
Representation, Characterization,
and Mitigation of Noise in Quantum

Processors

by

Junan Lin

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Physics (Quantum Information)

Waterloo, Ontario, Canada, 2023

© Junan Lin 2023



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Gerardo Adesso
Professor, School of Mathematical Sciences,
University of Nottingham

Supervisor(s): Raymond Laflamme
Professor, Dept. of Physics and Astronomy,
University of Waterloo

Internal Member: Kazi Rajibul Islam
Assistant Professor, Dept. of Physics and Astronomy,
University of Waterloo

Internal-External Member: Christopher Wilson
Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Other Member(s): Joel Wallman
Adjunct Assistant Professor, Dept. of Physics and Astronomy,
University of Waterloo

ii



Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Statement of Contributions

NOTE: Supervision and contribution from Prof. Raymond Laflamme should be assumed
in all of the following. Unless otherwise stated, all authors are involved in reading and im-
proving the final manuscript for each work. Contributors to the work with non-overlapping
contributions with Junan Lin are not mentioned.

1. Chapter 2

• Junan Lin (J.L.) encountered the gauge ambiguity when first studying the
SPAM characterization problem. Joel Wallman, Brandon Buonacorsi, and J.L.
conceived the original ideas for the paper.

• J.L. developed the examples based on supervision from Joel Wallman.

• J.L. produced the figures, ran the simulation for the MVE experiment and
generated the plot, and prepared the manuscript. J.L. and Brandon Buonacorsi
maintained the manuscript together.

• This chapter is an improved version of a partially finished work in J.L.’s masters
thesis.

2. Chapter 3

• J.L. designed the 1-qubit and N -qubit experiments based on supervision from
Joel Wallman.

• J.L. derived the bounds under noisy gates, performed all the experiments on
the IBMQ platform, performed data analyses, and generated the plots.

• J.L. and Ian Hincks derived the estimators for the variance of estimated param-
eters.

• J.L. wrote and maintained the manuscript.

3. Chapter 4

• Raymond Laflamme, Tal Mor, and J.L. conceived the idea of using measurement-
based algorithmic cooling to characterize SPAM errors.

• J.L. proved the technical results, including the final state error, bounds on the
final error with noisy measurements, and the bound on the expected number of
trials. J.L. also generated the plots.

• J.L. wrote and maintained the manuscript.

iv



4. Chapter 5

• Raymond Laflamme, Nayeli Azucena Rodŕıguez-Briones, and J.L. conceived the
idea of analyzing thermodynamics of AC.
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Abstract

Quantum computers have the potential to outperform classical computers on several fami-
lies of important problems, and have a great potential to revolutionize our understanding of
computational models. However, the presence of noise deteriorates the output quality from
near-term quantum computers and may even offset their advantage over classical comput-
ers. Studies on noise in these near-term quantum devices has thus become an important
field of research during the past years. This thesis addresses several topics related to this
subject including representing, quantifying, and mitigating noise in quantum processors.

To study noise in quantum processors, it is first necessary to ask how noise can be
accurately represented. This is the subject of Chapter 2. The conventional way is to use
a gate-set, which include mathematical objects assigned to each component of a quantum
processor, and compare individual gate-set elements to their ideal images. Here, we present
some clarifications on this approach, pointing out that a gauge freedom exists in this
representation. We demonstrate with experimentally relevant examples that there exists
equally valid descriptions of the same experiment which distribute errors differently among
objects in a gate-set, leading to different error rates. This leads us to rethink about the
operational meaning to figures of merit for individual gate-set elements. We propose an
alternative operational figure of merit for a gate-set, the mean variation error, and develop
a protocol for measuring this figure. We performed numerical simulations for the mean
variation error, illustrating how it suggests a potential issue with conventional randomized
benchmarking approaches.

Next, we study the problem of whether there exist sufficient assumptions under which
the gauge ambiguity can be removed, allowing one to obtain error rates of individual gate-
set elements in a more conventional manner. We focus on the subset of errors including
state preparation and measurement (SPAM) errors, both subject to a gauge ambiguity
issue. In Chapter 3, we provide a sufficient assumption that allows a separate SPAM error
characterization, and propose a protocol that achieves this in the case of ideal quantum
gates. In reality where quantum gates are imperfect, we derived bounds on the estimated
SPAM error rates, based on gate error measures which can be estimated independently of
SPAM processes. We tested the protocol on a publicly available quantum processor and
demonstrated its validity by comparing our results with simulations.

In Chapter 4, we present another protocol capable of separately characterizing SPAM
errors, based on a different principle of algorithmic cooling (AC). We propose an alternative
AC method called measurement-based algorithmic cooling (MBAC), which assumes the
ability to perform (potentially imperfect) projective measurements on individual qubits and
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is available on various modern quantum computing platforms. Cooling reduces the error on
initial states while keeping the measurement operations untouched, thereby breaking the
gauge symmetry between the two. We demonstrate that MBAC can significantly reduce
state preparation error under realistic assumptions, with a small overhead that can be
upper bounded by measurable quantities. Thus, our results can be a valuable tool not
only for benchmarking near-term quantum processors, but also for improving the quality
of state preparation processes in an algorithmic manner.

The capability of AC for improving initial state quality has inspired us to perform a
parallel study on the thermodynamic cost of AC protocols. The motivation is that since
cooling a subset of qubits may result in finite energy increase in its environment, applying
them in certain platforms that are temperature-sensitive could induce a negative impact on
the overall stability. Meanwhile, previous studies on AC have largely focused on subjects
like cooling limits, without paying attention to their thermodynamics. Understanding the
thermodynamic cost of AC is of both theoretical and practical interest. These results are
presented in Chapter 5. After reviewing their procedure, cooling limits, and target state
evolution of various AC protocols, we propose two efficiency measures based on the amount
of work required, or the amount of heat released. We show how these measures are related
to each other and how they can be computed for a given protocol. We then compare the
previously studied protocols using both measures, providing suggestions on which ones to
use when these protocols are to be carried out experimentally. We also propose improved
protocols that are energetically more favorable over the original proposals.

Finally, in Chapter 6, we present a study on a different family of methods aiming at re-
ducing effective noise level in near-term hardware called quantum error mitigation (QEM).
The principle behind various QEM approaches is to mimic outputs from the ideal circuit
one wants to implement using noisy hardware. These methods recently became popular
because many near-term hybrid quantum-classical algorithms only involve relatively shal-
low depth circuits and limited types of local measurements, implying a manageable cost of
performing data processing to alleviate the effect of noise. Using some intuitions built upon
classical and quantum communication scenarios, we clarify some fundamental distinctions
between quantum error correction (QEC) and QEM. We then discuss the implications of
noise invertibility for QEM, and give an explicit construction called Drazin-inverse for
non-invertible noise, which is trace preserving while the commonly-used Moore-Penrose
pseudoinverse may not be. Finally, we study the consequences of having an imperfect
knowledge about the noise, and derive conditions when noise can be reduced using QEM.
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Chapter 1

Introduction

The field of quantum computation have witnessed an explosive development over the past
two decades. It has transformed from being a niche field studied by a handful of professors
in universities and national labs, to a large territory shared by countless research labs and
companies around the globe, with a projected billion-dollar market size. Considering their
potential to outperform classical computers on certain types of important problems [1, 2,
3, 4], the hype on quantum computation has resulted in a race among almost all major
tech companies towards building a useful, large-scale quantum computer.

Meanwhile, it is important to always keep in mind that there is still a long way to go
in order for quantum computing to become practically useful. The major obstacle that
impedes their usefulness is the presence of noise in quantum processors. The current stage
is accurately described by the phrase Noisy, Intermediate-Scale Quantum (NISQ) [5], which
corresponds to having processors with the size of roughly 50 to a few hundred qubits, and
with lowest error rates per gate falling in the rough range between 10−2 to 10−4. Studying
the noise behavior in quantum hardware is a crucially important task for the progress of
quantum computation in the near term, due to the following reasons. While there exists
works which aim to demonstrate the advantage of NISQ devices over classical computers
on certain tasks [6, 7], others have argued that such advantages may disappear due to the
noisy nature of the output [8]. Furthermore, noisier hardware imply a higher overhead
on the number of qubits required, with the implementation of quantum error correcting
codes to decrease effective error rates in the hardware. Meanwhile, knowing the form of
noise makes it possible to tailor error correcting codes to reduce the overhead if certain
characteristics are present in the noise [9], and also allow experimentalists to locate and,
consequently, reduce noise in hardware. In this thesis, we examine several topics including
representing, quantifying, and reducing noise in quantum processors.
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Chapter 2: Gauge and representing noise in quantum processors

Chapter 2 is devoted to the representation of noise. Knowing how to characterize one’s
control over a quantum system is of great importance in quantum information processing.
The subject of characterizing quantum states and processes has been an important subfield
in quantum information for decades. The earliest proposal for benchmarking a quantum
system is by using quantum state tomography (QST), where given many copies of a system
prepared identically, one can measure different components of it and reconstruct the state.
This can be dated back to as early as 1957, when Fano [10] mentioned the idea of using
multiple copies to measure non-commuting observables. In 1989, Vogel and Risken [11]
first described a procedure to determine the Wigner function using homodyne detection in
combination with an inverse Radon transform [12]. Since then, various methods have been
proposed to refine and improve QST, initially in the field of quantum optics and gradually
extended to other systems. Earliest approaches works by linear inversion of an observation
matrix [13, 14], but many other reconstruction methods such as using maximum likelihood
estimation [15], Bayesian estimation [16], or recent machine-learning-based algorithms [17]
have later been proposed, just to name a few.

The same concept was later applied to reconstruct descriptions of the measurement
apparatus using well-characterized states, under the name quantum detector (or measure-
ment) tomography [18, 19, 20]. This is easily understood from the dual role between states
and measurements under the Born rule. Similarly, with sufficiently many well-characterized
states and measurements, one can reconstruct an arbitrary quantum process by applying
quantum process tomography (QPT) [15, 21, 16]. While these seem to suggest a possibility
of completely characterizing a given quantum computer, a conceptual loophole exists, since
characterizing the state requires known measurement apparatus and vice versa, while char-
acterizing the process requires both known states and measurements. Such assumptions
are, fundamentally, unrealistic.

A more formal way to express this conceptual difficulty was later coined a “gauge free-
dom” in representing quantum operations [22, 23, 24], by similarity to gauge theories in
physics where there exists unobservable degrees of freedom in the model describing a given
physical phenomenon. Similar to a change of reference frame, this implies that there exists
different descriptions of the same system. The most notable attempt to deal with this
is gate-set tomography (GST), which avoids making any assumption about the unchar-
acterized system by self-consistently inferring all gate-set elements from experimentally
estimated probabilities [25, 22]. This leads to difficulty in interpreting many conventional
quality measures, such as the fidelity or trace distance [26], which depend on the partic-
ular representation for quantum operations. Despite the broad conceptual importance of
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representing quantum operations, the impact of the gauge freedom has only occasionally
been analyzed, and primarily in the context of gate-dependent noise in randomized bench-
marking [27, 28, 29]. In Chapter 2, we clarify how this gauge freedom affects experimental
descriptions and demonstrate some of its implications for interpreting experimentally re-
constructed representations of quantum objects. We first illustrate with experimentally
relevant examples of how the gauge may appear in a characterization experiment. We
then mathematically define what gauge transformations are, and illustrate how it leads
to an ambiguity in the representation of quantum errors. We propose a gauge-invariant
measure which describes the holistic performance of a quantum processor, and discuss its
implications for benchmarking protocols.

Chapter 3: resolving SPAM errors with noise propagation

While there exists conceptual difficulty in fully characterizing all parts of a quantum com-
puter simultaneously, a parallel research direction is to extract partial information about
certain parts of a quantum computer, in a manner that is independent of the other parts.
The most successful and widely-used method along these lines is randomized benchmarking
(RB) and its variants [30, 31, 32, 33, 34, 35, 36], which returns a quality measure (the “RB
number”) for a quantum processes, or quantum gates, independently of state preparation
and measurement. The central idea is that the measurement fidelity would decrease expo-
nentially under a wide range of error models [29, 37] with an increasing number of random
gate sequences. These provide an efficient way to obtain a gauge-invariant quality measure
for quantum gates. Having been tested on various platforms [38, 39, 40], RB is now among
the standard characterization procedures in modern quantum processors.

Compared to the efforts on characterizing quantum gates, much fewer have studied the
problem of characterizing state preparation and measurement (SPAM) errors. This may
be largely due to the consensus that since SPAM errors do not increase with circuit depth,
they play a relatively insignificant role to the overall quality of quantum computation.
Meanwhile, SPAM errors nowadays can be on the same order as (and sometimes surpass)
gate errors in some current QPUs. For example, the combined SPAM error in current
superconducting transmon qubit systems has been reported to range from 0.8% to 2% [41],
while 1- and 2-qubit gates may achieve fidelities over 99.9% and 99% respectively [42].
The requirement to repeatedly prepare qubits in well-defined initial states and perform
syndrome measurements in quantum error correcting codes also puts SPAM operations on
the same level of importance as gate operations. This demands alternative approaches that
can provide more trustworthy estimates of SPAM error.
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It is also not immediately clear how SPAM errors can be separately obtained in a gauge-
invariant manner. While gate errors can be amplified by repeatedly applying more gates
with fixed SPAM operators, the converse appears more conceptually difficult since neither
the initial state nor the final measurement can be “repeated” in a straightforward manner.
Therefore, one may ask under what assumptions can SPAM errors be separately obtained
in a gauge-invariant manner, and what procedure one can use to achieve this task? This
is the subject of Chapter 3, where we answer these questions. In particular, we discuss
the principle of “noise propagation” and how it can be useful in separating SPAM errors.
We propose a protocol to separately estimate SPAM error rates for single- and multi-qubit
processors, based on this principle. We then show how gate errors can be accounted for in a
self-consistent manner, and demonstrate it in an experiment using IBMQ cloud processors
as well as corresponding simulations. Our results demonstrate the possibility of separate
SPAM error characterization in the regime where SPAM error is more prominent, and can
be helpful for further improving the quality of current NISQ devices.

Chapter 4: resolving SPAM errors with algorithmic cooling

Next, in Chapter 4, we provide a second solution to the SPAM characterization problem
by means of algorithmic cooling (AC). AC refers to a family of methods that aim to al-
gorithmically purify a target system. These algorithms re-distribute the entropy among
subsystems, so that the state of a certain target systems after AC is more pure, as if
they were put in a lower temperature than the initial temperature of the original thermal
state. This gives rise to the term cooling in the name. A more detailed review of the
history and different types of AC will be given in Section 4.1. The simple idea here is that
since purifying the initial state breaks the gauge symmetry between state and measure-
ment, this provides another possibility to separate SPAM errors. However, conventional
AC approaches are limited by their performance and are difficult to use for the task of
characterizing SPAM errors. Here, we introduced measurement as a resource in AC and
propose a simple protocol called “measurement-based AC” (MBAC), under the assump-
tion that (potentially imperfect) measurements can be applied on individual qubits. The
simple behavior of post-cooling states allows a straightforward procedure to extract SPAM
error rates. We study the noisy measurement situation and derive an upper bound for the
expected overhead for using this method in practice. The two methods presented in Chap-
ter 3 and Chapter 4 provide new insights into the problem of SPAM characterization, and
is valuable to validating QPUs. Moreover, they complement the many existing protocols
that measure gate errors.
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Chapter 5: thermodynamic studies of AC

Chapter 4 provides compelling evidence that AC can be used not only in noise character-
ization, but also in noise reduction. This motivates our further investigation into using
AC as an algorithmic refrigerator to produce higher quality qubits. The next chapter,
Chapter 5, is devoted to studying the thermodynamic cost of using AC to reduce state
preparation error. Why is thermodynamics of concern in the first place? Classically, it
has long been recognized that erasing information is accompanied by an inevitable energy
increase in the environment, a statement typically referred to as Landauer’s principle [43].
Moreover, variants of this principle holds in the quantum case too, and since AC effectively
drives the state closer towards the ground state, it will also result in an increase of the
environment’s energy. Meanwhile, many current QPUs operate under low temperature
in the milli-kelvin regime, at which small amounts of additional heat release may lead to
deterioration in QPU performance. This motivates our study on analyzing AC from a ther-
modynamic perspective, a path which has not been extensively explored in the literature.
First, we give a more in-depth review of common AC protocols, and formally classify them
under the same category of “coherent cooling” (defined later). We apply the transfer ma-
trix formalism to consistently calculate their performance metrics, including their cooling
limits and target state evolution. Then, we propose two generic efficiency metrics which
are applicable to all coherent cooling protocols, namely, the coefficient of performance K
and the Landauer Ratio RL, and derive an explicit formula to compute one from the other.
We evaluate the performance of selected HBAC protocols against both metrics, analyzing
their relative strengths. Finally, we propose improved versions of HBAC protocols with
better thermodynamic performances, which are capable of cooling the target to the same
temperature as before while using lower work inputs.

Chapter 6: views on quantum error mitigation

The last chapter, Chapter 6, includes some results on quantum error mitigation (QEM),
which refers to a family of numerical approaches to lower the effective noise level through
post-processing. Conventionally, the main tool for protecting the processor from noise
has been quantum error correction (QEC). QEC protocols are designed to allow a user to
detect, and eventually correct, errors that happen during a quantum computation. While
many approaches for QEC have been developed, few have been tested on real quantum
processors due to the significant demands on the hardware. First, QEC generally encodes
quantum information into a much larger Hilbert space, which requires the hardware size
to be large as well. Second, quantum operations (gates) on a processor must be below
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a certain threshold value for QEC to successfully reduce the effective error, instead of
introducing more errors. Meeting both requirements is generally difficult on most state-of-
the-art devices available today.

Recently, QEM has become a fast-growing research area due to their immediate appli-
cability on NISQ devices. These protocols generally aim for decreasing the effective noise
level, while circumventing the two aforementioned obstacles of QEC. The idea is that if one
has some knowledge about the noise processes in a particular hardware, then one should
be able to utilize that knowledge to reduce (part of) the effect of that noise. Importantly,
it is more desirable to have protocols that introduce no or very little additional hardware
overhead in order to improve the computation accuracy. Numerous protocols have been
developed during the past few years [44, 45, 46, 47, 48] that fall into this category and we
give a further review in Section 6.1.

The parallel development of both fields naturally leads to the question: under what
circumstances should one apply QEC over QEM, and vice versa? To answer this question,
it is useful to clearly illustrate the differences between QEC and QEM. In this chapter, we
examine the relation between QEC and QEM from a high-level perspective, and discuss
several implications when using QEM in practice. From a communication viewpoint, we
first examine the fundamental differences between QEC and QEM. Because QEM involves
effectively applying the inverse noise map to an output probability vector, we examine the
special case of non-invertible noise, which may lead to a failure of QEM. We propose a
construction called Drazin-inverse for non-invertible noises and demonstrated advantages
over the conventional pseudoinverse in certain cases. We then study the effect of imperfect
knowledge about the real noise channel, and derive a sufficient condition on when QEM
can lead to an improvement in terms of the uncertainty about the actual noise.

Summary

In summary, this thesis has addressed the important field of studying noise in near-term
quantum computers, which is crucial for the development and improvement of these de-
vices. Through the examination of noise representation and quantification, the charac-
terization of state preparation and measurement errors, the development of algorithmic
cooling protocols and the investigation of quantum error mitigation approaches, this the-
sis has contributed to advancing the understanding and management of noise in quantum
processors. The protocols and methods proposed in this thesis have the potential to be
useful for benchmarking near-term quantum processors and improving the quality of state
preparation processes. Additionally, this thesis provides insights into the theoretical and
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practical aspects of algorithmic cooling and quantum error mitigation. Overall, this thesis
has demonstrated the significance and relevance of noise research in the development of
quantum computing.
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Chapter 2

Representing errors in quantum
processors

Quantum mechanics allows us to assign representations that describe the state of quantum
objects and processes, and many figures of merit have been developed to evaluate them
based on their representations [26]. Interestingly, this representation admits some degrees
of freedom, commonly known as the gauge freedom [22, 23, 24], which causes the represen-
tation to be non-unique. Since most conventional quality measures are gauge-dependent,
changing the representation (or reference frame) will cause the quality measures them-
selves to change, even if they describe the same underlying hardware. In this chapter, we
clarify how this gauge freedom affects experimental descriptions and demonstrate some of
its implications for interpreting experimentally reconstructed representations of quantum
objects. In Section 2.2 we demonstrate with an experimentally motivated example that
the gauge freedom makes assigning errors to individual operations ambiguous. In Sec-
tion 2.3 we give definitions for gauges and gauge transformations, as well as their role in
representing quantum operations as mathematical objects. In Section 2.4 we discuss the
implications brought by this gauge freedom, in particular addressing why many figures of
merit such as the diamond norm distance between a measured gate and a target do not
have a concrete operational meaning. We also mention some common practices in tomog-
raphy that are related to this problem. Lastly, in Section 2.5, we define and motivate the
mean variation error (MVE), a gauge-invariant figure of merit for gate-sets. We propose
a protocol to experimentally measure the MVE and demonstrate its behaviour relative to
randomized benchmarking through numerical simulations.
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2.1 Pauli-Liouville representation

Before illustrating the issue with representing quantum errors due to the gauge freedom,
we will first give an introduction the Pauli-Liouville representation formalism. This rep-
resentation, along with variants of it such as the superoperator or the transition matrix
formalisms, will be used multiple times later throughout this thesis. The central idea is to

1. Represent general quantum state as vectors,

2. Represent general quantum evolutions as matrices,

3. Construct the representations in such a way that the actions of quantum evolutions
on quantum states are written as matrix multiplications.

For this chapter, we will focus on system of n qubits where quantum states can be
represented as 2n×2n Hermitian operators, while the same formalism can be generalized to
arbitrary dimension systems by using, for example, the generalized Gell-Mann matrices [49]
instead of Pauli matrices. It is commonly known that the set of (tensor products of)
normalized Pauli matrices, which we denote as Pn, form an orthonormal basis for all
2n × 2n Hermitian operators. Every element P in Pn is of the form

P =
⊗
k

(
σk√

2

)
(2.1)

and each σk is a member from the single-qubit Pauli group, P1 := {σ0 = I, σ1 = X, σ2 =
Y, σ3 = Z}. The orthonormality is defined with respect to the Hilbert-Schmidt inner
product

〈Pi, Pj〉HS := Tr
[
P †i Pj

]
= δij (2.2)

for all Pi, Pj ∈ Pn. Any 2n by 2n Hermitian matrix can be represented as a real linear
combination of Pauli basis matrices. Writing these inner products as components of a
vector will define a representation in the space of 22n × 1 real vectors, which is isomorphic
to the set of 2n × 2n real matrices.

For every 2n by 2n Hermitian matrix ρ, we define its Pauli-Liouville representation as
follows:

|ρ〉〉 :=
∑
i

Tr[ρPi]|i〉〉 (2.3)
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and define an element σ in the dual space (e.g., representing a measurement operator) as

〈〈σ| :=
∑
i

(Tr[Piσ])∗〈〈i| (2.4)

where |i〉〉 and 〈〈i| are standard computational (column and row) basis vectors with 1 in the
i-th entry and 0 elsewhere, and ∗ denotes complex conjugation for a scalar. We see that
the Hilbert-Schmidt inner product is now transformed into an Euclidean inner product:

〈〈σ|ρ〉〉 =
∑
i,j

Tr[ρPi](Tr[Pjσ])∗〈〈j|i〉〉

=
∑
i,j

Tr[ρPi](Tr[Pjσ])∗Tr[PiPj]

= Tr

[∑
i

Tr[ρPi]Pi
∑
j

(Tr[Pjσ])∗Pj

]
= Tr

[
σ†ρ
]

(2.5)

where the following identity is used:∑
i

Tr[PiA]∗Pi =
∑
i

(
Tr
[
P †i A

])∗
Pi

=
∑
i

Tr
[
(A†Pi)†

]
Pi

=
∑
i

Tr
[
(A†Pi)

T
]
Pi

=
∑
i

Tr
[
A†Pi

]
Pi = A†

(2.6)

where the overhead bar denotes element-wise conjugation for a matrix.

Now, define the Pauli-Liouville representation of a (linear) map G as AG, which has
components

(AG)ij := Tr[PiG(Pj)] (2.7)

then the post-state of G acting on a state ρ, written all in the Pauli basis, can be shown
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to be equal to a matrix multiplication:

|G(ρ)〉〉 =
∑
i

Tr[G(ρ)Pi]|i〉〉

=
∑
i

Tr

[
G(
∑
j

Tr[ρPj]Pj)Pi

]
|i〉〉

=
∑
ij

Tr[ρPj] Tr[G(Pj)Pi]|i〉〉

=
∑
ij

(AG)ij(|ρ〉〉)j|i〉〉

= AG|ρ〉〉

(2.8)

Thus, series of gates are conveniently expressed as matrix multiplications (from the left)
in the Pauli-Liouville representation.

2.2 Assigning errors to operations

We now illustrate the gauge freedom with a simple, experimentally relevant example,
namely, amplitude damping. We will do so mostly in the gate-set language. A gate-set is
a mathematical description of the possible actions executable in an experiment, typically
consisting of models for initial states (S), gate operations (G), and measurements (M). If
an experimentalist with an ideal quantum system could initialize a qubit in the state |0〉,
apply an arbitrary unitary gate, and measure the expectation value of Z, then their control
can be represented by the gate-set

Φ =

{
SΦ =

(
1 0
0 0

)
, GΦ = SU(2), MΦ = Z

}
. (2.9)

Now suppose that the experimentalist prepares a mixed initial Z state with polarization
ε1 and performs a measurement with signal-to-noise ratio ε2. Suppose further that before
each gate is applied, the system undergoes amplitude damping with strength γ but that
the target Hamiltonian is still implemented perfectly. The Pauli-Liouville representation
(see Section 2.1 or e.g., [50]) of the noisy gate-set is then

Θ =

SΘ =
1√
2


1
0
0
ε1

 , GΘ = {UAγ : U ∈ SU(2)}, MΘ =
√

2
(
0 0 0 ε2

) (2.10)
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with
√

2 and 1√
2

being normalization factors, and U = UρU † denotes the unitary channel
acting via conjugation and

Aγ =


1 0 0 0
0
√

1− γ 0 0
0 0

√
1− γ 0

γ 0 0 1− γ

 . (2.11)

The expectation value of an operator M given an input state ρ is the vector inner prod-
uct between the Pauli-Liouville representations of the state and measurement operators,

prob = 〈〈M |ρ〉〉. (2.12)

If m gates G1, . . . ,Gm ∈ G are applied to the state in chronological order before the mea-
surement takes place, the expectation value becomes

prob = 〈〈M |Gm:1|ρ〉〉 (2.13)

where we use the shorthand notation

Gb:a :=

{
GbGb−1...Ga if b ≥ a

I otherwise.
(2.14)

The above probabilities are preserved under the family of gate-set transformations

|ρ〉〉 → B|ρ〉〉, 〈〈M | → 〈〈M |B−1, GΦ → BGΦB
−1 (2.15)

for some invertible matrix B. Because these probabilities are the only experimentally
accessible quantities, the same experimental results can be predicted equally well by these
two gate-sets. This is the gauge freedom inherent in mathematically representing quantum
experiments, in analogy with concepts in thermodynamics and electromagnetism [51], with
B being called a gauge transformation matrix. The analogy arises from the fact that
changing the gauge does not result in observable effects in an experiment, just as changing
the electromagnetic gauge would not result in any difference in the measurable electric or
magnetic fields.

Generally, a gate-set is considered valid if all quantum states can be represented as den-
sity matrices, measurements as expectation values of Hermitian operators, and quantum
gates as completely-positive, trace-preserving (CPTP) maps as these conditions ensure that
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probabilities for arbitrary experiments are positive. Gauge transformations do not gener-
ally preserve these canonical constraints, although the resulting gate-set is nevertheless an
equally valid mathematical description of the same experiment.

We now present a simple, physically motivated, gauge transformation that yields a
new gate-set which suggests a different physical interpretation of the experimental system.
Applying the gauge transformation matrix

B =


1 0 0 0
0 q 0 0
0 0 q 0
0 0 0 q

 (2.16)

for any q ∈ [−1, 1] to the noisy gate-set in Eq. (2.10) yields the equivalent gate-set

Θq =

SΘq =
1√
2


1
0
0
qε1

 , GΘq = {UAγ,q : U ∈ SU(2)}, MΘq =
√

2
(
0 0 0 ε2

q

) ,

(2.17)
where

Aγ,q =


1 0 0 0
0
√

1− γ 0 0
0 0

√
1− γ 0

qγ 0 0 1− γ

 (2.18)

and we have used the fact that U commutes with B for any U ∈ SU(2). The gauge
transformation results in equivalent statistics but suggests a different noise model, namely,
relaxation to a mixed state rather than a pure state (corresponding to a different effective
temperature). As long as |q| ∈ [|ε2|, 1], the states, measurements, and transformations all
satisfy the canonical constraints for gate-set elements.

Note that this gauge freedom does not change the average gate fidelity as Tr[Aγ,q] is
independent of q [52, Eq. 2.5]. However, the diamond distance from the identity depends on
q, with ‖Aγ,1−I‖� ≈ 2‖Aγ,0−I‖� for γ ∈ [0, 1] [53]. Moreover, this example illustrates that
noise can be artificially reassigned to different objects, as the state in Eq. (2.10) is closer to
pure than the one in Eq. (2.17). Note that the range of gauge transformations is constrained
by ε2 and so cannot significantly change the effective temperature for systems with high
quality readout. We could have added larger errors by considering a non-unital (e.g.,
Aγ,qB) or unitary gauge transformation at the cost of making the errors gate-dependent
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and consequently giving a more complicated example. We did not do this as our intent is
to clarify that the gauge freedom is more than a basis mis-match [37] and is distinct from
the issue of gate-dependent noise [27, 29, 37]. In particular, we note that the full effect of
the gauge freedom for states and measurements is unknown.

2.3 Gauge and Representation of Quantum States

We have seen that under realistic circumstances, the same experiment can be described
by distinct gate-sets that suggest different physical noise models due to a gauge freedom.
In this section we illustrate how representations of quantum states are related to the
concepts of gauges and gauge transformations. For clarity we focus on the representation
for quantum states, but similar arguments can be made about gate and measurement
operations.

From the point of view of scientific realism, the apparatus (e.g., a qubit) has a physical
existence and properties (which may be relative to the environment) independent of our
representation. We describe the abstract state of this physical object as a noumenal state
following the terminology in [54], denoted as N in Figure Fig. 2.1. Here we slightly change
their definition to include inN both physically allowed (denoted as P) and forbidden states,
such that the set N contains both states that the system can be in, and ones that it cannot
be in based on the physics. Quantum mechanics allows us to assign to each noumenal state
a mathematical representation which is an element of a Hilbert space Hd: for example,
one can associate the system with a matrix that summarizes its properties, and the set of
all d × d matrices is called R in the same figure. Such an association is what we call a
gauge Γ, which is a bijective map from N to R: the bijectivity of the map should be clear
from our inclusion of physically-forbidden states in N, which allows assigning “some state”
to every d × d matrix. Different choices of Γ thus correspond to different mathematical
descriptions of the noumenal states.

The common formulation of quantum mechanics says that every state of a quantum ob-
ject can be described by a density operator [55], which is a part of the canonical constraints
defined in Section 2.2. This means that there exists a canonical gauge

Γ1 : N → R, Γ1(P) = Dd (2.19)

where Dd is the set of d × d density operators. In fact, there exists a family of canonical
gauges that are all related to Γ1 through unitary gauge transformations which preserves
the shape of Dd. Satisfying the canonical constraint implies that we should work in one of
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Figure 2.1: Diagram illustrating the distinction between the set of noumenal states N and
their mathematical representations R. For a single qubit, R is the set of 2 × 2 matrices.
A gauge is a bijective map Γ : N → R. Let P be the set of all noumenal states that
can possibly be prepared physically. In general, P is unknown, but Γ(P) is assumed to
satisfy the canonical constraints, that is, to be the set of density matrices. In our example,
Γ1(P) is the set of density operators in the corresponding Hilbert space and B12 is a gauge
transformation from Γ1 to Γ2. Whether an object in R directly corresponds to objects
in P or not depends on the particular gauge under which the object is represented. For
example, r1

2 = Γ1(n2) is a density operator while r2
2 = Γ2(n2) is not, despite both being

the image of the same physical state.

these canonical gauges. Now, consider another gauge Γ2 which can be converted from Γ1

with a gauge transformation B12, defined by

B12 := Γ2(Γ−1
1 ), B12(r1

∗) = r2
∗ (2.20)

where the r’s are members in R and the superscript denotes the gauge in which they are
represented. In the light of Eq. (2.15), this transformation can be represented in Pauli-
Liouville representation as

|B12(ρ)〉〉 := B12|ρ〉〉, 〈〈B12(M)| := 〈〈M |B−1
12 , GB12(Φ) := B12GΦB

−1
12 (2.21)

As a subset of R, Γ1(P) is generally not invariant under an arbitrary gauge transformation:
consider a general trace-preserving transformation given by the following transformation
matrix

B12 =

(
1 0
~x y

)
(2.22)
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where ~x is a (d2− 1) by 1 real vector and y is a (d2− 1) by (d2− 1) real matrix: the image
of this affine transformation of Γ1(P) is a different subset of R. Such a gauge is perfectly
valid in principle, provided that all the gates and measurement operators are transformed
according to Eq. (2.21) as well, even though Γ2(P) is no longer the set of density operators.

The existence of a non-canonical gauge implies, for example, that a physical state may or
may not be represented by a density operator: as illustrated in Fig. 2.1, r2

1 ∈ Γ1(P) whereas
r2

2 /∈ Γ1(P). Similarly, a density operator in a non-canonical gauge does not necessarily
correspond to a physical state, as r2

3 ∈ Γ1(P) but n3 /∈ P. One example for the state n3 is
a qubit state represented as 1

2
(I+ 10

9
σz) in a canonical gauge. It is not positive semidefinite

and thus lies outside I1, representing an abstract state the qubit cannot be in. Now, using
B12 = B from Eq. (2.16) with q = 9

10
, the image of n3 under Γ2 becomes 1

2
(I+σz), which is a

density operator, but only as a consequence of this non-canonical gauge. We conclude that
if the gauge is unknown, the mathematical representation does not imply the noumenal
state is physically possible. Representations satisfying the canonical constraints are easier
to work with, so it is often implicitly assumed that all gate-set elements (obtained from a
tomography experiment, for example) are expressed in a canonical gauge. However, this
assumption can only be verified by performing perfect experiments, which are axiomatically
the operations specified by the canonical constraints (up to a unitary change of basis).

2.4 Operational interpretations of figures of merit

The existence of this gauge freedom has direct implications for figures of merit used to
evaluate quantum operations. The main problem is that there is no way to know whether
an experimentally-determined gate-set element is expressed in a canonical gauge. We have
already seen in Section 2.2 that by changing the gauge, the states can appear as having
different expressions; the same holds true for gates and measurement operators.

From quantum information theory, we have successfully attached some operational
meanings to various distance metrics: an important example is the interpretation for the
diamond norm distance between two channels A and B as the maximum distinguishability
between output states under a fixed input [56]. Mathematically,

1

2
‖A − B‖� = max

M∈Γ(M),ρ∈Γ(P)
〈〈M |(A− B)⊗ I)|ρ〉〉 (2.23)

where P and M are the set of physically possible states and measurements respectively.
This operational meaning is gauge invariant, provided one consistently transforms A, B,
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Γ(P), and Γ(M). However, when A is an experimentally reconstructed gate and B is its
ideal target, Γ(P) and Γ(M) are unknown and so the above maximization that leads to its
operational meaning cannot be performed. To obtain concrete numbers, people calculate

1

2
‖A − B‖� = max

M∈µ(Dd),ρ∈Dd
〈〈M |(A− B)⊗ I)|ρ〉〉 (2.24)

where µ(Dd) is the set of all POVMs. However, this assumes that the reconstructed A
and the ideal target B are expressed in a canonical gauge. While B is an ideal gate, its
representation may not be unitary in a non-canonical (and unknown) gauge. Other works
have reported that the quantity 1

2
‖A − B‖� can be changed by changing the gauge and used

this to minimize reported error rates [23], however, such changes are obtained by implicitly
changing the set of physically allowed states and measurements. Note that even in one
special case of interest where B = I, which is gauge invariant, A is still reconstructed in
an unknown gauge.

We briefly discuss several common practices related to this gauge freedom in quantum
tomography. First, a common statistical method used in tomographic reconstructions is
Maximum Likelihood Estimation (MLE), which takes the estimated gate-set to be the one
that maximizes the likelihood function of obtaining the experimental data, while restricting
the gate-set elements to satisfy the canonical physicality constraints [57, 58]. However, all
gauge-equivalent gate-sets are equally likely to produce the data by definition. In the
process of optimization, one will find that the likelihood function profile has the same
value wherever two points are related by a gauge-transformation, and the actual output is
largely a matter of the optimization algorithm and the initial parameters [59].

Second, the process known as “gauge optimization” is commonly adopted in GST ex-
periments whereby the gauge transformation matrix B is varied to minimize the distance
from the target gate-set according to a (non-gauge-invariant) weighted distance measure
[23]. Such optimization undermines a common use of tomography, namely assessing the
performance of a system against some external threshold (e.g., a fault-tolerance threshold)
because this optimized gauge is just as arbitrary as any other gauge. Specifically, one still
cannot know whether the resultant gate-set is a faithful representation of the apparatus, in
particular, whether the states and measurements that satisfy the canonical constraints are
actually the images of the set of physically possible states and measurements respectively.

Furthermore, the optimization can change the relative size of errors from different com-
ponents of the device, leading to misunderstandings about their relative quality. This
misidentification of error was recently observed experimentally in a trapped ion processor:
in particular, fig. 4(h) in [60] demonstrates that the gauge optimization procedure may
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effectively cancel some gate errors that were purposely added, resulting in a smaller “di-
amond norm distance” than expected, which implies unrealistically good quantum gates.
In that paper, and in other systems where, for example, a basis change in the classical
software is used to achieve certain “virtual” gates [61, 62], experimentalists have a priori
information about which operations are better. This is also true for state and measurement
operations in some systems: for example, in an NMR spectrometer there is a well-defined
Z direction set by the external magnetic field, which defines the initial qubit states with
which all other operations are calibrated. But incorporating such information into the
optimization procedure is a challenging task, and the resulting representation will only be
as reliable as the prior information.

2.5 A Gauge-Invariant Measure for Gate-Sets

The gauge freedom prevents one from using conventional distance measures to faithfully
evaluate the quality of individual quantum operations. Note that our discussion is carried
out in the absence of any additional errors such as finite-counting, and in a real experi-
ment the situation becomes even more complicated. Fundamentally, this problem is due
to the limited information that can be gained from experimental probabilities. A gauge-
transformation re-assigns state, gate, and measurement “errors” by adjusting their relative
appearance in different representations, while keeping the experimental measurables un-
changed, although some degrees of freedom can be fixed by convention (e.g., that the state
preparation is diagonal in the Z eigenbasis).

We now propose a gauge-invariant figure of merit for a gate-set. To the best of our
knowledge, this is the first fully gauge-invariant measure, addressing a problem raised in
Ref. [59]. Let Φ denote the gate-set {S,G,M} and C denote a particular experiment with
input state ρ ∈ S, measurement M ∈ M, and a set of m gates G1...Gm each selected from
G. The only observable property of an experiment C is the probability distribution over
outcomes. We can quantify the error of the experiment by the total variation distance
between the observed and ideal distributions over outcomes,

δd(C, C̃) :=
1

2

∑
i

∣∣∣Tr
[
M̃ †

i G̃m:1(ρ̃)
]
− Tr

[
M †

iGm:1(ρ)
]∣∣∣ (2.25)

where the tilde represents real versions of the operations, and the subscript i denotes dif-
ferent measurement operators such that

∑
iMi = I. For a particular experiment, this

number only depends on outcome probabilities, and therefore is gauge-invariant by defi-
nition. The total variation distance is a metric between two probability distributions (for
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further motivation and background on this metric, see chapter 4.1 of [63]). Denoting the
set of all experiments with m gates by Am, we further define the Mean Variation Error
(MVE) over Am with the underlying gate-set Φ as

x(Φ,m) :=
1

|Am|
∑
C∈Am

[δd(C, C̃)] (2.26)

Note that MVE is a special case of the mean variation distance (MVD) between two
gate-sets Φ1 and Φ2 with the same number of elements in S, G and M, where Φ2 is
chosen to be an ideal version of Φ1. The MVD is a metric between two gate-sets, up to
a gauge transformation, if the images of state preparation and measurement processes are
tomographically complete. Also note that the size of Am is given by |Am| = |S||G|m|M|.

The MVE quantifies on average how well the apparatus performs a random experiment
from the gate-set. In the case where the measurement is a projective measurement in the
basis of the initial state (i.e., ρ = Mi for some i) and the gate sequence is self-inverting1,
δd(C, C̃) can be simplified as

δd(C, C̃) =
1

2

(∣∣∣Tr
[
M̃ †

i G̃m:1(ρ̃)
]
− 1
∣∣∣+
∑
j 6=i

∣∣∣Tr
[
(I − M̃j)

†G̃m:1(ρ̃)
]
− 0
∣∣∣)

= 1− Tr
[
M̃ †

i G̃m:1(ρ̃)
] (2.27)

whose average over Am is just 1 minus the “survival probability” plotted in a conventional
randomized benchmarking experiment. When G is a unitary 2-design, the MVE restricted
to self-inverting gate sequences is well-approximated by a linear relation to first order in
the average error rate [29, 27].

However, for generic gate sequences, the MVE behaves differently depending on the un-
derlying error model. This behavior provides additional information about the underlying
error mechanism compared to a conventional randomized benchmarking experiment [64].
To illustrate this, we simulated random circuits of varying length m sampled from the
gate-set Φ = {S = |0〉〈0| ,G = Cl1,M = |0〉〈0|} (with Cl1 denoting the set of 1-qubit Clif-
ford gates), where erroneous gates are represented as G̃ = EG for a fixed error channel E .
We simulated two types of random circuits: circuits from the entire set of possible exper-
iments allowed by the gate-set, and circuits restricted to self-inverting gate sequences. In
both simulations, the state and measurements are assumed to be error-free. The results

1A self-inverting circuit is one where all the gates performed in the circuit compose to the identity
operation in the absence of gate errors.
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Figure 2.2: Simulated mean variation error from Eq. (2.26) under two error models for a
gate-set with ρ = M1 = |0〉〈0|, and G = Cl1 being the 1-qubit Clifford group. The depolar-
izing error channel is ED(ρ, r) = (1−2r)ρ+rI, whereas the unitary error is EU(ρ, θ) = e−iθZ

with θ = arccos
(√

1− 3r/2
)

, such that the error channel on every gate has an averaged

infidelity of r = 10−4. Blue circles indicate self-inverting (identity) circuits whereas red
squares indicate random circuits. Each point is generated from averaging 200 random cir-
cuits with length m; error bars are standard error in the mean and data show significant
spread for unitary error. MVE may have different behaviors under different error types
(m or

√
m) for a random circuit, as compared to the linear behavior for a self-inverting

circuit. The inset in the second plot is a zoom-in view for small m, showing the significant
underestimation of MVE by restricting to self-inverting circuits.

are shown in Fig. 2.2. When the error is a depolarizing channel, the MVE scales linearly
with the gate sequence length m for both random and self-inverting circuits, with the
slope for random circuits being ∼ 1/3 the slope for self-inverting circuits. This is because
when the state is transformed onto the xy-plane of the Bloch sphere right before measure-
ment (which happens about 2/3 of the time), the depolarizing channel does not affect the
outcome probability of a z-axis measurement, resulting in an MVE of 0 for those circuit
sequences. Additionally, there is no statistical error present for the self-inverting circuit
under this error model because all circuits of the same sequence length have exactly the
same overall error, as the error channel commutes with all the gates in Cl1. In contrast,
for a gate-independent unitary error, the scaling remains linear for the self-inverting cir-
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cuits but exhibits a
√
m scaling for generic circuits. This occurs because when the state

system is in the xy-plane before measurement, each error contributes a random sign to
the probability of each outcome, whereas when the system is on the z axis each error has
to contribute a systematic sign [64]. As shown in Fig. 2.2, this implies that restricting to
self-inverting circuits can underestimate the MVE by over an order of magnitude in the
small-m regime, which is relevant for near-term quantum computer applications.

Unlike other distance measures where an improvement in quality can be caused by
a bias in choosing a gauge, a decrease in MVE is unequivocally an improvement due to
its gauge-invariance and because, by definition, the output probability distribution gets
closer to the ideal distribution. Furthermore, the MVE captures the relevant behavior for
generic circuits, rather than just self-inverting circuits which, by design, perform no useful
computation.

A protocol for estimating the MVE of a gate-set Φ = {S,G,M} is as follows:

1. Select Nm random experiments C ∈ Am, for some Nm large enough to accurately
approximate the average.

2. Repeat each experiment C Km times to estimate 〈M̃i, G̃m:1(ρ̃)〉 for each C.

3. Compute the ideal probabilities 〈Mi, Gm:1(ρ)〉 for each observed outcome of C̃.

4. Calculate δd(C, C̃) for each experiment C, average over them to estimate x(Φ,m).

5. Repeat step 1–4 for different values of m to measure the scaling behaviour of MVE.

Note that if G is a unitary 2-design and the states and measurements are chosen appro-
priately, the applied operations are identical to those used to estimate the unitarity [65].
The primary difference in the protocol is that it is more scalable, more general, and has
different post-processing.

The scalability of the above protocol is affected by the number of experiments Nm, the
number of repetitions for each experiment Km, and the complexity of calculating the ideal
probabilities. The number of experiments determine the accuracy of the MVE, and can
be estimated using Hoeffding’s inequality independently of the number of qubits [66]. The
complexity in the protocol is determined by the complexity of calculating probabilities and
by the number of repetitions required to estimate δd(C, C̃) to a fixed precision. The number
of repetitions required to estimate δd(C, C̃) to a fixed precision is polynomial in the number
of outcomes [67]. To efficiently characterize multi-qubit gate-sets (where the number of
raw outcomes grows exponentially with the number of qubits), we can coarse-grain the
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measurements over sets of outcomes. The computational complexity of calculating each
probability will depend on the gate-set in question. The ideal probabilities can be efficiently
computed if G is the N -qubit Clifford group [68, 69]. For gate-sets containing only one-
and two-qubit gates and product states and measurements, the MVE can be computed
for small values of m. However, for a generic gate-set, each probability will be hard to
compute. Of course, for small systems with a few qubits, this procedure can nonetheless
be performed quickly on a classical computer.

An experimentalist can perform a feedback loop whereby they update the control pa-
rameters, rerun the MVE evaluation experiment (potentially for some fixed value of m)
and compare to the previous result to see if the error has decreased. Protocols that use
feedback from experimental outcomes to improve control over quantum devices have been
proposed before, such as in [70] where control parameters were optimized by maximizing
the randomized benchmarking survival probability for a fixed sequence length. Optimiz-
ing the MVE instead of the randomized benchmarking survival probability corresponds to
minimizing the effect of errors on generic quantum circuits, rather than minimizing the ef-
fect of errors on self-inverting circuits. As demonstrated in Fig. 2.2, errors in self-inverting
circuits may be substantially smaller than those in generic circuits because such circuits
suppress coherent errors and implement a form of randomized dynamical decoupling [71].

2.6 Summary

In this chapter, we demonstrated how a gauge degree of freedom arises when representing
a physical apparatus with a gate-set including a finite number of initial states, gates,
and measurements, in the experimentally-relevant case where only measured probabilities
are available. We discussed the difficulty in interpreting conventional quality metrics for
individual gate-set elements, when the quantum processor was characterized in a non-
gauge-invariant manner. Next, an alternative operational quality measure for a gate-set
called mean variation error was proposed, along with a protocol to measure the MVE.
Numerical simulations showed that MVE has different scaling for random vs. self-inverting
circuits under certain noise models, suggesting that the restriction to self-inverting circuits
in conventional randomized benchmarking procedures may lead to an underestimation of
error. We also briefly sketched a method to improve experimental control that is not prone
to the gauge ambiguity.
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Chapter 3

SPAM error characterization through
noise propagation

We have seen that a gauge freedom prevents one to obtain operationally meaningful quality
metrics for individual gate-set elements, with no additional assumptions about the form of
these elements. While gauge-independent measures can be constructed, few have appeared
in the literature and none has been widely used by now. Therefore, from a characterization
point of view, it is equally interesting to study the following parallel question: under what
assumption can one eliminate the gauge freedom to obtain a unique gauge-dependent
measure, and how can one estimate such measures experimentally?

In this chapter we study this problem, with a particular focus on obtaining unique
gauge-dependent measures for state preparation and measurement (SPAM) processes. We
look at the problem of SPAM error characterization from a new perspective, by demon-
strating a sufficient condition for eliminating the gauge ambiguity, providing a protocol to
estimate SPAM error rates, while taking gate imperfections into account. After quickly
re-illustrating the problem caused by the gauge freedom, we show that distinguishing state
preparation error from measurement error is possible in Section 3.1, if one assumes that
there exists one qubit whose initial state is uncorrelated with other qubits in a processor.
We provide a simple protocol from which the SPAM operators can be separately deter-
mined in Section 3.2, in the case where quantum gates are ideal, by propagating the error
from these other qubits to the initially uncorrelated qubit. We then derive in Section 3.3
upper and lower bounds on the estimated parameters in case of non-ideal quantum gates,
based on an error metric that can be estimated independently of SPAM, resolving the self-
consistency problem. We performed our protocol on a publicly available 5-qubit quantum
processor and obtained consistent results with a simulation.
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3.1 SPAM characterization and gauge ambiguity

The ideal operations on a QPU generally include initializing the qubits in a state described
by a density operator ρ, applying an arbitrary sequence of unitary gates, and making a
final measurement described by a k-outcome POVM M = {M1 . . .Mk}. We will assume
here that the state which the QPU can be initialized to is unique. The implementation of
each of these operations is imperfect due to a variety of noise processes. Noisy implemen-
tations of operations are denoted with an overset ∼ so that, for example, ρ̃ is the noisy
implementation of ρ. To avoid overcrowding the text, we do not put additional ∼’s on pa-
rameters describing any operator: their meaning can usually be understood from context,
and additional special notations on parameters will be defined prior to being used.

Denoting the N -qubit Pauli basis as PN = {I,X, Y, Z}⊗N , we can uniquely write

ρ̃ =
∑
P∈PN

2−N Tr
[
P †ρ̃

]
P :=

∑
P∈PN

2−NsPP,

M̃i =
∑
P∈PN

2−N Tr
[
P †M̃i

]
P :=

∑
P∈PN

2−NmP,iP.
(3.1)

In the Pauli-Liouville representation, ρ̃ is represented as a 4N × 1 vector |ρ̃〉〉 with compo-
nents 2−N/2sP 1, and similarly M̃i as |M̃i〉〉. A linear map G is represented by a 4N × 4N

matrix ΦG with elements
(ΦG)P,Q = 2−N Tr[P G(Q)]. (3.2)

Φ is called the Pauli transfer matrix, or PTM. In this picture, the result of mapping G̃ to
a state ρ̃ is given by a matrix multiplication: |G̃(ρ̃)〉〉 = ΦG̃|ρ̃〉〉. The probability p(ρ̃, G̃, M̃)

of an outcome corresponding to a POVM element M̃ given an input state |G̃(ρ̃)〉〉 can be
computed by the inner product via p(ρ̃, G̃, M̃i) = 〈〈M̃i|ΦG̃|ρ̃〉〉.

We now give an operational definition of what “SPAM errors” and “SPAM error rates”
mean. Consider the experiment where one prepares the initial state and performs a mea-
surement. The ideal and actual probabilities of obtaining outcome i are 〈〈Mi|ρ〉〉 and
〈〈M̃i|ρ̃〉〉 respectively. We thus define the SPAM error to be the difference between these
probabilities for this experiment, that is, as the vector δSPAM with components

δSPAM,i(ρ̃, M̃) := 〈〈Mi|ρ〉〉 − 〈〈M̃i|ρ̃〉〉. (3.3)

Next, the state preparation (SP) error vector δSP and the measurement (M) error vector
δM are defined by δSP,i = δSPAM,i(ρ̃,M) and δM,i = δSPAM,i(ρ, M̃), i.e., the SPAM error

12−N/2 serves as a normalization factor.
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vector with the measurement/state preparation operators replaced by their ideal versions,
respectively.

For a single qubit with a 2-outcome measurement, we can always write δSPAM := (1−
δ, δ)T . In the usual case where ρ = M0 = |0〉〈0|, δ corresponds to the probability of
returning an outcome 1 when measuring ρ, which we will refer to as the SPAM error rate.
Then, δSP and δM are also each characterized by a single parameter, which we will refer
to as the SP-error rate δSP, and the M-error rate δM, respectively.

Ideally, one would like to obtain a full, unique description of ρ̃, M̃ , and all possible
control operations G̃j. We have already seen in the previous chapter that this is impossible
due to a gauge freedom [72, 24, 73]: these operators are hidden and we can only infer their
values from probabilities based on the Born rule. The choice of (ρ̃, G̃j, M̃) given a list of
p(ρ̃, G̃j, M̃) is non-unique and are related by a gauge transformation

|ρ̃〉〉 → B|ρ̃〉〉, 〈〈M̃i| → 〈〈M̃i|B−1, ΦG̃j → BΦG̃jB
−1, (3.4)

where B is an invertible matrix. This preserves all outcome probabilities when applied
to all elements simultaneously, making the transformed set equally valid as the original
set. On the other hand, most quality metrics for individual components (such as δSP, δM,
or gate error rates) are not gauge-invariant. Since separate components in a QPU often
require individual calibration in reality, having non-unique metrics is problematic because
it becomes unclear whether an operation has improved (e.g., due to a change in control
parameter) or not.

Next, we consider the weaker question of SPAM characterization, which boils down
to estimating sP and mP,i. Previous studies on quantum state and detector tomography
showed that ρ̃ or M̃ can be determined if the other is fully known. If we assume both to
be in the most general form (satisfying only the physicality constraints that ρ̃ is a density
matrix and M̃ is a POVM), but allow an arbitrary set of known, unitary gates Gj, can
we learn either ρ̃ or M̃? Interestingly, the answer is still negative. In particular, since a
unitary gate Gj is trace-preserving and unital, it can be parametrized by

ΦGj =

(
1 0
0 φj

)
(3.5)

where φj is a block matrix with components φP,Q,j. All outcome probabilities are thus in
the form

p(ρ̃,Gj, M̃i) = 2−N(mI⊗N ,i +
∑

P,Q∈PN\{I⊗N}
φP,Q,jsQmP,i) (3.6)

where we followed the definitions in Eq. (3.1) 2. Among all such equations which can be

2note that sI⊗N = 1 by the unit trace constraint.

25



constructed, sQ and mP,i always appear in a product form and cannot be separately solved
for, assuming that φ only consists of constants. A gauge transformation (named “blame
gauge” in [24]) of the form

sQ → xsQ, mP,i → mP,i/x (3.7)

in the second term for some real number x will keep the equations unaltered 3. While
this transformation also needs to maintain the physicality constraints on ρ̃ and M̃ , it is
valid for most experimentally relevant cases [73]. Therefore, in addition to assuming ideal
gates, one needs further assumptions about the structure of SPAM elements, and needs to
design an effective operation that breaks this symmetry. Below, we will state a sufficient
assumption, and present a protocol that achieves this by engineering Φ to depend upon
the SPAM coefficients.

3.2 Protocol assuming ideal gates

To develop a straightforward protocol, we engineer simplified effective SPAM operators
based on an averaging technique in [74], by removing undesired components in ρ̃ and M̃ .
From now on, the qubit or system of qubits whose SPAM operators we would like to
know will be called the target qubit (system), and we will use the subscript t to indicate
parameters of the target qubit (system). For now we assume all quantum gates to be
ideal, and will relax this later. Consider a single qubit initialized to ρ̃ and has a 2-outcome
POVM M̃ = {M̃0, M̃1 = I − M̃0}, parametrized by

|ρ̃〉〉 =
(1, sX , sY , sZ)T√

2
, 〈〈M̃0| =

(mI ,mX ,mY ,mZ)√
2

(3.8)

We will assume that the ideal state and measurement are ρ = M0 = |0〉〈0|, correspond-
ing to sX = sY = mX = mY = 0, and sZ = mZ = 1 in Eq. (3.8). In reality these parameters
deviate from the ideal, but we can use the following technique to eliminate some undesired
components. By linearity of quantum operations and probabilities, applying two Pauli
gates from the set {I, Z} immediately after state preparation and before measurement,
and averaging over outputs from all possible circuits would set sX = sY = mX = mY = 0
(this is similar to the phase cycling technique commonly used in NMR spectroscopy to
suppress spurious signals [75]). To fix mI , we apply an additional gate from {I,X} imme-
diately before the measurement, and relabel the outcome when we apply an X so that the

3Importantly, it also keeps the gate intact, because the matrix B here commutes with ΦGj for all unitary
gates Gj
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qa I/Z I/X̊ I/Z qa I/Z I/X̊ I/Z

qt I/Z

Figure 3.1: Circuits for determining the coefficient sZ,t on the target qubit qt, assuming
ideal gates. The one on the left/right gives αa and βt, respectively. Combinations of SPAM
averaging gates are run as separate experiments (the outcome is flipped classically when
the first M-averaging gate is X, indicated by an overhead circle). Adjacent single-qubit
gates (grouped by the dashed box) are logically compiled to a single gate when running
the circuits.

outcome 0 corresponds to the POVM element M̃1 and vice versa. We label this with an
overhead circle in Fig. 3.1 and Fig. 3.2. Averaging the results from these two circuits (with
an I or X averaging gate) effectively sets mI = 1. Combining the above, the problem is
now reduced to finding sZ,t and mZ,t on the target qubit qt.

A few words regarding SPAM averaging shall take place before we proceed. While
the SPAM operators after averaging deviate from the original ones, they do represent the
ones that actually enter the circuit, if SPAM averaging is consistently applied in all future
circuits. Since our protocol estimates exactly the parameters in this averaged model, they
will predict the correct experimental outputs for future circuits as well.

Now, we provide a simple protocol that estimates sZ,t and mZ,t. We assume that there
exists an ancillary qubit qa which can be prepared and measured independently, i.e. is
described by two independent but unknown coefficients sZ,a and mZ,a (after applying the
same SPAM averaging). If we apply a CNOT gate controlled on qt and targeted on qa (see
Fig. 3.1), which we will call Ct,a, the PTM on qa can be calculated to be a diagonal matrix

Φ = diag(1, 1, sZ,t, sZ,t), (3.9)

which depends upon sZ,t as desired. In other words, the entangling CNOT gate propagates
SP parameters of qt to qa. Because measurement on qa is unaffected by the gate, we can
learn sZ,t as follows: define α and β as the expectation values 〈M̃0 − M̃1〉a on qa in the
absence and presence of the CNOT gate, respectively. A direct calculation (see Eq. (3.8)
and Eq. (3.9)) shows

αa = sZ,amZ,a, βt = sZ,tsZ,amZ,a, (3.10)

which gives sZ,t = βt/αa. mZ,t can then be determined by a separate experiment that
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measures αt on qt with
mZ,t = αt/sZ,t. (3.11)

Note that the subscript for α refers to the qubit being measured, while for β it refers to
the qubit whose parameter is being propagated. The SP- and M-error rates can then be
computed as

δSP,t = (1− sZ,t)/2, δM,t = (1−mZ,t)/2. (3.12)

We can generalize this idea to measuring parameters of an N -qubit system, as long as
we assume that there exists one additional ancilla qa that can be prepared and measured
independently. This is thus a sufficient condition for breaking the gauge symmetry. Here,
αa is estimated using the same circuit as the one on the left of Fig. 3.1. To estimate βP,t
where P labels the Pauli components of the unknown initial state, the CNOT in the 1-
qubit case is generalized to UP = (H⊗I)CP (H⊗I), where CP corresponds to the unitary
|0〉〈0| ⊗ I + |1〉〈1| ⊗P , P = P1⊗ · · · ⊗PN , Pi ∈ {I, Z}, and H corresponds to a Hadamard
gate on qa. CP is controlled on qa and targeted on the N qubit system (see Fig. 3.2).
As shown in Appendix A.1, the effect on qa is identical to Eq. (3.9) with sZ,t replaced
by sP,t. Repeating for all possible P ’s will fully determine ρt, allowing one to determine
the POVMs by detector tomography. This is summarized in Algorithm 1. Note that
the number of circuits to average over grows exponentially with the size of qt. For large
systems, one should instead randomly sample from the space of all SPAM averaging gates.
Additionally, the controlled-P gate requires O(N) controlled-Z gates and has depth O(N)
for the worst case, but can be achieved by 2 all-to-all Mølmer-Sørensen gates [76, 77].

· · ·

qa I/Z H H I/X̊ I/Z

qt

I/Z

P

I/Z

Figure 3.2: The circuit for estimating βP,t of an N -qubit system qt, assuming ideal gates.
The dotted box indicate the propagating cycle UP .

We would also like to point out that small modifications to Algorithm 1 would allow one
to obtain all components of the SPAM operators in principle. For example, in the 1-qubit
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case, one could average over {I,X} instead of {I, Z} to obtain |ρ̃〉〉 ∼ (1, sX,t, 0, 0)T . Then
performing a Y (−π/2) rotation would result in |ρ̃〉〉 ∼ (1, 0, 0, sX,t)

T , so that sX can then
be determined in exactly the same way as sZ,t before. But this is unnecessary if SPAM
averaging is consistently applied for all future circuits, as we have discussed previously.

Algorithm 1 Estimating the SP- and M-operators of an N -qubit system, assuming ideal
gates

1: Choose an ancillary qubit qa
2: Measure qa (see left of Fig. 3.1) and record the result αa
3: for each P in {I, Z}⊗N do
4: Apply the circuits in Fig. 3.2 with gate P , measure qa and record the result βP,t
5: Calculate sP,t = βP,t/αa
6: end for
7: Apply detector tomography on qt to estimate mP,j for each POVM element M̃j, where
j = 1...k for a k-outcome POVM.

3.3 Protocol with imperfect gates

We now take into account gate imperfections. The effects of gate errors must be treated
in a way that does not rely on any prior information on SPAM, since they are assumed
unknown. This prohibits using protocols like process tomography to extract the full effect
of the gate in question, and substitute to replace Φ in Eq. (3.9). Protocols that estimate
gate error strengths independently of SPAM offer a solution to the problem. Here we utilize
the recently proposed cycle benchmarking (CB) [78] procedure. CB estimates the process
infidelity of a composite cycle (consisting of a round of the original gates G̃ composed with
a round of “dressing” gates D̃), averaged over all Pauli dressing gates, namely

rCB(G̃,G) :=
∑

D∈{I,X ,Y,Z}⊗N
4−Nrp(G̃D̃,GD), (3.13)

where the process infidelity is

rp(G̃,G) := 1− 4−N
∑
P∈PN

2−N Tr
[
G(P )G̃(P )

]
. (3.14)

The figure rCB is relevant when a quantum computation task is used in conjunction with
a noise-tailoring procedure called randomized compiling (RC) [74]. Here, random twirling
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gates are inserted into the original circuit, such that the logical circuit is preserved. Uni-
formly averaging over all twirling gates turns the error of a composite cycle into a Stochastic
Pauli channel P : P(ρ) =

∑
P∈PN cPPρP

†, where cP ’s form a probability distribution. The

error rate of P is then precisely characterized by rCB(G̃j,Gj) [78]. This twirling is exact
under the standard assumption that errors on twirling gates are gate-independent (which
we assume throughout), and has a relatively small correction when gate dependence is
present [74]. For simplicity we also make the standard assumption that 1-qubit gates have
a 1-qubit error channel, however we conjecture that this can be relaxed.

δSP,t, lower δSP,t, upper δM,t, lower δM,t, upper
1

2
− βt + 2rt,a

2αa

1

2
− βt − 2rt,a

2αa

1

2
− αtαa

2βt − 4rt,a

1

2
− αtαa

2βt + 4rt,a

Table 3.1: Upper and lower bounds for 1-qubit SPAM error rates (Eq. (3.12)) on a target
qubit qt. α and β are defined in Eq. (3.10). rt,a is shorthand for rCB(C̃t,a, Ct,a).

Let’s now denote the parameters that would have been obtained with an ideal propagating
cycle with a superscript ic (i.e., ideal cycle). These are the actual parameters describing
our unknown SPAM operators, which are not affected by the imperfect gates. On the
other hand, the ones that are actually obtained in experiments will be denoted as normal
letters. We will show in Appendix A.2 that βic

P,t can be bounded using the measured βP,t
and rCB(ŨP ,UP ) as:

βic
P,t ∈ [βP,t − 2rCB(ŨP ,UP ), βP,t + 2rCB(ŨP ,UP )], (3.15)

which holds independently of the dimension of qt. Since sP,t = βP,t/αa, and because αa
does not involve gates with unknown effects, we see that

sic
P,t ∈ [

βP,t − 2rCB(ŨP ,UP )

αa
,
βP,t + 2rCB(ŨP ,UP )

αa
]. (3.16)

Repeating for all values of P would give a bound on each parameter sic
P,t of the estimated

initial state ρ̃. Recall from our previous definition that the i-th component of δSP is given
by

δSP,i = 〈〈Mi|(|ρ〉〉 − |ρ̃〉〉) =
∑
P

mP,i(s
ideal
P − sP ), (3.17)

where we used the superscript “ideal” to represent the ideal parameters of ρ. This is a
linear function of sP , whose bounds are given by Eq. (3.16). Therefore the upper and lower
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bounds for δSP,i can simply be obtained by optimizing each term in the sum, resulting in

δSP,i, lower =
∑
P

mP,is
ideal
P −

∑
P

mP,issgn(mP,i),

δSP,i, upper =
∑
P

mP,is
ideal
P −

∑
P

mP,is−sgn(mP,i),
(3.18)

where sgn is the sign function, and we have used the shorthand s− and s+ to represent the
lower and upper bounds in Eq. (3.16).

The bounds for measurement parameters is more complicated, since one would need to
perform measurement tomography based on the learned initial state, and different tomog-
raphy approaches will lead to different bounds. But, the principles behind all approaches
will be similar. Here we demonstrate with the simplest case of a linear inversion (LI)
tomography. In LI detector tomography, one prepares an informationally-complete set of
initial states ρ̃1 . . . ρ̃4N , which we assume have all been characterized using our procedure.
For qubit measurements in the computational basis, the unknown POVM elements will
correspond to the outcomes |0〉⊗N . . . |1〉⊗N , so there are a total of 2N of them. Arrange
the column vectors |ρ̃j〉〉 into a 4N × 4N matrix S. Arrange the vectorized POVM elements
|M̃i〉〉 into a 2N × 4N matrix R. One then measures each basis state ρ̃i and record the data
matrix with components Di,j = 〈〈M̃i|ρ̃j〉〉. This gives the matrix relation:

R · S = D (3.19)

which can be inverted as R = D · S−1 to solve for the unknown matrix R. In the absence
of gate error and measurement shot noise, this results in a noiseless reconstruction of the
POVM elements M̃i. In the presence of gate errors when measuring the states ρ̃j, we
have learned from Eq. (3.18) that each component of the vector |ρ̃j〉〉 is bounded. This
uncertainty translates into uncertainties in M̃i through the matrix inverse, S−1. In this
case, each component of the resulted 〈〈M̃i| is a (potentially highly nonlinear) function of
the components of |ρ̃j〉〉. Nonetheless, max and min values of 〈〈M̃i|k is guaranteed by the
extreme value theorem, and can be found using numerical programs such as scipy. From
this, bounds on components of δM can be derived in the same way as what we did for δSP .

The situation becomes particularly simple for 1 qubit with a 2-outcome measurement,
along with SPAM averaging. In this case there is only one unknown parameter sZ for ρ̃
and another one mZ for M̃0 (M̃1 is fixed by M̃0). The bound for sZ is given directly in
Eq. (3.16). Since mZ and sZ are inversely proportional (see Eq. (3.11)), the maximum
of sZ gives the minimum of mZ , and vice versa. We then use Eq. (3.12) to convert to
bounds on the error rates δSP and δM. These are summarized in Table 3.1. Intuitively, a
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smaller gate error corresponds to a narrower range, and the region restores the previous
point estimate (Eq. (3.10)) in the limit of perfect gates.

We incorporate gate error effects into Algorithm 1 by proposing a simple procedure to
separately estimate the single qubit SP- and M-errors in a QPU. For each qubit i, label it
as the “target” (t) and find an “ancilla” (a) such that a CNOT gate Ct,a is allowed by the
QPU’s connectivity. We then run the 1-qubit protocol to estimate the SPAM parameters
in Table 3.1. Repeatedly identifying each of the N qubits as the “target” gives a single-
qubit SPAM characterization of the full device. This is summarized in Algorithm 2. While
providing experimentally relevant single-qubit error rates for the full system, the protocol
has an overhead that only scales linearly with the system size, making it a practical tool
for many scenarios.

Algorithm 2 Estimating single qubit SP- and M-error rates on an N -qubit device

1: for each of the N qubits do
2: Label it as qt; choose an ancilla qa where Ct,a is allowed
3: Run the 1-qubit protocol to estimate αa, αt, and βt
4: Use cycle benchmarking to estimate rCB(C̃t,a, Ct,a)
5: Compute a regional estimate on δSP,t and δM,t on qt according to Table 3.1.
6: end for

3.4 Experimental results

We performed the above protocol on a publicly available 5-qubit QPU (ibmq-santiago [79])
to estimate δSP and δM on each qubit. For each target qubit, we chose the ancilla to be the
one connected to it with the lowest error CNOT. The presented experiment was performed
on the ibmq-santiago machine on Jan 28th, 2021. The specifications for each different type
of experiment are summarized as follows:

1. Each α was obtained by averaging exhaustively over the 4 possible cases, correspond-
ing to the cases where the compiled SPAM randomizing gates belong to {I,X, Y, Z}.
Each circuit is sampled with 8192 measurement shots.

2. Each β is estimated by averaging over 60 randomly compiled circuits (with a total
of 256). Each circuit is sampled with k = 1024 measurement shots. For practical
convenience, we performed sampling with replacement because the estimate precision
is sufficiently high; if higher precision is desired, one may switch to sampling without
replacement or even exhaustive sampling as in estimating α.
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3. The infidelity rt,a for each CNOT was estimated using cycle benchmarking by re-
peating the CNOT cycle {4, 84} times, and averaging over all 16 Pauli decay strings,
each by sampling 30 random circuits with 128 shots. The specific choice of CNOT
gates used in the experiment were: C0,1, C1,0, C2,1, C3,2, C4,3.

We used the TrueQ [80] software to generate circuits, submit to the IBM-Q server, and
perform data analysis. The range of possible error rates (i.e., between the upper and lower
bounds in Table 3.1) is shown in shaded regions for each estimated δSP or δM. The 95%
confidence intervals (CIs) of the upper and lower bounds are shown as error bars; their
derivations are slightly involved and can be found in Appendix A.3. Any region below
0 is discarded due to the physicality constraint that error rates are positive by definition
(Eq. (3.12)).

Since IBM-Q does not provide separate SP/M error rates for us to compare with, we
simulated the same circuits to gauge the validity of our experiment. For each qubit, we
individually add a state preparation error to it by replacing the ideal initial state |0〉 with
a density matrix ρ = diag(1− εSP, εSP). We add a measurement error by classically flipping
the outcome (symmetrically, from 0 to 1 and from 1 to 0) with probability εM. Gate errors
are simulated using a simple T1, T2 relaxation model: for each clock cycle in the circuit,
we apply a noise process to each qubit defined by the following Choi matrix

C =


1 0 0 e−t/T2

0 e−t/T1 0 0
0 0 0 0

e−t/T2 0 0 1− e−t/T1

 . (3.20)

We modeled noisy gates by assuming a simple T1 + T2 relaxation model, and using the
relaxation time and gate time obtained from the provider. The T1 and T2 relaxation times
are obtained from the provider and are tabulated in Table 3.2. Single-qubit gates all have
the same (35.6ns) gate time, according to the provider. The gate time of the CNOT gates
used in the experiments are tabulated in Table 3.3.

Qubit 0 1 2 3 4
T1 (µs) 75.9 134.667 120.21 137.32 100.68
T2 (µs) 140.18 96.34 87.25 94.1 133.12

Table 3.2: T1 and T2 for individual qubits on IBMQ-santiago.

By manually adjusting the relative magnitudes between δSP,i and δM,i (indicated by the
green stars) while fixing the total SPAM error to the measured value, we obtained a similar
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Gate C0,1 C1,0 C2,1 C3,2 C4,3

Gate time (ns) 526.2 561.7 568.9 412.4 341.3

Table 3.3: Gate time of each CNOT gate used in the experiment.

behavior compared to the data, strengthening our claim about noise on the physical device
(see the bottom half of Fig. 3.3). Our result shows that state preparation contributes more
to the total SPAM error on qubit 4, while not conclusively on the other qubits. Better
distinguishability can be achieved if higher quality gates are available, as shown by the
darker shaded regions in the bottom of Fig. 3.3, which represent the same bounds (error
bars omitted) in Table 3.1 with all gate times reduced to 1/5 of their original values.

3.5 Summary

In this chapter, we proposed a method to characterize state preparation and measurement
errors independently on a QPU. In the case where quantum gates are ideal, our method
returns the exact state preparation and measurement errors, resolving the gauge ambiguity
issue raised in the previous chapter. In the case where quantum gates are imperfect, by
utilizing randomized compiling and cycle benchmarking techniques, we derived upper and
lower bounds for the estimated SPAM errors in terms of gate error rates that can be
measured independently of SPAM. We demonstrated our protocol on a publicly available
QPU and observed consistent results between the data and a computer simulation. We
believe this protocol can be a valuable tool for benchmarking near-term quantum devices,
in complement to the existing protocols that estimate errors on quantum gates.
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Figure 3.3: Top: estimated single qubit state preparation (in red) and measurement (in
blue) error rates on ibmq-santiago QPU. Shaded regions represent the range of error rates
consistent with the measured gate error, and error bars are 95% CIs for the endpoints.
Green dots indicate measured total SPAM error δSPAM. All estimates are cut-off below
0%. Bottom: a simulation assuming T1, T2 relaxation gate errors on 2-qubit gates and
ideal 1-qubit gates, using the device’s specifications. Green stars mark the magnitudes of
SP- and M-errors used in the simulation, which combine to δSPAM on each qubit. Darker
regions mark the same bounds when all gate times are reduced to 1/5 of their original
values.
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Chapter 4

SPAM error characterization through
algorithmic cooling

In the previous chapter, we showed that the SPAM gauge ambiguity can be eliminated by
assuming the existence of one independent ancillary qubit, plus the application of untiary
gates. An alternative possibility to eliminate the gauge ambiguity is by applying non-unital
operations. For example, the 1-qubit amplitude damping channel is non-unital and thus is
not described by Eq. (3.5). Indeed, if one can fully relax the qubit to |0〉, then all errors
coming from measuring the state comes from the measurement, providing a method to
directly estimate εM. This can be seen as a novel application of algorithmic cooling (AC)
techniques which aim to reduce state preparation errors, and is the focus of this chapter.

In this chapter, we show that an extended form of AC, which we call measurement-based
algorithmic cooling (MBAC), can used to distinguish state preparation and measurement
errors. Moreover, it can also be used to reduce the initial state error by construction. In
Section 4.1 we review the history of AC. In Section 4.2 we give a review of conventional
AC protocols, which motivate the new MBAC protocols. In Section 4.3 we describe k-
qubit MBAC assuming ideal measurements on the ancillary qubits, and compare it with
the optimal reversible AC scheme. In Section 4.4 we describe a procedure to separately
characterize SPAM errors using MBAC. In Section 4.5 we relax the assumption made in
Section 4.3 and analyze MBAC when the ancillary qubits have finite measurement errors,
and derive a lower bound for its performance. In Section 4.6 we study the number of trials
needed to cool down a target qubit by a desired multiplicative factor, and illustrate the
practical usefulness of MBAC despite its probabilistic nature.
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4.1 Backgrounds

The original studies of AC were largely motivated by seeking ways to increase the effective
polarization of spins in a magnetic field. Ole W. Sørensen was the first to observe [81] that
certain unitary dynamics can lead to partial polarization transfer from a subset of spins
to the others in nuclear magnetic resonance (NMR) spectroscopy. He then derived the so-
called “universal bound on spin dynamics” [82], giving the maximum possible polarization
boost in such scenarios. Later, Schulman and Vazirani [83] studied a more abstract version
of this problem, and derived the maximum fraction of pure spins that can be extracted from
a given initial temperature. They considered a simplified model which ignored relaxation
of the spins, and based their studies purely on entropy transfer theories. This is usually
referred to in the literature as the “reversible scheme”, because it only rely on reversible,
unitary operations on the system which is considered as closed.

Later on, a new family of AC protocols were proposed under the name “heat bath
algorithmic cooling” (HBAC) [84, 85, 86]. The assumption is slightly different than in
reversible AC: instead of requiring all spins to have infinitely long relaxation times, it was
assumed that a subset of “computational spins” have a much longer relaxation time than
the rest, so-called “reset spins”. These assumptions are more realistic than the fully-closed
one in the reversible setting. HBAC performs alternate rounds of “entropy compression -
reset” subroutines, where entropy is transferred from the computational spins to the reset
spins during the compression stage, and eventually released into a thermal bath during the
reset stage. It has been shown that by considering the system to be semi-open, one is able
to achieve further entropy reduction in the computational spins compared to the reversible
scheme. Moreover, HBAC protocols usually involves simpler controls, and therefore has
been experimentally tested in different platforms [87, 88, 89, 90, 91]. More recently, AC
algorithms utilizing additional resources such as qubit-environment interactions [92] or
internal interactions [93] have been proposed. There have also been efforts on generalizing
the reset stage and find optimal thermalization operations within the set of all “thermal
operations” [94] (defined later in Chapter 5).

Meanwhile, there has been few efforts in studying the role of measurement for the task of
cooling. There may be historical reasons behind this lack of attention, presumably rooted
in how measurements are perceived in earlier days of quantum computing. In ensemble
quantum processors, the type of operations permitted is typically “global” or “coarse”, in
the sense that operations cannot be applied onto individual qubits, but only to the same
qubits in each of the many parallel quantum computers. Consequently, one is limited to
weak ensemble measurements that estimate expectation values of certain operators.

On the other hand, quantum processors nowadays are less restrictive: if projective
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measurements are allowed, a trivial way to cool a qubit is to measure it. If the outcome
is 0, the system is in the |0〉 state immediately after the measurement, corresponding to
a zero temperature. If the outcome is 1, then one can perform a Pauli X gate to flip it
to |0〉, achieving the same result. There are two major issues with this approach: first,
in some existing gate-based quantum computing architectures, the measurement process
only takes place at the final stage of the computation. No computation can proceed on the
measured qubit and a new round of computation must be initiated. In other words, the
measurement “destroys” the system of interest, so this naive cooling method is not so useful
for doing further computations. Second, this method works only if measurement errors are
absent, and there is a perfect correspondence between the measurement result and the
post-measurement state; if this is not true, we cannot safely deduce the post-measurement
state. In this chapter, we will study how one may utilize measurement to perform cooling,
leading to measurement-based AC (MBAC), while circumventing these issues.

4.2 Brief recap on conventional AC

We first describe AC protocols, notations and goals, in a way that leads more naturally
to MBAC. Below, we will denote the Pauli matrices X, Y, Z by σx, σy, σz, and the 2 × 2
identity matrix by σI . The ideal state preparation step should initialize a single qubit
to the |0〉 state. We assume that due to imperfect state preparation processes, a bit-flip
(equivalently, σx) error occurs with probability δ, so that the actual initial state is described
by the following mixed state density matrix:

ρ = (1− δ) |0〉〈0|+ δ |1〉〈1| . (4.1)

This represents a state preparation error on the quantum processor. We will assume that
0 ≤ δ < 1/2, where δ = 0 corresponds to the pure state |0〉 and δ → 1/2 corresponds to
the completely mixed state.

Algorithmic cooling procedures are designed to reduce δ on the target qubit towards 0.
The term “cooling” comes from viewing ρ as a thermal state,

ρ =
1

Z
e−βĤ =

1

Z

(
e

~ω
2kBT 0

0 e
− ~ω

2kBT

)
(4.2)

where Ĥ = −1
2
~ωσz is the bare qubit Hamiltonian, kB is the Boltzmann constant, T is

an effective temperature, and Z is the partition function so that ρ is normalized. From
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Eq. (4.1) and Eq. (4.2) we can identify δ = (e
~ω
kBT + 1)−1. Solving for T gives kBT =

~ω/ log
(

1
δ
− 1
)
, so that T is closer to 0 when δ is closer to 0, for a fixed ω. Therefore,

reducing its effective temperature increases its probability of being in the ground state.

We first review a primitive type of AC scheme using a minimal example with m = 3
qubits [85], which inspires our measurement-based protocol. We will review the reversible
AC later in Section 4.3 when we compare MBAC with conventional AC.

Figure 4.1: The circuit for 3-qubit BCS aiming to cool down the target spin st. Within
the box is a SWAP gate, which is controlled by spin s1.

Let us now assume that there is a target spin to be cooled called st, and two ancillary
spins s1 and s2. Starting with the system in a state ρ1⊗ ρt⊗ ρ2 where all ρ’s are described
by Eq. (4.1) with the same value of δ, we can apply a basic compression subroutine (BCS)
to reduce δ on st (see Fig. 4.1). The BCS involves essentially two steps: first, a CNOT
operation controlled by st and targeted on s1; second, a controlled-SWAP (CSWAP) op-
eration controlled by s1, and targeted on st and s2. To see why this protocol works, first
consider the evolution s1 and st after the CNOT gate. We replace the noisy states of st
and s1 by assuming an error model is applied onto pure qubit states. The error model is
such that a σx channel occurs independently on each qubit after the preparation. Referring
to Fig. 4.2, this corresponds to the following four possibilities where U equals to

1. σI ⊗ σI , p = (1− δ)2;

2. σI ⊗ σx, p = δ(1− δ);

3. σx ⊗ σI , p = δ(1− δ);

4. σx ⊗ σx, p = δ2;

with the corresponding probabilities listed after each case. In the above the left error-
operator is applied onto s1 and the right operator onto st. From Fig. 4.2 and the mapping
rule of Pauli operators under the CNOT gate, the four cases can be written equivalently
where U ′ equals to
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1. σI ⊗ σI , p = (1− δ)2;

2. σx ⊗ σx, p = δ(1− δ);

3. σx ⊗ σI , p = δ(1− δ);

4. σI ⊗ σx, p = δ2.

Since s1 and st both start from |0〉, the CNOT does nothing and can be removed. Thus
the output states are

1. |0〉 ⊗ |0〉 , p = (1− δ)2;

2. |1〉 ⊗ |1〉 , p = δ(1− δ);

3. |1〉 ⊗ |0〉 , p = δ(1− δ);

4. |0〉 ⊗ |1〉 , p = δ2.

s1

U

st

=
s1

U ′ = CUC†

st

Figure 4.2: Two equivalent circuits where the order of two unitary gates are exchanged,
and the second gate on the RHS is replaced by the original gate conjugated by the first
gate. C stands for the CNOT gate in this case.

It is now clear that s1 and st become correlated, since the probability of them being
in the same state (case 1 and 2) is higher than being in different states (case 3 and 4), for
all 0 ≤ δ < 1/2. When s1 is in |0〉, st is more likely to be in |0〉 (case 1) than in |1〉 (case
4), so we keep this purified spin st in the second step of Fig. 4.1. When s1 is in |1〉, st is
equally likely to be in |0〉 or |1〉 (case 2 and 3), correspond to the completely mixed state
and an effective temperature T →∞. In this case st has been heated up, so we can restore
its original state by swapping st and s2 in the second step of Fig. 4.1. Overall, the density
matrix of st becomes closer to |0〉 at the output end.

We can calculate the exact reduced state of st at the output, by taking an average over
the aforementioned 4 cases (after applying the CSWAP step). Denote the probability of
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being in |1〉 for st after a BCS round as δ′t. For cases 1 and 4, s1 is in |0〉 so no SWAP gate
is applied, and the probability of st being in |1〉 is 0 and 1, respectively. For cases 2 and 3,
st is swapped with s2, so the probability of st being in |1〉 is restored to δ in both cases.
Averaging over these 4 cases yields

δ′t = δ2 + 2δ2(1− δ) = 3δ2 − 2δ3 ≤ δ, ∀ 0 ≤ δ <
1

2
. (4.3)

For small δ, it is reduced to order O(δ2). In the more general case where the initial δ’s on
each spin can be different, we have

δ′t = δ1δt + δ2δt + δ1δ2 − 2δ1δtδ2. (4.4)

If we further assume that the ancillas s1 and s2 can relax much faster to their original
states than st, so that we can effectively repeat this BCS round (where st now has error
δ′t), then st can be further purified. In the limit of performing infinitely many rounds,
st arrives at the steady state, whose error can be calculated by setting δ′t = δt = δ∞t in
Eq. (4.4), which gives

δ∞t =
δ1δ2

1− δ1 − δ2 + 2δ1δ2

. (4.5)

4.3 MBAC

Based on the previous analysis, one can see that the second CSWAP gate (and consequently,
s2 as well) is not needed if we can learn the state of s1 after the first CNOT gate. If s1 is in
|0〉, we know that st has a higher probability of being in |0〉. If we discard the cases where
s1 is in |1〉 and only keep the ones where it is in |0〉, we can reduce the error δ on the target
qubit. The working principle behind this method is similar to an error detecting code,
where the effective noise level is reduced by accepting the cases where no error occurs, and
discarding those with an error occurring.

Referring to the circuit in Fig. 4.3, measuring |0〉 on s1 updates the state of st to

ρ′t =
〈0|1 τ |0〉1
〈0|Trt[τ ] |0〉 (4.6)

where, throughout this chapter, we’ll use τ to denote the state of the full system right
before the measurement. Starting from two states with initial error rates δ1 and δt, the
final error rate on st upon measuring |0〉 on s1 becomes

δ′t =
δ1δt

1− δ1 − δt + 2δ1δt
. (4.7)
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st discard

s1

Figure 4.3: A circuit for 2-qubit measurement-based algorithmic cooling which increases
the bias of the target qubit st. The double-line notation means “controlled on classical
outcome”, i.e., st is kept for further computations when the measurement outcome is 0 and
discarded if the outcome is 1.

Then, taking δt = δ1 = δ again for simplicity, we see that in the small-δ limit, the error
is also reduced to O(δ2) to leading order. Importantly, the target qubit st is not being
measured, which resolves the first issue we raised in Section 4.1. Assuming that the ancil-
lary qubit s1 can maintain sufficiently long coherence, we can store them in the quantum
computer and measure them at the end of the computation, along with other qubits. We
then post-select only those measurement outcomes where s1 measures to 0. Interestingly,
comparing with Eq. (4.5), we see that applying the above protocol once achieves the same
polarization on st as applying infinitely many rounds of BCS, if initially δt = δ2.

The above 2-qubit protocol, which we’ll call MBAC-2, forms a basis for analyzing
expanded versions of MBAC. For conventional AC protocols there are two major ways
to expand them, either by using more ancillary qubits, or by repeating the protocol for
multiple rounds. Since we have assumed that the ancillary qubits cannot be reused once
they have been measured, MBAC protocols cannot be expanded by repeating it for multiple
rounds. However, it is feasible to use more ancillary qubits to achieve better cooling.
Specifically, imagine expanding s1 to k− 1 qubits in Fig. 4.3. We apply k− 1 CNOT gates
controlled by st and targeted on si, i = 1, ..., k− 1, and measure all s1, ..., sk−1 at the end.
The target st is kept only if all measurement outcomes are 0, and is discarded otherwise.
We call the above protocol MBAC-k, which serves as an expanded version of MBAC-2.

To analyze MBAC-k, observe that it is equivalent to repeating k−1 “rounds” of MBAC-
2, if the ancilla in MBAC-2 is allowed to return to its original state after being measured
and can be reused again. The evolution of noise in a single “round” is already given
in Eq. (4.7), so the evolution for MBAC-k can be recursively calculated from Eq. (4.7).
Furthermore, by assuming again δt = δ1 = δ initially and observing the first few terms, we
can verify the analytic solution for this series, given by

δt[k] =
δk

δk + (1− δ)k , (4.8)
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where from now on we use δt[k] to denote “SP error on st after applying MBAC-k”. In
particular, δt[1] will be used to denote the initial SP error on st. The solution in Eq. (4.8)
can be readily verified by plugging it back into Eq. (4.7). From this solution one can see
how δt decreases approximately exponentially in k, especially in the small-δ limit.

To make a fair comparison between MBAC and conventional AC, we now briefly review
the reversible scheme first proposed by Schulman and Vazirani [83]. The main step in
reversible AC is called entropy compression, where through a unitary map U , the entropy
is extracted from some subset of qubits and transferred to another subset of qubits. If we
constrain the system to start and end in diagonal states, and the goal is to cool down only
one qubit, then it can be shown that the optimal unitary U is to perform a descending
sort on the diagonal elements of the full system’s density matrix [95, 96]. We thus consider
this to be an upper bound on the performance of Schulman-Vazirani type of cooling, and
will call this scheme SV-k if it uses a total of k qubits to cool one qubit. In Fig. 4.4, we
compared MBAC-k (in circles) and SV-k (in squares) starting from two initial noise levels,
δ = 0.1 (in blue) and δ = 0.45 (in red). The advantage of allowing projective measurement
into the task of cooling, compared to the optimal reversible scheme, is clearly visible.

MBAC,δ=0.45

SV,δ=0.45

MBAC,δ=0.1

SV,δ=0.1

2 4 6 8 10

10-8

10-5

0.01

k

δ

Figure 4.4: Simulated evolution of δt between MBAC-k and SV-k. The initial error (red:
δ = 0.45; blue: δ = 0.1) are assumed to be the same on all qubits. The effect of decoherence
is assumed negligible and gates are assumed to be ideal.
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4.4 SPAM error characterization

In Section 4.2, we have already seen how the parameter δ can be interpreted as a measure
of state preparation (SP) error. We will now formally define what SP and M errors are,
then demonstrate how MBAC can be used to characterize SPAM errors. Our definition
here will closely follow the one given in [97]. The ideal SPAM operators are denoted by a
density operator ρ and a 2-outcome POVM M = {M0,M1}, which satisfy the physicality
constraints that ρ and Mi are positive-semidefinite Hermitian operators, and M0+M1 = σI .
We assume that ideally, ρ = M0 = |0〉〈0|. The SPAM error is defined as the probability of
obtaining an incorrect outcome when measuring the initial state: that is,

δSPAM := 1− Tr[ρM0]. (4.9)

We now define the SP error, denoted as δSP, to be equal to δSPAM with an ideal measurement
operator. Similarly, the M error (denoted as δM) is defined as δSPAM with an ideal input
state. While the total SPAM error δSPAM is a measurable quantity, δSP and δM are not,
when both state preparation and measurement errors are present. However, one may
design algorithms that allow one to isolate the contributions to the total error from state
preparation or measurement processes.

We now demonstrate how one can separately estimate δSP and δM, based on the concept
of AC. For simplicity, we first assume that both the imperfect state and measurement
operators are of the same form

ρ =

(
1− δSP 0

0 δSP

)
, M0 =

(
1− δM 0

0 δM

)
, (4.10)

so that the total SPAM error is given (from Eq. (4.9)) by

δSPAM = δSP + δM − 2δSPδM. (4.11)

As before, we will also assume that δSP, δM ∈ [0, 0.5). Our goal is to separately estimate
δSP,t and δM,t on st. For now we also assume, for simplicity, that measurement operations
on all ancillary qubits are ideal, and the only noisy measurement is the one on st. This
allows us to directly apply the previous calculations. This assumption will be relaxed in
the next section.

Since δSPAM,t can be obtained from directly measuring st, the problem of separately
characterizing SPAM is then reduced to estimating either δSP,t or δM,t: from the symmetry
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between the two, once either is known, the other can also be calculated from the second
equation.

It is now possible to intuitively see how AC can be used to resolve SPAM errors. We saw
in Eq. (4.8) and Fig. 4.4 that MBAC can quickly reduce the error δt on st close to 0. Now
imagine two separate experiments where in the first one, we measure st directly and obtain
δSPAM,t. In the second one, we first apply multiple rounds of MBAC until the final bias
on the target is sufficiently close to 1 (we’ll later show how this can be determined), then
measure the target qubit. Since the measurement operation is independent of the qubit
state, δM,t is directly obtained from the measurement result, since the input state is now
ideal. From here, δSP,t can be easily calculated from Eq. (4.11). We have thus separately
estimated SPAM errors by first eliminating the SP error, determining the measurement
error, then inferring the SP error from the total δSPAM,t.

We have so far focused on the case of diagonal state and measurement operators. To
justify this, below we describe an averaging technique to convert arbitrary 1-qubit SPAM
elements to this simpler case. Begin by noting that we can generally write

ρ =
1

2
(σI + sxσx + syσy + szσz)

M0 =
1

2
(miσI +mxσx +myσy +mzσz)

(4.12)

where the s’s and m’s are unknown parameters (si = 1 because Tr[ρ] = 1). Assuming ideal
quantum gates, we can obtain an effective initial state with sx = sy = 0 for an arbitrary
1-qubit circuit as follows. We perform two separate experiments, where in the first we
apply the original circuit, and in the second we apply a σz gate immediately after the state
preparation, then carry out the same circuit. Due to linearity of quantum operations,
the average of measurement outcomes from the two experiments is then equivalent to one
where ρeff = 1

2
(ρ + σzρσ

†
z) = 1

2
(σI + szσz). Similarly, we can also make mx = my = 0

by averaging the results from the original experiment and one where a σz gate is applied
immediately before the measurement. To set mi = 1, we can average the original circuit
with one where a σx is applied immediately before the measurement, and the outcomes 0
and 1 are relabelled (so that outcome 0 corresponds to the POVM element M1 and vice
versa). This reduces the SPAM operators to the ones described by Eq. (4.10).

4.5 MBAC with measurement errors

We now deal with the second issue raised in Section 4.1, and study the performance of
MBAC when the measurement error is non-zero on all ancillary qubits as well, thereby
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relaxing the assumption made in the previous section. We will show that MBAC still
performs well if δSPAM on each ancilla is not very large, thereby relaxing the most crucial
assumption in SPAM characterization. Again, in this section we will assume that quantum
gates are ideal, which means that the SPAM averaging processes are also ideal, and the
state and measurement operators can each be described by a single parameter.

The problem setup is as follows. We assume that each qubit i in a quantum computer
has an independent state preparation error δSP,i, and measurement error δM,i, where i labels
the qubit. The target qubit is labelled by t as usual. The goal is again to learn δSP,t and
δM,t. But as we show later, similar arguments can be used to learn all δSP,i and δM,i if
desired.

Consider performing one successful round of the MBAC-2 protocol with two qubits st
and s1. With an imperfect measurement, we generalize the case of projective measurement
in Eq. (4.6) to a POVM measurement, so that performing one successful round of MBAC
updates the state of st to [56]

ρ′t =
Tr1[τ(I ⊗M0)]

Tr[Trt[τ ]M0]
, (4.13)

where, again, τ denotes the state of the full system immediately before measurement. Using
Eq. (4.13), following again the circuit in Fig. 4.3 and the parametrization in Eq. (4.10), we
calculate the SP-error on st after one round of MBAC to be

δ′SP,t = δSP,t
2(δSP,1 + δM,1 − 2δSP,1δM,1)

1 + (1− 2δSP,1)(1− 2δSP,t)(1− 2δM,1)

= δSP,t
2δSPAM,1

1 + (1− 2δSP,1)(1− 2δSP,t)(1− 2δM,1)

(4.14)

where the second equality comes from Eq. (4.11). The ratio

δSP,t

δ′SP,t

=
1 + (1− 2δSP,1)(1− 2δSP,t)(1− 2δM,1)

2δSPAM,1

(4.15)

is a measure of the improvement of SP-error on st after one round of MBAC, which is
better when larger. For example, a ratio of 100 implies that δSP,t has been reduced by a
factor of 100. Intuitively, the improvement should be more significant when there is less
error on s1: indeed, if δSP,1 = δM,1 = 0 in Eq. (4.14), then δ′SP,t = 0 and st will always be
projected to |0〉〈0| when the measurement outputs 0 on s1. In the more general case where
SPAM error on s1 is present, we observe that the numerator on the RHS of Eq. (4.15) is
always ≥ 1, in the relevant region where δSP,1, δSP,t, δM,1 ∈ [0, 1/2). Therefore,

δSP,t

δ′SP,t

≥ 1

2δSPAM,1

. (4.16)
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Furthermore, in the limit where all the δSP,1, δSP,t, δM,1 � 1, the bound in Eq. (4.16) can
be improved by approximately a factor of 2 to simply 1/δSPAM,1.

Next, recall from Section 4.3 that MBAC-k is equivalent to repeating k − 1 rounds of
MBAC-2. Using mathematical induction, we see that by applying one successful run of
MBAC-k, the final SP-error on st is upper bounded by

δSP,t[k] ≤ δSP,t

k−1∏
i=1

(2δSPAM,i). (4.17)

Recall that δSPAM,i is a measurable quantity obtained by measuring the initial state on
ancilla si. The product simply corresponds to the probability of directly measuring all
ancillary qubits s1 . . . sk−1 after they are prepared, and getting the output 1 on all qubits.
Therefore, given δSPAM,i on each qubit (which can be obtained before the experiment, during
the calibration step), Eq. (4.17) guarantees that δSP,t from the output of a successful run

of MBAC-k is at least reduced by
∏k−1

i=1 (2δSPAM,i). This shows that finite measurement
error on the ancillary qubits do not pose a fundamental limitation to the cooling power of
MBAC. In particular, as long as each δSPAM,i < 1/2 (which we will assume from now on),
the output state is guaranteed to be more pure than the input. Moreover, if both δSP,t and
all δSPAM,i’s are upper bounded by a constant δ, then δSP,t[k] is simply upper bounded by
δk.

4.6 Number of trials needed in MBAC-k

Next, we study whether the probabilistic nature of MBAC hinders its usefulness in practice.
We will see that it remains practically useful for a wide range of experimentally relevant
SPAM error rates. To illustrate the problem, first ignore any measurement error and
consider a run of MBAC-2. The post-measurement state upon measuring 1 (which imply
a failed run) can be computed by changing all 0’s to 1’s in Eq. (4.6), leading to

δ′t,fail =
δt(1− δ1)

δt + δ1 − 2δtδ1

=
1

2
− δ1 − δt

2(δt + δ1 − 2δtδ1)
. (4.18)

One sees that, if δ1 = δt initially, then obtaining measurement outcome 1 on s1 will heat
up the state to a completely mixed one. The probability of failure is

pfail = δ1 + δt − 2δ1δt. (4.19)
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For MBAC-k, since we need all the k − 1 measurements to succeed, the rate of success
decreases exponentially with k, and it becomes increasingly difficult to get a successful run.

Fortunately, recall from Eq. (4.17) that the target polarization also improves exponen-
tially fast with increasing number of ancillas. Therefore, the intuition is that one does not
need a large k value to achieve significant cooling, which in turn will not have a vanishingly
small success probability. Below we’ll make this intuition more concrete. Specifically, we
ask the following question: if we would like to reduce δSP,t by a factor of r, i.e., we want
δSP,t/δSP,t[k] = r, how many runs are needed to achieve this cooling ratio? To answer
this we will start from Eq. (4.17), and first derive a relation between k and r. Note that
because each δSPAM,i can be different, the most general expression will involve all δSPAM,i’s.
In order to obtain an expression in k, we now make the assumption that all k− 1 ancillary
qubits have the same δSPAM, which we will denote as δSPAM,a where a stands for the word
“ancillary”. The case where the δSPAM,i’s are different can be bounded similarly by setting
δSPAM,a to the highest among all δSPAM,i.

With this assumption, we obtain the following inequality between k and r:

r =
δSP,t

δSP,t[k]
≥ (2δSPAM,a)

−(k−1). (4.20)

Taking the logarithm of both sides and rearranging the terms (note that log(2δSPAM,a) < 0)
results in

k − 1 ≤ log(r)

− log(2δSPAM,a)
. (4.21)

This allows the experimentalist to determine the total number of ancillary qubits needed
in order to cool to the desired noise level, based on their hardware specifications (i.e., the
δSPAM,a on their hardware). Importantly, this upper bound scales logarithmically with r.

Next, we compute the expectation value of the total number of runs needed before
having a successful run, in order to achieve a cooling ratio r. We show in Appendix B.1
that the expected number of runs is upper bounded by a function,

Nupper(r) = (r)
log(A)
log(B) (4.22)

where
A = (1− δSP,t[1]− δSP,a + 2δSP,t[1]δSP,a)(1− δM,a)

B = 2δSPAM,a.
(4.23)

We see that Eq. (4.22) scales polynomially in r. Note that A is simply the success proba-
bility (i.e., measuring 0) of doing the first run of MBAC-2, so the exponent is a measurable
quantity. Thus, the upper bound can be calculated given a target r.
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To understand the behavior of Nupper(r) more concretely, we can further simplify
Eq. (4.22) by assuming again δSP,t[1] = δSP,a := δSP, i.e., both the target and the ancillas
have the same initial error δSP. The exponent then becomes (recall δSPAM from Eq. (4.11))

log(A)

log(B)
=

log((1− 2δSP + 2δ2
SP)(1− δM,a))

log(2(δSP + δM,a − 2δSPδM,a))
. (4.24)

Shown in Fig. 4.5 are plots of Nupper(r) in Eq. (4.22) as a function of δSP, after making
the simplifying assumption in Eq. (4.24), for a few chosen values of r and δM,a. As the
initial SP error rate approaches 0.5 (the theoretical maximum), MBAC fails since the
measurement is simply giving random outputs. In this case, Nupper(r) diverges as expected.
On the other hand, for reasonably low values of δSP, we see that the expected number of
runs before achieving a successful one is rather low. For example, for δSP = 0.1, δM,a = 0,
and r = 1000, we expect to obtain a successful run in about 2 trials. For δSP = 0.1,
δM,a = 0.1, and r = 1000, the expected number of trials is approximately 3. Note that
this corresponds to a case of 10% SP error rate plus 10% measurement error rate on the
ancillas, combining to almost 20% of total SPAM error rate. Many modern quantum
computing platforms [98, 41, 99] can now achieve SPAM error rates below this level. In
these cases, MBAC will be a useful and easy tool to significantly improve the quality of
state preparation in quantum computers.

4.7 Summary

In this chapter, we introduced a new variant of AC protocol based on the ability to per-
form imperfect measurements on individual qubits, which we call measurement-based AC
(MBAC). Using this method, we developed a novel and simple way to separately charac-
terize state preparation and measurement errors, by eliminating the former using MBAC
and directly obtaining the latter. Our approach is applicable to many current quantum
computing platforms, and significantly outperforms the optimal reversible AC protocol in
the absence of measurement errors. Moreover, we showed that its cooling power retains the
exponential scaling when measurement errors are present. Despite the probabilistic nature
of MBAC, we have demonstrated its practical usefulness under realistic error rates for cur-
rent quantum processors. We believe our method can be a helpful tool for benchmarking
and improving current NISQ-era quantum computers, and can provide further insights to
measurement as a resource for cooling.
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Figure 4.5: Upper bound Nupper on expected number of runs required for different values
of r (the improvement ratio defined in Eq. (4.20)), versus the initial SP error δSP (assumed
to be the same on the target and all ancillary qubits). Solid and dashed lines represent
the cases of δM,a = 0 and δM,a = 0.1, respectively.
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Chapter 5

Thermodynamic analyses of
algorithmic cooling

We have seen how algorithmic cooling can be used to produce qubits in highly pure initial
states from the previous chapter. This motivates us to further investigate the performance
of AC as algorithmic refrigerators. In the past, many AC protocols have been proposed
and tested, each requiring slightly different resources. These were mostly analyzed from
a quantum information point of view. Recently, there is an increasing trend to study
the thermodynamic performance of AC protocols. For example, the work by Soldati et
al. [100] looked at thermodynamics of the 3-qubit version of the PPA algorithm (will be
introduced later). The goal of this chapter is to expand upon this topic, establishing a
more general framework for studying thermodynamics of AC for analyzing a wide family
of protocols. In particular, we will examine different AC protocols belonging to the family
of coherent cooling protocols, by first reviewing their procedure, cooling limits, and target
state evolution in Section 5.2 and Section 5.3. In doing so, we use the transition matrix
formalism to derive the quantities we need, showing that a unified view can be established
among these protocols. We then study the thermodynamic aspects of each protocol. In
Section 5.4 and Section 5.5, we propose two efficiency measures based on the amount
of work required, or the amount of heat released. We show how each measure can be
computed for a given protocol, and compare the previously studied protocols using both
measures, providing suggestions on which ones to use when these protocols are to be
carried out experimentally. Finally, in Section 5.6 we propose improved protocols that are
energetically more favorable over the original proposals.
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5.1 Notation

In this chapter, we will denote the dimension of a subsystem on the superscript with
an angled bracket. We denote the identity operator by the symbol 1. A subscript on an
operator implies that it is a reduced operator: for example ρ1 refers to the density operator
on subsystem 1. A subscript with a square bracket implies that it is a full-system operator,
where the (lower dimensional) operator acts nontrivially on the subsystem in the bracket:
for example σx,[1] is a tensor product of σx on qubit 1 and 1 on other subsystems. Qubit
numbering will start from 1 in this chapter.

Given a system with Hamiltonian H, the thermal (or, Gibbs) state at inverse temper-
ature β is defined as

ρth(β,H) =
e−βH

Tr[e−βH ]
(5.1)

and will be denoted by a superscript “th”.

In this chapter we are mostly working with states that are diagonal in the energy
eigenbasis. In particular, any diagonal single qubit state can be characterized by a single
parameter, with the different choices which have appeared in the literature include but are
not limited to:

1. The ground (|0〉) state population, p

2. The excited (|1〉) state population δ

3. The polarization ε, defined as the difference between ground and excited state pop-
ulations

4. The effective temperature βE, where E denotes the energy gap between |0〉 and |1〉,
by considering the qubit as a thermal state at inverse temperature β

Unless otherwise stated, these symbols will be reserved for the corresponding quantities
in this chapter. For convenience, we list the transformations between these quantities in
Table 5.1.

For a system of N independent qubits, the stationary (noninteracting) Hamiltonian is
given by

Htot =
N∑
i=1

h[i](Ei) (5.2)
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p δ ε βE

p - p = 1− δ p =
1 + ε

2
p =

1

1 + e−βE

δ δ = 1− p - δ =
1− ε

2
δ =

1

1 + eβE

ε ε = 2p− 1 ε = 1− 2δ - ε = tanh
βE

2

βE βE = log
p

1− p βE = log
1− δ
δ

βE = log
1 + ε

1− ε -

Table 5.1: Conversion table between parameters describing single-qubit states.

where h(E) = E |1〉〈1| is the single-qubit Hamiltonian for the i-th qubit with energy gap
E. The value of E can differ from qubit to qubit. Note that this is a shifted version of the
Z-type Hamiltonian, h′ = −E

2
σz where σz is the Pauli-Z operator. We will mostly choose

h over h′ for computational convenience.

5.2 Review of AC schemes: protocols and framework

We introduced the original ideas on AC from Sørensen and Schulman/Vazirani (SV) in
Section 4.1. Sørensen first observed the phenomenon where the polarization of a subset
of spins can be boosted at the expense of reduced polarization of nearby spins, during a
unitary evolution. Schulman and Vazirani were the first to give explicit ways to implement
the redistribution of entropy in the context of quantum information [101, 102]. They
considered performing reversible operations to a chain of qubits, to create a separation of
cold and warm regions within the chain. Utilizing results from classical data compression,
they suggested that starting with n spins with low initial polarization ε, one can reversibly
re-distribute the entropy within the spins and produce cnε2 useful qubits that are close
to the pure state |0〉 where c is some constant. In this chapter, we will focus on newer
protocols derived from these original proposals, as introduced below.
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HBAC and PPA-HBAC

An improved AC protocol over the original SV-cooling appeared in 2007, bearing the
name heat-bath algorithmic cooling (HBAC) [103]. In addition to unitary compressions
within the string, the authors assumed the ability to interact with the system with an
external heat bath. This allows the entropy to be released outside the system, thereby
significantly reducing the lowest achievable polarization using the same number of initial
spins compared to SV-cooling. Here, we denote the spins to be cooled as the target spins,
and those used as thermal machines as the computational spins. The protocol consists
of repeated rounds, each consisting of two subroutines, where the first step compresses
entropy from target spins into computational spins (similar to SV-cooling), and the second
step is thermalization of selected computational spins with higher-than-bath temperature.
Because different spins have different magnetic moments, which correspond to different
relaxation rates, it is possible to design the system so that the target spins remain relatively
unchanged while the computational spins relax to the bath temperature. This eventually
allows the target to be cooled to lower temperatures compared to SV-cooling.

Among all possible unitaries, the one that achieves optimal extraction of entropy from
the target was later studied under the name partner-pairing algorithm [104], or PPA for
short. The HBAC protocol that uses the PPA scheme is thus called PPA-HBAC, or PPA
for short. This compression unitary is later defined in Section 5.3.4. Small instances of
PPA has been tested experimentally to show its ability to improve target polarization [87].

NOE-HBAC and SRG-HBAC

After the discovery of PPA, more works have appeared which aimed at achieving higher
final polarization than PPA, using the same number of qubits. Two notable examples are
nuclear Overhauser-effect HBAC (NOE-HBAC) and state-relaxation HBAC (SR-HBAC)
protocols, both appearing in 2017 [92]. In addition to the ability of interacting with a heat
bath, both protocols require the possibility of a state-relaxation step. More specifically, this
refers to the ability to “thermalize” populations of selected energy levels in the composite
spin system. This was inspired from the Nuclear Overhauser Effect, where the presence of
cross-relaxation between two nearby spins allows the polarization of one spin to increase
when the other spin is saturated (to the completely mixed state). Both NOE-HBAC and
SR-HBAC can cool a target qubit using only one computational qubit, unlike the PPA
which requires at least 2, and the SR-HBAC achieves higher final polarization than NOE-
HBAC. The SR step is denoted by Γ2 in the circuits, Fig. 5.1b and Fig. 5.1c. This shows
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(d) Round of xHBAC

Figure 5.1: Circuit diagrams for the rounds of the HBAC protocols. The diamond shape
indicates non-unitary gates, while the box shape represents unitary gates.

that a more refined relaxation pathway for individual energy levels can be a useful tool for
cooling.

xHBAC

More recently, further generalizations of the SR-based HBAC has been proposed, most
notably in the name extended HBAC (xHBAC) [94]. By realizing that the SR step belongs
to a wider family of quantum operations called “dephasing thermalization”, the authors
showed that even further cooling can be achieved if one can perform arbitrary dephasing
thermalizations, by optimizing over this family. In particular, they showed that a single
qubit can be cooled towards polarization 1 (corresponding to zero temperature) exponen-
tially fast, using the optimal thermalization operation, denoted by Λβ in Fig. 5.1d. This
seeming violation of the second law of thermodynamics can be resolved by realizing that
performing Λβ requires detailed interaction with an infinite dimensional ancillary system,
which has a diverging control complexity as a resource [105].
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5.2.1 Coherent control AC

The AC protocols described above all fall under the category of “coherent control” cooling
in the literature [105], defined as follows. The setup consists of three components, namely,
a target system to be cooled (denoted by a subscript t in this chapter), a thermal machine
(denoted by a subscript m), and an outside environment acting as a heat bath (denoted
by a subscript b). Collectively, we will refer to the total of target and machine as simply
the system. Following a conventional treatment in thermodynamics, we will take the bath
component to consist of the rest of the universe outside of the system, so that the target,
machine, and bath combined is taken to be closed.

Coherent control cooling protocols are composed of two basic subroutines, namely, a
unitary control step and a thermalization step. The meaning of these two subroutines will
be made exact in this chapter through the following definitions.

Definition 5.2.1. A control subroutine refers to a map achieved by a unitary Ut,m that
acts on the target and the machine subsystems.

In the control step, one applies a unitary between the target system and the machine.
The goal of this step is typically (but not necessarily) to transfer energy from the target
into the machine. Importantly, this unitary can be an arbitrary one and need not be
energy-preserving, i.e., there can be a net work input when applying Ut,m.

Definition 5.2.2. A thermalization subroutine refers to a map E that is a thermal opera-
tion (TO) acting on the target and machine subsystems, that is, one which can be written
as

E(ρt,m) = Trb[Vt,m,b(ρt,m ⊗ ρth(βb, Hb))V
†
t,m,b] (5.3)

where the joint unitary Vt,m,b acting on the target, machine, and bath satisfies [Vt,m,b, H[t] +
H[m] +H[b]] = 0.

In the thermalization step, one allows (part of) the system to exchange energy with
the heat bath. Usually the net result is a transfer of energy from the system into the
bath. When a protocol is repeated for multiple rounds, we will assume that the bath is
sufficiently large and always start from a thermal state, and ignore correlation effects that
might build up during the relaxation.

The following holds true regarding the transition matrix of any TO map:

Corollary 5.2.1. The transition matrix GE of a TO map E is Gibbs-stochastic.
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Here, Gibbs-stochastic means that it is a stochastic matrix (as demonstrated before)
that preserves a Gibbs state input, i.e., GE |ρth〉〉 = |ρth〉〉. This can be seen by inserting the
definition of ρth into Definition 5.2.2 and noticing that [Vt,m,b, H[t] +H[m] +H[b]] = 0.

Crucially, the thermalization subroutine is one which can be realized without any exter-
nal work input. For example, the act of resetting a qubit to the thermal state at the bath
temperature (i.e., a complete thermalization) falls under the TO category. This makes
intuitive sense, since one can imagine achieving this by putting a system in contact with a
heat bath for a long period of time, which indeed does not require any work input. How-
ever, here we have used a broader definition for the thermalization subroutine than just
complete thermalization. These more general TO operations will appear as constituents
of the cooling protocols introduced later.

Definition 5.2.3. A coherent control AC is a sequential procedure where each step is
either a control subroutine, or a thermalization subroutine.

The specific form of control and thermalization operations differ from one protocol
to another, but all the coherent control AC protocols involve only these two types of
operations. In the following sections, we will review in further detail the structure of
each protocol studied throughout this chapter. The circuit view of all the protocols being
studied in this chapter are collectively shown in Fig. 5.1.

5.3 Performance of HBAC protocols

The standard approach for evaluating the effectiveness of HBAC protocols is to examine
their cooling limits, i.e., what’s the lowest achievable temperature of the target qubit
depending on the available resources, such as machine size and allowed operations. One
can analyze the performance of a given protocol by monitoring the evolution of the target
system. In this case, one can disregard the evolution of the machine, and focus solely on
maximizing cooling of the target. Here, we present the state evolution as well as cooling
limits of the different HBAC protocols using the transition matrix formalism, which is
naturally suited for this task. This section starts with a brief introduction to the transition
matrix formalism. We then apply this formalism to each HBAC protocol presented in this
chapter to gain a unified view of their cooling behavior. Finally, we present the unified
cooling limits in Section 5.3.6, and the unified target state evolution in Section 5.3.7.
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5.3.1 Transition matrix formalism

We first give a brief review of the transition matrix formalism used in this chapter. A
similar superoperator description of quantum objects has already been used multiple times
throughout this thesis (e.g., in Section 2.2); meanwhile, the treatment in this section is
slightly different than that in previous chapters and requires further clarifications. The
state of a general quantum system is described by a density operator, which can be repre-
sented in vector form by choosing some orthonormal basis σk. This is typically represented
by a supervector |ρ〉〉, with components |ρ〉〉k = 〈σk, ρ〉 where σk ranges over all the basis
elements. Given a CPTP map E , if we construct a matrix GE with the i, j-th component
being 〈σi, E(σj)〉 where σi, σj ranges over the basis elements, then this matrix entails all
the information of E . This matrix is called the transition matrix for the process E , and it
acts on the state |ρ〉〉 through matrix multiplication:

|E(ρ)〉〉 = GE |ρ〉〉 (5.4)

by a simple linearity argument.

For the HBAC protocols under consideration in this chapter, the density matrices are
diagonal with respect to the energy eigenbasis. Furthermore, all quantum processes under
consideration map diagonal operators to diagonal operators. It can be straightforwardly
seen that in this case, there is a natural vector representation for the operators by simply
taking the diagonal elements of a N -qubit state as an 2N × 1 vector. The orthonormal
bases are the elementary operators which are diagonal in the energy basis:

σk = |k〉〈k|

where k denotes the energy eigenbases. For example, the state

ρ =

(
1
3

0
0 2

3

)
is represented by the vector (1

3
, 2

3
). We will slightly abuse the notation here by denoting

vector representations resulting from this mapping by |·〉〉 again, such that the standard
basis vectors are written as

|σk〉〉 := |k〉〉 (5.5)

and the vector representing a diagonal operator ρ is |ρ〉〉 =
∑

k〈〈k|ρ〉〉|k〉〉. The Hilbert-
Schmidt inner product becomes an inner vector product as

〈A,B〉 = Tr
[
A†B

]
= 〈〈A|B〉〉 (5.6)
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for A, B both diagonal, where 〈〈A| is the conjugate transpose of |A〉〉. Matrices representing
transformations will be denoted by G. It can be easily verified that the basis vectors are
orthonormal, i.e., 〈〈i|j〉〉 = δij. Therefore, the transition matrix for a map Φ has components

(GΦ)i,j = 〈〈σi|Φ(σj)〉〉 (5.7)

In the literature, these are typically referred to as population transition matrices, since
they entail the change in population of each energy level during a transformation.

In this chapter we often encounter expectation values of the form Tr[AB], which equals
to Tr

[
A†B

]
when A is Hermitian. For this reason we will sometimes write Tr[AB] = 〈〈A|B〉〉

when it is clear that A is Hermitian.

The restriction to diagonal states requires that GE maps probability vectors to proba-
bility vectors, making GE a left-stochastic matrix. This property does not hold for the fully
general superoperator formalism used in previous chapters. The matrix GE fully describes
the effect of an operation and is uniquely determined by the cooling protocol. Note that
the dimensions of GE may be unequal for maps that change the dimension of |ρ〉〉.

Knowing the exact form of G for each step enables a direct simulation of the cooling
process through direct matrix multiplication. For certain HBAC protocols that consist
of repeated rounds of the same operation, the computation is greatly simplified by first
diagonalizing G as G = TDT−1 where D is diagonal (assuming that G is diagonalizable),
then raising D to the desired power n. Taking the limit of n → ∞ gives the asymptotic
final state of the system, from which quantities such as the asymptotic polarization can be
easily computed. In the section below, we will utilize this technique to unify the different
HBAC protocols. One shall see that the transition matrix formalism provides a consistent
way of simulating HBAC protocols, especially when the protocol involves repeating the
same operations over multiple rounds. We now apply this on the protocols of interest to
derive several important characterizations, including the polarization evolution and the
asymptotic state. Later in Section 5.4, we will again apply it to obtain thermodynamic
quantities like work, energy flow, and efficiency measures.

5.3.2 The 2-qubit NOE

In the 2-qubit NOE HBAC (NOE2), the target system is the first qubit and the machine
is the second qubit, as shown in Fig. 5.1b. It involves two steps: the first one is a ran-
domization of the second qubit to the completely mixed state (CMS). In practice, this
can be achieved through a random rotation, and averaging the results from multiple ex-
periments. For this reason, CMS will be treated as effectively a probabilistic mixture of
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unitary processes. The second step is the Γ2 relaxation, defined by the following Kraus
operators:

A1 =
√
p2 |00〉 〈00|

A2 =
√
p2 |00〉 〈11|

A3 =
√

1− p2 |11〉 〈11|
A4 =

√
1− p2 |11〉 〈00|

A5 = |01〉 〈01|
A6 = |10〉 〈10| ,

(5.8)

where p2 is defined by

p2 :=
1

1 + e−2βbE
. (5.9)

Thus, p2 is the ground state population of a thermal qubit at bath temperature with
energy gap 2E, which can also be interpreted as the relative ground state population
between the states |00〉 and |11〉 in thermal equilibrium, if both qubits have an energy
gap of E. In comparison, the relaxation of a single qubit alone with the bath achieves a
thermal equilibrium between the states |0〉 and |1〉, and will be denoted by Γ1.

One can verify that the above Kraus operators correspond to a dephasing map, which
removes all off-diagonal elements. In the reduced space of diagonal states, Γ2 can be written
as the following transition matrix:

GΓ2 =


p2 0 0 p2

0 1 0 0
0 0 1 0

1− p2 0 0 1− p2

 . (5.10)

One can see that Γ2 preserves the Gibbs state ρtht,m(βb, Ht,m) and acts non-trivially on only
two energy levels, making it fall into the category of 2-level Gibbs stochastic matrices. It
is known that every 2-level Gibbs stochastic transition matrix corresponds to a thermal
operation [106]. Therefore, it belongs to the thermalization subroutine category by our
definition. The same argument would trivially apply to Γ1, leading to the corollary below.

Corollary 5.3.1. Both Γ1 and Γ2 maps are thermal operations.

We will use the transition matrix to directly calculate the evolution of SRG2. The
detailed calculations are shown in Appendix C.4 for all protocols under consideration.
Here, we will state the final results, then group them into a unified formula in Section 5.3.6
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and Section 5.3.7. Starting from a target qubit with ground state population pt, its final
ground state population after n rounds will become

pt(n) =
x

1 + x
− 2−n(

x

1 + x
− pt) (5.11)

where x = p2
1−p2 . The asymptotic state is

|ρNOE,t(∞)〉〉 =
1

1 + x

(
x
1

)
=

(
p2

1− p2

)
. (5.12)

Since p2 > pb, this is a purified state compared to the original bath-temperature state.

5.3.3 The 2-qubit SRG2

In SRΓ2-HBAC (SRG2), the target system is the first qubit and the machine is the second
qubit, as shown in Fig. 5.1c. The first step is to apply a Pauli σx gate to the second qubit.
The next step is the Γ2 relaxation on both qubits, and the third step is a Γ1 relaxation on
the second qubit.

Starting with a target qubit characterized by pt, the ground state population after n
rounds of cooling is

pt(n) =
w

w + v
− un(

w

w + v
− pt) (5.13)

where w = p2pb, v = 1− p2 − pb + p2pb, u = 1− v − w. The asymptotic state is

|ρSRG2,t(∞)〉〉 =
1

w + v

(
w
v

)
. (5.14)

It is possible to extend the SRG2 to larger systems with more qubits [92], by using
a generalized relaxation process ΓN on N qubits between the states |0 . . . 0〉 and |1 . . . 1〉.
However, the original proposal uses the SRG2 as a subroutine and requires running it many
times to reach the asymptotic state. As will be seen later, this has an infinite energy cost
and is unrealistic to perform in the original form. In practice, one can truncate up to
a finite number of repetitions, resulting in a modified protocol. Here, we will only state
a known result on the asymptotic achievable polarization for SRGN as analyzed in the
original protocol in Section 5.3.6.
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5.3.4 PPA

In PPA-HBAC, the target system is the first qubit represented by the most significant bit
in a binary representation, and the machine is the rest of the qubits. The compression
unitary UPPA corresponds to a decreasing SORT of the diagonal elements in the input
state. This SORT is with respect to an ascending, lexicographical basis where 000 comes
before 001, which comes before 010, etc. After the sorting unitary, the population in the
0 subspace of the first qubit has increased, implying a decrease of entropy. The entropy
compression results in a separation of cold and warm qubits, where the target defines the
“cold end”.

The second step is a Γ1 thermalization of qubits at the warm end of the string. Here
we relax the last two qubits, which always have higher temperatures than the bath after
applying UPPA. It is also assumed that this step occurs at a much higher rate than the
thermalization of the other qubits, so that the final state of those are effectively unchanged.

The difficulty in analyzing PPA lies in calculating the compression step. The smallest,
3-qubit variant of PPA has the property that starting from the all-thermal state at the
same temperature, all the compression unitaries are identically equal to [107]

UPPA3 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


. (5.15)

Starting with a target qubit characterized by pt, the target’s ground state population at
the end of the n-th round is

pt(n) =
z

1 + z
− yn(

z

1 + z
− pt). (5.16)

where y = 2pb(1− pb) and z = p2
b/(1− pb)2. The asymptotic state is

|ρPPA3,t(∞)〉〉 =
1

1 + z

(
z
1

)
. (5.17)

For more than 3 qubits, UPPA generally changes from round to round. So far, no
analytical expression has been obtained for the optimal compression unitary during a
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general round of N > 3 PPA. There exist alternative compression unitaries that are fixed
for each cooling round and can achieve the same asymptotic temperature as the optimal
one, with a slower convergence rate. Here, we will rely on numerical simulations that
performs the optimal PPA in larger systems.

5.3.5 The 1-qubit xHBAC

The 1-qubit xHBAC protocol involves only a single qubit as the target, as shown in
Fig. 5.1d, although realizing the β-swap operation involves interaction with a well-controlled
bosonic mode. It consists of a 1-qubit Pauli σx gate, followed by a β-swap operation Λβ,
defined in [94] as the dephasing operation with the following Kraus operators:

A1 = |0〉〈1|
A2 =

√
e−βbE |1〉〈0|

A3 =
√

1− e−βbE |0〉〈0| .
(5.18)

The transition matrix describing the β-swap is

Gβ =

(
1− Ee−βb 1
e−Eβb 0

)
. (5.19)

We calculate the ground state population after n rounds of cooling to be

pxHBAC1,t(n) = 1− sn(1− pt) (5.20)

where s = e−βbE. The asymptotic state is

|ρxHBAC1,t(∞)〉〉 =

(
1
0

)
, (5.21)

i.e., the pure state |0〉.

5.3.6 Unified cooling limits

The asymptotic polarizations for the different algorithmic cooling protocols discussed above
are captured by the general expression:

ε∞ (εb, x) :=
(1 + εb)

x − (1− εb)x
(1 + εb)

x + (1− εb)x
(5.22)

= tanh [x ∗ arctanh(εb)]. (5.23)
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where x depends on the implemented protocol, as shown below. Equivalently, since 1+ε =
2p, and 1 − ε = 2δ, in the cooling limit, the ground state population of the target qubit
corresponds to

pt,∞(pb, x) =
pxb

pxb + δxb
. (5.24)

The corresponding temperature of the target qubit in the asymptotic limit is given by

Tt,∞ =
Tb
x
, (5.25)

where Tb is the temperature of the thermal bath.

• PPAN : x = 2N−2, for a total of N qubits using one reset qubit. In general, x = Md,
for PPA implemented using an auxiliary system of dimension d (also known as scratch
system) and M reset qubits.

• NOE2: x = 2, for two qubits. Note that the cooling limits of the NOE protocol on
2 qubits is the same as the cooling limit of the PPA-HBAC on 3 qubits.

• SRGN : x = 2N −1, for a total of N qubits. Specifically, for the above SRG2, x = 3.

• xHBAC: x =∞, giving εxHBAC
∞ → 1, for all values of εb.

5.3.7 Unified polarization evolution

Under the implementation of different AC protocols, the target qubit evolves, increasing
its polarization exponentially with the number of rounds at different convergence speeds.
We observe that the general expression of the polarization as a function of the number of
rounds k and convergence rate r is given by

εk (r, ε∞, εb) = ε∞ − rk (ε∞ − εb) , (5.26)

where εb is the polarization of the bath and the parameters r and ε∞ depend on the protocol
used as follows:

• PPA3: r =
1− ε2b

2
, with ε∞ =

2εb
1 + ε2b

, for three qubits.

• NOE2: r =
1

2
with ε∞ =

2εb
1 + ε2b

, for two qubits.
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• SRG2: r =
1

2

(
1− ε2b
1 + ε2b

)
with ε∞ = tanh [3 ∗ arctanh(εb)] = εb

3 + ε2b
1 + 3ε2b

, for two qubits.

• xHBAC1: r = e−βbE = e−2arctanh(εb) with ε∞ = 1.

This unified view reveals an interesting fact that all AC protocols under consideration here
cools down the target qubit exponentially fast towards the (different) asymptotic states,
in terms of the number of cooling rounds.

5.4 Cooling efficiency of HBAC protocols

Efficiency analyses for classical cooling protocols were of both theoretical and practical
interest. These analyses both provide an upper limit for the achievable efficiency and
suggest aspects in practical protocols which can be optimized. Conventionally, the focus
for developing quantum cooling protocols have largely been to improve the cooling limit
instead of efficiency. Meanwhile, as the scale of quantum processors gets larger, efficiency
considerations will start to play a more significant role. In the remaining sections of this
chapter, we analyze two different notions of efficiencies in quantum thermodynamics, and
compare different HBAC protocols in terms of these efficiencies. We then propose a few
modified HBAC protocols which have better energy efficiency compared to the original
ones we previously analyzed.

A note on notation before going into the discussions: in this section we are frequently
working with differences, such as the change in energy of a given system. Unless otherwise
stated, we will always use the Greek letter ∆ to denote the net change of a state function
for a process. Our convention for the net change is “final - initial”, i.e., ∆A = Af − Ai
where Af is the final value of some quantity A after the process, and Ai is the initial value
of A before the process.

5.4.1 Work cost and the coefficient of performance

The first and primary figure of merit of interest concerns the amount of work input during
a protocol, and is inspired by the classical coefficient of performance (CoP). A classical
cooling engine operates between a cold bath and a hot bath, pumping energy out of the
cold bath and transferring it to the hot bath. For any operation performed by the engine,
the CoP provides a measure of how effective it is in removing heat from the cold bath,
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giving the ratio of the desired effect (the heat removed from the target) to the required
input (work input to extract that energy). Specifically, the CoP, denoted by K, is given by

K :=
−∆Et
W

, (5.27)

where −∆Et is the total amount of heat removed from the target cold bath during the
operation, and W is the total work input for the operation. Note that certain operations
do not result in a net change of energy in the cold bath. For example, thermalizing the
engine with the hot bath does not result in a net change in the cold bath (and moreover,
does not require any work input either), so calculating the CoP for that process alone is not
meaningful. For this reason, we will restrict to processes that result in a positive energy
decrease in the target. As the definition of “operation” in the above varies, one can study
the CoP of a single step during a protocol, or that of a complete cooling process.

We can analogously define the same quantum CoP for a quantum cooling procedure.
HBAC protocols considered here all aim to cool down a finite quantum system instead
of an infinite cold bath. The expression will be identical to Eq. (5.27), with −∆Et now
denoting the energy decrease in the target system (which can now be interpreted as a
finite cold bath), and W denoting the work input. Again, we will restrict to processes with
−∆Et > 0. In particular, two processes that are the most relevant for HBAC is either a
single round, or the full cooling procedure up to a given round. We will denote the CoP
for the n-th round by a lower-case k(n), and the cumulative CoP up to the n-th round by
an upper-case K(n).

The next question is how k or K can be computed given a protocol. It is easy to
recognize that since energy is a state function, the numerator is always given by

−∆Et = Et,i − Et,f . (5.28)

By further assuming that the Hamiltonians Ht, Hm both return to their initial values at
the end of the unitary, the energy changes are simplified to

−∆Et = Tr[Ht(ρt,i − ρt,f )], (5.29)

where the subscripts i and f stand for initial and final states of the target.

On the other hand, the definition for W is slightly more subtle. An infinitesimal
change in the internal energy can be split into two components, which may be identified
as infinitesimal heat and work as [108]

dU = dTr[ρH] = Tr[dρ H] + Tr[ρ dH] := δQ+ δW, (5.30)
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where δ is used to denote path-dependent infinitesimal quantities. For a process where the
evolution ρ(t) and H(t) from time 0 to τ is known, the mean heat and work during the
process can be calculated as

Q :=

∫ τ

0

dtTr[ρ̇(t)H(t)]

W :=

∫ τ

0

dtTr
[
ρ(t)Ḣ(t)

] (5.31)

with the first law being ∆U =
∫
dU = Q+W .

In general, it can be nontrivial to find Q and W for a general quantum process. Here,
we face a simpler situation where the analysis only needs to be performed for coherent
control AC protocols. First, for the control subroutine, the target and machine undergo
a unitary evolution, so the joint system evolves under the Schrodinger equation, ˙ρt,m(t) =
− i

~ [Ht,m(t), ρt,m(t)]. This implies that Q vanishes:

Q = − i
~

∫ τ

0

dtTr[[Ht,m(t), ρt,m(t)]Ht,m(t)] = 0 (5.32)

since trace is invariant under cyclic permutation. Therefore, for the control subroutine,
the amount of work input is W = Tr[ρ(τ)H(τ)− ρ(0)H(0)], i.e., the total energy change
of the full system correspond to work input. This agrees with the intuition that, since the
system is isolated from the bath in the control step, the amount of heat released into the
bath is 0. We thus have the following expression for the control subroutine:

Wc = ∆Et,c + ∆Em,c (5.33)

where the subscript c stands for control.

For the second part of the round, for the thermalization subroutine, we have established
in Section 5.2.1 that the transformation on the system can be achieved by some energy-
preserving unitary V[t,m,b] between the system and the bath. Thus, the thermalization step
can be performed without work input in principle. Of course, it is possible to construct
another unitary V ′[t,m,b] that achieves the same transformation on the system, but with a
nonzero work input. Therefore, the exact form of the thermalization unitary V[t,m,b] is non-
unique and may be unknown in practice. So, instead, we will consider the lower bound
situation for the work calculation, where the thermalization on the system is achieved by
an energy-preserving unitary, so that the work input is indeed zero for the thermalization
part

Wth = 0 (5.34)
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where the subscript th stands for thermalization. This gives a recipe to compute the total
lower bound work for a coherent cooling procedure consisting of any combination of control
and thermalization subroutines as

W =
∑
α

Wc,α (5.35)

where α denotes different control steps of the protocol. As a result, the CoP for coherent
control cooling protocols can be expressed purely in terms of (changes in) state functions.
The CoP computed under this assumption will serve as an upper bound of the actual CoP
in practice, due to the aforementioned reasons.

5.4.2 Comparing the CoP of the cooling protocols

We utilize the transition matrix formalism introduced in Section 5.3.1 to compute the effi-
ciencies for different protocols in a systematic manner. This time we monitor the evolution
of both the target system and the machine – thus, involving matrices of larger size. As
before, we will only present the final results here, while the detailed derivations are given
in Appendix C.4.

1. PPA3

In PPA3, the first step is entropy compression, which is a global unitary on all 3
qubits. The second step is thermalization of both ancillary qubits with a bath at
temperature βb. We identify the energy change during the first step to be the total
work input for each round of the protocol. For the n-th round, this is given by

wPPA3(n) = E(pb −
1

2
)yn, n ≥ 1 (5.36)

with the same y defined previously. Using the target state evolution in Eq. (5.16),
the energy decrease for the target during the n-th round is

−∆ePPA3,t(n) = E(pb −
1

2
)yn, n ≥ 1. (5.37)

We see that the CoP is
kPPA3(n) = 1, n ≥ 1 (5.38)

and the cumulative CoP is

KPPA3(n) = 1, n ≥ 1. (5.39)
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We note that the same CoP result has been presented in a recent work by Soldati et
al. [100]. For PPA on more than 3 qubits, we use numerical simulation to compute
the CoP for each round.

2. NOE2

In NOE2, the first step is a driven operation to the CMS state on qubit 2, and the
second step is a 2-qubit Γ2 relaxation. We identify the energy change during the
CMS operation to be the work input, because it is achieved by applying a random
rotation unitary to qubit 2 and averaging over the results in practice. The (average)
work input during the n-th round is

wNOE2(n) =

{
E(p2 − pb)21−n, n > 1

E(pb − 1
2
), n = 1

(5.40)

and the energy decrease for the target during the n-th round is

−∆eNOE2,t(n) = E(p2 − pb)2−n (5.41)

for all n ≥ 1. Using these, we calculate the CoP to be

kNOE2(n) =
−∆Et(n)

WNOE(n)
=

{
p2−pb
2pb−1

, n = 1
1
2
, n > 1

(5.42)

(note that p2 and pb are both functions of the bath temperature). The cumulative
CoP up to round n is

KNOE2(n) =
−∆Et(n)

WNOE(n)
=

(p2 − pb)(1− 2−n)

(p2 − 1
2
)− 21−n(p2 − pb)

. (5.43)

3. SRG2

In the SRG2 protocol the first step is a σx gate on qubit 2, the second step is a
Γ2 relaxation on both qubits, and the third step is a Γ1 relaxation on qubit 2. We
identify the energy change during the first step (σx gate) to be the work input, given
by

wSRG2(n) = E(2pb − 1) (5.44)

for all n ≥ 1. In fact, this can be trivially obtained by noticing that the σx gate always
flips the same thermal state at bath temperature in each round. This explains our
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comment before that the total energy cost from applying the SRG2 many times is
unbounded. Meanwhile, the energy decrease for the target during the n-th round is

−∆eSRG2,t(n) = Epb(1− pb)(2p2 − 1)un−1 (5.45)

for all n ≥ 1. The CoP of the n-th round is

kSRG2(n) =
pb(1− pb)(2p2 − 1)

2pb − 1
(p2 + pb − 2p2pb)

n−1 (5.46)

for all n ≥ 1. The cumulative CoP up to round n is

KSRG2(n) =
pb(1− pb)(2p2 − 1)

2pb − 1

1− un
n(1− u)

. (5.47)

4. xHBAC1

In 1-qubit xHBAC, one first applies a σx gate, followed by a β-swap relaxation Λβ.
The work input corresponds to the energy change during the σx gate, given by

wxHBAC1(n) = E(1− 2sn−1(1− pb)). (5.48)

The energy decrease for the target during the n-th round is

−∆exHBAC1,t(n) = E(1− pb)(1− s)sn−1 (5.49)

for all n ≥ 1. The CoP of the n-th round is given by

kxHBAC1(n) =
−∆Et(n)

WxHBAC1(n)
=

(1− pb)(1− s)
1− 2sn−1(1− pb)

sn−1 (5.50)

for all n ≥ 1, where s = e−Eβb . The cumulative CoP up to round n is

KxHBAC1(n) =
(1− pb)(1− s)(1− sn)

n(1− s)− 2(1− pb)(1− sn)
(5.51)

We first discuss the per-round CoP, k, of these protocols. The PPA3 exhibits the
simplest behavior with a constant kPPA3 = 1. The NOE has an almost constant behavior,
with kNOE = 1/2 for all rounds except the first one. Protocols like these are considered to
be the most energetically effective, since as the target is cooled, the work input required
at each round also decreases proportionally with the decrease in target energy per round.
Meanwhile, the SRG2 and xHBAC1 both have k’s that decreases exponentially with the
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Figure 5.2: A plot of per-round CoP, kPPA3, plotted against the final inverse temperature
Eβfinal for selected PPA protocols.

round n. This means that as the qubit is cooled, the amount of energy extracted from the
target becomes exponentially small compared to the work input for that round. Therefore,
protocols like these becomes more energetically inefficient for deeper cooling.

Next we turn to PPAN with N ≥ 3, where we numerically study their efficiencies. This
is plotted in Fig. 5.2. Each point shows the per-round CoP on the y-axis, versus the scaled
final temperature (βfinalE) of the target qubit on the x-axis, so that we go from left to
right as the target cools down. The first point (on the leftmost) in each curve represents
the cumulative CoP after the first round of cooling, and one follows the line towards the
right as cooling proceeds further. Note that except the PPA3 which has a constant k, all
larger instances of PPA have decreasing k’s as cooling progresses. This shows that larger
PPA protocols also becomes inefficient at extracting energy from the target qubit as it is
being cooled down.

Although the per-round CoP decreases for most of the protocols considered here, the
magnitude of the work input may also decrease as cooling proceeds (while the heat removed
from target decreases even faster), and will contribute less and less to the total amount of
work inputted. Therefore, the more practically meaningful figure of merit for determining
the total energy efficiency is K, the cumulative CoP. We plot the cumulative CoP for
selected protocols in Fig. 5.3. From top to bottom are the results when starting from a
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Figure 5.3: Comparison of cumulative CoP between HBAC protocols under different initial
bath temperatures, plotted against the final inverse temperature Eβfinal.

high (βbE = 0.5), intermediate (βbE = 1), and low (βbE = 2) bath temperature (scaled by
the qubit’s energy gap E), where βb is the bath inverse temperature and E represents the
qubit energy gap1. Recall from Section 5.3 that the xHBAC has a cooling limit of 0 (the
lowest possible), whereas all other protocols under consideration here have finite cooling
limits. Here, a higher CoP implies better energy efficiency in extracting a certain total
amount of heat from the target qubit.

Several important observations are listed as follows:

1. The CoP for both the xHBAC1 and the SRG2 goes towards 0 as cooling proceeds,

1As a reference, for a transmon qubit with a transition frequency of 5GHz at temperature Tb =20mK,
βbE ≈ 12 which corresponds to a very low temperature.
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whereas the other protocols have a finite CoP as we approach equilibrium;

2. Both tending towards K = 0 as the number of cooling rounds increase, the xHBAC1
has an equilibrium temperature of 0 (corresponding to Eβfinal = ∞) whereas SRG2
has a finite equilibrium temperature;

3. The CoP of PPA protocols plateau as we approach equilibrium, and PPA protocols
with more qubits are capable of cooling to lower temperatures at the cost of having
a lower final cumulative CoP;

4. Both the PPA3 and NOE2 achieve the same final target temperature, but the PPA3
has a higher CoP than the NOE2;

5. The relative magnitude ofK between different protocols vary as the bath temperature
changes.

The diverging behavior of both the xHBAC1 and the SRG2 can be easily understood
from the construction of their protocols, which involves applying σx gates at every round
of cooling. Meanwhile, the optimized relaxation scheme of xHBAC1 allows it to achieve
final temperature 0 exponentially fast, which SRG2 cannot do. On the other hand, the
PPA appears to be a milder family of protocols, which cools to a finite temperature at a
finite energy cost. We can also see that the constant K = 1 performance of PPA3 is a
special case rather than a general behavior for all PPA protocols.

The temperature dependence of HBAC is also interesting. It appears that as tempera-
ture lowers (going from top to bottom in Fig. 5.3), the PPA becomes more advantageous
energetically compared to the other protocols. Conversely, protocols like the xHBAC1
becomes more favorable when the system starts at higher initial temperatures, because it
may cool to the same temperature as the PPA’s in less number of steps and with less total
energy input, under certain regimes. Indeed, comparing the energy cost of protocols in
Fig. 5.3 can be done by drawing a vertical line at a certain final target temperature which
we wish to achieve. For example, we can see that at the final temperature achieved by
the first round of xHBAC1 cooling, the point representing xHBAC1 lies above the ones
for the PPA protocols which are capable of cooling to a similar temperature. The second
round of xHBAC1 lies below PPA4, but above PPA5 and PPA6. On the other hand, the
line for xHBAC1 lies below all PPA protocols under consideration here, for lower initial
temperatures βbE = 1 and βbE = 2. In summary, selecting the best protocol in practice
requires one take into consideration both time and energy cost.
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5.5 Heat production and the Landauer Ratio

In addition to the work required, another equally interesting aspect is to look at the heat
released during a cooling procedure. This is particularly relevant for certain quantum
processing platforms that are sensitive to the environmental temperature, such as super-
conducting qubits. In these platforms, one must minimize heating up of the environment
while performing information processing. Therefore, protocols that produces less heat will
be more desirable to be used in practice, motivating our study on heat production.

5.5.1 Minimal heat production

Landauer [43] was the first to realize that classical information erasure (more precisely,
logically irreversible operations) must come with heat released to the environment. This
phenomenon has been referred to as Landauer’s Principle (LP) in later studies. The original
arguments can be summarized as follows. Consider a single spin which acts as a memory.
The initial state of the spin is taken to be unknown; hence statistically it is equally probable
to be in either spin up or spin down. Invoking the Boltzmann definition of statistical
entropy, S = k log(W ) where W is the number of possible microstates a system can be in,
one sees that if one is to perform a reset operation on the spins, then W is reduced to half
of its initial value. Therefore, the entropy of the memory has decreased by k log(2). Since
the entropy of a closed system (memory plus environment) cannot decrease, one can then
infer that the entropy of the environment must have increased by at least k log(2).

It is expected that a similar argument should hold when the system of interest is of
quantum nature. The analogy goes that unitary evolutions are reversible and does not
change the entropy, therefore is analogous to reversible operations in classical thermody-
namics. Meanwhile, a non-unitary transformation may result in a finite entropy change,
and a negative entropy change is analogous to classical information removal. Therefore, the
goal of formulating a quantum Landauer’s Principle has largely been focusing on bounds
of heat production in terms of entropy change in the target system. In particular, note
that the goal of algorithmic cooling is to drive the target system towards a fixed state
(the ground state in our examined cases), and necessarily accompanies an entropy change.
Below we will review two inequalities of this type, then propose an efficiency measure for
algorithmic cooling based on entropy considerations.

In the first scenario, there exists a target system of interest initially in an arbitrary
state ρt, and a bath initially in a thermal state ρthb with inverse temperature β, jointly in a
tensor product state ρt,b = ρt⊗ρb. The full state of system plus bath is thermodynamically

74



closed. The system and bath then undergo a joint unitary transformation denoted by Ut,b,
taking them to a final state ρ′t,b. The work by Reeb and Wolf [109] showed that (see
Appendix C.1 for a derivation)

β∆Eb = −∆St + I(t′ : b′) +D(ρ′b||ρb) (5.52)

where ∆Eb = Tr[(ρ′b − ρb)Hb] is the energy increase of the bath, −∆St = −(S(ρ′t)− S(ρt))
is the entropy decrease of the system, I(t′ : b′) is the quantum mutual information between
target and bath after the evolution, and D(ρ′b||ρb) is the quantum relative entropy between
initial and final states of the bath,

I(t′ : b′) = S(Trb[ρ
′
t,b]) + S(Trt[ρ

′
t,b])− S(ρ′t,b)

D(ρ′b||ρb) = −S(Trt[ρ
′
t,b])− Tr

[
Trt[ρ

′
t,b] log ρb

] (5.53)

Due to the non-negativity of I and D, this result implies that the energy increase in
the bath (after scaled by the inverse temperature) will be lower bounded by the entropy
decrease in the system.

In the second scenario, consider a single target system undergoing a general CPTP
evolution Et. When the system is open, Et may be a non-unitary evolution. In general we
may extend this CPTP map to be a unitary map on a larger Hilbert space, but since the
extension is non-unique, the exact evolution on the ancillary system is also non-unique.
Interestingly, a Landauer-type inequality can be derived for a subset of such processes,
by only examining the change in the system alone. For a general CPTP evolution on the
target system where ρ′t = Et(ρt), one can derive (see Appendix C.2) the following equality:

− β∆Et = −∆St + (D(ρt||ρtht )−D(ρ′t||ρtht )) (5.54)

where, as before, −β∆Et = −Tr[(ρ′t − ρt)Ht] is the negative energy increase in the system,
−∆St = S(ρt)−S(ρ′t) is the entropy decrease in the system, and ρtht is the system’s thermal
state.

Interpreting quantum relative entropy as a distance measure, one sees that for processes
where the final state is closer to ρtht than the initial state, the difference term in the bracket
on the right is positive. For example, this will hold true for a thermalization process
towards ρtht . Therefore, for processes where the state is becoming closer to the thermal
state, Eq. (5.55) states that the decrease in energy (scaled by the inverse bath temperature)
will be larger than the decrease in entropy for the system. We therefore refer to Eq. (5.54)
as the LP for thermalization processes.

To relate to energy change in the bath, a common assumption (e.g., in collision mod-
els [110]) is that the actual joint evolution of the system and bath is energy-preserving.
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This implies that β∆Eb = −β∆Et, so that the energy increase in the bath can now be
related to the entropy decrease in the system as

β∆Eb = −∆St + (D(ρt||ρtht )−D(ρ′t||ρtht )). (5.55)

We have seen that for both scenarios considered above, one can establish Landauer-type
inequalities which lower bounds the amount of heat increase in the bath by the amount
of entropy decrease in the system. Since the goal of HBAC is exactly reducing entropy of
the system, it is well motivated to define an “entropic efficiency” for a given protocol by
considering the energy increase outside the target system. A slight complication for the
coherent control cooling schemes is that outside the target, there exists both a machine
and a heat bath where the energy can be directed to. While the bath is assumed to be
large such that it remains in a thermal state at fixed temperature, the machine may not
be thermal after the first round of cooling, preventing a direct application of Eq. (5.52) for
the “control” step. Nonetheless, the following quantity

RL :=
βb(∆Eb + ∆Em)

−∆St
(5.56)

where βb is the inverse temperature of the bath, is well-defined for any nontrivial cooling
procedure with ∆St < 0. We call this the Landauer Ratio (LR) and propose it as a
measure of entropic efficiency, by observing that for the two settings discussed previously,
this ratio is lower bounded by 1, and a lower value implies more entropy extracted from
the target system per amount of energy released. Like the CoP, we can study the LR for a
particular round where the difference (∆) quantities above refer to the change for a round,
or the cumulative LR where the difference quantities refer to the cumulative change. We
will denote the prior by rL, and reserve RL as the cumulative LR, noting that the two
quantities coincide for a single round of cooling.

Eq. (5.56) is again an operational definition, like the CoP, because it is a ratio of cost
over desired effect. What we have in mind is the coherent cooling scheme with some
predetermined target system, machine, and heat bath. Interestingly, if we change the
definition of what a target is, the LR may reveal further insights about the evolution of a
cooling protocol. A particularly insightful example is when we focus on a single unitary
process, e.g., the compression step in PPA. Specifically, we know that the purpose of
compression is to concentrate entropy on the two relaxation qubits, which release those
entropy to the bath during the thermalization step. How efficient is this concentration
operation? We first note the following theorem which is proved in Appendix C.3.
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Figure 5.4: A plot of per-step LR, showing the ratio of the energy increase in the last two
reset qubits over the entropy reduction in the target plus computational qubits, for PPA
protocols. This illustrates the asymptotic optimality of PPA for cooling the computational
qubits.

Theorem 5.5.1. Consider a finite dimensional system with initial state ρxy = ρx ⊗ ρthy
where y has an inverse temperature β. Let T (ρ, σ) := 1

2
‖ρ− σ‖1 denote the trace distance

between ρ and σ. Then for a unitary process U(ρxy) = ρ′xy where T (ρ′x, ρx) ≤ 1
2e

(where e
is the natural log base) and −∆Sx > 0,

β∆Ey
−∆Sx

≥ 1 +
γ2
y + λ2

xy

εx log
(
dx
2εx

) (5.57)

where εx = T (ρ′x, ρx), γy = T (ρ′y, ρy), λxy = T (ρ′xy, ρ
′
x ⊗ ρ′y), and dx is the dimension of

subsystem x.

Clearly, this is exactly the setting described prior to Eq. (5.52), where a bipartite
unitary process occurs from an initially tensor product state, with the second subsystem
in the thermal state. Therefore we expect the ratio on the LHS to be greater than or equal
to 1. Meanwhile, this theorem provides some insights into when the LHS may approach
the theoretical minimum of 1. Specifically, this has to do with how “drastic” the unitary
is, how “evenly distributed” the change is between subsystems x and y, and how much
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mutual information has been created. We observe that the ratio would approach 1 for a
unitary that satisfy the following:

1. it only results in a marginally small variation in the joint state ρxy (when measured
by the trace distance T ), so that all of εx, γy, and λxy are small;

2. The change in subsystem x, εx, is less than or on the same order as the change in
subsystem y, γy, and λxy which is proportional to the square root of the mutual
information created by the unitary.

One could see that if the above are true, then the numerator in the extra term on the
RHS goes quadratic in the small quantities, while the denominator only goes as ε log(ε),
so the ratio would go towards 0. Of course, this is only a rough intuition, and we shall
now see how this lower bound is asymptotically achieved in the PPA protocol. In addition,
we note here that a tighter but more sophisticated bound has been derived in [109]. The
significance of our result is to give an intuition for when the lower bound of 1 may be
saturated, in terms of the change and correlation quantities as a result of the unitary.

To relate back to PPA, notice that immediately before the compression step of each
round, the first n− 2 qubits are in a tensor product state with the last two qubits, which
have just been refreshed to the bath temperature. Therefore, we may take the first n− 2
qubits to be subsystem x and the last two qubits to be subsystem y, so that Eq. (5.57) is
satisfied. Comparing with Eq. (5.56), one sees that the LHS of Eq. (5.57) is precisely RL

where ∆Eb = 0 (since the system is closed during the unitary), if we identify the target
system to be the first n−2 qubits, and the machine to be the last 2 qubits. We will refer to
the RL with this identification as rL,comp since it is a per-round LR where the new “target”
system consists of all computational qubits (a historical term referring to all except the
relaxation qubits). What this represents is the ability of PPA to extract entropy from
the computational qubits, and concentrate them into the two relaxation qubits. A ratio
close to 1 implies maximum entropy extracted from the computational qubits, per energy
increase in the relaxation qubits, by the compression unitary. We plot this quantity rL,comp

in Fig. 5.4, for different PPA protocols. As can be seen from the plot, all the protocols
indeed show a consistent behavior where the rL,comp goes towards 1 as cooling proceeds
towards equilibrium. Therefore, the PPA compression subroutine is asymptotically optimal
in terms of extracting entropy from the computational qubits.
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5.5.2 Relating to the coefficient of performance

Having operationally defined the Landauer Ratio, we then ask the same question of whether
it can be computed given a protocol. The difficulty lies in computing ∆Eb for a general
process, since the bath degree of freedom is typically not known in full detail, whereas
the protocol only dictates how the system (target and machine) evolves. Meanwhile, we
will see that for coherent cooling protocols, the LR can be calculated in principle. For
the control subroutines, the joint system of target plus machine is closed, and undergoes a
unitary transformation. The quantity ∆Eb is thus 0 for these processes. Meanwhile, for the
thermalization subroutines, we again assume that it occurs with a joint energy-preserving
unitary on the system and bath, so that ∆Eb = −(∆Et + ∆Em). Therefore, for coherent
control protocols,

∆Eb = −(∆Et,α + ∆Em,α) (5.58)

where α denotes all thermalization steps during the protocol.

It is instructive to see how the LR relates to the CoP defined in the previous section.
Since the full system of (target, machine, bath) is closed, energy conservation implies that

∆Et + ∆Em + ∆Eb = W. (5.59)

Replacing W in the definition of the CoP gives

K =
−∆Et
W

=
−∆Et

∆Et + ∆Em + ∆Eb
, (5.60)

and rearranging the terms gives

∆Eb + ∆Em
∆Et

= −
(

1

K
+ 1

)
. (5.61)

Recalling the definition of RL, we have

RL =
βb(∆Eb + ∆Em)

−∆St
=
−βb∆Et
−∆St

(
1

K
+ 1

)
. (5.62)

This above equation shows how K and RL are related to each other. For a given cooling
procedure with known initial and final states, knowing K immediately gives RL, and vice
versa. Moreover, it can be seen that for a given process with fixed initial and final states,
a higher CoP corresponds to a lower LR, confirming our previous intuition about what
“more efficient” means under both measures. An equivalent way of saying this is that a
higher work input necessarily accompanies more heat released into the (machine and) bath.
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When the target system is a qubit with energy gap E, the cumulative LR up to the
n-th round is simplified to

RL(n) =
βbE(pt(n)− pt)
H(pt)−H(pt(n))

(
1

K(n)
+ 1). (5.63)

In Fig. 5.5, we show a plot of the cumulative LR for the HBAC protocols under consid-
eration, starting from different initial temperatures. Comparing with Fig. 5.3 at the same
bath temperature, we may verify our result in Eq. (5.62) that protocols with a lower CoP
necessarily have a higher LR, so both are meaningful figures of merit for efficiency. At
Eβb = 1 and above, the PPA protocols under consideration releases less amount of heat
into the environment when cooling to the same final target temperature. Meanwhile, at a
higher temperature of Eβb = 0.5, there are certain regions in which using the xHBAC1 is
more efficient than the PPAs, when both can reach the same final temperature.

Interestingly, note that both the PPA3 and NOE have LR’s that decrease with further
cooling. This can be understood from Eq. (5.62) that, for K being fixed, the LR is
proportional to the ratio of energy change over entropy change in the target system. When
the target is a single qubit, both changes are functions of a single parameter p. Since the
rate of decrease in energy (linear in p) is faster than the rate of decrease in entropy (log
in p) as p→ 1, the ratio will grow smaller as p increases. Therefore, for protocols like the
PPA3 and NOE which have constant or near-constant K, the change in LR is dominated
by this effect and decreases with the cooling progress.

5.6 Designing protocols with better energy efficiency

We noted previously that conventionally, analyses on HBAC have mostly focused on the
cooling speed and asymptotic achievable temperature. This drives searches for faster pro-
tocols or ones which can cool to lower temperatures, but largely ignores the amount of
energy cost. Having taken energy aspects into consideration for HBAC protocols, we now
study possible methods to improve their energy performance. To be more concrete, we will
first look at the compression step in PPA, and show how it can be improved energetically.
Later, we will see how this idea leads to more efficient variants of the PPA and xHBAC
protocols.

Consider the same setup as the PPA which consists of a target system with X energy
levels and a machine with Y energy levels, with the possibility of having degeneracies.
For simplicity, we assume that both the target and the ancillas are diagonal in the energy
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Figure 5.5: Comparison of cumulative LR between HBAC protocols under different initial
bath temperatures, plotted against the final inverse temperature Eβfinal.
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eigenbasis. In such systems, a unitary corresponds to permutations of the diagonal elements
(up to a global phase), so it is sufficient to consider the simpler problem of optimizing over
all possible permutations. We ask the question: among the unitaries that achieve maximal
energy reduction in the target, which is the most energy-efficient one? Note that here we
do not try to optimize the CoP, and instead, only optimize within the set of unitaries that
achieve the most cooling possible given the initial system.

5.6.1 Improved PPA

We first examine the original PPA entropy compression, which performs a descending
SORT to the diagonal elements with respect to the lexicographic basis order. For simplicity,
we will assume that all qubits have the same energy gap. Recalling that the target system
in PPA is a single qubit, so X = 2. Therefore, the descending SORT always achieve the
maximal energy reduction in the target, since it maximally populates the lowest energy
ground state. Therefore, one only needs to look at the energy cost of this operation and
check whether there exists a more efficient one, whose existence we will show below.

For PPA3, the states in the |0〉 subspace of the first qubit include

000, 001, 010, 011,

and similarly for the |1〉 subspace. We see that these states are already ordered in terms
of energy assuming the same energy gap between all qubits, so a descending SORT would
result in the lowest energy configuration within each subspace of the target.

In contrast, for n = 4 qubits, the states in the |0〉 subspace of the first qubit are

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111

and similarly for the |1〉 subspace. These states are not fully ordered in terms of energy:
specifically the state |0011〉 comes before |0100〉, but has a higher energy. Consider the
following new ordering

0000, 0001, 0010, 0100, 0011, 0101, 0110, 0111

which is now ordered in ascending energy within the target |0〉 subspace. Compared with
the original compression, a descending SORT with respect to this new basis order achieves
the same cooling in the target, but uses potentially less energy since the low-energy state
0100 is now more populated than the high-energy state 0011.
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We now go back to the more general setting, where we wish to reduce the energy in an
X-level target system as much as possible with a single unitary. The available ancillary
system is a machine with Y energy levels, such that the full system has a total of XY
levels. Following the previous intuition, we propose the following compression procedure:

1. Label the target subspaces in non-decreasing order, such that Et,1 ≤ · · · ≤ Et,X ;

2. Label the machine subspaces in non-decreasing order, such that Em,1 ≤ · · · ≤ Em,Y .
This results in an ordering for the full system as

|1, 1〉 , . . . , |1, Y 〉 , |2, 1〉 , . . . , |2, Y 〉 , . . . , |X, Y 〉

where the first index labels the target and the second labels the machine;

3. Perform a descending SORT with respect to this basis ordering, so that the popula-
tion profile after the unitary satisfies:

p1,1 ≥ · · · ≥ p1,Y ≥ p2,1 ≥ · · · ≥ pX,Y .

The above procedure ensures maximal energy reduction in the target, while requiring
the least amount of work input, in a single unitary step. It is interesting to see how this
affects the performance of PPA, when combined with non-unitary relaxation steps in the
original protocol. A round in our new protocol consists of: 1) a control subroutine using the
above compression procedure, and 2) a thermalization subroutine where all qubits higher
than the bath temperature are relaxed to the bath temperature Tb. Interestingly, starting
from an all-thermal state at Tb, we find that all qubits except the target becomes warmer
than the bath, and are therefore all relaxed after the new compression. According to [107],
relaxing more qubits implies a lower achievable temperature of the target. In particular,
we show in Appendix C.5 that the asymptotic achievable temperature using this new
procedure is Tb/(n− 1) with a total of n qubits, compared to Tb/2

n−2 in the original PPA.
Consequently, a fair CoP comparison is between the new scheme using 2n−2 + 1 qubits and
the original one using n qubits, such that both achieve the same asymptotic temperature.
This is shown in Fig. 5.6 where we compared the first three instances, and see indeed that
the improved protocol has a higher cumulative CoP than the original one.

We end with a brief discussion on the above results. Compared with the original scheme,
the new scheme creates a more “averaged” compression, such that the temperatures of
qubits other than the target are more evenly distributed. This “softer” compression uses
less energy, but also creates less temperature gradient among the machine bits. Thus, this
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Figure 5.6: Comparison of CoP between the original (solid lines) and energetically improved
(dashed lines) PPA protocols. The improved PPA uses a larger number of qubits (indicated
in the brackets in the plot legend) compared with the original PPA in order to cool the
target to the same asymptotic temperature, but uses less energy in total to achieve so.

change the structure of the asymptotic state of the full system: while that of the original
PPA has the following temperature profile

Tb
2n−2

,
Tb

2n−3
, . . . ,

Tb
2
, Tb, Tb

for each qubit, the new PPA has

Tb
n− 1

, Tb, Tb, . . . , Tb.

One can see this as a way to trade spatial cost with energetic cost: in order to create
the temperature gradient in the original PPA, it is necessary to cool the first n− 2 qubits
to temperatures lower than the bath. The new PPA avoids such unnecessary cooling, by
using a larger total number of qubits but with much lower energy cost.
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5.6.2 Improved xHBAC

Next, we see how the same principle can be used to obtain an improved realization of
the xHBAC1 protocol, compared with the original proposal which uses a bosonic bath
interacting with the qubit to implement the Λβ operation [94]. While the original proposal
can already cool down the target qubit exponentially fast, as can be seen from Fig. 5.3, it
is not thermodynamically optimal in terms of energy consumption, since the total amount
of work input is unbounded as more cooling rounds are performed. In fact, it is well known
that using an ancillary system with an unbounded spectrum, a target system can be cooled
asymptotically to zero temperature using unitary control. Using this same ancillary system,
we can explicitly construct the asymptotic final state of the combined system and calculate
the work cost.

Again, the target qubit and the harmonic oscillator start in a tensor product state, each
being in a thermal state at the same temperature Tb. This corresponds to a situation with
X = 2 and Y = ∞. We will consider the “resonant” scenario where Et = Ea := E, since
this is the necessary condition for Λβ to be a thermal operation [94]. Then, the thermal
population of a state |m,n〉 only depends on the “total quantum number” m + n: for
example, the population of |1, 0〉 and that of |0, 1〉 will be identical. Moreover, the ordering
for the full system will be given by

|0, 0〉 , |0, 1〉 , |0, 2〉 , |0, 3〉 , . . .

where the first index labels the qubit and the second labels the bosonic mode. Thus, the
improved protocol puts the largest diagonal elements in the joint density matrix into the
|0〉 subspace of the qubit, in decreasing order of magnitude with the increasing energy levels
of the harmonic oscillator |n〉. Due to the infinite energy levels present in the harmonic
oscillator, the final state would have all the significant components in the qubit |0〉 subspace,
which can be formally seen by first considering a truncated Y -level machine, and taking
the limit Y →∞.

Therefore, after the optimized compression, the final state would have the |0, 0〉 pop-
ulation unchanged, then the original |0, i〉 population “copied twice” into |0, 2i− 1〉 and
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|0, 2i〉, for i = 1 . . .∞. The energy of this final state is given by

Efin =
∞∑
i=1

1

Za
p0e
−iβE(2i+ 2i− 1)E

=
∞∑
i=1

(1− e−βE)(
1

1 + e−βE
)e−iβE(4i− 1)E

=
1 + 3eβE

e2βE − 1
E

(5.64)

where the ground state |0, 0〉 has been set to have energy 0. The energy of the initial state
is simply the energy of the qubit plus that of the harmonic oscillator,

Eini = δbE +
∞∑
i=0

1

Za
e−iβEiE =

2eβE

e2βE − 1
E (5.65)

The work input is

W = Efin − Eini =
1

eβE − 1
E. (5.66)

Since the final energy of the qubit is 0, the energy decrease in the qubit is the initial energy
of the qubit, δbE. The CoP is thus

K =
−∆Et
W

=
1− e−βE
1 + e−βE

= tanh
βE

2
. (5.67)

We see that the optimal CoP is bounded between 0 and 1, depending on the bath
temperature. Compared with the exponentially decreasing CoP (see Fig. 5.3) using the
original proposal, this result suggests that there is much room for improvement in the
energy efficiency when designing practical cooling protocols using a bosonic bath.

5.7 Summary

In this chapter, we investigated the thermodynamic properties of algorithmic cooling within
a comprehensive framework of coherent cooling, encompassing a broad range of distinct
protocols. By employing the transition matrix formalism, we identified a consistent be-
havior among these protocols concerning their cooling limits and target state evolution.
Meanwhile, their thermodynamic performance displayed markedly diverse characteristics.
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To compare the protocols, we proposed two key metrics: the coefficient of performance
and the Landauer ratio, each highlighting a different aspect of a protocol. Furthermore, we
demonstrated that the PPA becomes asymptotically efficient in terms of the Landauer ratio.
Finally, we proposed improved versions of the PPA and xHBAC with enhanced energetic
efficiency, inspired by our thermodynamic analysis. Our findings reinforce the connection
between algorithmic cooling protocols and classical heat engines, thereby establishing a
solid theoretical foundation for future research in the field of quantum thermodynamics.
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Chapter 6

Views on quantum error mitigation

We saw in the previous chapter that AC could serve as a useful tool for physically im-
proving the quality of initial state preparation in quantum computers. In this chapter,
we discuss another near-term approach for reducing errors in quantum computation called
quantum error mitigation (QEM), which refers to a family of protocols that reduce effec-
tive error rates through data post-processing. The emergence of QEM is partially driven
by the difficulty to perform full scale quantum error correction in NISQ devices, as well as
the fact that many near-term quantum-classical hybrid algorithms only use limited types
of local measurements. Here, we examine the task of QEM from several perspectives.
After reviewing some common QEM protocols in Section 6.1, in Section 6.2 we illustrate
the fundamental distinctions between QEC and QEM from the perspective of classical
and quantum communication. In Section 6.3 we study implications of noise invertibilities
in QEM, and illustrate how non-invertible noise, which is largely omitted in the litera-
ture, may arise in an experiment. We propose a construction called Drazin-inverse for
non-invertible noises, and prove that compared to a conventional choice of pseudoinverse
(the Moore-Penrose pseudoinverse), the Drazin-inverse has the advantage of being trace
preserving.In Section 6.4 we study the consequences due to imperfect knowledge about
actual noise, and give a sufficient condition for when an optimal QEM can improve the
expectation value of any observable.

6.1 Review of QEM protocols

The goal of QEM protocols is usually to recover the ideal expectation value of some observ-
able A from the output state ρout, namely 〈A〉 = Tr[Aρout]. These can be further classified
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into two categories [111, 112]. The first one, which we call error-based QEM, requires
prior knowledge on the form of noise occurring in a quantum processor. The second one
does not require the particular form of noise being known, and will be called error-agnostic
QEM. This section aims to review some of the commonly-used protocols, with a focus on
error-based QEM. Our treatment will be based on the review article by Zhang et al. [112]
with some modifications.

6.1.1 Extrapolation Methods

Extrapolation-based QEM is among the earliest proposed protocols that fall under the
QEM category [44, 113]. The intuition is that while it is in general difficult to reduce the
physical error rate on a processor, increasing the error rate in a controlled manner might
be possible on some systems. Once sufficiently many observations of the expectation value
under different noise strengths have been obtained, it could be possible to infer the noiseless
value from the noisy ones. Consider a stochastic noisy physical process of the form

E = (1− ε)I + εN (6.1)

where I is the identity map, N is the noise map, and ε is a small error rate. For a target
quantum circuit with depth n, the ideal and noisy output states can be written as

ρideal
out = Un ◦ · · · ◦ U1(ρin),

ρexp
out = N ◦ Un ◦ · · · ◦ N ◦ U1(ρin),

(6.2)

where we have made a simplifying assumption that the noise is Markovian and gate-
independent. The expectation value can be expanded in a series as

〈A〉(ε) = 〈A〉(0) +
k∑

m=0

Amε
m +O(εm+1), (6.3)

where Am are expansion coefficients, and 〈A〉(ε) denotes the expectation value correspond-
ing to an error rate of ε. One can then perform a series of experiments with different noise
strength {λiε}, where i = 0, ..., k and λi > 0, and collect the expectation values 〈A〉(λiε).
Applying the Richardson extrapolation method, one obtains the parameters ri to infer the
noiseless value up to precision O(εk+1):

〈A〉EM =
k∑
i=0

ri〈A〉(λiε) = 〈A〉(0) +O(εk+1). (6.4)
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Besides the original approach using Richardson extrapolation, other extrapolation meth-
ods exist. For example, the exponential or linear extrapolation method used by Endo et
al. [45] uses two data points only. We note that extrapolation methods are accurate up to
order O(εk+1), compared with quasiprobability method below which can be fully accurate
in principle.

6.1.2 Quasiprobability Methods

QEM using quasiprobability sampling was also proposed by Temme et al. in the same paper
where Richardson extrapolation QEM was introduced [44], and was later generalized by
Endo et al. in [45]. Consider a target unitary gate U and its noisy version Unoisy = NU ,
i.e., the ideal gate followed by a noise process. One can always find a CPTP map N that
satisfies the above equation, since the inverse of U is always CPTP, and the composition
of two CPTP maps is CPTP. The assumption is that there exists a complete set of (noisy)
operations available to the experimentalist, denoted by

{G1, . . . ,GK} (6.5)

which has been pre-characterized. This set is complete in the sense that they form a basis
for the inverse noise channel U−1

noisy,

N−1 =
∑
i

aiGi = τ
∑
i

|ai|
τ

sgn(ai)Gi (6.6)

where τ =
∑

i |ai|. The coefficients pi := ai
τ

now form a probability distribution, so one can
append additional gates Gi with probability pi after the noisy circuit to reverse the effects
of N . For an observable A, we can express its ideal value by

〈A〉EM = Tr
[
N−1NU(ρ)A

]
= τ

∑
i

pisgn(ai)〈A〉i (6.7)

where 〈A〉i = Tr[GiNU(ρ)A]. We see that by adding in Gi at the end of the circuit with
probability pi, and keeping track of each sgn(ai), one obtains the ideal expectation value.
Note that

∑
i ai = 1 due to the trace-preserving constraint. Since some of the ai’s are

negative, τ ≥ 1, so the 〈A〉EM has a variance that is approximately τ 2 times larger than
that measuring with the ideal circuit.

It is interesting to point out that the original proposal for quasiprobability QEM aimed
not to append N−1 at the end, but to directly simulate the ideal unitary U . It may
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appear that this scenario falls under the error-agnostic category. However, since it is still
required that all noisy gates be characterized precisely, knowledge of noise in the real
system is necessary. Therefore the method is still implicitly error-based. The effects of
noise characterization comes in nontrivially through the gate decomposition procedure. In
practice, it is sometimes more favorable to use the N−1 approach introduced here. This
may happen when, for example, a decomposition for the near-identity map N has a much
smaller cost τ than that for the target unitary U .

6.1.3 Readout Error Mitigation

Readout error mitigation [47, 114] aims to reduce the effect of noisy measurement opera-
tions during the readout step of quantum computation. A general K-outcome measurement
process can be described by a set of positive operator-valued measure (POVM) elements,

{M1, . . . ,MK}, (6.8)

such that the probability of obtaining outcome j given an input state ρ is pj = Tr[Mjρ]. We
may arrange the outcome probabilities with an ideal measurement apparatus as a vector,
Pideal = (p1, . . . , pK)T , and similarly for the actual outcome probability vector Pnoisy. One
can see that there exists a transformation T between the two such that

Pnoisy = T · Pideal. (6.9)

The matrix T can be learned through experimentally measuring different input states, and
its number of parameters may be less than the size of T if one makes further assumptions
about the form of noise [115]. Once T is learned, the ideal probability vector can be
obtained by Pideal = T−1 · Pnoisy. In order to ensure invertibility of T , it is common to
parametrize T in such a way that it is invertible by construction, when the parameters fall
within a certain range.

6.1.4 Error-Agnostic QEM

We have so far focused on error-based QEM protocols. Below we briefly go over some other
protocols that do not require explicit knowledge about the form of error, and are therefore
error-agnostic. These approaches generally utilize certain structures of the problem that is
known to the user prior to conducting any experiment. Prominent examples include virtual
distillation (VD), symmetry verification (SV), and N -representability. In VD [48, 116, 117],
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one obtains effective error-mitigated expectation values of an observable A as 〈A〉EM =

Tr
[
Aρ

(m)
VD

]
where ρ

(m)
VD = ρm/Tr[ρm], through entangling operations between m copies of

the output state ρ. The purity of this effective state increases with m, thereby eliminating
the effects of stochastic errors.

In SV [118, 46], one examines certain symmetry properties of the output state from a
quantum program, and performs post-selection to remove outputs that disobey these sym-
metries. For example, in variational quantum eigensolver (VQE) algorithms, one prepares
an ansatz input state which is then updated variationally, in order to approach the true
ground state of a target Hamiltonian. There are often certain symmetries that are obeyed
by the true ground state, such as the total number of electrons, as well as the number of
spin-up spin-down electrons. One can thus measure these symmetries in the output state,
and discard results that violate any symmetry tested.

The idea of N -representability QEM [119] is similar to that of SV. Its name originated
from the N -representability conditions in quantum chemistry, which stand for a set of
necessary conditions that must be satisfied by the reduced (marginal) density matrices.
Due to the presence of noise, states measured in experiments might violate some of these
conditions, so one may reduce the effects of these noise by projecting the experimental
state onto the closest state satisfying the N -representability conditions.

6.2 Error Correction vs. Mitigation: a Communica-

tion Viewpoint

One can see from the previous review that many protocols with different nature are cur-
rently summarized under the name “quantum error mitigation”. In this section we will
provide a high-level comparison between QEM and QEC, with a focus on error-based QEM.
As previously shown, these are procedures that utilize knowledge about the noise occurring
during computation and actively try to eliminate their effects, making them more simi-
lar to active QEC. On the other hand, error-agnostic QEM are, in our opinion, closer to
passive error correction. Nonetheless, insightful comparison between error-agnostic QEM
and QEC can be an interesting future research direction and may facilitate integrations
between QEC and QEM in general.

The development of QEC has historically stemmed from previous studies of classical
error correction (CEC). Therefore, before discussing QEC or QEM, it is instructive to
first look at their classical counterparts. We will start our discussion by considering a
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communication task, which is essentially a trivial computation with the target unitary
being the identity, but with two spatially separated parties being the input and output
ends. This illustrates some simple yet important distinction between EC and EM. We
then move on to computation and discuss the usefulness of QEM in quantum computation,
using our intuition from the communication case.

6.2.1 Classical Communication

Figure 6.1: An illustrative diagram for noisy classical communication.

In a classical communication task, a sender Alice would like to transmit a k-bit string
to Bob. An example of the string would look like

s = 11010101000100110101010011...

Alice and Bob share a classical communication channel C which is subject to noise. She
does so by sending each letter of the text through C, involving a total of k uses of C. For
simplicity, assume that the noise is described by a binary symmetric noise channel with
strength p, denoted as BSCp. This channel preserves the sent bit with probability 1 − p,
and flips it (symmetrically from 0 to 1 and from 1 to 0) with probability p. The matrix
representation of the noise is given by

BSCp →
(

1− p p
p 1− p

)
:= NBSC,p (6.10)

where both the input and output basis are ordered as {0, 1}. If Alice sends a bit 0, it will
have a distribution

NBSC,p

(
1
0

)
=

(
1− p
p

)
, (6.11)

at the output end.
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An illustrative diagram for classical error correcting codes against this noise is given in
Fig. 6.1. The simplest example is the 3-bit repetition code, defined by the encoding

0→ 000, 1→ 111, (6.12)

i.e., each bit is repeatedly encoded 3 times. The number of uses of the channel has now
increased 3 times to 3k. The decoding is done by performing a majority vote on the received
bits, so that at the receiving end, Bob again obtains a bit string of length k. Assuming
that BSCp acts independently on each bit, the probability of error is reduced from p to
3p2(1− p) = O(p2) by this code.

Next we ask the question: Can Bob improve the quality of communication, given
some knowledge about the noise? From the form of noise in Eq. (6.10), the best possible
knowledge Bob could have is the precise value of p. Suppose in addition that p < 1/2. If
Bob receives a bit 1, then he only knows that Alice more likely sent a 1 than a 0, so the best
deterministic procedure is simply to keep the bit. Applying this argument to all received
bits, we see that the best Bob can do is to simply keep all received bits intact. Similarly, if
p > 1/2, then Bob’s best action is to flip all the received bits. Clearly, this does not increase
Bob’s information on Alice’s message, as measured by the classical mutual information.
In fact, what we have shown is a special case of the classical data-processing inequality,
which states that no post-processing can increase the mutual information between Alice
and Bob.

What Bob can do is to recover the distribution of Alice’s input for sufficiently large k.
Specifically, he can apply the inverse map of NBSC,p on his received distribution, resulting
in

N−1
BSC,pNBSC,pvA = vA, (6.13)

where vA = (p0,a, p1,a)
T is Alice’s input distribution. However, Bob cannot further use this

restored distribution to recover Alice’s message. The best he can do is to use the restored
distribution to randomly generate a new k-bit string, during which Alice’s message is
completely destroyed.

6.2.2 Quantum Communication

In quantum communication, Alice and Bob communicates by sharing a quantum channel Q
capable of transmitting quantum particles. Alternatively, one may also model the situation
as having a central source sending out (potentially entangled) particles to Alice and Bob.
If this source is located in Alice’s lab, then the channel from source to Alice is ideal and
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ρin N ρout

(a)

ρin E N R ρout

(b)

Figure 6.2: (a) Quantum communication model where Alice sends a state ρin to Bob
through a noisy channel N . (b) An attempt to reduce the effect of N using QEC, through
an encoding operation E and a recovery operation R.

the one to Bob is described by a noisy channel N , as shown in Fig. 6.2a. Here, they are
interested in either encoding classical information in the particles and use Q to transmit a
classical message, or directly sharing quantum particles which may have been prepared in
some special states.

Quantum Communication of Classical Information

In the first scenario, the classical information may be extracted at Bob’s end by measuring
the received state. For each use of the channel, we will name the state that Alice sent ρin and
the one coming out of Bob’s end ρout = N (ρin). Without loss of generality, assume that the
information is encoded in the expectation value of some observable O. Due to the nature
of quantum measurements, every possible outcome occurs randomly with probabilities
determined by the Born rule. Therefore, Alice must send multiple copies of the state in
order for Bob to extract the expectation value, Tr[Oρout]. This is to be contrasted with
classical communication, where sending 1 bit of information only involves using C once,
in the limit of an ideal channel. One thus sees that, sending classical information using a
quantum channel inevitably results in Bob measuring a distribution of possible outcomes.

If Bob knows the exact form of N , then he may reconstruct the matrix ρout using
sufficiently many copies of received states, assuming that the size of ρout is not too large.
He may then apply N−1 to perfectly restore ρin, and consequently use this classical copy
to infer the expectation value of any observable. This is in direct analogy to restoring the
distribution of input characters using CEM described in the previous section.

Alternatively, Alice and Bob may also use QEC to fight against this noise. A quantum
error correcting code (QECC) is defined by an encoding scheme, which is a completely
positive and trace preserving (CPTP) map E : C2k → C2n (where n > k), and then decode
at Bob’s end using another CPTP map R : C2n → C2k . Here C2n denotes the complex
Euclidean space with dimension 2n. This involves a total of nk uses of the quantum
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Source
ρA
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Source
ρA

N N−1 ρB
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n copies k copies
ρA

→
ρA

N ρB ρB

(c)

Figure 6.3: (a) Figure where Alice and Bob receives an EPR pair Φ+ from a source, and
a noise N occur for Bob’s channel. (b) A QEM approach. (c) A QEC approach.

channel. Assuming that N is correctable by QECC [120], the output state ρout will be
equal to the input ρin, so directly measuring this error-corrected state will give Bob the
correct expectation value for any observable.

One may now recognize the similarity between QEM and CEM for reconstructing the
input distribution. Indeed, a density matrix is probabilistic description of outcomes of any
possible measurement on a quantum system. In this scenario, it is sufficient for Bob to
reconstruct ρin as a mathematical object in order to eliminate the effect of N , since this
determines the outcome of any measurement Bob can possibly make on the system.

Quantum Communication of Quantum Information

In the second scenario, the goal is to send particles encoding quantum information from
Alice to Bob. The physical states of the particles represent the quantum information
encoded, which must be kept “alive” for such a task. This scenario is relevant when, for
example, ρin is the output from a computation done by Alice, which needs to be transferred
to Bob for further processing. Clearly, the QEC approach shown in Fig. 6.2b is capable
of eliminating the effect of N if it falls within the set of correctable errors, because what
Bob gets at the end is an actual quantum object. In contrast, one cannot use the “error
mitigation” approach described in the previous section, where Bob applies N−1 onto a
classical image of ρout, since this only corrects Bob’s description about ρout rather than the
physical state itself.

96



Another case is when Alice and Bob tries to establish shared entanglement to achieve
certain tasks, such as winning a nonlocal game. This is relevant because entanglement
is among the most commonly accepted benchmarks for quantum information, and was
speculated to have a similar role as classical information [121]. As shown in Fig. 6.3, Alice
prepares k copies of maximally entangled Bell pairs

Φ+ = (|00〉AB + |11〉AB)/
√

2 (6.14)

and sends half of each pair to Bob. Again, the noisy channel N to Bob potentially reduces
the entanglement shared between Alice and Bob. Historically, this task is achieved by a
family of procedures called entanglement purification protocols (EPPs) [121], illustrated
in Fig. 6.3c. In EPP, Alice and Bob needs to start from n > k copies of the noisy Bell
state, and obtain k pairs at the end which are closer to the pure state Φ+. Profoundly,
a sub-class of EPP protocols called one-way EPP (or 1-EPP), where only communication
from Alice to Bob is allowed, have a one-to-one correspondence with QECCs [121].

On the contrary, one sees that the QEM approach described in the previous section
cannot be used to purify entanglement. In particular, all entanglement between Alice and
Bob would be destroyed due to the measurement. In fact, analogous to the classical case
where Bob recovers Alice’s input distribution and generate a random k-bit string, here
Bob knows in advance that he will ideally get a maximally mixed state I/2; so the above
protocol is simply equivalent to Bob generating (I/2)k locally, and discarding all qubits
received from the source!

The above example illustrates a fundamental distinction between QEM, which is only
capable of restoring the classical image of a quantum system, and QEC, which is capable of
restoring the quantum object itself, along with all possible non-classical resources possessed
by that object. It is instructive to recall again the case where one needs to preserve classical
information (see Section 6.2.1), where we have also argued that CEC is helpful for such
a task, while CEM is not. Furthermore, recall in Section 6.2.2 we argued that recovering
density matrices in QEM is analogous to recovering classical distributions in CEM. These
complete our comparisons between EM and EC, which are summarized in Table 6.1.

6.3 Noise Invertibility and the Drazin-Inverse

Having illustrated the fundamental distinction between error-based QEM and QEC under
the communication setting, it is then natural to ask under what circumstances are these
two methods useful. For QEC, the set of errors (and linear combinations within) are
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EC EM

Classical
Classical information

being transmitted
Classical distribution
of possible outputs

Quantum
Physical quantum objects

being transmitted
Density matrices describing

the physical quantum objects

Table 6.1: Summary of what EC and EM could recover at the output end, under classical
and quantum communication settings.

correctable if they obey the Knill-Laflamme conditions [122, 120] for the particular code
being used. While there exists no parallel, quantitative results for QEM, the form of some
error-based QEM protocols suggests that the inverse noise channel plays an important
role, since it is what these protocols aim to apply to the output (directly in the case of
readout QEM, and indirectly in the case of quasiprobability QEM, for instance). In this
section, we discuss the implications of noise invertibility on error-based QEM, and propose
an alternative quasi-inverse construction in the case of non-invertible noise.

A quantum noise process is, on the physical level, described by a completely-positive
(CP) and trace-preserving (TP), or CPTP map, N . Below we first define a matrix rep-
resentation for quantum states and maps. In this chapter, we denote the space of linear
operators mapping Hilbert space HA to HB as L(HA, HB), or L(HA) in short if HA = HB.
Let T (HA, HB) be the space of linear maps from L(HA) to L(HB). Let ei be the stan-
dard basis of Hi with a 1 at position i and 0 elsewhere. Let Ea,b be the standard basis of
L(HA, HB) with a 1 at position (a, b) and 0 elsewhere.

Definition 6.3.1. (Vectorization of linear operators.) The vec mapping v(·) : L(HA, HB)→
HB ⊗HA is the unique mapping that satisfies v(Ea,b) = eb ⊗ ea.

Next we define two representations for quantum maps.

Definition 6.3.2. (Choi representation.) The Choi representation of a mapM∈ T (HA, HB)
is defined by C(M) =

∑
a,bEa,b ⊗M(Ea,b).

Definition 6.3.3. (Natural representation.) The natural (or equivalently, superoperator)
representation of a mapM∈ T (HA, HB) is defined by the unique linear operator v(M) ∈
L(HA ⊗HA, HB ⊗HB) that satisfies v(M)v(A) = v(M(A)) for all A ∈ L(HA).

In the natural representation, the channel N acting on a quantum state ρ can be writ-
ten as the superoperator v(N ) multiplying the vector representation v(ρ) of the quantum
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state ρ [56]. The vector representation v(ρ) of ρ inherits its ordering from the superoper-
ator, hence we abuse the notation v(·) for vector representations of quantum states and
observables (which are often written as double kets |ρ〉〉 in other literature).

The following theorem directly comes from representation theory of linear maps.

Theorem 6.3.1. The quantum channel N is invertible iff v(N ) is an invertible matrix.

Below we give an example where the inverse N−1 of a CPTP map N is non-CP.

Example 6.3.1. Let the Choi representation of a quantum channel N be

C(N ) =


3
4

0 − i
8

1
2

+ i
8

0 1
4
− i

8
i
8

i
8

i
8

1
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8
− i

8
0 3

4

 .

The superoperator is

v(N ) =


3
4

i
8

− i
8

1
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0 1
2
− i

8
− i

8
0

0 i
8

1
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Therefore, the inverse of v(N ) is

v(N−1) =


3
2

1
4
− i

2
1
4

+ i
2
−1

2
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i
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
with a Choi representation

C(N−1) =


3
2

0 1
4

+ i
2

2− i
2

0 −1
2

i
2

−1
4
− i

2
1
4
− i

2
− i

2
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2
0

2 + i
2
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4
+ i

2
0 3

2

 .

The Choi representation C(N−1) has negative eigenvalues. Therefore, N−1 is a Hermitian
preserving (HP) and trace preserving (TP) map, but not CP.
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There are three distinct possibilities regarding noise invertibility. The first is that N
is invertible, and N−1 is CPTP. In this case, the inverse N−1 is unique, and is Hermitian
preserving (HP) and trace preserving (TP) [123]. Note that the set of CPTP maps is a
subset of HPTP maps. For N−1 to be CPTP, the channel N has to be a unitary channel, or
can be seen as an unitary channel acting on the input state along with an ancilla prepared
to a fixed state [124]. If the dimensions of input and output space are the same, the channel
has a CPTP inverse iff the channel is an unitary channel [125, 124]. This is a relatively
easy scenario, because the quantum information can be coherently restored by physically
applying N−1 to the output state.

The second possibility is that N is invertible, but N−1 is not CPTP. A condition for
when this will happen is later given in Proposition 6.3.2. Many experimentally relevant
noise models, such as the phase damping channel and the depolarizing channel, fall under
this category. Since N−1 is not a physically realizable operation, it cannot be experi-
mentally implemented on the target system, so our above method to restore quantum
information without redundancy fails. Using QEM procedures, one can still recover the
classical information in principle, by first extracting the classical output density matrix
through measurements, and numerically apply the inverse map N−1. But the process of
measurement will inevitably disturb the system being measured, and destroy any entan-
glement it possibly has with other systems.

The third possibility is that N is non-invertible. First, we motivate where a non-
invertible noise channel may originate from. Any CPTP map can be dilated to a unitary
channel in a larger Hilbert space, and unitary channels are all invertible. What happens
while tracing out the environment? For a physical action to be written as a CPTP map, one
needs to assume that the system and environment are separable in the beginning, which
means that the input state has to have the form ρ⊗ σ. If the unitary U is also separable,
tracing out the environment will also result in a unitary evolution on the system. The
correlation between system and environment causes the evolution of the system to become
a general CPTP map. The non-invertibility of a channel signals strong non-locality, i.e.,
there is information in the whole system (system and environment) that is entirely invisible
in the local system.

An example is the CNOT gate in Fig. 6.4. Let the initial state ρAB be ρA ⊗ |0〉〈0|.
Considering the controlling qubit B as the environment, the reduced channel NA on the
system qubit A is non-invertible. The density matrix of qubit A after the first CNOT gate
is

ρA′ = NA(ρA) = trB[UCNOT (ρA ⊗ |0〉 〈0|)U †CNOT ].

Some information (more precisely, certain off-diagonal entries) in the 2-qubit density matrix
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ρA′B′ does not reflect in the density matrix ρA′ of the system qubit (in fact, this nonlocal
information cannot be seen locally in ρB′ either). However, after the second CNOT gate,
the whole system AB backtracks to the original state. That is to say

ρA = ρA′′

= trB[U †CNOTUCNOT (ρA ⊗ |0〉 〈0|)UCNOTU †CNOT ]

6= N−1
A NA(ρA).

This is because the second CNOT gate utilizes nonlocal information that is not available
locally for qubit A. Although this information loss through the null space of NA cannot
be recovered without collecting information from the environment, the local rotation and
contraction caused by the noise channel can be restored.

ρA′ ρA′′

ρB′ ρB′′

ρA

|0⟩ ⟨0|

ρA′B′

1

Figure 6.4: The equivalent channel NA on system A is non-invertible. However, the second
CNOT gate brings the whole device back to the original state, i.e. ρA′′B′′ = ρA′′ ⊗ ρB′′ =
ρA⊗|0〉 〈0|. The locally unseen information in ρA′B′ flow back to system A after the second
CNOT.

Second, how can we deal with these non-invertible noise channels? It is known that
the superoperator v(N−1) of the inverse channel N−1 equals to the inverse v(N )−1 of
the superoperator v(N ). However, if the channel N is not invertible, the generalized
inverse of v(N ) is not unique. A commonly used generalized inverse is the Moore-Penrose
inverse [126, 127], but in Example 6.3.2 we show that the Moore-Penrose inverse of a CPTP
map is not necessarily TP. In the following, we provide a construction of inverse-like channel
N+.

Let the dimension of input and output space be d. Take the Jordan decomposition of
the superoperator of N ,

v(N ) = Q · J ·Q−1 (6.15)

where J = ⊕iJλi is the Jordan normal form, Jλi is a Jordan block corresponding to the
eigenvalue λi, and Q is a invertible matrix contains the generalized eigenvectors of v(N ).
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If v(N ) is diagonalizable, the Jordan normal form J = diag[λ1, · · · , λd2 ] is the diagonal
matrix contains eigenvalues λi of v(N ).

We take the inverse-like channel N+ to be

v(N+) = Q · J ′ ·Q−1. (6.16)

If v(N ) is diagonalizable, J ′ is the diagonal matrix that leaves the 0’s in J untouched and
take the reciprocal of the rest elements in J . If v(N ) is defective (meaning that it contains
blocks of zero matrices), we can construct each Jordan block in the following way: a k by
k Jordan block Jλi of λi (λi 6= 0) in J is

Jλi =


λi 1

λi
. . .
. . . 1

λi

 ,

let the corresponding block J ′λi in J ′ be the inverse of Jλi

J ′λi := J−1
λi

=



1
λi
− 1
λ2i

· · · (−1)k+1 1
λki

1
λi

− 1
λ2i
· · · (−1)k 1

λk−1
i

. . . . . .
...

1
λi

− 1
λ2i
1
λi

 .

For a k by k Jordan block of diagonal zero (λi = 0), which is the nilpotent matrix N , we
can set the corresponding block in J ′ as a zero matrix 0k . Since N is not invertible, letting
the block be 0k will have the same result as setting it as Nk−1. There is a certain freedom
in the choice of this block.

Note that, for invertible channels, N+ described above provides the inverse N−1 of the
channel (N+ = N−1). For non-invertible channels, this construction Eq. (6.16) does not
satisfy the condition of generalized inverse (N ◦ N+ ◦ N 6= N when the dimension of the
nilpotent Jordan block is greater than one). We will call N+ the Drazin-inverse since it is
the same construction as the Drazin inverse in matrix analysis [128].

The resulting composed map v(N )v(N+) = QJ ′′Q−1, where J ′′ is a diagonal matrix
with only 0’s and 1’s on its main diagonal. When the noise channel N already only
contains 1 and 0 in its spectrum, the Drazin-inverse is itself, and does not recovery more
information. In fact, any generalized inverse would not improve the outcome in this case.
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The following proposition tells us another condition for a quantum channel to have a
non-CP (Drazin-) inverse.

Proposition 6.3.2. If a non-zero eigenvalue λ of a quantum channel N has modulus
less than 1 (|λ| < 1), then the inverse (or Drazin-inverse) channel N+ is not completely
positive.

Proof. N is a CPTP map, therefore its spectral radius is one [129], i.e. |Jii| ≤ 1 for any
main diagonal element Jii in J . Since N has eigenvalues less than 1, there exists |Jjj| < 1
for some j ∈ {1, · · · , d2}. As defined above, |J ′jj| > 1, i.e. the spectral radius of N+ is
greater than one. Therefore, N+ is not complete positive.

A non-unitary quantum channel cannot be fully recovered by another channel since
CPTP maps cannot resolve contractions in the subspace corresponding to |λi| < 1. To
deal with contractions, the CP property has to be broken. That is to say, restricting the
generalized inverse N g to be CPTP has to scarifies the quality of recovery. However, while
HPTP maps cannot be directly implemented in a physical system, Steinspring dilation
theory guarantees CPTP maps can be extended to unitary channels and hence executed
in physical devices. This inspires several beautiful works on finding CPTP inverses that
optimize the average fidelity of the recovery [130, 131, 132]. On the other hand, HPTP
maps can be decomposed as a linear combination of CPTP maps, and so can be imple-
mented in a physical device. The physical implementability of HPTP maps is defined and
discussed in [123, 133]. Also note that the spectrum of a quantum channel can be defined
independently from its representations. In this section, we mainly work with superopera-
tors (natural representation), but the Proposition 6.3.2 still holds in other representations
(e.g. the Pauli representation).

Unlike the Choi representation, the natural representation does not directly show a lot
of critical properties of quantum channels, such as CP, TP, or HP. However, we found that
the eigen-structure of the superoperator is essential for its property. Lemma 6.3.3 and
Lemma 6.3.4 provide insights into why Moore-Penrose inverse is not TP in certain cases.
Then, we prove that the Drazin-inverse for a TP map is always TP in Theorem 6.3.5.

Denote the trace operation in the vector representation v(A) of a d by d matrix A as
sTr [·], where sTr [v(A)] := Tr(A).

Lemma 6.3.3. If a linear map N : Md → Md is trace preserving, the eigenvectors v and
generalized eigenvectors vg of eigenvalue λ 6= 1 of the superoperator v(N ) is trace zero, i.e.
sTr [v] = sTr [vg] = 0.
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Proof. For an eigenvector v of v(N ), we have v(N )v = λv. Since N is trace preserving,
sTr [v] = sTr [λv]. And the eigenvalue λ 6= 1, we have sTr [v] = 0

For a k by k Jordan block of eigenvalue λg, where k > 1, denote the first generalized
eigenvector as vg1 , we have

[v(N )− λgI]vg1 = v, (6.17)

where v is the eigenvector corresponding to λg.

Taking the trace on both sizes, sTr [(v(N )− λgI)vg1 ] = sTr [v], the left hand side is
sTr [vg1 − λgvg1 ] = (1−λg)sTr [vg1 ], and the right hand side is zero from the argument above.
Since λg 6= 1, sTr [vg1 ] = 0. By deduction, all vgi are trace zero for i ∈ {1, · · · , k − 1}.

Lemma 6.3.4. For a trace persevering linear map N : Md → Md, if there is a k by
k (k > 1) defective Jordan Block of eigenvalue λ = 1 in v(N ), the eigenvector v and
first k − 2 generalized eigenvector vgi has to be trace zero, i.e. sTr [v] = sTr [vgi ] = 0 for
i ∈ {1, · · · , k − 2}.

Proof. Assume that sTr [v] 6= 0. The first generalized eigenvector vg satisfy that [v(N )−
I]vg1 = v. Taking trace on both size, the left hand side equals to zero, and the right hand
side does not equal to zero, leading to a contradiction. The same argument holds for the
rest of the generalized eigenvectors except the last one.

From Lemma 6.3.3 and Lemma 6.3.4, we know that all eigenvectors vλ for λ 6= 1 of a TP
map has to be traceless. When λ = 1, if its algebraic multiplicity equals to its geometry
multiplicity, sTr [v(N )vλ] = sTr [vλ] (i.e. the trace of vλ will not be changed under the
action of v(N )); if the algebraic multiplicity does not equal to the geometry multiplicity,
the eigenvectors and generalized eigenvectors is traceless except for the last generalized
eigenvector. This tells us that the eigen-structure of the superoperator v(N ) is crucial
for N to be TP. The way that we construct the Drazin-inverse N+ largely preserves the
eigen-structure, while the Moore-Penrose inverse N p focuses more on the singular value
structure. It hints that N+ should be TP and N p may not.

Theorem 6.3.5. The Drazin-inverse N+ of a trace preserving map N is also trace pre-
serving.

To prove that N+ is trace preserving, we need to prove

sTr
[
v(N+)vλ

]
= sTr [vλ] ,
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for every eigenvectors and generlized eigenvectors vλ of v(N ) in Q. From the construction
ofN+, we almost get trace preserving for free. The full proof can be found in Appendix D.1.
Moreover, it is easy to see from the proof that the composed map N+ ◦ N is also trace
preserving.

Example 6.3.2. Here we give an example where the Moore-Penrose inverse N p of a CPTP
map is not TP, while the Drazin-inverse N+ is TP. Consider a noise channel N whose Choi
representation is given by

C(N ) =
1

20


8 0 1 6
0 12 2 −1
1 2 8 0
6 −1 0 12

 , (6.18)

and its superoperator is

v(N ) =
1

20


8 1 1 8
0 6 2 0
0 2 6 0
12 −1 −1 12


The Jordan normal form is given by J = diag(0, 1, 2

5
, 1

5
), and its inverse is J ′ = diag(0, 1, 5

2
, 5).

The superoperator of Drazin-inverse N+ is

v(N+) =


2
5

5
16

5
16

2
5

0 15
4

−5
4

0
0 −5

4
15
4

0
3
5
− 5

16
− 5

16
3
5


The Choi representation of N+ is

C(N+) =


2
5

0 5
16

15
4

0 3
5
−5

4
− 5

16
5
16
−5

4
2
5

0
15
4
− 5

16
0 3

5


The Choi representation has negative eigenvalues. Therefore, the channel N+ is trace

preserving (partial trace of C(N+) is identity), Hermitian preserving (C(N+) is Hermi-
tian), but not complete positive.
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The Moore-Penrose inverse of v(N ) is

v(N p) =


115
294

10
441

10
441

505
882

50
147

3245
882

−1165
882

−100
441

50
147
−1165

882
3245
882

−100
441

115
294

10
441

10
441

505
882

 ,

and its Choi representation is

C(N p) =


115
294

50
147

10
441

3245
882

50
147

115
294

−1165
882

10
441

10
441
−1165

882
505
882
−100

441
3245
882

10
441

−100
441

505
882

 ,

which is Hermitian preserving but not trace preserving.

To our knowledge, the exploration of generalized non-CPTP inverses for non-invertible
quantum channels has been limited in existing literature. The new understanding of the
natural representation opens the possibility of studying the structures and properties of
these maps from mathematical interests. This research direction has the potential to serve
as a valuable guide for implementing these maps in error mitigation techniques and other
aspects of quantum information science.

6.4 QEM in Quantum Computation

In the previous sections we discussed how the nature of noise determines whether it is the-
oretically possible to fully recover the quantum and/or classical information. We explored
the possibility of non-invertible noise and constructed a Drazin-inverse under such a case.
In this section, we will study the effects of recovery operations when performing QEM in
quantum computation. The task of quantum computation may be viewed as a modified
version of communication, where Alice and Bob are no longer spatially separated, but the
channel from Alice (the input) to Bob (the output) becomes a nontrivial unitary U .

Using the intuition built from the communication setting, there can again be two situa-
tions depending on the goal. In the first case, one is interested in obtaining the expectation
value of some observable Tr[Oρout] from the output state. We can call this “quantum com-
putation of classical information”, inspired by the usage of a similar term when discussing
about quantum communication. Accurately obtaining Tr[Oρout] for some observable O is
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the goal of many quantum algorithms, such as the Harrow-Hassidim-Lloyd algorithm [134]
for solving linear systems and the variational quantum eigensolver algorithm [135] for es-
timating ground/excited state energies of molecules. From our discussion before, it is now
clear that both QEC and QEM can be useful for these types of problems. Indeed, to the
authors’ knowledge, all preexisting QEM protocols have been developed towards solving
these problems.

In the second case, the goal is to output a particular quantum state, which needs
to be kept in coherence and perhaps sent to another party later. This is particularly
relevant in, for example, the problem of distributed quantum computing [136, 137] or
active quantum memories [138, 139]. This is thus the case of “quantum computation of
quantum information”. Here, the idea of QEM cannot be used (at least locally at the
output end), to reduce noise effects for these types of tasks, and only QEC is useful.

As mentioned previously, quantum computation has an additional layer of complexity
that comes from the composition of gates. In communication, it is known prior to sending
particles that the ideal “gate” is the identity, so applying the inverse noise map would
directly yield the ideal input distribution. In computation, typically only a condensed
description of the target unitary in the form of a quantum circuit is available prior to an
experiment. The full form of the target unitary map (and consequently, that of the noise
process) is typically not known explicitly. Instead, one usually have knowledge on compo-
nents (e.g., the form of one- or two-qubit gates) in the circuit as well as the noise on these
components. Thus, QEM protocols reviewed in Section 6.1 were developed to implement
this noise inversion procedure more efficiently in practice, for “quantum computation of
classical information” tasks. In the following we study this scenario in more detail, with a
focus on the effects of imperfect knowledge on noise in Section 6.4.2.

6.4.1 QEM in Multi-layer Quantum Computation

Consider again a noisy quantum circuit with depth n, where each layer can be represented
by a unitary map Ui with i = 1, ..., n. The ideal output would be

ρideal
out = Un ◦ · · · ◦ U1(ρin).

In practice the gates Ui are implemented imperfectly. Making the standard Markovian
assumption on the noise, each imperfect Ui can be decomposed as NiUi, where each Ni is
a CPTP map and can be distinct for different i. We thus have

ρexp
out = Nn ◦ Un ◦ · · · ◦ N1 ◦ U1(ρin) (6.19)

107



where ρin is the input quantum state, ρout is the quantum state came out of the noisy
circuits, Ui are the desired operations, and Ni are the noise channels corresponding to gate
Ui.

To perform QEM, one first tries to learn (part or all of) the noise models, then recover
the ideal gates through either physical or numerical means. Thus, if we wish to analyze
the performance of the best possible QEM strategy, we may wish that all Ni’s are known
exactly. In reality, these Ni’s are obtained from experiments either during the calibration
stage or as part of the QEM process, which necessarily involves inaccuracies when being
reconstructed. Denote the experimentally characterized noise models Ñi, and let Ñ−1

i

denote the inverse of Ñi. In this section we will consider channels with the same input and
output dimensions.

First, consider the case where N−1
i exists and is CPTP for all i. Recall that this is true

iff Ni is a unitary channel when the input and output dimensions equal. Then in principle
one can insert an additional gate implementing N−1

i after each Ui to fully invert the noise
effect [123]. In reality, the experimentally obtained noise models are Ñi. Thus, the output
from this method will be

ρEM = Ñ−1
n ◦ Nn ◦ Un ◦ · · · ◦ Ñ−1

1 ◦ N1 ◦ U1(ρin). (6.20)

Naturally, there are two main sources of additional errors. First, the experimentally
learned noise model Ñi is not always equal to Ni, so Ñi ◦Ni is not necessarily equal to the
identity. Second, even if Ni can be learned ideally, physically implementing N−1

i will also
not be ideal and can introduce extra errors.

Next, consider the case where N−1
i exists but is not CPTP. In this case it is impossible

to physically restore the ideal output state. However, we can still perform the inverse nu-
merically to recover the output density matrix. This can be thought of as first numerically
inverting all the channels in Eq. (6.19), then applying the ideal gates in the original order.
Specifically, we define the ideal “reversal” channel R to be the one that maps ρexp

out to ρin,
constructed as

R := U †1 ◦ N−1
1 ◦ · · · ◦ U †n ◦ N−1

n . (6.21)

Correspondingly, replacing Ni in the above by Ñi gives the realistic reversal channel,

R̃ := U †1 ◦ Ñ−1
1 ◦ · · · ◦ U †n ◦ Ñ−1

n , (6.22)

which represents the experimentalist’s best knowledge about the ideal reversal channel R.
We thus have

ρEM = Un···1 ◦ R̃(ρexp
out) (6.23)
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where the shorthand Un···1 := Un ◦ · · · ◦ U1 is used for the ideal circuit sequence. The
composition of such channels first maps the experimental output state ρexp

out back to the
input state ρin, then perform the ideal operations Un···1; this is illustrated by the blue
arrows in Fig. 6.5. The numerical inverse method does not involve implementing physical
gates, but still require that noise processes are accurately characterized. As reviewed in
Section 6.1, we can consider Eq. (6.23) to be the desired output of QEM protocols.

A naive numerical implementation of the channel inverse requires simulating the quan-
tum circuit Un···1, which is naturally expensive. Generally speaking, the computational
complexity for computing Eq. (6.23) can be higher than classically simulating the ideal
circuit, even without including the cost of characterizing noise channels. Therefore, we
regard Eq. (6.23) as a theoretical tool for upper bounding the performance of QEM, rather
than a specific procedure. An alternative use of this expression is to contrast the error
mitigated results with the ideal ones, which measures one’s knowledge about the noise
in the device. Recalling from Chapter 2, this measure is gauge invariant, yet the exact
operational meaning of it remains unclear.

Finally, we mention briefly that if only an approximate version of the ideal output is
wanted, it may be sufficient to apply one effective recovery map N−1

eff to the noisy output
state, in the hope that it will eliminate most of the noise effects. The mitigated output
from this approximate method is given by

ρEM = N−1
eff (ρexp

out). (6.24)

The effective recover map N−1
eff may again be applied either physically or numerically.

Typically, N−1
eff contains a few tunable parameters which can be experimentally optimized

to achieve the best noise-mitigating performance on some test runs. Methods that fall into
this category include decoherence compensation in NMR experiments, and depolarizing-
model-based EM [140]. Recent work also considered continuous inversion through the Petz
recovery map [141]. Although it leads to resource savings in practice, this general approach
can be problematic in some instances due to channel mismatching. We provide one such
example in Example 6.4.1.

6.4.2 QEM with Imperfect Knowledge on Noise

Next we study the effects of imperfectly characterized noise channels on the performance of
QEM. It is generally acknowledged that characterizing noise models in a quantum system
is highly resource demanding [142]. In many current error mitigation protocols, the noise
channel is assumed to have a simple form [143], such as being a depolarizing channel with
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a few parameters. It is then natural to ask the question of how incorrectly characterized
noise channels {Ni} would affect the mitigation outcome. As mentioned before, we will
assume all {Ni}’s to be invertible in this subsection.

Fig. 6.5 shows an illustrative diagram showing the relationship between different objects
under this discussion. One sees that while the ideal circuits and the experimental operations
are CPTP maps, the channels R and R̃ are not necessarily CPTP anymore. The gap
Ñi −Ni between the estimations Ñi and the actual channels Ni upper bounds the result
of EM, independent of how the inverses are achieved. This gap only affects the difference
between R and R̃.

ρin ρideal
out

ρexp
out

ρEM Tr(ρEMA)

Tr(ρexp
outA)

Tr(ρideal
out A)

Un···1

Un···1: Unitary (CPTP)

R: HPTP

R̃:HPTP

ρ′in

R
−

U† 1
···

n

R̃
−

R

1

Figure 6.5: The schematic diagram of maps. The blue arrows indicate the map Un···1◦R for
ideal error mitigation, and the red arrows indicate the map Un···1 ◦ R̃ for error mitigation
with imperfect noise characterization. The error between actual noise channels Ni and
estimations Ñi cause the difference between R and R̃, which leads to a deviation in the
mitigated result.

From the perspective of output states, the goal of EM is to bring the output states
closer to the ideal. In terms of state fidelity, this is to ensure that

F (ρEM, ρ
ideal
out ) > F (ρexp

out , ρ
ideal
out ), (6.25)

where F (ρ1, ρ2) := tr
(√√

ρ1ρ2
√
ρ1

)
is the fidelity between ρ1 and ρ2.

If the actual noise channels {Ni} are invertible and the noise characterization is perfect
(Ñi = Ni), theoretically the errors can be perfectly mitigated, with Eq. (6.25) naturally
satisfied. Realistically, Ñi 6= Ni, which opens the gap between ideal output states ρideal

out

and error mitigated state ρEM. We next answer the question of how much effect will an
imperfect characterization of N has on the mitigated output fidelity.
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Let ∆Ni := Ñi−Ni and ∆N−1
i := Ñ−1

i −N−1
i

1. Fig. 6.5 shows that the errors {∆N−1
i }

only affect R and R̃ in the error mitigation maps. The difference between ρEM and ρideal
out

is

ρEM − ρideal
out = Un···1 ◦ R̃(ρexp

out)− U1···n(ρin)

= Un···1 ◦
[
R̃ − R

]
(ρexp

out) (6.26)

:= Un···1 ◦∆N (ρexp
out). (6.27)

In the middle bracket in Eq. (6.26), the errors {∆N−1
i } scramble in the layers of uni-

taries U †i . Denote the first order estimation of ∆N to be ∆N (1), where each term in
∆N (1) only contain one of ∆N−1

i (see Eq. (D.4) in Appendix D.2 for the explicit expres-
sion). The first order error between states is ∆ρEM := U1···n ◦∆N (1)(ρexp

out). We then define
F (ρEM, ρEM + ∆ρEM) to be the first order estimation F (1)(ρEM, ρ

ideal
out ) of the state fidelity

F (ρEM, ρ
ideal
out ). The following proposition gives a bound on this quantity.

Proposition 6.4.1. The first order estimation of fidelity between ρEM and ρidealout is(
1− 1

2

√
dCexp

∥∥v(∆N (1))
∥∥)2

≤ F (1)(ρEM, ρ
ideal
out )

≤ 1− 1

4

(
lU ·

∥∥v(∆N (1))v(ρexpout)
∥∥)2

, (6.28)

where Cexp := ‖v(Un···1)‖ · ‖v(ρexpout)‖ is an experiment-related constant, and

lU := inf
‖x‖=1

‖v(Un···1)x‖

is the lower Lipschitz constant of the ideal operations Un···1. The norm ‖ · ‖ is 2-norm for
vectors and is the induced matrix norm for matrices.

We see that F (1)(ρEM, ρ
ideal
out ) is bounded by ∆N (1) and experimental constants (including

norms of the ideal circuits and the Frobenius norm of the experimental outcome state ρexp
out).

Therefore, by bounding the errors {∆N−1
i } in channel estimation, one can constrain the

fidelity by using Eq. (6.28). In fact, this result can be understood easily from the left-hand
side of Fig. 6.5 – closing the gap between R̃ and R can bring ρ′in and ρin closer, therefore
bounding the fidelity afterwards. Further details can be found in Appendix D.2.

1Note that ∆Ni and ∆N−1i are related by ∆NiÑ−1i +Ni∆N−1i = 0.
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ρideal
out ρexp

out ρEM

Tr(ρA)

∆a

∆a

1

Figure 6.6: A schematic diagram for improving the expectation value Tr(ρA) using QEM.
∆a denotes the difference (in absolute value) between the ideal output, ρideal

out , and the
actual output ρexp

out . The goal of QEM is to achieve a mitigated output state ρEM, such that
Tr(ρEMA) in the green zone for an observable A of interest.

If the task realized by the given circuit only concerns the expectation value of a set of
observables {Ai}, then the goal of QEM can be simplified as recovering the ideal expectation
value, Tr

(
ρideal

out Ai
)
. As shown in Fig. 6.6, one would like the error mitigated result to be

closer to the ideal than the one directly coming from experiments. Since one cannot
perfectly characterize the noise models Ni, it is desirable to know the condition which
guarantees Tr(ρEMA) to land in the green region. We show in Appendix D.3 that the
following is a sufficient condition for such a goal.

Proposition 6.4.2. If Eq. (6.29) is satisfied, Quantum Error Mitigation has the ability to
improve the expectation value of any observable A for any circuit Un···1:

‖v(∆N )‖ ≤ lideal-exp, (6.29)

where lideal-exp := inf‖x‖=1

∥∥∥v(R− U †1···n)x
∥∥∥ is the lower Lipschitz constant of v(R−U †1···n).

In the above result, the channels R and U †1···n maps ρexp
out and ρideal

out back to ρin respec-
tively. The condition Eq. (6.29), in general, is requiring ∆N to be smaller than R−U †1···n.
This can again be observed from the brackets in Fig. 6.5. Since this proposition is for any
observables and any circuit, it will also work for quantum state fidelity.

Note that Eq. (6.29) is a stringent requirement. If v(R − U †1···n) has a nontrivial null
space, then it will force the noise channel estimation Ñi to be perfect, i.e. Ñi = Ni for
∀i ∈ {1, · · · , n}. This is because we do not make extra assumptions on circuits and noises
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while deriving this sufficient condition. In general, having additional information about
the circuit and noise channels can loosen this requirement.

Roughly speaking, for an error mitigation protocol to be able to improve the experi-
mental outcome, one’s knowledge of the noise channels needs to be more accurate than
the experimental accuracy. Since the unitary Un···1 is an isometry under Frobenius norm

(‖M‖F :=
√∑

ij |Mij|2), the difference between error mitigated state ρEM and ideal output

state ρideal
out equals to ∆ρ := ‖ρEM − ρideal

out ‖F = ‖∆N (ρexp
out)‖F = ‖R̃(ρexp

out)− ρin‖F . The error
∆ of error mitigation is bounded by ∆ρ:

∆ = tr
[
A(ρEM − ρideal

out )
]

≤ ‖A‖F · ‖ρEM − ρideal
out ‖F

= ‖A‖F ·∆ρ. (6.30)

Assume that the input state ρin is the all-zero state |0, · · · , 0〉〈0, · · · , 0|, i.e. ρin is a very
sparse matrix with 1 as the first entry and 0 elsewhere. The noisy R̃ can be efficiency
computed using tensor network methods, and ρideal

out can be constructed by classical shadow
tomography [144]. Thus, the upper bound Eq. (6.30) of value ∆ can be efficiently computed.

Finally, we discuss potential consequences of incorrect assumptions about the actual
noise. Normally, certain noise models are assumed while identifying device noise, which
leads to savings in parameters and resources in characterization. However, the distance
between the actual noise N in the system and the model assumed will not be arbitrarily
close, which opens a gap between the ideal and error mitigated outcomes. In particular, if
the error model is overly simplified, it can cause problems on EM performance.

We consider the following simple example of a depth-1, single qubit quantum channel,
where the actual noise N is a Pauli Channel, but a depolarizing channel is assumed when
mitigating error.

Example 6.4.1. Suppose one believes that the noise in the system is mainly depolariz-
ing, and tries to use the depolarizing channel D to approximate the actual noise. After
optimizing the parameters in D, the inverse D−1 of the estimated D is used to recover
information (i.e. D−1 ◦ N (ρ)).

The Kraus operators of N are {√p1I,
√
p2X,

√
p3Y,

√
(1− p1 − p2 − p3)Z}, and those

for D are {
√

1− 3λ
4
I,
√

λ
4
X,
√

λ
4
Y,
√

λ
4
Z}. For a given set of {p1, p2, p3}, the optimal λ

to minimize ‖N − D‖? varies according to different representations and different choices
of norm, ‖ · ‖?. The symmetry on the parameters in D makes it impossible to perfectly
capture the noise N for pi’s that do not have such a symmetry.
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Note that the two vectors

~n := (
√
p1,
√
p2,
√
p3,
√

(1− p1 − p2 − p3))

~d := (

√
1− 3λ

4
,

√
λ

4
,

√
λ

4
,

√
λ

4
)

are also representations forN andD respectively. Since ~n and ~d are normalized, minimizing
the distance between N and D is equivalent to maximizing ~n · ~d. i.e.

max
λ∈[0,1]

{√
p1(1− 3λ

4
) + [
√
p2 +

√
p3 +

√
(1− p1 − p2 − p3)]

√
λ

4

}
.

When p1 = 1
2

and p2 = p3 = 0, a channel will have a phase flip error with probability
1
2

and will stay unchanged with probability 1
2
, corresponding to an optimal λmax value of

1
3
. This λmax bounds the distance between N and D from above for this metric. Assume

one fits the parameter λ from experiments, and obtains the estimation that λ = 1
3
, the

channel {
√

3
4
I,
√

1
12
X,
√

1
12
Y,
√

1
12
Z} will be believed to be Ñ . Then Ñ−1 = D−1 will be

used to perform error mitigation. In Fig. 6.7, we can see that while the actual channel N
preserves the expectation value of Z, the mitigated results are actually worse due to the
incorrect assumptions on noise model (see the blue triangles in Fig. 6.7). Also note that,
since D−1 is non-CP, the outputs D−1 ◦ N (ρ) are not valid quantum states anymore. In
this case the fidelity function is not bounded below 1, thus is no longer a valid metric. We
give further details in Appendix D.4.

While the above is a rather extreme example of channel mismatching, the message
in this example is alerting, because it illustrates how a misunderstanding of noise can
lead to failures when mitigating errors. Although we can lower bound the fidelity of the
error mitigated state ρEM and ρideal

out from Proposition 6.4.1, mitigating errors to improve
the results still imply a competition between the experimental and noise characterization
accuracies (Proposition 6.4.2 and Fig. 6.5). In order to improve experimental readout using
QEM, the increasing accuracy of the experiments demands better knowledge of device
noise, which will translate into a high sampling cost during noise characterization. The
additional overhead due to the need for accurately characterizing noise channels is typically
ignored when estimating the cost of QEM [145], but should also be taken into account for
future analyses on QEM protocols.
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Figure 6.7: Expectation value of Z for 50 randomly generated states, under the noise
models in Example 6.4.1. The x-axis is the dummy label for tested states. While this noise
does not affect the Z expectation, the incorrectly applied “recovery” operation D−1 leads
to incorrect (and sometimes unphysical) outcomes.

6.5 Summary

In this chapter, we have examined several aspects of quantum error mitigation. Using
intuitions from classical and quantum communication, we clarify that QEM is fundamen-
tally different from QEC because each method has distinct goals, namely, QEC preserves
the physical objects themselves while QEM restores the mathematical descriptions (i.e.,
density matrices) of the physical objects. This motivates that inverses of the noise channels
play an important role when evaluating the ultimate performance of QEM protocols. For
the case of invertible but non-unitary noise where the inverse cannot be physically imple-
mented, we show that one may decompose the (HPTP) inverse as multiple implementable
CPTP channels, and recombine the results to obtain the inverse using post-processing. For
the case of non-invertible channels, we explicitly provide a generalized-inverse construction
called Drazin-inverse, and prove that the Drazin-inverse of any channel is trace preserving,
while another commonly used Moore-Penrose generalized-inverse may not be.

When the noise channels are invertible, the improvement from EM protocols is con-
strained by our knowledge about the noise in the device of interest. The gap between {Ñi}
and {Ni} can bound the fidelity between the ideal state and the error mitigated state. A
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sufficient condition is derived for guaranteeing an improvement, which is motivated from
the idea that the accuracy of noise characterization needs to be higher than that of the
experiment. Therefore, more accurate experiments require higher overheads during noise
characterization. We derive a first order approximation to the overall error in multi-layer
circuits, which can be used to estimate the minimal cost associated with learning the noise
before applying EM procedures. We also show that if the mismatch between assumed and
real noise channels is too large, error mitigation may yield unphysical outcomes and fail.
Overall, our analyses demonstrate that the complications and subtleties when implement-
ing QEM demand more in-depth studies on several topics, such as optimal decomposition
of inverse maps, and more realistic estimates on the cost of accurate QEM.
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Chapter 7

Conclusion and Outlooks

The presence of noise in quantum processors is a critical issue that affects the output
quality of these devices. In this thesis, we have presented several results addressing this
important and challenging subject of studying noise in near-term quantum processors,
which is crucial for the development and improvement of these devices. We first studied
how noise can be accurately represented in a device, by studying a gauge freedom in
the representation of quantum operations. After illustrating the relevance of gauge using
realistic examples, we propose the mean variation error (MVE) as an operational figure
of merit, along with a protocol to measure the MVE. Our numerical study on the MVE
suggests a potential underestimation of error in conventional randomized benchmarking
experiments. Moreover, it shows that MVE carries useful information regarding the nature
of noise occurring in the hardware.

We then study under what assumptions can the gauge ambiguity be removed, and
how conventional error rates can be obtained. Our focus has been on state preparation
and measurement (SPAM) errors. We have shown that one can unambiguously distinguish
state preparation errors from measurement errors, in the presence of an ancillary qubit that
is independent of the system of interest. We have also derived bounds on the estimated
SPAM error rates based on gate error measures that can be estimated independently of
SPAM processes, which has been cross-validated between data from quantum hardware
and classical simulations.

An alternative way to remove gauge ambiguity between SPAM errors is by reducing
the state preparation noise independently from the measurement noise. We explore this
direction by developing a simple algorithmic cooling (AC) protocol which utilizes imperfect
measurements. We compute how the overhead using our method can be upper bounded
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by measurable quantities, and show that it can efficiently reduce state preparation noise
under experimentally feasible regimes. This offers a new pathway to benchmark as well as
algorithmically improve existing quantum processors.

Since using AC as a state-purification procedure comes with an inevitable thermody-
namic cost, we then studied the cost of various AC protocols. We proposed two related,
operationally meaningful measures, and benchmarked the efficiencies of various protocols
under the framework of coherent cooling. We studied the cost of various AC protocols
using simulations, providing a guideline for the advantageous regime of each protocol. Our
focus on thermodynamic costs of AC has also led to interesting discoveries of new protocols
that are capable of cooling to the same final temperature with a lower thermodynamic cost.

In addition to algorithmic cooling, the use of numerical methods to reduce effective
error rates in noisy hardware has recently emerged to form a field named quantum error
mitigation. We contrasted the family of QEM techniques with quantum error correction,
pointing out fundamental differences between the two from a communication perspective.
We then proposed a new construction of pseudo-inverse to be used in QEM when the
noise is non-invertible, and proved important properties of this construction including its
trace-preserving nature. We also studied the problem of under what condition can QEM
provide definitive improvements to the final results, when one’s knowledge about the noise
is imperfect. Our results suggest that more work is needed for both applying and estimating
the cost of accurate QEM protocols.

Outlook

There are many possible future research directions derived from this thesis that could be
worth further investigating. First, the topic of gauge-invariant quality metrics is worth
a closer look. For example, when defining the mean variation error in Eq. (2.26), there
may exist more reasonable practices than assigning equal weights to all experiments with
the same length, such as adaptively giving more weights to certain circuits for a given
computational task. This is particularly relevant when a small subset of the operations
have much higher error rates than the rest, such that for a task that relies heavily on
these elements, the MVE will not correctly reflect the true performance of the device.
Alternatively, it is possible to define a different measure based on the variational distance,
but using tailored circuits instead of fully random ones, in order to amplify certain types
of errors in the device.

Second, regarding the work of distinguishing SPAM errors using noise propagation, we
have yet to optimize the protocol to improve the measurement overhead. For large target
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systems, we expect the real density matrix to be close to a sparse matrix, with many
vanishingly small elements. In such cases it may be beneficial to integrate compressed-
sensing techniques [146] to more efficiently estimate the whole density matrix. Another
possibility to improve the scaling is by placing further assumptions on the form of the initial
state. For example, it is typically reasonable to assume that components corresponding
to low-weight errors on the ideal state are much larger than those corresponding to high-
weight errors. Therefore, sampling only the major components could significantly improve
the scaling of the protocol, while sacrificing only slightly on the accuracy.

On the other hand, there may be interesting theoretical relationships between our
assumption-based approach with the assumption-free approach in gate-set tomography
(GST). It is currently unclear whether there exists a set of additional assumptions (i.e.,
constraints) to the general GST protocol that, upon taking into consideration, will fully
eliminate the gauge freedom. Our results points towards a positive answer to this question,
and further studies along these lines could lead to a reduction in the GST overhead when
the underlying physical system satisfies these assumptions.

Third, similar arguments can be applied to improve the SPAM-characterization protocol
based on AC. Using the same principles as in noise propagation, it should be possible take
gate errors into account in the final estimates using the AC-based approach [147, 97].
Another natural extension for AC-based protocols is to explore whether it is still possible
to reduce state preparation error rates in the presence of correlated initial state errors,
demonstrating a fault-tolerance capability of AC. We speculate that this should hold true
in the limit of weak correlated error. In addition, it can be very interesting to integrate the
concept of MBAC into other algorithmic cooling protocols (see, e.g., the reviews [148, 149]),
which goes beyond the BCS subroutine mentioned in Section 4.3, to develop new protocols
with potentially better performances.

Forth, thermodynamic studies of AC could be continued as a standalone field that fur-
ther extends studies on classical heat engines to the quantum regime. On the one hand,
the coherent cooling paradigm may be extended to include a wider family of protocols,
including those involving measurements such as MBAC as suggested by Chapter 4. In-
tegrating measurement operations into the current quantum resource theory framework
could lead to interesting discoveries such as placing a minimum thermodynamic cost on
quantum measurements. On the other hand, experimentally measuring the actual amount
of energy flow during an AC protocol will provide a better understanding on how far we
are from the ideal coherent paradigm, revealing potential sources of energy loss in the
experimental design. An experiment along both lines has very recently been demonstrated
in a superconducting transmon system [150] and it could be interesting to see if similar
results hold in other platforms.
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Finally, our exploration on QEM provides insights from the point of view of superoper-
ators, opening up new possibilities for applying generalized matrix inverse theory to tackle
this problem. Properties of different generalized inverses and when to use them require
further investigation. For practical QEM, more rigorous studies on the impact of imperfect
characterization on the noise channel is needed for each protocol. This will provide not
only more accurate error bars for QEM-assisted algorithms, but also more realistic over-
head estimates in order to achieve a target accuracy. Practical ways to implement QEC
in conjunction with QEM, as well as alternative error-reducing procedures such as AC, is
likely to remain an active research area in the near future. Overall, it is fair to say that
more needs to be done in representing, characterizing, and mitigating noise in quantum
processors, and progresses in these fields will be essential stepping stones towards building
large-scale, universal quantum computers.
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Appendix A

Additional information for Chapter 3

A.1 Calculating the effect of the n-qubit entangling

cycle in Fig. 3.2

Here we show that the entangling cycle has the effect of “propagating” the desired com-
ponent from the target qubits to the ancillary qubit. Specifically, first note that due to
the commutation relations between Pauli operators, the only non-zero components of an
N -qubit state after averaging over {I, Z} on each qubit are tensor products of I and Z:
that is,

ρt =
1

2N

∑
R

sRR, R ∈ {I, Z}⊗N . (A.1)

To calculate the effective PTM on qa, we first note that [P,Q] = 0 for all P,Q ∈ {I, Z}⊗N ,
and that all elements of {I, Z}⊗N are involutory (meaning that they square to the identity).
First consider the effect of the entangling gate only. We will consider a particular gate
U = |0〉〈0| ⊗ I + |1〉〈1| ⊗ T , where T also belongs to the group of {I, Z}⊗N . The PTM on
qa is given by

(ΦG)P,Q =
1

2N
Tr[P G(Q)] (A.2)

where the map G is the effect on qa by first attaching a state qt, applying the controlled-P
gate, and tracing out qt. We can write the term G(Q) as
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G(Q) = Trt[U(Q⊗ ρt)U †]

= Trt[
1

2
(|0〉〈0| ⊗ I + |1〉〈1| ⊗ T )(

∑
R

sR Q⊗R)(|0〉〈0| ⊗ I + |1〉〈1| ⊗ T †)] (A.3)

qa S1 D1 E1
EC

D†
1,r M1 E1

qt S2 D2 E1 D†
2,r

Figure A.1: An expanded version of the two-qubit propagating circuits that are actually
carried out. The restoring gates are given by D†r = CD†C†. Note that SPAM averaging
gates are compiled with adjacent dressing gates from randomized compiling (denoted by
dashed boxes) and are implemented as one gate, hence there is only one noise channel E⊗2

1 .
The red dashed line indicates the place where we make the comparison (see text).

Consider two separate cases:

1. Q = I or Q = Z. Then Q is diagonal and the only non-zero elements are Q00 :=
〈0|Q |0〉 and Q11 := 〈1|Q |1〉. Therefore we can simplify Eq. (A.3) as

Trt[
1

2N

∑
R

sR(|0〉〈0|Q00 ⊗R + |1〉〈1|Q11 ⊗ TRT †)]

= Trt[
1

2N

∑
R

sR(|0〉〈0|Q00 ⊗R + |1〉〈1|Q11 ⊗R)]

= Trt[Q⊗ (
1

2N

∑
R

sRR)]

= Q

(A.4)

where we used the fact that T commutes with R for all T,R ∈ {I, Z}⊗N in the first
step, that Q is diagonal in the second step, and that density operators have unit
trace in the third step. Therefore,

(ΦG)P,Q =
1

2
Tr[P Q] = δPQ. (A.5)
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2. Q = X or Q = Y . Then Q has only off-diagonal elements Q01 := 〈0|Q |1〉 and
Q10 := 〈1|Q |0〉. So we can write Eq. (A.3) as

Trt[
1

2N

∑
R

sR(|0〉〈1|Q01 ⊗RT † + |1〉〈0|Q10 ⊗ TR)] (A.6)

Here we use the fact that all elements of {I, Z}⊗N are both Hermitian and involutory,
which leads to the relation

RT † = TR = I⊗N iff T = R. (A.7)

Since the only element of {I, Z}⊗N with a nonzero trace is I⊗N , these would be the
only remaining terms when the partial trace is performed. Keeping only these terms,
we further simplify Eq. (A.6) as

Trt[
1

2N

∑
R

sR=T (|0〉〈1|Q01 + |1〉〈0|Q10)⊗ I⊗N ] (A.8)

The term in the parenthesis is just Q since Q = X or Q = Y has off-diagonal elements
only. Thus we get G(Q) = sTQ and

(ΦG)P,Q =
1

2
Tr[P sTQ] = sT δPQ. (A.9)

From the above we get the form of ΦG as:

ΦG =


1 0 0 0
0 sT 0 0
0 0 sT 0
0 0 0 1

 . (A.10)

Finally, the PTM of the a 1-qubit Hadamard gate is

ΦH =


1 0 0 0
0 0 0 1
0 0 −1 0
0 1 0 0

 . (A.11)

The effect of the full cycle is given by the matrix product

ΦHΦGΦH =


1 0 0 0
0 1 0 0
0 0 sT 0
0 0 0 sT

 (A.12)

which is identical in form to Eq. (3.9) in the main text.
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A.2 Proof of Equation (3.15)

In this section we prove Eq. (3.15) in the main text. First, we define the operator 1-norm

‖A‖1 := Tr
[√

A†A
]
, the induced superoperator norm ‖G‖1→1 := max{‖G(A)‖1 : ‖A‖1 ≤ 1}

and the diamond norm ‖G‖� := ‖G ⊗ Id‖1→1 for quantum channels [26, 56]. Note that
‖ρ‖1 = 1 for any density matrix ρ. We would like to compare the distance between the
final states of the ancillary qubit qa immediately before the measurement (see Fig. A.1),
under two cases: the imaginary case where the propagation cycle is ideal (denoted as ρic

a ,
“ideal cycle”), and the actual case with imperfect gates (denoted as ρa).

Below we denote a round of CNOT gate as C, and the channel represented by the round
of dressing gate D1 ⊗ D2 as D. Under the assumption of gate-independent error on the
dressing gates, we’ll denote this (single-qubit) error channel as E1 so that D̃ = E1D. The
error on the CNOT can be a general channel denoted by C̃ = CEC . The dressing gates are
randomly sampled from the 2-qubit Pauli channels {I,X ,Y ,Z}⊗2. Recall that ρa denotes
the state of the ancilla qubit immediately before measurement. Further, let’s denote the
full system immediately before measurement as ρfull. We then have the following chain of
inequalities: ∥∥ρa,D − ρic

a,D
∥∥

1
=
∥∥Tr2[D†r(ρfull − ρic

full)]
∥∥

1

≤
∥∥D†r(ρfull − ρic

full)
∥∥

1

≤
∥∥ρfull − ρic

full

∥∥
1

≤
∥∥∥C̃D̃ − CD∥∥∥

�

(A.13)

for each choice of dressing gates D. The first inequality is because partial tracing does
not increase the trace distance [151]. The second inequality is because trace distance is
non-increasing upon action of any CPTP map. The third inequality is from the definition
of the diamond norm.

The diamond norm is related to the process infidelity rp (Eq. (3.14) in the main text)
by [74]

2rp(C̃D̃, CD) ≤
∥∥∥C̃D̃ − CD∥∥∥

�
≤ 2d

√
rp(C̃D̃, CD) (A.14)

for d-dimensional channels. From our assumption on the error model, C̃D̃ = CECE⊗2
1 D.

Note that for any channel E and unitary processes U and V ,

rp(E ,U) = rp(U †E , I), ‖UEV‖� = ‖E‖� (A.15)
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and since both ‖·‖� and rp are linear functions in their arguments,

rCB(C̃, C) = 4−2
∑

D∈{I,X ,Y,Z}⊗2

rp(C̃D̃, CD)

= 4−2
∑

D∈{I,X ,Y,Z}⊗2

rp(D†C†C̃D̃, I)

= 4−2
∑

D∈{I,X ,Y,Z}⊗2

rp(D†ECE⊗2
1 D, I)

= rp(P , I)

(A.16)

and
4−2

∑
D∈{I,X ,Y,Z}⊗2

∥∥∥C̃D̃ − CD∥∥∥
�

= ‖P − I‖� (A.17)

where P is the twirled error channel mentioned in the main text. After averaging over all
Pauli dressing gates (i.e., the circuit is randomly compiled),∥∥ρa,RC − ρic

a,RC

∥∥
1

:= 4−2
∑

D∈{I,X ,Y,Z}⊗2

∥∥ρa,D − ρic
a,D
∥∥

1

≤ 4−2
∑

D∈{I,X ,Y,Z}⊗2

∥∥∥C̃D̃ − CD∥∥∥
�

= ‖P − I‖�
= 2rp(P , I)

(A.18)

where the last equality is because the lower bound of Eq. (A.14) is saturated for a Pauli
noise channel. Combining with Eq. (A.16), we finally have∥∥ρa,RC − ρic

a,RC

∥∥
1
≤ 2rCB(C̃, C). (A.19)

On the other hand,
∥∥ρa,RC − ρic

a,RC

∥∥
1

is related to β and βic through the Holevo-Helstrom
theorem for distinguishing quantum states [56]. We quote theorem 3.4 in [56] as the
following lemma:

Lemma A.2.1. Let ρ1, ρ2 be density operators. Let λ ∈ [0, 1]. For an arbitrary two-
outcome POVM measurement described by elements {M0,M1}, it holds that

λ〈M0, ρ0〉+ (1− λ)〈M1, ρ1〉 ≤
1

2
(1 + ‖λρ0 − (1− λ)ρ1‖1). (A.20)
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From the definition of β, we can rewrite it as

βD = 2〈M0, ρa,D〉 − 1 = 1− 2〈M1, ρa,D〉
βic
D = 2〈M0, ρ

ic
a,D〉 − 1 = 1− 2〈M1, ρ

ic
a,D〉

(A.21)

for each particular D. Since the measurement on qa is unchanged by the propagation cycle,
we can apply the above lemma with λ = 1

2
twice: first, using the first definition of βD and

the second definition of βic
D,

βD − βic
D = 2(〈M0, ρa,D〉+ 〈M1, ρ

ic
a,D〉 − 1) ≤

∥∥ρic
a,D − ρa,D

∥∥
1

(A.22)

and next, using the second definition of βD and the first definition of βic
D,

βic
D − βD = 2(〈M0, ρ

ic
a,D〉+ 〈M1, ρa,D〉 − 1) ≤

∥∥ρa,D − ρic
a,D
∥∥

1
(A.23)

Combining the above two equations we get:

−
∥∥ρic

a,D − ρa,D
∥∥

1
≤ βic

D − βD ≤
∥∥ρic

a,D − ρa,D
∥∥

1
. (A.24)

Thus, combining with Eq. (A.19) and averaging over all D’s, we obtain the desired result∣∣βic
RC − βRC

∣∣ ≤ 2rCB(C̃, C). (A.25)

The proof can be trivially extended to the case where a multi-qubit propagation cycle,
(H⊗ I)CP (H⊗ I), is used in place of the CNOT gate, hence Eq. (3.15) in the main text.

A.3 Calculating uncertainties in estimated parame-

ters

In this section, we derive the expressions for uncertainties in our experiments. The directly
measured quantities in our scheme are the expectation values α and β, as well as the
infidelity rCB measured by cycle benchmarking. Here, we will focus on the uncertainties on
α and β. The one for rCB is based on the same ideas but involves more technical details,
and we refer to the Supplementary Information of the original paper [78] for the exact
expressions. In this section only, we’ll denote the estimated values of the random variables
with an overhead tilde, such that the measured value of α is written as α̃. We will first
derive estimators for the expectation value (denoted with E) and variance (denoted with
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V) of a desired quantity in the general case, then apply it to the case of α and β. Finally we
use standard error propagation to obtain the uncertainty on the upper and lower bounds.

The quantity of interest which we try to estimate can generally be described by the
following average value:

λ =
1

N

N∑
i=1

pi, (A.26)

where the value of N depends on the context. In our case, λ can be α or β, so the pi’s are
expectation values of single qubit measurements. There are two things to be noted about
estimating this quantity: first, N can be very large in general, so that it is sometimes
not possible to exhaustively sample all pi’s. Second, each pi cannot be measured perfectly
because of finite sampling error. From now on, we’ll assume that we sample n out of the N
elements with or without replacement. For a particular n-element sample s, the value of
each sampled element p̃si is a random variable which is denoted with a hat. Furthermore
we assume that E [p̃i] = pi, and that the variance V [p̃i] := σi exists and can be estimated
using an unbiased estimator σ̃i.

We now derive the estimators of interest. By a simple counting argument (see, for
example, section 2.6 of [152]) and the law of total expectation, it is easy to see that

E

[
1

n

n∑
si

p̃si

]
= Es

[
1

n

n∑
si

E [p̃si ]

]
=

1

N

∑
i

pi, (A.27)

where the standard abuse of notation of denoting the sample with subscript (and sum-
mation) is used. This holds true whether we’re sampling with or without replacement.
Therefore the estimator

1

n

n∑
si

p̃si (A.28)

is an unbiased estimator for the population mean. Next, we can use the law of total variance
to compute the variance of this estimator. Note that in the absence of noisy measurements
(p̃i = pi) the problem reduces to estimating the variance of the sample mean, which has a
well-known formula (see section 2.5 and 2.6 of [152]) when the sampling is done without
replacement:

Vs

[
1

n

n∑
si

psi

]
=
(

1− n

N

) σ2

n
(A.29)

or with replacement:

Vs

[
1

n

n∑
si

psi

]
=
N − 1

N

σ2

n
(A.30)
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where σ2 is the population variance of pi:

σ2 =
1

N − 1

N∑
i=1

(pi − p̄)2, p̄ =
N∑
i=1

pi
N
. (A.31)

By the law of total variance we can extend to account for noisy measurements: for sampling
without replacement we have

V

[
1

n

n∑
si

p̃si

]
(A.32)

=VsE

[
1

n

n∑
si

p̃si

∣∣∣∣∣ s
]

+ EsV

[
1

n

n∑
si

p̃si

∣∣∣∣∣ s
]

(A.33)

=Vs

[
1

n

n∑
si

psi

∣∣∣∣∣ s
]

+ Es

[
1

n2

n∑
si

σ2
i

]
(A.34)

=
(

1− n

N

) σ2

n
+

1

n

N∑
i=1

σ2
i

n
(A.35)

=
(

1− n

N

) σ2

n
+

1

nN

N∑
i=1

σ2
i , (A.36)

and similarly for with replacement,

V

[
1

n

n∑
si

p̃si

]
=

(
1− 1

N

)
σ2

n
+

1

nN

N∑
i=1

σ2
i . (A.37)

An important implication from the above expression is that, for situations where each σi is
small, or where N is very large, the above expression depends mostly on the spread of the
quantities over the set of values (i.e., σ2) and only very weakly on N . A practical example
that aligns with our protocol is where N grows exponentially in the number of qubits,
and σi decreases as the square root of measurement “shots”. This ensures that randomly
sampling from a large population is scalable in practice.

We then need an estimator for σ2 and 1
N

∑N
i=1 σ

2
i . For the second quantity it’s simply

1
n

∑n
i=1 σ̃

2
si

, which are variances of each element in the chosen sample. For the first quantity,
it can be shown that the sample variance corrected by the average of σ2

si
’s gives an unbiased

estimator for σ2: i.e.,

E

[
s̃2 − 1

n

n∑
i

σ̃2
si

]
= σ2. (A.38)
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where s̃2 is the variance for the chosen sample. To see this, note that σ2 is equal to

σ2 =
1

N − 1
(p2
i −

2

N

N∑
j

pipj +
1

N2

∑
jj′

pjpj′) (A.39)

=
1

N − 1
(
N∑
i

p2
i −

1

N

∑
ij

pipj) (A.40)

=
1

N − 1
(
N∑
i

p2
i −

1

N
(
N∑
i

p2
i + 2

N∑
i 6=j

pipj)) (A.41)

=
1

N

N∑
i

p2
i −

2

N(N − 1)

N∑
i 6=j

pipj. (A.42)

Meanwhile, the expectation value of s̃2 is

E
[
s̃2
]

= E

[∑n
i=1(p̃si − 1

n

∑n
j=1 p̃sj)

2

n− 1

]
(A.43)

=
1

n− 1
E

[
n∑
i

p̃2
si
− 1

n

n∑
i,j

p̃si p̃sj

]
. (A.44)

By a counting argument, the first term evaluates to

E

[
n∑
i

p̃2
si

]
=

n

N

N∑
i

E
[
p̃2
i

]
=

n

N

N∑
i

p2
i + σ2

i . (A.45)

The second term evaluates to

E

[
1

n

n∑
i,j

p̃si p̃sj

]
= E

[
1

n
(
n∑
i=j

+
n∑
i 6=j

)p̃si p̃sj

]
(A.46)

=
1

N

N∑
i

E
[
p̃2
i

]
+

2(n− 1)

N(N − 1)

N∑
i 6=j
E [p̃ip̃j] (A.47)

=
1

N

N∑
i

(p2
i + σ2

i ) +
2(n− 1)

N(N − 1)

N∑
i 6=j

pipj (A.48)

where the last equality is given by independence of pi’s.
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Combining Eqs. (A.44), (A.45) and (A.48) and compare with Eq. (A.42), one sees that
the corrected estimator (Eq. (A.38)) is unbiased. We can then use this in Eq. (A.36) and
simplify to get our unbiased estimator for the variance for sampling without replacement:

(
1

n
− 1

N
)(s̃2 − 1

n

n∑
i

σ̃2
si

) +
1

n2

n∑
i

σ̃2
si

(A.49)

=(
1

n
− 1

N
)s̃2 − (

1

n2
− 1

nN
)

n∑
i

σ̃2
si

+
1

n2

n∑
i

σ̃2
si

(A.50)

=(
1

n
− 1

N
)s̃2 +

1

nN

n∑
i

σ̃2
si
, (A.51)

and sampling with replacement:

(
1

n
− 1

nN
)(s̃2 − 1

n

n∑
i

σ̃2
si

) +
1

n2

n∑
i

σ̃2
si

(A.52)

=(
1

n
− 1

nN
)s̃2 +

1

n2N

n∑
i

σ̃2
si
. (A.53)

Eq. (A.28) and Eq. (A.51) (or Eq. (A.53)) allow us to write down mean and variance
estimators for any quantity in the form of Eq. (A.26). We then use standard (linear-
approximated) error propagation to estimate uncertainties on the parameters of interest,
i.e., upper and lower bound on the error rates εSP and εM from Table 1 in the main
text. Each bound is an independent estimate and is a function of the four parameters:
αt, αa, βt, and rt,a. The uncertainty on individual parameters are independent of each
other, so its covariance matrix Σp is diagonal (where p stands for “parameter”). The first
order approximation to the covariance matrix of the bounds is given by Σb = JΣpJT where
J is the Jacobian. We then take the diagonal elements of Σb to be the uncertainties of the
bounds.

Finally we mention how each σ2
si

is estimated for our experiment. Since p̃i equals to a

binomial variable divided by the sample size k, it has mean pi and variance pi(1−pi)
k

. Using
again the relation E [p̃2] = p2 + σ2, it can be verified that an unbiased estimator for the

variance is p̃i(1−p̃i)
k−1

. Because α̃i = 2p̃i − 1, σ2
α,i = 4σ2

p,i. We can express the estimator in
terms of α̃i as

σ̃2
α,i =

(1 + α̃i)(1− α̃i)
k − 1

. (A.54)

The estimator for β is identical, except changing the α̃i to β̃i in the above expression.

145



Appendix B

Additional information for Chapter 4

B.1 Calculating expected number of runs before a

successful one

Here we calculate the expected number of failed MBAC-k runs before having a successful
one. The scenario is that one will continue running the experiment, until a successful
round of MBAC-k occurs. Assume that one would like to reduce δSP,t by a factor of r (e.g.,
r = 100 or r = 1000 can be set by the experimentalist), by using MBAC-k. According
to Eq. (14) in the main text, the final SP error is exponentially suppressed in terms of
successful cooling rounds.

We again think about MBAC-k as an (k−1)-step protocol, where each step corresponds
to measuring an ancilla and tracing it out after the measurement. The probability of
measuring 0 on the i-th step is

p0,i = (1− δSP,t[i]− δSP,a + 2δSP,t[i]δSP,a)(1− δM,a). (B.1)

The measurements are independent for each round, so the probability of measuring all 0’s
is given by the product of p0,i from each round. Since p0,i improves as i increases, we can
lower bound all of them by p0,1, i.e., the probability of getting 0 in the first run of MBAC-2.

Thus, we see that the expected total number of runs is upper bounded by a simpler
case, where n independent Bernoulli trials are conducted in series, each having success
probability p0,1. The probability of having all trials successful, which we will call the
success probability, is (p0,1)k−1. Note that for a Bernoulli trial that has success probability
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p, the expected number of tests n can be calculated to be

E(n) =
∑
i

ni · pi(ni)

=1 · p+ 2p(1− p) + 3p(1− p)2 + . . .

=p
∞∑
n=0

(n+ 1)(1− p)n

=
p

p2
=

1

p

(B.2)

as expected. Thus, if we denote the expected number of tests in reality by N , we have

N ≤ 1

(p0,1)k−1
, (B.3)

where p0,1 is defined in Eq. (B.1). Next, recall that Eq. (4.21) gives an upper bound on
the required number of ancillary qubits, k − 1. Because p0,1 ∈ (0, 1), px0,1 decreases with x
for x ≥ 0, so that (1/p0,1)x increases with x for x ≥ 0. Combining this with Eq. (B.3), we
have

N ≤
(

1

p0,1

)k−1

≤
(

1

p0,1

) log(r)

− log(2δSPAM,a) := A
log(r)
log(B) (B.4)

where
A = p0,1, B = 2δSPAM,a. (B.5)

We now define the expression on the RHS of Eq. (B.4) as an upper bound on N , i.e.,

Nupper(r) := A
log(r)
log(B) . (B.6)

Note that this upper bound is only a function of r and some measurable quantities that
are specific to the machine. Taking the log on both sides of Eq. (B.6) gives

log(Nupper(r)) =
log(r)

log(B)
log(A) = log(r)

log(A)

log(B)
(B.7)

and taking the exponential on both sides again gives

Nupper(r) = (r)
log(A)
log(B) (B.8)

which is polynomial in r, as claimed.
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Appendix C

Additional information for Chapter 5

C.1 Derivation for Landauer’s Principle in the uni-

tary scenario, Eq. (5.52)

This is a more concise version of the proof in [109]. We first prove the case where β is
finite. Due to the invariance of the von Neumann entropy under unitary transformations,
S(ρ′t,b) = S(ρt,b) = S(ρt) + S(ρb). Expand the mutual information term as

I(t′ : b′) = S(ρ′t) + S(ρ′b)− S(ρ′t,b)

= S(ρ′t) + S(ρ′b)− S(ρt,b)

= S(ρ′t) + S(ρ′b)− S(ρt)− S(ρb)

= ∆St + S(ρ′b)− S(ρb).

(C.1)

Also
D(ρ′b||ρb) = Tr[ρ′b log ρ′b]− Tr[ρ′b log ρb]

= −S(ρ′b)− Tr[ρ′b log ρb]
(C.2)

Therefore
−∆St + I(t′ : b′) +D(ρ′b||ρb) = −S(ρb)− Tr[ρ′b log ρb]

= Tr[(ρb − ρ′b) log ρb].
(C.3)

The bath is initially in a thermal state ρb = e−βbHb/Tr
[
e−βbHb

]
, so

log ρb = −(βbHb + 1 log Tr
[
e−βbHb

]
). (C.4)
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Plug this back into one equation above gives

−∆St + I(t′ : b′) +D(ρ′b||ρb) = βb Tr[(ρb − ρ′b)Hb] (C.5)

since ρb − ρ′b is traceless. We can identify this to be the energy change in the bath, ∆Eb.

For the case where β = ∞, ρb = Pg/ dim(Pg) is the normalized projector onto the
ground state space of Hb. Thus ∆Eb ≥ 0 and there are two possibilities:

1. ∆Eb = 0, then ρ′b is also supported only in the ground state space of Hb. The key is
to realize that log ρb = logPg − log dim(Pg), and that logPg is the 0 operator on the
support of Pg. Therefore

−∆St + I(t′ : b′) +D(ρ′b||ρb) = −S(ρb)− Tr[ρ′b log ρb]

= Tr[(ρb − ρ′b) log ρb]

= Tr[(ρb − ρ′b) logPg]− Tr[(ρb − ρ′b) log dim(Pg))]

= 0

(C.6)

where the first term is 0 because both ρb andρ′b are supported only on the ground
state space of Hb, and the second term is 0 because ρb − ρ′b is traceless. Thus, both
sides of Eq. (C.5) are 0.

2. ∆Eb > 0, then ρ′b is supported outside the ground state of Hb. Thus D(ρ′b||ρb) =∞,
and both sides of Eq. (C.5) are ∞.

C.2 Derivation for Landauer’s Principle in the gen-

eral CPTP scenario, Eq. (5.54)

The derivation can be most easily seen by expressing the difference in relative entropy
using its definition,

D(ρt||ρtht )−D(ρ′t||ρtht )

= −S(ρ′t)− Tr
[
ρ′t log

(
ρtht
)]

+ S(ρt) + Tr
[
ρt log

(
ρtht
)]

= (S(ρt)− S(ρ′t)) + Tr
[
(ρt − ρ′t) log

(
ρtht
)]

= −∆St + Tr
[
(ρt − ρ′t) log

(
ρtht
)] (C.7)
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By definition, ρtht = e−βHt/Tr
[
e−βHt

]
, so replacing this within the log() gives

. . . = −∆St + Tr
[
(ρt − ρ′t)(−βHt − 1 log Tr

[
e−βHt

]
)
]

= −∆St − Tr[(ρt − ρ′t)βHt]− log Tr
[
e−βHt

]
Tr[(ρt − ρ′t)]

(C.8)

The last term is 0 since all physical processes are trace-preserving. Defining ∆Et :=
Tr[(ρ′t − ρt)Ht] and ∆St := S(ρ′t)− S(ρt), we arrive at

− β∆Et = −∆St + (D(ρt||ρtht )−D(ρ′t||ρtht )). (C.9)

C.3 Proof of Theorem 5.5.1

Consider the unitary evolution U(ρab) = ρ′ab which results in a negative entropy change on
subsystem a, −∆Sa > 0. We can rearrange Eq. (5.52) and divide by −∆Sa to obtain an
expression for the Landauer Ratio for a round of unitary operation:

RL = 1 +
I(a′ : b′) +D(ρ′b||ρb)

−∆Sa
. (C.10)

First note that the mutual information term I(a′ : b′) can be rewritten as (see, e.g., Eq.
(3.55) in [153])

I(a′ : b′) = D(ρ′ab||ρ′a ⊗ ρ′b) (C.11)

A quadratic lower bound on the relative entropy is [154]

D(ρ||σ) ≥ 2(T (ρ, σ))2 (C.12)

On the other hand, an upper bound on the entropy change is given by the Fannes’ inequal-
ity [155, 156]:

|S(ρ)− S(σ)| ≤ 2T (ρ, σ) log

(
d

2T (ρ, σ)

)
(C.13)

for T (ρ′a, ρa) ≤ 1/2e. Directly plugging in the above into Eq. (C.10) gives the desired
bound on RL.

C.4 Detailed evolution of HBACs using transition ma-

trices
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C.4.1 Calculation of PPA-HBAC

A round of PPA3 consists of applying the 3-qubit entropy compression UPPA3 (given in
Eq. (5.15)), and thermalizing both machine qubits to a given bath temperature. The
thermalization can be effectively calculated as tracing out qubit 2 and 3, and replacing
with two thermal qubits at the bath temperature. The transition matrices representing
these two operations are

Gtr23 =

(
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

)
=

(
~11×4

~10×4

~01×4
~11×4

)
, (C.14)

G⊗ρ⊗2
b

=



p2
b 0

pb(1− pb) 0
(1− pb)pb 0
(1− pb)2 0

0 p2
b

0 pb(1− pb)
0 (1− pb)pb
0 (1− pb)2


:=

(
~sb,2 ~04×1

~04×1 ~sb,2

)
, (C.15)

where we defined

~sb,2 =


p2
b

pb(1− pb)
(1− pb)pb
(1− pb)2

 (C.16)

to be the vector representing the state of two independent qubits both at the bath tem-
perature (pb is the probability of being in 0 for a thermal bath qubit at bath temperature).
The full transition matrix is given by

Grelax
PPA3 = G⊗ρ⊗2

b
Gtr23

=

(
~sb,2 ~sb,2 ~sb,2 ~sb,2 ~04×1

~04×1
~04×1

~04×1

~04×1
~04×1

~04×1
~04×1 ~sb,2 ~sb,2 ~sb,2 ~sb,2

)
.

(C.17)
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Combining with the transition matrix for the compression step,

Gcomp
PPA3 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


, (C.18)

the transition matrix for a complete round of PPA3 is

GPPA3 = Grelax
PPA3G

comp
PPA3

=

(
~sb,2 ~sb,2 ~sb,2 ~04×1 ~sb,2 ~04×1

~04×1
~04×1

~04×1
~04×1

~04×1 ~sb,2 ~04×1 ~sb,2 ~sb,2 ~sb,2

)
.

(C.19)

Thus, the post-cooling state after repeated rounds of PPA3 can be computed by simply
raising GPPA3 to the desired power, and multiplying it to the initial state vector.

Focusing on the target qubit alone, the evolution in a given round is first introducing
two qubits at the bath temperature, apply the compression, then tracing out the two
ancillary qubits. The reduced transition matrix on the target qubit is given by

GPPA3,t = Gtr23G
comp
PPA3G⊗ρ⊗2

b

=

(
2pb − p2

b p2
b

(1− pb)2 1− p2
b

)
.

(C.20)

This provides a simpler view on how the target evolves during cooling. Diagonalizing this
matrix gives

GPPA3,t =

(
z −1
1 1

)(
1 0
0 y

)
1

1 + z

(
1 1
−1 z

)
(C.21)

where y := 2pb(1− pb) and z := p2
b/(1− pb)2. We can raise it to the n-th power by

(GPPA3,t)
n =

(
z −1
1 1

)(
1 0
0 yn

)
1

1 + z

(
1 1
−1 z

)
(C.22)

Therefore, the state of the target after n rounds starting from the initial state |ρPPA3,t(0)〉〉 =
(pt, 1− pt)T is

|ρPPA3,t(n)〉〉 = (GPPA3,t)
n|ρPPA3,t(0)〉〉

=
1

1 + z

(
z − yn(z − (z + 1)pt)
1 + yn(z − (z + 1)pt)

)
.

(C.23)
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for n ≥ 1. Since y ∈ [0, 1/2], it is easy to obtain the asymptotic state as

|ρPPA3,t(∞)〉〉 = lim
n→∞
|ρPPA3,t(n)〉〉 =

1

1 + z

(
z
1

)
. (C.24)

We now switch back to using the full transition matrix to compute thermodynamic
quantities for calculating cooling efficiencies. The work input for the n-th round is the
energy increase for the full system during the compression step,

wPPA3(n) = 〈〈HPPA3|(Gcomp
PPA3 − 1)|ρPPA3(n− 1)〉〉

= 〈〈HPPA3|(Gcomp
PPA3 − 1)(GPPA3)n−1|ρPPA3(0)〉〉. (C.25)

The vectorized Hamiltonian is

〈〈HPPA3| =
3∑
i=1

〈〈h[i]| = E
(
0 1 1 2 1 2 2 3

)
(C.26)

where we assumed the same energy gap E for each qubit. The vectorized initial state is

|ρPPA3(0)〉〉 = |
3⊗
i=1

ρi〉〉 =



p3
b

p2
b(1− pb)
p2
b(1− pb)

pb(1− pb)2

p2
b(1− pb)

pb(1− pb)2

pb(1− pb)2

(1− pb)3


(C.27)

where we assumed that all qubits start from the same (bath) temperature for simplicity.
Directly calculating Eq. (C.25) using a computational software gives

wPPA3(n) = E(pb −
1

2
)yn, n ≥ 1 (C.28)

Meanwhile, the energy decrease for the target during the n-th round can be computed
from Eq. (C.23):

−∆et(n) = 〈〈H1|(|ρPPA3,t(n− 1)〉〉 − |ρPPA3,t(n)〉〉)

= E(pb −
1

2
)yn, n ≥ 1

(C.29)

It can be seen from here that both the per-round and cumulative CoP are simply

kPPA3(n) = KPPA3(n) = 1. (C.30)
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C.4.2 Calculation of NOE-HBAC

A round of NOE-HBAC consists of first applying the CMS operation on the second qubit,
then applying the Γ2 relaxation. The transition matrices representing these two operations
are

GCMS =
1

2


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 , (C.31)

GΓ2 =


p2 0 0 p2

0 1 0 0
0 0 1 0

1− p2 0 0 1− p2

 , (C.32)

where p2 is defined in Eq. (5.9). A round of NOE-HBAC is represented by the transition
matrix

GNOE = GΓ2GCMS

=
1

2


p2 p2 p2 p2

1 1 0 0
0 0 1 1

1− p2 1− p2 1− p2 1− p2

 .
(C.33)

The transition matrix representing the evolution of the target qubit is

GNOE,t = Gtr2GΓ2G⊗ρCMS

=
1

2

(
p2 + 1 p2

1− p2 2− p2

)
.

(C.34)

Let x := p2
1−p2 ; then GNOE,t can be diagonalized as

GNOE,t =

(
x −1
1 1

)(
1 0
0 1

2

)
1

1 + x

(
1 1
−1 x

)
(C.35)

Raising to the nth power:

Gn
NOE,t =

1

1 + x

(
x+ (1

2
)n x(1− (1

2
)n)

1− (1
2
)n 1 + (1

2
)nx

)
. (C.36)
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The state of the target after n rounds starting from the initial state |ρNOE,t(0)〉〉 = (pt, 1−
pt)

T is
|ρNOE,t(n)〉〉 = (GNOE,t)

n|ρNOE,t(0)〉〉

=
1

1 + x

(
x+ 2−n(pt − x+ ptx)
1− 2−n(pt − x+ ptx)

)
(C.37)

for n ≥ 1. The asymptotic state is

|ρNOE,t(∞)〉〉 = lim
n→∞
|ρNOE,t(n)〉〉 =

1

1 + x

(
x
1

)
. (C.38)

The work input for the n-th round is the energy increase for the full system during the
CMS step,

wNOE(n) = 〈〈HNOE|(GCMS − 1)|ρNOE(n− 1)〉〉
= 〈〈HNOE|(GCMS − 1)(GNOE)n−1|ρNOE(0)〉〉. (C.39)

The vectorized Hamiltonian is

〈〈HNOE| =
2∑
i=1

〈〈h[i]| = E
(
0 1 1 2

)
(C.40)

where we assumed the same energy gap E for each qubit. The vectorized initial state is

|ρNOE(0)〉〉 = |
2⊗
i=1

ρi〉〉 =


p2
b

pb(1− pb)
pb(1− pb)
(1− pb)2

 (C.41)

where we assumed that all qubits start from the same (bath) temperature for simplicity.
Directly calculating Eq. (C.39) using a computational software gives

wNOE(n) =

{
E(p2 − pb)21−n, n > 1

E(pb − 1
2
), n = 1

(C.42)

The cumulative work up to round n is

WNOE(n) =
n∑
i=1

wNOE(i) = E((p2 −
1

2
)− 21−n(p2 − pb)). (C.43)
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Meanwhile, the energy decrease for the target during the n-th round can be computed
from Eq. (C.37):

−∆et(n) = 〈〈H1|(|ρNOE,t(n− 1)〉〉 − |ρNOE,t(n)〉〉)
= E(p2 − pb)2−n

(C.44)

for all n ≥ 1. The total energy decrease up to round n is

−∆Et(n) =
n∑
i=1

−∆et(i) = (p2 − pb)(1− 2−n)E (C.45)

The COP for the n-th round is

kNOE(n) =
−∆et(n)

wNOE(n)
=

{
1
2
, n > 1
p2−pb
2pb−1

, n = 1
(C.46)

and the cumulative CoP up to round n is

KNOE(n) =
−∆Et(n)

WNOE(n)
=

(p2 − pb)(1− 2−n)

(p2 − 1
2
)− 21−n(p2 − pb)

. (C.47)

C.4.3 Calculation of SRG2-HBAC

A round of SRG2-HBAC consists of first applying the σx gate on the second qubit, then
applying the Γ2 relaxation, and finally thermalizing the second qubit. The transition
matrices are

Gσx,[2] =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , (C.48)

GΓ1,[2] =


pb pb 0 0

1− pb 1− pb 0 0
0 0 pb pb
0 0 1− pb 1− pb

 , (C.49)

and GΓ2 as defined as above. A round of SRG2-HBAC is represented by the transition
matrix

GSRG2 = GΓ1,[2]GΓ2Gσx,[2]

=


pb pbp2 pbp2 0

1− pb (1− pb)p2 (1− pb)p2 0
0 pb(1− p2) pb(1− p2) pb
0 (1− pb)(1− p2) (1− pb)(1− p2) 1− pb

 .
(C.50)
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The transition matrix representing the evolution of the target qubit is

GSRG2,t = Gtr2GΓ2Gσx,[2]G⊗ρb

=

(
pb + (1− pb)p2 pbp2

(1− pb)(1− p2) 1− pbp2

)
.

(C.51)

Let w := p2pb, v = 1− p2 − pb + p2pb, u = 1− v − w, then GSRG2,t can be diagonalized as

GSRG2,t =

(
w
v
−1

1 1

)(
1 0
0 u

)
v

w + v

(
1 1
−1 w

v

)
(C.52)

Raising to the power of n:

Gn
SRG2,t =

1

w + v

(
w + vun w − wun
v − vun v + wun

)
. (C.53)

The state of the target after n rounds starting from the initial state |ρSRG2,t(0)〉〉 = (pt, 1−
pt)

T is
|ρSRG2,t(n)〉〉 = (GSRG2,t)

n|ρSRG2,t(0)〉〉

=
1

w + v

(
w + un(−w + pt(v + w))
v − un(−w + pt(v + w))

)
(C.54)

for n ≥ 1. The asymptotic state is

|ρSRG2,t(∞)〉〉 = lim
n→∞
|ρSRG2,t(n)〉〉 =

1

w + v

(
w
v

)
(C.55)

since |u| < 1.

The work input for the n-th round is the energy increase for the full system during the
σx step,

WSRG2(n) = 〈〈HSRG2|(Gσx,[2] − 1)|ρSRG2(n− 1)〉〉
= 〈〈HSRG2|(Gσx,[2] − 1)(GSRG2)n−1|ρSRG2(0)〉〉. (C.56)

The vectorized Hamiltonian is again

〈〈HSRG2| =
2∑
i=1

〈〈h[i]| = E
(
0 1 1 2

)
(C.57)

where we assumed the same energy gap E for each qubit. The vectorized initial state is

|ρSRG2(0)〉〉 = |
2⊗
i=1

ρi〉〉 =


p2
b

pb(1− pb)
pb(1− pb)
(1− pb)2

 (C.58)
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where we assumed that all qubits start from the same (bath) temperature for simplicity.
Directly calculating Eq. (C.56) using a computational software gives

wSRG2(n) = E(2pb − 1) (C.59)

for all n ≥ 1. The cumulative work up to round n is

WSRG2(n) = nE(2pb − 1) (C.60)

Meanwhile, the energy decrease for the target during the n-th round can be computed
from Eq. (C.54):

−∆eSRG2,t(n) = 〈〈H1|(|ρSRG2,t(n− 1)〉〉 − |ρSRG2,t(n)〉〉)
= Epb(1− pb)(2p2 − 1)un−1 (C.61)

for all n ≥ 1. The total energy decrease in the target is

−∆ESRG2,t(n) = Epb(1− pb)(2p2 − 1)
1− un
1− u (C.62)

The COP for the n-th round is

kSRG2(n) =
−∆eSRG2,t(n)

wSRG2(n)
=
pb(1− pb)(2p2 − 1)

2pb − 1
un−1 (C.63)

for all rounds n ≥ 1. The cumulative CoP up to round n is

KSRG2(n) =
−∆ESRG2,t(n)

WSRG2(n)

=
pb(1− pb)(2p2 − 1)

2pb − 1

1− un
n(1− u)

.

(C.64)

C.4.4 Calculation of xHBAC

A round of 1-qubit xHBAC consists of first applying the σx gate on the target, then
applying the β-swap operation. The transition matrix for β-swap is

Gβ =

(
1− Ee−βb 1
e−Eβb 0

)
(C.65)
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where E is the energy gap of the qubit and βb is the bath inverse temperature. The total
G-matrix is given by

GxHBAC1 = GβGσx =

(
1 1− Ee−βb
0 e−Eβb

)
. (C.66)

To diagonalize GxHBAC1, let s = e−Eβb , we obtain

GxHBAC1 =

(
1 −1
0 1

)(
1 0
0 s

)(
1 1
0 1

)
. (C.67)

The n-th power of GxHBAC1 is given by

Gn
xHBAC1 =

(
1 1− sn
0 sn

)
(C.68)

The state of the target after n rounds starting from the initial state |ρxHBAC1,t(0)〉〉 =
(pt, 1− pt)T is

|ρxHBAC1,t(n)〉〉 = (GxHBAC1,t)
n|ρxHBAC1,t(0)〉〉

=

(
1− sn(1− pb)
sn(1− pb)

)
(C.69)

for n ≥ 1. The asymptotic state is

|ρxHBAC1,t(∞)〉〉 = lim
n→∞
|ρxHBAC1,t(n)〉〉 =

(
1
0

)
, (C.70)

i.e., the pure state |0〉.
The work input for the n-th round is the energy increase for the full system during the

σx step,
wxHBAC1(n) = 〈〈HxHBAC1|(Gσx − 1)|ρxHBAC1(n− 1)〉〉
= 〈〈HxHBAC1|(Gσx − 1)(GxHBAC1)n−1|ρxHBAC1(0)〉〉
= E(1− 2sn−1(1− pb)).

(C.71)

The total work input is

WxHBAC1(n) = E

(
n− 2(1− pb)

1− sn
1− s

)
. (C.72)

The energy decrease for the target during the n-th round is

−∆exHBAC1,t(n) = 〈〈H1|(|ρxHBAC1(n− 1)〉〉 − |ρxHBAC1(n)〉〉)
= E(1− pb)(1− s)sn−1 (C.73)
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for all n ≥ 1. The total energy decrease up to round n is

−∆ExHBAC1,t(n) = E(1− pb)(1− sn). (C.74)

The COP for the n-th round is

kxHBAC1(n) =
−∆et(n)

wxHBAC1(n)
=

(1− pb)(1− s)
1− 2sn−1(1− pb)

sn−1 (C.75)

for all rounds n ≥ 1. The cumulative COP up to round n is

KxHBAC1(n) =
(1− pb)(1− s)(1− sn)

n(1− s)− 2(1− pb)(1− sn)
(C.76)

C.5 Proof of the equilibrium state of the improved

PPA

In the improved PPA, the goal is to minimize the work input during the compression step,
while keeping the same final temperature of the target qubit as in PPA. This is achieved by
placing the diagonal elements in the |0〉t subspace of the target qubit in the lowest energy
levels in decreasing order, and similarly for the |1〉t subspace.

In every cycle, the system will start from an initial tensor product state where the first
qubit is in the state with diagonal elements (1− δt, δt), and all other qubits have diagonal
elements (1− δb, δb), where δb = 〈1| ρthb |1〉. The full state has 2n diagonal elements, which
can be grouped by the Hamming weight of their corresponding state. For example, the
population corresponding to the state |00101〉, which has weight 2, is given by (1− δt)(1−
δb)

2δ2
b . In general, for a total weight of i, the diagonal elements are(

n− 1

i

)
: δ0(i) = (1− δt)(1− δb)n−i−1δib, i = 0 . . . (n− 1)(

n− 1

i− 1

)
: δ1(i) = δt(1− δb)n−iδi−1

b , i = 1 . . . n

(C.77)

where the binomial coefficients denote how many identical terms there are in total, δ0(i)
corresponds to what’s originally in the |0〉t subspace and the δ1(i) in the |1〉t subspace of
the target qubit.
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Consider the situation where the target starts from a state with a δt satisfying the
following relation:

1− δ∗t
δ∗t

=

(
1− δb
δb

)n−1

. (C.78)

We can now rewrite δ0(i) and δ1(i) as

{δ0(i), δ1(i)} =

{(
1− δb
δb

)n−1

(1− δb)n−i−1δibδ
∗
t , δ
∗
t (1− δb)n−iδi−1

b

}

= δ∗t (1− δb)n−1

{(
1− δb
δb

)n−i−1

,

(
1− δb
δb

)−i+1
} (C.79)

where we have factored out the common term δ∗t (1− δb)n−1. The fraction (1− δb)/δb is the
ratio of |0〉 over |1〉 populations for a qubit at the bath temperature and is always ≥ 1 for
all δb ∈ (0, 1/2]. Therefore, each term increases with an increasing exponent. Specifically,
since both exponents decrease with i, the smallest term from the |0〉t subspace is achieved
at i = n− 1, and the largest term from the |1〉t subspace is achieved at i = 1. Since

n− (n− 1)− 1 = −(1)− 1 = 0, (C.80)

these two terms are in fact equal to each other. This implies that all the largest 2n−1 terms
are already in the |0〉t subspace, so the temperature of the target qubit will remain the
same after the compression step. And since the target’s initial temperature is the only
variable during the compression, we conclude that this state is a stable fixed point for the
E-PPA protocol.

Finally, we see that the equilibrium population satisfying Eq. (C.78) has an inverse
temperature

βE = log

((
1− δb
δb

)n−1
)

= (n− 1) log

(
1− δb
δb

)
= (n− 1)βbE

(C.81)

where βb is the bath’s inverse temperature. Therefore, the equilibrium temperature is
Tb/(n− 1).
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Appendix D

Additional information for Chapter 6

D.1 Proof that the Drazin-inverse of a TP map is TP

Here we provide the proof for Theorem 6.3.5.

Proof. Let the Jordan block of eigenvalue λ in J be Jλ, where J is defined in Eq. (6.15).

The inverse of a k by k Jordan block Jλ (λ 6= 0) of v(N ) is

J−1
λ = (λI +N)−1 = λ−1(I − λ−1N + · · ·λ−(k−1)N (k−1))

= λ−1

(
k−1∑
i=0

(−λ−1N)i

)
=: J ′λ

where N is the k by k nilpotent matrix, λ is the eigenvalue.

By the construction (Eq. (6.16)), we have

v(N+)Q = QJ ′, (D.1)

where Q contains the eigenvectors and generalized eigenvectors of v(N ). For the particular
block that we concern, the corresponding eigenvector and generalized eigenvector is

Q =
(
· · · vg0 vg1 · · · vgk−1 · · ·

)
Let ei, i ∈ {0, · · · , k − 1} be the standard basis vectors for this block. Acting ej on

both sides of Eq. (D.1), the left hand side is

v(N+)Qej = v(N+)vgj ,
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and the right hand side is

QJ ′ej = Qλ−1

(
k−1∑
i=0

(−λ)−iN iej

)
.

It is easy to show that N iej = ej−i for j ≥ i, and N iej = 0 · ej for j < i. Therefore

QJ ′ej = Qλ−1

(
j∑
i=0

(−λ)iej−i

)
= λ−1

(
j∑
i=0

(−λ)ivgj−i

)
.

Thus

v(N+)vgj = λ−1

(
j∑
i=0

(−λ)ivgj−i

)
. (D.2)

For λ not equals to 1 and 0, taking trace on both sides of Eq. (D.2),

sTr
[
v(N+)vgj

]
= sTr

[
λ−1

(
j∑
i=0

(−λ)ivgj−i

)]
.

From Lemma 6.3.3, we know that sTr [vgj ] = 0, so the right hand side is also 0. That is,
sTr [v(N+)vgj ] = sTr [vgj ] holds for every j ∈ {0, · · · , k − 1}.

When λ = 1, according to Lemma 6.3.4, we have the same results except for j = k− 1.
Now we check j = k − 1 case for λ = 1,

v(N+)vgk−1 =

(
k−1∑
i=0

(−1)ivgk−1−i

)
.

Taking trace on both sides,

sTr
[
v(N+)vgk−1

]
= sTr

[(
k−1∑
i=0

(−1)ivgk−1−i

)]

From Lemma 6.3.4, we know that all the eigenvector and generalized eigenvectors have
trace zero except for the (k − 1)th one. We have

sTr
[
v(N+)vgk−1

]
= sTr [vgk−1 ]
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Finally, when λ = 0, J ′λ = 0k, where 0k is the k by k zero matrix. Thus, v(N+)vgj =
0 · ej. From Lemma 6.3.3, the trace of both sides are zero.

Now we have proved that the trace of all columns (eigenvectors and generalized eigen-
vectors) in Q are unchanged under the action of v(N+).

Since Q is invertible, any v(ρ) can be expanded by columns v
λj
i in Q. And we have

sTr

[
v(N+)(

∑
ij

aijv
λj
i )

]
= sTr

[∑
ij

aijv(N+)(v
λj
i )

]
= sTr

[∑
ij

aijv
λj
i

]
,

Hence, N+ is trace preserving.

D.2 The Effect of Imperfect Knowledge about Noise

Channels on Fidelity

From the main text, we know that

ρEM = Un···1 ◦ R̃(ρexp
out),

ρideal
out = Un···1 ◦ R(ρexp

out),

where Un···1 := Un ◦ · · · ◦ U1 is the ideal set of circuits (See Fig. 6.5).

Imperfect knowledge aboutNi leads to imperfect inverse Ñ−1
i . Let Ñ−1

i = N−1
i +∆N−1

i ,
where N−1

i is the perfect inverse of Ni.
Let ∆ρEM := ρEM − ρideal

out , then

∆ρEM = Un···1 ◦
[
R̃ − R

]
(ρexp

out) = Un···1 ◦∆N (ρexp
out). (D.3)

If we only consider the first order approximation ∆N (1) of ∆N , the first order correction
term ∆ρ

(1)
EM would be

∆ρ
(1)
EM = Un···1 ◦∆N (1) ◦ Uexp(ρin) (D.4)

= Un···1 ◦
(

n∑
i=1

U †1 ◦ Ñ−1
1 · · · ◦ U †i ◦∆Ñ−1

i ◦ · · · U †n ◦ Ñ−1
n

)
◦ Uexp(ρin), (D.5)
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where Uexp := Nn ◦ Un ◦ · · · ◦ N1 ◦ U1 is the actual experimental operator.

Then ρEM ≈ ρideal
out + ∆ρ

(1)
EM. The first order approximation of F (ρEM, ρ

ideal
out ), the fidelity

between ρEM and ρideal
out , is

F (ρEM, ρ
ideal
out ) ≈ F (1)(ρEM, ρ

ideal
out ) := F (ρideal

out + ∆ρ
(1)
EM, ρ

ideal
out ) = ‖

√
ρideal

out + ∆ρ
(1)
EM

√
ρideal

out ‖tr.

By the Fuchs–van de Graaf inequalities,

[1−D(∆ρ
(1)
EM)]2 ≤ F (1)(ρEM, ρ

ideal
out ) ≤ 1−D2(∆ρ

(1)
EM), (D.6)

where D(·) := 1
2
‖ · ‖tr is the trace distance, and ‖ · ‖tr is the trace norm. It is also known

that ‖A‖F ≤ ‖A‖tr ≤
√
r‖A‖F , where ‖A‖F is the Frobenius norm which equals to ‖v(A)‖.

The norm ‖ · ‖ is the 2-norm. Since

‖∆ρ(1)
EM‖F = ‖v(∆ρ

(1)
EM)‖ = ‖v(Un···1)v(∆N (1))v(Uexp)v(ρin)‖ = ‖v(Un···1)v(∆N (1))v(ρexp

out)‖,

therefore we can bound ‖∆ρ(1)
EM‖F by

lU · ‖v(∆N (1))v(ρexp
out)‖ ≤ ‖∆ρ(1)

EM‖F ≤ ‖v(Un···1)‖ · ‖v(∆N (1))‖ · ‖v(ρexp
out)‖ (D.7)

where lU := inf‖x‖=1 ‖v(Un···1)x‖ is the lower Lipschitz constant of the superoperator of the
ideal circuits. Notice that, on the right hand side of Eq. (D.7), ‖v(Un···1)‖ and ‖v(ρexp

out)‖
are known for a given experiment. Denote (‖v(Un···1)‖·‖v(ρexp

out)‖) as Cexp. From Eq. (D.6),
we know the fidelity between the mitigated state and the ideal state is bounded by

(
1− 1

2

√
dCexp‖v(∆N (1))‖

)2

≤ F (1)(ρEM, ρ
ideal
out ) ≤ 1− 1

4

(
lU · ‖v(∆N (1))v(ρexp

out)‖
)2
.

In addition, the norm of v(∆N (1)) satisfies that

∥∥v(∆N (1))
∥∥ ≤ n∏

k=1

∥∥∥v(U †k)
∥∥∥ · n∑

i=1

∥∥v(∆N−1
i )
∥∥ ∏
j∈{1,··· ,n}

j 6=i

∥∥∥v(Ñ−1
j )
∥∥∥
 , (D.8)

where U †k and Ñ−1
j are known for a given EM tasks. The error on each inverse ∆N−1

i can
be exposed at the lower bound of the fidelity. And by counting the sampling cost of getting
∆N−1, one can bound the fidelity from the sampling cost.
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D.3 A Sufficient Condition on Improving Expectation

Values

The goal of error mitigation on the expectation value of an observables A is

|Tr(ρEMA)− Tr
(
ρideal

out A
)
| ≤ |Tr

(
ρideal

out A
)
− Tr(ρexp

outA)|. (D.9)

The left hand side of Eq. (D.9) is∣∣Tr
[
(ρEM − ρideal

out )A
]∣∣ = |Tr(∆ρEMA)| = |Tr(Un···1 ◦∆N (ρexp

out) · A)|
=
∣∣∣〈v(U †n···1)v(A†),v(∆N )v(ρexp

out)
〉∣∣∣ . (D.10)

The right hand side of Eq. (D.9) equals to∣∣Tr
[
(ρideal

out − ρexp
out)A

]∣∣ = |Tr[(Un···1 ◦ R − I)(ρexp
out) · A]| (D.11)

=
∣∣∣Tr
[
Un···1 ◦ [R− U †1···n](ρexp

out) · A
]∣∣∣

=
∣∣∣〈v(U †n···1)v(A†),v(R− U †1···n)v(ρexp

out)
〉∣∣∣ (D.12)

It is difficult to draw conclusions directly from Eq. (D.10) and Eq. (D.11) since v(∆N )
and v(U †N−1

1···n − U †1···n) can be arbitrary. However,∣∣∣〈v(U †n···1)v(A†),v(∆N )v(ρexp
out)
〉∣∣∣ ≤ ∥∥∥v(U †n···1)v(A†)

∥∥∥ ‖v(ρexp
out)‖ ‖v(∆N )‖ ,

∣∣∣〈v(U †n···1)v(A†),v(R− U †1···n)v(ρexp
out)
〉∣∣∣ ≥ ∥∥∥v(U †n···1)v(A†)

∥∥∥ ‖v(ρexp
out)‖ inf

‖x‖=1

∥∥∥v(R− U †1···n)x
∥∥∥ .

Therefore, if

‖v(∆N )‖ ≤ inf
‖x‖=1

∥∥∥v(R− U †1···n)x
∥∥∥ ,

then Eq. (D.9) is guaranteed. This means that the EM process will improve the expectation
value for any observable A and any desired circuit Un···1 when the above is satisfied. This
is a stringent requirement, since if v(R−U †1···n) has a nontrivial null space, then the right
hand side equals to 0. This implies Ñi = Ni for ∀i ∈ {1, · · · , n}, i.e., the estimation on all
noise channels Ñi must be perfect.
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D.4 Examples of Noise Channel Mismatch

The Kraus representation of N and D are

N :
{√

p1I,
√
p2X,

√
p3Y,

√
(1− p1 − p2 − p3)Z

}
;

D :

{√
1− 3λ

4
I,

√
λ

4
X,

√
λ

4
Y,

√
λ

4
Z

}
.

For a given set of {p1, p2, p3}, what is the optimal λ to minimize ‖N −D‖ of a chosen
norm ‖ · ‖? One approach is to write down a matrix representation of N and D, then solve
λ by minimizing ‖N − D‖ for a particular choice of norm. For different representations
and/or norms, the optimization outcome could be different. The optimal λ will bound
the distance ‖N − D‖ from below for any possible experimental implementation for this
particular norm ‖ · ‖.

As mentioned in the main text, the two vectors, ~n := (
√
p1,
√
p2,
√
p3,
√

(1− p1 − p2 − p3))

and ~d :=
(√

1− 3λ
4
,
√

λ
4
,
√

λ
4
,
√

λ
4

)
, are also representations for N and D respectively.

Since ~n and ~d are normalized, minimizing the distance between N and D is equivalent to
maximizing ~n · ~d. i.e.

max
λ∈[0,1]

{√
p1(1− 3λ

4
) + [
√
p2 +

√
p3 +

√
(1− p1 − p2 − p3)]

√
λ

4

}
.

This can be solved by taking the derivative of the expression, and setting it to zero.
The result is

λmax =
[
√
p2 +

√
p3 +

√
(1− p1 − p2 − p3)]2p1

9
4
p2

1 + 3
4
p1[
√
p2 +

√
p3 +

√
(1− p1 − p2 − p3)]2

, or λ = 1, or λ = 0. (D.13)
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The superoperators of N and D are

v(N ) = p1


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+ p2


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

+ p3


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0



+ (1− p1 − p2 − p3)


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 ,

(D.14)

v(D) = (1− 3λ

4
)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+
λ

4


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

+
λ

4


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0



+
λ

4


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 .

(D.15)

Even with the optimal λ in Eq. (D.13), when p2, p3 and 1 − p2 − p3 are not equal to
each other, the distance between N and D is not zero.

The following are two examples of different sets of {pi}.

1. When p1 = p3 = 0 and p2 = 1, the optimal λmax is 1. Therefore

v(N ) =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , v(D) =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


In this case, the estimated D is non-invertible while N is invertible. Any generalized
inverse D will definitely worsen the outcomes.

2. When p1 = 1
2

and p2 = p3 = 0, we have λmax = 1
3

according to Eq. (D.13).
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Figure D.1: Effects of applying the mismatched noise channel, D−1, to 50 randomly gen-
erated noisy output states. The x-axis is a dummy label for the tested states. Because the
channel D−1 ◦ N is not physical (not CP), the “mitigated” outputs D−1 ◦ N (ρ) are not
valid quantum states. In this case the fidelity is no longer a good metric for distinguishing
two “states”.

v(N ) =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , v(D) =
1

6


5 0 0 1
0 4 0 0
0 0 4 0
1 0 0 5


The inverse of D is

v(D−1) =
1

4


5 0 0 −1
0 6 0 0
0 0 6 0
−1 0 0 5

 .

Therefore,

v(N re) := v(D−1)v(N ) =
1

4


5 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 5


This resulting channelN re has eigenvalues {3

2
, 1, 0, 0}, which will worsen the outcome.

In Fig. D.1, we tested 50 randomly generated quantum state ρ for this example.
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Fig. D.1a shows the expectation value of Pauli Y for these 50 states. Since the
expectation value Tr(Y ρ) is erased by the noise channel N , D−1 has no effect on
improving Tr(Y ρ). In comparison, for Tr(Zρ) in Fig. 6.7, the channel D−1 has made
the outcome worse. Fig. D.1b shows the fidelities F (N (ρ), ρ) and F (N re(ρ), ρ). Since
D−1 is non-CP, the outputs D−1 ◦ N (ρ) are not valid quantum states anymore. The
fidelity function does not always smaller than 1, thus is no longer a good metric. This
explains why the recovery D−1 does not improve any expectation value but seems to
have higher fidelities.
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