕ ≃ E. Thus,

µ(E) = µ(imϕ) and deg V = 0 in this case.

Let us now assume that µ(imϕ) ̸= µ(E ⊗ V ). Then, imϕ is a non-zero torsion-free

subsheaf of E ⊗ V since imϕ ̸= 0 by assumption. If rank(imϕ) = rank(E ⊗ V ), then

µ(imϕ) ≤ µ(E ⊗ V ) so that µ(imϕ) < µ(E ⊗ V ). Otherwise, imϕ is a ϕ′-invariant proper

subsheaf of E⊗V , which means that µ(imϕ) < µ(E⊗V ) by stability of (E⊗V, ϕ′). Thus,

µ(imϕ) < µ(E ⊗ V ) in both cases. Consider the exact sequence

0 kerϕ E E/ kerϕ ≃ imϕ 0 .

If kerϕ = 0, then E ≃ imϕ and µ(E) = µ(imϕ). Hence,

µ(E) = µ(imϕ) < µ(E ⊗ V ) = µ(E) + deg V,

implying that deg V > 0. If instead kerϕ ̸= 0, then it is a proper ϕ-invariant subsheaf

of E with rank(kerϕ) < rank(E). Indeed, kerϕ ̸= E and imϕ ̸= 0 since ϕ ̸= 0. And

if rank(kerϕ) = rankE, then imϕ ≃ E/ kerϕ is a non-zero torsion subsheaf of E, which

is impossible. Thus, rank(kerϕ) < rank(E) and µ(kerϕ) < µ(E) by stability of (E, ϕ).

Moreover, given the above exact sequence, we obtain µ(E) < µ(imϕ), implying again that

µ(E) < µ(E ⊗ V ) and deg V > 0. Putting all cases together gives deg V ≥ 0.

63



Remark 6.2. This is a result similar to what is known about (co)-Higgs bundles on curves:

if X is a curve, then stable (co)-Higgs bundles with non-zero Higgs field exist on X if and

only if T ∗
X (resp. TX) has non-negative degree [Hit87, Ray11].

In the case where V is the trivial line bundle on X, we can say more about g-stable

V -pairs:

Proposition 6.3. Let (X, g) be a compact Gauduchon manifold and (E, ϕ) be a g-stable

OX-pair. Then, ϕ = λIdE for some λ ∈ C.

Remark 6.4. This proposition gives a slight generalisation of [Bis11, Theorem 2.1].

Proof. Suppose that ϕ ̸= 0 so that imϕ ̸= 0. If kerϕ = 0, then E ≃ imϕ and imϕ

is a subbundle of E with rank(imϕ) = rank(E), implying that ϕ is an automorphism.

Let us assume instead that kerϕ ̸= 0 so that kerϕ is a torsion-free subsheaf of E and

rank(imϕ) = rank(E/ kerϕ) < rank(E). Moreover, since imϕ ̸= 0, it is a torsion-free

subsheaf of E, implying that rank(kerϕ) < rank(E). Hence, kerϕ is a ϕ-invariant proper

subsheaf of E that fits into the exact sequence

0 kerϕ E E/ kerϕ ≃ imϕ 0 .

By stability of (E, ϕ), we have µ(kerϕ) < µ(E), and so µ(E) < µ(imϕ). On the other

hand, imϕ is a non-zero ϕ-invariant subsheaf of E. Moreover, if rank(imϕ) = rank(E),

then µ(imϕ) ≤ µ(E); and if rank(imϕ) < rank(E), then imϕ is a proper subsheaf of E,

implying that µ(imϕ) < µ(E) by stability of (E, ϕ). Hence, µ(E) < µ(imϕ) ≤ µ(E),

leading to a contradiction. Thus, kerϕ = 0 and ϕ is an automorphism of E.

Since C is algebraically closed and ϕ ̸= 0, there exists λ ∈ C∗ such that ker(ϕ−λIdE) ̸=
0. Moreover, (E, ϕ) is stable if and only if (E, ϕ′ = ϕ−λIdE) is stable (because any subsheaf

P of E is ϕ-invariant if and only if it is ϕ′-invariant). Therefore, as before, ϕ′ is an

automorphism if ϕ′ ̸= 0. However, ϕ′ cannot be an automorphism since ker(ϕ−λIdE) ̸= 0.

Hence, ϕ′ = 0 implying that ϕ = λIdE for some λ ∈ C∗.

Finally, if V is an extension of vector bundles, we have the following:
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Proposition 6.5. Let (X, g) be a compact Gauduchon manifold. Suppose that V is an

extension of holomorphic vector bundles

0 V1 V V2 0ι p

on X. If X has no non-trivial g-stable V1-pairs or V2-pairs, then it has no non-trivial

g-stable V -pairs.

Proof. Suppose that every trace-free g-stable Vi-pair (E,φj : E → E ⊗ Vi) has φj = 0,

where j = 1, 2. Let ϕ : E → E ⊗ V be a trace-free stable Higgs field, and set φ2 :=

(IdE ⊗ p) ◦ ϕ. Suppose P2 is a φ2-invariant proper subsheaf of E. Then φ2(P2) ⊂ P2 ⊗ V2,

so ϕ(P2) ⊂ P2 ⊗ V , meaning that P2 is also ϕ-invariant. By stability of (E, ϕ), we have

µ(P2) < µ(E) so that (E,φ2) is also stable. Since φ2 is clearly trace-free, φ2 = 0, implying

that ϕ = φ1 ⊗ ι for some trace-free φ1 : E → E ⊗ V1, where ι is the map appearing in the

statement of the proposition. Suppose P1 is a φ1-invariant proper subsheaf of E. Then

φ1(P1) ⊂ P1 ⊗ V1 ⊂ P1 ⊗ V , so µ(P1) < µ(E) by stability of (E, ϕ). This implies that

(E,φ1) is stable, so ϕ = φ1 ⊗ ι = 0.

We now assume that π : X → B is a non-Kähler elliptic surface, and that the Gaudu-

chon metric g on X is normalised so that degg(π
∗L) = deg(L) for any L ∈ Pic(B).

Let us consider Higgs fields ϕ : E → E ⊗ V , where V = π∗W for some vector bundle

W on B.

Proposition 6.6. Let E be a rank-2 filtrable vector bundle on X with maximal destabilising

bundles K1 and K2 as in Proposition 3.5. Set H := π∗(det(E)
−1 ⊗K1 ⊗K2).

(a) Suppose that E is regular on the generic fibre of π. Then,

h0(X, End0(E)⊗ V ) = h0(B,H ⊗W ).

In particular, H0(X, End0E ⊗ V ) ≃ H0(X,Hom(E,Ki ⊗ V ) for i = 1, 2, implying

that K1 and K2 are both ϕ-invariant for all ϕ ∈ H0(X, EndE ⊗ V ). A Higgs field

ϕ : E → E ⊗ V is thus stable if and only if E is.
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(b) Suppose that E is not regular on the generic fibre of π so that K = K1 = K2 is its

unique maximal destabilising bundle. We have two cases:

(i) If E is an extension of line bundles, then E ≃ K ⊗ π∗(F ) for some rank-

2 vector bundle F on B that is an extension of H−1 by OB. Furthermore,

H0(X, EndE ⊗ V ) = H0(B, EndF ⊗W ) so the Higgs fields on E twisted by V

are precisely the pullbacks of Higgs fields on F twisted by W .

(ii) If E is not an extension of line bundles, then

h0(X, End0(E)⊗ V ) ≥ h0(X,Hom(E,K ⊗ V ) ≥ h0(B,H ⊗W ).

In fact, H0(X, End0E ⊗ V ) ≃ H0(X,Hom(E,K ⊗ V ) if h0(B, π∗(K
−1 ⊗ E) ⊗

W ) = h0(B,W ), in which case K is ϕ-invariant for all Higgs fields ϕ : E →
E ⊗ V , and Higgs fields are stable if and only if E is.

Remark 6.7. By [BM05b, Proposition 3.4], the bundle det(E)−1 ⊗ K1 ⊗ K2 = π∗(H) for

some H ∈ Pic(B) whenever E is filtrable. Moreover, h0(B, π∗(K
−1⊗E)⊗W ) = h0(B,W )

when h0(X, π∗H−1 ⊗ V ) = 0.

Proof. Since E is filtrable with maximal destabilising bundle K1, it fits into an exact

sequence of the form

0 K1 E δ ⊗K−1
1 ⊗ IZ 0i p

, (6.1)

where δ = det(E) and Z is a zero-dimensional subset of X.

Let us first assume that E is regular on the generic fibre of π. Then, π∗(K
−1
1 ⊗ E) =

π∗(K
−1
2 ⊗ E) = OB. To determine the dimension of the space of trace-free Higgs fields on

E, we tensor the exact sequence (6.1) by E∨ ⊗ V = δ−1 ⊗E ⊗ V and look at cohomology.

This gives the left-exact sequence

0 HomOX
(E,K1 ⊗ V ) H0(X, End(E)⊗ V ) H0(X,K−1

1 ⊗ E ⊗ V ⊗ IZ).

Note that for any element of H0(X, End(E) ⊗ V ) of the form Id ⊗ s with s ∈ H0(X, V ),

its image in H0(X,K−1
1 ⊗ E ⊗ V ⊗ IZ) is zero if and only if s = 0, so

h0(X,K−1
1 ⊗ E ⊗ V ⊗ IZ) ≥ h0(X, V ) = h0(B,W ).
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Since K−1
1 ⊗ E ⊗ V ⊗ IZ is a subsheaf of K−1

1 ⊗ E ⊗ V , we also have

h0(X,K−1
1 ⊗ E ⊗ V ⊗ IZ) ≤ h0(X,K−1

1 ⊗ E ⊗ V )

= h0(B, π∗(K
−1
1 ⊗ E)⊗W ) = h0(B,W ).

Therefore, H0(X, V ) ≃ H0(X,K−1
1 ⊗ E ⊗ V ⊗ IZ) and

H0(X, End0(E)⊗ V ) ≃ HomOX
(E,K1 ⊗ V ).

Note that

Hom(E,K1 ⊗ V ) ≃ E∨ ⊗K1 ⊗ V ≃ E ⊗ δ−1 ⊗K1 ⊗ V ≃ E ⊗K−1
2 ⊗ π∗(H)⊗ V

≃ (K−1
2 ⊗ E)⊗ π∗(H ⊗W ).

Consequently,

H0(X, End0(E)⊗ V ) ≃ H0(X, (K−1
2 ⊗ E)⊗ π∗(H ⊗W ))

= H0(B, π∗(K
−1
2 ⊗ E)⊗H ⊗W ) = H0(B,H ⊗W ).

Since every non-trivial Higgs field ϕ on E is of the form

ϕ = (ι⊗ IdV ) ◦ ψ − 1

2
tr((ι⊗ IdV ) ◦ ψ)

for some ψ ∈ Hom(E,K1⊗V ), this means thatK1 is always ϕ-invariant; a similar argument

shows that K2 is also ϕ-invariant, implying that (E, ϕ) is stable if and only if E is. This

proves (a).

Let us now assume that E is not regular on the generic fibre of π so that K1 = K2. In

other words, K = K1 = K2 is the unique maximal destabilising bundle of E. If E is an

extension of line bundles, then Z = ∅ and the exact sequence (6.1) becomes

0 OX K−1 ⊗ E π∗H−1 0 (6.2)

after tensoring by K−1. Recall that extensions of the form (6.2) are parameterised by

H1(X, π∗H), and H1(X, π∗H) ∼= H0(B,H) ⊕ H1(B,H) by the Leray spectral sequence.
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Furthermore, any extension whose representative has non-zero first factor in this decom-

position will be regular on the generic fibre, so those which are not regular on the generic

fibre of π are parameterised by H1(B,H). This group also parameterises extensions of

H−1 by OB on B, and the pullback of such an extension is not regular on the generic fibre

of π. Therefore, every extension of π∗H−1 by OX that is not regular on the generic fibre

of π is a pullback. Let F be the rank-2 bundle on B such that K ⊗ π∗F ∼= E. Then,

H0(X, EndE ⊗ V ) = H0(B, π∗(EndE)⊗W ) = H0(B, EndF ⊗W ),

proving (b) (i).

Finally, let us assume E is not regular on the generic fibre of π and is not an extension

of line bundles. Then, Z ̸= ∅ and π∗(K
−1 ⊗E) is a rank 2 vector bundle on B given by an

extension of the form

0 OB π∗(K
−1 ⊗ E) L 0 (6.3)

with L = H−1 ⊗ π∗(IZ) ∈ Pic(B). By taking the tensor product of the exact sequence

(6.1) with E∨ ⊗ V = δ−1 ⊗ E ⊗ V , we obtain

0 Hom(E,K ⊗ V ) End(E)⊗ V K−1 ⊗ E ⊗ V ⊗ IZ 0i p
,

and as in the previous cases the multiples of the identity in End(E) ⊗ V are mapped

injectively by p, so the space of trace-free Higgs fields contains a subspace isomorphic to

H0(X,Hom(E,K ⊗ V )) ≃ H0(B, π∗(K
−1 ⊗ E)⊗H ⊗W ) = h0(B,H ⊗W )

by (6.3) since h0(B, π∗(IZ)) = h0(X, IZ) = 0 because Z ̸= ∅. Therefore,

h0(X, End0(E)⊗ V ) ≥ h0(B,Hom(E,K ⊗ V )) = h0(B,H ⊗W ).

In fact, H0(X, End0E⊗V ) ≃ H0(X,Hom(E,K⊗V ) whenever h0(B, π∗(K
−1⊗E)⊗W ) =

h0(B,W ), in which case K is ϕ-invariant for all Higgs fields ϕ : E → E ⊗ V , and Higgs

fields are stable if and only if E is.
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Remark 6.8. If π : X → B has multiple fibres {Ti}ri=1 lying over points pi ∈ B with

multiplicities mi, then K1 ⊗K2 ⊗ det(E)−1 will be of the form

π∗(H)⊗OX

(
r∑
i=1

aiTi

)

with H ∈ Pic(B) and 0 ≤ ai < mi. In this case the results of Proposition 6.6 parts (a) and

(b)(ii) hold with H replaced by

H ⊗OB

(
r∑
i=1

⌊
ai
mi

⌋
pi

)
.

6.2 Vafa–Witten pairs in the Kodaira dimension 1

case

Let π : X → B be a non-Kähler principal elliptic surface with base B. Note that for any

trace-free stable Higgs bundle (E, ϕ) on X, ϕ is of the form (IdE⊗ i)◦φ for some trace-free

φ : E → E⊗KX with (E,φ) stable by Proposition 6.5, where i : KX → T ∗
X is the injection

given in Proposition 2.3. One can easily verify that ((IdE ⊗ i) ◦ φ) ∧ ((IdE ⊗ i) ◦ φ) = 0

for any φ ∈ H0(End0(E) ⊗ KX), so it suffices to study trace-free stable KX-pairs. As a

consequence of this, if B has genus 0 or 1 there will be no non-trivial Higgs bundles on

X. For the remainder of the chapter we will thus focus on the case where X has Kodaira

dimension 1.

Proposition 6.9. Let E be a rank-2 filtrable vector bundle with maximal destabilising

bundles K1 and K2. Set H := π∗(det(E)
−1 ⊗K1 ⊗K2).

(a) Suppose that E is regular on the generic fibre of π. Then,

H0(X, End0(E)⊗KX) ≃ H0(B,H ⊗KB),

and a trace-free Higgs field ϕ : E → E ⊗KX is stable if and only if E is.
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(b) Suppose that E is not regular on the generic fibre of π so that K = K1 = K2 is its

unique maximal destabilising bundle. We have two cases:

(i) If E is an extension of line bundles, then E ≃ K⊗π∗(F ) for some rank-2 vector

bundle F on B that is an extension of H−1 by OB. Furthermore,

H0(X, EndE ⊗KX) = H0(B, EndF ⊗KB)

so that Higgs fields on E are pullbacks of Higgs fields on F .

(ii) If E is not an extension of line bundles, then

h0(X, End0(E)⊗KX) ≥ h0(X,Hom(E,K ⊗KX)) = h0(B,H ⊗KB).

In fact, H0(X, End0E⊗KX) ≃ H0(X,Hom(E,K⊗KX)) whenever h
0(B,KB) =

h0(B, π∗(K
−1 ⊗ E) ⊗ KB), in which case K is ϕ-invariant for all Higgs fields

ϕ : E → E ⊗KX , and Higgs fields are stable if and only if E is.

Proof. This is a direct consequence of Proposition 6.6 with V = KX = π∗KB.

Remark 6.10. To get solutions to the Vafa–Witten equations for surfaces with multiple

fibres (i.e. stable V -pairs (E, ϕ) with V = KX = π∗KB ⊗ ωX/B), we set

K1 ⊗K2 ⊗ det(E)−1 = π∗(H)⊗OX

(
r∑
i=1

aiTi

)

as in Remark 6.8 and obtain the results of Proposition 6.9 (a) and (b)(ii) with H ⊗ KB

replaced by

H ⊗KB ⊗OB

(
r∑
i=1

⌊
mi + ai − 1

mi

⌋
pi

)
.

By using the descriptions of the trace-free Higgs fields in the above cases, we can show

that the Chern classes of a filtrable rank-2 bundle with a non-trivial Higgs field are only

restricted in that the Chern classes must admit filtrable bundles.
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Proposition 6.11. Let E be a rank-2 filtrable bundle with c(E) = (1, c1, c2). Then, there

is a stable rank-2 vector bundle F with det(F ) = det(E) and c2(F ) = c2(E) such that F

has a non-trivial trace-free Higgs field.

Proof. Since E is filtrable, there are line bundles L1 and L2 and a finite set of points Z on

X (counting multiplicity) such that E fits into an exact sequence of the form

0 L1 E L2 ⊗ IZ 0 .

In particular, detE = L1 ⊗ L2 and c2(E) = c1(L1) · c1(L2) + |Z|. Moreover, if Σ1 and Σ2

are the sections of J(X) corresponding to L1 and L2, respectively, then the spectral curve

of E is

SE =

Σ1 + Σ2 +

|Z|∑
i=1

{bi} × T ∗

 ,

where each bi is π(zi) for some zi ∈ Z. Recall that Σ1 ̸= Σ2 if and only if Σ1 · Σ2 ̸= 0 if

and only if c1(L1 ⊗ L−1
2 )2 ̸= 0. We split the proof into three cases:

(i) Z ̸= ∅,

(ii) Z = ∅ and Σ1 ̸= Σ2, and

(iii) Z = ∅ and Σ1 = Σ2.

We first consider the case where Z ̸= ∅. Let La be a line bundle on X given by a

constant factor of automorphy a such that

−1 < deg(L1)− deg(L2) + 2 deg(La) < 0.

Since the degree function maps line bundles with constant factor of automorphy surjectively

onto R, such an La always exists. Note that deg(L1)−deg(L2)+2 deg(La) is not an integer.

Therefore, L1 ⊗ L−1
2 ⊗ L2

a is not the pullback of a line bundle on B so that its restriction

to at least one fibre of π is not trivial. In other words, (L1 ⊗ La)|π−1(b) ̸≃ (L2 ⊗ L−1
a )|π−1(b)

for some point b ∈ B. Define

F ′ := (L1 ⊗ La ⊗ π∗(OB(b)))⊕ (L2 ⊗ L−1
a ).
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Then, detF ′ = detE(π−1(b)) and c2(F
′) = c1(L1) · c1(L2) because c1(OX(π

−1(b))) is a

torsion element ofH2(X,Z). Let λ be any line bundle on π−1(b) such that deg(λ) = |Z| > 0,

and define F to be the elementary modification

0 F F ′ ιb,∗λ 0 ,

where ιb is the inclusion of π−1(b) into X. Then det(F ) = det(E), c2(F ) = c2(E), and F

has maximal destabilising bundles L1 ⊗ La and L2 ⊗ L−1
a ⊗ π∗(OB(−b)). Therefore, F fits

into the exact sequences

0 L1 ⊗ La F L2 ⊗ L−1
a ⊗ IY 0,

0 L2 ⊗ L−1
a ⊗ π∗(OB(−b)) F L1 ⊗ La ⊗ π∗(OB(b))⊗ IY 0

for some finite set of points Y on X (counting multiplicity) with |Y | = |Z| > 0. By

assumption,

deg(L2 ⊗ L−1
a ⊗ π∗(OB(−b))) < deg(L1 ⊗ La) < deg(L2 ⊗ L−1

a )

so that

µ(L1 ⊗ La) = deg(L1 ⊗ La) <
1

2
(degL1 + degL2) = µ(F )

and

µ(L2 ⊗ L−1
a ⊗ π∗(OB(−b))) = deg(L2 ⊗ L−1

a ⊗ π∗(OB(−b))) <
1

2
(degL1 + degL2) = µ(F ).

Hence, F is a stable bundle. Finally, by Proposition 6.9 the trace-free Higgs fields on F

are parameterised by H0(B,KB(−b)) and by Riemann-Roch,

h0(B,KB(−b)) = h0(B,OB(b)) + (g − 2) = 1 + (g − 2) = g − 1 ≥ 1,

since g = g(B) ≥ 2, so F has a non-zero trace-free Higgs field, proving case (i).

Let us now assume that Z = ∅ and that the spectral curve of E has non-trivial self-

intersection. Then, c2(E) = c1(L1) · c1(L2) and c1(L1 ⊗ L−1
2 )2 ̸= 0. We again choose La to

be a line bundle on X given by a constant factor of automorphy a such that

−1 < deg(L1)− deg(L2) + 2 deg(La) < 0.
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Extensions

0 L1 ⊗ La F L2 ⊗ L−1
a 0

are parameterised by

H1(X,Hom(L2 ⊗ L−1
a , L1 ⊗ La)) ∼= H0(B,R1π∗(L

−1
2 ⊗ L1 ⊗ L2

a)),

since π∗(L
−1
2 ⊗ L1 ⊗ L2

a) = 0, where R1π∗(L
−1
2 ⊗ La ⊗ L2

a) is a torsion sheaf supported on

points b ∈ B such that

ΣL1⊗La ∩ ΣL2⊗L−1
a

∩ π−1(b) ̸= ∅.

(By the assumption that c1(L
−1
2 ⊗L1)

2 ̸= 0, there is at least one such point in the support.)

In addition, for any choice of section s ∈ H0(B,R1π∗(L
−1
2 ⊗ L1 ⊗ L2

a)), the corresponding

extension has maximal destabilising bundles L1 ⊗ La and L2 ⊗ L−1
a ⊗ π∗OB(−Ds), where

Ds is the divisor on which s is supported. Therefore, if we choose s so that it is supported

on a single point b, the corresponding extension F will have maximal destabilising bundles

L1⊗La and L2⊗L−1
a ⊗π∗OB(−b). The bundle F is stable and has the same determinant and

second Chern class as E. Furthermore, the trace-free Higgs fields on F are parameterised

by H0(B,KB(−b)) ̸= 0.

Finally, let us assume that Z = ∅ and Σ1 = Σ2. Therefore, L1 ≃ L2 ⊗ π∗H for some

line bundle H ∈ Pic(B) so that det(E) = L2
1 ⊗ π∗H−1 and c2(E) = c1(L1)

2. Let V be

a rank-2 stable bundle on B with determinant H−1 and set F = L1 ⊗ π∗V . Then, F

is a stable bundle on X with det(F ) = det(E) and c2(F ) = c2(E). Since V is a stable

bundle on B, it is simple, implying that h0(B, End0V ) = 0. By Riemann-Roch, we then

have h0(B, End0V ⊗ KB) = h1(B, End0V ) = 3(1 − g) > 0. Hence, V must have a non-

trivial trace-free Higgs field, which lifts to a non-trivial trace-free Higgs field on F , proving

(iii).

Remark 6.12. The above result also holds for elliptic surfaces π : X → B where B has

genus g ≥ 1 and π has multiple fibres, although an assumption that there is a multiple

fibre of order m ≥ 3 is required for the proof of case (iii) when B has genus one.

Finally, we consider the case where E is not filtrable.
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Proposition 6.13. If E is a rank-2 non-filtrable bundle on X, then E has a non-trivial

trace-free Higgs field if and only if the spectral curve of E is a bisection whose normalisation

is an unramified cover of B.

Proof. Suppose E is a rank-2 non-filtrable bundle on X. This means, in particular, that

E is stable and so h0(X, End0(E)) = 0. Moreover, on the general fibre π−1(b) of π,

End0(E)⊗KX |π−1(b) = Oπ−1(b) ⊕ λ⊕ λ−1

with λ ∈ Pic0(π−1(b)) such that λ2 ̸= Oπ−1(b). Consequently, π∗(End0(E)⊗KX) is a rank

1 torsion free sheaf on B. In other words,

π∗(End0(E)⊗KX) = L

for some L ∈ Pic(B). Hence, H0(X, End0(E) ⊗ KX) = H0(B,L) and π∗(End0(E)) =

L⊗K−1
B , implying that H0(B,Hom(KB, L)) = 0.

Note that E has non-trivial trace-free Higgs fields if and only if h0(B,L) ̸= 0. In fact,

we show that h0(B,L) ̸= 0 if and only if K−1
B ⊗ L is a non-trivial half-period of Pic0(B).

(Such elements exist since g = g(B) ≥ 2.) Indeed, if h0(B,L) ̸= 0, then E admits a

non-trivial trace-free Higgs field ϕ. Since ϕ ̸= 0 and E is non-filtrable, ϕ is injective, so

there is an elementary modification

0 E E ⊗KX Q 0
ϕ

,

where Q is a torsion sheaf supported on an effective divisor D linearly equivalent to π∗L,

and Q|π−1(b) = E|π−1(b) for every b ∈ B with π−1(b) ∈ D. The determinant relations for

elementary modifications then tell us that detE ≃ det(E ⊗KX)(−2D) as the restriction

of Q to D has rank 2. Given that OX(D) = π∗L, we obtain

det(E)⊗ π∗L2 = det(E ⊗KX) = det(E)⊗K2
X ,

implying that KB ⊗ L−1 = λ0 for some λ0 ∈ Pic0(B) such that λ20 = OB. Since

H0(B,Hom(KB, L)) = 0, we must have λ0 ̸= OB. Conversely, if KB ⊗ L−1 ∼= λ0 is a
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non-trivial half-period of Pic0(B), Riemann-Roch gives h0(B,L) = h0(B,L)− h0(B,KB ⊗
L−1) = g − 1 > 0 since g = g(B) ≥ 2.

The proof therefore boils down to showing that KX⊗L−1 is a non-trivial half-period of

Pic0(B) if and only if the spectral curve of E is a bisection C of J(X) whose normalisation

C is an unramified cover of B. To do this, we first describe how the spectral curve of E is

related to 2c1(KX ⊗ L−1).

Given that π∗(End0E ⊗KX) = L, the pullback π∗L injects into End0E ⊗KX and we

have an exact sequence

0 π∗L End0E ⊗KX F 0

with F a rank-2 sheaf on X whose torsion-free component is non-filtrable. Taking the long

exact sequence induced by pushforward gives

0 π∗(F) R1π∗(π
∗L) R1π∗(End0(E)⊗KX) R1π∗(F) 0 .

Notice that R1π∗(π
∗L) = L. Moreover, since the torsion-free part of F is non-filtrable,

π∗(F) and R1π∗(F) are both torsion sheaves on B. And as the torsion sheaf π∗(F) injects

into L, we must in fact have π∗(F) = 0, giving us the short exact sequence

0 L R1π∗(End0E ⊗KX) R1π∗(F) 0 .

Furthermore, since F is the quotient of End0(E) ⊗ KX by a pullback line bundle, its

Chern character is given by 2 + (c21(E) − 4c2(E))wX = 2 − 8∆(E)wX , where wX is the

generator of H4(X,Z). If we now consider Grothendieck-Riemann-Roch for π!(F), we have

π∗(ch(F) · td(X)) = −8∆(E)wB, where B is the generator of H2(B,Z), and

ch(π!(F)) · tdB = (ch(0)− ch(R1π∗F) · (1 + (1− g)wB) = − ch(R1π∗F),

implying that c1(R
1π∗F) = 8∆(E).

By relative Serre duality,

R1π∗(End0E ⊗KX)
∨ ≃ π∗(End0E ⊗K−1

X ⊗ ωX/B)

≃ π∗(End0E ⊗KX)⊗K−2
B = L⊗K−2

B ,
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We therefore have

R1π∗(End0E ⊗KX) ≃ (K2
X ⊗ L−1)⊕ S,

where S the torsion component of R1π∗(End0(E) ⊗ KX). Using Grothendieck-Riemann-

Roch again for π!(End0E ⊗KX), we have

ch(π!(End0E ⊗KX)) = ch(L)− ch(K2
B ⊗ L−1)− ch(S) = −8∆(E)wB,

so in particular

c1(S) = 8∆(E)− 2c1(KB ⊗ L−1).

Note that S is the skyscraper sheaf whose support is the set of points b ∈ B where E|π−1(b)

is not regular, weighted in the following manner: the skyscraper sheaf has rank 2 at points

where E|π−1(b) = λ0 ⊕ λ0, and rank 2m when the allowable elementary modification of E

at b decreases the second Chern class by m.

Suppose that the spectral curve of E has bisection C. The fibres where E is not regular

thus correspond either to a jump or to a singularity of C. Let C be the normalisation of

C and R be its ramification divisor over B. Moreover, let s =
∑

p∈C ϵp, where ϵp ∈ Z≥0

is the degree of singularity of p (so that p is a singular point of C if and only if ϵp > 0).

Then, g(C) = ρa(C) + s and

ρa(C) = 2g − 1 +
1

2
degR + s

by the Riemann-Hurwitz formula. However, the self-intersection formula tells us that

ρa(C) =
C

2

2
+ 2g − 1.

Therefore, C
2
= degR + 2s. Furthermore, since E is non-filtrable, we have 8∆(E) =

C
2
+2ℓ, where ℓ is the number of points in C lying on a vertical component of the spectral

curve of E, weighted with multiplicity [BM05a, Theorem 4.1]. Note that ℓ is obtained by

considering the pullback of E to the fibred product X ×B C, which is a double cover of X.

Since this pullback essentially has twice the number of jumps, we then have

c1(S) = 2s+ ℓ,
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implying that 8∆(E) = degR + 2s+ 2ℓ = degR + ℓ+ c1(S) and

degR + ℓ = 2c1(KB ⊗ L−1). (6.4)

We are now in a position to finish the proof. Suppose that KB ⊗ L−1 is a non-trivial

half-period of Pic0(B). Then, c1(KB ⊗ L−1) = 0 and degR + ℓ = 0 by equation (6.4).

Since degR and ℓ are both non-negative integers, this means that the spectral curve of E

is a bisection whose normalisation is unramified. Conversely, if the spectral curve of E is a

bisection whose normalisation is unramified, then degR = ℓ = 0 and c1(KX ⊗L−1) = 0 so

that KX ⊗ L−1 = λ0 for some λ0 ∈ Pic0(B). But L maps into the torsion-free component

K2
X ⊗ L−1 of R1π∗(End0(E) ⊗ KX), which means that h0(B, λ20) = h0(B,Hom(L,K2

X ⊗
L−1)) ̸= 0, implying that λ20 = OB.

Remark 6.14. If the Chern classes of E are in the stably irreducible range and ∆(E) > 0,

then E is regular away from jumps by Proposition 4.13, so E does not admit non-zero

trace-free Higgs fields by the above proposition.

We end the chapter with an application of our analysis of Higgs bundles on non-Kähler

elliptic surfaces to the smoothness of moduli spaces of bundles on them.

Theorem 6.15. Let π : X → B be a non-Kähler elliptic surface with base curve B

of genus at least two. Let M2,δ,c(X) be the moduli space of rank-2 stable bundles on X

with determinant δ and second Chern class c. If a non-empty moduli space M2,δ,c(X) has

∆(2, δ, c) > 0, then every bundle is good if and only if the moduli space is stably irreducible.

Equivalently, when ∆(2, δ, c) > 0, a non-empty moduli space M2,δ,c(X) is smooth (as a

ringed space) of dimension 8∆(2, δ, c) if and only if it is stably irreducible.

Proof. By a standard deformation theory argument, the Zariski tangent space of M2,δ,c(X)

at a point corresponding a vector bundle E is isomorphic to H1(X, End0(E)). Since E is

by assumption stable we have

h1(X, End0(E)) = h2(X, End0(E))− χ(X, End0(E))
= h0(X, End0(E)⊗KX)− χ(X, End0(E)),
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so M2,δ,c(X) is singular at E if and only if E has a non-zero trace-free Higgs field. The

result then follows immediately from Proposition 6.11 and Remark 6.14.

Remark 6.16. As discussed in Section 3.2, X admits moduli spaces of sheaves in the stably

irreducible range if there is a line bundle δ ∈ Pic(X) with eδ < 4t(2, δ). Since eδ ≡ c1(δ)
2/2

mod 2, it is sufficient to find an elliptic surface X with base curve B of genus g and a line

bundle δ ∈ Pic(X) such that ν(X) ≥ g + 1. This is equivalent to finding a genus g curve

B and an elliptic curve T such that there is a non-constant map from B to T and every

non-constant map from B to T has degree at least g + 1. One example satisfying this is

when B is the hyperelliptic curve of genus 2 given on an affine piece by

V (45x6 − 297x5 + 845x4 − 1306x3 + 1073x2 − 360x− 45y2) ⊂ B

and T is the elliptic curve given on an affine piece by

V (1125x4 − 4777x3 + 6212x2 − 2560x− 1125y2) ⊂ T.

(These curves can be found using [Sha01, Lemma 5.1] with a = 4, c = 5, which shows that

B has a maximal cover of degree 3 over T . Any other map factors through an isogeny

between elliptic curves in the decomposition of the Jacobian of B, so we can check that

this is the minimal degree by verifying that the two elliptic curves in the decomposition

have no isogenies. A simple way to check this is to note that the two elliptic curves have

a different number of F7-points, meaning they are not isogenous.)
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Chapter 7

Future Questions

In this chapter, we consider several problems extending from topics related to the thesis.

One obvious example is the fact that while the majority of the results in the thesis deal only

with the case of rank-2 sheaves, one expects that many of these results should still hold

in higher rank, though the methods would likely involve more combinatorial complexity.

The remaining problems are broken down by subject.

Moduli spaces of sheaves on Kodaira surfaces: The main problem remaining after

the results in Chapter 5 is to determine when the smooth and compact moduli spaces

of sheaves on Kodaira surfaces are deformation equivalent to Douady spaces of points.

One way to do this would be to compute holomorphic or topological invariants of the

moduli spaces. In the case of a Lagrangian fibration f : M → P with both M and P

Kähler, a result from [SV21] (due to Matsushita [Mat05] in the projective case) gives an

isomorphism between Riπ∗OM and Ωi
P for integers i, from which the cohomology of OM

can be computed from the Hodge numbers of P via the Leray spectral sequence. The proof

of the above result uses the Kähler condition mainly to show the isomorphism away from

the singular fibres of the Lagrangian fibration, so if M2,δ,c(X) has a Kähler metric away

from the singular fibres of its Lagrangian fibration, the above result may still hold in this
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case. Under these hypotheses, the Leray spectral sequence would degenerate at the second

page, giving

H i(OM2,δ,c(X)) =


C, i = 0,

C2, 0 < i < 8∆(2, δ, c),

C, i = 8∆(2, δ, c).

With respect to the fundamental group, in addition to determining whether the result

from Remark 5.13 that

Z8∆(2,δ,c) π1(M2,δ,c(X)) π1(Pδ,c) 0

is a right exact sequence of groups extends to higher dimensions, the bounds on the number

of generators for the fundamental group may also be improved by studying when loops in

the smooth fibres are homotopy equivalent to loops in a singular fibre. This would naturally

generalise the case of elliptic surfaces with singular fibres but no multiple fibres, where the

fundamental group is entirely determined by the base as all loops in smooth fibres are

homotopy equivalent to loops inside the simply connected singular fibres. Proving such

a result for M2,δ,c(X) would improve the bounds on the number of generators of the

fundamental group to

Z8∆(2,δ,c)−2 π1(M2,δ,c(X)) π1(P2,δ) 0

for ∆(2, δ, c) ≥ 1
2
. In the ∆(2, δ, c) = 1

2
case, this would imply that the fundamental group

of M2,δ,c(X) has at most four generators, which is exactly the number of generators for

the fundamental group of X [2].

Another avenue to determine when the moduli spaces are deformation equivalent to

Douady spaces of points is to perform further comparisons of the Lagrangian fibration of

M2,δ,c(X) with the natural Lagrangian fibration on X [n]. While the Lagrangian fibrations

for these two families both have base a Pn-bundle over B, they are never isomorphic. At this

point, it is unclear if this difference in base for the Lagrangian fibrations is sufficient to force

the M2,δ,c(X) to be distinct from Douady spaces or if it can be reconciled to get spaces

which are still deformation equivalent, perhaps by composing with a finite cover. This
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contrasts with the case of an elliptically fibred Abelian surface, where for appropriately

chosen invariants (gcd(c1 · f, r) = 1 with f a fibre of the elliptic fibration) every stable

bundle is uniquely determined by its allowable elementary modifications up to twisting by

a line bundle [Fri98, Chapter 8, Proposition 9]. This fact directly gives the correspondence

between moduli spaces of stable bundles and Hilbert schemes of points in this case. One

way in which we can investigate this difference in the future is to look at moduli spaces of

stable sheaves on a product E1 × E2 of elliptic curves and its spectral construction with

respect to both natural elliptic fibrations. If the rank r and first Chern class c1 are chosen

so that gcd(r, c1 · f1) = 1 and r|(c1 · f2) with f1 and f2 general fibres of the two fibrations,

the spectral constructions will immediately give the Hilbert scheme structure for the first

fibration and behaviour similar to the Kodaira case for the second fibration. This question

will be analysed in a future paper.

As simply connected holomorphic symplectic manifolds are particularly important in

the field, another interesting problem related to these moduli spaces is whether there is a

method to “reduce” a stably irreducible moduli space M2,δ,c(X) to obtain an associated

holomorphic symplectic manifold which has smaller fundamental group. Such a construc-

tion would be analogous to the relationship between a Douady space of points on a Kodaira

surface and the corresponding Bogomolov–Guan manifold. In the Bogomolov–Guan con-

struction, one chooses a fibre Y of the map Σ ◦ π[n] : X [n] → B induced by the Lagrangian

fibration π[n] : X [n] → B[n] and the Pn-bundle structure of Σ : B[n] → B. The fibre Y

is a hypersurface of X [n] and the leaf space of the corresponding co-isotropic reduction

is a holomorphic symplectic orbifold. One can then desingularise the orbifold to obtain

a Bogomolov–Guan manifold. In analogy to this construction, one could construct a hy-

persurface Z of M2,δ,c(X) by taking a fibre of the map M2,δ,c(X) → B induced by the

graph map and the Pn-bundle structure on Pδ,c. The leaf space of the co-isotropic folia-

tion on Z will again be a holomorphic symplectic orbifold [Saw09], and we expect that its

desingularisation will have smaller fundamental group than M2,δ,c(X). This construction

would likely give yet another example of a family of non-Kähler holomorphic symplectic

manifolds whose deformation type we could study.

81



Vafa–Witten pairs on surfaces: In Chapter 6, we provide a variety of examples of

surfaces where the only smooth moduli spaces of stable bundles are the stably irreducible

ones. The natural question raised by this is which other complex surfaces also have this

property? Interesting candidates for which to check this property would include the re-

maining cases of non-Kähler elliptic surfaces (i.e. those with Kodaira dimension 1 and

base P1, as well as those with base of genus 1 and all multiple fibres of order 2), as well as

elliptic surfaces with Kodaira dimension 1 that are Kähler but not algebraic.

Co-Higgs bundles and holomorphic Poisson geometry: One problem in [BM22]

that is not discussed in this thesis is the classification of rank-2 co-Higgs bundles on Hopf

surfaces. A co-Higgs bundle on a complex manifold X is a V -pair with V ≃ TX . The

methods used [BM22] to study co-Higgs bundles on Hopf surfaces are directly analogous

to the methods used in Chapter 6 to study Vafa–Witten pairs and Higgs bundles on

elliptic surfaces with positive-degree canonical bundle. Co-Higgs bundles have close ties to

holomorphic Poisson geometry. Indeed, given a holomorphic vector bundle E → X, any

holomorphic Poisson structure on P(E) with co-isotropic fibres induces a non-trivial co-

Higgs bundle (E, ϕ) on X. This process can be reversed provided that the co-Higgs bundle

satisfies some additional integrability conditions ([Pol97, Ray11] in the rank-2 case and

[Mat20] for higher ranks). Some open problems in this area involve studying the impacts

of stability of a co-Higgs bundle (E, ϕ) on the symplectic leaf structure of the induced

holomorphic Poisson structure on P(E) and finding examples of co-Higgs bundles of rank

at least 3 on manifolds other than P1 which satisfy the strong integrability conditions of

[Mat20]. An ongoing project with Brady Ali Medina and Ruxandra Moraru is to use the

results of [BM22] classifying rank-2 co-Higgs bundles on Hopf surfaces to study holomorphic

Poisson structures on P1-bundles over Hopf surfaces and to construct examples of rank-

3 co-Higgs bundles on Hopf surfaces and Hirzebruch surfaces which satisfy the strong

integrability conditions of [Mat20].
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Appendix A

Homological Algebra and

Deformation Theory of Coherent

Sheaves

This appendix begins with a brief overview of basic sheaf theory, primarily to fix notation.

Much of this material is taken from [GH94] and [GD60, GD61].

Let X be a topological space. A pre-sheaf of sets (or groups, rings, etc.) on X is a

contravariant functor F : Top(X) → Set (or Gp,Ring, etc.), where Top(X) is the category

whose objects are open subsets of X and whose morphisms are inclusions. We refer to the

elements of F(U) as sections of F over U We represent the image of U ⊆ U ′ under F by

·|U . The pre-sheaf F is a sheaf if it satisfies the additional condition that

F(U)
∏
i∈I

F(Ui)
∏
i,j∈I

F(Ui ∩ Uj)

is an equaliser diagram for any open cover {Ui}i∈I of U , where the arrows at each step

are the restriction maps. Alternatively, F is a sheaf if for any open set U , any open cover

{Ui}i∈I of U , and any choice of sections si ∈ F(Ui) for all i ∈ I such that si|Ui∩Uj
= sj|Ui∩Uj

,

there is a unique element s ∈ F(U) so that s|Ui
= si.
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Example A.1. Given a set S (or a group, ring, vector space, etc.), the sheaf S of locally

constant functions to S has S(U) equal to the locally constant functions from U to S; i.e.

functions f : U → S such that f is constant on every connected component of U .

More generally, if P is any property of functions which is local on the source, we can

define the sheaf of functions to S with property P . A specific example of this, which

appears frequently in this thesis, is the following:

Example A.2. If X is a complex manifold, the sheaf of holomorphic functions OX is a

sheaf of rings given by OX(U) = {f : U → C|f is holomorphic}. This sheaf is called the

structure sheaf of X.

Definition A.1. Given a pre-sheaf F on X and a point x ∈ X, the stalk Fx is the set

Fx := {(s, U) : x ∈ U, s ∈ F(U)}/ ∼,

where (s, U) ∼ (t, V ) if s|U∩V = t|U∩V .

Given a pre-sheaf F , there is a unique sheaf F † up to isomorphism satisfying Fx ≃ F †
x

for all points x ∈ X, called the sheafification of F .

Definition A.2. If X is a topological space and O is a sheaf of rings on X, a sheaf of

O-modules (or an O-module) is a sheaf of Abelian groups F such that F(U) is an O(U)-

module, and ·|U : F(U ′) → F(U) is a map of O(U ′)-modules.

The category Mod(X) of sheaves of OX-modules inherits many of the useful categorical

properties which correspond to the category R−Mod for a ring R. The precise statement

of this fact is that Mod(X) is an Abelian category.

Definition A.3. A category C is Abelian if it has the following properties:

• it contains a zero object 0 such that for any object C ∈ C, there are unique maps

0 → C and C → 0;
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• it is closed under kernels, cokernels, finite products, and finite coproducts;

• any finite product is equal to the corresponding coproduct;

• For any two objects A,B ∈ C, the Hom-set HomC(A,B) has an Abelian group struc-

ture with identity A→ 0 → B;

• Composition of maps ◦ : HomC(A,B)×HomC(B,C) → HomC(A,C) is bilinear with

respect to the Abelian group structures on the Hom-sets.

• For any objects A,B and any map φ ∈ HomC(A,B), ker(coker(φ)) ≃ coker(ker(φ)).

Example A.3. Let π : E → X be a holomorphic vector bundle. Then there is a sheaf of

OX-modules also denoted E such that E(U) is the set of holomorphic sections of E on U .

Conversely, if a sheaf F of OX-modules is locally-free, i.e. if there is an open cover {Ui} and

an integer r so that F(Ui) = Or
X(Ui) for all i, then the relative affine space Spec(Sym(F∨))

is a holomorphic vector bundle. (In the sequel, we will not distinguish between a vector

bundle and its sheaf of sections unless clarification is specifically necessary.)

Definition A.4. An O-module F is coherent if for any map f : F → Or with r an integer,

ker(f) is finitely generated.

The structure sheaf OX of a complex manifold X is always a coherent OX-module by

a result of Oka [Oka50], as is any finite-rank holomorphic vector bundle. In particular, the

category Coh(X) of coherent OX-modules is an Abelian subcategory ofMod(X) containing

all finite-rank vector bundles.

Example A.4. Some important classes of coherent sheaves that are not locally free include

ideal sheaves and structure sheaves of closed subspaces. Given a closed embedding ι : Z →
X, the ideal sheaf IZ consisting of holomorphic functions that vanish along ι(Z) is a

coherent OX-module if and only if Z is a complex analytic subspace. We also have the

sheaf ι∗OZ given by (ι∗OZ)(U) := OZ(U ∩ Z). These sheaves fit into the exact sequence

0 IZ OX ι∗OZ 0.
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The benefit of working with coherent sheaves rather than holomorphic vector bundles

lies in the fact that coherent sheaves are amenable to techniques of homological algebra.

These techniques come up frequently when attempting to classify coherent sheaves.

A.1 Some left- and right-exact functors on coherent

sheaves

Let C,D be two Abelian categories, let f : C → D be a covariant functor, and g : C → D
a contravariant functor. We say that f is exact if for any short exact sequence

0 A B C 0

in C
0 f(A) f(B) f(C) 0

is also a short exact sequence. Similarly, g is exact if

0 g(C) g(B) g(A) 0

is a short exact sequence.

Many important invariants of coherent sheaves are derived by looking at the failure of

a functor being exact. We will be particularly interested in those functors which are left-

or right-exact.

Definition A.5. Let C,D be two Abelian categories, f : C → D an additive covariant

functor, and g : C → D an additive contravariant functor. (By additive here we mean that

the functor preserves finite products.) The functor f is left-exact if for any short-exact

sequence

0 A B C 0

in C,
0 f(A) f(B) f(C)
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is exact, and right-exact if

f(A) f(B) f(C) 0

is exact. Similarly, g is left-exact if

0 g(C) g(B) g(A)

is exact, and right-exact if

g(C) g(B) g(A) 0

is exact.

Some important examples of such functors appear below:

Example A.5 (Homomorphism sheaf). Given a coherent sheaf F on X, the left-exact

functor Hom(F ,−) from Coh(X) to itself is given by

Hom(F ,G)(U) := HomOX(U)(F(U),G(U)),

whereHomOX(U)(F(U),−) : OX(U)−Mod → Ab is the homomorphism functor onOX(U)-

modules. If F is locally free, then Hom(F ,G) ≃ F∨ ⊗ G.

Example A.6 (Tensor product). Given a coherent sheaf F on X, the right-exact functor

F ⊗OX
− from Coh(X) to itself is defined at stalks by (F ⊗OX

G)x := Fx ⊗OX,x
Gx for all

points x ∈ X.

Example A.7 (Pushforward). Given a holomorphic map φ : X → Y between two complex

manifolds, the pushforward φ∗ : Mod(X) → Mod(Y ) of φ is a left-exact functor defined

by (φ∗F)(U) := F(φ−1(U)) for any open set U ⊆ Y . If φ is proper, then φ∗ restricts to a

left-exact functor from Coh(X) to Coh(Y ).

When X is compact, the global sections functor Γ : Mod(X) → C − Mod, given by

Γ(F) := F(X), is a special case of the pushforward where Y is a point. This functor is

typically referred to as H0(X,−), as the derived functor of Γ is naturally isomorphic to

the Čech cohomology functor.
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Example A.8 (Homomorphism group). Given a coherent sheaf F on X, the left-exact

functor HomOX
(F ,−) from Coh(X) to Ab is given by HomOX

(F ,G) := H0(X,Hom(F ,G)).
This is equal to the Hom functor associated to Coh(X) as an Abelian category.

Example A.9 (Pullback). Given a holomorphic map φ : X → Y between two complex

manifolds, the pullback φ∗ : Mod(Y ) → Mod(X) is a right-exact functor defined at stalks

by (φ∗F)x := OX,x ⊗OY,φ(x)
Fφ(X).

When φ : X → Y is a locally closed embedding, φ∗F is often denoted as the restriction

F|X .

A.2 Derived functors on coherent sheaves

Derived functors offer a way of measuring the failure of a left- or right-exact functor to be

exact. Thus one can obtain better information from the set of derived functors than from

the original left- or right-exact functor.

Definition A.6. Let A,B be Abelian categories, and let f : A → B be a covariant left-

exact functor. A δ-functor for f is a collection of functors gi : A → B for i ∈ Z+ such that

for any short exact sequence

0 A B C 0

in A, there is a long exact sequence

0 f(A) f(B) f(C)

. . . . . .

gi(A) gi(B) gi(C)

gi+1(A) gi+1(B) gi+1(C) . . . .
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If f is instead right-exact, a δ-functor for f is a collection of functors gi : A → B for i ∈ Z+

such that for any short exact sequence

0 A B C 0,

there is a long exact sequence

. . . gi+1f(A) gi+1(B) gi+1(C)

gi(A) gi(B) gi(C)

. . . . . .

f(A) f(B) f(C) 0.

The δ-functors are defined similarly in the contravariant case. A δ-functor gi for f is

universal if for any natural transformation α : f → f ′ and any δ-functor g′i for f
′, there

is a morphism of δ-functors sending gi to g′i. If f is left-exact and admits a universal

δ-functor, we call it the right-derived functor {Rif}i∈Z+ . Similarly, if f is right exact,

we call a universal δ-functor the left-derived functor {Lif}i∈Z+ . (Note that the Rif are

constructed using a cohomology theory and are denoted with a superscript, whereas the

Lif are constructed using a homology theory and are denoted with a subscript.)

Derived functors do not necessarily exist in general, but they can be constructed when

the category has enough acyclic objects. In order to construct derived functors, we first

need to consider the idea of acyclic objects.

Definition A.7. Given Abelian categories A and B and a covariant left-exact functor

f : A → B, an object A ∈ A is f -acyclic if R1f(A) = 0, meaning that for any short exact

sequence

0 A B C 0,

0 f(A) f(B) f(C) 0
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is also exact. If f is instead right-exact, C ∈ A is f -acyclic if L1f(C) = 0, meaning that

for any short exact sequence

0 A B C 0,

0 f(A) f(B) f(C) 0

is also exact. An f -acyclic object is defined similarly when f is a contravariant left- or

right-exact functor. The Abelian category A has enough f -acyclic objects if every object

A ∈ A admits a resolution by f -acyclic objects ; if f is either covariant and left-exact or

contravariant and right-exact, there is a (possibly infinite) exact sequence

0 A I0 I1 . . .
p0 p1 p2

with each Ii f -acyclic, and if f is covariant and right-exact or contravariant and left-exact,

there is a (possibly infinite) exact sequence

. . . I1 I0 A 0
p2 p1 p0

with each Ii f -acyclic.

Let f : A → B be a covariant left-exact functor such that A has enough f -acyclic

objects. For any A ∈ A, choose an f -acyclic resolution I• for A and take the induced

complex

0 I0 I1 . . . .
p1 p2

The right-derived functors Rif for i ∈ Z+ can then be computed as

Rif(A) = H i(f(I•)) = ker(f(pi+1))/ im(f(pi)).

If f is contravariant or left-exact, it can be similarly constructed via the (co)homology of

an f -acyclic resolution.

Remark A.8. While acyclic resolutions are highly non-unique, the derived functors are

independent of a choice of resolution.
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Example A.10 (Higher direct image functors). The right derived functors Riφ∗ of φ∗ are

known as the higher direct image functors. Using the fact that flasque sheaves (sheaves

whose restriction maps are surjective) are φ∗-acyclic, one can show that the higher direct

image sheaves of a sheaf F are the sheafification of the pre-sheaf

H i(U,F(φ−1(U))).

If F is a coherent sheaf and φ is a proper map, Riφ∗F is coherent for all i ∈ Z>0. In the

case that φ is a constant map, Riφ∗(F) is the sheaf cohomology H i(X,F).

Example A.11 (Ext sheaves). Given a coherent OX-module F , the right derived functors

RiHom(F ,−) of Hom(F ,−) are the Ext sheaves Exti(F ,−). The sheaves Exti(F ,G)
are defined with respect to an injective resolution of Exti(F ,−), but they can also be

computed using locally free resolutions of Exti(−,G) if G is coherent. Since Coh(X) has

enough locally-free sheaves when X is a compact complex surface, we can always work

with the locally-free resolutions in this case.

These two families of derived functors will be particularly useful in the sequel.

A.2.1 Useful results for derived functors on coherent sheaves

Many of the results in this thesis depend on computations of Ext sheaves and higher direct

image functors, so in this section we detail some useful theorems which will aid in these

computations. The first of these involves the composition of two derived functors.

Proposition A.9 (Grothendieck spectral sequence). Let A,B, C be Abelian categories,

and suppose that F : B → C and G : A → B are left-exact functors. If F and G both

admit right-derived functors and G maps G-acyclic objects to F -acyclic objects, then for

any A ∈ A there is a spectral sequence with second page given by

Ep,q
2 = RpF (RqG(A))

which converges to Rp+q(F ◦G)(A).
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Particularly important examples of this result are the Leray spectral sequence for the

higher direct image functors Ri(f ◦ g)∗ and the local-to-global Ext sequence for

ExtiOX
(F ,G) := Ri(HomOX

(F ,G)) = Ri(H0(X,Hom(F ,G))).

Example A.12 (The Leray spectral sequence of a principal elliptic surface [Tel98]). Let

π : X → B be a non-Kähler principal elliptic surface with fibre T . As shown in Proposition

2.2, X can be uniquely expressed as Θ∗/⟨τ⟩, where Θ ∈ Picd(B) is a line bundle of degree

d > 0, Θ∗ is the complement of the zero section in the total space of Θ, and τ is a complex

number with |τ | > 1 so that C∗/⟨τ⟩ ≃ T . In this case, we have that Riπ∗Z is the locally

constant sheaf with group H i(T, Z) for all i, so the spectral sequence corresponding to

H i(X,Z) = Ri(H0(B, π∗Z)) has second page

H0(B,H2(T,Z)) H1(B,H2(T,Z)) H2(B,H2(T,Z))

H0(B,H1(T,Z)) H1(B,H1(T,Z)) H2(B,H1(T,Z))

H0(B,H0(T,Z)) H1(B,H0(T,Z)) H2(B,H0(T,Z))

d02

d01

where, up to choosing bases for

H0(B,H2(T,Z)) ≃ Z, H0(B,H1(T,Z)) ≃ Z2,

H2(B,H1(T,Z)) ≃ Z2, H2(B,H0(T,Z)) ≃ Z,

d01 is given by the matrix
[
d 0

]
and d02 is given by the matrix

[
d

1

]
with d the degree of

Θ; all other maps are zero. (d01 and d02 can be computed using standard results about the

Gysin spectral sequence of a circle bundle as discussed in [BHPV03, p.196].) We can now
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compute that the third page is

ker(d02) H1(B,Z) Z

ker(d01) H1(B,Z)⊕H1(B,Z) coker(d02)

Z H1(B,Z) coker(d01)

with all maps zero. Thus, the spectral sequence degenerates at page three, and since we

have H1(B,Z) ≃ Z2g with g the genus of B and

ker(d02) ≃ 0, coker(d02) ≃ Z⊕ Z/dZ,

ker(d01) ≃ Z, coker(d01) ≃ Z/dZ,

the singular cohomology of X is

H0(X,Z) ≃ Z, H2(X,Z) ≃ Z4g ⊕ Z/dZ, H4(X,Z) ≃ Z.

H1(X,Z) ≃ Z2g+1, H3(X,Z) ≃ Z2g+1 ⊕ Z/dZ,

The remaining results concern the higher direct image functors corresponding to flat

proper maps of complex manifolds.

Proposition A.10 (Projection formula). Let X, Y be compact complex manifolds and let

f : X → Y be a flat proper map. If F ∈ Coh(X) and G ∈ Coh(Y ), then

Rif∗(F ⊗ f ∗G) ≃ G ⊗Rif∗F .

Proposition A.11 (Base change theorem). Let

W X

Y Z

f ′

g′ g

f

be a Cartesian diagram (i.e. W ≃ X ×Z Y ) with f and g flat and proper. Then

f ∗(Rig∗(F)) ≃ Rig′∗(f
′∗(F))

for any F ∈ Coh(X).
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Proposition A.12 (Relative Serre duality). Let X be a compact complex surface, C a

compact Riemann surface, and f : X → C a finite proper map. Then there is a rank-1

sheaf ωX/C ∈ Coh(X), called the relative dualising sheaf, such that for any vector bundle

E on X, (
R1f∗(E)

)∨ ≃ f∗
(
E∨ ⊗ ωX/C

)
.

A.3 Deformation theory for holomorphic vector bun-

dles

This section is based on the treatment in [Br̂ı96, Section 5.1], and discusses the tools by

which we can understand questions of dimension and regularity for moduli spaces of vector

bundles on complex manifolds.

Definition A.13. Let X be a complex manifold, and let E be a holomorphic vector bundle

onX. A deformation of E is a triple (S, E , τ) consisting of a complex analytic germ S about

a point 0, a holomorphic vector bundle E on S ×X, and an isomorphism τ : E → E|0×X .
A morphism of deformations from (S, E , τ) to (S ′, E ′, τ ′) is a pair (α, φ) of a holomorphic

map α : S → S ′ and a holomorphic bundle map φ : E → α∗E ′ such that φ|0×X ◦ τ = α∗τ ′.

The main purpose of deformations in this context is to understand what the tangent

space of E should be in a moduli space by associating it to the tangent space of an analytic

germ. To do this, we want a natural choice of deformation.

Definition A.14. Let X be a complex manifold, and let E be a holomorphic vector

bundle on X. A deformation (S, E , τ) is versal if for any deformation (S ′, E ′, τ ′), there is a

morphism to (S, E , τ), and any pair (α, φ), (β, ψ) of morphisms to (S, E , τ) have dα = dβ,

where dα : TS ′ → TS is the induced map of tangent bundles. If E admits a versal

deformation, it is unique up to unique isomorphism.

By [FK74], there is a versal deformation of E whose tangent space is H1(X, End(E)).
However, the surfaces considered in this thesis all have non-compact Picard groups, so in
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order to obtain compact moduli spaces, we are only interested in those deformations that

induce the trivial deformation of the determinant bundle. This can be done by comparing

deformations of E to those of its associated PGL(r)-bundle P(E):

Theorem A.15 (Elencwajg–Forster [EF82]). Let X be a compact complex manifold and E

a holomorphic vector bundle on X. Then there is a one-to-one correspondence between de-

formations of P(E) and deformations of E which induce the trivial deformation of det(E).

When X is compact, the PGL(r)-bundle P(E) admits a versal deformation with tan-

gent space H1(X, End0(E)), and the obstruction class of this deformation belongs to

H2(X, End0(E)). If H2(X, End0(E)) = 0, the deformations of E are unobstructed and

we say that E is good. In this case, a moduli space of bundles containing E will be smooth

at E of dimension H1(X, End0(E)).
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