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Abstract

Recent advances in three-dimensional (3D) high seeding density time-resolved Lagrangian
particle tracking (LPT) techniques have made diagnosing fluid flows at high resolution in
space and time under a Lagrangian framework feasible and practical. But challenges per-
sist in developing LPT data processing methods. A promising processing method should
accurately and robustly reconstruct, for example, particle trajectories, velocities, and dif-
ferential quantities from noisy experimental data. Despite numerous algorithms available
in the LPT community, they may suffer from some issues, such as unfavorable accuracy
and robustness, lack of physical constraints, and unnecessary projection from Lagrangian
data onto Eulerian meshes. These challenges may limit the application of the 3D high
seeding density time-resolved LPT techniques.

In this thesis, a novel 3D Lagrangian flow field reconstruction method is proposed to
address these challenges. The proposed method is based on a stable radial basis function
(RBF) and constrained least squares (CLS). The stable RBF serves as a model function to
approximate trajectories and velocity fields. The CLS provides a framework to facilitate
regression and enforce physical constraints, further enhancing the reconstruction perfor-
mance. The stable RBF and CLS work together to reconstruct 3D Lagrangian flow fields
with high accuracy and robustness.

The proposed method offers several advantages over the algorithms currently used in
the LPT community. First, it accurately reconstructs particle trajectories, velocities, and
differential quantities in 3D, even from noisy experimental data, while satisfying physical
constraints such as divergence-free for incompressible flows. Second, it does not require pro-
jecting Lagrangian data onto Eulerian meshes, allowing for direct flow field reconstruction
at scattered data locations. Third, it effectively mitigates experimental noise in particle lo-
cations. Last, the proposed method enables smooth spatial and temporal super-resolution
with ease. These advantages exhibit that the proposed method is promising for LPT data
processing and further applications in data assimilation and machine learning.

Systematic tests were conducted to validate and verify the proposed method. Two-
dimensional and 3D validations were performed using synthetic data based on exact solu-
tions of the Taylor-Green vortex and Arnold-Beltrami-Childress flow with added artificial
noise. The validations show that the proposed method outperforms baseline algorithms
(e.g., finite difference methods and polynomial fittings) under different flow conditions.
The method was then verified using experimental data from a 3D low-speed pulsing jet,
showing its reliable performance. Based on these validations and verification, it is demon-
strated that the proposed method can process experimental LPT data and reconstruct
Lagrangian flow fields with accuracy and robustness.
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xii



RBF-FD Radial Basis Function-generated Finite Difference

RBF-RA Radial Basis Function Rational Approximation

STB Shake-The-Box

TGV Taylor-Green Vortex

TR-LPT Time-Resolved Lagrangian Particle Tracking

WCLS Weighted Constrained Least Squares

Accents, Subscripts, and Superscripts
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Chapter 1

Introduction

In fluid mechanics, there are two fundamental perspectives to describe a flow field, i.e., the
Eulerian and Lagrangian perspectives [7, 32, 95]. In the Eulerian perspective, fluid flows
are observed within a fixed control volume, and individual fluid parcels are not identified.
Functions of independent field variables describe the fluid flow. For example, a velocity
component u can be expressed as u = u(x, y, z, t), where x, y, z, and t are independent field
variables that represent the spatial coordinates in a 3D domain and the time, respectively.
On the other hand, the Lagrangian perspective focuses on individual fluid parcels and tracks
their motions independently. The flow variables are associated with a specific fluid parcel
and depend on each other. For example, if a fluid parcel is tracked, its velocity component
u is given by u = u(x0, y0, z0, t), where x0, y0, z0 are the initial spatial coordinates of the
fluid parcel. In other words, the particle velocity is uniquely determined by the identity of
a fluid parcel and time. The Lagrangian and Eulerian perspectives lay the foundations for
fluid mechanics.

Despite classic textbooks [7, 32, 95] giving equal attention to the Lagrangian and Eu-
lerian descriptions when first introducing them in the first chapters, in later chapters and
real-world practices, the Lagrangian descriptions are overshadowed by their Eulerian coun-
terparts. This is true for the computational and experimental fluid mechanics where most
of the numerical [14, 44, 97, 171] and experimental [133, 164, 166] techniques are built upon
the Eulerian description. In experiments, one possible reason is the lack of feasible and
practical Lagrangian experimental techniques that can track particle motions with high
spatial and temporal resolutions in 3D [3, 33]. In turn, the Eulerian description has been
dominating fluid experiments.

However, with the recent development of 3D high-seeding density time-resolved La-
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grangian particle tracking (3D TR-LPT or four-dimensional LPT) [141, 142, 176], the
Lagrangian description is back to focus and demonstrates some superiority in experimen-
tal fluid mechanics. The 3D TR-LPT and other Lagrangian experimental techniques have
been intensively researched and increasingly used in recent years [20, 85, 121, 141, 146, 147,
149, 151, 153, 167]. The superiority of the 3D TR-LPT stems from the high-seeding density
and time-resolved properties in addition to its Lagrangian nature. The high-seeding den-
sity can achieve a high spatial resolution and the time-resolved property enables an LPT1

system to identify transient and time-correlated flow structures [11, 126]. LPT techniques
keep developing today, driven by the unique advantages of the Lagrangian description.

The 3D TR-LPT, including some other Lagrangian experimental techniques, has three
major advantages over the Eulerian ones. First, the Lagrangian description is perhaps more
intuitive than the Eulerian one since fluid flows are inherently Lagrangian. A volume of
fluid consists of an ‘infinite’ number of fluid parcels that densely fill the flow domain. Each
fluid parcel follows its unique pathline, and the collective motion of fluid parcels reflects the
fluid flow. For example, the secondary flow phenomenon can be observed by stirring a cup
of tea and tracking the movements of tea leaves at the bottom of the cup [17]. Following the
movements of tea leaves is essentially diagnosing the flow from a Lagrangian perspective.
This property facilitates straightforward analysis and a heuristic understanding of fluid
flows.

Second, the LPT systems can potentially achieve higher spatial resolution than that of
typical Eulerian experimental techniques [2, 33, 73, 155], such as particle image velocimetry
(PIV). The PIV techniques rely on tracking the patterns of a few particles within finite-
size interrogation windows. The interrogation windows are often chosen based on a rule of
thumb [131]. Reconstruction based on the interrogation windows can lead to a spatially
averaged (smoothing or smearing) velocity field and inherently inaccuracy in regions with
high velocity gradients [9, 29, 65, 66, 78, 81, 136, 175]. In contrast to PIV, the LPT
techniques do not require interrogation windows, which facilitates the measurement of
fine-scale flow structures and accurate fluid flow diagnosis.

Third, the LPT techniques enable trajectory-based measurement. By tracking the tra-
jectories of individual particles, the history of particle movements can be recovered. This
allows the detection of where a particle originated from and where it is moving towards
(e.g., identifying the sources and sinks of fluid flows). Examples of LPT experiments
leveraging the trajectory-based measurement include indoor airflow studies [12, 51], La-
grangian coherent structure identification [55, 135] and fluid mixing research [6, 88, 134].

1Although the terms LPT (Lagrangian particle tracking) and PTV (particle tracking velocimetry) are
often used interchangeably, this thesis exclusively uses the term LPT, as recommended by [149].
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This advantage is particularly attractive as it expands the application of fluid experiments
to under-explored areas. The demand for LPT experiments, Lagrangian data, and the
corresponding data processing techniques is increasing. Therefore, this thesis emphasizes
the processing of experimental data obtained through the LPT techniques.

Developing an accurate and robust algorithm for LPT data processing is not trivial. It
challenges the community for two major reasons: i) the raw LPT data, which are directly
output from LPT experiments, technically offer nothing but locations of particles as time
series. Important flow information, such as velocities and velocity gradients, cannot be
directly accessed without proper flow reconstruction. Therefore, effective LPT data pro-
cessing methods are needed to reconstruct trajectories, velocities, and differential quantities
based on the raw LPT data. ii) The raw LPT data are inaccurate due to various sources
of noise and bias, including those from measurement and processing. Noise and bias can
significantly degrade reconstruction quality depending on the choice of the reconstruction
method. Hence, suppressing noise is crucial to have reliable reconstruction results. Many
LPT processing algorithms have been proposed in the community. They are summarized
in the next chapter.

The thesis is organized as follows: Chapter 2 provides a survey on the flow field recon-
struction methods. In Chapter 3, the two core algorithms (i.e., constrained least squares
and a stable radial basis function) of the proposed method are summarized. Chapter 4
elaborates on the two core algorithms combined as a novel method for flow reconstruction.
In Chapter 5, validations and verification using the proposed method are discussed. Last,
Chapter 6 concludes the thesis and provides future outlooks.
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Chapter 2

Literature Review

This chapter reviews the methods used, or with the potential to be used, to reconstruct
particle trajectories, velocities, and differential quantities for the LPT data. Section 2.1
summarizes the trajectory and velocity reconstruction methods. Section 2.2 reviews the
differential quantity reconstruction methods. Section 2.3 focuses on methods for noise
reduction and constraint enforcement. Section 2.4 highlights two particular flow field
reconstruction methods, which are more systematic than the rest and may be considered
state-of-the-art. Section 2.5 points out some limitations of current methods in the LPT
community. This literature review provides the motivation for the proposed method.

2.1 Trajectory and Velocity Reconstruction

The primary objective of LPT experiments is to recover particle trajectories and mea-
sure velocities based on the raw LPT data. The raw LPT data are converted from a set
of LPT images of the particles. The LPT image conversion usually involves three steps:
particle image recognition, particle coordinate determination, and particle tracking. The
particle image recognition (also known as particle detection [74, 108, 111] or identifica-
tion [126]) identifies tracer particles from the LPT images based on the brightness and
size of pixel clusters. It also determines the planar spatial coordinates of the identified
tracer particles in the images. The particle coordinate determination (also called particle
correspondence [108, 111]) converts particle planar spatial coordinates in images to the
volumetric spatial coordinates in a global reference frame in the physical space [126]. In
the particle tracking step [126] (also referred to as particle pairing [34], linking [108] or
matching [74]), the same particle appears in different frames is recognized and labeled as
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one particle. After these three steps, the LPT images are converted to the raw LPT data
that can be used for trajectory and velocity reconstruction.

Perhaps the most straightforward way to recover trajectories and measure velocities
is by directly invoking particle tracking results and using the first-order finite difference
method, respectively. For example, particle trajectories can be represented by line segments
that connect the same particles identified by particle tracking algorithms in successive
frames [119] or just a series of dots without explicit connections [9, 60, 61, 79, 80, 84, 112,
130, 158, 173]. This method was commonly used in the early stage of LPT application [1,
60, 61, 80, 84, 119, 130]. The first-order finite difference method calculates a particle
velocity U by dividing the particle displacement ∆x between two consecutive frames by
the corresponding time interval ∆t: U ≈ ∆x/∆t [9, 60, 61, 79, 80, 84, 94, 111, 119, 158,
173]. The velocity between two consecutive frames can be interpolated by piece-wise linear
functions [119] if a temporal super-resolution is needed. These trajectory and velocity
reconstruction methods are widely used in the LPT community.

Two alternative algorithms that are similar to the first-order finite difference method
can be found in some literature. One algorithm measures particle velocities based on long-
exposure images. In a long-exposure image, a particle leaves a pathline. The particle
pathline is approximated by straight line segments, assuming that the pathline has low
curvature. The velocity is then calculated by dividing the length of the line segment by
the corresponding exposure time. This approach allows velocity measurement in a single
frame and has been used in several studies [1, 83, 84]. The other algorithm involves more
consecutive frames to construct higher-order stencils. This can increase velocity evaluation
accuracy and is usually used for multi-frame LPT data. For example, a central difference
scheme has a three-point stencil along a trajectory with second-order accuracy [10, 111, 159]
and a central difference scheme has a five-point stencil with fourth-order accuracy [111].
These two algorithms can either extend the applicability of the finite difference methods
or increase the accuracy of velocity measurement.

However, using the finite difference method can potentially lead to inaccurate velocity
reconstruction due to several reasons. First, the finite difference method is based on a weak
assumption that a particle travels a short distance and its pathline is nearly straight [29]. If
the pathline is curved, this assumption may not hold and lead to inaccurate reconstruction.
Second, the finite difference method can amplify the noise present in the raw LPT data
during velocity computation. Presumably, the derivative of noisy data is often even noisier,
and some filtering or smoothing techniques are usually required. However, the direct use
of the finite difference method does not provide any filtering and results in highly noisy
velocity calculations. These two reasons restrain the application of finite difference methods
for accurate and robust reconstruction.
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An alternative approach to recover trajectories and measure velocities is using con-
tinuous functions, and a polynomial is one of them. The trajectories of particles can be
approximated by polynomials with different orders. The order of polynomials depends on
the desired accuracy and the number of available frames. The velocity is the first-order
temporal differentiation of the trajectory functions. This method can be considered cou-
pled reconstruction, as the velocity is derived from the same polynomial function as the
trajectory. Common choices for the order of polynomials are the first-order [34, 83, 84],
second-order [29, 83, 84, 130, 177], third-order [29, 63, 90, 91, 108, 109, 141], and fourth-
order [43]. Polynomial functions are mostly applied with a least squares algorithm. The
least squares algorithm can suppress the noise and improve the robustness of the recon-
struction. This polynomial-based method outperforms finite difference methods [29, 108]
(see Section 5.3 for some tests) and is also widely used in the LPT data processing.

However, polynomial-based reconstruction methods have two major drawbacks: (i) a
polynomial function cannot be infinitely smooth, which is not an ideal choice for trajec-
tory functions. The infinite smoothness of trajectory functions derives infinitely smooth
acceleration functions, which is important for downstream applications such as data as-
similation and force reconstruction. Although the smoothness of polynomial functions
can be increased by using high-order polynomials, constructing a high-degree smoothness
polynomial is difficult when the number of frames is limited. (ii) Polynomial-based recon-
struction often faces a dilemma in choosing between low- or high-order polynomials. The
low-order polynomials may not accurately approximate trajectories with high curvature,
while the high-order polynomials may lead to numerical oscillations [137]. This problem
is particularly pronounced when approximating long particle trajectories, where both high
and low curvature exists simultaneously on one pathline. These drawbacks may hinder the
application of polynomials in reconstruction for realistic experiments.

The use of splines is an alternative way to reconstruct particle trajectories [15, 53, 94,
141], sharing many similarities with polynomials but being superior to typical polynomi-
als. The basis spline (B-spline) [93, 148] is one of them, being the cornerstone in computer
graphics [30, 127, 178, 180] and computer-aided design [24, 107, 143]. A B-spline is essen-
tially a piece-wise polynomial. When a particle trajectory is approximated by a B-spline,
its velocity is calculated by the first-order temporal differentiation of the trajectory func-
tion. The B-splines are flexible because of their piece-wise and compact support nature,
which avoids the aforementioned dilemma of polynomials and is apt to reconstruct long
particle trajectories. They have been increasingly used for reconstruction in LPT experi-
ments in recent years [15, 53]. However, they cannot have high-degree smoothness either,
especially when the number of frames is limited. Moreover, the choice of knots and types
of B-splines, such as uniform or non-uniform B-splines, must be carefully considered and
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is usually flow-dependent. These shortcomings may limit the application of splines in flow
field reconstruction.

2.2 Differential Quantity Reconstruction

In addition to the trajectory and velocity, differential quantities, such as velocity spatial
derivatives including velocity gradients [23, 108, 113, 159], vorticity [5, 31, 72, 75, 146, 161],
strain- and rotation-rate tensors [92, 103, 104], coherent structures [23, 103, 104, 135], and
even pressure and pressure gradients [15, 53, 157], are also of interest. The differential
quantities can reveal valuable flow characteristics and aid in-depth analysis of complex
flows. For example, strain- and rotation-rate tensors are essential for flow kinematics
studies in turbulence. Among the above differential quantities, the velocity gradient is
perhaps the most fundamental one, and other differential quantities can be derived directly
or indirectly based on the velocity gradient. Differential quantity reconstruction is one
step forward beyond the trajectory and velocity reconstruction and a promising LPT data
processing method is expected to provide reliable differential quantity reconstruction. This
section will review the reconstruction methods for differential quantities.

The methods for reconstructing differential quantities can be categorized as either mesh-
based or meshless. The primary difference between these two families of methods is the need
for data conversion to map Lagrangian data onto a Eulerian mesh. Mesh-based methods
require this conversion, while meshless methods directly compute differential quantities at
scattered data points.

The mesh-based methods perform data conversions before differential quantity compu-
tation. In a data conversion, continuous functions are used to approximate velocities at
scattered points first. Then the velocities at the nodal points on the structured mesh are in-
terpolated by the continuous functions. Several data conversion functions are widely used,
including polynomial-based functions such as polynomials [31, 72, 73, 159], B-splines [53],
and Taylor expansions of multivariate polynomials [113]; and radial basis functions (RBFs)
such as Gaussian RBFs [5, 23, 75, 76, 145, 146, 159], multi-quadratic RBFs [60, 61]. After
data conversions, differential quantities are computed on Eulerian meshes.

The finite difference methods (FDM) are perhaps the most convenient way to compute
velocity gradients on a structured mesh. They have been widely used in experiments [5,
31, 75, 76, 146, 159]. The accuracy of the FDM-based differential quantity reconstruction
is sensitive to the size of the stencil and grid spacing. To achieve high accuracy, finite
difference methods require fine meshes and large stencils, which can be challenging due to
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limited computational resources. Furthermore, the fine mesh applied to noisy experimental
data may lead to high errors in the computed gradients.

Alternatively, direct differentiation of data conversion functions can also be used to
compute differential quantities. Since the data conversion functions are continuous, direct
spatial differentiation is possible at nodal points on the Eulerian meshes. For polynomial-
based conversion functions [31, 53, 72, 73, 113, 159], because the smoothness of recon-
structed differential quantity fields is limited by the low order of their underlying poly-
nomials, the reconstruction accuracy might be undermined. Particularly, in the Taylor
expansion [113], the accuracy also depends on the value of the residual term, which can be
negligible only when the grid spacing of the Eulerian mesh is small and the spatial resolu-
tion of the Lagrangian measurement is high. If these conditions are not met, reconstruction
accuracy may be compromised.

For the RBF data conversion functions, although they can possess infinite smoothness,
the choice of flatness of the RBF kernel is often empirical and not trivial. The flatness
of the RBF kernel is controlled by a parameter called the shape factor. In the methods
that adopt Gaussian RBF [5, 23, 159], the shape factor is set to be equal to a constant
times the mean distance between particles. This is an attempt at an adaptive shape factor.
However, the ‘optimal’ value of the shape factor involves many other considerations beyond
the mean distance between particles: flow profiles (e.g., velocity gradients) and the pattern
of the particle distribution (e.g, random or quasi-uniform distribution) may also play a
role [103]. An inappropriate shape factor may lead to numerical instability and inaccurate
approximation for flows with different length scales and data points with various densities.
More information on this topic is available in Section 3.1.2 and literature in the numerical
analysis community [45, 48, 98]. Most importantly, data conversions inevitably introduce
additional errors when mapping Lagrangian data onto Eulerian meshes.

For the meshless methods, differential quantity reconstruction is directly performed
at Lagrangian data without mapping them onto a Eulerian mesh. A velocity field is de-
scribed by continuous functions, and the velocity derivatives are calculated by the spatial
differentiation of the continuous functions. Popular choices of the continuous functions are
polynomials [108, 161], splines [15, 158], and RBFs [103, 104, 157]. Although polynomials,
splines, and RBFs can be used in both mesh-based and meshless methods, their missions
are different. In a mesh-based method, these functions are used as interpolant or regres-
sion functions to map scattered data onto a structured mesh. In a meshless method, these
functions are used to approximate the velocity field based on the scatter data, and pro-
jecting the data onto a structured mesh is avoided. The continuous function in a meshless
method is usually constructed by the least squares algorithm to provide smooth reconstruc-
tion [15, 103, 108, 157, 161]. The least squares fitting carries a low-pass filtering feature
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(see Section 2.3) and has advantages over interpolation (see Section 3.2). The meshless
methods avoid additional errors introduced by converting Lagrangian data to Eulerian
meshes, and they are promising for high-accuracy differential quantity reconstruction. In
the thesis, a meshless method has been chosen to reconstruct differential quantities.

2.3 Noise Reduction and Constraint Enforcement

Noise and errors are inevitable in experiments including the LPT. Suppressing noise is
necessary and can be achieved by different methods such as moving average filter meth-
ods [5, 159] and least squares fitting [15, 31, 53, 103, 108, 113, 157, 158, 161]. The moving
average filter methods replace the data at one point with a weighted average of its neigh-
boring data [5, 159]. The moving filter methods assume that the data of a particle can
not be drastically different from its nearby particles. However, in some complex flows
with high gradients, moving average filter methods may smear fine flow structures, which
undermines reconstruction accuracy. In addition, the moving average filter can be viewed
as a low-pass filter and its cut-off frequency is determined by the range of the neighbor-
ing data. Determining the range of the nearby points is flow-dependent and empirical.
Instead of directly applying a low-pass filter on the LPT data, the least squares fitting
can also achieve denoising [53, 108]. The least squares fitting minimizes the total residual
between the reconstructed functions and the experimental measurements. The resulting
reconstructed function inherently smooths out the high-frequency noise and highlights the
low-frequency flow structures. In this thesis, the least squares fitting is adopted to suppress
noise and improve the accuracy and robustness of the proposed method.

In addition to noise reduction, imposing physical constraints could improve the quality
of reconstruction. These constraints can arise from any knowledge about the fluid flow
such as the flow properties, boundary conditions, and even governing equations. Exam-
ples include the divergence-free property for an incompressible flow [23, 75, 76, 157, 159],
Dirichlet and/or Neumann conditions for a pressure field [23, 75, 76, 146, 157], and Navier-
Stokes equations for a fluid flow [53]. Imposing a physical constraint means enforcing the
experimental data to respect the governing equation to some extent. This is the funda-
mental philosophy behind data assimilation [96, 100] and many physics-informed machine
learning techniques [21, 114, 132]. In this thesis, divergence-free constraints are imposed
for incompressible flows as a first attempt.
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2.4 Comprehensive Reconstruction

Comprehensive reconstruction methods can evaluate trajectory, velocity, and differential
quantity altogether incorporating noise reduction and constraint enforcement. These meth-
ods first initialize trajectories and velocities based on the raw LPT data. Then they calcu-
late differential quantities using either mesh-based or meshless algorithms based on initial
trajectories and velocities. Additional data processing algorithms, such as noise filter, and
outlier removal, can be also implemented as comprehensive reconstruction. In this section,
two comprehensive reconstruction methods are highlighted.

Gesemann et al. [53] proposed a mesh-based reconstruction method. This method
consists of two algorithms, i.e., Trackfit and Flowfit, and they work together as one com-
plete LPT data processing strategy. The Trackfit initializes particle trajectories, velocities,
and accelerations based on raw LPT data. The trajectory of a particle is approximated
by a 1D cubic B-spline. The velocity and acceleration functions are calculated by the
first- and second-order temporal differentiation of the trajectory functions, respectively.
An over-determined system in the least squares sense is established when reconstructing
particle trajectories. The over-determined system is based on a cost function consisting
of two parts: i) the total residuals between trajectory measurements and their B-spline
approximation, and ii) a weighted acceleration variation.1 The B-spline coefficients can
be retrieved by minimizing the cost function and solving the over-determined system. By
substituting the coefficients back to the B-splines, the particle trajectory, velocity, and
acceleration functions are recovered.

The Flowfit completes the remaining flow field reconstruction. It utilizes the parti-
cle velocities and accelerations initialized by the Trackfit as input. In the first step of the
Flowfit, the Lagrangian data (i.e., the particle velocities and accelerations initialized by the
Trackfit) are converted onto a Eulerian mesh using 3D weighted cubic B-splines. Another
cost function that consists of residuals between measurements and the 3D B-spline approx-
imation with weights and penalties is established. Weights and penalties are determined by

1The LPT systems typically use two criteria for particle tracking: minimum acceleration [123, 173] or
minimum change in acceleration [112, 173]. The minimum acceleration criterion assumes that a particle
has a low rate of change of velocity between two successive frames. Therefore, the particle tracking
algorithms should choose the candidate particle that has the minimum acceleration as the same particle
along the pathline. The minimum change in acceleration criterion assumes that a particle has a low
averaged jerk between two successive frames. Hence, the particle tracking algorithms should choose the
candidate particle that has the minimum change in acceleration as the same particle along the pathline.
The minimum change in acceleration criterion is adopted implicitly in [53] by minimizing a cost function
that comprises acceleration variation.
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measurement error and/or flow properties, such as the velocity measurement error and ve-
locity divergence. The coefficients of the 3D B-splines are then retrieved by minimizing the
cost function using the least squares algorithm. The cost function regarding the coefficients
of the B-splines may be linear or nonlinear, depending on the types of constraints. The
linear and nonlinear cost function is optimized by a conjugate gradient method for least
squares [122] and limited-memory Broyden-Fletcher-Goldfarb-Shanno [120] algorithm, re-
spectively. After retrieving the expansion coefficients, velocity fields are reconstructed, and
differential quantities can be calculated by the spatial differentiation of the velocity field
functions.

The Trackfit plus Flowfit strategy has been applied in many works. For example, it
has been used for studies in turbulent Rayleigh-Bénard convection [16], turbulent bubbly
jet [86], large-scale turbulent boundary layer [140], impinging jet flow [68, 69, 87], pure
thermal plume [67], and flow around a surface mounted cube [150, 154]. However, in
the Trackfit, the trajectory cost function that adopts the minimum change in acceleration
criterion, enforcing minimum jerk on the trajectory of a particle, may not be always valid.
This criterion implies that the time interval between two adjacent frames is small, which
may not be suitable for all applications. In addition, the Flowfit still needs data conversions,
which may introduce additional errors due to mapping Lagrangian data onto Eulerian
meshes. Besides, the velocity fields reconstructed by the Flowfit are not fully explored.
For example, these divergence-free velocities could be used to update the initial trajectories
since the velocity fields reconstructed by Flowfit respect many physical constraints while
the trajectories from Trackfit are not. Such an update may further improve the accuracy
and robustness of trajectory reconstruction.

The other comprehensive reconstruction method was proposed by Lüthi [108]. In this
method, a localized least squares cubic polynomial function, named “moving cubic spline”
by the author, is used to reconstruct particle trajectories. The trajectory function is essen-
tially approximated by third-order polynomials. The trajectory reconstruction possesses a
noise reduction feature because of the use of the least squares algorithm. The velocity and
acceleration functions are calculated by the first- and second-order temporal differentia-
tion of the trajectory functions, respectively. Next, linear piece-wise polynomial functions
are employed to approximate the velocity field in each frame. An over-determined system
about the coefficients of the linear piece-wise polynomial functions is constructed to map
measured data onto evaluation points. By solving the over-determined system, the coeffi-
cients of polynomials are retrieved. The polynomial coefficients are then substituted into
linear piece-wise polynomial functions to obtain the velocity field function in each frame.
The velocity gradient field is calculated by the spatial differentiation of the corresponding
velocity field function. In addition, optional weights on measured data can be applied to
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the least square algorithm in trajectory and acceleration reconstruction. The weights are
based on neighboring particle distance and/or relative velocity divergence. For the particles
that are far from an evaluation point, their data are assigned low weights, which implies
that their influence on reconstruction is low. The velocity divergence is evaluated by the
reconstructed velocity gradient fields. Particles with low relative velocity divergence are
assigned high weights for incompressible flows, while particles with high relative velocity
divergence are assigned low weights. The weights make reconstruction more closely match
the data with low relative divergence than those with high. The weighted least squares
algorithm improves reconstruction quality to some extent.

Lüthi’s method has been applied in many LPT experiments, such as vorticity dynamics
in turbulence [109], 3D scanning PTV [63], small-scale and large-scale PTV studies [91],
shear-free turbulence with confinements and rotations [90], two-scale turbulence measure-
ment in a rotational system [89], turbulent and non-turbulent interface study [62], and
others [177]. This method attempted to ‘softly’ incorporate divergence-free property for
incompressible flows to improve the reconstruction by leveraging a nonzero divergence as a
normalized weight, however, the divergence-free is not strictly enforced. Additionally, the
linear piece-wise polynomial functions only provide piece-wise linear smoothness through-
out the domain. The limited smoothness is inadequate for accurately representing complex
velocity gradient fields. In summary, following Lüthi’s approach, a meshless method with
constrained least squares is adopted in this thesis to provide an infinitely smooth recon-
struction with enforced physical constraints.

2.5 Summary

Despite many methods for processing LPT data being available (see Table 2.1 for an
overview of these methods), several challenges still need to be addressed. These include:
(i) the use of mesh-based methods that require data conversions, which may introduce
unnecessary numerical errors and divert from the original purpose of LPT experiments;
(ii) the lack of enforcement of physical constraints, which can be crucial for realistic and
reliable flow reconstruction; (iii) the significant degradation of reconstruction quality due
to the noise in particle spatial coordinates from measurement; and (iv) the fixed-order poly-
nomials (including some splines) for trajectory reconstruction cannot universally capture
trajectories with varying curvatures. Therefore, the constrained least squares (CLS) ra-
dial basis function (RBF) Lagrangian reconstruction method (referred to as the CLS-RBF
method) is proposed in this thesis to address these challenges and reconstruct Lagrangian
flow fields.
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Chapter 3

Radial Basis Function and
Constrained Least Squares

In this chapter, two pillars of the CLS-RBF Lagrangian reconstruction method will be
elaborated. In Section 3.1, the classic radial basis function (RBF) interpolation and dif-
ferentiation will be summarized first, and then stable RBF algorithms proposed in the
mathematics community are reviewed. One of the stable RBF algorithms, i.e., RBF-QR,
is focused on. Section 3.2 presents the RBF-QR embedded into the constrained least
squares (CLS) framework to achieve divergence-free reconstruction in 3D.

3.1 Overview of RBF

3.1.1 RBF-Direct

The classic RBF, also called RBF-Direct in some literature [45, 46, 47, 98, 179], is a kernel-
based meshless algorithm for approximation. It uses the Euclidean norm (distance) between
fixed points as independent variables and can fit or interpolate scattered data. Depending
on the choice of a specific kernel (also known as a basis), the RBF approximation can be
infinitely differentiable and easily extended to high dimensions. The RBF methods have
wide applications in data regression, computer graphics [22, 110], machine learning [25, 64,
82, 105], etc. It is also suitable for flow field reconstruction [103, 104, 157].

The RBF-Direct can be used for fundamental interpolation and differentiation. Given
the scalar data f̂ c

i ∈ R at a scattered center (also called a nodal point) x̂c
i ∈ Rd in
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flow domain Ω, i.e., (x̂c
i , f̂

c
i ), where i ∈ {1, 2, ...N}, N is the number of centers and d is

dimensions, the RBF-Direct interpolation function s̃(x) is a linear combination of weighted
kernels [42, 45]:

s̃(x) =
N∑
i=1

λiϕ(ε, ri) =
N∑
i=1

λiϕ(ε, ∥x− x̂c
i∥), (3.1)

where ϕ(ε, ri) is an RBF-Direct kernel (e.g., a Gaussian kernel ϕ = e−ε2r2
i ), ri = ∥x− x̂c

i∥
is the vector of Euclidean norm between a location x in the domain Ω and the center x̂c

i ,
λi is the expansion coefficient that controls the weight of a radial basis, and ε is the shape
factor that controls the profile of the kernel. Eqn. (3.1) can be written in a matrix form:

s̃(x) = Φ(x)λ, (3.2)

where λ is the vector of expansion coefficients with entries λ = (λ1, λ2, . . . , λN)
T, and the

RBF-Direct basis matrix Φ(x) is based on ϕ(ε, ri). The differentiation of Eqn. (3.2) can
be computed with the same λ in Eqn. (3.2):

s̃D(x) = ΦD(x)λ, (3.3)

where D is a generalized linear differential operator, ΦD(x) is an RBF-Direct differentiation
basis matrix with entries ϕD(ε, ri) = ϕD(ε, ∥x− x̂c

i∥). ΦD and ϕD can be calculated by
the chain rule. For example, in the x direction, the spatial differentiation basis matrix Φx

has the entries based on ϕx, and ϕx is calculated by

ϕx =
∂ϕ

∂x
=
∂ϕ

∂r

∂r

∂x
. (3.4)

In general, the Eqns. (3.2) and (3.3) are used for fundamental RBF-Direct interpolation
and differentiation, respectively.

However, when using Eqn. (3.2) or (3.3), some details must be considered. These de-
tails include the choice of kernels, the calculation of the vector of expansion coefficients
λ, and the value of the shape factor. The RBF-Direct kernel can take different forms.
For example, popular choices are a Gaussian kernel ϕ = e−ε2r2 , a multiquadric kernel
(ϕ =

√
1 + (εr)2) [58], and an inverse multiquadric kernel (ϕ = 1/

√
1 + (εr)2) [50]. In

this thesis, the Gaussian kernel has been chosen to accommodate a stable RBF algo-
rithm [45]. The vector of expansion coefficients λ is the key to the interpolation and
differentiation. Once the vector of expansion coefficients λ is calculated, the interpolation
and differentiation are almost completed. To calculate the vector of expansion coefficients
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λ, the evaluation on interpolant s̃(x̂c
i ) is forced to be equal to the given data f̂ c based on

Eqn. (3.1):

s̃(x)|x̂c
i
= s̃(x̂c

i ) = f̂ c

f̂ c = Dλ

λ = D−1f̂ c

, (3.5)

where f̂ c the vector of given scalar data with entries f̂ c = (f̂ c
1 , f̂

c
2 , . . . , f̂

c
N)

T and D is an
RBF-Direct system matrix with entries Dij = ϕ

(
ε,
∥∥x̂c

i − x̂c
j

∥∥), i, j = 1, 2, . . . , N . The
shape factor ε controls the flatness of the radial basis. A small shape factor leads to a
near-flat kernel, while a large shape factor is associated with a spiky one (see Figure 3.1
for illustration). The choice of shape factors can significantly influence the approximation
quality. This topic will be discussed in the next section. By choosing a proper kernel
function, calculating the vector of expansion coefficients λ correctly, and setting a suitable
value of the shape factor, the RBF-Direct can be applied for reliable interpolation and
differentiation.

Figure 3.1: RBF-Direct Gaussian kernel with different shape factors.

3.1.2 Stable RBF algorithms

Although RBF-Direct can achieve fundamental interpolation and differentiation and has
been widely used in various communities [22, 25, 64, 82, 105, 110], a critical dilemma re-
garding the choice of the shape factor exists in the RBF-Direct application. On the one
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hand, a small shape factor corresponding to the near-flat basis can achieve an accurate
approximation but ill-conditioning may occur leading to unstable computation. This phe-
nomenon may be exacerbated if a large number of centers are involved [45, 48, 98]. On
the other hand, a large shape factor results in well-conditioned computation, but it causes
inaccurate approximation at the same time [45, 48, 98]. It was conventionally believed
that one had to carefully tune the shape factor to strike a balance between accuracy and
stability until some stable RBF algorithms were invented [46, 48].

The stable RBF algorithms can achieve numerical stability without compromising ac-
curacy. They overcome the ill-conditioning problem caused by a small shape factor. To
the best of the author’s knowledge, four stable RBF algorithms have been proposed in the
numerical analysis community up to now, i.e., RBF Contour-Padé (RBF-CP) [48], RBF
Rational Approximation (RBF-RA) [179], RBF-GA [46], and RBF-QR [45]. The RBF-CP
algorithm resolves the ill-conditioning arising from a small shape factor by removing the
restriction that the shape factor has to be a real number. The RBF-CP approximation
function consists of a rational function in ε and power series in ε to achieve stable com-
putation with a near-flat basis. It uses fast Fourier transfer, Laurent expansion, and Padé
rational form [48] to derive the RBF-CP. However, this algorithm is computationally ex-
pensive and can only approximate a limited number of centers (e.g., less than a hundred
in 2D and a few hundred in 3D) [46, 48, 179]. The RBF-RA algorithm is based on vector-
value rational approximation, which is similar to the RBF-CP. But the RBF-RA computes
the rational approximation by constructing a coupled over-determined linear system that
contains the shape factor [179]. Although the RBF-RA is more accurate, robust, and
computationally efficient than the RBF-CP, it can only interpolate up to approximately
a hundred points in 2D and a few hundred in 3D [46, 179]. The RBF-GA algorithm is
specifically based on the Gaussian kernel and aims to improve the radial basis function-
generated finite difference (RBF-FD) method. It transforms an ill-conditioned RBF-Direct
basis to a well-conditioned RBF-GA basis using the incomplete gamma function without
truncating an infinite expansion. However, the RBF-GA can only interpolate a few hun-
dred nodal points in 2D and about five hundred in 3D. Furthermore, its differentiation is
complex because it is based on a modified Gaussian basis and the differentiation matrix
is not straightforward [46]. Although these three algorithms are applicable in approxima-
tion to achieve stable computation, they suffer from various issues and are not the optimal
choices for flow field reconstruction.

In this thesis, the RBF-QR has been chosen as the stable RBF algorithm in the CLS-
RBF method. The RBF-QR is proposed by Fornberg et al. [45]. Unlike the RBF-CP and
RBF-RA, which use vector-valued rational approximation, the RBF-QR is based on the
idea that the ill-conditioned basis can be spun to a well-conditioned one while maintaining
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the same approximation space. In the RBF-QR, the RBF-Direct basis matrix Φ(ε, r) is
converted to a more stable basis matrix Ψ(ε, r) by a process of factorization, Taylor ex-
pansion, coordinate conversion, and Chebyshev polynomial substitution. The new basis
matrix Ψ(ε, r) enjoys well-conditioning and stability for ε → 0. Unlike the RBF-Direct,
the RBF-QR is capable of approximating straight lines when using proper expansion coef-
ficients, while the RBF-Direct cannot achieve this approximation because of the limitation
in kernel profiles (see Figure 3.1 and Figure 3.2 for comparison). The RBF-QR can inter-
polate more points than the RBF-CP, RBF-GA, and RBF-RA, up to thousands of points
in 2D and 3D. Therefore, the RBF-QR stands out among stable RBFs and becomes the
core algorithm in the CLS-RBF method. More details about the RBF-QR can be found
in [45, 98, 99].

Applying the RBF-QR in interpolation and differentiation is straightforward and similar
to that of the RBF-Direct. In practice, an RBF-Direct basis matrix Φ can be directly
replaced by a corresponding RBF-QR basis matrix Ψ. Similar to Eqns. (3.2) and (3.3),
the RBF-QR interpolation function s̃(x) and its differentiation function s̃D(x) are

s̃(x) = Ψ(x)λ

s̃D(x) = ΨD(x)λ
, (3.6)

respectively, where Ψ(x) is an RBF-QR basis matrix and ΨD(x) is an RBF-QR differenti-
ation basis matrix. The same as the RBF-Direct, the expansion coefficient of the RBF-QR
is the key to interpolation and differentiation. The vector of expansion coefficients λ is
calculated by forcing s̃(x̂c

i ) = f̂ c:

s̃(x)|x̂c
i
= s̃(x̂c

i ) = f̂ c

f̂ c = Bλ

λ = B−1f̂ c

, (3.7)

where the RBF-QR system matrix B has entries: Bij = ψ
(
ε,
∥∥x̂c

i − x̂c
j

∥∥), i, j = 1, 2, . . . , N .
Then the vector of expansion coefficients λ is substituted to Eqn. (3.6). Up to now, the
interpolation and differentiation based on the RBF-QR is completed.

3.2 Constrained Least Squares RBF-QR

Interpolation is not ideal for Lagrangian flow field reconstruction. Interpolation requires
the reconstructed functions to pass through every single data point, implying that the
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data are assumed to be fully trustworthy. However, the LPT data are contaminated in
experiments, and forcing the interpolant to precisely pass through these inaccurate data is
unnecessary and, perhaps, inappropriate. Besides, interpolation may suffer from unstable
computation, especially in high-gradient regions. Numerical oscillation may occur in these
areas and lead to divergence in computation and/or inaccuracy in results. Furthermore, it
is almost impossible for interpolation to impose physical constraints as the interpolant is
solely determined by the given data, and forcing any constraints may lead to an ill-posed
problem. On the contrary, the CLS does not require the reconstructed functions to pass
through every given data point. This relaxation provides two key benefits: i) smooth and
stable reconstruction even in the presence of contaminated data; ii) realistic reconstruction
by imposing physical constraints. Therefore, in this thesis, the CLS algorithm has been
chosen, instead of interpolation.

In the CLS-RBF method, the CLS and RBF-QR are two foundational building blocks
serving different roles. The RBF-QR is a model function for Lagrangian flow field recon-
struction. The model function is essentially a trial function that approximates the ‘true’
trajectory, velocity, and velocity gradient functions in flow fields. The CLS is a framework
for approximation. It is compatible with various model functions, such as polynomials,
splines, and RBFs. Under the CLS framework, the model functions fit given data, in-
stead of interpolating them. The model functions can also be enforced by constraints. In
summary, the CLS provides a platform for the RBF-QR, in which the RBF-QR is used
as model functions to approximate ‘true’ Lagrangian flow fields, with smooth fitting and
physical constraints enforcement.1

3.2.1 Constrained least squares RBF-QR

In this section, the least squares algorithm without constraints is discussed first, and then
constraints are imposed. The least squares algorithm minimizes the total residuals between
model functions and measurements, and it is widely used for regression [36, 39, 49], system
identification [8, 26, 170], and machine learning [18, 19, 168], etc. In the context of the least
squares (LS) RBF-QR, the model function is specified as the RBF-QR. The same as RBF-
Direct and RBF-QR interpolation, the key to RBF-QR fitting is finding the corresponding
expansion coefficients. To calculate the vector of expansion coefficients λ, a residual R

1The basic assumption of using RBF-QR is that the flow fields can be described by a continuous
function. However, in the case of high-speed and compressible fluid flows, discontinuities such as shock
waves can occur, rendering this assumption invalid.
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between measurements and the model functions is minimized:

min R =
N∑
i

∥∥∥s̃(x̂c
i )− f̂ c

i

∥∥∥2

, (3.8)

where f̂ c
i is the given scalar data at center i from measurement and s̃(x̂c

i=1) = Bλ|x̂c
i
is

the reconstructed value of the RBF-QR model function at the same location as the center
i, N is the number of the centers. Eqn. (3.8) is an objective function in the context
of optimization. Note that s̃(x̂c

i ) = Bλ|x̂c
i
is different from s̃(x̂c

i ) = B(x̂c
i )λ because

s̃(x̂c
i ) = Bλ|x̂c

i
is a generalized RBF-QR approximation function at a center x̂c

i , regardless
of interpolation or fitting, while s̃(x̂c

i ) = B(x̂c
i )λ is specified as the RBF-QR interpolation

at x̂c
i based on Eqn. (3.6). To calculate λ, the extrema of R should be found by setting

the gradient of R with respect to λ to zero (i.e., ∂R/∂λ = 0, [42, 52, 99]). Consequently,
the vector of expansion coefficients is:

λ = (BTB)−1BTf̂ c. (3.9)

Like the RBF interpolation, once the vector of expansion coefficients λ is computed, the
RBF-QR least squares fitting is almost completed.

However, different from the RBF interpolation, a ‘trick’ needs to be applied here to
achieve a proper fitting. As shown in Eqn. (3.9), the RBF-QR system matrix B must be
non-squared, otherwise (BTB)−1BT reduces to B−1, in which least squares fitting turns
to interpolation. To implement least squares fittings, reference points are introduced in
computation [42, 98, 99]. M reference points xref

j ∈ Rd, j = 1, 2, . . . ,M are created in
the domain Ω. Some details about the reference points and other points will be discussed
shortly. The RBF-QR system matrix B is constructed using M reference points xref

j and
N centers x̂c

i , with entries:
Bij = ψ

(
ε,
∥∥x̂c

i − xref
j

∥∥) , (3.10)

where ψ is an RBF-QR kernel, i = 1, 2, . . . , N and j = 1, 2, . . . ,M . The ratio of the number
of centers N and reference pointsM is the over-sampling ratio η = N/M . An oversampling
ratio that is larger than unity (i.e., η > 1) is required to formulate an over-determined
mapping for regression [98, 99, 103]. After constructing the non-squared RBF-QR system
matrix B, the vector of expansion coefficients λ is calculated by Eqn. (3.9).

With the known expansion coefficient λ, the RBF-QR fitting and differential approx-
imation functions are calculated using corresponding matrices. The RBF-QR evaluation
matrix E and its differentiation matrix ED are mapped between P evaluation points
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xeva
k ∈ Rd and M reference points xref

j with entries:

E = Ekj = ψ
(
ε,
∥∥xeva

k − xref
j

∥∥) ,
ED = ED,kj = ψD

(
ε,
∥∥xeva

k − xref
j

∥∥) , (3.11)

where j = 1, 2, . . . ,M and k = 1, 2, . . . , P . The least squares RBF-QR approximation
function is given by:

s̃(x) = Eλ = EB+f̂ c, (3.12)

where B+ = (BTB)−1BT is generalized inverse of B constructed in Eqn. (3.10). For stable
differentiation computation, QR-factorization of B+ = QR∗ is recommended and least
squares RBF-QR differentiation function accordingly is [98, 99]:

s̃D(x) = EDλ = EDR
∗−1QTf̂ c. (3.13)

After constructing evaluation matrices and calculating the least squares RBF-QR approx-
imation functions, flow fields can be approximated by RBF-QR model functions.

21



Figure 3.2: A demonstration of least squares RBF-QR fitting using centers and reference
points in one dimension. Gray solid curves: the ground truth from exact solutions; blue
solid curves: RBF-QR reconstruction results; dashed curves: least squares RBF-QR bases;
orange crosses: given data that are sampled from the ground truth with random pertur-
bation; scarlet crosses: the x coordinates of the reference points; blue dots: reconstruction
results at the evaluation points. (a): 1D RBF-QR interpolation (a special case of least
squares fitting when reference points and centers share the same x coordinates); (b): 1D
least squares RBF-QR fitting. Note that only the x coordinates of the reference points are
marked for visualization. In the least squares fitting, only the coordinates of the reference
points are required (e.g., x = π in this case). However, both coordinates and values are
used for the centers and evaluation points (e.g., (x, y) = (π, 0.5) in this case).

Up to now, three types of points are introduced, i.e., centers, evaluation points, and
reference points. These three types of points play different roles in the computation. Data
sets in one dimension (1D) are used to demonstrate the concepts of these points (see
Figure 3.2 for illustration). Centers x̂c (orange crosses) are the location where the data are
measured. The locations of centers are determined by experimental measurement and are
usually ‘randomly’ distributed in the domain in the case of an LPT experiment. f̂ c are the
data measured at centers x̂c. Reference points xref (scarlet crosses) are imaginary points
that are intentionally added to the domain. A linear combination of basis functions centered
at the reference points (see dashed curves in Figure 3.2(b)) is expected to approximate the
data located at centers. The number of reference points should be smaller than that
of the centers, corresponding to an over-sampling ratio larger than unity, to implement
a regression. This linear combination of these basis functions results in a continuous

22



function (i.e., the approximation function s̃(x), see the blue solid curves) that allows
evaluating at an arbitrary location in the domain. The location where s̃(x) is evaluated is
the location of evaluation points xeva. There is no limitation to the number or the location
of the evaluation points. If the evaluation points are densely placed in the domain, super-
resolution can be achieved (see blue dots). Similarly, down-sampling can be executed
on demand. If the evaluation points are placed at the centers, direct evaluation at the
Lagrangian data locations is achieved. All these three types of points work together to
reconstruct flow fields in the CLS-RBF method. These three types of points are also used
in the CLS framework.

Next, the CLS RBF-QR algorithm is constructed based on the least squares RBF-QR
with additional constraints. To derive the CLS RBF-QR algorithm, an equality constraint
Cλ = d is added to Eqn. (3.8):

min R =
N∑
i

∥∥∥s̃(x̂c
i )− f̂ c

i

∥∥∥2

,

subject to Cλ = d,

(3.14)

where C is a generalized RBF-QR constraint matrix, d is a column vector of corresponding
constraint values. The RBF-QR constraint matrix C is constructed using M reference
points xref and J constraint points xcst. The constraint points can be arbitrarily placed in
the domain to enforce constraints at any location. In this thesis, constraints are enforced
at the same locations as the centers, i.e., xcst

l = x̂c
j, l = j = 1, 2, . . . , N , and N = J . The

matrix C can be a constraint matrix CO associated with fixed function values and/or a
differentiation constraint matrix CD for function derivatives2:

CO = CO,lj = ψ
(
ε,
∥∥xcst

l − xref
j

∥∥)
CD = CD,lj = ψD

(
ε,
∥∥xcst

l − xref
j

∥∥), (3.15)

where j = 1, 2, . . . ,M , l = 1, 2, . . . , J . To calculate the vector of expansion coefficients λ
in Eqn. (3.14), a new Lagrangian objective function is formulated by:

L(λ,λ∗) = R+ λ∗(Cλ− d), (3.16)

where λ∗ = (λ∗1, λ
∗
2, . . . , λ

∗
J)

T is the vector of Lagrangian multipliers. By setting the gradi-

2If the constraints are applied on the boundary, the CO constraint can be thought of as an analogy to
Dirichlet boundary conditions (BCs), whereas the CD constraint is analogous to Neumann BCs.
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ent of L with respect to λ and λ∗ to zero, respectively, a linear system is obtained:

∂L(λ,λ∗)

∂λ
= 0 = λTBT(x̂c

i )B(x̂c
i )− f̂ cTB(x̂c

i ) + λ∗C

∂L(λ,λ∗)

∂λ∗ = 0 = Cλ− d

. (3.17)

Note that, here, s̃(x̂c
i ) = Bλ|x̂c

i
is equivalent to s̃(x̂c

i ) = B(x̂c
i )λ because B is formulated

between centers and reference points, instead of centers and centers. Eqn. (3.17) can be
written in a matrix form: [

G CT

C 0

] [
λ
λ∗

]
=

[
F
d

]
, (3.18)

where G = BT(x̂c
i )B(x̂c

i ) is an integrated RBF-QR system matrix and F = BT(x̂c
i )f̂

c is
an integrated RBF-QR value matrix. Now, the vector of expansion coefficients λ can be
extracted from the vector [λ,λ∗]T that is calculated in Eqn. (3.18). With the known vector
of expansion coefficients λ, a generalized CLS RBF-QR fitting and differential approxima-
tion is completed using Eqns. (3.12) and (3.13), respectively. With the above preparation,
a generalized framework based on the CLS and RBF-QR is ready to be extended and
applied in a 3D vector field.

3.2.2 3D extension with divergence-free constraints

To apply the generalized CLS RBF-QR framework in 3D flow field reconstruction, an
extension of Eqn. (3.18) is necessary. This is because (i) the given values at centers in 3D
flow fields are velocity vectors U = (u, v, w)T instead of scalars; (ii) the velocity divergence-
free constraint in 3D consists of spatial differentiation in all three directions instead of one.

The extension of Eqn. (3.18) is straightforward: each element in the block matrix of
Eqn. (3.18) is extended to a new block matrix that contains similar elements for the three
directions in a 3D space. On the left-hand side of Eqn. (3.18), a new constraint block
matrix C̄ is given by:

C̄ =
[
Cx Cy Cz

]
, (3.19)

where Cx, Cy, and Cz are first-order spatial differential constraint matrices in the x, y,
and z directions, respectively. The constraint matrices Cx, Cy, and Cz are calculated by
Eqn. (3.15). The matrix G is extended to a diagonal block matrix Ḡ:

Ḡ =

BTB
BTB

BTB

 . (3.20)
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Similarly, on the right-hand side of Eqn. (3.18), the vector of given values at the centers
becomes:

f̂ c =
(
u,v,w

)T
, (3.21)

where u, v, and w are the column vectors consisting of velocity components at centers in
the x, y, and z directions, respectively. For example, in the x direction,

u =
(
u1, u2, ...uN

)T
, (3.22)

where N is the number of centers. The matrix F is extended to

F̄ =

BT

BT

BT

 f̂ c, (3.23)

where f̂ c is from Eqn. (3.21) and F̄ has the dimensions of 3M×1. d is a null column vector
with dimensions of J × 1 so that the divergence is zero at the constraint points. These
extensions guarantee that the extended Eqn. (3.18) is compatible with a 3D flow field and
divergence-free constraints. Other constraints and flow reconstruction tasks in 2D can be
implemented in a similar way.

The same as the interpolation and fitting approximation discussed earlier, the vector
of expansion coefficients λ needs to be calculated and used for the final evaluation. After

extending each block in Eqn. (3.18), the vector
[
λ̄,λ∗]T is calculated by:[

λ̄
λ∗

]
=

[
Ḡ C̄T

C̄ 0

]−1 [
F̄
d

]
, (3.24)

where λ̄ is an extended expansion coefficient vector with entries λ̄ = (λx,λy,λz)
T and the

dimensions of 3M × 1. λx, λy, and λz are expansion coefficient vectors in the x, y, and
z directions, respectively. Extract λ̄ from [λ̄,λ∗]T and the CLS RBF-QR approximation
function s̃(x) and differentiation functions s̃D(x) are

s̃(x) = Ēλ̄

s̃D(x) = ĒDλ̄
, (3.25)

respectively, where Ē and ĒD are extended diagonal block matrices based on E and ED in
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Eqn. (3.11):

Ē =

E E
E


ĒD =

ED
ED

ED

, (3.26)

respectively. Up to this point, a framework based on the CLS and RBF-QR is established
for 3D Lagrangian flow fields with divergence-free constraints.
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Chapter 4

CLS-RBF Lagrangian Reconstruction

In this chapter, the CLS-RBF Lagrangian reconstruction method will be elaborated, focus-
ing on computing particle trajectories, velocities, and differential quantities based on the
CLS and RBF-QR framework introduced in Chapter 3. In Section 4.1, four steps of the
CLS-RBF method are introduced. Super-resolution, as a byproduct, and the choice of op-
timal parameters will also be discussed in Section 4.1. Section 4.2 will focus on computing
differential quantities such as strain- and rotation-rate tensors.

4.1 CLS-RBF Lagrangian Reconstruction

In this section, the CLS-RBF Lagrangian reconstruction method and its four steps are
presented. Before delving into the details of the CLS-RBF method, the structure of the
raw LPT data must be discussed first in the context of this method. The CLS-RBF method
concerns using the ‘raw’ data from LPT systems, in which only the spatial coordinates of
each particle in each frame are recorded. In the space dimension, in each frame, a particle
location in the flow domain Ω is described as scattered coordinates in space, which is called
a spatial center hereafter: x̂c

i = (x̂ci , ŷ
c
i , ẑ

c
i ), i ∈ {1, 2, . . . , N}, where N is the number of

spatial centers in the domain. The number of spatial centers is equal to the number of
particles measured by LPT experiments in the field of view unless down-sampled. In the
time dimension, for each particle, a time instant t̂cκ, κ ∈ {1, 2, . . . , Ntrj} in a time sequence
t̂c = (t̂c1, t̂

c
2, . . . , t̂

c
Ntrj

)T is called a temporal center, where Ntrj is the number of frames. The

time sequence t̂c is presumed to have equal interval ∆t, i.e., ∆t = t̂cκ+1 − t̂cκ = const, in
this thesis for convenience. Hereafter, x is reserved for particle spatial coordinates (e.g.,
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x = (x, y, z)), and t is reserved for time. In summary, the CLS-RBF method uses raw
LPT data that only contain spatial coordinate data x and the corresponding time t as the
input for the reconstruction.

Figure 4.1: A flowchart illustrating the four steps of the CLS-RBF Lagrangian reconstruc-
tion method.

Starting with these raw LPT data, the CLS-RBF method reconstructs a 3D flow field
via four steps, which are outlined briefly in a flowchart (see Figure 4.1). A diagram1 is
used to illustrate the input and output of each step (see Figure 4.2). As Figure 4.2 shows,
the gray dots represent the raw LPT data as the input of the CLS-RBF method. In Step 1,
for each particle along its pathline, the trajectories (green dashed curves) and velocities
(green dashed arrows) are calculated based on the input LPT data (gray dots). This recon-
struction directly uses the 1D least squares (LS) RBF-QR without any constraints. The
velocities are obtained by taking the first-order temporal differentiation of the trajectories.
The intersections of the trajectories and frames are the modified particle locations (green

1Only four frames in a 2D domain are drawn in this example for demonstration purposes.
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crosses). In Step 2, for all particles in each frame, based on the modified particle locations
(green crosses) and initialized velocities (green dashed arrows), intermediate divergence-
free velocity fields (blue solid arrows) are calculated using the 3D CLS RBF-QR algorithm.
In Step 3, the locations of each particle are updated (indicated by the red crosses), by re-
placing the expansion coefficients of initialized trajectory functions in Step 1 with the
corresponding expansion coefficients that are based on the intermediate divergence-free
velocity fields. In Step 4, for all particles in each frame, the final divergence-free velocity
fields (red solid arrows) and trajectories (red solid curves) are reconstructed based on the
updated particle locations (red crosses) and the intermediate divergence-free velocity fields
(blue solid arrows) using the 3D CLS RBF-QR algorithm again. The differential quantities
are also output in Step 4 but they are not shown in Figure 4.2. After these four steps, the
CLS-RBF Lagrangian reconstruction is completed. A detailed mathematical description
of each step is provided in Sections 4.1.1 – 4.1.4.

Figure 4.2: A 2D demonstration of the CLS-RBF Lagrangian reconstruction method. The
input and output data in each step are represented by symbols (for particle locations),
arrows (for velocity vectors), and curves (for particle trajectories).
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4.1.1 Step 1: initialize particle trajectory and velocity

The trajectories and velocities are initialized using the one-dimensional (1D) least squares
(LS) RBF-QR algorithm for each particle along its pathline. For example, for a specific
particle in the x direction, its spatial coordinates2 x̂ = (x̂1, x̂2, . . . , x̂Ntrj

)T are given at Ntrj

temporal centers (frames) t̂c = (t̂c1, t̂
c
2, . . . , t̂

c
Ntrj

)T. Based on Eqn. (3.12), the initialized
trajectory function x̃(t) is calculated by the 1D LS RBF-QR:

x̃(teva) = E(teva)λtrj = E(teva)B+(t̂c)x̂, (4.1)

where B+(t̂c) = (BT(t̂c)B(t̂c))−1BT(t̂c) is a generalized inverse of the RBF-QR system
matrixB(t̂c) and teva = (teva1 , teva2 , . . . , tevaPtrj

)T is the column vector of the temporal evaluation

points.3 The matrix B(t̂c) is calculated by Eqn. (3.10) and is formulated between Mtrj

temporal reference points tref = (tref1 , t
ref
2 , . . . , t

ref
Mtrj

)T and Ntrj temporal centers t̂c with

entries: Bij = ψ
(
ε,
∥∥t̂ci − trefj

∥∥), where i = 1, 2, . . . , Ntrj, j = 1, 2, . . . ,Mtrj. The RBF-
QR evaluation matrix E(teva) is calculated by Eqn. (3.11) and is mapped between Ptrj

temporal evaluation points teva and Mtrj temporal reference points tref with entries: Ekj =
ψ
(
ε,
∥∥tevak − trefj

∥∥), where j = 1, 2, . . . ,Mtrj, k = 1, 2, . . . , Ptrj. A temporal oversampling
ratio is defined as η0 = Ntrj/Mtrj. η0 > 1 is a condition to construct an over-determined
system and be solved by the least squares algorithm. The choice of η0 will be discussed in
Section 4.1.6. Now, Eqn. (4.1) can be used to initialize the velocity and acceleration of the
same particle in the x direction along the same pathline.

By definition, the velocity and acceleration functions are the first-order and second-
order temporal differentiation of a trajectory function, respectively. To initialize them,
only the RBF-QR evaluation matrix E(teva) needs to be changed to Et(t

eva) = dE(teva)/dt
and Ett(t

eva) = d2E(teva)/dt2 for the velocity and acceleration evaluation, respectively.
The evaluation matrices Et(t

eva) and Ett(t
eva) are constructed using Eqn. (3.11). Based on

Eqn. (4.1), the LS RBF-QR velocity and acceleration functions are given by:

ũ(teva) = Et(t
eva)λtrj = Et(t

eva)B+(t̂c)x̂

ã(teva) = Ett(t
eva)λtrj = Ett(t

eva)B+(t̂c)x̂
, (4.2)

respectively. Initializing trajectories, velocities, and accelerations in the y and z directions
follow a similar procedure as that in the x direction. In this thesis, the acceleration of

2Note that x̂ = (x̂1, x̂2, . . . , x̂Ntrj
)T is different from x̂c

i : the vector x̂ denotes one particle’s spatial
coordinates in the x direction along its pathline while x̂c

i = (x̂c
i , ŷ

c
i , ẑ

c
i ) represents one particle’s 3D spatial

coordinates in one frame.
3Note that, the vector teva should at least contain the temporal evaluation points that coincide with

all temporal centers; thus, the particle locations in the measured frames are re-calculated as well.
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particles will be left for future work. Once the velocities along each pathline are initialized
for all particles, the velocity field in each frame is also known in turn. Up to now, initializing
particle trajectories and velocities is completed.

During the initialization, spatial centers have been modified. The spatial centers x̂c
i =

(x̂ci , ŷ
c
i , ẑ

c
i ) in the raw LPT data (gray dots in Figure 4.2) have been adjusted to x̃c

i =
(x̃ci , ỹ

c
i , z̃

c
i ), i ∈ {1, 2, . . . , N} in Step 1 (green crosses in Figure 4.2), because of the use of

the least squares fitting in Eqn. (4.1). Hereafter, x̃c
i is called the modified spatial centers.

Accordingly, the output velocity vector (green dashed arrows in Figure 4.2) at a modified
spatial center x̃c

i in the κ-th frame is written as Ũ(tκ)|x̃c
i
= (ũ(tκ), ṽ(tκ), w̃(tκ))

T|x̃c
i
, where

the velocity components are calculated based on Eqn. (4.2). The modified spatial center
x̃c
i can be viewed as the intersection of the initialized trajectory (green dashed curves in

Figure 4.2) and the κ-th frame. The initialized trajectories passing through the modified
spatial centers x̃c

i are expected to be smooth and close to the true particle pathlines. From
now on, the spatial centers from the raw LPT data are not used anymore and they are
replaced by the modified spatial centers.

4.1.2 Step 2: calculate intermediate velocity field

Step 2 computes an intermediate divergence-free velocity field in each frame using the
3D CLS RBF-QR algorithm. The input data of Step 2 are the modified spatial centers
and initialized velocity fields, which both are the output from Step 1. To reconstruct the
intermediate divergence-free velocity field, all relevant matrices are constructed in each
frame using the modified spatial centers. Based on Eqn. (3.10) and in the κ-th frame, an
RBF-QR spatial system matrix B(x̃c) is formulated based on N modified spatial centers
x̃c
i and M spatial reference points xref

j :

B(x̃c) = Bij = ψ
(
ε,
∥∥x̃c

i − xref
j

∥∥)
= ψ

(
ε,
∥∥(x̃, ỹ, z̃)ci − (x, y, z)refj

∥∥) , (4.3)

where x̃c = [x̃c
1, x̃

c
2, . . . , x̃

c
i , . . . , x̃

c
N ]

T, x̃c
i = (x̃, ỹ, z̃)ci is calculated by Eqn. (4.1) in the

κ-th frame; xref
j = (x, y, z)refj , i = 1, 2, . . . , N , and j = 1, 2, . . . ,M . Based on Eqn. (3.15),

an RBF-QR spatial differential constraint matrix CD is established between J constraint
points xcst

l and M spatial reference points xref
j :

CD = CD,lj = ψD
(
ε,
∥∥xcst

l − xref
l

∥∥)
= ψD

(
ε,
∥∥(x, y, z)cstl − (x, y, z)refj

∥∥) , (4.4)
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where xcst
l = (x, y, z)cstl and l = 1, 2, . . . , J . In this step, the constraint points are placed

at the same locations as the modified spatial centers. This implies that divergence-free
constraints are only enforced at the particle locations measured by LPT experiments. The
RBF-QR spatial evaluation matrix E(xeva) and its differentiation matrix ED(x

eva) are
constructed between P spatial evaluation points xeva

k and M spatial reference points xref
j :

E(xeva) = Ekj = ψ
(
ε,
∥∥xeva

k − xref
j

∥∥)
= ψ

(
ε,
∥∥(x, y, z)evak − (x, y, z)refj

∥∥) ,
ED(x

eva) = ED,kj = ψD
(
ε,
∥∥xeva

k − xref
j

∥∥)
= ψD

(
ε,
∥∥(x, y, z)evak − (x, y, z)refj

∥∥) ,
(4.5)

where xeva = [xeva
1 ,xeva

2 , . . . ,xeva
k , . . . ,xeva

P ]T, xeva
k = (x, y, z)evak , and k = 1, 2, . . . , P . In this

step, the evaluation points are also placed at the same locations as that of the modified
spatial centers, since in Step 3, only the modified spatial centers need to be updated. Once
the above matrices are constructed, they are used to calculate the expansion coefficients.

To calculate the expansion coefficients, the same matrix extensions outlined in Sec-
tion 3.2.2 are performed. The extended matrices Ḡ, C̄, and F̄ in Eqn. (3.24) are con-
structed based on matrices in Eqns. (4.3) and (4.4). The expansion coefficient λ̄ is then
calculated using Eqn. (3.24). Once λ̄ is solved, the intermediate divergence-free velocity
vector field Ũdiv

κ = (ũdiv
κ , ṽdiv

κ , w̃div
κ )T (blue solid arrows in Figure 4.2) in the κ-th frame is

calculated based on Eqn. (3.25):

Ũdiv
κ (xeva) = Ēλ̄, (4.6)

where Ē is constructed based on the matrices in Eqn. (4.5). The column vectors of velocity
components ũdiv

κ (i.e., ũdiv
κ = (ũdiv1 , ũdiv2 , . . . , ũdivN )T|κ), ṽdiv

κ , and w̃div
κ can be extracted from

Ũdiv
κ (xeva). A spatial oversampling ratio in Step 2 is defined as η1 = N/M . η1 should be

larger than one to formulate a regression problem to be solved in the least squares sense.
The choice of η1 will be discussed in Section 4.1.6. So far, the intermediate divergence-free
velocity field has been computed in one frame. The intermediate velocity fields in the other
frames can be calculated in the same way. These intermediate velocity fields will be used
to update particle trajectories in Step 3.

4.1.3 Step 3: update particle location

In Step 3, the particle locations obtained in Step 1 are updated based on the intermediate
divergence-free velocity fields in Step 2. The Step 3 is motivated by the intuition that the

32



velocity initialized in Step 1 using temporal derivatives along a pathline in a frame should
be equal to the intermediate divergence-free velocity reconstructed by Step 2 in the same
frame for the same particle if the flow is incompressible, i.e.,

Ũ(tκ)|x̂c
i
= Ũdiv

κ (x̃c
i ), (4.7)

where Ũ(tκ)|x̂c
i
is the velocity initialized in Step 1 and Ũdiv

κ (x̃c
i ) is the velocity calculated

in Step 2, for the particle i in the κ-th frame. Despite that the initialized velocity is
computed by definition in Step 1, it is not exactly divergence-free. This is because the
initialized trajectories are not necessarily accurate due to the processing and/or the noise
in experiments. One idea to improve the initialized trajectories is to introduce some con-
straints based on physical knowledge. For example, leveraging the divergence-free property
of a velocity field, one can update particle trajectories. Therefore, the updated trajectory4

is expected more accurate than the initial one.

To update trajectories, only the RBF-QR expansion coefficients of trajectories in Step 1
need to be recalculated. The update in the x direction is used as an example here. First, a
linear system is established using a modified trajectory matrix X̃(t̂c) and a divergence-free
velocity matrix Ṽ(x̃c):

X̃(t̂c) = ΛE(t̂c), (4.8a)

Ṽ(x̃c) = ΛEt(t̂
c), (4.8b)

whereΛ is an expansion coefficient matrix to be determined. The matrix X̃(t̂c) is calculated
by Eqn. (4.1) in Step 1. It is based on the modified particle locations and has entries:

X̃(t̂c) =


x̃1(t̂

c
1) x̃1(t̂

c
2) . . . x̃1(t̂

c
Ntrj

)

x̃2(t̂
c
1) x̃2(t̂

c
2) . . . x̃2(t̂

c
Ntrj

)
...

...
. . .

...
x̃N(t̂

c
1) x̃N(t̂

c
2) . . . x̃N(t̂

c
Ntrj

)

 , (4.9)

and dimensions of N ×Ntrj. The matrix Ṽ(x̃c) is calculated by Eqn. (4.6) in Step 2. It is

4To distinguish between the particle trajectories obtained in different steps, the trajectories output
from Step 3 are referred to as ‘updated’ particle trajectory, while the trajectories output from Step 1 are
referred to as ‘initialized’ particle trajectories. This distinction applies to other particle-related quantities
as well, such as ‘updated’ particle locations (red crosses in Figure 4.2).
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based on the corresponding velocity fields and has the entries:

Ṽ(x̃c) =


ũdiv1 (x̃c

1) ũdiv2 (x̃c
1) . . . ũdivNtrj

(x̃c
1)

ũdiv1 (x̃c
2) ũdiv2 (x̃c

2) . . . ũdivNtrj
(x̃c

2)
...

...
. . .

...
ũdiv1 (x̃c

N) ũdiv2 (x̃c
N) . . . ũdivNtrj

(x̃c
N)

 , (4.10)

and dimensions of N × Ntrj. The matrices E(t̂c) and Et(t̂
c) are the same as those in

Eqns. (4.1) and (4.2).

Second, the linear system in Eqns. (4.8a) and (4.8b) can be integrated into an over-
determined system, using one update expansion coefficient matrix Λ:

H = ΛK, (4.11)

where K is an integrated trajectory and velocity evaluation matrix

K =
[
E(t̂c) Et(t̂

c)
]
, (4.12)

with the dimensions of Mtrj × 2Ntrj, and H is an integrated trajectory and velocity matrix

H =
[
X̃(t̂c) Ṽ(x̃c)

]
, (4.13)

with the dimensions of N × 2Ntrj.

Third, the update expansion coefficient matrix Λ is solved by:

Λ = HK+, (4.14)

where K+ = (KTK)−1KT is a generalized inverse of K. The update expansion coefficient
matrix Λ in Eqn. (4.14) has dimensions of N ×Mtrj with entries:

Λ =


λ1,1 λ1,2 . . . λ1,Mtrj

λ2,1 λ2,2 . . . λ2,Mtrj

...
...

. . .
...

λN,1 λN,2 . . . λN,Mtrj

 . (4.15)

In each row of Λ, i.e., Λ = [λtrj
1 ,λ

trj
2 , . . . ,λ

trj
N ]T, the expansion coefficients are used to

approximate a trajectory for a certain particle, while in each column of Λ, i.e., Λ =
[λfrm

1 ,λfrm
2 , . . . ,λfrm

Mtrj
], the expansion coefficients are used to approximate a velocity field

for all particles in a certain frame.
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Last, each row of the expansion coefficient matrix Λ is used to update trajectories. For
example, for a particle i and in the x direction, an updated trajectory x̃up

i (t) is:

x̃up
i (t) = E(t)λtrj

i , (4.16)

where E(t) comes from Step 1. The updated particle trajectory in the y and z directions
follow the same principles as that in the x direction. So far, the particle trajectories are
updated in all three directions in Step 3 and they are expected to be more accurate than
those in Step 1.

In addition to the computational procedure of Step 3, the physical interpretation of
Eqns. (4.8a) and (4.8b) are emphasized here. From the temporal perspective, the La-
grangian trajectory of each particle reconstructed by the 1D LS RBF-QR algorithm (right-
hand side of Eqn. (4.8a)) should follow the modified particle locations (left-hand side of
Eqn. (4.8a), which are the current best estimation based on LPT measurement) as closely
as possible. From the spatial perspective, the flow field at each time instant should respect
physical constraints such as divergence-free. Therefore, the particle velocities initialized by
definition along pathlines (i.e., right-hand side of Eqn. (4.8b), in which velocities are com-
puted by the temporal differentiation of trajectories) should be equal to the divergence-free
velocity field reconstructed by the 3D CLS RBF-QR algorithm in each frame (left-hand
side of Eqn. (4.8b)). By incorporating both velocities along pathlines and divergence-free
velocity fields in frames into one linear system (see Eqn. (4.11)), no ‘discrimination’ is
projected to time and space. The solution of Eqn. (4.11) results in an expansion coefficient
matrix Λ that simultaneously respects the temporal and spatial information (experimental
measurement and physical constraints) of a flow field. This practice estimates trajectories
more accurately than it would be without divergence-free constraints. In summary, Step 3
is the key step in the CLS-RBF method, which intrinsically connects spatial and temporal
dimensions.

4.1.4 Step 4: update final divergence-free velocity field

Step 4 calculates the final divergence-free velocity and differential quantity fields. As the
particle locations are updated in Step 3, the intermediate velocity fields computed in Step 2
are no longer divergence-free at the updated particle locations. To resolve this conflict, the
3D CLS RBF-QR algorithm is applied again to compute a final divergence-free velocity
field at the updated particle locations. Step 4 finalizes the calculation of velocities and
differential quantities that are both used as the output of the CLS-RBF method.

The overall computation in Step 4 is similar to that in Step 2. Step 4 employs the
updated particle trajectories from Step 3 and the intermediate divergence-free velocity
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fields from Step 2 as input. The velocity gradients are calculated based on Eqn. (3.25).
For example, in the x direction, the velocity gradient tensor component ∂ũ/∂x in the κ-th
frame is given by:

∂ũ(x)

∂x

∣∣∣∣
κ

= Ex(x)λκ, (4.17)

where λκ is the vector of the expansion coefficient in the x direction and the κ-th frame. The
vector λκ is calculated in the same way as that in Eqn. (4.6) and is extracted from λ̄. Ex(x)
is the RBF-QR differentiation matrix in the x direction, which is based on Eqn.(4.5). Other
velocity gradient tensor components can be calculated by equations similar to Eqn. (4.17),
with the corresponding differentiation matrices and expansion coefficients. Calculating
other differential quantities (see Section 4.2) is directly based on the velocity gradients.
A spatial oversampling ratio in Step 4 is defined as η2 = N/M , where M is the number
of spatial reference points in Step 4 and N is the number of spatial centers. The optimal
choice of η2 will be discussed shortly. After computing the final velocity and differential
quantity fields, the Lagrangian flow field reconstruction is completed.

4.1.5 Spatial and temporal super-resolution

The CLS-RBF Lagrangian reconstruction method allows for easy spatial and temporal
super-resolution. This means that a divergence-free velocity field is accessible at any time
instant at on-demand spacial resolution without any restraints on the location and ‘seeding
density’ of pseudo-particles. This method can be used as a reliable tool for LPT data
conversion.

To demonstrate the implementation of super-resolution in the CLS-RBF method, a
pseudo-particle is placed at an arbitrary location in the domain (say (xs, ys, zs) ∈ Ω) at
any time instant t between the first and last frames measured by LPT experiments. To
recover its velocity and differential quantity, Step 1 – Step 4 are performed. In Step 1,
locations and velocities of all measured particles are calculated at time t using Eqns. (4.1)
and (4.2), respectively. Next, based on the particle locations and velocities calculated in
Step 1, an intermediate divergence-free velocity field at time t is reconstructed in Step 2.
Then, the particle locations at time t are updated in Step 3 based on the intermediate
velocity fields from Step 2. Last, the final velocities and differential quantities at time t
are calculated based on the updated particle locations from Step 3 and the intermediate
velocity fields from Step 2. Because the final velocity and differential quantity field in Step 4
are described by continuous functions, the velocity and velocity gradient at the location of
the pseudo-particle (xs, ys, zs) can be calculated. The same procedure can be applied to a
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pseudo-particle at any other location and time instant. Since the pseudo-particle location
and time instant are both arbitrary, any number of pseudo-particles can be placed densely
in both space and time, which results in spatiotemporal super-resolution.

4.1.6 Optimal parameter choice

The CLS-RBF method has four free parameters to adjust the performance of reconstruc-
tion. These four free parameters are i) the shape factor ε, ii) the temporal oversampling
ratio η0 in Step 1, iii) the spatial oversampling ratio η1 in Step 2, and iv) the spatial over-
sampling ratio η2 in Step 4. Selecting the optimal parameters requires a rough estimation
of the trajectory curvature and noise in particle spatial coordinates. Based on the tests,
the below suggestions have been made: (a) the shape factor ε can be any small value, such
as 0 < ε ≤ 1×10−4 to ensure high accuracy by virtue of the RBF-QR algorithm. (b) When
particle trajectories have high curvatures, a small η0, such as η0 ∈ [1.5, 5], can resolve the
curved trajectories. (c) When the noise in the particle location is high, large η0, η1, and η2
are preferred for smooth reconstruction and noise suppression. The spatial oversampling
ratios η1 and η2 can be selected between 2.0 and 10.0. (d) In practice, if smooth velocity
and differential quantities are desired, η2 can be slightly larger than η1. In summary, the
optimal parameter choice is empirical and case-dependent for now. Strategies for improving
optimal parameter selection will be discussed in future work (see Chapter 6).

4.2 Differential Quantity Computation

In this section, two types of differential quantities, i.e., strain- and rotation-rate tensors
and coherent structure, are discussed. Section 4.2.1 elaborates on strain- and rotation-
rate tensor calculation. Section 4.2.2 focuses on identifying coherent structures based on
the Q-criterion. Computing these differential quantities is part of Step 4, which follows
the evaluation of velocity gradients. The CLS-RBF method can also be applied to other
quantities based on velocity gradients, such as pressure gradients.

4.2.1 Strain-rate and rotation-rate tensor

Strain-rate and rotation-rate tensors are fluid mechanics quantities that describe the rate
of change of a fluid parcel regarding deformation and rotation, respectively. The strain-rate
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tensor and rotation-rate tensor are the symmetric and anti-symmetric parts of a velocity
gradient, respectively. The velocity gradient in 3D is defined as

∇U = Ui,j =

 ∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 , (4.18)

where U = (u, v, w)T is a velocity vector, i, j = x, y, z by index notation. The velocity
gradient can be decomposed by ∇U = 1

2
(Ui,j + Uj,i) +

1
2
(Ui,j − Uj,i). Based on the above

definitions, the strain-rate tensor S and rotation-rate tensor R are:

S = Sij =
1

2
(Ui,j + Uj,i)

R = Rij =
1

2
(Ui,j − Uj,i)

. (4.19)

The off-diagonal elements of the strain-rate tensor (i.e., Sij (i ̸= j)) describe the shear
deformation of a fluid parcel and the diagonal elements of the strain-rate tensor (i.e., Sii)
represent the compression and expansion. The rotation-rate tensor describes the rate of
rotation along axes. After all components of the velocity gradient tensor Ui,j are calculated
in Step 4, S and R can be evaluated by Eqn. (4.19).

4.2.2 Coherent structure and Q-criterion

The coherent structure is an orderly flow structure that shows spatiotemporal coherence
and is consistent over a sufficiently long time [71, 128, 144]. Vortical structures are perhaps
the most important coherent structures, and they can be recognized by vortex identification
methods. The Q-criterion [70] is one of the vortex identification methods [106, 182]. The
Q-criterion uses the second invariant of the characteristic equation based on eigenvalues of
a velocity gradient tensor to identify vortices. The definition of the Q-criterion is [56, 70]:

Q =
1

2
(
∥∥R2

∥∥−
∥∥S2

∥∥) > 0, (4.20)

where R is the rotation-rate tensor, and S is the strain-rate tensor. Q > 0 indicates that
the rotation is stronger than non-rotational motion [56, 70, 77, 181]. After S and R are
calculated by Eqn. (4.19), vortices can be found using Eqn. (4.20).
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Chapter 5

Results and Discussions

In this chapter, validations and verification using the CLS-RBF Lagrangian reconstruction
method will be presented. In Section 5.1, synthetic data generation and reconstruction
error evaluation are discussed. Section 5.2 elaborates on several baseline algorithms used
for benchmarking. Sections 5.3 and 5.4 provide validations and verification of the CLS-RBF
method, respectively.

5.1 Synthetic Data and Error Evaluation

5.1.1 Synthetic data generation

To simulate LPT data measured by experiments, synthetic data are generated by adding
artificial noise to the ground truth based on exact solutions. The Taylor-Green vortex
(TGV) and Arnold-Beltrami-Childress (ABC) flow are adopted as exact solutions for flow
fields. Both the TGV and ABC flows are governed by the incompressible Navier-Stokes
equations, which will be detailed in each validation case. The ground truth is essentially
particle trajectory data that consist of particle spatial coordinates and their corresponding
time information. To generate such trajectories, the velocity of a particle is integrated
using a small time increment along its pathline starting from an initial location. A certain
number of particles are randomly placed in the flow domain Ω in the first snapshot. The
particle locations in the (κ + 1)-th snapshot are calculated by the forward Euler method
with small time step δt:

xκ+1 = xκ + δt ·Uκ, (5.1)
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where xκ+1 = (xκ+1, yκ+1, zκ+1) is the particle location in the (κ + 1)-th snapshot, xκ =
(xκ, yκ, zκ) is the particle location in the κ-th snapshot, Uκ = (uκ, vκ, wκ) is the velocity
evaluated by the exact solution in the κ-th snapshot. After the integration, particle trajec-
tories based on small time intervals between snapshots (usually the number of snapshots is
more than ten thousand) are obtained with high spatial and temporal accuracy. The above
trajectory is down-sampled to generate the ground truth for the synthetic LPT data. A
certain number of frames with an equal time interval ∆t is chosen from the snapshots. In
this thesis, the number of frames is chosen to be 11. The frame interval is much larger than
that in the snapshots (i.e., ∆t≫ δt), and this practice simulates the real LPT experiments
with finite resolution in time. So far, the down-sampled ground truth is obtained and they
can be imposed with artificial noise.

The artificial noise is added to the particle spatial coordinates of the ground truth. The
artificial noise is zero-mean Gaussian noise whose standard deviation σ is proportional to
the spatial span of the domain in one direction. For example, in the x direction, the
standard deviation σ of the noise is σ = ξL, where ξ is the noise level, L is the spatial
span of the domain in the x direction. The standard deviation of artificial noise in the
y and z directions is assumed the same as that in the x direction for convenience in the
scope of this thesis. ξ = 0.1% or ξ = 1% are chosen to represent typical low and high noise
levels in an LPT experiment. Hereafter, the two noise levels are called 0.1% and 1% noise,
respectively. A flowchart of the synthetic data generation is presented in Figure 5.1. Up
to now, the synthetic data can be used to validate the CLS-RBF method.

5.1.2 Error evaluation

The relative errors in particle location, velocity, and velocity gradient reconstruction are
quantified to assess reconstruction quality. The relative error E is defined as:

E =

∣∣∣f̃ − f0

∣∣∣
∥f0∥L∞(Ω)

× 100% (5.2)

where f0 is the ground truth based on the exact solution and f̃ is the reconstruction
result, Ω is the computation domain. The statistics (i.e., mean, standard derivation, and
maximum) of the logarithm of the relative error (log10 E) are also evaluated for errors with
large variation.
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Figure 5.1: A flowchart of synthetic data generation.

5.2 Baseline Algorithms

Particle trajectories and velocities reconstructed by six ‘baseline’ algorithms are used
for benchmarking. Most of the baseline algorithms have been widely used in the LPT
community for trajectory and velocity reconstruction. The six baseline algorithms are:
(i) first-order finite difference method (1st FDM) [79, 80], (ii) second-order finite difference
method (2nd FDM) [10, 111], (iii) second-order least squares polynomial fitting (2nd LS-
POLY) [29, 130], (iv) third-order least squares polynomial fitting (3rd LS-POLY) [29, 63],
(v) fourth-order least square polynomials fitting (4th LS-POLY) [43], and (vi) ninth-order
least squares polynomial fitting (9th LS-POLY). Note that, the 9th LS-POLY method
has not yet been used to reconstruct particle trajectories and velocities in the LPT com-
munity. In this thesis, it has been chosen to compare reconstruction results with the
CLS-RBF reconstruction especially when the trajectory has high curvature. The detailed
implementation of these baseline algorithms can be found in Appendix A.

41



5.3 Validation

Section 5.3.1 discusses the reconstruction parameters that were used for synthetic data
generation and Lagrangian flow field reconstruction. Section 5.3.2 analyzes trajectory and
velocity reconstruction results. Section 5.3.3 discusses differential quantity reconstruction
results.

5.3.1 Synthetic flows and parameters

For the synthetic data generation, a specific exact solution of a velocity field is determined.
In the 2D validation, the Taylor-Green vortex (TGV) [165] is adopted. The velocity com-
ponents of the 2D TGV are given by [165]:

u = α1 sin(ωx) cos(ωy)

v = α2 cos(ωx) sin(ωy)
, (5.3)

where α1 = 1 and α2 = −1 are the amplitudes and ω = 2π is the spatial frequency of
the 2D TGV. In the 3D validation, the TGV and ABC flow fields are used. The velocity
components of the 3D TGV flow field are given by:

u =α1 cos (ω(x− dx)) sin (ω(y − dy)) sin (ω(z − dz))

v =α2 sin (ω(x− dx)) cos (ω(y − dy)) sin (ω(z − dz))

w =α3 sin (ω(x− dx)) sin (ω(y − dy)) cos (ω(z − dz))

, (5.4)

where α1 = 0.5, α2 = 0.5, α3 = −1, and ω = 2π; dx = 0.25, dy = 0.25 and dz = 0.25 are
displacements of the TGV flow structure in the x, y and z directions, respectively. The
velocity components of the 3D ABC flow are given by [37, 183]:

u = α[sin (ωz) + cos (ωy)]

v = α[sin (ωx) + cos (ωz)]

w = α[sin (ωy) + cos (ωx)]

, (5.5)

where α = 0.1 and ω = 8π. Following the steps described in Section 5.1.1, synthetic
data are generated. The corresponding velocity functions (e.g., Eqns. (5.3), (5.4), and
(5.5)) are used to calculate velocity fields in Eqn. (5.1). The parameters for synthetic data
generation of each validation can be found in Table 5.1. The parameters used for CLS-RBF
Lagrangian reconstruction are listed in Table 5.2. With these parameters, the CLS-RBF
Lagrangian reconstruction can be conducted in 2D and 3D validations.
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Table 5.1: Parameters for synthetic data generation.

Case N x× y × z ∆t δt Nsns

2D TGV 500 [0, 1]2 0.1 5× 10−7 2× 106

3D TGV 700 [0, 0.5]3 0.1 5× 10−6 2× 105

3D ABC 800 [0, 0.5]3 0.05 5× 10−6 1× 105

N : number of particles in each frame
x× y × z: domain dimensions, e.g., x× y × z ∈ [0, 1]3 = [0, 1]× [0, 1]× [0, 1]
∆t: time interval between two consecutive frames
δt: time interval between two consecutive snapshots
Nsns: number of snapshots

Table 5.2: Parameters for CLS-RBF Lagrangian reconstruction.

Case ξ ε η0 η1 η2

2D TGV
0.1% 1× 10−4 11/9 6 6
1.0% 1× 10−4 11/6 6 8

3D TGV
0.1% 1× 10−4 11/8 5 9
1.0% 1× 10−4 11/6 8 8

3D ABC
0.1% 1× 10−4 11/5 2.5 2.5
1.0% 1× 10−4 11/4 3 3

ξ: noise level
ε: shape factor
η0: temporal oversampling ratio
η1: spatial oversampling ratio in Step 2
η2: spatial oversampling ratio in Step 4

5.3.2 Trajectory and velocity reconstruction

The trajectory reconstruction results using the CLS-RBF method and baseline algorithms
are analyzed qualitatively in Figures 5.2 – 5.6. Figure 5.2 illustrates the trajectory re-
construction with two noise levels in the 2D TGV flow field. As shown in this figure,
the CLS-RBF method can reconstruct trajectories with no significant deviation from the
ground truth regardless of the noise levels. However, high-order polynomial fitting (e.g.,

43



9th LS-POLY) showed numerical oscillation, especially at two ends of a trajectory when
the noise level was high. Reconstructed trajectories based on low-order polynomial fitting
(e.g., 2nd LS-POLY and 3rd LS-POLY) had significant deviations from the ground truth,
particularly for trajectories with high curvature variation.

Figures 5.3 and 5.4 represent the reconstruction results in the 3D TGV flow field. As
shown in these two figures, the trajectories reconstructed by the CLS-RBF method closely
matched the ground truth. In contrast, the baseline algorithms exhibited significant devi-
ations for low-order polynomial fitting and numerical oscillation for high-order polynomial
fitting.

Figures 5.5 and 5.6 present the reconstruction results in the 3D ABC flow field. It
is noteworthy that the trajectories of particles in the ABC flows differ from those in the
TGV flow fields. The former exhibit low curvature and approximate straight lines, while
the latter are characterized by high curvature variations.1 As shown in these two figures,
the CLS-RBF method and low-order polynomial fitting can reconstruct trajectories closely
matching the ground truth. On the contrary, the high-order polynomial fitting exhibited
numerical oscillations along trajectories, which was further exacerbated by the high noise
level. In summary, the CLS-RBF method outperforms the baseline algorithms that suffer
from various issues in trajectory reconstruction. The CLS-RBF method can reconstruct
trajectories close to the ground truth, regardless of the noise levels and trajectory curvature
in both 2D and 3D flow fields.

1Another feature of the ABC flows is that: particles in the ABC flows tend to move out of the domain,
in contrast to those in the TGV fields that are restrained to the flow domain. Although particles outside
the domain move into the domain and replenish the empty space, they will not be shown because they are
absent in the first snapshot. This feature explains why the central area in the ABC flows appears hollowed
out but the flows are still considered incompressible.
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Figure 5.2: Particle trajectory super-resolution reconstruction in the 2D validation using
different methods based on the synthetic data with two noise levels. Only six trajectories
out of 500 are shown in sub-figures. (a1) & (a2): the ground truth; (b1) & (b2): CLS-RBF
method; (c1) & (c2): 2nd LS-POLY; (d1) & (d2): 3rd LS-POLY; (e1) & (e2): 4th LS-
POLY; (f1) & (f2): 9th LS-POLY. (a1) – (f1): reconstruction based on the synthetic data
with 0.1% noise. (a2) – (f2): reconstruction based on the synthetic data with 1% noise.
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Figure 5.3: Particle trajectory super-resolution reconstruction in the 3D TGV validation
using different methods based on the synthetic data with 0.1% noise. Only seven trajecto-
ries out of 700 are shown in each sub-figure. (a1) & (a2): the ground truth; (b1) & (b2):
CLS-RBF method; (c1) & (c2): 2nd LS-POLY; (d1) & (d2): 3rd LS-POLY; (e1) & (e2):
4th LS-POLY; (f1) & (f2): 9th LS-POLY. (a1) – (f1): views from the −y axis; (a2) – (f2):
views from the +z axis.
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Figure 5.4: Particle trajectory super-resolution reconstruction in the 3D TGV validation
using different methods based on the synthetic data with 1% noise. Only seven trajectories
out of 700 are shown in each sub-figure. (a1) & (a2): the ground truth; (b1) & (b2): CLS-
RBF method; (c1) & (c2): 2nd LS-POLY; (d1) & (d2): 3rd LS-POLY; (e1) & (e2): 4th
LS-POLY; (f1) & (f2): 9th LS-POLY. (a1) – (f1): views from the −y axis; (a2) – (f2):
views from the +z axis.
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Figure 5.5: Particle trajectory super-resolution reconstruction in the 3D ABC validation
using different methods based on the synthetic data with 0.1% noise. About 30 trajectories
out of 800 are shown in each sub-figure. (a1) & (a2): the ground truth; (b1) & (b2): CLS-
RBF method; (c1) & (c2): 2nd LS-POLY; (d1) & (d2): 3rd LS-POLY; (e1) & (e2): 4th
LS-POLY; (f1) & (f2): 9th LS-POLY. (a1) – (f1): views from the −y axis; (a2) – (f2):
views from the +z axis.
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Figure 5.6: Particle trajectory super-resolution reconstruction in the 3D ABC validation
using different methods based on the synthetic data with 1% noise. About 30 trajectories
out of 800 are shown in each sub-figure. (a1) & (a2): the ground truth; (b1) & (b2):
CLS-RBF method; (c1) & (c2): 2nd LS-POLY; (d1) & (d2): 3rd LS-POLY; (e1) & (e2):
4th LS-POLY; (f1) & (f2): 9th LS-POLY. (a1) – (f1): views from the −y axis; (a2) – (f2):
views from the +z axis.
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Trajectory and velocity reconstruction results are analyzed quantitatively in Figures 5.7
– 5.12. Red solid lines in these figures represent the results reconstructed by the CLS-
RBF method; green dashed and solid lines indicate results of the 1st FDM and 2nd FDM,
respectively;2 orange dashed and solid lines represent the 2nd LS-PLOY and 3rd LS-POLY,
respectively; blue dashed and solid lines are plotted according to the 4th LS-POLY and 9th
LS-POLY, respectively. From Figures 5.7 – 5.12, it is observed that the CLS-RBF method
can almost always reconstruct trajectories and velocities with lower error (regarding the
mean, standard deviation, and maximum relative errors) than those based on the baseline
algorithms, regardless of the noise levels. Although in the first and last frames, i.e., at the
two ends of trajectories, the relative errors increased, they were still lower than those of the
baseline algorithms. Furthermore, the CLS-RBF method effectively mitigated noise in the
spatial coordinates of the particles obtained from the synthetic data. This was evidenced
by that the red lines, which represent the CLS-RBF reconstruction results, lie below the
green lines representing the original synthetic data.

2Note that the green dashed and green solid lines are overlapped in Figure 5.7 and 5.12(a1) – (a3) and
(b1) – (b3) because both of the finite difference methods only evaluate the velocity and do not correct
particle trajectories. Therefore, the particle locations from the synthetic data are directly used as the
trajectory output of the finite difference methods.
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Figure 5.7: Reconstruction error comparison using different methods in the 2D validation
based on the synthetic data with 0.1% noise. Left column to right: the mean, standard
deviation, and maximum of the relative error, respectively. Top row to bottom: reconstruc-
tion error of particle locations in the x and y coordinates, and the velocity components u
and v, respectively.
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Figure 5.8: Reconstruction error comparison using different methods in the 2D validation
based on the synthetic data with 1% noise. Left column to right: the mean, standard devi-
ation, and maximum of the relative error, respectively. Top row to bottom: reconstruction
error of particle locations in the x and y coordinates, and the velocity components u and
v, respectively.
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Figure 5.9: Reconstruction error comparison using different methods in the 3D TGV val-
idation based on the synthetic data with 0.1% noise. Left column to right: the mean,
standard deviation, and maximum of the relative error, respectively. Top row to bottom:
reconstruction error of particle locations in the x and z coordinates, and the velocity com-
ponents u and w, respectively.
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Figure 5.10: Reconstruction error comparison using different methods in the 3D TGV
validation based on the synthetic data with 1% noise. Left column to right: the mean,
standard deviation, and maximum of the relative error, respectively. Top row to bottom:
reconstruction error of particle locations in the x and z coordinates, and the velocity
components u and w, respectively.
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Figure 5.11: Reconstruction error comparison using different methods in the 3D ABC
validation based on the synthetic data with 0.1% noise. Left column to right: the mean,
standard deviation, and maximum of the relative error, respectively. Top row to bottom:
reconstruction error of particle locations in the x and z coordinates, and the velocity
components u and w, respectively.
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Figure 5.12: Reconstruction error comparison using different methods in the 3D ABC
validation based on the synthetic data with 1% noise. Left column to right: the mean,
standard deviation, and maximum of the relative error, respectively. Top row to bottom:
reconstruction error of particle locations in the x and z coordinates, and the velocity
components u and w, respectively.
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In summary, the qualitative and quantitative assessments collectively suggest that the
CLS-RBF method is an accurate trajectory and velocity reconstruction method. It out-
performs the baseline algorithms and also effectively suppresses noise in synthetic data,
enjoying smooth reconstruction.

5.3.3 Differential quantity reconstruction

The differential quantity reconstruction of the 2D TGV validation is presented in Fig-
ures 5.13 and 5.14, as well in Tables. 5.3 and 5.4. Figures 5.13 and 5.14 illustrate re-
construction results—based on the synthetic data with the noise levels of 0.1% and 1%,
respectively—for a velocity gradient component ∂ũ/∂x, velocity divergence ∇· Ũ, and the
relative error of the reconstructed velocity gradient component ∂ũ/∂x. As shown in these
two figures, the reconstructed ∂ũ/∂x was almost identical to that of the ground truth in
all three frames. The divergence ∇ · Ũ was mostly within a range of ±1 × 10−8, despite
it was calculated based on noisy data, with only a few particles falling outside this range
near the boundaries. For reconstruction based on the noise level ξ = 1%, the velocity
divergence further deviated from zero in general, but at most particles, it was still within
the range of ±1 × 10−8. Considering the relatively high noise in the synthetic data, the
near-zero velocity divergence suggests that the reconstructed velocity fields can be consid-
ered divergence-free. The reconstruction relative error of ∂ũ/∂x was below 7% at most
particles, with the high relative error appearing mainly near the boundaries.
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ũ
/∂
x
.
(c
1)

–
(c
3)
:
re
co
n
st
ru
ct
ed

∇
·Ũ
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ũ
/∂
x
.
(c
1)

–
(c
3)
:
re
co
n
st
ru
ct
ed

∇
·Ũ
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A detailed comparison of reconstruction relative errors is in Tables 5.3 and 5.4. In these
two tables, the statistics of relative error of the reconstructed velocity gradient tensor ∇Ũ
for the 11 frames are listed. It can be observed that the diagonal elements of the velocity
gradient tensors had lower relative errors than those of the off-diagonal elements. This is
probably because the diagonal elements of the velocity gradient tensors participated in the
constrained reconstruction. Since the reconstruction quality significantly degraded at the
two ends of trajectories,3 the relative error of velocity gradient components nearly halved
after excluding the reconstructed results in the first and last frames. In summary, the
CLS-RBF method can reconstruct differential quantities with accuracy and robustness,
fulfilling divergence-free constraints in 2D TGV flows.

Table 5.3: Relative error of velocity gradient reconstruction based on the synthetic data
with 0.1% and 1% noise in the 2D validation.

Quantity
ξ = 0.1% ξ = 1%

⟨E⟩ σ(E) max (E) ⟨E⟩ σ(E) max (E)

∂ũ/∂x 1.87% 4.54% 94.11% 5.73% 8.34% 312.41%
∂ũ/∂y 3.67% 9.64% 282.28% 9.80% 23.73% 885.09%
∂ṽ/∂x 3.87% 10.62% 270.11% 9.11% 14.62% 220.75%
∂ṽ/∂y 1.88% 4.54% 94.11% 5.73% 8.38% 312.41%

Table 5.4: Relative error of velocity gradient reconstruction based on the synthetic data
with 0.1% and 1% noise in the 2D validation (excluding the first and last frames).

Quantity
ξ = 0.1% ξ = 1%

⟨E⟩ σ(E) max (E) ⟨E⟩ σ(E) max (E)

∂ũ/∂x 0.83% 1.26% 31.38% 4.62% 4.47% 67.46%
∂ũ/∂y 1.62% 3.74% 82.98% 6.20% 8.87% 135.98%
∂ṽ/∂x 1.73% 3.60% 70.41% 6.31% 8.87% 122.77%
∂ṽ/∂y 0.83% 1.26% 31.38% 4.62% 4.47% 67.46%

The 3D TGV differential quantity reconstruction is shown in Figure 5.15 – 5.18 and
Tables 5.5 and 5.6. Figure 5.15 presents iso-surfaces of coherent structures based on

3This degradation in quality exists for all baseline methods, not only for the CLS-RBF method.
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the Q-criterion. The coherent structures were visualized at synthetic particles in Fig-
ure 5.15(a1) – (b1), while in (a2) – (b2), they are reconstructed and visualized with spatial
super-resolution.4 As illustrated in Figure 5.15, with or without spatial super-resolution,
the iso-surfaces of coherent structures based on the Q-criterion were almost identical to
those in the ground truth, with only minor distortions near the boundaries. Figures 5.16 –
5.18 show iso-surfaces of strain-rate and rotation-rate tensors in the sixth frame with two
different noise levels. As shown in these three figures, the iso-surfaces of reconstructed
diagonal elements in the strain-rate tensor were almost identical to those in the ground
truth. However, the iso-surfaces of off-diagonal elements in the strain-rate tensor (i.e.,
S̃21, S̃31, and S̃32) and non-zero elements in the rotation-rate tensor (i.e., R̃13 and R̃23)
showed discernible distortions near the boundaries. It may be due to the involvement of
these diagonal elements in the constrained reconstruction. Although the distortion on iso-
surfaces was pronounced when the noise level increased to 1%, the profiles of the iso-surface
remained smooth and the flow features maintained recognizable.

4Hereafter, by default, the iso-surfaces visualized in figures are based on spatial super-resolution recon-
struction.
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Figure 5.15: Iso-surfaces of coherent structures based on the Q-criterion (iso-value =
±0.001) in the sixth frame of the 3D TGV validation. The iso-surfaces are colored by
particle velocities. Left column to right: the ground truth, reconstruction results using
CLS-RBF method based on the synthetic data with 0.1% and 1% noise, respectively. Up-
per row: reconstruction at particle locations of the synthetic data; lower row: spatial
super-resolution reconstruction.
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Figure 5.18: Iso-surfaces of rotation-rate tensors (iso-value = ±0.5) in the sixth frame
based on the synthetic data with 0.1% & 1% noise in the 3D TGV validation. (a) the
ground truth; reconstruction using CLS-RBF method based on synthetic data with 0.1%
(b) and 1% (c) noise levels. The colors red and blue correspond to positive and negative
iso-values, respectively.

The statistics of reconstruction relative error of velocity gradients are listed in Tables 5.5
and 5.6. The statistics of the 3D TGV validation exhibited similar characteristics to those
in the 2D TGV validation. Considering the noise imposed in the synthetic data and extra
errors introduced by differentiation, the error in the reconstructed velocity gradients was
sufficiently low. In addition, the velocity divergence in all frames (not shown in tables
here) fell into ranges of [−5 × 10−7, 5 × 10−7] and [−2 × 10−6, 2 × 10−6] for the synthetic
data with 0.1% and 1% noise levels, respectively. The near-zero divergence implies that
the reconstructed velocity field was solenoidal. In summary, the CLS-RBF method can
reconstruct differential quantities with accuracy and robustness, reveal important flow
structures, and fulfill divergence-free constraints in 3D TGV flows.
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Table 5.5: Relative error of velocity gradient reconstruction based on the synthetic data
with 0.1% and 1% noise in the 3D TGV validation.

Quantity
ξ = 0.1% ξ = 1%

⟨E⟩ σ(E) max (E) ⟨E⟩ σ(E) max (E)

∂ũ/∂x 2.16% 3.23% 62.99% 5.17% 8.74% 162.72%
∂ũ/∂y 2.21% 3.00% 64.55% 6.54% 11.11% 203.33%
∂ũ/∂z 3.22% 4.58% 82.74% 6.87% 11.45% 179.92%
∂ṽ/∂x 2.65% 4.07% 72.38% 7.18% 13.42% 181.37%
∂ṽ/∂y 2.21% 3.06% 50.67% 5.45% 10.90% 276.72%
∂ṽ/∂z 3.27% 4.77% 75.60% 7.91% 15.09% 234.21%
∂w̃/∂x 2.44% 3.99% 60.14% 4.75% 9.27% 187.65%
∂w̃/∂y 2.58% 4.22% 80.62% 4.56% 7.66% 126.05%
∂w̃/∂z 1.49% 2.04% 42.40% 3.59% 5.79% 127.11%

Table 5.6: Relative error of velocity gradient reconstruction based on the synthetic data
with 0.1% and 1% noise in the 3D TGV validation (excluding the first and last frames).

Quantity
ξ = 0.1% ξ = 1%

⟨E⟩ σ(E) max (E) ⟨E⟩ σ(E) max (E)

∂ũ/∂x 1.59% 1.80% 23.33% 3.41% 4.00% 42.23%
∂ũ/∂y 1.78% 2.01% 21.07% 4.49% 6.21% 108.49%
∂ũ/∂z 2.63% 3.39% 34.23% 4.39% 4.99% 60.78%
∂ṽ/∂x 2.09% 2.70% 38.47% 4.51% 6.51% 83.23%
∂ṽ/∂y 1.82% 2.22% 30.30% 3.40% 4.04% 43.88%
∂ṽ/∂z 2.75% 3.61% 32.14% 4.59% 5.96% 74.31%
∂w̃/∂x 1.76% 2.55% 43.18% 3.15% 4.37% 49.91%
∂w̃/∂y 2.11% 3.01% 49.00% 2.91% 3.50% 44.86%
∂w̃/∂z 1.18% 1.37% 26.70% 2.58% 3.00% 28.57%

The 3D ABC differential quantity reconstruction are shown in Figures 5.19 – 5.22 and
Tables 5.7 and 5.8. Figures 5.19 – 5.22 represent the iso-surfaces of reconstructed strain-
rate and rotation-rate tensors. In these four figures, smooth tubular structures can be
observed. These structures closely matched the ground truth when the noise level was
low. However, the high noise level in the synthetic data may lead to distorted tubular
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structures. Nevertheless, the major structures of the strain-rate and rotation-rate tensors
remained recognizable and smooth.

In Tables 5.7 and 5.8, the statistics of relative error of reconstructed velocity gradients
are listed.5 Table 5.7 and 5.8 show that the relative error of the reconstructed velocity
gradients was low when the noise level was 0.1%. Although the relative error increased
significantly when the noise level was 1%, it was still acceptable, considering that the
synthetic data were severely contaminated.6 Furthermore, the velocity divergence for all
particles in every frame (not shown in tables here) fell into the ranges of [−2×10−7, 2×10−7]
and [−5×10−6, 5×10−6] for the synthetic data with 0.1% and 1% noise levels, respectively.
These results imply that the reconstructed velocity gradient was accurate and the velocity
fields could be considered divergence-free. In summary, the CLS-RBF method exhibits
comparable performance in the differential quantity reconstruction in the ABC validation
as it does in the 3D TGV validation. The CLS-RBF method is capable to reconstruct
differential quantities with accuracy and robustness for different flows.

The above 2D and 3D validations show that the CLS-RBF method can reconstruct
particle trajectories, velocities, and differential quantities with accuracy and robustness,
satisfying the divergence-free constraints for different flow fields. The CLS-RBF method
outperforms the baseline algorithms in trajectory and velocity reconstruction and has low
reconstruction errors. It can calculate differential quantities with low errors. The resolved
flow structures are almost identical to the ground truth despite the presence of noise in
the synthetic data. The performance of the CLS-RBF method in the Lagrangian flow field
reconstruction is consistent and stable under different flow conditions with different noise
levels. In summary, the CLS-RBF method is promising for LPT data processing.

5Since the diagonal elements of velocity gradients in the ABC flows are always zero, the relative errors
of these components are absent in the tables.

6The trajectories of the synthetic data with 1% noise level showed significant zigzagging features and
trajectories were nearly unrecognizable.
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Table 5.7: Relative error of velocity gradient reconstruction based on the synthetic data
with 0.1% and 1% noise in the 3D ABC validation.

Quantity
ξ = 0.1% ξ = 1%

⟨E⟩ σ(E) max (E) ⟨E⟩ σ(E) max (E)

∂ũ/∂x — — — — — —
∂ũ/∂y 6.27% 21.43% 1152.75% 30.70% 77.31% 2463.09%
∂ũ/∂z 7.16% 25.86% 1570.60% 30.24% 71.01% 2084.87%
∂ṽ/∂x 6.79% 32.96% 1846.56% 29.29% 86.00% 3700.34%
∂ṽ/∂y — — — — — —
∂ṽ/∂z 6.09% 18.25% 790.34% 32.55% 98.07% 4297.90%
∂w̃/∂x 5.53% 14.12% 304.77% 31.20% 71.91% 1843.19%
∂w̃/∂y 6.89% 18.82% 656.89% 27.61% 71.86% 3235.89%
∂w̃/∂z — — — — — —

Table 5.8: Relative error of velocity gradient reconstruction based on the synthetic data
with 0.1% and 1% noise in the 3D ABC validation (excluding the first and last frames).

Quantity
ξ = 0.1% ξ = 1%

⟨E⟩ σ(E) max (E) ⟨E⟩ σ(E) max (E)

∂ũ/∂x — — — — — —
∂ũ/∂y 4.23% 11.30% 319.15% 22.41% 44.30% 940.18%
∂ũ/∂z 5.26% 13.07% 335.47% 23.47% 50.80% 1027.49%
∂ṽ/∂x 4.65% 14.20% 571.40% 22.34% 52.99% 2013.46%
∂ṽ/∂y — — — — — —
∂ṽ/∂z 4.27% 11.18% 227.48% 24.95% 64.12% 2641.30%
∂w̃/∂x 3.86% 9.97% 289.61% 23.73% 46.03% 1061.64%
∂w̃/∂y 5.02% 12.45% 317.65% 20.80% 43.41% 1245.04%
∂w̃/∂z — — — — — —

5.4 Experimental Verification

The CLS-RBF Lagrangian reconstruction method was verified by experimental data col-
lected from a low-speed pulsing jet flow measured by a volumetric LPT system. This
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experiment was conducted by Dr. Md Nazmus Sakib et al. at Utah State University,
US [138, 139]. Section 5.4.1 briefs the experimental setups. In Section 5.4.2, the experimen-
tal data are pre-processed and the parameters for the CLS-RBF Lagrangian reconstruction
are listed. Section 5.4.3 discusses the 3D experimental reconstruction results.

5.4.1 Experiment setup

The experimental facility comprised a transparent hexagonal water tank, a cylindrical pis-
ton equipped with an electromagnetic shaker, an impingement plate, and optical equipment
(see Figure 5.23 for illustration). The piston was located at the bottom of the water tank
and the shaker oscillated the piston to generate a simulated pulsing jet. The water was
then pushed through a circular orifice, which impinged on a circular plate at the top of the
measurement area. The flow domain was seeded with neutrally buoyant phosphorescent
micro-plastic particles with a diameter of 50 µm. A dual cavity high-speed laser illumi-
nated the measurement area whose dimensions were 60 mm × 57 mm × 20 mm. Four
high-speed cameras captured the jet flow and provided time-resolved LPT images at two
thousand frames per second. More details about the LPT experimental setups can be found
in [138, 139]. The built-in software for LPT data acquisition and processing was DaVis 10
developed by LaVision. The DaVis 10 processed LPT raw images and reconstructed par-
ticle trajectories using the Shake-The-Box (STB) technique [141]. It can output particle
locations, velocity, and acceleration in each frame. After obtaining the raw LPT data, data
pre-processing and Lagrangian flow field reconstruction were next performed.
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Figure 5.23: The LPT experimental facility. A schematic diagram (a) and an image (b)
of the experimental facility. Both (a) and (b) were adopted with permission from Dr. Md
Nazmus Sakib at Utah State University [138, 139].

5.4.2 Pre-processing and reconstruction

Due to limitations of the current version of the CLS-RBF Lagrangian reconstruction
method,7 pre-processing the experimental LPT data needs to be performed via two steps
before reconstruction. First, the measurement area was cropped to a computational do-
main that had dimensions of x×y×z ∈ [−5, 15]×[0, 20]×[−10, 10] mm3. This step reduced
the scale of LPT data and the number of particles. Second, the raw LPT data were down-
sampled to ensure that trajectories were long enough. This practice provides two features
to challenge the CLS-RBF method: i) long trajectories with varying curvature on the
pathlines and ii) low resolution in time. After these two steps, the pre-processed LPT data
were compatible with the current version of the method and ready for reconstruction.

To challenge the robustness of the CLS-RBF Lagrangian reconstruction method, highly

7The limitations of the current version of the CLS-RBF Lagrangian reconstruction method will be
summarized in Chapter 6. One of the limitations is the inability to process large-scale LPT data with
long trajectories (e.g., ten thousand particles with trajectories containing tens of frames). However, this
limitation can be overcome by using the partition-of-unity method (PUM) in space and time. The PUM
can partition the domain into small subdomains with few particles in space and time. In each subdomain,
computation is independent, but the results in the entire domain are unity. The CLS-RBF Lagrangian
reconstruction method can work with these few particles (usually several hundred) and the computational
results in the entire domain can be reconstructed by the PUM.
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contaminated LPT data were intentionally introduced. These contaminated LPT data
were generated by adding extra artificial noise to the particle spatial coordinates in the
pre-processed LPT data. The STB system reported an average nominal uncertainty of
0.0267% for the spatial coordinates of the particles. The extra artificial noise level was
0.5%, which was one order of magnitude higher than that of the raw data, representing a
typical low-quality data set. The generation of extra artificial noise was based on the same
principle as that of the synthetic data used for the 3D validation (see Section 5.1.1). In
this sense, it can be considered that the pre-processed LPT data were the ‘ground truth’,
and the contaminated LPT data were synthetic data.

Next, the CLS-RBF method was applied to reconstruct the flow field based on the pre-
processed and contaminated LPT data sets. The parameters for reconstruction are listed
in Table 5.9. The reconstruction was performed on a workstation equipped with AMD
Ryzen 9 3900X CPU and 128 GB of RAM, running the operating system Windows 11.
The CPU had 12 cores with a clock speed of 3.79 GHz.8 The RAM was composed of four
channels with a frequency of 2,666 MHz. The CLS-RBF Lagrangian reconstruction method
was developed on MATLAB R2022b. The average reconstruction wall-clock time was 19 s,
55 s, and 84 s for direct reconstruction at measured particles, spatial super-resolution,
and temporal super-resolution, respectively. In the spatial super-resolution reconstruction,
31 × 31 × 31 evaluation points were uniformly distributed in the domain with 11 frames;
while in the temporal super-resolution reconstruction, 51 frames were reconstructed and
the evaluation points coincided with measured particles. No significant fluctuations in
wall-clock time were observed when different nominal uncertainty data were input. The
current reconstruction codes were efficient, even with super-resolution in space and time.
The codes have not been optimized yet, but future optimization, such as implementing
parallel computing, could potentially increase the efficiency of the reconstruction. The
results, including particle trajectories, velocities, and differential quantities, are visualized
and analyzed in the next section.

Table 5.9: Parameters for CLS-RBF Lagrangian reconstruction in the 3D experimental
verification.

Nominal uncertainty ε η0 η1 η2

0.0267% 1× 10−10 11/10 4 5
0.5% 1× 10−10 11/7 4.5 4.5

8Parallel computing was not activated in the current reconstruction, but it can be applied in theory.
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5.4.3 Results and discussions

In this section, the reconstruction results using the CLS-RBF method in the 3D ex-
perimental verification are discussed. The particle trajectory reconstruction based on
the pre-processed LPT data is shown in Figure 5.24. Figure 5.24(a2) – (c2) are the
zoomed-in views of (a1) – (c1). These sub-figures focus on the region of x × y × z ∈
[0, 10]× [5, 15]× [−5, 5] mm3, which were mainly occupied by a jet core. In Figure 5.24, the
trajectories reconstructed by the CLS-RBF method (see Sub-figures (b1) and (b2)) were in
good agreement with those reconstructed by the DaVis 10 (see Sub-figures (a1) and (a2)).
The temporal super-resolution reconstruction (see Sub-figures (c1) and (c2)) exhibited the
same trajectory profiles as those directly reconstructed at the measured particles (see Sub-
figures (b1) and (b2)). Furthermore, the temporal super-resolution reconstruction offered
a more detailed visualization of the pathlines. These tests indicate that the CLS-RBF
method can reconstruct trajectories from experimental data. Temporal super-resolution is
helpful, especially for experimental data with low resolution in time.

Figure 5.24: Reconstructed particle trajectories in the 3D experimental verification. Left
column to right: reconstructed trajectories using the DaVis 10, raw data with and without
temporal super-resolution based on the CLS-RBF Lagrangian reconstruction, respectively.
Sub-figures (a2) – (c2) are the zoomed-in views of (a1) – (c1) near the jet core.
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The velocity and differential quantity reconstruction are shown in Figures 5.25 – 5.29.
Figure 5.25 represents reconstruction results based on the pre-processed LPT data. As
shown in Sub-figures (b1) – (b3), a smooth toroidal structure represented a vortex moving
from about y = 5 mm to y = 15 mm, which were in good agreement with the velocity vector
fields in Sub-figures (a1) – (a3). The toroidal vortical structure is a typical structure in a
low-speed pulsing jet flow and it was successfully detected by the CLS-RBF method. In
Sub-figures (c1) – (c3), the reconstructed velocity divergence was within ±1× 10−8 s−1 for
most particles, indicating that the reconstructed velocity fields can be considered solenoidal
in each frame.

Figure 5.26 shows the reconstruction results based on the contaminated LPT data.
A major flow structure (i.e., toroidal vortical structures) was captured but with more
distortions than the structures depicted in Figure 5.25. Some trivial structures emerged
near the domain boundaries due to the added noise. Nevertheless, the main flow features
were still recognizable (see Figure 5.26(b1) – (b3)). Besides, the velocity divergence was
mostly within ±1×10−7 s−1 (see Figure 5.26(c1) – (c3)), suggesting that the reconstructed
velocity fields can be considered divergence-free, despite the highly contaminated data were
used. In summary, the CLS-RBF method is capable to reconstruct particle trajectories,
velocities, and coherent structures satisfying divergence-free constraints with temporal and
spatial super-resolution, even if experimental data are severally contaminated.
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Figure 5.25: Reconstruction of velocity vector fields, iso-surfaces of coherent structures
based on the Q-criterion, and scatter-plots of velocity divergence based on the pre-processed
LPT data in the 3D experimental verification. The iso-surfaces are colored by particle
velocities. Left column: reconstructed velocity vector fields. Central column: iso-surfaces
of reconstructed coherent structure based on the Q-criterion (iso-value = ±0.0025). Right
column: scatter-plots of the reconstructed velocity divergence at each measured particle.
Top row to bottom: reconstruction from the third, sixth, and ninth frames.
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Figure 5.26: Reconstruction of velocity vector fields, iso-surfaces of coherent structures
based on the Q-criterion, and scatter-plots of velocity divergence based on the contaminated
LPT data in the 3D experimental verification. The iso-surfaces are colored by particle
velocities. Left column: reconstructed velocity vector fields. Central column: iso-surfaces
of reconstructed coherent structure based on the Q-criterion (iso-value = ±0.0025). Right
column: scatter-plots of the reconstructed velocity divergence at each measured particle.
Top row to bottom: reconstruction from the third, sixth, and ninth frames.

In addition to the coherent structures, strain- and rotation-rate tensors are also pre-
sented for an intuitive reconstruction assessment. Figure 5.27 and 5.28 show iso-surfaces of
reconstructed strain-rate and rotation-rate tensors based on the pre-processed LPT data,
respectively. The structures of the strain-rate tensor in Figure 5.27 can reveal key features

79



of shear deformation, expansion, and compression of the jet. For example, as depicted in
Figure 5.27, the two major tubular structures of S̃12 were observed in the domain. These
major structures developed along the y axis with two minor vortical structures with re-
versed colors warping them. As shown in Figure 5.29(a), viewing from the +z axis, the two
major structures with reversed colors indicated that the fluid parcels located at two sides of
the center-line near the jet core underwent shear deformation in opposite directions. These
deformations were caused by the nonuniform velocity distribution of the jet along the x
axis. These shear deformations can be visualized as the faces of a fluid parcel close to the
jet core (e.g., faces a and c) moving faster than those far from the jet core (e.g., faces b and
d). In contrast, the two minor structures implied that the fluid parcels near the vortices
experienced shear deformation in opposite directions to its closest major structure.

Similarly, the structures of the rotation-rate tensor in Figure 5.28 can unveil some key
features of the flow rotation. For example, as shown in Figure 5.28, two large hemispherical
structures with reversed colors, adherent to each other, appeared in the middle of the iso-
surfaces of R̃12. This indicates that the fluid parcels on the red iso-surfaces rotated along
the −z axis, while the fluid parcels on the blue iso-surfaces rotated along the +z axis (see
Figure 5.29(b) for illustration). The large empty areas in R̃13 and R̃31 implied that there
was negligible rotation along the y axis.

The interpretation of the strain-rate and rotation-rate tensor was consistent with the
behavior of the pulsing jet flow. In this jet flow, the jet core had higher speeds than the
periphery jet areas, forming a velocity gradient along the x axis. The reversed flows created
vortices that brought fluid parcels back. No significant rotation was generated along the y
axis. The reconstructed strain- and rotation-rate results aligned well with the experimental
observations, indicating that the CLS-RBF method is capable of reconstructing strain- and
rotation-rate tensors.

In summary, the CLS-RBF Lagrangian reconstruction method is able to process ex-
perimental LPT data, i.e., reconstruct trajectories, velocities, and differential quantities
based on experimental Lagrangian data. This reconstruction enjoys robustness and satis-
fies divergence-free constraints for incompressible flows. The CLS-RBF method can process
low-quality LPT data, in which the data are highly contaminated and/or spatiotemporal
resolution is low.
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Figure 5.27: Iso-surfaces of reconstructed strain-rate tensors (iso-value = ±10) in the sixth
frame of the 3D experimental verification. The colors red and blue correspond to positive
and negative iso-values, respectively.
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Figure 5.28: Iso-surfaces of reconstructed rotation-rate tensors (iso-value = ±10) in the
sixth frame of the 3D experimental verification. The colors red and blue correspond to
positive and negative iso-values, respectively.
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Figure 5.29: Schematic diagrams of shear deformation and rotation of fluid parcels based
on S̃12 and R̃12 reconstruction. (a) Shear deformation of fluid parcels based on S̃12 re-
construction in Figure 5.27; (b) rotation of fluid parcels based on R̃12 reconstruction in
Figure 5.28. Red, gray, and blue quadrilaterals: fluid parcels with positive, zero, and neg-
ative shear deformation or rotation, respectively; gray arrows: pathways of the jet flow;
dash-dotted line: the center-line of the jet core. The diagram presents a slice of the domain
at z = 0 mm.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, a novel 3D divergence-free Lagrangian flow field reconstruction method based
on the constrained least squares (CLS) and stable radial basis function (RBF) algorithm is
developed. The stable RBF, i.e., RBF-QR, serves as robust model functions of trajectories
along each pathline (1D functions of the time) and of velocity fields in each frame (3D func-
tions of the spatial coordinates). The CLS algorithm fits scattered data based on RBF-QR
model functions and enforces divergence-free constraints for incompressible flows, ensuring
that reconstruction is consistent with physical constraints. The proposed method consists
of four steps (see Chapter 4). These four steps comprehensively reconstruct a Lagrangian
flow field by integrating the CLS and RBF-QR algorithms. Besides, the temporal and
spatial perspectives of flow fields are intrinsically connected and equally respected by the
reconstruction.

Combining the CLS and RBF-QR, the proposed Lagrangian flow reconstruction method
overcomes the limitations in the previous methods (see Chapter 2 and Table 2.1) and
shows favorable features. The CLS-RBF Lagrangian reconstruction method can avoid
data conversions from Lagrangian data onto Eulerian meshes, allowing flow field vari-
ables to be directly computed under the Lagrangian framework. The method also enforces
divergence-free constraints for incompressible flows and can be extended to other physical
constraints. Furthermore, it can accurately capture both high and low curvature trajecto-
ries with proper parameter settings. An immediate ‘by-product’ of the CLS-RBF method is
smooth super-resolution in space and time, guaranteeing physical constraints at arbitrary
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time and location. These properties indicate that the CLS-RBF method could outperform
previous methods and is promising for LPT data processing.

The validation and verification studies in this thesis demonstrate the competence of
the CLS-RBF method. Validations based on the synthetic data show that the CLS-RBF
method outperforms the baseline algorithms (i.e., polynomials and finite difference meth-
ods) widely used in the LPT community regarding trajectory and velocity reconstruction.
Besides, the reconstructed particle trajectories enjoy lower errors than those in the syn-
thetic data while preserving divergence-free constraints. The differential quantity recon-
struction is also accurate and robust, which enables resolving flow structures based on noisy
and low-resolution data. The verification base on a low-speed pulsing jet from experiments
confirms the performance of the CLS-RBF method. In summary, the CLS-RBF Lagrangian
reconstruction method can process LPT data even if the data are (highly) contaminated
and have low spatiotemporal resolution, providing an accurate and robust reconstruction of
particle trajectories, velocities, and differential quantities with divergence-free constraints
for 3D incompressible flows.

6.2 Future Work

Here, some improvements of the current CLS-RBF Lagrangian reconstruction method are
pointed out:

1. Incorporate the partition-of-unity method (PUM) to process large-scale LPT data
with long trajectories. Large-scale LPT data with long trajectories (e.g., tens of
thousands of particles in the domain recorded on tens frames or even more) can
potentially lead to numerical instability and computational inefficiency if the current
method is directly applied. The PUM can partition the flow domain and trajectories
into spatial and temporal subdomains, allowing for localized flow field reconstruction
and preserving global smoothness. Therefore, the CLS-RBF method can theoretically
process arbitrarily large-scale LPT data with numerical stability and relatively low
computational cost.

2. Upgrade the CLS to a weighted constrained least squares (WCLS) algorithm to en-
hance reconstruction accuracy and robustness. In experiments, the uncertainty of the
particle location may vary over time and space. Particles with lower measurement
uncertainty are considered more accurate and trustworthy than those with higher
measurement uncertainty. Assigning higher weights to particles with low uncertain-
ties under a WCLS framework increases their contribution to the computation. Thus,
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the reconstructed functions tend to be close to the accurate and trustworthy data.
This practice is expected to improve the quality of reconstruction.

3. Develop an adaptive approach that automatically chooses optimal parameters to
fine-tune reconstruction for largely varying curvature trajectories. Both high and
low curvature trajectories could appear simultaneously, especially for a complex flow
in a large domain and particles are recorded on long trajectories. The current tests
show that a high curvature trajectory needs a smaller temporal over-sampling ratio
than that of a low curvature trajectory. However, the current version of the CLS-
RBF method adopts fixed reconstruction parameters in the entire flow field. An
improved trajectory reconstruction should assign independent parameters to different
trajectories and frames.

4. Develop data assimilation or interpretable machine learning framework based on
the CLS-RBF method for LPT data. The method proposed in this thesis can be
considered a one-layer neural network, which is ‘transparent’ and interpretable to the
users, and physical constraints can be explicitly imposed. These features are essential
to data assimilation or interpretable machine learning tasks where constraints arise
from physics (e.g., divergence-free in the present thesis). Other constraints, such as
boundary conditions and governing equations, can also be enforced.
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Schröder. Lagrangian 3D particle tracking in high-speed flows: Shake-The-Box for
multi-pulse systems. Experiments in fluids, 57:1–20, 2016.

97



[122] Christopher C Paige and Michael A Saunders. LSQR: An algorithm for sparse linear
equations and sparse least squares. ACM Transactions on Mathematical Software
(TOMS), 8(1):43–71, 1982.

[123] D Papantoniou and Th Dracos. Analyzing 3-D turbulent motions in open channel flow
by use of stereoscopy and particle tracking. In Advances in Turbulence 2: Proceed-
ings of the Second European Turbulence Conference, Berlin, August 30–September 2,
1988, pages 278–285. Springer, 1989.

[124] D Papantoniou and Th Dracos. Lagrangian statistics in open channel flow by 3-D
particle tracking velocimetry. Eng. Turb. Model. Expt. Elsevier, 1990.

[125] JS Park and KD Kihm. Three-dimensional micro-PTV using deconvolution mi-
croscopy. Experiments in Fluids, 40:491–499, 2006.

[126] Charles Pecora. Particle Tracking Velocimetry: A Review. 2018.

[127] Les Piegl. On NURBS: a survey. IEEE Computer Graphics and Applications,
11(01):55–71, 1991.

[128] Stephen B Pope and Stephen B Pope. Turbulent flows. Cambridge university press,
2000.

[129] Shijie Qin and Shijun Liao. Ultra-chaos in the ABC flow and its relationships to
turbulence. arXiv preprint arXiv:2204.14056, 2022.

[130] RG Racca and JM Dewey. A method for automatic particle tracking in a three-
dimensional flow field. Experiments in Fluids, 6(1):25–32, 1988.

[131] Markus Raffel, Christian E Willert, Jürgen Kompenhans, et al. Particle image ve-
locimetry: a practical guide, volume 2. Springer, 1998.

[132] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neu-
ral networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. Journal of Computational physics,
378:686–707, 2019.

[133] Ethirajan Rathakrishnan. Instrumentation, measurements, and experiments in flu-
ids. CRC press, 2007.

98



[134] Manuele Romano, Federico Alberini, L Liu, Mark Simmons, and E Stitt. Lagrangian
investigations of a stirred tank fluid flow using 3d-PTV. Chemical Engineering Re-
search and Design, 172:71–83, 2021.

[135] Giuseppe A Rosi, Andrew M Walker, and David E Rival. Lagrangian coherent
structure identification using a Voronoi tessellation-based networking algorithm. Ex-
periments in Fluids, 56:1–14, 2015.

[136] GI Roth and J Katz. Five techniques for increasing the speed and accuracy of PIV
interrogation. Measurement Science and Technology, 12(3):238, 2001.
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Appendix A

Baseline Algorithms

A.1 Finite difference method

Since the finite difference method (FDM) is only used to evaluate velocities based on the
coordinates of particles, the particle locations that are output from the FDM are assumed
to be the same as those in the synthetic data. For example, in the x direction, x̃(t̂κ) = x̂(t̂κ)
in the κ-th frame.

For velocity reconstruction, for example in the x direction, the 1st FDM calculates
velocity component u in a given frame by the forward Euler method:

ũ(t̂κ) =
x̂κ+1 − x̂κ

∆t
(A.1)

where x̂κ is the particle coordinate along the x direction in the κ-th frame measured by
LPT experiments, ∆t is the interval between two consecutive frames, t̂κ is the time instant
in the κ-th frame. The velocity of the last frame is assumed to be equal to that in the
second last frame. The velocity calculated by Eqn. (A.1) has first-order accuracy. The 2nd
FDM calculates velocities in a given frame by the central difference method:

ũ(t̂κ) =
x̂κ+1 − x̂κ−1

2∆t
. (A.2)

The velocities in the first and last frames are calculated by Eqn. (A.1). This central
difference method has second-order accuracy in velocity evaluation (except for the first and
last frames). Velocities in the y and z directions are the same as that in the x direction.
Now the particle trajectories and velocities calculated by finite difference methods can be
used for benchmarking.
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A.2 Least squares polynomial fitting

In the least squares polynomial fittings, polynomials are used as model functions to approx-
imate particle trajectories and velocities. For example, in the x direction, the trajectory
polynomial model function x̃(t) is given by:

x̃(t) =
m∑
j=0

pm,jt
j (A.3)

where pm,j is the polynomial coefficient, m is the order of polynomials, and t is the time.
The trajectory and velocity model functions of the 2nd LS-POLY, for instance, are

x̃(t) = p2,2t
2 + p2,1t+ p2,0

ũ(t) = ˙̃x(t) = 2p2,2t+ p2,1
, (A.4)

respectively. The trajectory and velocity approximation functions of the other least squares
polynomial fitting are similar to those in the x direction of the 2nd LS-POLY.

The key to least squares polynomial fitting is to find the polynomial coefficient pm,j.
To calculate the polynomial coefficient pm,j, for example in the x direction, the residual
R between particle location measurements x̂κ and the polynomial model function x̃(t̂κ) is
minimized:

min R =

Ntrj∑
κ=1

∥∥x̃(t̂κ)− x̂κ
∥∥2
, (A.5)

where t̂κ is the time instant in the κ-th frame. To find the extrema of R, the gradient
of the residual R regarding to pm,j is set to zero (i.e., ∂R/∂pm,j = 0) [42, 52, 99]. The
polynomial coefficient pm,j can be organized as a vector p = (pm,0, pm,1, . . . , pm,m)

T with
dimensions of (m+ 1)× 1 and the base tj is arranged as a polynomial basis matrix

P =


1 t1 t21 . . . tm1
1 t2 t22 . . . tm2
...

...
...

. . .
...

1 ttrj t2trj . . . tmtrj

 , (A.6)

with dimensions of Ntrj × (m+1). The vector of polynomial coefficient p is calculated by:

p = P+x̂, (A.7)

where P+ = (PTP)−1PT is a generalized inverse of P, and x̂ = (x̂1, x̂2, · · · , x̂Ntrj
)T. The

polynomial coefficients in the y and z directions are the same as that in the x direc-
tion. Once all polynomial coefficients are retrieved, the polynomial model functions are
constructed and can be used to approximate particle trajectories and velocities.
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