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Abstract 

Drinking water supplies for much of society originate in forests. To preserve the capability of these 

forests to produce clean and easily treatable water, source water supply and protection strategies focus 

in particular on potential disturbances to the landscape, which include prescribed forest harvesting 

and wildfires of varying intensity. While decades of work have revealed relationships between forest 

harvesting and stream flow response, there is a considerable lack of synthesis disentangling the 

interactions of climate, wildfires, stream flow, and water quality. Revealing the mechanisms for 

impacts on downstream waters after disturbances of harvesting and wildfire will greatly improve land 

and water management. In this dissertation, I combined synthesis of previously published or available 

data, novel mathematical analyses, and deterministic modeling to disentangle various disturbance 

effects and further our understanding of processes in forested watersheds. I broadly sought to explore 

how streamflow and water quality change after forest disturbances, and how new methods and 

analyses can provide insight into the biogeochemical and ecohydrologic processes changing during 

disturbances. 

First, I examined the effect of wildfire on hydrology, and developed a novel Budyko decomposition 

method to separate climatic and disturbance effects on streamflow.  Using a set of 17 watersheds in 

southern California, I showed that while traditional metrics like changes in flow or runoff ratio might 

not detect a disturbance effect from wildfire due to confounding climate signals, the Budyko 

framework can be used successfully for statistical change detection. The method was used to estimate 

hydrologic recovery timescales that varied between 5 and 45 years, with an increase of about 4 years 

of recovery time per 10% of the watershed burned. 

Next, in Chapter 3 I used a meta-analysis approach to examine the effect of wildfire on water quality, 

using data from 121 catchments around the world. Analyzing the changes in concentrations of stream 

water nutrients, including carbon, nitrogen, and phosphorus, I showed that concentrations generally 

increased after fire. While a large amount of variability existed in the data, we found concurrent 

increases in the constituents after fire highlighting tight coupling of the biogeochemical cycles. Most 

interestingly, we found fire to increase the concentrations of biologically active nutrients like nitrate 

and phosphate at a greater rate than total nitrogen and phosphorus, with median increases of 40-60% 

in the nitrate to TN, and SRP to TP ratios.  

Next, I conducted an analysis of both water quality and hydrology together after fire in Chapter 4, 

using a set of 29 wildfire-impacted watersheds in the United States. Concentration-discharge 

relationships can be used to reveal pathways and sources of elements exported from watersheds, and 

my overall hypothesis was that these relationships change in post-fire landscapes. I developed a new 

methodology, using k-means clustering, to classify watersheds as chemostatic, dilution, mobilization 

and chemodynamic, and explored how their position within the cluster changed in post-fire 

landscapes. I found that the behavior of nitrate and ammonium was increasingly chemostatic after 

fire, while behavior of total nitrogen, phosphorus, and organic phosphorus was increasingly 

mobilizing after fire.   

Finally, I developed a coupled hydrology-vegetation-biogeochemistry model to simulate and 

elucidate processes controlling the impact of harvesting on downstream waters. I focused on the 

Turkey Lakes watershed where a significant amount of data has been collected on vegetation and soil 
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nutrient dynamics, in addition to traditional streamflow and water quality metrics, and developed a 

novel multi-part calibration process that used measured data on stream, forest, and soil characteristics 

and dynamics. Future work would involve using the model to explore the data driven relationships 

that have been developed in the earlier chapters of the paper. 

The work presented in this dissertation highlights new small and large-scale relationships between 

disturbances in forested watersheds and effects on downstream waters. With more threats predicted to 

escalate and overlap in the coming years, the novel results and methodologies that I have presented 

here should contribute to improving land and water management. 
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Chapter 1 

Introduction 

Ours is a planet of water. Every speck of the planet is shaped by the water that falls from the sky and 

flows, or by the lack of that water. Processes that have shaped the planet for billions of years are now 

inextricably influenced by human activity (Abbott et al., 2019; Vörösmarty & Sahagian, 2000). 

Despite the utter dependence of every living being and human society in all forms on access to water, 

there are troubling uncertainties pertaining to the fate of water in the Anthropocene (Rockström et al., 

2014; Steffen et al., 2015). All water is not the same, and in addition to threats posed by availability 

(too much water or too little, water too soon or too late), high quality water sources are essential for 

human society. Much of the world, and about a third of major global cities (Dudley & Stolton, 2003), 

rely on clean and readily treatable water conveyed from forested areas (T. C. Brown et al., 2008; 

Davies & Mazumder, 2003; Ernst et al., 2004).  

There are myriad anthropogenic pressures threatening source water quality from forested watersheds 

(Emelko et al., 2011) including global climate change (Creed & van Noordwijk, 2018; Jones et al., 

2018), invasive pests (Dhar et al., 2016; Ramsfield et al., 2016), wildfires (Kinoshita et al., 2016; D. 

A. Martin, 2016; Robinne et al., 2021), and harvesting pressures (Coble et al., 2020; McHale et al., 

2008; Melo et al., 2021; Neary et al., 2009). Degraded source water quality increases infrastructure 

demands and costs of treatment to produce safe drinking water (Delpla et al., 2009; Emelko et al., 

2011; Hohner et al., 2016; Writer et al., 2014). These threats to water security have prompted 

significant investment by municipalities, governments, and the private sector into land management 

strategies to protect forested areas and source water supplies (Charnley et al., 2017; Emelko et al., 

2011; Kinoshita et al., 2016; Medema et al., 2003; Venable et al., 2017). Indeed, the World Health 

Organization (WHO, 1993) stresses that source water protection strategies should be preferred to 

treating an already degraded supply. For water and land managers, a key question has been: what are 

the risks of the aforementioned disturbances for forests and water resources, and how can forest 

management strategies reduce water treatment expenses and risk to human health?  

Among many aspects of water quality, this dissertation will focus on the water quality regimes of 

nutrients, including carbon (C), nitrogen (N), and phosphorus (P). These three elements and a variety 

of elemental forms and compounds are of interest for study because of their biological importance, 

numerous biogeochemical pathways in terrestrial and aquatic environments, and their relevance in 



 

 2 

drinking water treatment. Streams draining predominantly forested landscapes rarely have 

concentrations of C, N, or P that exceed drinking water guidelines (Binkley & Brown, 1993a), 

however a major problem can arise if these nutrients accumulate in drinking water reservoirs such as 

those used by many major cities. Even in relatively pristine systems, N and P together can promote 

algal blooms in reservoirs, producing additional organic matter that requires a greater level of 

chemical water treatment (H. Bernhardt, 1984), or producing toxins such as microcystin that can 

contaminate drinking water (Chorus & Welker, 2021; Falconer & Humpage, 2005; Tarczyńska et al., 

2001). Organic matter in the treated water, including carbon- and nitrogen-containing dissolved 

compounds, can sequester residual chlorine that is added to neutralize any pathogens present in water 

(Crittenden et al., 2012), or can react with chlorine to form potentially harmful disinfection 

byproducts (DBPs) (Lee et al., 2007; Stevens et al., 1990). These concerns are warranted, as 

numerous studies have documented increased concentrations in streams draining harvested (Boggs et 

al., 2016; McBroom et al., 2008; Mupepele & Dormann, 2017; Muwamba et al., 2019; Wynn et al., 

2000) and burned watersheds (Rust et al., 2018; Smith et al., 2011). Furthermore, studies have 

documented higher susceptibility to the formation of DBPs due to the altered nature of carbon from 

burnt landscapes (Hohner et al., 2016; Writer et al., 2014), and numerous examples from the last 

decade show increased costs to continue providing clean water in communities impacted by wildfires 

(Hohner et al., 2016; Sham et al., 2013; Thurton, 2017). A major challenge to managers faced with 

these multiple potential threats to water security is the inability to predict the magnitude, duration, 

and character of altered catchment behavior and water degradation following these disturbances. New 

synthesis is needed to characterize the breadth and variability in post-disturbance catchment behavior. 

A major characteristic of environmental behavior, including that of streams and rivers, is change and 

variability. Variability manifests across years, seasons, days, and hours. In considering the value of 

environmental data, Emelko et al. (2011) stress that challenges for drinking water treatment often 

occur during periods of extremes—for example, during storms or the spring freshet, when changes 

can occur rapidly, and when flows and characteristic measurements like turbidity can spike. The 

authors also stress that indicators of water “treatability” will be best derived from data contextualizing 

extreme values. Another aspect of variability in environmental data is spatial variability. Despite 

many studies summarizing the potential impacts of forest harvesting (Binkley & Brown, 1993a, 

1993b; Mupepele & Dormann, 2017; Richardson & Béraud, 2014) and wildfire (Bitner et al., 2001; 

Rust et al., 2018; Smith et al., 2011) on water quality, there are comparatively fewer synthesis studies 
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taking temporal water quality variability into account. (Evaristo & McDonnell, 2017) offer meta-

analysis as an important tool to synthesize large amounts of data. Such a synthesis could help reveal 

the “most common” effect after disturbances, but would also characterize the variability in responses 

and the full range of potentialities. With the goal of characterizing the effects of disturbances on 

downstream waters, I will focus in this dissertation on how variability can be characterized, and how 

variability can be parsed to reveal the size and duration of effects from forest disturbances.  

In this introductory chapter, I will provide a brief review of the literature (Section 1.1), followed by a 

summary of gaps in knowledge that this dissertation will seek to address (Section 1.2), and finally 

specific research objectives and research questions (Section 1.3) that will be addressed in the 

following chapters. 

1.1 Background on the Connection between Forests, Disturbance and Water Quality 

The questions of how, where, and when water moves through forested landscapes; and the transport, 

modification, and removal of elements and compounds along its travels; have been subject to many 

decades of devoted research (M. G. Anderson & Burt, 1978; Bormann & Likens, 1979; Evaristo et 

al., 2015; Hinton et al., 1998; Jencso et al., 2009; Likens et al., 1977). Very early in the development 

of the field of hillslope hydrology and catchment ecohydrology, forest disturbances were included in 

experiments to measure the effect of these perturbations on streamflows and water quality (Bormann 

et al., 1968; Helvey, 1980; Hewlett & Hibbert, 1961; Hibbert, 1965; Kusaka et al., 1983). These 

studies generally focused on small headwater streams, since such localized disturbances might be 

expected to have an immeasurable effect on a much larger encompassing basin. Now, many decades 

of streamflow and water quality data—distributed across a vast spatial scale—are available via the 

internet and open-data government portals, and with these data researchers have documented the 

effects of widespread landscape disturbances such as forest conversion to urban areas and agriculture, 

and of anthropogenic climate change (Abbott, Moatar, et al., 2018; Baron et al., 2013; Booij et al., 

2019; Falcone et al., 2018; Hallema, Sun, et al., 2018; Jones et al., 2012; Lins & Slack, 1999; Shoda 

et al., 2019; D. Wang & Hejazi, 2011). The fields of ecohydrology (Guswa et al., 2020; Hannah et al., 

2007; Rodriguez‐Iturbe, 2000; Yin et al., 2019) and biogeochemistry (Levia et al., 2011; Lohse et al., 

2009; McGuire & Likens, 2011) have continued to grow in influence, recognizing the complicated 

interactions of biological, physical, and chemical processes occurring across the landscape.  
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These interactions drive how forest disturbances such as wildfire and harvesting impact water 

quantity and quality in downstream rivers and lakes (Hewlett & Hibbert, 1961, 1967; Hoover & 

Hursh, 1943; Likens et al., 1970; Likens & Bormann, 1974). Landscape modifications like 

deforestation and harvesting can dramatically affect downstream water quantity and quality 

(Alexander et al., 2007; Lowe & Likens, 2005; Neary et al., 2009) and aquatic and terrestrial ecology 

(Carignan & Steedman, 2000; Kreutzweiser et al., 2005; Tiegs et al., 2008). These findings have led 

to the adoption of numerous best management practices (BMPs) governing forestry practices with the 

goal of reducing downstream impacts of harvesting (Ice, 2004), with many examples of success 

(Binkley & Brown, 1993a, 1993b). Many forested ecosystems have evolved with and depend on fire 

as an ecological process, but anthropogenic climate change is driving an increase in fire frequency, 

size, extent, and severity (F. Li et al., 2018; Moritz et al., 2012). The impacts of anthropogenic 

climate change and altered wildfire regimes threaten our water resources (Creed & van Noordwijk, 

2018; Seidl et al., 2017). Forest fires pose a daunting threat to water security, with many documented 

examples of altered flow regimes (Hallema, Robinne, et al., 2018; Robinne et al., 2018) and degraded 

water quality (Rhoades, Chow, et al., 2019; Rhoades, Nunes, et al., 2019; Rust et al., 2018; Rust, 

Saxe, et al., 2019; Smith et al., 2011).  

1.1.1 Effects of Wildfire and Harvesting on Stream Flow 

There are many ways that disturbances like wildfire and forest harvesting alter watershed hydrology. 

Vegetation modulates many of the important changes in watershed hydrologic cycling after 

disturbance. Through transpiration of water from the soil and groundwater into their tissues to fuel 

photosynthesis, vegetation and trees drive a dominant hydrologic flux in the landscape. After a 

disturbance, the reduction in plant biomass may result in reduced water loss from the catchment 

through transpiration (Basso et al., 2020; Maina & Siirila‐Woodburn, 2020). There are certainly 

catchments that break this pattern, with increased evapotranspiration post-disturbance (Goeking & 

Tarboton, 2022; Tague et al., 2019). Altered evapotranspiration (ET) fluxes may cause changes in 

other hydrologic pathways, or a change in water routing from the catchment. 

Many studies have documented altered and often increased streamflows following forest harvesting 

and fire (Bosch & Hewlett, 1982; A. E. Brown et al., 2005; Buttle, 2011; Goeking & Tarboton, 2020, 

2022; Stednick, 2008) and wildfires (Bart & Hope, 2010; Cerdà, 1998; Ebel et al., 2012; Hallema, 

Sun, Bladon, et al., 2017; Hallema, Sun, Caldwell, et al., 2017; Hallema, Sun, et al., 2018; Ice, 2004; 
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Leopardi & Scorzini, 2015; Saxe et al., 2018; Wine & Cadol, 2016). Increased watershed discharge 

may take subsurface and overland pathways, manifesting in increases in baseflow (Bart & Tague, 

2017; Kinoshita & Hogue, 2015; Kreutzweiser et al., 2008; Weis et al., 2006) or storm-flows 

(Guillemette et al., 2005; Saxe et al., 2018). The loss of a forest canopy also represents a loss in 

transient storage for incoming precipitation before reaching the ground, and a loss in the damping 

effect on raindrop velocity and erosive force (Buttle et al., 2000). The process of removing trees 

during forest harvesting requires access roads to the site, which can concentrate overland flow and 

result in channelization and faster water routing to the stream (Lang et al., 2018; Tague & Band, 

2001). Wildfires can also alter the physio-chemical nature of surface soils, resulting in water-repellent 

soils and lower infiltration rates, and thus increased overland flow and erosion (Beatty & Smith, 

2013; Cerdà, 1998; J. Chen, McGuire, et al., 2020; J. Chen, Pangle, et al., 2020; Ebel & Moody, 

2017). Depending on the interplay of over-land and subsurface hydrologic pathways, reduced 

infiltration after fire could potentially reduce baseflow by routing more water to overland flow during 

precipitation events, contributing to flash flooding. 

In the case of harvesting, the magnitude of changes in streamflow across many experimental harvests 

and watersheds have been connected to the degree of catchment disturbance (A. E. Brown et al., 

2005, 2013). This connection has been more difficult to establish in the case of wildfires, in part due 

to their unpredictability. Whereas harvesting experiments may be planned ahead, with a harvested 

catchment co-monitored alongside an unharvested catchment; such an arrangement is often 

unavailable for burned catchments. This makes the disentangling of effects from the disturbance and 

changing climatic hydrologic drivers (e.g., precipitation) challenging (Goeking & Tarboton, 2022; 

Hallema, Sun, et al., 2018). Disentangling these effects is even more complicated when analyzing 

large numbers of catchments. This problem is explored in Chapter 2 of this dissertation. 

1.1.2 Disturbance Effects on Concentrations of C, N and P 

Alterations to water quality, including changes in concentrations of total, particulate, dissolved, 

organic and inorganic forms of N, C, and P have been documented following forest harvesting 

(Abdelnour et al., 2013; Bormann et al., 1968; Grace III, 2005; Hume et al., 2018; Johnson et al., 

1982; Likens et al., 1970; Lynch & Corbett, 1990; C. W. Martin et al., 2000; Mupepele & Dormann, 

2017; Rosén & Lundmark‐Thelin, 1987; Schelker et al., 2016) and wildfire (Emelko et al., 2016; Rust 

et al., 2018; Silins et al., 2014; Smith et al., 2011). Fire and harvesting, when following each other in 
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the same watershed, have also been shown to result in even greater effects on water quality (Carignan 

et al., 2000; Smith et al., 2012; Wade et al., 2013). Water quality is a manifestation of both 

physiochemical and biogeochemical processes occurring in the landscape. These processes occur on 

the land and in the soils, within water bodies like streams and lakes, or along the spatial interface of 

water and mineral and living things: also known as the critical zone (Wymore et al., 2022).  

As discussed in the previous section, the impact of disturbances on vegetation results in a cascade of 

effects for hydrologic cycles, impacting processes above and below the soil, and in the stream channel 

itself. Indeed, other physical effects of vegetation loss include decreases in stream shading, resulting 

in altered stream light, temperature and productivity regimes (E. S. Bernhardt et al., 2022; Pollock et 

al., 2009). These effects can cascade through the entire stream ecosystem (Wootton, 2012). 

Disturbance-induced changes to soil moisture regimes have the potential to alter biogeochemical 

processes, including the decomposition of organic matter, the transformation of N between oxidation 

states (like ammonium, nitrate, and dinitrogen gas), and the uptake of nutrients like N and P by plant 

roots (Fairbairn, 2020; Pastor & Post, 1986; Porporato et al., 2003; Rodriguez‐Iturbe et al., 1999; 

Sierra et al., 2015). The harvest or death of trees will impact soil nutrient budgets even more. 

Suppressed plant N uptake following plant death has been shown to result in increased N exports to 

the stream (Abdelnour et al., 2013, 2013; Bormann et al., 1968; Hume et al., 2018; Johnson et al., 

1982; Likens et al., 1970; C. W. Martin et al., 2000; Mupepele & Dormann, 2017; Rosén & 

Lundmark‐Thelin, 1987; Schelker et al., 2016). Similarly, because of the strong connection of the 

forest to the soil water and C budgets, exports of dissolved organic carbon (DOC) often also increase 

after forest harvesting (Clarke et al., 2015; Hume et al., 2018; Lajtha & Jones, 2018; Parolari & 

Porporato, 2016).  

Unlike in forest harvesting, wildfires result in the production of ash from burnt biomass and soil 

compounds. This ash can accumulate on the landscape, providing readily mobilizable pools of C, N, 

and P that can be carried to streams, increasing their concentrations in stream water (Brito et al., 

2021; Earl & Blinn, 2003; Oliveira-Filho et al., 2018). Exactly how long these ash pools persist on 

the landscape affects the duration of altered water quality after fire. 

Despite the numerous examples cited above showing altered concentrations of C, N, and P after 

disturbances, there remains a need for synthesis of altered water quality regimes after wildfire. 

Especially because of potentially greater risk of altered water quality after fire, and event 
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unpredictability precluding implementation of mitigating landscape BMPs, such a synthesis should 

also focus on water quality extremes relevant to drinking water treatment. The few existing syntheses 

(Bitner et al., 2001; Rust et al., 2018; Smith et al., 2011) do not comment on water quality extremes, 

and mostly summarize changes in mean concentrations. Further these syntheses have not explored the 

co-variation of elements and element species. While I have discussed each element generally, 

inorganic species like nitrate (NO3
-), ammonium (NH4

+), and phosphate (PO4
3-) are more bioavailable 

fractions of the total element measurements. Both of these components of post-fire water quality—

variability and co-variation—are explored in Chapter 3. 

1.1.3 Disturbance Effects on the Relationship between Concentration and Discharge 

The previous sections introduced the interactions between watershed ecohydrology and 

biogeochemistry, including through soil moisture and nutrient cycling. Concentration regimes of 

nutrients like C, N, and P in stream water are further impacted by streamflow regimes. Regardless of 

the process that produces or transforms chemicals, their arrival in streams is regulated by the amount 

of chemical available to be mobilized by water (the “source”: a product of the balance of chemical 

production and removal) and the availability of water to mobilize them (“transport”). Many elements 

found dissolved in stream water can be derived from the weathering of rocks and soil minerals, 

meaning their source is ubiquitous. This ubiquity may result in concentrations that do not change 

between low and high rates of stream flow (Godsey et al., 2009). In contrast, organic and inorganic 

forms of C, N, and P may be much more impacted by biologic and biogeochemical processes and 

may not have ubiquitous sources in the watershed (including changes depending on the season). As a 

result, their concentrations in stream water will be governed by the interactions between source 

abundance and availability of water for transport (Basu, Destouni, et al., 2010; Dupas et al., 2017; 

Moatar et al., 2017; Zarnetske et al., 2018). Again, as highlighted above, changes in ecohydrology 

and biogeochemistry after disturbance can certainly change both source and transport processes for 

these elements. 

Flow (Q) and water quality (C, concentrations) interact through erosion and geomorphology as well. 

Increased flows alter the pathways of water in the catchment, resulting in greater and flashier flows 

and more in-channel erosive power (Jones & Grant, 1996; Swanson & Dyrness, 1975). Flow-driven 

erosion and sediment transport can enhance the export of sediment-bound-phosphorus (P) from the 

watershed. Vehicle tracks in harvested catchments can be a source for sediment which has been 
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exposed to erosion, and altered surface water pathways or enhanced surface runoff after harvesting or 

fires can result in increased in-channel erosion and downstream sediment transport (Carignan et al., 

2000; Coombs & Melack, 2013; Grace III, 2005; Johnson et al., 1982; Kreutzweiser & Capell, 2001; 

Silins et al., 2009; Smith et al., 2010; Wynn et al., 2000). Further sources of sediment could be 

mobilized during flash flooding and debris flow events, which often occur after extreme rainfall 

events in fire-impacted watersheds (Cannon et al., 2008; S. F. Murphy et al., 2015, 2018). These 

extreme events are also likely to increase with climate change in some ecoregions (McGuffie et al., 

1999; Nearing, 2001; Segura et al., 2014). Just as P is carried downstream in particle form, organic 

matter–carrying within it N- and C-rich compounds–can be deposited into the stream, or eroded from 

soils, and transported by water. All three elements have dissolved forms that can also be released 

from soils to the stream through subsurface pathways. As discussed above, disturbance driven 

vegetation mortality results in readily mobilizable soil pools of nutrients that are released from 

vegetation uptake pressure. How disturbances impact speciation, including particulate versus 

dissolved, and organic versus inorganic forms of elements has not been studied in any synthesis 

research. 

In addition to a need for new synthesis research on changing concentration variability after 

disturbance, the co-variation of concentration and flow after disturbance has not been studied across 

many catchments. Concentration-discharge (CQ) analysis has been used to reveal driving watershed 

processes in pristine and chronically impacted catchments (Basu, Destouni, et al., 2010; Zarnetske et 

al., 2018), but its application has only been limited to single catchment analyses in the case of forest 

disturbances (Emmerton et al., 2020; Silins et al., 2009, 2014; Wilkinson et al., 2006). Research in 

Chapter 4 of this dissertation examines changes in CQ behavior in multiple fire-impacted catchments 

to understand how CQ regimes change after fire. 

1.1.4 Pan-Ecozone Catchment Responses to Forest Disturbance 

I have so far summarized that landscape disturbances like wildfire and harvesting alter streamflows 

and water quality. While some drivers of the magnitude of change (of flow or concentrations or flux) 

have been documented, including the percent of the watershed disturbed, along with various 

watershed characteristics of climate, vegetation, and soils (A. E. Brown et al., 2005; Buma & Livneh, 

2017; Rust, Saxe, et al., 2019). As disturbances to forests intensify and spread, including intersecting 

disturbances of climate change with harvesting and fire, our knowledge and insights about watershed 
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processes is more vital than ever. To manage potential changes in water quality from these 

disturbances, it is necessary to be able to Predict responses in Ungauged Basins (PUB). The 

International Association of Hydrological Sciences announced the Decade on PUB (Sivapalan, 

Takeuchi, et al., 2003) to spur our application of knowledge and map out where our knowledge falls 

short. The recognition of the need for PUB led to the proliferation of the idea of “top-down 

modeling” (Blöschl & Sivapalan, 1995; Sivapalan, Blöschl, et al., 2003), that emphasizes learning 

from data and hierarchical hypothesis testing and model construction. This approach prioritizes 

parsimony over complexity, allowing for easier and more reliable extrapolation of models to 

ungauged basins (Bárdossy, 2007; Besaw et al., 2010; Blöschl et al., 2019; Hrachowitz et al., 2013; 

Teutschbein et al., 2018; Westerberg et al., 2016). A “top-down” approach to modeling could provide 

insights into changing soil biogeochemical processes after disturbance, including nutrient retention 

and export. A modeling exercise and an exploration of interacting processes before and after forest 

harvesting is presented in Chapter 5 of this dissertation. 

1.2 Research Gap 

A multi-disciplinary research approach is required to quantify how land management decisions affect 

watershed ecohydrology and biogeochemistry; water, sediment, and nutrient export; and pose 

problems for drinking water treatment engineers and infrastructure. For watershed hydrology, the 

linkage between disturbance (including fire and harvesting) and the hydrologic cycle has been well 

studied, but usually in one or two catchments per study, and with a single-discipline focus. However, 

important interactions between ecohydrology and biogeochemistry have been revealed in studies of 

soil and in-stream element cycles (Bormann & Likens, 1967; Likens & Bormann, 1974; W. H. 

McDowell & Wood, 1984; Newbold et al., 1981; Vannote et al., 1980). This introductory chapter has 

so far highlighted a wealth of knowledge about how forest disturbances affect water quality. Two 

gaps stand out, which my dissertation will seek to address. First, there are a limited number of 

synthesis studies on how forest disturbances affect water quality and quantity, and more specifically, 

how alterations in flows and water quality co-occur. This gap calls for new methods of data synthesis 

and exploration. Second, to ultimately lead to better understanding of the future implications of 

changing climate and landscape disturbance regimes for drinking water supplies, more process-level 

understanding is needed. This gap calls for new analysis that can tie water quality effects from 

disturbances to our knowledge of biogeochemical and ecohydrological processes using a 

parsimonious modeling approach.  
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1.3 Research Questions and Objectives  

This dissertation aims to characterize the linkage between forest disturbances (here, wildfires and 

forest harvesting), alterations to water quality and streamflow, and effects of these alterations on 

hydrochemical variables of relevance to water treatability; with an emphasis on large-scale multi-

catchment analysis. The following research questions address both fundamental catchment science as 

well as water resource management strategies and the broader environmental context within which 

management decisions are being made: 

● How do streamflow regimes change after wildfire? How can we decouple these changes from 

the influence of changes in climate? Can this decoupled disturbance signal be used to 

estimate hydrologic recovery times? 

● How do water quality regimes change after wildfires? How do changes in elements co-vary? 

How do mean concentrations change relative to concentration variability, or to extreme 

concentrations? 

● What is the relationship between the disturbance-driven changes in flow (Q) and water 

quality (C, concentrations)? Do C-Q relationships change after disturbance? How do these 

changes manifest for different elements? 

● What ecohydrological and biogeochemical processes drive forest harvesting impacts on water 

quantity? Can we use a top-down modeling approach to understand these processes? How can 

site-measured data be used to inform the modeling approach? 

 

The novelty of my approach includes the simultaneous assessment of wildfire and forest harvesting 

effects, the assessment of these effects across climatic zones and in various forest ecosystems across 

North America, and the linkage of watershed ecohydrology to water treatment. As highlighted in my 

research questions, the disentangling of multiple environmental signals necessitates novel methods of 

data analysis, which will be detailed in my research objectives. This dissertation aims to occupy a 

niche that connects watershed hydrologists to water treatment engineers, with the overall goal of 

increasing the resilience of our drinking water systems, given the rapid climate and land use shifts we 

are experiencing. My approach is broken down into four research objectives (RO), as listed below: 
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RO1: Develop a methodology to quantify the effects of wildfires on streamflows and disentangle 

those effects from changes in climate. 

RO2: Perform a meta-analysis on the effects of wildfires on water quality (including compounds of 

N, P, and C), and develop a methodology to quantify the changes in extreme concentrations 

relative to mean concentrations. 

RO3: Develop a methodology to quantify and characterize changes in concentration-discharge (C-Q) 

relationships after wildfire. 

RO4: Develop a process-based modeling and calibration framework to explore and model the linkage 

between forest harvesting, soil biogeochemical alterations, and downstream water quality.  

To meet my first three objectives, I characterized the scope of current knowledge, through literature 

review, meta-analysis, and aggregation of existing data. I assessed a large number of studies in each 

of the research areas of catchment hydrology and disturbance, soil biogeochemistry, and watershed 

management. I focused on the effects of wildfires on streamflows in RO1, on water quality in RO2, 

and on concentration-discharge (C-Q) relationships in RO3. 

To meet my fourth research objective (RO4), I used top-down modeling techniques to develop a 

coupled hydrology-biogeochemistry-forest model, with the goal of quantifying how forest 

management can impact water and solute fluxes, over annual to decadal timescales. 
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Chapter 2 

A novel Budyko-based approach to quantify post-forest-fire 

streamflow response and recovery timescales 

This chapter is a mirror of the following published article. References are unified at the end of the 

thesis. 

Hampton, Tyler B., and Nandita B. Basu. “A Novel Budyko-Based Approach to Quantify Post-

Forest-Fire Streamflow Response and Recovery Timescales.” Journal of Hydrology, March 4, 2022, 

127685. https://doi.org/10.1016/j.jhydrol.2022.127685. 

All data and codes are publicly available in the online Hydroshare repository: 

http://www.hydroshare.org/resource/43280a7de6ef48b4b800ab5c12ae58cb 

2.1 Abstract 

Recent increases in the incidences of wildfires have necessitated the development of methodologies to 

quantify the effect of these fires on streamflows. Climate variability has been cited as a major 

challenge in revealing the true contribution of disturbance to streamflow changes. To address this, we 

developed an annual Budyko “decomposition” method for (1) statistical change detection of 

hydrologic signatures post-fire, (2) separating climate-driven and fire-driven changes in streamflow, 

and (3) estimating hydrologic recovery timescales after fire. We demonstrate the use of this 

methodology for 17 watersheds in Southern California with high interannual variability in 

precipitation. We show that while traditional metrics like changes in flow or runoff ratio might not 

detect a disturbance effect due to confounding climate signals, the Budyko framework can be used 

successfully for statistical change detection. The Budyko approach was also found to be robust in 

detecting changes in 5 highly burned catchments (>40% burned area ratio), while changes in less 

burned (2) and unburned catchments (10) were insignificant. We further used the Budyko approach to 

quantify the contribution of fire-driven versus climate driven changes in streamflow and found that 

fire contributed to an average increase in streamflow on the order of 80 mm yr-1, though the effect 

varied greatly between years.  Finally, we estimated hydrologic recovery timescales that varied 

between 5 to 45 years for four burned catchments. We found a significant linear relationship between 

https://doi.org/10.1016/j.jhydrol.2022.127685
http://www.hydroshare.org/resource/43280a7de6ef48b4b800ab5c12ae58cb
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recovery time and burned area at medium and high severity for our study catchments, with about 4 

years of recovery time per 10% of the watershed burned. 

2.2 Introduction 

Forested headwaters serve a critical societal function by providing drinking water for large portions 

of the population in North America and across the globe (T. C. Brown et al., 2008; Ernst, 2004). The 

protection of these forests and associated ecosystem services is of paramount importance in the face 

of increased pressures from forest harvesting (C. J. Anderson & Lockaby, 2011), global climate 

change (Seidl et al., 2016, 2017), and wildfires (DeBano et al., 1998; Hallema, Robinne, et al., 2018; 

Robinne et al., 2018). Wildfires stand out as an ominous threat to water security (Bladon et al., 2014; 

Emelko et al., 2011; Nunes et al., 2018; Rockström et al., 2014). By changing streamflows, they can 

result in increased erosion and decreased hillslope stability (Ryan et al., 2011; Wohl, 2013) , 

contributing to degraded water quality and aquatic ecosystem health at downstream locations (Basso 

et al., 2020; Rust, Randell, et al., 2019). 

The study of streamflow changes from wildfire is relatively new, but hydrologists have been 

exploring the response of streamflow to disturbances like forest harvesting for more than half a 

century using paired catchment studies and before-after-control-impact experiments (BACI) (see 

reviews by: Bosch & Hewlett, 1982; A. E. Brown et al., 2005; Goeking & Tarboton, 2020). The 

unpredictability of wildfire occurrence makes it difficult to apply these well-established 

methodologies to distinguish between climate and fire effects on streamflow responses. This is 

especially true in semi-arid Mediterranean ecosystems with significant year-to-year variability in 

climate (McLauchlan et al., 2020). The increasing incidence of extreme wildfires and degraded water 

quality in these regions (Cannon & DeGraff, 2009; Flannigan et al., 2009; A. Westerling et al., 2014) 

has spurred numerous studies into how fire alters storm event and baseflow recession dynamics (Bart 

& Tague, 2017; Soulis et al., 2021), annual water yields (Bart & Hope, 2010; Hallema, Sun, 

Caldwell, et al., 2017; Hallema, Sun, et al., 2018; Wine & Cadol, 2016), as well as annual runoff 

ratios (Blount et al., 2019; Kinoshita & Hogue, 2011, 2015). However, there still exists significant 

uncertainty on how wildfire affects annual water yield. The general assumption is that streamflows 

increase after wildfire, driven by suppressed evapotranspiration from vegetation mortality (Basso et 

al., 2020; Ice et al., 2004; Maina & Siirila‐Woodburn, 2020), as well as other effects like increase in 

soil hydrophobicity, decreasing infiltration and increasing overland flow to the stream (Beatty & 
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Smith, 2013; Robichaud, 2000). However, studies have also found that for low intensity fires that do 

not result in complete forest mortality, the remaining vegetation may take advantage of either less 

nutrient or soil-water competition, increasing growth and increasing transpiration, and thus decreasing 

streamflows (Biederman et al., 2015; Tague et al., 2019). Due to these different factors, and a lack of 

paired catchment data, decoupling the effects of climate versus wildfire remains challenging.   

Two recent large analyses of wildfire-impacted catchments found a wide distribution of increases and 

decreases in post-fire streamflows (Hallema, Sun, et al., 2018; Saxe et al., 2018). Saxe et al. 

document intra-annual changes in flows in 82 watersheds in the western U.S. with burned area ratios 

(BAR) in the range of 9–35% (interquartile range; median 16%; outliers up to 98%). They analyzed 

several hydrologic metrics (high flows, low flows, runoff ratio, baseflow index, etc.) and found post-

fire responses to be highly variable, with trends often difficult to discern. They argue that variability 

in climate can outweigh any changes in rainfall partitioning to streamflow and evapotranspiration due 

to wildfire, and this contributes to such apparent confounding effects. Hallema et al. (2018b) analyzed 

over 150 burned watersheds in the southern and western United States and used climate elasticity 

models (CEM; Sankarasubramanian et al., 2001) to parse climate and fire effects on streamflow. 

These authors showed that river flows changed in only 20% of watersheds where BAR exceeded 

19%. However, the challenge in their method lies in the detection of a statistically significant 

changepoint in streamflow prior to CEM analysis. In semi-arid regions, climate variability can be so 

dominant that a statistically significant change in streamflow might not be apparent immediately after 

fire. Furthermore, their method focuses solely on evaluating changes in the mean hydrologic 

responses between the pre-fire and post-fire periods, and thus the findings are sensitive to the number 

of years of data that is available after the fire. Saxe et al. (2018) found that the effects of fire are 

greatest in the first few years following fire, and that they dissipate over time. This dissipation 

timescale, also referred to as hydrologic recovery timescale, is a function of vegetation growth 

dynamics, and is critical for watershed managers for planning (Buttle et al., 2018; Heath et al., 2014; 

Kinoshita & Hogue, 2011; Wagenbrenner et al., 2021). No studies to date have developed 

transferable methodologies that can parse climate and fire effects adequately at the annual timescale 

and effectively quantify hydrologic recovery timescales. 

The overall objective of our study is to address this gap by developing a new method for (1) statistical 

change detection to quantify the effect of fire on streamflows, (2) parsing the effect of climate versus 

disturbance from annual streamflows post-wildfire, and (3) quantifying recovery timescales in 
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wildfire impacted catchments. Our method is based on the Budyko decomposition method, first 

proposed by D. Wang & Hejazi (2011) and adapted in this paper to the annual timescale for 

characterizing catchment recovery. We test the robustness of the method by comparing it to more 

traditional approaches of analyzing effects of wildfire by quantifying changes in the mean annual 

streamflow and the runoff ratio. Our overall hypothesis is that a change detection methodology rooted 

in the Budyko framework can be used to distinguish between hydrologic effects in burned and 

unburned catchments. We provide a case study outlining the application of our method in several 

watersheds in Southern California impacted by wildfires, and compare them with unburned, reference 

catchments in the same geographic area. Finally, we conclude with lessons learned and future work. 

 

Figure 2-1. Diagram illustrating the Budyko Decomposition method. The black curve is the 

original Budyko curve. Points represent water-year data. Point “a” in blue represents one year prior to 

a hypothetical disturbance, and point “c” represents how data would follow the idealized curve if 

aridity increased the year following a. Point “b” represents how, in the year following the disturbance, 

while AI did increase relative to a, EI decreased relative to Budyko behavior modelled by c. The 

dashed red arrow is the magnitude of the disturbance effect, with a magnitude 𝑑2.  
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2.3 Conceptual Framework and Objectives 

2.3.1 Rationale for the Budyko Decomposition Method at the Inter-annual Timescale 

Catchments exhibit a strong relationship between climate (energy and precipitation inputs) and water 

exports (evapotranspiration and streamflow). The Budyko curve (Budyko, 1961, 1974), developed 

using long term streamflow data from hundreds of catchments, captures this relationship by plotting 

the water partitioning against the climatic controls (Figure 2-1). Here, climate is characterized by the 

ratio of energy to water inputs, also known as the Aridity Index (AI), and is calculated as the potential 

evapotranspiration (PET) over precipitation (P). The water partition is characterized by the 

Evaporative Index (EI), and is calculated as the ratio of actual evapotranspiration (AET) over P. 

Figure 2-1 stresses that in the domain of low AI (especially AI less than one), EI responds almost 

linearly to changing AI, whereas for high AI, EI is almost insensitive to AI.   

Recent studies have used the Budyko framework to differentiate between the effects of changing 

climate and landscape-scale disturbances on streamflow (Jaramillo et al., 2018; C. Li et al., 2018; Mo 

et al., 2018; Shahid et al., 2018; D. Wang & Hejazi, 2011; H. Wang & Stephenson, 2018; Wu et al., 

2018). D. Wang & Hejazi (2011) first presented this “decomposition” method and showed for 413 

catchments (from the Model Parameter Estimation Experiment (MOPEX); Duan et al., 2006) in the 

United States (U.S.) that changes in Q due to climate between two 20-year periods were large (18% ± 

0.9% change in mean annual Q), and greater than changes due to human activity. Young et al. (2019) 

found that the Budyko framework performed similarly in attributing flow changes to disturbance and 

climate effects when compared against the more traditional paired catchment approach. These studies 

demonstrate the successful application of the Budyko decomposition method (see also: Creed et al., 

2014; Jones et al., 2012); however, they have been limited to examining changes across 10- to 20-

year blocks of time and have not examined the response of catchments in the aftermath of single-year 

disturbances like harvesting or wildfire. Here we expand on this prior work to assess the applicability 

of the Budyko decomposition method to quantify the immediate response of catchment hydrology to 

events like wildfire and decouple climate- from fire-effects at the annual timescale.  

The first step in this approach is to evaluate the applicability of the Budyko model at the interannual 

timescale. Indeed, while the traditional Budyko hypothesis was developed at the multi-decadal 

timescale, a wealth of recent studies have documented the ability of the Budyko curve to capture 

temporal variations in water balance, demonstrating a remarkable space-time symmetry (Carmona et 
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al., 2014; X. Chen et al., 2013; Cheng et al., 2011; Donohue et al., 2006; Harman et al., 2011; Milly 

& Dunne, 2002; Potter & Zhang, 2009; Rice & Emanuel, 2019; Sivapalan et al., 2011; Teng et al., 

2012; Troch et al., 2013; Yang et al., 2007). The biggest challenge in application of the Budyko 

hypothesis at the inter-annual time scale is the assumption of no change in catchment water storage 

that is fundamental to the original Budyko method. To evaluate the validity of this assumption, Rice 

& Emanuel (2019) analyzed interannual changes in watershed storage, using ground based and 

remotely sensed data, in 1000 watersheds across the contiguous U.S. for the 10-year period 2002–

2011. They found that in arid catchments with greater evaporative partitioning (high EI), the size of 

the interannual storage changes were on average quite small relative to the magnitude of annual 

precipitation (Figure A-1). They further found that watersheds exhibited a positive correlation 

between the degree of forest cover and the fit to the Budyko-type curve at the interannual scale (see 

also Roderick & Farquhar, 2011), implying that higher forest cover led to more Budyko-type 

behavior, indicative of hydrologic steady state. Rice & Emanuel (2019) argue that this occurs because 

eco-hydrologic feedbacks in forested watersheds reinforce steady state response by downregulating 

transpiration and decreasing hydrologic connectivity in arid conditions, while increasing 

evapotranspiration and drainage during wet conditions. Given that the watersheds in our case study 

have both high EI and significant vegetative cover (Figure 2-2, Tables 1-1 and 1-2), we argue that it is 

reasonable to use Budyko decomposition at the interannual timescale. 
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Figure 2-2. Site Map. a) Map of California. Dashed box is the extent of map b. b) Map of sites. 

Background imagery from NASA Aqua/MODIS, 2003-10-25, showing the Grand Prix Fire, Old Fire, 

and Piru Fire near Los Angeles (NASA, 2003). Red polygons are fires from 2002–2004 from the 

MTBS dataset. White polygons are the selected unburned catchments and pink polygons are burned 

catchments in the San Bernardino Mtns. Sites are numbered as in Table 2-1. c) The Old Fire burning 

in the San Angeles National Forest on 2003-10-26. Photo by D. Schumaker. d) Land cover percent for 

the 17 catchments (7 Burned and 10 Unburned), showing total vegetated cover classified as forest or 

shrub from the GAGES II Dataset. e) Percent of catchment area burned in Water Year 2004 with fire 

severity class from MTBS. 
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Table 2-1. Catchments from southern California. Land cover, fire, and topographic characteristics. 

In the mean, the burned and unburned catchments had a similar range of attributes including 

elevation, slope, vegetation cover, and catchment area. 

id USGS ID NAME 

Burn % 

WY2004 

Elev. 

(m) 

Slope 

(%) 

Aspect 

(deg) 

Veg 

(%) 

Urban 

(%) 

Area 

(ha) 

B1 11063680 Devil Canyon Ck. 97 1168 39 214 93 6 1440 

B2 11055800 City Ck. 93 1197 34 217 93 5 5050 

B3 11055500 Plunge Ck. 50 1216 31 217 88 9 4420 

B4 11062001 Lytle+Brlne+Cond+Inf 46 1696 44 96 93 2 11970 

B5 10260950 West-fork Mojave R. 45 1272 20 22 81 9 17510 

B6 11065000 Lytle Ck. @ Colton 28 1250 27 132 78 12 36470 

B7 11073360 Chino Ck. 21 1050 27 211 51 45 13230 

UB1 11119500 Carpinteria Ck. 0 584 33 208 95 1 3410 

UB2 10259200 Deep Ck. 0 1415 25 15 94 1 7910 

UB3 11051500 Santa Ana River 2 2071 27 321 84 11 54230 

UB4 10258000 Tahquitz Ck. 0 2090 37 110 82 0 4370 

UB5 11118500 Ventura River 0 702 29 192 82 9 48570 

UB6 11119940 Maria Ygnacio Ck. 0 424 24 214 76 19 1640 

UB7 11132500 Salsipuedes Ck. 0 280 17 270 58 4 12210 

UB8 11128250 Alamo Pintado Ck. 0 511 19 231 58 9 7380 

UB9 11129800 Zaca Ck. 0 444 20 213 55 6 8530 

UB10 11120000 Atascadero Ck. 0 311 18 220 54 39 4930 
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Table 2-2. Hydrologic data for study catchments. Data are averaged between WYs 1982 to WY 

2003. Q is discharge (both volume and area-normalized). P is precipitation. PET is potential 

evaporation (see Equation A-1). Rr is the runoff ratio. EI is evaporative index. AI is aridity index. Fu 

ω is the fitting parameter for the Budyko curve (see Equation 2-1). fit error is the mean absolute error 

of the fit points from the fit curve. 

id USGS gage 

id 

Q  

(mm 

yr-1) 

P  

(mm yr-1) 

PET  

(mm yr-1) 

Rr EI AI Fu ω Fu fit 

mean abs 

error 

B1 11063680 195 931 1471 0.18 0.82 1.89 2.62 0.07 

B2 11055800 173 760 1601 0.19 0.81 2.57 2.23 0.06 

B3 11055500 148 804 1509 0.14 0.86 2.3 2.71 0.05 

B4 11062001 285 926 1402 0.29 0.71 1.86 2.05 0.12 

B5 10260950 150 578 1563 0.18 0.82 3.34 2.04 0.10 

B6 11065000 11 725 1544 0.01 0.99 2.64 25.0 0.01 

B7 11073360 115 740 1565 0.16 0.84 2.55 2.27 0.11 

UB1 11119500 149 732 1485 0.13 0.87 2.67 2.76 0.05 

UB2 10259200 27 327 1617 0.05 0.95 7.05 2.44 0.04 

UB3 11051500 56 713 1432 0.06 0.94 2.46 4.44 0.04 

UB4 10258000 101 661 1287 0.12 0.88 2.3 3.05 0.06 

UB5 11118500 146 763 1683 0.12 0.88 2.93 2.68 0.05 

UB6 11119940 132 657 1462 0.14 0.86 2.79 2.44 0.05 

UB7 11132500 109 559 1569 0.14 0.86 3.45 2.21 0.06 

UB8 11128250 47 596 1729 0.06 0.94 3.83 3.32 0.03 

UB9 11129800 26 578 1327 0.03 0.97 2.91 5.19 0.02 

UB10 11120000 157 676 1467 0.17 0.83 2.73 2.26 0.04 
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2.3.2 Objective 1: Statistical Change Detection to Quantify the Effect of Fire on 

Streamflows 

We developed a novel approach for statistical change detection to quantify the effect of fire on 

streamflows.  The first step in this method is the translation of annual catchment data into Budyko-

space, given annual values of precipitation (P), streamflow (Q), and potential evapotranspiration 

(PET) for a watershed. The AET was calculated using the water balance equation (AET = P – Q) 

which assumes that the carryover of storage between years is negligible compared to the annual 

fluxes of AET, P, and Q. This assumption has been often used in annual water balance studies (Milly, 

1994; Sivapalan et al., 2011; Yang et al., 2007; L. Zhang et al., 2011). However, to minimize the 

errors introduced by this assumption, we aggregated the monthly values of P and Q over the 

hydrological rather than the calendar year, as proposed by the U.S. Geological Survey (USGS) and 

following the approaches by Sivapalan et al. (2011) and Carmona et al. (2014). There should be no 

major fire or other forest disturbance such as harvesting during this time period to avoid confounding 

effects.  

A Fu-type Budyko curve was then fit using data from the pre-fire period to evaluate the ability of the 

Budyko curve to capture interannual variability in water partitioning during the non-disturbed period. 

In Appendix A (Section A2.2) we discuss the choice of the Fu-type curves (Figure A-2) and the 

robustness to this choice compared to other methods. The Fu curve (Fu, 1981) is characterized by 

Equation 1: 

𝐸𝐼𝑖 = 1 + 𝐴𝐼𝑖 − (1 + (𝐴𝐼𝑖)𝜔)
1

𝜔⁄   (2-1) 

The 𝜔 parameter was calibrated using nonlinear least squares regression to pre-fire annual data (time 

series of measured evaporative index 𝐸𝐼𝑖 and measured aridity index 𝐴𝐼𝑖) from each watershed using 

the stats and budyko packages in R (Hampton, 2020; R Core Team, 2023). The investr package 

(Greenwell & Schubert Kabban, 2014) was used to calculate confidence and prediction intervals from 

the regression models. The parameter 𝜔 is then used to create a timeseries of evaporative index (𝐸𝐼𝑖
𝑐) 

as a function of the aridity index 𝐴𝐼𝑖. We then used two different approaches to use the modeled 𝐸𝐼𝑖
𝑐 

for statistical change detection: a Budyko Deviation Approach, and a Covariate Modelling Approach. 
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2.3.2.1 Budyko Deviation Approach 

In the Budyko Deviation Approach, we assumed that in the absence of landscape disturbance like fire, 

catchments move back and forth along a Budyko-type curve as a function of temporal variations in 

climate, as captured by the Aridity Index (AI). Our proposed decomposition method is described in 

Figure 2-1. If a catchment moves from point “a” (AI1, EI1) in the pre-disturbance year to point “b” 

(AI2, EI2) in the post-disturbance year, then this movement can be described as the sum of a climate 

component and a landscape disturbance component. In the absence of any landscape disturbance, the 

catchment would have moved from point “a” to point “c” along the Budyko curve. This movement 

describes the climate component of the change in streamflow, and it has both a horizontal and a 

vertical component. The effect of the landscape disturbance in the post-disturbance year is then 

captured by the vertical distance between points “b” and “c”. Our change detection method relies on 

these vertical deviations from the predicted curve. We defined our change metric as the annual 

vertical Budyko deviation (𝑑𝑖): the difference between the modelled 𝐸𝐼𝑖
𝑐 and measured 𝐸𝐼𝑖 values in 

each year (both pre- and post-fire): 

𝑑𝑖 = 𝐸𝐼𝑖
𝑐 − 𝐸𝐼𝑖 (2-2) 

The 𝑑𝑖 is represented in Figure 2-1 as the vertical distance between points “b” and “c”. We assessed 

the statistical significance of the changes in the distribution of 𝑑𝑖 using the nonparametric 

Kolmogorov-Smirnov (K-S) test. The null hypothesis was that the distributions of these deviations 

were the same in the two equal-length (𝑛-years) periods of time before and after the fire. Our 

alternative hypothesis was that the deviations were greater post-fire. The analysis was performed in 

both burned and unburned catchments to help confirm that the lack of an apparent response can be 

attributed to climatic differences. We argue that the Budyko deviation metric accounts for climatic 

variability and is thus a more robust detector of the effect of fire than more traditional metrics like the 

change in streamflow (Q) or runoff ratio (Rr). 

2.3.2.2 Covariate Modelling Approach 

 The Covariate Modelling Approach relies on well-established statistical change detection 

methodologies using a climate covariate (e.g. Eaton et al., 2010; Zhang and Wei, 2012). To do this, 

we modelled the time series of 𝐸𝐼𝑖 as a function of a climate co-variate (𝐸𝐼𝑖
𝑐) (as in M. Zhang & Wei, 

2012, 2014) and an exponentially decaying intervention effect: 
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𝐸𝐼𝑖 − 𝐸𝐼𝑖
𝑐 = 𝑑𝑖 =  𝑚 ∗ exp (𝑗 ∗ −𝑘) ∗ {

𝑖𝑓(𝑗 ≥ 0), 1

𝑖𝑓(𝑗 < 0), 0
 (2-3) 

where m and k are constants, 𝑖 is a counter for years, and 𝑗 counts years post-fire; exp(x) is the 

exponential function 𝑒𝑥, where when 𝑗 = 0: 𝑚𝑒−𝑗𝑘 = 𝑚. For negative values of 𝑗 the step-function 

(in brackets) has a value of 0, removing the negative domain of the exponential function. The 

constant 𝑚 represents the magnitude of the response in the first post-fire year, while the decay 

coefficient 𝑘 describes the rate of recovery. Here, unlike in Equation 1, both pre- and post-fire years 

are included in the model calibration. 

The significance of the post-fire response was assessed by the significance of the parameters 𝑚 and 𝑘. 

Specifically, we tested a null hypothesis where the climate co-variate 𝐸𝐼𝑖
𝑐 adequately predicts the 

hydrologic response during both the pre-fire and post-fire periods, and the intervention effect (as 

characterized by 𝑚) has a statistically insignificant magnitude; and an alternative hypothesis where 

the intervention effect has a statistically significant magnitude. This approach was applied to both 

burned and unburned catchments to confirm whether the 𝑚 parameter was controlled solely by fire 

effects. Models were fit using non-linear least squares regression using the stats package in R (R Core 

Team, 2023). The best fit model was determined by minimizing the sum of the squared model 

residuals. We assessed model appropriateness by comparing the model residuals from the pre- and 

post-fire time period using 2-sample Kolmogorov-Smirnov (K-S) test with a two-directional 

alternative hypothesis (stats package in R: R Core Team, 2020). An appropriate model confirmed the 

null hypothesis that the distributions of residuals were not significantly different (p>0.1 in all cases). 

The investr package (Greenwell & Schubert Kabban, 2014) was used to calculate confidence and 

prediction intervals from the regression models. In the Budyko Deviation Approach we relied on a 

statistical test of the difference between two unordered populations of n years, while in the Covariate 

Modelling Approach we explicitly considered the ordering of the time series. 

2.3.2.3 Benchmarking with Other Change Metrics 

We compared our two approaches to more traditional change metrics. As discussed in our review of 

the literature, many studies apply statistical tests directly to the timeseries of Q and Rr to assess 

disturbance effects. We averaged data for streamflow (Q), runoff ratio (Rr) and Budyko deviation (𝑑) 

for 10 years pre-fire and 10 years post-fire . We report the difference in these 10-year averages with 

the capital letter ∆ (e.g. ∆𝑑, ∆𝑄, and ∆𝑅𝑟 see Equations 4-6).  
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∆𝑑 =
1

𝑛
∑ 𝑑𝑖

𝑛
𝑖=1 −

1

𝑛
∑ 𝑑𝑗

𝑛
𝑗=1  (2-4) 

∆𝑄 =
1

10
∑ 𝑄𝑖

10
𝑖=1 −

1

10
∑ 𝑄𝑗

10
𝑗=1  (2-5) 

∆𝑅𝑟 =
1

10
∑ 𝑅𝑟𝑖

10
𝑖=1 −

1

10
∑ 𝑅𝑟𝑗

10
𝑗=1  (2-6) 

In Equations 2-4 to 2-6, the subscript 𝑖 is used for post-fire years while the subscript 𝑗 is used for pre-

fire years. For these same 10-year periods of data, we tested whether the two samples (pre- and post-

fire) were statistically different using a 2-sample K-S test with a one-directional alternative 

hypothesis (stats package in R: R Core Team, 2020).  

2.3.3 Objective 2: Parsing the Effect of Climate and Disturbance from Annual 

Streamflows Post-wildfire 

Based on our results from the first objective, we would identify catchments in which fire has had a 

significant effect. The next step of the analysis is to quantify the magnitudes of the streamflow change 

due to fire and climate in the fire impacted catchments. To do this, we assume that the Budyko-type 

curve models how annual evaporative index and thus streamflow would respond to climate in the 

absence of any catchment disturbance. Thus, in any year 𝑖, the climate component of the measured 

flow (𝑄𝑖
𝑐) can be described as a function of modelled evaporative index (𝐸𝐼𝑖

𝑐) and measured 

precipitation (𝑃𝑖):  

𝑄𝑖
𝑐 = (1 − 𝐸𝐼𝑖

𝑐)𝑃𝑖 (2-7) 

In every year, both pre- and post-fire, there is some deviation between observed annual flow (𝑄𝑖) and 

the modelled flow (𝑄𝑖
𝑐). We denote this deviation as 𝑄𝑖

𝑓
, which represents the effect of landscape 

disturbances like fire. 

𝑄𝑖
𝑓

= 𝑄𝑖
𝑐 − 𝑄𝑖 = (𝐸𝐼𝑖

𝑐 − 𝐸𝐼𝑖)𝑃𝑖 (2-8) 

which is equivalent to:  

𝑄𝑖
𝑓

= 𝑑𝑖𝑃𝑖 (2-9) 

We then estimate the average change in streamflow due to climate effects (∆𝑄c) and fire effects as 

(∆𝑄f) over two 𝑛-year time periods before and after fire (where 𝑖 is used for post-fire years and 𝑗 is 

used for pre-fire years) as: 

∆𝑄c =
1

𝑛
∑ 𝑄𝑖

𝑐𝑛
𝑖=1 −

1

𝑛
∑ 𝑄𝑗

𝑐𝑛
𝑗=1  (2-10) 



 

 25 

∆𝑄f =
1

𝑛
∑ 𝑄𝑖

𝑓𝑛
𝑖=1 −

1

𝑛
∑ 𝑄𝑗

𝑓𝑛
𝑗=1  (2-11) 

such that 

∆𝑄 = ∆𝑄c + ∆𝑄f (2-12) 

We use the capital letter ∆ to denote change between time periods. We also estimate an annual Q 

change in each post-fire year relative to the pre-fire average to determine how climate and fire 

contributed to interannual variability of flow in the post-fire series. Specifically, the climate 

contribution of the flow change in the post-fire years (𝛿𝑄𝑖
𝑐), and the fire contribution of the change 

(𝛿𝑄𝑖
𝑓

) are estimated as: 

𝛿𝑄𝑖
𝑐 = 𝑄𝑖

𝑐 −
1

𝑛
∑ 𝑄𝑗

𝑐𝑛
𝑗=1  (2-13) 

𝛿𝑄𝑖
𝑓

= 𝑄𝑖
f −

1

𝑛
∑ 𝑄𝑗

𝑓𝑛
𝑗=1  (2-14) 

such that 

𝛿𝑄𝑖 = 𝛿𝑄𝑖
𝑐 + 𝛿𝑄𝑖

𝑓
 (2-15) 

where the lowercase letter 𝛿 signifies change in reference to a specific year: the letter 𝑖 is used for 

post-fire years and 𝑗 is used for pre-fire years. Note that the average of the pre-fire (𝑗 is used for pre-

fire years) flow deviations (𝑄𝑗
𝑓
) exhibits a similar property as 𝑑𝑗, such that the values (

1

𝑛
∑ 𝑑𝑗

𝑛
𝑗=1 ) and 

(
1

𝑛
∑ 𝑄𝑗

𝑓𝑛
𝑗=1 ) are small but not necessarily zero. 

2.3.4 Objective 3: Quantifying Recovery Timescales in Wildfire-impacted Catchments 

Finally, our last objective is to quantify the recovery timescale in wildfire impacted catchments. To 

do this we use the decay coefficient 𝑘 that was estimated using the Covariate Modelling Approach in 

Objective 1. We modelled recovery only catchments in which there is a significant fire effect, as 

indicated by a significant 𝑚 parameter. Since we use an exponential model to describe decay which 

means theoretically recovery time is infinity, we chose an arbitrary threshold beyond which the effect 

was insignificant in size. We chose a threshold of 90% of the magnitude of 𝑚. Catchment recovery 

(𝑡) was defined by inverting the exponential decay coefficient (𝑘: with units of time-1) and 

multiplying by a recovery threshold (𝑟), such that log (1 − 𝑟)/𝑘 provides the 90% recovery time 

(𝑡90) when 𝑟 = 0.9. The parameter uncertainty (of 𝑘) from the nonlinear regression models were used 

to calculate the uncertainty on 𝑡90.   
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2.4 Methods 

2.4.1 Case Study: Southern California 

Our proposed method is illustrated in a case study located in the forested areas of southern California, 

surrounding the San Bernardino area (Figure 2-2a,b). This region stood out as having a high 

concentration of USGS gaging stations and fires. In particular, water-year (WY) 2004 had a record 

number of fires (Blackwell & Tuttle, 2003). This large number of fires offers the opportunity to study 

multiple affected catchments, under the same sequence of climate and disturbance conditions. Criteria 

for selecting burned catchments were based off those of Rust et al. (2018) and Saxe et al. (2018) and 

are described in Appendix A (Section A1.1). We began with 112 candidate catchments and selected 

for those dominated by forested or vegetated cover (minimal urban land cover) and with adequate 

periods of record, including no large fires during the period of record except for WY 2004. As much 

of this region is under the management of the USFS, we also confirmed that no harvesting activity 

took place in these catchments during the period of record (U.S. Forest Service, 2018). This led us to 

select 7 burned catchments and 10 unburned catchments to analyze (Table 2-1). Two of the 

catchments in our study, Devil Canyon Creek (B1) and City Creek (B2), have both been studied with 

respect to streamflow effects after the 2004 water-year fires (Bart, 2016; Bart & Tague, 2017; 

Kinoshita & Hogue, 2011, 2015). 

The mountains of southern California are a diverse geologic and hydroclimatic mosaic. Soils are 

generally thin and easily erodible (Wells, 1981), and are underlain by heavily faulted assemblages of 

igneous and metamorphic rocks (Morton & Miller, 2006). A strong orographic effect results in wet 

windward slopes and dry leeward slopes dropping to the deserts to the east. This gradient results in a 

chaparral-dominated ecosystem giving way to mixed conifer forest along mountain crests, and Piñon-

juniper woodlands in drier climates (Figure 2-2c; Barbour et al., 2007). The fire recurrence period for 

this ecosystem is around 30–40 years (Keeley & Fotheringham, 2001). The burned and unburned 

catchments ranged in size from 1,400 ha to 48,000 ha: all have greater than 50% vegetated cover 

(shrub and forest; Figure 2-2d) and are generally steep (20–40%). For the 7 burned catchments, 

burned area ratio (BAR) at a moderate or high severity ranged from 12% to 71% (Figure 2-2e). The 

climate is Mediterranean, with regional rainfall is on average 720 ± 400 mm yr-1, and potential 

evaporation is 1280 ± 90 mm yr-1 (Table 2-2). 
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2.4.2 Data Sources and Calculations  

Streamflow (Q; from USGS) and climatic data (PRISM Climate Group, 2018), including precipitation 

(P) and temperature (T), were used to calculate the WY hydrologic budget for our catchments. We 

analyzed data from water years 1982 (beginning of PRISM availability) to 2018. Data from WY 1982 

to 2003 were used to calibrate Fu-type Budyko curves, and data from WY 2004 to 2018 were used to 

calculate the post-fire time series of 𝑑𝑖. Data sources are in Table 2-3. Methods for data retrieval are 

detailed in Appendix A (Section A1.2). All data and code are provided in an online repository 

(Hampton, 2022a). PET was calculated using the Hargreaves-Samani equation (Hargreaves & 

Samani, 1985; see calculations in Appendix A1.3). There are two groups of methods available for 

estimating PET: temperature-based methods (e.g., Thornthwaite, Hamon, and Hargreaves-Samani) 

and radiation-based methods (e.g., Turc, Makkink, and Priestley-Taylor). We did not have access to 

radiation data at our sites and thus used the temperature-based Hargreaves-Samani equation. To 

ensure that this didn’t bring bias into our results, we analyzed the choice of our PET calculation 

method by assessing agreement between six PET methods (as in Lu et al., 2005; see Appendix A2.1 

and Figures A-2,3). Overall, we found no effect of using a temperature- versus radiation-based PET 

formula in detecting Budyko deviations (Figures A-4,5).  

Following retrieval of annual climate and hydrologic data, a single-parameter version of the Budyko 

curve by Fu (1981) and the 𝜔 parameter was fit using nonlinear least squares regression to pre-fire 

annual data from each watershed using the nls and budyko packages in R (Hampton, 2020; R Core 

Team, 2023). Each of the 17 watersheds in our study was fit to a different Fu-type Budyko curve that 

is a function of the physical properties of the specific watershed, such as soil properties, and 

vegetation type and coverage (e.g., Milly, 1994; L. Zhang et al., 2001, 2008). All available pre-fire 

data (WY 1982 – 2003) were used in the curve fitting process. From the Fu fit curves for each 

watershed, the Budyko deviations (𝑑𝑖) were then calculated for each year after fire following 

Equation 2. Annual flow was decomposed into a climate prediction (Equation 7) and fire deviation 

(Equations 8-9), and “total” effect sizes were calculated following Equations 10–12 and 4-6.  
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Table 2-3: Descriptions of datasets used in our study 

Description Dataset Source 

Streamflow (Q) National Water 

Information System 

(NWIS) 

U.S. Geological Survey (USGS), 

accessed via dataRetrieval package in 

R (Hirsch & De Cicco, 2015) 

Gridded Climate Products (Precipitation 

P, Temperature T), available monthly at 

4 km resolution from 1982 to 2017 WY 

PRISM (PRISM Climate Group, 2018) 

Fire perimeters Monitoring Trends in 

Burn Severity 

(MTBS) 

(Eidenshink et al., 2007). 

Attributes of stream gages and 

watersheds, geographic shapefiles 

GAGES II (Falcone, 2011) 

 

 

2.5 Results and Discussion 

2.5.1 Statistical Change Detection using the Budyko Framework 

We found that all 17 catchments in our study adhered reasonably well to their respective Fu-type 

Budyko curves in the pre-fire period (1982–2003), with mean absolute error of the Budyko fits 

generally < 0.1 units of EI (Table 2-2) and the Fu 𝜔 values ranging from 2.0–10. In an analysis of 

1000 catchments across the U.S., Rice and Emanuel (2019) concluded that catchments with large 

inter-annual changes in storage deviate below the original Budyko curve (see Appendix A Section 

A1.4; Figure A-1). Thus, the strong adherence of our data to the Budyko curves in the pre-fire years 

suggests that the assumption of hydrologic steady state at the annual timescale is appropriate in these 

catchments. Furthermore, Rice and Emanuel argued that catchments with higher Fu 𝜔 values that 

were closer to the 𝜔 of approximately 2.8 for the idealized Budyko curve deviate the least from 

hydrologic steady state at the inter-annual time scale. Given that our 𝜔 values (median 𝜔 = 2.6; Table 

2-2) were at the higher end of the range of values explored by Rice and Emanuel, it is thus reasonable 

to also assume steady state in our analysis.  

While the pre-fire year EI data strongly conformed to the Budyko curve, strong vertical deviations 

were apparent in the postfire years in the burned catchments, but not in the unburned catchments 

(Figure 2-3). The deviations in the burned catchments fell below the Fu-type curves for several years 
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after fire–indicating an increase in streamflow–possibly due to loss of vegetation and alteration of the 

surface soils during the fire. We also see that for the two least burned catchments, B6 and B7, there is 

very little deviation in Budyko space. These were the burned catchments with a burned area ratio 

(BAR) of < 20%, while the other burned catchments had BAR ranging from 45–97% (Figure 2-2e). 

These results suggest that the Budyko framework was able to qualitatively distinguish between 

burned and unburned catchments.  

Using the Budyko Deviation Approach (Section 2.1.1), we found statistically significant change in 

Budyko deviation (Figure 2-4a) for five of the highly burned catchments (B1–B5, BAR >40%), while 

catchments B6 and B7 (BAR <25%) experienced insignificant deviations. The magnitude of the 

Budyko deviations ∆𝑑 ranged from 0.07 for catchment B3 to 0.16 for catchment B1 (average value 

0.12).  In contrast, for the unburned catchments, there were no significant deviations in Budyko 

space, and the magnitude of ∆𝑑 was much smaller (Figure 2-4a). 

The significantly larger ∆𝑑 values in the burned catchments compared to the unburned catchments 

highlights the ability of this approach to detect the effect of fire. Using the Covariate Modelling 

Approach (Section 2.1.2), we modelled the EI time series using the climate co-variate and the 

intervention effect, which was characterized by the parameters 𝑚 and 𝑘, controlling the fire effect 

size and recovery time, respectively. We found that the 𝑚 parameter was significant at the 10% 

confidence level for catchments B1–B5. The magnitude of 𝑚 was also much higher in the five most 

highly burned catchments B1–B5 (average 0.21) compared to the two least burned B6–B7 (average -

0.02) and unburned catchments (average -0.01; Figure 2-4b). Indeed, where 𝑚 was small it was also 

not significantly different from zero in the two less burned and unburned catchments. An increase in 

the magnitude and significance of the 𝑚 parameter in the five highly burned catchments highlights 

the effectiveness of the Budyko framework in statistical change detection post-fire. Having confirmed 

our hypothesis using two approaches (significance of ∆𝑑 and 𝑚) we sought to test whether more 

traditional approaches of change detection could parse the same effects.  
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Figure 2-3. Budyko Curves Post-Fire. Time series of pre- and post-fire (pre-/post-WY 2004) 

evaporative index (EI) versus aridity index (AI) for 8 burned (B) and 10 unburned (UB) catchments. 

Points from water year (WY) 1982 to WY 2003 are in black, and the Fu curve (solid line) is derived 

from these data (22 years). Points from WY 2004 to WY 2018 are color coded by year and connected 

by lines for the first 10 post-fire years. The site id (Table 2-1) is included in the lower right of each 

plot.  
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Figure 2-4. Hydrologic changes post-fire. Average change or hydrologic variables between the 

equal-length pre- (1994-2003) and post-fire periods (2004-2013). a) Change in the vertical Budyko 

deviation 𝑑 (∆𝒅; Equation 2-4). Positive ∆𝒅 deviation represents downward movement (lower AI) in 

Budyko space (see Figure 2-3). b) Parameter m (± std. error) fit to the intervention models described 

in Section 1.3.3 (Equation 2-3). c) Q change (∆𝑸; Equation 2-5). d) Runoff ratio (Rr) change (∆𝑹𝒓; 

Equation 2-6). Box fill is shaded according to p-value. For panels a, c, d, the p-value is from a K-S 

test indicating a significant difference between the sample distributions, with a one directional 

alternative hypothesis. In panel b, the p-value is for the parameter provided by the nls fit.  
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2.5.2 Method Comparison to Traditional Approaches  

As stated above, the much-preferred BACI approach is difficult to apply in wildfire-impacted 

catchments due the unpredictability of large fires. Still, many studies have used the wealth of data in 

the U.S. to analyze pre- and post-fire streamflow data to assess changes in Q and Rr (Blount et al., 

2019; Hallema, Sun, Bladon, et al., 2017; Hallema, Sun, et al., 2018; Kinoshita & Hogue, 2011, 2015; 

Saxe et al., 2018). We observed similar magnitudes of average streamflow changes (∆𝑄) between the 

burned and unburned sites, ranging from -38% to +98% (-60 to +100 mm yr-1) in the burned 

catchments and ranging from -92% to +120% (-100 to +60 mm yr -1) in the unburned catchments 

(Figure 2-4c). Furthermore, none of the changes in either the burned or unburned catchments were 

statistically significant (p-value >0.10; Figure 2-4c). This highlights that the flow changes observed 

were most likely driven by climatic changes in the post-fire years, and that metrics like the mean 

streamflow change is not always adequate to isolate the effects of fire driven due to climatic 

variability. Indeed, annual P was lower in the 10 years after WY 2004, corresponding to increased 

aridity, for many of the catchments (Figure A-7). This reduced P resulted in lower streamflow that 

confounded our ability to detect fire-driven increases in streamflow from climate driven decrease. 

Indeed, the climate and the streamflow are so variable between years in this ecozone that detection of 

any significant change is difficult. Thus, any change attribution method relying on the detection of a 

significant Q change point will conclude incorrectly that fire had no effect in these catchments. 

Possibly the most common metric that has been used for detecting changes following wildfire, or any 

other disturbance, is the runoff ratio (Rr; e.g. Biederman et al., 2015; Bladon et al., 2019; Blount et 

al., 2019; Kinoshita & Hogue, 2015). We found the differences in Rr to be somewhat more sensitive 

for comparison between the pre- and post-fire periods. Rr for Devil Canyon Creek (B1, USGS gage 

11063680) experienced a significant increase at the 1% confidence level, while catchments B2 and 

B3 experienced a significant increase at the 5% level (Figure 2-4d). Notably, in their study of 

catchment B1, Kinoshita & Hogue (2015) observed increases of Rr of similar magnitudes as ours for 

Devil Canyon Creek. According to our calculations, all other changes in Rr in burned and unburned 

catchments were statistically insignificant, except for a small increase of 0.02 units for catchment 

UB3 (p=0.08). Thus, only three of the seven burned catchments show a statistically significant 

increase in the distribution of runoff ratios between the pre-fire and the post-fire periods, while almost 

all of the unburned catchments showed no statistically significant difference. This highlights the 

challenges in detecting significant changes in this ecozone with high climate variability. The 
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distribution of streamflow values showed no significant differences between pre-and post-fire 

periods, while the runoff ratio was only able to detect change in three of the most burned catchments. 

In contrast, the Budyko metrics ∆𝑑 and 𝑚 increased significantly (i.e. decreased EI attributed to 

disturbance) for the 5 most highly burned sites. Thus, in moving from a series of annual discharge 

data and runoff ratio to Budyko deviation we increased the detectability of the disturbance effect in 

the hydrologic time series. 

 

Figure 2-5. Flow changes between pre- and post-fire periods. a) ∆𝑸 (black bars) broken down into 

fire (∆𝑸𝒇) and climate (∆𝑸𝒄) components (see Equations 2-7 to 2-9). b) Single-year flow changes in 

all post-fire years relative to the 10-year pre-fire mean, broken into the total change (𝜹𝑸𝒊, black) and 

climate and fire components (𝜹𝑸𝒊
𝒄 and 𝜹𝑸𝒊

𝒇
; Equations 2-13 to 2-15 ).  
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2.5.3 Quantifying the Contribution of Fire and Climate to Streamflow Change  

Next, we used the Budyko decomposition method to isolate the contributions of fire and climate to 

the annual Q time series. We focused on catchments B1–B5 since no significant changes were 

observed in B6 and B7. We used the movement of points along the Budyko-type curves as the climate 

component (Equation 7), and the vertical Budyko deviations captured by the 𝑑 values as the fire 

component (Equations 8–9). Across catchments B1–B5, fire resulted in average increases in flow 

(∆𝑄f) ranging from 43–111 mm yr-1 (Figure 2-5a). In catchments B1–B4, the post-fire years were 

drier than the pre-fire years (P decrease ranged from –35 to –110 mm yr-1; Figure A-7), and thus 

climate contributed to a decrease in flow in the post-fire years, with ∆𝑄c ranging from –6 to –30 mm 

yr-1 (Figure 2-5a). The larger values of ∆𝑄f compared to ∆𝑄c translated to net flow increases (∆𝑄) 

from 30 to 80 mm yr-1 across catchments B1–B4 (Figure 2-5a). In contrast, in catchment B5, mean 

rainfall was not significantly different between pre- and post-fire years, and thus both climate and fire 

led to increases in flow (Figure 2-5a). It is important to note that the contribution of fire to streamflow 

is estimated as the difference between the vertical Budyko deviations between the pre-fire and the 

post-fire years, and thus the analysis implicitly considers climate and other factors that contribute to 

deviations in the absence of fire.  

The contributions of fire and climate to streamflows varied between wet and dry years (Figure 2-5b). 

In wetter years (WY 2005; 2 years after fire), climate controlled most of the change in flow. This is 

possibly because in these very wet years the rain events were so large that soil saturation and overland 

flow overwhelmed the effect of the reduced evapo-transpiration rates due to vegetation mortality. 

Coombs & Melack (2013) studied the same region as this study and found that in WY 2005 annual 

runoff was not dissimilar between burned and unburned catchments. In the two wettest years, WY 

2005 and WY 2011, climate amplified the effect of fire (i.e. both fire and climate effects were 

positive) for most of the catchments. In contrast, for the drier years (WY 2004, WY 2006–2010, WY 

2012–2016), we found the effects of climate and fire to be of similar magnitude, with climate often 

counteracting the effects of fire (Figure 2-5b). In these years, the net change in flow is often negative 

(dark black bars), and thus not accounting for climate makes it appear that fire has led to a decrease in 

flow. Herein lies the strength of our method that decouples the climate from the fire signal and allows 

us to understand how these two components amplify or counteract each other in wet and dry years.  



 

 35 

 

Figure 2-6. Hydrologic recovery. Recovery trends for 5 burned catchments which experienced 

significant Budyko deviations (see Figure 2-4). a). Annual deviation time series (black points and 

lines) and modelled 𝒅 (solid red line; Equation 2-3). Model 95% prediction intervals are shown as a 

gray shaded area. Vertical red dashed line is the predicted 90% recovery time. b) 90% Recovery time 

(𝐥𝐨𝐠(𝟎. 𝟏) /𝒌) over catchment percent area burned at moderate and high severity. The regression 

slope (red line) is 4.0 ± 1.1 yr per 10% burned (p-value=0.03, R2=0.76). B3 is excluded from panel b 

because the estimate of 𝒌 was very small (see panel a), and thus the recovery time was extremely 

large and uncertain.  
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Of course, while the differences between the wet and dry years are apparent from the results, there are 

further nuances in the year-to-year relative contributions of fire and climate across the five 

catchments. These differences are affected by local scale factors such as rainfall seasonality, 

adjacency of the fire to the stream (e.g.; Bart, 2016; Bart and Tague, 2017), subsurface geology, etc. 

that is beyond the scope of current work.  In the next section, we explore whether we can 

quantitatively evaluate the recovery of this hydrologic disturbance effect to pre-fire conditions. 

2.5.4 Quantifying Hydrologic Recovery Timescales  

The annual data from the 5 most burned catchments show significant deviation from pre-fire 

conditions (Figure 2-4). Figure 2-3 shows that for many of the burned catchments, annual points 

appear to gravitate back to the pre-fire Budyko curve after several years of strong deviations. Figure 

2-6a shows the time series of 𝑑 for the five most burned catchments, and the modelled values of 𝑑 

(using Equation 3). This decaying effect is apparent in the models for catchments B1–B2 and B4–B5, 

with varying recovery times back to pre-fire conditions. Catchment B3 did not experience a strong 

recovery pattern like the others (Figure 2-3,6a), and indeed had the lowest ∆𝑑 effect size (0.07; Figure 

2-4a) of the burned catchments with BAR >40%. The decay coefficients for the B1–B2 and B4–B5 

models were transformed into recovery times as described in Section 2.3 (𝑡90 = log(0.1) /𝑘). We 

estimated 90% recovery times as 43 years (confidence interval 23-298 years) for catchment B1, 15 

(10-27) years for B2, 9.6 (5.1-85) years for B4, and 3.8 (2.3-9.9) years for B5 (Figure 2-6b). We 

estimated 90% recovery times as 43 years (confidence 23-298 years) for catchment B1, 15 (10-27) 

years for B2, 9.6 (5.1-85) years for B4, and 3.8 (2.3-9.9) years for B5 (Figure 2-6b). Bart and Tague 

(2017) used remotely sensed vegetation data to estimate vegetation recovery in catchment B2, and 

found a 90% recovery timescale of 8.8 years, which is slightly lower than our estimate of 15 years. It 

is important to remember, however, that vegetation recovery and hydrologic recovery can occur on 

very different timescales. Note also that B1 has the longest recovery time, and the greatest uncertainty 

in its estimate, given that we have only 15 years of data. In contrast, recovery time estimates for 

catchments B4 and B5 are more compatible with the timescales of analysis, and thus uncertainties are 

lower. While this is a promising approach to estimate recovery times across large scales with varying 

availability and quality of data, future work needs to focus on validating these estimates with longer 

timeseries of flow and vegetation data. 
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Analysis of hydrologic recovery times in post-fire landscapes is often limited by availability of long 

enough flow time-series after fire. This leaves considerable uncertainty of how long it can take for 

streamflow to recover after fire. Our longer recovery times are however not inconsistent with other 

studies using longer timeseries in the same region. A study using 66 years of streamflow data from 

the San Dimas Experimental Forest in California found that the effects of fire on streamflows can last 

as many as 20 years (Meixner & Wohlgemuth, 2003). Similarly, a recent study in the Pacific 

Northwest found no evidence of hydrologic recovery 35 years after fire (Niemeyer et al., 2020). In a 

recent review of hydrologic recovery after fire in Mediterranean climates, Wagenbrenner et al. (2021) 

found that among 38 burned study, 42% of sites recovered within 5 years after fire, while 5% of the 

sites had recovery times between 5-10 years. In contrast, 53% of the sites did not recover during the 

monitoring period of 4-10 years, making it difficult to estimate recovery times appropriately. In an 

analysis including catchment B2 from our study, Bart and Tague (2017) showed that the impact of 

fire on stream baseflow recession rates, and the recovery of this metric post-fire, were correlated with 

the impact on and recovery of vegetation in the stream riparian zone. These authors found that 

modelled post-fire vegetation recovery, with a 90% recovery timescale of 8.8 years, adequately 

predicted recovery of baseflow recession rates. Recovery timescales appear to be a function of type, 

intensity, and distribution of disturbance, as well as climatic factors, and these factors have not been 

significantly explored across systems.  

2.5.5 Correlation of Effect Sizes and Burn Severity 

For the 7 burned sites, we investigated whether BAR correlated with the average Budyko deviation 

for the 10 years post-fire (∆𝑑). This relationship relatively weak (for B1–B7, p=0.07, R2=0.41), and 

appeared to have no strength among the 5 burned catchments with significant changes in ∆𝑑 (B1–B5, 

p=0.56). This lack of correlation is similarly found in the results of Saxe et al. (2018) and Hallema et 

al. (2018b), who also found little to no correlation between BAR and percent changes in flow. We did 

however see a threshold pattern where sites burned with more than 40% area showed significant 

Budyko deviations (B1–B5). Further in contrast to the lack of a relationship between BAR and effect 

size, we found a strong linear relationship between the recovery timescale and the percent of the 

watershed burned at moderate and high severity (Figure 2-6b, p=0.03). This recovery and burn 

relationship corresponded to a slope of about 4.1 years of recovery per 10% burned. Note in Figure 2-

6b that there is uncertainty around the individual estimates of 𝑘 and the corresponding recovery times 
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𝑡90, and there is large uncertainty around the linear regression itself. The longer recovery times of the 

watershed areas with greater BAR at moderate and high severity most likely arises due to the 

persistence of detectable effects in the streamflow signal that increases with increasing disturbed area. 

This pattern should be tested with larger populations of disturbed forested catchments. Further study 

should explore whether this hydrologic recovery is correlated to ground- or satellite-based 

measurements of vegetation recovery, or soil infiltration rates.  

2.5.6 Limitations and Future Work 

Evaluation of the effect of a disturbance like wildfire on hydrologic response is complex because of 

the significant year-to-year variability in flow, which makes the analysis extremely sensitive to the 

number of years of post-fire data that is available. Our analysis was based on a 16-year time series of 

post-fire data, and even though time series like Budyko deviation (𝑑) have less variability than Q, AI, 

or EI, our statistical tests could still be influenced by the exact choice of years of data available. Our 

analysis would be increasingly robust to these climatic variations with increased data availability, but 

for this region of Southern California the high incidences of fire meant that we could isolate only a 

small timeframe that had only one fire in all the study catchments. Our estimate of hydrologic 

recovery timescale is limited by the small timeframe of postfire data, and the significant Budyko 

deviations over this time period. Future work could examine how these Budyko deviations dissipate 

over time, and whether catchments do indeed return to their pre-fire Budyko curve consistently. 

Capturing this effect statistically and correlating recovery with satellite products for vegetation 

indices and soil moisture would add more certainty to such findings. 

Since we did not have access to site-measured data including P and radiation, we instead relied on 

large (4-kilometer) gridded spatial data for P and temperature to satisfy the requirements for the 

Budyko limiting our ability to capture gradients in climate variables over elevation and with respect 

to windward and leeward slopes. Further, access only to temperature data limited us in our choice of 

PET calculation methods. Nonetheless, we performed a comparative analysis in nearby data-rich 

catchments on whether using a temperature- versus radiation-based PET methods would affect the 

results of our Budyko analysis and found no significant difference between the two method groups 

(Appendix A2.1). However, future estimates could be refined with access to radiation data. 

Additionally, we rely on the assumption of hydrologic steady state at the annual time scale. However, 

as we have argued in Section 2 of this paper, given that recent studies have provided evidence of the 
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Budyko curve being applicable at the interannual timescale, this is a reasonable assumption. 

Furthermore, we find that our catchments have high Fu 𝜔 values, and the Budyko curve can capture 

the interannual variability in data reasonably well across a decadal timescale, proving as per by Rice 

and Emanuel (2019) that interannual changes in storage is not significant. Of course, there are 

significant changes that occur both to the vegetation and the soil properties in the post-fire period that 

might bring into question the validity of the Budyko assumption. However, our finding of the 

distinctly different responses in the Budyko space between the burned and unburned catchments 

highlights that the Budyko framework might still be adequate for use in change detection. Indeed, the 

Budyko Deviation Approach has also been used for change detection in other scenarios involving 

land use transition, for example conversion of prairies to cropland (D. Wang & Hejazi, 2011; Ye et 

al., 2012). That said, the thin soils and heavily faulted basement rocks in this area of California may 

facilitate changes in interactions with deep groundwater following fire, as discussed for Devil Canyon 

Creek (catchment B1) by Jung et al. (2009). In the future we could use improved satellite-derived ET 

products (e.g. Poon & Kinoshita, 2018) to specifically estimate any changes in storage, as P minus Q 

minus AET. All this highlights the need for continued intensive field studies of altered moisture 

fluxes and water storage at the landscape-scale after fire.  

We used satellite-derived fire severity products (MTBS: Eidenshink et al., 2007) to quantify BARin 

each watershed, following the approaches of two recent large studies in the western U.S. (Hallema, 

Sun, et al., 2018; Saxe et al., 2018). However, these products have limitations in identifying 

differences in burn-severity between sites differing in pre-fire forest composition and structure 

(Harvey et al., 2019; Kolden et al., 2015). Future work would involve the use of more sophisticated 

satellite products for this purpose. 

It is also important to note that the relationship identified between the burn severity and hydrologic 

recovery is specific to the five catchments analyzed in the study. Future work would involve 

expanding the analysis across larger geographic scales, similar to the work of Hallema et al. (2018b) 

and Saxe et al. (2018), to quantify the relative contributions of fire and climate to streamflow. We 

also acknowledge that many other on-the-ground factors could influence the relationship between fire 

and hydrologic change, including fire severity, fire proximity to the riparian area, and catchment 

topography, elevation, and geology (e.g. Feikema et al., 2013; Rust, Saxe, et al., 2019). Again, we 

stress the need for continued study at the local scale on how we can better characterize “high” or 

“low” severity, as an ecohydrological effect. Additionally, incorporation of other datasets such as 
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vegetation indices (e.g. Paci et al., 2017) may help characterize disturbance magnitudes and recovery 

timescales. 

2.6 Conclusions 

In this study, we developed a novel methodology based on the Budyko framework to quantify the 

relative contributions of climate and fire disturbance on annual streamflow time series, and we used 

this information to characterize hydrologic recovery timescales. This study moves us towards 

addressing some of the unsolved problems in hydrology summarized by Blöschl et al. (2019): “What 

are the impacts of land cover change and soil disturbances on water and energy fluxes at the land 

surface?” and what “causes spatial heterogeneity and homogeneity in runoff, evaporation, subsurface 

water and material fluxes [and their] sensitivity to their controls (e.g. aridity)?” Our results add to a 

growing number of studies documenting flow increases following wildfire. Importantly, we have 

added to a subset of studies that differentiate between climate-related flow changes and those 

attributed to forest disturbance, with the novel aspect of using the Budyko framework at the annual 

timescale, and explicitly quantifying the hydrologic recovery time.  

In a study region like ours where annual P and AI were highly variable, due in large part to the El 

Niño-Southern Oscillation (Schonher & Nicholson, 1989), previous methods of comparing either 

annual streamflow or runoff ratio between pre- and post-fire years can be confounded by climate 

variability. We argue that while traditional metrics like changes in the mean annual flow and the 

annual runoff ratio were not statistically different between pre-fire and post-fire years (Figure 2-4c,d), 

the effect of fire (following water year 2004) manifested as statistically significant differences in the 

Budyko deviations in five of the most severely burned catchments (Figure 2-4a,b). Importantly, 

Budyko deviations were not statistically different for the unburned catchments between pre- and post-

fire years, lending credence to the hypothesis that it was the fire in the burned catchments that led to 

the observed deviations. The Budyko Decomposition method, expanded upon in this study, allows us 

to collapse climate variability and explicitly isolate the effect of fire.  

Analyzing 20 years of pre- and post-fire data, we showed that fire on the average increased flow by 

80 mm yr-1 that was counterbalanced by a general drying over this time period and 10-20 mm yr-1 

flow decrease due to climate alone. We then modelled the time series of EI and estimated hydrologic 

recovery timescales which ranged between 3 and 43 years in the study catchments. Although other 

studies have quantified effects of fires on streamflow, these have primarily focused on average effects 
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for 10- to 20-year time blocks between pre- and post-fire years. Here, we explicitly captured recovery 

timescales at an annual resolution. We showed persistence of Budyko deviations (𝑑) out to past ten 

years post-fire (Figure 2-6a), and hydrologic recovery captured by the deviation series that correlated 

significantly with catchment burned area (Figure 2-6b). We found that for every 10% burned at 

moderate and high severity, hydrologic recovery was pushed back approximately 4 years (p=0.03). 

Thus, we showed that the Budyko framework can be used to decouple fire versus climate effects on 

streamflow patterns after wildfire, and to effectively quantify hydrologic recovery timescales.  

Our finding of increased flow after wildfires, similar to the results of previous studies in the chaparral 

ecosystems of Southern California (Kinoshita & Hogue, 2011, 2015; Loáiciga et al., 2001; Meixner & 

Wohlgemuth, 2003), has significant impact with respect to water supplies. This could mean more 

water available to parched areas of the world, especially California, as noted by Meixner & 

Wohlgemuth (2003). However, as has been shown in numerous studies, flow increases are often 

accompanied by changing hydrologic signatures (e.g., flashiness, flood frequency), resulting in 

increased erosion, suspended sediments (Burke et al., 2013), as well as increased nutrient loads 

(Smith et al., 2012). All these threaten water security (D. A. Martin, 2016), almost certainly more 

than increased water supply might alleviate stress. Further, increased flows are generally transient and 

likely rob down-wind areas of precipitation from local evapotranspiration (Kirchner et al., 2020).  

This is the first presentation of results demonstrating that the hydrologic effects and recovery from 

wildfire can be captured using the Budyko “decomposition” method (D. Wang & Hejazi, 2011). 

Deforestation studies involving forest harvesting far outnumber wildfire studies despite the hazards 

involved with fire. This use of open datasets to conduct this analysis could be leveraged to greatly 

enhance our understanding of the variety of hydrologic effects of forest disturbance including both 

harvesting and fire; and can be applied across arid to humid regions to differentiate climate forcings 

from disturbance-related changes in annual streamflow. Given the wealth of streamflow data 

available in the contiguous United States (Falcone, 2011; Falcone et al., 2010), there are countless 

opportunities to go “backwards” and reanalyze datasets with respect to nearby and relevant 

streamflow datasets, coincident with changes in land cover including wildfire, forest harvesting, and 

urbanization.  
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Chapter 3 

Forest fire effects on stream water quality at continental scales: A 

meta-analysis 

This chapter is a mirror of the following published article. References are unified at the end of the 

thesis. 

Hampton, Tyler B., Lin Simon G.M. and Nandita B. Basu. “Forest fire effects on stream water quality 

at continental scales: A meta-analysis.” Environmental Research Letters, May 2022. 

https://doi.org/10.1088/1748-9326/ac6a6c. 

All data and codes are publicly available in the online Hydroshare repository: 

https://www.hydroshare.org/resource/537dc5206d584625b0fd28ea6b6872de/ 

3.1 Abstract 

Forested watersheds supply over two thirds of the world’s drinking water. The last decade has seen an 

increase in the frequency and intensity of wildfires that is threatening these source watersheds, and 

necessitating more expensive water treatment to address degrading water quality. Given increasing 

wildfire frequency in a changing climate, it is important to understand the magnitude of water quality 

impacts following fire. Here, we conducted a meta-analysis to explore post-fire changes in the 

concentrations of nitrogen (N) and phosphorus (P) species, dissolved organic carbon (DOC), and total 

suspended sediments (TSS) in 121 sites around the world. Changes were documented over each 

study’s respective duration, which for 90% of sites was 5 years or fewer. We find concurrent 

increases in C, N and P species, highlighting a tight coupling between biogeochemical cycles in post-

fire landscapes. We find that fire alters N and P speciation, with median increases of 40-60% in the 

proportion of soluble inorganic N and P relative to total N and P. We also found that fire decreases 

C:N and C:P ratios, with median decreases ranging from 60-70%. Finally we observe a “hockey 

stick”-like response in changes to the concentration distribution, where increases in the highest 

concentration ranges are much greater than increases at lower concentrations. Our study documents 

strong heterogeneity in responses of water quality to wildfire that have been unreported so far in the 

literature.  

https://doi.org/10.1088/1748-9326/ac6a6c
https://www.hydroshare.org/resource/537dc5206d584625b0fd28ea6b6872de/
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3.2 Introduction 

Forested watersheds sustain a significant portion of the world’s water supply needs (Dudley & 

Stolton, 2003; Rockström et al., 2014). The ecological functioning of many forest biomes is sustained 

by fire (McLauchlan et al., 2020), but fire can also degrade water quality in streams draining forested 

watersheds, and threaten water-provisioning ecosystem services (Emelko et al., 2011; Kinoshita et al., 

2016). These services are under further threat as wildfire regimes across the planet continue to shift in 

frequency, extent, and severity (F. Li et al., 2018; Moritz et al., 2012; A. L. Westerling, 2006), partly 

in response to anthropogenic warming and climate change (Abatzoglou & Williams, 2016; Creed & 

van Noordwijk, 2018; Jain et al., 2021; Khorshidi et al., 2020; Seidl et al., 2017). This dual threat of 

climate change and unpredictable fire regimes demands greater understanding of the altered 

landscape processes after fire that can degrade downstream water quality, and impact the ability of 

water providers to produce safe drinking water (Emelko et al., 2011; Hohner et al., 2019; Robinne et 

al., 2021). 

Decades of wildfire studies have highlighted the effects of wildfires on water resources, including 

modifications of the hydrologic cycle (Basso et al., 2020; Hallema, Sun, Caldwell, et al., 2017; 

Hallema, Sun, et al., 2018; Maina & Siirila‐Woodburn, 2020), the geomorphic regime (Ice et al., 

2004; Shakesby & Doerr, 2006), and element cycling and export (Basso et al., 2020; Bladon et al., 

2008; Crandall et al., 2021; Emelko et al., 2016; Hauer & Spencer, 1998; McCullough et al., 2019; 

Mishra et al., 2021; Rust et al., 2018). While most studies of water quality in post-wildfire landscapes 

have focused on one or two key variables  (e.g., sediments, nitrogen, phosphorus, and carbon), the 

few that have analyzed the coupling of multiple element cycles have allowed us to gain critical 

insights.  For example, Noske et al. (2010) document how the fluxes of total phosphorus and 

suspended sediment were strongly linked post-fire in Australian streams. Similarly, in a Canadian 

Rocky Mountain stream, Emelko et al. (2016) observed how phosphorus speciation shifted after fire 

towards more bioavailable forms, while nitrogen to phosphorus ratios decreased, likely freeing stream 

biota from phosphorus limitation and facilitating algal blooms (Bladon et al., 2008; Silins et al., 

2014). In an Arctic stream in Siberia, Rodríguez-Cardona et al. (2020) observed that decreasing 

dissolved organic carbon concentrations post-fire reduced nitrate uptake efficiency by stream biota, 

thus increasing downstream nitrate export. Another study by (Morales et al., 2013) measured soil and 

stream export of nitrogen, and showed preferential loss of nitrogen relative to carbon from the studied 

volcanic soils after fire. Coupled biogeochemical cycles in post-fire landscapes are likely key factors 
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that control downstream ecosystem responses, such as eutrophication and algal blooms, thus requiring 

further exploration. 

While most studies focus on mean concentration changes after fire, drinking water treatability is often 

by extremes in precipitation, flow, and water quality. Wilkinson et al. (2006) documented that fire 

elevates the concentration of suspended sediment and phosphorus during rare high flow events. 

Indeed, short-term disturbances such as the annual spring flooding in many rivers along with larger 

post-fire floods and mudslides increase suspended sediment and pose a large and immediate challenge 

to drinking water treatability (e.g. post-fire flood events; S. F. Murphy et al., 2015, 2018; Writer et 

al., 2014). Even if the impact on water quality is short lived, extreme events may change the 

distribution of nutrients across a catchment, for example by creating a reservoir of fine-sediment-

associated phosphorus in gravel bedded rivers (Emelko et al., 2016). More needs to be known of the 

behavior of water quality during extreme events after fire.  

Finally, most studies of fire impacts on water quality have been site specific. Multi-site and multi-

study analyses include a review paper by Bitner et al. (2001), a review paper (Smith et al., 2011), and 

a large data synthesis by Rust et al. (2018). Bitner et al. (2001) reviewed how multiple element cycles 

are altered by fire, including in soils, sediment-associated elements, and exported in streams. Smith et 

al. (2011) reviewed how fire altered stream water concentrations of suspended sediment, phosphorus, 

nitrogen, and turbidity across many studies. More recently, a study by Rust et al. (2018) analyzed a 

post-fire water quality dataset of 73 analytes in 153 burned watersheds in the western US. In a 

followup study, Rust, Saxe, et al. (2019) analyzed drivers of the  post-fire water quality response, and 

found that the increase in nitrogen and phosphorus loads was related to the increase in the extent of 

the area burned at a moderate to high severity.  

Here, we build on this body of research and use a meta-analysis approach to explore the interactions 

between element cycles in post-fire landscapes, and the effect of fire on the concentration distribution. 

Our specific objectives are to: (1) quantify the effect of fire on the changes in concentrations of 

suspended sediments, nitrogen, phosphorus and carbon species, (2) quantify the degree of covariation 

between the concentrations of these elements in post-fire landscapes, and (3) quantify the effect of 

fire on concentration distributions.  
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3.3 Methods 

3.3.1 Meta-analyses  

All data and code used in this study are provided in an online repository (Hampton, 2022b).We used 

keyword searches in the Scopus database (Elsevier B.V.), using the following search terms: 

(‘wildfire’ OR  ‘fire’ OR ‘burn) AND (‘water’ OR ‘stream’ OR ‘river’ OR ‘runoff’ OR ‘discharge’ 

OR ‘export’) AND (‘chemistry’ OR ‘treatment’ OR ‘supply’ OR ‘nutrient’ OR ‘nitrogen’ OR 

‘carbon’ OR ‘phosphorus’ OR ‘quantity’ OR ‘water quality’) to isolate publications specific to 

detecting water quality trends in relation to forest fire. The search was applied to the Title, Abstract, 

and Keywords of the papers. The search was conducted in August of 2019, and returned 155 

publications (Table B1) that were further screened using the following criteria: (1) the study focused 

on water quality in streams following wildfires (not on soil-water solute concentrations, nor on lakes), 

(2) the study measured at least one of the following water quality parameters: nitrogen or phosphorus 

in organic (e.g. dissolved organic nitrogen DON), total (e.g. total nitrogen TN, total phosphorus TP), 

or inorganic forms (e.g. nitrate NO3
-
, ammonium NH4

+, phosphate PO4
3-); organic carbon (DOC), or 

total suspended sediment (TSS), (3) studies that specifically referenced the use of fire suppressants or 

chemical fertilizers on the landscape were excluded, to remove their possible chemical influence. 

The meta-analysis presented in this paper draws data from 34 publications, and includes data from 

both wildfires and prescribed burns. Locations of the studies are shown on a world map in Figure 3-1, 

with a total of 121 unique watersheds. The United States has the most studies (20), followed by 

Australia (6) and Canada (5). Other study locations included Portugal, Spain, and South Africa. It is 

notable that since August 2019, numerous papers on these topics have been published, representing 

increased geographic diversity. Future examination of this literature will be able to minimize the bias 

of studies towards the United States, Australia, and Canada. 
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Figure 3-1. Locations of 121 watersheds from 34 studies in the metaanalysis. 

 

3.3.2 Data extraction and Harmonization 

Data were either extracted from tables or figures in papers. We used WebPlotDigitizer version 4.2 

(Rohatgi, 2019) to extract data from figures. We also recorded study metadata for the dates of fires, 

so that concentrations can be compared temporally to the fire occurrence. Where graphical data were 

not included, data were extracted from tables in studies that reported either average pre- and post-fire 

concentrations of water quality constituents, or annual or monthly values. The majority (19) of studies 

used data from reference, unburned catchments to compare to data from burned catchments, and these 

are hereafter referred to as control-impact studies. A smaller group of studies (11) relied exclusively 

on comparison of pre- and post-fire data, and these are hereafter referred to as before-after studies. In 

a much smaller subset of studies (4) there was both before-after data, though this was sometimes 

limited to only certain water quality constituents. When both were present for one variable, we opted 

to compare fire effects using the control-impact axis. We normalized all concentration units to mg/L 

(e.g. mg P/L, mg N/L and mg C/L). We assumed “filterable reactive phosphorus”, “soluble reactive 

phosphorus”, and “phosphate” to functionally measure the same thing (PO4
3-). Likewise, we assumed 

that “oxidized nitrogen” was the same as NO3
-.  
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3.3.3 Metrics and Statistical Analysis 

We used several different metrics and normalization strategies to evaluate the effect of fire on the 

water quality variables across the 81 burned sites. The change metrics used in this study are the 

change ratio (CR) of mean concentrations (CRM; (Hedges et al., 1999; Rosenberg et al., 2013), 

change ratio of the coefficient of variation (CV) of the concentration distribution (CRCV), Absolute 

Change (AC), and the decile normalized change (dNC). We used CR instead of more sophisticated 

metrics like the “Hedge’s d” since the latter requires estimates of the variance of water quality 

concentrations pre- and post-fire, and a large proportion of our sites did not have enough data to 

reliably estimate a variance (Borenstein et al., 2009).  

We define CRM as the ratio of the mean concentration in the burned to the control catchment for the 

control-impact studies, or the ratio of the mean concentrations in the post-fire to the pre-fire periods 

for the before-after studies. This metric was calculated using averaging across all years (CRM), the 

first five years (e.g., CRMYr1-5), and for the first year in the dataset (e.g., CRMYr1). A CR value of 1 

indicates no change, while a value of 10 signifies ten-fold higher concentrations after the fire relative 

to the average reference concentration. We define CRCV  as the ratio of the coefficient of variation 

(CV) of the concentration in the postfire period to the CV in the prefire period. Here, CV is defined as 

the ratio of the mean concentration to the standard deviation in the concentration deviation. The CRCV 

metric was estimated only for sites with more than three samples in each of the reference and burn 

periods.  

We assessed correlation between co-measured change ratios of different parameters. This analysis 

relied on sites that measured multiple parameters, and on having sufficient data (at least 4 points) to 

assess the relationship between parameters across sites. We used the non-parametric Kendall's rank 

correlation to identify significant relationships. KRC allows us to assess the statistical significance of 

monotonic relationships, and accounts for relationships that may not be strictly linear in shape. KRC 

also rules out relationships that are heavily biased by large-value outliers, which may cause the linear 

relationship to be statistically significant, where KRC is not. 

The change ratio metric does not capture either the effect of fire on concentration extremes, or the 

decrease in concentrations in the years post-fire. Ideally, evaluation of the effect of fire should take 

into account both these factors; however data is often not available at a fine enough temporal 
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resolution for such analysis. Given that 90% of our sites had data for <5 years, we analyzed the effect 

of fire on concentration extremes, but did not explore the recovery effect in this study.   

To evaluate the effect of fire on concentration extremes, we developed a methodology using 

concentration decile curves. For this, we isolated a subset of studies where data was available at a 

higher temporal resolution (at least ten samples in the pre- and post-fire periods). The methodology is 

illustrated in Figure 3-2 using data from one burned and reference catchment pair (Bladon et al., 

2008)(Figure 3-2a). We grouped the two time series into deciles, and estimated the decile specific 

mean concentration for the reference and burned catchments(Figure 3-2b). We then estimated the 

decile-specific Absolute Change (dAC; Figure 3-2c) by subtracting the decile-specific mean 

concentration of the Burned (red line in Figure 3-2b) catchment from the corresponding mean 

concentration of the reference catchments (blue line in Figure 3-2b). Finally, we divided the dAC for 

a site by the absolute change (AC) for that site across all concentrations to estimate the decile 

normalized change (dNC) (Figure 3-2d). The absolute change (AC) is estimated by subtracting the 

mean concentrations of the reference period from the mean concentration of the burned period. The 

decile normalized change (Figure 3-2d) showed a distinct “hockey stick” pattern, where at higher 

deciles (9 or 10) there was the largest increase in concentration. A benefit of our decile-based analysis 

is that we can accommodate sites with unequal numbers of burned and reference samples. This 

altered ratio allows us to compare across sites, where total changes range widely in magnitude along 

with the reference concentrations. 

3.3.4 Attribution Analysis 

We conducted an analysis of catchment predictor variables and the water quality response 

variable CRM. Predictor variables included burn type (natural or prescribed), fire intensity (low, 

medium, high), percent catchment burned, catchment area, average concentration during the control 

period, and catchment slope. Studies were unreliable in providing climatic context of their 

catchments, so we estimated the aridity index for each catchment from a global raster dataset 

(Trabucco & Zomer, 2018). Relationships were only analyzed if at least 20 catchments had 

corresponding variables. Correlation between continuous variables was tested using Kendall's rank 

correlation, while response variables were compared with categorical predictor variables using the 

Kruskal-Wallis test. Both methods were used from the using the “stats” package in R (R Core Team, 

2023). Following the methods of (Rust, Saxe, et al., 2019), conditional inference trees were used to 
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determine whether any response variables had threshold responses to the predictor variables. We used 

the ctree function from “partykit” (Hothorn et al., 2006). 

 

 

 

Figure 3-2. Example workflow. Nitrate data from Bladon et al. (2008) was used to calculate the 

Decile Normalized Change (dNC) Burned site data is in red and reference site data is in blue. The 

original time series data (a) is sorted by sample rank and then binned into deciles (b). The mean of 

each decile bin is taken (blue and red lines in b) and the reference is subtracted from the burned value 

for each of the ten deciles to estimate the absolute decile change (dAC in c). The dAC is then divided 

by the total average change (here, AC~0.07 mg/L) to calculate the decile normalized change (dNC in 

d). 
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3.4 Results and Discussion 

3.4.1 Study Metadata 

 

Figure 3-3. Study Metadata. Burned sites (n=81) are rank-ordered based on (a) number of post-fire 

years of data and (b) samples per year. Nitrate has the most sites with over 5 years of post-fire data, as 

well as the most sites with over 10 samples per year. 

 

Our meta-analysis identified 34 studies distributed around the world (Figure 3-1; Table B1) that 

represented data from 121 unique study catchments (of which 81 were burned). Catchment slopes 

ranged from 0 to 70% (median 20%), catchment area ranged from 0.04 to 105 hectares (median 3500 

ha), and annual precipitation ranged from 18 mm to 3300 mm (median 820 mm) across our study 

sites (Table B2). The most commonly sampled parameter was NO3
- (at 67 of 81 sites; Figure 3-3a; 

Table B3), followed by TP (41), TN (31), NH4
+ (30), TSS (26), PO4

3- (20), DOC (17), and DON (14). 

While not used further in this meta-analysis, the diversity of other parameters was notable: 14 studies 

sampled for major cations (incl. K, Ca, Na, Mg), 10 for pH, 5 for dissolved O2, 4 for other dissolved 

metals (incl. Fe, Mn), and 3 for dissolved organic nitrogen (DON). Only 47% of sites had more than 

1-year of data post-fire, with the greatest data density for NO3
- (Figure 3-3a). Further, only 9% of 

sites sampled beyond 5 years after the fire. This highlights the propensity of wildfire studies to focus 

on collecting samples over a short timeframe, making it challenging to evaluate recovery times.  

Studies also had a very wide range in the number of samples collected, with sampling frequency 

ranging from 1 to over 50 samples per year. Figure 3-3b highlights the wide range of sample 
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numbers, with NO3
- having by far the most studies and about a quarter of studies having greater than 

10 samples per year. For most parameters, about half of sites had a sample density of 10 samples or 

greater per year , with notable data deficiency for NH4
+, DON, TN, and TP (Figure 3-3b).  

 

3.4.2 Concentration changes between pre-fire and post-fire periods 

 

Figure 3-4. Post-fire changes. Change Ratios for (a) mean concentration change (CRM) and (b) 

change in CV (CRCV). A change ratio of 1 indicates no change. Each point is one burned catchment 

site, with study type represented as shapes (before-after as triangle, control-impact as circle). 

Boxplots are shown for all before-after and control-impact sites combined. The numbers of sites with 

data per parameter are included in Table B3, with means and medians of the change ratios in Table 

B4. Stars above each parameter indicate that the population of change ratios has a mean significantly 

(p<0.05) different from 1 (t-test performed on the log of change ratios). 

 

Most sites documented an increase in concentrations across the constituents analyzed, with a median 

CRM of 2.1 for NO3
-, 1.8  for TP, and 1.3 to 1.5 for NH4

+, PO4
3-, TN, DOC, and TSS (Figure 3-4a). 

The range of increases across sites was highly variable, with the highest ranges for CRs observed for 

NO3
-, PO4

3-, and TSS, while NH4
+, TN, and DON had smaller ranges (Figure 3-4a). We found CRM < 

1 for about 38% of sites for TSS and 18% of sites for NO3
-, indicating that for those sites post-fire 

concentrations were lower than pre-fire concentrations. Our documented CRM values are similar to 
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those found by Rust et al. (2018) who synthesized data from a large number of wildfire-impacted 

catchments in the western US (Table B4).We tested whether study duration influenced CRM by 

comparing the all-time CRM (Figure 3-4) with CRM based on the first five post-fire years of data 

(CRMYr1-5). For all parameters, the distribution of the two values were indistinguishable (p>0.8, 

Wilcoxon Rank Sum test), and they were highly correlated (Pearson’s R2>0.99) (Figure B1).  

We also tested whether the variability in the concentration distributions changed after fire by using 

the CRCV. This analysis focused on a smaller subset of the data (Table B3) since all sites did not have 

adequate data to reliably estimate variance. The variability in concentrations increased for ~60-70% 

of the sites for NO3
-, NH4

+ and TN, but increased for 40-60% of sites for DOC, PO4
3-, TP, and TSS. 

For NO3
-, NH4

+, and TN, there was a median 1.2 to 1.3-fold increase in CV post-fire, while PO4
3- was 

the only parameter with CRCV approximately 1 (Figure 3-4b). We tested whether CRCV and CRM for 

each parameter were correlated (Figure B2). In log-space, the correlation was positive and significant 

for NO3
- (p=0.05, R2=0.08), NH4

+ (p=0.003, R2=0.38), and DOC (p=0.03, R2=0.33), suggesting 

increases in mean concentration also corresponded to increases in concentration variability. 

3.4.3 Co-variation between elemental cycles in burned watersheds 

We then analyzed relationships between the CRM values of the various elements to understand how 

biogeochemical cycles interact post fire. Here, we focused only on a subset of the total dataset where 

data from multiple constituents was available (63 burned sites). The most data existed for sites co-

measuring NO3
--TP (30), then by NO3

--TN (27), NO3
--NH4

+ (26), TN-TP (23), NO3
--TSS (22), and 

TN-TSS (21). We found that constituents generally increased together after fire (Figure 3-5), and the 

CRM values of multiple parameters were significantly correlated (Figure 3-5, Table B5). The most 

significant positive correlations (assessed by Kendall’s rank correlation (KRC) and τ) were observed 

between TP and PO4
3- CRs (slope = 0.30, KRC p = 0.07, τ=0.62), and TN and NO3

- CRs (slope = 

0.36, KRC p = 0.01, τ=0.36). The positive relationship between the dissolved and total N and P 

species suggests that similar source and flow pathways impact both dissolved and particulate 

elemental species. We also observed significant relationships between change ratio pairs DOC-TN 

(KRC p<0.01, τ=0.69) and DOC-PO4
3- (KRC p=0.06, τ=0.73), highlighting the coupling between the 

C, N and P cycles. Finally, TSS showed insignificant correlation to all N, P and C species, except 

DOC (Figure 3-5; Table B3). No significant relationship was observed between TSS and TP, contrary 
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to other studies that have documented significant TP-TSS relationships (Froelich, 1988; Reddy et al., 

1999; Romanya et al., 1994); (Noske et al., 2010)).  

 

Figure 3-5. Comparison of CRM for pairs of constituents between burned and reference 

conditions. There is one point for each burned-reference pair. CRM=1 indicates no change. In each 

subplot, the black dashed 1-to-1 line is drawn. Kendall’s rank correlation was measured for each 

relationship, and significant relationships (p<0.10; Table B5) are shown with a star in the upper right 

of each subplot. For all data (including NH4
+ and DON) see Table B5. The upper right inset shows 

data availability for pairs of parameters.  
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Figure 3-6. Change ratios (CRM) for the nutrient ratios. A value greater than 1 indicates that the 

ratio of the two elements has increased post-fire compared to the reference. Data is presented as in 

Figure 3-4.  

 

While significant correlations between the CRM values highlight the coupling of the biogeochemical 

cycles, the slope of the relationship captures the relative proportions of the changes post-fire. For 

example, most points in the PO4
3--TP relationships (Figure 3-5) lie below the 1:1 line, implying that 

PO4
3--TP ratio increases after fire, with a median CRM value of 1.3 post-fire (Figure 3-6). The results 

are similar for the NO3
-:TN ratio where ~75% of the sites document a value of CRM>1 after fire, with 

over 4-fold increases at one site, and a median value for CRM of 1.4 increase across all sites (Figure 

3-6).  

Fire contributed to both increases and decreases in the TN:TP ratio across the sites analyzed, with a 

median CRM of approximately 1 (IQR 0.57-1.1) (Figure 3-6). The TP:TSS ratio increased after fire, 

with a median CRM of 1.3, which we attribute to an increase in the PO4
3--TP ratio (median CRM=1.3) 



 

 55 

and decrease in the PP-TP ratio (CRM=0.93) post-fire (Figure 3-6). Finally, we found consistent 

patterns in the ratios of DOC-NO3
- and DOC-PO4

3- post-fire, with all sites exhibiting decreases in 

carbon to nutrient ratios post-fire. 

3.4.4 Effect of fire on concentration extremes 

 

Figure 3-7. Decile changes. Following the example in Figure 3-2, for each burned site with sufficient 

data to calculate deciles, the decile normalized change (dNC) was calculated as the ratio of decile 

change (dAC) over total change (AC). For each parameter, the median value of dNC is shown with 

error bars representing the interquartile range. For all data, see Figure B3. 

 

While the above analysis focused only on the mean change across the post-fire period, fire can 

potentially impact concentration extremes and this was visualized using concentration-decile curves. 

For this analysis we used a subset of the studies that had enough samples: 33 burned sites for NO3
-, 

and 10-18 for TSS, TN, TP, DOC, NH4
+, and PO4

3-. The decile normalized changes (dNC) were 

aggregated across all sites to evaluate the effect of fire on concentration extremes (Figure 3-7).  We 

find the “hockey stick” pattern that was apparent at a single site (Figure 3-2) to be apparent for almost 



 

 56 

all parameters, and across all sites (Figure B3 for all sites). We find TSS to have the most dramatic 

effect, with the tenth decile concentrations increasing six times more than the mean increase across all 

sites, while the deciles lower than eight all recorded increases less than the mean increase. Again, this 

suggests that for all parameters the vast majority of the time, absolute changes (dAC) at high deciles 

(7-10) drive the magnitude of the site-specific change in the mean concentrations (AC). Looking at 

low-decile changes, values are either very close to zero or sometimes negative. This suggests that 

during periods when an unburned catchment would experience low concentrations, little change is 

seen during the same periods in burned catchments. More extreme behavior is observed at the higher 

deciles where the median 10th decile change for TSS is 6 times the average increase in TSS 

concentration, highlighting that the extremes in the concentration distribution show greater change in 

burned catchments. Finally, it is important to note that there is significant spatial variability between 

the sites, but the “hockey stick” persists across almost all sites (Figure B3). These documented 

increases in concentration extremes are important for drinking water treatment operators that have to 

plan for extremes in flow and concentrations after fire (Hohner et al., 2019). 

One challenge in analyzing these data was the wide range in effect sizes, characterized as either dAC 

or decile Change Ratios (dCR; Figure B4). The normalized metric dNC significantly compressed 

variability, highlighting the importance of changes at high concentrations. That said, the use of 

Change Ratios throughout the rest of this study highlights benefits and some limitations of these 

metrics. CR can be highly influenced by small denominators in the fraction, thus inflating the metrics. 

For example, dCR values show indiscernible patterns across deciles (Figure B4), because as you 

decrease in decile, the concentration decreases and the dCR metric inflates. While different metric 

certainly have different uses, we are confident that the dNC provides a useful comparison of the 

magnitude of decile changes relative to total changes. 

3.4.5  Attribution Analysis 

The results of the attribution analysis were challenging to interpret, given the limited information 

available at the individual sites, and the high variability between the sites. CRM for NO3
- was 

negatively correlated with catchment area (Kendall’s rank correlation tau Krct, p<0.01, n=55), 

possibly indicating dilution effects at larger catchment sizes. While CRM for NO3
- did not have a 

significant relationship with percent burned, catchment size was negatively correlated with areal burn 

percent (Krct, p=0.04; Figure B5). Smaller catchments have more prescribed fires (Kruskal-Wallis 
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test (KWt), p<0.001), which possibly contributes to the higher burn percent. In contrast to the 

individual correlations, the conditional inference tree analysis highlighted a breakpoint predicted by 

burn type for CRM for NO3
- (prescribed, n=7, mean 29.5; natural, n=64, mean 4.7; p=0.015). The 

relationships were also not consistent across the spectrum of solutes, with CRM for TP being 

positively correlated with catchment area (Krct, p=0.03, n=29), while CRM for TSS had a significant 

correlation with areal burn percent (Krct, p=0.02, n=23). Overall, our attribution analysis (Figure B6) 

was not able to identify any common trends among variables. Part of the challenge in identifying 

drivers of nutrient changes are the confounding effects of single perturbation events from long-term 

nutrient budget alterations. A recent analysis by (Crandall et al., 2021) compared pristine and 

anthropogenically impacted burned watersheds in Utah, USA. They conclude that “direct human 

impact, not megafire, is the primary threat to aquatic ecosystems in semiarid ecosystems.” A recent 

isotope-tracing study (Abbott et al., 2021) in burned Arctic watersheds highlighted that the isotopic 

signature of exported nitrate was similar to that in unburned watersheds, highlighting the ability of 

fire to mobilize existing nutrient stocks. Other analyses have focused on a wider range of variables, 

such as stream temperature, that have been affected by fire (Kichigina & Bilichenko, 2019; Rhoades 

et al., 2011; Subiza et al., 2018). These kinds of analyses will be improved in the future as more high 

temporal and spatial resolution water quality data are combined with detailed catchment 

characteristics from satellites and other sources.  

3.5 Summary and Conclusions 

In the present work, we have used a meta-analyses approach to quantify the effect of fire on nitrogen, 

phosphorus, carbon species, as well as suspended sediments in streams draining burned watersheds. 

We identified 34 studies, including data from 81 burned and 40 reference catchments. We found that 

while 31 studies measured flow, almost none had data in an accessible format for use in our 

metaanalysis. We acknowledge that our sites and findings are primarily relevant to North America, 

and future extensions of this work should include a broader geographical distribution of sites. With 

increasing incidences of wildfires across the world, the number of studies exploring wildfire effects 

are increasing which will allow future meta-analysis studies to be more geographically diverse. For 

water quality parameters, the most data were available for nitrogen (67 as NO3
-, 30 as NH4

+), 

followed by phosphorus (41 as PO4
3-, 20 as TP) and suspended sediments (26 sites). Studies that 

looked at DOC and DON were more limited. Most studies focused on one or two elements, thus 
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making it challenging to understand the coupling of elemental cycles. For example, only ~40% of 

NO3
- sites were also sampled for TSS or TP. Finally, we found that most sites (>92%) recorded data 

for 5 years or fewer, severely limiting our ability in this study to evaluate recovery of streams post-

fire.   

Overall, we found that concentrations of nutrients and sediments increased after fire (measured as the 

change ratio of mean concentration CRM), with the largest increases observed for NO3
- (median 

CRM=2.1), TP (CRM=1.9), and NH4
+ (CRM=1.5), with smaller increases for PO4

3-, TN, DOC, and 

TSS. When exploring the coupling of nutrient cycles, we found that increases in one parameter 

generally predicted an increase in another parameter. The proportion of inorganic nitrogen and 

phosphorus (NO3
--TN and PO4

3--TP) increased in 74% and 62% of sites post-fire, with median CRM 

values of 1.4 and 1.3, respectively. We also found that DOC-NO3
- and DOC-PO4

3- ratios decreased 

post fire at almost all sites. Increase in dissolved inorganic nutrients in the immediate aftermath of the 

fire can be attributed to a variety of reasons, including: (1) subsurface release due to suppressed 

nutrient uptake by terrestrial biota (Certini, 2005; Hauer & Spencer, 1998; Ranalli, 2004), (2) ash 

deposits from the fire as a source of dissolved organic and inorganic nutrients (Brito et al., 2021; 

Cawley et al., 2016, 2018; Earl & Blinn, 2003; Revchuk & Suffet, 2014; Rhoades et al., 2011; 

Spencer et al., 2003), and (3) inhibition of in-stream processes, such as NO3
- uptake, due to lower 

DOC export and a more aromatic DOC signature from burned watersheds (Rodríguez-Cardona et al., 

2020). Indeed, we find a decrease in DOC-NO3
- and DOC-PO4

3- ratios after fire, which possibly 

inhibits NO3
- uptake in the streams draining the forested watersheds. D. M. Anderson et al. (2002) 

have suggested that shifts in nutrient ratios including N:P and DOC:DON caused shifts in freshwater 

plankton species composition. The changes in these ratios are important to the downstream ecosystem 

and potential for algal growth. Dissolved forms of the nutrients are more bioavailable, and thus might 

pose greater eutrophication risk downstream. Much is yet to be learned about these altered ratios in 

post-fire landscapes.  

Finally, we explored the effect of fire on concentration extremes, and found that concentration 

increases were greater at the higher concentration deciles, compared to the lower concentration 

deciles, creating a hockey-stick-like response. The increase in concentration extremes in the post-fire 

period has significant implications with respect to water treatability for downgradient communities 

that might be using the river as a water source. It is thus recommended that studies place special 

emphasis on capturing high concentration events that often co-occur with high flow events. Our meta-
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analysis highlights the need for continued long term monitoring of water quality in post-fire 

landscapes, along with the exploration of covariation between multiple elemental cycles and storm 

driven responses in concentration extremes. Increased data-sharing of existing and future datasets will 

greatly aid future analyses of fire effects on water quality, especially as more studies from around the 

globe are published on this topic. Such advances in the field will help managers plan for water 

treatment challenges arising from fires in forested source waters. Stream corridors are complex 

ecohydrological systems, and disturbance regimes add even more complexity as we seek to 

understand the effects of short- and long-term changes across the landscape. Fire has been a natural 

part of these systems for millenia, and there is much work left to do to understand the impacts of fire 

to both natural systems and our human infrastructure.  
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Chapter 4 

Wildfire alters stream nutrient concentration-discharge 

relationships. 

4.1 Abstract 

Numerous studies have documented changes to both flow and water quality in streams following 

wildfires. While documenting changes in nutrient and sediment fluxes after fire is of great relevance 

to land and water managers, less attention has been paid to changing concentration-discharge (CQ) 

relationships. CQ analysis has been used extensively in the study of catchments across a wide range 

of sizes, land cover, and disturbance regime to parse relevant processes driving catchment export of 

solutes and suspended matter. With flow data and nutrient concentrations (nitrogen, phosphorus, 

carbon) from fire-impacted watersheds across the conterminous United States, we modeled daily 

concentration using the WRTDS model (Weighted Regression over Time, Discharge, and Season) 

with the “Wall” feature to analyze the sharp discontinuity in the pre- and post-fire CQ relationships. 

To document the changes in CQ relationships after fire, we used standard metrics such as 

concentration (C), discharge (Q), and flux; as well as the CQ slope (b), the ratio of the coefficients of 

variation of the C and Q timeseries (CVC/CVQ), and the regression fit of the log-linear CQ 

relationship. Some of these metrics also allow us to characterize CQ behavior as generally 

chemostatic versus chemodynamic (dilution- or enrichment-type). We use clustering techniques to 

understand the magnitude and direction of changes in CQ characteristics. Our results will help reveal 

in what circumstances (when and where) certain altered landscape processes drive the changes in 

stream nutrient CQ relationships after fire. 

4.2 Introduction 

The effects of fire on stream water quality have been subject to intense study (Emelko et al., 2011; 

Rust et al., 2018). From a land management perspective, forested watersheds are often managed to 

provide multiple ecosystem services, including provision of ecosystem services, commercial 

silviculture, and water supply (Ernst, 2004). Fire is well documented to result in altered flows and 

concentration regimes in streams (Hallema, Sun, et al., 2018; Hampton et al., 2022; Hampton & Basu, 

2022; Kinoshita & Hogue, 2015; Rhoades, Nunes, et al., 2019; Rust et al., 2018; Rust, Saxe, et al., 

2019; Saxe et al., 2018), which poses challenges for water treatment and provision (Bladon et al., 
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2014; Emelko et al., 2011; Hohner et al., 2019; Nunes et al., 2018). With the observable increase in 

fire frequency and intensity across many areas of the globe (Cannon & DeGraff, 2009; A. L. 

Westerling, 2016), there is also interest in understanding the underlying mechanisms of how fire 

impacts hydrologic and biogeochemical watershed processes. Incorporating fire effects into modeling 

frameworks is one way to test our understanding (Basso et al., 2020; Maina & Siirila‐Woodburn, 

2020), as well as develop predictive tools that then inform watershed and land managers. Still, 

syntheses of possible effects are sorely needed to supplement the numerous site-based studies that 

have been published so far. 

Moving towards a broad accounting of the effects of fires on stream water quality will further inform 

both watershed management strategies and mechanistic understanding. It is perhaps most important to 

recognize that we are seeking to understand the effects of fires overlain across a deep body of 

knowledge on the hydrogeochemical functioning of headwater and forested catchments (S. P. 

Anderson et al., 1997; Godsey et al., 2009, 2019; Thompson et al., 2011). Recent literature has 

documented that in the majority of cases, when aggregating across large numbers of fires and 

catchments, that stream discharge and concentrations of nutrients and suspended solids increase after 

fire (Bitner et al., 2001; Hallema, Sun, et al., 2018; Hampton et al., 2022; Hampton & Basu, 2022; 

Rust et al., 2018; Smith et al., 2011). As expected with a large number of samples, there is variability 

in response direction, significance, and magnitude. There are examples of decreases in flow after fire 

(including after attempts to normalize for climatic variability (Hallema, Sun, et al., 2018; Hampton & 

Basu, 2022); along with decreases in concentrations of nutrients, suspended solids, and various 

dissolved species (Hampton et al., 2022; Rust et al., 2018). With the large amount of data available, it 

is now possible to begin exploring possible mechanistic explanations for fire effects on streams. 

Foremost to explore is the fact that cycles and fluxes of water and elements are intrinsically linked. In 

the literature of post-fire stream water quality effects, there have been few attempts to link in the 

hydrologic behavior of catchments through concentration-discharge (CQ) analysis (Bladon et al., 

2008; Emmerton et al., 2020; Silins et al., 2014; Wilkinson et al., 2007). While effects on total fluxes 

(concentration multiplied by discharge) have been examined, the more complicated interrelations of 

concentration and discharge have not yet been analyzed across many catchments. 

Catchment moisture regime, hydrologic pathways, and residence times (influenced by all manner of 

variables: soils properties, topography, etc.) are inseparable from our understanding of the cycling 

and transport of elements in a watershed (Godsey et al., 2009, 2019; Musolff et al., 2015, 2021; 
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Winter et al., 2021). Structural heterogeneity plays a key role in governing what pattern of water 

quality concentrations we observe at a catchment over time, including spatial distribution of element 

pools within a catchment (Abbott, Gruau, et al., 2018), and the distribution of these pools across soil 

depth (Thompson et al., 2011; Zhi & Li, 2020). Hydrologic residence time tends to correlate 

negatively with soil depth, such that “deep flow” that has percolated through the soil and traveled 

through deeper regolith or bedrock has a slow and fairly constant contribution to total streamflow. 

“Shallow flow” is generally “fast flow”, traveling overland during rain events or through shallow soil 

pathways (including soil pipes; (van Meerveld & McDonnell, 2006; van Meerveld & Weiler, 2008). 

Element distribution is also highly heterogeneous with soil depth (Inamdar et al., 2004, 2008), and 

thus transport from these pools to the stream is subject to the total amount of water flow, its speed, 

and spatial distribution within the catchment. 

In a very simplified conceptual model of watershed element cycles, the streamflow between storm 

events (i.e., base flow) consists mostly of deeper groundwater that has longer residence times. Here, 

slow mineral weathering may contribute to the chemical profile of this water, with higher 

concentrations of silica and elemental cations. In addition, any highly mobilizable species (for 

example nitrates) may have been mobilized as water initially percolated down through soils, and is 

then carried along these deeper flowpaths. When rain falls, water will access numerous shallower and 

faster flow paths (e.g. because of soil saturation, increased hydraulic head, infiltration exceedance, 

etc.). While reduced soil-water residence times may result in decreased concentrations of mobilizable 

species (e.g. weathering products, nitrate), increased erosive power in streams will increase 

concentrations of solids including sediments and organic particulates (containing particulate carbon, 

phosphorus, nitrogen, etc.). In addition, “fill-and-spill” behavior  (van Meerveld & McDonnell, 2006) 

can be activated when landscape features like wetlands reach a threshold where organic-rich waters 

flood the stream network (see also: “pulse-shunt” concept, (Raymond et al., 2016). With this 

conceptual model in mind, we can next explore how fire would change elemental and hydrologic 

cycles and fluxes. 

As described above, there are a wealth of studies summarizing fire effects on hydrology and water 

quality across hundreds of catchments. Numerous studies have individually explored the mechanisms 

behind these changes in great detail, from erosive effects (Abney & Berhe, 2018; Blake et al., 2010; 

Crandall et al., 2021; S. F. Murphy et al., 2012; Silins et al., 2009; Stone et al., 2011) to ash chemistry 

and transport (Bodí et al., 2014; Brito et al., 2021; Cawley et al., 2018; Earl & Blinn, 2003) to soil 
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hydrophobicity and overland flow (Certini, 2005; J. Chen, McGuire, et al., 2020; J. Chen, Pangle, et 

al., 2020; Delač et al., 2022; Robichaud, 2000). Natural disturbances are crucial to many ecosystems 

(N. G. McDowell et al., 2020; Turner, 2010), with fire-dependent (co-evolved with fire) ecosystems 

covering 53% of global terrestrial area (Shlisky et al., 2007, 2009). Of course, there will be immense 

variability across ecozones of the impacts of fires on vegetation, soils, hydrology, and 

biogeochemical cycles. On top of this, there is bias in historical studies of fires to North America and 

Australia (Hampton et al., 2022). Nonetheless, no study to date has synthesized the interplay between 

altered concentration regimes and post-fire discharge, putting fire effects in context of our 

understanding of the drivers of concentration regimes (Moatar et al., 2017; Zhi & Li, 2020). We have 

gathered concentration and discharge time series data from 29 catchments from the U.S. Geological 

Survey database to analyze CQ behaviors pre- and post-fire. 

4.3 Methods 

This study took advantage of the enormous amount of publicly-available satellite imagery and water 

conditions data from the United States. We used previously published analysis by (Rust et al., 2018) 

intersecting wildfire extent data with available watershed data on discharge and water quality.  

4.3.1 Data Acquisition 

The Monitoring Trends in Burn Severity (MTBS) program uses 30-meter-resolution Landsat data to 

map the extent of fires and classify severity based on ground reflectance (Eidenshink et al., 2007). 

These data were overlaid with the geographic extent of the U.S. Geological Survey (USGS) 

monitored watersheds to determine which watersheds experienced fires, in which years, and which 

parameters (streamflow and water quality) are available in the preceding and following 10 years after 

each fire.  

After identifying fire-affected watersheds to be examined, streamflow and water quality data were 

downloaded from the USGS National Water Information System (NWIS) via the package 

dataRetrieval (De Cicco et al., 2022) in the software R (R Core Team, 2023). The package 

USGSreadR (Hampton, 2022c) was used to manipulate and sort NWIS data. Compared to the study 

by Rust et al., this study focused narrowly on common nutrients, including nitrogen (N) as total N 

(TN), ammonium (NH4
+), organic N (ON), nitrate (NO3

-), and nitrite (NO2
-); phosphorus (P) as total P 
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(TP), phosphate (PO4
3-), and organic P (OrgP); and carbon (C) as organic C (OrgC). A full list of the 

USGS parameter codes used in data gathering can be found in Appendix C.  

4.3.2 WRTDS 

Next, the concentration and flow data were input into the Weighted Regression against Time 

Discharge and Season (WRTDS) model (Hirsch et al., 2010). WRTDS was chosen to process the 

input data because of variation in the number of samples between site-fire-parameter sets. With this 

variation, comparison of variables like coefficient of variation and R2 of regressions might be 

compromised by different sample numbers. A uniform number of daily modeled data points in the 

pre- and post-fire time series should allow for appropriate comparison. The model was implemented 

in the EGRET package in R (Hirsch & De Cicco, 2015). The WRTDS model allows sparse water 

quality data to be paired with continuous flow data to interpolate a fully continuous water quality 

timeseries. Data from 10-year pre- and post-fire intervals were input into the model, and additional 

screening ensured that at minimum 25 water quality measurements were taken in each interval. The 

expansion to 10 years of data pre- and post-fire served to allow the WRTDS model to have ample 

calibration data to capture CQ dynamics during each interval, and to accommodate 7-year windows 

across the model domain (windowY and windowSide). In our implementation, we used the “wall” 

feature (EGRET 3.0 enhancements; (Hirsch & De Cicco, 2018) to differentiate between the pre- and 

post-fire timeseries. As discussed in their commentary on the model enhancements, Hirsch & De 

Cicco lay out the utility of WRTDS for hypothesis testing of altered CQ regimes. This study is to our 

knowledge the first application of the “wall” feature in the examination of disturbance effects on 

water quality.  

4.3.3 Number of Sites 

From the approximately 150 sites used by Rust et al. (2018) accessible via the NWIS, 47 sites 

measured the hydrochemical variables of interest for this study (Appendix C Table C1). Inclusion 

criteria for the study by Rust et al. (2018) were a minimum of 10 water quality measurements in each 

of the 5-year-long pre- and post-fire periods, and a watershed burned percent greater or equal to 5%. 

Our criteria narrowed their list of sites from 47 to 32 by further expanding the sample requirements to 

25 water quality measurements in each of the 10-year-long pre- and post-fire periods. We filtered out 

sites where greater than 40% of water quality measurements appeared to be at or near method 

detection limits (with non-unique single-significant-digit values: e.g. 0.01, 0.001 mg/L). After 
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running the WRTDS model, model-runs were excluded from the study if the flux bias statistic (Hirsch 

& De Cicco, 2015) exceeded 10%. These final filters reduced our site count to 29. Accounting for 

multiple parameters measured at each site, and sometimes multiple fires documented at the same site 

(at minimum 10 years apart), our analysis is conducted on 186 site-fire-parameter sets. 

 

Figure 4-1: Map of study sites in the United States. The percentage of watershed burned is 

represented by point size. 

 

4.3.4 CQ Analysis 

After using WRTDS to generate 10-year pre- and post-fire daily discharge and concentration time 

series, we fit both intervals to the linearized power-law CQ model:  

 𝑙𝑛(𝐶)  =  𝑏 ∗ 𝑙𝑛(𝑄) + 𝑙𝑛(𝑎) (4-1) 

where a and b are the calibrated intercept and slope coefficients, respectively. Calculations were 

performed using the stats package in R. The linear model was fit for the 10-year pre-fire data, as well 

as for the first post-fire year, and the first 5 post-fire years. The regression R2 was recorded. 

The metric CVC/CVQ (Thompson et al., 2011) was calculated as the coefficient of variation of 

concentration divided by the coefficient of variation of discharge (Q).  

4.3.5 Linear Regression 

 Using standardized multiple linear regression, we performed linear regression between changes in 

concentration (crC, all change ratios were log-transformed) and changes in flow (crQ), concentration 
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variability (crCVC), b slope (absolute change), and a intercept (absolute change). We performed 

multiple linear regression of crC against the four other metrics, along with 1-on-1 comparisons, and 

“leave one out” analysis to measure the improved contribution of each metric to the linear models.  

4.3.6 CQ Clustering 

Past studies have used CQ analysis to examine slopes and variability in CQ-space. Choosing which 

metrics and variables to examine, and how to interpret these is inevitably arbitrary. We point out that 

the commonly used 𝑏 slope parameter has frequently had bins of -0.2 < b < +0.2 regarded as a 

working definition of “chemostatic” (Meybeck & Moatar, 2012; Moatar et al., 2017). Indeed, this 

threshold decently bounds data for geogenic solutes that in behavior should be chemostatic (Godsey 

et al., 2009). In commentary on the exclusive-use of power-law CQ slopes, (Thompson et al., 2011) 

said “the absence of a dependence of concentration on discharge (as indicated by, e.g., b ≈ 0) is not 

evidence that the variability in concentration is small.” They reference the variability in concentration 

relative to the variability in discharge (specifically, the coefficients of variation divided, as in 

CVC/CVQ) as another characteristic of concentration regime. There is a weakness in the CVC/CVQ 

metric to assess variation around a power-law CQ fit. As shown in Figure 4-2, two time series may 

have almost the same slope and CVC/CVQ metric, but the degree of correlation (as R2 of the linear 

regression, Equation 4-1) between C and Q could be very different. Thompson et al. (2011) noted the 

same phenomenon, that the variables b, CVC/CVQ, and R2 can vary fairly independently. 

We employed a k-means clustering technique to sort CQ relationships according to three 

characteristics: the 𝑏 slope, CVC/CVQ, and the linear regression R2. Numerous studies have used k-

means clustering for the analysis of hydrologic and watershed data (McManamay et al., 2014; Olden 

et al., 2012). We calculated the three clustering metrics for the 10-year pre-fire period with WRTDS-

interpolated data, so that each time series would have an equal number of data points. As mentioned 

above, we filtered for appropriately performing WRTDS models. We used the factoextra 

(Kassambara & Mundt, 2020) package in R to determine the optimal number of clusters. The average 

silhouette width method (Rousseeuw, 1987) was used to determine the number of clusters. In addition 

to clustering based on the pre-fire data, we clustered all CQ relationships together, across different 

chemical parameters. This allowed for increased sample numbers and for us to put individual CQ 

relationships in context of the broader range of potential behavior. 
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Figure 4-2: Example of CQ metrics. The two plots shown above represent 10-year pre-fire periods 

of data (red) and WRTDS interpolation (black). CQ characteristics of the WRTDS output is similar, 

with 𝒃 values of about -0.35 and CVC/CVQ values of about 0.27. In contrast, the upper data have a 

linear regression R2 of 0.88, and the lower data have an R2 of 0.41. Plot titles include USGS site 

number, year of the fire, and water quality parameter. 

 

4.4 Results and Discussion 

4.4.1 Pre-fire CQ Relationships 

Our cluster analysis was able to identify four distinct clusters in CQ relationships as a function of b, 

CVC/CVQ  and R2  values: Chemostatic (#1, n=102), Dilution (#2, n=22), Mobilization (#3, n=55), 

and Chemodynamic (#4, n=7) (Figure 4-3a-e). The chemostatic, dilution and mobilization clusters are 

differentiated by differences in the 𝑏 and R2 values, where chemostatic clusters are characterized by 𝑏 

values close to zero (median b = 0.03, Figure 4-3c), and low R2 (median R2 = 0.09; Figure 4-3e), 

while dilution clusters are characterized by negative b values (median 𝑏 = -0.44, Figure 4-3c), and 

higher R2 (median = 0.62, Figure 4-3e) and mobilization clusters are characterized by positive 𝑏 

values (median = 0.32, Figure 4-3c), and higher R2 (median = 0.50, Figure 4-3e). The chemodynamic 

cluster has a wide range of 𝑏 values (median = 0.38) with a median similar to the mobilization cluster, 
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but stands apart due to its high CVC/CVQ (median = 2.0) and low R2  (median = 0.1) (Figure 4-3a and 

d). Note that while there is overlap between the cluster boundaries in Figure 4-3a, specifically 

between the chemostatic and the mobilization and dilution clusters, inclusion of the R2 metric allows 

us to define the boundaries of the clusters better, as shown in Figure 4-3b. Thus, two watersheds can 

have similar CVC/CVQ and 𝑏 values, but might be differentiated into the mobilization cluster if there 

is a tight relationship between C and Q, as captured by the R2 metric (Figure 4-2). Indeed, the variable 

R2 strongly differentiates the Mobilization and Dilution clusters (high R2, >0.25) from Chemostatic 

and Chemodynamic clusters (low R2, <0.25).  

While the cluster analysis used data from all elements and all sites, we next analyzed element specific 

membership in the different clusters: nitrogen as total N (TN, n=24), ammonium and organic N 

(NH4
++OrgN, n=61), nitrate and nitrite (NO3

-+NO2
-, n=31); phosphorus as total P or total inorganic 

phosphate (P, n=25), and organic P (OrgP, n=28); and carbon as organic C (OrgC, n=14). Across 5 of 

the 6 element groups, >50% of the sites’ pre-fire behavior was chemostatic (Figure 4-4), with the 

exception of NO3
-+NO2

-, where only 19% of NO3
-+NO2

- sites are chemostatic, and the plurality 

(46%) of NO3
-+NO2

- sites were in the Dilution cluster. In contrast, TN shows a dominant chemostatic 

behavior (62% of TN sites), with some mobilization behavior (19% of TN sites), while TP and OrgC 

shows a mix of chemostatic and mobilization behavior. Our result for OrgC mirrors that of (Zarnetske 

et al., 2018), who found that OrgC b slopes strongly cluster around values of 1, representing 

chemostatic behavior. We echo their hypothesis that OrgC will exhibit CQ mobilization when OrgC 

concentrates in shallow soils, and in low-lying topography like wetlands that can be rapidly “shunted” 

into the stream network during high flow events (Raymond et al., 2016). While our study had a 

broader definition of chemostatic behavior, capturing most OrgC sites in our analysis, (Zarnetske et 

al., 2018) found that OrgC rarely displays dilution behavior, and that b slopes are greater than 1 for 

about 80% of watersheds they examined across the continental US. Similarly, we found that 85% of 

OrgC sites had b>1, and 50% of sites were classified in the Mobilization or Chemodynamic clusters.  

Phosphorus will often exhibit mobilization behavior because its movement in rivers is largely driven 

by sediment export (Jarvie et al., 2005; Withers & Jarvie, 2008). At the lowest of flows, while erosion 

is minimal, fine-sediment-associated-P is easily transported. At higher flows, as the stream network 

expands and new P is transported overland to the streambed, increased velocities allow for erosion 

and re-mobilization of P (Silins et al., 2009; Stone et al., 2011). Depending on the spatial 

homogeneity of P sources in the watershed, mobilization or chemostatic behavior is likely compared 
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to dilution. While total N and P and organic N and P are likely to be associated with eroded organic 

debris and transported with or dissolved from organic-laden sediments in the shallow soil, inorganic 

N in the form of NO3
- should have a different response (Bladon et al., 2008). Because NO3

- has weak 

associations with sediment and organic matter, it moves downwards through soil profiles, 

accumulating in deeper soil pools or groundwater, and this can lead to dilution behavior where low 

flows are associated with high groundwater concentrations.  

It is important to note, however, that our sample size is relatively small and thus not representative of 

all forested watersheds. There are other continental scale papers that focus on more representative 

behaviors as a function of land use. Instead we are focused here on wildfire impacted watersheds, and 

thus focus only on catchments with adequate pre- and post-fire data to answer our question. However, 

the methodology of classifying CQ typologies by clustering allows for a binary yes/no change metric 

to compare pre- and post-fire behavior, to accompany other CQ metrics such as slope and CVC/CVQ. 

The differences between CQ typologies expressed by different element groups provides a window 

into watershed processes. CQ typologies are strongly influenced by size and heterogeneity of 

distribution of element mass stored across the landscape (Abbott, Gruau, et al., 2018, 2018; Basu, 

Destouni, et al., 2010; Basu et al., 2011; Moatar et al., 2017; Musolff et al., 2016, 2017; Thompson et 

al., 2011). The classic mechanistic explanation for the predominance of chemostatic behavior for 

geogenic solutes (Godsey et al., 2009, 2019) is a homogeneously-distributed source pool (x-y spatial 

distribution; and z direction, shallow and deep soils) that is readily mobilized through multiple flow 

paths, including fast overland flow, shallow subsurface flow, and slow groundwater flow. (Zhi & Li, 

2020) highlight that differences in element stores in the soil profile (z direction) will manifest in 

changing b slope of the CQ relationship.   
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Figure 4-3. Clusters of CQ behavior. Clusters calculated from pre-fire CQ characteristics for the all 

6 hydrochemical variables combined (TN, NH4
++OrgN, NO3

-+NO2
-, OrgC, OrgP, P) and all 186 site-

fire-parameter sets. Axes are shared across panels. Panel a) shows variables 𝒃 slope and CVC/CVQ. 

Panel b) shows variables 𝒃 slope and R2. Kernel density 50th percentile contours for each cluster are 

drawn with black dashed lines. Convex hulls are drawn with colored backgrounds and perimeters 

around the clusters. Panels c), d), and e) show boxplots of the variables (𝒃, CVC/CVQ, R2) by cluster, 

and are oriented to their corresponding axis in a) and b). 
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Figure 4-4. Percent of element-fire-site pre-fire CQ behavior represented by each cluster. 

 

 

Figure 4-5. Traditional change analysis across elements. Change in b slope (a), the change ratio of 

Concentration (b, note log scale), change in R2 (c), and change ratio of CVc/CVq (d, log scale). 

Above and to the right of each boxplot, an asterisk indicates if the distribution of points is significant 

(using a one-sample Wilcoxon test, p<0.05).  
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Figure 4-6. Alluvial diagram for six hydrochemical variables. “Flows” of sites from pre-fire 

clusters (left side) to post-fire clusters (right side). Flows are colored by post-fire clusters. Y axes 

indicate the number of sites.  

 

4.4.2 Post-fire CQ Relationships 

4.4.2.1 Post Fire Response evaluated using Traditional Change Metrics 

We found that, besides variability in other change metrics, fire resulted in decreasing CVC/CVQ for all 

elements (Figure 4-5d). This change was significant at a level of p<0.05 for NH4
++OrgN (using a one-

sample Wilcoxon test). The decrease in CVC/CVQ was driven by decreases in CVC for all nitrogen 

species and carbon (significant for nitrogen species at p<0.05) as well as increases in CVQ for all 

variables except for TN (significant for NH4
++OrgN, NO3

-+NO2
-, OrgP, P at p<0.05). As will be 

discussed later in attribution analysis, changes in Q also corresponded with CQ changes post-fire. For 

the sites where NO3
-+NO2

-, OrgP, and P were measured after fire, there were significant increases in 

flow, while for other parameters changes in flow were not significant.  

Examining post-fire change in CQ behavior, we found relatively small median changes in b slopes (-

0.04 to +0.05; Figure 4-5a). While none of the changes in b slopes were significant across element 

groups (Figure 4-5a), we observed median decreases in slope for NO3
-+NO2

- and NH4
++OrgN, while 



 

 73 

slopes increased for TN. This contrast within the N species seems contradictory, especially since 

OrgP and P showed mirrored median increases in b slopes. 

Previous multi-site synthesis of fire effects on water quality has shown increases in dissolved NO3
-, 

NO4
+, TN, phosphate, and TP concentrations across 121 watersheds (Hampton et al., 2022). This 

study has been able to collect a similar number of site-fire-parameter sets (Appendix C Table C1) 

measuring both water quality and discharge, compared to only water quality. Analysis of many sites 

could characterize change of mean concentrations. We found median decreases in mean 

concentrations of TN, NH4
++OrgN, and OrgP (Figure 4-5). Median increases in concentrations of 

NO3
-+NO2

-, OrgC, and P were small (7-14% median increases), compared to 30-110% increases 

found by Hampton et al. (2022). These findings suggest that different numbers of studies and sites 

could sample different degrees of altered water quality, however, given the accompaniment of flow 

data in this study, we can also attempt to disentangle changes in flow from changes in concentrations.  

We performed analysis to try to explain changes in concentration (C) using different CQ metrics. 

Using standardized multiple linear regression, we analyzed correlation between other CQ metrics and 

the change ratio of concentration (crC). We found that overall, flow was a poor predictor of changes 

in concentration. Initially looking at the change ratio of Q (crQ), we only identified a single weak 

relationship for OrgC (p=0.04; R2 regression=0.27; Figure C4) between crC and crQ. Given that pre-

fire CQ behavior for OrgC showed a dominance in the Mobilization cluster, this suggests increasing 

post-fire flows correlated to increasing post-fire concentrations, and vice versa. While there was an 

almost ubiquitous lack of correlation of crC to crQ, we found a very prominent correlation of crC to 

the change in the CQ a parameter (da). All elements except OrgC showed significant linear 

correlation (p<0.05; Figure C4) between crC and da, with a mean regression R2 of 0.38 (not incl. 

OrgC). In the “leave one out” analysis, inclusion of da lead to mean improvements of regression R2 of 

0.31 (not incl. OrgC). Since the parameter a simply defines the intercept of the CQ relationship, it 

makes sense that it would have a strong predictive ability on change in C. No matter how the 

distribution of Q changes (i.e. “left to right” on CQ diagram, Figure 4-2), a shift upward in a could 

result in an increase in C even with a decrease in Q. For TN, NH4
++OrgN, and OrgP, crC was also 

significantly correlated to the change in concentration variability (change ratio of coefficient of 

variation: crCVC), with a mean regression R2 of 0.41 and mean R2 improvement after inclusion of 

0.20 (Figure C4). For TN and NH4
++OrgN, crCVC was the most important variable in the multiple 

linear regression, and for these elements along with OrgP, crCVC showed the largest R2 alone against 
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crC. From the meta-analysis by Hampton et al. (2022), we see that concentration variability (i.e. 

changes in concentration at upper deciles) was implicated in total concentration change. Our analysis 

confirms a positive correlation between crCVC and crC for several elements. In contrast, for NO3
-

+NO2
- we identified significant and negative correlation between crCVC and crC (“alone”, R2=0.21). 

When all elements are analyzed together, correlating crC to the 4 other metrics, the linear model has 

an R2 of 0.48. This demonstrates a large amount of unexplained variability, and a limitation of 

analyzing different aspects of CQ behavior after fire without a broader picture that can be provided by 

our CQ typologies. 

One interesting element store present in wildfire-impacted watersheds that is absent in undisturbed 

watersheds is ash. The hydrogeochemical properties of ash (e.g. elemental makeup, particle size, 

hydrophobicity, solubility) vary widely, and may be affected by burn temperature (Bodí et al., 2014; 

Qian et al., 2009). Depending on the elemental makeup, there are usually soluble nutrients (e.g. PO4
3-, 

NO3
-, NH4

+) that readily leach out of the ash upon contact with water (Brito et al., 2021; Earl & Blinn, 

2003). The dichotomy between ash’s erodibility (compare to “mobilization” CQ) and exhaustible 

soluble components (compare to “dilution” CQ) could potentially contribute to unique elemental CQ 

relationships depending on local conditions. How long ash persists in the landscape and the residence 

time of other fire-impacted elemental pools has been documented to lead to detectable effects of fire 

on water quality over 5 years after fire (Hauer & Spencer, 1998; Spencer et al., 2003). The spatial 

heterogeneity of ash distribution after fire may explain some of the highly variable changes in water 

quality that we observed after fire. 

4.4.2.2 Evaluating Post-fire Response using Clusters 

As discussed in the previous section, traditional methods of measuring change in water quality after 

fire presented problems, including a wide distribution of changes (Figure 4-5), and multiple 

concurrent changes in CQ relationships that makes explaining changes difficult (Figure C4). The 

clustering technique that we used to classify CQ typologies allows us to compare pre- and post-fire 

classifications and changes across all of the variables used for clustering. Figure 4-6 shows an 

Alluvial diagram, with the pre- and post-fire distributions of sites (broken out by element group) 

connected by “flows” of sites, showing the number of sites moving between each cluster.  

Across the entire dataset we find that the proportion of the sites in the chemostatic cluster decreases 

for TN (71% to 62%), OrgP (64% to 36%) and TP (57% to 43%), while it increases for NO3
-+NO2

- 
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(19% to 54%) and NH4
++OrgN (57% to 72%), and does not change for OrgC. Decrease in 

chemostatic response for TN and TP arises primarily from movement of sites from chemostatic to the 

mobilization and chemodynamic clusters, and this can be attributed to erosion and particulate 

transport in post-fire landscapes that correspond to increasing concentrations at higher flows. The 

opposite behavior is apparent for NO3
-+NO2

- and NH4
++OrgN where movement occurs from both 

dilution and mobilization clusters to the chemostatic cluster. It’s possible that this chemostatic 

behavior results from homogenization of source areas of soluble nitrogen (organic and inorganic) 

with depth in the catchment (Thompson et al., 2011; Zhi & Li, 2020), as biologic uptake is 

suppressed after fire. With accumulation in the subsurface, subsurface sources and surface sources 

like ash might result in more homogenous export regardless of flow pathway. 

In Section 4.4.2.1., we compared pre- and post-fire conditions using change metrics of the continuous 

nature, while in this section we compared conditions with binary change between clusters. While the 

changes between clusters capture multiple variables at once (the variables used in the cluster 

formation), it can be useful to validate that our binary change metrics is not too sensitive: meaning, 

that very small changes are less likely to be represented by cluster change than larger changes. We 

show that changes in cluster behavior post-fire correspond to larger movements in the CQ parameter 

space. Because of the unique characteristics of these clusters, and the benefit that they map onto more 

classical CQ typologies (Figure C2), we can visualize post-fire movement according to the same 

characteristics. An example of a logical and expected result would be to examine movement from the 

Mobilization to Chemostatic cluster (Figure C5: upper-left of panels (a) and (b); blue empty circles to 

red circles). As we could imagine looking at Figure 4-3, we see that real movement from 

Mobilization to Chemostatic corresponds to decreases in b slope and Regression R2, as well as mostly 

decreases in CVC/CVQ. Based on the three input variables into our clustering methodology, we 

calculated Euclidean distances in “cluster space” (Figure C6), to reconcile the pairings of variables in 

Figure 4-3 (also Figure C5). Figure 4-6 shows that a large number of sites remain in the same cluster 

post-fire, and our Euclidean distances tell us that while there is movement in cluster-space for 

unchanged sites (Figure C6: “like” colors), movement between clusters correlates to larger distances. 

Indeed, Euclidean distances moved from the Mobilization to Chemostatic cluster (Figure C6: blue 

box on red background) is greater than within-cluster movement, but movement from Dilution to 

Chemostatic clusters is even greater. This is largely due to the large movements along the R2 axis, 

despite smaller movements on the b axis (Figure C5b). One eye-catching part of Figure C6 are the 
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large Euclidean distances moved within the Chemodynamic cluster, between pre- and post-fire. 

Indeed, movement within the Chemodynamic cluster appears to represent increases in b, as well as 

R2, setting a new domain for the cluster (Figure C7) in the post-fire period. Due to the low number of 

sites in this cluster, we cautiously speculate that the movement towards the domain of “threshold 

dominated transport” (Figure C2; Musolff et al., 2015) will have implications for concentration 

regimes and fluxes of elements from fire-impacted landscapes.  

4.4.2.3 Change in Flux Post-Fire 

We next explored how change in the CQ dynamics can lead to a change in solute fluxes. Our initial 

hypothesis in this research was that the CQ b slope would be the most important predictor of changes 

in CQ behavior, which would logically translate to the product of C and Q: Flux. We found that 

changes in flux were better described by either grouping by clusters (Figure 4-7), or multiple linear 

regression of multiple variables (Figure 4-8). Of those variables, b slope was among the least 

important predictors. 

We found that the change in flux post-fire (comparing the 5 years post-fire to the pre-fire period) 

varied with clustering behavior pre- and post-fire (Figure 4-7). Our results are mostly logical: 

movement from dilution to chemostatic behavior results in increasing fluxes, as does movement from 

chemostatic to mobilization or chemodynamic behavior. We’ve seen that there can be changes in CQ 

characteristics within clusters (Figure C6), and so too are there changes in fluxes where the cluster 

classification does not change pre- to post-fire (Figure 4-7). An oddity in our results includes 

relatively little change in flux for sites moving from the Mobilization cluster to Chemostatic, despite 

seeing from Figure C5 that this corresponds with decreases in the b slope.  
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Figure 4-7. Change ratio of Flux. Comparing average of daily fluxes 0-5 years post-fire to the pre-

fire period. The plot is separated into 4 panels, indicating the post-fire cluster, and each of 4 divisions 

on the x axis indicates the pre-fire cluster. Boxplot fill color indicates pre-fire cluster, while larger 

panel color indicates post-fire cluster. Like-colors indicate no change in cluster. Mis-matched color 

indicates the “to” and “from” of changing clusters. Above each boxplot is the number of points for 

each group (refers to “flows” in Figure 4-6). 

 

In our initial examination of changes in concentration (crC), we found that the change ratio for flow 

(crQ) was very weakly correlated, compared to stronger correlations with CQ metrics like change in 

intercept parameter a or with the change ratio in concentration variability (crCVC). We conducted the 

same correlation analysis for the post-fire change ratio for flux (crF, calculated from the WRTDS 

models), with an additional variable test against change in concentration. Daily flux is calculated 

from daily measured flow and either measured or modeled daily concentration, so it would be 

unsurprising that flux is highly correlated to both variables. Given that the majority of our sites were 

classified in the Chemostatic cluster both pre- and post-fire, we would expect that variation in 

changes in flux post-fire could be mostly explained by changes in flow post-fire (Thompson et al., 

2011). Instead, we see that change in concentration is a more important variable by several aspects. In 

a single-variable comparison (for all elements), the R2 of the model of crF against crC was 0.45, 

compared to R2 of crF against crQ of 0.37.  
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Figure 4-8. Standardized multiple linear regression output. Model metric is the change ratio of 

flux (crF). Change ratios (cr) were log transformed, and then all variables were divided by their 

respective standard deviations. Regression variables were changes in flow (crQ), concentration (crC), 

concentration variability (coefficient of variation; crCVC), b slope (absolute change, db), and intercept 

parameter a (absolute change, da). Significance was measured with an alpha of 0.05. Model “alone” 

(solid lines or circles) was each variable independently against crF. Model “together” (dashed lines) 

was crC against all four variables. R2 gain (triangles) was measured during “leave one out” analysis 

as the R2 improvement after the inclusion of each variable back into the model against crC and the 

remaining not “left out”. 
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In a joint model of crF against crC+crQ, model R2 increased to 0.85, with variable importance 

estimates of 0.69 for crC and 0.60 for crQ. Adding the other variables (difference da, db; change ratio 

crCVC) improved model R2 slightly to 0.90. Breaking out by element group, we see differences, 

where for TN, NH4
++OrgN, and P, crC remains the largest variable importance and R2 (Figure 4-8). 

In contrast, for NO3
-+NO2

-, OrgC, and OrgP, crQ supersedes with the largest variable importance and 

R2. When we previously examined correlation to crC, for OrgC the only significant correlation was 

crQ. Examining correlations for change in flux of OrgC, we again see that the only significant 

correlation is between crF and crQ. The other element groups have multiple significant correlations, 

noting the most important ones we just laid out. The change in variation of concentration (crCVC) 

correlated to crF for the same elements for which it was correlated to crC, including TN, NH4
++OrgN, 

and OrgP. For TN and NH4
++OrgN, the variable importance estimates and R2 for crCVC and da were 

all higher than those values for crQ. For each element group, in the “leave one out” analysis, crC and 

crQ were the only two metrics to see substantial improvement in R2 after inclusion. This highlights 

the interplay between change in flux and CQ relationships. Our cluster analysis roughly grouped 

change after fire into two behaviors: increasing chemostatic behavior (decreasing mobilization) for 

NO3
-+NO2

- and NH4
++OrgN, and decreasing chemostatic behavior (generally increasing 

mobilization) for TN, OrgP, and P. Our study has shown the importance of considering multiple 

aspects of concentration and flow regimes and CQ behavior. Especially important is the role of 

variability in concentration. Differences between our cluster groupings and behavioral changes post 

fire, compared to flow- versus concentration-dominated flux changes, highlights the potential for 

future work in large synthesis analysis. 

Changes in post-fire water quality have implications for both our understanding of catchment 

biogeochemical function, and the usability of water downstream by humans. Our clustering analysis 

has shown that variability is an important characteristic for water quality regimes, in headwater 

catchments, and in catchments susceptible to wildfires. In our clustering technique, 2 of the 3 input 

variables captured an aspect of water quality variability. Many prior CQ analyses have exclusively 

used b slopes (and variations such as segmented slopes) to characterize CQ typologies, including 

attempts to correlate catchment characteristics with b slopes (Godsey et al., 2009; Moatar et al., 2017; 

Zarnetske et al., 2018). While these analyses along with others (Zhi & Li, 2020) make reasoned 

arguments to mechanistically explain the emergence of different CQ typologies (namely chemostasis, 
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dilution, mobilization), variability in concentration around a modeled CQ relationship should receive 

more focus. So far, prior studies of CQ relationships with a focus on CVC/CVQ as a metric have found 

that across gradients of increasing land cover alteration or increasing anthropogenic nutrient inputs, 

CVC/CVQ decreases as element fluxes increase (Basu, Destouni, et al., 2010; Musolff et al., 2015, 

2017; Thompson et al., 2011). Our study has shown that dramatic changes in water quality variability 

are possible after fire. 

4.4.3 Limitations and Future Work 

The work presented here presents a novel method of classifying CQ typologies. Because we used all 

186 site-fire-parameter sets from all element groups (including species of N, P, and C), the cluster 

groupings aggregate behavior from water quality constituents. Our results showed a dominance of 

chemostatic behavior for all elements except for NO3
-+NO2

-, but this conclusion might change if we 

had performed the k-means clustering on CQ behavior of each element or specie independently. 

Ultimately, despite an impressive number of 186-site-fire-parameter sets, our work was limited by the 

number of sites available for all of the studied elements. This was mostly apparent in analysis of the 

Chemodynamic cluster, which had only n=7 members. The Dilution cluster was also poorly 

represented, at n=22 members, most of which were from NO3
-+NO2

- sites. With this context, we 

suggest that our interpretation of results might be slightly biased–for instance, the switching of some 

sites towards the Dilution cluster for OrgP and P post-fire. If our classification of dilution behavior is 

informed mostly by NO3
-+NO2

- sites, are the parameters for that classification (as determined by the 

pre-fire k-means groupings) appropriate for the observed post-fire behavior of OrgP and P? This 

could be answered in future work, where more sites and more data could better characterize the 

boundaries of CQ behavior, in undisturbed systems, and in post-disturbance water quality regimes. 

The number of sites in this study is the primary limitation to conducting analysis on catchment 

characteristics (e.g., slope, geology, soils, vegetation, nutrient budgets) with respect to CQ behavior. 

While numerous studies (see the previous section) have performed such analyses for systems ranging 

from pristine to heavily human-impacted, no study has compared CQ behavior from pre- and post-

disturbance as we have done, and no study has yet to examine how CQ behavior change correlates to 

other catchment characteristics. Notably, the work of (Rust, Saxe, et al., 2019) found that wildfire 

severity (as percent of watershed as moderate or high burn intensity) was correlated to elevated post-

fire total N and P loading. If further use of these CQ typologies intend to target whether source or 
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sink areas in watersheds are altered by fire, then analysis on disturbance characteristics will be 

important.  

In addition to limitation by the number of sites, our analysis may also be limited by the data 

availability at those sites. Our sample threshold is quite low (25 measurements in each 10-year 

interval), and while the processing of data through WRTDS allowed us to analyze daily modeled 

concentrations for each site, the validity of those daily WRTDS estimates should be further 

interrogated. While the flux bias statistic threshold of 10% enforces some quality control on the 

WRTDS estimates, further screening could ensure that water quality concentration samples come 

from across the flow regime (sampling both low and high flows). This could highlight bias in both 

low and high temporal resolution timeseries.  

4.5 Conclusions 

This analysis presents what is to our knowledge some of the first cross-site synthesis in changes in 

concentration-discharge (CQ) behavior in disturbed watersheds: here specifically in wildfire-impacted 

watersheds. Numerous studies have used CQ plotting and analysis to represent the impact of fire on 

water quality (Bladon et al., 2008; Emmerton et al., 2020; Silins et al., 2014; Wilkinson et al., 2006), 

and generally showed increases in the b slope of the CQ relationship. We approached this work 

assuming we would see this finding of increased b slope across many sites. In our synthesis of 29 

watersheds (Figure 4-1) and 186 site-fire-parameter sites, examining the post-fire response of 

nutrients including nitrogen (as NO3
-+NO2

-, NH4
++OrgN, TN), phosphorus (OrgP and TP), and 

carbon (OrgC), we observed complicated relationships between changes in C, Q, and Flux.  

We analyzed several aspects of CQ behavior pre-fire, including the variables 𝑏 slope, CVC/CVQ 

(coefficient of variation of concentration over CV of flow), and the CQ regression R2, and generated 

several CQ typologies (Figure 4-3) mapping to characteristics we called Chemostatic, Dilution, 

Mobilization, and Chemodynamic (following descriptions by (Musolff et al., 2015). We found that 

chemostatic behavior dominated all of the hydrochemical variables, except for NO3
-+NO2

- (Figure 4-

4). We then analyzed the classification of these clusters post-fire, compared to pre-fire, and found that 

for NO3
-+NO2

- and NH4
++OrgN, the proportion of sites with chemostatic behavior increased after 

fire, while the proportion decreased when measuring TN, TP, and OrgP (Figure 4-6). 

In addition to our novel cluster typology method, we analyzed metrics of CQ behavior after fire to 

detect change (Figure 4-5). Overall, we did not observe universal increases or decreases in 
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concentration or flux, similar to our previous findings in a meta-analysis of post-fire water quality 

response (Hampton et al., 2022). This lack of universal response led us to return to our cluster 

analysis and examine how water quality changed relative to the cluster classifications. We found that 

changes in flux were well predicted by the corresponding changes in cluster classifications. Notably, 

movement from the Dilution cluster to Chemostatic corresponded with increases in flux, as did 

movement from Chemostatic to Mobilization and all movement to the Chemodynamic cluster. This 

clustering technique is a novel way to reconcile changes occurring in multiple characteristics of the 

CQ relationship after a disturbance. 

While our study benefited from abundant data from different fires and hydrochemical variables, the 

limited number of unique watersheds prevented analysis of catchment attributes. With the abundant 

characteristics of CQ relationships, however, we were able to conduct correlation analysis to 

understand the roles of concentration (C) and flow (Q) in controlling changes in flux after fire. 

Surprisingly, we found that change in concentration was the strongest predictor of change in flux 

(Figure 4-8). For individual hydrochemical variables, change in flow was the most important 

predictor for change in flux in the case of OrgC, NO3
-+NO2

-, and OrgP. As discussed above, there 

was no universal direction of change for the CQ b slope, and the change in b slope after fire was the 

least important predictor of change in flux, despite our initial assumption otherwise. In fact, the 

change in variability in concentration was the third most important predictor overall, after 

concentration and flow, and was the second most important for NH4
++OrgN. This analysis points 

back to our clustering typologies and suggests that analysis and grouping of multiple CQ 

characteristics can be beneficial to disentangling the large amount of variability in water quality 

changes after disturbance. 
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Chapter 5 

Development of a coupled hydrologic, vegetation, and 

biogeochemical model to simulate disturbance effects on stream 

nutrient export regimes 

5.1 Introduction 

Forested watersheds have served as a focal point of intense interest from watershed managers and 

hydrologic and biogeochemical modelers investigating how water, vegetation, and soils interact 

(Blöschl et al., 2019). Finding a balance between multiple uses for and pressures on forests requires 

detailed study of the hydrologic, biotic, and biogeochemical processes that manifest in the forest 

behaviors we observe. Further study under “undisturbed”, recovering, and disturbed conditions can 

reveal which processes are important where and when on the landscape. From harvesting disturbances 

in particular, there are concerns that increases in concentrations of dissolved organic carbon and 

nutrient forms of nitrogen or phosphorus could lead to challenges in water treatment (Mistick & 

Johnson, 2020; Mupepele & Dormann, 2017; Neary & Koestner, 2012), whether those challenges 

come from treatability or cost of treatment.  

From many decades of individual studies of forest harvesting effects, it has become clear that the 

response of  hydrology and water quality is highly dependent on the magnitude of disturbance and the 

climatic context. In the United States, one of the preeminent research experiments in the northeastern 

hardwood forest ecosystem has been conducted at the Hubbard Brook Experimental Forest (Campbell 

et al., 2021; Fahey et al., 2015; Likens et al., 2021). One key insight from over 5 decades of work 

there is the role of intersecting disturbances, where the water quality and ecosystem effects of 

experimental harvests are influenced by disturbances many decades prior, including historic acid 

deposition, extreme weather events, climate change, and prior harvests. In Canada, the Turkey Lakes 

Watershed Study (TLW; (Foster et al., 2005; Jeffries & Foster, 2001; Webster, Leach, Hazlett, et al., 

2021) has also served as an important long-term benchmark of forest health and recovery from 

multiple disturbances. Experimental harvests of differing magnitudes showed that while clearcut 

harvesting has the largest effect on post-harvest water quality, other industry standard harvesting 

procedures had smaller effects (Webster et al., 2022). Large synthesis reviews by (Bosch & Hewlett, 

1982; A. E. Brown et al., 2005) found rough correlation between disturbance magnitude (percent 
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watershed harvested) and the response of streamflow, however work by Goeking (Goeking & 

Tarboton, 2020, 2022) suggests that the specific disturbance-response relationship is governed by 

climate, with wetter climates exhibiting a larger increase in flow after disturbance. While forests in 

dryer climates may defy the traditional hypothesis of increased flow after harvest, for wetter forests 

the hypothesis generally predicts that a reduction in vegetation leads to less transpiration, increased 

soil moisture, and increased streamflow, at least until vegetation recovers from the disturbance. This 

soil moisture effect has a large impact on the cycling of carbon and nitrogen in the forest post-harvest. 

Important work remains to translate the intersecting effects of harvesting on hydrologic, biotic, and 

biogeochemical processes to accurate explanations of post-harvest water quality. 

Mathematical models representing the cycling of water, carbon, and nitrogen in forests have long 

been used to apply the extent of our knowledge of forest processes to try to explain or predict real-

world behaviors. These models stem from influential predecessors (Aber et al., 1982; Aber & 

Federer, 1992; Band et al., 1991, 1993, 2001; Creed & Band, 1998; Pastor & Post, 1986; Running & 

Coughlan, 1988; Running & Gower, 1991; Tague & Band, 2001, 2004). Significant contributions to 

knowledge of these cycles have also come from models of non-forested systems (Comins & 

McMurtrie, 1993; D’Odorico et al., 2003; Kelly et al., 1997; Laio et al., 2001; Parton et al., 1987, 

1988; Porporato et al., 2001, 2003; Rodriguez-Iturbe et al., 1999, 1999, 2001). In addition to 

modeling catchments in “undisturbed” conditions, these coupled models have proven effective in 

reproducing the effects of disturbance on stream flow and water quality (Gbondo-Tugbawa et al., 

2001; Valipour et al., 2018). Applications of models in silviculture and managing forests for water 

supply have greatly increased in recent years, but the scales of study are often limited to single 

watersheds at a time (Beckers et al., 2009; Johnsen et al., 2001; X. Li et al., 2008; Loucks & Van 

Beek, 2017; Mäkelä et al., 2000, 2000; Monserud, 2003; Taylor et al., 2009). Models such as the 

Regional Hydro-Ecological Simulation System (RHESSys) (Band et al., 1991) and the Soil and 

Water Assessment Tool (SWAT) (Gassman et al., 2007) have been very successful in simulating 

climate change and disturbance effects on water quality at a process-level (Beckers et al., 2009; 

Hanan et al., 2017; Kennedy et al., 2017; Krysanova & Arnold, 2008; McKenzie & Perera, 2015). 

Despite this, the complex nature of these models makes understanding the broader processes leading 

to degraded water quality prohibitively expensive and time consuming. In addition, there is a trade-

off between cross-site applicability and an intense site-specific calibration process for each model. In 

this effort, emphasis will be placed on model simplicity or parsimony, such that important patterns 
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can be replicated with minimal computational effort (Basu, Rao, et al., 2010; Sivapalan, Blöschl, et 

al., 2003; Sivapalan et al., 2011). 

Studies have already shown that “simple” box models with as few as six parameters can appropriately 

model the regime and flow duration curves of approximately 200 catchments across the conterminous 

USA (Ye et al., 2012). Similarly, the study by Parolari and Porporato (2016) showed that complicated 

soil C and N dynamics can be modeled with closer to 20 parameters, such that modeled aboveground 

plant biomass trajectories can match observed values following disturbances. These results are a 

strong argument for prioritizing model parsimony. To capture both water and forest dynamics, the 

combination of these two models should be able to show the effect of vegetation on soil moisture and 

streamflow and altered soil moisture regimes on nutrient cycling and export. Valipour et al. (2018) 

show the application of a similar non-distributed hydrology and soil biogeochemistry model (PnET-

BGC) to a clearcut site at the Hubbard Brook Experimental Forest. They show strong fits for total 

plant biomass recovery as well as several elements in soil and soil water solution. Streamwater DOC 

is poorly modeled however, requiring further investigation. Simple one or two-layer soil pools such 

as those used in the Parolari and Porporato (2016) model can house important processes like organic 

matter decomposition, nitrification, denitrification, and sorption; appropriately capturing trends of 

element fluxes through time. This “top-down” modeling approach is the best way to ensure model 

parsimony and will illustrate important universal processes needed to replicate streamflow and water 

quality timeseries at multiple forest sites. 

The goal of this study is to elucidate the processes in a forested watershed that drive the hydrologic 

and biogeochemical response after harvesting and other disturbances. In this work, I developed a 

modeling framework emphasizing simplicity and cross-site applicability and drawing on principles 

used in simpler models of carbon and nitrogen dynamics in forest soils (Gbondo-Tugbawa et al., 

2001; Parolari & Porporato, 2016; Porporato et al., 2003). My modeling approach was characterized 

by the following principles: 

● parsimony: the model should strive to have as few as possible parameters, processes, and 

variables (Atkinson et al., 2002; Basu, Rao, et al., 2010; Sivapalan, 2003) 

● downward approach (Sivapalan, Blöschl, et al., 2003; Ye et al., 2012): the model construction 

will have an iterative and cyclical process where justifications are made to increase model 

complexity 
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The model results can elucidate the most important soil biogeochemical and ecohydrological 

processes altered by forest disturbances, and the sensitivity of these models and their predictions in 

different ecozones/climates. I compare model performance to multiple parameters including mean 

concentrations and fluxes, how the model captures variability in water quality after disturbance, post-

disturbance C-Q relationships, and timescales of water quality recovery. 

5.2 Model Design 

The design of this model features a novel combination of model components including hydrology and 

soil moisture dynamics, vegetation, and soil biogeochemistry. The construction of this model, while 

drawing heavily on equations and components from other models, focussed on simplicity while also 

calibrating/validating the model against real-world data.  

Numerous bottom-up models exist that have modeled one to all three of these components with 

varying spatial complexity. For example, RHESSys (Band et al., 1996, 2001; Tague & Band, 2004) 

can model all three of these components, spatially distributed and varying in characteristics 

throughout a watershed, but the model features numerous complicated physically-based processes and 

a very large number of parameters. The Physiological Principles Predicting Growth model (3PG: 

(Landsberg & Waring, 1997) features complicated vegetation processes and behaviors, but generally 

ignores subsurface processes, whereas the work of Porporato et al. (2003) focuses on parsimonious 

soil moisture and soil biogeochemical interactions, while ignoring dynamic vegetation behavior. In 

contrast, S. Ye et al. (2012) developed a parsimonious lumped hydrology model applicable to 

catchments varying in size and in climate, with additions of vegetation influence on hydrology. 

Parolari & Porporato (2016) developed a simplified version of the subsurface model by Porporato et 

al., to better model steady-state and regrowth vegetation dynamics and impacts of soil nutrition on 

growth.  

Our goal is to follow in the footsteps of these authors and solidify linkages between all three of these 

components (Figure 5-1a, Table 5-1). First the lumped hydrologic model (see Section 5.2.1.), is 

linked with vegetation and canopy dynamics (Section 5.2.2.), incorporating interception of 

precipitation. The evapotranspiration flux also varies with seasonal and multi-year changes in 

vegetation. Inversely, vegetation growth is limited in low-moisture conditions. All biogeochemical 

processes in the subsurface (Section 5.2.3.) are influenced by soil moisture. This in turn impacts the 

availability of nitrogen for uptake by vegetation, imposing nutrition limitations on growth. Nitrogen 
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and carbon from the vegetation biomass is returned to the soil through turnover, governing the 

nutrients available for decomposition and later uptake, and also influencing the C/N ratios in the soil. 

The details of all model components are summarized in the sections below. The full model set of 

model equations and parameters are included in Appendix D to this dissertation. This model is 

tailored to the small experimental watersheds at the Turkey Lakes Watershed Study (TLW), but the 

application of parsimony can make it applicable to other catchments. Details about the TLW site are 

in Section 5.3.1. 

 

 

Table 5-1. Summary of model components. Numbers of state variables/pools, processes, and 

parameters. The state variables may be referred to as pools throughout this Chapter. 

Model Component State Variables Processes/Functions Total Parameters 

Hydrology 3 10 17 

Soil Biogeochemistry 12 12 22 

Vegetation 4 14 30 
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Figure 5-1. Forest hydrology and growth model schematic. (a) Schematic of the model and 

influences (dashed lines with labels) between model components (boxes). Each component has 

influence on at least one other, with a cyclical behavior resulting from the relationships. (b) Detailed 

organizational chart of the main model components (summarized in Table 5-1, italicized text). Model 

stores with gray ellipses are connected by black flux arrows (labeled with text in pink rectangles) 

indicating material movement direction. Important parameters driving the component linkages are 

labeled with colored hexagons. Information feeding each parameter and influence direction of each 

parameter is indicated with dashed colored arrows. The important component linkages in the center 
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box correspond with those labeled in panel a. The Nitrogen Deposition Module follows the form of 

the hydrology stores and fluxes, with details provided in Section 5.2.3.1. 

 

5.2.1 Hydrology and Soil Moisture Dynamics 

The hydrology model is affected by the vegetation model (see Figure 5-1) and specifically by the leaf 

area index (LAI) which modulates the interception and evapotranspiration fluxes. Soil moisture 

calculated from the hydrology model in turn affects soil biogeochemical processes and plant growth. 

Hydrology is modeled with a lumped ‘leaky bucket’ model (Atkinson et al., 2002; Milly, 1994; Ye et 

al., 2012), with two vertically stacked boxes to represent soil moisture dynamics (Eq. D2-8,9), and a 

separate snow compartment to capture snowmelt dynamics (Eq. D2-7). While the general structure of 

the hydrology model follows the approach by S. Ye et al. (2012), slightly more complex and 

nonlinear model equations are used to describe the coupling between the soil moisture and vegetation 

dynamics, incorporated from Porporato et al. (2003) and the HBV model (Bergström, 1995). The 

model equations are included in Appendix D2.2. 

5.2.1.1 Snow and Interception 

The snow component of the model follows the formulation by S. Ye et al. (2012). A transition 

temperature governs whether precipitation fell as rain or snow (Eq. D2-10,11). Precipitation as snow 

is added to the snowpack store. Snow melt follows the degree-day formulation, as used by S. Ye et al. 

(2012) and (Eder et al., 2003). Melt rate is proportional to the calibrated degree-day factor and the 

amount that air temperature exceeds the melting threshold temperature (Eq. D2-12,13).  

Interception (See Figure 5-1a; Eq. D2-14,15) of the rainfall by the tree canopy is calculated following 

the formulation used in the HYDRUS model (Šimůnek et al., 2005, 2013), as used by (Sutanto et al., 

2012). Interception increases with the static parameter 𝛼 (alpha), the daily LAI, and with an 

exponential extinction coefficient. I assume that interception can result in instantaneous evaporation 

of water, up to the daily potential evapotranspiration (PET) amount. Since the model ran on a daily 

timescale, I assume that if PET is met, the remainder of water would find its way through stemflow to 

the soil surface over the course of a single day. 



 

 90 

5.2.1.2 Hydrologic Fluxes 

The water arriving at the soil surface includes rainfall that is not intercepted and snowmelt (Eq. D2-

16). A portion of this water infiltrates into box 1, with infiltration (Eq. D2-17) modeled using the 

HBV formulation (Bergström, 1995), while the remaining is directed to streamflow as infiltration-

excess runoff (Eq. D2-18). Percolation moves water from box 1 to 2 (Eq. D2-19) and this is modeled 

as a threshold-based exponential process, as in (Porporato et al., 2003)). Two lateral fluxes route 

water from box 2 to the stream: a baseflow component that uses an exponential formulation (Eq. D2-

20), and a subsurface fast flow component that is triggered when box 2 is fully saturated (Eq. D2-21). 

5.2.1.3 Evapotranspiration 

Potential evapotranspiration (PET) is modeled using the Hargreaves-Samani method (Hargreaves & 

Samani, 1985), following (Buttle et al., 2019) (Eq. D2-1 to Eq. D2-6). Following Sutanto et al. 

(2012), Beer’s law is used to partition potential evapotranspiration to plant transpiration or soil 

evaporation, according to the canopy cover fraction (𝑏, Eq. D2-22,23,24). Following Porporato et al. 

(2003), transpiration (Eq. D2-26) occurred when soil moisture is above the wilting point. Plant 

transpiration has a scaled regime for soil moisture between the wilting point and a stress point (s*). At 

and above the stress point, total transpiration can equal the daily PET. Between the 2 soil water 

boxes, transpiration is allocated according to the fraction of evaporate-able water (calculated as soil 

moisture above the hygroscopic or wilting points, Eq. D2-25). Soil evaporation (Eq. D2-27) only had 

one threshold at the hygroscopic point (as in Porporato et al., 2003), below which no evaporation took 

place, and above which, evaporation occurred according to the allocated PET (adjusted by 𝑏, as 

above) up to a capped maximum evaporation rate. 

5.2.2 Vegetation Model  

The vegetation model is connected to the hydrology model (Figure 5-1) through the 

evapotranspiration flux that is limited by available soil moisture and by the leaf area index (LAI), and 

through the interception flux that is related to LAI. The vegetation model is also connected with the 

soil nutrient model through nutrient uptake and availability in the subsurface and litter contribution; 

all of which heavily influence the subsurface CN biogeochemistry and stream water quality. Four 

state variables are modeled: the biomass (in mass of carbon per unit area) of leaves and stems, the 

number of stems (per unit area), and an overwinter nitrogen store (mass of N per area) that facilitates 

leaf growth in spring (Figure 5-1).  
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The vegetation model incorporates modules or equations from (Parolari & Porporato, 2016), 

Porporato et al. (2003), 3PG ((Landsberg & Waring, 1997) and the Canadian Terrestrial Ecosystem 

Model (CTEM, (Arora & Boer, 2005). Section 5.2.2.1. describes the calculation of biomass growth, 

addition of growth to the leaf and stem biomass pools, and seasonal variation in growth. Section 

5.2.2.2. describes biomass turnover and turnover seasonality, litter contribution to the soil, and 

contributions to the overwinter N pool. Section 5.2.2.3. describes how N uptake demand is calculated, 

allocation of N demand to withdrawals from the overwinter N pool or to soil mineral N (described in 

more detail in Section 5.2.3.), and how biomass growth rates are limited by insufficient N uptake. 

Section 5.2.2.4. describes the dynamics of the “number of stems” state variable and how it contributes 

to several allometric equations (see dashed green lines in Figure 5-1b) that ultimately feed back to the 

vegetation model’s influence (through the canopy) on the combined model system. 

5.2.2.1 Vegetation Growth and Phenology 

Vegetation growth is modeled as net primary productivity (NPP), and is related to N uptake (Figure 

5-1) through C to N ratios specific to each of the biomass pools. NPP is modeled at the daily scale as 

a function of the solar radiation, temperature, soil moisture and Leaf Area Index (LAI). Just as in the 

3PG and RHESSys models, NPP increases with solar radiation (Eq. D2-32), with factors related to 

radiation interception by the canopy (Eq. D2-22,24); and is inhibited due to low moisture (Eq. D2-26) 

and low nutrition availability (Eq. D2-53). 

For simplicity, the daily maximum possible rate of NPP is tied through the constant calibrated 

parameter (𝑔) to daily transpiration (Eq. D2-32), which, through the dependence on daily potential 

evapotranspiration (PET), already incorporated radiation (modeled, see Appendix D2.1), daily 

temperature (measured, see Section 5.3.2); and also already accounts for water availability (moisture) 

stressors. The maximum rate of NPP is allocated to leaves and stems (Eq. D2-33) following the 

approach used in the 3PG model, with potential limitation of growth by nutrition stress calculated 

later (detailed in Section 5.2.2.3).  The phenology of growth allocation is classified into four seasons 

(based on CTEM, (Arora & Boer, 2005):  

1. the maximum growth stage (we will call “leaf-out”, most growth goes to leaves),  

2. the normal growth stage (we will call “summer”), 

3. the senescence stage (we will call “leaf-fall”, no leaf growth occurs), and 

4. the dormancy stage (no growth occurs).  
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At a given timestep, biomass growth (accounting for both carbon and nitrogen allocation) can 

contribute to growth of stems or leaves. This allocation (Eq. D2-33) is largely governed by a 

preference to allocate growth to leaf biomass during the leaf-out period, until the leaf biomass 

approaches some fraction of the seasonal maximum leaf biomass (Eq. D2-34, for more detail see 

Figure 5-1b and Section 5.2.2.4.). This allocation leads to different N demands from the soil mineral 

nitrogen pool (see Section 5.2.2.3.). During the leaf-out period, 100% of growth is allocated to leaves. 

Because of the necessity to model both carbon and nitrogen, we explicitly modeled C/N allocation 

from the stems to the leaves at the beginning at the leaf-out period, which we called “sprouting” (Eq. 

D2-35, Figure 5-1b). The physical basis for this process is supported by general literature (Millard, 

1996; Millard & Grelet, 2010; Pregitzer et al., 2010) and studies of sugar maple at TLW specifically 

(Morrison, 1991). The dates of summer growth are determined by the end of leaf-out and the 

beginning of leaf-fall. During summer growth, growth is allocated to leaves and stem, according to 

how close the leaf biomass is to the potential seasonal maximum biomass (Eq. D2-33). After the 

beginning of the leaf-fall stage, growth allocated to leaves is manually set to zero, and leaf turnover 

begins (see Section 5.2.2.2.). While any leaves remain during the leaf-fall stage, and whenever PET 

and transpiration are above zero, 100% of NPP is allocated to stems. The dormancy stage follows the 

leaf fall stage. Because the canopy leaf biomass approaches zero, no growth can occur. This period of 

fall and winter is characterized by low PET, due to low temperatures and solar radiation.  

5.2.2.2 Plant Biomass Turnover 

The leaf biomass pool only experiences turnover during the leaf-fall stage (Eq. D2-57), while the 

stem biomass pool experiences a small rate of turnover year-round (Eq. D2-59). During leaf-fall, a 

constant fraction of leaf biomass nitrogen is conserved on a daily timestep, contributing to the 

overwinter store that will contribute to sprouting in the spring (Eq. D2-58).  

5.2.2.3 Nitrogen Uptake and Limitation 

As discussed in Section 5.2.2.1, the rate of maximum daily growth can be from a combination of NPP 

(of leaf and/or stem) and sprouting (Eq. D2-36,37). While the daily maximum rate of NPP is tied to 

moisture availability through the transpiration rate, the maximum sprouting rate is only modulated to 

calculate the true sprouting rate by nitrogen availability. As discussed above, leaf growth through 

sprouting or NPP will require a different C/N ratio than NPP allocated to stem growth. After 

accounting for N withdrawal from overwinter stem storage (Eq. D2-39), and “free” N at the C/N ratio 
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of stems (Eq. D2-38), the daily maximum N demand from uptake (sprouting and NPP) is calculated 

(Eq. D2-41).  

Following the methods of Porporato et al. (2003), N uptake is divided into passive and active 

processes, with different characteristics for the two N species ammonium (NH4
+) and nitrate (NO3

-). 

While NO3
- is assumed to be readily soluble in water, NH4

+ is assumed to be strongly bound to soil, 

and thus resistant to solubility. Passive uptake is assumed to be uncontrolled, as in, the trees cannot 

throttle down passive uptake if demand is low. Passive uptake represents incorporation of soil 

solution and any accompanying minerals through transpiration. Uptake of the soluble minerals from 

each of the two water boxes is proportional to the mineral pool size, its associated solubility, and the 

fraction of water taken up by transpiration in each timestep (Eq. D2-42,43). Excess passive uptake 

contributes to N storage in plant tissues (Eq. D2-44), although it is not expected that this is a large 

contributor to the N budget during the growing season.  

If the maximum daily N demand is not met by total passive uptake (of the two N species, from each 

of the two water boxes), then the plants engage in active uptake (Eq. D2-46). Active N uptake is also 

related to soil moisture (Eq. D2-45). Following the methods of Porporato et al. (2003), the moisture 

dependency of active uptake for each pool decreases with the total moisture, due to dilution of the 

existing N within the soil pool, but increases relative to the fractional moisture due to nonlinear poor 

connectivity, and increased diffusion through the soil.  

Finally, if the maximum daily N demand is not met by total active and passive uptake, nitrogen 

fixation by soil microbes is also considered to contribute to plant N (Eq. D2-47). Studies of northern 

hardwood forests, including sugar maple dominated forests, have documented surprisingly large N 

fixation budgets, either through mass balance approaches or explicit measurement of fixation (Benoist 

et al., 2022; Bormann et al., 1970, 1977; Johnson & Turner, 2014; Roskoski, 1980; Vitousek et al., 

2013). A maximum daily N fixation rate is specified. 

The total N available for growth is the sum of N store withdrawal and passive, active, and fixation 

uptake (Eq. D2-48). Sprouting is given first priority in terms of growth and N allocation (Eq. D2-

49,50). The final daily sprouting rate is calculated as the available N allocation to sprouting times the 

leaf C/N ratio (Eq. D2-51). The remaining N is allocated to NPP (Eq. D2-52). The timestep NPP 

allocation to leaves and stem is calculated as in Section 5.2.2.1 (Eq. D2-55,56), and because the N 
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demand from that allocation is already calculated according to the leaf and stem C/N ratios, any 

deficit in N uptake can be fractionally distributed between the two (Eq. D2-53,54). 

5.2.2.4 Stem Modelling and Allometric Equations 

As shown in Figure 5-1, the “number of stems” state variable experiences its own growth and 

mortality rates (with units of stems per unit area, rather than carbon per unit area). The modeling of 

stems followed the form of the 3PG model (Landsberg & Waring, 1997). At a given timestep, the 

number of stems provides information to several allometric equations including the diameter at breast 

height (DBH, Eq. D2-60), and the seasonal maximum leaf biomass (Eq. D2-34, as discussed in 

Section 5.2.2.1.), connecting the stem module to drivers of the vegetation biomass module. 

Because the leaf biomass pool asymptotically approaches the seasonal maximum biomass each year, 

the variation in LAI (Eq. D2-62) seasonally and between years is thus dependent on the dynamics in 

the number of stems pool (Figure 5-1). After harvest, the number of stems will increase from a small 

number to a larger number, and likewise the maximum possible amount of leaf biomass will increase 

considerably as the forest ages. LAI is also proportional to the specific leaf area (SLA, units of m2 kg-

1, Eq. D2-61). The SLA changes also as a function of forest age, such that young trees have a higher 

SLA, and thus a higher LAI, for a given leaf biomass.  

The variation in the number of stems is governed by a simple set of growth and mortality equations. 

Both growth and mortality have different regimes as the forest ages. The timestep stem growth has 

two regimes (based on (W. J. Wang et al., 2013); Eq. D2-64): 

● If the number of stems is less than a “canopy closer” threshold (Eq. D2-65), growth in the 

number of stems will occur at its maximum rate 

● If the number of stems is greater than the closer threshold, then growth scales down 

asymptotically to zero as the number of stems approaches a maximum stem threshold (Eq. 

D2-66). 

The timestep stem mortality from the 3PG model has three regimes: 

● If the number of stems exceeds a thinning threshold (Eq. D2-64, itself calculated according to 

the total forest biomass), then thinning or “crowding” induced mortality occurs (Eq. D2-68) 

● When total forest biomass is low, age-induced stem mortality (Eq. D2-69,70) is low 

● When total forest biomass is large, age-induced stem mortality is high 
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When harvesting occurs in the model, both plant biomass and the number of stems are reduced. 

5.2.3 Soil Biogeochemistry Model 

I modeled twelve state variables in the soil, following the approach of Porporato et al. (2003): organic 

carbon storage (in mass C per unit area) in the litter, humus, and soil biomass pools (Eq. D2-

72,74,75); organic nitrogen storage (in mass N per unit area) in the litter pool (Eq. D2-73), and 

mineral nitrogen (in mass N per unit area) as both NO3
- and NH4

+ in snow (Eq. D2-76,77) and each of 

the two vertically stacked soil boxes (Eq. D2-78,79,80,81), and the storage of dissolved organic 

carbon (in mass C per unit area) in each of the two vertically stacked soil boxes (Eq. D2-82,83). 

The soil biogeochemistry model is influenced in almost every process by soil moisture dynamics, 

provided from the hydrology model (Figure 5-1). In addition to material removal through hydrologic 

export, contribution of nitrogen through atmospheric deposition is closely linked to hydrologic 

pathways (see Section 5.2.3.1.). Similarly, the vegetation model contributes material to the soil 

through litter deposition, and removes material through vegetation uptake. The soil biogeochemistry 

model is derived in almost complete form from the work of Porporato et al. (2003) (see also 

(D’Odorico et al., 2003), and follows a similar form to well-used models such as FOREST-BGC 

(Running & Coughlan, 1988). The interactions between soil nutrients and vegetation are derived from 

the work of Parolari & Porporato et al. (2016). The implementation of this soil biogeochemistry 

model assumes that of the two hydrologic boxes described in Section 5.2.1, soil processes occur in the 

upper box. The second box lower has more limited functionality, but does serve as a store of mineral 

N that is subject to leaching, plant root uptake, or denitrification. 

5.2.3.1 Nitrogen Deposition 

Nitrogen deposition arrives at the soil surface as dry or wet deposition. In the case of dry deposition, 

N is added directly to the box 1 mineral N pools, and in the case of wet deposition, N follows 

hydrologic pathways into and through the soil. Section 5.3.2.2 describes the calculation of annual 

nitrogen deposition, and downscaling to the daily scale. Deposition is allocated as both ammonium 

(NH4
+) and nitrate (NO3

-). Deposition is assumed to not interact with the tree canopy, but is assumed 

to interact with the snowpack. If there is snow, then deposition is allocated entirely to the snowpack N 

pool . If there is no snow, then deposition arrived at the soil surface. Wet deposition arriving at the 

soil surface is allocated according to hydrologic pathways. If any fast water flow is generated on a 
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day with wet deposition (with no snowpack), then wet N deposition is allocated proportionally 

between quickflow and infiltration. 

5.2.3.2 Litter Input and Decomposition 

Plant turnover and litter production (Figure 5-1) is one of the main carbon (Eq. D2-87) and nitrogen 

(Eq. D2-88) sources to the plant litter pool. Soil biomass death (Eq. D2-89) is also added to the litter 

pool. The material added to the litter pool from turnover has a varying C/N ratio, according to the 

mixture of leaf, stem, and soil biomass components. 

The decomposition processes are governed by biotic activity, moisture, soil temperature, and carbon 

to nitrogen ratios. The term 𝜑 (phi, Eq. D2-90,91,92,93) was developed by Porporato et al. (2003) to 

regulate decomposition, such that an optimal ratio of carbon to nitrogen is available for biotic uptake 

(C/Nb). Ultimately, two scenarios take place:  

● if the C/N ratio from all decomposition is greater (more carbon rich) than C/Nb, then biomass 

is N-deficient, and the decomposition rate will be reduced while N must be immobilized (Eq. 

D2-102,103) from the mineral pool to supplement biotic uptake;  

● if the C/N ratio from all decomposition is less than C/Nb, then N is produced in excess, and 

excess N will be mineralized to NH4
+ (Eq. D2-100,101).  

Mineralized N is added to the NH4
+ pool, whereas immobilization of N can draw from both NH4

+ and 

NO3
-, proportion to their relative abundance in the total soil nitrogen pool. 

The decomposition rates (Eq. D2-97,98) are scaled by 𝜑 (Eq. D2-93), soil moisture (Eq. D2-94), and 

soil temperature (Eq. D2-95). Following Porporato et al. (2003), maximum decomposition takes place 

at field capacity and decreases linearly as moisture decreases. Above field capacity, decomposition 

decreases at a slower rate. Decomposition of the litter and humus are assumed to be governed by the 

soil moisture in box 1. The impact of soil temperature on decomposition followed the implementation 

in RHESSys (Tague & Band, 2004), where soil temperature is calculated as a muted signal of air 

temperature (Eq. D2-96). The model added a calibrated parameter that could regulate the degree of 

thermal control on decomposition, with two possible endmembers: isothermal behavior (as in 

Porporato et al., 2003), or thermal control as in RHESSys. 
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5.2.3.3 Nitrification and Denitrification 

Studies of nitrogen cycling at TLW highlight the importance of NH4
+ and nitrification in total N 

export from the catchments. Spoelstra et al. (2001) used isotopes to determine that the majority of 

NO3
- exported originally underwent nitrification from NH4

+. While the N deposition module assumes 

a fraction of both NO3
- and NH4

+ in deposition, once within the soil, the nitrification process is 

modeled according to Porporato et al. (2003). Nitrification (Eq. D2-105) converts NH4
+ to NO3

-, and 

the process is limited by moisture (Eq. D2-104) assumed to take place in box 1) similar to 

decomposition. Nitrification is at its maximum at field capacity and decreases linearly as moisture 

decreases. Above field capacity, nitrification also decreases linearly to zero as moisture approaches 

100%. 

Denitrification (Eq. D2-107), in contrast, is favored at high moisture levels (Eq. D2-106). 

Denitrification is inhibited below a threshold soil moisture, above which denitrification increases 

exponentially to its maximum as moisture approaches 100%. Unlike the other biologic processes, 

denitrification is assumed to occur in both soil water boxes. Mineral N that leaches into box 2 

(Section 5.2.3.4.) can be subject to denitrification, governed then by the box 2 soil moisture. 

Both nitrification and denitrification have a governing rate constant, and are proportional to the pool 

size of the reactant (e.g., soil NH4
+ in the case of nitrification) and the soil biomass pool, which can 

be thought of as facilitating the processes. 

5.2.3.4 Subsurface N and C Leaching 

All subsurface hydrologic flows of mineral N are proportional to the pool size, the solubility factor, 

and the fractional water flux relative to the water store (Eq. D2-109,110). Just as in transpiration, 

percolation of N from box 1 to box 2 will be proportional to the timestep percolation rate divided by 

the timestep pool size. In this way, when N is abundant, it will be more likely to flow with water, and 

when flows are large, the N pool will be more readily mobilized. Like with N, dissolved organic 

carbon (DOC) moved through the subsurface with water, with a solubility factor of 1. DOC is 

produced by a dissolution process (Eq. D2-108) that is assumed to be regulated by a calibrated 

fraction of the litter pool. No uptake or modification of DOC took place in the subsurface after its 

production.  



 

 98 

5.3 Methods 

Most watershed models are calibrated only on streamflow and water quality fluxes at the catchment 

outlet, giving rise to equifinality issues. The Turkey Lakes Watersheds (description in Section 5.3.1.) 

are unique with respect to the richness of the datasets on hydrology, vegetation, and soil nutrient 

pools that have been collected over the years. Calibration of the coupled model presented in this 

Chapter therefore used a combination of more traditional calibration, as well as more soft calibration 

techniques (Gharari et al., 2014; Seibert & McDonnell, 2002; Shafii et al., 2017) to increase the 

robustness of our model. Time series data used for calibration are described in Section 5.3.2. 

Additional data from the site which are used to “increase realism” in parameter ranges (Gharari et al., 

2014) and limit the amount of calibration needed are described in Section 5.3.3. Methodology for 

calibration is described in Section 5.3.4. 

5.3.1 Site Description 

The Turkey Lakes Watersheds (TLW) are among the longest running and most data-dense hydrologic 

and ecosystem study sites in North America. Like the Hubbard Brook Ecosystem Study (Campbell et 

al., 2021; Fahey et al., 2015; Likens et al., 2021), the measurements from TLW have provided an 

important multi-decadal signal of change in climate, pollution, and ecosystems (Creed et al., 2014, 

2015; Foster et al., 2005; Webster et al., 2022; Webster, Leach, Hazlett, et al., 2021; Webster, Leach, 

Houle, et al., 2021; Webster & Hazlett, 2015). 

The TLW were chosen for model exploration because of partnerships with Jason Leach and Kara 

Webster of the Natural Resources Canada (NRCAN) Great Lakes Forestry Centre in Sault Ste. Marie, 

Ontario. This partnership provided access to data and a site visit to provide context for the forests and 

hydrology at the site.The characteristics of TLW are provided by (Buttle et al., 2018; Jeffries et al., 

1988; Webster, Leach, Hazlett, et al., 2021), and are summarized below. The total TLW has an area 

of 10.5 km2 (Figure 5-2). Norberg Creek drains the catchment, which also includes a string of lakes, 

and several experimental gaged headwater catchments (Figure 5-2). This study focuses on catchments 

c32 (size of 6.74 ha, control catchment) and c31 (size of 4.62 ha, harvested catchment). Harvesting 

was conducted in the fall of 1997 (beginning of water-year 1998) along the south-facing slope of the 

TLW valley in catchments including c31. Pre-harvest forest characteristics were likely very similar 

between catchments c31 and c32 (Figure 5-2; Buttle et al., 2018). Catchment c32 had no harvesting, 

and served as a reference catchment. Catchment c31 was “clearcut”, where all trees with DBH greater 
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than 10 cm were felled, but trees with DBH greater than 20 cm were removed from the site (limbs 

and crowns were removed on site and left on site). Time series of pre- and post-harvest forest 

dimensions are provided by Buttle et al. (2018) and reported in Appendix D Table D4. 

 

Figure 5-2. Site map of the Turkey Lakes Watershed (TLW) and subcatchments. Red opaque 

area shows experimental harvests above labeled sub-catchments. Symbols show different 

measurement stations. The black star shows the TLW in the inset map of Canada. 

 

5.3.1.1 Site Geology and Soils 

The TLW basin is underlain by silicate greenstone bedrock (metamorphosed basalt) of Precambrian 

age. This rock type would usually have low porosity and permeability, and thus would play little role 

in hydrologic storage or conveyance. While regional faulting manifests on the surface as predominant 

patterns in the stream drainage network, the landscape is also heavily scoured by glacial activity. The 

soils at the site are primarily glacial in origin. The soil parent materials suggest a more felsic 

(granitic) origin, which Jeffries et al. (1988) suggest to mean that the materials are derived from 
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bedrock farther to the north. The materials were also deposited in two different glacial contexts. The 

bottommost glacial material is a basal till, which was deposited underneath the glacier at its base 

during advancement.  

 

Figure 5-3. Photograph of TLW forest. Photograph by Tyler Hampton from October 25, 2018, of 

the weir, stream, and vegetation at the outlet of catchment c31, which was clear cut in 1997. The 

image captures a bouldery streambed, bedrock outcrops or large glacial erratics, deadwood on the 

forest floor, and small saplings regrowing since the harvest. 

 

The basal till is compact, sandy loam in texture, and has low hydraulic permeability (1x10-7 cm s-1), 

which often results in a perched water table above this layer (Hazlett et al., 2001; Murray & Buttle, 

2005; Nicolson, 1988). Above the basal till is an ablation till, which was deposited during the glacial 

retreat. The ablation till is silt loam in texture, and has two orders of magnitude higher hydraulic 
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permeability (1x10-5 cm s-1). Generally, till depth is 1–2 m, and decreases to <1 m upslope at higher 

elevations.  

The soils formed in the glacial tills are podzols. With the accumulation of an organic rich forest floor, 

acids from the decomposition of organic matter and abundant rainfall create conditions to leach 

cations like iron and aluminum from the upper soil to deeper layers. This process also results in the 

breakdown of clay minerals, leaving behind a white-coloured eluviated horizon beneath the forest 

floor, and deeper organic rich (~10%) soils coloured by the oxidized iron and aluminum (Hazlett et 

al., 2001; Retallack, 2021). 

5.3.1.2 Site Climate and Hydrology 

The TLW receives an annual precipitation of about 1200 mm (1980–2017 period). About a third of 

precipitation falls as snow (Semkin et al., 2012). The winter snowpack usually peaks at between 200 

and 400 mm of snow-water equivalent (SWE; (Leach et al., 2020)). Annual average air temperature 

over the same period was 4.5°C. Monthly average temperatures range from -10.7°C in January to 

17.9°C in July. Runoff ratios measured at the small subcatchments range from 0.3 to 0.6, resulting in 

360 to 720 mm of annual streamflow on average. Due to the long record of data monitoring, long-

term trends have been observed in temperature (0.3°C increase per decade) and growing conditions 

(degree days, later fall senescence: (Creed et al., 2015). As is typical for snow-dominated catchments, 

the highest streamflow is usually during the snowmelt period. Summer baseflow is quite low, and 

some of the smaller experimental watersheds experience no-flow days. As soils wet up in the fall, 

large rainstorms can rarely generate flows comparable in size to the freshet. 

5.3.1.3 Site Vegetation 

The forests at TLW (Figure 5-3) are dominated by sugar maple (Acer saccharum), making up over 

80% of basal area in some areas (Morrison, 1990). Smaller components of the forest include yellow 

birch (Betula alleghaniensis; 9.5%), red maple (Acer rubrum; 3.7%), ironwood (Ostrya virginiana; 

3.4%), white spruce (Picea glauca; 1%) and white pine (Pinus strobus). According to Morrison 

(1990), the forest is at a steady state in terms of aboveground biomass, with natural mortality 

compensated by new growth. Throughout this work, the description of “steady state” will be used to 

reference this characteristic of the forest; that aboveground biomass does not change substantially 

year-to-year. The same assumption is applied to carbon and nitrogen pools in the subsurface. The 
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most common stem-class (as measured in 1980 by Morrison, 1990) is 5–20-cm diameter at breast 

height (DBH), and the largest amount of phytomass is stored in the 20–40-cm DBH class. Trees with 

DBH of 50 cm were observed with the smallest frequency, and generally made up less phytomass 

than trees smaller than 20 cm DBH. 

5.3.2 Site Data  

Data measured at TLW was summarized by (Webster, Leach, Hazlett, et al., 2021), including 

meteorology, atmospheric deposition, precipitation, snow and snowpack, streamflow and stream 

chemistry, and forest and soil characteristics.  

5.3.2.1 Meteorological Inputs 

Meteorological data was measured at TLW at the Algoma CAPMoN (Canadian Air and Precipitation 

Monitoring Network) site (47.033 °N, 84.379 °W), which is about 4 km southeast of the experimental 

catchments (Figure 5-2). The CAPMoN site data included wind speed, air temperature (daily mean, 

minimum, and maximum), relative humidity, and incoming solar radiation. Precipitation was 

measured at a smaller meteorological station 300 m from the TLW outlet on Norberg Creek and from 

the outlet of catchment c31. Meteorological data was available daily from 1980, however the first full 

year of precipitation data was available from 1981. Notably, hydrologic data is summarized in the 

results according to Water Years (defined here as October 1 to September 30, aligned with usage by 

Leach et al., 2020), in contrast with previous studies which used different definitions (Buttle et al., 

2018 used June 1 to May 31).  

5.3.2.2 Nitrogen Deposition 

Atmospheric deposition was modeled at a daily timestep. Measured annual atmospheric nitrogen 

deposition was available from (Sirois et al., 2001) for the Turkey Lakes watershed for the years 1981 

to 1997 (Table D6). They differentiated N deposition into wet and dry deposition. Annual wet 

deposition (annual average 0.47 g m-2 yr-1) was very well correlated to annual precipitation (R2 of 

0.99, slope: 0.37 g m-2/1000 mm precip). This relationship was used to estimate wet deposition for the 

years 1998 to 2011. The percentage of deposition as wet (wet/wet+dry) was also well correlated to 

annual precipitation (p=0.002, R2 of 0.43, 36% + 24% per 1000 mm). This relationship was used to 

extract total and dry deposition. Nitrogen deposition was differentiated between NH4
+ and NO3

-, 

which were assumed to each represent 50% of deposition, based on measurements reported by Beall 
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et al. (2001). Dry deposition was constant daily, and the yearly deposition was divided by 365. The 

annual wet deposition was also divided by 365 and allocated as potential deposition. Wet deposition 

occurred on days with precipitation. For each day without precipitation, it was assumed that the 

potential deposition accumulated, and was all released on the next precipitation day.  

5.3.2.3 Stream Flow and Water Quality Measurements 

Daily streamflow data was available at both catchments c31 and c32 beginning in the year 1980. 

Quality controlled streamflow records were available through 2012 for this study. Details on 

streamflow measurement are provided by (Hazlett et al., 2001; Leach et al., 2020). At the outlet of 

each catchment, the streambed was excavated down into the basal till, and a v-notch weir was 

installed to capture streamflow. Water level loggers placed in stilling wells were used to record 

stream stage, and rating curves were developed to calculate volumetric flow. As discussed by Leach 

et al. (2020), due to an incomplete seal between the weirs and the bedrock beneath the basal till, some 

subsurface flow likely bypasses the weirs.  

Water quality samples were collected (since 1981) at catchment outlets at varying intervals. During 

the spring freshet, samples were collected every 1-2 days. For the remainder of the year, samples 

were collected weekly or biweekly. Concentrations of NO3
-, NH4

+ and DOC were measured from 

samples. For catchments c31 and c32, annual stream NO3
- export (1982-1996 average) was 

approximately 0.47 g NO3
--N m-2 year-1, and NH4

+ export was approximately 0.008 g NH4
+-N m-2 

year-1 (P. N. C. Murphy et al., 2009). This suggests that NH4
+ export makes up less than 2% of annual 

TN flux.  

5.3.3 Parameter Constraints 

Many characteristics of the TLW were used for parameter definition or constraining parameter 

calibration. The wealth of studies in these forests covered the snowpack, climate, precipitation, 

canopy characteristics, vegetation dimensions and element makeup, and the soils hydrology and 

element distribution. Ranges used in parameter calibration, and values chosen for parameters are 

included in Appendix D1.4. 

5.3.3.1 Snowpack Model and Measurements 

Leach et al. (2020) performed hydrologic modeling of travel times in TLW catchments. Their model 

incorporated snow water equivalent (SWE, mm of water) to capture catchment hydrology, providing 
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a benchmark to my model performance. More information about snow survey data is provided by 

Semkin et al. (2012). Since 1980, snow surveys have been conducted throughout the winter months, 

measuring snow depth, water equivalent, and density. As seen in Appendix D1.4, the transition 

temperatures were calibrated with a range between -1.5°C and +1°C, to possibly reflect errors in the 

reported temperatures from the meteorological station, or to reflect a role that solar radiation might 

play. For example, intense radiation on a cold (<0°C) day may still result in melt. The degree day 

factor, as discussed by (Braun, 1984; Eder et al., 2003; Ye et al., 2012), was calibrated to a range of 

1–4.5 mm day-1 °K-1 (Appendix D1.4). 

5.3.3.2 Canopy Measurements 

As described in Section 5.3.1.3., all indications point to the forests at TLW existing in a “steady 

state”, having likely peaked in total aboveground biomass, and now with growth balanced equally by 

mortality. For the purposes of this model, I assume that other allometric characteristics of the forest, 

including of the canopy, are also at steady state, and will stay so except for disturbance by harvest. 

Leaf Area Index (LAI) has been measured at the TLW in the reference (c32) and clearcut (c31) 

catchments in the years 1998, 1999, 2002, 2006, 2007 and 2015. The data are as of yet unpublished 

(source RL Fleming), but the measurement methods are described by (Leach et al., 2022). Estimates 

for similar sugar maple stands measured by Buttle & Farnsworth (2012) and reported by Leach et al. 

(2022) constrain summertime maximum LAI to between 4 and 6. Han (2022) presents additional LAI 

data measured using the Landsat satellite interpolated monthly for the years 1986-2012. Estimates by 

Han and subsequent annual modeling with the Robin model converge at summertime maximum LAI 

of 4.5.  

(Buttle & Farnsworth, 2012) measured properties of a mature (>70 years old) sugar maple stand in 

southern Ontario, including canopy cover fractions (𝑏, equivalent to the inverse of the soil cover 

fraction used in HYDRUS) of approximately 0.9. For deciduous forests including significant 

components of sugar maple, estimates for maximum canopy interception range between roughly 0.1–

2.0 mm day-1 (Buttle & Farnsworth, 2012). The Hydrological Simulation Program Fortran (HSPF) 

watershed model estimates maximum canopy interception of 3.8–5.0 mm day-1 for light and heavy 

(respectively) forest (EPA Office of Water, 2000).  

Estimates of the canopy cover and leaf area index were used to constrain parameters related to canopy 

cover fraction (𝑏) and precipitation interception. When LAI is zero, 𝑏 will also be zero. For an LAI of 
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4.5, a value of the exponent 𝐾𝐼𝑒 = 0.512 will return 𝑏 = 0.9. A larger value of 𝐾𝐼𝑒 will increase 

interception. The parameter 𝛼 scales up interception, but in this model it does not represent the 

maximum daily interception rate. For 𝐾𝐼𝑒 of 1 and 𝛼 of 0.1, 0.4, 0.7, 1.0, interception asymptotes 

towards 0.45, 1.77, 3.05, 4.30 mm day-1, respectively.  

LAI in the model was a factor of total leaf biomass. Measurements of the foliage carbon pool at TLW 

(Morrison et al., 1993; see also Appendix D3) estimated about 180 g C m-2. The season maximum 

leaf biomass itself was an allometric equation, which governed how much leaf biomass would 

accumulate in a given year. Knowing the pre-harvest forest stem stocking of between 900–1000 stems 

and DBH of about 20 cm (Buttle et al., 2018), the model parameters should be fit to produce a leaf 

max of about 180 g C m-2. The specific leaf area (SLA) function, which shifts between two values as 

the forest ages, is multiplied by leaf biomass to calculate the LAI. Knowing the pre-harvest forest leaf 

biomass and LAI of about 4.5, SLA for the steady-state forest can be calculated. Data from the 

regrowing forest can be used to infer the other SLA value. Data from 2013 presented by Buttle et al. 

(2018) indicate a full re-population of stems (1085 stems per hectare) and a decreased DBH 

(calculated to be 10.6 cm). Despite full stem-repopulation to pre-harvest numbers, the tree biomass 

only increased by 13% above the immediate post-harvest biomass. For our function that shifts SLA 

based on forest age, which we instead substituted as forest biomass relative to the carrying capacity 

(review Section 5.2.2.1. and Appendix D2.3.3.), it can be assumed that the SLA in 2013 would be 

almost the same as immediately post-harvest in 1997. Satellite measurements presented by Han 

(2022), supported by field measurement of LAI (unpublished, RL Fleming, see Leach et al., 2022) 

also suggest full LAI recovery by 2013. Knowing the desired LAI, the maximum leaf allometric 

equation and regrowth forest SLA can be back calculated (See Section 5.3.5 and Appendix D1.4). 

Other characteristics of the canopy phenology include the timing of leaf-on and leaf-off. Data (from 

years 1983 to 2009) from (Creed et al., 2015) were used to calculate average Julian dates for the 

beginning and end of the leaf-out (dates 115 to 135) and leaf-fall periods (dates 280 to 300). The 

duration of the greening and senescing periods allowed for soft calibration to determine the daily rates 

of sprouting and leaf death, and the threshold of seasonal maximum leaf biomass where NPP should 

begin allocation to stems. 
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5.3.3.3 Soil Physical Properties 

As described in Section 5.3.1, the soils of the TLW are well studied, with numerous hydrology and 

biogeochemical studies reporting characteristics.  

Murray & Buttle (2005) provide several physical soil characteristics, measured at soil pits. Ablation 

till characteristics include an average porosity of about 0.65, thicknesses of 0.5 to 0.8 m, and 240 to 

330 mm of water storage capacity. While estimates did not exist for basal till water capacity, it was 

assumed that box 2 water storage capacity would not exceed 100 mm. These values informed the 

range of values for the water storage pools (Appendix D1.4).   

Values of soil characteristics for a sandy loam to silt loam texture came from a literature review 

conducted by Laio et al. (2001). This constrained the ranges for field capacity (0.5–0.65 of water 

capacity), plant stress threshold (0.25–0.45), and hygroscopic point (0.11–0.25; wilting point and 

hygroscopic point were assumed to be the same). 

Buttle et al. (2018) conducted a water balance approach to estimate seasonal root zone water storage 

capacity. While they used a temporally varying approach, to try to parse the effects of the harvesting 

disturbance on the water balance, they found average capacity of 100 mm, ranging up to 300 mm, for 

the undisturbed catchment c32, and average capacity of closer to 50 mm, ranging up to 200 mm, for 

the disturbed catchment c31. For plant-available water capacity to range up to 300 mm, that requires 

equivalent water at moisture levels above the hygroscopic point. With an estimated upper limit of box 

1 water capacity of 350 mm, and an upper limit hygroscopic point of 0.25, box 1 might provide in 

that scenario 262 mm of plant available water. Thus, box 2 would need to be accessible to plant roots. 

An additional 75 mm of plant available water could come from a box 2 of maximum size 100 mm.  

Soil pit measurements by Murray & Buttle (2005) constrained potential infiltration rates with 

hydraulic conductivity measurements up to 10-6 m s-1 (~86 mm day-1, Guelph permeameter test), and 

percolation rates on the order of 40–60 mm day-1. Some constraints existed for maximum percolation 

rates through the ablation till. Hydraulic conductivity of the basal till was estimated to be at least an 

order of magnitude smaller (10-7 m s-1 =~8.6 mm day-1; (Nicolson, 1988). Ranges for exponential 

flow shape parameters were provided by (Laio et al., 2001) for the corresponding sandy loam soil 

type.  
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5.3.3.4 Vegetation Carbon and Nitrogen Storage and Fluxes 

To constrain my model to the vegetation characteristics of TLW, several measurements were used as 

initial conditions to the model, and to validate annual element fluxes. Appendix D3 has tabulated 

measurements reported from several papers.  

As discussed by (Morrison, 1990), the forest at TLW is likely in equilibrium, with some trees 

exceeding 250 years in age. The forest is unevenly aged in composition. Total vegetation carbon 

content was about 11,180 g C m-2, with 180 g C m-2 as foliage and about 10,980 g C m-2 as woody 

material (including branches, stem, stump, and roots; dead and alive), with 9,280 g C m-2 as living 

woody material (Morrison et al., 1993). Estimates of nitrogen content varied between two forest sites 

at TLW studied by Morrison (1990). The average foliage nitrogen content was 9.4 g N m-2, resulting 

in a carbon to nitrogen (C/N) ratio of 19. Woody material nitrogen content estimates ranged from 

400–470 g N m-2 (Mitchell et al., 1992; Morrison, 1990; Morrison et al., 1992), resulting in C/N ratios 

of 270 and 230, respectively. If only carbon pools of living material were used (which excluded root 

carbon), the materials C/N ratio could be 196 (Table D2). Although root nitrogen estimates did not 

exist (only lumped green vs woody), it is difficult to understand what role roots play in plant C/N 

ratio, if they are not explicitly modeled. Estimates for sugar maples place root C/N ratios as similar to 

foliage (Pregitzer et al., 2010). I interpret my model to assume that the lumped plant stem pool also 

includes roots, and I therefore assign the plant stem pool (no leaves) C/N ratio is close to 200 

(balanced between N-rich roots and C-rich woody material).  

Assuming that the TLW forests remain at steady state, in that no net biomass is added to the forest, 

the annual fluxes of carbon and nitrogen can be back calculated. As for magnitude of gross growth, 

(Morrison et al., 1993) estimate that annual gross growth includes about 120 g C m-2 year-1 in stem 

carbon allocation, and 175 g C m-2 year-1 in leaf carbon allocation. Notably, annual leaf carbon flux 

should be roughly equal to the season-maximum leaf biomass, which Morrison (1990) estimated to be 

180 g C m-2. As discussed in Section 5.2.2., some N from leaves is reabsorbed back into trees before 

leaf-fall. Morrison (1991) estimated that 63% of N was reabsorbed. This also results in a C/N ratio of 

leaf litter fall of 65 (Table D3), significantly more N-depleted than the leaf C/N ratio of 20 (Mitchell 

et al., 1992). 
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5.3.3.5 Soil Carbon and Nitrogen Storage 

Soil organic matter is distributed across soils in multiple vertical locations and degrees of chemical 

and biological degradation. Descriptions of the soils as humo-ferric podzols (Creed et al., 2002) 

implies the large amount of carbon stored. The forest floor has the greatest variety of organic matter 

degradation, and the largest per-weight carbon content. Within the forest floor, organic matter is 

classified as LFH: Litter (fresh), Fermented (still identifiable in origin), and Humus (well 

decomposed) (B.C. Ministry of Forests, 1997). Progressing from L to H, the carbon content decreases 

sharply, resulting in progressive enrichment in N (Morrison, 1990). Mitchell et al. (1992) provide 

estimates for the total forest floor carbon and nitrogen (See Appendix D3 Table D2). Despite being 

the smallest carbon pool in areal mass, the forest floor is expected to have a very high turnover rate, 

as will be discussed. As organic matter undergoes decomposition and humification, leachate carries 

organic matter, acids, and geogenic solutes from the forest floor and upper few centimetres of mineral 

soil (the A and E horizons) to the deeper soil. Much of this material is deposited in the soil B 

horizons. In this model, the forest floor is modeled as a vertically-distributed and homogeneous pool, 

as discussed in Sections 5.3.1. and 5.2.3.2. Because of thousands of years of organic matter 

translocation, and the relatively slower decomposition rate of humified matter, the mineral-soil-

associated pool represents the largest store of organic carbon and nitrogen at the TLW (Table D2), at 

almost 10 times the store size of the forest floor (Creed et al., 2002; Foster et al., 1986; Mitchell et al., 

1992; Morrison, 1990). In translating the Porporato et al. (2003) model to this site, we assumed that 

this mineral-soil-associated carbon would represent the long-residence-time pool in their model, 

called “humus”.  

The Porporato et al. (2003) model makes several assumptions about the decomposition of organic 

matter that should be addressed. The steady state behavior of the plant-litter-humus-biomass system 

(See Figure 5-1, Table 5-5) depends on two key parameters: the percent of decomposed carbon 

(respiration ratio) that becomes carbon dioxide, and the percent of decomposed litter that becomes 

humified (humification ratio). D’Odorico et al. (2003) and Parolari & Porporato (2016) assume 

respiration ratios of 60% and 75% (respectively) and humification ratios of 25% and 20% 

(respectively). (Brady & Weil, 2016) definitively assert that the respiration ratio is two thirds (66%), 

but other work highlights the large documented variability in microbial carbon use efficiency (CUE: 

defined as 1 minus respiration ratio). (Manzoni et al., 2012) show in a meta-analysis that soil 
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microbial CUE may vary (interquartile range) between about 40–70 percent (implied respiration 

ratios of 30–60%).  

I present an analytical solution that can be used to solve for the value of the respiration ratio, 

providing that I assume that the plant-litter-humus-biomass system exists in a multi-year steady state 

equilibrium. While intra-annual decomposition rates vary with soil moisture as discussed in Section 

5.2.3.2, observations of steady-state conditions in TLW forests provide justification that the 

underlying soil system is also at steady state. The solution for the respiration ratio requires that I 

know the annual rates of carbon turnover in the leaf and stem pools, and carbon to nitrogen ratios 

(C/N) of the plant leaf and stem pools, along with the litter, humus, and biomass pools in the soil. 

Measured data exists to inform many of these values, as seen in Table 5-5 and D2. I had to assume a 

pool size for soil biomass and a C/N ratio, for which I used values of 300 g C m-2 and 10, respectively 

(Manzoni & Porporato, 2007; Parolari & Porporato, 2016; Xu et al., 2013). I also had to assume a 

value for the humification ratio. A humification ratio of 20% resulted in a humus pool residence time 

of about 280 years. Without knowing annual humus decomposition rates from TLW, I assumed that a 

humification ratio of 10% (0.1) would produce more realistic residence times at least closer to 500 

years (Gaudinski et al., 2000; Wattel- Koekkoek et al., 2003). A value of 66% for leaf-fall nitrogen 

reintegration was also used from the literature (Morrison, 1991). Given these values, I used Equation 

5-1 to solve for a respiration ratio (𝑟𝑟) of 47%, given the measured value of the litter C/N ratio of 18.  

𝐶𝑁𝑙 =
𝐿𝐹𝑝+𝐿𝐹𝑙

1−𝜖
× [

𝐿𝐹𝑝+𝑓𝑁×𝐿𝐹𝑙

𝐶𝑁𝑝
+

𝐿𝐹𝑝+𝐿𝐹𝑙

𝐶𝑁𝑏
(

𝜖

1−𝜖
)]

−1
 (5-1) 

where 

𝐿𝐹𝑝 and 𝐿𝐹𝑙 are the annual litter fall (carbon) fluxes from plant stem and leaf 

biomass turnover, 

𝐶𝑁𝑝, 𝐶𝑁𝑝𝑙, 𝐶𝑁𝑏 are the C/N ratios for plant stem, leaf, and soil biomass, 

𝑓𝑁 is a factor accounting for C/N ratio differences between stem and leaf, such that 

𝑓𝑁 = 𝐶𝑁𝑝 × 𝐶𝑁𝑝𝑙−1 × (1 − 𝑁𝑠𝑡𝑜𝑟𝑒) (5-2) 

where 𝑁𝑠𝑡𝑜𝑟𝑒 is the fraction of reintegrated leaf nitrogen during leaf-fall. 

𝜖 = 𝑟ℎ(1 − 𝑟𝑟) + (1 − 𝑟𝑟 − 𝑟ℎ) (5-3) 
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where 𝑟ℎ is the humification ratio and 𝑟𝑟 is the respired carbon ratio. 

A derivation of Equation 5-1 is presented in Appendix D5, along with a mathematical proof showing 

the equivalence of Equation 5-1 to the steady state equation provided by Parolari & Porporato (2016). 

5.3.3.6 Nitrogen Export 

The sorptive properties of NH4
+ in the subsurface are dependent on a “protection” parameter. I used 

the value from Porporato et al. (2003), which assumed that NH4
+ experienced 95% “protection” from 

leaching and uptake (e.g. Eq. D2-42,46,109,110).  

5.3.3.7 Forest Dimensions and Stocking 

In results presented by Han (2022), yearly maximum leaf area index returns to pre-harvest values 

after about 12 years (validated with Landsat satellite measurements). Similarly, the number of stems 

recovers quickly after harvest, taking about 16 years to exceed the pre-harvest values (Buttle et al., 

2018; Table D5). Values of post-harvest yearly maximum LAI (from Han) and number of stems 

(from Buttle) were used to calibrate model parameters (see Section 5.3.4.2., Table 5-2), while pre-

harvest values were used as initial conditions for the model. 

5.3.3.8 Post-harvest Effects 

The effect of harvesting in the model primarily impacted the plant stem pool and the stem stocking. 

As in the experiments at TLW, harvesting took place in the fall of 1997 (modeled on year-day 320) 

after the conclusion of leaf senescence. After harvesting, the stem carbon pool and stem stocking 

were set to values of 2460 g C m-2 and 200 stems hectare-1, respectively, following measurements 

reported by Buttle et al. (2018). The harvesting event was assumed to result in a pulse of fresh 

biological material to the litter pool. The size and C/N stoichiometry of this pulse were calibrated 

(See Appendix D1.4.3). Although the root carbon component (from 3PG) was removed from the 

model structure (Section 5.3.2), it could be assumed that the harvesting event would lead to some 

dieback of the root network. As such, this “pulse” of material could represent material added as slash 

(branches and crowns) from the harvested trees, as well as dieback of roots in the subsurface. It was 

assumed that the lower limit of the C/N ratio of this pulse was 10, or the same as living soil biomass. 

Root C/N ratios are rare in the literature, and are likely different between different structures (fine vs 

coarse), but for maple species might be around or less than 20 (Ferlian et al., 2017).  
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5.3.4 Model Calibration 

The models in this study were written in R Version 4.2.2. (R Core Team, 2023). The model was 

solved with the forward Euler method using a sub-daily (0.25 d) timestep. The “data.table” package 

in R (Dowle & Srinivasan, 2022) was used with a “fast aggregation” method (Slowikowski, 2015) to 

speed up post-run aggregation of model results to the daily or yearly timestep for calibration. 

Section 5.3.4.1. describes formulations of evaluation metrics that we used to achieve specific 

calibration goals, which are outlined in Section 5.3.4.2. Section 5.3.4.3. describes the software and 

algorithms used to perform calibration. 

5.3.4.1 Evaluation Metrics 

The Kling-Gupta Efficiency (KGE, Equation 5-4, (Gupta et al., 2009) has become one of the 

preferred hydrologic model evaluation metrics, due to its incorporation of evaluation of the mean, 

variation, and correlation of simulated versus observed time series data. 

𝐾𝐺𝐸 = 1 − √(1 − 𝑟)2 + (
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
− 1)2 + (

𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
− 1)2 (5-4) 

where 𝑟 is the linear correlation coefficient, 𝜎𝑠𝑖𝑚 and 𝜎𝑜𝑏𝑠 are the standard deviation 

of simulated and observed data, and 𝜇𝑠𝑖𝑚 and 𝜇𝑜𝑏𝑠 are the mean value of simulated 

and observed data. 

The KGE has an optimal value of 1, and poor performance trends downwards towards negative 

infinity.  

Many calibration efforts used the absolute percent error (Equation 5-5) to evaluate deviation from a 

desired value. We define the function absolute percent error as 𝑃𝐸𝑅. 

𝑃𝐸𝑅 =
|𝑜𝑏𝑠𝑖−𝑠𝑖𝑚𝑖|

𝑜𝑏𝑠𝑖
 (5-5) 

where 𝑠𝑖𝑚𝑖 and 𝑜𝑏𝑠𝑖 are the 𝑖th simulated and observed values, respectively. 

For multiple observations, the mean absolute percent error is used, and is defined as 𝑀𝐴𝑃𝐸 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑𝑛

𝑖=1
|𝑜𝑏𝑠𝑖−𝑠𝑖𝑚𝑖|

𝑜𝑏𝑠𝑖
 (5-6) 

where 𝑛 is the number of observations. 

Alternatively, the root mean square error (𝑅𝑀𝑆𝐸) may be used as opposed to 𝑀𝐴𝑃𝐸. 
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑𝑛

𝑖=1 (𝑜𝑏𝑠𝑖 − 𝑠𝑖𝑚𝑖)2 (5-7) 

A multi-metric objective function could use several different benchmarks. For instance, if 𝑚1 is 𝑃𝐸𝑅 

of the plant pool from the steady state value, 𝑚2 is 𝑃𝐸𝑅 of the litter pool, and 𝑚3 is 𝑃𝐸𝑅 of annual 

stream nitrogen flux, then one evaluation metric can be calculated that results in the minimization of 

all three metrics: 

𝑜𝑏𝑗 = 𝑚𝑎𝑥(𝑤1𝑚1, 𝑤2𝑚2, 𝑤3𝑚3, … ) (5-8) 

where 𝑤 is the weight applied to each metric.  

By using the maximum function (Eq. 5-8) as the calibrated objective function, calibration can 

preferentially target each metric and the parameters influencing it. Other approaches might use the 

mean function to aggregate metrics, however this can result in one metric being minimized, at the 

cost of another increasing, just as long as the mean of the two decreases slightly. 

5.3.4.2 Calibration Strategy 

Due to the large number of parameters and processes in the coupled model (Table 5-1), calibration of 

parameters took place in several stages. During each stage, a segment of the fully coupled model was 

isolated, and a subsetted group of parameters specific to that segment were calibrated, with 

calibration metrics targeting outputs of the model segment against measured data from the TLW. 

After the calibration of the model segment, the best parameters were selected and “locked in”, and 

would not be calibrated during later calibrations of other model segments or the fully coupled model. 

Table 5-2 describes the model segments and the number of corresponding parameters in each group, 

as well as which input data were used and which model outputs were targeted in calibration. 

Appendix D1.4. has a complete list of all model parameters, with indicators of the grouping with 

which they were calibrated. The remainder of this section outlines calibration targets, objective 

functions, and function weights (e.g. Eq. 5-8) for each of the 6 calibration groupings. 
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Table 5-2. Parameter calibration groupings. Each grouping of parameters was solved in order of 

this table. Parameters calibrated in each grouping (second column) were “locked in” for subsequent 

calibrations using other targets. The Calibration Target describes the measured data used for 

calibration of the model outputs. In Appendix D1.4, the “Symbol” (in parentheses) in this table 

corresponds to the “Calibr.” column describing the Calibration Grouping of every parameter. The 

subset of equations used for the calibrated model segment are listed. 

Calibration 

Grouping and 

Symbol 

No. 

Para

ms 

Measured Data as Inputs Calibration Targets (comparison of 

model vs. measured) 

Model Eq. 

(See Appx. 

D) 

Hydrology 

(CalH) 

12 Precipitation (daily), 

Temperature (daily),  

Leaf Area Index (yearly, 

from Han, 2022) 

Streamflow (daily) Eq, D2-1 to 

D2-27 

Allometric 

(CalA) 

6 Number of Stems and  

Stem Biomass  

(at 2 points,  

see Table D4) 

Leaf biomass carbon (at one point, 

see Table D2);  

Leaf Area Index (at 2 points, see 

Table D4); 

Diameter at Breast Height (at 5 

points, see Table D4) 

Eq. D2-34 

and D2-60 

to D2-63 

Regrowth 

(CalR) 

6 Stem Biomass (at 5 points, 

Table D4) 

Number of Stems (at 5 points, see 

Table D4) 

Eq. D2-31 

and Eq. 

D2-64 to 

D2-71 

Steady-State 

Soil Carbon 

(CalSS) 

2 Pool sizes (steady state 

assumption) 

Carbon to Nitrogen Ratio of Litter Eq. 5-1 to 

5-3 

Coupled 

Model Pre-

Harvest 

(CalPre) 

14 Precipitation (daily), 

Temperature (daily) 

Pool Sizes (five carbon pools): 

Plant stem biomass; litter, humus, 

and soil carbon (see Table 5-5) 

Model Rates 

Plant stem growth (Table 5-5), 

Nitrogen Export (flux and 

concentration) 

Dissolved Organic Carbon Export 

(concentration) 

All 

Equations 

Coupled 

Model Post-

Harvest 

(CalPost) 

2 Precipitation (daily), 

Temperature (daily) 

Post-harvest stream NO3
- 

concentrations. 

All 

Equations 
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Briefly, we first calibrated the hydrology module (CalH) to predict streamflow and substituted the 

dynamically modeled Leaf Area Index (LAI, see Figure 5-1) for measured LAI as a model input. We 

then calibrated four allometric equations that predict the leaf biomass carbon, LAI and the diameter at 

breast height (DBH) as a function of measured data on the number of stems and stem biomass (CalA). 

This step allowed us to connect how post harvest dynamics in the number of stems and stem biomass 

impacts allocation of carbon to leaves, and ultimately impacts post-harvest LAI. We then solved the 

differential equation for calculating the number of stems as a function of growth and mortality rates 

that are controlled by measured values of stem biomass (CalR). Finally, we calibrated the fully 

coupled model for the pre-harvest period and used the plant and leaf biomass, as well as the soil 

carbon pools, plant stem growth as well as nitrogen and carbon export fluxes as calibration targets. 

When the calibrated model was run in the post harvest period, we found that while hydrology was 

adequately captured, the model underestimated post-harvest nitrogen fluxes. A perturbation was 

added to the model, occurring directly at the time of the harvest, and having the characteristics of a 

pulse of fresh organic material to the litter pool. This pulse had parameters for size (total amount of 

organic material, and the C/N ratio of that material). This multi-step top down calibration process 

allowed us to appropriately integrate soft calibration data, and address some of the equifinality issues 

that are key issues with coupled modeling.  

 

The specific process used for calibration is as follows: 

[1] Hydrology Calibration: The hydrology model was isolated from the coupled model and initially 

calibrated alone. The vegetation linkage with hydrology (LAI effect on interception and 

evapotranspiration) was preserved through substitution of measured maximum pre-harvest LAI data 

(see Table D4). Measured LAI was input into a trapezoidal time series which fluctuated between zero 

and the maximum LAI (4.5), corresponding with the timing of the leaf-on and leaf-off periods (See 

Section 5.3.3.2.). Climate and streamflow data from the control catchment c32 were used as model 

inputs and calibration data, respectively. The Kling Gupta Efficiency (KGE, see Section 5.3.4.1) of 

daily streamflow for the 13-year period of 1982 to 1995 was used as the evaluation metric. KGE of 

water-year summed streamflow, and root mean square error (RMSE) of snow water equivalent 

(SWE) was recorded, but not used in calibration. Of the hydrology model parameters, 12 were 
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calibrated. Ranges for parameters are summarized in Appendix D1.4. These ranges were determined 

based on site characteristics, as discussed in Section 5.3.3. 

[2] Allometric Calibration: The key linkage between the vegetation and hydrology model is the 

LAI, however the hydrology was only calibrated in the pre-harvest period, and using LAI values not 

calculated from the characteristics of the vegetation model. To capture the behavior of LAI in the 

post-harvest period, the behavior of LAI with varying vegetation characteristics had to be calibrated. 

This calibration did not involve solving differential equations, and instead optimized 6 parameters 

(see Appendix D1.4) governing 3 key allometric equations (Eq. D2-34,60,61) to match 8 data points. 

Evaluation metrics for each of the 8 data points were (1) the percent error (𝑃𝐸𝑅) of reported pre-

harvest growing season plant leaf biomass (see Table 5-5, Table D2, from Morrison et al., 1992; 

given a weight of 4), (2-3) 𝑃𝐸𝑅 of the growing season LAI in years 1997 (pre-harvest) and 2013 (see 

Table D4, data from Han, 2022; given weights of 4 and 2, respectively), and (4-8) the 𝑀𝐴𝑃𝐸 of DBH 

for all measured years 1997 (pre- and post-harvest) to 2013 (see Table D4, data calculated from 

Buttle et al., 2018; given weights of 1). The objective function (𝑜𝑏𝑗𝐴) used the maximum function to 

collectively reduce the values of all the data 

𝑜𝑏𝑗𝐴 = 𝑚𝑎𝑥(4 × 𝑃𝐸𝑅𝐿𝑒𝑎𝑓−97, 4 × 𝑃𝐸𝑅𝐿𝐴𝐼−97, 2 × 𝑃𝐸𝑅𝐿𝐴𝐼−13, 1 × 𝑀𝐴𝑃𝐸𝐷𝐵𝐻) (5-9) 

[3] Regrowth Calibration: Following calibration and “locking in” of the allometric equation 

parameters, the dynamics of the Number of Stems pool needed to be calibrated using the full 

differential equations in Eq. D2-31. Given measured data on the regrowth of plant stem biomass 

overtime, the dynamics of the Number of Stems pool needed to be tuned to achieve quasi-steady state 

(a balance of growth and mortality) in the pre-harvest period, as well as a net growth rate (more 

growth, less mortality) matching the measured data in the post-harvest period. Calibration of 6 

parameters (See Appendix D1.4) used in Equations D2-64 to D2-71 targeted 5 measured values for 

Number of Stems provided by Buttle et al. (2018, see Table D4). The objective function minimized 

the mean absolute percent error (𝑀𝐴𝑃𝐸) of Number of Stems. 

[4] Steady State Soil Carbon Pools: The multiyear steady state behavior of the soil carbon pools 

(litter, humus, biomass) depends largely on two parameters: the humification ratio and the respiration 

ratio. The calibration of these parameters is described in Section 5.3.3.5. and Appendix D5. The value 

of the humification ratio was selected based on the assumption of a residence time of the humus pool 

of approximately 500 years, and given the value of the humification ratio, the value of the respiration 
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ratio can be analytically calculated. Calibration metrics are not reported for this grouping because of 

the presence of the analytical solution. 

[5] Coupled Model Calibration (Pre-Harvest): By isolating several model components, and using 

the wealth of data available at TLW to ground truth behaviors of those components through time, a 

total of 24 parameters were calibrated all before ever running the fully coupled model. With that 

complete, the next task was to tune the growth and turnover rates of the vegetation and soil 

biogeochemical pools such that they achieved a quasi-steady-state on a multi-year timescale (see 

Section 5.3.1.3.). The ten calibrated parameters were all involved in regulating pool growth or 

turnover. Four objective functions were created to target either quasi-steady-state of pool sizes, or to 

target streamflow export of nitrogen and carbon:  

(1) quasi-steady-state of the plant pool: 𝑃𝐸𝑅 of simulation-end stem biomass from a value of 

11,0000 g C m-2 and 𝑃𝐸𝑅 of average annual gross stem growth at 110 g C m-2 year-1 (see 

Table 5-5), 

𝑜𝑏𝑗𝑃𝑙𝑎𝑛𝑡 = 𝑚𝑎𝑥(20 × 𝑃𝐸𝑅𝐶𝑝, 20 × 𝑃𝐸𝑅𝑁𝑃𝑃𝑠𝑡𝑒𝑚) (5-10) 

(2) steady state of the litter, humus, and biomass pools (𝑃𝐸𝑅 of simulation end pool size from 

values of 1600, 21400, and 300 g C m-2, respectively; see Table 5-5),  

𝑜𝑏𝑗𝑆𝑜𝑖𝑙 = 𝑚𝑎𝑥(10 × 𝑃𝐸𝑅𝐶𝑙, 10 × 𝑃𝐸𝑅𝐶ℎ , 10 × 𝑃𝐸𝑅𝐶𝑏) (5-11) 

(3) Nitrogen export was calibrated using (1) percent error in prediction of annual NO3
- flux 

𝑃𝐸𝑅𝐹𝑙𝑢𝑥, (2) percent error in predicting the ratio of NO3
- to total nitrogen flux (NO3

-  plus 

NH4
+) 𝑃𝐸𝑅%𝑁𝑂3, and (3) KGE of daily measured concentrations of NO3

- in stream water 

𝐾𝐺𝐸𝑁𝑐𝑜𝑛𝑐. Dissolved organic carbon export was calibrated using 𝐾𝐺𝐸 of daily DOC 

concentration. (𝑃𝐸𝑅 of average annual flux from a value of 0.47 g N m-2 year-1, 𝑃𝐸𝑅 of 

percent of N flux as NO3
- >90%: both values from Murphy et al., 2009).  

𝑜𝑏𝑗𝑁𝐹𝑙𝑢𝑥 = 𝑚𝑎𝑥(3 × 𝑃𝐸𝑅𝐹𝑙𝑢𝑥, 3 × 𝑃𝐸𝑅%𝑁𝑂3, 1 × (1 − 𝐾𝐺𝐸𝑁𝑐𝑜𝑛𝑐)) (5-12) 

𝑜𝑏𝑗𝐷𝑂𝐶 = 1 × (1 − 𝐾𝐺𝐸𝐶𝑐𝑜𝑛𝑐) (5-13) 

[6] Post-harvest Water Quality Calibration: With the implementation of the harvest disturbance to 

the forest (see Section 5.3.3.8), accurate modeling of NO3
- concentrations was the primary interest for 

calibration. My assumption was that the pulse of nitrogen from the subsurface post harvest would be 
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best captured by the decomposition of organic material in the subsurface. A one-time pulse of 

material was added to the litter pool, and its characteristics (pool size in units of carbon, and its 

carbon to nitrogen ratio) were calibrated. The 𝑅𝑀𝑆𝐸 of measured versus modeled NO3
- 

concentrations for the first 5 post-harvest years served as the objective function. 𝑅𝑀𝑆𝐸 was used 

instead of 𝐾𝐺𝐸 because of the non-stationarity of the mean and variability of concentrations year-to-

year after harvest, as well as the gradual shift in the concentration regime from elevated post-harvest 

to lower than pre-harvest levels.  

 

5.3.4.3 Calibration Software and Algorithms 

The Ostrich software (Matott, 2017) was used to automatically explore the pre-defined parameter 

space and optimize the model according to the provided objective function(s). Ostrich was run with 

multi-core parallel execution, using Microsoft Message Passing Interface (MPI, Version 10.1.1, 

Microsoft Corporation). Given an objective function, the Dynamically Dimensioned Search (DDS) 

algorithm (Tolson & Shoemaker, 2007) was used within Ostrich to identify optimal parameter sets. 

The DDS algorithm has been shown to appropriately explore the provided parameter range for many 

parameters and rapidly converge on global optimal solutions. Notably, DDS has been shown to not 

get stuck in local optima. The Ostrich software used the General Purpose Constrained Optimization 

Platform (GCOP) and the Additive Penalty Method (APM) to handle objective function values. When 

using the KGE metric as an objective function, the value of one minus the KGE had to be handed to 

the GCOP, because it is only equipped to minimize the value of an objective function. 

At times in early model calibration, the Pareto Achieved DDS (PADDS) algorithm (Asadzadeh & 

Tolson, 2013) was used within Ostrich to balance two different objective functions. The Exact 

HyperVolume Contribution ((Knowles et al., 2003) was used as a selection metric. 
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5.4 Results and Discussion 

This section presents results from the calibration, performance, and scenario behavior of the coupled 

model. Section 5.4.1. presents the best results for objective functions and model fits from the 6 

Calibration Groupings (Section 5.3.4.2.) of various model parameters. Section 5.4.2. presents the final 

model configuration to describe various aspects of the model behavior, with scenarios including 

unharvested and harvested. Section 5.4.3. describes potential model improvements and how they 

might apply specifically to the study site at TLW or to the model’s applicability to other sites. 

5.4.1 Model Calibration and Validation 

This section is ordered following the Calibration Groups (Section 5.3.4.2., Table 5-2). Each 

subsection describes the lowest achieved objective function values (see also, Table 5-3), and how 

they compared to expected values (either from literature or other site observations). Behavior of 

model fit in relation to calibrated parameters is described, along with tradeoffs between parameters or 

choice of objective function. 

 

5.4.1.1 Snow Model 

The snow model was initially calibrated as an even smaller isolated subset of the hydrology model. 

The calibration of three snow parameters attempted to match measurements of snow water equivalent 

(SWE), which were taken outside the experimental catchments, as seen in the map in Figure 5-2. In 

their hydrologic model, Leach et al. (2020) report root mean square error (RMSE) of 44 mm in SWE. 

Equations from the HBV model were used for both models by Leach et al. (2020) and myself. By 

calibrating the three parameters of the snow model, I was first able to achieve RMSE of 43.5 mm 

SWE for the 30 year period of 1982 to 2011. As is discussed in the next section, it was found that 

calibrating the snow to measured data had negative effects on the fit of streamflow data from the 

hydrologic model. As such, calibration of the hydrologic model allowed for varying the snow 

parameters to optimize streamflow, at the expense of SWE fit. 
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Table 5-3. Calibration Results. Calibration Groupings match Table 5-2. Calibrated metrics have an 

asterisk*. Validation metrics are included for information but did not guide calibration. PER is 

percent error. MAPE is mean absolute percent error. MAE is mean absolute error. 

Calibration 

Grouping 

Calibration Targets (comparison 

of model vs. measured) 

Calibration* and Validation Metrics 

Hydrology (CalH) Streamflow (Q) 

Catchment c32, period: water years 

1982–1994 

Daily Q KGE = 0.677* 

Water-Year Sum Q KGE = 0.708 

Q Balance = +5.1% 

SWE RMSE = 61 mm 

Allometric (CalA) Leaf Area Index (LAI): 

LAI 1997 pre-harvest 

LAI 2013 

LAI all 5 points 

 

PER = -4%* 

PER = -2%* 

MAPE = 23%*, MAE = 0.64 

Diameter Breast Height (DBH): 

DBH all 5 points 

 

MAPE = 8%*, MAE = 1.1 cm 

Leaf Biomass Carbon 1997: PER 0.3%* 

Regrowth (CalR) Number of Stems, 5 points MAPE = 13%*, MAE = 51 stems/ha 

Coupled Model 

Pre-Harvest 

 (CalPre) 

Pool Sizes (carbon): 

Plant stem biomass 

Litter 

Humus 

Soil biomass 

 

PER = 0.8%* 

PER = 1.4%* 

PER = 0.07%* 

PER = 1.0%* 

Model Rates: 

Mean Plant stem growth 

Mean NO3
- Flux 

Mean % TN Flux as NO3
- 

 

PER = 1.0%* 

PER = 5.7%* 

PER = 5.9%* 

Water Quality Timeseries: 

Stream NO3
- Conc 

Dissolved Org Carbon Conc 

 

KGE = 0.70* 

KGE = 0.50* 

Hydrology Validation: Daily Q KGE = 0.681 

Coupled Model 

Post-Harvest 

(CalPost) 

Stream NO3
- Conc: 

c31: first 5 years post-harvest 

c32: first 5 years post-harvest 

c31: 30-year 1982-2011 

c32: 30 year 1982-2011 

 

RMSE = 2.34 mg/L* 

RMSE = 0.64 mg/L 

RMSE = 1.1 mg/L 

RMSE = 0.61 mg/L 
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The snow model was recalibrated alongside the hydrology model. While the isolated calibration of 

the snow model produced optimal parameter fits of about 2.8 for the degree day factor and close to 0 

for the snow transition temperature (Appendix D1.4), the optimal melt transition temperature was 

about 0.9. The fit of the hydrology model was influenced by the melt temperature (Figure D1), 

favoring a temperature less than negative 1. By optimizing for best daily streamflow fit, the snow data 

fit was RMSE of 61 mm SWE (Table 5-3). On average, the hydrology model underestimated the 

measured SWE by 21%, with a mean absolute error of 29% (MAE 44.9 mm SWE). It’s possible that 

the data available for calibration for Snow Pit #8 (Figure 5-2) is not representative of the snow 

behavior across the modeled catchments. While Snow Pit #8 rests in a small valley near the outlet of 

Norberg Creek at an elevation of 340 m above mean sea level (MSL), the elevations of both 

catchments c31 and c32 range from about 355–437 m MSL. There may be significantly different 

snow and melt dynamics 100 m above the snow and precipitation station. 

5.4.1.2 Hydrologic Model 

The hydrologic model was first run in Calibration Group 1 (see Table 5-2). A total of 12 parameters 

were calibrated, including the “bucket sizes” for the two water pools, as well as process rate 

constants. Optimal parameter values are shared in Appendix D1.4. Inputs to the model included daily 

climatological data including precipitation and temperature, along with summertime maximum LAI 

(from Han, 2022) which were used to create a trapezoidal LAI function as a substitution for the 

dynamically modeled LAI that in the fully coupled model is dependent on plant leaf carbon and stem 

carbon.  

The calibration resulted in very good fits for daily streamflow (Figure 5-4). For the calibrated period 

(using catchment c32 streamflow for water-years 1982–1994), the modeled daily Q Kling-Gupta 

efficiency (KGE) was 0.677 (Table 5-3, 5-4). While daily Q KGE was the calibration metric, the 

water-year summed Q KGE was also quite good, at 0.708, and the total Q balance was 5.1% 

(modeled having 5% more streamflow than measured for the 13-year period). Modeled flow captured 

the timing of storm events and high flows well, including the spring freshet (Figure 5-4, left panel). 

The model struggled however to capture the magnitudes of very low flows, but captured well the 

distribution of flow above the median flow (Figure 5-4, right panel). 
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Figure 5-4. Hydrology calibration results. Hydrographs (left column) and cumulative distribution 

functions (right column) for water years 1991 (top row) and 1997 (bottom row). KGE for WY 1991 is 

0.29 and KGE for WY 1997 is 0.82. Gray lines are measured streamflow and black lines are modeled. 

The X axis is the calendar year, not the water year. 

 

Table 5-4. Performance of the isolated hydrologic model against measured streamflow. The first 

row with the asterisk* is the calibrated scenario and evaluation metric (Daily KGE), and the other 

rows serve as model validation. A positive Q balance implies model over-estimation. 

Model  Daily Q KGE WYear Q KGE % Q Balance 

c32, 13 years pre* 0.677* 0.708 +5.1% 

c32, 13 years post 0.521 0.683 +27% 

c32, 30 years 0.617 0.812 +13% 

c31, 13 years pre 0.710 0.940 +1.5% 

c31, 13 years post 0.539 0.638 -9.6% 

c31, 30 years 0.610 0.872 -6% 
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I conducted validation of the hydrology model for different time periods (the 13 years pre-harvest, the 

13 years post-harvest, and a 30-year period spanning the harvest), and validated against measured 

streamflow from either catchment c32 (control, not harvested) or c31 (harvested in 1997). The model 

performed well, especially in the pre-harvest period, and similar to other studies, pre-harvest 

calibration resulted in poorer representation of post-harvest streamflow (Lin, 2022). During the 13-

year pre-harvest period in catchment c31, the hydrology model achieved a KGE of 0.71, higher than 

the calibrated value for catchment c32. Similarly, the water-year summed KGE was 0.9 (and only 

1.5% difference in Q balance). For both catchments, the worst fit was for the 13 years from 1998 to 

2010. For c31, which was harvested in the fall of 1997, the trapezoidal simulated LAI (as discussed in 

Section 5.3.4.2) was altered to reduce the maximum summertime LAI after harvest, and slowly 

increase over the following years (using the summertime LAI values in Han, 2022). Despite better 

performance of c31 relative to c32 during the post-harvest period, daily KGE values were lower than 

pre-harvest: 0.539 and 0.521, respectively. The Q balance went in opposite directions for this post-

harvest period, with c32 modeling a 27% overestimate, and c31 a 9.6% underestimate.  

While whole-period daily KGE was 0.677 (13-year calibration, Table 5-4), within-water-year KGE 

ranged from -0.1 (2007) to 0.83 (1985) between water years (WY) 1983–2011. Figure 5-4 shows 

water year hydrographs for the years 1991 and 1997. For both years, the timing of snowmelt and 

spring freshet (around year decimal 0.35), and the baseflow recession coming into the summer were 

quite well matched. The large difference in within-water-year KGE for these two years was reflected 

at all times of year. The freshet periods (year decimal 0.25–0.5) for 1991 and 1997 had daily KGE of 

0.23 and 0.85 respectively: almost indistinguishable from the annual KGE. For some reason, at the 

end of 1990 into 1991, soil moisture must have been replenished, resulting in higher base flow 

through the winter that was not successfully modeled (Figure 5-4). In contrast, in 1997, modeled and 

measured streamflow were close, and much lower than in 1991. The cumulative distributions also 

show that in 1997, modeled very low flows make up a much larger portion of flows than the 

measured data suggests. Despite this, the median flow (cumulative density = 50%) for 1997 was very 

close, while for 1991 the model over-estimated median flow. 
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5.4.1.3 Forest Allometry and Stem Growth Calibration 

Calibration Groups 2 & 3 calibrated the stem components to measured data provided by Buttle et al. 

(2018; Appendix D Tables D2 & D4). Measured stem biomass (Figure 5-5a) was used as input to the 

allometric equation calibration. This calibration resulted in good fits for diameter at breast height 

(DBH, fits of MAPE 8.4% and MAE 1.1 cm, Figure 5-5b). Leaf Area Index (LAI) was a function of 

DBH, leaf biomass, and the specific leaf area (SLA, itself a function of plant biomass). Having 

calibrated the former values (Table 5-3), a good LAI fit was achieved (MAPE 23% and MAE 0.64, 

Figure 5-5c). In Calibration Group 3 the dynamics of the stem pool were calibrated, resulting in 

model mean absolute percent error (MAPE) in stem stocking was 13% (MAE 51 stems ha-1) (Figure 

5-5d, Table 5-3).  

The most important aspects of the stem modeling component included the pre- and post-harvest 

characteristics, the rate of change post-harvest, and “the overshoot” during recovery. This 

“overshoot” refers to the fact that measured data showed the number of stems post-harvest exceed the 

pre-harvest value. This likewise causes an overshoot in LAI, which will increase net primary 

productivity and transpiration in the coupled model post-harvest. The sparse measured data provided 

some difficulty for calibration. While the harvesting activity could reduce the number of stems and 

amount of tree biomass by a desired precise amount, the rate of growth to target was not consistent in 

measured data. For example, as seen for stem biomass (Figure 5-5a), the second post-harvest 

measurement suggested a slower rate of growth than the third measurement, and the fourth 

measurement showed a smaller rate again. This problem is discussed for calibration of the fully 

coupled model (Section 5.3.4.2, with results in 5.4.1.4). In contrast, the measured stem stocking 

seemed to have a more dramatic exponential increase than what the model could achieve, although 

the model matched the third and fourth post-harvest targets very well. The recovery data for LAI 

(from Han, 2022) presents a somewhat paradoxical contrast with basal area, where LAI recovery 

appears to be very fast. While the model captured the fourth post-harvest measurement well, it is 

unclear how modeled and measured post-harvest plant growth might differ, given that the second and 

third LAI measurements were underestimated by 43% and 30%, respectively. Again, this seems 

paradoxical because the growth rates suggested by measured basal area seem to vary significantly 

over this 16 year post-harvest period. 
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Figure 5-5. Comparison of measured and modeled forest geometries. Points represent measured 

data (described in Table 5-2 and Table D4). Lines represent modeled data. The horizontal dashed line 

represents the pre-harvest condition and the vertical red line represents the timing of the harvest. 

 

 

5.4.1.4 Fully Coupled Model Pre-Harvest Calibration 

The fully coupled model was first run in Calibration Group 5. With the soil moisture regimes locked 

in by the calibration of soil parameters (Section 5.4.1.2.), allometric equations calibrated (Section 

5.4.1.3.), and final parameters governing soil carbon allocation analytically solved (see discussion in 

Section 5.3.4.2., and Appendix D5), achieving a steady state of the carbon budget required balancing 

pool volumes and turnover rates at appropriate levels on a multi-year basis. As discussed in Section 

5.3.1.3., work by Morrison (1990) suggests that the forests at TLW exist in steady state, leading to the 
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assumption  that aboveground biomass and soil carbon stocks should be generally unchanging over 

time in the unharvested scenario. Calibration for Group 5 used the full 30 years of climate for 

catchment c32 to demonstrate steady state of the forest biogeochemical cycle. From the best model 

results, average pool sizes and average water-year summed fluxes are presented in Table 5-5 in 

parentheses accompanying the calculated values. Absolute percent error (𝑃𝐸𝑅) of pool stability was 

0.8% for Cp, 1.4% for Cl, 0.07% for Ch, 1.0% for Cb, and 1.0% for annual stem NPP (average 112 g 

C m-2). Initial validation of the model also showed that assumptions made during earlier phases of 

calibration were reasonable. Namely, switching out the trapezoidal LAI for dynamically modeled LAI 

resulted in no meaningful change in hydrologic fit, ultimately resulting in a daily flow KGE of 0.681. 

All modeled carbon pools are interdependent, and so stability is achieved when each has a balance of 

inputs and outputs (Table 5-5). For litter, humus, and soil biomass, calibration only affects a single 

turnover rate applied to each pool. While the soil temperature influence on soil processes was applied 

equally, the “switch” parameter determined the amount of influence. Calibration appeared to show 

little sensitivity in pool calibration to the temperature influence, however the water quality metrics 

showed preference to the isothermic equations (Figure D2).  

Table 5-5. Carbon and nitrogen pools and fluxes at Turkey Lakes Forest. Values without 

annotation (parentheses, asterisks) are approximations of values measured at the TLW site, including 

pool sizes for plant stem, plant leaf, litter, and humus (see also, Table D2). Values with asterisks* are 

calculated according to equations in Appendix D5. Values in parentheses are averages from a 30-year 

steady-state model run. Values with a hat^ are completely dependent on the carbon value divided by 

the Pool C/N ratio. 

Pool Carbon Pool 

(g C m-2) 

Nitrogen Pool 

(g N m-2) 

C Turnover 

(g C m-2 y-1) 

N Turnover 

(g N m-2 y-1) 

Pool C/N 

Ratio 

Plant Leaf 

Biomass 

180 

(174) 

9^ 180 

(173) 

9^ Uptake 

3^ (2.95) Fall 

20 

Plant Stem 

Biomass 

11,000 

(10958) 

55^ 110 

(112) 

0.55^ 200 

Soil Biomass 

 

300 

(302) 

30^ 271* 

(274) 

27.1^ 10 

Litter Pool 1600 

(1554) 

87.4^ 

(84.4) 

560.9* 

(560.6) 

30.7^ 

(30.38) 

18.3 

(18.44) 

Humus Pool 21400 

(21236) 

972^ 56.09* 

(62.9) 

2.55^ 22 
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Table 5-6. Modeled nitrogen fluxes for ammonium (NH4
+) and nitrate (NO3

-). Values in 

parentheses are averages from 30-year steady-state model run. Calculated mineralization has an 

asterisk* (from Table 5-5, subtract soil biomass N turnover from litter pool N turnover). 

 NH4
+ Flux Flux Name or Internal Flux NO3

- Flux 

Inputs 

(g N m2 year-1) 

0.34 Deposition 0.34 

3.61* (3.868)  Mineralization - 

  Atmospheric N Fixation 

(1.2) 

 

Internal Flux 

(g N m2 year-1) 

 Nitrification (NH4
+ to NO3

-) 

 → (4.13) → 

 

 

Outputs 

(g N m2 year-1) 

 

 

- Denitrification (1.91) 

(0.03) Plant Uptake (2.08) 

(0.052) Leaching (0.48) 

0.08 Stream Concentration (mg/L) 0.94 

 

Table 5-7. Residence times of model stores. Residence times were calculated as pool size over the 

sum of outgoing fluxes (e.g. turnover or withdrawal). 

Pool Residence Time 

Long     →     Short 

Plant Leaf C             1 year 

Plant Stem C     45 year 

Soil Litter C         2.73 year 

Soil Humus C 337 year 

Soil Biomass C             1.11 year 

Mineral N - NH4
+               47 days 

Mineral N - NO3
-                  3.9 days 
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The final parameter affecting the plant pool was the stem turnover rate (𝑚𝑝2). Because the 

calibration metric emphasized both pool stability and a specific pool gross growth rate (Equation 5-9), 

the turnover rate targeted a specific turnover rate to match the growth rate. Had the growth rate not 

been a calibration target, it is conceivable that the calibration could have favored both growth and 

turnover rates close to zero, such that no change occurs in the pool, achieving “stability” in that way 

instead. Constraining the potential range of the growth and turnover parameters also prevented this 

equifinality problem. Given the steady state calculations in Appendix D5, the achievement of model 

stability in the litter, humus, and soil biomass pools was entirely dependent on turnover rates, and 

calibration found optimal values for these rates (Figure D2). 

Calibration of the fully-coupled forest model simultaneously targeted steady-state behavior of the 

carbon and nitrogen pools, and appropriate export of nitrogen. Over the 30-year timeframe for 

catchment c32, modeled annual NO3
- flux averaged 0.44 g N m2 year-1 (Table 5-6; 𝑃𝐸𝑅 of 5.6%), 

with 89% of total N flux as NO3
- (target was 95% of flux). For calibration of daily measured NO3

- 

concentrations (available 1981–2018), a 𝐾𝐺𝐸 of 0.7 was achieved (Figure 5-6a). The components of 

NO3
- concentration 𝐾𝐺𝐸 incorporated the mean (𝑃𝐸𝑅 of -14%), standard deviation (𝑃𝐸𝑅 of 6%), and 

the correlation (R2 = 0.75), which all indicated a good fit of the model to measured data. Calibration 

of daily measured dissolved organic resulted in a 𝐾𝐺𝐸 of 0.5 (Figure 5-6). The components of DOC 

concentration 𝐾𝐺𝐸 incorporated the mean (𝑃𝐸𝑅 of -27%), standard deviation (𝑃𝐸𝑅 of 22%), and the 

correlation (R2 = 0.72). 
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Figure 5-6. Comparison of model concentrations to measured data. Modeled NO3
- (a) dissolved 

organic carbon (c) concentrations (blue) compared to measured data (red) for the years 1987 and 2005 

(respectively). Absolute error (model minus measured) over year-day (black points) and month (red 

boxplots) for NO3
- (b) and DOC (d). 
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Overall fit for NO3
- concentrations was good, but seasonal fit for modeled NO3

- concentrations varied 

significantly. Modeled NO3
- concentrations routinely underpredicted summertime concentrations by 

50–75% (Figure 5-6a,b). Notably, though, the summer period also had the least measured 

concentration data. I suspect that the model behavior during the leaf-out period of the model, 

characterized by a strong drawdown of the soil N pool, manifested in very low modeled stream NO3
- 

concentrations. During initial calibration, I increased the maximum N fixation rate (Figure D2), 

resulting in more N uptake during leaf-out being derived from fixation, leading to less drawdown of 

the soil N pool and improving modeled concentration in the early spring. The majority of measured 

concentrations were in the spring and fall. Despite a wide range of single-day under- or over-

predictions, median error was close to zero during the spring and fall (Figure 5-6b). During periods of 

higher measurement frequency, some modeled years showed very low error during the spring freshet 

period. In the fall, modeled data sometimes overpredicted the measured concentrations by over a 

factor of 2. The difficulty in calibration for NO3
- concentration stemmed in part from the model 

design oriented around distinct climatological and biological periods (Section 5.2.2.1): winter 

dormancy, leaf-out, summer, and leaf-fall. As discussed above, the largest modification to the soil N 

pool takes place during leaf-out, where soil N that accumulated during the dormant period and high-

moisture high-decomposition high-N-production conditions. The increase in transpiration driven by 

canopy growth and warmer temperatures then draws down soil moisture, resulting in a low-

decomposition low-N-production regime into the summer. While NO3
- concentrations during the 

spring freshet are modeled quite well (Figure 5-6a), the same high moisture regime that arrives in the 

leaf-fall period appears to be more difficult to model than the freshet. The amount of soil N 

accumulated at the end of the summer is governed by the summertime N uptake, pulses of 

decomposition during periodic soil-wetting events, and enrichment of the litter pool in N (decreased 

C/N ratios), which results in more N production per unit litter decomposition. On the median, fall 

model NO3
- concentrations fit measured data about as well as the rest of the dormant period, however 

there appears to be some mechanism that drives very high concentrations during storm events that are 

not observed in the measured data. 

The comparison of model fit for NO3
- versus DOC concentrations gives useful insights into the model 

processes. While NO3
- and NH4

+ are subject to a myriad of production, removal, and modification 

processes in the soil, in this model, DOC is modeled mostly as a conservative tracer, with a variable 

input dependent on decomposition. Generally, median monthly behavior for DOC concentration was 
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a good match except in June through September (Figure 5-6c,d). These months had the most modeled 

no-flow days and the most low-flow days 0<Q<0.1, where estimation of concentration would be 

extremely sensitive to flow. These months also had the most days where modeled flow was 100% 

derived from overland fast flow, where no model mechanism existed for DOC transport or 

production. Because the model assumes that all DOC comes from subsurface pathways, surface 

pathways for production and transport (e.g., surface ponded water, particulate organic matter) are 

unrepresented in the model. 

5.4.1.5 Water Quality Calibration Post-Harvest 

The behavior of the model following harvesting was modified from the control scenario by two 

disturbances: the removal of plant biomass and stems (setting up a long-term cascade of effects from 

the growth of new vegetation), and the “pulse” addition of fresh biotic material to the litter pool 

(setting up a short-term cascade of effects from decomposition and mineralization). The only 

calibrated parameters for the post-harvest period were for the “pulse”. Specifically, both the size and 

stoichiometry (C/N ratio) of the pulse were calibrated. Calibration was most sensitive to the C/N ratio 

of the pulse, strongly favoring the minimum value of 10 (Figure D3). I observed that the pulse led to a 

spike in decomposition, however at higher C/N ratio of the pulse (especially at higher C/N than the 

average litter C/N of 18), the spike in decomposition and reduction in the average litter pool C/N led 

to a switch from mineralization to immobilization behavior. Contrary to the observed spike in NO3
- 

concentrations (Figure 5-7a), calibration scenarios with higher C/N and the subsequent 

immobilization led to suppressed NO3
- leaching and concentrations.  

For the final optimally calibrated harvested model, modeled and measured concentrations showed 

strong agreement (Figure 5-7). The calibrated objective function of RMSE of the first 5 years of post-

harvest NO3
- concentrations was 2.34 mg/L. The 30-year (1982-2011) RMSE was 1.1 mg/L. For 

comparison, for the control scenario, the 5-year (1998-2002) and 30-year RMSE of NO3
- 

concentrations was 0.64 and 0.61 mg/L, respectively. While the model behavior replicated the rise-

and-fall shape of NO3
- concentrations, the model underpredicted the very high concentrations in the 

second year post-harvest (WY 1999). Then, by WY 2002, the model overestimates concentrations, 

whereas measured concentrations for the harvested catchment on average fell below the control 

catchment for the next 10 years (and presumably more).  
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Figure 5-7. Comparison of stream NO3
- concentration for modeled versus measured data. a) 

Water-year-averaged concentrations, comparing the harvested and control scenarios. Vertical dashed 

red line shows modeled date of harvest. b) Discrete daily concentration for six years (1996-2001, x-

axis), showing pre- and post-harvest behavior for harvested scenarios (modeled and measured). 

Water-years (mid-panel labels) are separated by vertical black lines.  
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5.4.2 Model Behavior 

The goal of this modeling exercise was to gain insight into which biological, hydrologic, and 

biogeochemical processes are important in driving the water quality and streamflow response to 

harvesting. In the previous section, I used several data to calibrate and validate that this model can 

replicate real world behavior of the forest at TLW, including hydrology and the concentration and 

export regime of dissolved nitrogen.  

5.4.2.1 Effect of Harvesting on Flow and Hydrology 

The effect of forest harvesting on streamflow at the TLW has been previously summarized in work by 

Buttle et al. (2018), Leach et al. (2020), Lin (2022), and Han (2022). A key challenge highlighted by 

all these authors is the correlation in time between a shift from wetter to drier conditions (10 years 

pre- and post-harvest comparison: 170 mm/year, 13% reduction in precipitation; 47 mm/year, 7% 

increase in potential evapotranspiration) at the same time that harvesting took place (in the fall of 

1997). As discussed previously, a general hypothesis for post-harvest behavior would be that the loss 

of vegetation would decrease transpiration and increase runoff. The observed climatic shift instead 

decreased runoff across the TLW. At the simplest level, the effect of harvesting can be described as 

relatively little change in runoff in the harvested catchments (c31, c33, c34) between the pre- and 

post-harvest periods, while runoff decreased in an assemblage of control catchments (c32, c35, c46): 

the implication being that runoff would have decreased if not for the harvest. In the same 10 year 

period comparison (Figure 5-8), measured water-year flow in c31 decreased by 71.4 mm/year (-12%), 

while flow in c32 decreased by 149 mm/year (-25%). 

The harvest scenario in the model was clearly able to replicate a small increase in streamflow relative 

to the control scenario (Figure 5-8a,b). The model replicated the decrease in streamflow in the control 

catchment due to the drier weather, and the magnitude of streamflow increase in the harvest scenario 

was similar to measured data, except for a very large measured streamflow in c31 in WY 2004. 

Despite efforts to use linear regression to isolate the climatic effect of the drier post-harvest period, 

there was no significant difference in the effect size in measured data (Figure 5-8b) between the pre-

harvest (WY 1982-1997: 39 mm/year) and post-harvest (WY 1998-2011: 41 mm/year) periods. This 

stands in contrast to the clearer trend in modeled effect size, which increased to about 100 mm/year in 

WY 2000 and then around 50 mm/year after that, until receding by WY 2006.   
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Figure 5-8. Hydrologic effects of harvesting. a) Measured (dashes and open circles) and modeled 

(solid lines and circles) water-year streamflow in the control (c32) and harvested (c31) catchments. b) 

Effect size in measured and modeled streamflow for the harvested scenario. “Expected” values for 

streamflow in the clearcut harvested catchment c31 were calculated from streamflow in the control 

catchment 32 from linear regression. The regression (for water-years 1982–1997) resulted in a 

significant relationship (p=0.012, adjusted R2=0.33) with water-year streamflow (in mm): Q31 =  0.53 

* Q32 + 305. The regression was then used to calculate expected values for c31 for water-years 1998–

2011. Effect size was calculated as measured minus expected. c) Absolute value of modeled changes 

in hydrologic fluxes contributing to the change in streamflow. “neg” means the effect size was 

negative.  
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The cause of the streamflow change after harvesting was almost exclusively driven by the net change 

in evapotranspiration (Figure 5-8c). While transpiration decreased by up to 175 mm/year, a 

compensatory increase in soil evaporation (driven in part by the reduced tree canopy and more solar 

radiation reaching the soil surface, and in part by increased soil moisture) resulted in a peak modeled 

effect size of 124 mm/year in WY 2000 (average 44.5 mm/year for the post-harvest period). By WY 

2005, the regrowth of the canopy balanced the rebounding transpiration effect with a slowly 

decreasing evaporation effect, resulting in little divergence in modeled streamflow.  

 

5.4.2.2 Effect of Harvesting on NO3
- Export 

Beginning this work, my hypothesis was that export of nitrogen would be governed according to the 

seasons. In winter, nitrogen mineralization, nitrification, and subsequent export would be governed by 

soil moisture, itself affected by precipitation and snowpack dynamics. Denitrification would be a 

major sink of NO3
-, preventing its export. In summer, soil moisture levels are drawn down by plant 

transpiration, thus preventing export due to the lack of flow.  

The effect of the harvest was immediately seen in measured concentrations (Figure 5-7b). 

Concentrations of NO3
- in catchment c31 exceeded 3 mg N/L in the fall of 1997—the highest level in 

the period 1982–1997. For WY 1998 (starting October 1997), the average modeled NO3
- 

concentration slightly exceeded measured concentrations (Figure 5-7a), and while measured 

concentrations rose on average in the next WY 1999, modeled concentrations fell slightly. The 

averaging effect conflated two problems with the modeled concentrations: first, dormant period 

concentrations (including immediately after the harvest in October 1997) should have risen 

immediately (Figure 5-7), but immediately after the harvest the model concentrations were similar 

values to immediately before the harvest. This is likely due to the fact that little flow was generated in 

the model at these times, and the only nitrogen pathway for overland flow would be precipitation wet 

deposition or transport of the snowpack N store. The second problem is in the non-dormant period of 

1998, where modeled concentrations appear to be twice as high as measured. While the impact of the 

freshet is clear in both modeled and measured concentrations, the constantly elevated model values 

likely stems from the decomposition of the large N-rich dead root pulse. The mismatch in the second 

post-harvest WY suggests that perhaps some decomposition of the pulse should have been delayed, 
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such that more N would be released later and not earlier. With that said, the fall of 1998 showed good 

agreement in the magnitude of the N concentrations, peaking around 10 mg N/L.  

Following the increase in NO3
- concentrations, measured concentrations dropped from WY 1999 to 

2000 and 2001, and in WY 2002 concentrations for the harvested catchment c31 dropped below those 

of the control catchment c32. As discussed above, the modeled concentrations peaked in WY 1998, 

but fell slower than measured concentrations, and did not fall below those of the control catchment 

until about 2005–2007. The WY-averaged modeled concentrations mirrored the rise and fall of 

modeled soil NO3
- pool (boxes 1 and 2), suggesting that the mismatch between modeled and 

measured from WY 2000 onwards was due to too much addition to the soil, or too little removal of 

NO3
- from the soil (either via denitrification, or vegetation uptake). After the harvest, denitrification 

increased from a rate of 2 g N m-2 year-1 to about 8 g N m-2 year-1, and declined along the same 

pattern of soil NO3
-. In contrast, plant N uptake (of which about 90% is of NO3

-) decreased from a 

rate of about 3 g N m-2 year-1 pre-harvest to less than 1.5 g N m-2 year-1 for a period of 11 years. Total 

plant N uptake returned to pre-harvest levels in WY 2011. Interestingly, NH4
+ uptake exceeded pre-

harvest levels by a factor of 2 in 2008, 2009, and 2011, but was otherwise about the same post-harvest 

as pre-harvest. These high-NH4
+-uptake years corresponded to very low soil NO3

- years, whereas 

2010 had slightly higher soil NO3
-. Similar patterns of increase in the immediate post-harvest years 

(usually 1998–1999) and then subsequent decreases were seen for soil biomass, the litter and humus 

pools themselves, and consequently the processes of mineralization and nitrification.  

 

5.4.2.3 Concentration-Discharge Behavior 

Measured NO3
- concentrations for catchment c32 showed a generally chemostatic behavior at low 

flows, with concentrations ranging between 0.5 and 0.75 mg N L-1, and mobilization behavior during 

high flows like the spring freshet. Concentration-discharge (C-Q) analysis of measured data shows a 

slight positive slope (b=0.16) of the total log-concentration log-discharge regression. Breakpoint 

analysis at the median measured discharge (0.436 mm day-1) showed an insignificant slope less than 

the median (p=0.5) and a significant and positive slope greater than the median (b=0.21). Freshet 

measured NO3
- concentrations ranged up to above 3 mg N L-1.  

C-Q analysis for daily modeled NO3
- concentration reflected some of the seasonal trends. Examining 

the entire 30-year daily model time series, NO3
- concentration showed a significant breakpoint C-Q 
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pattern, with a positive slope (b=0.18) for the lower quantile (below measured median discharge) and 

a negative slope (b=-0.04) for the upper quantile. This stands in contrast to the pattern seen in 

measured data. If instead, the modeled daily data was subsetted to only days corresponding to 

measured data, the modeled data C-Q pattern switches to an insignificant lower quantile slope (p=0.4) 

and a slightly positive upper quantile slope (b=0.11). Kendall’s rank correlation test deemed both the 

lower and upper quantile correlations as insignificant (p=0.35, p=0.98, respectively). This difference 

highlights some of the challenges in assessing CQ relationships when there are significant differences 

in data resolution, as discussed in Chapter 4. 

5.5 Conclusions and Future Work 

The work presented in this chapter comprised the development and calibration of a coupled 

hydrologic-vegetation-biogeochemistry model, and discussion of the processes driving the 

downstream effect of forest harvesting. While several complicated spatially distributed models with 

such capabilities have been developed such as RHESSys and SWAT  (Band et al., 1991; Gassman et 

al., 2007), no model has been developed with the top-down and parsimonious approach undertaken 

here, with the capabilities to capture behavior in all three process categories of hydrology and 

rainfall-runoff dynamics; vegetation influence on hydrology and nutrient budgets; and soil 

biogeochemistry and element cycling. 

5.5.1 Major Drivers of Nitrogen Export 

Applied to the Turkey Lakes Watersheds (TLW), my coupled model revealed several surprising 

relationships between environmental processes and downstream water quality. Firstly, with regard to 

the behavior of vegetation, I found that appropriate modeling of nitrogen export relied heavily on 

provision of biological nitrogen fixation (BNF). The close proximity in time of the spring freshet and 

flushing of the subsurface with maximum nitrogen demand during leaf-out created a challenge in 

modeling, such that an external N source was necessary to supply enough N for leaf-out and N export 

in stream water. This conclusion is supported by large forest-scale nitrogen budgets that conclude that 

BNF contributes to the N budget of northern hardwood forests. Like the addition of this external 

source, I also found that modeling the process of denitrification was critical to water quality 

calibration. Over the summer, as soil drainage subsided and N accumulated, a major portion of the N 

budget (about 40%) had to be removed from the system before complete flushing in the subsurface 

during the fall soil wet-up. Finally, I found that in calibration of nitrogen export, isothermic soil 
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decomposition was favored over temperature-dependency. This contrasts with behavior from models 

such as RHESSys, which assume that decomposition in winter is suppressed due to low soil 

temperatures. Instead, I found that buildup of N from soil decomposition over the winter was 

important for appropriately capturing peak stream NO3
- concentrations during the freshet and soil 

flushing.  

5.5.2 Future Model Improvements and Applications 

While my model achieved quite good calibration metrics for NO3
- concentrations in stream water 

after harvest, my model underestimated the peak concentrations in the second water-year post-

harvest, and underestimated the post-harvest decline in concentrations to below the non-harvested 

regime. I suggest that the post-harvest behavior could be better modeled if the N-rich “pulse” addition 

to the litter pool (thought to represent fine root death) had a decomposition term different from that of 

normal litter additions, delaying the increase in mineralization to match the post-harvest stream NO3
- 

peak. If plant regrowth resulted in more growth of N-expensive leaves earlier after harvest (as 

demonstrated by the underestimate of early post-harvest leaf area index), the soil mineral N pools 

could have been depleted faster, matching the measured data. Finally, my model might not 

appropriately capture the compensatory balance between post-harvest reduction in transpiration 

(which was about 40% lower than pre-harvest for about 10 years after harvest) and an increase in soil 

evaporation (due to reduced canopy cover). Given the high dependency of my model on soil moisture 

regimes, the relatively small effect of harvesting on soil moisture might suggest that the effect was 

not well modeled. 

Future application of the model will include other climate and disturbance scenarios. Possibilities 

include potentially changing precipitation, temperature, and nitrogen deposition trends or 

seasonalities. Other experiments possibly include a suite of disturbance magnitudes, like the 

experiments at TLW with differing degrees of vegetation removal.  

Finally, the top-down nature of this model makes it especially adaptable to other landscapes and 

forest types. While the work presented in this chapter details a complicated sequence of calibrations 

of various sets of parameters, lessons learned could improve the efficiency of calibration while not 

compromising on model fit. 
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Chapter 6 

Conclusions 

6.1 Contributions of this Dissertation 

This dissertation presented new results on the effects of forest disturbances on downstream waters, 

including alterations to flows and flow regimes; water quality (including concentrations of nutrients 

like nitrogen, phosphorus, and carbon); and changes in the co-variation of concentrations and flow 

(CQ). Working with data from hundreds of catchments, I developed multiple novel methodologies to 

disentangle the effects of climate variation from disturbance effects on flows, concentrations, as well 

as CQ behavior. 

In research presented in Chapter 2, I sought to answer the following questions: How do streamflow 

regimes change after wildfire? How can we decouple these changes from the influence of changes in 

climate? Can this decoupled disturbance signal be used to estimate hydrologic recovery times? I 

developed a novel climate decomposition method based on the Budyko framework that allowed me to 

isolate the effect of disturbance from climate. I found that the wildfire effect on streamflow in seven 

burned watersheds in Southern California (USA) was statistically detectable in five watersheds, 

where the effect size was approximately 80 mm yr-1. Using a deviation term derived from the Budyko 

decomposition, I estimated that hydrologic recovery from fire to the pre-fire climate-flow relationship 

ranged between 5 to 45 years, and was significantly correlated with the burn extent in the watersheds. 

The simplicity of the method developed allows for future expansion beyond the seven catchments to 

isolate the effect of fires on catchment response at regional and continental scales.  

In research presented in Chapter 3, I sought to answer the following questions: How do water quality 

regimes change after wildfires? How do changes in elements co-vary? How do mean concentrations 

change relative to concentration variability, or to extreme concentrations? I conducted a meta-analysis 

to explore post-fire changes in concentrations of nitrogen (N) and phosphorus (P) species, dissolved 

organic carbon (C), and total suspended sediments from 121 watersheds around the world. I found 

concurrent increases in concentrations of C, N, and P species after forest fire. I found that fire alters N 

and P speciation, with median increases of 40%–60% in the proportion of soluble inorganic N and P 

relative to total N and P. I also found that fire decreases C:N and C:P ratios, with median decreases 

ranging from 60% to 70%. Further, I developed a methodology to identify how extreme 
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concentrations changed after fire. I showed that the highest concentration percentiles increased at a 

greater rate after fire than the median and lowest concentration percentiles. This validates many 

studies showing that rare events often associated with extreme precipitation make up an important 

part of the wildfire effect in watersheds. 

In research presented in Chapter 4, I sought to answer the following questions: What is the 

relationship between the disturbance-driven changes in flow (Q) and water quality (C, 

concentrations)? Do C-Q relationships change after disturbance? How do these changes manifest for 

different elements? I analyzed co-measured water quality and flow data from 29 watersheds across 

the continental United States and with 186 site-fire-parameter sets. Given the high temporal and 

spatial variability in the data, it was challenging to find a consistent pattern in changes of various CQ 

metrics. To address this, I developed a novel clustering methodology to create CQ “typologies” that 

mapped well onto traditional classifications of chemostasis, mobilization, dilution, and 

chemodynamic behavior. These typologies captured aspects of the CQ relationships like CQ slope, 

but also multiple metrics related to variability. I then explored how individual elements and sites 

changed their cluster membership after fire. Interestingly, I found that CQ relationships following 

disturbance moved towards chemostasis for dissolved nitrogen species (between 15 and 35% more 

sites), and moved towards more mobilization for total nitrogen and phosphorus species (about 10% 

more sites). This clustering method showed promise for explaining the varied responses of flux (the 

product of C and Q) after fire, with flux increasing after fire when sites’ CQ behavior shifted from 

dilution to chemostatic or chemostatic to mobilization or chemodynamic. I used multiple linear 

regression to show that post-fire change in C was actually a more important predictor of change in 

flux than was change in Q. This varied somewhat by element, where change in Q was more important 

than change in C for explaining nitrate and organic carbon fluxes . In addition to presenting a unique 

synthesis of post-disturbance changes in CQ relationships, I developed methodologies that could be 

applied to other CQ analyses.  

In research presented in Chapter 5, I sought to answer the following questions: What ecohydrological 

and biogeochemical processes drive forest harvesting impacts on water quantity? Can we use a top-

down modeling approach to understand these processes? How can site-measured data be used to 

inform the modeling approach? I developed a coupled hydrologic-vegetation-biogeochemistry model 

to reveal the dominant processes shaping the downstream export of nitrogen and carbon in a forested 

watershed. The model development favored parsimony, and used a top-down approach to incorporate 
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components from several models previously applied to forested watersheds. I used an exhaustive 

multi-step calibration approach to make use of the wealth of information available from the Turkey 

Lakes study site, and to calibrate against multiple characteristics of hydrology, vegetation behavior, 

and water quality in the unharvested and harvested scenarios. Short residence times of nitrogen in soil 

means that seasonal shifts in N sources or sinks is the primary driver of stream water nitrate 

concentration regimes. The overlapping effects of short-term climatic variation, including a dry post-

harvest period, and the removal of vegetation during the harvest, demonstrated some of the challenges 

in modeling the behavior of a steady-state old-growth forest with an aggrading regrowth forest. 

6.2 Future Research Directions 

Forests are undoubtedly crucially important ecosystems. Numerous ecosystem services from forests 

may be under threat, yet significant uncertainty remains in how exactly different ecosystems and 

hydroclimatic regions will respond to changes at the region, continental, or global scales. Those 

seeking to incorporate forests as part of “nature based solutions” should heed these concerns, and 

encourage research into the following areas: 

6.2.1 Interacting hydrologic effects of climate and disturbance 

The research presented in this dissertation, including in Chapters 2 and 5, have great applicability to 

disentangling the effects of climatic variability and landscape disturbance on downstream waters. 

Alongside attempts to review and synthesize hydrological data from forested watersheds and obtain 

predictive relationships of forest cover alteration and streamflow, researchers have debated the ethics 

of considering tradeoffs between sacrificing forest cover for potentially more human-available water. 

With the methodology for Budyko climate decomposition presented in Chapter 2, a continental-scale 

analysis could be conducted to determine the appropriateness of the methodology across a wider 

range of climatic diversity, and determine the potential differences in the disturbance flow response.  

The Budyko curve and subsequent derivations or alterations can themselves be considered top-down 

models, used to predict either long-term or annual streamflow from incoming water and energy. From 

its elegance and simplicity, more can be learned by comparing it to the wealth of measured 

streamflow and climatic variables from across the continental US and the world, and by comparing its 

predictions to those of other simple top-down models, which have already been applied at similar 

spatial scales.  
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6.2.2 Altered element cycles after disturbance 

Our novel finding from Chapter 3 that dissolved bio-active forms of nitrogen and phosphorus increase 

relative to total export has significant implications for this field of study. Future work will investigate 

the prevalence of this finding to other disturbances, and analyze the conditions that lead to this 

outcome. We might ask, is the role of fire and ash-driven water quality change important to this 

outcome, or do we see similar outcomes after forest harvesting? How might element cycling in the 

watershed—for example, in-stream processing—alter these element ratios as water travels farther 

away from the solute source or disturbed area? Research in Chapter 4 produced novel classifications 

of concentration-discharge (CQ) relationships, and there are many more opportunities to apply these 

classifications to undisturbed and post-disturbance CQ regimes. 

6.3 Closing Message 

The work on wildfires presented in this dissertation is among a large upswing in research on the topic, 

with particular interest in the effects on water quality. In fact, as I finish writing this dissertation, 

massive plumes of wildfire smoke have spread from northern Ontario and Quebec Ontario throughout 

much of eastern North America. This serves as a stark reminder that wildfire is here on our landscape, 

and its effects will be felt. Research should continue to constrain how climate and wildfire conditions 

will change, as land managers balance these changes with the existing activities (e.g., harvesting) 

taking place in forests. With that knowledge, our research on the post-disturbance changes of water 

quality will serve to inform water users and protect the public and public resources. 
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Appendix A 

Supporting Information to Chapter 2 

This Appendix is a mirror of the Supporting Information originally accompanying the following 

published article. References at the end of this Appendix are for the contained citations. 

Hampton, Tyler B., and Nandita B. Basu. “A Novel Budyko-Based Approach to Quantify Post-

Forest-Fire Streamflow Response and Recovery Timescales.” Journal of Hydrology, March 4, 2022, 

127685. https://doi.org/10.1016/j.jhydrol.2022.127685. 

All data and codes are publicly available in the online Hydroshare repository: 

http://www.hydroshare.org/resource/43280a7de6ef48b4b800ab5c12ae58cb 

A1 Supplemental Methods 

A1.1 Catchment Selection 

A sample of 7 burned catchments and 10 unburned catchments (Tables 2-1 and 2-2) were 

selected from a population of 112 stream gages in Southern California that had greater than 20% 

forested land (within the bounding box of 114-121°W 32-35°N, GAGES II dataset, Falcone, 2011).  

Of these, 89 watersheds had greater than 20% of the catchment burned over the period of the study 

(1982-2009), and 12 catchments had less than 5% burned over the period of record. Two were 

removed for missing flow data during the period of study. These 10 unburned catchments would go 

on to serve as our reference candidates. Sixty five of the 89 burned catchments satisfied the 

requirement of having a large fire (>20% burned) within the period of record surrounded by 10 years 

prior and 5 years following with no fires (none >5% burned). Amongst these burned watersheds, the 

period of 2002-2003 had the most fires. For those burned in 2003 (WY 2004), only 7 burned 

watersheds had at least 15% burned and 15 total years of hydrologic record, with 10 years before WY 

2004 and 5 after. Finally, we arrived at a sample size of 7 burned and 10 reference catchments for our 

analysis. The USGS gage numbers are included in Tables 2-1 and 2-2. One of our burned study 

catchments (Devil Canyon, USGS gage 11063680) was also studied by Kinoshita & Hogue (2011, 

2015), and they offer a more extensive analysis of seasonal flows and flow duration curves. We 

arrived at a narrow subset of catchments, but our criteria could have been relaxed, for example, to 

analyze all the catchments with appropriate periods of record surrounding large fires.  

https://doi.org/10.1016/j.jhydrol.2022.127685
http://www.hydroshare.org/resource/43280a7de6ef48b4b800ab5c12ae58cb
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A1.2 Open-Source Datasets 

We relied on the same datasets as those used by Hallema, Sun, et al. (2018) and Saxe et al. (2018) 

(see Table 2-3). We used streamflow data from the U.S. Geological Survey (USGS), and gridded 

monthly climatic datasets to complete our assessment of the water balance. Sites were selected from 

the USGS stream gaging network, accessed through the GAGES II dataset. These shapefiles were 

paired with shapefile outlines of fires from the MTBS dataset. In the statistical computing language R 

(R Core Team, 2023), the sf package (Pebesma, 2018) was used perform an intersection of these two 

datasets and identify years of fires affecting watersheds.. Data were sorted and averaged according to 

water-year (WY; starting October 1st). Gridded data for monthly temperature and precipitation were 

from the PRISM Dataset. The raster package in R (Hijmans et al., 2018) was used to clip and average 

the climate data for individual watersheds. The raster package was also used to clip burn severity 

raster data from MTBS and characterize percent burn for each category in each watershed. 

A1.3 Estimation of PET using the Hargreaves-Samani Equation 

Mean, minimum, and maximum monthly temperatures from PRISM were used to calculate potential 

evapotranspiration (PET) following the Hargreaves-Samani equation (Hargreaves & Samani, 1985): 

𝑃𝐸𝑇𝑊𝑌 = 365 ∗ ∑ 0.0023 × 𝑅𝑚 × 𝑇𝐷𝑚
0.5 × (𝑇𝑚 + 17.8)12

𝑚=1   (A-1) 

where 𝑃𝐸𝑇𝑊𝑌 is WY summed potential evapotranspiration. 𝑅𝑚 is the monthly extraterrestrial 

radiation at the top of the atmosphere converted to equivalent evaporation (mm day-1), and is a 

function of latitude and date of the year. 𝑇𝐷𝑚 is the difference between maximum and minimum 

monthly temperature (°C), and, 𝑇𝑚 is the mean monthly temperature (°C). Monthly values were 

calculated to take advantage of the temporal resolution of the PRISM data.  

 

The calculations of extraterrestrial radiation (𝑅) in Hargreaves equation are laid out in Allen et al. 

(1998), and are included here. 

𝑅 =
1

𝜆
∗

1

𝜋
∗ G𝑠𝑐 ∗ 𝑑𝑟 ∗ (𝜔𝑠 ∗ sin(𝜑) ∗ sin(𝛼) + cos(𝜑) ∗ cos(𝛼) ∗ 𝑠𝑖𝑛(𝜔𝑠)) (A-2) 

where 𝜆 is the latent head of vaporization of water (
1

𝜆
=0.408 MJ-1 kg),  

G𝑠𝑐 is the solar constant (118.08 MJ m-2 day-1),  

𝑑𝑟 is the inverse relative distance between the Earth and the Sun,  
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𝑑𝑟 = 1 + 0.033 ∗ cos (
2𝜋

365
𝐽) (A-3) 

where 𝐽 is the Julian day of the year (1 – 365), and for monthly calculations are set to the 15th 

day of each month; 

 

𝜑 is the latitude (in radians),  

𝛼 is the solar decimation (radians), 

𝛼 = 0.409 ∗ sin (
2𝜋

365
𝐽 − 1.39) (A-4) 

and 𝜔𝑠 is the sunset hour angle (radians): 

𝜔𝑠 = arccos (− tan(𝜑) ∗ tan(𝛼)) (A-5) 

A1.4 Analysis to Support Hydrologic Steady-state Assumption  

We analyzed data from across the continental US provided by Rice & Emanuel 

(2019) to evaluate the effect of hydrologic storage change on the Budyko 

fit. Rice & Emanuel (2019) supplied data in their Supplementary Data 

Table 1 for mean ΔS (change in storage), precipitation (P), 

evapotranspiration (ET, MODIS estimate), and streamflow (Q). In our 

analysis we extracted data from the GAGES dataset corresponding to each 

USGS gage number to calculate annual mean potential evapotranspiration 

(PET) using the Hargreaves-Samani equation (Section A1.3). Budyko 

parameters (AET/P and PET/P) were calculated and points were colored by 

the calculated dS/P data from Rice & Emanuel. All data and code are 

provided in the online repository. The results show that catchments with 

higher values of interannual storage changes (ΔS/P) deviate more strongly 

from the Budyko curve. 
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Figure A-1: Grayscale points are from Rice & Emanuel (2019), showing data from 953 catchments, 

averaged across approximately 20 years of data each. ΔS is the mean absolute change in storage, 

calculated between each water year. Where ΔS/P is low, the annual water budget is on average very 

closed, and where ΔS/P is high, there is strong interannual storage carryover between water years. 

High ΔS/P catchments to cluster lower in the plot (low EI) and away from the Budyko curve. Red 

points are our 7 burned catchments and blue points are our 10 unburned catchments, with data 

averaged from 1982–2003.  

A2 Discussion of Method Choices 

A2.1 Analyzing Effect of PET Estimation Method on Budyko Deviation 

There are two groups of methods available for estimating PET: temperature-based methods (eg, 

Thornthwaite, Hamon, and Hargreaves-Samani) and radiation-based methods (e.g., Turc, Makkink, 

and Priestley-Taylor). We focused on the 6 listed methods to build off a previous comparison study 

by Lu et al. (2005). All equations can be found in that study. We did not have access to radiation data 

at our sites and thus used the temperature-based Hargreaves-Samani equation (Hargreaves & Samani, 

1985). To ensure that this didn’t bring bias into our results, we analyzed the choice of our PET 

calculation method by assessing agreement between the six PET methods (Section A2.2 and Figures 
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A-3,4). This was done using the CAMELS dataset (Addor et al., 2017), a dataset comprising of 671 

catchments across the US that succeeded the MOPEX dataset (Duan et al., 2006). CAMELS contains 

daily climatological data including incoming short-wave radiation, temperature, and precipitation; 

and catchment attributes including ecozone, land cover, and topography.   

Preliminary analysis of all 671 sites in the CAMELS dataset showed that annual (for 21 years) PET 

calculated using these six methods varied widely (Figure A2). We explored the results of linear 

regression of annual timeseries of PET between pairs of methods, denoted by the x-axis, and found 

that of the radiation-based Preistley-Taylor and Makkink agreed perfectly. Of the temperature-based 

methods, Hargreaves agreed most closely with the Preistley-Taylor and Makkink methods (red colors 

in Figure A3). Regression of Hargreaves against Makkink and Preistley-Taylor had a median 

Pearson’s R2 of about 0.75 and regression slope of 1 (Figure A3). In calculation of PET by the 

Preistley-Taylor method, we had to rely on an estimate of ground-level net radiation (incoming 

shortwave radiation plus incoming longwave radiation minus outgoing longwave radiation) because 

CAMELS only provided shortwave. Kraalingen & Stol (1997) outline that net radiation is generally 

around 50% of incoming shortwave radiation, so a factor of 0.5 was used in our calculations. Due to 

the uncertainty of this factor however, and the strong agreement of Hargreaves and another radiation-

based method Makkink, we did not explore Preistley-Taylor further. 

Next, we narrowed our analysis and explored the relationships of two methods (Hargreaves and 

Makkink) for seven watersheds from CAMELS within California. These watersheds were selected 

from the total population for proximity to our sites, with latitude less than 35 degrees N and longitude 

less than -133 degrees W. We examined how annual aridity index (AI=PET/P) varied if calculated 

according to Makkink or Hargreaves. Figure A3 shows that Hargreaves consistently underestimated 

AI relative to the Makkink method by about 26%. The average slope of the linear regression slopes 

for the 7 sites was 0.74. 

If one assumed that radiation-based methods like Makkink more truly represent annual PET, we could 

say that the estimates from Hargreaves used in the manuscript are underestimates of the true values. 

To test whether this assumption affected our results and conclusions, all annual PET estimates 

calculated by the Hargreaves method were multiplied by a factor of 1.35 (1/0.74). We saw no change 

in our results (Figure A5), with only small changes in some vertical Budyko measurements at low AI, 
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and very small shifts in flow attributions between climate and fire (Figure A6). The results presented 

in the manuscript represent the original Hargreaves values. 
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Figure A2: Comparison of the slope of the linear regressions in annual PET timeseries using six 

methods: Thornthwaite (Thn), Hamon (Ham), Hargreaves-Samani (Har), Turc (Tur), Makkink (Mak), 

and Priestley-Taylor (PrT). Points are for 671 watersheds in the CAMELS dataset. Boxes in red show 

comparison of Har to Mak and PrT. a) Pearson’s R2 of the regression slopes. b) The regression slopes. 

c) Absolute values of the regression slopes, where 1 is closest to a 1:1 slope (perfect agreement 

between methods) and 0 is farthest away from the 1:1 slope in either the positive or negative 

direction, and indicates no relationship between the methods.  
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Figure A3: Comparison of annual aridity index between the Makkink and Hargreaves methods for 7 

catchments from the CAMELS dataset. The solid red line has a slope of 1 and the dashed red line has 

a slope of 0.74. Blue lines are individual regression slopes. 
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Figure A4: Boxplots of change in vertical Budyko deviations between two 10-year periods (pre- and 

post-fire). Box fill is shaded gray for p-value of less than 0.10 from a K-S test indicating a significant 

difference between the sample medians. Original “Hargreaves” method is compared (top) to the 

modified increased AI alternative (bottom), where AI was scaled up by 1.35.  
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Figure A5: Mean Q changes between pre- and post-fire periods. Black horizontal bars are total Q 

change observed for each site between the 10-year averages. Blue bars are calculated is predicted Q 

change due solely to climate-induced horizontal movement along the fit Budyko curve for each site. 

Red bars are calculated as the contribution of vertical Budyko deviations to change in Q.  
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A2.2 Analysis of Choice of the Fu-type Budyko Curves 

We chose the Fu-type Budyko curves to conduct our analysis. Wang & Hejazi (2011) conducted their 

analysis using both the Fu and Turc-Pike Budyko curves and found no differences in the 

interpretation of their results. Similarly, we also tested the Zhang (2001) and Wang-Tang (2014) 

curves and found no difference in the measurement of vertical Budyko deviations and the 

interpretation of our results. Figure A6 shows for one burned watershed in the pre-fire period how the 

different curves agree very closely when calibrated to the same data. 

 

Figure A6: Data from site 10260950 between water years 1982 and 2003, with four Budyko-type 

curve fits. 
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A3 Figure A7 

 

Figure A7: Change in climate parameters (precipitation, P; potential evapotranspiration, PET; aridity 

index, AI) between 10-year averages for the pre- and post-fire periods for 7 burned catchments and 10 

unburned catchments. 
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Appendix B 

Supporting Information to Chapter 3 

This Appendix is a mirror of the Supporting Information originally accompanying the following 

published article. References at the end of this Appendix are for the contained citations. 

Hampton, Tyler B., Lin Simon G.M. and Nandita B. Basu. “Forest fire effects on stream water quality 

at continental scales: A meta-analysis.” Environmental Research Letters, May 2022. 

https://doi.org/10.1088/1748-9326/ac6a6c. 

All data and codes are publicly available in the online Hydroshare repository: 

https://www.hydroshare.org/resource/537dc5206d584625b0fd28ea6b6872de/ 

https://doi.org/10.1088/1748-9326/ac6a6c
https://www.hydroshare.org/resource/537dc5206d584625b0fd28ea6b6872de/
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B1 Supplemental Figures 

 

Figure B1: Comparison by site of change ratios. CRM all-time compared to change ratio for the first 

five post-fire years. Points are sorted by shape, with triangles for BA (before-after) comparison and 

circles for CI (control-impact) comparison. A 1:1 line is drawn in black, with horizontal/vertical lines 

drawn at CR=1. 
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Figure B2: Comparison of CRM (all-time) to CRCV. Points are sorted by shape, with 

triangles for BA (before-after) comparison and circles for CI (control-impact) comparison. A 

linear regression in log-space is drawn for all points, with relationship only significant for 

NO3
- (p=0.05, R2=0.08), NH4

+ (p=0.003, R2=0.38), and DOC (p=0.03, R2=0.33).  
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Figure B3: Following the example in Figure 3-2, for each burned site with sufficient data to calculate 

deciles, the decile normalized change (dNC) was calculated as the ratio of decile change (dAC) over 

total change (AC). Data from all sites are grouped by decile in boxplots, showing the median, 

interquartile range, and whiskers out to the 10th and 90th percentiles. 
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Figure B4: Following the example in Figure 3-2, for each burned site with sufficient data to calculate 

deciles, the decile change ratio (dCR) was calculated as the ratio of post-fire decile concentration over 

pre-fire decile concentration. Data from all sites are grouped by decile in boxplots, showing the 

median, interquartile range, and whiskers out to the 10th and 90th percentiles. 
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Figure B5: Comparison of site characteristics. Percent catchment burned is negatively correlated with 

catchment area. Note the log scale on the x axis. 
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Figure B6: Grid comparing correlation of predictor and response variables (CRM). The p value of 

correlation is shown as the box border if p<0.1. Intensity and Burn Type were categorical variables 

and correlation was tested with the Kruskal-Wallis test. No significant relationships were found with 

categorical variables. For continuous variables, Kendall’s rank correlation tau is reported as the box 

color fill. Blue is positive correlation and red is negative correlation. White fill indicates insufficient 

data (<20 points). 
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B2 Supplemental Tables 

Table B1: Studies (n=34) used in this Meta-Analysis 

No Study Year DOI Title 

1 

Bayley et 

al.  1992 https://doi.org/10.1139/f92-068 

Effects of multiple fires on nutrient yields from 

streams draining boreal forest and fen watersheds: 

nitrogen and phosphorus 

2a 

Bladon et 

al.  2008 https://doi.org/10.1139/X08-071 

Wildfire impacts on nitrogen concentration and 

production from headwater streams in southern 

Alberta’s Rocky Mountains 

2b Silins et al. 2009 https://doi.org/10.1016/j.catena.2009.04.001 

Sediment production following severe wildfire and 

post-fire salvage logging in the Rocky Mountain 

headwaters of the Oldman River Basin, Alberta 

3 

Britton et 

al.  1991 https://doi.org/10.1007/BF00038834 

Fire and the chemistry of a South African mountain 

stream 

4 Chessman  1986 https://doi.org/10.1071/MF9860399 

Impact of the 1983 wildfires on river water quality in 

east gippsland, victoria 

5 

Coombs 

and 

Melack  2013 https://doi.org/10.1002/hyp.9508 

Initial impacts of a wildfire on hydrology and 

suspended sediment and nutrient export in California 

chaparral watersheds 

6 Corbin  2012 https://doi.org/10.1071/WF11014 

Short-term effects of a wildfire on the water quality 

and macroinvertebrate community of a saline stream 

7 Crouch  2006 

https://doi.org/10.1016/ 

j.chemosphere.2005.05.031 

Post-fire surface water quality: Comparison of fire 

retardant versus wildfire-related effects 

8 Davis  1989 

https://doi.org/10.1016/ 

0378-1127(89)90120-5 

Prescribed fire in Arizona chaparral: Effects on 

stream water quality 

9 

Earl and 

Blinn  2003 

https://doi.org/10.1046/ 

j.1365-2427.2003.01066.x 

Effects of wildfire ash on water chemistry and biota 

in south-western U.S.A. streams 

10 

Fernandez 

et al.  2011 

https://dialnet.unirioja.es/ 

descarga/articulo/3735363.pdf 

Effects of the sequence wildfire-clearcutting-thinning 

on nutrient export via streamflow in a small e. 

globulus watershed in galicia (NW spain) 

11 

Gerla and 

Galloway  1998 

https://doi.org/10.1007/ 

s002540050328 

Water quality of two streams near Yellowstone Park, 

Wyoming, following the 1988 Clover-Mist wildfire 

12 

Gluns and 

Toews  1989 PDF available 

Effect of a major wildfire on water quality in 

southeastern British Columbia 

13 

Hauer and 

Spencer  1998 https://doi.org/10.1071/WF9980183 

Phosphorus and nitrogen dynamics in streams 

associated with wildfire: A study of immediate and 

longterm effects 

14 

Hohner et 

al.  2016 

https://doi.org/10.1016/ 

j.watres.2016.08.034 

Drinking water treatment response following a 

Colorado wildfire 

15 

Klose et 

al.  2015 https://doi.org/10.1086/683431 

Effects of wildfire on stream algal abundance, 

community structure, and nutrient limitation 

16 

Lotspeich 

et al.  1970 PDF available 

Disturbances on a wooded raised bog—how 

windthrow, bark beetle and fire affect vegetation and 

soil water quality? 

17 

Loupe et 

al.  2009 

https://doi.org/10.2134/ 

jeq2007.0494 

Effects of large scale forest fires on water quality in 

interior Alaska 

18 

MacKay 

and 

Robinson  1987 

https://doi.org/10.1002/ 

hyp.3360010405 

Effects of mechanical harvest plus chipping and 

prescribed fire on Sierran Runoff water quality 
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19 

Mast and 

Clow  2008 https://doi.org/10.1002/hyp.7121 

Effects of wildfire and logging on streamwater 

chemistry and cation exports of small forested 

catchments in Southeastern New South Wales, 

Australia 

20 Mast et al.  2016 https://doi.org/10.1002/hyp.10755 

Effects of 2003 wildfires on stream chemistry in 

Glacier National Park, Montana 

21 

Murphy et 

al.  2015 

https://doi.org/10.1088/ 

1748-9326/10/8/084007 

Water-quality response to a high-elevation wildfire in 

the Colorado Front Range 

22 

Neary and 

Currier  1982 https://doi.org/10.1093/sjaf/6.2.81 

The role of precipitation type, intensity, and spatial 

distribution in source water quality after wildfire 

23 

Oliver et 

al.  2012 

https://doi.org/10.1007/ 

s10533-011-9657-0 

Impact of wild fire and watershed restoration on 

water quality in South Carolina's Blue Ridge 

Mountains. 

24 

Prepas et 

al.  2003 https://doi.org/10.1139/s03-036 

Water quality response to the Angora Fire, Lake 

Tahoe, California 

25 

Rhoades et 

al.  2019 

https://doi.org/10.1007/ 

s10021-018-0293-6 

Impact of wildfire on discharge and phosphorus 

export from the Sakwatamau watershed in the Swan 

Hills, Alberta, during the first two years 

26 

Stephens 

et al.  2004 https://doi.org/10.1071/WF03002 

Prescribed fire, soils, and stream water chemistry in a 

watershed in the Lake Tahoe Basin, California 

27 

Thomas et 

al.  2000 

https://doi.org/10.1002/(SICI)1099- 

1085(20000415)14:5%3C971:: 

AID-HYP4%3E3.0.CO;2-J 

Solutes in overland flow following fire in eucalyptus 

and pine forests, northern Portugal 

28 

Tiedemann 

et al.  1973 

https://www.fs.fed.us/ 

pnw/pubs/journals/ 

pnw_1973_tiedemann001.pdf 

Stream chemistry following a forest fire and urea 

fertilization in north-central Washington 

29 

Townsend 

and 

Douglas  2000 

https://doi.org/10.1016/ 

S0022-1694(00)00165-7 

The effect of a wildfire on stream water quality and 

catchment water yield in a tropical savanna excluded 

from fire for 10 years (Kakadu National Park, North 

Australia) 

30 

Townsend 

and 

Douglas  2004 

https://doi.org/10.1016/ 

j.watres.2004.04.009 

The effect of three fire regimes on stream water 

quality, water yield and export coefficients in a 

tropical savanna (northern Australia) 

31 

Wilkinson 

et al.  2007 

http://www.clw.csiro.au/ 

publications/science/2006/ 

sr64-06.pdf 

Impacts on water quality by sediments and nutrients 

released during extreme bushfires: Report 3: Post-fire 

sediment and nutrient redistribution to downstream 

waterbodies,Nattai National Park, NSW 

32 

Williams 

and 

Melack  1997 

https://doi.org/10.1023/ 

A:1005858219050 

Effects of prescribed burning and drought on the 

solute chemistry of mixed-conifer forest streams of 

the Sierra Nevada, California 

33 

Wright et 

al.  1976 https://doi.org/10.2307/1936180 

The Impact of Forest Fire on the Nutrient Influxes to 

Small Lakes in Northeastern Minnesota 

34 

Writer et 

al.  2014 

https://doi.org/10.5942/ 

jawwa.2014.106.0055 

Water treatment implications after the high Park 

wildfire, Colorado 
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Table B2: Summary of catchment characteristics showing distribution of variables, including 

minimum, maximum, and quartiles. 

variable 0% (min) 25% 50% 75% 100% (max) 

Slope (%) 0.5 8.5 20 37 70 

Area (ha) 0.04 235 3580 13000 126000 

Precip (cm/yr) 19 58 82 128 330 

Runoff (cm/yr) 1.15E-05 9.6 24 81 116 

Aridity Index 0.68 1.4 1.8 2.9 11 

 

 

Table B3: Count of sites with data for CRM, CRCV (see Figure 3-4), and decile-specific data (see 

Figure 3-7, Figure B4). 

Param CRM CRMYr1-5 CRCV Deciles 

NO3 67 65 49 33 

NH4 30 30 21 10 

DON 14 14 1 1 

TN 31 27 29 17 

DOC 17 13 14 12 

PO4 20 20 15 15 

PP 8 8 0 0 

TP 41 41 28 14 

TSS 27 23 20 19 

NO3:TN 27 23 0 0 

PO4:TP 8 8 0 0 

PP:TP 8 8 0 0 

TN:TP 23 23 0 0 

DOC:NO3 17 13 0 0 

DOC:PO4 6 6 0 0 

TP:TSS 17 17 0 0 

PO4:TSS 5 5 0 0 
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Table B4: Mean and median values of CRM and CRCV, comparison to Rust et al. (2018). P-

values are for a t-test performed on the population of log of change ratios. Missing table cells 

represent either insufficient data to calculate values, or not reported variables for Rust. 

 

  

Param This study Rust et al. (2018) 

site n mean 

CRM 

median  

CRM 

CRM  

p-value 

mean 

CRCV 

median  

CRCV 

CRCV  

p-value 

mean 

CRM 

site n 

NO3 67 2.84 2.63 0.00 1.42 1.27 0.00 1.76 39 

NH4 30 1.75 1.54 0.00 1.43 1.33 0.02 1.03 46 

DON 14 1.00 0.98 0.96 1.25 1.25    

TN 31 1.66 1.50 0.00 1.38 1.34 0.00 0.94 7 

DOC 17 1.04 1.48 0.87 1.16 1.22 0.32 1.23 4 

PO4 20 2.37 1.76 0.00 0.89 0.97 0.33 1.32 40 

PP 8 2.24 2.10 0.08      

TP 41 2.31 1.85 0.00 1.14 1.11 0.13 1.06 18 

TSS 27 1.63 1.54 0.11 1.16 1.22 0.22 3.45 3 

NO3:TN 27 1.54 1.44 0.00      

PO4:TP 8 1.16 1.54 0.73      

PP:TP 8 0.78 0.60 0.60      

TN:TP 23 0.82 0.89 0.05      

DOC:NO3 17 0.33 0.39 0.00      

DOC:PO4 6 0.30 0.29 0.00      

TP:TSS 17 1.42 1.40 0.07      

PO4:TSS 5 0.64 1.23       
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Table B5: Correlation information from Figure 3-5. Number is the number of sites. Kendall 

Rank correlation shows the parameter tau and p-value. 

x y Number P-value Kendall Tau 

NO3 NH4 26 0.24 0.17 

NO3 DON 14 1.00 0.01 

NO3 TN 27 0.01 0.36 

NO3 DOC 17 0.13 0.28 

NO3 PO4 16 0.27 0.22 

NO3 PP 6 1.00 -0.07 

NO3 TP 30 0.03 -0.29 

NO3 TSS 23 0.40 0.13 

NO3 NO3:TN 27 0.00 0.62 

NO3 PO4:TP 6 1.00 0.07 

NO3 PP:TP 6 1.00 -0.07 

NH4 DON 4 0.75 0.33 

NH4 TN 17 0.03 0.38 

NH4 DOC 3 0.33 1 

NH4 PO4 10 0.16 -0.38 

NH4 PP 3 1.00 -0.33 

NH4 TP 18 0.37 -0.16 

NH4 TSS 12 1.00 0 

NH4 NO3:TN 17 0.97 0.01 

NH4 PO4:TP 3 0.33 1 

NH4 PP:TP 3 0.33 -1 

DON TP 10 0.00 0.69 

TN DOC 13 0.00 0.69 

TN PO4 7 0.77 0.14 

TN PP 7 0.24 0.43 

TN TP 23 0.14 0.23 

TN TSS 22 0.14 0.23 

TN NO3:TN 27 0.93 -0.01 

TN PO4:TP 7 0.77 0.14 

TN PP:TP 7 0.77 -0.14 

DOC PO4 6 0.06 0.73 

DOC PP 6 0.27 0.47 

DOC TP 6 0.27 0.47 

DOC TSS 11 0.06 0.45 

DOC NO3:TN 13 0.25 -0.26 
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DOC PO4:TP 6 0.14 0.6 

DOC PP:TP 6 0.14 -0.6 

PO4 PP 8 0.72 0.14 

PO4 TP 7 0.07 0.62 

PO4 TSS 5 1.00 0.00 

PO4 NO3:TN 6 1.00 -0.07 

PO4 PO4:TP 8 0.01 0.79 

PO4 PP:TP 8 0.01 -0.79 

PP TP 8 0.01 0.79 

PP TSS 4 0.75 0.33 

PP NO3:TN 6 1.00 -0.07 

PP PO4:TP 8 0.90 -0.07 

PP PP:TP 8 0.90 0.07 

TP TSS 17 0.60 0.10 

TP NO3:TN 19 1.00 -0.01 

TP PO4:TP 8 0.72 0.14 

TP PP:TP 8 0.72 -0.14 

TSS NO3:TN 18 0.07 -0.32 

TSS PO4:TP 4 0.33 -0.67 

TSS PP:TP 4 0.33 0.67 

NO3:TN PO4:TP 6 1.00 0.07 

NO3:TN PP:TP 6 1.00 -0.07 

PO4:TP PP:TP 8 0.00 -1.00 
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Appendix C 

Supporting Information to Chapter 4 

C1 Supplemental Table 

Table C1: Number of time series datasets (from unique pairings of site, fire and year, and 

hydrochemical variable) between this study and other recent syntheses of water quality response to 

wildfire. 

This study 
Rust et al. 2018 Synthesis 

(same dataset) 

Hampton et al. 
2022 Meta-

analysis 

Subgroup 
Subgroup 

 Count 
Group 

Group 
Count 

Subgroup 
Count 

Group 
Count 

Group  
Count 

TN 24 TN 24 36 36 31 

Org N 27 

NH3 plus 
Org N 

61 

46 

140 44 
NH3 15 59 

NH3 plus 
Org N 

19 35 

NO3 7 

NO3 plus 
NO2 

31 

26 

94 67 
NO2 4 25 

NO3 plus 
NO2 

20 43 

OP 28 OP 28 40 40 0 

P 25 P 25 103 103 61 

OC 13 OC 13 9 9 17 

C2 Supplemental Figures 

 

Figure C1: Output of Clustering analysis 
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Figure C2: Following the format of Figure 3a, points from clusters are shown with dark outline (50% 

Kernel density) and semi-transparent colored convex hulls. Dashed black lines and labels outline CQ 

typologies proposed by Musolff et al. (2015; Fig. 4). 
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Figure C3: Following the format of Figure 3, broken out by element groupings. The convex hulls 

show the overall cluster domains from Figure 3, while points show behavior for each element group. 
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Figure C4: Standardized multiple linear regression output. The linear model sought to predict the 5-

year change ratio of concentration (CR-C) after fire (5 years pre and 5 years post). For the regression, 

Change ratios were log transformed, and then all variables were divided by their respective standard 

deviations. Regression variables were changes in flow, concentration variability (as the coefficient of 

variation), b slope (absolute change), and intercept parameter a (absolute change). Significance was 

measured with an alpha of 0.05, and is shown with bold lines or points. Model “alone” (red color) 

was each variable independently against CR-C. Model “together” (blue color) was CR-C against all 

four variables. R2 improvement (blue) was measured during “leave one out” analysis as the R2 
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improvement after the inclusion of each variable back into the model against CR-C and the remaining 

3 not “left out”. 

 

Figure C5: Following the format of Figure 3, points are plotted with coordinates from pre-fire and 

post-fire CQ conditions. Arrows connect pre- and post-fire points and are styled to indicate cluster 

change (change: solid line; no change: dashed line). Points are separated into 4 subplots (each post-

fire cluster). Solid points indicate no change in cluster classification between pre- and post-fire, 

whereas points that did change cluster have the pre-fire point (beginning of arrow) styles as empty, 

with the color indicating the pre-fire cluster. For example, dashed lines will only connect like-colored 

points, whereas solid lines will connect one empty point to a different colored solid point. 
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Figure C6: Euclidean distance, calculated in 3-dimensional space (coordinates of b slope, CVC/CVQ, 

and R2) between pre- and post-fire CQ conditions. The plot is separated into 4 panels, indicating the 

post-fire cluster, and each of 4 divisions on the x axis indicates the pre-fire cluster. Boxplot fill 

indicates pre-fire cluster, while panel fill indicates post-fire cluster. Like-colors indicate no change in 

cluster. Mis-matched color indicates the “to” and “from” of changing clusters. 

 

Figure C7: Convex hulls for pre- and post-fire clusters. Following the format of Figure 3, the hulls 

outline points from pre-fire (dashed hull) and post-fire (solid hull) CQ conditions.  
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Appendix D 

Model Description for Chapter 5 

This appendix describes the model state variables (D1.1), formulation (D2), calibration (D1.4), and 

initial conditions (D1.1) for the coupled model presented in Chapter 5 of this dissertation. Additional 

information provided includes data from literature supporting decisions in model formulation or 

parameterization (D3), supporting figures for the results section (D4), and a derivation of the annual 

steady-state behavior of the soil carbon and nitrogen cycle (D5).  

For description of the coupled model, Sections D1 and D2 should be examined alongside the model 

description in Chapter 5.2 and Figure 5-1 and Table 5-1. 

D1. Key for Variables and Parameters 

D1.1. Model State Variables 

Symbol Name Model Initial 

Condition 

Units 

𝑆1 Subsurface water box 1 60% * 𝑆𝑏1 𝑚𝑚  

𝑆2 Subsurface water box 2 60% * 𝑆𝑏2 𝑚𝑚  

𝑆𝑛 Snow water storage 150 𝑚𝑚  

 

Vegetation Pools 

𝐶𝑝 Plant Carbon pool 11000 𝑔 𝐶 𝑚−2  

𝐶𝑝𝑙 Plant leaf Carbon pool 0 𝑔 𝐶 𝑚−2  

𝑁𝑠𝑡𝑒𝑚 Number of stems 1000 𝑠𝑡𝑒𝑚𝑠 ℎ𝑎−1  

𝑁𝑠𝑡𝑜𝑟𝑒 Overwinter N storage pool for leaf-out 5 𝑔 𝑁 𝑚−2 
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Soil Biogeochemistry Model Pools 

𝑁𝑆𝑛+ Snow Ammonium pool 0 𝑔 𝑁 𝑚−2  

𝑁𝑆𝑛− Snow Nitrate pool 0 𝑔 𝑁 𝑚−2  

𝐶𝑙 Litter C pool 1610 𝑔 𝐶 𝑚−2  

𝑁𝑙 Litter N pool 89.4 𝑔 𝑁 𝑚−2  

𝐶ℎ Humus C pool 21400 𝑔 𝐶 𝑚−2  

𝐶𝑏 Biomass C pool 300 𝑔 𝐶 𝑚−2  

𝑁𝑚+,1 Mineral Ammonium Pool (Box 1) 0.05 𝑔 𝑁 𝑚−2  

𝑁𝑚+,2 Mineral Ammonium Pool (Box 2) 0.01 𝑔 𝑁 𝑚−2  

𝑁𝑚−,1 Mineral Nitrate Pool (Box 1) 0.04 𝑔 𝑁 𝑚−2  

𝑁𝑚−,2 Mineral Nitrate Pool (Box 2) 0.01 𝑔 𝑁 𝑚−2  

𝐶𝑑1 Dissolved organic carbon (Box 1) 0 𝑔 𝐶 𝑚−2  

𝐶𝑑2 Dissolved organic carbon (Box 2) 0 𝑔 𝐶 𝑚−2  

 

D1.2. Model Forcing Functions 

Symbol Name Units Parameters Affects 

Hydrology Forcing Functions 

𝑠𝑚1 Soil moisture percentage for pool 1 - 𝑆𝑏1  

𝑠𝑚2 Soil moisture percentage for pool 2 - 𝑆𝑏2  

𝑇 Daily mean temperature °𝐶   𝑄𝑛, 𝑃𝐸𝑇 

𝑃𝐸𝑇 Potential Evapotranspiration 𝑚𝑚 𝑑−1   𝑇𝑟𝑎𝑛𝑠, 𝐸𝑣𝑎𝑝 

𝐿𝐴𝐼 Leaf Area Index -  𝑇𝑟𝑎𝑛𝑠, 𝐸𝑣𝑎𝑝 
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Vegetation Forcing Functions 

𝑑𝑏ℎ Season-start Diameter Breast Height 𝑐𝑚 𝑑𝑏ℎ𝑎, 𝑑𝑏ℎ𝑛 𝐶𝑝𝑙−𝑚𝑎𝑥 

𝑁𝑠𝑡𝑒𝑚𝑆 Season-start Nstem 𝑠𝑡𝑒𝑚𝑠 ℎ𝑎−1   𝐶𝑝𝑙−𝑚𝑎𝑥 

𝑆𝐿𝐴 Specific Leaf Area 𝑚2 𝑔−1  𝑆𝐿𝐴𝑙, 𝑆𝐿𝐴ℎ, 

𝑆𝐿𝐴𝑚, 

𝑟𝑒𝑓𝑁, 𝑟𝑒𝑓𝑀 

𝐿𝐴𝐼 

𝐶𝑝𝑙−𝑚𝑎𝑥 Maximum seasonal plant leaf C pool 𝑔 𝐶 𝑚−2  𝑙𝑒𝑎𝑓𝑎, 𝑙𝑒𝑎𝑓𝑛 𝐿𝐴𝐼, 𝑓𝑟𝑙𝑒𝑎𝑓 

𝑓𝑟𝑙𝑒𝑎𝑓 Fraction of growth allocated to leaves - 𝑙𝑒𝑎𝑓𝑝𝑐𝑡 𝑁𝑃𝑃𝑙, 𝑁𝑃𝑃𝑠 

𝑁𝑡ℎ𝑖𝑛−𝑙𝑖𝑛𝑒 Thinning threshold 𝑠𝑡𝑒𝑚𝑠 ℎ𝑎−1  𝑟𝑒𝑓𝑁 , 𝑟𝑒𝑓𝑀, 

𝑡ℎ𝑖𝑛𝑛 

𝑁𝑐𝑙𝑜𝑠𝑒, 

𝑁𝑚𝑎𝑥, 𝑁𝑡ℎ𝑖𝑛 

𝑁𝑐𝑙𝑜𝑠𝑒 “Closer” stem threshold 𝑠𝑡𝑒𝑚𝑠 ℎ𝑎−1  𝑠𝑡𝑒𝑚𝑐 𝑁𝑔𝑟𝑜𝑤 

𝑁𝑚𝑎𝑥 “Maximum” stem threshold 𝑠𝑡𝑒𝑚𝑠 ℎ𝑎−1  𝑠𝑡𝑒𝑚𝑚 𝑁𝑔𝑟𝑜𝑤 

𝜆𝑎𝑔𝑒 Stem mortality age rate - 𝑚𝑜𝑟𝑡𝑙, 𝑚𝑜𝑟𝑡ℎ, 

𝑚𝑜𝑟𝑡𝑚, 𝑚𝑜𝑟𝑡𝑎, 

𝑟𝑒𝑓𝑁, 𝑟𝑒𝑓𝑀 

𝑁𝑚𝑜𝑟𝑡−𝑎𝑔𝑒 

Soil Biogeochemistry Forcing Functions 

𝐶𝑁𝑙  Litter carbon to nitrogen ratio -  𝜑 

𝜑 (phi) N limited inhibition of decomposition - 𝑟𝑟, 𝑟ℎ, 𝑘ℎ , 𝑘𝑙 

𝐶𝑁ℎ , 𝐶𝑁𝑏 

𝛷, 𝐷𝐸𝐶 

𝛷 (PHI) Absolute value of immobilization or 

mineralization flux 

-  𝑀𝐼𝑁, 𝐼𝑀𝑀 

𝑓𝑆𝑇𝑒𝑚𝑝 Temperature-dependent process function - 𝑥𝑇 , 𝑘𝑡𝑒𝑚𝑝 𝐷𝐸𝐶, 𝑀𝐼𝑁, 

𝐼𝑀𝑀, 𝑁𝐼𝑇 

𝑓𝑑𝑒𝐶  Moisture-dependent decomposition 

inhibition 

- 𝑠𝑓𝑐 𝐷𝐸𝐶, 𝑀𝐼𝑁, 

𝐼𝑀𝑀 
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𝑓𝑁𝐼𝑇 Moisture-dependent nitrification inhibition - 𝑠𝑓𝑐 𝑁𝐼𝑇 

𝑓𝑑𝑒𝑁 Moisture-dependent denitrification 

inhibition 

- 𝑑𝑒𝑛𝑖, 𝑑𝑒𝑛𝑒𝑥𝑝 𝐷𝐸𝑁 

𝑓𝑈𝑝𝑁 Moisture-dependent N uptake inhibition - 𝑠𝐷𝑖𝑓, 𝑛𝑑𝑑, 𝑘𝑈𝑝 𝑈𝑃𝑎𝑐𝑡 

D1.3. Model Fluxes 

Symbol Name Units Parameters 

Hydrology Model Fluxes 

𝑃 Precipitation flux 𝑚𝑚 𝑑−1   

𝑃𝑟 Precipitation flux as rain 𝑚𝑚 𝑑−1  𝑇𝑠𝑛𝑜𝑤 

𝑃𝑠 Precipitation flux as snow 𝑚𝑚 𝑑−1  𝑇𝑠𝑛𝑜𝑤 

𝑄𝑛 Snow melt flux 𝑚𝑚 𝑑−1  𝑇𝑚𝑒𝑙𝑡, 𝑑𝑑𝑓 

𝐼𝑁𝑇𝑟 Precipitation interception (rain) 𝑚𝑚 𝑑−1  𝛼, 𝐾𝐼𝑒 

𝐼𝑛 Infiltration flux 𝑚𝑚 𝑑−1  𝛽𝐼 

𝑄1𝑓 Infiltration excess quickflow (pool 1) 𝑚𝑚 𝑑−1  𝛽𝐼 

𝑄𝑝𝑒𝑟𝑐 Percolation flux (pool 1 to pool 2) 𝑚𝑚 𝑑−1  𝐾𝑝𝑒𝑟𝑐 , 𝛽𝑏1 

𝑄2𝑢 Water leakage from pool 2 𝑚𝑚 𝑑−1  𝐾𝑞2𝑢, 𝛽𝑏2 

𝑄2𝑓 Quickflow from pool 2 𝑚𝑚 𝑑−1   

𝑇𝑟𝑎𝑛𝑠 Total Plant-driven transpiration 𝑚𝑚 𝑑−1  𝐾𝐼𝑒 , 𝑠∗ 

𝑇1 Plant-driven transpiration from pool 1 𝑚𝑚 𝑑−1  𝑆𝑏1 

𝑇2 Plant-driven transpiration from pool 2 𝑚𝑚 𝑑−1  𝑆𝑏2 

𝐸𝑣𝑎𝑝 Total soil evaporation 𝑚𝑚 𝑑−1  𝐾𝐼𝑒 , 𝐸𝑣𝑎𝑝𝑚𝑎𝑥 
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Vegetation Fluxes 6.3.1.1  

𝑁𝑃𝑃 Net primary productivity (CO2 

fixation) 

𝑔 𝐶 𝑚−2𝑑−1  𝑔, 𝐾𝐼𝑒 

𝑁𝑃𝑃𝑝 NPP allocated to stem growth 𝑔 𝐶 𝑚−2𝑑−1   

𝑁𝑃𝑃𝑙 NPP allocated to leaf growth 𝑔 𝐶 𝑚−2𝑑−1   

𝑠𝑝𝑟𝑜𝑢𝑡 Carbohydrate transfer from stems to 

leaf sprouting 

𝑔 𝐶 𝑚−2𝑑−1  𝑠𝑝𝑟𝑜𝑢𝑡𝑟, 𝑙𝑒𝑎𝑓𝑝𝑐𝑡 

𝑁𝑠𝑡𝑜𝑟𝑒−𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙 Sprout withdrawal from N store 𝑔 𝑁 𝑚−2𝑑−1   

𝑁𝑠𝑡𝑜𝑟𝑒−𝑑𝑒𝑝𝑜𝑠𝑖𝑡 Senescence N storage 𝑔 𝑁 𝑚−2𝑑−1  𝑓𝑠𝑝𝑟𝑜𝑢𝑡𝑁𝑠𝑡𝑜𝑟𝑒 

𝐿𝐹𝑝 Plant stem and root turnover 𝑔 𝐶 𝑚−2𝑑−1  𝑚𝑜𝑟𝑡𝑝−𝑙 , 𝑚𝑜𝑟𝑡𝑝−ℎ, 

𝑚𝑜𝑟𝑡𝑝−𝑚, 𝑚𝑜𝑟𝑡𝑝−𝑎 , 

𝑟𝑒𝑓𝑁, 𝑟𝑒𝑓𝑀 

𝐿𝐹𝑙 Plant leaf litterfall 𝑔 𝐶 𝑚−2𝑑−1  𝑡𝑢𝑟𝑛𝑙 

𝐻 Harvest flux 𝑔 𝐶 𝑚−2𝑑−1   

𝑈𝑃 Plant uptake of N 𝑔 𝑁 𝑚−2𝑑−1  𝑘𝐿𝑒𝑁−, 𝑘𝐿𝑒𝑁+, 𝑘𝑈𝑝𝑁, 

𝑠𝐷𝑖𝑓, 𝑛𝑑𝑑, 𝑘𝑁𝑓𝑖𝑥 

𝑁𝑚𝑜𝑟𝑡 Stem mortality 𝑠𝑡𝑒𝑚𝑠 ℎ𝑎−1 𝑑−1   𝑚𝑜𝑟𝑡𝑙 , 𝑚𝑜𝑟𝑡ℎ, 

𝑚𝑜𝑟𝑡𝑚, 𝑚𝑜𝑟𝑡𝑎 , 
𝑟𝑒𝑓𝑁, 𝑟𝑒𝑓𝑀, 

𝑡ℎ𝑖𝑛𝑑 , 𝑡ℎ𝑖𝑛𝑛, 

𝑁𝑔𝑟𝑜𝑤 Stem reproduction 𝑠𝑡𝑒𝑚𝑠 ℎ𝑎−1 𝑑−1   𝑠𝑡𝑒𝑚𝑐 , 𝑠𝑡𝑒𝑚𝑚, 

𝑠𝑡𝑒𝑚𝑟, 𝑡ℎ𝑖𝑛𝑛, 

𝑟𝑒𝑓𝑁, 𝑟𝑒𝑓𝑀, 

 

Soil Biogeochemistry Model Fluxes 

𝐴𝐷𝐷𝐶 Litter influx 𝑔 𝐶 𝑚−2𝑑−1   
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𝐴𝐷𝐷𝑁 Litter influx minus N translocation 𝑔 𝑁 𝑚−2𝑑−1   

𝐷𝐸𝐶𝑙 Litter decomposition 𝑔 𝐶 𝑚−2𝑑−1  𝑘𝑙 

𝐷𝐸𝐶ℎ Humus decomposition 𝑔 𝐶 𝑚−2𝑑−1  𝑘ℎ 

𝐵𝐷 Biomass Death 𝑔 𝐶 𝑚−2𝑑−1  𝑘𝑑 

𝐷𝐸𝑃 Atmospheric N deposition 𝑔 𝑁 𝑚−2𝑑−1   

𝑁𝐼𝑇 Nitrification of NH4
+ to NO3

-  𝑔 𝑁 𝑚−2𝑑−1 𝑘𝑁𝐼𝑇 

𝐼𝑀𝑀 N immobilization of NO3
- to litter 𝑔 𝑁 𝑚−2𝑑−1   

𝑀𝐼𝑁 N mineralization of litter to NO3
- 𝑔 𝑁 𝑚−2𝑑−1   

𝐿𝐸𝑁 Mineral  N leaching from the soil pool 𝑔 𝑁 𝑚−2𝑑−1  𝑘𝐿𝑒𝑁−, 𝑘𝐿𝑒𝑁+ 

𝐷𝐸𝑁 Denitrification flux (N2 release) 𝑔 𝑁 𝑚−2𝑑−1  𝑘𝑑𝑒𝑛 

𝐶𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒 Dissolved organic C production 𝑔 𝐶 𝑚−2𝑑−1  𝑘𝑑𝑐 

 

D1.4. Model Parameters 

Justifications for model parameters or calibrated ranges are included in Chapter 5 Section 5.3.3. The 

“Source” column seen in the remainder of this section refers to how the bounds of calibration ranges 

in the “Value (Range)” column were determined, which may refer to either the upper or lower bound, 

or both; or if it refers to the single value of a parameter, if it was not calibrated. Table 5-2 outlines the 

sequences of different parameter calibration steps, which are indicated in the “Calibr.” column.  

D1.4.1. Hydrology Model 

Symbol Name Value (Range) Units Calibr Source 

𝑑𝑑𝑓 Degree-day factor 2.77 (1-4.5) mm day-1 
°K-1 

CalH Ye et al. (2012) 

𝑇𝑠𝑛𝑜𝑤 Snow transition temp -0.34 (-1 - 1) °𝐶  CalH “Ye” 

𝑇𝑚𝑒𝑙𝑡 Melting transition temp -1.14 (-1.5 - 1) °𝐶  CalH “Ye” 
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𝑆𝑏1 Soil water pool size 1 314 (50-350) 𝑚𝑚  CalH Murray & Buttle 

(2005) 

𝑆𝑏2 Soil water pool size 2 28.2 (5-100) 𝑚𝑚  CalH Estimate 

𝑠ℎ Hygroscopic Point 0.2 (0.11-0.25) - - Laio et al. (2001) 

𝑠∗ Plant Stress Threshold 0.45 (0.25-0.45) - - “Laio” 

𝑠𝑓𝑐  Field Capacity 0.55 (0.5-0.65) - - “Laio” 

𝛼 Canopy Interception 

fraction 
0.24 (0.05-1) mm day-1  CalH Buttle & Farnsworth 

(2012) 

𝐾𝐼𝑒 Canopy extinction rate 0.35 (0.25-1) - CalH “Buttle & Farnsworth” 

𝛽𝐼 Infiltration exponent 4.46 (2-5) - CalH Estimate 

𝐾𝑝𝑒𝑟𝑐 Percolation constant  

(pool 1 to pool 2) 

41 (0-80) mm day-1 CalH “Murray & Buttle” 

𝛽𝐵1 Percolation exponent 8.5 (7-17) - CalH “Laio” 

𝐾𝑞2𝑢 Leakage constant 5.67 (0-30) mm day-1 CalH “Murray & Buttle” 

𝛽𝐵2 Leakage exponent 11.3 (7-17) - CalH “Laio” 

𝐸𝑣𝑎𝑝𝑚𝑎𝑥 Maximum daily evap rate 1.5 mm day-1 - Porporato et al. (2003) 

𝐿𝐴𝐼𝑚𝑎𝑥 Maximum LAI 4.5 - - Han (2022), “Buttle & 

Farnsworth” 

D1.4.2. Vegetation Model 

Symbol Name Value Units Calibr Source 

𝐶𝑁𝑝 C/N ratio: Plant stems 200 - - Table D2 

𝐶𝑁𝑝𝑙 C/N ratio: Plant stems 20 - - Table D2 

𝐾 Plant carrying capacity 11000 𝑔 𝐶 𝑚−2  - Table D2 

𝑔 Plant growth rate 

(transpiration factor) 
0.868 (0.5-5) 𝑔 𝑁 𝑚−2 

𝑚𝑚−1 

CalPre Estimate 
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𝑚𝑜𝑟𝑡𝑝−𝑙 Plant turnover rate (low) 2.2×10-5  

(1×10-6 - 1×10-4) 

𝑑−1  CalPre Estimate 

𝑚𝑜𝑟𝑡𝑝−ℎ Plant turnover rate (high) 2.85×10-5  

(1×10-5 - 1×10-4) 

𝑑−1  CalPre Estimate 

𝑚𝑜𝑟𝑡𝑝−𝑚 Plant turnover rate (fractional 

midpoint) 

0.9 - - Estimate 

𝑚𝑜𝑟𝑡𝑝−𝑎 Plant turnover rate (alpha 

exponent) 

-10 - - Estimate 

𝑙𝑒𝑎𝑓𝑝𝑐𝑡 Threshold of seasonal 

maximum leaf to stop 

maximum growth 

0.9 - - Estimate 

𝑡𝑢𝑟𝑛𝑙 Leaf turnover rate 

(senescence) 
0.15 𝑑−1  - Estimate 

𝑠𝑝𝑟𝑜𝑢𝑡𝑟 Rate percent of leaf-out 

sprouting 
0.1 𝑑−1  - Estimate 

𝑠𝑝𝑟𝑜𝑢𝑡𝑠 Percent of leaf-N during 

senescence that is stored per 

timestep 

0.66 - - Morrison 

(1991) 

𝑟𝑒𝑓𝑁 thinning line reference Nstem 1000 𝑠𝑡𝑒𝑚 ℎ𝑎−1 - Estimate 

𝑟𝑒𝑓𝑀 thinning line reference Mass 124 𝑘𝑔 𝐶 𝑠𝑡𝑒𝑚−1 - Estimate 

𝑑𝑏ℎ𝑎 dbh multiplier 0.0197 (0.01-0.1) - CalA Estimate 

𝑑𝑏ℎ𝑛 dbh exponent 2.10 (1-3) - CalA Estimate 

𝑙𝑒𝑎𝑓𝑎 leaf max multiplier 0.0636 (0.01-0.08) - CalA Estimate 

𝑙𝑒𝑎𝑓𝑛 leaf max exponent 0.346 (0.1-0.8) - CalA Estimate 

𝑆𝐿𝐴𝑙 Specific Leaf Area value low 245 (150-300) 𝑚2 𝑔−1 CalA Estimate 

𝑆𝐿𝐴ℎ Specific Leaf Area value high 318 (300-400) 𝑚2 𝑔−1 CalA Estimate 

𝑆𝐿𝐴𝑚 Specific Leaf Area value 

midpoint 

0.5 - CalA Estimate 

𝑡ℎ𝑖𝑛𝑛 thinning threshold exponent -0.1 - - Estimate 

𝑡ℎ𝑖𝑛𝑑 thinning delay throttle 0.05 (0.001-0.5) - CalR Estimate 
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𝑚𝑜𝑟𝑡𝑙 Stem mortality rate low 5×10-5  

(1×10-5 - 1×10-4) 

𝑑−1  CalR Estimate 

𝑚𝑜𝑟𝑡ℎ Stem mortality rate high 3×10-3 

(1×10-4 - 1×10-3) 

𝑑−1  CalR Estimate 

𝑚𝑜𝑟𝑡𝑚 Stem mortality rate midpoint 0.5 - - Estimate 

𝑚𝑜𝑟𝑡𝑎 Stem mortality rate exponent -3 - - Estimate 

𝑠𝑡𝑒𝑚𝑐 Stem close threshold 0.9 (0.1-0.9) - CalR Estimate 

𝑠𝑡𝑒𝑚𝑚 Stem maximum threshold 1.15 (1-1.5) - CalR Estimate 

𝑠𝑡𝑒𝑚𝑟 Stem reproduction rate 3.5×10-4  

(1×10-4 - 5×10-3) 

𝑑−1  CalR Estimate 

 

D1.4.3. Soil Biogeochemistry Model 

Symbol Name Value Units Calibr Source 

𝐶𝑁𝑏 C/N ratio: Soil biomass 10 - - Manzoni & 

Porporato (2007) 

𝐶𝑁ℎ C/N ratio: Humus 22 - - Table D2 

𝑘𝑁𝑓𝑖𝑥 Maximum direct plant N fixation 

rate 
1.06×10-1  

(1×10-3-1×10-1) 

𝑔 𝑁 𝑚−2𝑑−1 CalPre Estimate 

𝑟ℎ Decomposition humification 

fraction 

0.1 - CalSS Section 5.3.3.5 

𝑟𝑟 Decomposition respired fraction 0.47 (0.3-0.7) - CalSS Section 5.3.3.5 

𝑥𝑇 Soil temperature process switch 0 (0-1) - CalPre Estimate 

𝑘𝑡𝑒𝑚𝑝 Soil temperature process 

correction factor 

4 - - Estimate 

𝑘𝑙 Litter decomposition rate 3.75×10-6 

(1×10-6-4×10-6) 

𝑑−1  CalPre Estimate 

𝑘ℎ Humus decomposition rate 2.8×10-8 

(1.5×10-8-1×10-7) 

𝑑−1  CalPre Estimate 
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𝑘𝑑 Biomass death rate 2.35×10-3 

(7×10-4-2×10-3) 

𝑑−1  CalPre Estimate 

𝑘𝑁𝐼𝑇 Nitrification Rate 7.35×10-4 

(1×10-4-1×10-2) 

𝑑−1  CalPre Estimate 

𝑘𝑑𝑒𝑛 Denitrification rate 2.70×10-4 

(1×10-5-1×10-2) 

𝑑−1  CalPre Estimate 

𝑑𝑒𝑛𝑖 Denitrification inhibition 

moisture threshold 
0.4 (0.4-1) - CalPre Porporato et al. 

(2003) 

𝑑𝑒𝑛𝑒𝑥𝑝 Denitrification-moisture exponent 2 (1-4) - CalPre Estimate 

𝑘𝑈𝑝𝑁 Plant nitrate demand 0.168 

(1×10-2-2×10-1) 

- CalPre Estimate 

𝑘𝐿𝑒𝑁− Nitrate solubility coefficient 1.0 - - “Porporato” 

𝑘𝐿𝑒𝑁+ Ammonium solubility coefficient 0.05 - - “Porporato” 

𝑠𝐷𝑖𝑓 Scaled diffusion coefficient 0.1 - - Estimate 

𝑛𝑑𝑑 Nonlinear diffusion factor 3 - - “Porporato” 

𝑘𝑑𝐶 Dissolved organic carbon 

production rate 

1.20×10-3 

(1×10-4-1×10-2) 

𝑑−1  CalPre Estimate 

𝑝𝑢𝑙𝑠𝑒𝐶 Post-harvesting “pulse” of 

biologic material to the litter pool 
348 (100-800) 𝑔 𝐶 𝑚−2 CalPost Estimate 

𝑝𝑢𝑙𝑠𝑒𝑟𝑎𝑡𝑖𝑜 Post-harvesting “pulse” C/N ratio 10 (10-50) - CalPost Estimate 
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D2. Model Equations 

Explanation of equation format: 

● In the following equations, multiplication is indicated by two variables next to one another, 

without any operation sign (e.g. addition or subtraction signs). A space is added to help 

differentiate variables with multiple characters for a name, and to differentiate functions (e.g. 

𝑠𝑖𝑛, cos, exp) 

● Several equations take the form of IF-ELSE. These will take the following format: 

○ {} brackets surround each case of the IF statement 

○ IF statement, followed by colon: 

■ IF statements may use Boolean language, including and, or, less than <, or 

greater than > 

○ Following the colon is the function value in the case that the statement is TRUE 

● Common functions are used such as 𝑠𝑖𝑛 or cos, which will not be followed by parentheses 

unless needed. Functions like exp, min, or max will be followed by parentheses. Inside the 

𝑚𝑖𝑛 or max functions, multiple input values are separated by commas. 

D2.1. Environmental Variables and Forcings 

D2.1.1. Climate 

Mean, minimum, and maximum monthly temperatures were used to calculate potential 

evapotranspiration (PET) following the Hargreaves-Samani equation (Hargreaves & Samani, 1985): 

𝑃𝐸𝑇 = 0.0023 𝑅  𝑇𝐷0.5  (𝑇 + 17.8)  (D2-1) 

where: 

𝑃𝐸𝑇 is daily potential evapotranspiration, 

𝑇𝐷 is the difference between maximum and minimum daily temperature (°C), 

𝑇 is the mean daily temperature (°C), and 

𝑅 is extraterrestrial radiation at the top of the atmosphere, a function of latitude and 

date of the year, converted to mm d-1 (calculated following Allen et al., 

1998):  

where 

𝑅 =
0.408 

𝜋
𝐺 𝐷(𝜔 𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝛿 + 𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝛿 𝑠𝑖𝑛𝜔 ) (D2-2) 
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where 

𝐺 is the solar constant (118.08 MJ m-2 day-1),  

𝐷 is the inverse relative distance between the Earth and Sun, 

𝐷 = 1 + 0.033 𝑐𝑜𝑠 (2𝜋
𝑦𝑑𝑎𝑦

366
)  (D2-3) 

where 𝑦𝑑𝑎𝑦 is the year day (1 through 366) 

𝛿 is the solar decimation by day of the year, 

𝛿 = 0.409 𝑠𝑖𝑛 ((2𝜋
𝑦𝑑𝑎𝑦

366
) − 1.39)  (D2-4) 

𝜃 is the latitude in units of radians,   

𝜃 = 𝑙𝑎𝑡
𝜋

180
 (D2-5) 

and 

𝜔 = 𝑐𝑜𝑠−1(−𝑡𝑎𝑛 𝜃 𝑡𝑎𝑛 𝛿  )  (D2-6) 
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D2.2. Hydrology and Soil Moisture Dynamics 

The hydrology model had three state variables (all with units of water in millimeters): the snow water 

equivalent pool (𝑆𝑛) and the two vertically stacked water boxes (𝑆1 and 𝑆2). Refer to Section D1.1 

and D1.3 for a key for variable names. In the next section, the equations for all fluxes are described. 

 

D2.2.1. Model Stock Differential Equations 

The snow pool receives water as snow precipitation (𝑃𝑠) and loses water through melting (𝑄𝑛). 

𝑑𝑆𝑛

𝑑𝑡
= 𝑃𝑠 − 𝑄𝑛 (D2-7) 

The first water pool (𝑆1) receives water through infiltration (𝑄𝑖𝑛𝑓), and loses water through fast flow 

(𝑄1𝑓), downward percolation to the second pool (𝑄𝑝𝑒𝑟𝑐), evaporation (𝐸𝑣𝑎𝑝), and transpiration 

(𝑇𝑟𝑎𝑛𝑠1). 

𝑑𝑆1

𝑑𝑡
= 𝑄𝑖𝑛𝑓 − 𝑄1𝑓 − 𝑄𝑝𝑒𝑟𝑐 − 𝐸𝑣𝑎𝑝 − 𝑇𝑟𝑎𝑛𝑠1 (D2-8) 

The second water pool (𝑆2) receives water through percolation (𝑄𝑝𝑒𝑟𝑐), and loses water through fast 

flow (𝑄2𝑓), base flow (𝑄2𝑢), and transpiration (𝑇𝑟𝑎𝑛𝑠2). 

𝑑𝑆2

𝑑𝑡
= 𝑄𝑝𝑒𝑟𝑐 − 𝑄2𝑓 − 𝑄2𝑢 − 𝑇𝑟𝑎𝑛𝑠2 (D2-9) 

 

D2.2.2. Snow and Melting Routine 

Following the parsimonious model experiments of (Ye et al., 2012), we added a simple snowfall and 

snow melt routine. We added one level of complexity by calibrating two rather than one transition 

temperatures: one for the rain-to-snow transition (𝑇𝑠𝑛𝑜𝑤: Precip 𝑃 allocated to rain 𝑃𝑟 or snow 𝑃𝑠), 

and one for snow melting (𝑇𝑚𝑒𝑙𝑡).  

𝑃𝑠 = {𝑖𝑓 𝑇 ≤ 𝑇𝑠𝑛𝑜𝑤: 𝑃 }{ 𝑖𝑓 𝑇 > 𝑇𝑠𝑛𝑜𝑤: 0 } (D2-10) 

𝑃𝑟 = {𝑖𝑓 𝑇 ≤ 𝑇𝑠𝑛𝑜𝑤: 0 }{ 𝑖𝑓 𝑇 > 𝑇𝑠𝑛𝑜𝑤: 𝑃 }  (D2-11) 

Daily snow melt (𝑄𝑛) was calculated as a function of the degree day factor (𝑑𝑑𝑓) and the positive 

temperature heating (𝐻𝑝𝑜𝑠), the difference between the daily temperature (𝑇) and the transition 

temperature. 
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𝑄𝑛 = 𝑚𝑖𝑛 { 𝐻𝑝𝑜𝑠 𝑑𝑑𝑓, 𝑆𝑛 } (D2-12) 

where 

𝐻𝑝𝑜𝑠 =  {𝑖𝑓 𝑇 > 𝑇𝑚𝑒𝑙𝑡:  𝑇 − 𝑇𝑚𝑒𝑙𝑡 }{𝑖𝑓 𝑇 < 𝑇𝑚𝑒𝑙𝑡:  0 } (D2-13) 

D2.2.3. Interception Routine 

Interception of the rainfall (𝐼𝑁𝑇𝑟) by the tree canopy was calculated following the HYDRUS 

formulation (Šimůnek et al., 2005, 2013), as used by (Sutanto et al., 2012), as a function of the daily 

leaf area index (𝐿𝐴𝐼), and two parameters: 𝛼 and 𝐾𝐼𝑒 . 

𝐼𝑁𝑇𝑟 = 𝛼 𝐿𝐴𝐼 (1 −
1

1+
𝑏 𝑃𝑟

𝛼  𝐿𝐴𝐼

)  (D2-14) 

where 

𝑏 =  1 − 𝑒(−𝐾𝐼𝑒 𝐿𝐴𝐼) (D2-15) 

We assumed that interception of snowfall was negligible, due to low LAI in the cold seasons. The 

parameter 𝑏 represents the soil cover fraction (SCF), and varies between values of 0 and 1 as a 

function of the LAI and the extinction coefficient.  

D2.2.4. Subsurface Flow Equations 

The water that could potentially infiltrate (𝑝𝑄𝑖𝑛𝑓) was estimated as the sum of the snowmelt (𝑄𝑛) 

and the difference between rainfall (𝑃𝑟) and interception 𝐼𝑁𝑇𝑟. 

𝑝𝑄𝑖𝑛𝑓 = 𝑄𝑛 + (𝑃𝑟 − 𝐼𝑁𝑇𝑟) (D2-16) 

Actual infiltration (Qi𝑛𝑓) was rate-limited by an exponential factor (𝛽𝐼), following formulations used 

by the HBV model (Bergström, 1995). The infiltrated volume is the least of the two infiltration rates, 

driven by saturation excess (limited by the available space in pool 1, with maximum capacity 𝑆𝑏1) or 

infiltration excess processes (decreasing with increasing fractional soil moisture 𝑠𝑚1). 

Qi𝑛𝑓 = 𝑚𝑖𝑛(𝑚𝑎𝑥(𝑆𝑏1 − 𝑆1,0) , 𝑝𝑄𝑖𝑛𝑓(1 − 𝑠𝑚1𝛽𝐼))  (D2-17) 

where 

𝑠𝑚1 is the saturation fraction of Pool 1: 𝑠𝑚1 = 𝑆1/𝑆𝑏1  

Infiltration-excess runoff (𝑄1𝑓) is then calculated as the difference between available water and rate-

limited infiltration. 

𝑄1𝑓 = 𝑝𝑄𝑖𝑛𝑓 − 𝑄𝑖𝑛𝑓 (D2-18) 
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Percolation (𝑄𝑝𝑒𝑟𝑐) moves water “downward” from pool 1 to pool 2, and follows the formulation by 

Porporato et al. (2003). Percolation occurs if 𝑠𝑚1 exceeds field capacity (𝑠𝑓𝑐). Increasing from field 

capacity, percolation increases exponentially (shape determined by 𝛽𝑏1) to a maximum value of the 

saturated hydraulic conductivity (𝐾𝑝𝑒𝑟𝑐) at full saturation (𝑠𝑚1 = 1). 

𝑄𝑝𝑒𝑟𝑐 = {𝑖𝑓 𝑠𝑚1 < 𝑠𝑓𝑐: 0 }   

                 {𝑖𝑓 𝑠𝑚1 > 𝑠𝑓𝑐: 𝐾𝑝𝑒𝑟𝑐(𝑒𝛽𝑏1(𝑠𝑚1−𝑠𝑓𝑐) − 1)(𝑒𝛽𝑏1(1−𝑠𝑓𝑐) − 1)
−1

 } (D2-19) 

Base flow (𝑄2𝑢) leaves pool 2, as a non-linear process. 

𝑄2𝑢 = {𝑖𝑓 𝑠𝑚2 < 𝑠𝑓𝑐: 0 }   

  {𝑖𝑓 𝑠𝑚2 > 𝑠𝑓𝑐: 𝐾𝑞2𝑢(𝑒𝛽𝑏2(𝑠𝑚2−𝑠𝑓𝑐) − 1)(𝑒𝛽𝑏2(1−𝑠𝑓𝑐) − 1)
−1

 } (D2-20) 

In the case that box 2 was full (maximum capacity 𝑆𝑏2), fast flow also occurred from pool 2. In the 

case that box 2 was full and 𝑄𝑝𝑒𝑟𝑐 was greater than 0, the total volume of 𝑄𝑝𝑒𝑟𝑐 is diverted to fast 

flow. 

𝑄2𝑓 = {𝑖𝑓 𝑠𝑚2 < 1: 0 }   

 {𝑖𝑓 𝑠𝑚2 > 1:
𝑆2−𝑆𝑏2

𝑑𝑡
+ 𝑄𝑝𝑒𝑟𝑐 } (D2-21) 

where 

𝑠𝑚2 is the saturation fraction of Pool 2: 𝑠𝑚2 = 𝑆2/𝑆𝑏2  

D2.2.5. Evapotranspiration 

The final hydrologic process is evapotranspiration. Evapotranspiration was modeled as two 

components: evaporation and transpiration, generally following the implementation by (Porporato et 

al., 2003). Following Sutanto et al. (2012), Beer’s law was used to partition PET to potential plant 

transpiration (𝑃𝐸𝑇𝑇𝑟𝑎𝑛𝑠) or potential soil evaporation (𝑃𝐸𝑇𝐸𝑣𝑎𝑝), according to the canopy cover 

fraction (𝑏). When canopy cover is higher, the majority of PET is allocated to the leaf surface. This 

allows for interannual and seasonal variation in allocation.  

𝑃𝐸𝑇𝑇𝑟𝑎𝑛𝑠 = 𝑏 𝑃𝐸𝑇  (D2-22) 

𝑃𝐸𝑇𝐸𝑣𝑎𝑝 = (1 − 𝑏) 𝑃𝐸𝑇  (D2-23) 

where 
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𝑏 =  1 − 𝑒(−𝐾𝐼𝑒 𝐿𝐴𝐼) (D2-24) 

Transpiration was withdrawn from both pools (𝑦 = 1,2) as a function of evaporate-able soil moisture 

(𝑠𝑚1 and 𝑠𝑚2  as 𝑠𝑚𝑦) above the hygroscopic point  (𝑠ℎ) according to the fraction 𝑃𝐸𝑇𝑓,𝑦: 

𝑃𝐸𝑇𝑓,𝑦 =  {𝑖𝑓 𝑠𝑚, 𝑦 < 𝑠ℎ: 0}{𝑖𝑓 𝑠𝑚, 𝑦 > 𝑠ℎ:
𝑆𝑦 − 𝑆𝑏𝑦 𝑠ℎ

(𝑆1 − 𝑆𝑏1 𝑠ℎ)(𝑆2 − 𝑆𝑏2 𝑠ℎ)
 } (D2-25) 

Transpiration was highest above the plant stress point (𝑠∗), and zero below the hygroscopic point 

(𝑠ℎ). For the two pools, transpiration was allocated as follows: 

𝑇𝑟𝑎𝑛𝑠𝑦 = {𝑖𝑓 𝑠𝑚𝑦 < 𝑠ℎ: 0}  

                  {𝑖𝑓 𝑠𝑚𝑦 > 𝑠∗: 𝑃𝐸𝑇𝑇𝑟𝑎𝑛𝑠 𝑃𝐸𝑇𝑓,𝑦} 

                  {𝑖𝑓 𝑠𝑚𝑦 < 𝑠∗: 𝑃𝐸𝑇𝑇𝑟𝑎𝑛𝑠 𝑚𝑖𝑛(𝑃𝐸𝑇𝑓𝑦 ,
𝑠𝑚𝑦−𝑠ℎ

𝑠∗−𝑠ℎ
} (D2-26) 

Evaporation was withdrawn only from the first box. 

𝐸𝑣𝑎𝑝 = {𝑖𝑓 𝑠𝑚1 < 𝑠ℎ: 0}{𝑖𝑓 𝑠𝑚1 > 𝑠ℎ: 𝑃𝐸𝑇𝐸𝑣𝑎𝑝} (D2-27) 

 

 

D2.3. Vegetation Model.  

The vegetation model captured carbon and nitrogen dynamics of biomass, as well as associated 

allometric equations. Plants have two components—stems (𝐶𝑝) and leaves (𝐶𝑝𝑙)—which are modelled 

only as carbon, because they have constant C/N ratios. The number of stems (𝑁𝑠𝑡𝑒𝑚) is a state 

variable that drives several allometric equations. The only nitrogen explicitly modeled in the plant 

system is overwinter N storage (𝑁𝑝𝑙−𝑠𝑡𝑜𝑟𝑒). 

D2.3.1. Model Stock Differential Equations 

Stem carbon (𝐶𝑝) grows at the rate of stem-allocated net primary productivity (𝑁𝑃𝑃𝑝), and 

experiences litter fall turnover at a rate of 𝐿𝐹𝑝. Leaf sprouting allocation of carbon (𝑠𝑝𝑟𝑜𝑢𝑡) is 

withdrawn from the stems. During harvest, the harvest removal rate is withdrawn (𝐻). 

𝑑𝐶𝑝

𝑑𝑡
= 𝑁𝑃𝑃𝑝 − 𝑠𝑝𝑟𝑜𝑢𝑡 − 𝐿𝐹𝑝 − 𝐻 (D2-28) 

Leaf carbon (𝐶𝑙) grows at the rate of leaf-allocated net primary productivity (𝑁𝑃𝑃𝑙) plus sprouting 

(𝑠𝑝𝑟𝑜𝑢𝑡), and experiences litter fall turnover at a rate of 𝐿𝐹𝑙. 
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𝑑𝐶𝑝𝑙

𝑑𝑡
= 𝑁𝑃𝑃𝑙 + 𝑠𝑝𝑟𝑜𝑢𝑡 − 𝐿𝐹𝑙 (D2-29) 

The over-winter nitrogen store (𝑁𝑝𝑙−𝑠𝑡𝑜𝑟𝑒) has deposit (𝑁𝑠𝑡𝑜𝑟𝑒−𝑑𝑒𝑝𝑜𝑠𝑖𝑡) and withdrawal 

(𝑁𝑠𝑡𝑜𝑟𝑒−𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙) fluxes, and also receives excess passive nitrogen uptake (𝑁𝑠𝑡𝑜𝑟𝑒−𝑑𝑒𝑝𝑜𝑠𝑖𝑡). 

𝑑𝑁𝑝𝑙−𝑠𝑡𝑜𝑟𝑒

𝑑𝑡
= 𝑁𝑠𝑡𝑜𝑟𝑒−𝑑𝑒𝑝𝑜𝑠𝑖𝑡 + 𝑈𝑃𝑝𝑎𝑠,𝑒𝑥𝑐𝑒𝑠𝑠 − 𝑁𝑠𝑡𝑜𝑟𝑒−𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙 (D2-30) 

The number of stems state variable (𝑁𝑠𝑡𝑒𝑚) has growth (𝑁𝑔𝑟𝑜𝑤) and mortality (𝑁𝑚𝑜𝑟𝑡) fluxes. 

𝑑𝑁𝑠𝑡𝑒𝑚

𝑑𝑡
= 𝑁𝑔𝑟𝑜𝑤 − 𝑁𝑚𝑜𝑟𝑡 (D2-31) 

 

D2.3.2. Net Primary Productivity, N uptake, and Growth Allocation 

Daily net primary productivity (NPP) was modeled with daily “potential” NPP (𝑁𝑃𝑃𝑚𝑎𝑥) a single 

growth multiplier (𝑔) to the Transpiration flux. 

𝑁𝑃𝑃𝑚𝑎𝑥 = 𝑔 𝑇𝑟𝑎𝑛𝑠 (D2-32) 

The actual daily NPP will then be allocated to leaves (𝑁𝑃𝑃𝑙) and stem (𝑁𝑃𝑃𝑠), according to the 

growth stage, and any nutrient limitation. NPP allocation is largely governed by a preference to 

allocate growth to leaf biomass during the leaf-out period, until the leaf biomass approaches the 

fraction of the seasonal maximum leaf biomass (𝑙𝑒𝑎𝑓𝑝).  

The timestep growth fraction (𝑓𝑟𝑙𝑒𝑎𝑓) allocated to leaves is calculated as: 

𝑓𝑟𝑙𝑒𝑎𝑓 = {𝑖𝑓 𝑁𝑃𝑃 = 0 𝑜𝑟 𝑦𝑑𝑎𝑦 ≥ 𝑠𝑑[1]: 0}  

   {𝑖𝑓 𝑁𝑃𝑃 > 0 𝑎𝑛𝑑 𝑦𝑑𝑎𝑦 < 𝑠𝑑[1] & . .. 

 . . . 𝐶𝑝𝑙 < 𝐶𝑝𝑙−𝑚𝑎𝑥 𝑙𝑒𝑎𝑓𝑝𝑐𝑡: 1} 

 . . . 𝐶𝑝𝑙 ≥ 𝐶𝑝𝑙−𝑚𝑎𝑥 𝑙𝑒𝑎𝑓𝑝𝑐𝑡:
𝐶𝑝𝑙−𝑚𝑎𝑥− 𝐶𝑝𝑙

 𝐶𝑝𝑙−𝐶𝑝𝑙−𝑚𝑎𝑥 𝑙𝑒𝑎𝑓𝑝𝑐𝑡
} (D2-33) 

where 

𝑠𝑑 is a vector of length two, corresponding to the long term average senescence 

period beginning- and ending-dates (in Julian days) 

where 

𝐶𝑝𝑙−𝑚𝑎𝑥 is the seasonal maximum leaf carbon store 
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The 𝐶𝑝𝑙−𝑚𝑎𝑥 is calculated with an allometric equation based on the season-start number of stems 

(𝑁𝑠𝑡𝑒𝑚𝑆) and season-start stand average diameter at breast height (𝑑𝑏ℎ, See Appendix D2.3.4.): 

𝐶𝑝𝑙−𝑚𝑎𝑥 = 𝑁𝑠𝑡𝑒𝑚𝑆 𝑙𝑒𝑎𝑓𝑎 𝑑𝑏ℎ𝑙𝑒𝑎𝑓𝑛 (D2-34) 

Non-structural carbohydrate reserves are used to initiate leaf out, with a constant fractional growth 

rate (𝑠𝑝𝑟𝑜𝑢𝑡𝑟) .  

𝑠𝑝𝑟𝑜𝑢𝑡𝑚𝑎𝑥 = {𝑖𝑓 𝑦𝑑𝑎𝑦 < 𝑔𝑑[1]𝑜𝑟 𝑦𝑑𝑎𝑦 > 𝑔𝑑[2] 𝑜𝑟 …   

                       …  𝐶𝑝𝑙 ≥ 𝐶𝑝𝑙−𝑚𝑎𝑥 𝑙𝑒𝑎𝑓𝑝𝑐𝑡: 0}  

                       {𝑖𝑓 𝑦𝑑𝑎𝑦 ≥ 𝑔𝑑[1]𝑎𝑛𝑑 𝑦𝑑𝑎𝑦 ≤ 𝑔𝑑[2] 𝑎𝑛𝑑 … 

                       . . .  𝐶𝑝𝑙 < 𝐶𝑝𝑙−𝑚𝑎𝑥 𝑙𝑒𝑎𝑓𝑝𝑐𝑡: (𝐶𝑝𝑙−𝑚𝑎𝑥 − 𝐶𝑝𝑙) 𝑠𝑝𝑟𝑜𝑢𝑡𝑟 } (D2-35) 

where 

𝑔𝑑 is a vector of length two, corresponding to the long term average leaf out period 

beginning- and ending-dates (in Julian days) 

Before calculating the potential uptake of nitrogen, the demand for nitrogen from the two processes 

(𝑁𝑃𝑃 and 𝑠𝑝𝑟𝑜𝑢𝑡) are calculated. 

The carbon to nitrogen ratios (C/N) or plant stems and leaves have very different values. As such, 

timestep N demand (𝑁𝑃𝑃_𝑁𝑑𝑒𝑚𝑎𝑛𝑑) will depend on where C is allocated. 

𝐶/𝑁𝑑𝑒𝑚𝑎𝑛𝑑 = 𝑓𝑟𝑙𝑒𝑎𝑓 𝐶/𝑁𝑙𝑒𝑎𝑓 + (1 − 𝑓𝑟𝑙𝑒𝑎𝑓) 𝐶/𝑁𝑠𝑡𝑒𝑚 (D2-36) 

𝑁𝑃𝑃_𝑁𝑑𝑒𝑚𝑎𝑛𝑑 =
𝑁𝑃𝑃𝑚𝑎𝑥

𝐶/𝑁𝑑𝑒𝑚𝑎𝑛𝑑
 (D2-37) 

The sprouting routine contributes solely to leaf growth, but at the expense of stem carbon. A storage 

pool (𝑁𝑠𝑡𝑜𝑟𝑒) was incorporated into the model, to account for overwinter N storage solely for leaf 

growth. During the leaf-out period, the allocation of plant stem tissue to leaves comes with a small 

amount of “free” nitrogen, according to the C/N ratio of stem tissue. The remaining N required to 

produce the more N-rich foliage must come from the winter storage pool (𝑁𝑠𝑡𝑜𝑟𝑒), and from the soil. 

𝑠𝑝𝑟𝑜𝑢𝑡_𝑁𝑓𝑟𝑒𝑒 =
𝑠𝑝𝑟𝑜𝑢𝑡𝑚𝑎𝑥

𝐶/𝑁𝑠𝑡𝑒𝑚
 (D2-38) 

The timestep inputs and outputs from the N storage pool are 𝑁𝑠𝑡𝑜𝑟𝑒−𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙 and 𝑁𝑠𝑡𝑜𝑟𝑒−𝑑𝑒𝑝𝑜𝑠𝑖𝑡. 

𝑁𝑠𝑡𝑜𝑟𝑒−𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙 = 𝑚𝑖𝑛 (
𝑠𝑝𝑟𝑜𝑢𝑡𝑚𝑎𝑥

𝐶/𝑁𝑙𝑒𝑎𝑓
− 𝑠𝑝𝑟𝑜𝑢𝑡_𝑁𝑓𝑟𝑒𝑒  , 𝑁𝑠𝑡𝑜𝑟𝑒  ) (D2-39) 

𝑠𝑝𝑟𝑜𝑢𝑡_𝑁𝑑𝑒𝑚𝑎𝑛𝑑 = 𝑚𝑎𝑥 (
𝑠𝑝𝑟𝑜𝑢𝑡𝑚𝑎𝑥

𝐶/𝑁𝑙𝑒𝑎𝑓
− 𝑁𝑠𝑡𝑜𝑟𝑒−𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙 − 𝑠𝑝𝑟𝑜𝑢𝑡_𝑁𝑓𝑟𝑒𝑒  , 0 ) (D2-40) 
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Nutrition stress is incorporated following the methods of Parolari and Porporato (2016). In the 

paragraph above, maximum N demand was calculated, and next it will be throttled down if necessary 

to account for nitrogen limitation. 

𝑈𝑃𝑁𝑚𝑎𝑥 = 𝑁𝑃𝑃_𝑁𝑑𝑒𝑚𝑎𝑛𝑑 + 𝑠𝑝𝑟𝑜𝑢𝑡_𝑁𝑑𝑒𝑚𝑎𝑛𝑑 (D2-41) 

Passive uptake is calculated for each N specie (ammonium, +; or nitrate, –), and each pool (𝑦 1 or 2) 

as proportional to the solubility coefficient ( 𝑘𝐿𝑒𝑁±), the N pool size (𝑁𝑚±,𝑦), and the fraction of 

transpiration from pool 𝑦 (𝑇𝑟𝑎𝑛𝑠𝑦) relative to the pool size (𝑆𝑦). 

𝑈𝑃𝑝𝑎𝑠,±,𝑦 =  𝑘𝐿𝑒𝑁± 𝑁𝑚±,𝑦  
𝑇𝑟𝑎𝑛𝑠𝑦

𝑆𝑦
 (D2-42) 

𝑈𝑃𝑝𝑎𝑠∑ = ∑ ∑ 𝑈𝑃𝑝𝑎𝑠,±,𝑦
–
+

2
𝑦=1  (D2-43) 

Excess passive uptake contributes to N storage in plant tissues, although it is not expected that this is 

a large contributor to the N budget during the growing season. 

𝑈𝑃𝑝𝑎𝑠,𝑒𝑥𝑐𝑒𝑠𝑠 = {𝑖𝑓 𝑈𝑃𝑝𝑎𝑠∑ > 𝑈𝑃𝑁𝑚𝑎𝑥: 𝑈𝑃𝑁𝑚𝑎𝑥 − 𝑈𝑃𝑝𝑎𝑠∑}  (D2-44) 

Active N uptake is also related to soil moisture. Following the methods of Porporato et al. (2003), the 

moisture dependency of active uptake for pool 𝑦 (𝑓𝑈𝑝𝑁,𝑦) decreases with the total moisture, due to 

dilution of the existing N within the soil pool, but increases relative to the fractional moisture due to 

nonlinear poor connectivity (𝑛𝑑𝑑, nonlinear dependence of the diffusion process on soil moisture). 

𝑓𝑈𝑝𝑁,𝑦 = 𝑘𝑈𝑝𝑁 𝑠𝐷𝑖𝑓 (
𝑠𝑚,𝑦𝑛𝑑𝑑

𝑆𝑦
) (D2-45) 

𝑈𝑃𝑎𝑐𝑡,±,𝑦 = {𝑖𝑓 𝑈𝑃𝑁𝑚𝑎𝑥 > 𝑈𝑃𝑝𝑎𝑠: 𝑚𝑖𝑛((𝑈𝑃𝑁𝑚𝑎𝑥 − 𝑈𝑃𝑝𝑎𝑠) , 𝑓𝑈𝑝𝑁,𝑦  𝑘𝐿𝑒𝑁±𝑁𝑚±,𝑦)}  

                    {𝑖𝑓 𝑈𝑃𝑁𝑚𝑎𝑥 < 𝑈𝑃𝑝𝑎𝑠: 0} (D2-46) 

A nitrogen fixation component was added to the model to allow a small amount of supplemental N 

directly for uptake. 

𝑈𝑃𝑓𝑖𝑥 = {𝑖𝑓 𝑈𝑃𝑁𝑚𝑎𝑥 > (𝑈𝑃𝑝𝑎𝑠 + 𝑈𝑃𝑎𝑐𝑡): 𝑚𝑖𝑛((𝑈𝑃𝑁𝑚𝑎𝑥 − 𝑈𝑃𝑝𝑎𝑠 −

𝑈𝑃𝑎𝑐𝑡) , 𝑘𝑁𝑓𝑖𝑥)}  

               {𝑖𝑓 𝑈𝑃𝑁𝑚𝑎𝑥 = (𝑈𝑃𝑝𝑎𝑠 + 𝑈𝑃𝑎𝑐𝑡): 0} (D2-47) 

Total potential nitrogen uptake is summed: 

𝑈𝑃𝑁 = 𝑈𝑃𝑝𝑎𝑠 + 𝑈𝑃𝑎𝑐𝑡 + 𝑈𝑃𝑓𝑖𝑥 (D2-48) 
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Priority in N uptake is given to leaf sprouting. Recall that N demand for leaf sprouting can be met 

first with the small “free” stem re-allocation (𝑠𝑝𝑟𝑜𝑢𝑡_𝑁𝑓𝑟𝑒𝑒), followed by storage withdrawal 

(𝑁𝑠𝑡𝑜𝑟𝑒−𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙), and then by soil uptake (𝑠𝑝𝑟𝑜𝑢𝑡_𝑁𝑈𝑃). 

𝑠𝑝𝑟𝑜𝑢𝑡_𝑁𝑈𝑃 =  𝑚𝑖𝑛(𝑠𝑝𝑟𝑜𝑢𝑡_𝑁𝑑𝑒𝑚𝑎𝑛𝑑  , 𝑈𝑃𝑁) (D2-49) 

𝑠𝑝𝑟𝑜𝑢𝑡_𝑁 = 𝑠𝑝𝑟𝑜𝑢𝑡_𝑁𝑓𝑟𝑒𝑒 + 𝑁𝑠𝑡𝑜𝑟𝑒−𝑤𝑖𝑡ℎ𝑑𝑟𝑎𝑤𝑎𝑙 + 𝑠𝑝𝑟𝑜𝑢𝑡_𝑁𝑈𝑃 (D2-50) 

Timestep sprout carbon allocation (𝑠𝑝𝑟𝑜𝑢𝑡) is calculated based on available N (𝑠𝑝𝑟𝑜𝑢𝑡_𝑁). 

𝑠𝑝𝑟𝑜𝑢𝑡 = 𝑠𝑝𝑟𝑜𝑢𝑡_𝑁 𝐶/𝑁𝑙𝑒𝑎𝑓 (D2-51) 

The remaining portion of 𝑈𝑃𝑁 is allocated to NPP: 

𝑁𝑃𝑃_𝑁 = 𝑈𝑃𝑁 − 𝑠𝑝𝑟𝑜𝑢𝑡_𝑁 (D2-52) 

Finally, NPP is throttled by the term 𝑐ℎ to account for nitrogen availability: 

𝑐ℎ = {𝑖𝑓 𝑈𝑃𝑁𝑚𝑎𝑥 = 0: 0}  

          {𝑖𝑓 𝑈𝑃𝑁𝑚𝑎𝑥 > 0: 
𝑁𝑃𝑃_𝑁

𝑁𝑃𝑃_𝑁𝑑𝑒𝑚𝑎𝑛𝑑
}  (D2-53) 

𝑁𝑃𝑃 = 𝑁𝑃𝑃𝑚𝑎𝑥 𝑐ℎ (D2-54) 

NPP (N corrected) is then allocated to leaf and stem growth: 

𝑁𝑃𝑃𝑙 = 𝑁𝑃𝑃 𝑓𝑟𝑙𝑒𝑎𝑓 (D2-55) 

𝑁𝑃𝑃𝑠 = 𝑁𝑃𝑃 (1 − 𝑓𝑟𝑙𝑒𝑎𝑓)  (D2-56) 

D2.3.3. Plant Turnover 

As part of the integration of the 3PG model, Plant biomass was modeled as two living pools: stem 

and leaves. Each pool also experienced turnover.  

Leaf turnover (𝐿𝐹𝑙) was assumed to occur during the senescence period (See Section 5.2.2).  

𝐿𝐹𝑙 = {𝑖𝑓 𝑦𝑑𝑎𝑦 ≥ 𝑠𝑑[1]:  𝑡𝑢𝑟𝑛𝑙  𝐶𝑝𝑙  }{𝑖𝑓 𝑦𝑑𝑎𝑦 < 𝑠𝑑[1]:  0 } (D2-57) 

𝑁𝑠𝑡𝑜𝑟𝑒−𝑑𝑒𝑝𝑜𝑠𝑖𝑡 = (
𝐿𝐹𝑙

𝐶/𝑁𝑝𝑙
) 𝑓𝑠𝑝𝑟𝑜𝑢𝑡𝑁𝑠𝑡𝑜𝑟𝑒 (D2-58) 

In this model, the stem pool was assumed to also represent roots. Stem turnover (𝐿𝐹𝑝) was modeled as 

a function of the forest age, or the total stem biomass 𝐶𝑝 relative to the carrying capacity. 

𝐿𝐹𝑝 = 𝑚𝑜𝑟𝑡𝑝−𝑙 + (𝑚𝑜𝑟𝑡𝑝−ℎ − 𝑚𝑜𝑟𝑡𝑝−𝑙) 𝑒𝑥𝑝 (−𝑙𝑛2 ∗ (
𝐶𝑝

𝑟𝑒𝑓𝑁  𝑟𝑒𝑓𝑀

1

𝑚𝑜𝑟𝑡𝑝−𝑚
)

𝑚𝑜𝑟𝑡𝑝−𝑎

) (D2-59) 
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The harvesting of trees also resulted in a loss of stem biomass, and was characterized as the flux 𝐻. 

D2.3.4. Allometric Equations 

The diameter at breast height (𝑑𝑏ℎ) is calculated from the tree biomass per stem and two calibrated 

parameters: 

𝑑𝑏ℎ = (
𝐶𝑝

𝑁𝑠𝑡𝑒𝑚
∗

1

𝑑𝑏ℎ𝑎
)

(
1

𝑑𝑏ℎ𝑛
)
 (D2-60) 

Specific Leaf Area (𝑆𝐿𝐴, units 𝑚2 𝑔−1) represents leaf area per leaf mass, which varies with total 

forest biomass. The 𝑆𝐿𝐴 function ranges from low to high values (𝑆𝐿𝐴𝑙 and 𝑆𝐿𝐴ℎ, respectively) for 

high and low values (respectively) of 𝐶𝑝, relative to the reference values.  

𝑆𝐿𝐴 = 𝑆𝐿𝐴𝑙 + (𝑆𝐿𝐴ℎ − 𝑆𝐿𝐴𝑙) 𝑒𝑥𝑝 (−𝑙𝑛2 ∗ (
𝐶𝑝

𝑟𝑒𝑓𝑁 𝑟𝑒𝑓𝑀

1

𝑆𝐿𝐴𝑚
)

2
) (D2-61) 

where 𝑟𝑒𝑓𝑁 is the reference number of stems from the pre-disturbance forest, and 

𝑟𝑒𝑓𝑀 is the reference mass per stem density (104 ∗ 𝑔 𝑠𝑡𝑒𝑚−1) 

The Leaf Area Index (𝐿𝐴𝐼) is a function of 𝑆𝐿𝐴 and timestep leaf biomass. 

𝐿𝐴𝐼 = 𝑆𝐿𝐴 𝐶𝑝𝑙  0.0001 (D2-62) 

The Basal Area is a simple geometric function of 𝑁𝑠𝑡𝑒𝑚 and mean 𝑑𝑏ℎ.  

𝐵𝑎𝑠𝑎𝑙 𝐴𝑟𝑒𝑎 = 𝑁𝑠𝑡𝑒𝑚 𝜋 (0.01 
𝑑𝑏ℎ

2
)

2
 (D2-63) 

D2.3.5. Stem Modelling 

The number of stems state variable is modeled through time as a balance between growth and 

mortality. Mortality occurs via density-induced self-thinning and age-induced mortality. Growth 

occurs in two stages: (1) maximum growth, where 𝑁𝑠𝑡𝑒𝑚 is smaller than a “canopy closer” threshold 

(𝑁𝑐𝑙𝑜𝑠𝑒; (W. J. Wang et al., 2013), and (2), where 𝑁𝑠𝑡𝑒𝑚 is greater than 𝑁𝑐𝑙𝑜𝑠𝑒 and less than a 

maximum density threshold (𝑁𝑚𝑎𝑥). Both of these two density thresholds change over time as a 

function of the self thinning threshold (𝑁𝑡ℎ𝑖𝑛−𝑙𝑖𝑛𝑒). The thinning threshold is calibrated to a 

“reference” stem (𝑟𝑒𝑓𝑁) and mass (𝑟𝑒𝑓𝑀) density (as in Appendix D2.3.4.). 

𝑁𝑡ℎ𝑖𝑛−𝑙𝑖𝑛𝑒 = 𝑟𝑒𝑓𝑁  (
𝐶𝑝

𝑁𝑠𝑡𝑒𝑚

1

𝑟𝑒𝑓𝑀
)

𝑡ℎ𝑖𝑛𝑛

 (D2-64) 

where 
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𝑡ℎ𝑖𝑛𝑛 is the thinning threshold exponent 

The thresholds 𝑁𝑐𝑙𝑜𝑠𝑒 and 𝑁𝑚𝑎𝑥 were calculated as fractions (𝑠𝑡𝑒𝑚𝑐 and 𝑠𝑡𝑒𝑚𝑚, respectively) of 

𝑁𝑡ℎ𝑖𝑛−𝑙𝑖𝑛𝑒. 

𝑁𝑐𝑙𝑜𝑠𝑒 = 𝑁𝑡ℎ𝑖𝑛−𝑙𝑖𝑛𝑒 𝑠𝑡𝑒𝑚𝑐 (D2-65) 

𝑁𝑚𝑎𝑥 = 𝑁𝑡ℎ𝑖𝑛−𝑙𝑖𝑛𝑒 𝑠𝑡𝑒𝑚𝑚 (D2-66) 

Stem growth is then calculated with a fractional reproduction rate (𝑠𝑡𝑒𝑚𝑟) of the current number of 

stems (𝑁𝑠𝑡𝑒𝑚): 

𝑁𝑔𝑟𝑜𝑤 = {𝑖𝑓 𝑁𝑠𝑡𝑒𝑚 < 𝑁𝑐𝑙𝑜𝑠𝑒: 𝑁𝑠𝑡𝑒𝑚 𝑠𝑡𝑒𝑚𝑟 }  

               {𝑖𝑓 𝑁𝑠𝑡𝑒𝑚 ≥ 𝑁𝑐𝑙𝑜𝑠𝑒: 𝑁𝑠𝑡𝑒𝑚 𝑠𝑡𝑒𝑚𝑟  (
𝑁𝑚𝑎𝑥−𝑁𝑠𝑡𝑒𝑚

𝑁𝑚𝑎𝑥−𝑁𝑐𝑙𝑜𝑠𝑒
) } (D2-67) 

Self-thinning occurred when 𝑁𝑠𝑡𝑒𝑚 exceeded 𝑁𝑡ℎ𝑖𝑛−𝑙𝑖𝑛𝑒, and was throttled by a delay coefficient 

(𝑡ℎ𝑖𝑛𝑑):  

𝑁𝑚𝑜𝑟𝑡−𝑡ℎ𝑖𝑛 = {𝑖𝑓 𝑁𝑠𝑡𝑒𝑚 ≤ 𝑁𝑡ℎ𝑖𝑛−𝑙𝑖𝑛𝑒: 0}  

                      {𝑖𝑓 𝑁𝑠𝑡𝑒𝑚 > 𝑁𝑡ℎ𝑖𝑛−𝑙𝑖𝑛𝑒: (𝑁𝑠𝑡𝑒𝑚 − 𝑁𝑡ℎ𝑖𝑛−𝑙𝑖𝑛𝑒) 𝑡ℎ𝑖𝑛𝑑 } (D2-68) 

Age-induced mortality occurred when forest biomass exceeded a threshold of stem biomass 

(calculated as 𝑟𝑒𝑓𝑁 times 𝑟𝑒𝑓𝑀). The mortality rate was calculated as the function 𝜆𝑎𝑔𝑒: 

𝜆𝑎𝑔𝑒 = 𝑚𝑜𝑟𝑡𝑙 + (𝑚𝑜𝑟𝑡ℎ − 𝑚𝑜𝑟𝑡𝑙) 𝑒𝑥𝑝 (−𝑙𝑛2 ∗ (
𝐶𝑝

𝑟𝑒𝑓𝑁 𝑟𝑒𝑓𝑀

1

𝑚𝑜𝑟𝑡𝑚
)

𝑚𝑜𝑟𝑡𝑎

) (D2-69) 

where 

𝑚𝑜𝑟𝑡𝑙 and 𝑚𝑜𝑟𝑡ℎ are the low and high mortality rates, respectively, 

𝑚𝑜𝑟𝑡𝑚 is the function midpoint of 0.5, and 

𝑚𝑜𝑟𝑡𝑎 is the function exponent 

The mortality rate function has a value close to 𝑚𝑜𝑟𝑡𝑙 when 𝐶𝑝 is small, and a value approaching 

𝑚𝑜𝑟𝑡ℎ as 𝐶𝑝 approaches the reference threshold.  

𝑁𝑚𝑜𝑟𝑡−𝑎𝑔𝑒 = 𝑁𝑠𝑡𝑒𝑚 𝜆𝑎𝑔𝑒 (D2-70) 

Harvesting also resulted in a decrease in number of stems, and was characterized as a model flux: 

𝑁𝑚𝑜𝑟𝑡−ℎ𝑎𝑟𝑣.  

𝑁𝑚𝑜𝑟𝑡 = 𝑁𝑚𝑜𝑟𝑡−𝑡ℎ𝑖𝑛 + 𝑁𝑚𝑜𝑟𝑡−𝑎𝑔𝑒 + 𝑁𝑚𝑜𝑟𝑡−ℎ𝑎𝑟𝑣 (D2-71) 
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D2.4. Soil Biogeochemistry Model 

The soil biogeochemical model had three components: organic soil pools, mineral nitrogen pools, and 

dissolved carbon. Organic carbon and nitrogen in the soil was represented in the soil litter (with 

carbon 𝐶𝑙 and nitrogen 𝑁𝑙 pools), the soil humus (𝐶ℎ), and the soil biomass (𝐶𝑏). Mineral nitrogen (as 

ammonium + and nitrate −) was represented in the snowpack (𝑁𝑆𝑛+ and 𝑁𝑆𝑛−) and both soil water 

pools (𝑁𝑚+,1 and 𝑁𝑚−,1 for pool 1, and 𝑁𝑚+,2 and 𝑁𝑚−,2 for pool 2). Dissolved organic carbon was 

represented in both soil water pools (𝐶𝑑1 and 𝐶𝑑2). 

D2.4.1. Model Stock Differential Equations 

The litter carbon pool (𝐶𝑙) has additions of litter fall turnover and harvesting residue (𝐴𝐷𝐷𝐶) and soil 

biomass death (𝐵𝐷), and decomposition of litter (𝐷𝐸𝐶𝑙) moves mass out of the pool. 

𝑑𝐶𝑙

𝑑𝑡
= 𝐴𝐷𝐷𝐶 + 𝐵𝐷 − 𝐷𝐸𝐶𝑙 (D2-72) 

The litter nitrogen pool (𝑁𝑙) has the same fluxes as for carbon, but accounting for different carbon to 

nitrogen ratios (for example, for soil biomass 𝐶/𝑁𝑏 or the litter pool itself 𝐶/𝑁𝑙). 

𝑑𝑁𝑙

𝑑𝑡
= 𝐴𝐷𝐷𝑁 + (

𝐵𝐷

𝐶/𝑁𝑏
) − (

𝐷𝐸𝐶𝑙

𝐶/𝑁𝑙
) (D2-73) 

The humus carbon pool (𝐶ℎ) receives mass from litter decomposition (𝐷𝐸𝐶𝑙), and humus 

decomposition (𝐷𝐸𝐶ℎ) moves mass out of the pool. 

𝑑𝐶ℎ

𝑑𝑡
= 𝑟ℎ 𝐷𝐸𝐶𝑙 − 𝐷𝐸𝐶ℎ (D2-74) 

The soil biomass carbon pool (𝐶𝑏) receives mass from both litter and humus decomposition (𝐷𝐸𝐶𝑙 

and 𝐷𝐸𝐶ℎ), and soil biomass death (𝐵𝐷) returns mass back to the litter pool. 

𝑑𝐶𝑏

𝑑𝑡
= (1 − 𝑟𝑟 − 𝑟ℎ) 𝐷𝐸𝐶𝑙 + (1 − 𝑟𝑟) 𝐷𝐸𝐶ℎ  − 𝐵𝐷 (D2-75) 

The snow pool stores ammonium (𝑁𝑆𝑛+) and nitrate (𝑁𝑆𝑛−), and receives mass through snow N 

deposition (𝐷𝐸𝑃𝑆𝑛,+ and 𝐷𝐸𝑃𝑆𝑛,−) and loses mass through snowmelt loss (𝑁𝑄𝑛,+ and 𝑁𝑄𝑛,−). 

𝑑𝑁𝑆𝑛+

𝑑𝑡
= 𝐷𝐸𝑃𝑆𝑛,+ − 𝑁𝑄𝑛,+ (D2-76) 

𝑑𝑁𝑆𝑛−

𝑑𝑡
= 𝐷𝐸𝑃𝑆𝑛,− − 𝑁𝑄𝑛,− (D2-77) 

Likewise, the mineral nitrogen pool stores ammonium and nitrogen in pools 1 and 2 (𝑁𝑚+,1 and 

𝑁𝑚+,2; 𝑁𝑚−,1 and 𝑁𝑚−,2). N is added to the soil pool 1 through deposition as dry deposition (𝐷𝐸𝑃𝑑+ 
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and 𝐷𝐸𝑃𝑑−) or via the hydrologic infiltration pathway (𝑁𝑄𝑖𝑛𝑓+ and 𝑁𝑄𝑖𝑛𝑓−). Hydrologic transport 

redistributes N from pool 1 to pool 2 through percolation (𝑁𝑝𝑒𝑟𝑐+ and 𝑁𝑝𝑒𝑟𝑐−), and from pool 2 to 

baseflow (𝑁𝑞2𝑢+ and 𝑁𝑞2𝑢−). Plant uptake removes N from both pools through both passive and 

active pathways (e.g. 𝑈𝑃𝑝𝑎𝑠,+,1 and 𝑈𝑃𝑎𝑐𝑡,+,1). Nitrification (𝑁𝐼𝑇) transforms ammonium to nitrate in 

pool 1, and immobilization (𝐼𝑀𝑀+ and 𝐼𝑀𝑀−) transfers mineral N to organic N to supplement N-

poor conditions of decomposition. Inversely, mineralization (𝑀𝐼𝑁+) transforms excess organic N 

during N-rich conditions of decomposition into ammonium. Finally, denitrification serves as a sink of 

nitrate from both pools (𝐷𝐸𝑁1 and 𝐷𝐸𝑁2) 

𝑑𝑁𝑚+,1

𝑑𝑡
= 𝐷𝐸𝑃𝑑+ + 𝑁𝑄𝑖𝑛𝑓+ − 𝑁𝑝𝑒𝑟𝑐+ − 𝑈𝑃𝑝𝑎𝑠,+,1 − 𝑈𝑃𝑎𝑐𝑡,+,1  

                −𝑁𝐼𝑇 + 𝑀𝐼𝑁+ − 𝐼𝑀𝑀+ (D2-78) 

𝑑𝑁𝑚−,1

𝑑𝑡
= 𝐷𝐸𝑃𝑑− + 𝑁𝑄𝑖𝑛𝑓− − 𝑁𝑝𝑒𝑟𝑐− − 𝑈𝑃𝑝𝑎𝑠,−,1 − 𝑈𝑃𝑎𝑐𝑡,−,1  

                +𝑁𝐼𝑇 − 𝐼𝑀𝑀− − 𝐷𝐸𝑁1 (D2-79) 

𝑑𝑁𝑚+,2

𝑑𝑡
= 𝑁𝑝𝑒𝑟𝑐+ − 𝑁𝑞2𝑢+ − 𝑈𝑃𝑝𝑎𝑠,+,2 − 𝑈𝑃𝑎𝑐𝑡,+,2 (D2-80) 

𝑑𝑁𝑚−,2

𝑑𝑡
= 𝑁𝑝𝑒𝑟𝑐− − 𝑁𝑞2𝑢− − 𝑈𝑃𝑝𝑎𝑠,−,2 − 𝑈𝑃𝑎𝑐𝑡,−,2 − 𝐷𝐸𝑁2 (D2-81) 

Dissolved organic carbon is stored in pools 1 and 2 (𝐶𝑑1 and 𝐶𝑑2, respectively), and experiences only 

production (𝐶𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒) and transport (𝐶𝑝𝑒𝑟𝑐 and 𝐶𝑞2𝑢).  

𝑑𝐶𝑑1

𝑑𝑡
= 𝐶𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒 − 𝐶𝑝𝑒𝑟𝑐 (D2-82) 

𝑑𝐶𝑑2

𝑑𝑡
= 𝐶𝑝𝑒𝑟𝑐 − 𝐶𝑞2𝑢 (D2-83) 

D2.4.2. Nitrogen Deposition 

If there was snow, then deposition (𝐷𝐸𝑃𝑆𝑛,±) was allocated entirely to the snowpack N pool (𝑁𝑆𝑛). If 

there was no snow, then deposition was fell as dry (𝐷𝐸𝑃𝑑,±) or wet (𝐷𝐸𝑃𝑤,±) deposition depending 

on if there was precipitation. Dry deposition was added directly to the soil. 

For each day with snowmelt, N flux from the snowpack (𝑁𝑄𝑛,±) was calculated: 

𝑁𝑄𝑛,± = {𝑖𝑓 𝑆𝑛 = 0: 0} {𝑖𝑓 𝑆𝑛 > 0: 𝑁𝑆𝑛,±
𝑄𝑛

𝑆𝑛
} (D2-84) 

On any day with snowmelt or precipitation, any nitrogen in the snowmelt or wet deposition pathways 

was allocated to infiltration and quickflow: 
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𝑁𝑄𝑓± = {𝑖𝑓 𝑄𝑓 = 0: 0} {𝑖𝑓 𝑄𝑓 > 0: (𝑁𝑄𝑛,± + 𝐷𝐸𝑃𝑤,±)
𝑄𝑓

𝑄𝑖𝑛𝑓+𝑄𝑓
} (D2-85) 

𝑁𝑄𝑖𝑛𝑓± = {𝑖𝑓 𝑄𝑖𝑛𝑓 = 0: 0} {𝑖𝑓 𝑄𝑓 > 0: (𝑁𝑄𝑛,± + 𝐷𝐸𝑃𝑤,±)
𝑄𝑖𝑛𝑓

𝑄𝑖𝑛𝑓+𝑄𝑓
} (D2-86) 

D2.4.3. Decomposition Model 

Fluxes from plant turnover (leaves and stem) are added to the litter pool 

𝐴𝐷𝐷𝐶 = 𝐿𝐹𝑙  +  𝐿𝐹𝑝  (D2-87) 

𝐴𝐷𝐷𝑁 =  (
𝐿𝐹𝑙

𝐶/𝑁𝑝𝑙
) (1 − 𝑓𝑠𝑝𝑟𝑜𝑢𝑡𝑁𝑠𝑡𝑜𝑟𝑒)  +  (

𝐿𝐹𝑝

𝐶/𝑁𝑝
)  (D2-88) 

Biomass death is also added to the litter pool. 

𝐵𝐷 = 𝑘𝑑  𝐶𝑏 (D2-89) 

The term 𝜑 (phi) was developed by Porporato et al. (2003) and determines whether decomposition 

requires mineralization or immobilization to deal with excess or deficit N (respectively). 

Functionally, 𝜑𝑏𝑜𝑡𝑡𝑜𝑚 calculates the moisture-normalized and biomass-normalized net-nitrogen from 

decomposition. If 𝜑𝑏𝑜𝑡𝑡𝑜𝑚 is negative, then mineralization will occur, and if 𝜑𝑏𝑜𝑡𝑡𝑜𝑚 is positive, then 

immobilization will occur. 

𝜑𝑏𝑜𝑡𝑡𝑜𝑚 = 𝑘ℎ 𝐶ℎ (
1

𝐶𝑁ℎ
−

1−𝑟𝑟

𝐶𝑁𝑏
) + 𝑘𝑙  𝐶𝑙 (

1

𝐶𝑁𝑙
−

𝑟ℎ

𝐶𝑁ℎ
−

1−𝑟ℎ−𝑟𝑟

𝐶𝑁𝑏
) (D2-90) 

𝜑𝑡𝑜𝑝 = −𝑁𝑚∑ (D2-91) 

where 

𝑁𝑚∑ = ∑ 𝑁𝑚,±,𝑦=1
–
+  (D2-92) 

𝜑 = {𝑖𝑓 𝜑𝑏𝑜𝑡𝑡𝑜𝑚 ≥ 0: 1}{𝑖𝑓 𝜑𝑏𝑜𝑡𝑡𝑜𝑚 < 0 & 𝜑𝑏𝑜𝑡𝑡𝑜𝑚 < |𝜑𝑡𝑜𝑝|: 1}  

 {𝑖𝑓 𝜑𝑏𝑜𝑡𝑡𝑜𝑚 < 0 & 𝜑𝑏𝑜𝑡𝑡𝑜𝑚 > |𝜑𝑡𝑜𝑝|: 
𝜑𝑡𝑜𝑝

𝜑𝑏𝑜𝑡𝑡𝑜𝑚
} (D2-93) 

After assessing nitrogen limitation of decomposition, a forcing function for moisture regulation (𝑓𝑑𝑒𝐶) 

was calculated as in Porporato et al. (2003). 

𝑓𝑑𝑒𝐶 = {𝑖𝑓 𝑠𝑚 > 𝑠𝑓𝑐 : 
𝑠𝑓𝑐

𝑠𝑚
} {𝑖𝑓 𝑠𝑚 ≤ 𝑠𝑓𝑐 : 

𝑠𝑚

𝑠𝑓𝑐
} (D2-94) 

Following the influence of soil temperature on decomposition in RHYSSys (Tague & Band, 2004), a 

forcing function to temperature regulation (𝑓𝑆𝑇𝑒𝑚𝑝) was calculated: 

𝑓𝑆𝑇𝑒𝑚𝑝 = (1 − 𝑥𝑇) + 𝑥𝑇 𝑘𝑡𝑒𝑚𝑝 𝑒𝑥𝑝 [308.56 (
1

71.02
−

1

𝑇𝑠𝑜𝑖𝑙−227.13
)] (D2-95) 



 

 233 

where 

𝑒𝑥𝑝 is the exponential function, 

𝑥𝑇 is a “switch” parameter calibrated between zero and one to regulate the effect of 

temperature on decomposition, 

𝑘𝑡𝑒𝑚𝑝 is a correction factor added to the RHYSSys equation to make the 

temperature-driven equation (𝑥𝑇 = 1) compatible with the isothermal 

equation (𝑥𝑇 = 0), and 

𝑇𝑠𝑜𝑖𝑙 is in degrees Kelvin (°K) and is a buffered time series of air temperature (°K) 

where for each time [𝑡 + 1] it is correlated to Tsoil at time [𝑡]: 

𝑇𝑠𝑜𝑖𝑙[𝑡 + 1] = 0.9 𝑇𝑠𝑜𝑖𝑙[𝑡] + (1 − 0.9)(𝑇𝑎𝑖𝑟[𝑡 + 1] + 273.15) (D2-96) 

Decomposition of litter (𝐷𝐸𝐶𝑙) and humus (𝐷𝐸𝐶ℎ) are re-calculated, accounting for moisture, 

temperature, biomass, and N limitation:  

𝐷𝐸𝐶𝑙 = 𝜑 𝑓𝑑𝑒𝐶  𝑓𝑆𝑇𝑒𝑚𝑝 𝑘𝑙 𝐶𝑙 (D2-97) 

𝐷𝐸𝐶ℎ = 𝜑 𝑓𝑑𝑒𝐶  𝑓𝑆𝑇𝑒𝑚𝑝 𝑘ℎ 𝐶ℎ (D2-98) 

As described earlier, the nitrogen accounting must be completed to account for immobilization or 

mineralization conditions. The same governing functions applied to decomposition regulate 

immobilization and mineralization. The function 𝛷 (PHI) has the same sign as 𝜑𝑏𝑜𝑡𝑡𝑜𝑚 and directs 

the value of immobilization (𝐼𝑀𝑀) and mineralization (𝑀𝐼𝑁). 

𝛷 = 𝜑  𝑓𝑑𝑒𝐶  𝑓𝑆𝑇𝑒𝑚𝑝 𝜑𝑏𝑜𝑡𝑡𝑜𝑚 (D2-99) 

𝑀𝐼𝑁 = {𝑖𝑓 𝛷 > 0: 𝛷}{𝑖𝑓 𝛷 ≤ 0: 0} (D2-100) 

Importantly, Mineralization will equal the excess N produced in decomposition, minus soil biotic 

uptake: 

𝑀𝐼𝑁 = 𝐷𝐸𝐶ℎ  (
1

𝐶𝑁ℎ
−

1−𝑟𝑟

𝐶𝑁𝑏
) + 𝐷𝐸𝐶𝑙  (

1

𝐶𝑁𝑙
−

𝑟ℎ

𝐶𝑁ℎ
−

1−𝑟ℎ−𝑟𝑟

𝐶𝑁𝑏
) (D2-101) 

Immobilization will occur if there is an N deficit from decomposition. 

𝐼𝑀𝑀𝑚𝑎𝑥 =  𝑓𝑑𝑒𝐶  𝑓𝑆𝑇𝑒𝑚𝑝 𝐶𝑏 𝑁𝑚 (D2-102) 

𝐼𝑀𝑀 = {𝑖𝑓 𝛷 < 0: 𝑚𝑖𝑛(−𝛷, 𝐼𝑀𝑀𝑚𝑎𝑥)}{𝑖𝑓 𝛷 ≥ 0: 0} (D2-103) 

The inflow to the soil biomass pool regulates much of the decomposition. As seen in Equation D2-89, 

the soil humification and respiration fractions in the 𝜑 equation determines the carbon and nitrogen 

flow to biomass, and ensures that biomass receives the appropriate C/N ratio. 
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D2.4.4. Nitrification and Denitrification 

Nitrification and denitrification was calculated according to Porporato et al. (2003). Nitrification 

moisture inhibition was the same as decomposition below field capacity, but reduced to zero as 

moisture approached 100%. 

 𝑓𝑁𝐼𝑇 = {𝑖𝑓 𝑠𝑚 > 𝑠𝑓𝑐 : 
1−𝑠𝑚

1−𝑠𝑓𝑐
} {𝑖𝑓 𝑠𝑚 ≤ 𝑠𝑓𝑐:

𝑠𝑚

𝑠𝑓𝑐
 } (D2-104) 

The nitrification rate (𝑁𝐼𝑇) was also governed by a rate constant (𝑘𝑁𝐼𝑇), and the amount of soil 

biomass (𝐶𝑏). 

𝑁𝐼𝑇 = 𝑓𝑁𝐼𝑇 𝑓𝑆𝑇𝑒𝑚𝑝 𝑘𝑁𝐼𝑇 𝑁𝑚,+,1 𝐶𝑏 (D2-105) 

The denitrification forcing function (𝑓𝑑𝑒𝑁) inhibited denitrification (𝐷𝐸𝑁) below a threshold soil 

moisture (𝑑𝑒𝑛𝑖), after which denitrification increased exponentially (with a variable exponent rate: 

𝑑𝑒𝑛𝑒𝑥𝑝). 

 𝑓𝑑𝑒𝑁,𝑦 = {𝑖𝑓 𝑠𝑚𝑦 ≤ 𝑑𝑖: 0} {𝑖𝑓 𝑠𝑚𝑦 > 𝑑𝑒𝑛𝑖 : (
𝑠𝑚,𝑦−𝑑𝑒𝑛𝑖

1−𝑑𝑒𝑛𝑖
)

𝑑𝑒𝑛.𝑒𝑥𝑝
} (D2-106) 

The denitrification rate (𝐷𝐸𝑁) was also governed by a rate constant (𝑘𝑑𝑒𝑛). 

𝐷𝐸𝑁𝑦 = 𝑓𝑑𝑒𝑁,𝑦 𝑓𝑆𝑇𝑒𝑚𝑝 𝑘𝑑𝑒𝑛 𝑁𝑚,−,𝑦  (D2-107) 

D2.4.5. Dissolved Organic C Production 

The DOC production rate (𝐶𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒) was governed by a rate constant (𝑘𝑑𝑐). 

𝐶𝑑𝑖𝑠𝑠𝑜𝑙𝑣𝑒 = 𝑘𝑑𝑐  𝐶𝑙   (D2-108) 

D2.4.6. Subsurface N and C Leaching 

Subsurface leaching was assumed to be proportional to the pool size of N or C (𝑋) times the fraction 

of soil water leaching for each time step times the solubility term (𝑘𝐿𝑒𝑋). 

𝑋𝑝𝑒𝑟𝑐± =  𝑘𝐿𝑒𝑋 𝑋 
𝑄𝑝𝑒𝑟𝑐

𝑆1
 (D2-109) 

𝑋𝑞2𝑢± =  𝑘𝐿𝑒𝑋 𝑋 
𝑄2𝑢+𝑄2𝑓

𝑆2
 (D2-110) 
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D3. Site Measurements and Data from Turkey Lakes 

 

Table D2: Carbon and Nitrogen stores and ratios from Turkey Lakes Forest. Pool description 

references my model (see Table 5-5), with description from authors in parentheses. Measurements are 

from Morrison et al. (“Mo92”, 1992), Morrison et al. (“Mo93”, 1993), or Mitchell et al. (“Mi92”, 

1992). Measurement methods also reference (Foster et al., 1992; Morrison, 1990, 1991). 

Pool Description Carbon 

(g C m-2) 

Source Nitrogen  

(g C m-2) 

Source C/N Ratio 

Plant Leaf Biomass (Foliage) 180 Mo93 9.4 Mo92 19 

Plant Stem Biomass (Woody: 

branches, stem, bark, roots, 

alive and dead) 

10980 Mo93 42 Mi92 260 

Vegetation (sum) 11760 Mi92 58.1 Mi92 200 

Litter Pool (Forest Floor) 1610 Mo93 88.8 Mo92 18 

Humus Pool (Mineral Soil) 21430 Mo93 971 Mi92 22 

 

 

Table D3: Carbon and Nitrogen fluxes from Turkey Lakes Forest. Measurements as in Table D2. 

*Litter fall carbon measurement from (Morrison, 1991). 

Pool Description Carbon (g C m-2 y-1) Nitrogen (g C m-2 y-1) C/N Ratio 

Atmospheric Deposition  0.68  

Leaf Litter Fall 186.5* 2.86 65.2 

Net Fixation/Uptake 558 3.22 173 

Leaching from Upper Soil  1.86  
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Table D4: Forest measurements from TLW pre- and post-harvest. Catchment c32 is a control 

(unharvested catchment), and catchment c31 was clear-cut harvested in the fall of 1997 (beginning of 

water-year 1998). Data directly from Buttle et al. (2018) include number of stems, basal area, and 

volume. Diameter at Breast Height (DBH) is calculated from Buttle’s data using Equation D2-56. 

Stem biomass is calculated assuming a constant ratio of carbon per wood volume, and using reference 

values from Table D2. Leaf area index (LAI) is from Han (2022). 

Measurement: Number of 

Stems 

(stems/ha) 

DBH 

(cm) 

Wood 

Volume 

(m3/ha) 

Stem Biomass 

(103 g C/m2) 

Leaf Area 

Index (LAI) 

(m2/m2) 

Source: Buttle Calculated 

from Buttle 

Buttle Calculated 

from Buttle 

Han (2022) 

Catchment (right): 

Year (down): 

c32 c32 c32 c31 c32 c31 c32 c31 c32 c31 

Pre-harvest 1997 1060 905 17.6 20 206 237 9.6 11 4.5 4.5 

Post-harvest 1997 NA 200 NA 20 206 53 9.6 2.5 4.5 0.83 

2003 1000 265 19.1 18.2 233 55 10.8 2.5 4.5 3.23 

2008 1035 615 19.3 13.7 249 67 11.5 3.1 4.5 4.17 

2013 1005 1085 19.3 10.6 238 60 11 2.8 4.5 4.5 
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Table D5: Forest measurements from two forest stands of Acer saccharum (sugar maple) within 

TLW. Measurements taken in 1980 and 1982. Retrieved from Table 1 from (Morrison, 1990). Note: 

Means ± standard deviation of measurements are from trees ≥ 5cm DBH, plus smaller vegetation in 

the case of total phytomass. Units are in parentheses. 

Site (right): 

Measurement (down): 

Norberg Creek, TLW Wishart Lake, TLW 

Number of Stems (stems/ha) 682 ± 200 787 ± 233 

Mean DBH (cm) 19.5 ± 3.6 16.8 ± 2.9 

Basal area (m2/ha) 28.6 ± 0.7 24.7 ± 1.4 

Total volume (m3/ha) 238.2 ± 9.6 199.4 ± 14.7 

Total phytomass (tons/ha) 245.3 ± 5.2 210.3 ± 17.2 
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Table D6: Nitrogen deposition from TLW. Data from 1981 to 1997 are from (Sirois et al., 2001). 

*Asterisks next to years 1998 to 2011 represent interpolated data (detailed in Appendix D2.1). 

Year Precipitation 

(mm yr-1) 

N wet deposition 

(g m-2 yr-1) 

N dry deposition 

(g m-2 yr-1) 

N total deposition 

(g m-2 yr-1) 

Percent wet 

N dep. (%) 

1981 1183.9 0.48 0.26 0.74 65 

1982 1336.7 0.47 0.21 0.68 69 

1983 1113.2 0.38 0.20 0.58 65 

1984 1217.3 0.49 0.20 0.69 71 

1985 1296.5 0.55 0.16 0.70 78 

1986 1271.0 0.39 0.16 0.56 71 

1987 1066.4 0.36 0.20 0.57 64 

1988 1543.2 0.63 0.22 0.85 75 

1989 1176.6 0.49 0.27 0.76 64 

1990 1247.9 0.54 0.26 0.81 67 

1991 1374.4 0.50 0.26 0.76 65 

1992 1290.5 0.46 0.27 0.73 63 

1993 1407.1 0.48 0.21 0.69 70 

1994 1058.2 0.42 0.31 0.73 58 

1995 1323.0 0.51 0.24 0.75 68 

1996 1307.1 0.44 0.27 0.71 62 

1997 908.0 0.36 0.28 0.64 57 

1998* 1088.0 0.41 0.24 0.65 63 

1999* 1180.3 0.44 0.24 0.68 65 

2000* 1103.5 0.41 0.24 0.66 63 

2001* 1233.0 0.46 0.24 0.70 66 

2002* 1288.1 0.48 0.23 0.72 68 
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2003* 1168.9 0.44 0.24 0.68 65 

2004* 1225.2 0.46 0.24 0.70 66 

2005* 930.1 0.35 0.25 0.59 59 

2006* 1005.6 0.38 0.25 0.62 61 

2007* 1158.3 0.44 0.24 0.68 64 

2008* 1178.3 0.44 0.24 0.68 65 

2009* 1116.2 0.42 0.24 0.66 63 

2010* 1023.9 0.38 0.25 0.63 61 

2011* 1163.1 0.44 0.24 0.68 64 
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D4. Supporting Figures 

 

Figure D1: Parameter influence on model fit for the hydrology model (without vegetation). Y 

axis (reversed) is daily discharge Kling Gupta Efficiencies (KGE) for a 13 year model-run (1982-

1994). Ostrich was run in parallel (10 cores) for 2,000 runs, producing 20,000 parameter sets. The 

data in the figure is subsetted to KGE>0.6, with 96% of sets shown on this graph. Dashed vertical red 

lines show parameter values for the best KGE set. 
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Figure D2: Parameter influence on model fit for the coupled model. The model run was for 

catchment c32 for 60 years (climate data 1981–2011 30 years duplicated). Ostrich had a budget of 

2,000 runs. Y axis is the calibration metric: a combination of metrics for pool stability and nitrogen 

export. Note log axis on Y axis. The data in the figure is subsetted to <1, with 92% of sets shown on 

this graph. Dashed vertical red lines show parameter values for the best set. 
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Figure D3: Calibration of RMSE of nitrate concentration. Calibration in first 5 post-harvest years 

(1998-2002) for two parameters: “Pulse” addition to the litter pool at time of harvest: left is the pulse 

size in g C m-2, right is the pulse C/N ratio. 
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D5. Steady State Equations 

D5.1. Model C/N Litter Steady State 

The steady state equation for the C/N ratio of the litter pool can be calculated as the ratio of C to N 

outputs from the pool (𝐷𝐸𝐶𝑙 and 𝐷𝐸𝑁𝑙, respectively). Refer to Figure 5-1, Table 5-5, and Appendix 

D3.  

𝐶𝑁𝑙 = 𝐷𝐸𝐶𝑙  𝐷𝐸𝑁𝑙−1 (D5-1) 

Under the steady state assumption, the pool inputs should equal the outputs. Thus, 𝐷𝐸𝐶𝑙 should equal 

the litter pool inputs, which include turnover of the plant stem (𝐿𝐹𝑝) and leaf (𝐿𝐹𝑙 ) and death of soil 

biomass (𝐵𝐷).  

𝐷𝐸𝐶𝑙 = (𝐿𝐹𝑝 +  𝐿𝐹𝑙 +  𝐵𝐷) (D5-2) 

The biomass turnover is highly dependent on the litter pool turnover. Refer to the pool differential 

equations in Appendix D2.3.7. 

𝐵𝐷 = 𝐷𝐸𝐶𝑙(1 − 𝑟𝑟 − 𝑟ℎ) + 𝐷𝐸𝐶ℎ(1 − 𝑟𝑟) (D5-3) 

where 

𝐷𝐸𝐶𝑙 and 𝐷𝐸𝐶ℎ are the turnover fluxes of the litter and humus pools 

𝑟ℎ is the humification ratio and 𝑟𝑟 is the respired carbon ratio 

The humus pool turnover is itself entirely dependent on the litter pool turnover and the humification 

ratio, and can be substituted as: 

𝐷𝐸𝐶ℎ = 𝐷𝐸𝐶𝑙 × 𝑟ℎ (D5-4) 

Thus: 

𝐵𝐷 = 𝐷𝐸𝐶𝑙(1 − 𝑟𝑟 − 𝑟ℎ) + 𝐷𝐸𝐶𝑙 × 𝑟ℎ(1 − 𝑟𝑟)  

𝐵𝐷 = 𝐷𝐸𝐶𝑙((1 − 𝑟𝑟 − 𝑟ℎ) + 𝑟ℎ(1 − 𝑟𝑟)) (D5-5) 

We will define a term 𝜖 such that: 

𝜖 = 𝑟ℎ(1 − 𝑟𝑟) + (1 − 𝑟𝑟 − 𝑟ℎ) (5-3) 

Thus: 

𝐵𝐷 = 𝐷𝐸𝐶𝑙(𝜖) (D5-6) 

We can substitute Equation D5-6 into Equation D5-2: 

𝐷𝐸𝐶𝑙 = 𝐿𝐹𝑝 + 𝐿𝐹𝑙 + 𝐷𝐸𝐶𝑙(𝜖)  
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Factoring by 𝐷𝐸𝐶𝑙: 

𝐷𝐸𝐶𝑙 − 𝐷𝐸𝐶𝑙(𝜖) = 𝐿𝐹𝑝 + 𝐿𝐹𝑙  

𝐷𝐸𝐶𝑙(1 − 𝜖) = 𝐿𝐹𝑝 + 𝐿𝐹𝑙  

𝐷𝐸𝐶𝑙 = (𝐿𝐹𝑝 + 𝐿𝐹𝑙)(1 − 𝜖)−1 (D5-7) 

Referring back Equation D5-1, 𝐷𝐸𝑁𝑙 needs to be calculated. The corresponding N flux for each input 

to the litter pool can be converted by the pool C/N ratio, except for the leaf pool, where a fraction of 

nitrogen is retained by the tree during leaf-fall for the next year’s leaf-out. 

𝐷𝐸𝑁𝑙 =  
𝐿𝐹𝑝

𝐶𝑁𝑝
+

𝐿𝐹𝑙

𝐶𝑁𝑝𝑙
(1 − 𝑁𝑠𝑡𝑜𝑟𝑒) +

𝐵𝐷

𝐶𝑁𝑏
 (D5-8) 

𝐶𝑁𝑝, 𝐶𝑁𝑝𝑙, 𝐶𝑁𝑏 are the the plant stem, leaf, and soil biomass C/N ratios 

𝑁𝑠𝑡𝑜𝑟𝑒 is the fraction of reintegrated leaf nitrogen during leaf-fall 

Following Parolari & Porporato (2016), the difference between litter fall N ratios of stem to leaf can 

be corrected by the factor 𝑓𝑁: 

𝑓𝑁 = 𝐶𝑁𝑝 × 𝐶𝑁𝑝𝑙−1 × (1 − 𝑁𝑠𝑡𝑜𝑟𝑒) (5-2) 

Substituting Equation 5-2 into Equation D5-8 and factoring by 𝐶𝑁𝑝: 

𝐷𝐸𝑁𝑙 =  
𝐿𝐹𝑝

𝐶𝑁𝑝
+

𝑓𝑁×𝐿𝐹𝑙

𝐶𝑁𝑝
+

𝐵𝐷

𝐶𝑁𝑏
  

𝐷𝐸𝑁𝑙 =  
𝐿𝐹𝑝+𝑓𝑁×𝐿𝐹𝑙

𝐶𝑁𝑝
+

𝐵𝐷

𝐶𝑁𝑏
 (D5-9) 

Substituting Equation D5-6 for 𝐵𝐷 into Equation D5-9: 

𝐷𝐸𝑁𝑙 =  
𝐿𝐹𝑝+𝑓𝑁×𝐿𝐹𝑙

𝐶𝑁𝑝
+

𝐷𝐸𝐶𝑙(𝜖)

𝐶𝑁𝑏
 (D5-10) 

Substituting Equation D5-7 for 𝐷𝐸𝐶𝑙 into Equation D5-10: 

𝐷𝐸𝑁𝑙 =  
𝐿𝐹𝑝+𝑓𝑁×𝐿𝐹𝑙

𝐶𝑁𝑝
+

(𝐿𝐹𝑝+𝐿𝐹𝑙)(1−𝜖)−1(𝜖)

𝐶𝑁𝑏
 (D5-11) 

Referring back to Equation D5-1, and substituting in Equations D5-7 and D5-11: 

𝐶𝑁𝑙 = 𝐷𝐸𝐶𝑙  𝐷𝐸𝑁𝑙−1 (D5-1) 

The generalized solution for 𝐶𝑁𝑙 is seen in Equation 5-1: 

𝐶𝑁𝑙 =
𝐿𝐹𝑝+𝐿𝐹𝑙

1−𝜖
× [

𝐿𝐹𝑝+𝑓𝑁×𝐿𝐹𝑙

𝐶𝑁𝑝
+

𝐿𝐹𝑝+𝐿𝐹𝑙

𝐶𝑁𝑏
(

𝜖

1−𝜖
)]

−1
 (5-1) 
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D5.2. Proof of Equivalency to Parolari & Porporato (2016) 

The steady state equation from Parolari & Porporato (2016) is as follows: 

𝐶𝑁𝑙 = [
𝑚𝑝(1−𝑒)(1+𝑟ℎ)

𝑚𝑝+𝑎∗𝑓𝑣
(

𝑓𝑁 𝑚𝑝+𝑓𝑣

𝐶𝑁𝑝
−

(1−𝑎)𝑓𝑣

𝐶𝑁ℎ𝑣
) +

𝑒−(1−𝑒)𝑟ℎ

𝐶𝑁𝑏
]

−1

 (D5-12) 

where 

𝑚𝑝 is the annual plant turnover fraction 

𝑒 is the microbial C use efficiency, equivalent to (1 − 𝑟𝑟) 

𝑓𝑣 is the constant fraction of standing biomass removed per unit time 

𝑎 is the residual fraction of harvested biomass returned to the litter pool 

Under my model’s steady state, no harvesting takes place: both 𝑎 and 𝑓𝑣 are set equal to zero. 

Parolari’s equation can be simplified to: 

𝐶𝑁𝑙 = [
𝑚𝑝(1−𝑒)(1+𝑟ℎ)

𝑚𝑝
(

𝑓𝑁 𝑚𝑝

𝐶𝑁𝑝
) +

𝑒−(1−𝑒)𝑟ℎ

𝐶𝑁𝑏
]

−1

 (D5-13) 

Further, if it is assumed that all biomass added to the litter is from the leaf pool, which experiences 

100% turnover (𝑚𝑝=1) on an annual basis, then the equation simplifies to: 

𝐶𝑁𝑙 = [(1 − 𝑒)(1 + 𝑟ℎ) (
𝑓𝑁

𝐶𝑁𝑝
) +

𝑒(1−𝑒)𝑟ℎ

𝐶𝑁𝑏
]

−1

 (D5-14) 

Substituting 𝑒 = (1 − 𝑟𝑟), 𝑟𝑟 = (1 − 𝑒),  

𝐶𝑁𝑙 = [𝑟𝑟(1 + 𝑟ℎ) (
𝑓𝑁

𝐶𝑁𝑝
) +

(1−𝑟𝑟)−(𝑟𝑟)𝑟ℎ

𝐶𝑁𝑏
]

−1

 (D5-15) 

Equation 5-3, 𝜖 = 𝑟ℎ(1 − 𝑟𝑟) + (1 − 𝑟𝑟 − 𝑟ℎ), can be factored to equal: 𝜖 = 1 − (𝑟𝑟(1 + 𝑟ℎ)) or 

𝜖 = 1 − 𝑟𝑟 − 𝑟𝑟(𝑟ℎ).  

Substituting in 𝜖, Equation D5-15 simplifies to: 

𝐶𝑁𝑙 = [(1 − 𝜖) (
𝑓𝑁

𝐶𝑁𝑝
) +

𝜖

𝐶𝑁𝑏
]

−1

 (D5-16) 

Now, starting with my Steady State Equation 5-1, I mirror Parolari and Porporato’s model, in that all 

litter contributions are assumed to come from leaf turnover and soil biomass death. By setting 𝐿𝐹𝑝=0, 

Equation 5-1 simplifies to  

𝐶𝑁𝑙 =
𝐿𝐹𝑙

1−𝜖
× [

𝑓𝑁×𝐿𝐹𝑙

𝐶𝑁𝑝
+

𝐿𝐹𝑙

𝐶𝑁𝑏
(

𝜖

1−𝜖
)]

−1
 (D5-17) 
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The term 𝐿𝐹𝑙 can be factored: 

𝐶𝑁𝑙 =
𝐿𝐹𝑙

1−𝜖
× [𝐿𝐹𝑙 (

𝑓𝑁

𝐶𝑁𝑝
+

1

𝐶𝑁𝑏
(

𝜖

1−𝜖
))]

−1

 (D5-18) 

The term 𝐿𝐹𝑙 then cancels, and (1 − 𝜖) can be factored into the denominator: 

𝐶𝑁𝑙 = [(1 − 𝜖) (
𝑓𝑁

𝐶𝑁𝑝
+

1

𝐶𝑁𝑏
(

𝜖

1−𝜖
))]

−1

  

or 

𝐶𝑁𝑙 = [(1 − 𝜖) (
𝑓𝑁

𝐶𝑁𝑝
) +

𝜖

𝐶𝑁𝑏
]

−1

 (D5-19) 

The simplified version of my Equation 5-1 is Equation D5-19, which is equivalent to Parolari & 

Porporato’s simplified Equation D5-16. The two equations are equivalent when no stem turnover or 

harvest occurs, and for complete turnover of the leaf pool each year. 

 


