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Abstract

This thesis presents a domain-driven approach to sports game summarization, a specific
instance of large data-to-text generation (DTG). We first address the data fidelity issue in
the Rotowire dataset by supplementing existing input records and demonstrating larger
relative improvements compared to previously proposed purification schemes. As this
method further increases the total number of input records, we alternatively formulate this
problem as a multimodal problem (i.e. visual data-to-text), discussing potential advantages
over purely textual approaches and studying its effectiveness for future expansion. We work
exclusively with pre-trained end-to-end transformers throughout, allowing us to evaluate
the efficacy of sparse attention and multimodal encoder-decoders in DTG and providing
appropriate benchmarks for future work.

To automatically evaluate the statistical correctness of generated summaries, we also
extend prior work on automatic relation extraction and build an updated pipeline that
incorporates low amounts of human-annotated data which are quickly inflated via data
augmentation. By formulating this in a ”text-to-text” fashion, we are able to take advan-
tage of LLMs and achieve significantly higher precision and recall than previous methods
while tracking three times the number of unique relations. Our updated models are more
consistent and reliable by incorporating human-verified data partitions into the training
and evaluation process.
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Chapter 1

Introduction

Data-to-text generation (DTG) (Reiter and Dale, 1997) is the task of translating a col-
lection of non-linguistic data records (such as data tables) into coherent text narratives.
One specific use case is sports game summarization where the narratives are orientated
towards describing in-game events. It offers additional challenges on top of DTG due to
the increased number of input records to select from and the complexity of the reference
texts. However, prior work made use of datasets (Wiseman et al., 2017) that suffered from
low data fidelity where a significant proportion of statements in the summaries are not
accounted for in corresponding input records.

Wang (2019) proposed a purification scheme that removes ungrounded sentences in the
summaries. This can be problematic in practice as the new summaries may no longer
be coherent and the retained information becomes too trivial. In this thesis we propose
an alternate domain-driven approach to supplement additional input records and preserve
the original summaries. Doing so further extends the number of input records into un-
precedented sizes, which we categorize as large data-to-text generation. We show that
supplementing the input records yields a greater relative improvement than prior clean-
ing strategies, even without an exhaustive list of new relation types. We also curate an
alternative approach of handling the large DTG problem by embedding the input data
structures into images (i.e. visual data-to-text generation).

A related problem is to evaluate the statistical correctness of the summaries as standard
language fluency metrics are insufficient. Wiseman et al. (2017) introduced a scheme to
gauge statistical correctness by extracting and comparing relations between the predicted
and gold summaries. The original extraction models were trained and benchmarked on
noisy datasets generated in an algorithmic manner. We propose an updated pipeline that
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incorporates human-annotated examples and data augmentation to build stronger and
more reliable extraction models while tracking three times the number of unique relations.
Furthermore, we formulate this in a “text-to-text” fashion and make use of generative
language models for better generalization and easier post-processing.

The structure of the thesis is as follows: Chapter 2 provides a brief overview on various
background topics such as statistical learning, neural networks, first-order optimization
and regularization, the transformer architecture, language models, and transfer learning.
Chapter 3 is a literature review on the evolution of transformers and data-to-text generation
with respect to sports game summarization. Both directions are crucial to the contributions
of this thesis which are discussed at length in Chapter 4. For readers familiar with the
content of Chapter 2, we recommend starting from Chapter 3.

1.1 Contributions

To summarize, the contributions presented in this thesis are as follows:

• Propose a domain-driven approach to address the data fidelity issue in existing sports
game summarization datasets. By supplementing existing input records, we note
larger relative improvements across all metrics compared to the purification scheme
of Wang (2019) while being more practical.

• Introduce a pipeline to automatically evaluate statistical correctness of the generated
summaries in a “text-to-text” fashion using data augmentation. We achieve signifi-
cantly higher results than those reported in (Wiseman et al., 2017; Puduppully et al.,
2019a) despite incorporating three times the relations. Our models are also built off
of human-verified data partitions ensuring that they are more grounded and reliable.

• Propose the sports summarization objective as a visual data-to-text generation prob-
lem, discuss several advantages over a purely textual approach, and study its effec-
tiveness for potential expansion.

• Evaluate the efficacy of sparse attention and multimodal encoder-decoders on four
novel large DTG datasets, providing appropriate benchmarks for future work.

2



Chapter 2

Background

This chapter provides a rudimentary tutorial on statistical learning, artificial neural net-
works, natural language processing, and their intersection. For additional information on
related topics, please refer to (Goodfellow et al., 2016; Zhang et al., 2021; Hastie et al.,
2009; James et al., 2013; Murphy, 2022; Prince, 2023).

2.1 Foundations of Statistical Learning

Statistical learning (or machine learning) is an interdisciplinary branch of statistics and
computer science concerned with algorithms that extract patterns from data. There are
further subdivisions broadly dictated by algorithmic outcome and data formulation, the
most common of which being supervised learning.

2.1.1 Supervised Learning

The goal is to estimate an explicit mapping f between a feature space X and associated
target space Y from a finite dataset of independent input-output pairs D = {(xi,yi)}ni=1.
The inputs xi are also known as features, predictors or covariates whereas the output yi is
the label, target or response. The dataset D used to construct the mapping is the training
set with sample size n. In probabilistic terms, we wish to fit the conditional model P[y|x]
over D.

Supervised learning can be further divided based on the target space. For example, if
Y = {1, . . . , C} is an unordered set of C disjoint classes, then f acts as a decision rule
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that classifies the inputs into one (or more) categories. This is appropriately known as
classification. On the other hand, regression is the case where the outputs are real-valued
quantities (i.e. Y = R).

In either case, the hypothesis space of f is restricted to some family of parametric
models {f( · ;θ) : θ ∈ Θ} where θ denotes the model-specific parameters and Θ is the
parameter space. With this restriction, the task of function estimation simplifies to finding
the optimal parameter configuration θ̂.

2.1.2 Maximum Likelihood Estimation

The process of finding the optimal θ from the training set is model fitting or training. This
is formulated as

θ̂ = argmin
θ

L(θ)

where L(θ) is some loss or objective function. For a finite sample, the most popular
approach is to find the point estimate that is the most probable in light of the training
data. This is the method of maximum likelihood estimation (MLE).

Assuming that the training observations are independently sampled from the same
data-generating distribution, the MLE is

θ̂mle = argmax
θ

P[D|θ] =
N∏
i=1

P[yi|xi,θ]

To ensure that this problem is compatible with modern optimization algorithms and finite
floating point representations, we can equivalently minimize the conditional negative log-
likelihood (NLL),

θ̂mle = argmin
θ

{− logP[D|θ]} = argmin
θ

{
−

N∑
i=1

logP[yi|xi,θ]

}

Under sufficient conditions (i.e. the data-generating distribution can be captured by the
model family and θ is identifiable), the MLE is consistent and efficient (Rao, 1945; Cramér,
1946). These statistical properties make MLE a favourable option for parameter estimation
in general.
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2.1.3 Empirical Risk Minimization

The NLL can be expressed as an expectation under the data-generating distribution,
EPD [− logPmodel(y|x,θ)]. If the loss is replaced with any general function ℓ(y, f(x;θ))
where f is the model parameterized by θ, the empirical estimate of EPD [ℓ(y, f(x;θ))]
becomes

L(θ;D) =
1

N

N∑
i=1

ℓ(yi, f(xi;θ))

This is called the empirical risk. In other words, maximum likelihood for fitting learning
algorithms is a specific instance of empirical risk minimization.

2.1.4 Generalization

The true goal with learning algorithms however is to simultaneously minimize the expected
loss on unseen data from the same distribution. Minimizing the objective over the training
data doesn’t guarantee such model generalization.

Suppose we denote the empirical risk over the training data, or training error, as
L(θ;Dtrain) and the true data-generating distribution PD is accessible to us. Instead of
the empirical risk, one can compute the expectation of the loss directly (i.e. the population
risk).

L(θ;PD) = EPD [ℓ(y, f(x;θ))]

The difference or gap, L(θ;PD)−L(θ;Dtrain), provides a measure of performance on unseen
inputs. In reality, PD is unknown. However, by partitioning D into two subsets, the
training and test sets, we can approximate the population risk empirically (i.e. test error
or generalization error) using this new test set,

L(θ;Dtest) =
1

|Dtest|
∑

(x,y)∈Dtest

ℓ(y, f(x;θ))

One way to visualize the relationship between the generalization and training errors is to
consider a plot with errors on the y-axis and model capacity on the x-axis. Informally,
model capacity (or complexity) is its ability to fit various functions within a single family.
Models with high capacity can fit a wide variety of different functions whereas models with
low capacity are more limited.

In Figure 2.1, the training error goes to zero as model complexity increases, however
the test error follows a U-shaped curve. For low complexity, the curves illustrates that
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Figure 2.1: Two graphs illustrating the behaviour of various quantities and generalization
as model capacity increases.

the model lacks the ability to sufficiently fit the training set. On the other side however,
the model becomes too flexible such that it is prone to memorizing noise specific to the
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training set. These phenomenons are known as underfitting and overfitting respectively1.
Thus the best model is not the one that minimizes the empirical risk, but instead the test
risk.

In practice, we need to have three partitions of the data set: training, test, and a
validation set. The latter is used for model selection based on minimizing the “validation
risk” (all of the previous intuition applies, however we use the validation risk in place of
the test risk for model selection). The test or hold-out set is then used solely for estimating
the population risk. It should not be used for model selection or refinement.

One final point is that no single model is optimal for multiple problems. This is coined as
the no free lunch theorem (Wolpert, 1996). The reason for this is that a set of assumptions
in one domain may not apply in another. The best model is then further contingent on
domain knowledge on top of what was discussed earlier.

2.2 Feedforward Neural Networks

Artificial neural networks, or simply neural networks, are a family of highly-flexible models
built using collections of connected simple computational units. The name comes the loose
resemblance to its biological counterpart. These models are comprised of multiple layers
that each apply transformations on their respective inputs to derive latent representations.
Deep learning is the term used to describe neural networks with many layers.

The true power behind neural networks is their ability to automatically extract features.
For example, to model a non-linear function using a linear model, one would need to first
manually transform the input x into a pre-determined nonlinear representation ϕ. Deep
learning instead learns ϕ through its intermediate layers which is then projected to the
desired output with a final output layer. Simply put, f(x;θ,w) = g(ϕ(x;θ)⊤w) where ϕ
is learned through θ, w is an additional weight vector, and g is the output layer.

2.2.1 Perceptron

The perceptron (Rosenblatt, 1958) was one of the earliest implementations of a neuron with
“automated” learning. It was a linear binary classifier of the form

f(x;w) = 1{w⊤x+ b > 0}
1This relationship is closely related to the bias-variance trade off. If the error is measured using the

MSE, then increasing model capacity will typically decrease bias at the cost of increased variance.
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where w ∈ Rp is a weight vector, b is a correction bias, and the threshold indicator function
H(u) = 1{u > 0} is the Heaviside step function. This is also visualized in Figure 2.2.

Figure 2.2: A visualization of the perceptron classifier. Importantly, note how the edges
represent learnable weights and the nodes are values.

The perceptron learning rule was the explicit update-algorithm specifically for the per-
ceptron to learn w from a random initialization. The idea is to update it only when the
model makes an incorrect prediction. More accurately,

wt+1 = wt − ηt(ŷj − yj)xj bt+1 = bt − ηt(ŷj − yj)

where xj ∈ Rp, yj ∈ {−1, 1} is the sampled data point at iteration t and ηt is the step size.

However, Novikoff (1962) and Minsky and Papert (1969) demonstrated that the per-
ceptron was only capable of modelling linear boundaries and converge for linear separable
problems. Famously, the perceptron was unable to solve the XOR problem (Figure 2.3).

Despite this revelation, it was later shown that stacking multiple perceptrons into a
connected network produced a new model with increased flexibility. That is, the capacity
can be directly influenced by network depth and the number of units. This movement
of connectivity (Goodfellow et al., 2016) laid the foundation for modern neural networks
(Rumelhart and McClelland, 1986; McClelland et al., 1986).

2.2.2 Multilayer Perceptrons

Feedforward neural networks, or multilayer perceptrons (MLP), are stacked layers of percep-
trons designed to propagate information in a unidirectional manner. Specifically, outputs
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Figure 2.3: Left: An example of a linear separable problem where the decision boundary
between the two classes is linear. Right: The XOR problem is a famous example of a
non-linear separable problem.

of perceptrons from one layer act as inputs to perceptrons in the next layer. There are
no recurrent connections where the model feeds intermediate outputs back into itself (i.e.
directed acyclic graphs).

Deep neural networks (DNNs) are essentially a composition of many different functions.
The model itself describes how these functions are composed together (see Figure 2.4). For
example, the chain f(x) = f3(f2(f1(x))) consists of the first layer f1, second layer f2, and
so on. The overall length of the chain is the network depth and the final layer is the output
layer.

The network is trained end-to-end where training examples specify the initial inputs
and desired network output, but provide no information for guiding the intermediate layers.
Since the outputs of these intermediate layers are unknown, they are referred to as hidden
layers.

The original perceptron is modified to form the modern artifical neuron/unit used in all
modern neural networks. The Heaviside function is replaced with a non-linear differentiable
activation function g : R → R to allow for training via gradient-based methods (discussed
in Section 2.4). The generalized unit becomes

yi = g(zi) = g(w⊤
i x+ b)

where z = w⊤x + b is the pre-activation, w, b are the parameters, and x are the input
connections from preceding neurons.
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Figure 2.4: An example of a feedforward network with a depth of three (i.e. single hidden
layer). Note that each layer is fully-connected so that each unit depends on every unit in
the previous layer.

2.2.3 Output and Hidden Units

As discussed in 2.1.2, neural networks are trained using maximum likelihood where the
objective is the NLL of the model distribution. Thus, the choice of the output unit’s
activation function is closely related to the cost function. If a feedforward network provides
a hidden representation h = f(x;θ), the role of the output layer is to provide the final
transformation over the pre-activation W⊤h+ b to complete the network’s task.

Some common examples include the identity activation to model the conditional mul-
tivariate Normal distribution P[y|x] = N (y; ŷ, I). For distributions such as Bernoulli
and Multinomial (i.e. P[y = i|x]), the canonical activations are typically the sigmoidal
and softmax functions respectively. These functions incorporate exponential terms which
are approximately inverted by the cost function, which helps alleviate gradient saturation
issues.

The choice of activation functions for intermediate or hidden units is unique to neural
networks. Early adaptations of deep networks opted for sigmoid or hyperbolic tangent
activations, though such units are prone to gradient saturation (Glorot and Bengio, 2010;
Bengio, 2012) (especially without the NLL). The better choice is the rectified linear unit
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(ReLU) (Fukushima, 1969) g(z) = (z)+ = max{0, z}, which was popularized by Jarrett
et al. (2009), Nair and Hinton (2010), and Glorot et al. (2011). It is one of the simplest
non-linearities where the gradient is one for z > 0. This contributes to stable and efficient
training.

However, ReLU is prone to the dying units problem where units are no longer updated
when their pre-activations are less than zero. Additional generalizations were later intro-
duced to add a small non-zero slope for z < 0 (Maas, 2013; He et al., 2015b; Shang et al.,
2016). Alternatively, smooth activations were proposed as solutions to the dying unit
problem while simultaneously restricting gradient flow for large negative pre-activations
(Glorot et al., 2011; Hendrycks and Gimpel, 2016; Clevert et al., 2015; Klambauer et al.,
2017; Ramachandran et al., 2018; Howard et al., 2019). In practice, these variants only
showed minor improvement over ReLU, if any.

2.2.4 Universal Approximation

In general, the universal approximation theorem (Hornik et al., 1989, 1990; Cybenko, 1989)
states that an MLP with one hidden layer and intermediate “sigmoidal” activations can
approximate any Borel measurable function to arbitrary accuracy (provided that the net-
work has enough hidden units). Furthermore, the derivatives of the network approximate
the derivatives of the function. Hornik (1991) later showed that this applies to a larger
class of nonlinear activations.

This theorem guarantees the existence of an MLP that can represent the true function,
but not if the solution is obtainable. For example, the optimization algorithm may not be
able to find the correct parameter configuration or it could fit the wrong function through
overfitting. The theorem also doesn’t signal how large the network will be. In the worst
case, the number of hidden units can be exponential (Barron, 1993) (i.e. one for each input
configuration). Because of this, we typically resort to using deeper networks as they reduce
the number of units while generalizing sufficiently. A depth version of the theorem was
also proved by Lu et al. (2017).

2.2.5 Backpropagation

The celebrated backpropagation algorithm (Werbos, 1974; Bryson et al., 1969; Rumelhart
et al., 1986a,b) computes the gradient of a loss function with respect to the parameters in
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each network layer. We will only study its applications to MLPs here (specifically reverse-
mode differentiation), however the general procedure can be applied to any DAG and is
called automatic differentiation (autodiff) (Murphy, 2022).

Consider the MLP and associated loss function L(y,o) : Rn → R. Specifically,

o = xL = gL(WLxL−1)

xi = gi(Wixi−1) i = 1, 2, . . . , L− 1

where gi are the activation functions, x0 = x is the initial input, and the bias is incorporated
into W by concatenating a one to each input xi. The main idea behind backpropagation
is to use the chain rule to iteratively compute the gradients at each layer.

For example, with the output gradient ∂L
∂o

= ∂L
∂xL

the chain rule yields

∂L
∂WL

=
∂L
∂xL

∂xL

∂WL

∂L
∂WL−1

=
∂L
∂xL

∂xL

∂xL−1

∂xL−1

∂WL−1

∂L
∂WL−2

=
∂L
∂xL

∂xL

∂xL−1

∂xL−1

∂xL−2

∂xL−2

∂WL−2

... =
...

which can be efficiently calculated by traversing backwards through the network after a
forward propagation and reusing gradients from higher layers.

2.3 Regularization

Regularization is any modification to a learning algorithm that is intended to reduce its
generalization error but not its training error (Goodfellow et al., 2016). Simply put, the
idea is to increase the bias of the estimator by restricting the model capacity in hopes
of reducing the variance and preventing overfitting. This is crucial for modern neural
networks that are significantly over-parameterized (i.e. millions or billions of parameters).

2.3.1 Parameter Norm Penalties

A common approach to limiting model capacity is incorporating an additional parameter
norm penalty Ω(θ) to the objective. Note that θ denotes the set of all applicable parameters
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in the models. The new objective to optimize becomes

L̃(x,y;θ) = L(x,y;θ) + αΩ(θ)

where α ≥ 0 is a hyperparameter controlling the amount of regularization. In practice, the
penalty is typically applied only to the weights of the affine transformation at each layer
and excludes the biases. It is also possible to use a different penalty for each layer of the
network, however a single penalty is normally sufficient.

The simplest penalty is the L2 norm Ω(θ) = 1
2
||θ||22, also known as weight decay (this

same penalty is adapted for linear models in ridge regression). Parameters that contribute
significantly to reducing the original objective are relatively preserved whereas the rest are
decayed to zero.

Another option is the L1 norm Ω(θ) = ||θ||1 =
∑

i |θi|. This penalty results in a
sparse solution that forces weights to be exactly zero. In contrast, the L2 norm keeps
nonzero weights as nonzero. The sparsity property acts as a feature selection mechanism,
(i.e. LASSO regression (Tibshirani, 1996)), where weights set to zero indicate that the
corresponding features can be discarded.

2.3.2 Dropout

Dropout (Srivastava et al., 2014) is a regularization strategy designed specifically for neural
networks. The idea is to randomly turn off all the outgoing connections from each neuron
with probability p (on a per-example basis), as shown in Figure 2.5. This dramatically re-
duces overfitting as it prevents the network from learning complex and fragile relationships
between units.

More formally, we are estimating a noisy version of the weights θl,i,j = wl,i,jϵl,i where
ϵl,i ∼ Bernoulli(1 − p). During inference, the noise is usually disabled. To ensure that
the weights have the same expectation at test time as they did during training, we set
wl,i,j = θl,i,jE[ϵl,i] where E[ϵl,i] = 1 − p. Another interpretation is that dropout produces
an approximation of ensembling many neural networks by training an ensemble of different
sparse subnetworks.

2.3.3 Data Augmentation

The best approach to improving a model’s ability to generalize is to train it over a large
diverse training set. As this is seldom the case, one can alternatively create artificial
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Figure 2.5: An example of a feedforward network (left) with dropout applied (right). The
units are disabled probabilistically (per-example) such that only a subnetwork is propa-
gated.

examples to arbitrarily inflate the amount of training data. This is easy to see for a task
such as image classification where the model needs to be invariant to a wide spectrum
of transformations (i.e. rotation, translations, crops, blurs, etc.). An “infinitely” large
training set can then be generated by randomly transforming the input x from the pair
(x, y) for every batch.

For text inputs, task-agnostic augmentation is more closely aligned to noise injection.
For example, some augmentation strategies at the discrete level include replacing tokens,
removing characters, permute word or sentence order, etc. Similarly, one can add noise
by incorporating a small Gaussian error into the corresponding word embeddings (Sec-
tion 2.6.2). Refer to (Shorten et al., 2021; Feng et al., 2021; Chen et al., 2021; Wei and
Zou, 2019) for a comprehensive list of general augmentation schemes for text inputs.

2.3.4 Other Regularizers

For classification tasks, label smoothing redistributes the probability mass of the target
labels. For example, we replace the hard 0 and 1 targets in a softmax (with k values) with
ϵ

k−1
and 1 − ϵ respectively. This prevents the softmax layer from learning large weights

(since it can never converge to 0 or 1).

Early stopping is the basic heuristic of terminating model training when the validation
error starts to increase. This can be thought of restricting the model capacity by reducing
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the number of training iterations, effectively cutting off the model before it can overfit.

2.4 Gradient-based Optimization

Neural networks are typically trained with first-order gradient-based optimization algo-
rithms. Due to non-convex objectives and overparameterized networks, the loss landscape
will contain many local minima. As a result, we often settle for finding f ∗ such that the
loss is sufficiently low, but likely not globally minimal.

To motivate the next few algorithms, consider a function with multiple inputs f : Rn →
R. The directional derivative is the slope of f in the direction provided by some specified
unit vector u. That is,

∂

∂α
f(x+ αu)

∣∣∣∣
α=0

= u⊤∇xf(x)

To minimize f , we need to find the direction that f decreases the fastest. Notice that

min
u,||u||2=1

u⊤∇xf(x) = min
u,||u||2=1

||u||2||∇xf(x)||2 cos θ

where θ is the angle between u and the gradient. Since u has unit norm and the gradient
is free of u, we are directly optimizing cos θ. This is clearly minimized when u is in the
opposite direction of the gradient.

This is the method of steepest descent or simply gradient descent. The algorithm pro-
poses updating a point iteratively with

xi+1 = xi − ηi∇xf(x)

where the learning rate ηi > 0 determines the step size at iteration i.

2.4.1 Stochastic and Mini-batch Gradient Descent

Large datasets are ideal for training neural networks, however they are difficult to work with
directly. To see this, note that the objective often decomposes into a sum of per-example
losses.

L(θ;D) =
1

|D|
∑

(x,y)∈D

ℓ(y, f(x;θ))
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This implies that ∇θL also decomposes into a sum as differentiation is linear. The com-
putational cost is O(n), which can be intractable for larger training sets.

Stochastic gradient descent (SGD) is an extension of the gradient descent algorithm
(following from a class of stochastic optimization problems) that treats this sum as an
expectation ∇θL = E[∇θℓ]. Doing so allows one to empirically estimate the gradient using
a small subset of examples. Specifically, at each step of the algorithm we sample aminibatch
{x(1), . . . ,x(m′)} drawn uniformly from the training set. The size m′ is generally kept small
and fixed regardless of the size of the training set. The gradient estimate becomes

∇θL(θ) ≈
1

m′

m′∑
i=1

∇θℓ(xi, yi,θ)

which is used to then update θi instead of the full gradient.

SGD formally refers to the extreme case wherem′ = 1, and the algorithm described here
is minibatch gradient descent. However, it is common to refer to any of these algorithms
as simply stochastic. Minibatches are selected randomly to ensure that the estimate is
unbiased (i.e. i.i.d. examples). In practice, the full dataset is shuffled once at the start
of training. It is also common practice to make several passes over the dataset (called
epochs) as the benefit of decreasing the training error can offset the harm of increasing the
generalization gap.

Gradient accumulation is a technique to train larger DNNs by aggregating the gradients
from multiple batches before updating the parameters. This simulates the effect of a
larger effective batch size without the computational burden by incorporating information
from more examples into the gradient. For example, with a batch size of 8 and gradient
accumulation of 4, the model processes four batches and accumulates the gradients before
updating its parameters (analogous to using an effective batch size of 32).

2.4.2 Momentum

Momentum (Bertsekas, 1995) is a method designed to accelerate learning in SGD along
problematic regions in the loss curvature. The idea is to accumulate an exponentially
weighted moving average (EWMA) of prior gradients to encourage the algorithm to continue
moving along previously good directions. The update steps are

mt = βmt−1 + (1− β)gt−1 θt = θt−1 − ηtmt
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where mt is the momentum, gt−1 is shorthand for the gradient, and 0 < β < 1 (β = 0
recovers SGD). Momentum can potentially simulate the effects of a larger minibatch as it
incorporates historical information from earlier batches into the next direction.

An issue with the current momentum update is that it is unable to slow down in
some regions. Nesterov momentum (Nesterov, 2004) modifies the update to include an
extrapolation step.

mt+1 = βmt − ηt∇θL(θt + βmt) θt+1 = θt +mt+1

This acts as a look ahead which is later corrected. The intuition is that the momentum
vector is already pointing roughly towards the optimal direction, so the gradient at the
new location can be more accurate than the current location.

2.4.3 Choosing the Learning Rate

As SGD introduces estimation noise, it is crucial to try and counteract this with a de-
creasing learning rate. For full batch gradient descent (i.e. batch is the full dataset), the
gradient behaves as intended so a constant learning rate is sufficient. The sequence of
resulting learning rates at each time step {ηi} is called the learning rate schedule. The
choice of η0 is also very important. A large value will result in violent oscillations whereas
a low value will slow down or freeze learning prematurely.

Some common schedules are piecewise constant ηt = ηi if ti ≤ t ≤ ti+1, exponential decay
ηt = η0e

−λt, and polynomial decay ηt = η0(βt + 1)−α. Thresholds can also be computed
adaptively. For example, we can decrease the step size by some factor λ when the validation
loss plateaus (this is called reduce-on-plateau).

In deep learning, it is also common to introduce a learning rate warmup (Goyal et al.,
2017) or one-cycle learning rate schedule (Smith, 2018). The idea is to quickly increase the
learning rate from zero for some number of steps before applying a decreasing schedule.
This is to stabilize initial parameter updates if the loss landscape is poorly conditioned. A
slower learning rate allows for the algorithm to discover flatter regions which it can then
traverse with larger steps.

2.4.4 Adaptive Learning Rates

Rather than using a single learning rate for all parameters, it may be more desirable
to use a separate rate for each parameter and automatically adapt the rates throughout
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training. More formally, these are examples of preconditioned SGD (Murphy, 2022) where
the parameter update step becomes

θi+1 = θi − ηiM
−1
i gi

andMi is the preconditioner. Note that if the preconditioner is the Hessian then we recover
Newton’s Method which utilizes second-order information. However, the Hessian is difficult
to estimate and expensive for larger models such as DNNs. Instead, Mi is designed to
further speedup SGD (possibly on top of momentum).

AdaGrad or “adaptive gradient” (Duchi et al., 2010) re-scales all of the parameters by
the inverse root sum of their previous gradients squared. That is,

θt+1 = θt − ηt
1√

st + ϵ
⊙ gt st = st−1 + gt ⊙ gt

where division and square root is element-wise and ϵ > 0 is a small term to avoid dividing
by zero. This encourages sparsely updated parameters to have larger future step sizes while
decaying frequently updated parameters. The benefit here is that AdaGrad eliminates the
need to manually adjust the learning rate, thus acting as an adaptive learning rate.

However, the accumulation of squared gradients from the start of training can prema-
turely diminish the effective learning rate. An alternative is to substitute the squared sum
with the EWMA,

st+1,d = βst,d + (1− β)g2t,d

Since
√
st,d ≈ RMS(g1:t,d) =

√∑t
τ=1 g

2
τ,d/t where RMS means “root mean squared,” the

method is called RMSProp (Tieleman and Hinton, 2012).

The AdaDelta method (Zeiler, 2012) was introduced independently and is similar to
RMSProp, but they also keep an EWMA of past update steps δt to keep the learning rate
dimensionless. That is,

θt+1 = θt − ηt∆θt = θt − ηt

√
δt + ϵ√
st + ϵ

⊙ gt

st = βst−1 + (1− β)gt ⊙ gt, δt = βδt−1 + (1− β)(∆θt)
2

It is also possible to combine RMSProp with momentum to yield the parameter update,

mt = β1mt−1 + (1− β1)gt, st = β2st−1 + (1− β2)g
2
t , ∆θt = −ηt

1√
st + ϵ

mt
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This was proposed as Adam (Kingma and Ba, 2015), which stands for adaptive moment
estimation. Notice that if m0 = s0 = 0, then the initial estimates will be biased towards
smaller values (a common issue with EWMA in general). The authors proposed using
bias-corrected moments to circumvent this

m̂t =
mt

1− βt
1

, ŝt =
st

1− βt
1

, ∆θt = −ηt
1√

ŝt + ϵ
m̂t

Adafactor (Shazeer and Stern, 2018) is a memory-efficient extension of Adam using relative
step sizes, clipped RMS, remove the first moment estimator and rewrite the second moment
as an adaptive function of the step t. Furthermore, they only maintain the per-dimension
sums of the squared gradients and approximate the full sum to reduce memory consumption
during optimization.

2.4.5 Parameter Initialization

The weight matrices in a DNN are initialized randomly to ensure that there is no symme-
try between intermediate units. The specific distribution is important for stable learning
however. For example, Glorot and Bengio (2010) showed that sampling from N (0, σ2)
for fixed σ can result in exploding activations. To prevent this, they propose restricting
the output variance to σ2 = 2/(nin + nout) where nin is the fan-in (number of incoming
connections) and nout is the fan-out (number of outgoing connections). This is known as
the Xavier or Glorot initialization. For the special case where σ2 = 2/nin, this becomes
the He initialization (He et al., 2015b). It isn’t necessary to use a Normal distribution, for
example one can also sample from Uniform(−a, a) where a =

√
6/(nin + nout).

2.4.6 Network Layers for Optimized Learning

Under gradient optimization, parameters are updated under the assumption that all other
layers are fixed. In practice they are updated simultaneously which can produce unexpected
results or destabilise training altogether (i.e. vanishing/exploding gradients).

One solution is to incorporate additional normalization layers throughout the network
to standardize the statistics of the hidden units before passing them through the next layer.
Batch normalization (Ioffe and Szegedy, 2015) standardizes the activation distribution to
zero mean and unit variance, when averaged across the minibatch. Specifically for an
activation vector zn,

z̃n = γ ⊙ ẑn + β, ẑn =
zn − µB√
σ2

B + ϵ
, µB =

1

|B|
∑
z∈B

z, σ2
B =

1

|B|
∑
z∈B

(z− µB)
2
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where µB,σ
2
B are the batch statistics and β,γ are additional parameters. During inference,

µl,σ
2
l for layer l are computed across the full training set and frozen for use.

Batch normalization can significantly stabilize training and allow for larger learning
rates, however it is sensitive to small batch sizes. An alternative approach is layer normal-
ization (Ba et al., 2016) which pools the statistics over the tensor dimensions. That is, for
a hidden layer h with dimensionality dh,

h̃ = γĥ+ β, ĥ =
h− µ√
σ2 + ϵ

, µ =
1

dh

dh∑
i=1

hi, σ2 =
1

dh

dh∑
i=1

(hi − µ)2

Outside of normalization, another design strategy is to add residual/skip connections
(He et al., 2015a) that bypass intermediate layers to send information from a lower layer
directly to a higher layer (see Figure 2.6). This reduces the length of the shortest path
and improves information flow, allowing for easier gradient propagation. It was also shown
that the loss surfaces of networks with residual connections tend to be smoother around
minima (Li et al., 2017).

Figure 2.6: An example of a residual connection that sends the output of an earlier to a
later layer while skipping an intermediate layer. This is normally just added to the final
output of the layer(s) that are skipped.

2.5 Transformers

Transformers (Vaswani et al., 2017) are special neural architectures designed to process
sequences. They are reminiscent of deep feedforward networks and are easy to scale and
parallelize. These architectures are the forefront of modern deep learning success. This
section focuses solely on the original architectural components with applications and ad-
vancements discussed in Section 3.1.
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2.5.1 Self-Attention

Self-attention (Cheng et al., 2016; Graves, 2013; Bahdanau et al., 2014), also called intra-
attention, is a mechanism that dynamically relates different positions of a sequence to
determine their contextual significance to one another.

More formally, consider the input sequence X = x1, . . . ,xn and real-valued score
function a : Rp × Rp → R. Self-attention maps X to a new sequence of the same size
Y = y1, . . . ,yn where

yi =
∑
j<i

αijxj, αij =
exp (a(xi,xj))∑
k<i exp (a(xi,xk))

, j = 1, . . . , i− 1

Essentially, each yi is a weighted combination of its inputs where the weights are calculated
based on some scoring function relating xi to every available input. The softmax function
normalizes the n scores into a valid distribution. This operation is visualized in Figure 2.7.
For applications such as autoregressive generation, the mechanism is restricted to preceding

Figure 2.7: Visualization of the basic self-attention mechanism where yi is a function of
all the inputs x1,x2, . . . ,xi.

inputs during training (i.e. causal self-attention). Similarly for applications where the full
input sequence is needed then self-attention is unrestricted. These use cases are further
discussed in Section 2.5.4.
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Self-Attention as a Parameterized Dictionary Lookup

Transformers extend on the basic self-attention mechanism by providing an interpretation
of the different vectors as a dictionary lookup system. Specifically,

• The query q is the current focus of the attention when being compared to all of the
other preceding inputs.

• The key k is a preceding input that is compared to the query.

• The value v is the vector used to compute the output from the key.

To capture these roles, each xi is projected using different weight matrices based on the
role. For example,

qi = WQxi ki = WKxi vi = WV xi

where the dimensions of all three roles match (i.e. dq = dk = dv). The updated self-
attention operation using the projected vectors is

yi =
∑
j<i

αijvj, αij =
exp (a(qi,kj))∑
r<i exp (a(qi,kr))

, j = 1, . . . , i− 1

Scoring functions can vary in sophistication from vector similarity to parameterized func-
tions (Luong, Le, Sutskever, Vinyals and Kaiser, 2015; Graves et al., 2014; Bahdanau et al.,
2014). Transformers use a scaled dot-product (qi · kj)/

√
dk (Vaswani et al., 2017) to nur-

ture large magnitude scores before exponentiating. This updated version of self-attention
is visualized in Figure 2.8.

Note on Efficient Implementation

This operation can be further compacted as matrix products for efficiency. Suppose X ∈
RN×d represents the sequence of N input vectors. The full self-attention operation becomes

Q = XWQ, K = XWK , V = XWV , SelfAttention(Q,K,V) = softmax

(
QK⊤
√
dk

)
V

Since QK⊤ calculates all pairwise scores, the upper-triangular elements (i.e. non-preceding
inputs) are set to −∞ before applying the softmax. Note that self-attention has quadratic
compute and memory complexity O(N2) against sequence length. Efficient variants that
aim to reduce these constraints is an ongoing research direction (see Section 3.1.1).

22



Figure 2.8: Visualization of the self-attention mechanism in Transformers for a single head
(see Section 2.5.2). Note the relationships and roles each of the project key, query, and
value vectors take. The function sc denotes the scoring function between the query and
key.

2.5.2 Multi-Headed Attention

For rich inputs such as text, there can be many different ways individual words relate to
one another simultaneously. It is difficult to capture all these distinct parallel relations
within a single self-attention layer. To address this, Transformers use multi-headed self-
attention which is are sets of independent self-attention layers (each called a head) that

23



reside in parallel. Each head learns different patterns that exist among the inputs within
same level of abstraction.

Each head i has its own key, query, and value matrices WK
i ,W

Q
i ,W

V
i . The projections

are done separately for each head, but the remaining operations are the same. The key
and query embeddings should share the same size dk, however the value dv may differ. The
outputs of all h heads are concatenated and reduced down to the original input dimension
d using WO ∈ Rhdv×d. The full calculation is summarized as

MultiHeadAttn(X) = (head1 ⊕ · · · ⊕ headh)W
O Qi = XWQ

i ,Ki = XWK
i ,Vi = XWV

i

headi = SelfAttention(Qi,Ki,Vi)

This layer can be substituted in any place where there is a single self-attention layer.

2.5.3 Transformer Blocks

A transformer block is a combination of multiheaded attention, feedforward layers, residual
connections, and normalization layers where the input and output dimensions are matched
to allow for easy scaling (visualized in Figure 2.9). A transformer itself is just stack
of individual transformer blocks. The feedforward layer is applied to each input in the
sequence through shared weights. For regularization, dropout (Srivastava et al., 2014) is
applied within the feedforward layer, on the skip connection, on the attention weights, and
at the input and output.

Positional Encoding

There is no notion of relative or absolute positions for inputs to any attention mechanism.
One solution is to modify the input by combining dedicated positional embeddings that
are unique to each position. Typically a fixed number of positions are defined and learned
along with the other parameters. These embeddings are then added to X (or possibly
before a subset of the key/query/value projections).

An alternative approach is to use a static function that maps integer inputs to real-value
vectors such that they capture inherit relationships among the positions (i.e. position 4
is closer to 5 than 17). Vaswani et al. (2017) proposed such a mechanism by combining
sinusodal functions at different frequencies.

Rather than absolute positions, relative position embeddings (Shaw et al., 2018; Huang
et al., 2019) directly model offsets between query position i and key position j. These
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Figure 2.9: The canonical Transformer block as presented in Vaswani et al. (2017). A
transformer is just multiple blocks stacked together in succession to develop deep repre-
sentations of the input sequence.

embeddings are learned for every offset (i.e. βi,j) and used to directly modify the attention
matrix.

2.5.4 Encoder-Decoders

The transformer was originally designed for neural sequence transduction tasks (i.e. map-
ping input sequences to output sequences of variable length) such as machine transla-
tion (Bahdanau et al., 2014; Cho et al., 2014; Sutskever et al., 2014). The canonical
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architecture for such tasks is an encoder-decoder where the encoder transforms the input
X = (x1, . . . ,xn) to a latent representation Henc = (h1, . . . ,hn) which the decoder uses to
autoregressively generate the output Y = (y1, . . . ,ym).

For the transformer encoder-decoder, the encoder is a stack of N = 6 transformer blocks
as described in Section 2.5.3. As the encoder is normally allowed to incorporate the full
sequence based on the task, the upper-triangular entries of the attention matrix are not
masked.

Similarly, the decoder is also a stack of N = 6 blocks but with masked attention
for conditioning on its previous outputs. Furthermore, the decoders’ blocks include a
dedicated cross-attention (or encoder-decoder/source attention) layer that attends to both
the encoders’ and previous layer’s representations. More formally, Henc is projected using
dedicated weightsWK

enc,W
V
enc and the prior decoder layer’s representationHdec

i−1 is projected

with WQ
i . The cross attention head is computed as

Qi = Hdec
i−1 WQ

i , Kenc = Henc WK
enc, Venc = Henc WV

enc

CrossAttention(Qi,Kenc,Venc) = softmax

(
QiK

⊤
enc√

dk

)
Venc

The full cross-attention layer is implemented with multiple heads (Section 2.5.2). Both the
decoder and full encoder-decoder are visualized in Figures 2.10, 2.11 respectively. The
encoder and decoder can also exist as standalone models based on the desired use case.
This is further discussed in Section 2.7 and 3.1.

2.5.5 Training Considerations

In practice, training transformers from scratch is difficult due to the complex interaction
between the blocks’ components. For example, the positioning of the normalization layer
cause the gradients to shrink (Xiong et al., 2020) after the residual connection. Further-
more, the gradients for the queries and keys are significantly smaller than the values (Liu
et al., 2020). The latter necessitates an adaptive algorithm combined with learning rate
warmup to stabilize learning. Gradient clipping is another heuristic to ease complex model
training by normalizing the gradient norm before the update step. This helps nurture
exploding or diverging gradients in ill-conditioned loss landscapes.
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Figure 2.10: The decoder block for the Transformer encoder-decoder. Cross-attention uses
the full bidirectional context whereas the causal attention preceding it masks the “future”
context.

2.6 Language Models

Natural language processing (NLP) is the branch of statistical learning focusing on compu-
tational techniques to process, understand, and emit human language. We focus primarily
on a specific class of models used to process and generate natural language. Goldberg
(2016), Jurafsky and Martin (2022), and Eisenstein (2018) provide an exhaustive study on
other applications in NLP.
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Figure 2.11: The Transformer as an encoder-decoder architecture. The input for the
decoder is subject to the desired task.

2.6.1 N-Gram Language Models

Language models (LMs) are a class of generative models that assign probabilities to se-
quences of natural language tokens, or equivalently predict the next token in a sequence.
Tokens can be either words, characters, bytes, or even subwords (Schuster and Nakajima,
2012; Kudo and Richardson, 2018; Kudo, 2018). For convenience, we will treat tokens as
analogous to words and generalize in Section 2.6.4.

If w1:t = w1w2 · · ·wt denotes a sequence of t words, then LMs attempt to model
P(w1:t) = P(w1, . . . , wt). The probability can be decomposed using the chain rule as

P(w1, . . . , wt) = P(w1)P(w2|w1)P(w3|w1:2) · · ·P(wt|w1:t−1) =
t∏

i=1

P(wi|w1:i−1)

Given a training corpus, the empirical estimate of P(wi|wi−1) under maximum likelihood
is the relative frequency of w1:i in the training corpus. Particularly,

P̂(wi|w1:i−1) =
count(w1:i)∑

w count(w1:i−1, w)
=

count(w1:i)

count(w1:i−1)
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where the denominator is simplified by the sum rule of probability.

In practice, calculating the estimates for extended histories (i.e. where w1:i−1 is large)

can be intractable. Instead, P̂(wi|wi−1) is approximated using the Markov assumption
where we assume that the conditional probability of wt only depends on the last N words.
Mathematically,

P(wi|w1:i−1) ≈ P(wi|wi−N−1:i−1)

where N is a hyperparameter and wi−N−1:i−1 is the N-gram context (i.e. a contiguous
sequence of N consecutive words). Putting this all together gives the MLE estimate

P̂(wi|w1:i−1) ≈ P̂(wi|wi−N−1:i−1) =
count(wi−N−1:i)

count(wi−N−1:i−1)

Statistical models leveraging n-grams formed the backbone of many early applications
in NLP (Jelinek, 1976; Buck et al., 2014; Goodman, 2001; Jelinek, 1980; Baker, 1990; Chen
and Goodman, 1996). There are major limitations to these models however, the first of
which being any finite training corpus will yield zeros for valid n-grams not present in the
data. This can be combatted by adding a smoothing term to redistribute the probability
mass and assign unseen n-grams non-zero probabilities.

Similarly, n-gram models are prone to creating sparse inputs. For example, if V is the
vocabulary (i.e. set of all unique words in the training set), then there are |V |N possible
N -grams. Each n-gram is expressed as a one-hot vector of size |V |N where V is typically
a large set. Furthermore, most of the anticipated |V |N n-grams aren’t valid so associated
vector components will always be zero.

Another issue is that these one-hot vectors are unable to encode semantic information.
Intuitively, it is desirable to project words into a vector space where similar words appearing
in similar context are closely related. For example, we expect the vector representations
for cat and dog to be more similar than cat and pineapple.

2.6.2 Neural Language Models (NLM)

Neural language models are the family of LMs built from DNNs. These models overcome
the limitations of using n-grams by projecting word representations into a continuous or
dense space with dimension far less than |V |N . This allows the model to encode each word
as a distinct vector while simultaneously capturing information such as word similarity.
Thus for words that are not in the training corpus, the model able to generalize and
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conduct inference based on surrounding context. The dense representations from NLMs
are called word embeddings and the projection layer is the embedding layer.

One of the earliest LMs was an MLP with one hidden layer proposed by Bengio et al.
(2000). This model uses a sliding window to see the previous N words and a dedicated
embedding matrix E ∈ Rd×|V |. Each word is assigned a unique index i = 1, . . . , |V |
corresponding to a column in the embedding matrix (i.e. a lookup table (Paszke et al.,
2019; Abadi et al., 2016)).

The full forward propagation step is given by

1. Select N embeddings from E:

Given the previous N words, lookup their indices from the vocabulary and obtain
their vectors from the embedding matrix (i.e. ei1 , . . . , eiN ). The embeddings are
concatenated into e =

[
ei1 ; · · · ; eiN

]
∈ RNd.

2. Apply feedforward layer:

The hidden layer yields h = ReLU(We+ b).

3. Compute word distribution:

The final layer is a softmax operation to obtain the distribution P[wt+1|wt−N :t]. Each
element i estimates P[wt+1 = i|wt−N :t]. The complete operation is ŷ = softmax(Uh).

Transformers for Language Modelling

The autoregressive nature of the transformer decoder through its causal self-attention also
makes it ideal as a generative language model. The decoder is trained directly to predict
the next word at step t using all preceding tokens in the input rather than restricting
to N -gram windows, i.e. P[wt|w1:t−1]. The embedding layer is incorporated into the first
decoder block and acts as the initial input before adding other encodings (i.e. positions).

During inference, the decoder generates tokens one at a time using its own outputs as
preceding context. This makes it difficult to distribute the work along different compute.
This is infeasible for training larger models so a workaround is to condition on the ground
truth. This is known as teacher forcing since the true labels are force fed into the model
as input at each step. Additional language models are discussed in Section 2.7 and 3.1.
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2.6.3 Sampling Outputs

The process of sampling the next word from the decoders’ probability distribution is known
as decoding. The simplest approach to greedily choose the most likely word at each step,
however this doesn’t guarantee that the final sequence is the more probable. An exhaustive
search is intractable as it requires |V |τ permutations.

Beam search is a compromise between the two heuristics by maintaining k candidate
outputs at each step, called the hypotheses. At each step, each candidate is expanded to
include all V possible values where we again choose the top k and repeat. To prevent bias
towards shorter strings, beam search incorporates length normalization into its scores. It
is also possible to incorporate n-gram penalties (Paulus et al., 2017; Klein et al., 2017) to
prevent repetitive generation by forcing the next-token probability to zero where applicable.
However, the “best” n will depend on domain context and is difficult to optimize in general.
Other variants of beam search aim to diversify the hypotheses (Vijayakumar et al., 2016;
Kulikov et al., 2018).

Holtzman et al. (2019) showed that language generated by humans does not follow
the probabilistic next-word model established for LMs. It is possible to randomly sample
tokens according to the model distribution, however in practice there is a long tail of
unlikely words that collectively make up significant mass. Fan et al. (2018) proposed
top-K sampling in which tokens are only sampled from the K most likely hypotheses.
This can still be problematic if there are a limited number of high-probability tokens, so
Holtzman et al. (2019) developed nucleus sampling where the tokens are sampled from a
fixed proportion of the total probability mass instead.

2.6.4 Tokenization and Vocabulary

Any text can be decomposed into a sequence of atomic units called tokens. Up to this
point, we assumed that tokens and words were interchangeable, however they can also
be characters, bytes, or subwords. The process of converting text into tokens is called
tokenization. The vocabulary is then a mapping between tokens and unique indices (this
process may be called encoding).

In most cases, special indices in the vocabulary are reserved for specific tokens. For
example, the unknown token is reserved as a value for any token that does not appear
in the vocabulary. Similarly, tokens can be used to indicate the beginning or end of a
sequence. A token can also be used specifically to “pad” or inflate a sequence to some
specified length.
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The simplest form of tokenizing English text is segmenting based on whitespace and
punctuation. However, this may not be applicable to other languages where words are
not separated by boundaries or characters have higher individual significance. It is more
common to tokenize the text based on characters in these cases.

2.6.5 Subword Tokenization

An issue with word-level tokenizers is that they are prone to encountering unknown tokens
and cannot capture syntactical variations such as suffixes. A solution is to use word
fragments or subwords to be tokens allowing for unknown words to be further decomposed
into known tokens. Subword tokenization schemes have two parts, a token learner and token
segmenter/parser. The learner is responsible for taking a training corpus and deriving a
vocabulary and set of segmentation rules. The segmenter then uses these rules to convert
any text into a sequence of associated tokens.

Byte-pair encoding (BPE) (Sennrich et al., 2016) and WordPiece (Schuster and Naka-
jima, 2012) are two popular tokenizers that greedily merge pairs of tokens from an initial
set until the specified vocabulary size is reached. BPE starts with characters and punctu-
ation (or bytes (Radford and Narasimhan, 2018)) and merge based on adjacent frequency.
WordPiece starts with characters in the training corpus and merges based on likelihood
(i.e. s1, s2 are merged if the empirical frequencies of s1s2 divided by s1 and s2 is the greatest
among all pairs).

The unigram language model (Kudo, 2018) works in the opposite direction by starting
with a large vocabulary (generated by another algorithm) and removing tokens. Specifi-
cally, tokens are pruned if doing so results in the smallest increase in likelihood are pruned
based on minimal increase in the NLL loss of a language model.

All of the algorithms described so far assume that the input is white-separated first.
SentencePiece (Kudo and Richardson, 2018) treats the entire input as a raw input stream
thus including whitespace as a valid character when applying BPE or Unigram. The
whitespace character is typically denoted with another character such as “ .”

2.7 Transfer Learning

Many tasks with low-amounts of data benefit from sharing high-level similarity to data-rich
tasks. For example, many downstream language processing tasks share general language
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semantics and characteristics from a larger corpus (assuming the language is the same).
This suggests that first training a model over a large dataset to capture general language
intricacies before continually training on a small downstream dataset would lead to better
performance (Howard and Ruder, 2018). This can be viewed as developing a good repre-
sentation of the data beforehand or initializing the parameters to a space where a good
solution is more likely.

This is the premise of transfer learning. The first stage of training a model with
parameters θ on a large source dataset Ds is called pre-training. The second phase of
continually training the model on a target dataset Dt is called fine-tuning. Typically the
model is modified to match the target distribution by replacing or extending the last
layer(s). For example, if the output distribution for a pretrained DNN is P[y|x,θ] =
softmax(W1g(x;θ1) + b1), the new head becomes P[y|x,θt] = softmax(W2g(x;θ1) + b2)
where θ1 is the pretrained model’s parameters up to the final layer. To prevent catastrophic
forgetting (McCloskey and Cohen, 1989), the learning rate is usually configured as a low
value so that the model weights don’t deviate significantly.

Figure 2.12: The transfer learning paradigm for a multilayered model (i.e. deep neural
network). This figure is based off the one in Murphy (2022).
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2.7.1 Pre-training

The pre-training task may be supervised or unsupervised as the goal is for the model
is able to learn sufficient context for downstream generalization. This is not rigourously
defined, however it was shown that pre-training task similarity contributes significantly to
downstream performance (Zhang, Zhao, Saleh and Liu, 2019) (i.e. no-free lunch theorem).

Supervised pre-training is more common in computer vision applications (Kolesnikov
et al., 2019b) because of the availability of large labelled datasets (Deng et al., 2009).
However, due to the accessibility of unlabelled data (especially text) self-supervised pre-
training is more popular in recent work. These techniques are coined “self-supervised” as
the pre-training task is discriminative, however the labels are assigned using an algorithm as
opposed to human-annotations. One such example was the next-word prediction discussed
to train decoders in Section 2.6.2.

2.7.2 Fine-tuning

Standalone transformer encoder models are typically used to transform discrete text inputs
into contextualized token representations (Peters et al., 2017, 2018) that can generalize to
a variety of downstream tasks (i.e. sequence/token classification, question answering, etc.).
Thus these models are trained in a self-supervised manner over a large corpus so that they
can exploited for transfer learning. For example, they may be optimized to reconstruct
inputs where tokens are randomly masked or replaced (Masked Language Modelling or
MLM) (Devlin et al., 2019; Liu et al., 2019; Joshi et al., 2020). To fine-tune the model,
the appropriate head is simply attached to the final encoder representation. Because the
goal of the encoder is to learn representations, the full self-attention mechanism is used to
incorporate bidirectional context (Devlin et al., 2019).

Early transfer learning for NLP relied on finetuning autoregressive language models
for discriminative tasks (Howard and Ruder, 2018). However, these are largely replaced
with encoders and contextualized representations. Decoders are primarily dedicated to
generative modelling where they demonstrated recent success in few-shot generalization
through prompting.
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Chapter 3

Literature Review

This chapter provides an overview of two areas of research relevant to our work. The first
section discusses recent advancements and applications revolving around the transformer
architecture (introduced in Section 2.5). The second section reviews prior work in data-to-
text generation and sports game summarization. Specifically, prior work in improving data
purity in existing sports game summarization benchmarks directly motivate the problem
of interest in this thesis.

3.1 Modern Transformers

The original transformer (Vaswani et al., 2017) was orientated towards translations tasks,
but was quickly adopted to various applications in NLP, computer vision, and other modal-
ities. It is also common for standalone encoders or decoders to be trained for specific use
cases. Transformers have largely found success due to ease of scale and parallelism, as well
as superior performance in many objectives when pre-trained over large amounts of data.
NLG is one of the many areas where transformers surpassed early state-of-the-art bench-
marks and thus will be the model of choice when we benchmark our own DTG datasets in
Chapter 4.

This section provides an overview of recent advances under the transformer architecture,
such as efficient attention mechanisms, encoder-decoders, incorporating to computer vision,
and generative language models.
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3.1.1 Sparse Attention Mechanisms

Recall from Section 2.5.1 that self-attention has O(N2) compute and memory complex-
ity. This poses a practical limit on the length of the input sequence for tasks such as
summarization. A common strategy is to leverage a sparse attention matrix, though it is
also possible to project the matrix to a smaller size (Liu et al., 2018; Wang et al., 2020)
or replace the softmax operation with an efficient equivalent (Katharopoulos et al., 2020;
Choromanski et al., 2020).

One approach is to restrict the range of keys to some local neighbourhood of the query
(Liu et al., 2018; Ainslie et al., 2020; Beltagy et al., 2020), aptly named local, sliding window
or convolutional attention. A related approach is to group tokens into blocks such that
tokens within a block only attend to one another (Phang et al., 2022; Liu, Lin, Cao, Hu,
Wei, Zhang, Lin and Guo, 2021). Due to their close relationship to convolutional layers
(LeCun et al., 1989), local attention can also implement similar extensions to expand the
network’s receptive field such as dilation rates. However, local attention alone severely
limits the predictive power for transformers for more complex tasks. To counteract this,
local layers are either alternated with full-attention (Brown et al., 2020) or combined with
dedicated global (Beltagy et al., 2020; Ainslie et al., 2020; Guo et al., 2022; Phang et al.,
2022) and random (Zaheer et al., 2020) tokens.

3.1.2 Encoder-Decoders

Transformer encoder-decoders are widely adopted in natural language generation (NLG) for
sequence-to-sequence tasks such as machine translation, text summarization, or dialogue
generation (Freitas et al., 2020). The encoder uses bidirectional attention to fully encode
the input into a contextual representation. The decoder then uses causal attention to
auto-regressively generate the output sequence while using cross-attention to attend to the
encoder representation. Most of the state-of-the-art models in this class generally differ
in pre-training objectives and downstream purpose. In terms of architecture, the main
differences are constrained to activation functions, modified blocks, or using an efficient
self-attention described earlier.

BART (Bidirectional and Auto-regressive Transformer) (Lewis et al., 2019) is an encoder-
decoder trained on a self-supervised denoising objective. Specifically, the model was pre-
trained to reconstruct corrupted inputs where continguous spans are masked (text infilling)
and the sentences are randomly shuffled (sentence permutation). This model is best suited
for summarization tasks however it is possible to extend the encoder or decoder to finetune
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Figure 3.1: Visualization of different sparse attention matrices as described in Section 3.1.1.

on more. The LED (Longformer Encoder-Decoder) (Beltagy et al., 2020) an adaptation of
BART which replaces the encoders’ self-attention with a sparse variant (dilation + local
+ global token at the first position).

Similarly, PEGASUS (Pre-training with Extracted Gap-sentences for Abstractive Sum-
marization) (Zhang, Zhao, Saleh and Liu, 2019) was trained on a denoising objective
where entire sentences are masked based on their significance in relation to the input (Gap
Sentences Generation or GSG). Strategically masking the inputs in this manner loosely
resembles abstract summarization. Altogether, the encoder is trained with masked lan-
guage modelling while the decoder simultaneously generates only the masked sentences.
PEGASUS-X (Phang et al., 2022) and BigBird (Zaheer et al., 2020) extend the model to
incorporate sparse self-attention independently. There are also models that use the GSG
objective for long-sequence summarization (Guo et al., 2022).

In contrast to the previous examples, T5 (Text-to-Text Transfer Transformer) (Raffel
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et al., 2019) was pre-trained simultaneously on a novel reconstruction objective and a
plateau of other supervised tasks to produce a multi-faceted model with potential zero-
shot generalization. This is done in a strictly “text-to-text” manner where the inputs and
outputs are text sequences regardless of the task. This provides the benefit of training
everything under a single cross-entropy loss.

Figure 3.2: The text-to-text framework of T5, images from Raffel et al. (2019). (Top) The
tasks are specified as part of the input and the model output is always parsed as human-
readable text. (Bottom) An example of the unsupervised objective for T5, note the model
groups predictions with the sentinel tokens.

To differentiate between tasks, the inputs are fitted with a prefix specifying what the
model should output (see Figure 3.2). The unsupervised objective is similar to BART where
the model has to reconstruct masked contiguous spans via unique sentinel tokens. However
the model only generates the masked portions instead of the full corrected sequence, thus
reducing the loss complexity. T5 also adopts a relative position scheme where scalar
embeddings are added to the corresponding attention logits. Each embedding maps to
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an increasing range (or bucket) of offsets where all tokens beyond the full window are
assigned the same embedding.

In a similar manner, FLAN (Finetuning Language Models) (Wei, Bosma, Zhao, Guu,
Yu, Lester, Du, Dai and Le, 2022; Chung et al., 2022) is a fine-tuning procedure extending
multitask learning by rephrasing data inputs as explicit instructions. This model-agnostic
objective has demonstrated promising results on several architectures (Raffel et al., 2019;
Chowdhery et al., 2022; Tay et al., 2022) in zero and few-shot generalization on a variety
of unseen tasks. For example, including chain-of-thought prompting (Wei, Wang, Schuur-
mans, Bosma, hsin Chi, Le and Zhou, 2022) improves a language model’s general ability
to reason by having it generate its intermediate steps to influence conciseness.

3.1.3 Generative Language Models

Many language models built from transformer decoders, as described in Section 2.6.2,
have become the forefront of modern NLP due to their unprecedented success in few-
shot generalization. This is particularly noteworthy as significant advancements in SOTA
benchmarks come almost exclusively from scaling and sufficient training (Hoffmann et al.,
2022) over various data sources (though this comes with the disclaimer of possible data
contamination based on training corpus).

The GPT family (Generative Pre-training Transformer) (Radford and Narasimhan,
2018; Radford et al., 2019; Brown et al., 2020; OpenAI, 2023; Black et al., 2022; Ouyang
et al., 2022) are decoders trained with next-word prediction. GPT-3 pushed the scale of
the canonical LMs at 175 billion parameters and was trained on The Pile (Gao et al.,
2021). Due to the scale and diversity of training data, GPT-3 demonstrated an ability to
generate novel text. Specifically, the output can be somewhat influenced by conditioning
on an initial prompt. In some cases the model is able to conduct few-shot task transfer
when prompted with several examples. This is an example of in-context learning.

More recently, InstructGPT (the precursor to ChatGPT ) (Ouyang et al., 2022) uses
RLHF (reinforcement learning from human feedback) (Christiano et al., 2017) to fine tune
GPT-3 over outputs that are “aligned” with human intent using a separate ranking model
trained over supervised data. The resulting model has shown to generate more desirable
outputs and follow instructions better at a significantly smaller scale (1.3B v.s. 175B).

The breakthrough with GPT-3 started a series of large language models (LLMs) that
placed an emphasis on scaling. These include Megatron-Turing NLG (Smith et al., 2022),
GLaM (Du et al., 2022), Gopher (Rae et al., 2021), Chinchilla (Hoffmann et al., 2022),
PaLM (Chowdhery et al., 2022), OPT (Zhang et al., 2022), LaMDa (Thoppilan et al.,

39



2022), and most recently (at the time of writing) LLaMA (Touvron et al., 2023). Almost all
of the improvement can be attributed to scale, efficient training procedures, and exploiting
large diverse datasets.

3.1.4 Vision Transformers

Transformers were also adopted into computer vision by modifying the architecture to
process image data. Unlike text, images can be processed directly as three-dimensional
tensors of size H × W × C. Specifically, H is the height, W is the width, and C is
the number of channels (i.e. RGB is C = 3 for red, green and blue). Each element at
position (i, j, k) is the pixel intensity at channel k. In practice, the pixel intensities range
from [0, 255] and are usually standardized to [0, 1] or [−1, 1]. This is normally the only
preprocessing done, however many pipelines also re-scale or crop the images to some fixed
size.

Prior to this, computer vision was dominated by convolutional neural networks (CNNs)
(LeCun et al., 1989; He et al., 2015a; Krizhevsky et al., 2012). These networks were
designed to specifically handle inputs exhibiting a grid-like topology. Furthermore CNNs
uniquely inherit additional properties such as locality and spatial translation invariance
making them ideal for these types of inputs (i.e. good inductive biases). Transformers
process images as an arbitrary sequence thus necessitating additional learning to surmount
this disadvantage. Despite this, transformers have largely eclipsed the CNN benchmarks
on various vision tasks (Kolesnikov et al., 2019a; Mahajan et al., 2018; Xie et al., 2019)
due to their scale and accessibility of large pre-training datasets (Sun et al., 2017; Deng
et al., 2009; Schuhmann et al., 2021).

The ViT (Vision Transformer) (Dosovitskiy et al., 2020) is an encoder which processes
images by dividing them into 16 × 16 non-overlapping patches that are further down-
projected and added to learned position embeddings. A dedicated [CLS] classification
token (Devlin et al., 2019) is prepended to the input sequence and the model was pre-
trained on the supervised ImageNet dataset (Deng et al., 2009). BEiT (Bao et al., 2021)
is an updated variant that adopts the MLM pre-training task by reconstructing masked
image patches.

Swin (Hierarchical ViT using Shifted Windows) (Liu, Lin, Cao, Hu, Wei, Zhang, Lin
and Guo, 2021) is a modified ViT that processes larger images efficiently by downsampling
the resolution and increasing the number of channels (reminiscent to CNN backbones).
This encoder divides the images into patches that are then grouped into non-overlapping
windows in which self-attention is applied independently. To retain predictive power, each
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alternating transformer block shifts the windows so different subsets of patches can inter-
act. The resolution is periodically reduced by merging neighbourhoods of non-overlapping
patches and projecting them to increase the number of channels. Swin adopts relative
position bias and uses bi-cubic interpolation to scale to different window sizes (Dosovitskiy
et al., 2020; Touvron et al., 2020).

Swin V2 (Liu, Hu, Lin, Yao, Xie, Wei, Ning, Cao, Zhang, Dong, Wei and Guo, 2021)
updated the architecture to stabilize learning at larger scales and improve performance
for high-resolution transfer. To improve training, the attention scores are replaced with
scaled cosine similarities and post-residual normalization. The relative position bias is
implemented as a continuous function with log-scale positions, significantly reducing the
extrapolation step size at larger resolutions.

The transformer architecture has also been modified to handle other canonical computer
vision tasks such as image classification (Touvron et al., 2020), object detection (Carion
et al., 2020; Zhu et al., 2020; Fang et al., 2021), semantic segmentation (Ye et al., 2019;
Xie et al., 2021; Gu et al., 2021), and image generation (Chen, Wang, Guo, Xu, Deng, Liu,
Ma, Xu, Xu and Gao, 2020; Nash et al., 2021).

3.1.5 Multimodal Transformers

Accommodating the transformer for various input formats allows for unifying different
data types into a single end-to-end model with ease. These types of models are classified
as multimodal to distinguish their ability to encode or generate different modalities. For
example, the vision encoder-decoder (Li et al., 2021; Wang et al., 2022; Kim et al., 2022)
combines a vision encoder with an autoregressive language decoder for image-to-text tasks
such as image captioning or optical character recognition (OCR). It is also possible to
interleave multiple modalities within a single input sequence for simultaneous processing.

The LayoutLM family (Xu et al., 2019, 2020; Huang et al., 2022; Xu et al., 2021) are
foundation document-understanding encoders fitted to combine textual and visual cues in
their input representations. As the text, image patch embeddings, and positions have to
align these models are typically reserved for document processing with an additional OCR
method. These encoders are pre-trained on reconstruction tasks revolving around masking
tokens and portions of the image.

DONUT (OCR-free Document Understanding Transformer) (Kim et al., 2022) is an
end-to-end vision encoder-decoder that can comprehend document images without explic-
itly providing the aligned text. It was pre-trained on a pseudo-OCR objective on augmented
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images (Yim et al., 2021; Lewis et al., 2006) at high resolutions. Similarly, GiT (Gener-
ative Image Transformer) Wang et al. (2022) is a general-purpose vision encoder-decoder
that was trained over a large quantity of image-text pairs.

There is also an ongoing surge (at the time of writing) of foundational multimodal
language models (Driess et al., 2023; Huang et al., 2023; OpenAI, 2023) that were trained
on unified input types to generalize over many unseen generative tasks. This is the nat-
ural extension of decoder-based LLMs by incorporating additional modalities to aid with
conciseness on tasks benefiting from multimodal prompts.

3.1.6 Evaluating Text Generations

The cross-entropy acts as a pseudo-loss in order to train the model, however the metric of
interest is usually different (i.e. accuracy, precision, recall, etc.). Most metrics that are used
to evaluate language fluency require both predicted and reference texts and focus on shared
n-grams. For example, the Bilingual Evaluation Understudy (BLEU) (Papineni et al.,
2002) is a measure of similarity between [0, 1] calculated by counting n-gram occurrences
between the two texts up to n = 4. They further include a brevity penalty to penalize
shorter predictions. Despite its popularity, it was shown that BLEU correlates poorly with
human judgement for NLG (Novikova, Dusek, Curry and Rieser, 2017).

Similarly, the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) score (Lin
and Hovy, 2003; Lin, 2004; Lin and Och, 2004) is an extension of BLEU that emphasizes
n-gram recall. There are several notable variants of the metric such as ROUGE-1 which
computes the overlap proportion of unigrams. Similarly, ROUGE-2 computes the overlap
proportion of bigrams. ROUGE-L (Lin and Och, 2004) looks at the longest common sub-
sequence between the reference and candidate texts.

TheMetric for Evaluation of Translation with Explicit ORdering (METEOR) (Banerjee
and Lavie, 2005) is another variant of BLEU that takes the harmonic mean between uni-
gram precision and recall and accounts for stemming and synonyms (Miller, 1992). Thus,
METEOR first looks to construct an alignment between the candidate and reference texts
through exact, stem, or synonym matches.

The contextualized token representations of LLM encoders (see Section 2.6.2) can also
be utilized to construct text similarity measures. Unlike with the n-gram metrics the vec-
tors’ encoded semantic information are also taken into account. COMET (Rei et al., 2020)
and BLEURT (Sellam et al., 2020) trained or finetuned models on datasets with human-
annotated similarity scores between two text segments. Likewise, BERTScore (Zhang et al.,
2020) computes pairwise cosine similarity between all the token embeddings between both
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texts and greedily match the most similar token to compute the precision and recall. As
these methods still involve large transformers, concerns associated with compute and in-
ference bottlenecks are still valid.

3.2 Data-to-Text Generation

Data-to-Text Generation (DTG), following the seminal work of Reiter and Dale (1997),
is concerned with the automation of translating structured data instances (i.e. tables,
graphs, etc.) into coherent narratives. Unlike other tasks from NLG, the input is not
exclusively a linguistic representation of information and can incorporate different data
structures within a single input. Furthermore this objective poses additional challenges
compared to canonical sequence transduction as the generator needs to determine what to
say (i.e. selecting the appropriate subset of input data to discuss) on top of how to say
it. This topic is adopted in various commercial and proprietary frameworks and garners
considerable applicability in different domains (Portet et al., 2007; Pauws et al., 2018;
Anselma and Mazzei, 2018; Murakami et al., 2017; Aoki et al., 2018; Juraska et al., 2019;
Braun et al., 2018). This section focuses on earlier work revolving around neural networks
and focuses specifically on the applicability of LLMs and the sports game summarization
case. For a more general overview of neural network solutions on various DTG datasets,
refer to Sharma et al. (2022).

3.2.1 Datasets

The problem of DTG is diverse in the sense that the input representations can come in
many forms such as meaning representations, graphs, tabular structures, etc. Furthermore
the assigned narratives can vary in complexity and can pose additional challenges them-
selves. Due to similar example structures, DTG is closely aligned to tasks such as machine
translation, summarization, and even domain-specific tasks like image captioning and ques-
tion answering. Because of this a lot of the techniques and models from related areas tend
to generalize well when adopted to DTG (i.e. neural encoder-decoders).

The WebNLG dataset (Gardent et al., 2017) is a collection of graph-text pairs spanning
various domains. The graph nodes are encoded as Resource Description Format (RDF)
triplets and the text is parsed in both English and Russian making it one of the few non-
anglo centric DTG datasets. AGENDA (Koncel-Kedziorski et al., 2019) is another graph-
to-text dataset that pairs knowledge graphs extracted from AI conference proceedings to
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article abstracts. DART (Radev et al., 2020) is a cross-domain dataset formed by merging
the meaning representation dataset E2E (Novikova, Dusek and Rieser, 2017) andWebNLG.

The WikiBio dataset (Lebret et al., 2016) is a large scale table-to-text dataset with
pairs of Wikipedia info-boxes and the first paragraph of the associated article. The vo-
cabulary size and number of examples far exceeded the existing pioneering table-to-text
datasets (Chen and Mooney, 2008; Liang et al., 2009). The Rotowire (Wiseman et al.,
2017) and MLB (Puduppully et al., 2019a) datasets posed new challenges as they paired
data records over multiple tables to detailed narratives summarizing in-game events. The
average reference length and number of data records are substantially larger than contem-
porary table-to-text datasets, even at the time of writing.

ToTTo (Parikh et al., 2020) is an open-domain controlled generation task that re-
quires generating short narratives from tables with pre-selected/highlighted cells. SciGen
(Moosavi et al., 2021) incorporates implicit arithmetic reasoning over table entries into
its narratives. WikiTableT (Chen, Wiseman and Gimpel, 2020) is another dataset with
1.5 million examples that pairs Wikipedia descriptions to multiple tables and metadata to
produce a large-scale benchmark inspired by the high-dimensional challenges of Rotowire.

There are also datasets with niche input representations (though graphs and tables are
typically the most common). For example, there are two datasets aptly named chart-to-
text (Obeid and Hoque, 2020; Kanthara et al., 2022) that pair visual charts and graphs
to narrative descriptors. Similarly, (Sharma et al., 2021) assigns narratives to time-series
graphs.

3.2.2 Applicability of LLMs

Kale (2020) demonstrated that the text-to-text pretrained T5 was able to outperform many
pipelined neural architectures on several DTG datasets. The input data instances were
simply cast as flat strings (called linearization) and passed into the different variants of
T5. Their experiments found that the “knowledge” possessed by these models at increased
capacities played a prominent role for out-of-domain generalization. For instance, since T5
was trained on a large unsupervised web corpus, the larger variants likely have domain-
specific word distributions incorporated into its weights.

Further expanding this revelation, Yermakov et al. (2021) applied additional generative
LLMs in the biomedical domain where more complicated generation is required (similar
to sports summarization, discussed in Section 3.2.3). Keymanesh et al. (2022) and Mehta
et al. (2022) study the generalization properties of using these same LLMs in DTG. In the
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extreme case, Kasner and Dusek (2022), Chang et al. (2021), and Su et al. (2021) propose
methods and pipelines for few and zero-shot DTG with LLMs.

3.2.3 Sports Game Summarization

Sports game summarization is a domain-specific NLG objective concerned with producing
coherent summaries of sports games. This was originally approached as its own area
of research (Robin, 1994; Tanaka-Ishii et al., 1998; Barzilay and Lapata, 2005) but is
now largely incorporated as a special case of DTG. Rotowire and MLB are such datasets
and involve generating multi-sentence summaries by selecting from a substantial number
of records encompassing numerous tables. A related line of research is evaluating the
“truthfulness” of the generated statistics and relations on top of language fluency (further
discussed in Section 4.3). An example from the Rotowire dataset is given in Figure 3.3.

Figure 3.3: An example from Rotowire. Each feature is a collection of statistical records
in the form of a boxscore table. The target is the associated human-generated summary
describing the events of the game. Image from Wiseman et al. (2017).

The inaugural work of Wiseman et al. (2017) adopted an end-to-end LSTM encoder-
decoder with attention (Luong, Pham and Manning, 2015) and embedded the records
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directly as input vectors. To improve the decoder’s precision they also fitted a copy mech-
anism (Gu et al., 2016; Yang et al., 2016; Gulcehre et al., 2016) that was tasked with
copying record values directly from the input and modelling when to do so. To auto-
matically evaluate the correctness of the generation, the authors propose three different
criteria:

• Content Selection (CS): compute the precision and recall between the unique relations
extracted from ŷ1:T1 and y1:T2 .

• Relation Generation (RG): compute the precision and number of unique relations r
extracted from ŷ1:T1 that appears in the database s.

• Content Ordering (CO): compute the normalized Damerau-Levenshtein distance (Brill
and Moore, 2000) between the sequence of records extracted from ŷ1:T1 and y1:T2 .

Wiseman et al. (2017) built entity extraction models to collect relations from the summaries
where a noisy dataset was created using string heuristics to find all pairs of entities and
numeric values in each sentence in the gold summaries. These pairs are then mapped back
to the input table to determine the relation.

Puduppully et al. (2019a) explicitly model the content selection and planning phases
as separate components. They leveraged a bidirectional LSTM pointer network (Schuster
and Paliwal, 1997; Vinyals et al., 2015) that returns an ordered sequence of indices (i.e.
pointers) in the original sequence representing the selected records or the content plan. The
decoder then generates the summaries by conditioning on this content plan. Gong et al.
(2019) model the selection phase with a transformer encoder that predicts if the record is
used in the summary. The encoder was trained by alternating between the classification and
LM objective. Similarly, Narayan et al. (2020) proposed a stepwise approach to creating
the content plans using pre-trained structured transformers - HiBERT (Zhang, Wei and
Zhou, 2019) and ETC (Ainslie et al., 2020). Puduppully et al. (2019b) further extend
the encoder by introducing entity-specific representations as opposed to treating them as
regular tokens.

Puduppully and Lapata (2021) propose abstracting beyond content plans to macro
plans which are sequences of paragraph plans that themselves are sequences of entities and
their associated records. The pointer network is then tasked with selecting the paragraph
plans whose pointers form the macro plan. Puduppully et al. (2022) update the plan
encoder to increment by paragraph and condition each plan on both the previous plans as
well as the generated paragraph(s).

Outside of explicit plan modelling, Rebuffel et al. (2019) revise the encoder to fit the
hierarchical structure of the data tables and retain the record order and other distinctions
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between entities (i.e. team v.s. player). The low-level encoder produces a single represen-
tation for each entity which the high-level encoder aggregates a dynamic context over all
entities at each decoder step. On the other end, Choi et al. (2021) introduce two different
copy mechanisms to improve the precision at the decoding stage.

Ethan Joseph and Si (2021) note the poor generation quality of existing approaches
and opt to use LLMs as the base encoder-decoder. Unlike Kale (2020), they include addi-
tional tokens to identify different record or relation types (i.e. <TM-PTS>, <TM-REB>, etc.).
Furthermore, they included an auxiliary loss to encourage generating common trigrams
and imposed length and n-gram penalities (Paulus et al., 2018). They also use a fact-check
module which predicts the relation of the sentence and subsequently replace the value.

Despite all of the work in the literature pertaining to this dataset, the summaries
themselves suffer from low data fidelity. For example, many of the statements incorporate
additional domain expertise and background knowledge consolidated from sources outside
of the input records. Wang (2019) observed that approximately 40% of the game sum-
mary contents couldn’t be mapped to any input in the boxscore records (57% of which
are still game-specific items). This encourages the models to hallucinate facts that conse-
quently inflate language fluency scores without being penalized or addressed in any other
correctness metrics. The author proposes purifying the summary by removing all sentences
that couldn’t be mapped back to a record in the data table. Chapter 4 further explores
the data fidelity problem for Rotowire and proposes solutions through a domain-driven
perspective.

47



Chapter 4

Large Data-to-Text Generation

As mentioned in Section 3.2.3, Wang (2019) addresses the data fidelity issue within the
Rotowire dataset. They propose primarily to remove sentences in the summary that can
not be mapped to the collection of input records. However, this poses two issues where
(1) the final gold summary may no longer be coherent; and (2) the model fit may not
be suitable outside of a research setting as the retained information may only be trivial.
Instead, we propose working in the other direction and take advantage of the observation
that most of the ungrounded phrases are still game-specific. That is, we procure a larger
collection of input records with supplementary information more aligned with what appears
in the summaries. Doing so introduces a more complex layer on top of the existing DTG
problem as the number of records becomes astronomical and necessitates the need for
efficient models as well.

This chapter first formalizes the idea of large data-to-text generation which we coin as
the specific case of DTG with a substantial number of input records distributed across
various representations. We then expand on the automatic evaluation models of Wiseman
et al. (2017) and propose a new pipeline using generative models and data augmentation
over an extended number of entities and relations. We then introduce the supplementary
input records and demonstrate their impact on model performance against a cleaned version
of the original Rotowire dataset. To do so, we would need to use the sparse attention
LLMs discussed in Section 3.1.1 and validate their effectiveness on non-linguistic inputs.
On top of the LLMs we also propose a new way of tackling the sports summarization
problem itself through image inputs with embedded data structures. Throughout the
chapter we introduce novel datasets and analyze the impact of vision encoder-decoders
and LLMs through minor ablation studies.
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4.1 Problem Definition

Suppose the feature space {s1, s2, . . . , sN} ∈ X is a set of databases where each instance
si = {T1, . . . , Tmi

} is a collection of representations, each with its own set of records
{rj,1, . . . , rj,nj

}. Note that these representations can be graphs, tables, charts, etc. and
that each database does not restrict itself to a specific type. Given the corresponding set of
responses {y1, . . . ,yN} ∈ Y where each response yi = y

(1)
i · · · y(ki)i is a sequence of natural

language tokens, the probabilistic model with parameters θ is

P [yi|si;θ] =
ki∏

m=1

P
[
y
(m)
i |y(1)i , . . . , y

(m−1)
i , si;θ

]
We informally define large data-to-text generation as the case where

∑mi

j=1 nj is very large
(in practice this will be in the thousands). Specifically, the input databases have a large
number of records that need to be considered and “selected” as part of the model pipeline.
As a result, the generated summaries ŷi will only discuss a small subset of the data records.

Specific to the Rotowire dataset (and future variants introduced in this chapter),
each record rj can be represented as a tuple rj = (ej, vj, uj) representing the entity (i.e.
player or team), value (i.e. numerical statistic, location, etc.), and relation (i.e. points,
assists, date, etc.). In practice, an explicit relation uj won’t always exist so each record
is either an entity-value pair or a relation object where the relationship defines an extra
characteristic of the entity-value pair.

4.2 Datasets

We introduce four novel variants of the original Rotowire dataset below. The first
variant is a cleaned version of the original that accounts for trivial normalization and
updates a considerable number of the summaries that were updated since its inception.
The second introduces the supplementary data records as described earlier. The third
variant further resamples and augments the previous to account for data contamination
and newer examples between the last dated game and the most recent season end (2022
as of writing). The fourth variant is an extension of the previous which replaces the input
records with a single image that embeds the data structures and layout-sensitive text
formats (i.e. PDF page).

All of the examples were first curated and crawled from their appropriate web sources
before processing in memory. For example, even with the original dataset we crawled
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and extracted the summaries again from the Rotowire source before normalizing and
mapping the IDs back to their respective train-test partitions.

4.2.1 Rotowire (Cleaned)

This is the original version of the dataset as presented in Wiseman et al. (2017) with
minor corrections to ensure that the results are comparable with the other experiments to
be discussed. The data partitions and input features are preserved, and the changes are
listed as follows.

• All the summaries are replaced with versions taken directly from the original web
source at the time of writing. Most of the examples are not affected, however there
were a select few with atypical writing styles that have since been updated to be
more consistent with the others.

• Numbers in a lexical format are normalized into their digit values (i.e. ten is converted
to 10)1. Note that this normalization didn’t affect all of the tokens as we would have
preferred however it was sufficient in practice.

• All dates are normalized to be listed in full instead of its abbreviated form. For
example, 2015 12 25 or Dec 12, 2015 are both standardized to Friday, December

25, 2015.

• The original summaries from Wiseman et al. (2017) were provided as a list of tokens
instead of a raw string. To ensure that we can adopt existing LLMs during the
experiments we opted to “detokenize” and revert to its original text through string
heuristics. Most LLMs are based on a SentencePiece tokenizer which is sensitive to
whitespace and punctuation placement thus it was imperative that the tokens were
reverted to preserve formatting (preliminary experiments without this step resulted
in significantly degraded performance of 9-10 BLEU points).

4.2.2 Rotowire (Supplemented)

To incorporate additional entities, the data table s needs to be replenished from another
source2 which is then mapped back to Rotowire using team names and dates. The origi-
nal input records are comprised of preliminary statistics and do not contain other relevant

1https://github.com/allo-media/text2num
2http://site.api.espn.com/apis/site/v2/sports/basketball/nba/summary?event= where the

event number represents unique game identifiers.
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information such as game venue, date, team totals (Wang, 2019), etc., let alone more so-
phisticated relations. We restrain the additional information to live-game statistics (i.e.
those which are tracked during an NBA game), aggregated versions of the previous, and
next-game information. For the sake of consistency, no data discussing in-game or histori-
cal events are included (i.e. such as play-by-play data, preview articles, etc.). After adding
the supplementary records the final distribution yielded 82 possible input entities/relations
as opposed to the original 27.

Admittedly, this is still not an exhaustive verification and input supplementation will
remain a future area of research as it will also be aligned with work in efficient sequence
processing for LLMs and alternate representations. For additional information on the
specific entities refer to Section 4.3.3.

4.2.3 Rotowire (Full)

Another point worth noting is that the original data splits for Rotowire are not disjoint.
That is, around 25% of the datapoints in each of the valid and test partitions are also
present in the training data. This could contribute to inflated metrics as the inclusion
of additional data records in the input will encourage the highly parameterized PLMs to
memorize the outputs conditioned on specific inputs. To counteract this the full dataset
was resampled from their respective sources for the full seasons 2014-2022 to yield 10,169
examples. The data was partitioned into mutually exclusive train/validation/test sets
of respective sizes 8135/1017/1017. The training data is approximately 2.4 times larger
than the original dataset and can help determine if any issues seen with earlier work are
alleviated by simply using a larger and more diverse training set. The input features are
the same extended data records as discussed in the previous iteration (thus the records
have to be sampled separately and mapped back to the summaries).

Note that this is presented as a separate dataset primarily for comparison sake. For
example, Rotowire (Supplemented) preserves the original data splits to give a better
idea of how supplementary data can improve/degrade performance independent of the
model.

4.2.4 Rotowire (Vision)

Visual data-to-text generation is a specific case of DTG (or large DTG) where the data
structures are embedded within images. This is closely related to other document under-
standing tasks such as visual document understanding where the models are required to
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understand and interpret the contents within the document as part of its inference. Vi-
sual DTG however is not well-studied in the literature as a standalone task but has been
implicitly incorporated in a few other large-scale reasoning benchmarks.

For each game in the Rotowire (Full) dataset, there is an associated game book
created officially by the league which includes details about the game at various granu-
larities3. For example, there are data tables for the full game, each intermediate period,
etc. To construct the visual input for this dataset, we use the first page of each of these
documents as it consists of all the relevant summary statistics as constructed in previous
variants. The main difference is that the data itself is formatted into tables or aligned text
(i.e. titles, headings, footnotes, etc.) within the input images.

There are some discrepancies between the data in the official game document and what
was included in the earlier experiments. For example, details about upcoming games are
added as aligned text in areas of extended white space. Refer to Figure 4.1 for a sample
input with the additional features incorporated into the image. This specific dataset for
conducting “visual” data-to-text generation will be challenging as there are various struc-
tured data formats to incorporate within a single image. Furthermore there are multiple
font sizes (especially with the footnotes describing more nuanced instances) based on time
period and page section which can make it difficult to finetune a model at lower resolutions.
It will be worthwhile in future work to reconstruct these images in a standardized manner.

The motivation for experimenting with visual representations here and benchmarking
its feasibility is twofold: (1) images preserve the implicit hierarchical and layout information
for data structures such as tables (i.e. rows, columns, etc.) (Rebuffel et al., 2019); and (2)
based on the dataset and resolution, the corresponding input sequence can be considerably
shorter than if it were cast as a sequence of text tokens.

4.3 Evaluating Correctness

One of the primary obstacles in natural language generation (NLG) is verifying the accuracy
of the model output. For example, classification and regression are paired with a plethora
of automatic metrics that are simple to compute and offer a comprehensive overview of
model performance (i.e. accuracy, precision, recall, etc.).

However, in the context of text generation one needs to evaluate both the language
fluency and the domain correctness. It is imperative for the statistics, entities, and rela-
tionships described in the corresponding generated summary to be accurate. Furthermore,

3https://www.nba.com/stats/gamebooks
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Figure 4.1: An example of an input image describing the summary statistics for a match
in the Rotowire dataset. Note the various data structures and whitespace formats em-
bedded in a single input instance. The text included inside of the red boxes were added on
top of the image itself. Note that the actual input doesn’t include the red bounding box,
it is merely for illustrative purposes.
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any generated phrases not in the reference must also be factually grounded. This is dif-
ficult to optimize directly, however previous work demonstrated that it can be learned if
the dataset is sufficiently large and diverse. Using a LLM also alleviates the need to learn
language intricacies and instead focus on content selection which encompasses this problem
of truthfulness.

4.3.1 Relation Extraction for Evaluation

Wiseman et al. (2017) and Puduppully et al. (2019b) devised an automated evaluation
system using information extraction models similar to (Collobert et al., 2011; Zeng et al.,
2014; dos Santos et al., 2015; Zhou et al., 2008; Zhang, 2004). Specifically, given a collection
of all possible entities e and numeric values m in each sentence, the extraction system
models P[r.t|e,m;θ] for every pair (if no relationship exists, r.t = ϵ).

The final models were trained on the original game summaries with algorithmic label
construction. The entity-value pairs are collected from each sentence and mapped back
to the database to determine any possible relationship. They omit any pair that can
be mapped to multiple relations. As the dataset will have noisy labels, the models will
ideally have high precision with lower recall. The original IE models reported an accuracy
and recall of 90% and 60% respectively. They were later updated in Puduppully et al.
(2019a) to include textualized numbers with resulting accuracy and recall of 94% and 80%
respectively.

The original extraction models however were limited to a small subset of easily verifiable
numeric boxscore records (i.e. team points, player points, player assists, etc.) shown in
Figure 4.2. There are additional entities to verify such as dates, locations, winner/loser,
game streaks, etc. Note that in order to extend these models to account for the additional
entities, the actual record collection r needs to be revised to include such relationships
(otherwise the extractions cannot be mapped back to verify correctness).

To get a better idea of the various relationships that can be evaluated, we reviewed
thirty randomly sampled summaries from Rotowire (Full) and annotated specific re-
lations and entities that can be mapped back to the supplemented in records (listed in
Figure 4.3). This yields a new total of 82 unique entity relations to verify and includes
trivial ones such as locations, venues, accumulated values, etc.

It was also found that some values can be implicit representations of the same statistic.
For example, rather than expressing that Team A scored p points in the quarter, the
summary may state that Team A leads/trails Team B by q points (either the accumulated
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Figure 4.2: The original 27 entity relations found in the extraction dataset of Puduppully
et al. (2019a).

or per-quarter score). This specific example is not adjusted in the inputs as it gives a way
to gauge if the LLMs are able to quantitatively reason within these datasets.

In the next section, we propose two improvements to the relation extraction approach
described above. The first is to reformulate extraction as a “text-to-text” problem such that
we can incorporate generative LLMs. The second is to further supplement the extraction
models to include additional entities and relationships as discussed.

4.3.2 Extracting Relations with LLMs

The key idea to using LLMs for extraction tasks is to treat them in a “text-to-text” fashion
(Raffel et al., 2019). The specific formulation, inspired by Athiwaratkun et al. (2020), is
to map the input back to a modified version of itself where the entities and relations are
wrapped (or “tagged”) around the substring(s) of interest. This technique provides the
added benefit of recovering the locations of where an entity or relation is flagged at the
cost of longer output sequences. Refer to Figure 4.4 for an example on how the input and
output sequences are formulated.

Another benefit specific to the “text-to-text” method is that it provides a means to pro-
cess the entities/relations as part of the model inference. For example, the phrase contain-
ing ...scored one point... can be mapped to ...scored [1 | PT] point... which
automatically converts textual representations of numbers (and thus taking advantaging
of inheritted knowledge within LLMs). A more complicated example is to standardize
...won four straight... to ...won [W4 | GAME-STREAK] straight.... This allevi-
ates the need for a dedicated postprocessing function which can be tedious to design.
Furthermore, in this specific case the process of verifying entity precision is simplified to
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Figure 4.3: All the possible data-grounded entities found in a subset of summaries as
described in Section 4.3.1. Italicized entities are part of the original collection of entities
captured in the Rotowire automatic evaluation models. The starred entities are those we
found in the summaries that can be incorporated into updated evaluation models.

simply collecting the wrapped substring(s). However, there is still a need to post-process
factitious or invalid outputs due to the hallucinogenic side-affect of generative decoders.
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Figure 4.4: Two examples of how the input and output texts will look under the two “text-
to-text“ formulations described in Section 4.3.2 using the original auto-evaluation entities
from Figure 4.2. The first approach has the benefit of shorter output sequences and will
be more efficient to train. The second approach allows for mapping the location of each
extraction. Note that the entities TEAM and PLAYER are added during training to help the
model learn relationships. These are omitted during post-processing.

4.3.3 Data Setup and Supplementary Relations

The data curation and update procedure is large described in Section 4.2. This is the same
collection of relations that will be mapped back to the databases during the evaluation
process. The full distribution of all 82 entities is given in Figure 4.3.

To create the dataset, we consider the Rotowire (Full) dataset and tokenize the
sentences (Bird, 2004). The additional data was necessary to extend the empirical distribu-
tions for augmentation (discussed in the next section). We also added additional heuristics
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such that sentences without personified entities (i.e. they only appear as pronouns) are
combined with the prior sentence. Furthermore, we normalized the numbers that appear
in textual form into their numerical equivalent (i.e. ten becomes 10).

4.3.4 Data Augmentation

The inclusion of additional entities introduces an increased amount of noise when au-
tomating the label assignment. One way to counteract this is to use key-phrase heuristics
to filter out ambiguous relationships. However, this still doesn’t guarantee a sufficient
amount of the data will be labelled correctly. To ensure that the relation-based metrics
have maximum accuracy, a small subset of the sentences are manually annotated first and
an augmentation scheme is employed to inflate the training set.

The augmentation pipeline is to randomly replace key entities (i.e. players, teams,
cities, venues, etc.) and values in the sentence while preserving the annotated relationship.
This approach is simple, however has proven effective due to the consistent language and
phrasing in the summaries. The dedicated held-out set is only from annotated or human-
verified data whereas augmentation is applied to the training and validation sets. The
replaced entities and values were generally kept within the features’ empirical distribution.

4.3.5 Metrics for Evaluating Extractions

Three common metrics used to evaluate any sort of “information retrieval” system are the
precision, recall, and F1 measures. Within the context of information extraction, consider
the model f that takes an input document x and returns Ê , the set of extracted entities. If
E is the corresponding set of true entities (i.e. the set of entities that actually correspond
to x), then

precision = P =
|Ê ∩ E|
|Ê |

, recall = R =
|Ê ∩ E|
|E|

, F1 = F1 = 2

(
P ·R
P +R

)
Note that the F1 measure is just the harmonic mean of both the precision and recall.

Within the context of the text-to-text relation extraction models from Section 4.3.2,
consider the associated dataset D = {(x1, E1), . . . , (xn, En)}. The network fa : V → V takes
an input xi = xi,1 · · ·xi,m1 of natural language tokens (from the vocabulary V) and maps
it back to another sequence of natural language tokens ŷi = ŷi,1 · · · ŷi,m2 (like Figure 4.4).

To construct Êi, we use string heuristics to collect all relevant substrings, such as those
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wrapped with [...]. The final step is to aggregate the sets before applying the measures
in (4.3.5). That is, E = ∪n

i=1Ei and Ê = ∪n
i=1Êi in (4.3.5).

4.3.6 Experimental Results

We opted to use encoder-decoders for these models as the fine-tuning procedure was more
aligned with pure extraction. The full updated auto-evaluation results on the held-out set
(approximately 500 observations) are provided in Table 4.1 for various generative models.
The models were optimized using Adafactor with relative step sizes for a maximum of five
epochs. The best model checkpoint was selected using beam search with k = 5 over the
validation set.

Greedy Decoding Beam Search (k = 5)
Model Precision Recall F1 Precision Recall F1
T5-small 93.20 92.62 92.91 93.39 92.98 93.18
T5-base 94.22 94.13 94.17 94.44 94.17 94.30
T5-large 95.32 93.77 94.54 95.61 93.93 94.76
BART-base 36.98 36.07 36.52 39.68 32.46 35.71
BART-large 35.86 34.05 34.93 55.35 32.94 41.30
Pegasus 92.80 94.17 93.48 92.98 94.56 93.76

Table 4.1: Table of metrics evaluating the efficacy of the proposed generative extraction
models on the updated autoeval dataset with 82 total entities. The best metric is indicated
in boldface. Details on calculating the precision, recall, and F1 measures are described in
Section 4.3.5.

Empirically, the “text-to-text” approach is feasible based on how well most of the
generative models performed (apart from BART). For those that were able to generalize,
it appears that they excelled in the extraction task regardless of their size and decoding
strategy. That is, increasing the size and number of beams only marginally improves
performance. This allows one to use a smaller model with simpler decoding in practice
to quickly curate the extractions as opposed to relying on the larger variants for higher
precision.

4.3.7 Evaluating Text Generations

For the next couple of sections the base T5 autoeval model with greedy decoding is used
to evaluate the statistical correctness of the generated texts. Note that the evaluation
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approach described below is similar to what was discussed in Section 3.2.3.

To proceed with evaluation, let y1:T1 , ŷ1:T2 be the two documents of interest (in this case,
the gold and predicted summaries respectively). Using the auto-evaluation extraction
model fa(x) as defined in Section 4.3.5, we first collect the ordered set of extractions

from each document. Suppose E = {e1, . . . , em1} and Ê = {ê1, . . . , êm2} denote these sets
accordingly. To gauge the correctness of the generated text, we calculate the following:

• Content Selection (CS): compute the precision (P) and recall (R) between the unique
relations extracted from ŷ1:T1 and y1:T2 . That is, we evaluate

P =
|E ∩ Ê|
|Ê |

, R =
|E ∩ Ê|
|E|

This is intended to measure whether the content of the generated summary matches
what is present in the gold counterpart.

• Relation Generation (RG): compute the precision (P) and number of unique relations
(#) extracted from ŷ1:T1 that appears in the database s. If s is the set of all possible
entities or relations associated to the game, then

# = |Ê |, P =
|s ∩ Ê|
|Ê |

The number of relations gives a measure for the amount of content present in the
summaries. Similarly, the precision determines whether all the generated content is
factually grounded, particularly those that do not appear in the gold summaries.

• Content Ordering (CO): compute the normalized Damerau-Levenshtein distance (DLD)
(Brill and Moore, 2000) between the sequence of records extracted from ŷ1:T1 and y1:T2 .
That is,

DLD% = Damerau-Levenshtein(E , Ê)

As stated earlier, we require that Ê and E are ordered sets. The DLD metric takes
two strings and essentially determines the number of operations needed to transform
one into the other. This provides a measure for how similar the content ordering is
between the generation and gold summaries. We use DLD here to be consistent with
Wiseman et al. (2017).

Wiseman et al. (2017) further conducted studies involving human evaluators to deter-
mine if the quantities above were consistent with the opinion of raters. For the most part,
they found that the precision metrics correlated well with humans. However, similar tests
will need to be done now as the models and entities are largely revised.
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4.4 Experimental Setup

This section applies different encoder-decoders on the datasets described in Section 4.2 to
establish appropriate baseline scores. The Rotowire (Cleaned) and Rotowire (Sup-
plemented) are used first to compare the effect of supplementary input records whereas
the Rotowire (Full) and Rotowire (Vision) datasets are used to evaluate the dif-
ferences and limitations of the vision and text inputs. The specific pre-processing steps
taken before applying the models are discussed in the next section. For all experiments, we
follow Ethan Joseph and Si (2021) and report the supplemented extraction metrics along
with BLEU, METEOR, and ROUGE. We leverage the n-gram scores over the summaries
to provide a similarity measure for the surrounding language between the two on top of
the actual entities and relations.

4.4.1 Data Processing and Experimental Setup

For each game, the associated box score data must first be converted into a text sequence
that will be fed as input to an LLM. This process of casting a multi-dimensional collection
of records into a sequence is known as linearization. Unlike the strategy incorporated by
Kale (2020), each of the Rotowire variants have a large number of unique records that
requires strategically converting the inputs into an intermediate medium first.

Following Kale (2020), Ethan Joseph and Si (2021) created new tokens and appended
them to the model vocabulary to act as separators between different entities. This is an
intuitive approach however it will considerably increase the vocabulary space especially if
there are a large number of unique entities. Another option is to use natural language
separators (for example in English, the semicolon, colon, pipe, etc.) which are already
present in the vocabulary with initialized weights. To tokenize the data records, we use a
combination of English separators to form logical groups that are separated with the pipe
character, “—” (i.e. first tokenize game information in one group, then team statistics,
then player level statistics). Figure 4.5 provides an example of tokenizing and combining
the separate groups.

As there are still a significant number of input tokens, we will work almost exclusively
with LLM encoder-decoders implementing ideas from Section 3.1.1. The exception is T5-
small which is small enough where quadratic complexity doesn’t exhaust our available
compute memory.

Processing Rotowire (Vision) is more straight-forward and is largely confined to
rescaling the inputs to different resolutions. The first resolution 384 × 384 is a common
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Figure 4.5: A simplified example of how the raw data records in an arbitrary object
are tokenized and converted into a single sequence of text tokens. Note that natural
language separators are used to “separate” different groups of statistics contingent on
domain knowledge. In this case, the separation is applied to the different team and score
types.

input size for many vision-based transformers (though not for granular CV tasks such as
segmentation). The other aspect ratios are 1

2
and 2

3
the original input images’. A special

prompt token <s> was assigned as the initial decoder input to match the prompt style fine-
tuning of Kim et al. (2022). Specifically, the gold summaries were wrapped with special
<s>, </s> tokens signifying the start and end of the generated summary.

All of the models were trained with Adafactor and batch size of 4 on a single A6000
GPU. The best checkpoint was selected using the validation set and all outputs were gen-
erated using beam search with k = 5. For decoding in general, the maximum length was
restricted to the 95th quantile of the gold summaries’ token length distribution derived
from the training set and we do not incorporate any additional loss or n-gram penalties.
Furthermore we do not leverage any copy or equivalent correction mechanisms to fix val-
ues/statistics. All the methods proposed are purely derived through end-to-end inference
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(which differ largely from all modelling work in Section 3.2.3).

4.4.2 Results

The results for all four datasets are presented in Table 4.2. The first three were fit using
LLMs that adapted sparse attention mechanisms whereas the last vision dataset was fit
using DONUT (discussed in Section 3.1.5) at differing resolutions. Furthermore we fit the
vision dataset with and without the supplementary entities to gauge any immediate effects
of doing so.

The remaining sections of this chapter analyze different relationships between the
datasets (i.e. effect of including supplementary features, vision v.s. text feasibility, etc.).
For presented generations, specific phrases are recoloured based on factual correctness.
Green and red text indicates factually correct and incorrect statements that can be mapped
to the input data records respectively. Purple and blue text represent factually correct and
incorrect statements that are not accompanied with data records in the input respectively.

4.4.3 Anaylsis: Sparse Attention and Updated Autoeval

The performance increase between the original and supplemented datasets are more sub-
stantial than the reported average 1-4 points per statistic from Wang (2019). In the first
three datasets, the sparse variants of the encoder-decoders are largely competitive or out-
perform the full-attention T5-small especially with more training data. Furthermore,
most of the models were specifically designed to generalize over downstream summariza-
tion but easily adjusted their encoder to the tokenized sequences of Section 4.2. As an
aside, BigBird performed the worst relatively but this is likely due to the checkpoint used
(i.e. it was further finetuned on a specific summarization dataset (Cohan et al., 2018)).

The impact of the replenished autoeval models is particularly clear across the first two
datasets. However, in the vision dataset note the increased precision and recall between the
fits when including information that wasn’t originally present in the boxscore. A significant
proportion of the missing entities were related to next game scheduling which only appears
as a short sentence or two. As expected, the n-gram metrics are largely unchanged provid-
ing a false sense of adequacy. If the extra features were not incorporated into the autoeval
encoder-decoder then the other metrics would also exhibit similar misleading behaviour.
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Rotowire (Clean)

Model
RG CS CO

BLEU ROU-L METR
# P P R DLD%

T5-small 42.21 88.64 34.83 35.77 19.05 19.94 27.94 32.75
T5-base 47.43 88.41 34.43 39.72 20.54 21.68 29.25 34.83
LongT5-base 43.32 88.51 36.52 38.49 22.43 23.12 30.96 35.40
PEGASUS 52.18 75.63 24.61 31.24 13.49 17.44 25.62 30.62
LED-base 47.30 85.60 32.05 36.87 18.66 20.85 27.85 33.69

Rotowire (Supplemented)
T5-small 46.24 93.78 36.83 41.43 22.03 21.74 29.56 35.03
LongT5-base 41.08 92.57 46.71 46.68 32.99 32.74 39.87 43.36
BigBird 43.71 52.48 24.88 26.46 19.51 27.86 34.36 40.08
LED-base 47.49 89.37 35.69 41.23 23.02 25.25 31.31 38.13

Rotowire (Full)
T5-small 47.53 95.45 47.50 53.08 28.39 29.32 36.90 41.98
LongT5-base 48.23 95.74 46.81 53.08 27.26 29.41 36.47 42.23
BigBird 46.87 82.09 39.98 44.05 21.82 27.21 34.26 40.66
LED-base 47.42 92.80 44.44 49.54 26.12 28.82 36.11 41.49

Rotowire (Vision)

Res.
RG CS CO

BLEU ROU-L METR
# P P R DLD%

Original Input Image
384× 384 15.85 13.51 1.49 0.55 0.41 9.12 24.19 27.77
826× 638 44.62 84.84 39.48 41.42 19.30 25.22 33.44 38.27
1100× 850 47.21 88.78 42.61 47.29 21.94 26.96 34.22 39.45

Incl. Supplementary Features
826× 638 45.83 88.64 40.76 43.91 20.97 25.98 33.53 39.39
1100× 850 44.51 94.09 46.56 48.73 24.32 26.98 34.90 39.75

Table 4.2: Table of metrics evaluating the efficacy of the proposed generative extraction
models and data processing pipelines on all four variants of the Rotowire dataset as
discussed in Section 4.2 under the proposed 82 entities autoeval scheme. The best metric
for each dataset is identified with boldface. Note that ROU-L is shorthand for the ROUGE-
L score and METR is shorthand for the METEOR score. All of the preceding metrics for
evaluating entity relations are defined in Section 4.3.7.
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4.4.4 Analysis: Impact of Supplementary Input Records

Figure 4.6 provides annotated examples of LongT5’s generations from both test sets.
Note that due to randomness the outputs will be similar but not identical.

The models from the original data are more prone to generation inaccuracies even for
statistics or items directly present in the input. This could be due to lower confidence
when selecting values to “copy” because of the excess missing statistics. In the third
sentence, the model incorrectly accumulates the halftime scores however this is a widely
reported issue with LLMs in general (Lewkowycz et al., 2022). Within domain context
the model also fails to reason for example when identifying players who had “pair efforts”
and was even unable to place enough attention in preventing repetitive statements (i.e.
Shaun Livingston’s statistics are reported three times one after another). Though, the
generations correctly identified the conferences and divisions of both teams which are not
included in the input records. This demonstrates the LLMs ability to quickly “memorize”
key phrases even during task-specific fine-tuning.

The supplemented models on the other hand are more stable and generate statistically
grounded summaries. Consequently the generations display a better grasp of domain-
specific reasoning such as recognizing key contributors. It also correctly mentioned how
the Cavaliers will play the “second half of a back-to-back” as it recognized the current and
next games are in following days. It is still not perfect and the generated text is prone to
contradicting itself (i.e. claiming Golden State is struggling despite having a single loss).

4.4.5 Analysis: Impact of Larger Training Set

The results are no longer comparable due to different evaluation sets. Overall, all of the
models benefited from additional training data and unbiased evaluation partitions. The
content selection metrics are high (on average, around half of the relations that the model
generates are shared with the gold summary) as well as the generated relations’ precision.
Furthermore the n-gram metrics are all very similar regardless of the architecture and size.

The average length of the generated summaries is considerably shorter and the content
is more consistent. For example, the summary starts with the final game score and winner
before describing the point distribution of either the team or key players after each period.
It then lists out notable performances from both teams before concluding with their next
opponents. This is also evident in the two generated examples from LongT5 presented in
Figures 4.7.
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Figure 4.6: An example of two generations of the same match in the test set between the
Rotowire (Clean) (top) and Rotowire (Supplemented) (bottom).
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Figure 4.7: Two generated examples from the fully replenishedRotowire (Full) dataset.

These models benefited from additional training examples by generating coherent phrases
laced with correct domain reasoning. For example, the first summary correctly identifies
that the game was competitive due to the close score splits after each period. Further-
more, the summaries correctly identify the “host” and “visiting” teams. Another instance
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of “absorbed knowledge” is the correct usage of the 76ers’ alternate name “Sixers.” This
is more apparent in large part because of the additional summaries using these symbols.

4.4.6 Analysis: Feasibility of Image Representations

For the smallest resolution 384× 384, the model is unable to comprehend the data in the
input and produces unrelated sequences. The model performs significantly better as the
input size increases. This is expected due to the discrepancy on fonts and layout over the
dataset. It is likely that the intermediate size was still too noisy to decipher footer font
text about general team statistics.

Though the results are omitted here, fine-tuning a vision encoder-decoder directly from
two pre-trained checkpoints (Li et al., 2021) without pre-training also failed to learn. This
was consistent regardless of the image resolution and individual encoder/decoder strength.
This indicates the need for a preliminary training objective as the current dataset size is
insufficient. DONUT was trained over text recognition objectives allowing it to at least
comprehend and incorporate document content.

Figure 4.8 provides some generated examples from the highest resolution model fit with
supplementary data (note the same games as Figure 4.7).

The generations are able to capture embedded statistics and correctly substitute them
into the output sequences. One notable issue is when discussing player minutes as the input
displays them in the <MM>:<SS> format rather than rounded. The model ultimately learned
to extract just the minutes due to examples with rounded down times and incorrectly learns
it as a global pattern. This is applies to percentages.

Compared to the LLMs with the same amount of data, DONUT struggles with domain-
specific reasoning and even basic understanding of its conditional generation. In the first
example, the model is unable to identify that the game wasn’t high-scoring and “leading”
players. In the second example, the model correctly identified the Raptors defeated the
Grizzles, however it incorrectly swapped the context for both teams for the remainder of the
generation. This demonstrates inferior language understanding of VDU models without
incorporating any reasoning objectives into pre-training. Here, DONUT excelled in content
selection and relation generation but not in coherent and trivial generation.
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Figure 4.8: Two generated examples from the reconstructed Rotowire (Vision) dataset
which extends Rotowire (Full) with visual inputs.
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4.5 Conclusion

By addressing data fidelity in sports game summarization through supplementary input
records, we achieve larger performance gains than those proposed in prior purification
schemes. Furthermore, sparse attention LLMs generalized well in the large DTG datasets
proposed here. When provided sufficient input data, they successfully encoded the lin-
earized input format and produced truthfully grounded and coherent text. For future work
that involves even more input records, these models remain a top candidate for appropriate
benchmarking.

On the other hand, reformulating the relation evaluation objective in a “text-to-text”
fashion and making use of generative LLMs procured models that are easier to process with
stronger generalization. For example, there is no need to update the architecture every
time we wish to scale the model for additional entities. By using human-verified data and
incorporating data augmentation the updated autoeval model(s) are more grounded and
reliable.

Finally, adopting the sports summarization dataset to multiple modalities has proven to
be feasible and opens a new avenue for expansion. DONUT is not as strong with language
intricacies and coherent generation, however that is a model-specific issue that can be
easily resolved. The official game documents we used also have comprehensive information
about play-by-play descriptors, per-quarter boxscores, etc. that one can take advantage
of in future work. One issue is the conflicting layout and font sizes which may need to be
normalized in order to work at lower resolutions.

4.5.1 Future Work

The natural followup with sports game summarization is twofold. The first is to determine
how to further fill-in the knowledge gap between the input records and summaries. One
can look into incorporating more granular features such as play-by-play information, per-
quarter boxscores, etc. This imposes subsidiary challenges as the number of tokens and
required compute will be astronomical, even with sparse attention. For example, future
work will consequently lead to looking at alternate input formats capable of compressing
information into shorter sequences (i.e. images, videos, etc.) or combining them into some
multi-component step-wise paragraph pipeline.

The second is to extend current methods of validating correctness in the generated
summaries. The revised relation extraction approach proposed here is quite effective at
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determining grounded correctness, however it is limited to only the entities that are inte-
grated into the autoeval models. Future research would have to look into incorporating
strategies of evaluating substrings (i.e. specific plays or events that are phrased differently,
domain-specific reasoning, etc.). We can also explore prompting LLM decoders as they
will have considerable “knowledge” about this domain context. No matter the approach,
it is also crucial to conduct studies to ensure that the metrics and model performance are
aligned with human evaluators.

Being consistent with the sports domain, it is possible to create similar datasets for other
professional leagues. Most of these other subdomains will naturally pose similar challenges
to those found here and can largely take advantage of the same techniques. Outside of
game summarization the applicability of statistical learning to sports is almost limitless.
Additional problems for example can be catered towards forecasting (i.e. projecting future
winners, team/player statistics, injury and health statistics, etc.).

Taking a step back, we can also continue on exploring foundational multimodal models
suitable for data-to-text generation. From preliminary experiments, current open sourced
models for document understanding are not strong enough in language understanding.
However, building better models would necessitate sufficient quantities of data to simulta-
neously grasp both document and language understanding. Future work will revolve around
exhaustively constructing new datasets to create visual data-to-text objectives (whether
novel or extending prior contributions) for both pre-training and fine-tuning as well as
study respective generalization properties.
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