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Abstract

Quantum channels, defined as completely-positive and trace-preserving maps on
matrix algebras, are an important object in quantum information theory. In this thesis
we are concerned with the space of these channels. This is motivated by the study
of quantum superchannels, which are maps whose input and output are quantum
channels.

Rather than taking the domain to be the space of all linear maps, as has been
done in the past, we motivate and define superchannels by considering them as trans-
formations on the operator system spanned by quantum channels. Extension the-
orems for completely positive maps allow us to apply the characterisation theorem
for superchannels, [3, Theorem 1], to this smaller set of maps. These extensions are
non unique, showing two different superchannels act the same on all input quantum
channels, and so this new definition on the smaller domain captures more precisely
the action of superchannels as transformations between quantum channels. The non
uniqueness can affect the auxilliary dimension needed for the characterisation as well
as the tensor product of the superchannels.
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Chapter 1

Introduction

Quantum channels are a fundamental object studied in quantum information [23, 27].
Defined as completely positive trace-preserving (CPTP) maps between operators on
Hilbert spaces, they map quantum states to quantum states. Since quantum states
are positive operators with trace one, the natural domain and range of quantum
channels is taken to be the ideal of trace class operators inside the space B(H) of
bounded operators on a Hilbert space. Quantum superchannels are one step up from
this, transformations between quantum channels.

Quantum superchannels were introduced in [3] to describe the most general trans-
formation of quantum channels, and have been used as a model of quantum circuit
boards with the ability to replace quantum channels [6]. Recent work has used su-
perchannels to define the entropy of quantum channels [16], and study dynamical
resource theories such as entanglement [18], magic [38], and coherence [25]. Concepts
from quantum channels, such as entanglement-breaking and dephasing, have been
extended to the superchannel case [2, 30] to understand how these properties can be
introduced as channels change.

In [3] and [16] the domain of these superchannels is taken to be the set of quantum
operations which are completely positive trace non-increasing maps between matrix
algebras. In finite dimensions the span of these maps gives all of the linear maps
on these matrix algebras. A characterisation of all superchannels in these papers
describes them as the action of two ordinary quantum channels, a “pre-processing”
and “post-processing” channel.

This thesis takes a different approach, defining superchannels on the space spanned
by quantum channels, as well as looking at the properties of this space. It is worth
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noting that although superchannels are not uniquely determined by their action on
quantum channels, they are uniquely determined by their actions on channels in larger
spaces. That is, what a superchannel S does to a “non physical” map is determined
by what S ⊗ idn does to physical maps i.e. channels, see Remark 3.2.10.

In Chapter 1 we discuss operator systems, and show how Arveson’s extension
theorem ultimately derives from the Hahn-Banach extension theorem. This will be
the source of the non-uniqueness of extended superchannels, which we explore in
Chapter 3. A key tool for studying channels are Choi-Jamio lkowski matrices, and
they are introduced here as well, as are quantum channels.

In Chapter 2 we define quantum superchannels and prove their dilation theorem.
The uniqueness condition for this dilation is given. We also briefly mention some
recent uses superchannels have had, in defining the entropy of quantum channels,
and defining resource theories for certain classes of quantum channels.

Chapter 3 is based on the author’s paper, [12], where we explore properties of
the operator system spanned by quantum channels. A simple definition of what
a superchannel on this space should be is given. We call these objects “QSCs” to
distinguish them from superchannels defined on the whole space of linear maps. Most
importantly they are shown to be CP maps which allows their extension to the full
space of linear maps, making them restrictions of standard superchannels. These
extensions are shown to be non-unique, however, and this has implications for the
superchannel dilation theorem. A generalisation of Choi’s theorem on the extreme
points of sets of CP maps is proved, giving necessary and sufficient conditions for
extreme points of the set of CP maps which are equal on subspaces.

Chapter 4 looks at a few classes of superchannels which have appeared in recent
papers. These are largely motivated by the study of resource theories. Since these
resource theories are defined as the collection of superchannels preserving a certain set
of quantum channels, the concept of QSC can be enlightening. In general these classes
of superchannels are not uniquely defined by their action on quantum channels, thus
as far as maps on channels are concerned, they can be implemented differently. It is
interesting that certain definitions do give unique QSCs though, such as the Schur
product superchannels. The class of coherence-breaking superchannels highlights the
trouble caused by not being careful of the domain on which the superchannels prop-
erties are defined, since breaking the coherence of all linear maps is a much stronger
condition than just doing so for quantum channels. As a result some theorems need
to be reformulated.

Finally, in Chapter 5 we use many of the same techniques, and the same space of
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quantum channels, but switch from looking at superchannels to looking at symmetries.
The purpose of this is to give a reformulation of Wigner’s theorem, but defined on
channels instead of states. This follows the paper [4] which gives symmetries on
quantum operations, which are trace non-increasing completely-positive maps, as
mentioned above. Using the results from this paper we give a different proof of their
main theorem. We also discuss how the notion of a quantum channel symmetry
differs.

In the remainder of this chapter we discuss the background theory of completely
positive maps and operator systems. We then give an axiomatic derivation of quantum
channels, to motivate the similar definition of superchannels.

1.1 Operator systems and completely positive maps

For notation let Mn be the space of n × n matrices over the complex numbers and
let B(H) be the space of bounded operators a Hilbert space H. Mn(H) = Mn⊗H is
the space of n× n matrices with entries in H. Similarly for a C∗-algebra A we have
Mn(A) as n× n matrices with entries in A, and there is a unique norm making this
space into a C∗-algebra.

Denote the positive elements of a C∗-algebra as A+ = {p ∈ A : p ≥ 0}. This is
a cone; i.e., a convex set which is closed under scaling by non-negative real numbers.
For every natural number n the space Mn(A) inherits a cone of positive elements
Mn(A)+. This sequence of cones is called the matrix order on A.

Definition 1.1.1. An operator system S is a subspace of a unital C∗-algebra which
contains the unit and is self-adjoint; i.e., S = S∗ = {a∗ : a ∈ S}.

Each operator system S comes with an induced matrix order via

Mn(S)+ = Mn(S) ∩Mn(A)+.

We will often require maps defined on operator systems to be extended to the C∗-
algebra containing it. A key tool for this is Krein’s theorem. First a lemma.

Lemma 1.1.2. Let S be an operator system and B a C∗-algebra. Then any unital
contraction ϕ : S −→ B is a positive map.
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Proof. Let a ∈ S be positive. We first show its true for functionals. Take a unital
contraction f : S −→ C. The spectrum of a, σ(a), is compact and so its closed convex
hull is in the intersection of closed disks containing it. Let {z : |z − λ| ≤ r} be
such a disk. Then σ(a − λ1) ⊆ {z : |z| ≤ r}, and as a − λ1 is normal, the spectral
radius is the norm, so ∥a− λ1∥ ≤ r. This implies |f(a− λ1)| ≤ ∥f∥r = r and hence
f(a) ∈ {z : |z − λ| ≤ r}. Since λ and r were arbitrary, f(a) is in the closed convex
hull of the spectrum of a and must be positive.

For ϕ : S −→ B we can let B = B(H) for some Hilbert space H and for a unit
norm x define f(a) = ⟨x|ϕ(a)x⟩. This is a unital contraction, so is positive, and as x
was arbitrary we have ϕ(a) is positive.

Theorem 1.1.3 (Krein). Let S be an operator system in the C∗-algebra A, and
ϕ : S −→ C a positive linear functional. Then there is a positive linear functional
ϕ̃ : A −→ C extending ϕ.

Proof. First note that ∥ϕ∥ ≤ ϕ(1) where 1 ∈ S is the unit. This is clear for self-adjoint
elements a ∈ S since

−∥a∥ · 1 ≤ a ≤ ∥a∥ · 1

so by positivity of ϕ

−∥a∥ϕ(1) ≤ ϕ(a) ≤ ∥a∥ϕ(1);

i.e., |ϕ(a)| ≤ ∥a∥ϕ(1). For an arbitrary a ∈ S choose λ ∈ C, |λ| = 1 such that
|ϕ(a)| = λϕ(a) = ϕ(λa). Because ϕ(λa) is a real number we get

ϕ(λa) = ϕ(λa)∗ = ϕ((λa)∗)

where the last equality is because positive maps are self-adjoint. This allows us to
write it as ϕ acting on a self-adjoint element ϕ(λa) = ϕ(λa+(λa)∗

2
) and thus

ϕ

(
λa+ (λa)∗

2

)
≤ ∥λa+ (λa)∗∥

2
ϕ(1) ≤ ∥λa∥ + ∥(λa)∗∥

2
ϕ(1) = ∥a∥ϕ(1).

Now if ϕ(1) = 0 we have ∥ϕ∥ = 0 so the zero map will extend ϕ. Otherwise ϕ(1)
is positive and so we can define a positive functional ψ via

ψ(a) = ϕ(a)ϕ(1)−1.
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We have ∥ψ∥ = ψ(1) = 1, and using the Hahn-Banach theorem we get an extension

ψ̃ : A −→ C with ∥ψ̃∥ = 1. Since it is a unital contraction, it is a positive map by the
previous lemma. Finally, define

ϕ̃(a) = ψ̃(a)ϕ(1), ∀a ∈ A.

This is a positive map extending ϕ.

For a linear map ϕ : S −→ T , define ϕn : Mn(S) −→Mn(T ) by ϕn((ai,j)) = (ϕ(ai,j)).
That is, ϕn = ϕ⊗ idn where idn is the identity map on Mn. Call ϕ completely positive
(CP) if ϕn is positive for all n; i.e.,

ϕ(n)(Mn(S)+) ⊆Mn(T )+.

To show two spaces define the same operator system it is necessary to show their
matrix orders are the same and for this we use a complete order isomorphism.

Definition 1.1.4. Let S and T be operator systems. A linear map ϕ : S −→ T
is a complete order isomorphism provided it is bijective, and both ϕ and ϕ−1 are
completely positive.

The following theorem fully characterises completely positive maps into B(H).

Theorem 1.1.5 (Stinespring). If A is a unital C∗-algebra and ϕ : A −→ B(H) is a
completely positive map, then there exists a Hilbert space K, a unital *-homomorphism
π : A −→ B(K), and a bounded operator V : H −→ K such that

ϕ(a) = V ∗π(a)V.

Remark 1.1.6. When H = Cn there is a unitary U : K −→ A⊗ CE such that

π(a) = U∗(a⊗ IE)U

for some dimension E. In particular, for a CP map ϕ : Md −→ Mr, we can write
Stinespring’s theorem as

ϕ(ρ) = V ∗(ρ⊗ IE)V (1.1)

for V : Cr −→ Cd ⊗ CE.
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Corollary 1.1.7. ϕ : Md −→ Mr is completely positive if and only if it has a Kraus
representation i.e. there exist operators Vk : Cr −→ Cd (called Kraus operators) with

ϕ(ρ) =
E∑
k=1

V ∗
k ρVk (1.2)

Proof. Use Stinespring’s theorem to get the operator V and space CE and take an
orthonormal basis {ek} for E. Then using IE =

∑E
k=1 |ek⟩⟨ek| define Vk = ⟨ek| ⊗ V

which acts as
⟨v|Vk|w⟩ = ⟨v ⊗ ek|V |w⟩, v ∈ Cd, w ∈ Cr

and gives (1.2) via (1.1).

While the Kraus/Stinespring representations are not unique, they are unique up to
isometry when the dimension E is minimal. In this case there is a linearly independent
set of Kraus operators.

Theorem 1.1.8 ([9]). If {Vk}Ek=1 and {Wk}Nk=1 are Kraus operators describing the
same map, with N ≥ E, then there is an isometry U = (ui,j) : CE −→ CN such that

Wi =
E∑
j=1

ui,jVj

Definition 1.1.9. For a linear map ϕ : Md −→ Mr its dual map is a linear map
ϕ∗ : Mr −→Md defined by

Tr(Y ϕ(X)) = Tr(ϕ∗(Y )X), ∀X ∈Md, Y ∈Mr.

If ϕ has a representation ϕ(X) =
∑

i V
∗
i XVi, then ϕ∗(Y ) =

∑
i ViY V

∗
i .

Remark 1.1.10. Let C1(H) be trace class operators on a Hilbert space. Then, for
ϕ : C1(H) −→ C1(K) we can also define a dual map ϕ∗ : B(K) −→ B(H) which satisfies
Tr(Y ϕ(X)) = Tr(ϕ∗(Y )X) for all X ∈ C1(H), Y ∈ B(K). In physics, the dagger
map is defined by treating Tr(Y ∗X) as an inner product, despite the inputs being in
different spaces. It can be given by ϕ†(Y ) = ϕ∗(Y ∗)∗. For CP maps and for maps on
finite dimensional spaces we have ϕ∗ = ϕ†.
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Extending CP maps

We will make use of the following extension theorem for CP maps, see [1] and [28,
Theorem 7.5] for proofs.

Theorem 1.1.11 (Arveson’s extension theorem). Let A be a C∗-algebra, S an op-
erator system contained in A, and ϕ : S −→ B(H) a completely positive map. Then
there exists a completely positive map, ψ : A −→ B(H), extending ϕ.

For the case B(H) = Mn the proof follows from Krein’s theorem. Given a map
ϕ : S −→Mn, define the functional sϕ : Mn(S) −→ C via

sϕ((ai,j)) =
1

n

∑
i,j

ϕ(ai,j)(i,j).

We can also invert this, given a functional s : Mn(S) −→ C we define ϕs : S −→ Mn

with the formula
(ϕs(a))(i,j) = n · s(a⊗ Ei,j).

where Ei,j are the matrix units in Mn. It can then be shown ([28, Theorem 6.1]) that
sϕ being positive is equivalent to ϕ being completely positive. The positive extension
of sϕ via Krein’s theorem corresponds to a completely positive extension of ϕ. Note
that, by the proof of Krein’s theorem, ultimately the extension is done using the
Hahn-Banach theorem and it does not guarantee uniqueness. This fact will manifest
when we extend maps defined on the space of quantum channels to the whole space
of linear maps.

Choi-Jamio lkowski Matrices

Let Ei,j, 1 ≤ i, j ≤ d denote the matrix units in Md. Any linear map is determined
by its action on basis elements so for a linear L : Md −→ Mr we get a vector space
isomorphism from Lin(Md,Mr) onto Md(Mr) via L 7→ (L(Ei,j)). This matrix defines
the map and vice versa.

Definition 1.1.12. The matrix CL := (L(Ei,j)) =
∑

i,j Ei,j ⊗ L(Ei,j) is called the
Choi matrix or Choi-Jamio lkowski matrix of the map L.
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CL =


L(E11) L(E12) · · · L(E1d)

L(E21) L(E22) · · · ...
...

. . .
...

L(Ed1) · · · · · · L(Edd)


We will frequently make use of an important theorem from Choi [9], which says

that a map ϕ : Md −→Mr is CP if and only if its Choi matrix Cϕ ∈Mdr is positive as
a matrix. Since

∑
i,j Ei,j ⊗Ei,j =

∑
i,j |ei⊗ ei⟩⟨ej ⊗ ej| ≥ 0 the complete positivity of

ϕ ensures Cϕ = idn⊗ϕ(
∑

i,j Ei,j⊗Ei,j) is positive, so one direction is clear. The other
direction can be shown by taking the spectral decomposition of the positive matrix
Cϕ as

∑
i viv

∗
i for vi ∈ Cdr. Then write each vector as d blocks of r × 1 vectors,

vi =
d∑

k=1

r∑
l=1

(vi)k,l|ek ⊗ el⟩

and define the r × d matrices Vi =
∑

k,l(vi)k,lEl,k. Then we have

(I ⊗ Vi)

(∑
j

|ej ⊗ ej⟩

)
=
∑
j,l

(vi)j,l|ej ⊗ el⟩ = vi.

It follows that ϕ(ρ) =
∑

i ViρV
∗
i and so ϕ is completely positive. We have thus proved:

Theorem 1.1.13 (Choi, [9]). A linear map ϕ : Md −→ Mr is completely positive if
and only if its Choi matrix Cϕ ∈Md(Mr) is positive.

Partial Trace

For an operator T ∈ Md ⊗Mr the partial trace Tr2 T ∈ Md is the unique operator
satisfying

⟨ϕ|Tr2 T |ψ⟩ =
∑
k

⟨ϕ⊗ ek|T |ψ ⊗ ek⟩, ∀ϕ, ψ ∈ Cd.

That is, Tr2 = id1 ⊗ Tr. We remark that Tr2 : Md ⊗Mr −→ Md is the unique linear
map satisfying any of the following equivalent conditions:

1. Tr2[(A⊗ Ir)B] = ATr2B for all A ∈Md, B ∈Md ⊗Mr
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2. Tr2[B(A⊗ Ir)] = Tr2(B)A for all A ∈Md, B ∈Md ⊗Mr

3. Tr((A⊗ Ir)B) = Tr(ATr2(B)) for all A ∈Md, B ∈Md ⊗Mr.

We can, of course, define Tr1 when tracing out the first space, or more generally
Tri on the i-th leg of a tensor product of Mn1 ⊗ · · · ⊗Mnk

.

Remark 1.1.14. As we will be considering maps on tensor products of matrix spaces,
the notation for partial trace can be messy. When tracing out system Mdi we will
use the notation Trdi , or when tracing out both Mdi and Mri we use Trdiri . So, for
example tracing out the second domain space and the first range space is a map

Trr1d2 : Md1 ⊗Mr1 ⊗Md2 ⊗Mr2 −→Md1 ⊗Mr2

Trr1d2 [A⊗B ⊗ C ⊗D] = A⊗D · Tr(B) Tr(C).

The following formula is useful way to retrieve the linear map associated with a
Choi matrix.

Theorem 1.1.15. For a linear map ϕ : Md −→ Mr with Choi matrix Cϕ we have for
any input ρ ∈Md

ϕ(ρ) = Trd[Cϕ(ρT ⊗ Ir)] (1.3)

Proof. Choose an orthonormal basis {|ek⟩}k for Cd. Then since ⟨ej|ρ|ei⟩ = ρji we
compute

Trd[Cϕ(ρT ⊗ Ir)] =
∑
k

(⟨ek| ⊗ Ir)[
∑
ij

Eij ⊗ ϕ(Eij)(ρ
T ⊗ Ir)](|ek⟩ ⊗ Ir)

=
∑
ijk

⟨ek|EijρT |ek⟩ ⊗ ϕ(Eij)

=
∑
ijk

⟨ek||ei⟩⟨ej|ρT |ek⟩ ⊗ ϕ(Eij)

=
∑
ij

ρijϕ(Eij) = ϕ(ρ)

as required.
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1.2 Quantum channels

In this section we want to give an axiomatic description of quantum channels. We
follow the notes in [29]. Important properties about their Choi matrices, and about
the maximally entangled state are also discussed.

A quantum system is given by a complex Hilbert space. Pure states are given by
unit vectors |ψ⟩ in this Hilbert space. Every pure state has an associated positive,
trace 1 operator, given by |ψ⟩⟨ψ|, the rank one projection on C|ψ⟩, and any positive
trace 1 operator can be interpreted as a statistical mixture of pure states, which is how
we define the general notion of a quantum state. Here we focus on finite dimensions.

Definition 1.2.1. A quantum state is given by a density matrix ρ ∈ Md, that is, a
positive matrix satisfying

Tr[ρ] = 1.

Note that density matrices span to give the whole space of matrices. This means
that when we are defining quantum channels we can take the domain and range
to simply be Md and Mr. To see what other properties channels must satisfy we
have to understand the most basic operation applied to a quantum state, that of a
measurement.

A K-outcome measurement system is given by K operators {M1, . . . ,MK} ⊂
L(Cd,Cr), satisfying

∑
kM

∗
kMk = Id. When the system is in state ρ the probability

of observing outcome k is Tr[M∗
kMkρ]. Afterwards the system is in the state with

density matrix
∑

kMkρM
∗
k .

The combination of quantum systems is described via tensor products. Given
two state spaces Md1 and Md2 the combined state space is Md1 ⊗Md2 . Given two
measurement systems, {M1, . . . ,MK} ⊂ L(Cd1 ,Cr1) and {N1, . . . , NJ} ⊂ L(Cd2 ,Cr2)
we get two maps,

ϕ1(ρ1) =
K∑
k=1

Mkρ1M
∗
k

ϕ2(ρ2) =
J∑
j=1

Njρ2N
∗
j .
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The measurement system of the combined system is the KJ-outcome measurement
given by {Mk ⊗Nj} which has map

ϕ12(ρ) =
∑
k,j

(Mk ⊗Nj)ρ(Mk ⊗Nj)
∗.

Note that ϕ12(ρ1 ⊗ ρ2) = ϕ1(ρ1) ⊗ ϕ2(ρ2).

Based off these requirements of quantum mechanics we can describe some axioms
that quantum channels should satisfy

Axiom 1. A quantum channel should be a linear map ϕ : Md −→ Mr which sends
quantum states to quantum states.

Axiom 2. The identity map id : Md −→Md should be a valid quantum channel.

Axiom 3. If ϕ1 : Md1 −→ Mr1 and ϕ2 : Md2 −→ Mr2 are two quantum channels then
there is a quantum channel

ϕ12 : Md1 ⊗Md2 −→Mr1 ⊗Mr2

which satisfies ϕ12(ρ1 ⊗ ρ2) = ϕ1(ρ1) ⊗ ϕ2(ρ2) for all states ρ1 ∈Md1 , ρ2 ∈Md2 .

Since quantum states have trace 1 and span the whole space the first axiom implies
that quantum channels should be trace-preserving (TP), that is,

Tr[ϕ(ρ)] = Tr[ρ], ∀ρ ∈Md.

The first axiom also implies that ϕ should be a positive map. But the second and
third axioms imply that ϕ⊗ idn should be a valid channel for all n ∈ N, and hence ϕ
should be a completely positive map. If it has Kraus representation ϕ(ρ) =

∑
i ViρV

∗
i ,

the trace-preserving condition requires
∑

i V
∗
i Vi = Id. By the previous discussion of

measurement systems every map with such Kraus operators satisfies the axioms. Thus
we define:

Definition 1.2.2. A quantum channel is a completely-positive trace-preserving (CPTP)
linear map ϕ : Md −→Mr.

Remark 1.2.3. An alternative way to derive quantum channels as CPTP maps is to
first describe the evolution of a closed quantum system, which is given by a unitary
map. Evolution of an open quantum system is then described as a unitary evolution
acting on a larger system (i.e. the original system coupled with the environment),
and then restricting to the original system with a partial trace. Thus, it is a unitary
dilation, and still a completely-positive map.
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Example 1.2.4. Unitary conjugation and isometry conjugation are examples of chan-
nels. They are clearly CP maps and Tr[V ρV ∗] = Tr[V ∗V ρ] = Tr[ρ] so they are trace-
preserving. Call such maps unitary channels and isometric channels respectively.

Remark 1.2.5. For a trace-preserving map ϕ : Md −→Mr, the Choi matrix satisfies

Trr Cϕ =
∑
i,j

Ei,j ⊗ Tr[ϕ(Ei,j)]

=
∑
i

Ei,i = Id.

Thus a matrix Cϕ ∈ Md ⊗Mr represents a CPTP map if and only if it is positive,
and the partial trace satisfies Trr Cϕ = Id.

For example the matrix 1
r
Id⊗Ir satisfies this, as does any matrix of the form Id⊗ρ

for a density matrix ρ.

Example 1.2.6 (Maximally entangled state). Given a basis {|ei⟩} for Cd denote the
unnormalized maximally entangled pure state as

|ϕd+⟩ =
∑
i

|ei⟩ ⊗ |ei⟩

and the corresponding (unnormalized) density matrix ϕd+ = |ϕd+⟩⟨ϕd+| =
∑

i,j Ei,j ⊗
Ei,j ∈Md⊗Md. Note that the partial trace on either system gives the identity matrix.

For a matrix ρ = (ρk,l) ∈ Md we have (ρ ⊗ Id)ϕ
d
+ =

∑
i,j,k ρk,iEk,j ⊗ Ei,j and

similarly (Id ⊗ ρT )ϕd+ =
∑

i,j,k ρi,kEi,j ⊗ Ek,j. Thus we have the identity

(ρ⊗ Id)ϕ
d
+ = (Id ⊗ ρT )ϕd+. (1.4)

We can express the Choi matrix of a linear map ϕ : Md −→Mr as

Cϕ = idd ⊗ ϕ(ϕd+)

Remark 1.2.7. Equation (1.4) can be generalised to a state written using different
bases. We can assume dA = dB. If {eAj } is an orthonormal basis for CdA , and {eBj }
an orthonormal basis for CdB , then for a matrix ρ ∈MdA we have

(ρ⊗ IdB)

(∑
j

|eAj ⟩ ⊗ |eBj ⟩

)
= (IdA ⊗ ρ′)

(∑
j

|eAj ⟩ ⊗ |eBj ⟩

)
where ρ′ = U−1ρTU where U is the unitary transforming the bases.

12



Chapter 2

Superchannels

In this chapter we discuss the standard notion of quantum superchannels and prove
the dilation theorem.

2.1 Definition of quantum superchannel

Quantum superchannels are linear maps preserving quantum channels in a complete
sense.

Definition 2.1.1. A quantum superchannel is a linear map S : L(Md1 ,Mr1) −→
L(Md2 ,Mr2) which has the following three properties:

1. CP preserving: S sends CP maps to CP maps.

2. Completely CP preserving: For any d, r, if idd,r is the identity map acting on
L(Md,Mr) then S ⊗ idd,r is CP preserving.

3. TP preserving: S sends TP maps to TP maps.

Every quantum superchannel has an induced map S̃ : Md1(Mr1) −→ Md2(Mr2)
which acts on the Choi matrices of linear maps. It is given by

S̃(Cϕ) = CS(ϕ), ϕ ∈ L(Md1 ,Mr1).

13



Given two superchannels S1, S2 the composition, when defined, satisfies

S̃2 ◦ S1 = S̃2 ◦ S̃1.

By Choi’s theorem, property 1 of superchannels implies that S̃ is a positive map.
Given a map ϕ ∈ L(Md1 ⊗ C,Mr1 ⊗ Mn) we may expand ϕ =

∑
k fk ⊗ gk, for

fk ∈ L(Md1 ,Mr1) and gk ∈ L(C,Mn). We then have

˜S ⊗ id1,n(Cϕ) = CS⊗id1,n(ϕ)

=
∑
i,j

Ei,j ⊗ 1 ⊗

[∑
k

S(fk) ⊗ gk

]
(Ei,j ⊗ 1)

=
∑
k

CS(fk) ⊗ gk(1).

We can use this to show S̃ is completely-positive. Let Cϕ be positive, then expanding
ϕ as before,

S̃ ⊗ idn(Cϕ) = S̃ ⊗ idn

(∑
i,j

Ei,j ⊗ 1 ⊗
∑
k

fk(Ei,j) ⊗ gk(1)

)
=
∑
k

S̃(Cfk) ⊗ gk(1)

= ˜S ⊗ id1,n(Cϕ).

Since Cϕ is positive, ϕ is CP, and since S ⊗ id1,n is a superchannel, it is completely

CP preserving. So this last term is positive. Thus S̃ ⊗ idn is a positive map, and n
was arbitrary. Thus we have shown:

Theorem 2.1.2. If S : L(Md1 ,Mr1) −→ L(Md2 ,Mr2) is a quantum superchannel then
the induced map

S̃ : Md1(Mr1) −→Md2(Mr2)

is completely-positive.

Remark 2.1.3. Given standard bases {edi }i and {erk}k for Cd and Cr, then for any
i, j, k, l we can define a map Ei,j,k,l : Md −→Mr as

Ei,j,k,l(ρ) = ⟨edi |ρ|edj ⟩|erk⟩⟨erl | = Tr[E∗
i,jρ]Ek,l.
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With the Hilbert-Schmidt inner product, the set {Ei,j,k,l}i,j,k,l forms an orthonormal
basis for L(Md,Mr). We can express the Choi matrix of the induced map of a super-
channel in terms of this basis.

Lemma 2.1.4. For a quantum superchannel S : L(Md1 ,Mr1) −→ L(Md2 ,Mr2) we have

CS̃ =
∑
i,j,k,l

CEi,j,k,l ⊗ CS(Ei,j,k,l) ∈Md1(Mr1) ⊗Md2(Mr2). (2.1)

Proof. This follows from the fact that CEi,j,k,l = Ei,j ⊗ Ek,l and thus,∑
i,j,k,l

CEi,j,k,l ⊗ CS(Ei,j,k,l) =
∑
i,j,k,l

(Ei,j ⊗ Ek,l) ⊗ S̃(Ei,j ⊗ Ek,l)

= idd1r1 ⊗ S̃(ϕd1r1+ )

= CS̃,

as required.

Note that after commuting the tensor product factors, the linear map

(idd1r1 ⊗ S)[
∑
i,j,k,l

Ei,j,k,l ⊗ Ei,j,k,l]

has Choi matrix given by Equation 2.1. Thus, we can view the map

Φ+ :=
∑
i,j,k,l

Ei,j,k,l ⊗ Ei,j,k,l ∈ L(Md ⊗Md,Mr ⊗Mr)

as the linear map equivalent of the maximally entangled state ϕd+. However, it is not
a quantum channel since it is not trace-preserving.

Remark 2.1.5. If d1 = d2 = 1 then each quantum channel corresponds to a density
matrix in Mri and so a superchannel corresponds to a quantum channel. In terms of
linear maps this is

(1 7→ ρ)
S−→ (1 7→ σ)

and the induced map on Choi matrices is simply the channel ϕ(ρ) = σ.

Using the reverse Choi formula, Equation (1.3), for a quantum superchannel S :
L(Md1 ,Mr1) −→ L(Md2 ,Mr2) we have for any linear map ϕ : Md1 −→Mr1

CS(ϕ) = S̃(Cϕ) = Trd1r1 [CS̃(CT
ϕ ⊗ Id2r2)] (2.2)
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2.2 Characterisation theorem for superchannels

In this section we present a theorem which characterises all quantum superchannels.
This is analogous to the Stinespring dilation theorem for completely-positive maps.

First, note that given a CP map, the map ϕ 7→ ϕ ⊗ ide is also CP, and satisfies
the properties of a superchannel. Also, since composition of CP maps is CP, given
any quantum channel ψ, the map S(ϕ) = ψ ◦ ϕ is a superchannel. It is completely
CP preserving since S ⊗ idd,r(ϕ) = (ψ ⊗ idr) ◦ ϕ is a composition of CP maps.

The characterisation theorem says that tensoring with the identity channel, and
composition with other channels gives you every quantum superchannel.

Theorem 2.2.1 ([3]). If S : L(Md1 ,Mr1) −→ L(Md2 ,Mr2) is a quantum superchannel
then there exists two quantum channels ψpre : Md2 −→Md1⊗Me and ψpost : Mr1⊗Me −→
Mr2 such that

S(ϕ) = ψpost ◦ (ϕ⊗ ide) ◦ ψpre

where e is the dimension of an auxilliary space.

Remark 2.2.2. We can represent this theorem with a diagram as follows:

Md2

ψpre ψpost

ϕ Mr2

Md1
Mr1

Like a circuit, it is read from left to right. Any input state in Md2 is transformed
to a state in Mr2 . Given an input channel ϕ the output channel is everything inside
the dashed lines. From a physical perspective this makes sense, as quantum channels
represent the most general description of the evolution of a quantum system, so
channels themselves should transform by the use of other channels on different size
spaces.

We will break the proof of this up into two parts, following [16]. First we show
that every superchannel has a Choi matrix satisfying certain partial trace identities.
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When we trace out the range spaces r2 we have trivial dependence on the space r1.
That is, the domain part of the output quantum channel depends only on the domain
part of the input channel. This is Theorem 2.2.3.

The second part, Theorem 2.2.8, shows that any linear map satisfying these partial
trace relations can be written as the composition of pre and post processing channels.
Thus it is a quantum superchannel and every superchannel must have this form.

Proof of the first part

Let X ∈MA ⊗MB ⊗MC be a self-adjoint matrix and suppose

Tr(X(Y ⊗ Z)) = 0

for all Z ∈ MC and all Y ∈ MA ⊗ MB with Tr2 Y = 0. So it is orthogonal in
the Hilbert-Schmidt inner product to such matrices. Note that any matrix in MA ⊗
span{IB} ⊗MC will satisfy this. In fact every such X will be in this space because
it is of dimension A · 1 · C which is the dimension of the orthogonal complement to
all matrices Y ⊗ Z with Tr2 Y = 0. This also implies X = Tr2(X) ⊗ 1

B
IB where we

insert the tensor in the second position.

Recall that Choi matrices of channels ϕ : Md −→ Mr are exactly the positive
matrices with Trr Cϕ = Id.

Theorem 2.2.3 ([16]). If S : L(Md1 ,Mr1) −→ L(Md2 ,Mr2) is a quantum superchan-
nel, then Trd1r2 CS̃ = Ir1 ⊗ Id2 and Trr2 CS̃ = (Trr1r2 CS̃) ⊗ 1

r1
Ir1.

Proof. Take any ρ ∈Md2 and multiply the reverse Choi formula (Equation (2.2)) by
ρ⊗ Ir2 . Take the partial trace Trr2 to get

Id2 · ρ = Trd1r1 [Trr2(CS̃)(CT
ϕ ⊗ Id2)]ρ

where we used the partial trace formula from subsection 1.1, and the fact that CS(ϕ)
is the Choi matrix of a channel and so its partial trace is the identity. Now take the
trace to get

Tr(ρ) = Tr(Trd1r1 [Trr2(CS̃)(CT
ϕ ⊗ Id2)]ρ)

= Tr(Trr2(CS̃)(CT
ϕ ⊗ Id2)Id1r1 ⊗ ρ)

= Tr(Trr2(CS̃)(CT
ϕ ⊗ ρ)).

(2.3)

17



This holds for any input ρ and any ϕ which is trace-preserving (i.e. Trr1 Cϕ = Id1) in
particular it holds for 1

r1
Id1 ⊗ Ir1 . So for any Y = Cϕ − 1

r1
Id1 ⊗ Ir1 with Trr1 Y = 0

we have for all ρ

Tr(Trr2(CS̃)(Y T ⊗ ρ)) = 0.

Hence, by the comments before the theorem, we conclude

Trr2 CS̃ = (Trr1r2 CS̃) ⊗ 1

r1
Ir1 .

Put this into Equation (2.3) and take Cϕ = 1
r1
Id1 ⊗ Ir1 to get

Tr(ρ) = Tr[(Trr1r2(CS̃) ⊗ 1

r1
Ir1)(

1

r1
Id1 ⊗ Ir1 ⊗ ρ)]

=
1

r21
Tr[Trd1r2(CS̃)ρ⊗ Ir1 ]

=
1

r1
Tr[Trd1r1r2(CS̃)ρ],

which implies Trd1r1r2(CS̃) = r1Id2 . Finally, using this we have

Trd1r2(CS̃) = Trd1(Trr1r2(CS̃) ⊗ 1

r1
Ir1) = Ir1 ⊗ Id2 .

which completes the proof.

Schmidt decomposition and purification

Definition 2.2.4. For a positive matrix ρ ∈ Mn a purification is matrix |ψ⟩⟨ψ| ∈
Mn ⊗Mm for some m and some vector |ψ⟩ ∈ Cn ⊗ Cm such that

ρ = Tr2 |ψ⟩⟨ψ|

Proposition 2.2.5 (Schmidt Decomposition). If ρAB = |ψ⟩⟨ψ| ∈ Mn ⊗ Mm with
Tr2 ρAB = ρA and Tr1 ρAB = ρB then ρA and ρB have the same non-zero eigenvalues
λj. Furthermore

|ψ⟩ =
∑
j

√
λj|eAj ⟩ ⊗ |eBj ⟩ (2.4)

where {eA,Bj } are orthonormal eigenvectors of ρA, resp. of ρB.
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Proof. Take an orthonormal basis {eAj } of eigenvectors for ρA then write |ψ⟩ =∑
j |eAj ⟩ ⊗ |hBj ⟩ for some vectors |hBj ⟩ ∈ Cm. Compute the partial trace∑

j,k

⟨hBj |hBk ⟩|eAk ⟩⟨eAj | =
∑
j

λj|eAj ⟩⟨eAj | = ρA

and therefore ⟨hBj |hBk ⟩ = λjδjk. Finally, we can define the vectors |eBj ⟩ = 1√
λj
|hBj ⟩ for

λj > 0 and complete to an orthonormal basis.

Proposition 2.2.6. Any positive matrix ρ ∈ Mn has a purification |ψ⟩ ∈ Cn ⊗ CE

with the dimension E ≤ rank(ρ). For any other purification |ϕ⟩ ∈ Cn ⊗ Cm with
m ≥ E there is an isometry V : CE −→ Cm with (In ⊗ V )|ψ⟩ = |ϕ⟩.

Proof. Diagonalise ρ =
∑

j λj|ej⟩⟨ej| and take |ψ⟩ =
∑

j

√
λj|ej⟩ ⊗ |hj⟩ where {hj}

is another orthonormal basis for Cn. Any other purification has a Schmidt decompo-
sition as in (2.4) with a different basis and we can relate them via an isometry.

Remark 2.2.7. The uniqueness of purification is a special case of the uniqueness of
Kraus operators/Stinespring representation. Consider the CP map 1 7→ ρ. This has
Choi matrix equal to ρ. Thus, any two purifications gives two sets of Kraus operators,
which are unique up to isometry. Similarly, we can use the uniqueness of purification
of a Choi matrix to derive the isometry relating Kraus operators. In general, for a CP
map the minimal number of Kraus operators is equal to the rank of the Choi matrix,
and this is called the Choi-Kraus rank of the map.

Proof of the second part

For ease of notation we interpret the identity Trr2 CS̃ = (Trr1r2 CS̃) ⊗ 1
r1
Ir1 as being

inserted in the second tensor position. Similarly, throughout this proof we may write
linear maps acting on tensor products in the wrong order, so as to simplify the
notation of the maximally entangled state ϕr1+ ⊗ ϕd2+ . As long as we keep track of
which component the linear maps are acting on it is okay.

Theorem 2.2.8. If S : L(Md1 ,Mr1) −→ L(Md2 ,Mr2) is a linear map with CS̃ ≥ 0,
Trd1r2 CS̃ = Ir1⊗Id2 and Trr2 CS̃ = (Trr1r2 CS̃)⊗ 1

r1
Ir1 then there exists two CPTP maps

ψpre : Md2 −→ Md1e and ψpost : Mr1e −→ Mr2 such that for any linear ϕ : Md1 −→ Mr1

we have
S(ϕ) = ψpost ◦ (ϕ⊗ ide) ◦ ψpre
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Proof. Since the partial trace of the maximally entangled state gives the identity
we can use the hypothesis to construct two purifications of Trr2 CS̃ and of Id2 . The
isometries relating these purifications will give the “pre” and “post” maps. To that
end, let Ad3 ∈ Md1 ⊗ Mr1 ⊗ Md2 ⊗ Mr2 ⊗ Md3 be a purification of CS̃ and Be ∈
Md1 ⊗Md2 ⊗Me be a purification of 1

r1
Trr1r2 CS̃.

Note that Ad3 is also a purification of Trr2 CS̃ and so is Be ⊗ ϕr1+ since we are
assuming Trr2 CS̃ = (Trr1r2 CS̃) ⊗ 1

r1
Ir1 . Using the isometry relating them we get an

isometric channel V : Me ⊗Mr1 −→Mr2 ⊗Md3 such that

Ad3 = idd1r1d2 ⊗ V
(
Be ⊗ ϕr1+

)
and so

CS̃ = Trd3 Ad3 = idd1r1d2 ⊗ ψpost
(
Be ⊗ ϕr1+

)
(2.5)

where ψpost = Trd3 ◦V .

For the other channel, note that

Trd1eBe =
1

r1
Trd1 Trr1r2 CS̃ =

1

r1
Trr1(Ir1 ⊗ Id2) = Id2 .

Thus, as a purification of the identity, there is an isometric channel ψpre : Md2 −→Md1e

such that
Be = idd2 ⊗ ψpre

(
ϕd2+
)
.

Using Equation (2.5) we have

CS̃ = (idr1d2 ⊗ ((idd1 ⊗ ψpost) ◦ (idr1 ⊗ ψpre)))
(
ϕr1+ ⊗ ϕd2+

)
. (2.6)

The reverse Choi formula tells us that for any ρ ∈Md2 and input map ϕ : Md1 −→Mr2

the output channel acts as

S(ϕ)(ρ) = Trd2 [S(Cϕ)(ρT ⊗ Ir2)]

= Trd1r1d2 [CS̃(CT
ϕ ⊗ ρT ⊗ Ir2)]

= Trd1r1d2 [(idr1d2 ⊗ ((idd1 ⊗ ψpost) ◦ (idr1 ⊗ ψpre)))(
ϕr1+ ⊗ ϕd2+

)
(CT

ϕ ⊗ ρT ⊗ Ir2)]

The terms being traced out can be cycled in the partial trace, so CT
ϕ ⊗ Ir2 can

be cycled to the left side of the trace. The only terms affected by tracing out d2
are the first component of idd2 ⊗ ψpre(ϕ

d2
+ ) and ρT . By expanding out Stinespring
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representations we can bring these terms together. We can see the effect of this by
letting ψpre(σ) = V ∗σV for some matrix V and calculate

Trd2 [idd2 ⊗ ψpre(ϕ
d2
+ )ρT ⊗ Id1 ⊗ Ie]

= Trd2 [(Id2 ⊗ V ∗)(ϕd2+ )(Id2 ⊗ V )ρT ⊗ Id1 ⊗ Ie]

= Trd2 [(Id2 ⊗ V ∗)(ϕd2+ )(Id2 ⊗ ρ)(Id2 ⊗ V )]

= Trd2 [(ϕ
d2
+ )]V ∗ρV = ψpre(ρ)

where in the second equation we used the property of the maximally entangled state
on ρ⊗ Id2 . Overall we get

S(ϕ)(ρ) = Trd1r1 [C
T
ϕ ⊗ Ir2

(
idd1r1 ⊗ ψpost

(
ϕr1+ ⊗ ψpre(ρ)

))
].

To finish compute the partial trace over r1

Trr1 [C
T
ϕ ⊗ Ir1(Id1 ⊗ ϕr1+ )] = Trr1 [

∑
i,j

Ej,i ⊗ Ir1 ⊗ ϕ(Ei,j)(Id1 ⊗ ϕr1+ )]

=
∑
i,j

Ej,i ⊗ ϕ(Ei,j)

giving

S(ϕ)(ρ) = Trd1

[
idd1 ⊗ ψpost

(
(
∑
i,j

Ej,i ⊗ ϕ(Ei,j) ⊗ Ie)(ψpre(ρ) ⊗ Ir1)

)]

= ψpost

(∑
i,j

ϕ(Ei,j) ⊗ Trd1 [(Ej,i ⊗ Ie)ψpre(ρ)]

)

= ψpost

(∑
i,j

ϕ(Ei,j) ⊗ (⟨ei| ⊗ Ie)(ψpre(ρ))(|ej⟩ ⊗ Ie))

)
= ψpost ((ϕ⊗ ide)(ψpre(ρ)))

which completes the proof.

Theorems 2.2.3 and 2.2.8 give Theorem 2.2.1.

Remark 2.2.9. In the original proof of the superchannel characterisation theorem in
[3], it is derived in a slightly different way, by using the uniqueness of Kraus operators
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to construct the isometries. This is ultimately equivalent to using purification of Choi
matrices. The alternative set of Kraus operators come from the non-trivial fact that
every for superchannel S : L(Md1 ,Mr1) −→ L(Md2 ,Mr2) there is a unital CP map (i.e.
the dual of a channel) N : Md1 −→Md2 such that

Trr2(S̃) = N ◦ Trr1 . (2.7)

By writing the CP maps S̃ and N in terms of their Kraus operators this equation
gives two different sets of Kraus operators for the same map.

Similar to the conditions Trd1r2 CS̃ = Ir1 ⊗ Id2 and Trr2 CS̃ = (Trr1r2 CS̃) ⊗ 1
r1
Ir1 ,

Equation (2.7) reflects the fact that range part of the input channel has no effect
on the domain part of the output channel. Here is a diagram showing some of the
various maps:

Md1 Mr1 Md2 Mr2

ϕ

N

S

S(ϕ)

Indeed, in [16] these conditions are shown to be equivalent. If Equation (2.7)
holds, then

Trr2 CS̃ = Trr2(idd1r1 ⊗ S̃(
∑
i,j,k,l

Ei,j ⊗ Ek,l ⊗ Ei,j ⊗ Ek,l))

= idd1r1 ⊗N (
∑
i,j

Ei,j ⊗ Ir1 ⊗ Ei,j)

= CN ⊗ Ir1 .

where in the last line we swapped around the tensors to make it clear that this
implies Trr1r2 CS̃ = r1CN . Similarly, Trr1r2d1 CS̃ = r1Id2 since N is unital, which
implies Trd1r2 CS̃ = Id2 ⊗ Ir1 .

On the other hand, if Trd1r2 CS̃ = Ir1 ⊗ Id2 and Trr2 CS̃ = (Trr1r2 CS̃) ⊗ 1
r1
Ir1 then

by defining N via

CN =
1

r1
Trr1r2 CS̃

then the same equations imply it satisfies Equation (2.7).
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Remark 2.2.10. Given a superchannel with characterisation as in Theorem 2.2.1,
its Choi matrix is defined by the map given by composition of ψpost and ψpre More
specifically, if we define a map Q : Mr1 ⊗Md2 −→Md1 ⊗Mr2 by

Q = (idd1 ⊗ ψpost) ◦ (Swapr1d1−→d1r1 ⊗ ide) ◦ (idr1 ⊗ ψpre)

then, up to rearranging the tensor factors, this has the same Choi matrix as S̃. Here
Swapr1d1−→d1r1 sends A ⊗ B ∈ Mr1 ⊗Md1 to B ⊗ A ∈ Md1 ⊗Mr1 . The swap map is
equal to

∑
i,j,k,l ETi,j,k,l ⊗ Ei,j,k,l.

We can show this using Equation (2.1), let Ed
i,j denote the matrix units in Md,

then

CS̃ =
∑
i,j,k,l

(Ed1
i,j ⊗ Er1

k,l) ⊗ (idd2 ⊗ ψpost ◦ (Ei,j,k,l ⊗ ide) ◦ ψpre)(
∑
a,b

Ed2
a,b ⊗ Ed2

a,b).

Now using ETi,j,k,l(E
r1
a,b) = δ(a,b),(k,l)E

d1
i,j , the Choi matrix of Q is

CQ =
∑
a,b,c,d

(Er1
a,b ⊗ Ed2

c,d) ⊗ (idd1 ⊗ ψpost) ◦ (
∑
i,j,k,l

ETi,j,k,l ⊗ Ei,j,k,l ⊗ ide)(E
r1
a,b ⊗ ψpre(E

d2
c,d))

=
∑
k,l,c,d,

(Er1
k,l ⊗ Ed2

c,d) ⊗
∑
i,j

Ed1
i,j ⊗ ψpost ◦ (Ei,j,k,l ⊗ ide) ◦ ψpre(Ed2

c,d).

This is the same sum as CS̃, but with differently ordered tensors.

Since the Choi matrix is positive we see that Q is a CPTP map. Thus, every
superchannel has a Choi matrix defined by a quantum channel. This also gives a
useful formula for comparing the pre and post-processing maps of a superchannel,
which we use in the next theorems.

2.2.1 Uniqueness and minimal dimension

The choice of pre and post-processing channels in Theorem 2.2.1 are not unique. For
example, given any density matrix σ, if we replace ψpre with σ⊗ ψpre, and ψpost with
Tr1⊗ψpost, then it describes the same superchannel. However, in the proof of Theorem
2.2.8 we constructed the pre-processing channel as an isometry, and the dimension
e bounded by the rank of Trr1r2 CS̃. Under these conditions the characterisation
theorem is unique up to unitary.
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Definition 2.2.11. Let S : L(Md1 ,Mr1) −→ L(Md2 ,Mr2) be a quantum superchannel
with e = rank(Trr1r2 CS̃). A minimal dilation for S is given by a pair (ψpre, ψpost),
where ψpost : Mr1⊗Me −→Mr2 is a channel, and ψpre : Md2 −→Md1⊗Me is an isometric
channel, such that

S(ϕ) = ψpost ◦ (ϕ⊗ ide) ◦ ψpre.

Lemma 2.2.12. If ρAB = |ψ⟩⟨ψ| is a purification of ρA ∈MA, then

|ψ⟩ = (
√
ρAV ⊗ IB)|ϕd+⟩

for some unitary V .

Proof. We can assume the purification is a square matrix i.e. |ψ⟩ ∈ Md ⊗Md. Take
a Schmidt-decomposition of |ψ⟩,

|ψ⟩ =
∑
j

√
λj|eAj ⟩ ⊗ |eBj ⟩,

and let UA, UB be the unitaries sending {eAj } and {eBj } to the standard basis. Recall
that each λj is an eigenvalue of ρA. We then have

|ψ⟩ = (
√
ρA ⊗ IB)(UA ⊗ UB)|ϕd+⟩

= (
√
ρAUA ⊗ IB)(IA ⊗ UB)|ϕd+⟩

= (
√
ρAUAU

T
B ⊗ IB)|ϕd+⟩,

where in the last equation we used the property of the maximally entangled state,
Equation (1.4).

Theorem 2.2.13 ([17]). Let S : L(Md1 ,Mr1) −→ L(Md2 ,Mr2) be a quantum su-
perchannel with a minimal dilation (ψpre, ψpost). If there are other channels Ψpost :
Mr1 ⊗Me′ −→Md1 ⊗Mr2, and Ψpre : Md2 −→Md1 ⊗Me′, satisfying

S(ϕ) = Ψpost ◦ (ϕ⊗ ide′) ◦ Ψpre

with Ψ isometric and e′ ≤ e, then e = e′ and there is a unitary channel, U : Me −→Me′,
such that

Ψpost = ψpost ◦ (idr1 ⊗ U−1)

and
Ψpre = (idd1 ⊗ U) ◦ ψpre
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Proof. Recall the map from Remark 2.2.10, informally given by Q = ψpost ◦ ψpost =
Ψpost ◦ Ψpre. If we omit the Swapr1d1−→d1r1 map we get

Trr1 CQ = idd2d1 ⊗ ψpost(
∑
k,l

Ed2
k,l ⊗ Ir1 ⊗ ψpre(E

d2
k,l)).

Since channels are trace-preserving we have

r1 · Tre ψpre(E
d2
k,l) = Trr2(idd1 ⊗ ψpost[Ir1 ⊗ ψpre(E

d2
k,l)])

which implies

Trr1r2 CQ = r1 · Tre[idd2 ⊗ ψpre(ϕ
d2
+ )]

= r1 TreCψpre .

This also holds for Ψpre with Tre′ . Since both channels are isometric, this equation
implies that idd2 ⊗ψpre(ϕd2+ ) and idd2 ⊗Ψpre(ϕ

d2
+ ) are purifications for Trr1r2 CQ. Since

e is defined as the minimal dimension achieving this purification, we have e′ ≥ e and
so they are equal. Furthermore, by the uniqueness of purification, there is a unitary
U : Me −→Me′ such that

(idd2d1 ⊗ U)(idd2 ⊗ ψpre(ϕ
d2
+ )) = idd2 ⊗ Ψpre(ϕ

d2
+ )

and hence we conclude,
Ψpre = (idd1 ⊗ U) ◦ ψpre.

We now show the same unitary works for the post-processing maps. What we
want to show is

ide ⊗ idr1 ⊗ ψpost(ϕ
e
+ ⊗ ϕr1+ ) = ide ⊗ idr1 ⊗ [Ψpost ◦ (idr1 ⊗ U−1)](ϕe+ ⊗ ϕr1+ ) (2.8)

where we omit the swap maps putting the tensors in the correct order. We can then
conclude the maps have the same Choi matrix, and hence are the same map. Since
they define CQ, ψpost acts on the Me component of Cψpre in the same way Ψpost acts
on the Me′ component of CΨpre . Thus

idẽ ⊗ idr1 ⊗ ψpost(Aẽe ⊗ ϕr1+ ) = idẽ ⊗ idr1 ⊗ Ψpost((idẽ ⊗ U)Aẽe ⊗ ϕr1+ ) (2.9)

where Aẽe ∈ Mẽ ⊗Me is Cψpre restricted so it only acts on the support of TreCψpre .
This support has dimension ẽ = e. If Aẽ = TreAẽe, then by the previous lemma,
there is a unitary V such that

Aẽe = (
√
AẽV ⊗ Ie)ϕ

e
+(V ∗

√
Aẽ ⊗ Ie).

Equation (2.9) now gives Equation (2.8) if we conjugate by V ∗√Aẽ
−1⊗ Ie⊗ Ir1 ⊗ Ir1 .

Note that, by construction, Aẽ is invertible.
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2.3 Some uses of superchannels

In this section we look at two recent uses of superchannels: defining entropy functions
for channels, and defining the set of free operations in a dynamical quantum resource
theory.

Entropy of a channel

One of the uses of quantum superchannels has been to formulate a theory of entropy
functions on quantum channels. This is done in an analogous way to quantum states.
The entropy of a state can be viewed as some measure of information or noise. Under
a reversible process it should be unchanged. We can quickly show that the only
reversible quantum channels are unitary maps.

Theorem 2.3.1. If a quantum channel ϕ : Md −→Md has an inverse channel then it
is a unitary channel.

Proof. Since ϕ and ϕ−1 are channels we can expand in terms of Kraus operators,
ϕ(ρ) =

∑
i ViρV

∗
i ,
∑

i V
∗
i Vi = Id and ϕ−1(ρ) =

∑
iWiρW

∗
i ,
∑

iW
∗
i Wi = Id. Then

ϕ−1 ◦ ϕ(ρ) =
∑
i,j

WjViρV
∗
i W

∗
j = ρ.

for all inputs ρ ∈ Md. Since each term in this sum is positive we have WjVi = cj,iId,
some ci,j ∈ C. Further,

V ∗
j Vk = V ∗

j (
∑
i

W ∗
i Wi)Vk =

∑
i

ci,jci,kId = λj,kId.

We can use this to show that each Vi is just a positive multiple of a unitary. Using
polar decomposition we have for some unitaries Ui,

Vi =
√
V ∗
i ViUi =

√
λiiUi.

But then
V ∗
j Vk =

√
λjjλkkU

∗
j Uk = λj,kId

which gives

Uk =
λjk√
λkkλjj

Uj.

Thus we can replace each Kraus operator Vi with a multiple of the same unitary.
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For a state ρ ∈ Md, the von Neumann entropy is given by H(ρ) = −Tr[ρ log2 ρ].
There are other entropy functions on states, and a general property they must satisfy
is monotonicity under the action of a random unitary channel. The idea here is
that, unlike unitary transformations, random unitaries represent loss of information
about the transformation of a state, and so can increase the noise. A random unitary
channel is given by

ϕ(ρ) =
∑
i

piUiρU
∗
i

where Ui are unitaries and {pi}i is a probability distribution. Let D(Md) be the set of
density matrices in Md. A function f : D(Md) −→ R is monotonic if for any random
unitary channel ϕ it satisfies

f(ϕ(ρ)) ≥ f(ρ), ∀ρ.

Similarly, when defining the entropy of a quantum channel, it should be unchanged
by reversible evolution, meaning a superchannel where the pre and post processing
channels are unitary channels. Define a random unitary superchannel as one of the
form

S(ϕ) =
∑
i

piUpost
i ◦ ϕ ◦ Upre

i

where Upost
i : Mr −→ Mr, and Upre

i : Md −→ Md are unitary channels, and {pi}i a
probability distribution.

One entropy function on channels was given in [19]. First, on density matrices we
can use the von Neumann entropy to define the quantum relative entropy between
two states as

H(ρ∥σ) :=

{
Tr[ρ(log2 ρ− log2 σ)] if supp(ρ) ⊆ supp(σ)

+∞ otherwise

Note that this allows us to express the von Neumann entropy of a state ϕ ∈Md in a
different way

H(ρ) = log2 d−H(ρ∥1

d
Id).

Using this, define the quantum relative entropy between two channels as

H(ϕ1∥ϕ2) := sup
ρ∈Mn⊗Md

H(idn ⊗ ϕ1(ρ)∥idn ⊗ ϕ2(ρ))
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where the supremum is taken over states ρ ∈Mn⊗Md, with n of arbitrary size. Then
given a channel ϕ : Md −→Mr we can define its entropy by

H(ϕ) = log2 r −H(ϕ∥δ)

where δ : Md −→Mr is the completely depolarizing channel, δ(ρ) = 1
r

Tr(ρ)Ir. Another
entropy function on channels is given in [10] as

HQC(ϕ) = H(
1

d
Cϕ) − log2 d (2.10)

Resource theories

Recent work on superchannels have used them to study dynamical resource theories
such as entanglement [18], magic [38], and coherence [25].

The intuition behind resource theories is wanting to perform some operation on a
quantum system but only having access to some subset of states and channels. These
are referred to as the free states and free channels. States outside of this set may
allow you to do further operations and are thus a valuable resource. The standard
example of a resource theory is that of entanglement.

Definition 2.3.2. Let F be a map which assigns to any two spaces Md, Mr, a subset
of channels F(Md,Mr) ⊆ {ϕ : Md −→ Mr |ϕ CPTP}. Then F defines a quantum
resource theory if the following holds:

1. F(Md,Md) contains the identity map idd

2. If ϕ1 ∈ F(Md1 ,Md2), and ϕ2 ∈ F(Md2 ,Md3), then ϕ2 ◦ ϕ1 ∈ F(Md1 ,Md3).

In this case F(Md,Mr) is called the set of free operations, and F(Md) := F(C,Md)
is called the set of free states.

Example 2.3.3. In the resource theory of entanglement, the set of free operations
are the local operations and classical communication (LOCC) channels, [8]. This is a
subset of separable channels, which are maps whose Kraus operators can be written
as a tensor product.

A dynamical quantum resource theory is one where the free states are replaced
by quantum channels, and the free operations by a set of quantum superchannels
preserving this set of channels. Note that one way of achieving this is to look at
superchannels where the pre and post processing maps are the free channels in a
resource theory.
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Remark 2.3.4. It is interesting to note that the definition of free superchannels in a
dynamical resource theory only requires the action of those superchannels on a set of
quantum channels. Thus, although the definition of superchannel has it being defined
on the larger space of all linear maps, being defined on the space spanned by quantum
channels would have the same effect. This point motivates the next chapter.
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Chapter 3

Axiomatic Approach to Quantum
Superchannels

This chapter is based on the author’s paper [12].

In this chapter we propose a different definition of superchannels. In particular,
we take the domain to be the span of quantum channels which in general is not
all linear maps between operators. Considering the Choi matrices [9] of such maps
allows us to define an operator system and make use of Stinespring’s theorem [35].
Arveson’s extension theorem [1, Theorem 1.2.3, Theorem 1.1.11] allows the same
characterisation of the more general superchannels to apply to this smaller class of
maps.

We then show that these extensions are non unique, meaning different extensions
give superchannels whose action on quantum channels is the same. This shows that
the usual definition of superchannel results in different maps which have the same
effect on quantum channels. This provides evidence that this new definition is more
natural as a description of maps on channels.

Consequences of the non uniqueness of these extensions are then explored. It is
shown there are no trace-preserving extensions, and that the tensor product can be
affected. The extreme points of the set of extensions is examined in a generalisation
of a theorem by Choi [9].
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3.1 The space of quantum channels

We want to define linear maps on the the space spanned by quantum channels. First
we define this space, in two different ways. Simply as a space of linear maps, and
as a space of block matrices. Note that the Choi matrix of a quantum channel is
a block matrix where the diagonal blocks each have trace one and the off diagonal
blocks have trace zero.

Definition 3.1.1. Given positive integers d, r ≥ 1 define

SCPTP (d, r) := span{ϕ |ϕ : Md −→Mr is a CPTP map} ⊂ L(Md,Mr).

Also define S(d, r) ⊂ Md(Mr) to be the set of block matrices (Pi,j) such that for all
1 ≤ i, j ≤ d, Tr(Pi,i) = Tr(Pj,j) and for i ̸= j Tr(Pi,j) = 0.

There is a natural way to define a matrix order on the space SCPTP (d, r): for an
n×n matrix (ϕi,j) of maps, with each ϕi,j ∈ SCPTP (d, r), define Φ : Md −→Mn(Mr)
by Φ(x) = (ϕi,j(x)). Then (ϕi,j) ≥ 0 if and only if Φ is completely positive.

Note in the case d = 1 we have M1 = C and since any such linear map is defined by
its value at 1 we have an isomorphism L(M1,Mr) ∼= Mr via ϕ 7→ ϕ(1). The positive
matrices span the whole space so in fact SCPTP (1, r) ∼= Mr. With the order on
SCPTP (d, r) that we just defined this is a complete order isomorphism. Similarly
S(1, r) ⊂ M1(Mr) = Mr and since there is just one block P1,1 with no restriction we
get all the r×r matrices in S(1, r). Thus SCPTP (1, r) is order isomorphic to S(1, r).

Theorem 3.1.2. S(d, r) is an operator system and is completely order isomorphic to
SCPTP (d, r) via the Choi map

R : SCPTP (d, r) −→ S(d, r)

ϕ 7→ Cϕ.

Proof. It is clear that S(d, r) contains the identity matrix and the linearity of the trace
ensures it is a subspace. If X = (Pi,j) is a block matrix then the adjoint is X∗ = (P ∗

j,i)

and for any block Tr(P ) = Tr(P ∗). This implies that S(d, r) is self-adjoint and hence
an operator system.

Next we show ϕ 7→ Cϕ is an isomorphism between SCPTP (d, r) and S(d, r). This
is the correct range because the Choi matrix for a quantum channel is in S(d, r). It is
injective because any linear map is defined by its Choi matrix. To prove surjectivity
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we use the fact about operator systems that any X ∈ S(d, r) can be written in terms
of four positive matrices Pi ∈ S(d, r), 1 ≤ i ≤ 4, as

X = (P1 − P2) + i(P3 − P4).

As they are positive Tr(Pi) = 0 only if Pi = 0. Thus we can scale each Pi by a factor
1/Tr(Pi) to make it into a Choi matrix associated with a CPTP map. This proves
any X ∈ S(d, r) is in the span of Choi matrices of quantum channels.

Finally we show it is a complete order isomorphism. For a matrix of maps in
SCPTP (d, r) the condition to be positive is

(ϕi,j)i,j ≥ 0 ⇐⇒ Φ CP ⇐⇒ (Φ(Ek,l))k,l ≥ 0 ⇐⇒
(

(ϕi,j (Ek,l))i,j

)
k,l

≥ 0.

The corresponding matrix of Choi matrices can be written(
Cϕi,j

)
i,j

=
(

(ϕi,j (Ek,l))k,l

)
i,j

To conclude note that the shuffle which maps Mm(Mn(A)) to Mn(Mm(A)), where A
is a C∗-algebra, is a ∗-isomorphism and hence preserves positivity.

Remark 3.1.3. A tensor product of linear maps gives a map on the tensor product
of the spaces so there is an inclusion

SCPTP (d1, r1) ⊗ SCPTP (d2, r2) ⊆ SCPTP (d1d2, r1r2).

We can show this is generally a strict inclusion and the spaces are not equal. The
description of S(d, r) allows us to do a dimension count giving the dimension of
SCPTP (d, r) as d2r2 − d2 + 1. So for the tensor product space we have dimension
(d21r

2
1 − d21 + 1)(d22r

2
2 − d22 + 1) but for the space on the right we have dimension

d21d
2
2r

2
1r

2
2 − d21d

2
2 + 1 which is generally larger. The difference is

d21d
2
2(r

2
1 + r22 − 2) − d21(r

2
1 − 1) − d22(r

2
2 − 1)

and this is non-negative. We endow this tensor space with an order by regarding its
elements as members of the operator system SCPTP (d1d2, r1r2).

Remark 3.1.4. The domain of quantum superchannels, L(Md1 ,Mr1) can be un-
derstood as the span of quantum operations, that is, completely-positive trace non-
increasing maps. These can be interpreted as describing probabilistic evolution of
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a state, as opposed to deterministic evolution given by quantum channels. A quan-
tum operation ϕ : Md −→ Mr has a positive Choi matrix satisfying Trr Cϕ ≤ Id. We
can see that see these span the whole space of matrices by considering any positive
E ∈Md ⊗Mr. We have

(∥E∥Id ⊗ Ir − E) ≥ 0,

and as the partial trace is a positive map

Trr

(
E

r∥E∥

)
≤ Trr

(
1

r
Id ⊗ Ir

)
= Id.

Thus E is in the span of the Choi matrices of quantum operations.

3.1.1 Basis for S(2, 2)

For qubit quantum channels, ϕ : M2 −→ M2, the space of Choi matrices, S(2, 2), is a
13 dimensional space of matrices. Here we describe a simple basis for this space.

For clarity, a generic element of S(2, 2) looks like
v ∗ b ∗
∗ w ∗ −b
a ∗ x ∗
∗ −a ∗ y


where v + w = x+ y.

To get a basis for S(2, 2), take the 16 standard matrix units {Eij} for M4, keep the
eight which are block off diagonal, and replace {E11, E22, E33, E44, E31, E42, E13, E24}
with {X1, X2, X3, X4, X5} where

X1 = E11 + E44

X2 = E22 + E44

X3 = E33 − E44

X4 = E31 − E42

X5 = E13 − E24

For example take a diagonal A ∈ S(2, 2)
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A =


v 0 0 0
0 w 0 0
0 0 x 0
0 0 0 y

 = v


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

+ w


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

+ x


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1


= vX1 + wX2 + xX3

because v + w = x + y. Similarly the requirements of the trace on the off diagonal
blocks are taken care of by X4 and X5.

The matrices X1 and X2 correspond directly to quantum channels but X3 doesn’t,
as it is not positive. For X3 we have

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

−


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 = X3

so we can replace X3 with E11 + E33, which is positive and describes a quantum
channel. Similarly, for the non-positive X4 and X5, we can replace them with the
matrices


1 0 −1 0
0 1 0 1
−1 0 1 0
0 1 0 1

 = I4 +X4 +X5


1 0 −i 0
0 1 0 i
i 0 1 0
0 −i 0 1

 = I4 + iX4 − iX5

which are positive.

3.2 QSCs

To motivate our new definition of quantum superchannels it is worth recalling from
Chapter 1, some of the reasons behind the definition for ordinary quantum channels.
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Two simple requirements were that channels be linear maps that take quantum states
to quantum states. This gives the trace-preserving condition. The requirements that
quantum systems combine using tensor products, and that the identity map is a
valid channel is what implies the completely positive condition. For superchannels
we similarly require they be linear maps which takes channels to channels, and that
the tensor of any two superchannels is again a superchannel on the combined space.

To distinguish our new definition of quantum superchannel from the standard one
we use the terminology “QSC”. The term superchannel will still refer to the objects
defined in Chapter 2.

Definition 3.2.1. Given two spaces of quantum channels SCPTP (di, ri), i = 1, 2, a
QSC is a linear map Γ : SCPTP (d1, r1) −→ SCPTP (d2, r2) which satisfies

1. if ϕ is CPTP then Γ(ϕ) is CPTP

2. given any other dimensions d3, r3 ∈ N and the identity map

idd3,r3 : SCPTP (d3, r3) −→ SCPTP (d3, r3)

then

Γ⊗idd3,r3 : SCPTP (d1, r1)⊗SCPTP (d3, r3) −→ SCPTP (d2, r2)⊗SCPTP (d3, r3)

sends CPTP maps to CPTP maps.

Remark 3.2.2. Elements of SCPTP (d, r) scale the trace of density matrices and
this scaling factor is preserved by QSCs. Consider a QSC Γ : SCPTP (d1, r1) −→
SCPTP (d2, r2). Suppose ϕ ∈ SCPTP (d1, r1) satisfies Trϕ(X) = cTrX some con-
stant c and that Tr Γ(ϕ)(Y ) = kTrY some constant k. Decompose ϕ as a span of
quantum channels

ϕ =
∑
i

ciϕi

and use the trace condition on ϕ to see∑
i

ci = c.

Now since Γ is linear and sends TP maps to TP maps we get

kTrY = Tr Γ(ϕ)(Y ) =
∑
i

ci Tr Γ(ϕi)(Y ) = cTrY
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and so k = c.

Since any CP map in SCPTP (d, r) scales the trace by a positive number, property
2 in the definition of QSC implies Γ⊗ idd3,r3 sends all CP maps to CP maps, not just
trace-preserving ones. In fact, this property is equivalent to Γ⊗ idd3,r3 preserving CP
maps, as both Γ and idd3,r3 preserve the trace-scaling of their inputs, and so will send
TP maps to TP maps. Thus the “completely CPTP-preserving” property of QSC’s
can be replaced by a “completely CP-preserving” one.

Let Ri : SCPTP (di, ri) −→ S(di, ri) be the complete order isomorphism sending ϕ

to Cϕ. If Γ is a QSC it induces a map Γ̃ : S(d1, r1) −→ S(d2, r2) via

Γ̃ = R2 ◦ Γ ◦R−1
1 .

Explicitly this acts as Γ̃(Cϕ) = CΓ(ϕ). It is useful to study this map because the

properties of QSC’s implies that Γ̃ is completely positive. Note that by Choi’s theorem
Γ̃ sends positive matrices to positive matrices.

Theorem 3.2.3. If Γ : SCPTP (d1, r1) −→ SCPTP (d2, r2) preserves CPTP maps

then it is a QSC if and only if Γ̃ is completely positive.

Proof. Recall that S(1, n) = Mn. Take the identity map on SCPTP (1, n) which has
as its induced map on S(1, n) the identity on Mn. Let Cϕ ∈ S(d1, r1) ⊗ Mn be a
positive matrix. If Ri : SCPTP (di, ri) −→ S(di, ri) are the Choi isomorphisms we can
write

Γ̃ ⊗ idn(Cϕ) = (R2 ⊗R3)(Γ ⊗ id1,n)(ϕ).

Then the second property of QSC’s implies that Γ̃ ⊗ idn sends positive matrices to
positive matrices for all n. Thus Γ̃ is a completely positive map.

For the converse, suppose Γ̃ is completely positive and note that

idd3,r3 : SCPTP (d3, r3) −→ SCPTP (d3, r3)

is a QSC, and thus has a completely positive induced map. For any CP map ϕ we
have

Γ ⊗ idd3,r3(ϕ) = (R−1
2 ⊗R−1

3 )(Γ̃ ⊗ ĩdd3,r3)(Cϕ)

and this is a CP map since Γ̃ and ĩdd3,r3 are both completely positive so their tensor
is a positive map.
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Thus the second property in the definition of QSC can be replaced by the require-
ment that QSCs be completely positive.

Remark 3.2.4. A tensor product of two QSCs,

Γ1 ⊗ Γ2 : SCPTP (d1, r1) ⊗ SCPTP (d3, r3) −→ SCPTP (d2, r2) ⊗ SCPTP (d4, r4)

will send CPTP maps in the domain to CPTP maps in the range, but it is not a QSC
as its domain is not SCPTP (d1d3, r1r3).

Remark 3.2.5 (QSC vs quantum superchannel). Superchannels and QSCs are de-
fined in similar ways, although on a different space of maps. In [3] and [16] the
definition of superchannel used the space of all linear maps as its domain and range.
Since superchannels use the whole vector space of linear maps, tools such as the Choi
matrix can be applied to them. This is not the case for QSCs since the space spanned
by Choi matrices of quantum channels doesn’t contain the standard matrix units,
so the Choi matrix cannot be defined. Similarly, Stinespring’s theorem and Kraus
representations of CP maps don’t apply to maps on an operator system, but only to
maps defined on the full C∗-algebra.

The next theorem allows us to extend QSCs and treat them as restrictions of
superchannels.

Theorem 3.2.6. Every QSC extends to a quantum superchannel.

Proof. Let Γ be a QSC. Recall Arveson’s extension theorem, 1.1.11 about completely-
positive maps on operator systems. Since Γ̃ is CP it has a CP extension with domain
all of Md1(Mr1). Call this extension S̃.

Define the matrix order on L(Md,Mr) in the same way as for SCPTP (d, r) and a
similar proof to Theorem 3.1.2 shows the Choi isomorphism ϕ 7→ Cϕ is also a complete

order isomorphism between L(Md,Mr) and Md(Mr). Thus S̃ corresponds to a map
S which is an extension of Γ. We will show S is a quantum superchannel.

Any TP map f ∈ L(Md1 ,Mr1) will have a Choi matrix that has trace one on the
diagonal blocks and trace zero on the off diagonal blocks. Thus Cf ∈ S(d1, r1) and
so we can write f as a linear combination of CPTP maps. Using the linearity of S
we can see that S(f) is a TP map.

To see it is completely CP preserving, take a matrix of CP maps (ϕi,j). Then

(Cϕi,j) is a matrix of positive matrices and since S̃ is completely positive, S̃(n) maps
it to another matrix of positive matrices.

37



Remark 3.2.7. The extension of a QSC is not unique. For example, let d1 = 2, let
r1 be arbitrary size, and let d2 = r2 = 1. Define Γ̃1, Γ̃2 : M2(Mr1) −→M1(M1) via

Γ̃1

((
ϕ(E11) ϕ(E12)
ϕ(E21) ϕ(E22)

))
= Tr(ϕ(E11)),

Γ̃2

((
ϕ(E11) ϕ(E12)
ϕ(E21) ϕ(E22)

))
= Tr(ϕ(E22)).

(3.1)

These are different maps in general but are identical when restricted to the space of
quantum channels S(2, r1). They are easily seen to be linear maps which send CPTP

maps to 1. To see that they are completely positive take V1 =

(
Ir1
0

)
, V2 =

(
0
Ir1

)
then

Γ̃i(Cϕ) = Tr(V ∗
i CϕVi).

Remark 3.2.8. Define the depolarizing channel δ1 : Md1 →Mr1

δ1(ρ) =
Tr(ρ)

r1
Ir1

and similarly δ2 : Md2 → Mr2 . Then the Choi matrices are Cδ1 = 1
r1
Id1r1 = 1

r1
Cr1δ1 .

For Γ̃ to be unital we require

Γ̃(Id1r1) = Γ̃(Cr1δ1) = Id2r2 = Cr2δ2

but since Γ̃(Cr1δ1) = CΓ(r1δ1) unital is equivalent to requiring Γ(r1δ1) = r2δ2. Thus
the depolarizing channel is the order unit of the operator system SCPTP (d, r), see
[28].

3.2.1 QSC with no TP extension

A QSC is defined by a CP map Γ̃ : S(d1, r1) −→ S(d2, r2) which sends block matrices
of trace λd1 to block matrices of trace λd2 where λ is the trace scaling factor of the
linear map associated with the block matrix (with λ = 1 for CPTP maps and their
Choi matrix). Thus the map

d1
d2

Γ̃
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is a CPTP map. If we extend Γ̃ to a superchannel S̃ : Md1(Mr1) −→ Md2(Mr2) then

in general it is not the case that S̃ is TP.

Consider a map M2(M2) −→M2(M2) defined by

E11 7→ Diag(a1, a2, a3, a4) = A

E22 7→ Diag(b1, b2, b3, b4) = B

E33 7→ Diag(c1, c2, c3, c4) = C

E44 7→ Diag(d1, d2, d3, d4) = D

and all other standard basis matrices get sent to 0.

Since E11 +E33, E11 +E44, E22 +E33, and E22 +E44 are in S(2, 2) for this map to
restrict to give a QSC we require A+ C, A+D, B + C, and B +D to be in S(2, 2)
and have the same trace (since d1

d2
= 1) i.e. they must have trace 2 and both diagonal

blocks each have trace 1. In other words,

a1 + c1 + a2 + c2 = 1

a3 + c3 + a4 + c4 = 1

a1 + d1 + a2 + d2 = 1

a3 + d3 + a4 + d4 = 1

and similarly with bi replacing ai. This implies a1 +a2 = b1 + b2 and a3 +a4 = b3 + b4.

For this to be a trace-preserving map we require
∑

i ai =
∑

i bi =
∑

i ci =
∑

i di =
1.

So for a particular choice of A,B,C,D which give a QSC with no TP extension
consider

A =


1
2

0 0 0
0 1

2
0 0

0 0 1 0
0 0 0 0



B =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
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C =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
This QSC is defined by the matrices A+C and B +C. Any choice of ai and ci must
satisfy a1 + c1 = 1

2
, a2 + c2 = 1

2
, a3 + c3 = 1, and a4 + c4 = 0 to be the same QSC.

However for an extension to be a positive map we require all ai, bi, ci, di, 1 ≤ i ≤ 4
to be non-negative. Thus b3 + c3 = 0 =⇒ b3 = c3 = 0 but since a3 + c3 = 1 we
conclude a3 = 1 in any extension. Similarly since b2 + c2 = 0 =⇒ c2 = 0 but then
a2 + c2 = 1

2
=⇒ a2 = 1

2
in any extension. Already we have a2 + a3 > 1 so it cannot

be TP.

3.2.2 Tensoring QSCs

Take two QSCs,
Γ1 : SCPTP (d1, r1) −→ SCPTP (d2, r2)

and
Γ2 : SCPTP (d3, r3) −→ SCPTP (d4, r4).

Extend each to a superchannel S1, S2 respectively. Then S1 ⊗ S2 is a superchannel
on the combined spaces and it restricts to give a QSC on SCPTP (d1d2, r1r2). This
is not necessarily unique.

To see an example of this note that SCPTP (1, 2) is a 4-dimensional space and it
contains the following four maps between C −→M2

L1,1 : 1 7→ E1,1

L1,2 : 1 7→ E1,2

L2,1 : 1 7→ E2,1

L2,2 : 1 7→ E2,2

Now, SCPTP (2, 1) is a 1-dimensional space containing I2 7→ 1. Define other maps
from M2 to C by the following Choi matrices in M2(M1)

Cϕ1,1 = E1,1

Cϕ1,2 = E1,2

Cϕ2,1 = E2,1

Cϕ2,2 = E2,2
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so for example ϕ1,1 sends E1,1 to 1 and everything else to 0. None of these are in the
space of quantum channels S(2, 1).

Note that ϕi,i⊗Li,i(Ek,k⊗1) = δi,kEi,i and thus ϕi,i⊗Li,i has Choi matrix Ei,i⊗Ei,i.
Thus the Choi matrix of

∑
i ϕi,i ⊗ Li,i is the maximally entangled state

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 ∈M2(M2)

which is in the space of quantum channels S(2, 2).

We can use this to give an example of how tensoring QSCs depends on their
extension. Define the following two superchannels S1, S2 : L(M2,M1) −→ L(M2,M1)
by

S1(ϕ1,1) = ϕ1,1

S1(ϕ2,2) = ϕ2,2

S1(ϕ1,2) = S1(ϕ2,1) = 0

and let S2 = id2,1 the identity superchannel. Then these are two different extensions
of the same QSC. Taking also the identity superchannel id1,2 on L(M1,M2) we have
that the maps S1⊗ id1,2 and S2⊗ id1,2 have a different effect on the quantum channel∑

i ϕi,i ⊗ Li,i.

This shows that tensoring QSCs by extending them to superchannels gives you a
different QSC on the larger space depending on how you extend them. Thus we can
tensor two QSCs together and not fully define how they should act on the full space
of quantum channels.

Remark 3.2.9. We have to be careful when tensoring Choi matrices and interpreting
the result as the Choi matrix of a channel. For the induced map on Choi matrices

S̃1 ⊗ S2 ̸= S̃1 ⊗ S̃2, since

Cϕ1 ⊗ Cϕ2 =
∑
ij

Ei,j ⊗ ϕ1(Ei,j) ⊗
∑
k,l

Ek,l ⊗ ϕ2(Ek,l)

is not the same as

Cϕ1⊗ϕ2 =
∑
i,j,k,l

Ei,j ⊗ Ek,l ⊗ ϕ1(Ei,j) ⊗ ϕ2(Ek,l).
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It’s possible to create the Choi matrix of a channel from tensoring the Choi ma-
trices of non channels if you ignore this fact. But in general if a simple tensor of maps
gives a quantum channel then the individual maps should be quantum channels (or
scalar multiples of channels). More specifically, if ϕ1 ⊗ ϕ2 is a trace-preserving map
for some linear ϕ1 and ϕ2 then for any inputs X and Y

Tr(X) · Tr(Y ) = Tr(X ⊗ Y ) = Tr(ϕ1 ⊗ ϕ2(X ⊗ Y ))

= Tr(ϕ1(X)) Tr(ϕ2(Y )).

Taking basis matrix units Ei,i we then have 1 = Tr(ϕ1(Ei,i)) · Tr(ϕ2(Ej,j)). Letting
i vary, it’s clear that ϕ1 must multiply the trace by a constant scaling factor, and
similarly for ϕ2.

Remark 3.2.10. Superchannels are determined by their action on channels on larger
dimensional spaces. If S1 and S2 define the same QSC and also define the define the
same QSC when tensored with the identity superchannel, they are the same map.
That is, if in addition to being equal on channels, if S1 ⊗ idn,n(ϕ) = S2 ⊗ idn,n(ϕ) for
all channels ϕ, for all n, then S1 = S2.

To see this, note that we only need to show S1 and S2 are equal on CP trace
non-increasing maps (quantum operations) as these span the space. So let ϕ be
such a map. There is another operation ϕ′ such that ϕ + ϕ′ is a channel, and thus
S1(ϕ+ ϕ′) = S2(ϕ+ ϕ′). Now take two distinct channels ψ1, ψ2 ∈ L(Mn,Mn) and we
see that ϕ⊗ ψ1 + ϕ′ ⊗ ψ2 is a CPTP map. This implies S1(ϕ) ⊗ ψ1 + S1(ϕ

′) ⊗ ψ2 =
S2(ϕ) ⊗ ψ1 + S2(ϕ

′) ⊗ ψ2. Combining these two equations we have

(S1(ϕ) − S2(ϕ)) ⊗ ψ1 = (S1(ϕ) − S2(ϕ)) ⊗ ψ2.

Hence, S1(ϕ) = S2(ϕ).

3.2.3 Choi matrix of equivalent extensions

Suppose S1 and S2 are superchannels. Note that since CS̃1
− CS̃2

= CS̃1−S̃2
we have

by Theorem 2.2.3

Trr2 CS̃1−S̃2
= Trr1r2 [CS̃2−S̃2

] ⊗ 1

r1
Ir1 .

If we follow some of the same steps in the proof of this theorem, we can see

(S1 − S2)(ϕ)(ρ) = Trd2 [C(S̃1−S̃2)(ϕ)
(ρT ⊗ Ir2)]

= Trd1r1d2 [CS̃1−S̃2
(CT

ϕ ⊗ ρT ⊗ Ir2 ]
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for all ρ ∈ Md. Now suppose S1 and S2 are extensions of the same QSC i.e. they
agree on the space if channels. Then if ϕ is trace-preserving, this equation is 0. Thus,

Tr[Trr2(CS̃1−S̃2
)(CT

ϕ ⊗ ρ)] = 0

As this holds for all matrices with Trr1 Cϕ = Id1 and ρ ∈ Md2 we can conclude that
the Md1 component of CS̃1−S̃2

has trace 0. We have thus shown:

Theorem 3.2.11. If S1 and S2 are superchannels extending the same QSC then

Trd1 CS̃1−S̃2
= 0

We can illustrate this with an example.

Example 3.2.12. Consider superchannels S1, S2, acting on M2(M2) −→ M2(M2), so
16 × 16 Choi matrices. For i = 1, 2 write their Choi matrices as

CS̃i
=


Ai ∗
∗ Bi

Ci ∗
∗ Di

 ∈M2(M2) ⊗M2(M2).

Here Ai, Bi, Ci, Di ∈ M2(M2). As in section 3.2.1, since E1,1 + E3,3 and E2,2 + E4,4

represent channels in M2(M2), S1 and S2 must agree on these matrices. Thus A1 +
C1 = A2 +C2, and B1 +D1 = B2 +D2. They must also agree on the ∗ entries, and we
can ignore what the blank parts of their Choi matrices look like. Taking the partial
trace:

Trd1 CS̃1−S̃2
= Trd1


A1 − A2 0

0 B1 −B2

C1 − C2 0
0 D1 −D2


=

[
A1 − A2 + C1 − C2 0

0 B1 −B2 +D1 −D2

]
=

[
0 0
0 0

]
.
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3.3 Superchannel dilation for different extensions

Recall the proof of the characterisation theorem for superchannels, Theorem 2.2.1.
One can show that any superchannel S : L(Md1 ,Mr1) −→ L(Md2 ,Mr2) has an associ-
ated unital CP map N : Md1 −→Md2 such that

Trr2(S̃) = N ◦ Trr1 . (3.2)

For a QSC Γ1 : SCPTP (d1, r1) −→ SCPTP (d2, r2) we have for any unital map
N : Md1 −→Md2

Trr2 Γ̃(Cϕ) = N (Trr1 Cϕ)

however since the Stinespring dilation theorem only applies to maps defined on a full
C∗-algebra, not operator systems, we cannot use this to get two equivalent sets of
Kraus operators. Similarly, the Choi matrix requires the map to act on the standard
basis elements in Mn which a QSC does not have access to. Hence, we cannot apply
the same proof of the characterisation theorem for superchannels to QSCs.

The extension in Theorem 3.2.6 shows that, by extending a QSC to a superchannel
we can still describe it as

Γ(ϕ) = ψpost ◦ (ϕ⊗ ide) ◦ ψpre, ∀ϕ ∈ SCPTP (d, r).

Since extending to superchannels is non-unique, these pre and post processing chan-
nels will depend on which superchannel it is extended to, even when requiring a
minimal dilation.

The minimal dimension e from Theorem 2.2.13 will depend on the extension of
the QSC. Consider the non unique extensions from Equation (3.1) and set r1 = 2,
the superchannel Choi matrices are

CΓ̃1
=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 = E11 + E22,

CΓ̃2
=


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 = E33 + E44.
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In Md1(Mr1) = M2(M2), we have Trr1 E11 = E11 ∈ M2, Trr1 E22 = E11 ∈ M2, etc.
Thus

Trr1 Trr2 CΓ̃1
=

(
2 0
0 0

)
,

Trr1 Trr2 CΓ̃2
=

(
0 0
0 2

)
,

which have equal rank. However, another equivalent extension is given by any convex
combination Γ̃ = p1Γ̃1 + p2Γ̃2 for p1, p2 > 0, p1 + p2 = 1. This has Choi matrix

CΓ̃ =


p1 0 0 0
0 p1 0 0
0 0 p2 0
0 0 0 p2

 ,

which reduces to

Trr1 Trr2 CΓ̃ =

(
2p1 0
0 2p2

)
,

and this has greater rank.

Remark 3.3.1. The set of possible superchannel extensions of a QSC is a convex set.
In the example given, the extensions with minimal e are extreme points. A natural
question to ask is whether it is generally true that the extensions which give minimal
dimensions e are extreme points.

Define CP [Mn,Mm;K] to be CP maps from Mn to Mm which send the identity
to a fixed K ≥ 0. This is a convex set. The following theorem from [9] characterises
the extreme points in terms of the Kraus operators:

Theorem 3.3.2. A map ϕ ∈ CP [Mn,Mm;K] is extreme if and only if it admits an
expression ϕ(A) =

∑
i V

∗
i AVi for all A ∈ Mn such that

∑
i V

∗
i Vi = K and {V ∗

i Vj}ij
is a linearly independent set.

Using the same proof it was noted in [24] that for the set of unital, trace-preserving
CP maps ϕ is an extreme point if and only if it has Kraus operators {Vi}i such that
{V ∗

i Vj
⊕

VjV
∗
i }ij is linearly independent.

For a CP map ϕ : Mn → Mm with Kraus representation ϕ(A) =
∑

i V
∗
i AVi the

(Hilbert-Schmidt) dual map ϕ∗ : Mm →Mn is given by ϕ∗(B) =
∑

i ViBV
∗
i .
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Definition 3.3.3. Let S be a subspace of Mn, and let T be a subspace of Mm. For
a CP map Φ : Mn →Mm define the convex set CP [Mn,Mm;S, T ,Φ] to be CP maps
from Mn to Mm which are equal to Φ on S and whose duals are equal to the dual of
Φ on T .

The proof of the following makes use of the same approaches as the proof of
Theorem 3.3.2 from [9]. Namely, it uses the fact that a CP map has a minimal set
of Kraus operators such that they are linearly independent and any other set can be
related to it via an isometry.

Here we assume S and T have self-adjoint spanning sets i.e. are self-adjoint spaces.

Theorem 3.3.4. A map ϕ ∈ CP [Mn,Mm;S, T ,Φ] is extreme if and only if it ad-
mits an expression ϕ(A) =

∑
i V

∗
i AVi for all A ∈ Mn such that for any self-adjoint

spanning sets {Ak}k for S and {Bl}l for T the set

{
⊕
k

V ∗
i AkVj

⊕
l

VjBlV
∗
i }ij

is linearly independent.

Proof. For the forward direction, suppose ϕ ∈ CP [Mn,Mm;S, T ,Φ] is extreme and
take a minimal set of Kraus operators i.e. a linearly independent set {Vi}i with
ϕ(A) =

∑
i V

∗
i AVi. Choose self-adjoint spanning sets {Ak}k for S and {Bl}l for T .

Suppose there exist constants {λij}ij such that∑
ij

λij
⊕
k

V ∗
i AkVj

⊕
l

VjBlV
∗
i = 0.

By taking the adjoint of this sum we see that {λji}ij is another set satisfying this.
This implies {λij ± λji}ij do as well and if we show both these sets are the zero set
then it will imply {λij}ij = {0}. Thus we may assume (λij)ij is a self-adjoint matrix.
Also scale so that −I ≤ (λij)ij ≤ I.

Define maps Ψ± : Mn −→Mm via

Ψ±(A) =
∑
i

V ∗
i AVi ±

∑
ij

λijV
∗
i AVj.
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Let I+ (λij)ij = (αij)
∗(αij) so that

∑
k αkiαkj = λij + δij1. Then if Wi =

∑
i αijVj we

can compute to get Ψ+ =
∑

iW
∗
i AWi and we can do similar for Ψ−. This also shows

that
Ψ∗

±(B) =
∑
i

ViBV
∗
i ±

∑
ij

λijVjBV
∗
i .

Thus Ψ± are in CP [Mn,Mm;S, T , ϕ].

We now have ϕ = 1
2
(Ψ+ + Ψ−) and so since it is extreme ϕ = Ψ+, say. The

minimality of the set {Vi} implies that (αij)ij is an isometry which gives (λij)ij = 0
and we are done.

Conversely, assume ϕ has form ϕ(A) =
∑

i V
∗
i AVi and

{
⊕
k

V ∗
i AkVj

⊕
l

VjBlV
∗
i }ij

is linearly independent for any self-adjoint spanning sets {Ak}k for S and {Bl}l for
T . This implies {Vi}i is linearly independent since

∑
i λiVi = 0 would imply for any

arbitrary summand that
∑

ij λiV
∗
j CVi = 0.

If ϕ is not extreme, say ϕ = 1
2
(Ψ1 + Ψ2) for Ψ1(A) =

∑
pW

∗
pAWp and Ψ2(A) =∑

q Z
∗
qAZq, then we can write Wp and Zq in terms of Vi. But if Wp =

∑
i αpiVi we

have

∑
i

V ∗
i AkVi =

∑
p

W ∗
pAkWp =

∑
pij

αpiαpjV
∗
i AkVj

for any Ak in the spanning set. Similarly for the dual we have∑
i

ViBkV
∗
i =

∑
pij

αpjαpiVjBkV
∗
i .

Therefore
∑

p αpiαpj = δij or else we would have a linear dependency. This implies
(αpi)pi is an isometry and so the Kraus operators it relates define the same map; i.e.,
ϕ = Ψ1 and so ϕ is extreme.

Remark 3.3.5. This last theorem immediately applies to the set of superchannels
S̃ : Md1(Mr1) −→Md2(Mr2) which are extensions of the same QSC; i.e., are equal on the
space S = S(d1, r1). A spanning set consisting of Choi matrices of quantum channels
may be chosen. In this case the space T may be chosen to be zero. For a trace-
preserving superchannel we can consider the set of TP extensions of the underlying
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QSC, these are the ones with T = span{Id2r2} being sent to span{Id1r1} (since ϕ being
trace-preserving is equivalent to ϕ∗ being unital). As shown for some QSCs this set
of extensions is empty.

Example 3.3.6 (Unitary superchannels). If U1 ∈ Md1 and U2 ∈ Mr1 are unitaries
then it’s easy to see conjugation by U1 ⊗U2 is a superchannel since if ϕ is a TP map,
then

Trr2 [U1 ⊗ U2(Cϕ)(U1 ⊗ U2)
∗] = Trr2 [U1 ⊗ U2(

∑
ij

Eij ⊗ ϕ(Eij))U
∗
1 ⊗ U∗

2 ]

=
∑
ij

(U1EijU
∗
1 ) · Tr(U2ϕ(Eij)U

∗
2 )

= U1(
∑
i

Eii)U
∗
1 = Id2 ,

so it satisfies the TP-preserving condition.

In fact every unitary superchannel is of this form. Let U(n) denote the unitaries
in Mn.

Theorem 3.3.7. If U ∈ U(dr) is a unitary such that the map S̃ : Md(Mr) −→Md(Mr)

with S̃(C) = UCU∗ is a superchannel then there exists unitaries U1 ∈ U(d) and
U2 ∈ U(r) such that U = U1 ⊗ U2.

We delay the proof of this until Chapter 5, where we also prove it in the case of
anti-unitary maps preserving channels, see Theorem 5.1.4.

By Theorem 3.3.4 any unitary superchannel S̃ is an extreme point of the set of
extensions of the underlying QSC. They will also always have minimal dimension e
for the characterisation theorem since the rank of Trr1 Trr2 CS̃ will be 1. To see this
write the matrix units of Md(Mr) as Eij ⊗ Fkl, 1 ≤ i, j ≤ d, 1 ≤ k, l ≤ r, where
Eij ∈ Md and Fkl ∈ Mr are the standard matrix units in their spaces. Then since
S(C) = U1 ⊗ U2CU

∗
1 ⊗ U∗

2 for U1 ∈ U(d), U2 ∈ U(r) we have

CS̃ =
∑
i,j

∑
k,l

Ei,j ⊗ Fk,l ⊗ U1Ei,jU
∗
1 ⊗ U2Fk,lU

∗
2 .

Now applying Trr1 Trr2 traces out the 2nd and 4th term giving

Trr1 Trr2 CS̃ = r ·
∑
i,j

Ei,j ⊗ U1Ei,jU
∗
1

= Diag(U1, . . . , U1)
∑
i,j

Ei,j ⊗ Ei,jDiag(U∗
1 , . . . , U

∗
1 ).
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Since Diag(U1, . . . , U1) has full rank and
∑

i,j Ei,j⊗Ei,j has rank 1 the overall matrix
has rank 1.

3.3.1 Extensions given by UCP maps

An interesting space of superchannels to study are those with r1 = r2 = 1. In this case
the dimension of S(d, 1) is 1, and in particular the only Choi matrix corresponding
to a channel is the identity matrix. Thus any unital completely-positive (UCP) map

S̃ : Md1 −→Md2 is a superchannel and all these maps define the same QSC.

The minimal dimension of the superchannel characterisation of such maps is given
by the rank of the Choi matrix. This allows us to give a nice example of a superchan-
nel, which is an extreme point of the set of extensions of its QSC, but which does not
have minimal dimension e.

Fix d1 = d2 = 3. The anti-symmetric Werner-Holevo channel is given by the map
ϕ : M3 −→M3

ϕ(ρ) =
Tr[ρ]I3 − ρT

2
.

This has Kraus operators

K1 =
1√
2

 0 1 0
−1 0 0
0 0 0

 =
1√
2

(|e1⟩⟨e2| − |e2⟩⟨e1|)

K2 =
1√
2

 0 0 1
0 0 0
−1 0 0

 =
1√
2

(|e1⟩⟨e3| − |e3⟩⟨e1|)

K3 =
1√
2

0 1 0
0 0 −1
0 1 0

 =
1√
2

(|e3⟩⟨e2| − |e2⟩⟨e3|)

Ignoring the scaling factor of 2, the pairs KiK
∗
j are:

K1K
∗
1 = |e1⟩⟨e1| + |e2⟩⟨e2|, K2K

∗
2 = |e1⟩⟨e1| + |e3⟩⟨e3|,

K3K
∗
3 = |e2⟩⟨e2| + |e3⟩⟨e3|, K1K

∗
2 = |e2⟩⟨e3|,

K1K
∗
3 = |e1⟩⟨e3|, K2K

∗
3 = −|e1⟩⟨e2|, K2K

∗
1 = |e3⟩⟨e2|,

K3K
∗
1 = |e3⟩⟨e1|, K3K

∗
2 = −|e2⟩⟨e1|.
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The set {KiK
∗
j }i,j is thus seen to be linearly independent. By Theorem 3.3.4 the

channel ϕ is an extreme point of the set of extensions. However the rank of its Choi
matrix is the number of Kraus operators, 3. Since any unitary map has Choi rank 1
this cannot be minimal.

3.4 Conclusion

Our results show that defining superchannels to act on the space of quantum channels
gives a different class of maps in comparison to the original definition of superchannels.
The standard definition of superchannel can be recovered by extending to the full set
of linear maps and this extension is not unique. Therefore many different quantum
superchannels can restrict to the same QSC, which means they are effectively the
same as maps on channels. Thus, if we are really only concerned with the action
of a superchannel on quantum channels, then we are really only concerned with the
corresponding QSC.

However, as shown in Remark 3.2.10, we can make sense of what a superchannel
does outside the space of channels by defining its action on channels on larger spaces.
Since the action of S and S ⊗ idn,n on channels uniquely determines what S does to
all maps in L(Md,Mr).

It would be interesting to see if there is a “best” choice of extension. For example
it may be that the minimal dimension e for superchannel characterisation occurs for
extreme points of the set of extensions, but this was not proved here and is an open
question. We were able to show that extreme points do not always give this minimal
dimension. It was also shown that TP extensions are not always available. It is
unclear what the restrictions are on the choice of extension.

Not much is known about the operator system of quantum channels. It might be
worth considering how the action of a map on this space determines the form of its
possible Stinespring representations, and whether this affects the characterisation of
superchannels.
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Chapter 4

Types of superchannels

In this chapter we discuss several types of superchannels: entanglement breaking su-
perchannels, dephasing superchannels, coherence breaking superchannels, and stabilizer-
preserving superchannels and how they relate to their underlying QSC.

Many of these types of superchannels are motivated by their use in describing
resource theories. It is thus interesting to note that they generally are not uniquely
defined by how they transform quantum channels but by their action on the whole
space of linear maps. The first type, Schur product maps is an exception to this. The
extension of a QSC to a Schur product map is unique.

4.1 Schur product superchannels

In this section we discuss superchannels given by the Schur product map, and show
they are unique extensions of QSC’s. We then use them to describe the form of some
mixed unitary superchannels, inspired by work on factorizable channels.

Definition 4.1.1. Given two matrices A = (aij), B = (bij) ∈ Md the Schur product
is the matrix

A ◦B = (aijbij).

For a matrix C ∈Md the Schur product map is denoted

SC : Md −→Md

SC(ρ) = C ◦ ρ
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Theorem 4.1.2. SC is completely positive if and only if C ≥ 0.

Proof. If SC is completely positive then since the matrix with all entries equal to 1
is positive, we must have C is positive. For the other direction, assume C ≥ 0. The
Choi matrix of SC is

CSC
=
∑
i,j

ci,jEi,j ⊗ Ei,j

which is a self-adjoint matrix since C is. It also has the same non-zero eigenvalues as
C since it sends all |ek⟩ ⊗ |el⟩ to 0 for k ̸= l, and on the remaining subspace it acts
identically to C

CSC
(|ek⟩ ⊗ |ek⟩) =

∑
i

ci,k|ei⟩ ⊗ |ei⟩

C|ek⟩ =
∑
i

ci,k|ei⟩

Hence by Choi’s theorem SC is completely positive.

Definition 4.1.3. A correlation matrix is a positive matrix C = (ci,j), with ci,i = 1
for all i.

Corollary 4.1.4. SC is a quantum channel if and only if C is a correlation matrix.

Proof. The trace-preserving condition requires I = Tr2CSC
=
∑

i ci,iEi,i. Thus ci,i =
1.

Definition 4.1.5. Fix a basis {|ei⟩}di=1. A quantum channel ϕ : Md −→ Md is a
dephasing channel if for all i we have

⟨ei|ϕ(ρ)|ei⟩ = ⟨ei|ρ|ei⟩

for all states ρ.

Since they don’t affect the diagonal elements of density matrices, which represents
the classical information of a state, dephasing channels can be interpreted as a form
of purely quantum noise.

Example 4.1.6. The phase flip channel ϕ : M2 −→M2 is given by

ϕ(ρ) = (1 − p)ρ+ pZρZ

where p ∈ (0, 1) and Z =

(
1 0
0 −1

)
. For p = 1

2
it diagonalizes the state.
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Theorem 4.1.7. A channel ϕ : Md −→Md is a dephasing channel if and only if it is
a Schur product channel.

Proof. Schur product channels multiply the diagonal by 1 so one direction is clear.
If ϕ preserves the diagonals of states, then the (i, i)-th entry of the (j, j)-th block of
the Choi matrix is

(Cϕ)(j,j),(i,i) = ⟨ei|ϕ(Ej,j)|ei⟩ = δi,j.

Thus the diagonals of the Choi matrix match that of a Schur product Choi matrix.
For a positive matrix A = (ai,j) the entries satisfy

|ai,j|2 ≤ aiiajj.

Therefore, most of the off diagonals of Cϕ will be zero except possibly the (i, j)-th
entry of the (i, j)-th block. This corresponds to a Schur product map.

We are interested in superchannels given by Schur product maps on Choi matrices.
Setting all dimensions equal, d1 = r1 = d2 = r2 = d, these are maps from Md(Md) to
itself.

Theorem 4.1.8 ([30]). A Schur product map SC : Md(Md) −→ Md(Md) is a super-
channel if and only if the matrix C ∈Md(Md) is a correlation matrix where every block
has constant diagonal i.e. C = ([Cij])

d
i,j=1 where for each i, j the matrix [Cij] ∈ Md

has constant diagonal.

Proof. Suppose C has that form. If ϕ is a channel, then since Tr(ϕ(Ei,j)) = δi,j, and
each matrix Ci,j has constant diagonal, we have

Tr2(C ◦ Cϕ) = Tr2(
∑
i,j

Ei,j ⊗ (Ci,j ⊗ ϕ(Ei,j))) =
∑
i

Ei,i = Id.

So SC preserves trace-preserving maps, and since it is completely positive it is a
superchannel.

Conversely, if SC is a superchannel and ϕ a channel, the trace of the (i, j)-th block
of SC(Cϕ) must be δi,j:

δi,j =
∑
k

⟨ei ⊗ ek|C ◦ Cϕ|ej ⊗ ek⟩ =
∑
k

c(i,j),(k,k)(Cϕ)(i,j),(k,k). (4.1)

For each k, the matrix Id ⊗ Ek,k is the Choi matrix of a channel. Inserting it into
Equation (4.1) gives 1 = c(i,i),(k,k) for all i, k. Thus C must be a correlation matrix.
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To see the other blocks of C have constant diagonal, we need a channel whose
Choi matrix has off diagonal elements. Let

dCϕ = Id ⊗ Id + Ei,j ⊗ Ek,k + Ej,iEk,k − Ei,j ⊗ El,l − Ej,i ⊗ El,l.

This satisfies the trace-preserving condition. To see it is positive let |ψ⟩ =
∑

i,k ai,k|ei⊗
ek⟩ and compute

⟨ψ|Cϕ|ψ⟩ = āi,kaj,k + āj,kai,k − āi,laj,l − āj,lai,l +
∑
i,k

|ai,k|2.

Using the identity |z1 + z2|2 = |z1|2 + |z2|2 + 2 Re(z1z̄2) for z1, z2 ∈ C we can see that
this is positive. Hence Cϕ is the Choi matrix of a channel. Tracing the (i, j)-th block
of C ◦ Cϕ gives

c(i,j),(k,k) − c(i,j),(l,l) = δi,j

and thus each block of C has constant diagonal.

Definition 4.1.9. A superchannel S : L(Md,Md) −→ L(Md,Md) is a dephasing super-
channel if it preserves the diagonals of Choi matrices of channels i.e for all channels
ϕ and all i, j ∈ {1, . . . , d} it satisfies

⟨ei|S(ϕ)(Ej,j)|ei⟩ = ⟨ei|ϕ(Ej,j)|ei⟩

As with dephasing channels on states, the dephasing superchannel is designed to
be a form of quantum noise, leaving untouched the classical; i.e., diagonal effects of
any input channel.

Theorem 4.1.10 ([30]). A superchannel S is a dephasing superchannel if and only
if its action on Choi matrices is a Schur product map.

Proof. Since the diagonal entries of correlation matrices are all 1 it is clear that Schur
product superchannels will be dephasing.

Note that the Choi matrix of a Schur product superchannel is

CSC
=
∑
i,j,k,l

c(i,j),(k,l)E(i,j),(k,l) ⊗ E(i,j),(k,l) ∈Md ⊗Md ⊗Md ⊗Md.

So the only non zero elements are the ((i, j), (k, l))-th entries in the ((i, j), (k, l))-
th blocks. We will show that a dephasing superchannel has the same form of Choi
matrix.
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If S is a superchannel (on Choi matrices) then the matrix

C
(i,k)
S := (Id2 ⊗ ⟨ei ⊗ ek|)CS(Id2 ⊗ |ei ⊗ ek⟩) ∈Md2

has as its ((i′, j′), (k′, l′))-th entry the ((i, i), (k, k))-th element of block ((i′, j′), (k′, l′)).
For a Schur product superchannel this is matrix is E(i,i),(k,k).

Using the reverse Choi formula we have

CS(ϕ) = Trd1r1 [CS(CT
ϕ ⊗ Ir2)]

and if S is dephasing then this gives

⟨ei ⊗ ek|Cϕ|ei ⊗ ek⟩ = Tr[Id1r1 ⊗ ⟨ei ⊗ ek|(CS)Id1r1 ⊗ |ei ⊗ ek⟩CT
ϕ ]

= Tr[C
(i,k)
S CT

ϕ ]
(4.2)

We can use this to show that the only non-zero entry of C
(i,k)
S is the ((i, i), (k, k))-th

element. First, C
(i,k)
S is positive, so it’s diagonals entries are non-negative. Note that

Choi matrices of the form

E(1,1),(i1,i1) + E(2,2),(i2,i2) + . . .+ E(d,d),(id,id)

are positive, with constant trace down the diagonal blocks, and partial trace to give
the identity. Thus they correspond to channels and can be inserted into Equation
(4.2). By choosing such matrices without E(i,i),(k,k) we get all the other diagonal

entries of C
(i,k)
S summing to 0. So they are zero and hence

C
(i,k)
S = E(i,i),(k,k)

as with Schur product channels.

This shows the diagonal of the Choi matrix of a dephasing superchannel matches
that of the Choi matrix of a Schur product map. Then since CS is positive, for the
other entries we can, as in Theorem 4.1.7, use the fact that for a positive matrix (ai,j),
|ai,j|2 ≤ aiiajj.

Remark 4.1.11. In the definition of dephasing superchannel, and in the proof of
Theorem 4.1.10 we only required action on channels. Indeed, we explicitly used Choi
matrices of channels. Thus it is a property of the underlying QSC of a superchannel.
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We can show that if a superchannel is given by a Schur product then it is the only
Schur product channel extending its corresponding QSC. Indeed, suppose SA and SB
are Schur product superchannels which have the same action on the space of quantum
channels. In Md(Mr) the standard basis elements which are block off-diagonal are in
S(d, r) and thus all the off diagonals in the blocks of A and B must match. Thus
the only elements needed to be checked are the diagonals of the blocks of A and B.
However considering the action on elements such as

⌊ r
2⌋∑

k=1

E(i,i),(k,k) −
2⌊ r

2⌋∑
l=⌊ r

2⌋
E(i,i),(l,l)

we can equate these. For example, in S(2, 2) all we require is
0 0 −1 0
0 0 0 1
−1 0 0 0
0 1 0 0

 .

Hence we have shown dephasing QSCs have unique extensions to superchannels.

Theorem 4.1.12. If S is a dephasing superchannel which extends a QSC

Γ : SCPTP (d1, r1) −→ SCPTP (d2, r2),

then for any other superchannel S ′ extending Γ, we have S = S ′.

4.1.1 Mixed unitary Schur product

Recall the completely depolarising channel δd : Md −→Md is defined as δd(ρ) = trd(ρ)Id
where trd is normalised trace. Let U(d) be the d× d unitary group. A mixed unitary
map is one which is a convex combination of unitary conjugations. The completely
depolarising channel is a mixed unitary channel as

δd(ρ) =
1

d2

d−1∑
a,b=0

Wa,bρW
∗
a,b

where Wa,b are the Weyl-Heisenberg unitaries, see [39].
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In [20] factorizable completely-positive maps are studied to give a reformulation
of the Connes embedding conjecture. A quantum channel ϕ was called factorizable
of degree d if and only if δd ⊗ ϕ is mixed unitary.

In [21] the following theorem is proved:

Theorem 4.1.13. Let C ∈ Mk be a correlation matrix and let d ∈ N. The map
δd ⊗ SC : Md ⊗Mk −→Md ⊗Mk is mixed unitary if and only if

C ∈ conv(Fk(d))

where Fk(d) = {(trd(U
∗
i Uj))

k
i,j=1 ∈Mk : U1, . . . , Uk ∈ U(d)}

Proof. If it is mixed unitary then for some probability distribution {pl}Ml=1 and uni-
taries Vl ∈ U(dk) we have δd ⊗ SC(A) =

∑M
l=1 plVlAV

∗
l . Take A = Id ⊗ Ei,i to get

δd ⊗ SC(Id ⊗ Ei,j) = Id ⊗ Ei,i

=
M∑
l=1

plVl(Id ⊗ Ei,i)V
∗
l

=
M∑
l=1

pl

k∑
s,t=1

Vl,s,iV
∗
l,t,i ⊗ Es,t,

where for the last equation we expanded Vl =
∑k

i,j=1 Vl,i,j ⊗Ei,j ∈Md⊗Mk. Each Vl
is block diagonal since for s = t ̸= i we have

0 =
M∑
l=1

plVl,s,iV
∗
l,s,i

which is a sum of positive terms, implying Vl,s,i = 0 for s ̸= i. Hence Vl =
⊕k

i=1 Vl,i,i
and each Vl,i,i ∈ U(d). Now for i ̸= j, let A = Id ⊗ Ei,j to see

δd ⊗ SC(Id ⊗ Ei,j) = ci,jId ⊗ Ei,j

=
M∑
l=1

pl

k∑
s,t=1

(Vl,s,iV
∗
l,t,j ⊗ Es,t)

=

(
M∑
l=1

plVl,i,iV
∗
l,j,j

)
⊗ Ei,j.
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Finally, since ci,j = trd(ci,jId) we have

ci,j =
M∑
l=1

pl trd(Vl,i,iV
∗
l,j,j)

which completes the first direction of the proof.

For the converse, the set of mixed unitary maps is a convex set, so we can consider
C = (trd(UiU

∗
j ))ki,j=1 ∈ Fk(d). If {Wl}d

2

l=1 are the Weyl-Heisenberg unitaries in U(d)

then defining W̃l,l′ =
⊕k

i=1Wl′UiWl ∈ U(dk). A calculation then shows that for
A = (Ai,j) ∈Mk(Md) we have

δd ⊗ SC(A) =
1

d4

d2∑
l,l′=1

W̃l,l′(Ai,j)W̃
∗
l,l′

which completes the proof.

This theorem can be modified to describe mixed unitary Schur product superchan-
nels. Note that the unitaries are of different sizes. For example consider products
of unitaries, if we follow the reverse direction of the proof of Theorem 4.1.13 then a
matrix of the form

C(i,j),(k,l) = (trd(U
∗
i V

∗
k VlUj)), Ui, Vi ∈ U(d), 1 ≤ i ≤ k

does give a mixed unitary map but the forward direction does not follow.

When tensoring two superchannels

S̃1 : Md1(Mr1) −→Md2(Mr2),

S̃2 : Md3(Mr3) −→Md4(Mr4)

we view the tensor S̃1 ⊗ S̃2 as sending Md1d3(Mr1r3) −→Md2d4(Mr2r4). That is, we are

interested in the induced map S̃1 ⊗ S2.

Remark 4.1.14. If we write d = d1d2 for d1, d2 ∈ N we can regard the completely
depolarizing channel as a superchannel δd1d2 : Md1(Md2) −→ Md1(Md2). To see the
TP-preserving condition suppose ϕ is a TP map so that Tr2Cϕ = Id1 . This implies
TrCϕ = d1 so then δd1d2(Cϕ) = 1

d2
Id1 ⊗ Id2 and the partial trace of this gives identity.
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Theorem 4.1.15. Let C ∈Mk2 be a superchannel correlation matrix and let d = d1d2
for d1, d2 ∈ N. The superchannel δd ⊗ SC : Md1k(Md2k) −→ Md1k(Md2k) is a convex
combination of unitary superchannels if and only if

C ∈ conv(F2
k (d1, d2))

where

F2
k (d1, d2) = {(trd1(U

∗
i Uj) · trd2(V ∗

mVn))
(k,k)
(i,j),(m,n)=(1,1) ∈Mk2 : Ui ∈ U(d1), Vi ∈ U(d2)}.

Proof. Suppose δd1d2 ⊗ SC(Aij) =
∑M

l pl(Ul ⊗ Vl)(Aij)(Ul ⊗ Vl)
∗ for unitaries Ul ∈

U(d1k) and Vl ∈ U(d2k).

Following the proof of Theorem 4.1.13, if Wi = Ui⊗Vi is written as a block matrix
in Mk2(Md1d2), then it can be shown that it is block diagonal

Wi =
k⊕
s=1

(
k⊕
a=1

Wi,(s.s),(a,a)) =
k∑

s,a=1

Wi,(s.s),(a,a) ⊗ Es,s ⊗ Ea,a

where each Wi,(s,s),(a,a) ∈ U(d1d2). But, if we write

Ui =
k∑

m,n=1

Ui,(m,n) ⊗ Em,n ∈Md1 ⊗Mk, some Ui,(m,n) ∈Md1

Vi =
k∑

p,q=1

Vi,(p,q) ⊗ Ep,q ∈Md2 ⊗Mk, some Vi,(p,q) ∈Md2

then equating Wi = Ui ⊗ Vi shows that the off diagonal blocks of Ui and Vi are zero
and so the diagonal blocks are unitaries, and that Wi,(s,s),(a,a) = Ui,(s,s) ⊗ Vi,(a,a). We
then have

c(ik,jl) =
M∑
m=1

pmtrd1d2(Wm,(i,i),(k,k)W
∗
m,(j,j),(l,l))

=
M∑
m=1

pmtrd1d2(Um,(i,i) ⊗ Vm,(k,k)(Um,(j,j) ⊗ Vm,(l,l))
∗)

=
M∑
m=1

pmtrd1(Um,(i,i)U
∗
m,(j,j))trd2(Vm,(k,k)V

∗
m,(l,l))

which proves the forward direction of the theorem. The proof of the converse is the
same as that of Theorem 4.1.13.
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Remark 4.1.16. Different factorisations of d = d1d2 will give different sets F2
k (d1, d2)

and they are all subsets of Fk2(d).

4.2 Entanglement-breaking superchannels

Here we look at entanglement-breaking superchannels which are a generalisation of
the well known entanglement-breaking maps. These were introduced in [2].

Definition 4.2.1. A CP map ϕ : Md1 ⊗Md2 −→Mr1 ⊗Mr2 is d1r1 : d2r2 separable if
it can be written as ϕ =

∑
i fi ⊗ gi for CP maps fi : Md1 −→ Mr1 , gi : Md2 −→ Mr2 .

This is equivalent to the Choi matrix Cϕ being d1r1 : d2r2 separable meaning it can
be written, after commuting tensor factors, as Cϕ =

∑
iAi⊗Bi for positive operators

Ai ∈Md1 ⊗Mr1 and Bi ∈Md2 ⊗Mr2 .

Definition 4.2.2. A CP map ϕ : Md −→Mr is entanglement-breaking if for any n ∈ N
and any positive ρ ∈Mn ⊗Md the matrix idn ⊗ ϕ(ρ) is separable. This is equivalent
to the Choi matrix Cϕ being d : r separable.

Definition 4.2.3. A superchannel S : L(Md1 ,Mr1) −→ L(Md2 ,Mr2) is an entanglement-
breaking superchannel if for every d3, r3 ∈ N and CP map ϕ ∈ L(Md3⊗Md1 ,Mr3⊗Mr1)
the map idd3,r3 ⊗ S(ϕ) is separable.

We show this is equivalent to the induced map on Choi matrices S̃ : Md1(Mr1) −→
Md2(Mr2) being entanglement breaking.

Theorem 4.2.4 ([2]). Let S : L(Md1 ,Mr1) −→ L(Md2 ,Mr2) be a quantum superchan-
nel. Then the following are equivalent:

(i) S is an entanglement-breaking superchannel

(ii) CS̃ is d1r1 : d2r2 separable

(iii) S̃ is an entanglement-breaking map.

Proof. The equivalence of (ii) and (iii) is a well-known property of entanglement
breaking maps.

60



Recall the map Φ+ from Remark 2.1.3 given by

Φ+ =
∑
i,j,k,l

Ei,j,k,l ⊗ Ei,j,k,l ∈ L(Md1 ⊗Md1 ,Mr1 ⊗Mr1)

As noted, after commuting the tensor factors in the Choi matrix of idd1r1 ⊗S[Φ+] we
get the Choi matrix of CS̃. Now if (i) holds it implies idd1r1 ⊗ S[ϕ+] is d1r1 : d2r2
separable, which from the definition, means we can write

CS̃ =
∑
i

Ai ⊗Bi

for positive Ai ∈ Md1 ⊗Mr1 , and Bi ∈ Md2 ⊗Mr2 . Hence, S̃ is separable, and (i)
implies (ii) and (iii).

To see how (ii) implies (i), consider an arbitrary CP map ϕ ∈ L(Md3 ⊗Md1 ,Mr3 ⊗
Mr1). Then using the reverse Choi formula, we have

Cidd3r3⊗S(ϕ) = Trd3r3d1r1 [C ˜idd3r3⊗S
(CT

ϕ ⊗ Id3r3 ⊗ Id2r2)]

= Trd3r3d1r1 [(ϕ
d3
+ ⊗ ϕr3+ ⊗ CS̃)(CT

ϕ ⊗ Id3r3 ⊗ Id2r2)]

= Trd1r1 [Id3 ⊗ Ir3 ⊗ CS̃(CΓ1
ϕ ⊗ Id2r2)].

Where Γ1 is the partial transpose on system Md1 ⊗Mr1 . Here we equated C ˜idd3r3⊗S

and (ϕd3+ ⊗ ϕr3+ ⊗ CS̃) since we are tracing out the system d3 and r3. Now, writing

CS̃ =
∑
i

Ai ⊗Bi

for positive Ai ∈Md1 ⊗Mr1 , and Bi ∈Md2 ⊗Mr2 we see that

Cidd3r3⊗S(ϕ) =
∑
i

Trd1r1 [(Id3 ⊗ Ir3 ⊗ Ai)C
Γ1
ϕ ] ⊗Bi

=
∑
i

Trd1r1 [(Id3 ⊗ Ir3 ⊗ ATi )Cϕ] ⊗Bi

which is a sum of tensors of positive operators, which implies idd3r3⊗S(ϕ) is separable.
Since ϕ was abritrary, by the definition of entanglement-breaking superchannel this
completes the proof.
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Focusing on the entanglement-breaking of channels specifically, we can see how
QSCs affect this. The concept of entanglement-breaking superchannel does not apply
to QSCs unless they are extended to be superchannels. Whether or not the result-
ing superchannel is entanglement-breaking depends on the extension. For example,
consider superchannels acting between spaces of Choi matrices M2(M1) −→ M2(M1).
Written in term of their Choi matrices, the following two maps define the same QSC,

CS̃1
=


1
2

0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

2

 ,

CS̃2
=


1
2

0 0 1
2

0 0 0 0
0 0 0 0
1
2

0 0 1
2


however the first is separable and the second is entangled. Thus S1 is entanglement-
breaking and S2 is not, though they are extensions of the same QSC.

This implies that a superchannel can be entanglement-breaking on all quantum
channels without being entanglement-breaking in general.

Remark 4.2.5. Just as positive partial transpose (PPT) maps generalise entanglement-
breaking channels, one can define a notion of PPT superchannel. One way to define
these superchannels is to set the pre and post processing channels as PPT maps.
A more general way is to require the Choi matrix to be PPT. Superchannels with
separable Choi matrices give an example of this, see [18] and [37].

4.3 Coherence-breaking superchannels

In this section we discuss some of the coherence-breaking superchannels from [31] and
[26]. These were introduced to study the resource theory of coherence, extended to
channels. Although we use the definitions of coherence breaking superchannels from
[26], the results need to be stated more carefully, as a property being defined on all
linear maps vs just quantum channels can have large consequences. This is essentially
the moral of this thesis.

Coherence is responsible for many quantum effects, such as the interference pat-
terns found in the double-slit experiment, [33]. For a density matrix, decoherence is
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the process whereby the off-diagonal terms are reduced to 0, due to noise from the
environment. This represents the quantum state becoming a classical probabilistic
mixture.

Definition 4.3.1. Given a fixed basis {ei} for Cn, the completely dephasing channel
Dn : Mn −→Mn is defined by

Dn(ρ) =
n∑
i=1

|ei⟩⟨ei|ρ|ei⟩⟨ei|.

A state ρ ∈Mn is incoherent if Dn(ρ) = ρ.

A channel ϕ : Md −→ Mr is a maximally incoherent operation (MIO) if it maps
incoherent states to incoherent states. This is equivalent to ϕ satisfying

Dr ◦ ϕ ◦ Dd = ϕ ◦ Dd.

A channel ϕ : Md −→Mr is a classical channel if it satisfies

ϕ = Dr ◦ ϕ ◦ Dd.

Example 4.3.2. As they leave the diagonals untouched, a Schur product channel is
an example of a maximally incoherent operation.

Definition 4.3.3. The completely dephasing superchannel is given by

∆i : L(Mdi ,Mri) −→ L(Mdi ,Mri)

∆i(ϕ) = Dri ◦ ϕ ◦ Ddi .

A superchannel S : L(Md1 ,Mr1) −→ L(Md2 ,Mr2) is a maximally incoherent superchan-
nel (MISC) if it maps classical channels to classical channels. This is equivalent to S
satisfying

∆2 ◦ S ◦ ∆1 = S ◦ ∆1.

Theorem 4.3.4 ([31]). If S : L(Md1 ,Mr1) −→ L(Md2 ,Mr2) is a superchannel then
∆2 ◦ S and S ◦ ∆1 satisfy

C∆̃2◦S̃ = idd1r1 ⊗Dd2 ⊗Dr2(CS̃)

and
CS̃◦∆̃1

= Dd1 ⊗Dr1 ⊗ idd2r2(CS̃).
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Proof. For any input Cϕ the action of ∆̃2 is

∆̃2(Cϕ) = C∆2(ϕ)

= CDr2◦ϕ◦Dd2

= (idd2 ⊗Dr2) ◦ (idd2 ⊗ ϕ) ◦ (idd2 ⊗Dd2)(ϕ
d2
+ )

= (DT
d2
⊗Dr2) ◦ (idd2 ⊗ ϕ)(ϕd2+ )

= (Dd2 ⊗Dr2)(Cϕ).

Since C∆̃2◦S̃ = idd1r1 ⊗ ∆̃2(CS̃) the first result follows. For the second equation, we

have a similar description for the action of ∆̃1, and then

CS̃◦∆̃1
= (idd1r1 ⊗ S̃) ◦ (idd1r1 ⊗Dd1 ⊗Dr1)(ϕ

d1r1
+ )

= (DT
d1
⊗DT

r1
⊗ idd2r2) ◦ (idd1r1 ⊗ S̃)(ϕd1r1+ )

= Dd1 ⊗Dr1 ⊗ idd2r2(CS̃).

Theorem 4.3.5 ([31]). A superchannel S is a MISC if and only if

Dd1 ⊗Dr1 ⊗Dd2 ⊗Dr2(CS̃) = Dd1 ⊗Dr1 ⊗ idd2r2(CS̃).

Proof. By definition of MISC we have

C∆̃2◦S̃◦∆̃1
= CS̃◦∆̃1

.

Using the previous theorem the right side of this equation is

Dd1 ⊗Dr1 ⊗ idd2r2(CS̃)

while the left side can be expanded as

C∆̃2◦S̃◦∆̃1
= idd1r1 ⊗Dd2 ⊗Dr2(CS̃◦∆̃1

)

= Dd1 ⊗Dr1 ⊗Dd2 ⊗Dr2(CS̃)

In [26] the notion of a coherence-breaking superchannel is introduced.
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Definition 4.3.6. A channel ϕ : Md −→Mr is a coherence-breaking channel (CBC) if
it maps any state to an incoherent state.

A superchannel S : L(Md1 ,Mr1) −→ L(Md2 ,Mr2) is a coherence-breaking super-
channel (CBSC) if it sends any linear map ϕ ∈ L(Md1 ,Mr1) to a coherence-breaking
channel.

Remark 4.3.7. If ϕ is a CBC with respect to the standard basis, then it satisfies

Tr[Ei,j ⊗ Ek,lCϕ] = 0

for any i, j, and k ̸= l. It has a block diagonal Choi matrix,

Cϕ =


∗ 0
0 ∗

∗ 0
0 ∗

∗ 0
0 ∗

∗ 0
0 ∗


CBSC’s have a similar property, the reduced Choi matrix C2

S̃
:= Trd1r1 CS̃ satisfies

Tr[Ei,j ⊗ Ek,lC
2
S̃
] = 0

for any i, j, and k ̸= l. The Choi matrix of S̃ will consist of d1 · r1 block diagonal
matrices in Md2(Mr2).

This similarity between CBSC’s and CBC’s motivates the definition of CBSC
involving action on all linear maps. If we only require the underlying QSC to be
coherence-breaking we won’t necessarily recover a CBSC. For example, the following
superchannel sends every quantum channel to a CBC but not every linear map: define
S̃ : M2(M1) −→M2(M2) as

S̃(E1,1) = I4,

S̃(E2,2) = I4,

S̃(E1,2) = E1,4,

S̃(E2,1) = E4,1.

(4.3)

Suitably scaled this is a superchannel. Since it outputs Choi matrices which are
not block diagonal it cannot be a CBSC. Only E1,1 +E2,2 is Choi matrices of channels
in M2(M1). Their outputs are diagonal Choi matrices which correspond to CBC’s.
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Thus, as a QSC, it only outputs coherence-breaking channels, despite not being a
CBSC.

If we change the action of S to give S̃(E1,2) = S̃(E2,1) = 0 then it defines the same
QSC but it now only outputs diagonal Choi matrices. This alternative extension is a
CBSC.

Definition 4.3.8. A superchannel S is a strong coherence-breaking superchannel if,
for every input channel ϕ, S(ϕ) is a classical channel.

Remark 4.3.9. Being a strong coherence breaking superchannel is a property of
the underlying QSC. For decoherence with respect to the standard basis, classical
channels have diagonal Choi matrices. Thus, the previous discussion shows that not
every strong coherence-breaking superchannel is a CBSC. The superchannel defined
in Equation (4.3) is a strong coherence-breaking superchannel but not a CBSC.

This also shows that strong coherence-breaking superchannels may have non-
diagonal Choi matrices.

The definition of strong coherence-breaking superchannel is equivalent to saying
that for any channel ϕ,

∆2 ◦ S(ϕ) = S(ϕ).

Note, however, that while ∆2 ◦ S = S is sufficient for a superchannel to be strong
coherence-breaking, it is not necessary, as shown in the previous two remarks. Indeed,
the superchannel defined in Equation (4.3) satisfies

Dd2 ⊗Dr2 ◦ S̃(E1,2) = 0

and so ∆2 ◦ S ̸= S.

The following theorem shows that Choi matrix being block diagonal in the inco-
herent basis is enough for a superchannel to strong coherence-breaking.

Theorem 4.3.10. If a superchannel’s Choi matrix is of the form

CS̃ =
∑
i,j,k

ai,j,k|e1i ⟩⟨e1j | ⊗ |e2k⟩⟨e2k|

where {eki }i ⊂ Cdk ⊗ Crk is the incoherent basis for system k, then it is a strong
coherence-breaking superchannel.

Proof. Using Theorem 4.3.4 we have

C∆̃2◦S̃ = idd1r1 ⊗Dd2 ⊗Dr2(CS̃) = CS̃

Therefore, ∆2 ◦ S = S, which implies S is strong coherence-breaking.
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4.4 Stabilizer-preserving channels

In [32] the action of superchannels on stablizer-preserving channels is considered. We
will quickly introduce the stabilizer formalism. The Pauli operators are

I2 =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

The 1-qubit Pauli group is P1 = (±1,±i){I2, X, Y, Z}. The n-qubit Pauli group is

Pn = (±1,±i){A1 ⊗ A2 ⊗ . . .⊗ An|Ai ∈ P1}.

An n-qubit state |ψ⟩ ∈ C2n is a stabilizer pure state if there is an abelian subgroup
S ⊂ Pn, |S| = 2n such that A|ψ⟩ = |ψ⟩, for all A ∈ S.

A stabilizer circuit is one where the gates are operators from the normalizer of
the Pauli groups. The Gottesman-Knill theorem says that stabilizer circuits can be
perfectly simulated in polynomial time by a probabilistic classical computer. Non-
stabilizer states are called magic states, and the use of magic states combined with
stabilizer circuits can achieve universal quantum computation, [15, 27, 11].

With this in mind, magic states are seen to be a valuable resource. A resource
theory of magic is one in which the free states are some or all of the stabilizer states. In
this subsection we look at channels which preserve these stabilizer states, particularly
completely stabilizer-preserving operations. It is worth nothing that this is a larger
class than stabilizer circuits, see [22].

Definition 4.4.1. A density matrix ρ ∈Md is a stabilizer state if it is in the convex
hull of pure stabilizer states. Denote the set of stabilizer states in Md as STAB(d).

Completely stabilizer-preserving operations were defined in [34].

Definition 4.4.2. A channel ϕ : Md −→ Mr is a completely stabilizer-preserving
operation (CSPO) if for any n ∈ N we have

ϕ⊗ idn(ρ) ∈ STAB(rn), ∀ρ ∈ STAB(dn).

It is also shown that CSPOs are exactly the maps whose Choi matrix is a stabilizer
state.
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Theorem 4.4.3 ([34]). The map ϕ : Md −→Mr is a CSPO if and only if

1

d
Cϕ ∈ STAB(dr).

Definition 4.4.4. A superchannel S : L(Md1 ,Mr1) −→ L(Md2 ,Mr2) is completely
CSPO-preserving if for any d3, r3 ∈ N, and CSPO ϕ : Md1 ⊗Md3 −→ Mr1 ⊗Mr3 the
map S ⊗ idd3,r3(ϕ) is a CSPO.

Theorem 4.4.5 ([32]). S : L(Md1 ,Mr1) −→ L(Md2 ,Mr2) is a completely CSPO-
preserving superchannel if and only if

1

r1d2
CS̃ ∈ STAB(d1r1d2r2).

Although they have the same action on channels (and hence CSPO’s), extensions
of a QSC can be completely CSPO-preserving or not depending on how the extension
is done. In [34] the following example of a non-stabilizer state is given to show that
a map which preserves stabilizer states does not necessarily do so completely:

1

2

(
1 ei

π
4

e−i
π
4 1

)
⊗
(

1 0
0 0

)
+

1

2

(
1 −eiπ4

−e−iπ4 1

)
⊗
(

0 0
0 1

)

=
1

2


1 0 ei

π
4 0

0 1 0 −eiπ4
e−i

π
4 0 1 0

0 −e−iπ4 0 1

 /∈ STAB(4)

As the Choi matrix of a map S̃ : M2(M1) −→ M2(M1) this defines a superchannel
since it is a unital map, and S(2, 1) = span{I2}. An alternative extension of the same
QSC is given by the maximally entangled state

1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 ,

which is a stabilizer state, and thus gives a completely CSPO-preserving superchannel.
Similarly, 1

4
I4 gives a stabilizer state with the same QSC. So we can conclude that
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• Action on CSPOs does not uniquely define a superchannel.

• Completely preserving CSPO’s does not mean every other equivalent super-
channel preserves them completely.

• Different completely CSPO-preserving superchannels can have the same QSC.

Remark 4.4.6. As with PPT maps extending the notion of entanglement-breaking
maps, another way to study the resource theory of magic is to use the discrete Wigner
function. States with positive discrete Wigner function generalise stabilizer states,
and completely positive-Wigner-preserving operations (CPWP) generalise completely
stabilizer-preserving operations. The natural way to apply superchannels to this is
to look at superchannels which preserve CPWP channels in a complete sense. These
turn out to be those whose Choi matrix has positive discrete Wigner function, see
[38].
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Chapter 5

Channel Symmetries

In this chapter we discuss the paper [4] giving a slightly altered proof of the main
theorem. We also discuss how it differs for the space of quantum channels.

This chapter is a bit of a change from the previous ones since, while it uses many
of the same techniques and some of the same results, it is no longer about superchan-
nels. Rather than linear maps on states, Wigner’s theorem considers a broader set of
maps on quantum states which drops any requirement of linearity. All that is required
is that certain probabilities are preserved. As a result, both unitary and anti-unitary
maps are allowed. Similarly, here we will look at maps on quantum channels which
preserve some of the structure of the space, without the same requirements as super-
channels. Nevertheless, a similar theorem as the characterisation of superchannels,
Theorem 2.2.1, will be proved, but with the pre and post processing channels replaced
with unitary or anti-unitary maps.

5.1 Splitting unitaries

In this section we prove that unitary maps which preserve quantum channels split
into the tensor of unitaries on the domain and range spaces. We use results from the
original paper on quantum superchannels, [6], and give the proofs.

Theorem 5.1.1 ([6]). If A ∈Md ⊗Mr satisfies Tr[AC] = 1 for all Choi matrices of
channels C ∈Md⊗Mr then A = ρ⊗ Ir for a trace one matrix ρ ∈Md. If A ≥ 0 then
ρ ≥ 0.
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Proof. Let E ∈Md ⊗Mr be a positive matrix such that Trr E = P ≤ Id and σ some
density matrix in Mr. Then for B = (Id−P )⊗σ we have Trr[B+E] = Id−P+P = Id,
so B + E is the Choi matrix of a channel. Then since Id ⊗ σ is the Choi matrix of a
channel

Tr[AE] = 1 − Tr[AB]

= 1 − Tr[A(Id ⊗ σ)] + Tr[A(P ⊗ σ)]

= Tr[A(P ⊗ σ)].

Define ρ = Trr[A(Id ⊗ σ)]. Using the last equation we compute,

Tr[AE] = Tr[A(P ⊗ σ)]

= Tr[A(Id ⊗ σ)(P ⊗ Ir)]

= Tr[Trr[A(Id ⊗ σ)]P ]

= Tr[ρP ]

= Tr[(ρ⊗ Ir)E].

This holds for all positive E which implies A = ρ⊗ Ir. The matrix ρ must have trace
1 since for any Choi matrix of a channel C we have 1 = Tr[(ρ⊗Ir)C] = Tr[ρTrr[C]] =
Tr[ρ]. Positivity of ρ from A follows from the formula defining ρ.

Theorem 5.1.2 ([6]). If S : Md1(Mr1) −→ Md2(Mr2) is a linear map which preserves
Choi matrices of channels then there is a trace-preserving linear map N : Md2 −→Md1

such that
S∗(ρ⊗ Ir2) = N(ρ) ⊗ Ir1 , ρ ∈Md2 .

If S is completely positive then N is a quantum channel.

Proof. For any density matrix ρ ∈ Md2 , and any Choi matrix of a channel C ∈
Md1 ⊗Mr1 , we have

Tr[S∗(ρ⊗ Ir2)C] = Tr[ρ⊗ Ir2S(C)]

= 1

Hence by the previous theorem S∗(ρ ⊗ Ir2) = ρ′ ⊗ Ir1 for some trace one matrix
ρ′ ∈Md1 . For any density matrix σ ∈Mr1 we can take ρ′ = Trr1 [S

∗(ρ⊗ Ir2)(Id1 ⊗σ)].
In particular let σ = 1

r1
Ir1 to define

N(ρ) :=
1

r1
Trr1 [S

∗(ρ⊗ Ir2)]

If S is completely positive, then N is the composition of three completely positive
maps, hence is CP.
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We need the following result from [13, Theorem 2.3].

Theorem 5.1.3. If U ∈ Md ⊗Mr is a unitary such that for all X, Y ∈ Md, and
Z ∈Mr with TrZ = 0 it satisfies

Tr[U(X ⊗ Z)U∗(Y ⊗ Ir)] = 0,

then there exists unitaries U1 ∈Md, and U2 ∈Mr, such that U = U1 ⊗ U2.

Theorem 5.1.4. If U ∈ U(dr) is a unitary such that the map S̃ : Md(Mr) −→
Md(Mr) with S̃(C) = UCU∗ preserves the Choi matrices of channels, then there
exists unitaries U1 ∈ U(d) and U2 ∈ U(r) such that U = U1 ⊗ U2. The same is true

if S̃(C) = UCTU∗.

Proof. First the unitary conjugation. Unitary conjugations are completely positive
so by Theorem 5.1.2 we have

S̃∗(ρ⊗ Ir2) = N(ρ) ⊗ Ir1 , ρ ∈Md2

for some quantum channel N : Md2 −→ Md1 . Now for any X, Y ∈ Md and Z ∈ Mr

with TrZ = 0 we have

Tr[U(X ⊗ Z)U∗(Y ⊗ Ir)] = Tr[(X ⊗ Z)(N(Y ) ⊗ Ir)] = 0.

By the previous theorem U = U1 ⊗ U2.

If S̃(C) = UCTU∗ preserves channels, we again get a linear map N with S̃∗(ρ ⊗
Ir2) = N(ρ) ⊗ Ir1 , and similarly,

Tr[U(XT ⊗ ZT )U∗(Y ⊗ Ir)] = Tr[S(X ⊗ Z)(Y ⊗ Ir)] = 0

for any matrices X, Y and Z with TrZ = 0. So the unitary U = U1 ⊗ U2.

5.2 Wigner’s Theorem

Wigner’s theorem says that any bijective map, H −→ H, on a Hilbert space that
preserves the transition probability |⟨ϕ|ψ⟩| between any two vectors is given by a
unitary or anti-unitary map. An equivalent version of Wigner’s theorem can be given
in terms of density matrices. Let D(H) be the set of density matrices acting on H.
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Definition 5.2.1. A state space symmetry is a bijective map S : D(H) −→ D(H)
which satisfies

S(pρ+ (1 − p)σ) = pS(ρ) + (1 − p)S(σ), ∀ρ, σ ∈ D(H), p ∈ [0, 1]

Wigner’s theorem then says that every state space symmetry is given by either
a unitary map ρ 7→ UρU∗ or anti-unitary map ρ 7→ UρTU∗, where U ∈ B(H) is a
unitary.

Remark 5.2.2. As shown in Theorem 2.3.1, the only quantum channels which are
reversible are the unitary channels. So as far as physically realistic operations are
concerned, the only state symmetries are unitary maps.

Remark 5.2.3. There are many different ways of formulating Wigner’s theorem, de-
pending on how you define the term symmetry. As mentioned, it was originally stated
in terms of maps which preserve the transition probability, and can be reformulated
in terms of map which preserve the structure of the space of quantum states. An-
other type of symmetry is a map which preserves the algebraic structure of the space
of observables, that is, self-adjoint operators in B(H). See [14] for a discussion on
linking these concepts together in the more general setting of von Neumann algebras.

Recall that a quantum operation is a completely positive trace non-increasing map
ϕ : Md −→ Mr. In terms of Choi matrices, the set of operations is just the positive
matrices E ∈ Md(Mr) with TrE ≤ Id. Define OP (d, r) to be the set of quantum
operations from Md to Mr, and note that its span is the whole space of linear maps.

Definition 5.2.4. An operation space symmetry is a bijective map S : OP (d1, r1) −→
OP (d2, r2) which sends the null operation to the null operation and satisfies

S(pϕ+ (1 − p)ψ) = pS(ϕ) + (1 − p)S(ψ), ∀ϕ, ψ ∈ OP (d1, r1), p ∈ [0, 1].

In [4] it is shown that every operation space symmetry and state space symmetry
extends to give a bijective linear map between the spaces spanned by the sets they
act on.

They also preserve the set of quantum channels:

Theorem 5.2.5. If S is an operation space symmetry then it sends quantum channels
to quantum channels.
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Proof. Let ϕ be a quantum channel. Channels are operations and so S(ϕ) is an
operation. We can complete S(ϕ) to a channel i.e. choose a quantum operation ψ
such that for some channel ϕ′ we have

ϕ′ = S(ϕ) + ψ.

Applying the inverse:
S−1(ϕ′) = ϕ+ S−1(ψ).

This implies S−1(ψ) = 0 since otherwise S−1(ϕ′) would be a trace-increasing map,
and thus not an operation. Therefore

S(ϕ) = ϕ′,

which completes the proof.

Also in [4] the following theorem is shown

Theorem 5.2.6. If S : L(Md,Mr) −→ L(Md,Mr) is an operation space symmetry

then the corresponding map on Choi matrices S̃ : Md(Mr) −→ Md(Mr) is state space
symmetry.

We can use this to give an alternative proof of their main theorem, that every
operation space symmetry is given by composing the input operation with two state
symmetries on either side.

Theorem 5.2.7. If S : Md(Mr) −→ Md(Mr) is an operation space symmetry, then
there are state space symmetries Spost : Mr −→ Mr and Spre : Md −→ Md, both either
unitary or anti-unitary, such that

S(ϕ) = Spost ◦ ϕ ◦ Spre.

Proof. By Theorem 5.2.6 the induced map on Choi matrices is a state space symmetry.
Consider first the case where S̃ is a unitary map. Then for any map ϕ we have
S̃(Cϕ) = UCϕU

∗. This is a completely positive map which sends channels to channels
and thus is a superchannel. Hence by Theorem 5.1.4 the unitary splits as U = U1⊗U2.
Now, using the fact that for the maximally entangled state (A⊗I)|ϕ+⟩ = (I⊗AT )|ϕ+⟩,
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we have

S̃(Cϕ) = U1 ⊗ U2CϕU
∗
1 ⊗ U∗

2

=
∑
i,j

U1Ei,jU
∗
1 ⊗ U2ϕ(Ei,j)U

∗
2

= (idd ⊗ U2) ◦ (idd ⊗ ϕ) ◦ (U1 ⊗ idd)(ϕ+)

= (idd ⊗ U2) ◦ (idd ⊗ ϕ) ◦ (idd ⊗ UT
1 )(ϕ+)

= CU2◦ϕ◦UT
1
.

Thus S(ϕ) = U2 ◦ ϕ ◦ UT
1 .

If S̃ is an anti-unitary map, S̃(Cϕ) = U ◦ (Td ⊗ Tr)(Cϕ) = UCT
ϕ U

∗, then since it
preserves channels Theorem 5.1.4 again applies. That is, U = U1 ⊗ U2. Now we can
go through the same calculation to get

S(ϕ) = (U2 ◦ Tr) ◦ ϕ ◦ (U1 ◦ Td)T

as required.

Similar to what we have done for QSCs and superchannels, we can try to define
channel symmetries using the operator system of quantum channels. Following the
approach of operation symmetries we may require it to respect convex combinations,
and preserve the null operation, which then implies it extends to give a unique linear
map.

Definition 5.2.8. A channel symmetry is a bijective linear map

S : SCPTP (d1, r1) −→ SCPTP (d2, r2)

which preserves the set of quantum channels.

Note that we cannot even in principle apply Theorem 5.2.6 to channel symmetries.
While the induced map on Choi matrices will preserve states, it cannot be a state
symmetry as the set of Choi matrices of channels is a strict subset of the set of states.
An extension of such a map to the full space of linear maps need not be bijective.

Indeed, consider the identity QSC on S(2, 1) = span{I2}. This is clearly a channel
symmetry. It can be extended to the identity superchannel on M2(M1) which will
give an operation symmetry. But it can also be extended to the superchannel which
sends the off diagonal basis elements, E1,2, E2,1 ∈M2 to zero. This demonstrates two
facts:
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1. The superchannel extension of a QSC which is a channel symmetry does not
have to be an operation symmetry or even bijective.

2. Unitary superchannels are not unique extensions of their QSC i.e. there might
be a non-unitary superchannel with the same action on quantum channels.

If we impose the extra condition of being positive in both directions then an
extension of a channel symmetry gives an operation symmetry:

Theorem 5.2.9. If S is a channel symmetry with a positive extension to the whole
space of linear maps then it preserves quantum operations. If, in addition, the exten-
sion has a positive inverse, then it is an operation symmetry.

Proof. Let E be the Choi matrix of a quantum operation. For some other operation
B we have E+B is the Choi matrix of a channel. Since S̃ preserves channels we have

S̃(E +B) = S̃(E) + S̃(B) = C,

where C is the Choi matrix of a channel. S̃(E) and S̃(B) are positive operators
summing to give a channel so they must be operations.

If S has a positive inverse the same applies and so it’s a bijective linear map
preserving quantum operations.

Any unitary or anti-unitary map will obviously give both a channel and operation
symmetry. If a channel symmetry is a QSC then it will extend to give a map which
preseves operations but may not have a positive inverse.

Remark 5.2.10. While completely positive maps on operator systems have a com-
pletely positive extension to the whole C∗-algebra, it is not true of positive maps
defined on operator systems. The counterexample Arveson gave used the fact that
positive maps with norm 2 could not be extended. A recent paper, [5], gave some
other counterexamples, showing that positive maps with norm 1 cannot necessarily
be extended.

They also mention the possibility that the fractional dimension of the operator
system compared with its C∗-algebra may be a limiting factor to constructing these
non-extendable positive maps. For the space of quantum channels, SCPTP (d, r), its
fractional dimension is

d2r2 − d2 + 1

d2r2
= 1 − 1

r2
(1 − 1

d2
).
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Generally this fraction is large compared to the examples they gave of 1/2 and 1/4.
For r = 1 and large d this can be made arbitrarily small. Thus there may be a large
class of extendable positive maps in this case.
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Chapter 6

Conclusion

Given the importance and ubiquity of quantum channels, the space SCPTP (d, r) is
an interesting and worthwhile space to study. We have shown that, as an operator
system, we can use the theory of completely-positive maps on this space to give a sen-
sible definition of superchannels, and that this definition is distinct from the standard
definition. Nevertheless, these QSC’s can be extended to give quantum superchannels,
and the non-uniqueness of the extension leads to different characterisations, implying
a different physical implementation.

Since quantum superchannels are mainly motivated to study the evolution of
quantum channels, understanding the behaviour and structure of QSC’s may be the
better way to describe this evolution. We have seen that for many of the classes of
superchannels which have been studied, the effect they have on quantum channels
is not enough to define them. On the other hand, for Schur product superchannels
the concept of QSC and superchannel coincide. It would be interesting to better
understand what restrictions the space SCPTP (d, r) puts on superchannels to get
this uniqueness of extension. For example, in Theorem 3.2.11 we saw two of the same
extensions of a QSC satisfy:

Trd1 CS̃1−S̃2
= 0

For which classes of maps does this always hold? And can we say any more?

The set of extensions of a QSC is a convex set. The extreme points of this set
were characterised by Theorem 3.3.4 in terms of their Kraus operators. At the same
time, the minimal dimension in the superchannel characterisation theorem is given
by Choi-Kraus rank of the reduced Choi matrix of a superchannel. So it would seem
that the extensions which have minimal dimension e tend to be given by the extreme
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points, and some of the examples given confirm this. However we were not able to
prove it. We were able to give a counterexample to the converse.

It would also be nice to better understand SCPTP (d, r). Perhaps there is a nice
basis for this space, which could give a theorem like Choi’s theorem for CP maps on it.
For large r this space is increasingly large compared to L(Md,Mr), which could affect
the possibility of non-unique extensions of QSC’s on this space for higher dimensions.

In general the theory of quantum superchannels has many avenues to explore, due
to the wide body of knowledge on quantum channels. One topic we touched on was
factorizable superchannels, which gave a generalisation of the concept for channels.
It is always tempting to think of superchannels whenever CP maps on tensor spaces
are considered. For example, in [36] a quantum no-signalling (QNS) correlation is a
quantum channel Φ : MX ⊗MY →MA ⊗MB which satisfies

TrA Φ(ρ) = 0 whenever TrX(ρ) = 0

and
TrB Φ(ρ′) = 0 whenever TrY (ρ′) = 0.

If such a map is unital then it is a superchannel (acting on the space of Choi matrices),
since for a trace-preserving map ϕ we have

TrY (Cϕ −
1

|Y |
IX ⊗ IY ) = 0

and thus by the second condition

TrB(Φ(Cϕ −
1

|Y |
IX ⊗ IY )) = 0

and so if Φ(IX ⊗ IY ) = IA ⊗ IB it implies TrB Φ(Cϕ) = |B|
|Y |IA, which means up to

scaling it is TP preserving.

Another area where the space SCPTP (d, r) is involved is in the study of channel
symmetries. We were able to show that they are distinct from operation symmetries,
which leads to issues in trying to give a Wigner theorem for these objects. Here the
problem of extending positive maps comes up. Perhaps there is a better definition
of a channel symmetry which more accurately takes into account the structure of
the space. For example, as an operator system, complete order isomorphisms are the
natural maps. Forcing complete order isomoprhisms to preserve channels would allow
us to extend them to operation symmetries.

79



Here we only considered finite dimensions but there has been work done on infinite
dimensional quantum superchannels. In [7] they take the domain to be CB(M,N )
which is the space of weak∗-continuous, completely-bounded maps between separable
von Neumann algebras. Inside this is the set of normal, unital CP maps which are
the quantum channels. Then a quantum superchannel is a normal CP map S :
CB(M1,N1) −→ CB(M1,N1) which preserves the set of quantum channels. The
characterisation theorem for superchannels is proved for these maps. Of course we can
ask many of the same questions about these objects as we did for the finite dimensional
ones. In particular, what happens if we just consider the space of quantum channels?
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