

GlobalReservoirModel V1.0 A new global reservoir modeling database

<u>Shengde Yu¹</u>, Jovana Radosavljevic¹ and Philippe Van Cappellen¹

¹Ecohydrology Research Group, University of Waterloo

ANTARCTICA

Introduction

Population growth and increasing demand for energy are driving the recent surge in global dam construction. Research on dams and reservoirs, including water quality, biogeochemical cycling, sediment trapping, greenhouse gas emissions, and implications for dam operation and maintenance, have therefore become interdisciplinary scientific hotspots^{4,7}. While existing global databases provide information on dam and reservoir attributes, there is a lack of user-friendly databases that can generate input files for reservoir water quality models. Here, we introduce a new 2D global reservoir model-usable database called GRM V1.0, which integrates data from the following existing global databases: Global Reservoir and Dam database (GRanD)³, Reservoir Storage-Area-Depth dataset (ReGeom)⁶, WaterGAP V2.2D⁵, FutureStreams¹, and ERA5 reanalysis databases².

Objectives

• Integrate existing datasets and develop the software to extract model usable time series data files for hydrological and meteorological variables; • Build a 2-D reservoir typology database equipped with intelligent multithreading tools to accelerate comparative studies of reservoir biogeochemistry.

Methods

GRM V1.0 Flow Chart and algorithms

Global Reservoir Model V1.0

Figure 1. Global major reservoirs ³ with GRM reservoir typology.

Data Records & Interpretation

Example of GRM model domain discretization

a. Three Gorges Reservoir

Reservoir Schematic Diagram

b. Lake Sakakawea

Reservoir Schematic Diagram

Reservoir Schematic Diagram

0/0		1
269	run_ins = W2Run(logger	= Logger)
270		
271		
272		
273		
274		
275		
276		
277		
278		
270		

Name	Date modified	Туре	Model run directo
1527	2023-02-13 12:40 PM	File folder	Status
<mark>></mark> 753	2023-02-13 1:55 AM	File folder	
📕 1	2023-02-13 12:37 AM	File folder	
📕 3	2023-02-12 1:57 PM	File folder	
2	2023-02-12 1:57 PM	File folder	
9	2023-02-10 11:49 AM	File folder	
8	2023-02-10 11:49 AM	File folder	VV2 VV2
📕 7	2023-02-10 11:49 AM	File folder	
<mark>ឝ</mark> 6	2023-02-10 11:49 AM	File folder	J
📕 5	2023-02-10 11:49 AM	File folder	preW2-v4_64 - [CE-QUAL-W2 4.1 pr
📕 4	2023-02-10 11:49 AM	File folder	preW2-v4_64 - [CE-QUAL-W2 4 preW2-v4_64 - [CE-QUAL-W2 4
📕 10	2023-01-24 10:56 PM	File folder	■ preW2-v4_64 - [CE-C
📙 100	2023-01-24 10:56 PM	File folder	PreW2-v4_64 -
1000	2023-01-24 10:56 PM	File folder	vertical ed bottom fric
📙 1001	2023-01-24 10:56 PM	File folder	wind roughn inflow/outf
1002	2023-01-18 12:34 AM	File folder	outlet st pipes
1003	2023-01-18 12:34 AM	File folder	Ou gates
1004	2023-01-18 12:34 AM	File folder	Ou pumps internal Ou lateral y
1005	2023-01-18 12:34 AM	File folder	Ou tributari distribut
<mark> </mark> 1006	2023-01-18 12:34 AM	File folder	Output contro hydrodynami
97	2022-11-26 10:51 AM	File folder	snapshot screen
98	2022-11-26 10:51 AM	File folder	Col spreadsheet Col profile plo
			Co: vector plot contour plot co withdrawal

Withdrawal flow,				
Model run director	C:\Users\ysd19\0	IneDrive\Desktop\GRM	\dumped_data\1	
Status				Priority-
	Exe	outing		Idle Lowes
				200.1 CIL
W2 W2	W2 W2	W2		

W2-v4_64 - [CE-QUAL-W2 4.1 preprocessor. C.\Users\ysd19\OneDrive\Desktop\GRM\dumped_data\5]
preW2-v4_64 - [CE-QUAL-W2 4.1 preprocessor. C.\Users\ysd19\OneDrive\Desktop\GRM\dumped_data\4]
■ preW2-v4_64 - [CE-QUAL-W2 4.1 preprocessor, C:\Users\ysd19\OneDrive\Desktop\GRM\dumped_data\3]

GRM v1.0 Multithreading examples – CE-QUAL-W2

Figure 3. Conceptual reservoir model for 30 layers: (a) Three Gorge Reservoir; (b) Lake Sakakawea; (c) Fanshawe Reservoir.

GRM V1.0 Outputs applications- CE-QUAL-W2 surface water quality model

Figure 4. GRM V1.0 Output: Meteorological data and reservoir shape typology conceptual diagrams.

280		segment_center
281	#	and shade.npt
	# run_ins.run_single_Grand_ID('8')	test_out_utm.txt
		💌 tin_br1.csv
284	#	w2_con.npt
	run_ins.run_w2_for_Grand_IDs(Grand_IDs=[str(gid) for gid in range(1, 21)], parallelism=5)	W2 w2 v4 64.exe
286		a wsc.npt
287	#	- noempe
288	<pre># write_cpl_bottom_temps_to_global_reservoir(Grand_IDs=[str(gid) for gid in range(1, 21)], parallelism=4)</pre>	
289		

Figure 5. Code example for GRM multithreading module

Reservoir Brunt Vaisala Frequency (N) and Anoxic Factor applications – ID 753 and ID 1527

Figure 6. Brunt Vaisala Frequency and Anoxic Factor modeling applications: (a) ID 753 – Lake Sakakawea; (b) ID 1527 – Fanshawe Reservoir

Data repository : https://github.com/SYubaby/GRM

Conclusions & Perspectives

Conclusions

References & Acknowledgements

- GRM V1.0 provides a global-scale modeling database with multithreading tools for reservoirs and dams;
- GRM contains 6824 simplified reservoir bathymetry files together with long-term water discharge (1901-2019), air temperature (1979 2005), and daily meteorological (1959 - 2022) data;
- As a first application of GRM V1.0 we assess the vulnerability of stratification of reservoirs and predict the daily to annual average bottom temperature.

Perspectives

quality.

- Existing process-based water quality models (1D to 3D model) will be linked with the current GRM intelligent multithreading module; • Machine learning modeling will be incorporated in the next version of GRM to account for dam operation and the impacts on reservoir water
- Bosmans, J. et al. FutureStreams, a global dataset of future streamflow and water temperature. Sci Data 9, (2022). Hersbach, H. et al. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146, 1999–2049 (2020). Lehner, B. et al. High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Front Ecol Environ 9, 494–502 (2011).
- Maavara, T. et al. River dam impacts on biogeochemical cycling. Nat Rev Earth Environ 1, 103–116 (2020).
- Müller Schmied, H. et al. The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geosci Model Dev 14, 1037–1079 (2021).
- Yigzaw, W. et al. A New Global Storage-Area-Depth Data Set for Modeling Reservoirs in Land Surface and Earth System Models. Water Resour Res 54, 10,372-10,386 (2018).
- Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat Sci **77**, 161–170 (2015).

Please contact: Shengde Yu Email: s228yu@uwaterloo.ca