
Algorithmic and Linear
Programming-Based Techniques for

the Maximum Utility Problem

by

Paul Lawrence

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2023

© Paul Lawrence 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

A common topic of study in the subfield of Operations Research known as Revenue Management
is finding optimal prices for a line of products given customer preferences. While there exists a
large number of ways to model optimal pricing problems, in this thesis we study a price-based
Revenue Management model known as the Maximum Utility Problem (MUP). In this model, we
are given a set of n customer segments and m products, as well as reservation prices Rij which
reflect the amount that Segment i is willing to pay for Product j. Using a number of structural and
behavioral assumptions, if we derive a vector of prices for our line of products, we can compute an
assignment of customers to products. We wish to find the set of prices that leads to the optimal
amount of revenue given our rules for assigning customers to products. Using this framework, we
can formulate a Nonlinear Mixed Integer Programming formulation that, while difficult to solve,
has a surprising amount of underlying structure. If we fix an assignment and simply ask for the
optimal set of prices such that said assignment is feasible, we obtain a new linear program, the
dual of which happens to be a set of shortest-paths problems. This fact lead to the development of
the Dobson-Kalish Algorithm, which explores a large number of assignments and quickly computes
their optimal prices.

Since the introduction of the Dobson-Kalish Algorithm, there has been a rich variety of literature
surrounding MUP and its relatives. These include the introduction of utility tolerances to increase
the robustness of the model, as well as new approximation algorithms, hardness results, and insights
into the underlying combinatorial structure of the problem. After detailing this history, this thesis
discusses a range of settings under which MUP can be solved in polynomial time. Relating it to
other equilibria and price-based optimization problems, we overview Stackelberg Network Pricing
Games as well as the general formulations of Bilevel Mixed Integer Linear Programs and Bilinear
Mixed Integer Programs, showing that our formulation of the latter is in fact a more general version
of the former. We provide some new structured instances for which we can prove additional ap-
proximation and runtime results for existing algorithms. We also contribute a generalized heuristic
algorithm and show that MUP can be solved exactly when the matrix of reservation prices is rank
1. Finally, we discuss techniques for improving the upper bound to the overall problem, analyzing
the primal and dual of the linear programming relaxation of MUP. To test the effectiveness of our
approach, we analyze numerous examples that have been solved using Gurobi and present possible
avenues for improving our ideas.

iii

Acknowledgements

The research for this thesis was supported in part by the following scholarships, grants, and awards:
University of Waterloo’s International Masters Award for Student Excellence, Sinclair Graduate
Scholarship, C&O Graduate Award, UW Grad Scholarship, Mathematics Faculty Research Chair
funds, and an NSERC Discovery Grant.

First and foremost, I would like to thank my advisor, Levent Tunçel, for his excellent guidance
throughout the entire Master’s degree process. Without his direction, encouragement, and editorial
prowess, this thesis could not have reached its current level of quality. I would also like to thank
my readers, Chaitanya Swamy and Ricardo Fukusawa, for their helpful comments and advice.

I am very grateful for the wonderful administrative staff at the Combinatorics and Optimization
department, especially Melissa Cambridge and Carol Morrison, for showing me the occasional sun-
set, and who also have been very friendly and patient with answering my silly questions. Likewise,
I am thankful for the robust and dynamic community of graduate students in both the C&O and
Pure Maths departments. The fifth floor of MC has provided a rich learning environment, and I
cannot think of a better place to have studied.

I would especially like to thank the labor organizers at CUPE and the incredible community of
graduate students in OrganizeUW. They have succeeded in organizing a union for sessionals, and
are actively working toward the effort to unionize TAs and RAs. Hopefully, through collective
bargaining, we can move closer towards a system of labor that is equitable for all of us.

Throughout my entire life, I have been incredibly blessed to have wonderful communities of friends
everywhere I have lived. To all of these people, both inside and outside of Waterloo, I thank you
for your company over the past two turbulent years. In Waterloo, you have welcomed me into a
diverse community, kept me sane, and made me feel safe, welcome, and inspired. For those outside
of Waterloo, you have stayed in touch, and know that this simple act has meant everything to me.
There are far too many of you to list, so I will simply say that if you are reading this, you know
who you are.

Finally, I want to thank my sister, Rebecca Lawrence, and my parents, Carla and David Tachau
Lawrence, for their eternal support throughout my entire educational journey. Without your love
and encouragement, none of this would have been possible.

iv

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

List of Figures vii

List of Tables viii

1 Introduction 1

2 Price Setting Subproblem and the Dobson-Kalish Algorithm 6
2.1 Fixed Points and Reassignment Properties . 13
2.2 Utility Tolerances . 16
2.3 Approximation Algorithms . 18

3 Related Problems 21
3.1 Structured Settings . 21
3.2 Stackelberg Network Pricing Games . 26
3.3 Bilevel Mixed Integer Linear Programs . 28
3.4 Bilinear Mixed Integer Programs . 30

4 Worst-Case Algorithmic Analyses on Practical Instances 35
4.1 Data Generation . 36
4.2 Multiplicative Utility Tolerances . 37
4.3 Logarithmic Scaling in Data . 38

4.3.1 An Attempt at Rounding . 39
4.3.2 Uniformly Logarithmic Separation in Data 41

4.4 Low-Rank Matrices . 45
4.5 MaxR+ . 46

5 Upper Bound Improvements 50
5.1 Introduction to Upper Bound Analysis . 51

5.1.1 The 2 Segments, 2 Products Case . 51

v

5.2 Linear Programming-Derived Upper Bounds . 53
5.2.1 Linear Programming Upper Bounds for the 2 Product Case 56

5.3 An Exactly Solvable Subproblem . 61

6 Conclusion and Future Research Directions 64

Bibliogaphy 65

vi

List of Figures

2.1 The underlying digraph of (2.3), assuming all j are in B 8
2.2 The initial assignment of Example 2.0.2, with optimal shortest paths highlighted. . . 10
2.3 Temporarily reassigning Segment 2 to node A produces the above graph. 11
2.4 The assignment where Segment 1 is eliminated. 11

vii

List of Tables

2.1 Example of a simple potential instance . 10
2.2 Simple fixed point example . 14

3.1 A matrix that is not Monge but whose optimal assignment has no crossings 24
3.2 Another matrix that is not Monge but whose optimal assignment has no crossings . 25

4.1 Smallest values of k for fixed α and n . 43
4.2 An example of an edge case where MaxR is not optimal 47

5.1 Examples where R12 = R̄1 . 52
5.2 An example when R11 = R̄1 . 52
5.3 A simple instance with a nontrivial optimal dual solution 54
5.4 An example with relatively large optimal dual variables 55
5.5 The second instance in Example 5.1.1, with Ni values 55
5.6 An example where the solution from Theorem 5.2.5 is outperformed by Guru 56
5.7 An instance where the highest valued segment does not purchase a member of Si . . 57
5.8 A large instance . 57
5.9 The optimal dual variables for the instance in Table 5.8 58
5.10 Example 5.2.9 . 60
5.11 An altered version of Table 5.10 . 61
5.12 Fixing variables as in (5.6) . 61

viii

Chapter 1

Introduction

At the heart of many problems in business and industry is a simple question: How can one maximize
profit subject to the constraints of their environment? The continual search for answers to this
question has lead in large part to an explosion of interest in the fields of Operations Research
and more specifically Revenue Management over the past few decades. The field of Operations
Research itself has a detailed and rich history. Broadly, Operations Research (OR), also sometimes
called Management Science, refers to the branch of mathematical sciences that uses analytic and
mathematical arguments to improve decision-making. At its core, it shares a close relationship
with the technical field of Mathematical Optimization, which focuses on finding optimal solutions
to various functions subject to constraints. In fact, one of the most fundamental tools in OR, Linear
Programming, has its origins in Optimization, due to the development of the Simplex Method by
George Dantzig in 1947 [14]. OR owes its own origins to World War II, during which British
military forces were faced with a difficult resource management problem. Given scarce supplies and
a large number of military operations, both the British and United States management hired large
teams of scientists to find effective approaches to resource allocation and other tactical problems
- hence the term Operations Research, as these scientists were researching (military) operations.
After the war, interest in OR exploded, and over the rest of the century came to be a central tool in
many areas of industry and science, including vehicle routing, resource distribution, supply-chain
management, and product pricing [29].

Revenue Management (RM), on the other hand, is the specific subfield of OR that is concerned
with maximizing profits in a given market economy. The origins of RM are commonly traced back
airline companies in the 1970s. BOAC (now British Airways) began offering restricted discounts on
certain types of airfare, mixing lower and higher-fare customers in the same flight. This provided
beneficial returns for the company, as they were able to stimulate demand for seats that otherwise
would have remained empty. Later, in the 1980s, American Airlines expanded on these practices,
using analytical techniques to micromanage inventory control and discount policies to combat the
emergence of numerous low-cost competitor airlines [57]. Due to the success of RM in the airline
industry, the discipline eventually spread to other transportation and hospitality sectors, and is
now used in a wide variety of industries, such as finance, product distribution, and telecom services
[46].

While within Revenue Management there are many different avenues, models, and techniques to

1

maximize profit, this thesis is interested in a price-based RM scenario, which is commonly applied in
environments where it is reasonable to change the prices of products frequently. In this framework,
there are two major barriers to maximizing revenue. The first is that in order to make any sale in the
first place, one of our products must be purchased by a customer in preference over a competitor’s.
The solution to this first requirement is simple: simply make our products more enticing to buyers
than our competitor’s products are. The second barrier is more difficult to solve. Suppose that
we have several different sets of potential customers, each with a different set of valuations for our
products. While some customers may only be interested in purchasing less expensive products,
we must be careful that our pricing scheme does not entice higher-valued buyers away from more
expensive products, a phenomenon known as cannibalization. Thus, micromanaging the price of
products to maximize revenue is an important component of overall profit. Moreover, speed and
accuracy of price adjustments is paramount, as we may need to quickly adjust to competitor’s
changes in prices, or new developments on the market.

Another concern in evaluating algorithms and models in RM is that practical applications often
rely on users being able to adequately assess, or at least estimate, their customer’s valuations. In
some instances a precise representation is reasonable to achieve, but there is ultimately a tradeoff
between time, expenses, and accurate data. There are several approaches to maneuver around
this issue. One is to develop techniques for “filling in” missing data entries based on the given
ones. Another is to use a stochastic model, where instead of treating our data as deterministic we
assume some probabilistic model for the valuations of data. Yet another is to identify underlying
structural patterns that appear in the dataset that arise in practical applications, then design the
data collection and forecasting techniques to respect such patterns. Additionally, when developing
these workaround strategies, it is important to keep in mind the application it is being used for.
As we will see later in this thesis, often times in optimization worst-case examples for algorithms
are structurally very far apart from the types of instances we expect to see in real-world instances.
Hence, it is important to motivate our study of special-case instances properly. Such is the main
focus of this thesis - we are primarily interested in identifying structured data cases that arise in
applications within RM. Then, we can devise algorithmic approaches to exploit these structures.

The specific Revenue Management problem we are interested in for this thesis is a classic pricing
problem. Given a line of products and a set of potential buyers, we wish to pick a set of prices for
our products that maximizes the amount of revenue generated through purchases. Formally, we
may assume that we have a set I = {1, . . . , n} of customer segments and a set J = {1, . . . ,m} of
products, where each segment i ∈ I has Ni members. Each of the customer segments reflects a set
of customers that we assume to have identical purchasing behavior. While there are many different
methods of modeling customer choice [54], in this thesis we focus on those based on reservation
prices.

For a customer segment i and Product j, we let Rij denote the reservation price of Segment i for
Product j. This number reflects the value that the members of Segment i hold for Product j -
or in other words, the amount that the members are willing and able to spend on the product.
If the price of Product j is set to some value πj , then the utility (or surplus, the terms are used
interchangeably) of Segment i for Product j is equal to Rij − πj . We additionally assume there
are market competitors; let CSi denote the maximum surplus of Segment i across all competitor
products. We will assume without loss of generality that Rij and CSi are nonnegative for all i and
j.

2

While there are many options for mathematically modelling customer behavior, the scenario we are
interested in is the envy-free pricing model, where we assume that a customer will always choose
to purchase a product that maximizes their utility. Formally, given a set of products J and a price
vector π, Segment i will choose to purchase Product j only if

j ∈ argmax
k∈J

{Rik − πk} (1.1)

and
Rij − πj ≥ CSi, (1.2)

where the second assumption guarantees that our customer segment does not desire any competitor
product over Product j. We also assume WLOG that Rij ≥ CSi for all i, j - otherwise, Segment i
will never purchase Product j and we can remove any corresponding constraints from our model. A
large number of optimal pricing models additionally require that the surplus of a potential purchase
must be nonnegative in order for a segment to buy a particular product. This condition is implicit
in our model through constraint (1.2) as CSi is nonnegative for all i. Furthermore, we make the
following assumptions:

a. Homogeneity : Each customer segment represents a selection of individual customers with
identical valuations and behaviors.

b. Unlimited Capacity : There is no constraint on production capacity for any product.

c. Unit Demand : Each customer segment buys at most one product and at most one unit of a
product.

d. Non-Differentiated Pricing : Every customer segment pays the same price for each product.

e. Static Competition: The price of any products sold by our competitors is fixed, and thus CSi

is treated as a constant.

f. Tie-Breaking : In the case of utility ties, we always assume that a segment i purchases the
product with a higher price. In the case that products have the same price, we assume that
the segment purchases the product with the lowest index (i.e. a segment prefers Product 1
to Product 2, Product 2 to Product 3, and so on).

These assumptions are common in the literature, yet workarounds exist for each. For example,
see Section 5 of [51] for additions to the model that can handle capacity constraints. The last
one in particular is highly optimistic, yet does not change the worst-case analysis of the problem.
Future work, namely [51] and this thesis, introduce an additional parameter called utility tolerance
that provides a more sophisticated method of tiebreaking and also adds an additional layer of
robustness to the model. Putting these tools together, we arrive at the following Nonlinear Mixed

3

Integer Program:

max

n∑
i=1

m∑
j=0

Niπjθij , (1.3)

s.t. (Rij − πj)θij ≥ (Rik − πk)θij , ∀i, j, ∀k ̸= j,

(Rij − πj)θij ≥ CSiθij , ∀i, j,
m∑
j=1

θij ≥ 1, ∀i,

πj ≥ 0, ∀j,
θij ∈ {0, 1}, ∀i, j,

which has decision variables defined as follows:

πj := price of Product j,

θij :=

{
1, if customer segment i buys Product j,

0, otherwise.

We may additionally preprocess our data such that Rij ← max{Rij − CSi, 0} and CSi ← 0 for all
i, j. This allows us to replace the second set of constraints with a simple nonnegativity constraint.
Thus, (1.3) becomes:

max

n∑
i=1

m∑
j=0

Niπjθij , (1.4)

s.t. (Rij − πj)θij ≥ (Rik − πk)θij , ∀i, j, ∀k ̸= j,

(Rij − πj)θij ≥ 0, ∀i, j,
m∑
j=1

θij ≥ 1, ∀i,

πj ≥ 0, ∀j,
θij ∈ {0, 1}, ∀i, j.

For the remainder of this thesis, we refer to (1.4) as the Maximum Utility Problem, or MUP (also
called the Envy-Free Optimal Pricing Problem in the literature). Unsurprisingly, this optimization
problem is NP-hard and APX -hard [27]. While the notion of NP-hardness is commonly known
to most mathematicians (there exists no polynomial time algorithm to solve MUP exactly unless
P = NP), the classAPX is not studied as frequently. Formally, an optimization problem is inAPX
if it is in NP and there exists a polynomial-time approximation algorithm with approximation ratio
bounded by a constant [5]. Additionally, a problem is said to have a polynomial-time approximation
scheme (PTAS) if there exists a polynomial-time algorithm to approximate that problem within
a factor of 1 + ϵ for every ϵ ≥ 0. A classic example of a problem with a PTAS is the Euclidean
Traveling Salesman Problem, where the travel nodes are plotted on the Euclidean plane [4]. Then,
a problem ϕ is in APX -hard if, for every problem in APX , there exists a PTAS reduction (a
specific type of approximation-preserving reduction) to ϕ. As a consequence, if P ̸= NP, then no

4

APX -hard problem has a PTAS [45]. For additional nonapproximability results, see [10], which
discusses the hardness of various pricing problems related to MUP, as well as [28] and [15], which
discuss Unique Coverage, a problem that is closely related to envy-free pricing.

Additionally, we note that the Maximum Utility Problem belongs to a larger class of optimization
problems whose solutions can be characterized as economic equilibria. In this context, equilibria
refers to a solution to a problem in which multiple participants are solving some optimization
function that may be parameterized by the decisions of other parties. Given these decisions, a
solution to the overall problem is one in which no party can optimize further assuming the actions
of other participants stay fixed. As is the case with combinatorial optimization in general, many
of the techniques for one problem in this class may be easily modified for use in another. Thus,
MUP is an important topic of study not just for applications in Revenue Management, but also to
enrich our understanding of price-based optimization problems in general.

The outline of this thesis is as follows. In Chapter 2, we introduce the celebrated Dobson-Kalish
algorithm, a classic method for the Maximum Utility Problem, and detail much of the relevant
literature surrounding both the algorithm and MUP itself. In Chapter 3, we review literature that
discusses some specially structured instances of MUP for which exact, strongly polynomial-time
algorithms exist. We also include in Chapter 3 several frameworks for tying generalizations of
pricing problems and economic equilibria together. We begin with Stackelberg Network Pricing
Games and Bilevel Mixed Integer Linear Programs, then contribute an additional generalization
in the form of Bilinear Mixed Integer Programs. Chapters 4 and 5 detail further research into
the structure of the model, offering new algorithmic insights and observations based on linear
programming relaxations. We summarize the thesis and present opportunities for future research
in Chapter 6. The original contributions of this thesis are Section 3.4, Chapter 4, and Chapter 5.

5

Chapter 2

Price Setting Subproblem and the
Dobson-Kalish Algorithm

Let θ ∈ {0, 1}n×m be a feasible assignment if there exists some π ∈ Rm
+ such that (θ, π) is a feasible

solution to the Maximum Utility Problem formulation (1.4). Now, assume that we are given some
θ and are asked to find a pricing vector π∗ such that (θ, π∗) is feasible and the objective function
of MUP is optimized. Assuming that, under θ, each segment is assigned at most one product, we
introduce the following notation:

Cj := set of customer segments who buy Product j in θ.

B := {j : Cj ̸= ∅}.

Mj :=
∑
i∈Cj

Ni.

We may intuit B to be the set of products that are bought by at least one segment in θ, and Mj

to denote the total number of customers who buy Product j. Then (1.4) simplifies to:

max

n∑
j=1

Mjπj ,

Rij − πj ≥ Rik − πk, ∀j ∈ B, ∀k ∈ J \ {j}, ∀i ∈ Cj ,

Rij − πj ≥ 0, ∀j ∈ B, ∀i ∈ Cj ,

πj ≥ 0, ∀j.

Rearranging constraints, we can further simplify to:

max

m∑
j=1

Mjπj , (2.1)

s.t. πj − πk ≤ min
i∈Cj

{Rij −Rik}, ∀j ∈ B, ∀k ̸= j,

πj ≤ min
i∈Cj

{Rij}, ∀j ∈ B.

6

Solving (2.1) computes the optimal pricing vector π∗ for the fixed assignment θ - however, there
exists a very efficient method of solving (2.1). Notice that this LP is the dual of a flow problem on
a digraph D = (N,A), with edge costs mini∈Cj{Rij−Rik} for each edge kj ∈ A, and a source node
0 with edge costs mini∈Cj{Rij} for each edge 0j ∈ A. Then, we see that (2.1) is simply maximizing
the values of the node potentials of D, with the convention that the potential of the source is set
to π0 = 0.

Given this observation, we can note some special facts of (2.1): namely, that there exists a feasible
solution of (2.1) if and only if D has no negative-cost directed cycle, and the optimal solution of
(2.1) is to set πj equal to the length of the shortest directed path from node 0 to node j in D [13].
This construction can be seen explicitly when we take the dual of (2.1):

min
∑
j,k

rjkωjk +
∑
j

σjwj ,

s.t.
∑
k ̸=j

ωjk −
∑
k ̸=j

ωkj + wj = Mj , ∀j ∈ B,

∑
k ̸=j

ωkj = 0, ∀j ̸∈ B,

ωjk, wj ≥ 0, ∀j, k,

where
rjk := min

i∈Cj

{Rij −Rik}, σj := min
i∈Cj

{Rij}. (2.2)

We can simplify this formulation by removing all ωkj for j ̸∈ B since the second set of equality
constraints and the nonnegativity constraints together imply ωkj = 0, for all j ̸∈ B. Finally, by
adding a single redundant constraint, we can turn the above formulation into a set of |B| shortest
path problems on the digraph D:

min
∑
j,k

rjkωjk +
∑
j

σjwj , (2.3)

s.t.
∑
k ̸=j

ωjk −
∑
k ̸=j

ωkj + wj = Mj , ∀j ∈ B,

−
∑
j

wj = −
∑
j

Mj ,

ωjk, wj ≥ 0, ∀j, k ∈ B.

We refer to the linear program (2.3) as the Price Setting Problem. In this formulation, there exists
a node for each product j ∈ B and one extra “dummy” product (node 0, or the source node) that
represents a customer buying nothing. For every two product nodes k, j, there exists a directed
edge k → j with cost rjk = mini∈Cj{Rij −Rik}. For every product j, we also have a directed edge
from node 0 to j with cost σj = mini∈Cj{Rij}. Thus, given the assignment θ, the optimal price πj
of Product j is precisely the cost of the shortest path from node 0 to node j. Note the formulation
in [51] instead uses directed edges from j to node 0 for every product j; the constructions are
equivalent. Also note that in the case where we do not assume Rij ≥ CSi for all i, j, D will
not necessarily be complete. [51] also noted some special properties of (1.4) that are due to its
relationship with the Price Setting Problem:

7

a. The segment assignments Cj , ∀j correspond to feasible assignments in (1.4) if and only if the
resulting network of (2.3) has no negative cost directed cycle.

b. There exist optimal prices to (1.4) that are integer-valued if all the data are also integer-
valued.

c. In every optimal solution, there exists at least one product k such that πk = mini∈Ck
{Rk}.

Figure 2.1: The underlying digraph of (2.3), assuming all j are in B

Property a is identical to the property we discussed above while discussing node potentials, but
it is good here to have an explicit connection to the original formulation (1.4). It is particularly
convenient as it provides us a method of determining whether an assignment is feasible. Indeed,
for any given assignment, solving the set of shortest paths problems either gives the optimal set of
prices or finds a cycle of negative cost, showing that the assignment is infeasible.

More broadly, the advantage of examining the Price Setting Problem is that it can be solved quickly;
each instance seeks to solve |B| shortest paths problems. Since the graph D may have negative
weights, we can use Bellman-Ford-Moore to compute the shortest paths in strongly polynomial time.
However, while solving (2.3) for a single assignment is simple, there are potentially exponentially
many possible assignments. Thus, we need a more efficient heuristic to guide our use of this
technique. The most fundamental algorithm discussed in the literature is one proposed by Dobson
and Kalish [17] in 1988. In addition to using the Price Setting Problem to efficiently find optimal
prices for assignments, this algorithm makes specific use of the fact that for every product being
offered in the assignment, there is some customer segment assigned to it that “constrains” its price
from being raised any higher. In particular, we rely on the following observation:

8

Proposition 2.0.1. For every product j that is the child of Product k in the solution of the shortest
paths problem (2.3), there exists a customer segment i∗ assigned to j that prevents us from raising
its price - in particular,

i∗ ∈ argmin
i∈Cj

{Rij −Rik}.

We refer to i∗ as the “critical segment” for Product j.

Proof. Let Product j be the child of Product k in the shortest paths tree. By definition, the cost
of edge kj is π∗

j − π∗
k = mini∈Cj{Rij −Rik} = Ri∗j −Ri∗k. So πj −Ri∗j = πk −Ri∗k, and thus if πj

was increased, Segment i∗ would gain a larger utility by switching to purchasing Product k instead
of j.

Algorithm 1 Dobson-Kalish Reassignment Heuristic (DK88)

Require: A feasible product-segment assignment and its corresponding optimal tree solution from
solving (2.3).

1: repeat
2: for all Products/nodes j where Cj ̸= ∅ do
3: Suppose edge (k, j) is in the spanning tree solution.
4: if k ̸= 0 then
5: For every i∗ such that i∗ ∈ argmini∈Cj{Rij−Rik}, reassign Segment i∗ to Product/node

k.
6: else
7: For every i∗ such that i∗ ∈ argmini∈Cj Rij , delete Segment i∗.
8: end if
9: Resolve the shortest path problem on the new network and record the change in the

objective value.
10: Restore the original network.
11: end for
12: Perform the reassignment that resulted in the maximum increase in the objective value.

Resolve shortest path problems and update the optimal spanning tree.
13: until No reassignment improves the objective value.

After obtaining the optimal prices for some initial feasible assignment, the algorithm enters into
a sequence of iterations. In each iteration, we consider every single critical segment, temporarily
reassign it to the product k that is constraining the price of Product j, and recompute the shortest
paths on the new underlying network, recording the overall objective value. Over all possible
new assignments, the algorithm selects the one that leads to the best improvement in objective
value, and reassigns the respective customer segment to its new product, before iterating again.
The algorithm terminates when it cannot find a reassignment that improves the objective value.
Note that assigning a customer segment to the dummy node translates to that segment purchasing
nothing. As a drawback, however, the algorithm has no method of “reviving” these removed
segments - once they are assigned to the dummy node, they cannot be reassigned again. The
same is true for products - once a product has no segments purchasing it in a given assignment, it
is effectively removed from the instance. Let’s illustrate the motion of reassignments through an
example.

9

Figure 2.2: The initial assignment of Example 2.0.2, with optimal shortest paths highlighted.

Example 2.0.2. Consider an instance of MUP with the following dataset:

i Ni RiA RiB

1 1 100 60

2 1 130 150

3 1 220 120

Table 2.1: Example of a simple potential instance

To begin, we set our initial feasible assignment as CA = {1, 3}, CB = {2}. Then, the underlying
shortest paths graph is represented by Figure 2.2. In the initial assignment, we see that the shortest
path to node A has length 100, and the shortest path to node B has length 120. Thus, we set
πA = 100 and πB = 120. Since there is no negative cost cycle, the assignment is feasible, and has
revenue 2 · 100 + 120 = 320.

Next, we notice that Segment 1 is the critical segment for edge A, while Segment 2 is the critical
segment for edge rBA. Thus, there are two potential reassignments we can make. Reassigning
Segment 2 to node B produces a new underlying graph, represented in Figure 2.3. This assignment
produces a revenue of 3 · 100 = 300, which is less profit than our original assignment produced.
However, if we instead reassign Segment 1 to node 0, eliminating it, we do better.

Consider the graph in Figure 2.4. The length of the shortest path to node A is 220 and the length
of the shortest path to node B is 150. Thus, we set πA = 220 and πB = 150, for a total profit
of 370. Since this is a higher profit than the one realized in Figure 2.3, we officially reassign
Segment 1 to the dummy node and iterate again. However, in the next iteration, we only have two
possible reassignments: eliminating Segment 2 or eliminating Segment 3. Both produce a lower
objective function value than the previous assignment, so the algorithm terminates and reports back
the assignment in Figure 2.4 as its final solution.

Dobson and Kalish claimed that Algorithm 1 runs in polynomial time, specifically O(m4n). To

10

Figure 2.3: Temporarily reassigning Segment 2 to node A produces the above graph.

Figure 2.4: The assignment where Segment 1 is eliminated.

11

support their claim, they stated that every customer segment can be reassigned at most m times.
However, Shioda et al. [51] presented a counterexample with 14 customers and 2 products where a
segment is reassigned a total of six times, disproving the original claim of Dobson and Kalish.

Additionally, the work of Demirtaş [16] found that when the Dobson-Kalish algorithm is relaxed
to instead select any reassignment that improves the objective function value, there exists an
infinite family of instances of (1.4) that require Ω(n2) customer reassignments before termination,
even with just 3 products. The methodology used is worth a review; the author begins with a
specific assignment and describes a specific series of Ω(n2) reassignments. To force an instance to
follow these reassignments, they construct a series of linear inequalities that the Rij values must
follow. Then, for large enough n, they show that the system of linear inequalities is feasible and
define solutions that solve the system. While these instances are the best known family of worst-
case complexity examples for the Dobson-Kalish algorithm (or more precisely Dobson-Kalish-style
algorithms), whether or not there exists a polynomial time upper bound for its runtime is still an
open question.

During implementation, there exists an additional optimization we can make. When making a
reassignment of a segment from Product j to Product k, rather than recomputing the shortest
paths for the entire graph, we only need to recompute on a specific subgraph:

Lemma 2.0.3 (Shioda, et al. 2007 [51]). If Segment i∗ is reassigned from Product j to Product k
in DK88, then the prices of Product j and its children in the spanning tree may increase while all
other prices remain the same.

In particular, the only edge costs that can change are:

• Edges entering node k (whose costs may remain the same or decrease).

• Edges entering node j (whose costs may remain the same or increase).

Thus, the shortest path from node 0 to node k remains the same, and the shortest paths from node 0
to all nodes that are not children of j remain the same. Hence, we need only to update the shortest
paths of Product j and its children - doing so, the rest of the directed graph remains identical to
the previous assignment. This provides a nice improvement to the algorithm’s efficiency.

Alternatively, instead of defining critical segments based only on edges in the shortest-path tree,
one could consider all tight edges - that is, edges kj for which π∗

j − π∗
k = mini∈Cj{Rij −Rik}. This

yields a larger set of potential customer reassignments, as there may be tight edges that are not
in the tree. However, if we reassign a segment along an edge that is not in the tree, then Lemma
2.0.3 does not apply and we must recompute the entire shortest paths tree.

Another useful property of (1.4) is its natural upper bound. For any customer segment i, define
R̄i = maxj{Rij}. Then,

Proposition 2.0.4. The optimal value of (1.4) is at most
∑n

i=1NiR̄i.

Proof. Each customer segment may purchase at most one product, and the most that any given
customer segment is willing to pay for any product is R̄i. Thus, the amount of revenue that can be
generated from any given customer segment i is at most NiR̄i. Summing over all segments gives
the upper bound

∑n
i=1NiR̄i.

12

The last piece of the puzzle comes with the initial feasible assignment. The most common choice
is the Maximum Reservation Price Heuristic (MaxR). While being a relatively simple heuristic,

Algorithm 2 Maximum Reservation Price Heuristic (MaxR)

1: for all i ∈ I do
2: Set θij = 1 for j ∈ argmaxk{Rik}, subject to proper tiebreaking.
3: end for
4: Solve the Shortest Paths Problem on the resulting underlying digraph.

Algorithm 2 does have a couple of nice properties:

Proposition 2.0.5. MaxR has the following three properties:

• Every customer segment is assigned to one of their most preferred products.

• MaxR always produces a feasible assignment.

• If |Cj | = 1 for all j and for every segment i, their most preferred product j is unique, then
MaxR is optimal for (1.4).

Proof. The first statement is by definition of the algorithm, as in step 1 we explicitly assign Segment
i to a segment j such that j ∈ argmaxk{Rik}.

The second statement comes from the fact that for every segment i, their most preferred product
j, and any other product k, we have Rij ≥ Rik. Thus, since every segment is assigned to their most
preferred product, every edge in the underlying shortest paths graph will be positive, and so there
can be no negative directed cost cycle.

For the third statement, we notice that if |Cj | = 1 for all j and every segment has a unique most
preferred product, the optimal set of prices for the assignment produced by MaxR is simply to set
πj = R̄i for i ∈ Cj for all j. These prices are feasible since no segment other than i gains a positive
utility from purchasing Product j. Moreover, the revenue from these prices is

∑i
n=1NiR̄i, which

is our upper bound for MUP from Proposition 2.0.4.

Both [51] and [48] use MaxR as a starting heuristic for standard implementations of DK88. Later
in this thesis, we present alternatives for initial feasible assignments.

2.1 Fixed Points and Reassignment Properties

As we saw above, the fact that computing optimal prices given a fixed assignment is a relatively
easy problem allowed us to devise a very nice heuristic for MUP. Furthermore, it is an even simpler
task to compute a corresponding assignment vector when given any set of prices - we simply assign
every segment to the product maximizing its utility, subject to the tiebreaking rules mentioned in
the introduction. We may capture this process notationally - given a feasible pricing vector, the
operation C(π) returns the unique feasible assignment θ satisfying the inequalities in (1.4) as well
as the tiebreaking rules. Similarly, the operation Π(θ) returns a (not necessarily unique) optimal
pricing vector π such that π is feasible for θ. However, given π arbitrarily, it is not necessarily the
case that Π(C(π)) = π. Such a vector is known as a fixed point :

13

Definition 2.1.1. A price vector π is a fixed point if Π(C(π)) = π. An assignment θ is a fixed
point if C(Π(θ)) = θ. We also refer to a fixed point by the tuple (π, θ).

The motivation for considering finding fixed points over single applications of Π is that it helps us
find simple reassignments which improve the overall revenue. This is demonstrated in the following
example:

Example 2.1.2. Consider the simple instance:

i Ni Ri1 Ri2

1 1 5 4

2 1 3 2

Table 2.2: Simple fixed point example

Let θ be the initial assignment that assigns Segment 1 to Product 2 and Segment 2 to Product 1. The
optimal prices for this assignment are π1 = 3, π2 = 2 for a revenue of 5. However, C(Π) produces
the assignment θ̂ that assigns both segments to Product 1, since Product 1 is more expensive. Then
in π̂ = Π(θ̂), we have π̂1 = 3, and Product 2 is not offered, for a revenue of 6. Since C(π̂) = θ̂, we
conclude that (π̂, θ̂) is a fixed point.

Given that it is a simple way to improve revenue, one hopes that given any assignment, a fixed
point can be computed efficiently. Thankfully, this is indeed the case:

Proposition 2.1.3 (Myklebust, et al. (2011) [48]). Given any feasible assignment θ, a fixed point
can be obtained in strongly polynomial time. In particular, there is an optimal solution to (1.4) that
is a fixed point.

Proof. Repeatedly apply C(Π) until we obtain a fixed point. Notice that if an application of C
causes a segment i to switch from Product j to Product k, then Rij−πj = Rik−πk, since Segment
i must have tied utilities for either. Furthermore, πk ≥ πj ⇒ Rik ≥ Rij , since the utility of Segment
i with Product k must be equal to the utility of Segment i with Product j. Furthermore, we must
have either πk > πj ⇒ Rik > Rij or k < j, since C only ever reassigns Segment i from Product j
to k if Product k is more expensive or if its index is smaller. Now, consider a single Segment i and
order every product j in a list L, by descending order of Rij , breaking ties by ascending order of
j. Given the arguments above, C only ever reassigns Segment i from Product j to k if j proceeds
k in L. Hence, for any individual segment i, there are at most m applications of C(Π) in which i
switches products. Thus, the total number of operations of C(Π) before reaching a fixed point is
bounded by O(nm).

Incidentally, the above argument also shows that C can only ever increase the revenue of our
current assignment. Thus, since Π(θ) gives us optimal prices for a particular assignment, repeated
applications of C and Π can never decrease revenue. Hence, given some optimal solution, we may
iterate C and Π on this solution to find a fixed point (π∗, θ∗). This does not decrease the revenue
and hence (π∗, θ∗) is an optimal solution that is a fixed point.

In addition to the properties of fixed points, due to the reliance of the Dobson-Kalish heuristic on
updating to new assignments at each iteration, it is critical to understand some of the underlying

14

infrastructure with regards to feasible reassignments. These discussions are useful not only for
making improvements to DK88, but also to other reassignment heuristics that have been discussed
in the literature (such as Global-DK and Cell-Pierce from [48]). To begin, recall from Propo-
sition 2.0.1 that in the Price Setting Problem, every product j has a “critical segment” i∗ such that
i∗ ∈ argmini∈Cj{Rij − Rik}. DK88 only considers reassigning Segment i from Product j to k if i
is a critical segment of j and k is the parent node of j. It turns out that this intuition is necessary
for producing feasible assignments:

Proposition 2.1.4 (Characterization of Feasible Single Reassignments). Given a feasible assign-
ment, reassigning a customer i from j to k ̸= j produces a feasible assignment if and only if Rij−Rik

is the cost of the shortest path from k to j.

Thus, if i is assigned to j but is not one of its critical segments, reassigning Segment i from j to
its parent node k produces an infeasible assignment. While Proposition 2.1.4 provides a necessary
and sufficient condition for the ability to reassign a particular customer, we also have two general
properties that govern the relationship between two different feasible assignments:

Proposition 2.1.5 (Simultaneous Feasibility). Suppose θ is a feasible assignment and that a single
reassignment produces another feasible assignment θ′. Then there exists π that is feasible for both
θ and θ′.

Lemma 2.1.6 (Weak Exchange Property). Let θ and θ′ be distinct, feasible assignments. Let
(ji : i ∈ {1, 2, . . . , n}) and (ki : i ∈ {1, 2, . . . , n}) be their respective vectors of purchases. Then
there is some i∗ such that ji∗ ̸= ki∗ and setting ji∗ := ki∗ in θ produces a feasible assignment.

The advantage of these properties is that it allows for algorithms that wish to pivot from assignment
to assignment without necessarily moving along a monotone path. This is one of the main disad-
vantages of the Dobson-Kalish algorithm: it only considers reassignments that strictly increase the
objective value. In fact, it is not always guaranteed that there exists a monotone path toward the
optimal solution.

Example 2.1.7 (Myklebust, et al. (2011) [48]). Consider an instance with three segments and
a single product, where N1 = 3, N2 = N3 = 2, R11 = 2, and R21 = R31 = 1. Let the initial
assignment be θ := [1, 0, 0], where Segment 1 is assigned to Product 1 and Segments 2 and 3 are
assigned to Product 0, the dummy product. The optimal price for θ is π1 = 2, for a revenue
of 6. The optimal assignment is θ∗ = [1, 1, 1], π∗

1 = 1, for a revenue of 7. However, there are
only three possible single-segment reassignments from θ: assigning Segment 1 to Product 0, or
assigning Segment 2 or 3 to Product 1. In the first reassignment, the revenue is decreased to 0,
and in the second reassignment, the revenue is decreased to 5. Thus, one cannot make a series of
single-segment reassignments from θ to θ∗ without decreasing the objective value at some point.

Hence, DK88 is only effective at searching for local maximizers, and if it terminates, has no
ability to guarantee whether its final solution is a global or a local maximum. If one wishes
to use a reassignment-based heuristic that is not constrained to always increase revenue at each
assignment, then Proposition 2.1.5 and Lemma 2.1.6 guarantee a high degree of mobility throughout
the assignment space. Fortunately, the Weak Exchange Property directly implies that at any
moment, an optimal solution is not too far away:

Theorem 2.1.8. Suppose θ and θ′ are both feasible assignments that differ in the purchases of ℓ

15

segments. Then there is a sequence of ℓ feasible single reassignments connecting θ to θ′.

Proofs of the above results can be found in Section 4 of [48]. While these facts are not directly
useful for analyzing the Dobson-Kalish algorithm, understanding the underlying structure of reas-
signments is an important step towards devising new reassignment-based heuristics. Additionally,
it turns out that some of these reassignment properties have connections to other areas of optimal
pricing. This topic shall be revisited in Section 3.2 when we discuss Stackelberg Network Pricing
Games.

2.2 Utility Tolerances

In 2007, Shioda, Tunçel, and Myklebust [51] presented an alternative formulation of (1.4) with the
introduction of what we call utility tolerances. To eliminate any optimistic assumptions and to
make the model more flexible under changes to the underlying data, we assume that the surplus of
any product chosen by Segment i must exceed the surplus of any other product by some constant
δi > 0, which we may assume is given with the data. Thus, Segment i buys Product j if and only
if

Rij − πj ≥ Rik − πk + δi, ∀k ̸= j, (2.4)

and
Rij − πj ≥ CSi + δi. (2.5)

Similarly to the original MUP formulation, we assume without loss of generality that Rij ≥ CSi+δi
for all i, j. This approach offers a few advantages. First, it allows for the elimination of the
optimistic assumption that a customer segment will always purchase the most profitable product
in the case of tiebreaks. Second, it adds certainty in the case of a tie between our price for a certain
product and another competitors’ price. Third, it allows the user of our model to make the choice
between being more conservative (using large values of δi) or aggressive (using small values of δi)
in their applications. Fourth, it protects solutions against small perturbations in the underlying
data. Overall, the introduction of δi constants makes the model significantly more robust.

Incorporating the δi constants, the nonlinear Mixed Integer Program formulation of the optimal
pricing problem can be expressed as:

max

n∑
i=1

m∑
j=1

Niπjθij , (2.6)

s.t. (Rij − πj)θij ≥ (Rik − πk + δi)θij , ∀i, j, ∀k ̸= j,

(Rij − πj)θij ≥ (CSi + δi), ∀i, j,
m∑
j=1

θij ≤ 1, ∀i,

πj ≥ 0, ∀j,
θij ∈ {0, 1}, ∀i, j.

Note that we can preprocess the data such that Rij ← max(0, Rij−CSi−δi) and CSi ← 0 without
changing the above problem. Like the first formulation of MUP, this allows us to simplify the

16

second line of constraints, while the first line remains effectively the same. Thus, we may instead
consider the formulation:

max
n∑

i=1

m∑
j=1

Niπjθij , (2.7)

s.t. (Rij − πj)θij ≥ (Rik − πk + δi)θij , ∀i, j, ∀k ̸= j,

(Rij − πj)θij ≥ 0, ∀i, j,
m∑
j=1

θij ≤ 1, ∀i,

πj ≥ 0, ∀j,
θij ∈ {0, 1}, ∀i, j.

To linearize the above model, we can introduce a continuous auxiliary variable pij such that:

pij =

{
πj , if θij = 1,

0, otherwise.

which we force with the constraints

pij ≥ 0,

pij ≤ Rijθij ,

pij ≤ πj ,

pij ≥ πj − R̃j(1− θij),

for all i, j, where R̃j = maxi{Rij}. This gives the linearized model:

max
n∑

i=1

m∑
j=1

Nipij , (2.8)

s.t. Rijθij − pij ≥ (Rik − πk + δi)θij , ∀i, j, ∀k ̸= j,

Rijθij − pij ≥ 0, ∀i, j,
m∑
j=1

θij ≤ 1, ∀i,

pij ≤ πj , ∀i, j,
pij ≥ πj − R̃j(1− θij), ∀i, j,

πj , pij ≥ 0, ∀i, j,
θij ∈ {0, 1}, ∀i, j.

There is also an alternate form of (2.8) that reduces the number of constraints. For the first set of
constraints, summing over all j, j ̸= k gives us:

∑
j ̸=k

(Rijθij − pij) ≥ (Rik + δi)

∑
j ̸=k

θij

− πk, ∀i, k.

17

It is known that for the LP relaxation, the old and new first sets of constraints are not equivalent.
However, in computational experiments the new formulation is more efficient [51]. Thus, we leave
ourselves open to the opportunity to switch between them as desired. This gives an alternate
formulation for the price setting subproblem as well. Fixing an assignment for (2.6), simplifying,
and taking the dual gives a linear program identical to (2.3) where the variables in (2.2) are now:

rjk := min
i∈Cj

{Rij −Rik − δi}, σj := min
i∈Cj

{Rij}. (2.9)

Thankfully, the addition of utility tolerances still allows for the application of the Dobson-Kalish
heuristic, due to the following lemma:

Lemma 2.2.1. When δi = 0 for every i, each reassignment in the Dobson-Kalish Reassignment
Heuristic results in a feasible product-segment assignment.

2.3 Approximation Algorithms

While the Maximum Utility Problem is APX -hard, there exist several approximation results in
the literature. In this section, we discuss the results of Guruswami, et al. [27], who introduced
Algorithm 3 which we refer to simply as Guru.

Algorithm 3 Guru (Single-Price Heuristic)

1: Define R̄i := maxj{Rij} for all i ∈ {1, . . . , n}
2: Sort the customer segments such that R̄1 ≥ R̄2 ≥ · · · ≥ R̄n

3: Find index ℓ such that ℓ = argmaxk

{
R̄k
∑k

i=1Ni

}
4: Set πj = R̄ℓ for all j

This algorithm is polytime, and in fact is an O(log(n))-approximation in the special case that

maxiNi

minj Nj
≤ c,

for some constant c = O(1). However, when this ratio cannot be bounded by an absolute constant,
we may construct instances such that the algorithm performs at Ω(n). Consider the following
example:

Example 2.3.1. Let m := n, and set the reservation prices as follows:

Rij :=

{
2(n−i), if i = j,

0, otherwise.

Then for each i ≤ n, set
Ni := 2i−1.

To illustrate, consider the case where m = n = 3. Then,

R11 = 4,N1 = 1,

R22 = 2,N2 = 2,

R33 = 1,N3 = 4.

18

So we set πj = 4 for all j. Segments 1 and 2 end up buying nothing, and Segment 3 buys Product
3, for a total profit of 4. However, the optimal prices are:

π1 = 1, π2 = 2, π3 = 4,

for a revenue of 12.

To show the approximation bound, note that we will always pick some ℓ such that πj = R̄ℓ = 2n−ℓ

for every j. Thus, the resulting revenue is:

2n−ℓ
ℓ∑

i=1

Ni = 2n−ℓ
ℓ∑

i=1

2i−1

= 2n−ℓ(2ℓ − 1)

< 2n.

However, the optimal profit is obtained by having every customer segment purchase their most
desired product at maximum price, which can be done by setting πj = 2n−j for all j. The resulting
revenue is

n∑
i−1

2i−1 · 2n−i = n · 2n−1.

Thus, the approximation ratio of Guru is at least

n2n−1

2n
=

n

2
= Ω(n).

While Guru has a worst-case approximation ratio of Ω(n), the work of Myklebust, et al. [48]
presents an alternative analysis that lowers the worst-case approximation bound in specific cases.
To accomplish this analysis, we can formulate the search for worst-case instances as an optimization
problem, treating the R̄i and Ni values as variables rather than data. Hence, using our upper bound
from Proposition 2.0.4, we may consider the following Nonlinear Program:

max
n∑

i=1

NiR̄i, (2.10)

s.t.

(
i∑

k=1

Nk

)
R̄i ≤ 1, ∀i ∈ I, (⋆)

R̄i+1 ≤ R̄i, ∀i ∈ I \ {n},
R̄n ≥ 0,

Ni ≥ 0, ∀i ∈ I.

The objective function corresponds to the maximum possible profit obtainable, in which every
customer segment i buys a product j such that πj = R̄i. The constraint (⋆) corresponds to the
revenue of the guru algorithm, which we set to be a maximum of 1. This way, we can solve the
optimization problem (2.10) to find the largest gap possible between the revenue of Guru and our
upper bound. Thus, if we find an improvement to the upper bound, we can use this technique to

19

gain an even better worst-case approximation ratio. If we take as input (i.e. fix) the Ni variables
and compute the optimal R̄i for the objective function in terms of Ni, we obtain that the value of
(2.10) is:

n∑
i=1

Ni∑i
ℓ=1Nℓ

.

Similarly, the optimal values for Ni given the R̄i variables as input is:

N1 =
1

R̄1
, Ni =

1

R̄i
− 1

R̄i−1
.

This leads to the following value for (2.10):

n−
n−1∑
i=1

R̄i+1

R̄i
.

Thus, given Ni, R̄i variables as input, we can say that guru has approximation ratio at most

min

{
n∑

i=1

Ni∑i
ℓ=1Nℓ

, n−
n−1∑
i=1

R̄i+1

R̄i

}
, (2.11)

so guru in fact has approximation ratio Θ(n). A positive consequence of expressing the worst-case
bound in this way is that there exist special structural cases for the Rij values that we can exploit
to obtain better approximations. To illustrate this idea, we present the following theorem:

Theorem 2.3.2. Let n ≥ 2 and k ∈ (0, n− 1]. Then if for all 1 ≤ i ≤ n− 1,

R̄i−1

R̄i
≥ 1− k

n− 1
, (2.12)

the approximation ratio of Guru is at most (k + 1).

Proof. Plugging the inequality (2.12) into (2.11), we see that:

n−
n−1∑
i=1

R̄i+1

R̄i
≤ n−

n−1∑
i=1

(
1− k

n− 1

)
= n− (n− 1)

(
1− k

n− 1

)
= k + 1.

20

Chapter 3

Related Problems

A common practice in combinatorial optimization when encountering an NP-hard problem is to
identify special structural qualities of an instance’s data that can be exploited algorithmically. A
classic example is the Travelling Salesman Problem, for which there exists no polynomial time
α-approximation for any constant α ≥ 1 (if P ≠ NP). However, in the Metric Travelling Salesman
Problem, where the distances between points satisfy the triangle inequality, there exists a 1.5 − ϵ
approximation [39]. The Maximum Utility Problem is no exception to this phenomenon - already
in this thesis, we have seen the algorithm Guru, which was shown in [27] to be an O(log(n))-
approximation when the ratio between maximum and minimum Ni values is bounded by a constant.
The bulk of this chapter elaborates on that theme, giving a review of the structured settings under
which the Maximum Utility Problem can be solved in polynomial time. In later sections, to expand
upon the connection between combinatorial optimization, optimal pricing problems, and economic
equilibria, we discuss a variety of leader-follower games, including Stackelberg Pricing Games and
Bilevel Integer Linear Programs.

3.1 Structured Settings

First, we mention several special cases where an exact solution to the linearized Maximum Utility
Problem (2.8) can be found in polynomial time [51]:

a. n = 1, in which case there is only one customer segment. Here we may set the price of all
products equal to the highest reservation price of Segment 1.

b. n = O(1), in which case the number of possible assignments is bounded by mn = mO(1). Then
for every assignment we can simply obtain its optimal profit or determine if it is infeasible
by solving the underlying shortest paths problem. Among all feasible assignments, we simply
choose the one with the highest profit.

c. n ≤ m, in the special case described in the following lemma:

Lemma 3.1.1. For n ≤ m, the LP relaxation of (2.8) provides the integer optimal solution
if each segment i can be assigned to a product ji where:

(a) Riji ≥ Rik, ∀k ∈ J,

21

(b) ji ̸= jℓ, ∀i, ℓ ∈ I, i ̸= ℓ,

(c) Riji ≥ Rℓji + δi, ∀i, ℓ ∈ I, i ̸= ℓ.

d. m = 1, due to the formulation of an alternative LP problem. Assume that Product 1 is the
only product being sold. Then order the customer segments such that R11 ≥ R21 ≥ · · · ≥ Rn1.
Then MUP has the following formulation:

max

n∑
i=1

(
i∑

k=1

Nk

)
Ri1zi, (3.1)

s.t.

n∑
i=1

zi = 1,

zi ≥ 0, ∀i,

which has an integer solution zi∗ = 1 when i∗ ∈ argmaxi{Ri1
∑i

k=1Nk}.

e. m ≤ n, according to the conditions in the lemma:

Lemma 3.1.2. Suppose C∗
j is the set of segments that purchase Product j in the solution of

(3.1) and C∗
j

⋂
C∗
k = ∅,∀j, k ∈ {1, . . . ,m}, j ̸= k. Then C∗

j is the optimal segment-product
assignment of (2.8) for δi ≤ minj=1,...,m{minl∈C∗

j
{Rlj} − Rij}, where the upper bound is

strictly positive. The optimal prices are π∗
j = mini∈C∗

j
Rij.

To provide context to the above instances, we note that case c is a generalized version of the
third property in Proposition 2.0.5, where for every customer segment their most desired product
is unique and not desired as much by any other segment. Case e is a generalized version of case d,
where we solve (3.1) for each product and happen to get disjoint C∗

j sets, which allows us to easily
copmpute optimal prices.

The second setting we are interested in is when our reservation price matrix satisfies the Extended
Monge Property :

Definition 3.1.3. A matrix R ∈ Rn×m satisfies the Extended Monge Property if the following
three properties hold:

a. For all 1 ≤ i < ℓ ≤ n and 1 ≤ j < k ≤ m,

Rij +Rℓk ≥ Rik +Rℓj .

b. For all 1 ≤ i ≤ n and 1 ≤ j < m,
Rij ≥ Ri,j+1.

c. For all 1 ≤ i < n and 1 ≤ j ≤ m,
Rij ≥ Ri+1,j .

Assumption a is also equivalent to the statement

Rij −Ri,j+1 ≥ Ri+1,j −Ri+1,j+1 for all 1 ≤ i < n and 1 ≤ j < m,

22

which is generally referred to as theMonge Property [26]. This is a well-studied property of matrices
that has been applied to a wide variety of combinatorial optimization problems over the past fifty
years. Original applications of this structure were studied by Gaspard Monge in 1781 and A.J.
Hoffman in 1961 [30], who both made connections to transportation problems. Since then, a large
number of combinatorial optimization problems have been considered under the context of Monge
matrices, including the traveling salesman problem, bipartite matching, and scheduling (see [12]
and [11] for detailed surveys). On the other hand, assumptions b and c are quite strong. Taken
together, we say that if a set of reservation prices satisfies the final two assumptions, then the set of
prices is Monotone Decreasing. Under these three assumptions we are able to solve MUP exactly,
due to the following theorem:

Theorem 3.1.4 (Günlük, 2008 [26]). If reservation prices satisfy the extended Monge Property,
then (1.4) can be solved by dynamic programming in O(nm2) time.

A major building block for the authors’ algorithm comes from the observation that under assump-
tion a, any assignment vector cannot have any crossings. Intuitively, this means that whenever a
customer segment i purchases a product j, all segments with an index at least i must also purchase
a product with an index at least j. More formally,

Proposition 3.1.5 (Günlük, 2008 [26]). Under assumption a, for any given price vector π, the
corresponding assignment θ(π) has no crossings. In other words,

θik + θℓj ≤ 1 for all k > j, ℓ > i.

Proof. To prove this fact, we can simply show that an assignment invalidating the above inequality
creates a negative directed cycle in the underlying shortest paths graph. Assume that for some i, j,
ℓ > i, and k > j, we have θik = 1 and θℓj = 1. Then in the digraph, we have that rjk ≤ Rℓj −Rℓk,
and rkj ≤ Rik −Rij . But by assumption a,

rjk + rkj ≤ Rℓj −Rℓk +Rik −Rij ≤ 0.

Additionally, we can rule out the scenario where the bound is tight. In this case, Segment i is
indifferent between Products j and k. Thus, our tiebreaking rule dictates that Segment i purchase
the more expensive product. But if πk > πj , then

Rik − πk ≤ Rij − πk < Rij − πj ,

so Segment i prefers Product j to Product k. Hence, we may conclude

rjk + rkj < 0,

so there exists a negative directed cycle in the underlying shortest paths graph.

This proposition implies that in any optimal assignment vector, the customer segments are parti-
tioned into contiguous groups with the same assigned product. In particular, there exists some ℓ
such that segments can be placed into groups C1, C2, . . . , Cℓ, where every group i purchases prod-
uct αi (if in an assignment there exists segments that purchase nothing, then αℓ = 0, the dummy
product). This fact serves as the basis for the following dynamic programming algorithm. For

23

notation, we define N(a, b) :=
∑b

i=aNi. Similarly, we will initialize an n×m array Z of all zeroes
in which to store our intermediate values. Then, we can define the algorithm.

Algorithm 4 Günlük, (2008)

1: for j = m,m− 1, . . . , 1 do
2: Znj = N(1, n)Rnj

3: end for
4: for i = n− 1, . . . , 2 do
5: for j = m, . . . , 1 do
6: Zij = maxb∈{j,...,m}{N(1, i)(Rij −Rib) + Zi+1,b}
7: end for
8: end for
9: z∗ = Z11 = maxb∈J{N1(R11 −R1b) + Z2b}

10: return z∗

Note that Algorithm 4 requires that every customer segment purchase a product - however this
technicality can be dealt with by adding a dummy product m + 1 such that Ri,m+1 = 0 for all
segments i.

As a brief note we include two examples that provide some context to the assumptions made in
[26]. In general, for the dynamic programming algorithm to work, it is sufficient but not necessary
to make the assumption that the matrix R satisfies the extended Monge property. However, the
properties are not individually strong enough. We demonstrate this through the following series of
statements.

Remark 3.1.6. Assumptions b and c are not sufficient to require all optimal solutions to have no
crossings.

Example 3.1.7. We demonstrate Remark 3.1.6 with the following instance:

i Ni Ri1 Ri2

1 1 6 5

2 1 4 1

3 1 3 1

4 100 1 + ε 1

Table 3.1: A matrix that is not Monge but whose optimal assignment has no crossings

Note that the Rij matrix is not Monge, as R11−R12 < R21−R22. If we let ε ≤ 1.01, we see that the
optimal solution is for segments 1 and 4 to purchase Product 2, while segments 2 and 3 purchase
Product 1, with π1 = 3 and π2 = 1. The resulting revenue is 107. However, the most profit we can
get from an assignment with no crossings is 106. This can be achieved with π1 = 2, π2 = 1, which
has segments 1, 2, and 3 purchasing Product 1 and Segment 4 purchasing Product 2.

Remark 3.1.8. The Extended Monge Property is not necessary for all optimal solutions to have
no crossings. Again, consider the next example:

24

Example 3.1.9. We can see that the following instance is not Monge:

i Ni Ri1 Ri2

1 1 5 4

2 50 3 1

Table 3.2: Another matrix that is not Monge but whose optimal assignment has no crossings

However, the optimal solution is to set π1 = 3 and to not offer Product 2, leading to a revenue of
153 with both customer segments purchasing Product 1.

Moving on from Monge matrices, the last structured instance we are interested in comes when we
are interested in finding a complete allocation of segments to products. In this particular setting,
we assume that each product j has cj available copies. Moreover, we assume that Ni = 1 for every
customer segment and that the total number of available products equals the number of customer
segments - that is:

n =
m∑
j=1

cj .

This is not a very meaningful restriction, as any general scenario can be modified to satisfy the above
constraint simply by adding additional “dummy products” or customer segments with reservation
prices of 0. The more restrictive requirement, then, is that for every assignment θ, we require every
customer segment to purchase exactly one product - that is:

m∑
j=1

θij = 1 ∀i.

Then, every single assignment θ is in fact a permutation ϕ : N → N (where N is the set of customer
segments) where ϕ(j) is the index of the segment that purchases Product j. Thus, the problem
of solving the envy-free pricing model reduces to pricing the individual products in N , finding an
envy-free (i.e. each segment is assigned to a product that maximizes their utility) permutation,
and its corresponding perfect matching M = {(ϕ(i), i) : i ∈ N}. If we let Γ denote the set of all
permutations of N and FR(ϕ) denote the feasible region of envy-free prices induced by ϕ, then we
may reduce MUP to the following optimization problem:

max
ϕ∈Γ

max
π∈FR(ϕ)

n∑
i=1

πi,

s.t. πi ≤ Rϕ(i),i ∀i ∈ N,

πi − πj ≤ Rϕ(i),i −Rϕ(i),j ∀i, j ∈ N,

πi ≥ 0.

The resulting problem is called Envy-Free Perfect Matching, which has an exact solution,
via reduction to perfect matching:

Theorem 3.1.10 (Arbib, Karaşhan, Pinar, 2017 [3]). Envy-Free Perfect Matching can be
solved exactly in O(n3) time.

25

Another commonly studied variant of the ubiquitous pricing problem is the Max-Buying (and its
cousin Min-Buying) problem. In this version, rather than determining product-segment assign-
ments directly via the segments’ reservation prices, we instead simply seek to find a pricing vector
and corresponding allocation of products to segments that is feasible, subject to certain constraints.
In particular, we say that Product j is feasible for Segment i if Rij ≥ πj . Then, any assignment θ
is feasible if

θij = 1⇒ Rij ≥ πj .

That is, every product-customer pairing is feasible. In addition, in the Max-Buying model, each
segment purchases the most expensive product among those available, and in the Min-Buying
model each segment purchases the cheapest. There is also the Rank-Buying model, where each
segment has a preference order among all products, and purchases the product with the highest
preference among those that are feasible given the current pricing vector. Then, the envy-free
pricing model reduces to simply finding the most profitable assignment θ and corresponding prices
π subject to the above constraints.

Another possible assumption for the Max-Buying problem is the addition of a price ladder. Under
this framework, given an ordering {1, . . . , j . . . ,m} of products, we require that for any pricing
vector π,

π1 ≥ · · · ≥ πm.

As many models in auction theory, optimal pricing, and mechanism design assume, we can also
impose Limited Supply on the products, so that every product j has some maximum number of
copies Cj that can be sold.

Variations of the overall model can be studied using combinations of these assumptions. An example
is the work of Fernandes and Schouery in 2013 [21], who provided polynomial time algorithms for
both Max-Buying with Limited Supply (Max-NPL-LS) and Max-Buying with Limited Supply and
a Price Ladder (Max-PL-LS), with ratios of e

e−1 and 2+ ε, respectively [21]. For other variations,
there is extensive research on both approximations and hardness bounds [1][10]. We refer the reader
to the cited material for further information.

3.2 Stackelberg Network Pricing Games

In analyzing the Maximum Utility Problem, we are modelling a scenario where multiple parties
must take some action - in this case, one party is setting prices, and the customer segments are
solving a maximization problem to determine which product to purchase. The resulting optimal
solution is a type of equilibria, where neither party can improve their utility or revenue given the
actions of the other. In a more general sense, the type of underlying problem that the customers
solve and the structure under which prices are set determine the form of the optimization problem
that we need to study. Thus, if we change the underlying optimization problem that the customers
must solve, we dramatically alter the structure of the overall problem. As a warm-up to this idea,
we may consider the combinatorial setting. Assume we have a leader pricing items in some universe
U , and customers (referred to as followers) which seek to purchase some feasible subset of elements
that maximize a given utility function. Such a framework is referred to as a Stackelberg Network
Pricing Game.

26

To demonstrate a simple instance in the graph setting, we define the following Stackelberg Network
Pricing Game, which we refer to simply as Stack: letG = (V,E) be a multigraph with E = Ep⊔Ef .
We have two types of players in the game, one leader and one (or multiple) followers. We call Ep

the priceable edges and Ef the fixed-price edges, with m = |Ep|. For every e ∈ Ef there is a fixed
cost c(e) ≥ 0. For every e ∈ Ep, the leader may define a price p(e) ≥ 0. Each follower i = 1, . . . , k
has a set Si ⊂ 2E of feasible subgraphs. The weight w(S) of a subgraph S is simply the sum of the
edges in the subgraph, which may be either fixed or priceable. Conversely, the revenue r(S) of the
leader from subgraph S is the sum of the priceable edges in S. We seek to find the pricing function
p∗ for the leader that generates the maximum revenue, i.e.,

p∗ ∈ argmax
p

k∑
i=1

r(S∗
i (p)),

where
S∗
i (p) = arg min

S∈Si

{w(S)} for each i, given p.

We note that, given prices for Ep, it is not necessarily the case that followers can find a subgraph
of minimum weight in polynomial time (e.g. compute argminS∈Si{w(S)}), nor is it the case that
Si must have any discernible structure at all. However, in the literature we discuss, these caveats
will be assumed.

Even in the single-follower case, this problem is known to be both NP [43] and APX [36]-hard.
However, there happens to be a simple, single-price algorithm that achieves a nice approximation
ratio [9]. Assuming there exists a feasible subgraph for the follower not containing any of the
priceable edges and that each follower can find a subset of minimum cost in polynomial time, given
a set of prices, let the cheapest of these have cost c0. Then we have the following algorithm:

Algorithm 5 Stack Single-Price Algorithm

1: for j = 0, . . . , ⌈c0⌉ do
2: Let pj = (1 + ϵ)j .
3: Assign pj to all priceable edges and record r(pj).
4: end for
5: return p ∈ argmaxpj r(pj).

Theorem 3.2.1 (Briest, Hoefer, Krysta, 2012 [9]). Given any ϵ > 0, the single-price algorithm is

a (1 + ϵ)Hm-approximation, where Hm is the mth harmonic number. For Stack with k followers,
the single-price algorithm computes a (1 + ϵ)(Hk +Hm)-approximation.

Similarly, in the case where the followers have weighted demands dj , we can alternately define the
revenue for the leader as

k∑
j=1

dj
∑

e∈Sj∩Ep

p(e),

for which the single-price algorithm also has a provable approximation ratio, which does not rely
on the number of followers:

27

Theorem 3.2.2 (Briest, Hoefer, Krysta, 2012 [9]). The single-price algorithm computes an (1 +
ϵ)m2-approximation with respect to the optimal revenue for Stack with multiple weighted followers.

Of course, the above results are quite general, and can be improved when we consider special cases
of underlying combinatorial problems. One nice example is the well-studied vertex cover problem
on bipartite graphs. In this scenario, we assume that the vertices are priceable, rather than edges,
and that the followers seek to compute a minimum-cost vertex cover given a set of prices for edges.
This problem is known as StackVC, which can be solved exactly in the single-follower case (Note
that Vp refers to the set of priceable edges):

Theorem 3.2.3 (Briest, Hoefer, Krysta, 2012 [9]). If for a bipartite graph G = (A∪B,E) we have
Vp ⊆ A, then there is an O(n6) algorithm computing an optimal price function p∗ for StackVC.

Of course, [9] is only an introduction to the rich variety of Stackelberg Network pricing problems.
There are many new results in the field over the past decade, including:

• An O(logm/ log logm) polytime approximation scheme for the tollbooth problem on trees
[23].

• A PTAS for the tollbooth problem on paths, also known as the highway problem [24].

• An O(n4) algorithm for StackVC, representing an improvement over Theorem 3.2.3 [6].

• An extension of the results of [9], where instead we let the follower minimize any continuous
function (subject to a few restrictions) [8].

Interestingly, there exists a combinatorial connection between Stackelberg Pricing Games and the
Price Setting Problem from Chapter 2. Recall the notion of simultaneous feasibility from Proposi-
tion 2.1.5: If θ and θ′ are feasible assignments that differ by a single reassignment, then there exists
a pricing vector π that is feasible for both θ and θ′. There turns out to be an analogous result for
StackMST, where the underlying optimization problem solved by the followers is the Minimum
Spanning Tree Problem (see [44] for the current state of the art). Here, we say that a tree T is
feasible if there exists a feasible price vector for which T is an MST. Then for StackMST, we can
say:

Theorem 3.2.4 (Myklebust, Sharpe, Tunçel, 2011 [48]). Suppose T, T ′ are feasible trees for an
instance of StackMST, and suppose |T \ T ′| = 1. Then there exists a price vector π for the edges
such that T, T ′ are both minimum-cost spanning trees with respect to π.

3.3 Bilevel Mixed Integer Linear Programs

Expanding on the idea of leader-follower games, we can consider a highly generalized scenario
known as Bilevel Linear Programming. This setting encompasses two-stage decision problems,
with a leader and follower, where some or all of the decision variables are integer. This setting
is highly adaptable and has been studied in many different settings and applications, including
vehicle routing and transportation. Bilevel formulations are also especially well-suited for modeling
pricing problems [19] [43]. For a detailed history of the topic and examples of its applications, we
refer the reader to the survey [52].

To demonstrate an example of a bilevel model, we review the problem studied in [41]. In any bilevel
program, the leader first decides the variables z, then the follower chooses their own variables x.

28

The goal of the leader is to optimize over (x, z) subject to joint constraints. Additionally, when x
has multiple optimal solutions, we choose one that has the optimal outcome for the leader, similar
to our established tiebreaking conventions. Given these assumptions, we can define the following
Bilevel Linear Program:

inf
x,z

cTx+ eT z, (3.2)

s.t. Cx+Dz ≤ p, z ∈ Rd, (3.3)

x ∈ argmin
x′
{gTx′ : Ax′ ≤ Bz + u, x′ ∈ Rn}. (3.4)

The follower’s (or lower level problem (3.4)) is an example of a parametric linear program with the
right hand parameterized by z. Unsurprisingly, this problem is also known to be NP-Hard - in
fact, if z is allowed to be continuous, it is not even guaranteed that the set of all bilevel feasible
solutions

F := {(x, z) ∈ Rn+d : (3.3), (3.4)}
is closed [56]. Thus, we must express the objective function (3.2) as an infimum rather than a
minimum. However, if z is integer and the instance is feasible, we may replace “inf” with “min”
[56]. Other types of bilevel programs exist, in the same way that many different types of linear
programs exist. For example, we may formulate a Bilevel Mixed Integer Linear Program (BMILP)
where some or all of the leader and follower’s variables must be integer. In particular, consider the
BMILP

inf
x,z

cTx+ eT z, (3.5)

s.t. Cx+Dz ≤ p, z ∈ Rd, zi ∈ {0, 1}, ∀i ∈ I,

x ∈ argmin
x′
{gTx′ : Ax′ ≤ Bz + u, x′ ∈ Rn},

where I is an indexing set indicating the subset of z variables that must be binary. We would like
to point out that (3.5) is closely related to the Maximum Utility Problem formulation (1.4). While
MUP cannot itself be expressed as a BMILP, as the prices are not required to be set after an
assignment is determined, the motions of fixing assignments and solving the Price Setting Problem
resemble these bilevel actions.

Ultimately, as (3.2) and (3.5) are incredibly general, much of the research on these formulations
has been done on special cases. In the paper [41], the authors are interested in a specific BMILP
where the leader’s variables z ∈ Rd are continuous, the follower’s variables x ∈ Zn are integer, and
all other data are integer:

inf
x,z

cTx+ eT z, (3.6)

s.t. Cx+Dz ≤ p, z ∈ Rd,

x ∈ argmin
x′
{gTx′ : Ax′ ≤ Bz + u, x′ ∈ Zn}.

They also assume that the set F corresponding to (3.6) is bounded. Similarly, if we assume that
for every z ∈ projzP, where

projzP = {z ∈ Rd : (x, z) ∈ P for some x ∈ Rn},

the lower level optimization problem (3.4) has a bounded feasible region, then:

29

Theorem 3.3.1 (Köppe, Queyranne, Ryan, 2010 [41]). Given an instance of the Bilinear Mixed
Integer Linear Program (3.6), there exists an algorithm which:

a. decides if the instance is feasible;

b. if it is feasible, decides if the infimum is attained; and

c. if so, finds an optimal solution.

The algorithm runs in polynomial time when the follower’s dimension n is fixed.

Their results are also extended to the case when the leader’s variables are required to be integral,
i.e. z ∈ Zd. In this case, they give an algorithm that runs in polynomial time when the total
dimension d+ n is fixed.

3.4 Bilinear Mixed Integer Programs

There exists one further generalization we can make beyond our bilevel mixed integer linear program
formulation. While the bilevel formulation implies a scenario where leaders and followers act
separately, we can envision a scenario where two parties act simultaneously. This phenomenon can
be modeled through what we refer to as a bilinear constraint:

Definition 3.4.1. A Bilinear Constraint is an inequality of the form

πTMθ ≤ κ, (3.7)

where M is an n×m matrix, π ∈ Rn, θ ∈ Rm, and κ ∈ R. The values for M and κ are received as
data, while π and θ are variables. Moreover, M is subdivided in the following way:

M :=

[
γ qT

r Q

]
,

where γ is a single entry, q ∈ Rn−1, r ∈ Rm−1, and Q ∈ R(m−1)×(n−1).

Now that we have defined a bilinear constraint, consider the vectors

π̄ =

[
1
π

]
, θ̄ =

[
1
θ

]
.

Then, multiplying π̄ and θ̄ by M , we have the following:

π̄Mθ̄ =
[
1 πT

]
M

[
1
θ

]
= γ + rTπ + qT θ + πTQθ

= γ +

m∑
i=1

riπi +

n∑
j=1

qjθj +

m∑
i=1

n∑
j=1

Qijπiθj . (3.8)

We can see that this bilinear constraint format gives us a tremendous amount of modeling power.
The inequality format (3.7) can be used to model not only any linear inequality, but also any
degree-two inequalities, where π and θ entries are multiplied. We may do this as long as the matrix
M is designed properly and the linear equations π1 = 1, θ1 = 1 are included. In fact, (3.7) can even

30

be used to model quadratic inequalities - simply apply the constraint πi = θj for some i, j. Then
we can model the variables π2

i or θ2j by setting the entry Qij in some constraint matrix M to be
nonzero. In particular, notice that we can also use bilinear constraints to model binary integrality
constraints, since for any variable θi,

θi ∈ {0, 1} ⇐⇒ θ2i − θi = 0.

As a consequence, we can also use this technique to model any bounded integer variable, as given
some integer variable 0 ≤ x ≤ N , we can express it as the sum of ⌊log(N)⌋ binary variables [58].
Putting all of these observations together, we can formulate a Bilinear Mixed Integer Program:

maxπTM0θ, (3.9)

s.t. πTM iθ ≤ κi, i ∈ {1, . . . , ℓ},
θ ∈ Rn,

π ∈ Rm,

where M i is an m× n matrix, π and θ are column vectors, and κ ∈ Rℓ.

The formulation (3.9) is incredibly general. Already, we have seen that it can be used to model any
linear, quadratic, or mixed integer program with bounded integer variables. We may also use this
framework to examine general multi-decision optimization problems where agents solve a variety of
underlying combinatorial problems, such as perfect matching, minimum spanning tree, or shortest
paths, while also allowing participants to act simultaneously, rather than in sequence as they do
in bilevel programs. As a matter of fact, our bilinear mixed integer programming formulation is
at least as general as our formulation for bilevel programs. In the following theorem, we give a
proof for the bilevel linear programming formulation (3.2). However, the proof is easily modified
to include the formulation (3.5), by including binary constraints for the members of I.

Theorem 3.4.2. Let BLP be an instance of (3.2) where the bilevel feasible solution set F is closed.
Then BLP can be formulated as a bilinear mixed integer program.

First, we prove a useful lemma:

Lemma 3.4.3. There exists a system of bilinear constraints whose feasible solution set fully char-
acterizes the set of optimal solutions to the lower level problem (3.3) of BLP.

Proof. We recall the lower-level optimization problem (3.3) of BLP:

min gTx, (3.10)

s.t. Ax ≤ Bz + u, (3.11)

x ∈ Rn.

Then, notice that if the upper level variables z are treated as constants, the entire right hand side of
(3.11) becomes a constant as well. Thus, we may express it as a column vector v, and the problem
becomes:

min gTx, (3.12)

s.t. Ax ≤ v, (3.13)

x ∈ Rn.

31

Because (3.12) is a linear program, its dual exists and can be expressed as:

max vT y, (3.14)

s.t. AT y ≥ g, (3.15)

y ∈ Rm.

Now, notice that if we force both sets of constraints (3.13) and (3.15) at the same time, then the
set of feasible x and y values simply characterize the set of all feasible primal and dual solutions to
(3.12) and (3.14). However, if we also force the constraint

gTx− vT y = 0, (3.16)

then by the Strong Duality Theorem, the only solutions that are feasible all of (3.12), (3.14) and
(3.16) are the values x∗ and y∗ that are optimal for (3.12) and (3.14). Furthermore, this solution
x∗, y∗ also optimizes (3.10), assuming z is fixed. Thus, we can formulate the system

gTx− vT y = 0,

Ax ≤ v,

AT y ≥ g,

x ∈ Rn, y ∈ Rm,

whose feasible solution set fully characterizes the set of all optimal solutions to the lower-level
problem (3.10). Now, all we need to do is write the above system using bilinear constraints. For
every constraint, we will define a matrix that is in the same form as in Definition 3.4.1. Then, we
simply define the entries of the matrix so that when the expansion in (3.8) takes place, our desired
constraints appear.

To do this, we must first compress x and y into a single vector w = [w0, x, y] of length n+m+ 1.
Thus, we have that x = [w1, . . . , wn] and y = [wn+1, . . . , wn+m]. Now, to model the equality
constraint, we create a matrix M∗, where r∗ = [g,−v] and the entries of M∗ are 0 everywhere else.
For the set of constraints Ax ≤ v, for every row 1 ≤ i ≤ m of A, we create a matrix M i such that
ri = [Ai, 0

m] and γi, qi, Qi = 0. Similarly, for the constraints AT y ≥ g, we create a matrix M j for
every row 1 ≤ j ≤ n of AT such that rj = [0n, AT

j] and γi, qi, Qi = 0. Then, using the variables z
from the upper level constraints, we can write the new set of lower level constraints as:

wTM∗z = 0, (3.17)

wTM iz ≤ vi, ∀i ∈ {1, . . . ,m},
wTM jz ≥ gj , ∀j ∈ {1, . . . , n},
w0, z0 = 1,

w ∈ Rn+m+1.

We note that using this framework, an assumption that the lower level problem (3.10) is feasible or
bounded is not necessary. In the case that the primal for the lower level problem (3.12) is infeasible
and the dual (3.14) is unbounded, then the system (3.17) is also infeasible, given fixed z. The same
is true if the dual is infeasible and the primal unbounded. Thus, the system (3.17), along with the
upper level constraints, fully characterizes the set of all feasible solutions for the bilevel program
(3.2).

32

Now, we can complete the proof of Theorem 3.4.2.

Proof. Let our bilevel program BLP be:

min
x,z

cTx+ eT z,

s.t. Cx+Dz ≤ p, z ∈ Rd,

x ∈ argmin
x′
{gTx′ : Ax′ ≤ Bz + u, x′ ∈ Rn}.

All that remains to do is model the objective function and upper level constraints. For the objective
function, we define a matrix M0 of size (n+m+ 1)× (d+ 1), where

r0 = [c, 0m], q0 = e, γ0 = 0, Q0 = 0.

Then, for each upper level constraint 1 ≤ k ≤ ℓ, we create a matrix Mk, where

rk = [Ck, 0
m], qk = Dk, γ

k = 0, Qk = 0.

Then, we can write BLP as:

min
w,z

wTM0z,

s.t. wTMkz ≤ pℓ, ∀k ∈ {1, . . . , ℓ},
wTM iz ≤ vi, ∀i ∈ {1, . . . ,m},
wTM jz ≥ gj , ∀j ∈ {1, . . . , n},
wTM∗z = 0,

w0, z0 = 1,

w ∈ Rn+m+1, z ∈ Rd+1.

To conclude the chapter, for completeness and to further demonstrate the modeling power of bilinear
mixed integer programs, we present an example where we write the Maximum Utility Problem in
terms of our BMIP formulation (3.9).

Example 3.4.4. First, we use an alternative formulation for MUP from [16], with some re-
indexing:

max

n∑
i=1

m+1∑
j=1

Niπjθij , (3.18)

s.t.

m+1∑
j=1

(Rij − πj)θij ≥ Rik − πk, ∀i, k,

m+1∑
j=1

θij = 1, ∀i, (3.19)

π1 = 0,

πj ≥ 0, ∀j,
θij ∈ {0, 1}, ∀i, j, (3.20)

33

where there are n customer segments, m+ 1 products (including the dummy product, now indexed
from 1 to m+1), π is a row vector of length m+1 and θ is a row vector of length n(m+1). Here
we abuse notation, where θij refers to the i(j − 1) + jth entry in the row vector θ. Our next step is
to define the matrices M for each constraint and the objective function. Let’s begin with M0. We
have:

M0 =

[
γ0 (q0)T

r0 Q0

]
,

where γ0, q0, r0 = 0 and M0
ij = Ni for all 2 ≤ i ≤ m+ 1, 2 ≤ j ≤ n(m+ 1).

Our next task is to define the matrix M ik for every product k. Let:

M ik =

[
γik (qik)T

rik Qik

]
.

For a given 1 ≤ j ≤ n(m+ 1), define ℓ = j (mod m+ 1). Then we have the following:

γik = 0,

rikj =

{
1, if j = k,

0, otherwise,

qikj =

{
Riℓ, if (i− 1)(m+ 1) < j ≤ i(m+ 1),

0, otherwise,

Qik
j1j2 =

{
−1, if j1 ≡ j2 (mod m+ 1), (i− 1)(m+ 1) < j ≤ i(m+ 1),

0, otherwise.

For constraint (3.19), for every i, we have the matrix M i, where γi, ri, Qi = 0 and

qij :=

{
1, if (i− 1)(m+ 1) < j ≤ i(m+ 1),

0, otherwise.

We then have the nonnegativity constraint on π and the {0, 1} constraint on θ. Finally, we set
π1 = 0 to represent the dummy node, and additionally π0 = 1, θ0 = 1 so that the expansion in (3.8)
is present. Thus, we can construct our bilinear program as in (3.9):

maxπTM0θ,

s.t. πTM ikθ ≥ Rik, ∀i, k,
πTM iθ = 1, ∀i,

π1 = 0,

π0, θ0 = 1,

π ≥ 0,

θ ∈ {0, 1}n(m+1).

34

Chapter 4

Worst-Case Algorithmic Analyses on
Practical Instances

In Chapter 3, we reviewed the existing literature that discusses structural scenarios under which
the Maximum Utility Problem can be solved exactly. This chapter continues said theme, presenting
additional potential structures our data may take and investigating the algorithmic consequences
of these instances. The papers [17], [48], [16], and [51], which study the general formulation (1.4)
of the Maximum Utility Problem, all extend the majority of their efforts to the case when Ni and
Rij can take any uniformly random value in Z+. However, this assumption is far too general in
practice. As an example, consider the worst-case approximation bound for Guru. The instance
presented in Example 2.3.1 sets Ni = 2i−1 for all i. However, for values of n that are present in
industry applications (ex. n ≥ 1000), the values of Ni in this example easily exceed the number of
atoms in the universe, and the range of Rij values is similarly exponential. In practical applications,
though, the ratio between R̄1 and R̄n can often be bounded by a reasonably small constant. To
cite some specific price ranges that appear in real data (prices are as of July 2022, in CAD):

• The Toronto Blue Jays [33] single-game ticket prices available on ticketmaster.ca typically
range from $20 through $130.

• Arc’teryx [31] offers rain jackets priced between $120 for basic necessities and $1, 000 for
the most technical gear.

• Toyota [34] offers typical passenger vehicles at base prices ranging from $19, 450 (Corolla)
through $48, 290 (Tundra).

• Redfin.com [32] lists 2+ bedroom/2+ bathroom homes in Kitchener, ON for prices between
$390, 000 and $3, 800, 000. However, individual customer price ranges for homes should be
considered to be much more restricted than the minimum and maximum price of available
homes.

While not a comprehensive review, these examples show that in practice, a multitude of instances
will have data ranges that can be bounded by a reasonably small constant. The consequences of
this are explored in Subsection 4.3.2.

Another complication within practical applications is that the number of customer segments and

35

products n and m may be significantly larger than the actual number of buyers and items. Given
a small number of potential buyers, one may wish to model the behavior of multiple consumers
through clustering them into several segments, or to model the ability to purchase multiple products
or multiple copies of products by duplicating segments. Additionally, a large number of products
may be used to simulate offering different bundles of products. Consider the example of a tourism
company [55]. They offer only a modest number of single items, such as 20 destination cities,
7 different departure/return days, and 8 different hotel choices per destination. The company
may choose to offer 3-day, 7-day, 14-day, etc. vacation packages, with transportation tickets,
accommodations, and other bells and whistles included. Moreover, these packages may be offered
for each combination of individual items. In this case, given the vast number of possibilities for the
content of a package, the number of product bundles can easily be in the thousands or even millions.
Thus, many of the algorithms and heuristics for the Maximum Utility Problem are intended for use
on these large-scale instances. In Section 4.1, we see some examples of this principle in practice,
reviewing the types of data instances that have been generated in the literature. Then, the bulk of
this chapter discusses a variety of applicable settings under which we derive new algorithmic ideas.
While for each considered scenario we detail some reasons why they are interesting and potentially
applicable in economic environments, we note that it is not known whether these cases commonly
arise specifically for the Maximum Utility Problem. This is also the case for the polytime scenarios
mentioned in Chapter 3.

4.1 Data Generation

A key focus throughout this thesis is discussing the types of data patterns that are likely to be
present in practical applications. As such, we use this section to briefly discuss the data that has
been generated for computational experiments in the literature. Ideally, any company utilizing
these models also has access to extensive data mining techniques they can use to determine the
reservation prices, the structure of the customer segments, and the utility tolerances. This includes
personal information such as demographics, location, and purchasing patterns, to name a few
categories. One needs look no further than targeted advertising to see a modern example of intricate
data collection being used in direct-to-consumer optimization models. For example, Demand-Side
Platforms (DSP) are companies that partner with advertisers to deliver content towards consumers.
Given large amounts of customer data and products to advertise, the DSP participates in online
auctions to bid on slots that consumers can see. As there is significant competition for these slots,
the question of how much to bid given the parameters of each auction gives rise to an optimization
problem [25].

Absent full sets of data, we must have a method for filling in the missing attributes. Possible
choices include using conjoint analysis (see [40] for an example) or multinomial logit models [37].
Another commonly used implementation is to probabilistically generate customer preferences given
some set of raw customer data, computing mean and variance from known attributes and using
filling in the Rij values according to some distribution [54]. In the literature that discusses the
Maximum Utility Problem explicitly, there are several different test datasets that are generated.
The papers [50], [48], and [51] all use data generated from historical vacation package sales, in
partnership with a company in tourism. While this data is protected, these papers also generate
random datasets:

36

• [51] generates test cases for each pair (n,m) ∈ {2, 5, 10, 20, 40, 60, 80, 100}2, with uniformly
random values of Rij between 29 and 210, and values of Ni between 500 and 799.

• [48] generates a more aggressive dataset of instances with the same Rij value range, but with
m ∈ {5000, 10000, 20000, 40000} and n ∈ {200, 400, 600, 100}.
• The original paper by Dobson and Kalish [17] uses three different “product-classes”, each
describing a different possible real-world scenario (for example, in the first we assume that
each segment has the same order of preference among all the products). For each scenario,
they generate 40 different random matrices with 5 segments and 4 products.

Finally, [50] provides an explicit methodology for directly generating some of the Rij values used
in their computational experiments. Using historical data, the fraction fij of customers from each
segment i that purchased each product j, and the price pij they paid for it, is known. Then, to
estimate Rij for each i and j, they assume each segment acts according to a share-of-surplus [42]
model. Letting Bi be the set of products purchased by Segment i, we have the approximation

fij ≈
Rij − pij∑

k∈Bi
(Rik − pik)

.

To generate approximate Rij values for j ∈ Bi for all i and fit the model to the pij data, they use
least-squares regression, and suggest using the techniques mentioned above for filling in data to
define the remaining Rij entries.

4.2 Multiplicative Utility Tolerances

As we saw in Section 2.2, the introduction of utility tolerances adds a significant amount of ro-
bustness to the model. Expanding on this concept, rather than having a single utility tolerance for
each customer segment, we may instead define a constant δijk > 0 for every segment i and pair of
products j, k. The additional customization allows for more flexibility during implementation, as we
now have the ability to model interactions between products. Additionally, the δijk parameters are
useful for representing the preferences of Segment i among all products. While this simple change
can be made and implemented in the model (2.6), here we present an alternative formulation where
we model δ as a multiplicative scalar instead of as an additive scalar.

Beyond flexibility, one particular advantage of using utility tolerances as multiplicative scalars
rather than additive scalars that it allows the δ values to easily be defined by a percentage of a
segment’s reservation prices rather than by an additive constant. One disadvantage, however, is
that the model assumes a higher degree of data collection (in that we assume, when solving the
model, that the δ values are data that must be collected by the user, and not determined during
direct implementation). However, for any given i, it is possible to simply derive the δijk values as
a function or as a consequence of Segment i, without taking into consideration any aspects of the
products j or k. In this way, we do not necessarily require any more data collection than in the
model (2.6).

To define the new model, we must first redefine the customer segment’s purchasing requirements.
Instead of the inequalities (2.4) and (2.5), we now assume that Segment i buys Product j if and
only if

Rij − πj ≥ Rikδijk − πk, ∀k ̸= j

37

and
Rij − πj ≥ CSiδij0, ∀i, j,

where 0 again represents the “dummy” product. Preprocessing such that Rij ← max(0, Rij −
CSiδij0) and CSi ← 0, the problem (2.8) becomes:

max

n∑
i=1

m∑
j=1

Nipij , (4.1)

s.t. Rijθij − pij ≥ (Rikδijk − πk)θij , ∀i, j, ∀k ̸= j,

Rijθij − pij ≥ 0, ∀i, j,
m∑
j=1

θij ≤ 1, ∀i,

pij ≤ πj , ∀i, j,
pij ≥ πj − R̃j(1− θij), ∀i, j,

πj , pij ≥ 0, ∀i, j,
θij ∈ {0, 1}, ∀i, j.

The LP (2.1) becomes:

max
m∑
j=1

Mjπj , (4.2)

s.t. πj − πk ≤ min
i∈Cj

{Rij −Rikδijk}, ∀j ∈ B, ∀k ̸= j,

πj ≤ min
i∈Cj

{Rij}, ∀j ∈ B.

The dual of (4.2) is identical to (2.3), where the variables in (2.2) are changed to:

rjk := min
i∈Cj

{Rij −Rikδijk}, σj := min
i∈Cj

{Rij}.

Note that the value inside the brackets of σj can be turned into Rijδij0 by preprocessing such that

Rij ← Rij

δij0
− CSiδij0.

4.3 Logarithmic Scaling in Data

Now that we have established a framework for considering special structures of the underlying
reservation price data, we can discuss the algorithmic consequences in some specific instances. This
section involves two different methods of scaling - in the first, we consider a rounding scheme where
we round our data to the nearest power of c for some c ∈ R+. In the second, we study a more
general case where R̄i values are uniformly separated on a logarithmic scale.

The motivation for considering rounding to a nearest power is connected to several areas of com-
binatorial optimization and operations research. From combinatorial optimization, we have the

38

technique of capacity scaling. In some problems, we can often arrive at efficient solutions by acting
in p different stages, where in each stage we only examine elements with a cost function bounded
by some function of 2p; for example, an algorithm for integral-capacity maximum flow that, in
each successive stage p, only considers augmenting paths of width at least 2p. Another example
of scaling is the celebrated Successive-Scaling Algorithm of Edmonds and Karp [20] for finding
minimum-cost flows, which relies on solving several successively scaled down instances of a problem
to produce a polynomial-time algorithm. In the subfield of operations research known as Inventory
Management, the notion of power-of-two policies refers to models where product orders take place
at time intervals that scale by some factor of 2. Popular examples of power-of-two policies include
scheduling on production machines and multi-staged decision making in manufacturing plants (see
Chapter 3 of [47]).

These examples motivate our study of rounding and later considering the application where R̄i

values scale logarithmically. The reason we are interested in this second scenario is related to our
discussion of how Rij values can be generated in the first place - in practice, it can be common to
have large amounts of reservation price data defined by a relatively small number of parameters
(see, for instance, the discussion in Section 6.2 of [48]). As such, we do not always have a complete
definitive set of Rij values. In order to obtain our matrix of values, then, we require techniques
for generating reservation prices based off the small number of parameters at out disposal. As
discussed in Section 4.1, there exist several popular methods to fill these values in given limited data.
Thus, it is important to study instances of the Maximum Utility Problem where the reservation
price matrix has some discernible structure - if there exists a harmony between these structural
properties, efficient techniques for them, and Rij data generation, then such techniques will be
highly useful in applications.

4.3.1 An Attempt at Rounding

Consider an instance of (4.1) with n customer segments, m products, and reservation prices Rij .
Then, consider the alternative set of reservation prices, where for every Rij and c ∈ R+, we set:

R′
ij =

{
0, if Rij <

1
c ,

ck, if Rij ≥ 1
c ,

where
k = argmin

x∈N
(|cx −Rij |) .

i.e. the value of Rij is rounded to the nearest power of c, or 0 if it is sufficiently small. One obvious
benefit of considering these alternate reservation prices is the possibility of a simpler and easier to
analyze algorithm. The difficulty, of course, is in relating the modified solution to the solution of
the original problems.

We first observe that if there are n customers and m products, then the number of possible values
of Rij is upper bounded by nm. Thus, when fixing an assignment θ, there are O(n2m2) possible
values for the edge prices rjk in the underlying shortest paths graph, as each rjk must be the
difference between reservation prices Rij − Rik for some customer segment i. This immediately
implies a bounded number of objective values, which implies that we can bound the number of
iterations of the Dobson-Kalish algorithm. However, using the rounding scheme is not necessary
for this fact, and we can prove a much more general version:

39

Theorem 4.3.1. Suppose that for all i, j, k, the input data Ni, Rij , and δijk are rational for (4.1).
Then the Dobson-Kalish Algorithm has a pseudopolynomial running time.

We will return to the proof Theorem 4.3.1 at the end of this section, after finishing our discussion
of rounding. Ultimately, this simple rounding scheme is not a clearly beneficial technique in that
it fails to retain key structural aspects of the original instance. The following example shows there
may be a large gap between “true” and “modified” profit:

Example 4.3.2. Let m = 1 and c = 2. Then for every customer segment i ≤ n, let Ri1 = 0.5− ϵ
for ϵ > 0. Then R′

i1 = 0, for every i, and the modified profit will always be 0. However, the optimal
price for Product 1 with original reservation prices is 0.5 − ϵ, giving a profit of n(0.5 − ϵ), so the
gap is Ω(n).

In fact, the profit gap extends to the case where the Rij values are integer. For the rounding
scheme where we round to the nearest power of 2 for each Rij , consider hggggggthe instance of one
customer and two products. Let R11 = 3, R12 = 2k for any k. Then R′

11 = 2, R′
12 = 2k. Then we

let π = [2, 2k]. Then assigning Segment 1 to Product 2 is feasible with alternate reservation prices,
(and in fact is the assignment obtained by running the MaxR heuristic), but infeasible with true
reservation prices. Let θ(π) denote the “true” assignment with the vector π, and θ′(π) denote the
assignment with modified reservation prices. Then the difference in profit between θ′(π) and θ(π)
is 2k − 2, which we can make as large as we want, scaling k.

This counterexample can be achieved within the Dobson-Kalish algorithm explicitly. Add an ad-
ditional customer segment with R21 = 2, R22 = 0. With rounded reservation prices, the MaxR
heuristic will assign Segment 1 to Product 2, and Segment 2 to Product 1. The initial shortest
paths solution will give Product 1 a price of 2, and Product 2 a price of 2k. This is optimal (since
Segment 2 will never buy Product 2), so the algorithm terminates. However, given π = [2, 2k], both
segments will in fact purchase Product 1, giving a difference in profit of 2k − 2, which scales with
k.

These results suggest we will need a more nuanced rounding approach that can predict or mitigate
the reassignment of customer segments once the algorithm terminates. It is likely that any simple
rounding scheme will run into a version of this problem.

Returning to the proof of Theorem 4.3.1, we must first tackle the following Lemma:

Lemma 4.3.3. Assume that for an instance of (4.1) all input data is integer. Let SP (m) denote
the computational time it takes to solve one shortest paths problem on a graph with O(m) edges.
Then the runtime of the Dobson-Kalish Algorithm is at most

O

(
SP (m) · n ·

n∑
i=1

NiR̄i

)
.

Proof. Consider the possible values for edges in the underlying shortest-paths problem (4.2):

rjk := min
i∈Cj

{Rij −Rikδijk}, σj := min
i∈Cj

{Rij}.

Because the values of Rij and δijk are all integer, the values of rjk and σj must also be integer. Then
when solving (4.2) during an iteration of DK88, the resulting price of every product must also be an

40

integer, as their prices are defined by the shortest path from the dummy node to the product node.
Thus, for any potential solution encountered by DK88, the objective value

∑n
i=1

∑m
j=0Niπjθij

must be integer, since prices and Ni values are integer.

Furthermore, due to steps 12 and 13 of Algorithm 1, the Dobson-Kalish heuristic only iterates if
it is able to find a new assignment that strictly improves the objective value. Since every solution
considered by DK88 has an integer-valued objective value, it follows that after each iteration the
value of the current best solution increases by at least 1. Because every solution has a value at
least 0 and at most

∑n
i=1NiR̄i, there can be at most

∑n
i=1NiR̄i iterations before DK88 terminates.

Finally, DK88 solves O(n) shortest paths problems which each take time SP (m) to solve. Thus,
DK88 has a runtime at most

O

(
SP (m) · n ·

n∑
i=1

NiR̄i

)
,

as desired.

Now, we can prove Theorem 4.3.1.

Proof. Let Rij , Ni, and δijk ∈ Q+ for all i, j, k. Let q be the least common multiple of the denom-
inators of all numbers in the data, which exists as all data are rational. Then, if we multiply all
data values by q, the resulting new data values will all be integer. Applying Lemma 4.3.3, we see
that the new instance will have a running time of

O

(
SP (m) · n · q2

n∑
i=1

NiR̄i

)
.

The inclusion of q2 in the runtime bound is due to the scaling of data values. If we multiply all Rij

values and Ni values by q, then the new resulting upper bound for total revenue is
∑n

i=1 qNiqR̄i =
q2
∑n

i=1NiR̄i. However, since is q2 is bounded by a polynomial function of the size of the input
data, the runtime is still pseudopolynomial.

Corollary 4.3.4. Assume that in an instance of (4.1), for all i, j, k, the data values Rij , Ni, and
δijk are integer multiples of some γ ∈ Z+. Then the runtime of the Dobson-Kalish Algorithm is

O

(
SP (m) · n ·

∑n
i=1NiR̄i

γ

)
.

Proof. Since all data are integer multiples of γ, all edge costs must also be integer multiples of γ.
Thus, after each iteration of DK88, the value of the current best solution must go up by at least
γ, and the runtime bound follows.

4.3.2 Uniformly Logarithmic Separation in Data

As we saw above, when rounding to nearest powers of c, it is difficult to retain the original struc-
ture of any given instance. However, in the particular instance where out original data follows a
logarithmic structure, we can avoid rounding entirely. We recall the motivation for considering
this scenario from above - often times, we may be given a few parameters with which to estimate

41

our data, and are responsible for using various techniques to fill out remaining entries. One such
possible scenario is that where we have data that tells us the maximum and minimum reservation
prices for the entire set of customers - in other words, we know the general range of values that
our customer’s reservation prices lie in. As we saw in the introduction to this chapter, it is not
uncommon in practical applications for this ratio to be relatively small (e.g. a factor of 10).

Formally, say that we have n customer segments and we assume without loss of generality that
R̄1 ≥ . . . R̄n, and only R̄1 = u and R̄n = ℓ are known. Are there patterns our data may take that
we can exploit? It turns out that if the R̄i values follow a uniformly logarithmic scale, we can use
Algorithm 3 (Guru) to get a good approximation ratio. Hence, we motivate the following three
definitions:

Definition 4.3.5. For α ≤ 1, we say that a set J of n customer segments is α-dense if

R̄n ≥ αR̄1.

Definition 4.3.6. For β ≤ 1, we say that a set of n customer segments is β-uniformly dense if for
all R̄i, R̄i+1, where R̄i ≥ R̄i+1,

R̄i+1

R̄i
≥ β.

Definition 4.3.7. For any customer segment i, let Si = argmaxj Rij be the set containing all of
their most preferred products. Then, let σi be the smallest j such that j ∈ Si.

To demonstrate the effectiveness of uniformly logarithmic scaling, let α = ℓ
u and assume that for

all i, the R̄i values are uniformly spaced in a logarithmic scale, i.e. R̄i = uβi−1 for the constant

β = α
1

n−1 .

Next, recall Theorem 2.3.2: if R̄i+1

R̄i
≥ 1 − k

n−1 , then the approximation ratio of Guru is (k + 1).
Notice that in our current dataset, we have:

R̄i+1

R̄i
=

uβi

uβi−1
= β.

Thus we satisfy the conditions necessary for a (k + 1)-approx, for appropriate k. Having a robust
terminology for these ratios is helpful, as it allows us to vary n and α and determine the resulting
approximation ratio. To demonstrate, tables are presented for various values of α and n between
1/25 to 1/50 and 100 to 1000, respectively, with the resulting β and k values included, where k is
(a rounded approximation of) the smallest number that satisfies the above inequality. Note that
the resulting approximation ratio is k + 1:

42

α 1/25 1/30 1/35 1/40 1/45 1/50

β 0.96801 0.96623 0.96472 0.96342 0.96228 0.96126

k 3.167 3.343 3.492 3.621 3.731 3.836

(n=100)

α 1/25 1/30 1/35 1/40 1/45 1/50

β 0.98395 0.98305 0.98229 0.98163 0.98105 0.98053

k 3.193 3.372 3.524 3.655 3.770 3.874

(n=200)

α 1/25 1/30 1/35 1/40 1/45 1/50

β 0.99357 0.99321 0.99290 0.99263 0.99240 0.99219

k 3.209 3.390 3.543 3.675 3.792 3.897

(n=500)

α 1/25 1/30 1/35 1/40 1/45 1/50

β 0.99678 0.99660 0.99645 0.99631 0.99620 0.99609

k 3.214 3.395 3.549 3.682 3.799 3.904

(n=1000)

Table 4.1: Smallest values of k for fixed α and n

For smaller α, the result is even more pronounced - for α = 1
5 and n = 1000, for example, we

achieve an approximation ratio of roughly 2.6. In general, by plugging the identity for β into
the approximation ratio (2.11), we see that when a set of n customer segments is α-dense and

β-uniformly dense for β = α
1

n−1 , Guru has approximation ratio at most n(1 − α
1

n−1) + α
1

n−1 .
Another, more useful representation, is the following:

Theorem 4.3.8. When a set of n customer segments is α-dense and β-uniformly dense for β =

α
1

n−1 , Guru has a worst-case approximation ratio at most ln(1α) + 1.

Proof. Since the set of customer segments is α
1

n−1 -bounded, we have:

α
1

n−1 ≥ 1− k

n− 1
,

which rearranges to

(n− 1)
(
α

1
n−1 − 1

)
≥ −k.

We seek to find a value of k such that the inequality is always satisfied - since then by Theorem
2.3.2, Guru achieves a k + 1-approximation. The limit of the left hand side as n → ∞ is ln(α),
and since the left hand side is a decreasing function, we have that

(n− 1)
(
α

1
n−1 − 1

)
≥ ln(α) ≥ −k

for all n ∈ N. Thus, fixing α, the inequality is always satisfied when k ≥ − ln(α) = ln(1α), as
desired.

Applying the exp() function to both sides also gives the following fact:

Corollary 4.3.9. For fixed k, Guru achieves a (k + 1)-approximation when a set of customer

segments is e−k-dense and β-uniformly dense for β = α
1

n−1 .

43

In practice, this is quite powerful. For example, to obtain a guaranteed 3-approximation using
Guru, we only require that our data is 1

7 -dense. This assumption is not too prohibitive in practice,
as we saw in the examples presented during the introduction to this chapter.

By identifying even more additional structure in the data, when present, we can guarantee large
amounts of revenue increases by applying the Π function to our assignments. A specific example
of this follows below.

Theorem 4.3.10. Let n ≤ m and our data be β-uniformly dense for some β ≤ 1. Additionally,
assume that for all i, Ni = 1, |Si| = 1, and that for all segments i, i′, Si ̸= Si′. Furthermore, assume
that there exists a constant c ≤ β such that for all i, for all j ̸= σi, Rij ≤ c · R̄i. Let θ be the
assignment returned by Guru, and let ℓ be the customer segment such that for every product j,
πj = R̄ℓ. Then, the function Π(θ) increases the revenue by at least

(1− c)R̄1
1− βℓ−1

1− β
.

Proof. Consider B, the set of customer segments assigned to a product in θ. We first note that
for all i in B, R̄i ≥ R̄ℓ, and in particular B = {1, . . . , k}. Next, note that in θ, every segment i
purchases Product σi since all products have the same price and each segment seeks to maximize
its utility. Since σi is unique for each i and Si ̸= Si′ for all i, no two segments purchase the same
product. Thus, we can reindex the products such that σi = i.

Second, notice that since R̄i ≥ R̄i−1 · β for all i, we note that for all i, we also have R̄i ≥ R̄1 · βi−1.
Third, notice that in the underlying shortest paths digraph, for every node 1 ≤ i ≤ ℓ − 1, every
edge entering node i has cost at least R̄i−Rij ≥ R̄i− c · R̄i = (1− c)R̄i. Thus, the shortest path to
node i is min{R̄i, R̄ℓ + (1− c)R̄i}, since the single-price algorithm sets πi = R̄ℓ for all i. However,
since c ≥ β, we have that for all i < ℓ, R̄i · c ≥ R̄ℓ and thus the shortest path to every node is at
most R̄i. So we use the latter min term, and see that the function Π(θ) increases the cost of node
i by at least (1− c)R̄i. Thus, the total amount of price increase over all the segments is:

ℓ−1∑
i=1

(1− c)R̄i ≥
ℓ−1∑
i=1

(1− c)R̄1β
i−1

= (1− c)R̄1

ℓ−1∑
i=1

βi−1

= (1− c)R̄1
1− βℓ−1

1− β
.

Remark 4.3.11. When ℓ = n, the bound in the above proof improves to (1− c)R̄1
1−α
1−β .

Proof. The following simple algebraic steps are sufficient:

(1− c)R̄1
1− βn−1

1− β
= (1− c)R̄1

1− (α
1

n−1)n−1

1− β

= (1− c)R̄1
1− α

1− β
.

44

While requiring a large amount of assumptions to become a provable statement, the most important
one that contributes to the generation of increased revenue is the gap between R̄i and Segment
i’s other valuations, for all i. In practice what this suggests is that Guru “underperforms” when
customer segments have products that they highly prefer over all others, since it is unable to capture
the potential gains when solving the underlying price-setting problem.

4.4 Low-Rank Matrices

In this section, we present a proof that the Maximum Utility Problem can be solved exactly when
the matrix of reservation prices is rank 1. More broadly, the setting where data matrices are of low
rank is one that has been considered in a wide variety of applications and optimization problems.
For example, the methodology of Factor Analysis is a commonly used technique in statistics that is
used to gain a representation of the correlation between a set of variables in terms of a small number
of unseen factors. While it had its origins in psychometrics, it has since been applied to numerous
fields, including econometrics, machine learning, and biology [2]. One connection it shares with
optimization is with the Rank-Constrained Factor Analysis problem, in which a covariance matrix
Σ of a set of random vectors x is decomposed into the sum of a nonnegative diagonal matrix and
a positive semidefinite matrix of low rank [7].

Another area where low-rank matrices are concerned is the Nonnegative Matrix Factorization prob-
lem, in which one nonnegative matrix is factored into two new matrices, also nonnegative, and
typically of low rank. The method is useful for identifying the addition of noise in datasets [49]
and has been applied to many different scientific settings including mass spectronomy [18], audio
processing [22], and imaging [35]. In relation to these problems, there is also Nonnegative Low-Rank
Matrix approximation, which seeks to approximate large-scale datasets using products of low-rank
matrices [53].

Relating the discussion of low-rank matrices to optimal pricing and economic equilibria, consider
that often times large-scale instances of pricing problems can be driven by a very few number of
factors (see, for instance, Subsection 4.3.1 of [38], or the introduction to this section). Due to the
difficulty of estimating consumer preferences, one possibility for characterizing a large-scale dataset
is through the multiplication of low-rank matrices that are defined by these “driving factors”, as
well as the addition of statistical noise [48]. This discussion motivates the study of the Maximum
Utility Problem within the context of low-rank matrices, and the contribution of this thesis towards
that conversation is a brief note regarding solutions to matrices of rank 1. It turns out that the
algorithm presented in [26] can solve these exactly. The theorem statement and proof follows:

Theorem 4.4.1. Instances of MUP with a rank-1 matrix of reservation prices can be solved exactly
using Algorithm 4

To prove this fact, it suffices to show that rank 1 matrices satisfy the Extended Monge Property.
Recall that this condition is satisfied when all three of the following conditions hold:

a. For all 1 ≤ i < ℓ ≤ n and 1 ≤ j < k ≤ m,

Rij +Rℓk ≥ Rik +Rℓj .

45

b. For all 1 ≤ i ≤ n and 1 ≤ j < m,
Rij ≥ Ri,j+1.

c. For all 1 ≤ i < n and 1 ≤ j ≤ m,
Rij ≥ Ri+1,j .

For any rank 1 matrix R, we can rearrange it in the necessary way and apply the dynamic
programming-based Algorithm 4, which solves these instances exactly due to Theorem 3.1.4. Thus,
we may validate Theorem 4.4.1 by proving the following lemma:

Lemma 4.4.2. If a nonnegative matrix is rank 1, its rows and columns can be rearranged such
that the new matrix satisfies the Extended Monge Property.

Proof. Let A be a nonnegative matrix of rank 1, and let x and y be nonnegative vectors such that
xyT = A. Consider new vectors x′ and y′ that contain the elements of x and y in nonincreasing
order - that is, {x′1, . . . , x′n} = {x1, . . . , xn} and x′1 ≥ x′2 ≥ · · · ≥ x′n, and similar for y′. Then
the new matrix A′ = x′y′T is simply the matrix A with several rows and columns rearranged.

Additionally, the ijth entry in A′ is A′
ij = x′i · y′j . Thus,

A′
ij −A′

i,j+1 = x′iy
′
j − x′iy

′
j+1 = x′i(y

′
j − y′j+1) ≥ x′i+1(y

′
j − y′j+1)

= A′
i+1,j −A′

i+1,j+1, (Assumption a)

and
A′

ij = x′iy
′
j ≥ x′i+1y

′
j = A′

i+1,j , (Assumption b)

and
A′

ij = x′iy
′
j ≥ x′iy

′
j+1 = A′

i,j+1, (Assumption c)

as desired.

4.5 MaxR+

We conclude the chapter with a new heuristic that takes inspiration from both Guru and MaxR.
Notice that if we take the initial single-price vector π, then among all customer segments i for
which i ∈ Cj for some j (i.e. segments that purchase some product), Segment i will purchase some
product in Si, as all products are the same price and products in Si will maximize the surplus of
Segment i. This defines an assignment θ, which we can improve through continued iterations of Π
and C until a fixed point is found. Performing these operations on the best single-price vector is
precisely the algorithm Guru from Myklebust, et al. [48]. Our algorithm blends Guru and MaxR
by considering a larger set of potential assignments than MaxR does, and performing one iteration
of Π(θ) for each assignment.

The main idea of the new algorithm is to test MaxR on each subset of customer segments
{1}, {1, 2}, {1, 2, 3}, . . . , {1, 2, . . . , n} ⊆ I, whereas the original MaxR heuristic only considers the
full set of customer segments. As such, this new algorithm is called MaxR+. The advantage of this
approach is that we are able to rule out scenarios where low-valued segments drive down the overall
price of products. For example, in an instance with two customer segments of size Ni = 1 and a

46

single product with R11 = 100 and R21 = 1, the original MaxR heuristic will produce a revenue of
2, while our new enhanced heuristic will be able to consider the assignment θ11 = 1, θ21 = 0 which
has an optimal revenue of 100. However, this simple approach can be improved in the case when
Si contains multiple elements for some i.

Example 4.5.1. Consider the following simple instance:

i Ni Ri1 Ri2

1 1 100 1

2 100 1 1

Table 4.2: An example of an edge case where MaxR is not optimal

In this example, there are two elements of S2. In the MaxR heuristic, if Segment 2 selects Product
1, then the maximum revenue we can achieve is 101. However, if Segment 2 selects Product 2, then
the maximum revenue we can achieve is 200.

To optimize around this edge case, we need to introduce a few extra pieces of notation. During
the algorithm, we will explicitly create a unique assignment θij for every segment/product pair i, j
such that j ∈ Si. Now, let p(θij) denote the revenue of an assignment θij with prices Π(θij). At
the end of iteration i, we let τi denote the product j′ such that j′ ∈ argmaxj∈Si{p(θij)}. In the
case of a tie for j′, we resort to our conventional tiebreakers. Then, we fix τi as the product that
Segment i will always purchase in initial assignments during subsequent iterations. Putting all of
this together, we are ready to present the algorithm MaxR+:

Algorithm 6 MaxR+ (Enhanced Single-Price Heuristic)

1: Define R̄i := maxj{Rij} for all i ∈ {1, . . . , n}.
2: Sort the customer segments such that R̄1 ≥ R̄2 ≥ · · · ≥ R̄n.
3: for all 1 ≤ i ≤ n do
4: for all j ∈ Si do
5: Initialize θijℓk = 0 for all ℓ, k.
6: for all 1 ≤ ℓ < i do
7: Set θijℓτℓ = 1
8: end for
9: Set θijij = 1

10: for all i+ 1 ≤ k ≤ n do
11: if R̄k = R̄i then
12: Set θijkk′ = 1 for the element k′ ∈ Sk with the smallest index.
13: end if
14: end for
15: Record the resulting assignment θij , price vector Π(θij), and objective value p(θij).
16: end for
17: Set τi = argmaxj∈Si{p(θij)}.
18: end for
19: return The assignment θi

∗j∗ such that {i∗, j∗} = argmaxi,j∈Si{p(θij)}.

47

We note that steps 10-14 are for another specific edge case: if there are two segments i and i′ such
that R̄i = R̄i′ , then including one of them while excluding the other in θ may lead to an infeasible
assignment. Explicitly including i′ in θ eliminates this possibility. Now, we can prove that the
algorithm is well-defined. This amounts to showing that it only ever considers feasible assignments:

Proposition 4.5.2. For all i, j ∈ Sj, the assignment θij is feasible.

Proof. It suffices to show that there exists a set of prices for the current assignment that are
feasible. Consider using the pricing vector π such that πj = R̄i for all j. Then if we apply π to θij ,
every segment i′ such that R̄′

i ≥ R̄i will be assigned to one of their most preferred products. They
will also purchase a product that maximizes their utility, since all products have the same price.
Moreover, all other segments purchase nothing since there is no product with a price at most their
maximum reservation price. Thus, π is a feasible set of prices for θij and hence θij is a feasible
assignment.

Now that we have shown Algorithm 6 is well-defined, we may also note some special properties of
MaxR+. In particular, these are all properties inherited from either MaxR or Guru, and while
MaxR+ is indeed at least as profitable as Guru, we cannot necessarily say the same for MaxR.
The reason is due to the fact that the algorithms have different tiebreaking mechanisms. However,
all of the properties we know to be true for MaxR are also true for MaxR+.

Theorem 4.5.3. MaxR+ has the following properties:

a. MaxR+ is strongly polytime.

b. In the assignment produced by MaxR+, every customer segment is assigned to a member of
Si.

c. If for all i, |Si| = 1 and for every other segment i′, Riσi > Ri′σi
, then MaxR+ is optimal.

d. MaxR+ generates at least as much revenue as Guru.

e. If maxi Ni
minj Nj

≤ c for some constant c = O(1), then MaxR+ is a O(log(n))-approximation

algorithm.

f. If n ≥ 2 and k ∈ (0, n−1], and if for all 1 ≤ i ≤ n−1, R̄i−1

R̄i
≥ 1− k

n−1 , then the approximation

ratio of MaxR+ is at most (k + 1).

g. If I = {1, . . . , n} is α-dense and β-uniformly dense for β = α
1

n−1 , MaxR+ has a worst-case
approximation ratio at most ln(1α) + 1.

Proof. To prove Property a, notice that the bottleneck in Algorithm 6 is computing the price vector
Π(θij) for each i, j. As this can be done efficiently with the Bellman-Ford-Moore algorithm and we
only need to do so polynomially many times, MaxR+ is strongly polytime.

Property b is immediate, as in steps 7, 9, and 12 of Algorithm 6, we only set θijℓk = 1 for some ℓ, k
if k ∈ Sℓ.

For property c, see that the assignment θnσn is precisely the assignment that assigns every segment
i to the unique element of Si. Moreover, since for every pair of segments i, i′, we have Riσi > Ri′σi

,

48

the optimal set of prices for θnσn is to set πσi = R̄i for all i. This leads to a revenue of
∑n

i=1NiR̄i

which by Proposition 2.0.4 is the upper bound forMUP. SinceMaxR+ considers θnσn as a potential
assignment, it must achieve this revenue.

To prove Properties e, f, and g, it suffices to Prove Property d. Property e is shown to be true for
Guru in [27], while properties f and g correspond to Theorems 2.3.2 and 4.3.8, respectively. If we
show that MaxR+ always produces a revenue at least as large as the revenue generated by Guru,
then the resulting worst-case approximation bounds follow.

Recall that during step 3 of Guru, we find an index ℓ such that ℓ = argmaxk

{
R̄k
∑k

i=1Ni

}
.

During the ℓth step of the argmax calculation, Guru effectively considers the pricing vector πℓ

such that πℓ
j = R̄ℓ for all j ∈ J . In its corresponding assignment C(πℓ), then, all customer segments

1 ≤ i ≤ ℓ are assigned to some product in Si. Notice that this is a property shared by any
assignment θℓj such that j ∈ Sℓ. Under the pricing vector πℓ, then, θℓj generates at least as much
revenue as C(πℓ), since all segments i ≤ ℓ, as well as all segments ℓ′ such that R̄ℓ = R̄ℓ′ , purchase
a product and pay R̄ℓ for it. Thus, MaxR+ either returns the assignment θℓj , which generates
at least as much revenue as the assignment C(πℓ) returned by Guru, or returns an even more
profitable assignment. Hence, the revenue generated by MaxR+ is at least the revenue generated
by Guru. Properties e, f, and g follow.

The upside of this starting heuristic is that it considers a large number of assignments that include
the ones given by Guru, and has the same general properties as both Guru and MaxR. Thus, we
may expect it to perform better than these heuristics. The downside is a longer runtime, as well
as the fact that we might end up with a smaller set of customer segments purchasing products, or
a smaller number of products being offered. With DK88, this means a much smaller set of assign-
ments can be possibly considered since the heuristic has no method of reviving eliminated segments
or products. Overall, as with MaxR and Guru, the utility of Algorithm 6 is not necessarily a
product of its provable approximation ratios but as a good initial assignment for the Dobson-Kalish
algorithm or other reassignment heuristics.

49

Chapter 5

Upper Bound Improvements

In Chapter 4, we were able identify specific assumptions to the underlying data for which new
approximation ratios for existing and original algorithms could be found. However, in most of
these instances, the value that we use to upper bound the optimal profit is the same as from
Proposition 2.0.4:

∑
iNiR̄i. While there exist many instances where this upper bound is achieved,

it is also highly inefficient in others. For example, in any instance where the most preferred product
for every segment is unique and the naive upper bound is tight, it is always possible to achieve the
optimal revenue through use of MaxR:

Proposition 5.0.1. Assume that for all i, |Si| = 1 and that the optimal value of (1.4) is
∑n

i=1NiR̄i.
Then MaxR achieves the optimal revenue.

Proof. For every Segment i, there is only one product in J for which they are willing to pay R̄i

- precisely the product in Si. Thus, the only possible assignment that can achieve a revenue of∑n
i=1NiR̄i is the assignment that assigns every customer segment to their most preferred product.

By Proposition 2.0.5, MaxR produces this assignment.

Conversely, we can consider a case where the naive upper bound is guaranteed to perform poorly
- the m = 1 case. Since there is only one product, if R̄i values are distinct, then it is only possible
for one customer segment to pay their R̄i value - and some segments may not purchase the product
at all in an optimal solution. Thus, the naive upper bound severely overestimates the total revenue
that can be produced. However, in this case, we also have an algorithm that is optimal - Guru.

Proposition 5.0.2. When m = 1, Guru provides an optimal solution to (1.4).

Proof. From Section 3.1, we know that when m = 1, then the linear program (3.1) computes an
optimal solution to (1.4). Moreover, there exists an integer-valued solution zi∗ when

i∗ ∈ argmax
k

{
R̄k

k∑
i=1

Ni

}
.

Notice that i∗ is the same index returned by Guru that we use to set the price for Product 1.
Thus, Guru is optimal.

50

In a sense, then, we already have algorithms for some extreme cases - both where the upper bound
performs poorly and where it represents the optimal revenue. However, there is a vast middle
ground of instances where neither our algorithms nor our naive upper bound have been shown to
be efficient or accurate. Hence, the goal of this chapter is to further our understanding of the
upper bound and attempt to improve it in some specific instances. First, in Section 5.1 we provide
an introduction to upper bound analysis by examining a small subcase. Then, in Section 5.2 we
introduce the LP relaxation of (4.1), its dual, and use both of them to investigate possibilities for
upper bounds in a slightly more general case.

5.1 Introduction to Upper Bound Analysis

Overall, there is some evidence to show that when the number of customer segments is relatively
small, especially relative to the number of products, the Maximum Utility Problem may be easier
to solve. There exist a few special cases where we already have exact solutions - the n = O(1) case,
and the case outlined in Lemma 3.1.1. Additionally, when Ni = 1 for all i, we have seen that the
approximation ratio of Guru is at most O(n log n). Finally, as we can offer at most n products in
any given assignment, the initial feasible assignment used for any application of DK88 will lead to
an underlying shortest paths graph with at most n + 1 nodes (due to the dummy node). Thus, if
n is relatively small, then the shortest paths graph will also be relatively small and DK88 is likely
to have a shorter runtime.

Since we already have many good options for scenarios where n ≤ m it will be useful to study
improvements to the upper bound in the converse situation - when n ≥ m. First, as a warmup, we
explicitly derive an improved upper bound for a small subcase.

5.1.1 The 2 Segments, 2 Products Case

Consider a pricing vector π and corresponding assignment θ where the profit equals
∑n

i=1NiR̄i.
Then for all customer segments i, if θij = 1, we must have

R̄i − πσi ≥ Rij − πj , ∀j ̸= σi.

Moreover, if the upper bound is achieved, then πσi = R̄i for all i. Thus, for all i and j ̸= i,

R̄i ≥ Rjσi . (5.1)

Now, let us study the case where for exactly one pair of segments, (5.1) is invalidated. In particular,
assume that for all 3, . . . , n, for all j ∈ {1, . . . ,m},

R̄i ≥ Rjσi .

Let R̄1 > R̄2 without loss of generality. Let σ2 = 2. Assume that:

R̄2 < R12.

Thus, we assume that the inequality (5.1) is false for Segment 2 in particular. Now, we shall
attempt to derive a new upper bound for the amount of revenue we can receive from segments 1
and 2. There are two specific cases we need to consider. In the first, R12 = R̄1 (so σ1 = 2). In

51

Example 5.1.1.
i Ri1 Ri2

1 5 6

2 2 4

i Ri1 Ri2

1 8 20

2 9 15

Table 5.1: Examples where R12 = R̄1

this case, the values could look something like the instances in Example 5.1.1 (note that the Ni

values are arbitrary). If R11 ≥ R21, then we should never offer Product 1, since both R12 ≥ R11

and R22 ≥ R21. So, the optimal value is

max{N1R̄1, R̄2(N1 +N2)}.

On the other hand, if as in the second example R11 < R21, then if Segment 1 buys Product 2, we
can offer Product 1 to Segment 2 without losing any profit. Thus, the optimal profit would be

max{N1R̄1 +N2R21, R̄2(N1 +N2)}.

In the second case, we have R11 = R̄1. For instance:

Example 5.1.2.
i Ri1 Ri2

1 7 5

2 2 4

Table 5.2: An example when R11 = R̄1

Again, the Ni are arbitrary. In this scenario, Segment 2 will never purchase Product 1, as this would
lead to a profit of (N1 + N2)R21 ≤ (N1 + N2)R̄2. Next, notice that if Segment 1 buys Product 1
and Segment 2 buys Product 2, we will always set π2 = R̄2 and thus the highest we can set π1 is
R̄1− (R12− R̄2). Thus, the profit we gain in this scenario is at least N1(R̄1−R12)+ R̄2(N1+N2) >
R̄2(N1 +N2), so in particular we notice that we will not have both segments purchasing Product
2. Of course, it is also possible that Segment 1 alone purchases Product 1, leading to a profit of
N1R̄1. So, the optimal profit is:

max{N1R̄1, N1(R̄1 −R12) + R̄2(N1 +N2)}.

Combining the cases together, we can construct an upper bound of:

max{N1R̄1 +N2R21, N1(R̄1 −R12) + R̄2(N1 +N2)}. (5.2)

Lastly, we may note a useful structural fact:

Proposition 5.1.3. In the n = m = 2 case, Segment 1 will always purchase a member of Si in
any optimal solution.

Proof. Without loss of generality, we assume that R11 > R12. This gives us two cases:

52

• R21 = R̄2.
Then the optimal value is either max{N1R̄1, R21(N1+N2)} or max{N1R̄1+N2R22, R21(N1+
N2)}, and in both scenarios Segment 1 purchases Product 1.

• R22 = R̄2.
Then if R12 < R22, both segments simply purchase their most desired product. Otherwise,
the optimal profit is max{N1R̄1, N1(R̄1 − R12) + R22(N1 + N2)}. Again, all scenarios have
Segment 1 purchasing Product 1.

5.2 Linear Programming-Derived Upper Bounds

Another obvious starting point for computing a better upper bound is primal/dual analysis. As
optimal dual solutions upper bound optimal primal solutions, finding feasible dual solutions will
allow us to improve our overall upper bound for MUP. We begin with the linear programming
relaxation of (4.1):

max
n∑

i=1

m∑
j=1

Nipij , (5.3)

s.t.
∑
j ̸=k

(Rijθij − pij) ≥ Rik

∑
j ̸=k

δijkθij

− πk, ∀i, k,

Rijθij − pij ≥ 0, ∀i, j,
m∑
j=1

θij ≤ 1, ∀i,

pij ≤ πj , ∀i, j,
pij ≥ πj − R̃j(1− θij), ∀i, j,

θij , πj , pij ≥ 0, ∀i, j.

The next step is to write down the dual. As an intermediate step, we rewrite (5.3) to a more
palatable form (for our purposes):

max

n∑
i=1

m∑
j=1

Nipij ,

s.t.
∑
j ̸=k

(θij(Rikδijk −Rij) + pij)− πk ≤ 0, ∀i, k, (ω)

R̃jθij − pij + πj ≤ R̃j , ∀i, j, (γ)
m∑
j=1

θij ≤ 1, ∀i, (y)

pij −Rijθij ≤ 0, ∀i, j, (σ)

pij − πj ≤ 0, ∀i, j, (β)

θij , pij , πj ≥ 0, ∀i, j.

53

Finally, the dual:

min

n∑
i=1

yi +

n∑
i=1

m∑
j=1

R̃jγij , (5.4)

s.t.
∑
k ̸=j

ωik(Rikδijk −Rij)−Rijσij + yi + R̃jγij ≥ 0, ∀i, j, (θ)

∑
k ̸=j

ωik + σij + βij − γij ≥ Ni, ∀i, j, (pij)

n∑
i=1

(γij − βij − ωij) ≥ 0, ∀j, (πj)

ω, γ, y, σ, β ≥ 0. (5.5)

We wish to compute feasible solutions to (5.4). To kick off our analysis, we test on a small example.

Example 5.2.1. Let n = m = 1, with R11 = 10 and N1 = 5. Then the dual simplifies to:

min y1 + 10γ11,

s.t. − 10σ11 + y1 + 10γ11 ≥ 0,

σ11 + β11 − γ11 ≥ 5,

γ11 − β11 − ω11 ≥ 0,

ω, γ, y, σ, β ≥ 0.

An optimal solution is y1 = 50, σ11 = 5, with objective value 50.

Notice that the objective value in Example 5.2.1 is precisely the same as the naive upper bound
that we used in our worst-case analysis of Guru. In fact, it turns out that for any instance of
(5.4), there exists a simple solution that achieves this same upper bound.

Proposition 5.2.2. A feasible solution to (5.4) is given by yi = R̄iNi, σij = Ni. The resulting
objective value is equal to the trivial revenue upper bound from Proposition 2.0.4.

The πj constraints are satisfied automatically, and the pij constraints are satisfied as σij = Ni for
all i, j. The θ constraints are satisfied since yi = R̄iNi ≥ RijNi = Rijσij . Finally, the objective
value is equal to

∑
i yi =

∑
i R̄iNi.

However, for even slightly more complicated examples, the dual LPs can have nontrivial optimal
solutions. Take the following example, with δijk = 0 for all i, j, k:

Example 5.2.3.
i Ni Ri1 Ri2

1 2 4 2

2 1 2 1

Table 5.3: A simple instance with a nontrivial optimal dual solution

(5.4) has the following optimal solution for the instance given by Table 5.3 (nonzero values only
are given):

y1 = 4, y2 = 0.5, γ21 = 0.75, γ22 = 0.5, ω12 = 0.5, σ11 = 0.75, σ12 = 2, σ21 = 1.75, σ22 = 1.5, β11 = 0.75,

54

with objective value = 8.5.

There are also examples where the dual variables achieve larger values, like in the following scenario:

Example 5.2.4.
i Ni Ri1 Ri2

1 2 4 2

2 1 2 1

3 2 3 6

Table 5.4: An example with relatively large optimal dual variables

The corresponding objective value is 20, given by π1 = 4, π2 = 6. This is achieved with dual
variables:

y1 = 4, y3 = 6, γ21 = 1, γ22 = 1, ω11 = 1, ω12 = 2, ω21 = 2, ω22 = 6, ω31 = 2, ω32 = 1, β11 = 1, β32 = 1.

We would like to connect this with our discussion from Section 5.1.1. Let’s return to Example
5.1.1, with additional Ni values:

i Ni Ri1 Ri2

1 5 8 20

2 10 9 15

Table 5.5: The second instance in Example 5.1.1, with Ni values

The crude estimate max{N1R̄1 +N2R21, N1(R̄1 − R12) + R̄2(N1 +N2)} yields an upper bound of
max{190, 225} = 225, which can be achieved by setting π1 =∞, π2 = 15.

The optimal dual solution, computed using Gurobi, is 233.78. Note this is only slightly lower than
the naive upper bound, which has an objective value of 250.

Unfortunately, there also exists large families of Rij data where the crude upper bound
∑n

i=1NiR̄i

is the optimal value of the primal, but where Guru performs optimally with a smaller revenue.

Theorem 5.2.5. Let m ≥ 2, and let the matrix of reservation prices be β-uniformly dense for
β = 0.5 and assume that for all i, j, Rij = R̄i. Then the objective value

∑n
i=1NiR̄i is optimal for

the dual.

Proof. It suffices to find a solution to the primal with objective value
∑n

i=1NiR̄i. First, for all
j ≥ 3, set πj = 0 and pij , θij = 0 for all i. Note that any constraint involving a product j ≥ 3 is
automatically satisfied, so for the remainder of the proof we only consider segments where j ≤ 2.

Our solution is as follows: set θ11 = θ12 = 0.5, and set p11 = p12 = π1 = π2 = R̄1
2 . For the other

55

variables, for all i, the values are:

θi1 :=
2i−2

2i−1 − 1

θi2 :=1− θi1

pi1 :=
R̄1

2i − 2

pi2 :=R̄i − pi1

We can easily see that this satisfies all primal constraints. Moreover, by definition pi1 + pi2 = R̄i.
Thus, the objective function has value

∑n
i=1NiR̄i, as desired.

Lemma 5.2.6. Guru performs optimally on the instances described in Theorem 5.2.5

Proof. Let π be an arbitrary pricing vector. All customer segments are indifferent between each
product, so if for any j, k, πj > πk, all segments will prefer Product k over Product j. In particular,
this implies that either πj = πk for all j, k, or all customer segments will purchase the same product.
Thus, the assignment θ(π) is equivalent to the assignment θ(π∗), where π∗ is the pricing vector
where every product is given the price minj{πj}. However, by definition, Guru finds the optimal
pricing vector given that all products have the same price. So in this case, Guru is optimal.

We can demonstrate the result of Theorem 5.2.5 through a simple example.

Example 5.2.7.
i Ni Ri1 Ri2

1 1 100 100

2 1 50 50

Table 5.6: An example where the solution from Theorem 5.2.5 is outperformed by Guru

Here, the objective value of the primal using the solution from Theorem 5.2.5 is 150, which is equal
to the upper bound from Proposition 2.0.4. However, the optimal value is 100, achieved by setting
π1 = 100, π2 = 100. Guru achieves this since it considers setting π1, π2 = R̄1 = 100 as a potential
pricing vector.

Through observation and testing examples, it appears that Theorem 5.2.5 is true regardless of the
value of β. However, a general formula for primal variables that achieves the desired objective value
has not yet been found. Overall, the “moral” from this approach is that the primal is less effective
in establishing upper bounds when customer segments are “indifferent” across the line of prices (in
that the difference between their highest and lowest reservation prices is small). In the following
subsection, we will see another example where this phenomenon occurs.

5.2.1 Linear Programming Upper Bounds for the 2 Product Case

Now that we have developed some practice analyzing the upper bound with the primal and dual,
we can return to a generalized version of the task from Section 5.1.1. Unfortunately, even the
2× 3 case is not as simple. There exist instances where Segment 1 does not always purchase their

56

i Ni Ri1 Ri2

1 1 10 8

2 5 8 3

3 100 1 2

Table 5.7: An instance where the highest valued segment does not purchase a member of Si

most desired product. For example: in Table 5.7, the optimal solution has π1 = 7, π2 = 2 with
θ12 = 1, θ21 = 1, and θ32 = 1.

Next, we study a lengthier example that helps us glean more insights into the underlying structure
of the dual. While this example ultimately does not provide inspiration for a general improved
upper bound, it does provide a general framework for how improved upper bounds could be found,
especially when more structure to the data is assumed.

Example 5.2.8. We consider the example from [51] which disproved the original runtime claims
from [17]. Note we have fixed ϵ = 1. The trivial upper bound has value 4620, the LP relaxation gives

i Ni Ri1 Ri2

1 1 0 1

2 1 1 2

3 1 4 5

4 1 9 10

5 1 8 9

6 1 17 18

7 90 12 13

8 1 5 2

9 1 10 7

10 1 9 6

11 1 18 17

12 1 13 10

13 90 26 23

14 10 101 100

Table 5.8: A large instance

value 4480, and the single-price algorithm gives value 2600. The best integer solution the author
can find is π1 = 16, π2 = 13 which gives a revenue of 2769. The dual variables in the optimal
solution are presented in Table 5.9, from which we glean many insights. First, we notice that the
dual variables for the first 13 customer segments follow a strict formula. Let R̂i := minj{Rij}.
Then the dual variables for customer segments 1 ≤ i ≤ 13 satisfy the following conditions:

yi = R̂iNi, γij =

0, if Rij = R̂i,
Ni(Rij−R̂i)

R̃j−Rij
, if Rij = R̄i,

σij =

{
Ni, if Rij = R̂i,

γij +Ni, if Rij = R̄i,
βij = ωij = 0.

(5.6)

57

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14
0 1 4 9 8 17 1080 2 7 6 17 10 2070 761

Product 1 Product 2

γ1j 0 0.010101010101...

γ2j 0 0.010204081632...

γ3j 0 0.010526315789...

γ4j 0 0.0111111111111...

γ5j 0 0.010989010989...

γ6j 0 0.012195121951...

γ7j 0 1.0344827586...

γ8j 0.03125 0

γ9j 0.03296703296... 0

γ10j 0.0326086956... 0

γ11j 0.0120481927... 0

γ12j 0.0340909090... 0

γ13j 3.6 0

γ14j 0 0

ω14j 1.2776163.. 0

Product 1 Product 2

σ1j 1 1.0101010101...

σ2j 1 1.0102040816...

σ3j 1 1.0105262631...

σ4j 1 1.0111111111...

σ5j 1 1.0109890109...

σ6j 1 1.0121951219...

σ7j 90 91.03448275...

σ8j 1.03125 1

σ9j 1.0329670... 1

σ10j 1.0326086... 1

σ11j 1.0120481... 1

σ12j 1.0340909... 1

σ13j 93.6 90

σ14j 7.5346... 7.62277...

β14j 2.4653... 1.099609...

Table 5.9: The optimal dual variables for the instance in Table 5.8

We can see that for the first 13 customer segments, all dual constraints hold with equality. Note that
the contribution each segment pays to the overall minimization problem is actually worse than the
contribution they pay in the naive upper bound. For example, for Segment 13, we have N13R̄13 =
90 · 13 = 1170. However, with this set of dual variables, their contribution to the objective function
is R̂13N13 +

90(13−12)
100−13 · R̃2 = 1183. This means that all of the contribution to a better solution is

coming from Segment 14. Thus, we wish to obtain an algebraic representation of Segment 14’s dual
variables. If we fix the dual variables involving all other segments and look at only the constraints
involving Segment 14, we are left with a small LP:

min y14 + R̃1γ14,1 + R̃2γ14,2,

y14 −R14,1σ14,1 ≥ 0,

y14 + ω14,1(R14,1 −R14,2)−R14,2σ14,2 ≥ 0,

σ14,1 + β14,1 ≥ N14,

σ14,2 + β14,2 + ω14,1 ≥ N14,

13∑
i=1

γi1 − ω14,1 − β14,1 ≥ 0,

13∑
i=1

γi2 − β14,2 ≥ 0,

which achieves optimality with the values in the table above. In this particular instance, there exists

58

a feasible solution with all the constraints at equality. As such, we can find algebraic representations
of the values of the variables using Gaussian Elimination. The values are:

y14 =
N14(R14,1 +R14,2)−R14,1

∑13
i=1 γi1 −R14,2

∑13
i=1 γi2

2
,

σ14,1 =
N14(R14,1 +R14,2)−R14,1

∑13
i=1 γi1 −R14,2

∑13
i=1 γi2

2R14,1
,

σ14,2 =
N14(3R14,1 −R14,2)−R14,1

∑13
i=1 γi1 − 2R14,1

∑13
i=1 γi2 +R14,2

∑13
i=1 γi2

2R14,1
,

β14,1 =
N14(R14,1 −R14,2) +R14,1

∑13
i=1 γi1 +R14,2

∑13
i=1 γi2

2R14,1
,

β14,2 =
13∑
i=1

γi2,

ω14,1 =
N14(R14,2 −R14,1) +R14,1

∑13
i=1 γi1 −R14,2

∑13
i=1 γi2

2R14,1
.

Thanks to a definitive representation of the dual variables, we can also obtain an algebraic rep-
resentation of the objective value. The contribution of the γ variables to the objective function
is:

R14,1

13∑
i=1

γi1 +R14,2

13∑
i=1

γi2 =
13∑
i=1

(
R̃1

Ni(Ri1 − R̂i)

R̃1 −Ri1

+ R̃2
Ni(Ri2 − R̂i)

R̃2 −Ri2

)

=

13∑
i=1

(
R̃σi

Ni(R̄i − R̂i)

R̃σi − R̄i

)
.

Plugging everything in to the objective function, we achieve a value of

13∑
i=1

NiR̂i +
N14(R̂14 + R̄14)

2
+

13∑
i=1

2∑
j=1

γijR̃j −
1

2

13∑
i=1

(
R̃σi

Ni(R̄i − R̂i)

R̃σi − R̄i

)

=
13∑
i=1

NiR̂i +
N14(R̂14 + R̄14)

2
+

1

2

13∑
i=1

(
R̃σi

Ni(R̄i − R̂i)

R̃σi − R̄i

)
.

Generalizing the objective value from Example 5.2.8, if we assume that m = 2, R11 > Ri1, and
R12 > Ri2 for all i, and R11 ≥ R12, then we can represent the above objective value as:

N1(R̃1 + R̃2)

2
+

n∑
i=2

(
NiR̂i +

R̃σiNi(R̄i − R̂i)

2(R̃σi − R̄i)

)
, (5.7)

which is a more aggressive upper bound than the one from Proposition 2.0.4. However, this deriva-
tion does not work for every instance where one segment “dominates” all others - the above calcu-
lations are true for the particular example we looked at, however are not true in general.

59

Example 5.2.9. Consider the following instance:

i Ni Ri1 Ri2

1 1 100 50

2 1 12 10

3 1 7 23

4 1 11 10

Table 5.10: Example 5.2.9

This instance has a dual solution with objective value approximately 119.85 and a naive upper
bound of 146. However, the formula (5.7) gives a objective value of approximately 118.51, which is
impossible. This is because the ω11 value obtained using the dual values from the system of linear
equalities is actually negative, and thus the resulting solution is not feasible. If we instead attempt
to solve the smaller LP model (i.e. relax the equalities into inequalities):

min y1, (5.8)

s.t. y1 + (R12 −R11)ω12 −R11σ11 ≥ 0,

y1 + (R11 −R12)ω11 −R12σ12 ≥ 0,

σ11 + β11 + ω12 ≥ N1,

σ12 + β12 + ω11 ≥ N1,
n∑

i=2

γi1 − ω11 − β11 ≥ 0,

n∑
i=2

γi2 − ω12 − β12 ≥ 0.

we get the following solution:

y1 = 66.974, σ11 = 0.3734, σ12 = 1, ω11 = 0, ω12 = 0.592592, β11 = 0.033963, β12 = 0.

Plugging this into the overall objective value for the solution using the dual variables from (5.6) for
customer segments 2 through 4 gives a solution with value approximately 127, which is worse than
the solution we obtain by solving the dual.

Like the other approaches we have made toward establishing better upper bounds, this general
method seems to be most effective when there is a large gap between the R̄i and R̃j values, and
ineffective when they are close. For example:

Example 5.2.10. Consider changing the Rij values slightly in Example 5.2.9, so that the R̄i and
R̃j values are closer.

60

i Ni Ri1 Ri2

1 1 45 25

2 1 12 10

3 1 15 23

4 1 11 10

Table 5.11: An altered version of Table 5.10

This new instance has a naive upper bound of 91 and an optimal dual solution of 80.454. However,
fixing the variables for segments 2− 4 as in (5.6) gives us the following variable values:

y2 y3 y4
10 15 23

Product 1 Product 2

γ2j 0.0606 0

γ3j 0 4

γ4j 0.0294 0

Product 1 Product 2

σ2j 1.0606 1

σ3j 1 5

σ4j 1.0294 1

Table 5.12: Fixing variables as in (5.6)

Solving the resulting LP for the remaining variables gives the following solution for (5.8):

y1 = σ11 = σ12 = ω12 = 0, ω11 = 0.09, β11 = 1, β12 = 0.91.

This gives an objective value of roughly 139.05 for the solution, clearly worse than even our naive
upper bound.

Overall, this strategy of fixing “basic” variables for smaller, less valuable customer segments and
solving the resulting smaller LP has some promise. However, in order for this strategy to succeed,
we must have more insight into the structure of the dual and how the variables interact with each
other. Additionally, assuming structure in the data (such as uniformly logarithmic scaling, as in
Subection 4.3.2), could provide scenarios where provable improvements to the upper bound are
easier to come by.

5.3 An Exactly Solvable Subproblem

We can also attempt to look at some general (yet still somewhat constrained) variations of the
original formulation (1.4). Take n = 3, m = 2, and fix R12 = R31 = 0. Then, we can write the

61

following Nonlinear Mixed Integer Program:

max
3∑

i=1

2∑
j=1

Niπjθij ,

s.t. θ11(R̄1 − π1) ≥ 0,

θ32(R̄3 − π3) ≥ 0,

θ21(R21 − π2) ≥ 0,

θ22(R22 − π2) ≥ 0,

θ21(R21 − π2) ≥ R22θ21 − π2,

θ22(R22 − π2) ≥ R21θ22 − π1,

θ21 + θ22 = 1,

θ11, θ21, θ22, θ32 ∈ {0, 1}, π1, π2 ≥ 0.

We can eliminate the variable θ22 and the constraint θ21+θ22 = 1 by setting θ2 := θ21 and replacing
all mentions of θ22 with (1− θ21):

max
3∑

i=1

2∑
j=1

Niπjθij , (5.9)

s.t. θ1(R̄1 − π1) ≥ 0,

θ3(R̄3 − π2) ≥ 0,

θ2(R21 − π2) ≥ 0,

(1− θ2)(R22 − π2) ≥ 0,

θ2(R21 − π2) ≥ R22θ2 − π2,

(1− θ2)(R22 − π2) ≥ R21(1− θ2)− π1,

θ1, θ2, θ3 ∈ {0, 1}, π1, π2 ≥ 0.

For the nonlinear model, it is possible to solve exactly in the following way: for an assignment
θ ∈ {0, 1}3, let P θ be the convex hull of the associated LP given by fixing the assignment θ for
(5.9). Then P :=

⋃
θ∈{0,1}3 P

θ is also convex, and moreover the optimal solution to (5.9) will be
an extreme point of P, easily found by standard convex optimization techniques. The advantage
of a brute-force approach is that the search space is quite small - P is the union of at most 8
convex hulls in relatively low-dimension space. It remains a possibility that we could break a larger
problem down into many small pieces, each resembling this general formulation. By solving each
of them exactly and stitching the solutions back together in an intelligent way, it may be possible
to construct an algorithm or heuristic with a better approximation ratio or more efficient runtime.

62

For completeness, we also include the linearization of (5.9) and its dual:

max
3∑

i=1

2∑
j=1

Nipij ,

s.t. θ2R21 − p21 ≥ θ2R22 − π2,

(1− θ2)R22 − p22 ≥ (1− θ2)R21 − π1,

θ1R11 − p11 ≥ 0,

θ2R21 − p21 ≥ 0,

(1− θ2)R22 − p22 ≥ 0,

θ3R32 − p32 ≥ 0,

θ1 ≤ 1,

θ2 ≤ 1,

θ3 ≤ 1,

p1 ≤ π1,

p21 ≤ π1,

p22 ≤ π2,

p3 ≤ π2,

p11 ≥ π1 −R11(1− θ1),

p21 ≥ π1 − R̄2(1− θ2),

p22 ≥ π2 − R̄2θ2,

p32 ≥ π2 −R32(1− θ3),

θi, pij , πj ≥ 0.

min y1 + y2 + y3 + R̄1γ11 + R̄2γ21 + R̄2γ22 + R̄3γ32,

s.t. −R11σ11 + y1 + R̄1γ11 ≥ 0,

ω22(R22 −R21)−R21σ21 + y2 + R̄2γ21 ≥ 0,

ω21(R21 −R22)− σ22 + y2 + R̄2γ22 ≥ 0,

−R32σ32 + y3 + R̄3γ32 ≥ 0,

σ11 + β11 − γ11 ≥ N1,

ω22 + σ21 + β21 − γ21 ≥ N2,

ω21 + σ22 + β22 − γ22 ≥ N2,

σ32 + β32 − γ32 ≥ N3,

γ11 + γ21 − β11 − β21 − ω21 ≥ 0,

γ22 + γ32 − β22 − β32 − ω22 ≥ 0,

β, σ, y, ω, γ ≥ 0.

63

Chapter 6

Conclusion and Future Research
Directions

In this thesis, we have reviewed the historical background of the Maximum Utility Problem as well
as the general array of algorithms and heuristics that have been applied to it in the literature.
In addition, we have developed new analytic techniques for MUP, providing numerous avenues
for proving both best and worst-case approximation ratios. To achieve this, we identified key
scenarios in which the problem can be solved exactly and for which there exist algorithms with
good approximation ratios, building significantly off the research of previous authors. We also
analyzed both the primal and dual of the linear relaxation of the model, testing and working out
solutions for many different examples. These exercises increased our overall understanding of the
primal and dual, and offer promising ideas for future improvements to a generalized upper bound
for MUP.

Overall, there remain significant open questions. We have yet to discover a definitive answer as to
whether the original 1988 Dobson-Kalish algorithm is polytime, and it remains to be seen if there
are other structured cases under which MUP can be solved directly or approximated well. Our
research presents multiple opportunities for improvements on the latter - it is highly possible that
stronger analysis on both the primal relaxation and dual can significantly improve the worst-case
upper bound. Also, while we have shown that the Maximum Utility Problem can be solved exactly
when the reservation price matrix is rank 1, we have not presented any additional arguments for a
more general low-rank case. Since the rank 1 case itself is not highly applicable, improved algorithms
for the low-rank case will be highly beneficial in applications of the model. Additionally, there may
be specific structured cases for the underlying datasets that allow for better algorithms than the
ones presented in this thesis. Furthermore, we have not provided computational experiments for
the MaxR+ algorithm presented in Chapter 4 - such testing will provide a better assessment of its
effectiveness. We hope that future researchers find this thesis helpful towards these goals.

64

Bibliography

[1] Gagan Aggarwal, Tomás Feder, Rajeev Motwani, and An Zhu. “Algorithms for multi-product
pricing”. In: Automata, languages and programming. Vol. 3142. Lecture Notes in Comput.
Sci. Springer, Berlin, 2004, pp. 72–83. doi: 10.1007/978-3-540-27836-8_9. url: https:
//doi.org/10.1007/978-3-540-27836-8_9.

[2] T.W. Anderson. An Introduction to Multivariate Statistical Analysis. Wiley Series in Prob-
ability and Statistics. Wiley, 2003. isbn: 9780471360919. url: https://books.google.ca/
books?id=Cmm9QgAACAAJ.

[3] C. Arbib, O. E. Karaşan, and M. Ç. Pınar. “On envy-free perfect matching”. In: Discrete
Appl. Math. 261 (2019), pp. 22–27. issn: 0166-218X. doi: 10.1016/j.dam.2018.03.034.
url: https://doi.org/10.1016/j.dam.2018.03.034.

[4] Sanjeev Arora. “Polynomial Time Approximation Schemes for Euclidean Traveling Salesman
and Other Geometric Problems”. In: J. ACM 45.5 (1998), pp. 753–782. issn: 0004-5411. doi:
10.1145/290179.290180. url: https://doi.org/10.1145/290179.290180.

[5] Giorgio Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi, P. Crescenzi, and V.
Kann. Complexity and Approximation: Combinatorial Optimization Problems and Their Ap-
proximability Properties. 1st. Berlin, Heidelberg: Springer-Verlag, 1999. isbn: 3540654313.

[6] Mourad Baıou and Francisco Barahona. “Stackelberg Bipartite Vertex Cover and the Preflow
Algorithm”. In: Algorithmica 74.3 (2016), pp. 1174–1183. issn: 0178-4617. doi: 10.1007/
s00453-015-9993-x. url: https://doi.org/10.1007/s00453-015-9993-x.

[7] Dimitris Bertsimas, Martin S. Copenhaver, and Rahul Mazumder. “Certifiably Optimal Low
Rank Factor Analysis”. In: (2016). arXiv: 1604.06837 [stat.ME].

[8] Toni Böhnlein, Stefan Kratsch, and Oliver Schaudt. “Revenue maximization in Stackelberg
pricing games: beyond the combinatorial setting”. In: Math. Program. 187.1-2, Ser. A (2021),
pp. 653–695. issn: 0025-5610. doi: 10.1007/s10107-020-01495-0. url: https://doi.org/
10.1007/s10107-020-01495-0.

[9] Patrick Briest, Martin Hoefer, and Piotr Krysta. “Stackelberg network pricing games”. In:
Algorithmica 62.3-4 (2012), pp. 733–753. issn: 0178-4617. doi: 10.1007/s00453-010-9480-
3. url: https://doi.org/10.1007/s00453-010-9480-3.

[10] Patrick Briest and Piotr Krysta. “Buying cheap is expensive: approximability of combinatorial
pricing problems”. In: SIAM J. Comput. 40.6 (2011), pp. 1554–1586. issn: 0097-5397. doi:
10.1137/090752353. url: https://doi.org/10.1137/090752353.

[11] Rainer E. Burkard. “Monge properties, discrete convexity and applications”. In: European
Journal of Operational Research 176.1 (2007), pp. 1–14. issn: 0377-2217. doi: https://doi.
org/10.1016/j.ejor.2005.04.050. url: https://www.sciencedirect.com/science/
article/pii/S0377221705008702.

65

https://doi.org/10.1007/978-3-540-27836-8_9
https://doi.org/10.1007/978-3-540-27836-8_9
https://doi.org/10.1007/978-3-540-27836-8_9
https://books.google.ca/books?id=Cmm9QgAACAAJ
https://books.google.ca/books?id=Cmm9QgAACAAJ
https://doi.org/10.1016/j.dam.2018.03.034
https://doi.org/10.1016/j.dam.2018.03.034
https://doi.org/10.1145/290179.290180
https://doi.org/10.1145/290179.290180
https://doi.org/10.1007/s00453-015-9993-x
https://doi.org/10.1007/s00453-015-9993-x
https://doi.org/10.1007/s00453-015-9993-x
https://arxiv.org/abs/1604.06837
https://doi.org/10.1007/s10107-020-01495-0
https://doi.org/10.1007/s10107-020-01495-0
https://doi.org/10.1007/s10107-020-01495-0
https://doi.org/10.1007/s00453-010-9480-3
https://doi.org/10.1007/s00453-010-9480-3
https://doi.org/10.1007/s00453-010-9480-3
https://doi.org/10.1137/090752353
https://doi.org/10.1137/090752353
https://doi.org/https://doi.org/10.1016/j.ejor.2005.04.050
https://doi.org/https://doi.org/10.1016/j.ejor.2005.04.050
https://www.sciencedirect.com/science/article/pii/S0377221705008702
https://www.sciencedirect.com/science/article/pii/S0377221705008702

[12] Rainer E. Burkard, Bettina Klinz, and Rüdiger Rudolf. “Perspectives of Monge properties
in optimization”. In: Discrete Applied Mathematics 70.2 (1996), pp. 95–161. issn: 0166-
218X. doi: https://doi.org/10.1016/0166-218X(95)00103-X. url: https://www.
sciencedirect.com/science/article/pii/0166218X9500103X.

[13] William J. Cook, William H. Cunningham, William R. Pulleyblank, and Alexander Schrijver.
Combinatorial optimization. Wiley-Interscience Series in Discrete Mathematics and Optimiza-
tion. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1998, pp. x+355.
isbn: 0-471-55894-X.

[14] George B. Dantzig. “Linear programming”. In: vol. 50. 1. 50th anniversary issue of Operations
Research. 2002, pp. 42–47. doi: 10.1287/opre.50.1.42.17798. url: https://doi.org/
10.1287/opre.50.1.42.17798.

[15] Erik D. Demaine, Uriel Feige, Mohammadtaghi Hajiaghayi, and Mohammad R. Salavatipour.
“Combination can be hard: approximability of the unique coverage problem”. In: SIAM J.
Comput. 38.4 (2008), pp. 1464–1483.

[16] Derya Demirtas. “Worst-Case Complexity Analyses for the Dobson-Kalish Optimal Pricing
Algorithm and its Relatives”. MA thesis. Aug. 2010.

[17] Gregory Dobson and Shlomo Kalish. “Positioning and Pricing a Product Line”. In: Marketing
Science 7.2 (1988), pp. 107–210. doi: 10.1287/mksc.7.2.107. url: https://doi.org/10.
1287/mksc.7.2.107.

[18] Rémi Dubroca, Christophe Junor, and Antoine Souloumiac. “Weighted NMF for high-resolution
mass spectrometry analysis”. In: 2012 Proceedings of the 20th European Signal Processing
Conference (EUSIPCO). 2012, pp. 1806–1810.

[19] Jean-Pierre Dussault, Patrice Marcotte, Sébastien Roch, and Gilles Savard. “A smoothing
heuristic for a bilevel pricing problem”. In: European Journal of Operational Research 174.3
(2006), pp. 1396–1413. issn: 0377-2217. doi: https://doi.org/10.1016/j.ejor.2004.07.
076. url: https://www.sciencedirect.com/science/article/pii/S0377221705004947.

[20] Jack Edmonds and Richard M. Karp. “Theoretical Improvements in Algorithmic Efficiency
for Network Flow Problems”. In: J. ACM 19.2 (Apr. 1972), pp. 248–264. issn: 0004-5411.
doi: 10.1145/321694.321699. url: https://doi.org/10.1145/321694.321699.

[21] Cristina G. Fernandes and Rafael C. S. Schouery. “Approximation algorithms for the max-
buying problem with limited supply”. In: Algorithmica 80.11 (2018), pp. 2973–2992. issn:
0178-4617. doi: 10.1007/s00453-017-0364-7. url: https://doi.org/10.1007/s00453-
017-0364-7.

[22] Cédric Févotte, Nancy Bertin, and Jean-Louis Durrieu. “Nonnegative Matrix Factorization
with the Itakura-Saito Divergence: With Application to Music Analysis”. In: Neural compu-
tation 21 (Oct. 2008), pp. 793–830. doi: 10.1162/neco.2008.04-08-771.

[23] Iftah Gamzu and Danny Segev. “A sublogarithmic approximation for tollbooth pricing on
trees”. In: Math. Oper. Res. 42.2 (2017), pp. 377–388. issn: 0364-765X. doi: 10.1287/moor.
2016.0803. url: https://doi.org/10.1287/moor.2016.0803.

[24] Fabrizio Grandoni and Thomas Rothvoß. “Pricing on Paths: A PTAS for the Highway Prob-
lem”. In: SIAM Journal on Computing 45.2 (2016), pp. 216–231. doi: 10.1137/140998846.
eprint: https : / / doi . org / 10 . 1137 / 140998846. url: https : / / doi . org / 10 . 1137 /
140998846.

66

https://doi.org/https://doi.org/10.1016/0166-218X(95)00103-X
https://www.sciencedirect.com/science/article/pii/0166218X9500103X
https://www.sciencedirect.com/science/article/pii/0166218X9500103X
https://doi.org/10.1287/opre.50.1.42.17798
https://doi.org/10.1287/opre.50.1.42.17798
https://doi.org/10.1287/opre.50.1.42.17798
https://doi.org/10.1287/mksc.7.2.107
https://doi.org/10.1287/mksc.7.2.107
https://doi.org/10.1287/mksc.7.2.107
https://doi.org/https://doi.org/10.1016/j.ejor.2004.07.076
https://doi.org/https://doi.org/10.1016/j.ejor.2004.07.076
https://www.sciencedirect.com/science/article/pii/S0377221705004947
https://doi.org/10.1145/321694.321699
https://doi.org/10.1145/321694.321699
https://doi.org/10.1007/s00453-017-0364-7
https://doi.org/10.1007/s00453-017-0364-7
https://doi.org/10.1007/s00453-017-0364-7
https://doi.org/10.1162/neco.2008.04-08-771
https://doi.org/10.1287/moor.2016.0803
https://doi.org/10.1287/moor.2016.0803
https://doi.org/10.1287/moor.2016.0803
https://doi.org/10.1137/140998846
https://doi.org/10.1137/140998846
https://doi.org/10.1137/140998846
https://doi.org/10.1137/140998846

[25] Paul Grigas, Alfonso Lobos, Zheng Wen, and Kuang-Chih Lee. “Optimal Bidding, Alloca-
tion, and Budget Spending for a Demand-Side Platform with Generic Auctions”. In: SSRN
Electronic Journal (Jan. 2021). doi: 10.2139/ssrn.3841306.

[26] Oktay Günlük. “A pricing problem under Monge property”. In: Discrete Optim. 5.2 (2008),
pp. 328–336. issn: 1572-5286. doi: 10.1016/j.disopt.2006.06.005. url: https://doi.
org/10.1016/j.disopt.2006.06.005.

[27] Venkatesan Guruswami, Jason D. Hartline, Anna R. Karlin, David Kempe, Claire Kenyon,
and Frank McSherry. “On profit-maximizing envy-free pricing”. In: Proceedings of the Six-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms. ACM, New York, 2005, pp. 1164–
1173.

[28] Venkatesan Guruswami and Euiwoong Lee. “Nearly optimal NP-hardness of unique coverage”.
In: SIAM J. Comput. 46.3 (2017), pp. 1018–1028.

[29] Frederick S. Hillier and Gerald J. Lieberman. Introduction to Operations Research. Seventh.
New York, NY, USA: McGraw-Hill, 2001.

[30] A. J. Hoffman. “On simple linear programming problems”. In: Proc. Sympos. Pure Math.,
Vol. VII. Amer. Math. Soc., Providence, R.I., 1963, pp. 317–327.

[31] https://arcteryx.com/ca/en/c/mens/shell-jackets. In: (2022). [Website; last accessed
July 29, 2022].

[32] https://www.redfin.ca/on/kitchener. In: (2022). [Website; last accessed July 27, 2022].
[33] https://www.ticketmaster.ca/event/10005B5CBFDE3D6A?tfl=Toronto_Blue_Jays-

Schedule-Toronto_Blue_Jays:_Schedule:_Schedule-web-x0-unknown-unknown&_ga=

2.74952855.401471260.1658934757- 203497847.1658256134. In: (2022). [Website; last
accessed July 27, 2022].

[34] https://www.toyota.ca/toyota/en/. In: (2022). [Website; last accessed July 27, 2022].
[35] Sen Jia and Yuntao Qian. “Constrained Nonnegative Matrix Factorization for Hyperspectral

Unmixing”. In: IEEE Transactions on Geoscience and Remote Sensing 47.1 (2009), pp. 161–
173. doi: 10.1109/TGRS.2008.2002882.

[36] Gwenaël Joret. “Stackelberg network pricing is hard to approximate”. In: Networks 57.2
(2011), pp. 117–120. issn: 0028-3045. doi: 10.1002/net.20391. url: https://doi.org/10.
1002/net.20391.

[37] Wagner A. Kamakura and Gary J. Russell. “A Probabilistic Choice Model for Market Seg-
mentation and Elasticity Structure”. In: Journal of Marketing Research 26.4 (1989), pp. 379–
390. issn: 00222437. url: http://www.jstor.org/stable/3172759 (visited on 04/09/2023).

[38] Mehdi Karimi, Somayeh Moazeni, and Levent Tunçel. “A utility theory based interactive
approach to robustness in linear optimization”. In: J. Global Optim. 70.4 (2018), pp. 811–
842. issn: 0925-5001. doi: 10.1007/s10898-017-0581-2. url: https://doi.org/10.1007/
s10898-017-0581-2.

[39] Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. “A (Slightly) Improved Approx-
imation Algorithm for Metric TSP”. In: CoRR abs/2007.01409 (2020). arXiv: 2007.01409.
url: https://arxiv.org/abs/2007.01409.

[40] Rajeev Kohli and Vijay Mahajan. “A Reservation-Price Model for Optimal Pricing of Mul-
tiattribute Products in Conjoint Analysis”. In: Journal of Marketing Research 28.3 (1991),
pp. 347–354. issn: 00222437. url: http://www.jstor.org/stable/3172870 (visited on
04/09/2023).

67

https://doi.org/10.2139/ssrn.3841306
https://doi.org/10.1016/j.disopt.2006.06.005
https://doi.org/10.1016/j.disopt.2006.06.005
https://doi.org/10.1016/j.disopt.2006.06.005
https://arcteryx.com/ca/en/c/mens/shell-jackets
https://www.redfin.ca/on/kitchener
https://www.ticketmaster.ca/event/10005B5CBFDE3D6A?tfl=Toronto_Blue_Jays-Schedule-Toronto_Blue_Jays:_Schedule:_Schedule-web-x0-unknown-unknown&_ga=2.74952855.401471260.1658934757-203497847.1658256134
https://www.ticketmaster.ca/event/10005B5CBFDE3D6A?tfl=Toronto_Blue_Jays-Schedule-Toronto_Blue_Jays:_Schedule:_Schedule-web-x0-unknown-unknown&_ga=2.74952855.401471260.1658934757-203497847.1658256134
https://www.ticketmaster.ca/event/10005B5CBFDE3D6A?tfl=Toronto_Blue_Jays-Schedule-Toronto_Blue_Jays:_Schedule:_Schedule-web-x0-unknown-unknown&_ga=2.74952855.401471260.1658934757-203497847.1658256134
https://www.toyota.ca/toyota/en/
https://doi.org/10.1109/TGRS.2008.2002882
https://doi.org/10.1002/net.20391
https://doi.org/10.1002/net.20391
https://doi.org/10.1002/net.20391
http://www.jstor.org/stable/3172759
https://doi.org/10.1007/s10898-017-0581-2
https://doi.org/10.1007/s10898-017-0581-2
https://doi.org/10.1007/s10898-017-0581-2
https://arxiv.org/abs/2007.01409
https://arxiv.org/abs/2007.01409
http://www.jstor.org/stable/3172870

[41] M. Köppe, M. Queyranne, and C. T. Ryan. “Parametric integer programming algorithm for
bilevel mixed integer programs”. In: J. Optim. Theory Appl. 146.1 (2010), pp. 137–150. issn:
0022-3239. doi: 10.1007/s10957-010-9668-3. url: https://doi.org/10.1007/s10957-
010-9668-3.

[42] Ursula G. Kraus and Candace Arai Yano. “Product line selection and pricing under a share-
of-surplus choice model”. In: European Journal of Operational Research 150.3 (2003). Finan-
cial Modelling, pp. 653–671. issn: 0377-2217. doi: https://doi.org/10.1016/S0377-
2217(02)00522- 2. url: https://www.sciencedirect.com/science/article/pii/
S0377221702005222.

[43] Martine Labbé, Patrice Marcotte, and Gilles Savard. “A Bilevel Model of Taxation and Its
Application to Optimal Highway Pricing”. In: Management Science 44 (Dec. 1998), pp. 1608–
1622. doi: 10.1287/mnsc.44.12.1608.

[44] Martine Labbé, Miguel A. Pozo, and Justo Puerto. “Computational comparisons of different
formulations for the Stackelberg minimum spanning tree game”. In: International Transac-
tions in Operational Research 28.1 (2021), pp. 48–69. doi: https://doi.org/10.1111/
itor.12680. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12680.

[45] Arthur Lee and Bruce Xu. “Classifying Approximation Algorithms: Understanding the APX
Complexity Class”. In: CoRR abs/2111.01551 (2021). arXiv: 2111.01551. url: https://
arxiv.org/abs/2111.01551.

[46] Jeffrey McGill and Garrett van Ryzin. “Revenue Management: Research Overview and Prospects”.
In: Transportation Science 33 (May 1999), pp. 233–256. doi: 10.1287/trsc.33.2.233.

[47] John A. Muckstadt and Amar Sapra. Principles of inventory management. Springer Series
in Operations Research and Financial Engineering. Springer, New York, 2010, pp. xviii+339.
isbn: 978-0-387-24492-1. doi: 10.1007/978-0-387-68948-7. url: https://doi.org/10.
1007/978-0-387-68948-7.

[48] T. G. J. Myklebust, M. A. Sharpe, and L. Tunçel. “Efficient heuristic algorithms for maximum
utility product pricing problems”. In: Comput. Oper. Res. 69 (2016), pp. 25–39. issn: 0305-
0548. doi: 10.1016/j.cor.2015.11.013. url: https://doi.org/10.1016/j.cor.2015.
11.013.

[49] Lipeng Ning, Tryphon T Georgiou, Allen Tannenbaum, and Stephen P Boyd. “Linear models
based on noisy data and the Frisch scheme”. In: siam REVIEW 57.2 (2015), pp. 167–197.

[50] R. Shioda, L. Tunçel, and B. Hui. “Applications of deterministic optimization techniques to
some probabilistic choice models for product pricing using reservation prices”. In: Pac. J.
Optim. 10.4 (2014), pp. 767–808. issn: 1348-9151.

[51] R. Shioda, L. Tunçel, and T. G. J. Myklebust. “Maximum utility product pricing models and
algorithms based on reservation price”. In: Comput. Optim. Appl. 48.2 (2011), pp. 157–198.
issn: 0926-6003. doi: 10.1007/s10589-009-9254-5. url: https://doi.org/10.1007/
s10589-009-9254-5.

[52] Ankur Sinha, Pekka Malo, and Kalyanmoy Deb. “A Review on Bilevel Optimization: From
Classical to Evolutionary Approaches and Applications”. In: IEEE Transactions on Evolu-
tionary Computation 22.2 (2018), pp. 276–295. doi: 10.1109/TEVC.2017.2712906.

[53] Guang-Jing Song and Michael K. Ng. “Nonnegative low rank matrix approximation for non-
negative matrices”. In: Appl. Math. Lett. 105 (2020), pp. 106300, 7. issn: 0893-9659. doi:
10.1016/j.aml.2020.106300. url: https://doi.org/10.1016/j.aml.2020.106300.

68

https://doi.org/10.1007/s10957-010-9668-3
https://doi.org/10.1007/s10957-010-9668-3
https://doi.org/10.1007/s10957-010-9668-3
https://doi.org/https://doi.org/10.1016/S0377-2217(02)00522-2
https://doi.org/https://doi.org/10.1016/S0377-2217(02)00522-2
https://www.sciencedirect.com/science/article/pii/S0377221702005222
https://www.sciencedirect.com/science/article/pii/S0377221702005222
https://doi.org/10.1287/mnsc.44.12.1608
https://doi.org/https://doi.org/10.1111/itor.12680
https://doi.org/https://doi.org/10.1111/itor.12680
https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12680
https://arxiv.org/abs/2111.01551
https://arxiv.org/abs/2111.01551
https://arxiv.org/abs/2111.01551
https://doi.org/10.1287/trsc.33.2.233
https://doi.org/10.1007/978-0-387-68948-7
https://doi.org/10.1007/978-0-387-68948-7
https://doi.org/10.1007/978-0-387-68948-7
https://doi.org/10.1016/j.cor.2015.11.013
https://doi.org/10.1016/j.cor.2015.11.013
https://doi.org/10.1016/j.cor.2015.11.013
https://doi.org/10.1007/s10589-009-9254-5
https://doi.org/10.1007/s10589-009-9254-5
https://doi.org/10.1007/s10589-009-9254-5
https://doi.org/10.1109/TEVC.2017.2712906
https://doi.org/10.1016/j.aml.2020.106300
https://doi.org/10.1016/j.aml.2020.106300

[54] Kalyan T. Talluri and Garret J. Ryzin. The Theory and Practice of Revenue Management.
Springer New York, 2005. doi: https://doi.org/10.1007/b139000. url: https://link.
springer.com/book/10.1007/b139000.

[55] Levent Tunçel. “Optimization Based Approaches to Product Pricing”. Proc. IV. International
Conference on Business, Management and Economics. 2008. url: https : / / www . math .
uwaterloo.ca/~ltuncel/publications/icbme2008.pdf.

[56] L. Vicente, G. Savard, and J. Judice. “Discrete linear bilevel programming problem”. In: J.
Optim. Theory Appl. 89.3 (1996), pp. 597–614. issn: 0022-3239. doi: 10.1007/BF02275351.
url: https://doi.org/10.1007/BF02275351.

[57] G. W. “Revenue Management: Hard-Core Tactics for Market Domination”. In: Cornell Hotel
and Restaurant Administration Quarterly 38.2 (1997), pp. 17–17. doi: 10.1177/001088049703800218.
eprint: https://doi.org/10.1177/001088049703800218. url: https://doi.org/10.
1177/001088049703800218.

[58] H. Paul Williams. Logic and integer programming. Vol. 130. International Series in Operations
Research & Management Science. Springer, New York, 2009, pp. xii+155. isbn: 978-0-387-
92279-9.

69

https://doi.org/https://doi.org/10.1007/b139000
https://link.springer.com/book/10.1007/b139000
https://link.springer.com/book/10.1007/b139000
https://www.math.uwaterloo.ca/~ltuncel/publications/icbme2008.pdf
https://www.math.uwaterloo.ca/~ltuncel/publications/icbme2008.pdf
https://doi.org/10.1007/BF02275351
https://doi.org/10.1007/BF02275351
https://doi.org/10.1177/001088049703800218
https://doi.org/10.1177/001088049703800218
https://doi.org/10.1177/001088049703800218
https://doi.org/10.1177/001088049703800218

	Author's Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Price Setting Subproblem and the Dobson-Kalish Algorithm
	Fixed Points and Reassignment Properties
	Utility Tolerances
	Approximation Algorithms

	Related Problems
	Structured Settings
	Stackelberg Network Pricing Games
	Bilevel Mixed Integer Linear Programs
	Bilinear Mixed Integer Programs

	Worst-Case Algorithmic Analyses on Practical Instances
	Data Generation
	Multiplicative Utility Tolerances
	Logarithmic Scaling in Data
	An Attempt at Rounding
	Uniformly Logarithmic Separation in Data

	Low-Rank Matrices
	MaxR+

	Upper Bound Improvements
	Introduction to Upper Bound Analysis
	The 2 Segments, 2 Products Case

	Linear Programming-Derived Upper Bounds
	Linear Programming Upper Bounds for the 2 Product Case

	An Exactly Solvable Subproblem

	Conclusion and Future Research Directions
	Bibliogaphy

