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Abstract

Measures of risk and riskmetrics were proposed to quantify the risks people are faced with in

financial, statistical, and economic practice. They are widely discussed and studied by literature

in the context of financial regulation, insurance, operations research, and statistics. Several ma-

jor research topics on riskmetrics remain to be important in both academic study and industrial

practice. First, characterization, especially axiomatic characterization of riskmetrics, lays essen-

tial theoretical foundation of specific classes of riskmetrics about why they are widely adopted in

practice and research. It usually involves challenging mathematical approaches and deep practical

insights. Second, riskmetrics are used by researchers in optimization as the objective functionals of

decision makers. This links riskmetrics to the literature of operations research and decision theory,

and leads to wide applications of riskmetrics to portfolio management, robust optimization, and

insurance design. Third, relevant statistical models of estimation and hypothesis tests for risk-

metrics need to be established to serve for practical risk management and financial regulation. In

particular, risk forecasts and backtests of different riskmetrics are always the main concern and

challenge for risk managers and financial regulators. In this thesis, we investigate several important

questions in characterization, optimization, and backtest for measures of risk with different focuses

on establishing theoretical framework and solving practical problems.

To offer a comprehensive theoretical toolkit for future study, in Chapter 2, we propose the class

of distortion riskmetrics defined through signed Choquet integrals. Distortion riskmetrics include

many classic risk measures, deviation measures, and other functionals in the literature of finance

and actuarial science. We obtain characterization, finiteness, convexity, and continuity results on

general model spaces, extending various results in the existing literature on distortion risk measures

and signed Choquet integrals.

To explore deeper applications of distortion riskmetrics in optimization problems, in Chapter 3,

we study optimization of distortion riskmetrics with distributional uncertainty. One of our central

findings is a unifying result that allows us to convert an optimization of a non-convex distortion risk-

metric with distributional uncertainty to a convex one, leading to practical tractability. A sufficient

condition to the unifying equivalence result is the novel notion of closedness under concentration,

a variation of which is also shown to be necessary for the equivalence. Our results include many

special cases that are well studied in the optimization literature, including but not limited to opti-

mizing probabilities, Value-at-Risk, Expected Shortfall, Yaari’s dual utility, and differences between
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distortion risk measures, under various forms of distributional uncertainty. We illustrate our the-

oretical results via applications to portfolio optimization, optimization under moment constraints,

and preference robust optimization.

In Chapter 4, we study characterization of measures of risk in the context of statistical elici-

tation. Motivated by recent advances on elicitability of risk measures and practical considerations

of risk optimization, we introduce the notions of Bayes pairs and Bayes risk measures. Bayes risk

measures are the counterpart of elicitable risk measures, extensively studied in the recent literature.

The Expected Shortfall (ES) is the most important coherent risk measure in both industry practice

and academic research in finance, insurance, risk management, and engineering. One of our central

results is that under a continuity condition, ES is the only class of coherent Bayes risk measures.

We further show that entropic risk measures are the only risk measures which are both elicitable

and Bayes. Several other theoretical properties and open questions on Bayes risk measures are

discussed.

In Chapter 5, we further study characterization of measures of risk in insurance design. We

study the characterization of risk measures induced by efficient insurance contracts, i.e., those that

are Pareto optimal for the insured and the insurer. One of our major results is that we characterize

a mixture of the mean and ES as the risk measure of the insured and the insurer, when contracts

with deductibles are efficient. Characterization results of other risk measures, including the mean

and distortion risk measures, are also presented by linking them to different sets of contracts.

In Chapter 6, we focus on a larger class of riskmetrics, cash-subadditive risk measures. We

study cash-subadditive risk measures without quasi-convexity. One of our major results is that a

general cash-subadditive risk measure can be represented as the lower envelope of a family of quasi-

convex and cash-subadditive risk measures. Representation results of cash-subadditive risk measures

with some additional properties are also examined. The notion of quasi-star-shapedness, which is

a natural analogue of star-shapedness, is introduced and we obtain a corresponding representation

result.

In Chapter 7, we discuss backtesting riskmetrics. One of the most challenging tasks in risk

modeling practice is to backtest ES forecasts provided by financial institutions. To design a model-

free backtesting procedure for ES, we make use of the recently developed techniques of e-values

and e-processes. Model-free e-statistics are introduced to formulate e-processes for risk measure

forecasts, and unique forms of model-free e-statistics for VaR and ES are characterized using recent

results on identification functions. For a given model-free e-statistic, optimal ways of constructing
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the e-processes are studied. The proposed method can be naturally applied to many other risk

measures and statistical quantities. We conduct extensive simulation studies and data analysis to

illustrate the advantages of the model-free backtesting method, and compare it with the ones in

the literature.

vi



Acknowledgements

I would like to thank all people that accompanied, helped, encouraged, and cared about me

during the four-year time of my Ph.D. at the University of Waterloo.

First and foremost, I would like to express my sincere gratitude to my Ph.D. supervisor,

Dr. Ruodu Wang, who is the most supportive, considerate, and conscientious talent I have ever met

in my life. During the four years from my Ph.D. admission to my job seeking, he offered me selfless

support of my academic career and personal life. His wisdom, patience, guidance, and commitment

make me a better researcher and make my academic dream possible. He is a rigorous researcher

reinforcing my academic skills, a responsible teacher leading my career directions, a kind senior

listening to my obstacles and confusions, and an approachable friend enriching my recesses. I feel

honored and fortunate to have him as my supervisor for my Ph.D., probably the most important

period of time for my whole career.

I wish to convey my special gratitude to my M.Phil. supervisor, Dr. Yue Kuen Kwok, whom

I regard and respect as one of the most important mentors in my life. His greatest kindness and

help lead my way out of the darkest time of my college life, and to the brilliant world of academic

research. His knowledge, attitude and personality will always be a good example of my academic

career.

I would like to thank all my proposal and defense committee members, Dr. Roger Laeven,

Dr. Jun Cai, Dr. Alexander Schied, and Dr. Kateryna Tatarko for spending their valuable time

reading my thesis and providing insightful comments. I always find their expertise and suggestions

inspiring for enhancing my current research and spotting my drawbacks.

I am always grateful for all the guidance, discussion, and support I received from faculty

members in or outside Waterloo during my Ph.D. life. I would like to thank my co-authors, Dr. Paul

Embrechts, Dr. Xia Han, Dr. Tiantian Mao, Dr. Silvana Pesenti, Dr. Yunran Wei, Dr. Jianming
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Chapter 1

Introduction and preliminary

1.1 Introduction

Riskmetrics are common tools to represent preferences, model decisions under risks, and quan-

tify different types of risks. To fix terms, we refer to riskmetrics as any mapping from a set of

random variables to the real line, and risk measures as riskmetrics that are monotone in the sense

of Artzner et al. (1999).

Riskmetrics are important and intensively studied in both financial regulations and insurance.

As one of the popular standard measures of risk in academic research and industrial practice, Value-

at-Risk (VaR) has been adopted to measure capital requirement and insurance risk for decades. Let

X be a set of random variables and let FX represent the cumulative distribution function of a random

loss X ∈ X . The Value-at-Risk (VaR) of X, using the sign convention of McNeil et al. (2015), is

defined by

VaRα(X) = inf{x ∈ R : F (x) > α}, α ∈ (0, 1]. (1.1)

Faced with some shortcomings of VaR, including its failure to incorporate tail risk and non-

subadditivity, Artzner et al. (1999) studied and characterized coherent measures of risk. Based

on results of this seminal paper, convex risk measures were further studied by Föllmer and Schied

(2002a) and Frittelli and Rosazza Gianin (2002). Other classes of riskmetrics include but are not

limited to deviation measures (Rockafellar et al., 2006), systemic risk measures (Chen et al., 2013),

and Yaari’s dual utility (Yaari, 1987), leading to distortion risk measures (West, 1996) and spectral

risk measures (Acerbi, 2002). Among other riskmetrics, the Expected Shortfall (ES, also called

CVaR/AVaR/TVaR), similarly to VaR, has drawn more attention in banking and insurance as a
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standard risk measure; see the Fundamental Review of the Trading Book in BCBS (2016, 2019) in

the context of financial regulation. The Expected Shortfall (ES) of X ∈ X is defined as

ESα(X) =
1

1− α

∫ 1

α
VaRt(X) dt, α ∈ (0, 1). (1.2)

Most of the fundamental work on the specific classes of riskmetrics we mention above is about

their characterization, especially axiomatic characterization. Axiomatic approaches for riskmetrics

has been playing an essential role in economic decision theory; see Gilboa et al. (2019) for a discus-

sion. Characterizing common classes of riskmetrics lays foundations from a theoretical perspective

about why such riskmetrics are adopted and applied in practice, thus helps researchers and prac-

titioners deepen the understanding of them. Moreover, characterization studies of riskmetrics also

contribute to evaluating the risk attitudes of decision makers given their behaviors or given some

specific properties are satisfied.

Besides characterization, optimization of riskmetrics remains to be a hot topic in economic

decision theory and finance. When riskmetrics are optimized subject to some Knightian uncertainty,

decisions should be taken based on the worst or best case riskmetrics. One of the popular types of

Knightian uncertainty taken into account in optimization problems is uncertainty on the distribution

of underlying risk. Optimization research on this topic generally belongs to distributionally robust

optimization; see e.g., Popescu (2007) on moment constraints, Delage and Ye (2010) on parameter

uncertainty, Wiesemann et al. (2014) on probability constraints, and Blanchet and Murthy (2019) on

uncertainty of distributional distance. Worst-case riskmetrics under uncertainty is also related to the

robust risk aggregation problems as one of the classical problems in quantitative risk management

research; see e.g., Embrechts et al. (2015) for marginal constraints with dependence uncertainty.

Beyond distributional uncertainty, other types of certainty are also of great interest in the literature

of robust optimization problems; see e.g., Armbruster and Delage (2015) and Guo and Xu (2020)

for preference robust optimization. Moreover, optimization of riskmetrics leads to the optimal

(re)insurance design problem, which initiated from the seminal work of Arrow (1963) and is still a

popular topic in the field of actuarial science.

Backtesting risk measures, especially backtesting ES, has long been a crucial topic interested

by both the industry and the academy. Backtesting (Christoffersen, 2011; McNeil et al., 2015,

see e.g.,) is known as the process of monitoring the risk measurement performance over time by

comparing realized looses with conditional forecasts of risk measures, which is important for risk

management of financial institutions. Therefore, backtestability is one of the essential criteria for a
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risk measure to be a good choice adopted by financial institutions. For example, the risk measures

VaR and expectile (see e.g., Bellini et al., 2014; Ziegel, 2016) are known to be backtestable and

elicitable. However, another popular risk measure, ES, turns out to be not backtestable with solely

the information of itself (Acerbi and Szekely, 2017). This restricts the applications of ES in the

banking practice, although it satisfies other nice mathematical properties such as coherence. As a

result, explicit and model-free model-free methods of backtesting ES and other risk measures are

of great interest and demand. We investigate this problem and find a solution by adopting the new

concept of e-values and e-tests introduced by Vovk and Wang (2021).

This thesis contains results generally on characterizing, optimizing and backtesting different

classes of riskmetrics. In the following paragraphs, we give a map of the remaining chapters in this

thesis.

Chapter 2 introduces the class of functionals called “distortion riskmetrics”. A distortion

riskmetric is a real-valued functional ρ with the following form

ρ(X) =

∫ 0

−∞
(h(P(X > x))− h(1)) dx+

∫ ∞
0

h(P(X > x)) dx, (1.3)

where h is a function of bounded variation on [0, 1] with h(0) = 0 and X is a random variable

in the domain of ρ; a precise definition is given in Definition 2.1 of Chapter 2 below. Distortion

riskmetrics contain many common measures of risk and deviation and is allowed to be not monotone,

not normalized and nonconvex. We study characterization and properties of distortion riskmetrics

on general spaces beyond bounded random variables. Although most results in Chapter 2 are not

surprising and similar to those in the literature, this chapter serves as a useful toolkit for later

chapters related to distortion riskmetrics.

Chapter 3 studies much more deepened work on distributionally robust optimization of distor-

tion riskmetrics introduced in Chapter 2. One of the central findings in this chapter is a unifying

result that allows us to convert an optimization of a non-convex distortion riskmetric with distribu-

tional uncertainty to a convex one, leading to great tractability. The key to the unifying equivalence

result is the novel notion of closedness under concentration of sets of distributions. The end of this

chapter illustrates the theoretical results via applications to portfolio optimization, optimization

under moment constraints, and preference robust optimization.

Chapters 4–6 are basically about characterization of riskmetrics. Chapter 4 characterizes the

Expected Shortfall (ES) in the context of stastistical elicitation. We show in this chapter that ES is

the only class of coherent Bayes risk measures under some continuity assumption, where we propose
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Bayes risk measures as the counterpart of elicitable risk measures extensively studied in the recent

literature. Chapter 5 further investigates the role of ES in actuarial science. We show that, under

the framework of the optimal insurance problem, ES can be characterized as the only risk measure

chosen by the insured and the insurer given that some set of contracts with deductible forms are

Pareto optimal. Chapter 6 focuses instead on a much more general class of riskmetrics, namely

the cash-subadditive risk measures. Cash-subadditive risk measures have attracted more and more

attention in mathematical finance to address possible defaultability of underlying bonds. One of the

major results in this chapter is that we can represent a cash-subadditive risk measure as the lower

envelope of a family of quasi-convex cash-subadditive risk measures. Other explicit representation

results together with other properties are also given. Especially, we propose a new property called

quasi-star-shapedness, which turns out to have sound economic interpretations and be a good fit

with cash-subaditivity in terms of obtaining the representation result.

Given the importance of ES in both banking and insurance, Chapter 7 explores the problem of

backtesting ES, following the study of ES in Chapters 4 and 5 but through a different perspective.

This chapter aims for producing a model-free backtesting procedure of ES and other risk measures

based on the newly developed notion of e-values. Model-free e-statistics testing the mean, variance,

quantile and ES are characterized respectively. Several methods of obtaining the process of e-values

are introduced together with their theoretical asymptotic optimality results. Detailed procedures

for our backtesting approach are demonstrated through extensive simulation study and real data

analysis.

Chapter 8 concludes the thesis and discusses potential open questions that are of great interest

in the field.

1.2 Preliminary

Throughout the thesis, let (Ω,F ,P) be a probability space. Two random variables X and Y

have the same distribution under P is denoted by X
d
= Y . For x, y ∈ R, we write x∨y = max{x, y},

x ∧ y = min{x, y}, x+ = x ∨ 0 and x− = (−x) ∨ 0. Throughout the thesis, “increasing” and

“decreasing” are in the nonstrict sense. For p ∈ [1,∞), Lp is the space of random variables with

finite p-th moment; L∞ is that of essentially bounded random variables; and L0 represents the

space of all random variables. For a distribution F and a random variable X, X ∼ F means that X

has distribution F . Denote by FX the distribution function of the random variable X. We define
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the left-continuous generalized inverse of F (left-quantile) as

F−1(t) = inf{x ∈ R : F (x) > t}, t ∈ (0, 1], (1.4)

while the right-continuous generalized inverse of F (right-quantile) is defined as

F−1+(t) = inf{x ∈ R : F (x) > t}, t ∈ [0, 1), (1.5)

where we adopt the convention that inf(∅) = ∞. For an event A ∈ Ω, we denote its complement

by Ac.

Random variables X and Y are comonotonic if there exists Ω0 ∈ F with P(Ω0) = 1 such that

for each ω, ω′ ∈ Ω0,

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) > 0.

As an equivalent definition, a random vector (X1, . . . , Xn) is called comonotonic if there exists a

random variable Z and increasing functions f1, . . . , fn on R such that Xi = fi(Z) almost surely for

all i = 1, . . . , n. A random variable X is said to first-order stochastically dominate Y , denoted by

X �1 Y , if E[f(X)] > E[f(Y )] for all increasing functions f : R → R; the random variable X is

said to be larger than a random variable Y in convex order (or second stochastic order), denoted

by X >cx Y (or X �2 Y ), if E[φ(X)] 6 E[φ(Y )] for all convex φ : R → R, provided that both

expectations exist.

A functional ρ, mapping from some space of random variables to R, may satisfy the following

properties, where the statements hold for all random variables X,Y in the domain of ρ.

(a) Monotonicity : ρ(X) 6 ρ(Y ) for X 6 Y .1

(b) Translation invariance: ρ(X + c) = ρ(X) + c for all c ∈ R.2

(c) Positive homogeneity : ρ(λX) = λρ(X) for all λ > 0.

(d) Subadditivity : ρ(X + Y ) 6 ρ(X) + ρ(Y ).

(e) Convexity : ρ(λX + (1− λ)Y ) 6 λρ(X) + (1− λ)ρ(Y ) for all λ ∈ [0, 1].

(f) Convex order consistency (SSD-consistency): ρ(X) 6 ρ(Y ) for X 6cx Y .

1A functional ρ is said to be increasing (or decreasing) if X 6 Y almost surely implies ρ(X) 6 ρ(Y ) (or ρ(X) >

ρ(Y ), respectively). The terms “increasing” and “decreasing” are always in the non-strict sense.
2Translation invariance is also called cash invariance or cash additivity.
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(g) Law invariance: ρ(X) = ρ(Y ) for X
d
= Y .

(h) comonotonic-additivity : ρ(X + Y ) = ρ(X) + ρ(Y ) if X and Y are comonotonic.

Following the terminology of Föllmer and Schied (2016), a monetary risk measure is a func-

tional that is monotone and translation invariant; a coherent risk measure is a functional that is

monotone, translation invariant, positively homogeneous, and subadditive.
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Chapter 2

Distortion riskmetrics on general

spaces

2.1 Introduction

In this chapter we study distortion riskmetrics on general model spaces. Let us first explain our

somewhat unusual choice of terminology, “distortion riskmetrics”. Clearly, the term “distortion”

addresses the dominating role played by the (not necessarily monotone) distortion function h in

(1.3), whereas the term “riskmetrics” is chosen to distinguish ρ from the classic notions of risk

measures and deviation measures. For instance, risk measures are often required to be monotone

and translation-invariant in the sense of Artzner et al. (1999), and deviation measures are required to

be convex in the sense of Rockafellar et al. (2006). Insurance risk measures and premium principles

are typically assumed to be monotone with some other properties as in e.g., Gerber (1974) or

Wang et al. (1997). Our notion of distortion riskmetrics does not require monotonicity, translation-

invariance or convexity, and it unifies risk measures, deviation measures, and many other functionals

in the literature of finance and insurance.

This chapter is not the first to study functionals in (1.3) in risk management. Historically,

such functionals, assuming monotonicity, were studied by Yaari (1987) in the economic literature

and by Denneberg (1994) and Wang et al. (1997) in the actuarial literature. More recently, for non-

monotone h, Wang et al. (2020) called the functional in (1.3) a signed Choquet integral on the space

L∞ of bounded random variables. To be precise, a signed Choquet integral refers to the right-hand

side of (1.3). We note that a signed Choquet integral should be interpreted as an “integral”, thus
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a mathematical operation, and not a functional. Mathematically, signed Choquet integrals can be

formulated for any random variable, leading to a finite, infinite or undefined value in (1.3), whereas

a distortion riskmetric is defined on a domain of financial relevance. The difference is negligible

if the study is confined to L∞, but it becomes delicate in the case of a larger space such as an

Lp-space; see Section 2.2. Moreover, the term “distortion riskmetric” better describes the practical

purpose of these functionals in risk management. For the above reasons, we decided to invent the

term “distortion riskmetrics”, which will hopefully be the standard term for the object in (1.3) in

the future.

As hinted above, monotone (increasing) distortion riskmetrics have been studied for decades

under different names: the L-functionals (Huber and Ronchetti, 2009) in statistics, Yaari’s dual

utilities (Yaari, 1987) in decision theory, distorted premium principles (Denneberg, 1994; Wang et

al., 1997; Denuit et al., 2005) in insurance, and distortion risk measures (Kusuoka, 2001; Acerbi,

2002) in finance. Some specific examples of distortion risk measures include the Value-at-Risk

(VaR), the Expected Shortfall (ES, or TVaR/CVaR), the performance measures in Cherny and

Madan (2009), the GlueVaR in Belles-Sampera et al. (2014), and the economic risk measures in Kou

and Peng (2016). Non-monotone examples of signed Choquet integrals include the mean-median

deviation, the Gini deviation, the inter-quantile range, some deviation measures of Rockafellar et al.

(2006), and the Gini Shortfall of Furman et al. (2017). We collect some examples of one-dimensional

distortion riskmetrics in Table 2.1.

Moreover, distortion riskmetrics serve as the building block of law-invariant convex risk func-

tionals in the sense that any law-invariant convex risk functional can be written as a supremum of

signed Choquet integrals plus constants (Liu et al., 2020) and this includes all law-invariant convex

risk measures in Föllmer and Schied (2016) and all law-invariant deviation measures in Grechuk et

al. (2009), as well as the classic mean-variance and mean-standard deviation principles in insurance.

We already mentioned that characterization and various properties of distortion riskmetrics

are studied on L∞ by Wang et al. (2020). As a follow-up of the previous work, the main purpose

of this chapter is to extend the domain of distortion riskmetrics to more general spaces, including

Lp-spaces for p ∈ [1,∞). In many applications, risk measures such as the industry standard VaR

and ES are defined on spaces beyond L∞ to include unbounded loss distributions, e.g., normal,

Pareto or t-distributions. Furthermore, for many convex risk measures, their natural domains on

which key properties are preserved are Banach spaces much larger than L∞; see e.g., Filipović and

Svindland (2012), Pichler (2013) and Liebrich and Svindland (2017). Indeed, there is an extensive
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name
formula for X ∈ X and parameters

distortion function for t ∈ [0, 1]

(notation) domain X convex? monotone?

mean
E[X]

t

(E) L1 yes yes

Value-at-Risk
F−1X (α), α ∈ (0, 1)

1{t>1−α}

(VaRα) L0 no yes

ES/TVaR/CVaR 1

1− α

∫ 1

α

F−1X (t) dt, α ∈ (0, 1)

t
1−α ∧ 1

(ESα) L0,1 yes yes

Gini deviation
1

2
E[|X∗ −X∗∗|]

t− t2

L1 yes no

mean-median
min
x∈R

E[|X − x|]
t ∧ (1− t)

deviation L1 yes no

essential supremum
F−1X (1)

1{0<t61}

(ess-sup) L0,∞ yes yes

essential infimum
F−1+X (0)

1{t=1}

(ess-inf) L∞,0 no yes

range F−1X (1)− F−1+X (0)
1{0<t<1}

L∞ yes no

inter-quantile range
F−1+X (α)− F−1X (1− α), α ∈ [1/2, 1)

1{1−α6t6α}

(IQRα) L0 no no

inter-ES range
ESα(X) + ESα(−X), α ∈ (0, 1)

t
1−α ∧ 1 + α−t

1−α ∧ 0

(IERα) L1 yes no

Range Value-at-Risk 1

β − α

∫ β

α

F−1X (t) dt, 0 < α < β < 1

(t−1+β)+
β−α ∧ 1

(RVaRα,β) L1 no yes

Gini Shortfall ESα(X) + λE[|X∗α −X∗∗α |] t
1−α ∧ 1 + 2λt(1−t−α)+

(1−α)2

(GSλα) α ∈ (0, 1), λ > 0 L0,1 λ 6 1/2 λ 6 1/2

proportional hazard 1

α

∫ 1

0

(1− t)(1−α)/αF−1X (t) dt, α > 1
t1/α

principle/MAXVAR ∪p>αL1,p ⊆ X yes yes

dual power
α

∫ 1

0

tα−1F−1X (t) dt, α > 1
1− (1− t)α

principle/MINVAR ∪q>1/αLq,1 ⊆ X yes yes

GlueVaR ω1ESα(X) + ω2ESβ(X) + ω3VaRα(X) ω1( t
1−α ∧ 1) + ω2( t

1−β ∧ 1) + ω31{t>1−α}

(GlueVaRω1,ω2

β,α ) 0 < α 6 β < 1, (ω1, ω2, ω3) ∈ ∆3 L0,1 no yes

Table 2.1: Some examples of one-dimensional distortion riskmetrics

Notation. F−1
X (α) = inf{x ∈ R : P(X 6 x) > α} for α ∈ (0, 1] and F−1+

X (α) = inf{x ∈ R : P(X 6 x) > α} for α ∈ [0, 1).

Lp,q = {X ∈ L0 : X− ∈ Lp, X+ ∈ Lq} for p, q > 0. ∆n = {(x1, . . . , xn) ∈ (0, 1)n : x1 + · · ·+ xn = 1} is the interior of the

standard n-simplex. X∗, X∗∗ are iid copies of X and X∗α, X
∗∗
α are iid copies of F−1

X (Uα) where Uα ∼ U[α, 1].
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literature on risk measures defined on general spaces (e.g., Delbaen, 2002; Föllmer and Schied, 2002a;

Ruszczyński and Shapiro, 2006) and in particular on Lp-spaces (Frittelli and Rosazza Gianin, 2002)

or Orlicz spaces (Cheridito and Li, 2009). Different from the previous literature, we consider many

functionals that are not necessarily monotone or convex. Notably, as a special example, the inter-

quantile range (see Table 2.1) is not monotone, convex, or Lp-continuous, but it is a popular measure

of dispersion in statistics, and it belongs to the class of distortion riskmetrics. Finally, we extend

distortion riskmetrics to a multi-dimensional setting, where the concepts of elicitability and convex

level sets has been popular recently; see Fissler and Ziegel (2016), Frongillo and Kash (2021) and

Wang and Wei (2020).

Most results in this chapter are similar to those in the literature in terms of both statements

and proofs, and our findings that these results hold on general spaces are not surprising. However,

most of the results in previous literature on L∞, especially those in Wang et al. (2020), may not be

convenient to directly use in practice where most applications require results on more general spaces

of random variables. As such, more general results are in need, and this chapter can be viewed

as a convenient toolkit for future studies and applications of distortion riskmetrics. Nevertheless,

there are several additions to the existing literature. The similarity of this chapter with Wang et

al. (2020) and the new results of this chapter are summarized in Table 6.1.

corresponding results new results

this chapter Wang et al. (2020) this chapter

(on general spaces) (on L∞) (on general spaces)

Theorem 2.1 ←→ Theorem 1 Proposition 2.1

Theorem 2.2 ←→ Theorem 2 Proposition 2.3

Proposition 2.2 ←→ Lemmas 2 and 3 Theorem 2.4

Theorem 2.3 ←→ Theorem 3 Theorem 2.5

Theorem 2.6 ←→ Theorem 4 Proposition 2.4

Table 2.2: Comparison with results in Wang et al. (2020)

Below we briefly explain the new results. First, an ES-based representation of convex distortion

riskmetric ρ in Theorem 2.5 is new to the literature. Four other new results, all requiring the

considered domain to be larger than L∞, are the finiteness condition in Proposition 2.1, the domain

of convex distortion riskmetrics in Proposition 2.3, the existence of dominating convex functionals

in Theorem 2.4, and the Lp-continuity in Proposition 2.4. Moreover, the condition in Theorem 2.6
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is slightly weakened compared to a similar result on L∞ in Wang et al. (2020).

The chapter is organized as follows. In Section 2.2, we collect basic definitions needed for this

chapter, and present a functional characterization of distortion riskmetrics. In Section 2.3, results

related to convexity, convex order consistency, and mixture concavity are presented. Section 2.4

contains results on continuity properties of distortion riskmetrics and and Section 3.4 extends the

discussions to the multi-dimensional setting. To facilitate the main purpose of the chapter as a

toolkit, most proofs are self-contained and are relegated to the last section.

2.2 Distortion riskmetrics and their characterization

2.2.1 Notation and definition

We assume that the probability space (Ω,F ,P) is atomless. Throughout this chapter, the set

X ⊇ L∞ is a law-invariant convex cone, that is, for all random variables X and Y ,

(i) if X ∈ X and X
d
= Y , then Y ∈ X ;

(ii) if X ∈ X , then λX ∈ X for all λ > 0;

(iii) if X,Y ∈ X , then X + Y ∈ X .

LetM be the set of distribution functions of random variables in X . For simplicity, in the definitions

of the left- and right-quantile in (1.4) and (1.5), we let F−1(0) = F−1+(0) and F−1+(1) = F−1(1).

Next, corresponding to (1.3), we give a formal definition of the distortion riskmetric using the

signed Choquet integral (Choquet, 1954) on a general space. Denote by

H = {h : h maps [0, 1] to R, h is of bounded variation, h(0) = 0}.

Definition 2.1. A functional ρh : X → R, whose domain X ⊇ L∞ is a law-invariant convex cone,

is a distortion riskmetric if there exists h ∈ H such that ρh(X) =
∫
X dh ◦ P, where

∫
X dh ◦ P is a

signed Choquet integral defined by∫
X dh ◦ P =

∫ 0

−∞
(h(P(X > x))− h(1)) dx+

∫ ∞
0

h(P(X > x)) dx. (2.1)

The function h is called the distortion function of ρh.
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Generally, the two integrals in (2.1) may not be finite, and hence
∫
X dh ◦ P may be infinite

or even not well-defined (i.e., ∞−∞). We emphasize that according to our definition, a distortion

riskmetric ρh : X → R is only defined when
∫
X dh ◦ P is finite (i.e., both integrals are finite),

and hence the two terms “distortion riskmetrics” and “signed Choquet integrals” are no longer

interchangeable, in contrast to the case of L∞ studied by Wang et al. (2020). In other words, X

and h have to be compatible, making (2.1) finite. In Section 2.2.2 below we will give a sufficient

condition for (2.1) to be finite. The notion of a distortion function h we use in this chapter is

broader than the classical sense in which h is assumed increasing with h(1) = 1.

For a given distortion riskmetric ρh : X → R, the distortion function h ∈ H is unique. To see

this, suppose that ρh1(X) = ρh2(X) for all X ∈ X . Choose a random variable X ∼ Bernoulli(p)

with a fixed p ∈ [0, 1]. It follows that

ρhi(X) = hi(p) +

∫ ∞
1

hi(0) dx = hi(p), i = 1, 2.

Since p is arbitrary, we get h1 = h2 on [0, 1].

Remark 2.1. A distortion riskmetric ρh can be equivalently expressed as

ρh(X) =

∫ 0

−∞
(h(P(X > x))− h(1)) dx+

∫ ∞
0

h(P(X > x)) dx. (2.2)

Indeed, since P(X > x) = P(X > x) almost everywhere on R, we know h(P(X > x)) = h(P(X > x))

almost everywhere on R.

2.2.2 Quantile representation and finiteness of signed Choquet integrals

The quantile representation of signed Choquet integrals is obtained in Lemma 3 of Wang et al.

(2020) on L∞ and Theorems 4 and 6 of Dhaene et al. (2012) for increasing h. Combining the above

results, we have the following quantile representation of signed Choquet integrals on a general space

with distortion functions not necessarily increasing.

Lemma 2.1. For h ∈ H and X ∈ L0 such that
∫
X dh◦P is well-defined (it may take values ±∞),

(i) if h is right-continuous, then
∫
X dh ◦ P =

∫ 1
0 F

−1+
X (1− t) dh(t);

(ii) if h is left-continuous, then
∫
X dh ◦ P =

∫ 1
0 F

−1
X (1− t) dh(t);

(iii) if F−1
X is continuous on (0, 1), then

∫
X dh ◦ P =

∫ 1
0 F

−1
X (1− t) dh(t) =

∫ 1
0 F

−1+
X (1− t) dh(t).
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Now we focus on Lp-spaces for p ∈ [1,∞]. Define a set of distortion functions H1 as

H1 = {h ∈ H : h is absolutely continuous on [0, ε) ∪ (1− ε, 1] for some ε ∈ (0, 1)}.

Note that H1 excludes only special examples such as the essential supremum, the essential infimum,

and the range in Table 2.1. Moreover, noticing that h is differentiable almost everywhere on [0, 1]

due to bounded variation, we let

Hq =
{
h ∈ H1 : h′ ∈ Lq((0, ε) ∪ (1− ε, 1)) for some ε ∈ (0, 1)

}
,

where h′ is (in a.e. sense) the derivative of h and q is the conjugate of p ∈ [1,∞] (i.e., 1/p+1/q = 1).

Next, we give a sufficient condition for ρh to be well defined, which is almost necessary in case that

h is concave.

Proposition 2.1. For p ∈ [1,∞), q being its conjugate,

(i)
∫
X dh ◦ P is finite for all X ∈ Lp if h ∈ Hq;

(ii) if h ∈ H is concave and
∫
X dh ◦ P is finite for all X ∈ Lp, then h ∈ Hr for all r < q.

As a consequence of Proposition 2.1, if h ∈ H is absolutely continuous and
∫ 1

0 |h
′(t)|q dt <∞,

then
∫
X dh ◦P is finite for all X ∈ Lp. In particular, the case p = q = 2 gives a sufficient condition

for the finiteness of
∫
X dh ◦ P for X ∈ L2.

2.2.3 Characterization and basic properties

Before we further characterize distortion riskmetrics, we define some properties of functionals.

(a) Continuity at infinity : limM→∞ ρ((X ∧M) ∨ (−M)) = ρ(X).

(b) Uniform sup-continuity: For any ε > 0, there exists δ > 0, such that |ρ(X)−ρ(Y )| < ε whenever

ess-sup|X − Y | < δ, where ess-sup(·) is the essential supremum in Table 2.1.

The above two properties, together with law invariance and comonotonic-additivity, are satisfied

by distortion riskmetrics, and moreover, they indeed characterize distortion riskmetrics, similarly

to the case of bounded random variables studied by Wang et al. (2020) and the case of increasing

Choquet integrals in Wang et al. (1997) and Kou and Peng (2016), all based on a classic result of

Schmeidler (1986).
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Theorem 2.1. A functional ρ : X → R is law invariant, comonotonic-additive, continuous at

infinity and uniformly sup-continuous if and only if ρ is a distortion riskmetric.

Remark 2.2. From the proof of necessity part of Theorem 2.1 in Section 2.6, we can see a distortion

riskmetric ρh : X → R is, in fact, Lipschitz continuous with respect to L∞-norm with Lipschitz

constant TVh, the total variation of h on [0, 1]. This continuity is stronger than uniform sup-

continuity. This point will be further developed in Section 2.4.

Below we present some basic properties of distortion riskmetrics which are useful in later

sections. They are well-established for random variables in L∞ and h ∈ H.

Proposition 2.2. For h, h1, h2 ∈ H,

(i) if h1(1) = h2(1), then h1 6 h2 on [0, 1]⇔ ρh1 6 ρh2 on X . In particular, h1 = h2 on [0, 1] ⇔

ρh1 = ρh2 on X ;

(ii) ρh is increasing (resp. decreasing) if and only if h is increasing (resp. decreasing);

(iii) for all c ∈ R and X ∈ X , ρh(X + c) = ρh(X) + ch(1);

(iv) for all λ > 0 and X ∈ X , ρh(λX) = λρh(X);

(v) for all X ∈ X , ρh(−X) = ρĥ(X), where ĥ : [0, 1]→ R is given by ĥ(x) = h(1− x)− h(1) for

all x ∈ [0, 1].

2.3 Convexity, convex order consistency and mixture concavity

In this section, we study the important class of convex distortion riskmetrics and their related

properties. As shown in Theorem 3 of Wang et al. (2020), the following properties: convexity,

convex order consistency, and mixture concavity, on L∞, are equivalent to concavity of the distortion

function. We establish a similar result on general spaces, as well as a few new results on convex

distortion riskmetrics.

We first justify that for a convex distortion riskmetric, if its domain X is a linear space, then

it is contained in L1; hence, it makes sense to confine our study to subsets of L1. Note also that L1

is the canonical space for law-invariant convex risk measures (e.g., Filipović and Svindland, 2012).

Proposition 2.3. Suppose that X is a linear space and ρh : X → R is a convex distortion riskmet-

ric. Then X ⊆ L1 unless ρh = 0 on X .
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The assumption that X is a linear space in Proposition 2.3 is not dispensable. An important

example is the Expected Shortfall (ES) in Table 2.1 at level α ∈ (0, 1), defined in (1.2), where its

domain X can be chosen as {X ∈ L0 : X+ ∈ L1}, which is larger than L1. In addition, we let

ES0 = E which is finite on L1 and ES1 be the essential supremum which is finite on the set of

random variables bounded from above. For α ∈ [0, 1], ESα is a convex distortion riskmetric with

distortion function h given by

h(t) =
t

1− α
∧ 1, t ∈ [0, 1], α ∈ [0, 1)

and h(t) = 1{t>0} if α = 1. These facts will be useful later.

Next, we fix some terminology. For a functional ρ : X → R and all random variables X,Y ∈ X ,

ρ is quasi-convex if ρ(λX+(1−λ)Y ) 6 ρ(X)∨ρ(Y ) for all λ ∈ [0, 1]. For a law-invariant functional

ρ, define ρ̃ : M → R such that ρ̃(F ) = ρ(X) where X ∼ F , and ρ is concave on mixtures if ρ̃ is

concave. The following result characterizes convex order using distortion riskmetrics. For a version

of this result for increasing h, see Theorem 5.2.1 of Dhaene et al. (2006).

Theorem 2.2. For all random variables X,Y ∈ L1, X 6cx Y if and only if ρh(X) 6 ρh(Y ) for all

concave functions h ∈ H such that X and Y are in the domain of ρh.

In the following theorem, we present six equivalent conditions about convexity of a distortion

riskmetric on a general space, similar to Theorem 3 of Wang et al. (2020). Recall that X is a

law-invariant convex cone containing L∞. In the following result, we further assume X ⊆ L1 as

discussed above.

Theorem 2.3. For a distortion riskmetric ρh : X → R where X ⊆ L1, the following are equivalent:

(i) h is concave; (ii) ρh is convex order consistent; (iii) ρh is subadditive; (iv) ρh is convex; (v) ρh

is quasi-convex; (vi) ρh is concave on mixtures.

A few well known characterization results in risk management can be directly obtained from

Theorem 2.1 and 2.3. For a history of these results, see Föllmer and Schied (2016).

Corollary 2.1. Suppose that X ⊆ L1. A functional ρ : X → R is law invariant, increasing,

cash invariant, continuous at infinity, and comonotonic-additive if and only if ρ is a distortion

riskmetric ρh for an increasing h with h(1) = 1. In addition, ρ satisfies any of the properties

(ii)-(vi) in Theorem 2.3 if and only if h is concave, and in that case ρ is a coherent risk measure.
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Note that in Corollary 2.1 we do not assume uniform sup-continuity as it is implied by mono-

tonicity and cash invariance. In case X = L∞, continuity at infinity can also be removed from the

statement. In Corollary 2.1, ρ = ρh is a distortion risk measure or a dual utility (Yaari, 1987). If h

is concave, then ρ = ρh is commonly known as a spectral risk measure; see Acerbi (2002) where h

is additionally assumed to be continuous at 0.

In the next result, we consider the relationship between a distortion riskmetric ρh and a convex

one dominating ρh. For this purpose, we introduce the concave envelope h∗ : [0, 1] → R of h ∈ H,

defined as

h∗(t) = inf {g(t) : g ∈ H, g > h, g is concave on [0, 1]} . (2.3)

One can check that h∗ is concave, h∗(0) = 0 and h∗(1) = h(1); see Wang et al. (2020) for a

simple justification. Theorem 2.3 yields that ρh∗ : X → R is a convex distortion riskmetric if

X ⊆ L1. We also know that ρh∗ > ρh on their common domain due to Proposition 2.2. The next

theorem shows that ρh∗ is actually the smallest law-invariant, convex and continuous-at-infinity

functional dominating ρh; note that it is not obvious whether such a functional exists and whether

it is a distortion riskmetric. Below, we say that ρh∗ is finite on X , if the signed Choquet integral∫
X dh∗ ◦ P is finite for all X ∈ X .

Theorem 2.4. For a distortion riskmetric ρh : X → R where X ⊆ L1, if ρh∗ is finite on X , then

ρh∗ is the smallest law-invariant, convex and continuous-at-infinity functional dominating ρh. If

ρh∗ is not finite on X , then there is no real-valued law-invariant, convex and continuous-at-infinity

functional dominating ρh.

Theorem 2.4 implies in particular that ESα in (1.2) is the smallest law-invariant and continuous-

at-infinity convex functional dominating VaRα in (1.1); see Theorem 9 of Kusuoka (2001) and

Theorem 4.67 of Föllmer and Schied (2016) for this statement on the set of bounded random

variables.

In the next result, we establish a new ES-based representation of convex distortion riskmetrics,

which covers the classic ES-based representation of coherent distortion risk measures in Theorem

4.93 of Föllmer and Schied (2016) on L∞. As far as we are aware of, the representation (2.4) is new

to the literature.

Theorem 2.5. A functional ρ : X → R where X ⊆ L1 is a convex distortion riskmetric if and only
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if there exist finite Borel measures µ, ν on [0, 1] such that

ρ(X) =

∫ 1

0
ESα(X) dµ(α) +

∫ 1

0
ESα(−X) dν(α). (2.4)

Moreover, if ρ is increasing, then we can take ν = 0.

Remark 2.3. In case ν in (2.4) satisfies β :=
∫ 1

0
1

1−α dν(α) <∞, using the equality

ESα(−X) =
1

1− α
(αES1−α(X)− E[X]), X ∈ L1,

we can rewrite (2.4) as

ρ(X) =

∫ 1

0
ESα(X) dµ̂(α)− βE[X], X ∈ X , (2.5)

where µ̂ is another finite Borel measure on [0, 1]. Note that the condition β <∞ is not automatically

satisfied for a general convex distortion riskmetric ρ. An example of a convex distortion riskmetric

that does not admit the form in (2.5) is ρ : L∞ → R, X 7→ −F−1
X (0). Note that ρ admits the form

in (2.4) with µ = 0 and ν = δ1, where δ1 is the point-mass at 1; of course, β =∞ in this case.

Finally, we mention the related concept of the convex level sets (CxLS) property. A functional

ρ has CxLS if the level set {F ∈ M : ρ̃(F ) = x} of ρ̃ is convex for each x ∈ R. The CxLS

property is a necessary condition for the notions of elicitability, identifiability and backtestability;

see Wang and Wei (2020, Section 6) for an explanation. The above three concepts, referring to the

quality and validity of risk forecasts, are notably popular in current banking regulation and model

risk management. We refer to Gneiting (2011), Fissler and Ziegel (2016) and Acerbi and Szekely

(2017) for more discussions on these concepts. Theorem 1 of Wang and Wei (2020) characterizes a

signed Choquet integral with CxLS on a convex set M that contains all three-point distributions,

which naturally applies to our distortion riskmetrics on general spaces. In short, up to a constant

multiplier, distortion riskmetrics with CxLS only have three forms: the mean, a mixture of left and

right α-quantiles, α ∈ (0, 1), and a mixture of the essential supremum and the essential infimum.

2.4 Continuity of distortion riskmetrics

In this section, we examine continuity of distortion riskmetrics. It is already shown in Remark

2.2 that a distortion riskmetric is Lipschitz-continuous with respect to L∞-norm. Namely, for h ∈ H

and X,Y ∈ X ,

|ρh(X)− ρh(Y )| 6 ess-sup|X − Y | · TVh,
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where TVh is the total variation of h on [0, 1].

We are then interested in continuity of a distortion riskmetric with respect to convergence in

distribution, or equivalently, weak convergence in the set of distributionsM. This is closely related

to robustness of a risk functional in risk management; see Krätschmer et al. (2014). Before stating

the result of such continuity, we write the following relevant definition of h-uniform integrability.

Given a convex cone X and h ∈ H, a set D ⊆ X is called h-uniformly integrable if

lim
k↓0

sup
X∈D

∫ k

0
|F−1
X (1− t)| dh(t) = 0

and

lim
k↑1

sup
X∈D

∫ 1

k
|F−1
X (1− t)| dh(t) = 0.

Note that h-uniform integrability reduces to the usual uniform integrability when h ∈ H is linear

and nonconstant in some neighborhoods of 0 and 1. We give the following result for continuity of

distortion riskmetrics with respect to convergence in distribution.

Theorem 2.6. For h ∈ H and X,X1, X2, · · · ∈ X , suppose that Xn → X in distribution as n→∞

and the set {X,X1, X2, . . . } is h-uniformly integrable. If for all t ∈ (0, 1), either s 7→ h(s) or

s 7→ F−1
X (1− s) is continuous at t, then ρh(Xn)→ ρh(X) as n→∞.

Next, we consider the Lp-continuity of distortion riskmetrics (i.e., continuity with respect to the

Lp-norm, defined as ||X||p = (E[|X|p])1/p, X ∈ Lp). We give a sufficient condition for a distortion

riskmetric to be Lp-continuous without assuming convexity of the functional, as is typically done

in the literature.

Proposition 2.4. For p ∈ [1,∞) and continuous h ∈ H, a distortion riskmetric ρh : Lp → R is

Lp-continuous if h ∈ Hq where q is the conjugate of p.

We remark that all convex distortion riskmetrics (i.e., the ones with concave h by Theorem

2.3) on Lp are Lp-continuous; see Rüschendorf (2013, Corollary 7.10) for the Lp-continuity of the

finite-valued convex risk measures on Lp.

2.5 Multi-dimensional distortion riskmetrics

In this section, we discuss distortion riskmetrics in a multi-dimensional setting. The importance

of multi-dimensional riskmetrics arises in a statistical context, where multi-dimensional forecasting
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and elicitation of statistical quantities (jointly) has become a popular topic; see Lambert et al.

(2008), Fissler and Ziegel (2016) and Frongillo and Kash (2021). Here, multi-dimensionality refers

to the range, rather than the domain, of the riskmetrics; in other words, our riskmetrics map X to

Rd for some d > 2. This formulation is motivated by the statistical applications mentioned above,

and in particular, estimating, forecasting, and testing multiple quantities depending on a random

object.

In this section, we simply extend the results in Section 2.2 to multi-dimensional distortion

riskmetrics. There is essentially nothing new; nevertheless, in view of the importance of multi-

dimensional riskmetrics and their applications, we collect some basic results. The distortion risk-

metrics of dimension d > 2 are defined as follows.

Definition 2.2. A d-dimensional distortion riskmetric ρh : X → Rd is defined as

ρh(X) = (ρh1(X), . . . , ρhd(X)),

where h = (h1, . . . , hd) ∈ Hd. Obviously, each ρhi for i = 1, . . . , d is a one-dimensional distortion

riskmetric on X .

Properties (a)-(d) in Section 2.2.3 can be equivalently formulated for d-dimensional distortion

riskmetrics. More precisely, ρh : X → Rd with h = (h1, . . . , hd) satisfies some of the properties (a)-

(d) in Section 2.2.3 if and only if each one-dimensional distortion riskmetric ρhi , i = 1, . . . , d, satisfies

the respective properties. We can now provide the characterization result for multi-dimensional

distortion riskmetrics. The same representation on L∞ is given by Proposition 5 of Wang and Wei

(2020).

Proposition 2.5. A functional ρ : X → Rd is law invariant, comonotonic-additive, continuous at

infinity and uniformly sup-continuous if and only if ρ is a d-dimensional distortion riskmetric.

Similarly to Theorem 2.6, the continuity of multi-dimensional distortion riskmetrics with re-

spect to weak convergence is summarized below.

Proposition 2.6. Let h = (h1, . . . , hd) with hi ∈ H, i = 1, . . . , d. For X,X1, X2, · · · ∈ X , suppose

that Xn → X in distribution as n→∞ and the set {X,X1, X2, . . . } is hi-uniformly integrable for all

i = 1, . . . , d. If for any given i = 1, . . . , d and for all t ∈ (0, 1), either s 7→ hi(s) or s 7→ F−1
X (1− s)

is continuous at t, then ρh(Xn)→ ρh(X) as n→∞.
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Convexity and concavity cannot be naturally formulated for multi-dimensional functionals due

to the lack of complete order in Rd. On the other hand, the CxLS property can be naturally defined

for multi-dimensional functionals. Similarly to Section 2.3, a multi-dimensional functional ρ has

CxLS if the level set {F ∈ M : ρ̃(F ) = x} is convex for each x ∈ Rd. As in the case of dimension

one, multi-dimensional CxLS serves as a necessary condition for multi-dimensional elicitability, and

hence it is important in the recent study of statistical elicitation.

Unlike the other properties in this section, which do not need new mathematical treatment for

multi-dimensional distortion riskmetrics, the multi-dimensional CxLS is highly non-trivial to study

or characterize. For instance, one-dimensional distortion riskmetrics with CxLS are characterized by

Theorem 1 of Wang and Wei (2020), whereas a full characterization of multi-dimensional distortion

riskmetrics with CxLS is a well-known difficult open question; see Fissler and Ziegel (2016) and

Kou and Peng (2016). As far as we are aware of, the only existing characterization result on multi-

dimensional distortion riskmetrics is given in Theorem 2 of Wang and Wei (2020), which identifies

the form of ρh such that (ρh,VaRα) has CxLS; note that (ρh,VaRα) is a two-dimensional distortion

riskmetric.

Remark 2.4. Another direction of multi-dimensional generalization of riskmetrics is to consider

mappings from X d to Rm where m is a positive integer, usually equal to d or 1. This relates to the

study of measures of multivariate risks; see e.g., Embrechts and Puccetti (2006). Our formulation

in this section should not be confused with the above one. We stick to the domain X for the main

reason that probability distortion is usually defined and well-understood in dimension one; see the

recent work Liu et al. (2020) for a characterization of probability distortion in dimension one.

2.6 Proofs of all results

Proof of Lemma 2.1. (i) and (ii) can be obtained by combining the results of Lemma 3 in Wang

et al. (2020) and Theorems 4 and 6 of Dhaene et al. (2012). We only prove (iii). We first suppose

that h is right-continuous. Since F−1
X is continuous on (0, 1), we have

F−1
X (1− t) = F−1+

X (1− t), for all t ∈ [0, 1].

It then follows from (i) that∫
X dh ◦ P =

∫ 1

0
F−1+
X (1− t) dh(t) =

∫ 1

0
F−1
X (1− t) dh(t).
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Then suppose that h is left-continuous. According to (ii), it is straightforward that∫
X dh ◦ P =

∫ 1

0
F−1
X (1− t) dh(t).

Then consider a general h. Since h is of bounded variation, it has countably many points of

discontinuity. Then we can always decompose h = hr + hl, where hr and hl are right-continuous

and left-continuous parts of h, respectively. From (2.1), it is obvious that∫
X d(ah1 + bh2) ◦ P = a

∫
X dh1 ◦ P + b

∫
X dh2 ◦ P

for all h1, h2 ∈ H and a, b ∈ R. According to the above discussion,∫
X dh ◦ P =

∫
X dhr ◦ P +

∫
X dhl ◦ P

=

∫ 1

0
F−1
X (1− t) dhr(t) +

∫ 1

0
F−1
X (1− t) dhl(t) =

∫ 1

0
F−1
X (1− t) dh(t).

The other equality is similar.

Proof of Proposition 2.1. (i) Recall the quantile representation of the integral
∫
X dh ◦ P,∫

X dh ◦ P =

∫ 1

0
F−1+
X (1− t) dhr(t) +

∫ 1

0
F−1
X (1− t) dhl(t). (2.6)

We show finiteness of the first term in (2.6) and finiteness of the second term follows similarly.

For any ε ∈ (0, 1) such that h is absolutely continuous in [0, ε) ∪ (1− ε, 1] and

h′ ∈ Lq((0, ε) ∪ (1− ε, 1)),

we have |F−1+
X (1− t)| <∞ for all t ∈ [ε, 1− ε]. It follows that∣∣∣∣∫ 1−ε

ε
F−1+
X (1− t) dhr(t)

∣∣∣∣ <∞
since h is of bounded variation. It then suffices to show that∣∣∣∣∣

∫
[0,ε)∪(1−ε,1]

F−1+
X (1− t) dhr(t)

∣∣∣∣∣ =

∣∣∣∣∣
∫

[0,ε)∪(1−ε,1]
F−1+
X (1− t)h′r(t) dt

∣∣∣∣∣ <∞.
Since X ∈ Lp, the right-quantile F−1+

X ∈ Lp([0, 1]). Note that h′r ∈ Lq((0, ε) ∪ (1− ε, 1)) and

1/p+ 1/q = 1. By Hölder’s inequality,∣∣∣∣∣
∫

[0,ε)∪(1−ε,1]
F−1+
X (1− t)h′r(t) dt

∣∣∣∣∣
6
∫

[0,ε)∪(1−ε,1]
|F−1+
X (1− t)| · |h′r(t)|dt

6

(∫
[0,ε)∪(1−ε,1]

|F−1+(1− t)|p dt

) 1
p
(∫

[0,ε)∪(1−ε,1]
|h′r(t)|q dt

) 1
q

<∞.
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We then conclude that ∣∣∣∣∫ 1

0
F−1+
X (1− t) dhr(t)

∣∣∣∣ <∞.
By similar arguments, |

∫ 1
0 F

−1
X (1 − t) dhl(t)| < ∞ holds naturally. Therefore,

∫
X dh ◦ P is

finite.

(ii) Concavity of h implies that h is absolutely continuous on (0, 1). Suppose that h is not con-

tinuous at 0. Take X0 ∼ N(0, 1) and X = X
1/p
0 . It follows that F−1

X (1) =∞. By Lemma 2.1

(iii), ∣∣∣∣∫ X dh ◦ P
∣∣∣∣ =

∣∣∣∣∫ 1

0
F−1
X (1− t) dh(t)

∣∣∣∣ =∞,

which leads to a contradiction. Therefore, h is continuous at 0. Continuity of h at 1 holds

analogously. h is thus absolutely continuous on [0, 1]. Since h is of bounded variation, we can

always use Jordan decomposition h = h+ − h−, where h+ and h− are increasing functions.

Moreover, h can always be decomposed into h = hr +hl. It then suffices to prove the property

for all increasing and right-continuous h.

Since h is concave, we have h′ ∈ L1([0, 1]). Let

q′ = sup{r > 1 : h′ ∈ Lr((0, ε) ∪ (1− ε, 1)) for some ε ∈ (0, 1)}

and suppose for the purpose of contradiction that q′ < q. Note that we have q′/(q′ − 1) > p.

Hence, there exists δ > 0 such that

q′ + δ < q and
q′

q′ + δ − 1
> p.

Let q∗ = q′ + δ and p∗ = q∗/(q∗ − 1) > p. Note that q∗p/p∗ = (q′ + δ − 1)p < q′. Construct a

random variable X such that ∣∣F−1
X (1− t)

∣∣ = |h′(t)|
q∗
p∗ ,

for almost everywhere t ∈ [0, 1]. This is always possible due to concavity of h, which implies

that h′ is decreasing and h′ has countably many discontinuity points. Since q∗p/p∗ < q′,

we have h′ ∈ L(q∗p/p∗)((0, ε) ∪ (1 − ε, 1)) for some ε > 0, and hence X ∈ Lp. Noting that

h′ 6∈ Lq∗((0, ε) ∪ (1− ε, 1)), we have∣∣∣∣∣
∫

[0,ε)∪(1−ε,1]
F−1
X (1− t)h′(t) dt

∣∣∣∣∣ =

∫
[0,ε)∪(1−ε,1]

|h′(t)|
q∗
p∗+1

dt =

∫
[0,ε)∪(1−ε,1]

|h′(t)|q∗ dt =∞,

which leads to a contradiction. Therefore, q′ > q.
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Proof of Theorem 2.1. (i) “⇒”: For all X ∈ X , we define a random variable

XM = X1{|X|6M} +M1{X>M} −M1{X<−M}, M > 0.

Since ρ is continuous at infinity, we have ρ(XM )→ ρ(X). Note that XM ∈ L∞ for any M > 0.

It follows from Theorem 1 of Wang et al. (2020) that on L∞, the law-invariant, comonotonic-

additive and uniformly sup-continuous functional ρ can be represented by a signed Choquet

integral

ρ(XM ) =

∫ 0

−∞
(h(P(XM > x))− h(1)) dx+

∫ ∞
0

h(P(XM > x)) dx

=

∫ 0

−M
(h(P(X > x))− h(1)) dx+

∫ M

0
h(P(X > x)) dx, (2.7)

where h ∈ H. Specifically, h(t) = ρ(1{U<t}) < ∞ for t ∈ [0, 1], where U is a uniform random

variable on [0, 1]. Letting M →∞, we have

ρ(X) =

∫ 0

−∞
(h(P(X > x))− h(1)) dx+

∫ ∞
0

h(P(X > x)) dx.

(ii) “⇐”: Law-invariance is straightforward. Comonotonic-additivity follows from (2.6), since the

left- and right-quantiles are well-known to be comonotonic-additive (see Proposition 7.20 of

McNeil et al. (2015) for the case of left-quantile). Continuity at infinity holds simply by

ρh(XM ) =

∫ 0

−∞
(h(P(XM > x))− h(1)) dx+

∫ ∞
0

h(P(XM > x)) dx

=

∫ 0

−M
(h(P(X > x))− h(1)) dx+

∫ M

0
h(P(X > x)) dx

M→∞−−−−→ ρh(X).

To see the uniform sup-continuity, we take any two random variables X,Y ∈ X . By represen-

tation (2.6), we have

|ρh(X)− ρh(Y )|

6

∣∣∣∣∫ 1

0

(
F−1+
X (1− t)− F−1+

Y (1− t)
)

dhr(t)

∣∣∣∣+

∣∣∣∣∫ 1

0

(
F−1
X (1− t)− F−1

Y (1− t)
)

dhl(t)

∣∣∣∣
6 ess-sup|X − Y | · TVh,

where TVh is the total variation of the function h on [0, 1].

Proof of Proposition 2.2. (i) Sufficiency is straightforward from the definition of distortion risk-

metrics. Necessity can be checked by Bernoulli random variables.
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(ii) “⇒”: We take X = 1{U6t1} and Y = 1{U6t2} for all t1, t2 ∈ [0, 1] such that t1 6 t2, where

U ∼ U[0, 1]. Then we have X 6 Y . Suppose that ρh is increasing (resp. decreasing). We have

h(t1) = ρh(X) 6 ρh(Y ) = h(t2) (resp. h(t1) = ρh(X) > ρh(Y ) = h(t2)). Thus h is increasing

(resp. decreasing).

“⇐”: For any random variables X,Y ∈ X such that X 6 Y , we have P(X > x) 6 P(Y > x)

for all x ∈ R. If h is increasing (resp. decreasing), then h(P(X > x)) 6 h(P(Y > x))

(resp. h(P(X > x)) > h(P(Y > x))) for all x ∈ R. It implies that ρh(X) 6 ρh(Y )

(resp. ρh(X) > ρh(Y )).

(iii) For all c ∈ R, we first calculate

ρh(c) =

∫ 0

−∞
(h(P(c > x))− h(1)) dx+

∫ ∞
0

h(P(c > x)) dx

=

∫ 0

0∧c
(−h(1)) dx+

∫ 0∨c

0
h(1) dx = ch(1).

Note that any random variable X ∈ X and c are comonotonic. By comonotonic-additivity of

ρh, we have ρh(X + c) = ρh(X) + ρh(c) = ρh(X) + ch(1).

(iv) For all λ > 0 and all X ∈ X ,

ρh(λX) =

∫ 0

−∞
(h(P(λX > x))− h(1)) dx+

∫ ∞
0

h(P(λX > x)) dx

=

∫ 0

−∞
(h(P(X >

1

λ
x))− h(1)) dx+

∫ ∞
0

h(P(X >
1

λ
x)) dx

= λ

∫ 0

−∞
(h(P(X > u))− h(1)) du+ λ

∫ ∞
0

h(P(X > u)) du = λρh(X).

(v) This property is already shown in the proof of Lemma 2.1 (ii).

Proof of Proposition 2.3. Since ρh is convex on X , we know that it is convex on L∞, which implies

that h is concave by Theorem 3 of Wang et al. (2020).

Suppose that there exists X ∈ X such that E[|X|] =∞. Note that E[|X|] =∞ implies either

E[X+] = ∞ or E[X−] = ∞. If E[X+] = ∞, then Y = −X ∈ X since X is a linear space, and

E[Y−] = ∞. Similarly, if E[X−] = ∞, then E[Y+] = ∞. Therefore, we know that there exist

X,Y ∈ X such that E[X+] = E[Y−] =∞.

Take X ∈ X with E[X+] =∞. Since

ρh(X) =

∫ 0

−∞
(h(P(X > x))− h(1)) dx+

∫ ∞
0

h(P(X > x)) dx ∈ R,
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both
∫ 0
−∞ (h(P(X > x))− h(1)) dx and

∫∞
0 h(P(X > x)) dx have to be finite. Since X is unbounded

from above, this implies that h is continuous at 0. Similarly, take Y ∈ X with E[Y−] =∞, and we

obtain h is continuous at 1. Further by concavity, h is continuous on [0, 1]. Using Lemma 2.1, we

get

ρh(X) =

∫ 1

0
F−1
X (1− t) dh(t).

There exists δ > 0 such that F−1
X (1− ε) > 0 for all ε ∈ (0, δ). Moreover,

ε

∫ ε

0
F−1
X (1− t) dt =∞

for all ε ∈ (0, δ). Let h′(t) be the right-derivative of h at t ∈ [0, 1). Assume that h′(0) > 0. Since h

is concave and continuous, there exists ε > 0 such that h′(t) > ε for t ∈ [0, ε]. It follows that∫ ε

0
F−1
X (1− t) dh(t) > ε

∫ ε

0
F−1
X (1− t) dt =∞,

contradicting the fact that ρh(X) is finite. Therefore, h′(0) 6 0. Using similar arguments as above

for Y , we obtain h′(1) > 0 where h′(1) is the left derivative of h at 1. Since h is concave, these two

conditions imply that h = 0 on [0, 1], and hence ρh = 0 on X .

Proof of Theorem 2.2. (i) “⇒”: Suppose that X 6cx Y . We first consider the case where h ∈ H

is increasing. For an increasing concave function h ∈ H, it is well-known (Williamson, 1956,

e.g., Theorem 1 of) that there exists some finite Borel measure µ on [0, 1], such that

h(t) =

∫ 1

0

1

u
hu(t) dµ(u), t ∈ [0, 1], (2.8)

where hu(t) = t ∧ u for t, u ∈ [0, 1] and we use the convention hu(t)/u = 1{t>0} if u = 0. By

the quantile representation of a distortion riskmetric,

ρhu(X) =

∫ u

0
F−1
X (1− t) dt =

∫ 1

1−u
F−1
X (u) du 6

∫ 1

1−u
F−1
Y (u) du = ρhu(Y ),

where the third inequality holds by Theorem 3.A.5 of Shaked and Shanthikumar (2007). It

follows that

ρh(X) =

∫ 1

0

1

u
ρhu(X) dµ(u) 6

∫ 1

0

1

u
ρhu(Y ) dµ(u) = ρh(Y ).

When h ∈ H is decreasing, similar to (2.8), we have

h(t) =

∫ 1

0

1

1− u
(hu(t)− t) dν(u), t ∈ [0, 1]
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for some finite Borel measure ν on [0, 1] where the convention is (hu(t)− t)/(1−u) = −1{t=1}

if u = 1. By definition of X 6cx Y , it implies that E[X] = E[Y ]. It then follows that

ρh(X) =

∫ 1

0

1

1− u
(ρhu(X)− E[X]) dν(u) 6

∫ 1

0

1

1− u
(ρhu(Y )− E[Y ]) dν(u) = ρh(Y ).

For any concave function h on [0, 1], there always exists x̂ ∈ [0, 1], such that h(x̂) > h(x) for

all x ∈ [0, 1]. Then h can always be decomposed by h = h↑ + h↓, where

h↑(x) = h(x)1{06x<x̂} + h(x̂)1{x̂6x61} and h↓(x) = [h(x)− h(x̂)]1{x̂6x61}.

Notice that h↑ and h↓ are increasing and decreasing concave functions, respectively, with

h↑(0) = h↓(0) = 0.

According to the above arguments, we have

ρh(X) = ρh↑(X) + ρh↓(X) 6 ρh↑(Y ) + ρh↓(Y ) = ρh(Y ).

(ii) “⇐”: Suppose that ρh(X) 6 ρh(Y ) for all concave functions h ∈ H. For all t, u ∈ [0, 1], choose

a concave h ∈ H such that h(t) = hu(t) = t ∧ u. Then for all u ∈ [0, 1],

ρh(X) =

∫ 1

1−u
F−1
X (u) du and ρh(Y ) =

∫ 1

1−u
F−1
Y (u) du.

It follows that ∫ 1

1−u
F−1
X (u) du 6

∫ 1

1−u
F−1
Y (u) du for all u ∈ [0, 1],

which is equivalent to X 6cx Y by Theorem 3.A.5 of Shaked and Shanthikumar (2007).

Proof of Theorem 2.3. (i)⇒ (ii) is shown by Theorem 2.2. We proceed in the order (ii)⇒ (iii)⇒

(iv)⇒ (v)⇒ (vi)⇒ (i), and the arguments are based on Theorem 3 of Wang et al. (2020).

(ii)⇒ (iii): Take random variables X,Y,Xc, Y c ∈ X , such that X
d
= Xc, Y

d
= Y c and Xc and

Y c are comonotonic. By Theorem 3.5 of Rüschendorf (2013), we have X + Y 6cx X
c + Y c. It then

follows from law-invariance, comonotonic-additivity and convex order consistency of ρh that

ρh(X + Y ) 6 ρh(Xc + Y c) = ρh(Xc) + ρh(Y c) = ρh(X) + ρh(Y ).

(iii)⇒ (iv): As ρh is positively homogeneous, subadditivity is equivalent to convexity.

(iv)⇒ (v): Directly from the definition of convexity and quasi-convexity.
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(v) ⇒ (vi): Theorem 3 of Wang et al. (2020) gives that quasi-convexity of Ih on L∞ implies

that h is concave. Concavity on mixtures follows directly from the concavity of h by the definition

of a distortion riskmetric.

(vi)⇒ (i): Theorem 3 of Wang et al. (2020) gives that mixture-concavity of Ih on L∞ implies

that h is concave.

Proof of Theorem 2.4. Suppose that ρ : X → (−∞,∞] is a law-invariant, convex and continuous-

at-infinity functional dominating ρh. Using Theorem 5 of Wang et al. (2020), we know that, on

L∞, ρh∗ is the smallest law-invariant convex functional dominating ρh. Therefore, ρ > ρh∗ on L∞.

If ρh∗ is finite on X , then both ρ and ρh∗ are continuous at infinity on X , and hence ρ > ρh∗ on

X . If ρh∗ is not finite on X , then we know that
∫
X dh∗ ◦ P =∞ (but not −∞ since ρh∗ > ρh) for

some X ∈ X . Let

XM = X1{|X|6M} +M1{X>M} −M1{X<−M}, M > 0.

Using (2.7), ρ = ρh∗ on L∞ and
∫
X dh∗ ◦ P =∞, we have, as M →∞,

ρ(XM ) = ρh∗(XM ) =

∫ 0

−M
(h∗(P(X > x))− h(1)) dx+

∫ M

0
h∗(P(X > x)) dx→∞.

The continuity at infinity of ρ implies ρ(X) =∞, and hence ρ cannot be real-valued on X .

Proof of Theorem 2.5. Note that X 7→ ESα(X) and X 7→ ESα(−X) are convex distortion riskmet-

rics for all α ∈ [0, 1]. As a mixture of X 7→ ESα(X) and X 7→ ESα(−X), ρ defined by (2.4) satisfies

convexity, comonotonic-additivity, law-invariance, continuity at infinity, and uniform sup-continuity.

Hence, ρ is a convex distortion riskmetric. Next we show the “only-if” statement. Denote by h the

distortion function of ρ, which by Theorem 2.3 is a concave function. Following the same argument

in the proof of Theorem 2.2, we can write for some finite Borel measures γ, ν on [0, 1],

h(t) =

∫ 1

0

1

α
hα(t) dγ(α) +

∫ 1

0

1

1− α
(hα(t)− t) dν(α), t ∈ [0, 1], (2.9)

where hα(t) = t ∧ α. Note that 1
αhα is the distortion function of ES1−α. By Proposition 2.2, the

distortion function of X 7→ ESα(−X) is given by

gα(t) =
1− t
1− α

∧ 1− 1 =
(α− t) ∧ 0

1− α
=

1

1− α
(hα(t)− t), t ∈ [0, 1].

Therefore, (2.9) gives

ρ(X) =

∫ 1

0
ES1−α(X) dγ(α) +

∫ 1

0
ESα(−X) dν(α), X ∈ X .

Thus (2.4) holds with dµ(α) = dγ(1− α).
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Proof of Theorem 2.6. Since h ∈ H is of bounded variation, it can be decomposed into h = h+−h−

where h+ and h− are increasing functions. It then suffices to prove the result for all increasing

function h. We denote the distribution function of Xn by Fn for n ∈ N.

(i) If h is left-continuous and increasing, it induces a Borel measure µ on [0, 1] such that h(t) =

µ([0, t)), t ∈ [0, 1]. By quantile representation of a distortion riskmetric,

ρh(Xn) =

∫ 1

0
F−1
n (1− t) dh(t) and ρh(X) =

∫ 1

0
F−1
X (1− t) dh(t).

Since Xn → X in distribution, F−1
n → F−1

X almost everywhere on [0, 1], where F−1
X is contin-

uous. Let

A = {t ∈ (0, 1) : s 7→ F−1
X (1− s) is not continuous at t}.

According to the assumption, h must be continuous on the set A, which implies µ has no

point mass on A and µ(A) = 0. It remains to consider the points 0 and 1. Notice that

h-uniform integrability implies that when µ({0}) > 0, F−1
n (1) → F−1

X (1) as n → ∞ since

F−1
n (1) = F−1

X (1) = 0 for all n ∈ N. Similarly, when µ({1}) > 0, F−1
n (0) → F−1

X (0) = 0

as n → ∞. Therefore, F−1
n → F−1

X µ-almost surely. In addition, h-uniform integrability

of {X1, X2, . . . } is equivalent to uniform integrability of {F−1
1 , F−1

2 , . . . } with respect to the

measure µ. It then follows from Vitali’s Convergence Theorem (Rudin, 1987, p. 133) that

ρh(Xn)→ ρh(X) as n→∞.

(ii) If h is right-continuous, we define the Borel measure ν on [0, 1] by ν([0, t]) = h(t), t ∈ [0, 1].

We write the distortion riskmetrics as

ρh(Xn) =

∫ 1

0
F−1+
n (1− t) dh(t) and ρh(X) =

∫ 1

0
F−1+
X (1− t) dh(t).

Note that the set

B = {t ∈ (0, 1) : s 7→ F−1+
X (1− s) is not continuous at t}

= {t ∈ (0, 1) : s 7→ F−1
X (1− s) is not continuous at t}.

This implies ν(B) = 0. By similar argument as (i), we get F−1+
n → F−1+

X ν-almost surely and

ρh(Xn)→ ρh(X) as n→∞.

(iii) For a general h, we can write ρh by (2.6), where hr and hl are taken such that the collection

of discontinuity points of hr and hl coincides with that of h. To see that it is always possible,
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we define countable sets

C = {t ∈ [0, 1] : s 7→ h(s) is not continuous at t},

C+ = {t ∈ C : s 7→ h(s) is right-continuous at t} and C− = C \ C+.

Take

hr(x) =
∑
t∈C+

[h(t+)− h(t−)]1{x>t} + h(x)1{x/∈C} and hl(x) =
∑
t∈C−

[h(t+)− h(t−)]1{x>t}

for x ∈ [0, 1]. Thus hr and hl are as desired. It follows that

|ρh(Xn)− ρh(X)| 6 |ρhr(Xn)− ρhr(X)|+ |ρhl(Xn)− ρhl(X)| → 0

as n→∞. This implies ρh(Xn)→ ρh(X) as n→∞ in general.

Proof of Proposition 2.4. Suppose that we have random variables X1, X2, · · · ∈ Lp such that Xn →

X in Lp as n→∞. Let Fn be the distribution function of Xn for n ∈ N. Since h ∈ Hq, there exists

ε ∈ (0, 1) such that h′ ∈ Lq((0, ε) ∪ (1− ε, 1)). Then we have

|ρh(Xn)− ρh(X)| 6

∣∣∣∣∣
∫

[0,ε)∪(1−ε,1]
(F−1

n (1− t)− F−1
X (1− t)) dh(t)

∣∣∣∣∣
+

∣∣∣∣∣
∫

[ε,1−ε]
(F−1

n (1− t)− F−1
X (1− t)) dh(t)

∣∣∣∣∣ . (2.10)

By Hölder’s inequality, the first term of (2.10) satisfies∣∣∣∣∣
∫

[0,ε)∪(1−ε,1]
(F−1

n (1− t)− F−1
X (1− t)) dh(t)

∣∣∣∣∣
6
∫

[0,ε)∪(1−ε,1]

∣∣F−1
n (1− t)− F−1

X (1− t)
∣∣ · |h′(t)| dt

6

(∫
[0,ε)∪(1−ε,1]

∣∣F−1
n (1− t)− F−1

X (1− t)
∣∣p dt

) 1
p
(∫

[0,ε)∪(1−ε,1]
|h′(t)|q dt

) 1
q
n→∞−−−→ 0.

It remains to show the second term of (2.10) converges to zero. Note that∣∣∣∣∣
∫

[ε,1−ε]
(F−1

n (1− t)− F−1
X (1− t)) dh(t)

∣∣∣∣∣ =

∣∣∣∣∫ 1

0
(F−1

n (1− t)− F−1
X (1− t)) dh̃(t)

∣∣∣∣
= |ρh̃(Xn)− ρh̃(X)|,

where

h̃(t) =


0 t ∈ [0, ε),

h(t)− h(ε) t ∈ [ε, 1− ε],

h(1− ε)− h(ε) t ∈ (1− ε, 1].
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Clearly, {X,X1, X2, . . . } is uniformly h̃-integrable since h̃ stays constant in some neighborhood of

0 and 1. Also, Xn → X in Lp implies Xn → X in distribution and h̃ is continuous due to h being

continuous. It then follows from Theorem 2.6 that

|ρh̃(Xn)− ρh̃(X)| → 0 as n→∞.

Therefore, the second term of (2.10) also converges to zero. We conclude that ρh(Xn)→ ρh(X) as

n→∞, which proves the proposition.

Proof of Proposition 2.5. The proposition follows by applying Theorem 2.2 to each dimension of

ρ.

Proof of Proposition 2.6. The proposition follows by applying Theorem 2.6 to each dimension of

ρ.
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Chapter 3

Optimizing distortion riskmetrics with

distributional uncertainty

3.1 Introduction

In this chapter, we focus on distortion riskmetrics which is a large class of commonly used mea-

sures of risk and variability; see Chapter 2 for the terminology “distortion riskmetrics”. Distortion

riskmetrics include L-functionals (Huber and Ronchetti, 2009) in statistics, Yaari’s dual utilities

(Yaari, 1987) in decision theory, distorted premium principles (Wang et al., 1997) in insurance,

and spectral risk measures (Acerbi, 2002) in finance; see Chapter 2 for further examples. After

a normalization, increasing distortion riskmetrics are distortion risk measures, which include, in

particular, the two most important risk measures used in current banking and insurance regulation,

the Value-at-Risk (VaR) and the Expected Shortfall (ES). Moreover, convex distortion riskmetrics

are the building blocks (via taking a supremum) for all convex risk functionals (Liu et al., 2020),

including classic risk measures (Artzner et al., 1999; Föllmer and Schied, 2002a) and deviation

measures (Rockafellar et al., 2006).

When riskmetrics are evaluated on distributions that are subject to uncertainty, decisions

should be taken with respect to the worst (or best) possible values a riskmetric attains over a set of

alternative distributions; giving rise to the active subfield of distributionally robust optimization.

The set of alternative distributions, the uncertainty set, may be characterized by moment constraints

(e.g., Popescu, 2007), parameter uncertainty (e.g., Delage and Ye, 2010), probability constraints

(e.g., Wiesemann et al., 2014), and distributional distances (e.g., Jiang and Guan, 2016; Esfahani
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and Kuhn, 2018; Blanchet and Murthy, 2019), amongst others. Distributionally robust optimization

problems have been studied under the framework of expected utility (e.g., Popescu, 2007; Chen et

al., 2011) and further under shortfall risk measures (e.g., Delage et al., 2022). As an important class

of risk measures, distortion risk measures have also been considered as a natural choice of objectives

for distributionally robust optimization. Popular distortion risk measures such as VaR and ES are

studied extensively in this context; see e.g., Natarajan et al. (2008) and Zhu and Fukushima (2009).

Optimization of convex distortion risk measures, i.e., distortion riskmetrics with an increasing

and concave distortion function, is relatively well understood under distributional uncertainty;

see Cornilly et al. (2018), Li (2018), and Liu et al. (2020) for some recent work. Nevertheless,

many distortion riskmetrics are not convex or monotone. For example, in the Cumulative Prospect

Theory of Tversky and Kahneman (1992), the distortion function is typically assumed to be inverse-

S-shaped; in financial risk management, the popular risk measure VaR has a non-concave distortion

function, and the inter-quantile difference (Wang et al., 2020) has a distortion function that is neither

concave nor monotone. Another example is the difference between two distortion risk measures,

which is clearly not increasing or convex in general. Optimizing non-convex distortion riskmetrics

under distributional uncertainty is difficult and results are available only for special cases; see Li et

al. (2018), Cai et al. (2018), Zhu and Shao (2018), Wang et al. (2019), and Bernard et al. (2020),

all with an increasing distortion function.

There is, however, a notable common feature in the above mentioned literature when a non-

convex distortion risk metric is involved. For numerous special cases, one often obtains an equiv-

alence between the optimization problem with non-convex distortion riskmetric and that with a

convex one. Inspired by this observation, the aim of this chapter is to address:

What conditions provide equivalence between a non-convex riskmetric and a convex one in the

setting of distributional uncertainty?

An answer to this question is still missing in the literature. In this sense, we offer a novel perspective

on distributionally robust optimization problems by converting optimization problems with non-

convex objectives to their convex counterpart. Transforming an optimization problem with a non-

convex objective to a convex one through approximation and via a direct equivalence has been

studied by Zymler et al. (2013) and Cai et al. (2020). Both contributions, however, consider

uncertainty sets described by some special forms of constraints. A unifying framework applicable
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to numerous uncertainty sets and the entire class of distortion riskmetrics is however missing and

at the core of this chapter.

The main novelty of our results is three-fold: first, we obtain a unifying result (Theorem 3.1)

that allows, under distributional uncertainty, to convert an optimization problem of a non-convex

distortion riskmetric to an optimization problem with a convex one. The result covers, to the au-

thors’ best knowledge, all known equivalences between optimization problems of non-convex and

convex riskmetrics with distributional uncertainty. The proof requires techniques beyond the ones

used in the existing literature, as we do not make assumptions such as monotonicity, positiveness,

and continuity. Our framework can also be applied to settings with atomic probability space or with

uncertainty sets of multi-dimensional distributions. Second, we introduce the concept of closedness

under concentration as a sufficient condition to establish the equivalence, and it is also a necessary

condition on the set of optimizers given that the equivalence holds (Theorem 3.2). We show how

the properties of closedness under concentration within a collection of intervals I and closedness

under concentration for all intervals can be verified through direct analysis and provide numerous

examples. Third, the classes of distortion riskmetrics and uncertainty formulations considered in

this chapter include all special cases studied in the literature; examples are presented in Sections

3.3-3.4. In particular, our class of riskmetrics include all practically used risk measures and vari-

ability measures (some via taking a sup), dual utilities with inverse-S-shaped distortion functions

of Tversky and Kahneman (1992), and differences between two dual utilities or distortion risk

measures. Our uncertainty formulations include both supremum and infimum problems,1 moment

constraints, convex order/risk measure constraints, marginal constraints in risk aggregation with

dependence uncertainty (e.g., Embrechts et al., 2015), preference robust optimization (e.g., Arm-

bruster and Delage, 2015; Guo and Xu, 2020), and some one-dimensional and multi-dimensional

uncertainty sets induced by Wasserstein metrics.

The generality of our work distinguishes it from the large literature on distributional robust

optimization cited above. Our work is of analytical and probabilistic nature, and we focus on theo-

retical equivalence results which will be also illustrated via numerical implementations. The target

problems are formulated in Section 3.2. Sections 3.3 is devoted to our main contribution of the

equivalence of the optimization problems with non-convex and convex objectives under distribu-

tional uncertainty. We illustrate by many examples the concepts of closedness under conditional

1Thus we provide a universal treatment of worst-case and best-case risk values. Calculating best-case risk values

allows us to solve economic decision making problems where optimal distributions are chosen to minimize the risk.
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expectation and closedness under concentration, and distinguish them in several practical settings.

Section 3.4 demonstrates the equivalence results in multi-dimensional settings. In addition to a

general multi-dimensional model with a concave loss function, we solve a robust risk aggregation

problem with ambiguity on both the marginal distributions and the dependence structure. In

Section 3.5, our results are used to solve optimization problems with uncertainty sets defined via

moment constraints. In particular, we generalize a few well-known results in the literature on opti-

mization and worst-case values of risk measures. Sections 3.6 and 3.7 contain numerical illustrations

of optimizing differences between two distortion riskmetrics, portfolio optimization, and preference

robust optimization. Some concluding remarks are put in Section 3.8. Proofs of all results are

relegated to Section 7.12.

3.2 Distortion riskmetrics with distributional uncertainty

3.2.1 Problem formulation

Throughout, we work with an atomless probability space (Ω,F ,P). For n ∈ N, A represents

a set of actions, ρ is an objective functional, f : A × Rn → R is a loss function, and X is an

n-dimensional random vector with distributional uncertainty. Many problems in distributionally

robust optimization have the form

min
a∈A

sup
FX∈M̃

ρ(f(a,X)), (3.1)

where FX denotes the distribution of X and M̃ is a set of plausible distributions for X. We will

first focus on the inner problem

sup
FX∈M̃

ρ(f(a,X)), (3.2)

which we may rewrite as

sup
FY ∈M

ρ(Y ), (3.3)

where FY denotes the distribution of Y and M is a set of distributions on R. We suppress the

reliance on a as it remains constant in the inner problem (3.2). The supremum in (3.3) is typically

referred to as the worst-case risk measure in the literature if ρ is monotone.2 The problem (3.3)

can also represent an optimal decision problem, where ρ is an objective to maximize, and a decision

maker chooses an optimal distribution from the setM which is interpreted as an action set instead

2A risk measure ρ : Lp → R is monotone if ρ(X) 6 ρ(Y ) for all X,Y ∈ Lp with X 6 Y .
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of an uncertainty set (i.e., no uncertainty in this problem). Since the two problems share the

same mathematical formulation (3.3), we will navigate through our results mainly with the first

interpretation of worst-case risk under uncertainty.

Define the set H as that in Chapter 2. For p ∈ [1,∞] and a distortion function h ∈ H, a

distortion riskmetric ρh : Lp → R is defined as in Definition 2.1 of Chapter 2 on the Lp space.

See Proposition 3.5 below for a sufficient condition of the finiteness of ρh. Note that we allow h

to be non-monotone; if h is increasing and h(1) = 1, then ρh is a distortion risk measure. The

distortion riskmetric ρh is convex if and only if h is concave; see Wang et al. (2020) for this and

other properties of ρh.

In this chapter we consider the objective functional ρ in (3.1) to be a distortion riskmetric ρh

for some h ∈ H, as the class of distortion riskmetrics includes a large class of objective functionals

of interest. Note that a general analysis of (3.3) also covers the infimum problem infFY ∈M ρh(Y ),

since −ρh = ρ−h is again a distortion riskmetric. This illustrates an advantage of studying distor-

tion riskmetrics over monotone ones, as our analysis unifies best- and worst-case risk evaluations.

Best-case risk measures are also of practical importance. In particular, they may represent risk

minimization problems through the second interpretation of (3.3), where M represents a set of

possible actions (see Section 3.3.4 for some examples).

If ρh is not convex, or equivalently, h is not concave, problems such as (3.1) and (3.3) are often

highly nontrivial. However, the optimization problem of maximizing ρh∗(Y ) over FY ∈M, where

h∗ is the smallest concave distortion function dominating h, can often be solved either analytically

or through numerical methods. Note that ρh is mixture concave (i.e., FX 7→ ρ(X) is concave) if

and only if h is concave by Theorem 3 of Wang et al. (2020). As a consequence, if f(a,x) is convex

in a (for instance, in portfolio selection, a common choice is f(a,x) = a>x), then the optimization

(3.1) for ρh∗ ,

min
a∈A

sup
FX∈M̃

ρh∗(f(a,X)),

has an objective ρh∗(f(a,X)) which is convex in a and concave in FX. This is a standard convex-

concave minimax problem in the optimization literature and various computational methods exist

(e.g., Korpelevich, 1976; Nemirovski, 2004; Ouyang and Xu, 2021). To utilize this observation for

optimizing ρh, the crucial condition is

sup
FX∈M̃

ρh(f(a,X)) = sup
FX∈M̃

ρh∗(f(a,X)),
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that is, with Y = f(a,X),

sup
FY ∈M

ρh(Y ) = sup
FY ∈M

ρh∗(Y ). (3.4)

Also note that ρh 6 ρh∗ always holds, and hence for (3.4), it suffices to study the “>” inequality.

The main contribution of this chapter is a sufficient condition on the uncertainty set M

that guarantees the equivalence (3.4). We will also obtain a necessary condition for (3.4). The

equivalence (3.4) makes the optimization problem (3.1) for ρh much more tractable in various

settings, which will be illustrated through the examples in the following sections.

3.2.2 Notation and preliminaries

For p > 1 and n ∈ N, we denote by Mn
p the set of all distributions on Rn with finite p-th

moment. Let Mn
∞ be the set of n-dimensional distributions of bounded random variables. For

p ∈ [1,∞], write M1
p = Mp for simplicity. The set inclusion ⊆ and terms like “increasing” and

“decreasing” are in the non-strict sense. Since h ∈ H is of bounded variation, its discontinuity

points are at most countable and the left- and right-limits exist at each of these points. We write

h(t+) =

 limx↓t h(x), t ∈ [0, 1),

h(1), t = 1,
and h(t−) =

 limx↑t h(x), t ∈ (0, 1],

h(0), t = 0,

and the upper semicontinuous modification of h is denoted by

ĥ(t) = h(t+) ∨ h(t−) ∨ h(t), t ∈ (0, 1), with ĥ(0) = 0 and ĥ(1) = h(1).

Note that ĥ(t) = h(t) at all continuous points of h, and we do not make any modification at the

points 0 and 1 even if h has a jump at these points. For h ∈ H and t ∈ [0, 1], define its concave and

convex envelopes h∗ and h∗ respectively by

h∗(t) = inf {g(t) : g ∈ H, g > h, g is concave on [0, 1]} ,

h∗(t) = sup {g(t) : g ∈ H, g 6 h, g is convex on [0, 1]} .

Both h∗ and h∗ are continuous functions on (0, 1) for all h ∈ H, and if h is continuous at 0 and 1,

then so are h∗ and h∗ (see Figure 3.4 below for an illustration of h and h∗). Denote by H∗ (resp. H∗)

the set of concave (resp. convex) functions in H. Note that for all h ∈ H, we have h∗ ∈ H∗ and

h∗ ∈ H∗. As a well-known property of the convex and concave envelopes of a continuous h (e.g.,

Brighi and Chipot, 1994), h∗ (resp. h∗) differs from h on a union of disjoint open intervals, and h∗

(resp. h∗) is linear on these intervals. The functions h, ĥ, h∗ and (ĥ)∗ are illustrated in Figure 3.1.
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Figure 3.1: An example of h (left) and ĥ (right) with the set of discontinuity points {t1, t2, t3, t4, t5}

excluding 0 and 1; the dashed lines represent h∗ and (ĥ)∗, which are identical by Proposition 3.1

While in general ρh and ρĥ are different functionals, one has ρh(Y ) = ρĥ(Y ) for any random

variable Y with continuous quantile function; see Lemma 1 of Chapter 2. Moreover, h∗ = (ĥ)∗ >

ĥ > h and the four functions are all equal if h is concave. Below, we provide a new result on convex

envelopes of distortion functions h that are not necessarily monotone or continuous, which may be

of independent interest.

Proposition 3.1. For any h ∈ H, we have h∗ = (ĥ)∗ and the set {t ∈ [0, 1] : ĥ(t) 6= h∗(t)} is the

union of some disjoint open intervals. Moreover, h∗ is linear on each of the above intervals.

In the sequel, we mainly focus on h∗, which will be useful when optimizing ρh in (3.3). A

similar result to Proposition 3.1 holds for h∗, useful in the corresponding infimum problem, where

the upper semicontinuous modification of h is replaced by the lower semicontinuous one. This

follows directly from Proposition 3.1 by setting g = −h which gives ρg = −ρh and h∗ = −g∗.

For all distortion functions h ∈ H, from Proposition 3.1, there exist (countably many) disjoint

open intervals on which ĥ 6= h∗. Using a similar notation to Wang et al. (2019), we define the set

Ih = {(1− b, 1− a) : ĥ 6= h∗ on (a, b), ĥ(a) = h∗(a), ĥ(b) = h∗(b)} .

The set Ih is straightforward to identify in practice; see Section 3.3.2 for examples of commonly

used distortion riskmetrics and their corresponding sets Ih.
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Figure 3.2: Left panel: quantile function of F ; right panel: quantile function of F I where I =

{(0, 1/3), (1/2, 2/3)}

3.3 Equivalence between non-convex and convex riskmetrics

3.3.1 Concentration and the main equivalence result

In this section, we introduce the concept of concentration, and use this concept to explain

our main equivalence results, Theorems 3.1 and 3.2. For a distribution F ∈ M1 and an interval

C ⊆ [0, 1] (when speaking of an interval in [0, 1], we exclude singletons or empty sets), we define

the C-concentration of F , denote by FC , as the distribution of the random variable

F−1(U)1{U 6∈C} + E[F−1(U)|U ∈ C]1{U∈C}, (3.5)

where U ∼ U[0, 1] is a standard uniform random variable. In other words, FC is obtained by

concentrating the probability mass of F−1(U) on {U ∈ C} at its conditional expectation, whereas

the rest of the distribution remains unchanged. For F ∈M1 and 0 6 a < b 6 1, it is clear that the

left-quantile function of F (a,b) is given by

F−1(t)1{t6∈(a,b]} +

∫ b
a F
−1(u) du

b− a
1{t∈(a,b]}, t ∈ [0, 1]. (3.6)

For a collection I of (possibly infinitely many) non-overlapping intervals in [0, 1], let F I be the

distribution corresponding to the left-quantile function given by the left-continuous version of

F−1(t)1{t6∈
⋃
C∈I C} +

∑
C∈I

∫
C F

−1(u) du

λ(C)
1{t∈C}, t ∈ [0, 1], (3.7)

where λ is the Lebesgue measure; see Figure 3.2 for an illustration.

Definition 3.1. Let M be a set of distributions in M1 and I be a collection of intervals in [0, 1].

We say that (a) M is closed under concentration within I if F I ∈ M for all F ∈ M; (b) M is
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closed under concentration for all intervals if for all F ∈ M, we have FC ∈ M for all intervals

C ⊆ [0, 1]; (c) M is closed under conditional expectation if for all FX ∈M, the distribution of any

conditional expectation of X is in M.

The relationship between the three properties of closedness in Definition 3.1 is discussed in

Propositions 3.2 and 3.3 below. Generally, (c)⇒(b)⇒(a) if I is finite. Our main equivalence result

is summarized in the following theorem.

Theorem 3.1. For M⊆M1 and h ∈ H, the following hold.

(i) If h = ĥ, i.e., h is upper semicontinuous on (0, 1), andM is closed under concentration within

Ih, then

sup
FY ∈M

ρh(Y ) = sup
FY ∈M

ρh∗(Y ). (3.8)

(ii) If M is closed under concentration for all intervals, then (3.8) holds.

(iii) If h = ĥ, M is closed under concentration within Ih, and the second supremum in (3.8) is

attained by some F ∈M, then F Ih attains both suprema.

Both suprema in (3.8) may be infinite, and this is discussed in Remark 3.5 in Section 3.9.2.

The proof of Theorem 3.1 is more technical than similar results in the literature because of the

challenges arising from non-monotonicity, non-positivity, and discontinuity of h; see Figure 3.1 for

a sample of possible complications. In (ii), h does not need to be upper semicontinuous on (0, 1)

for (3.8) to hold because closedness under concentration for all intervals in (ii) is stronger than the

condition in (i).

Remark 3.1. For M⊆M1 and h ∈ H, if h = ĥ and FC ∈ M for all F ∈ M and C ∈ Ih, then the

equivalence relation (3.8) also holds. If Ih is finite, then this condition is generally stronger than

closedness under concentration within Ih in (i).

A natural question from Theorem 3.1 is whether our key condition of closedness under con-

centration is necessary in some sense for the equivalence (3.8) to hold.3 It is immediate to notice

that adding any distributions FZ satisfying ρh∗(Z) < supFY ∈M ρh∗(Y ) to the setM does not affect

the equivalence, and therefore we turn our attention to the set of maximizers instead of the whole

set M. In the next result, we show that closedness under concentration within Ih of the set of

maximizers of (3.3) is necessary for the equivalence (3.8) to hold.

3We thank an anonymous referee for raising this question.
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Theorem 3.2. For M ⊆ M1 and h ∈ H such that h 6= h∗, suppose that the set Mopt of all

maximizers of maxFY ∈M ρh(Y ) is non-empty. If the equivalence (3.8) holds, i.e., supFY ∈M ρh(Y ) =

supFY ∈M ρh∗(Y ), then Mopt is closed under concentration within Ih.

If the equivalence (3.8) holds, then each F ∈Mopt also maximizes the problem supFY ∈M ρh∗(Y ).

Conversely, if h = ĥ, then this condition and closedness of Mopt under concentration within Ih
together are necessary (by Theorem 3.2) and sufficient (by Theorem 3.1) for the equivalence (3.8)

to hold. If the maximizer F of the original problem (3.3) is unique, then by Theorem 3.2, F must

be equal to F Ih . The equivalence (3.8) does not imply closedness under concentration within Ih of

the uncertainty set M itself; an example showing this is discussed in Remark 3.2.

3.3.2 Some examples of distortion riskmetrics

We provide a few examples of distortion riskmetrics ρh commonly used in decision theory

and finance, and obtain their corresponding set Ih. The Value-at-Risk (VaR) and the Expected

Shortfall (ES) are the most popular risk measures in practice. We introduce them first, followed by

an inverse-S-shaped distortion function of Tversky and Kahneman (1992).

Example 3.1 (VaR and ES). The Value-at-Risk (VaR) is defined in (1.1) on space L0. Similarly,

we define the upper Value-at-Risk (VaR+) of Y ∈ L0 as the right-quantile of FY :

VaR+
α (Y ) = F−1+

Y (α), α ∈ [0, 1).

We also define the Expected Shortfall (ES) as (1.2) on the space L1. Both VaRα and ESα belong

to the class of distortion riskmetrics. Take α ∈ (0, 1). Let h(t) = 1(1−α,1](t), t ∈ [0, 1]. It follows

that h ∈ H and ĥ(t) = 1[1−α,1](t), t ∈ [0, 1]. In this case, ρh = VaRα. Moreover, h∗(t) = t
1−α ∧ 1,

t ∈ [0, 1] and ρh∗ = ESα. Since h∗ and ĥ differ on (0, 1− α), we have Ih = {(α, 1)}.

Example 3.2 (TK distortion riskmetrics). The following function h is an inverse-S-shaped distor-

tion function (see also Figure 3.4):

h(t) =
tγ

(tγ + (1− t)γ)1/γ
, t ∈ [0, 1], γ ∈ (0, 1). (3.9)

Distortion riskmetrics with distortion function (3.9) are commonly used in behavioural economics

and finance; see e.g., Tversky and Kahneman (1992). For simplicity, we call such distortion risk-

metrics TK distortion riskmetrics. Typical values of γ are in [0.5, 0.9]; see Wu and Gonzalez (1996).
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For h in (3.9), it is clear that h = ĥ on [0, 1] by continuity of h. We have h∗ 6= h on (t0, 1), for some

t0 ∈ (0, 1), and h∗ is linear on [t0, 1]. Thus, Ih = {(0, 1 − t0)}. An example of h in (3.9) and its

concave envelope h∗ are plotted in Figure 3.3 (left).

For h1, h2 ∈ H, we write h = h1 − h2 ∈ H and consider the difference between two distortion

riskmetrics, that is

ρh = ρh1 − ρh2 . (3.10)

Such type of distortion riskmetrics measure the difference or disagreement between two utilities,

risk attitudes, or capital requirements. Determining the upper and lower bounds, or the largest

absolute values of such measures of disagreement, is of interest in practice but rarely studied in the

literature. Note that h1−h2 is in general not monotone or concave even when h1 and h2 themselves

have the specified properties. Below we show some examples of distortion riskmetrics taking the

form of (3.10).

Example 3.3 (Inter-quantile range and inter-ES range). For α ∈ [1/2, 1), we take h1(t) =

1[1−α,1](t) and h2(t) = 1(α,1](t), t ∈ [0, 1]. It follows that h(t) = h1(t) − h2(t) = 1{1−α6t6α},

t ∈ [0, 1], ĥ = h, and

ρh(X) = F−1+
X (α)− F−1

X (1− α), X ∈ L0.

Correspondingly, we have h∗(t) = t/(1− α) ∧ 1 + (α− t)/(1− α) ∧ 0, t ∈ [0, 1], and

ρh∗(X) = ESα(X) + ESα(−X), X ∈ L1.

This distortion riskmetric ρh is called an inter-quantile range and ρh∗ is called an inter-ES range.

As the distortion functions h∗ and ĥ differ on the open intervals (0, 1 − α) and (α, 1), we have

Ih = {(α, 1), (0, 1− α)}. The distortion functions h and h∗ are displayed in Figure 3.3 (right).

Example 3.4 (Difference of two inverse-S-shaped distortion functions). We take h1 and h2 to be the

inverse-S-shaped distortion functions in (3.9), with parameters γ1 = 0.8 and γ2 = 0.7, respectively.

By calculation, the function h = h1 − h2 is convex on [0, 0.3770], concave on [0.3770, 1], and as

seen in Figure 3.4 not monotone. The concave envelope h∗ is linear on [0, 0.7578] and h∗ = h on

[0.7578, 1]. Thus, we have Ih = {(0.2422, 1)}. The graphs of the distortion functions h1, h2, h, and

h∗ are displayed in Figure 3.4.

The functions in H are a.e. differentiable, and for an absolutely continuous function h ∈ H,

let h′ be a (representative) function on [0, 1] that is a.e. equal to the derivative of h. If h ∈ H is
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Figure 3.3: Left panel: h and h∗ for the TK distortion riskmetric with γ = 0.7 in Example 3.2;

right panel: h and h∗ for the inter-quantile range in Example 3.3
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Figure 3.4: Left panel: inverse-S-shaped distortion functions h1 and h2 in Example 3.4; right panel:

h = h1 − h2 and h∗ of the same example

left-continuous or VaRt(Y ) is continuous with respect to t ∈ (0, 1), the risk measure ρh in (1.3) has

representation

ρh(Y ) =

∫ 1

0
VaR1−t(Y ) dh(t), Y ∈ Lp; (3.11)

see Lemma 1 of Chapter 2. If h ∈ H is absolutely continuous it holds

ρh(Y ) =

∫ 1

0
VaR1−t(Y )h′(t) dt, Y ∈ Lp. (3.12)

Another example of a recently introduced distortion riskmetric with concave distortion function

may be of independent interest in risk management.

Example 3.5 (Second-order superquantile). As introduced by Rockafellar and Royset (2018), a
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second-order superquantile is defined as

SSQα(Y ) =
1

1− α

∫ 1

α
ESt(Y ) dt, α ∈ (0, 1), Y ∈ L2.

By Theorem 2.4 of Rockafellar and Royset (2018), SSQα is a distortion riskmetric with a concave

distortion function h given by

h(t) =

 t
1−α

(
1 + log 1−α

t

)
, 0 6 t < 1− α,

1, 1− α 6 t 6 1.

Clearly, SSQα > ESα. The difference SSQα − ESα between second-order superquantile and ES,

which has a similar interpretation as ESα−VaRα, is a distortion riskmetric with a non-concave and

non-monotone distortion function g, and the set Ig contains a single interval of the form (0, β) for

some β ∈ [α, 1).

3.3.3 Closedness under concentration for all intervals

In this section, we present some technical results and specific examples about closedness under

concentration for all intervals and under conditional expectation. The proposition below clari-

fies the relationship between closedness under concentration for all intervals and closedness under

conditional expectation.

Proposition 3.2. Closedness under conditional expectation implies closedness under concentration

for all intervals, but the converse is not true.

Example 3.6. We present 6 classes of sets M that are closed under conditional expectation, and

hence also under concentration for all intervals.

1. (Moment conditions) For p > 1, m ∈ R, and v > 0, the set

M(p,m, v) = {FY ∈Mp : E[Y ] = m, E[|Y −m|p] 6 vp}

is closed under conditional expectation by Jensen’s inequality. The setM(p,m, v) corresponds

to distributional uncertainty with moment information, and the setting p = 2 (mean and

variance constraints) is the most commonly studied.

2. (Mean-covariance conditions) For n ∈ N, a ∈ Rn, µ ∈ Rn, and Σ ∈ Rn×n positive semidefinite,

let

Mmv(a,µ,Σ) = {Fa>X ∈M2 : FX ∈Mn
2 , E[X] = µ, var(X) � Σ},
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where X = (X1, . . . , Xn), E[X] = (E[X1], . . . ,E[Xn]), var(X) is the covariance matrix of X,

and B′ � B means that the matrix B−B′ is positive semidefinite for two positive semidefinite

symmetric matrices B and B′. With a simple verification in Section 3.9.1, Mmv(a,µ,Σ) =

M(2,a>µ, (a>Σa)1/2).

3. (Convex function conditions) For n ∈ N, a ∈ Rn, K ⊆ N, a collection f = (fk)k∈K of convex

functions on Rn, and a vector x = (xk)k∈K ∈ R|K|, let

Mf (a,x) = {Fa>X ∈M1 : E[fk(X)] 6 xk for all k ∈ K}.

The set Mf corresponds to distributional uncertainty with constraints on expected losses or

test functions. The set Mf includes M(p,m, v) as a special case.

4. (Distortion conditions) For K ⊆ N, a collection h = (hk)k∈K ∈ (H∗)|K| and a vector x =

(xk)k∈K ∈ R|K|, let

Mh(x) = {FY ∈M1 : ρhk(Y ) 6 xk for all k ∈ K}.

The setMh corresponds to distributional uncertainty with constraints on preferences modeled

by convex dual utilities.

5. (Convex order conditions) For K ⊆ N and a collection of random variables Z = (Zk)k∈K ∈

(L1)|K|, let

Mcx(Z) = {FY ∈M1 : Y 6cx Zk for all k ∈ K},

where 6cx is the inequality in convex order.4 Similar to the above two examples, Mcx(Z) is

closed under conditional expectation (cf. Remark 3.6 in Section 3.9.2).

6. (Marginal conditions) For given univariate distributions F1, . . . , Fn ∈M1, let

MS(F1, . . . , Fn) = {FX1+···+Xn ∈M1 : Xi ∼ Fi, i = 1, . . . , n}.

In other words,MS is the set of all possible aggregate risks X1 + · · ·+Xn with given marginal

distributions of X1, . . . , Xn; see Embrechts et al. (2015) for some results on MS . Generally,

MS is not closed under concentration for all intervals or conditional expectation, since closed-

ness under concentration for all intervals is stronger than joint mixability (Wang and Wang,

2016). In the special case where F1 = · · · = Fn = U[0, 1], Proposition 1 and Theorem 5 of

Mao et al. (2019) imply thatMS is closed under conditional expectation if and only if n > 3.
4Precisely, we write G 6cx (6icx)F if

∫
φ dG 6

∫
φ dF for all (increasing) convex functions φ such that the above

two integrals are well defined.
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Remark 3.2. The uncertainty set M(p,m, v) of the moment condition in Example 3.6 can be

restricted to the set

M(p,m, v) = {FY ∈Mp : E[Y ] = m, E[|Y −m|p] = vp},

which is the “boundary” of M(p,m, v). For M =M(p,m, v), the suprema on both sides of (3.8)

are obtained by some distributions in M(p,m, v); see Theorem 3.5. As a direct consequence, we

get

sup
FY ∈M(p,m,v)

ρh∗(Y ) = sup
FY ∈M(p,m,v)

ρh∗(Y ) = sup
FY ∈M(p,m,v)

ρh(Y ) = sup
FY ∈M(p,m,v)

ρh(Y ).

Hence, equivalence holds even thoughM(p,m, v) is not closed under concentration for any interval.

By Theorem 3.2, the set of optimizers is closed under concentration within Ih for each h ∈ H.

For a distribution F ∈M1 and a collection I of disjoint intervals in [0, 1], we have the following

result regarding to the distribution F I .

Proposition 3.3. Let I be a collection of disjoint intervals in [0, 1] andM be a set of distributions.

IfM is closed under concentration for all intervals and I is finite, orM is closed under conditional

expectation, then M is closed under concentration within I.

If I is infinite, closedness under concentration for all intervals may not be sufficient for closed-

ness under concentration within I; see Remark 3.7 in Section 3.9.2 for a technical explanation. An

infinite Ih does not appear for any distortion riskmetrics in practice.

3.3.4 Examples of closedness under concentration within I but not for all in-

tervals

In practice, it is more tractable to check closedness under concentration within a specific

collection of intervals I than closedness under concentration for all intervals or under conditional

expectation. In this section, we show several examples for closedness under concentration within

some I.

For distortion functions h such that Ih = {(p, 1)} (resp. Ih = {(0, p)}) for some p ∈ (0, 1),

the result in Theorem 3.1 (i) only requires M to be closed under concentration within {(p, 1)}

(resp. {(0, p)}). Such distortion functions include the inverse-S-shaped distortion functions in (3.9),

those of VaRp, and VaR+
p , and that of the difference between the second-order superquantile and

ES in Example 3.5. Below we present some more concrete examples.
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Example 3.7 (M has two elements). Let p ∈ (0, 1) and M = {U[0, 1], pδp/2 + (1 − p)U[p, 1]}

where δp/2 is the point-mass at p/2. We can check that M is closed under concentration within

{(0, p)} but M is not closed under concentration for all intervals. Indeed, any set closed under

concentration for all intervals and containing U[0, 1] has infinitely many elements. In general, a finite

set which contains any non-degenerate distribution is not closed under conditional expectation in an

atomless probability space, since there are infinitely many possible distributions for the conditional

expectation of a given non-constant random variable. Another similar example that is closed under

concentration within {(0, p)} is the set of all possible distributions of the sum of several Pareto

risks; see Example 5.1 of Wang et al. (2019).

Example 3.8 (VaR and ES). As we see from Example 3.1, if ρh = VaR+
α for some α ∈ (0, 1), then

ρh∗ is ESα and Ih = {(α, 1)}. Theorem 3.1 (i) implies that if M is closed under concentration

within {(α, 1)}, then

sup
FY ∈M

VaR+
α (Y ) = sup

FY ∈M
ESα(Y ).

This observation leads to (with some modifications) the main results in Wang et al. (2015) and Li

et al. (2018) on the equivalence between VaR and ES.

Example 3.9 (TK distortion riskmetric). If we take h to be an inverse-S-shaped distortion function

in (3.9), then Ih = {(0, 1 − t0)} for some t0 ∈ (0, 1), and ρh is the TK distortion riskmetric. As a

direct consequence of Theorem 3.1 (i), ifM is closed under concentration within {(0, 1− t0)}, then

sup
FY ∈M

ρh(Y ) = sup
FY ∈M

ρh∗(Y ).

This result implies Theorem 4.11 of Wang et al. (2019) on the robust risk aggregation problem

based on dual utilities with inverse-S-shaped distortion functions.

Example 3.10 (Wasserstein ball, 1-dimensional). Optimization problems under the uncertainty

set of a Wasserstein ball are common in literature when quantifying the discrepancy between a

benchmark distribution and alternative scenarios; see e.g., Blanchet and Murthy (2019). We discuss

the application of the concept of concentration to optimization with Wasserstein distances. For

p > 1 and F,G ∈Mp, the p-Wasserstein distance between F and G is defined as

Wp(F,G) =

(∫ 1

0

∣∣F−1(u)−G−1(u)
∣∣p du

)1/p

.

For ε > 0, the uncertainty set of an ε-Wasserstein ball around a benchmark distribution G̃ ∈ Mp

is given by

M(G̃, ε) = {F ∈Mp : Wp(F, G̃) 6 ε}.
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Suppose that the benchmark distribution G̃ has a quantile function that is constant on each element

in some collection of disjoint intervals Ĩ ⊆ [0, 1]. As shown in Section 3.9.1,M(G̃, ε) is closed under

concentration within I for all I ⊆ Ĩ. Using this closedness property and Theorem 3.1 (i), the

equivalence

sup
FY ∈M(G̃,ε)

ρh(Y ) = sup
FY ∈M(G̃,ε)

ρh∗(Y ) (3.13)

holds for all h ∈ H such that Ih ⊆ Ĩ.

Remark 3.3. In general, if the quantile function G̃ in Example 3.10 is not constant on some interval

in Ĩ, then M(G̃, ε) is not necessarily closed under concentration within Ĩ, and the equivalence

(3.13) may not hold. For instance, the worst-case VaRα over M(G̃, ε) is generally different from

the worst-case ESα overM(G̃, ε) as obtained in Proposition 4 of Liu et al. (2022). We also refer to

Bernard et al. (2020) who consider a Wasserstein ball together with moment constraints.

Example 3.11 (Wasserstein ball, n-dimensional). For n ∈ N, p > 1, a > 1 and F,G ∈ Mn
p , the

p-Wasserstein distance on Rn between F and G is defined as

Wn
a,p(F,G) = inf

X∼F, Y∼G
(E[‖X−Y‖pa])1/p,

where ‖ · ‖a is the La-norm on Rn. Similarly to the 1-dimensional case, for ε > 0, an ε-Wasserstein

ball on Rn around a benchmark distribution G̃ ∈Mn
p is defined as

Mn(G̃, ε) = {F ∈Mn
p : Wn

a,p(F, G̃) 6 ε}.

In a portfolio selection problem, we consider the worst-case riskmetric of a linear combination of

random losses. For ε > 0, w ∈ [0,∞)n, p > 1, a > 1 and Z ∈ (Lp)n, as shown in Section 3.9.1, the

uncertainty set

{Fw>X ∈Mp : FX ∈Mn(FZ, ε)}

is closed under concentration within {(0, t)} for all t 6 p0. For a practical example, assume that an

investor holds a portfolio of bonds (for simplicity, assume that they have the same maturity). The

loss vector X > 0 from this portfolio at maturity has an estimated benchmark loss distribution G̃,

and the probability of no default from these bonds (i.e., X = 0) is estimated as p0 > 0 (usually quite

large). Suppose that the investor uses a distortion riskmetric with an inverse-S-shaped distortion

function h given in (3.9) of Example 3.2, and considers a Wasserstein ball around G̃ with radius ε.

Note that Ih = {(0, t)} for some t ∈ (0, 1) from Example 3.9. By Theorem 3.1 (i), we obtain an
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equivalence result on the worst-case riskmetrics for the portfolio with weight vector w,

sup
FX∈Mn(G̃,ε)

ρh(w>X) = sup
FX∈Mn(G̃,ε)

ρh∗(w
>X),

whenever t ∈ (0, p0].

Example 3.12 (Optimal hedging strategy). Suppose that an investor is willing to hedge her ran-

dom loss X only when it exceeds some certain level l ∈ R. Mathematically, for a fixed X ∈ L1

continuously distributed on (F−1
X (p0), F−1

X (1)) such that P(X 6 l) = p0 for some p0 ∈ (0, 1) and

l ∈ R, define the set of measurable functions

V = {V : R→ R | x 7→ x− V (x) is increasing, V (x) = 0 for all x 6 l}

representing possible hedging strategies. Let g : R→ R be an increasing and convex function. The

final payoff obtained by a hedging strategy V ∈ V is given by X − V (X) + g(E[V (X)]), where

g(E[V (X)]) is a fixed cost of the hedging strategy that depends on the expected value of V (X)

calculated by a risk-neutral seller in the market using the same probability measure P. As shown

in Section 3.9.1, the action set in this optimization problem,

M = {FX−V (X)+g(E[V (X)]) ∈M1 : V ∈ V},

is closed under concentration within {(p, 1)} for all p ∈ [p0, 1). On the other hand, it is obvious that

M is not closed under concentration for all intervals or closed under conditional expectation since

the quantiles of the distributions in M are fixed beyond the interval (p0, 1). The above closedness

under concentration property allows us to use Theorem 3.1 to convert the optimal hedging problem

for ρh with an inverse-S-shaped distortion function h as in (3.9) to a convex version ρh∗ .

Example 3.13 (Risk choice). Suppose that an investor is faced with a random loss X ∈ L1. The

distortion function h of her riskmetric is inverse-S-shaped with I−h = {(p, 1)} for some p ∈ (0, 1).

Suppose that p is known to the seller. Since the investor is averse to risk for large losses, the

seller may provide her with the option to stick to the initial investment or to convert the upper

part of the random loss into a fixed payment to avoid large loss. Specifically, we consider the set

M = {FX , F (p,1)
X } containing two elements, where P(X 6 u) = p for some u ∈ R. It is clear that

M is closed under concentration within {(p, 1)} but not closed under conditional expectation. We

assume that the costs of the two investment strategies are calculated by expectation and thus are

the same. By (i) of Theorem 3.1, it follows that the risk minimization problem satisfies

min
FY ∈M

ρh(Y ) = min
FY ∈M

ρh∗(Y ) = ρh∗(X),
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where the last equality follows from Theorem 3 of Chapter 2. By (iii) of Theorem 3.1, we further

have the minimum of the original problem minFY ∈M ρh(Y ) is obtained by F
(p,1)
X ; intuitively, the

investor will choose to convert the upper part of her loss into a fixed payment.

3.3.5 Atomic probability space

The definition of closedness under concentration in Definition 3.1 requires the assumption of

an atomless probability space since a uniform random variable is used in the setup. It may be of

practical interest in some economic and optimization settings to assume a finite probability space.

In this section, we let the sample space be Ωn = {ω1, . . . , ωn} for n ∈ N and the probability measure

Pn be such that Pn(ωi) = 1/n for all i = 1, . . . , n (such a space is called adequate in economics).

The possible distributions in such a probability space are supported by at most n points each with

probability a multiple of 1/n, and we denote by M[n] the set of these distributions.

Define the collection of intervals In = {(j/n, k/n] : j, k ∈ N ∪ {0}, j < k 6 n}. We say a set

of distributions M ⊆M[n] is closed under grid concentration within I ⊆ In if for all F ∈ M, the

distribution of the random variable

F−1(Un)1{Un /∈
⋃
C∈I C} +

∑
C∈I

E[F−1(Un)|Un ∈ C]1{Un∈C}

is also in M, where Un is a random variable such that Un(ωi) = i/n for all i = 1, . . . , n. For a

distribution F with finite mean and (a, b] ∈ In, it is straightforward that the left-quantile function of

F (a,b] is given by (3.6). The following equivalence result holds with additional assumption Ih ⊆ In.

The proof can be obtained directly from that of Theorem 3.1.

Proposition 3.4. Let M ⊆ M[n] and h ∈ H. If h = ĥ, Ih ⊆ In and M is closed under grid

concentration within Ih, then

sup
FY ∈M

ρh(Y ) = sup
FY ∈M

ρh∗(Y ).

We note that the condition Ih ⊆ In in Proposition 3.4 is satisfied by all distortion functions h

which are linear (or constant) on each of ((j−1)/n, j/n], j = 1, . . . , n. It is common to assume such

a distortion function h in an adequate probability space of n states, since any distribution function

can only take values in {j/n : j = 0, . . . , n}.
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3.4 Multi-dimensional setting

Our main equivalence results in Theorems 3.1 and 3.2 are stated under the context of one-

dimensional random variables. In this section, we discuss their generalization to multi-dimensional

framework with a few additional steps.

In the multi-dimensional setting, closedness under concentration is not easy to define, as quan-

tile functions are not naturally defined for multivariate distributions. Nevertheless, closedness under

conditional expectation can be analogously formulated. For n ∈ N, we say that M⊆Mn is closed

under conditional expectation, if for all FX ∈ M, the distribution of any conditional expectation

of X is in M. The following theorem states the multi-dimensional version of our main equivalence

result using closedness under conditional expectation.

Theorem 3.3. For M̃ ⊆ Mn
1 , increasing function h ∈ H and f : A × Rn → R concave in the

second argument, if M̃ is closed under conditional expectation, then for all a ∈ A,

sup
FX∈M̃

ρh(f(a,X)) = sup
FX∈M̃

ρh∗(f(a,X)). (3.14)

If h = ĥ and the second supremum in (3.14) is attained by some FX ∈ M̃, then F Ihf(a,X) attains both

suprema. Moreover, if f is linear in the second component, then (3.14) holds for all h ∈ H (not

necessarily monotone).

Remark 3.4. If we assume that f is convex (instead of concave) in the second argument in Theorem

3.3 and keep the other assumptions, then for an increasing h,

inf
FX∈M̃

ρh(f(a,X)) = inf
FX∈M̃

ρh∗(f(a,X)).

This statement follows by noting ρ−h = −ρh. The case of a decreasing h is similar.

Theorem 3.3 is similar to Theorem 3.4 of Cai et al. (2020) which states the equivalence (3.14)

for increasing h and a specific set M̃ which is a special case in Example 3.14 below. In contrast,

our result applies to non-monotone h (with an extra condition on f), more general set M̃, and also

the infimum problem. The setting of a function f linear in the second argument often appears in

portfolio selection problems where f(a,X) = a>X; see Example 3.11 and Section 3.6.

Example 3.14. Similarly to Example 3.6, we give examples of sets of multi-dimensional distribu-

tions closed under conditional expectation.
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1. (Convex function conditions) For n ∈ N, a convex set B ⊆ Rn, set Ψ of convex functions on

Rn, and a mapping π : Ψ→ R, let

M̃(B,Ψ, f) = {FX ∈Mn
1 : P(X ∈ B) = 1, E[ψ(X)] 6 π(ψ) for all ψ ∈ Ψ}.

It is clear that M̃(B,Ψ, f) is closed under conditional expectation due to Jensen’s inequality.

The uncertainty set proposed by Delage et al. (2014) and used in Theorem 3.4 of Cai et

al. (2020) can be obtained as a special case of this setting by taking Ψ = {f1, . . . , fn} ∪

{g1, . . . , gn} ∪Φ, where fi : (x1, . . . , xn) 7→ xi, gi : (x1, . . . , xn) 7→ −xi for all i = 1, . . . , n, and

Φ is a set of convex functions. The specification for π is that π(fi) = mi ∈ R, π(gi) = −mi,

π(φ) = 0 for all i = 1, . . . , n, φ ∈ Φ.

2. (Distortion conditions) For n ∈ N, K ⊆ N, a = (ak)k∈K ∈ Rn×|K|, h = (hk)k∈K ∈ (H∗)|K|

and x = (xk)k∈K ∈ R|K|, the set

M̃h(a,x) = {FX ∈Mn
1 : ρhk(a>k X) 6 xk for all k ∈ K}

is closed under conditional expectation. In portfolio optimization problems, this setting in-

corporates distributional uncertainty with constraints on convex distortion risk measures of

the total loss. In particular, optimization with the riskmetrics chosen as ES is common in the

literature; see e.g., Rockafellar and Uryasev (2002), where ES is called CVaR.

3. (Convex order conditions) For n ∈ N and random vectors Zk ∈ (L1)n, k ∈ K ⊆ N, we

naturally extend from part 5 of Example 3.6 and obtain that the set

M̃cx(Z) = {FX ∈Mn
1 : X 6cx Zk for all k ∈ K}

is closed under conditional expectation.

Next, we discuss a multi-dimensional problem setting involving concentrations of marginal

distributions. For n ∈ N, we assume that marginal distributions of an n-dimensional distribution

in Mn
1 are uncertain and are in some sets F1, . . . ,Fn ⊆M1. For F1, . . . , Fn ∈M1, define the set

D(F1, . . . , Fn) = {cdf of (X1, . . . , Xn) : Xi ∼ Fi, i = 1, . . . , n},

which is the set of all possible joint distributions with specified marginals; see Embrechts et al.

(2015). For a ∈ A, h ∈ H and F1, . . . ,Fn ⊆ M1, the worst-case distortion riskmetric can be

represented as

sup
F1∈F1,...,Fn∈Fn

sup
FX∈D(F1,...,Fn)

ρh(f(a,X)). (3.15)
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The outer problem of (3.15) is a robust risk aggregation problem (see Embrechts et al. (2013);

Embrechts et al. (2015) and item 6 of Example 3.6), which is typically nontrivial in general when h

is not concave. With additional uncertainty of the marginal distributions, (3.15) can be converted

to a problem with a convex objective given that F1, . . . ,Fn are closed under concentration.

Theorem 3.4. For F1, . . . ,Fn ⊆M1, increasing h ∈ H with h = ĥ, and f : A×Rn → R increasing,

supermodular and positively homogeneous in the second argument, if F1, . . . ,Fn are closed under

concentration within Ih, then the following hold.5

(i) For all a ∈ A,

sup
F1∈F1,...,Fn∈Fn

sup
FX∈D(F1,...,Fn)

ρh(f(a,X)) = sup
F1∈F1,...,Fn∈Fn

sup
FX∈D(F1,...,Fn)

ρh∗(f(a,X)). (3.16)

(ii) If the supremum of the right-hand side of (3.16) is attained by some F1 ∈ F1, . . . , Fn ∈ Fn

and F ∈ D(F1, . . . , Fn), then for all a ∈ A, F Ih1 , . . . , F Ihn and a comonotonic random vector

(XIh1 , . . . , XIhn ) with XIhi ∼ F
Ih
i , i = 1, . . . , n attain the suprema on both sides of (3.16).6

Some examples of functions on Rn that are supermodular and positively homogeneous are

given below. These functions are concave due to Theorem 3 of Marinacci and Montrucchio (2008).

Example 3.15 (Supermodular and positively homogeneous functions). For n ∈ N, the following

functions f : Rn → R are supermodular and positively homogeneous. Write x = (x1, . . . , xn) ∈ Rn.

(i) (Linear function) f : x 7→ a>X for a ∈ Rn. The function is increasing for a ∈ Rn+.

(ii) (Geometric mean) f : x 7→ −(
∏n
i=1 |xi|)1/n on Rn− for odd n. The function is also increasing

on Rn−.

(iii) (Negated p-norm) f : x 7→ −‖x‖p for p > 1. The function is increasing on Rn−.

(iv) (Sum of functions) f : x 7→
∑n

i=1 fi(xi) for positively homogeneous functions f1, . . . , fn : R→

R. The function is increasing if f1, . . . , fn are increasing.

5For a function f : Rn → R, we say f is supermodular if f(x) + f(y) 6 f(x ∧ y) + f(x ∨ y) for all x,y ∈ Rn; f is

positively homogeneous if f(λx) = λf(x) for all λ > 0 and x ∈ Rn.
6A random vector (X1, . . . , Xn) ∈ (L1)n is called comonotonic if there exists a random variable Z ∈ X and

increasing functions f1, . . . , fn on R such that Xi = fi(Z) almost surely for all i = 1, . . . , n.
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3.5 One-dimensional uncertainty set with moment constraints

A popular example of an uncertainty set closed under concentration for all intervals is that of

distributions with specified moment constraints as in Example 3.6. We investigate this uncertainty

set in detail and offer in this section some general results, which generalize several existing results in

the literature; none of the results in the literature include non-monotone and non-convex distortion

functions. Non-monotone distortion functions create difficulties because of possible complications

at their discontinuity points.

For p > 1, m ∈ R and v > 0, we recall the set of interest in Example 3.6:

M(p,m, v) = {FY ∈Mp : E[Y ] = m, E[|Y −m|p] 6 vp}.

Let q ∈ [1,∞] be the Hölder conjugate of p, namely q = (1− 1/p)−1, or equivalently, 1/p+ 1/q = 1.

For all h ∈ H∗ or h ∈ H∗, we denote by

‖h′ − x‖q =

(∫ 1

0
|h′(t)− x|q dt

)1/q

, q <∞ and ‖h′ − x‖∞ = max
t∈[0,1]

|h′(t)− x|, x ∈ R. (3.17)

We introduce the following quantities:

ch,q = arg min
x∈R

‖h′ − x‖q and [h]q = min
x∈R
‖h′ − x‖q = ‖h′ − ch,q‖q.

We set [h]q = ∞ if h is not continuous. It is clear that ch,q is unique for q > 1. The quantity [h]q

may be interpreted as a q-central norm of the function h and ch,q as its q-center. Note that for q = 2

and h continuous, [h]2 = ‖h′− h(1)‖2 and ch,2 = h(1). We also note that the optimization problem

is trivial if [h]q = 0, which corresponds to the case that h′ = h(1)1[0,1] and ρh is a linear functional,

thus a multiple of the expectation. In this case, the supremum and infimum are attained by all

random variables whose distributions are inM(p,m, v), and they are equal to mh(1). Furthermore,

for h ∈ H∗ or h ∈ H∗, and q > 1, we define a function on [0, 1] by

φqh(t) =
|h′(1− t)− ch,q|q

h′(1− t)− ch,q
[h]1−qq if h′(1− t)− ch,q 6= 0, and φqh(t) = 0 otherwise.

In case q = 2, for t ∈ [0, 1], φ2
h(t) = (h′(1 − t) − h(1))‖h′ − h(1)‖−1

2 if ‖h′ − h(1)‖2 > 0 and 0

otherwise. We summarize our findings in the following theorem.

Theorem 3.5. For any h ∈ H, m ∈ R, v > 0 and p > 1, we have

sup
FY ∈M(p,m,v)

ρh(Y ) = mh(1) + v[h∗]q and inf
FY ∈M(p,m,v)

ρh(Y ) = mh(1)− v[h∗]q. (3.18)
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Moreover, if h = ĥ, 0 < [h∗]q < ∞ and 0 < [h∗]q < ∞, then the supremum and infimum in (3.18)

are attained by a random variable X such that FX ∈M(p,m, v) with its quantile function uniquely

specified as a.e. equal to m+ vφqh∗ and m− vφqh∗, respectively.

The proof of Theorem 3.5 follows from a combination of Lemmas 3.1 and 3.2 in Section 3.10.4

and Theorem 3.1. Note that for h ∈ H∗ (resp. h ∈ H∗) and q > 1, φqh is increasing (resp. decreasing)

on [0, 1]. Hence, φqh (resp. −φqh) in Theorem 3.5 indeed determines a quantile function.

The following proposition concerns the finiteness of ρh on Lp.

Proposition 3.5. For any h ∈ H and p ∈ [1,∞], ρh is finite on Lp if [h∗]q <∞ and [h∗]q <∞.

As a special case of Proposition 3.5, ρh is always finite on L1 if h is convex or concave with

bounded h′ because [h∗]∞ <∞ and [h∗]∞ <∞.

As a common example of the general result in Theorem 3.5, below we collect our findings for

the case of VaR.

Corollary 3.1. For α ∈ (0, 1), p > 1, m ∈ R and v > 0, we have

sup
FY ∈M(p,m,v)

VaRα(Y ) = max
FY ∈M(p,m,v)

ESα(Y ) = m+ vα (αp(1− α) + (1− α)pα)−1/p ,

and

inf
FY ∈M(p,m,v)

VaRα(Y ) = min
FY ∈M(p,m,v)

ESLα(Y ) = m− v(1− α) (αp(1− α) + (1− α)pα)−1/p ,

where

ESLα(Y ) =
1

α

∫ α

0
VaRt(Y ) dt, Y ∈ L1.

We see from Theorem 3.5 that if h = ĥ, then the supremum and the infimum of ρh(Y ) over

FY ∈M(p,m, v) are always attainable. However, in case h 6= ĥ, the supremum or infimum may no

longer be attainable as a maximum or minimum. We illustrate this in Example 3.16 below.

Example 3.16 (VaR and ES, p = 2). Take α ∈ (0, 1), p = 2 and ρh = VaRα, which implies ρh∗ =

ESα. Corollary 3.1 gives supFY ∈M(2,m,v) VaRα(Y ) = supFY ∈M(2,m,v) ESα(Y ) = m + v
√
α/(1− α).

This is the well-known Cantalli-type formula for ES. By Lemma 3.1, the unique left-quantile function

of the random variable Z that attains the supremum of ESα is given by F−1
Z (t) = m+v(1(α,1](t)/(1−

α)− 1)
√

(1− α)/α, t ∈ [0, 1] a.e. We thus have VaRα(Z) = m− v
√

(1− α)/(α), and hence Z does

not attain supFY ∈M(2,m,v) VaRα(Y ). It follows by the uniqueness of FZ that the supremum of
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VaRα(Y ) over FY ∈ M(2,m, v) cannot be attained. However, the supremum of VaR+
α is attained

by Z since VaR+
α (Z) = m+ v

√
(1− α)/(α).

Example 3.17 (Difference of two TK distortion riskmetrics). Take p = 2 and h = h1 − h2 to be

the difference between two inverse-S-shaped functions in (3.9) with parameters the same as those in

Example 3.4 (γ1 = 0.8, γ2 = 0.7). By Theorem 3.5, the worst-case distortion riskmetrics under the

uncertainty set M(2,m, v) are given by supFY ∈M(2,m,v) ρh(Y ) = supFY ∈M(2,m,v) ρh∗(Y ) = 0.3345v,

and the unique left-quantile function of the random variable Z attaining both suprema above is

given by F−1
Z (t) = m + 2.9892 · h∗′(1 − t)v, t ∈ [0, 1] a.e. The worst-case distortion riskmetrics

obtained above are independent of the mean m as h(1) = h1(1)− h2(1) = 0, which is sensible since

ρh and ρh∗ only incorporate the disagreement between two distortion riskmetrics. Similarly, we can

calculate the infimum of ρh(Y ) over Y ∈M(2,m, v), and thus obtain the largest absolute difference

between the two preferences numerically represented by ρh1 and ρh2 .

3.6 Related optimization problems

In this section, we discuss the applications of our main results to some related optimization

problems commonly investigated in the literature by including the outer problem of (3.1).

3.6.1 Portfolio optimization

Our equivalence results can be applied to robust portfolio optimization problems. For an

uncertainty set M̃ ⊆ Mn
p with p ∈ [1,∞], let the random vector X = (X1, . . . , Xn) ∼ FX ∈ M̃,

representing the random losses from n risky assets. For A ⊆ Rn, denote by a vector a ∈ A the

amounts invested in each of the n risky assets. For a distortion function h ∈ H and distortion

riskmetric ρh : Lp → R, we aim to solve the robust portfolio optimization problem given by

min
a∈A

(
sup

FX∈M̃
ρh(a>X) + β(a)

)
, (3.19)

where β : Rn → R is a penalty function of risk concentration. Note that β is irrelevant for the

inner problem of (3.19). For a general non-concave h, there is no known algorithm to solve the

inner problem of (3.19). The outer optimization problem is also nontrivial in general. Therefore,

we usually cannot obtain closed-form solutions of (3.19) using classical results of optimization

problems for non-convex risk measures. However, as a direct consequence of Theorems 3.1 and 3.3,
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the following proposition converts (3.19) to an equivalent optimization problem with the objective

functional ρh∗ being convex and mixture concave, which is usually technically tractable to solve.

The proof of Proposition 3.6 follows directly from Theorems 3.1 and 3.3.

Proposition 3.6. Let h ∈ H, n ∈ N, A ⊆ Rn, and M̃ ⊆Mn
1 .

(i) if h = ĥ and the set {Fa>X ∈ M1 : FX ∈ M̃} is closed under concentration within Ih for all

a ∈ A, then

min
a∈A

(
sup

FX∈M̃
ρh(a>X) + β(a)

)
= min

a∈A

(
sup

FX∈M̃
ρh∗(a

>X) + β(a)

)
. (3.20)

(ii) if the set {Fa>X ∈M1 : FX ∈ M̃} is closed under concentration for all intervals for all a ∈ A,

then (3.20) holds.

(iii) If M̃ is closed under conditional expectation, then (3.20) holds.

3.6.2 Preference robust optimization

We are also able to solve the preference robust optimization problem with distributional un-

certainty. For n ∈ N, an n-dimensional action set A, a set of plausible distributions M̃ ⊆Mn
1 , and

a set of possible probability perceptions G ⊆ H, the problem is formulated as follows:

min
a∈A

sup
FX∈M̃

sup
h∈G

ρh(f(a,X)). (3.21)

Preference robust optimization refers to the situation when the objective is not completely known,

e.g., h is in the set G but not identified. Therefore, optimization is performed under the worst-case

preference in the set G. Also note that the form suph∈G ρh includes (but is not limited to) all

coherent risk measures via the representation of Kusuoka (2001). See Delage and Li (2018) for

the problem of (3.21) without distributional uncertainty (thus, only the minimum and the second

supremum), which was further studied by Wang and Xu (2020) for optimization problems of robust

spectral risk measures. We have the following result whose proof follows from Theorems 3.1 and

3.3.

Proposition 3.7. Let M̃ ⊆Mn
1 and A ⊆ Rn with n ∈ N.

(i) If h = ĥ and the set {Ff(a,X) ∈ M1 : FX ∈ M̃} is closed under concentration within Ih for

all a ∈ A, then for all G ⊆ H,

min
a∈A

sup
FX∈M̃

sup
h∈G

ρh(f(a,X)) = min
a∈A

sup
FX∈M̃

sup
h∈G

ρh∗(f(a,X)). (3.22)
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(ii) If the set {Ff(a,X) ∈ M1 : FX ∈ M̃} is closed under concentration for all intervals for all

a ∈ A, then (3.22) holds for all G ⊆ H.

(iii) If G is a set of increasing functions in H, f : A×Rn → R is concave in the second component,

and M̃ is closed under conditional expectation, then (3.22) holds.

The preference robust optimization problem without distributional uncertainty (i.e., problem

(3.21) with only the minimum and the second supremum) is generally difficult to solve when the

distortion function h is not concave. However, when the distribution of the random variable is not

completely known, we can transfer the original non-convex problem to its convex counterpart using

(3.22), provided that the set of plausible distributions is well structured.

3.7 Applications and numerical illustrations

Following the discussion in Section 3.6, we provide several applications of our theoretical results

to portfolio management for specific sets of plausible distributions. None of the considered optimiza-

tion problems in this section are convex, and we provide numerical calculations or approximation

for the solutions to these optimization problems.7

3.7.1 Difference of risk measures under moment constraints

We demonstrate a price competition problem as an application of optimizing the difference

between two risk measures shown in Example 3.17. Similar to the portfolio management problem

discussed in Section 3.6.1, we consider n risky assets with random losses X1, . . . , Xn ∈ L2 that are

only known to have a fixed mean and a constrained covariance. That is, we choose the set

M̃ = {FX ∈Mn
2 : E[X] = µ, var(X) � Σ},

for µ ∈ Rn and Σ ∈ Rn×n positive semidefinite. For an n-dimensional a ∈ A, the set of all possible

distributions of aggregate portfolio losses

{Fa>X ∈M2 : FX ∈ M̃} =Mmv(a,µ,Σ) =M
(

2,a>µ,
(
a>Σa

)1/2
)

(3.23)

7The processors we use are Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz 2.59GHz (2 processors). The numerical

results are calculated by MATLAB.
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is closed under concentration for all intervals as is shown in Example 3.6. Let ρh1 : L2 → R be an

investor’s own price of the portfolio, while ρh2 : L2 → R is her opponent’s price of the same portfolio.

We choose h1 and h2 to be the inverse-S-shaped distortion functions in (3.9), with parameters the

same as those in Example 3.17 (γ1 = 0.8 and γ2 = 0.7). Write h = h1 − h2. For an action set

A = {(a1, . . . , an) ∈ [0, 1]n :
∑n

i=1 ai = 1}, the investor chooses the optimal a∗ ∈ A, such that the

worst-case overpricing from her opponent is minimized.

From the calculation in Example 3.17, we get

D(Σ) := min
a∈A

sup
FX∈M̃

(
ρh1(a>X)− ρh2(a>X)

)
= min

a∈A
sup

FY ∈Mmv(a,µ,Σ)
ρh∗(Y ) = 0.3345×min

a∈A

(
a>Σa

)1/2
.

(3.24)

We note that optimizing ρh1−ρh2 is generally nontrivial since the difference between two distortion

functions h1 − h2 is not necessarily monotone, concave, or continuous, even though h1 and h2

themselves may have these properties. The generality of our equivalence result allows us to convert

the original problem to the much simpler form (3.24), which can be solved efficiently.8 Table 3.1

demonstrates the optimal values of a∗ and D for different choices of Σ.

3.7.2 Preference robust portfolio optimization with moment constraints

Next, we discuss an example of preference robust optimization with distributional uncertainty

using the results in Sections 3.5. Similarly to Section 3.7.1, we consider the set of plausible aggregate

portfolio loss distributions

Mmv(a,µ,Σ) = {Fa>X ∈M2 : FX ∈Mn
2 , E[X] = µ, var(X) � Σ}

and the action set A = {(a1, . . . , an) ∈ [0, 1]n :
∑n

i=1 ai = 1} representing the weights the investor

assigns to each random loss. The investor considers TK distortion riskmetrics, however, she is not

certain about the parameter γ of the distortion function h. Thus, the investor consider the set of

TK distortion riskmetrics with distortion functions in

G = {h ∈ H : h = hγ , γ ∈ [0.5, 0.9]} ,
8The convex problem (3.24) is solved numerically by the constrained nonlinear multivariable function “fmincon”

with the interior-point method.
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Table 3.1: Optimal results in (3.24) for difference between two TK distortion riskmetrics

n Σ a∗ D

3


1 0 0

0 1 0

0 0 1

 (0.333, 0.333, 0.333) 0.193

3


2 −1 0

−1 2 −1

0 −1 2

 (0.300, 0.400, 0.300) 0.150

3


1 1 1

1 2 1

1 1 3

 (0.997, 0.002, 0.001) 0.335

5



1 0 0 0 0

0 2 0 0 0

0 0 3 0 0

0 0 0 4 0

0 0 0 0 5


(0.438, 0.219, 0.146, 0.110, 0.088) 0.221

which is approximately the two-sigma confidence interval of γ in Wu and Gonzalez (1996).9 There-

fore, the investor aims to find a optimal portfolio given the uncertainty in the riskmetrics. To

penalize deviations from the benchmark parameter γ = 0.71 (Wu and Gonzalez, 1996), the investor

use the term ec(γ−0.71)2 for some c > 0. Since the set Mmv(a,µ,Σ) is closed under concentration

for all intervals for all a ∈ A, Proposition 3.7, (3.23), and Theorem 3.5 lead to

V (µ,Σ) := min
a∈A

sup
FY ∈Mmv(a,µ,Σ)

sup
γ∈[0.5,0.9]

(
ρhγ (Y )− ec(γ−0.71)2

)
= min

a∈A
sup

FY ∈M
(

2,a>µ,(a>Σa)
1/2
) sup
γ∈[0.5,0.9]

(
ρ(hγ)∗(Y )− ec(γ−0.71)2

)

= min
a∈A

sup
γ∈[0.5,0.9]

(
a>µ +

(
a>Σa

)1/2
[(hγ)∗]2 − ec(γ−0.71)2

)
.

(3.25)

We calculate the optimal values V for different choices of parameters (n, c, µ and Σ) and

report them in Table 3.2, where a∗ and γ̂ represent the optimal weights and the parameters of

the inverse-S-shaped distortion function, respectively. Note that the last optimization problem in

9The aggregate least-square estimate of γ in Section 5 of Wu and Gonzalez (1996) is 0.71 with standard deviation

0.1.
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(3.25) can be calculated numerically.10

Table 3.2: Optimal values in (3.25) for TK distortion riskmetrics

n c µ Σ a∗ γ̂ V

3 0 (1, 1, 1)


1 0 0

0 1 0

0 0 1

 (0.333, 0.333, 0.333) 0.610 1.41

3 30 (2, 1, 1)


1 0 0

0 1 0

0 0 1

 (0.000, 0.500, 0.500) 0.676 1.29

3 30 (1, 1, 1)


2 −1 0

−1 2 −1

0 −1 2

 (0.300, 0.400, 0.300) 0.690 1.17

3 30 (1.2, 1, 1)


1 1 1

1 2 1

1 1 3

 (0.500, 0.331, 0.168) 0.630 1.57

5 30 (1, 1, 1, 1, 1)



1 0 0 0 0

0 2 0 0 0

0 0 3 0 0

0 0 0 4 0

0 0 0 0 5


(0.438, 0.219, 0.146, 0.110, 0.088) 0.678 1.26

3.7.3 Portfolio optimization with marginal constraints

A special case of the portfolio optimization problem introduced in Section 3.6.1, which is of

interest in robust risk aggregation (see e.g., Blanchet et al., 2020), is to take M̃ to be the Fréchet

class defined as

M̃(F1, . . . , Fn) = {FX ∈Mn
1 : Xi ∼ Fi, i = 1, . . . , n}, (3.26)

for some known marginal distributions F1, . . . , Fn ∈ M1. In this case, although the left-hand side

of (3.20) is generally difficult to solve, for A ⊆ Rn+, the right-hand side of (3.20) can be rewritten

10The problem (3.25) is solved numerically by the constrained nonlinear multivariable function “fmincon” with the

interior-point method.
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using convexity and comonotonicity as

min
a∈A

(
a>(ρh∗(X1), . . . , ρh∗(Xn)) + β(a)

)
, (3.27)

where Xi ∼ Fi, i = 1, . . . , n. We see that (3.27) is a linear optimization problem with a penalty

β, which often admits closed-form solutions when β is properly chosen. For any given a ∈ A, we

define

M(a, F1, . . . , Fn) = {Fa>X ∈M1 : Xi ∼ Fi, i = 1, . . . , n}. (3.28)

The set M(a, F1, . . . , Fn) is the weighted version of MS(F1, . . . , Fn) in Example 3.6. Note that

M(a, F1, . . . , Fn) is generally neither closed under concentration for all intervals nor closed under

conditional expectation. However, M(a, F1, . . . , Fn) is asymptotically (for large n) similar to a set

of distributions closed under concentration for all intervals; see Theorem 3.5 of Mao and Wang

(2015) for a precise statement in the case of equal weights and identical marginal distributions.

Therefore, even thoughM(a, F1, . . . , Fn) is not closed under concentration for all intervals for some

a ∈ A, our result of the problem (3.27) is a good approximation of the original problem for large n.

Such asymptotic equivalence between worst-case riskmetrics of aggregate risks with equal weights

has already been well studied in the literature; see e.g., Theorem 3.3 of Embrechts et al. (2015) for

the VaR/ES pair and Theorem 3.5 of Cai et al. (2018) for distortion risk measures.

We conduct numerical calculations to illustrate the equivalence between both sides in (3.20).

We choose the action set Aa,b = {(x1, . . . , xn) ∈ [a, b]n :
∑n

i=1 xi = 1}, for 0 6 a < 1/n < b 6 1 and

the penalty function β to be the L2-norm multiplied by a scaler c > 0, namely c‖ · ‖2, where the

scaler c is a tuning parameter of the L2 penalty. We first solve the optimization problems separately

for the well-known VaR/ES pair at the level of 0.95. Specifically, the two problems are given by

VVaR(a, b, F1, . . . , Fn) = min
a∈Aa,b

(
sup

FX∈M(F1,...,Fn)
VaR0.95(a>X) + c‖a‖2

)
, (3.29)

VES(a, b, F1, . . . , Fn) = min
a∈Aa,b

(
sup

FX∈M(F1,...,Fn)
ES0.95(a>X) + c‖a‖2

)
= min

a∈Aa,b

(
a>(ES0.95(F1), . . . ,ES0.95(Fn)) + c‖a‖2

)
, (3.30)

where the true value of the original inner VaR problem is approximated by the rearrangement

algorithm (RA) of Puccetti and Rüschendorf (2012) and Embrechts et al. (2013), whereas the

optimal value of the inner ES problem is obtained by simultaneously minimizing the sum of a linear

combination of ES and the 2-norm of the vector a, which can be done efficiently.11 In particular,

11The outer problems of (3.29) and (3.30) are solved numerically by the constrained nonlinear multivariable function
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if the marginals of the random losses are identical (i.e., F1 = · · · = Fn = F ), the optimal solution

is a∗ = (1/n, . . . , 1/n) and VES(a, b, F1, . . . , Fn) = ES0.95(F ) + c/
√
n. We consider the following

marginal distributions

(i) Fi follows a Pareto distribution with scale parameter 1 and shape parameter 3+(i−1)/(n−1)

for i = 1, . . . , n;

(ii) Fi is normally distributed with parameters N(1, 1 + (i− 1)/(n− 1)), for i = 1, . . . , n;

(iii) Fi follows an exponential distribution with parameter 1 + (i− 1)/(n− 1), for i = 1, . . . , n.

We choose n to be 3, 10, and 20. For comparison, we calculate the value n‖∆a∗‖2, where ∆a∗

is the difference between the optimal weights of the non-convex problem and the convex problem.

In addition, we calculate the absolute differences between the optimal values obtained by the two

problems, ∆V = VES−VVaR > 0, and the percentage differences ∆V/VVaR. Tables 3.3 and 3.4 show

the numerical results that compare both optimization problems with two choices of the action sets

Aa,b. The computation time is reported (in seconds). We observe that the optimal values obtained

in the two problems get closer and become approximately the same as n gets larger. As explained

before, this is because the set of plausible distributionsM(F1, . . . , Fn) is asymptotically equal to a

set closed under concentration for all intervals.

Next, we consider a TK distortion riskmetric with parameter γ = 0.7. Due to the non-concavity

of h, there are no known ways of directly solving the non-convex optimization problem

min
a∈Aa,b

(
sup

FX∈M(F1,...,Fn)
ρh(a>X) + c‖a‖2

)
. (3.31)

We may get an approximation of (3.31) using a lower bound of ρh in (3.31) produced with the

dependence structure created by the rearrangement algorithm (RA);12 for simplicity, we denote by

Vh this lower bound. On the other hand, by (3.20), the convex counterpart of (3.31) can be written

(using Theorem 3.1) as

Vh∗(a, b, F1, . . . , Fn) = min
a∈Aa,b

(
sup

FX∈M(F1,...,Fn)
ρh∗(a

>X) + c‖a‖2

)
= min

a∈Aa,b

(
a>(ρh∗(X1), . . . , ρh∗(Xn)) + c‖a‖2

)
,

(3.32)

“fmincon” with the sequential quadratic programming (SQP) algorithm. The same method is also applied when

solving outer problems of (3.31) and (3.32).
12Such a dependence structure obviously provides a lower bound for the worst-case value in (3.31). In theory, the

result from RA is thus not an optimal dependence structure for (3.31). In our numerical results, this lower bound is

very close to an upper bound only for the case of VaR and ES but not for the case of TK distortion riskmetrics.
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where Xi ∼ Fi for i = 1, . . . , n. We calculate the absolute differences between the optimal values of

the convex and non-convex problems ∆V = Vh∗ − Vh > 0, and the percentage differences ∆V/Vh.

Tables 3.5 and 3.6 compare the numerical results of the two optimization problems with different

choices of Aa,b. We observe that the percentage differences between the RA lower bound Vh for the

non-convex problem (3.31) and the minimum value Vh∗ of the convex problem (3.32) are roughly

between 10% to 20%. Note that the RA lower bound is not expected to be very close to the true

minimum of (3.31), and hence the differences between the solution of (3.31) and the optimal value

in (3.32) are smaller than the observed numbers.

Note that, by transforming an optimization problem with a non-convex objective to a convex

one, we significantly reduce the computational time of calculating bounds with negligible errors, as

shown in Tables 3.3-3.6.

Table 3.3: Comparison of the numerical results of the two optimization problems (3.29) and (3.30)

for VaR0.95 and ES0.95 with a = 0 and b = 1

c VVaR time VES time n‖∆a∗‖2 ∆V ∆V /VVaR (%)

(i)

Pareto

n = 3 2.5 3.547 31.53 3.741 0.72 8.88× 10−5 0.194 5.48

n = 10 3.0 3.197 153.83 3.215 1.39 9.18× 10−4 0.0178 0.558

n = 20 4.0 3.156 424.17 3.159 9.37 3.53× 10−5 2.68× 10−3 0.0850

(ii)

Normal

n = 3 4.0 5.766 31.19 5.785 0.18 1.39× 10−3 0.0186 0.323

n = 10 2.0 4.082 97.30 4.083 0.77 1.18× 10−3 3.24× 10−5 7.93× 10−4

n = 20 3.0 4.132 431.79 4.132 4.66 2.69× 10−3 1.88× 10−5 4.55× 10−4

(iii)

Exp

n = 3 3.0 4.251 26.78 4.405 0.07 0.331 0.155 3.64

n = 10 4.0 3.892 118.23 3.893 0.50 9.74× 10−4 2.92× 10−4 7.52× 10−3

n = 20 7.0 4.230 543.03 4.230 3.47 3.08× 10−4 4.47× 10−5 1.06× 10−3

3.8 Concluding remarks

We introduced the new concept of closedness under concentration, which is, in the context

of distributional uncertainty, a sufficient condition to transform an optimization problem with a

non-convex distortion riskmetric to its convex counterpart. This concept is genuinely weaker than

closedness under conditional expectation, and our main result unifies and improves many existing
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Table 3.4: Comparison of the numerical results of the two optimization problems (3.29) and (3.30)

for VaR0.95 and ES0.95 with a = 1/(2n) and b = 2/n

c VVaR time VES time n‖∆a∗‖2 ∆V ∆V /VVaR (%)

(i)

Pareto

n = 3 2.5 3.546 54.59 3.741 0.19 6.58× 10−4 0.194 5.48

n = 10 3.0 3.204 146.63 3.220 1.60 1.99× 10−4 0.0160 0.498

n = 20 4.0 3.162 847.13 3.163 10.08 1.69× 10−3 2.23× 10−3 0.0706

(ii)

Normal

n = 3 4.0 5.766 57.31 5.785 0.19 1.32× 10−3 0.0187 0.324

n = 10 2.0 4.084 166.25 4.084 0.79 0 2.94× 10−5 7.20× 10−4

n = 20 3.0 4.133 691.91 4.133 5.91 0 1.99× 10−5 4.82× 10−4

(iii)

Exp

n = 3 3.0 4.369 48.58 4.422 0.09 1.04× 10−3 0.0533 1.22

n = 10 4.0 3.916 115.18 3.916 0.50 2.54× 10−5 1.38× 10−4 3.52× 10−3

n = 20 7.0 4.236 665.05 4.236 3.48 2.73× 10−4 4.04× 10−5 9.54× 10−4

results in the literature. Many sets of plausible distributions commonly used in the literature of

finance, optimization, and risk management are closed under concentration within some I. More-

over, by focusing on distortion riskmetrics whose distortion functions are not necessarily monotone,

concave, or continuous, we are able to solve optimization problems for the class of functionals larger

than classical risk measures or deviation measures. In particular, we are able to obtain bounds on

differences between two distortion riskmetrics, which represent measures of disagreement between

two utilities/risk attitudes. Our result can also be applied to solve the popular problem of opti-

mizing risk measures under moment constraints. In particular, we obtain the worst- and best-case

distortion riskmetrics when the underlying random variable has a fixed mean and bounded p-th

moment.

We demonstrate the applicability of our result by numerically calculating the solution to op-

timizing the difference between risk measures, preference robust optimization and portfolio opti-

mization under marginal constraints. In all numerical examples, the original non-convex problem

is converted or well approximated by a convex one which can be solved efficiently.

Our condition of closedness under concentration within I in Theorem 3.1 is sufficient but

not necessary for the equivalence of optimization problems with non-convex and convex objectives

under distributional uncertainty. A necessary condition of the equivalence is closedness under

concentration of the set of maximizers in Theorem 3.2. An open question is to find a necessary
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Table 3.5: Comparison of the numerical results of the two optimization problems (3.31) and (3.32)

for TK distortion riskmetrics with a = 0 and b = 1

c Vh time Vh∗ time n‖∆a∗‖2 ∆V ∆V /Vh (%)

(i)

Pareto

n = 3 1.0 1.076 144.75 1.185 0.23 0.488 0.109 10.2

n = 10 2.0 1.047 220.03 1.237 1.42 0 0.190 18.1

n = 20 4.0 1.301 826.64 1.501 8.24 0 0.200 15.4

(ii)

Normal

n = 3 0.5 1.240 60.76 1.493 0.16 0.0784 0.253 20.4

n = 10 0.5 1.141 246.31 1.363 0.72 1.28 0.222 19.4

n = 20 0.5 1.103 1503.35 1.316 2.80 1.78 0.213 19.3

(iii)

Exp

n = 3 1.0 1.305 49.79 1.427 0.23 0.360 0.122 9.32

n = 10 2.0 1.313 198.43 1.484 1.62 0.184 0.171 13.0

n = 20 2.0 1.120 850.12 1.286 10.91 0.158 0.166 14.8

and sufficient condition on the uncertainty set M itself such that the desired equivalence holds.

Pinning down such a condition may facilitate many more applications in decision theory, finance,

game theory, and operations research.

3.9 Omitted technical details from the chapter

In this section, we present technical details for some examples and as well as some technical

remarks omitted from the chapter.

3.9.1 Proofs of claims in some Examples

Proof of the claim in Example 3.6. We show that Mmv(a,µ,Σ) is equivalent to

{FS ∈M2 : E[S] = a>µ, var(S) 6 a>Σa} =M
(

2,a>µ,
(
a>Σa

)1/2
)
.

For a proof of the equivalence between the sets with fixed mean and covariance matrix, see

Popescu (2007). Indeed, it is clear that Mmv(a,µ,Σ) ⊆ M(2,a>µ, (a>Σa)1/2). On the other

hand, for all FS ∈ M(2,a>µ, (a>Σa)1/2), we write a = (a1, . . . , an), µ = (µ1, . . . , µn), and

take X = (X1, . . . , Xn) such that Xi = (S − a>µ)/(nai) + µi, for i = 1, . . . , n. It follows that

FS = Fa>X ∈Mmv(a,µ,Σ). Therefore, we have Mmv(a,µ,Σ) =M(2,a>µ, (a>Σa)1/2).
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Table 3.6: Comparison of the numerical results of the two optimization problems (3.31) and (3.32)

for TK distortion riskmetrics with a = 1/(2n) and b = 2/n

c Vh time Vh∗ time n‖∆a∗‖2 ∆V ∆V /Vh (%)

(i)

Pareto

n = 3 1.0 1.077 73.21 1.185 0.25 0.469 0.109 10.11

n = 10 2.0 1.047 248.38 1.237 2.29 0.378 0.191 18.2

n = 20 4.0 1.301 638.24 1.501 12.21 0 0.200 15.4

(ii)

Normal

n = 3 0.5 1.240 179.68 1.493 0.19 0.0784 0.253 20.4

n = 10 0.5 1.146 389.97 1.363 0.76 0.660 0.217 19.0

n = 20 0.5 1.103 1563.84 1.316 3.39 1.63 0.213 19.3

(iii)

Exp

n = 3 1.0 1.304 52.66 1.430 0.25 0.107 0.126 9.65

n = 10 2.0 1.312 236.15 1.485 2.27 0.214 0.172 13.1

n = 20 2.0 1.119 879.73 1.289 10.10 0.141 0.170 15.2

Proof of the claim in Example 3.10. We will show thatM(G̃, ε) is closed under concentration within

I for all I ⊆ Ĩ. Write I = {Ci : i ∈ K} for some K ⊆ N. For all i ∈ K and F ∈ M(G̃, ε), we have

G̃−1(u) = ci for u ∈ Ci for some ci ∈ R. For all i ∈ K, by Jensen’s inequality,

1

λ(Ci)

∫
Ci

∣∣∣F−1(u)− G̃−1(u)
∣∣∣p du >

∣∣∣∣∣
∫
Ci
F−1(u) du

λ(Ci)
− ci

∣∣∣∣∣
p

=
1

λ(Ci)

∫
Ci

∣∣∣(FCi)−1(u)− G̃−1(u)
∣∣∣p du.

It follows that

(Wp(F, G̃))p − (Wp(F
Ci , G̃))p =

∫ 1

0

∣∣∣F−1(u)− G̃−1(u)
∣∣∣p du−

∫ 1

0

∣∣∣(FCi)−1(u)− G̃−1(u)
∣∣∣p du

=

∫
Ci

∣∣∣F−1(u)− G̃−1(u)
∣∣∣p du−

∫
Ci

∣∣∣(FCi)−1(u)− G̃−1(u)
∣∣∣p du > 0,

and thus Wp(F
Ci , G̃) 6Wp(F, G̃) 6 ε. Moreover, (3.7) and the above argument lead to

(Wp(F, G̃))p − (Wp(F
I , G̃))p =

∑
i∈K

(Wp(F, G̃))p − (Wp(F
Ci , G̃))p > 0.

Hence, Wp(F
I , G̃) 6Wp(F, G̃) 6 ε.

Proof of the claim in Example 3.11. For ε > 0, w ∈ [0,∞)n, p > 1, a > 1 and Z ∈ (Lp)n, by

Theorem 7 of Mao et al. (2022), the uncertainty set

{Fw>X ∈Mp : FX ∈Mn(FZ, ε)} =M(Fw>Z, ε‖w‖b),
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where b is the conjugate of a (i.e., 1/a + 1/b = 1). Suppose that for a benchmark distribution

G̃ ∈ Mn
p , there exists a random vector Z ∼ G̃ such that Z > 0 and P(Z = 0) = p0 for some

p0 ∈ (0, 1]. Note that P(w>Z = 0) > p0 and the quantile function of w>Z is equal to 0 on (0, p0].

It follows from Example 3.10 that the set M(Fw>Z, ε‖w‖b) is closed under concentration within

{(0, t)} for all t 6 p0.

Proof of the claim in Example 3.12. We will show that the set of distributions,

M = {FX−V (X)+g(E[V (X)]) ∈M1 : V ∈ V},

is closed under concentration within {(p, 1)} for all p ∈ [p0, 1). For each V ∈ V and a standard

uniform random variable U , we write a = E[F−1
X−V (X)(U)|U ∈ (p, 1)]. Since F−1

X (p) > l, we can take

W (x) = V (x)1{x6F−1
X (p)} + (x− a)1{x>F−1

X (p)}, x ∈ R.

It follows that W ∈ V. Noting that a = E[X − V (X)|X > F−1
X (p)], we have

X −W (X) + g(E[W (X)])

= (X − V (X))1{X6F−1
X (p)} + a1{X>F−1

X (p)} + g
(
E[V (X)1{X6F−1

X (p)} + (X − a)1{X>F−1
X (p)}]

)
= (X − V (X))1{X6F−1

X (p)} + a1{X>F−1
X (p)} + g(E[V (X)]),

which follows the same distribution as F
(p,1)
X−V (X)+g(E[V (X)]). It follows that M is closed under

concentration within {(p, 1)} for all p ∈ [p0, 1).

3.9.2 A few additional technical remarks mentioned in the chapter

Remark 3.5 (on Theorem 3.1). Using Theorem 3.1, if for some a ∈ A, the set M := {Ff(a,X) :

FX ∈ M̃} is closed under concentration for all intervals and sup{ρh∗(f(a,X)) : FX ∈ M̃} =

∞, then sup{ρh(f(a,X)) : FX ∈ M̃} = ∞. Thus, both objectives in the inner optimization of

(3.1) are infinite for this a, which can be excluded from the outer optimization over A. Verifying

sup{ρh∗(f(a,X)) : FX ∈ M̃} = ∞ is easier than verifying sup{ρh(f(a,X)) : FX ∈ M̃} = ∞ since

generally ρh is smaller than ρh∗ .

Remark 3.6 (on Example 3.6). Using Strassen’s Theorem (e.g., Theorem 3.A.4 of Shaked and

Shanthikumar, 2007), closedness under conditional expectation can equivalently be expressed using

convex order. A set M ⊆ M1 is closed under conditional expectation if and only if it holds that

for F ∈M and G 6cx F , we have G ∈M.
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Remark 3.7 (on Proposition 3.3). In Proposition 3.3, ifM is closed under conditional expectation,

I can be taken as an infinite set. However, M may not be closed under concentration within an

infinite I if we only assume that M is closed under concentration for all intervals. Indeed, if we

takeM as the set of distributions obtained by some F ∈M with finitely many concentrations, then

clearly M is closed under concentration for all intervals. However, F I /∈ M when I is an infinite

collection of disjoint intervals. This also serves as a counter-example of the converse statement

of Proposition 3.2 since M is closed under concentration for all intervals but not closed under

conditional expectation.

3.10 Proofs of all technical results

We present all proofs of technical results in this section. Throughout, we denote the set of

discontinuity points of h (excluding 0 and 1) by

Jh = {t ∈ (0, 1) : h(t) 6= h(t+) or h(t) 6= h(t−)}. (3.33)

Note that ĥ(t) can be written as

ĥ(t) =

 h(t+) ∨ h(t−) ∨ h(t), t ∈ Jh,

h(t), otherwise.
(3.34)

3.10.1 Proof of results in Section 3.2

Proof of Proposition 3.1. Note that (ĥ)∗ = h∗ = ĥ = h on 0 and 1. For all t ∈ (0, 1), since

(ĥ)∗(t) > ĥ(t) > h(t), we have (ĥ)∗(t) > h∗(t). On the other hand, we have h∗(t) > h(t+) for

t ∈ (0, 1). Indeed, if h∗(t0) < h(t+0 ) for some t0 ∈ (0, 1), then we have h∗(t0 + ε) < h(t0 + ε) for

some ε > 0, which leads to a contradiction. Similarly, we have h∗(t) > h(t−) for t ∈ (0, 1). Together

with h∗ > h on (0, 1), we have h∗ > ĥ on (0, 1), which implies that h∗ > (ĥ)∗ on (0, 1). Therefore,

(ĥ)∗ = h∗ on [0, 1].

Next, we assert that the set {t ∈ [0, 1] : ĥ(t) 6= h∗(t)} is a union of disjoint sets that are not

singletons. To show this assertion, assume that the converse is true. There exists x ∈ (0, 1), such

that ĥ(x) < h∗(x) and ĥ(t) = h∗(t) on t ∈ (x− ε, x) ∪ (x, x+ ε) for some 0 < ε 6 x ∧ (1− x). It is

clear that x ∈ Jh. Since h∗ is continuous on (x− ε, x+ ε), we have

ĥ(x) < h∗(x) = h∗(x+) = ĥ(x+).
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This contradicts (3.34). Therefore, the set {t ∈ [0, 1] : ĥ(t) 6= h∗(t)} is the union of some disjoint

intervals, denoted by ∪l∈LAl for some L ⊆ N. For all l ∈ L, we denote the left and right endpoints

of Al by al and bl, respectively, with al < bl. Define a function via linear interpolation

hc(t) =

 ĥ(al) + ĥ(bl)−ĥ(al)
bl−al (t− al), t ∈ Al, l ∈ L,

ĥ(t), otherwise.

It is clear that hc 6 h∗ and hc is continuous on (0, 1). We will prove that hc = h∗ on ∪l∈LAl.

Suppose for the purpose of contradiction that hc 6= h∗ on ∪l∈LAl. Since hc < h∗ for some point in

∪l∈LAl, there exists x0 ∈ Al for some l ∈ L such that hc(x0) < ĥ(x0). Thus we can take a point

(x1, ĥ(x1)) ∈ (0, 1) × R with ĥ(x1) > hc(x1), which has the largest perpendicular distance to the

straight line hc(t) = ĥ(al) + ĥ(bl)−ĥ(al)
bl−al (t− al), namely,

x1 = arg max
x∈Al

ĥ(x)>hc(x)

(bl − al)ĥ(x)− (ĥ(bl)− ĥ(al))x− (bl − al)ĥ(al) + (ĥ(bl)− ĥ(al))al(
(ĥ(bl)− ĥ(al))2 + (bl − al)2

)1/2
.

The existence of the maximizer x1 is due to the upper semicontinuity of ĥ. There exists a function

g with g = h∗ on [0, 1] \ Al and g(x1) = ĥ(x1), such that g is concave and ĥ 6 g 6 h∗ on [0, 1].

Since h∗ > ĥ on Al, we have h∗(x1) > ĥ(x1) = g(x1). Thus h∗ cannot be the concave envelope of

ĥ, which leads to a contradiction. Thus, h∗ = hc on ∪l∈LAl. Since h∗ = ĥ = hc on (0, 1) \ (∪l∈LAl),

we have h∗ = hc. Therefore, {t ∈ [0, 1] : ĥ(t) 6= h∗(t)} is a union of disjoint open intervals, and h∗

is linear on each of the intervals.

3.10.2 Proofs of results in Section 3.3

Proof of Theorem 3.1. We will first show that, assuming that M is closed under concentration

within Ih, we have

sup
FX∈M

ρĥ(X) = sup
FX∈M

ρh∗(X). (3.35)

After proving (3.35), we show the three statements in Theorem 3.1 in the order (i), (ii), and (iii).

For h ∈ H, suppose that M is closed under concentration within Ih. Take an arbitrary

random variable Y with FY ∈M. Let G = F IhY . For h ∈ H, write functions g(t) = 1− ĥ(1− t) and

g∗(t) = 1− h∗(1− t) for t ∈ [0, 1]. By definition of Ih, g 6= g∗ on each set in Ih and g = g∗ on other

sets. For any (a, b) ∈ Ih, we have G−1(t) =
∫ b
a F
−1
Y (u) du

b−a for all t ∈ (a, b] and G−1+(t) =
∫ b
a F
−1
Y (u) du

b−a
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for all t ∈ [a, b). Using the fact that g∗ is linear on (a, b) and g(t) = g∗(t) for t = a, b, we have∫
(a,b)

F−1
Y (t) dg∗(t) = (g∗(b)− g∗(a))

∫ b
a F
−1
Y (t) dt

b− a

= (g(b)− g(a))

∫ b
a F
−1
Y (t) dt

b− a

=

∫
(a,b]

G−1(t) dg(t) +G−1+(a)(g(a+)− g(a)).

(3.36)

Define the sets

J+ = {t ∈ Jh : ĥ(t+) = ĥ(t) 6= ĥ(t−)}, J− = {t ∈ Jh : ĥ(t+) 6= ĥ(t) = ĥ(t−)},

and J0 = {t ∈ Jh : ĥ(t+) 6= ĥ(t) 6= ĥ(t−)}.

To better understand these sets, we recall Figure 3.1 (without concave envelopes) as Figure 3.5 to

demonstrate an example of a distortion function h, the corrresponding ĥ, the sets Jh, J+, J−, and

J0, and the sets Ĵ , Ĵ+, Ĵ−, Ĵ0
+, and Ĵ0

− (defined in the proof of (i) below).

Figure 3.5: An example of h (left) and ĥ (right); in this figure, Jh = {t1, t2, t3, t4, t5}, J+ = {t1},

J− = {t2, t3}, and J0 = {t5}. Moreover, the sets we use in the proof of (i) are Ĵ = {t1, t2, t3, t4},

Ĵ+ = {t1, t4}, Ĵ− = {t2, t3}, Ĵ0
+ = {t4}, and Ĵ0

− = {t3}

Note that for a random variable ZIh ∼ F
Ih
Y , we have

ρĥ(ZIh) =

∫
(0,1]\(J+∪J0)

G−1(t) dg(t) +
∑

t∈J+∪J0∪{0}

G−1+(t)(g(t+)− g(t)).
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Hence using (3.36) and (3.7), we get

ρh∗(Y )− ρĥ(ZIh)

=

∫ 1

0
F−1
Y (t) dg∗(t) + F−1+

Y (0)(g∗(0
+)− g∗(0))

−
∫

(0,1]\(J+∪J0)
G−1(t) dg(t)−

∑
t∈J+∪J0∪{0}

G−1+(t)(g(t+)− g(t))

=
∑

(a,b)∈Ih

(∫
(a,b)

F−1
Y (t) dg∗(t)−

∫
(a,b]

G−1(t) dg(t)−G−1+(a)(g(a+)− g(a))

)
= 0.

(3.37)

Since M is closed under concentration within Ih, we have F IhY ∈M by definition. Thus we have

ρh∗(Y ) = ρĥ(ZIh) 6 sup
FX∈M

ρĥ(X),

which gives our desired equality (3.35) since ρh∗ = ρ(ĥ)∗ > ρĥ.

Proof of (i): Using h = ĥ and (3.35), we have supFX∈M ρh(X) = supFX∈M ρh∗(X).

Proof of (ii): We will prove (ii) in two main steps. First, we show that (ii) holds if Ih is finite

and h has finitely many discontinuity points. Next, we discuss general h.

Finite case: Here we prove (3.8) under the case where Ih is finite and h has finitely

many discontinuity points (i.e. Jh in (3.33) is a finite set). Suppose that M is closed under

concentration for all intervals, it directly implies that M is closed under concentration within

Ih by Proposition 3.3. Therefore, (3.35) holds for all h ∈ H. Next, we need to show that

supFX∈M ρh(X) = supFX∈M ρĥ(X). Define

Ĵ = {t ∈ Jh : ĥ(t) 6= h(t)}, Ĵ+ = {t ∈ Ĵ : ĥ(t) = ĥ(t+)}, and Ĵ− = Ĵ \ Ĵ+.

For n > 0, write intervals

Ans =

 (1− s− 1/
√
n, 1− s+ 1/n), s ∈ Ĵ−,

(1− s− 1/n, 1− s+ 1/
√
n), s ∈ Ĵ+.

Let In = {Ans : s ∈ Ĵ}. Note that h ∈ H has finitely many discontinuity points. Thus the intervals

in In are disjoint when n is large enough. For all FY ∈M and Y ∼ FY , we define

ZIn = F−1
Y (U)1{U /∈

⋃
s∈Ĵ A

n
s } +

∑
s∈Ĵ

E[F−1
Y (U)|U ∈ Ans ]1{U∈Ans }.

It follows that ZIn ∼ F I
n

Y and the right-quantile function of ZIn , denoted by G−1+
n , is given by the

right-continuous adjusted version of

F−1+
Y (t)1{t/∈

⋃
s∈Ĵ A

n
s } +

∑
s∈Ĵ

∫
Ans
F−1
Y (u) du

λ(Ans )
1{t∈Ans }, t ∈ (0, 1).
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Thus we get

lim
n→∞

G−1+
n (1− t) =

 F−1
Y (1− t), t ∈ Ĵ−,

F−1+
Y (1− t), otherwise.

Similarly, if we denote the left-quantile function of ZIn by G−1
n , then G−1

n is given by the left-

continuous version of

F−1
Y (t)1{t/∈

⋃
s∈Ĵ A

n
s } +

∑
s∈Ĵ

∫
Ans
F−1
Y (u) du

λ(Ans )
1{t∈Ans }.

It follows that

lim
n→∞

G−1
n (1− t) =

 F−1+
Y (1− t), t ∈ Ĵ+,

F−1
Y (1− t), otherwise.

Define, further, the sets

Ĵ0
+ = {t ∈ Ĵ+ : h(t) 6= h(t−)} and Ĵ0

− = {t ∈ Ĵ− : h(t) 6= h(t+)}.

For u ∈ [0, 1], write

h−(u) =
∑
t∈Ĵ−

(h(t)− h(t−))1{u>t}, h0
−(u) =

∑
t∈Ĵ0
−

(h(t+)− h(t))1{u>t},

h+(u) =
∑
t∈Ĵ+

(h(t+)− h(t))1{u>t}, h0
+(u) =

∑
t∈Ĵ0

+

(h(t)− h(t−))1{u>t},

ĥ−(u) =
∑
t∈Ĵ−

(h(t+)− h(t−))1{u>t}, ĥ+(u) =
∑
t∈Ĵ+

(h(t+)− h(t−))1{u>t},

and h0(u) = h(u)− h+(u)− h−(u)− h0
+(u)− h0

−(u) = ĥ(u)− ĥ+(u)− ĥ−(u).

Note that |ZIn − F−1
Y (U)| = 0 when U /∈

⋃
s∈Ĵ A

n
s and 0, 1 ∈ [0, 1] \

⋃
s∈Ĵ A

n
s . We have |ZIn −

F−1
Y (U)| <∞. Therefore, by the dominated convergence theorem,

lim
n→∞

(ρh−(ZIn) + ρh0−(ZIn))

= lim
n→∞

∫ 1

0
G−1+
n (1− u) dh−(u) + lim

n→∞

∫ 1

0
G−1
n (1− u) dh0

−(u)

=
∑
t∈Ĵ−

F−1
Y (1− t)(h(t)− h(t−)) +

∑
t∈Ĵ0
−

F−1
Y (1− t)(h(t+)− h(t))

=
∑

t∈Ĵ−\Ĵ0
−

F−1
Y (1− t)(h(t)− h(t−)) +

∑
t∈Ĵ0
−

F−1
Y (1− t)(h(t)− h(t−) + h(t+)− h(t))

=
∑

t∈Ĵ−\Ĵ0
−

F−1
Y (1− t)(h(t+)− h(t−)) +

∑
t∈Ĵ0
−

F−1
Y (1− t)(h(t+)− h(t−)) = ρĥ−(Y ).
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Similarly, we get limn→∞(ρh+(ZIn) + ρh0+(ZIn)) = ρĥ+(Y ). On the other hand, it is clear that

limn→∞ ρh0(ZIn) = ρh0(Y ). Therefore, we have

lim
n→∞

ρh(ZIn) = lim
n→∞

(ρh−(ZIn) + ρh0−(ZIn) + ρh+(ZIn) + ρh0+(ZIn) + ρh0(ZIn))

= ρĥ−(Y ) + ρĥ+(Y ) + ρh0(Y ) = ρĥ(Y ).

Thus we have

ρĥ(Y ) = lim
n→∞

ρh(ZIn) 6 sup
FX∈M

ρh(X). (3.38)

Using (3.35) and (3.38), we get

sup
FX∈M

ρh∗(X) = sup
FX∈M

ρĥ(X) 6 sup
FX∈M

ρh(X).

General case: We prove Theorem 3.1 for all general h ∈ H where Ih or the number of

discontinuity points of h is countable.

1. If Ih is countable, it suffices to prove (3.35). We write Ih as the collection of (ai, bi) for

i ∈ N and define In1 = {(ai, bi) : i = 1, . . . , n} for all n ∈ N. Define the function

hn(t) =

 h∗(t), t ∈ (1− bi, 1− ai), i = 1, . . . , n,

ĥ(t), otherwise.

It is clear that for all n ∈ N, the set {t ∈ [0, 1] : hn(t) 6= ĥ(t)} is a finite union of disjoint open

intervals and hn is linear on each of the intervals. For all random variables Y with FY ∈ M, let

random variable ZIn1 ∼ F
In1
Y . Similar to (3.35), we have

ρhn(Y ) = ρĥ(ZIn1 ) 6 sup
FX∈M

ρĥ(X), for all n ∈ N.

Note that hn(t) ↑ h∗(t) as n→∞ for all t ∈ (0, 1). By the monotone convergence theorem, we get

ρhn(Y )→ ρh∗(Y ) as n→∞. It follows that

sup
FX∈M

ρĥ(X) > ρhn(Y )
n→∞−−−→ ρh∗(Y ).

2. If h ∈ H has countably many discontinuity points, it suffices to prove (3.38). There exist

series of finite sets {Ĵm}m∈N ⊆ Ĵ , such that Ĵm → Ĵ as m→∞. For all m ∈ N, write

ĥm(t) =

 ĥ(t), t ∈ Ĵm,

h(t), otherwise,

and define

Ĵm+ = {t ∈ Ĵm : ĥm(t) = ĥm(t+)}, and Ĵm− = Ĵm \ Ĵm+ .
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For n > 0, let In,m2 = {Bn,m
s : i ∈ Ĵm} with

Bn,m
s =

 (1− s− 1/
√
n, 1− s+ 1/n), s ∈ Ĵm− ,

(1− s− 1/n, 1− s+ 1/
√
n), s ∈ Ĵm+ .

Following the same argument as (3.38), for all random variable Y with FY ∈M, we have

sup
FX∈M

ρh(X) > ρh(ZIn,m2
)
n→∞−−−→ ρĥm(Y ), for all m ∈ N,

where ZIn,m2
∼ F I

n,m
2

Y . Moreover, we have ĥm(t) ↑ ĥ(t) for all t ∈ [0, 1] as m→∞. By the monotone

convergence theorem, we have ρĥm(Y )→ ρĥ(Y ) as m→∞. Therefore, we have

sup
FX∈M

ρĥ(X) 6 sup
FX∈M

ρh(X).

Proof of (iii): For all h ∈ H, ifM is closed under concentration within Ih and h = ĥ, we have

F IhY ∈M by definition. Since ZIh ∼ F
Ih
Y , (3.37) gives

ρh∗(Y ) = ρĥ(ZIh) = ρh(ZIh).

Note that ρh 6 ρh∗ generally. Therefore, if maxFY ∈M ρh∗(Y ) is attained by FY , then so is

maxFY ∈M ρh(Y ) by F IhY . Obviously, these two quantities share a common maximizer F IhY because

ρh∗(ZIh) 6 max
FY ∈M

ρh∗(Y ) = max
FY ∈M

ρh(Y ) = ρh(ZIh) 6 ρh∗(ZIh).

The proof is complete.

Proof of Theorem 3.2. Suppose for contradiction thatMopt is not closed under concentration within

Ih. There exists FY ∈ Mopt, such that F IhY /∈ Mopt. Define the set Yh = {(F−1
Y (a), F−1

Y (b)) :

(a, b) ∈ Ih}. Since F IhY /∈ Mopt, there exists an interval (a, b) ∈ Ih, such that F−1
Y is not constant

on (a, b). Thus the Lebesgue measure λ((F−1
Y (a), F−1

Y (b))) > 0. Since h∗ > h on (a, b),

ρh∗(Y )− ρh(Y ) =

∫
R

(h∗(P(Y > x))− h(P(Y > x))) dx

=
∑
A∈Yh

∫
A

(h∗(P(Y > x))− h(P(Y > x))) dx > 0.
(3.39)

On the other hand, we have

ρh∗(Y ) 6 sup
FX∈M

ρh∗(X) = sup
FX∈M

ρh(X) = ρh(Y ) 6 ρh∗(Y ),

which leads to a contradiction to (3.39). Therefore, Mopt is closed under concentration within

Ih.
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Proof of Proposition 3.2. We first prove that closedness under conditional expectation implies closed-

ness under concentration for all intervals. For all random variables Y ∈ L1 and intervals C ⊆ [0, 1],

define

X = F−1
Y (U)1{U 6∈C} + E[F−1

Y (U)|U ∈ C]1{U∈C},

where U ∼ U[0, 1]. The distribution of X is the concentration FCY . For all σ(X)-measurable random

variables Z, we have that Z|{U ∈ C} is constant. Hence,

E[XZ] = E[ZF−1
Y (U)1{U 6∈C} + ZE[F−1

Y (U)|U ∈ C]1{U∈C}]

= E[ZF−1
Y (U)1{U 6∈C}] + E[E[ZF−1

Y (U)|U ∈ C]1{U∈C}]

= E[ZF−1
Y (U)1{U 6∈C}] + E[ZF−1

Y (U)|U ∈ C]P(U ∈ C)

= E[ZF−1
Y (U)1{U 6∈C}] + E[ZF−1

Y (U)1{U∈C}] = E[ZF−1
Y (U)].

It follows that E[Y |X] = E[F−1
Y (U)|X] = X, P-almost surely. If a set of distributions, M, is closed

under conditional expectation and FY ∈M, then FE[Y |X] ∈M, which implies that FCY = FX ∈M.

Thus M is also closed under concentration for all intervals.

Proof of Proposition 3.3. (i) Suppose that M is closed under concentration for all intervals and I

is a finite. Using (3.6), we can see that F I is the resulting distribution obtained by sequentially

applying finitely many C-concentrations to F over all C ∈ I. We thus have F I ∈M for all F ∈M.

(ii) Suppose that M is closed under conditional expectation and F ∈M. We define

X = F−1(U)1{U 6∈
⋃
C∈I C} +

∑
C∈I

E[F−1(U)|U ∈ C]1{U∈C},

whose left-quantile function is given by (3.7) according to (3.6). Following similar argument to the

proof of Proposition 3.2, for all σ(X)-measurable random variables Z, we have

E[XZ] = E[ZF−1(U)1{U 6∈
⋃
C∈I C} +

∑
C∈I

ZE[F−1(U)|U ∈ C]1{U∈C}]

= E[ZF−1(U)1{U 6∈
⋃
C∈I C}] +

∑
C∈I

E[E[ZF−1(U)|U ∈ C]1{U∈C}]

= E[ZF−1(U)1{U 6∈
⋃
C∈I C}] +

∑
C∈I

E[ZF−1(U)1{U∈C}] = E[ZF−1(U)].

Thus E[F−1(U)|X] = X, P-almost surely, which implies that F I = FX ∈M.
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3.10.3 Proofs of results in Section 3.4

Proof of Theorem 3.3. To prove the first statement, according to the proof of Theorem 3.1, it suffices

to show that for all increasing h ∈ H, X ∈ (L1)n and G ⊆ F , ρh(E[f(a,X)|G ]) 6 ρh(f(a,E[X|G ])),

which holds directly by Jensen’s inequality and monotonicity of ρh. The second statement holds

by Theorem 3.1. The last statement follows from ρh(E[f(a,X)|G ]) = ρh(f(a,E[X|G ])) and using

Theorem 3.1.

Proof of Theorem 3.4. (i) For all X = (X1, . . . , Xn) ∈ (L1)n, take a comonotonic X̃ = (X̃1, . . . , X̃n) ∈

(L1)n such that X̃i
d
= Xi for all i = 1, . . . , n. It follows that E[g(X)] 6 E[g(X̃)] for all supermodular

functions g : Rn → R due to Theorem 5 of Tchen (1980). By Proposition 2.2.5 of Simchi-Levi et al.

(2005), we have f(a,X) 6icx f(a, X̃). Moreover, there exists a standard uniform random variable

U such that X̃i = F−1

X̃i
(U) for all i = 1, . . . , n and f(a, X̃) = F−1

f(a,X̃)
(U) almost surely (Denneberg,

1994). Take

f(a, X̃)Ih = F−1

f(a,X̃)
(U)1{U /∈

⋃
C∈Ih

C} +
∑
C∈Ih

E[F−1

f(a,X̃)
(U)|U ∈ C]1{U∈C} ∼ F Ihf(a,X̃)

.

It follows that f(a, X̃)Ih = E[f(a, X̃)|G ], where G = σ(U1{U /∈
⋃
C∈Ih

C}). Similarly, X̃Ihi = E[X̃i|G ]

for all i = 1, . . . , n, where

X̃Ihi = F−1

X̃i
(U)1{U /∈

⋃
C∈Ih

C} +
∑
C∈Ih

E[F−1

X̃i
(U)|U ∈ C]1{U∈C} ∼ F IhX̃i .

Since f is supermodular and positively homogeneous, we have by Theorem 3 of Marinacci and

Montrucchio (2008) that f(a,X) is concave in X. By Jensen’s inequality, we have

f(a, X̃)Ih = E[f(a, X̃)|G ] 6 f(a,E[X̃|G ]) = f(a, X̃Ih1 , . . . , X̃Ihn ).

Thus we have

ρh∗(f(a,X)) 6 ρh∗(f(a, X̃)) = ρh(f(a, X̃)Ih) 6 ρh(f(a, X̃Ih1 , . . . , X̃Ihn ))

6 sup
F1∈F1,...,Fn∈Fn

sup
FY∈D(F1,...,Fn)

ρh(f(a,Y)),

where the first inequality follows from Theorem 4.A.3 of Shaked and Shanthikumar (2007) and

Theorem 5 of Chapter 2 and the second equality is by the proof of Theorem 3.1. Combined with

the fact that

sup
F1∈F1,...,Fn∈Fn

sup
FX∈D(F1,...,Fn)

ρh(f(a,X)) 6 sup
F1∈F1,...,Fn∈Fn

sup
FX∈D(F1,...,Fn)

ρh∗(f(a,X)),

76



we have (3.16) holds.

(ii) Suppose that the supremum of the right-hand side of (3.16) is attained by some F1 ∈

F1, . . . , Fn ∈ Fn and FX ∈ D(F1, . . . , Fn). For comonotonic (X̃1, . . . , X̃n) such that X̃i ∼ Fi for all

i = 1, . . . , n, using the argument in (i),

ρh∗(f(a,X)) 6 ρh(f(a, X̃Ih1 , . . . , X̃Ihn )),

where (X̃Ih1 , . . . , X̃Ihn ) is comonotonic and X̃Ihi ∼ F
Ih
i for all i = 1, . . . , n. Similarly to the proof of

Theorem 3.1 (iii), since ρh 6 ρh∗ , we have the supremum of the left-hand side of (3.16) is attained

by F Ih1 , . . . , F Ihn and (X̃Ih1 , . . . , X̃Ihn ), which also obtain the supremum of the right-hand side of

(3.16) since

ρh∗(f(a, X̃Ih1 , . . . , X̃Ihn )) 6 max
F1∈F1,...,Fn∈Fn

max
FX∈D(F1,...,Fn)

ρh∗(f(a,X))

= max
F1∈F1,...,Fn∈Fn

max
FX∈D(F1,...,Fn)

ρh(f(a,X))

= ρh(f(a, X̃Ih1 , . . . , X̃Ihn )) 6 ρh∗(f(a, X̃Ih1 , . . . , X̃Ihn )).

3.10.4 Proofs of results in Section 3.5 and related lemmas

In the following, we write q as the Hölder conjugate of p. The following lemma closely resembles

Theorem 3.4 of Liu et al. (2020) with only an additional statement on the uniqueness of the quantile

function of the maximizer.

Lemma 3.1. For h ∈ H∗, m ∈ R, v > 0 and p > 1, we have

sup
FY ∈M(p,m,v)

ρh(Y ) = mh(1) + v[h]q,

If 0 < [h]q <∞, the above supremum is attained by a random variable X such that FX ∈M(p,m, v)

with its quantile function uniquely determined by

VaRt(X) = m+ vφqh(t), t ∈ (0, 1) a.e. (3.40)

If [h]q = 0, the above maximum value is attained by any random variable X such that FX ∈

M(p,m, v).

Proof. The only statement that is more than Theorem 3.4 of Liu et al. (2020) is the uniqueness of

the quantile function (3.40). Without loss of generality, assume m = 0 and v = 1. Using the Hölder
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inequality

sup
FY ∈M(p,0,1)

∫ 1

0
h′(t)VaR1−t(Y ) dt = sup

FY ∈M(p,0,1)

∫ 1

0
(h′(t)− ch,q)VaR1−t(Y ) dt

6 sup
FY ∈M(p,0,1)

‖h′ − ch,q‖q
(∫ 1

0
|VaR1−t(Y )|p dt

)1/p

= [h]q.

The maximum is attained by FX only if the above inequality is an equality, which is equivalent to

that the function t 7→ |VaR1−t(X)|p is a multiple of |h′ − ch,q|q. Therefore,

VaRt(X) =
|h′(1− t)− ch,q|q

h′(1− t)− ch,q
[h]1−qq = φqh(t), t ∈ (0, 1) a.e.

Hence, the quantile function of X is uniquely determined by (3.40).

Lemma 3.2. For all h ∈ H with h = ĥ, m ∈ R, v > 0 and p > 1, if [h∗]q <∞, we have

sup
FY ∈M(p,m,v)

ρh(Y ) = sup
FY ∈M(p,m,v)

ρh∗(Y ) = mh(1) + v[h∗]q,

and the above suprema are simultaneously attained by a random variable X such that FX ∈

M(p,m, v) with

VaRt(X) = m+ vφqh∗(t), t ∈ (0, 1) a.e. (3.41)

Proof. The statement directly follows from Theorem 3.1 and Lemma 3.1.

Proof of Theorem 3.5. Together with Theorem 3.1, Lemmas 3.1 and 3.2 give the statement in The-

orem 3.5 on the supremum. Arguments for the infimum are symmetric. For instance, noting that

(−h)∗ = −h∗, Theorem 3.1 yields

inf
FY ∈M(p,m,v)

ρh(Y ) = − sup
FY ∈M(p,m,v)

ρ−h(Y )

= − sup
FY ∈M(p,m,v)

ρ(−h)∗(Y )

= − sup
FY ∈M(p,m,v)

ρ−h∗(Y ) = inf
FY ∈M(p,m,v)

ρh∗(Y ).

We omit the detailed arguments for the infimum in Theorem 3.5.

Proof of Proposition 3.5. Note that ρh 6 ρh∗ , which is implied by h 6 h∗ and (1.3). By Hölder’s

inequality, for any Y ∈ Lp, using (3.12), we have∫ 1

0
h∗′(t)VaR1−t(Y ) dt =

∫ 1

0
(h∗′(t)− ch∗,q)VaR1−t(Y ) dt+ ch,qE[Y ]

6 [h∗]q‖Y ‖p + ch∗,qE[Y ] <∞.

The other half of the statement is analogous.
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Proof of Corollary 3.1. We prove the first half (the suprema). The second half is symmetric to the

first half. Theorem 3.5 and Lemma 3.2 give

sup
FY ∈M(p,m,v)

VaRα(Y ) = sup
FY ∈M(p,m,v)

ESα(Y ) = m+ v[h∗]q.

By Lemma 3.1, the corresponding random variable Z which attains ESα(Z) = m + v[h∗]q has

left-quantile function

F−1
Z (t) = m+ vφqh∗(t) = m+ v

∣∣∣ 1
1−α1(α,1](t)− 1

∣∣∣q
1

1−α1(α,1](t)− 1
[h∗]1−qq , t ∈ [0, 1] a.e.

Note that φqh∗(t) only takes two values for t > α and t < α, respectively. Thus Z is a bi-atomic

random variable, and using E[Z] = m, we have, for some kp > 0,

P (Z = m+ αkp) = 1− α and P (Z = m− (1− α)kp) = α.

We note that the number kp can be determined from E[|Z −m|p] = vp, that is,

kp = v (αp(1− α) + (1− α)pα)−1/p ,

leading to

sup
FY ∈M(p,m,v)

VaRα(Y ) = sup
FY ∈M(p,m,v)

ESα(Y ) = m+ vα (αp(1− α) + (1− α)pα)−1/p ,

and thus the desired equalities in the statement on suprema hold.
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Chapter 4

Bayes risk, elicitability, and the

Expected Shortfall

4.1 Introduction

Mainly through Gneiting (2011), the concept of elicitability has drawn considerable interest

within the quantitative risk management literature. The concept is fundamental when comparing

different forecasting procedures. We refer to the latter paper for an excellent introduction. In this

Introduction we explain our motivation, and more detailed definitions are given in Section 4.2.

Let X be a linear space of random variables. A set-valued d-dimensional functional S : X → 2R
d

is elicitable if there exists a measurable function L : Rd+1 → R (called a loss function) such that

S(X) = arg min
x∈Rd

E[L(x,X)], X ∈ X . (4.1)

In the recent literature, a lot of research has been done on characterizing risk measures that are

elicitable for d = 1.1 The case of d > 2 is much more difficult; see Fissler and Ziegel (2016) and

Wang and Wei (2020). In sharp contrast to the functional S in (4.1), much less attention has been

paid to functionals R of the form

R(X) = min
x∈Rd

E[L(x,X)], X ∈ X , (4.2)

1For characterization of elicitability in dimension d = 1, see Ziegel (2016) on coherent risk measures, Bellini and

Bignozzi (2015) and Delbaen et al. (2016) on convex risk measures, Kou and Peng (2016) and Wang and Ziegel (2015)

on Choquet risk measures, and Liu and Wang (2021) on tail risk measures.
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which computes the Bayes risk of X for the Bayes estimator S. As an important example for d = 1,

the Value-at-Risk (VaR) at level α is elicited by the loss function L : (x, y) 7→ x + 1
1−α(y − x)+,

and the Expected Shortfall (ES) at level α is the corresponding Bayes risk (e.g., Rockafellar and

Uryasev, 2002); see (4.4) in Section 4.2.

The functionals in (4.1) and (4.2) are both important in the context of expected loss minimiza-

tion, and yet only the characterization of (4.1) is extensively studied in the literature of elicitability.

In case d = 1, the functional S in (4.1) is a minimizer and the functional R in (4.2) is a minimum.

The classic interpretation of risk measures, as in Artzner et al. (1999), is the least amount of capital

needed for a financial loss to be acceptable for the regulator. In other words, an acceptable capital

reserve needs to be no smaller than the value of the risk measure. With this interpretation, requiring

for a capital reserve to be larger than the minimizer S does not have a clear financial meaning. On

the other hand, the minimum in the Bayes risk R may be interpreted as a “generalized L-distance”

from X to the real line,2 so that the corresponding capital reserve may be interpreted as a penalty

for deviating from constancy, thus for bearing risk.3

The main focus of this chapter is (S,R) in (4.1) and (4.2), which we call a Bayes pair. After

the formal definition of Bayes pairs and Bayes risk measures in Section 4.2, we derive two main

characterization results. In Theorem 4.2 we show that, under a continuity assumption, an ES is

the only Bayes risk measure that is either coherent or Choquet, and in Theorem 4.4 we pin down

entropic risk measures as the only monetary risk measures which are both elicitable and Bayes.

Currently, ES is the standard risk measure in the Fundamental Review of the Trading Book

(BCBS, 2019) in banking. Our characterization of ES as the only coherent Bayes risk measure

strengthens the unique role of ES from the perspective of elicitability. This result complements

the recent finding of Wang and Zitikis (2021) on an axiomatic characterization of ES from the

perspective of portfolio risk aggregation. See also Emmer et al. (2015) and Embrechts et al. (2018)

for discussions on comparative advantages of VaR and ES as regulatory risk measures.

2For instance, in the simple case L(x, y) = (x − y)2, the Bayes risk minx∈R E[(X − x)2] = var(X), which is the

squared L2-distance from X to the real line. If R is used as a regulatory risk measure, we typically need to adjust

the value by the location of X (that is why we call it a “generalized L-distance”), e.g., using L(x, y) = x+ λ(x− y)2

for λ > 0 would give rise to a mean-variance risk measure. The minimum in (4.2) should not be interpreted as a

minimum over economic scenarios; indeed, it is more natural to take a maximum over economic scenarios.
3We do acknowledge that elicitability is an important statistical property, especially when comparing competing

forecast procedures; see e.g., Fissler and Ziegel (2016). This chapter stresses the important practical difference, even

complementarity, between regulatory interpretation (Bayes) and statistical tractability (elicitability).
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Our main technical results are closely related to those in Weber (2006), Ziegel (2016) and Wang

and Wei (2020) on risk measures with convex level sets, those in Ben-Tal and Teboulle (2007) on

optimized certainty equivalents, those in Rockafellar and Uryasev (2013) on risk quadrangles, and

those in Frongillo and Kash (2021) on elicitation complexity. More general discussions on elicitabil-

ity and forecasting risk measures can be found in Davis (2013, 2016) and Nolde and Ziegel (2017).

Although we do focus on risk measures, the general theory of elicitability has wide applications

outside of finance. For some recent work on interval-valued elicitable functionals, see Fissler et

al. (2020) and Brehmer and Gneiting (2021). Elicitability is also closely related to empirical risk

minimization; see e.g., Lambert et al. (2008), Steinwart et al. (2014) and Frongillo and Kash (2021)

in the context of machine learning.

4.2 Bayes pairs and Bayes risk measures

4.2.1 Risk measures

In Definition 4.1 below, we slightly generalize the standard definition of scalar risk measures

in Artzner et al. (1999) and Föllmer and Schied (2002a) to interval-valued risk measures such as

quantiles. In what follows, equalities and inequalities between intervals are understood as holding

for both end-points, and so are addition and scalar multiplication. Let X be a linear space of random

variables containing L∞, representing the domain of risk measures. Let I(R) be the set of closed

real intervals, including (−∞, a] and [a,∞), and the interval [a, a] is identified with its element a

(hence, R is treated as a subset of I(R)). Below we define some terminology for interval-valued risk

measures, different from those in Chapter 1.

Definition 4.1. A risk measure S is a mapping from X to I(R), and it is scalar if it maps X to

R. A risk measure S is monetary if it is (i) monotone: S(X) 6 S(Y ) for X,Y ∈ X with X 6 Y ,

and (ii) translation invariant: S(X + c) = S(X) + c for all X ∈ X and c ∈ R. A scalar risk measure

S is coherent if it is monetary, (iii) convex: S(λX + (1 − λ)Y ) 6 λS(X) + (1 − λ)S(Y ) for all

X,Y ∈ X and λ ∈ [0, 1], and (iv) positively homogeneous: S(λX) = λS(X) for all X ∈ X and

λ ∈ (0,∞). A scalar risk measure S is Choquet if it is monetary and (v) comonotonic-additive:

S(X + Y ) = S(X) + S(Y ) for all comonotonic X,Y ∈ X .

It was shown by Schmeidler (1986) that comonotonic-additivity characterizes Choquet inte-

grals, and hence we use the name Choquet risk measure. Law-invariant Choquet risk measures
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are also called distortion risk measures; Theorem 1 of Wang et al. (2020) gives a characterization

of law-invariant comonotonic-additive functionals. Both coherence and comonotonic-additivity are

argued as desirable properties, and a law-invariant risk measure that is both coherent and Choquet

is called a spectral risk measure by Acerbi (2002).

We make an important clarification concerning Definition 4.1, which also justifies our focus

on risk measures in (4.2). It is well known that with positive homogeneity, convexity is equivalent

to subadditivity, which is not easy to financially interpret if S is interval-valued. In view of this,

convexity and coherence are suitable properties for risk measures in (4.2), but it is unclear whether

they are suitable for risk measures in (4.1), unless one additionally assumes uniqueness of the

optimizer, or some convention (e.g., using the left end-point) is imposed.

The most important examples of risk measures are VaR and ES, widely used in financial

regulation. At a probability level α ∈ [0, 1], VaR has two versions, the left- and right-quantiles. Note

that we use different notations from (1.1) exclusively in this chapter and define VaRα : X → I(R)

by VaRα(X) = [VaR−α (X),VaR+
α (X)], where VaR−α (X) = inf{x ∈ R : P(X 6 x) > α};

VaR+
α (X) = inf{x ∈ R : P(X 6 x) > α}.

(4.3)

By definition, VaR−0 = −∞ and VaR+
1 = ∞. The interval-valued risk measure VaRα is monetary.

With sightly different notations from (1.2), the ES (also called CVaR, TVaR and AVaR) at a

probability level α ∈ [0, 1) is defined as

ESα(X) =
1

1− α

∫ 1

α
VaR−β (X) dβ, X ∈ X .

It is well known that an ES is both coherent and Choquet. Rockafellar and Uryasev (2002) obtained

the following ES-VaR relation (4.4)

[VaR−α (X),VaR+
α (X)] = arg min

x∈R

{
x+

1

1− α
E[(X − x)+]

}
;

ESα(X) = min
x∈R

{
x+

1

1− α
E[(X − x)+]

}
.

(4.4)

The relation (4.4) will be used repeatedly in this chapter.

4.2.2 Bayes pairs and Bayes risk measures

To define the main objects of the chapter, we follow the standard terminology of Bayes esti-

mator and Bayes risk in statistical decision theory. Despite this terminology, our discussion stays
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purely within the theory of risk measures, and does not require specific knowledge on Bayesian

statistics to understand.

Definition 4.2. A pair of risk measures (S,R) : X → I(R) × R is a Bayes pair if for some Borel

function L : R2 → R, called the loss function,

S(X) = arg min
x∈R

E[L(x,X)] and R(X) = min
x∈R

E[L(x,X)], X ∈ X . (4.5)

If S is further translation invariant, then we call S a Bayes estimator, and R a Bayes risk measure.4

In a Bayes pair (S,R), R is always scalar, whereas S not necessarily. Therefore, it is appropri-

ate to consider conditions for R, instead of S, to be a coherent risk measure. By (4.4), for α ∈ [0, 1),

the pair (VaRα,ESα) is a Bayes pair, and ESα is a coherent Bayes risk measure. Obviously, a Bayes

pair is always law invariant.

Let us first explain the important requirement of S being translation invariant in Definition

4.2. In the next theorem, we show a negative result: if we do not impose any conditions on S, then

the interpretation of Bayes estimator and Bayes risk is lost.

Theorem 4.1. A risk measure R : X → R satisfies (4.5) for some S : X → 2R and loss function

L if and only if there exists a set A of real Borel functions such that

R(X) = min
`∈A

E[`(X)], X ∈ X . (4.6)

Proof. The ⇒ implication follows directly by setting A = {y 7→ L(x, y) : x ∈ R}. Next we show

the ⇐ implication. Let φ be a one-to-one mapping from R to the set of real Borel functions on R

(since both sets have the same cardinality), and define L(x, y) = φ(x)(y) for x, y ∈ R. Let

S(X) = φ−1

(
arg min
`∈A

E[`(X)]

)
= arg min

x∈R
E[L(x,X)]. (4.7)

Hence, (4.5) holds.

The negative result in Theorem 4.1 is very simple, but it is important for the motivation behind

the concept of Bayes risk measures as in Definition 4.2. If no property is imposed on S, then we can

directly define R by (4.6) without introducing S. However, this would be problematic because the

Bayes estimator S is not interpretable as there is nothing to estimate. A similar problem appears

4S is also called a Bayes act; see e.g., Grünwald and Dawid (2004). When we say that a risk measure is Bayes in

this chapter, we mean that it is a Bayes risk measure (instead of a Bayes estimator).
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in Frongillo and Kash (2021) when they define elicitation complexity.5 In the context of Bayes

estimation, both S and R have a concrete meaning: S is the estimated parameter and R is the

risk of this estimation. Therefore, directly defining a risk measure R by (4.6) cannot be called a

Bayes risk measure because it is not the Bayes risk of any interpretable parameter. For this reason,

we impose translation invariance on S, which means that the parameter of interest of the unknown

financial loss is additive under location shift. This is similar to the consideration of Artzner et

al. (1999), where location shift is interpreted as capital injection. Other types of regularization

on S may also be considered, among which translation invariance seems both natural and easy to

work with. See Examples 4.2 and 4.3 in Section 4.3 for instances of R in (4.5) where translation

invariance of S is not assumed.

For a Bayes pair (S,R) with loss function L, by defining

R′ : X 7→ λR(X) + (1− λ)E[f(X)] (4.8)

for any real function f and λ ∈ (0, 1], the pair (S,R′) is also a Bayes pair with loss function

L′ : (x, y) 7→ λL(x, y) + (1 − λ)f(y). Hence, some conditions on R also need to be imposed to

obtain an economically meaningful risk measure. For this, we have plenty of candidates in the

literature, notably in the theories of coherent and Choquet risk measures.

Some advantages of Bayes risk measures follow from the definition and results in this chapter,

and we briefly summarize them below. Bayes risk measures are (i) convenient to optimize due

to their form as a minimizer to a linear mapping on distributions;6 (ii) concave in mixtures and

thus correctly measuring randomness (see Section 4.5); (iii) relatively easy to evaluate forecasts due

to their second-order elicitability (Corollary 4.1); (iv) relatively easy to compute due to their low

elicitation complexity (Frongillo and Kash, 2021), which is at most 2.7

5Frongillo and Kash (2021) argue that, through a one-to-one mapping from R to the set of real Borel functions on

R like φ in the proof of Theorem 4.1, one arrives at a counter-intuitive statement that all functionals have elicitation

complexity 1. Hence, some regularity requirements are needed.
6A typical optimization problem is to minimize R(f(a, Y )) over a ∈ A where A is a set of actions, Y is a random

vector, and f : A×Rd → R is a function; this includes the classic problem of portfolio selection with risk measures. IfR

is a Bayes risk measure with loss function L, then via the relationship minaR(f(a, Y )) = minx mina E[L(x, f(a, Y ))],

the above optimization problem can be solved by first minimizing an expected loss over a ∈ A, which is well studied.

See Rockafellar and Uryasev (2013) and the references therein for optimizing risk measures of the form (4.2).
7Roughly speaking, the elicitation complexity of a functional R is the lowest dimension of R′ such that (i) R′ is

elicitable; (ii) R is determined by R′; (iii) R′ satisfies some regularity conditions. We omit a detailed definition in

this chapter since some heavy preparation is needed for a proper definition of elicitation complexity. The interested

reader is referred to Frongillo and Kash (2021).
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4.2.3 Examples of Bayes pairs

We present some common examples of Bayes pairs. Except for the ES/E-mixture, none of

the other Bayes risk measures in Example 4.1 are coherent risk measures; this gives a hint on the

unique role of ES/E-mixtures among coherent Bayes risk measures.

Example 4.1. In all examples below, S in a Bayes pair (S,R) is translation invariant, and hence

R is a Bayes risk measure in Definition 4.2.

(i) (VaRα,ESλα): As we have seen from (4.4), for α ∈ [0, 1), (VaRα,ESα) is a Bayes pair with loss

function L : (x, y) 7→ x+ 1
1−α(y − x)+, and ESα is a coherent Bayes risk measure. Moreover,

using (4.8), the convex combination of ESα and E, called an ES/E-mixture and denoted by

ESλα, i.e.,

ESλα = λESα + (1− λ)E, λ ∈ [0, 1], α ∈ (0, 1), (4.9)

is a coherent Bayes risk measure with loss function L : (x, y) 7→ x+ λ(y − x) + 1−λ
1−α(y − x)+.

Note that λ = 0 corresponds to the mean, and λ = 1 corresponds to ESα.

(ii) (ERγ ,ERγ): An entropic risk measure (ER) is defined as

ERγ(X) =
1

γ
logE[eγX ], X ∈ L∞,

for γ ∈ (0,∞), with the limiting case ER0 = E.8 The entropic risk measure ERγ is known to

be convex but not coherent. Next we see that ERγ is both Bayes and elicitable for the same

loss function L : (x, y) 7→ x+ (eγ(y−x) − 1)/γ. Indeed, by defining

R(X) := min
x∈R

E[L(x,X)] = min
x∈R

{
x+

1

γ
E[eγ(X−x) − 1]

}
, (4.10)

one can verify that the minimizer of (4.10) is S(X) = 1
γ logE[eγX ] = ERγ(X). Substituting

it into (4.10), we have

R(X) =
1

γ
logE[eγX ] +

E[eγX ]

E[γeγX ]
− 1

γ
=

1

γ
logE[eγX ] = ERγ(X).

(iii) (E, σ2): The variance

σ2(X) := E[(X − E[X])2] = min
x∈R

E[(X − x)2], X ∈ L2,

is a Bayes risk measure with loss function L : (x, y) 7→ (y − x)2. The corresponding Bayes

estimator is the mean E.
8The domain of ERγ can be enlarged to include random variables with finite exponential moments, such as normal

random variables.
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(iv) (E,E + λσ2): The mean-variance functional, for λ > 0,

E[X] + λσ2(X), X ∈ L2,

is a Bayes risk measure with loss function L : (x, y) 7→ y + λ(y − x)2. The Bayes estimator

corresponding to the mean-variance functional is also the mean E.

(v) (VaR1/2,MD): The mean-median deviation,

MD(X) := min
x∈R

E[|X − x|], X ∈ L1,

is a Bayes risk measure with loss function L : (x, y) 7→ |y − x|, and the corresponding Bayes

estimator is the median (interval) VaR1/2(X). The mean-median deviation is a signed Choquet

integral with distortion function h(t) = min{t, 1− t}, t ∈ [0, 1]; see Wang et al. (2020).

(vi) (exα, varα): The variantile (e.g., Wang and Wei, 2020),

varα(X) := min
x∈R

{
αE[(X − x)2

+] + (1− α)E[(X − x)2
−]
}
, X ∈ L2,

where α ∈ (0, 1), is a Bayes risk measure with loss function

L : (x, y) 7→ α(y − x)2
+ + (1− α)(y − x)2

−.

The Bayes estimator corresponding to the variantile varα is the expectile at the level α, denoted

by exα; see Bellini et al. (2014) and Ziegel (2016).

4.3 Characterizing ES as a Bayes risk measure

We will present below our first main result on the characterization of Bayes risk measures. Re-

call that the ES/E-mixtures in (4.9) of Example 4.1 are coherent and Choquet Bayes risk measures.

Theorem 4.2 below further shows that they are the only possible class of Bayes risk measures which

are either coherent or Choquet. This result is illustrated by the Venn diagram in Figure 4.1.

Below, lower semicontinuity is defined with respect to almost sure convergence. This form of

lower semicontinuity is used to formulate the prudence axiom of Wang and Zitikis (2021), and the

interpretation is that a consistent statistical approximation of the true risk should not underestimate

the risk measure.

Theorem 4.2. Suppose that L∞ ⊆ X ⊆ L1. For a risk measure R : X → R, the following are

equivalent:
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(i) R is a coherent Bayes risk measure;

(ii) R is a Choquet Bayes risk measure;

(iii) R = ESλα for some α ∈ (0, 1) and λ ∈ [0, 1].

If R further satisfies lower semicontinuity, then R = ESα for some α ∈ (0, 1).

Proof. The full proof is presented in Section 4.8.1, and we give a sketch of the main steps here. The

implication (iii)⇒(ii) is obvious. The implication (ii)⇒(i) is implied by Proposition 4.3 in Section

4.5. Below are the main steps for the most important implication (i)⇒(iii). Assume (S,R) is a

Bayes pair in which S is translation invariant and R is coherent.

We first show in Lemma 4.1, that, using the fact that S and R are both translation invariant,

we can choose a loss function for (S,R) in the form (x, y) 7→ x+ v(y − x) for some real function v.

Thus, we have

R(X) = inf
c∈R
{c+ E[v(X − c)]}, X ∈ X . (4.11)

Using the monotonicity of R, we proceed to show in Lemma 4.2 that such v can be replaced by an

increasing function ṽ without changing R. Next, using the convexity of R, we show in Lemma 4.3

that ṽ can be replaced by an increasing convex function v̂. Using the positive homogeneity of R, in

Lemma 4.5 we show that v̂ can be replaced by the piece-wise linear function v̄(x) = λx+ (γ−λ)x+

for some γ > 1 and λ ∈ [0, 1]. Finally, with the above loss function, we derive R = ES1−λ
α where

α = (γ − 1)/(γ − λ) ∈ (0, 1).

For the last statement of the theorem, the lower semicontinuity of ES1−λ
α implies λ = 0 since

ESα is lower semicontinuous and E is not, as implied by Theorem 1 of Wang and Zitikis (2021).

Remark 4.1. As we see in the proof of Theorem 4.2, a key step is to show that a translation-invariant

Bayes risk measure R has the form (4.11) in Lemma 4.1. Risk measures directly defined via the

form (4.11) have appeared in the literature, and we make two notable connections.

1. The optimized certainty equivalent (OCE) of Ben-Tal and Teboulle (2007) has the form (4.11)

where v is increasing, convex, and satisfying v(0) = 0 and v′(0+) > 1; here it is adapted to our

convention that a positive value of X represents a loss. Theorem 3.1 of Ben-Tal and Teboulle

(2007), which is closely related to Theorem 4.2, states that, assuming that v is real-valued,

increasing, convex, v(0) = 0, v′(0+) > 0, and v(x) > x for all x 6= 0, the only coherent risk

88



∅∅
ESλα

Spectral

Bayes
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Figure 4.1: A Venn diagram for three classes of law-invariant risk measures

measure in the OCE class is generated by v(x) = λx+(γ−λ)x+ for some∞ > γ > 1 > λ > 0,

which is an ES/E-mixture, similar to Lemma 4.5 except for the boundary cases of γ = ∞,

γ = 1 and λ = 1. Different from Ben-Tal and Teboulle (2007), all our assumptions are made

on R and not on the form of v in (4.11).

2. The form (4.11) also appears in the expectation quadrangle of Rockafellar and Uryasev (2013),

where (VaRα,ESα) also serves as an important example. Our choice of notation, especially

S and R, is consistent with the notation of Rockafellar and Uryasev (2013). Nevertheless,

our interpretation of the Bayes pair and our focus on characterization are different from their

framework. See also the recent paper Chong et al. (2021) where (4.11) appears as an optimized

objective in the context of capital allocation.

Remark 4.2. Using Lemmas 4.2 and 4.3 in Section 4.8.1, we also obtain the forms of monetary

and convex Bayes risk measures. A risk measure R is a monetary (resp. monetary and convex)

Bayes risk measure if and only if (4.11) holds for some increasing (resp. increasing convex) function

v : R→ R.

Below we further present two examples of a coherent risk measure R satisfying (4.5), but the

corresponding minimizer S is not translation invariant (indeed, not interpretable). By Theorem
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4.1, these risk measures have the form (4.6), for a set of loss functions A,

R(X) = min
`∈A

E[`(X)], X ∈ X .

The examples also show that the assumption of translation invariance on S in Definition 4.2 is

essential for the characterization of the Bayes risk measures in Theorem 4.2.

Example 4.2. The first example is a convex combination of ES at different levels. Define a risk

measure R = 1
2ESα + 1

2ESβ for some distinct numbers α, β ∈ (0, 1). Clearly, R is a coherent risk

measure. By (4.4), for X ∈ L1,

R(X) =
1

2
min
x∈R

{
x+

1

1− α
E[(X − x)+]

}
+

1

2
min
x∈R

{
x+

1

1− β
E[(X − x)+]

}
=

1

2
min

x1,x2∈R

{
x1 + x2 +

1

1− α
E[(X − x1)+] +

1

1− β
E[(X − x2)+]

}
.

By Theorem 4.1, R satisfies (4.5) for some S. Since R is not an ES/E-mixture, by Theorem 4.2, R

is not a Bayes risk measure. This implies that any minimizer S satisfying (4.5) is not translation

invariant. We can also see from this example that S(X) should be a one-to-one function of the

minimizer (x1, x2) above, which is difficult to interpret in a financial context (one-to-one mappings

from R2 to R are usually quite strange).

Example 4.3. The second example is the coherent entropic risk measure introduced by Föllmer

and Knispel (2011), defined, for some c > 0, as

R(X) = min
γ>0

{
1

γ
logE[eγX ] +

c

γ

}
, X ∈ L∞.

Föllmer and Knispel (2011) showed that R is a coherent risk measure; it satisfies (4.5) by Theorem

4.1. Since R is not an ES/E-mixture, by Theorem 4.2, R is not a Bayes risk measure.

Before ending this section, we show that the Bayes pair (VaRα,ESλα) can be characterized if

R is coherent or Choquet. This result slightly generalizes Theorem 4.2 which only gives the form

of R but not that of S. A proof of Proposition 4.1 is put in Section 4.8.2.

Proposition 4.1. For a Bayes pair (S,R) with loss function L, the following are equivalent:

(i) S(0) = 0 and R is a coherent Bayes risk measure;

(ii) S(0) = 0 and R is a Choquet Bayes risk measure;

(iii) (S,R) = (VaRα,ESλα) for some α ∈ (0, 1) and λ ∈ [0, 1);
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(iv) the loss function can be chosen as L : (x, y) 7→ x + (1 − λ)(y − x) + λ
1−α(y − x)+ for some

α ∈ (0, 1) and λ ∈ (0, 1].

For a given α ∈ (0, 1), Wang and Wei (2020, Theorem 6.9) showed that an ES/E-mixture is

the only coherent Choquet risk measure ρ such that (ρ,VaRα) is elicitable. This result does not

imply, and is not implied by, Theorem 4.2 and Proposition 4.1, although the similarity is visible.

4.4 Elicitability of Bayes risk measures

In this section we study the connection between Bayes pairs and elicitability. Recall that the

functional S is elicitable if there exists a loss function L : Rd+1 → R such that

S(X) = arg min
y∈Rd

E[L(y,X)], X ∈ X . (4.12)

The first observation is that a Bayes pair (S,R) is always elicitable. This was essentially shown in

Theorem 1 of Frongillo and Kash (2021) where S takes scalar values. We present a similar proof

which is adapted to our slightly different definitions.

Theorem 4.3. Any Bayes pair (S,R) with loss function L is elicitable by

L∗(x, y, z) =

∫ y

0
h(t) dt+ h(y)(L(x, z)− y), (x, y) ∈ D, z ∈ R,

where h is any positive and strictly decreasing function on R and D is the range of (S,R).

Proof. We need to show that L∗ elicits (S,R); that is, for X ∈ X ,

(S,R)(X) = arg min
(x,y)∈D

E[L∗(x, y,X)] = arg min
(x,y)∈D

{∫ y

0
h(t) dt+ h(y)(E[L(x,X)]− y)

}
. (4.13)

First, for a fixed (y,X), the minimizers x∗ to (4.13) are the same as the minimizers of E[L(x,X)].

Therefore, we know that the set of minimizers x∗ are precisely S(X), and E[L(x∗, X)] = R(X).

Next, we need to find the minimizers for

arg min
y∈R

{∫ y

0
h(t) dt+ h(y)(R(X)− y)

}
,

which gives y∗ = R(X) since h is a strictly decreasing function.

Remark 4.3. In Theorem 4.3, the loss function which elicits (S,R) is not unique. For instance, if

S(X) is itself elicited by a loss function L′, then (x, y, z) 7→ L∗(x, y, z) +L′(x, z) also elicits (S,R).
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Following the terminology of Emmer et al. (2015) and Fissler and Ziegel (2016), a functional

R : X → R is second-order elicitable if it is a component of a 2-dimensional elicitable functional,

and it is conditionally elicitable on another functional S if for each r ∈ R and some loss function

Lr, we have

R(X) = arg min
y∈Rd

E[Lr(y,X)], X ∈ X with S(X) = r.

Theorem 4.3 immediately yields that any Bayes risk measure R is second-order elicitable as a

component of the Bayes pair (S,R) and conditionally elicitable on S via Lr : (y, z) 7→ L∗(r, y, z).

Corollary 4.1. Any Bayes risk measure is second-order elicitable and conditionally elicitable.

Remark 4.4. Another direct consequence of Theorem 4.3 is that any Bayes risk measure has elici-

tation complexity of at most 2 (implied by second-order elicitability), and hence they are relatively

simple to estimate via empirical risk minimization; see Frongillo and Kash (2021) for a precise

definition and related discussions.

4.5 Other properties of Bayes risk measures

The following two results of a Bayes risk measure do not require monotonicity. Let M be the

set of distributions of the elements in X . For any scalar law-invariant risk measure R, we write

R̂ : F 7→ R(X) where X ∼ F ∈ M. Thus, R̂ represents the risk measure R treated as a mapping

from M to R. We say that R has convex level sets (CxLS) if the set {F ∈ M : R̂(F ) = r}

is convex for each r ∈ R. Mixture concavity represents that using a mixture of models (i.e.,

introducing a stochastic factor) increases randomness, and it is a desirable property for both risk

and deviation measures. Moreover, for Choquet risk measures, mixture concavity is equivalent to

coherence (Theorem 3 of Wang et al. (2020)). The CxLS property is a necessary condition for

elicitability (Osband, 1985) and has been widely studied in the risk measure literature (e.g., Weber,

2006; Ziegel, 2016; Delbaen et al., 2016; Wang and Wei, 2020). The following two properties are

useful in the proofs of Theorems 4.2 and 4.4. Moreover, Proposition 4.2 directly inspires the study

in Section 6.6.

Proposition 4.2. A Bayes risk measure is necessarily mixture concave, and a Bayes estimator

necessarily has CxLS.9

9Mixture concavity of risk measures is as defined in Chapter 2.
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Proof. By definition, R̂ : F 7→ infx∈R{
∫
R L(x, y) dF (y)} is the infimum of linear functions on M,

and hence concave. Thus, R is mixture concave. The second statement is due to the fact that any

Bayes estimator is elicitable, and it is well known that elicitable functionals have CxLS (e.g., Ziegel,

2016).

Proposition 4.3. A Choquet Bayes risk measure is necessarily coherent.

Proof. Note that a monetary risk measure is uniformly continuous with respect to the L∞-norm.

Using Theorem 1 of Wang et al. (2020), a law-invariant, uniformly L∞-continuous and comonotonic-

additive functional admits a representation as a Choquet integral. Theorem 3 of Wang et al.

(2020) further implies that mixture concavity is equivalent to convexity. Therefore, as Choquet risk

measures are automatically positively homogeneous, R is coherent.

4.6 Elicitable Bayes risk measures

Any Bayes risk measure is mixture concave (Proposition 4.2), and any elicitable risk measure,

such as the Bayes estimator, has CxLS. We wonder what is the intersection of the two classes of

risk measures. This question is not only driven by mathematical curiosity, but also has interesting

connections with some classical results in decision theory.

As we have seen above, the mean is both elicitable (with loss function L(x, y) = (y − x)2)

and Bayes (with loss function L(x, y) = x+ (y − x)+). Moreover, the entropic risk measure ER in

Example 4.1 is mixture concave and has CxLS, since it is both elicitable and Bayes. The next result

shows that ER is the only risk measure that is mixture concave and has CxLS under the following

continuity assumption (recall that R̂(F ) = R(X) where X ∼ F )

(C) For any x < y, the mapping α 7→ R̂((1− α)δx + αδy) on [0, 1] is continuous at α = 0, where

δz is the point-mass at z ∈ R.

Clearly, continuity (C) is weaker than continuity from above.

Theorem 4.4. Let R be a law-invariant monetary risk measure on X = L∞ satisfying continuity

(C) with R(0) = 0. Then R is mixture concave and has CxLS if and only if it is an entropic risk

measure.
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The proof of Theorem 4.4 is technical and put in Section 4.8.3. Below we illustrate some

intuition of this result by connecting mixture concavity and CxLS to the notions of betweenness

(Chew, 1983) and associativity (Grant et al., 2000) in decision theory.10 We say that R satisfies

associativity if for any F,G,H ∈M and λ ∈ (0, 1),

R̂(F ) = R̂(G) =⇒ R̂(λF + (1− λ)H) = R̂(λG+ (1− λ)H). (4.14)

Lemma 2 of Grant et al. (2000) shows that associativity holds under the assumption of a suitable

continuity condition, mixture concavity and betweenness. The betweenness property is slightly

stronger than the CxLS property, but they are equivalent under some mild assumption (e.g., Lemma

14 of Steinwart et al., 2014). If R̂ satisfies associativity, then by the de Finetti-Kolmogorov-Nagumo

Theorem (see e.g., Cifarelli and Regazzini, 1996), R is a certainty equivalent, that is, there exists

a continuous and strictly increasing function u : R → R such that R(X) = u−1(E[u(X)]), X ∈ X .

Finally, by translation-invariance of R, one can conclude that u(x) = ecx for c > 0 or u(x) = x,

x ∈ R. As a consequence, R must be an entropic risk measure. The main gap in the above informal

argument is to verify the conclusion of Lemma 2 of Grant et al. (2000) under CxLS and (C), which

is a complicated mathematical task although intuitively clear. In Section 4.8.3, we provide a full

proof without using the results of Grant et al. (2000).

Remark 4.5. Continuity (C) is not satisfied by the essential supremum X 7→ VaR−1 (X), which is

mixture concave and has CxLS. In our proof of Theorem 4.4, the continuity condition (C) is essential

and we were not able to relax it. Nevertheless, we conjecture that by including VaR−1 = ER∞ as

an extended member of the ER family, one may remove or weaken (C) in Theorem 4.4.

A consequence of Theorem 4.4 is that a risk measure R with the form

R(X) = inf{x ∈ R : E[g(X − x)] 6 z} (4.15)

for a strictly increasing g cannot be mixture concave unless it is an entropic risk measure. In

particular, this implies that expectiles defined in Example 4.1 (vi) are not mixture concave. This

fact is shown by Bellini et al. (2018), and it is (surprisingly) not easy to directly verify.

Corollary 4.2. Let R be defined by (4.15) for some increasing function g and constant z satisfying

g(−t) < z < g(t) for all t > 0. Then R is mixture concave if and only if it is an entropic risk

measure.

10We thank an anonymous referee for brining up this connection.
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Proof. It is clear that the risk measure R defined by (4.15) is monetary. Note that the condition

g(−t) < z < g(t) for all t > 0 implies R(0) = 0. Lemma 4.7 guarantees (C) from the above

condition on g. The rest follows by applying Theorem 4.4.

Finally, we obtain a characterization of entropic risk measures as the intersection of Bayes

estimators and Bayes risk measures. Moreover, as we see in Example 4.1 (ii), an entropic risk

measure is a Bayes estimator and a Bayes risk measure with the same loss function.

Corollary 4.3. A monetary risk measure R with R(0) = 0 is elicitable and Bayes if and only if it

is an entropic risk measure.

Proof. Note that an elicitable risk measure satisfies CxLS and a Bayes risk measure satisfies

mixture concavity. Using Theorem 4.4, it suffices to verify that a Bayes risk measure R(X) =

minx E[L(x,X)] satisfies continuity (C). That is, for any x < y, the function

α 7→ H(α) := min
s∈R
{(1− α)L(s, x) + αL(s, y)}

is continuous at α = 0. Note that there exists s0 such that L(s0, x) = x. Then

x 6 lim inf
α↓0

H(α) 6 lim sup
α↓0

H(α) 6 lim
α↓0
{(1− α)L(s0, x) + αL(s0, y)} = L(s0, x) = x.

Hence, we have H(α) is continuous at α = 0, which gives the desired condition (C).

4.7 Concluding remarks

In this chapter, we introduce the concepts of Bayes pairs and Bayes risk measures, and offer

some characterization results. In particular, Theorem 4.2 yields a new characterization of ES in the

context of statistical inference and optimization, complementing the ES characterization of Wang

and Zitikis (2021) based on portfolio risk aggregation.

It is known that entropic risk measures are the only dynamically consistent law-invariant risk

measures (Kupper and Schachermayer, 2009), and they are also the only intersection of the class

of optimized certainty equivalents (OCE) and the class of shortfall risk measures (Ben-Tal and

Teboulle, 2007; Föllmer and Schied, 2016). Theorem 4.4 further shows that, under a continuity

assumption, the entropic risk measures are the only monetary risk measures satisfying mixture

concavity (a property of the OCE) and CxLS (a property of the shortfall risk measures).
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Bayes risk measures are closely related to elicitability, and they are second-order elicitable

(Theorem 4.3). There are several open questions on the theory of Bayes pairs and Bayes risk

measures which will be explored in the future; we discuss a few of them here.

The first question is regarding the special role of Bayes pairs among elicitable two-dimensional

functionals. Almost all examples of elicitable two-dimensional functionals (S,R) in the literature

are one-to-one transforms of either a Bayes pair, such as those in Example 4.1, or a pair whose com-

ponents are both elicitable, such as (VaRα,VaRβ), (exα, exβ), or the modal interval (see Brehmer

and Gneiting, 2021). We wonder under what conditions an elicitable two-dimensional functional

has to be obtained from a Bayes pair.

Next, we focus on the Bayes risk measure R. We say that a risk measure is genuinely 2-

elicitable if it is second-order elicitable but not elicitable. Since coherent risk measures are not

elicitable except for the expectiles (Ziegel, 2016), it is natural to study the class of genuinely 2-

elicitable coherent risk measures. A non-elicitable Bayes risk measure is genuinely 2-elicitable (see

Corollary 4.1), but the converse is not true; it is unclear what special role Bayes risk measures play

among genuinely 2-elicitable risk measures.

There are at least two very different ways to construct a genuinely 2-elicitable coherent risk

measure. The first is to combine two elicitable risk measures, such as a mixture of two different

expectiles, (1 − λ)exα + λexβ, and the second is to use a Bayes risk measure, such as an ES/E-

mixture. We conjecture that a coherent Choquet risk measure is genuinely 2-elicitable if and only

if it is an ES/E-mixture (except for the mean). We also wonder under what conditions, a genuinely

2-elicitable coherent risk measure has to be a mixture of two expectiles.

Finally, if we replace translation invariance of S in Definition 4.2 with another property, the

characterization in Theorem 4.2 may fail to hold, as we see in Examples 4.2 and 4.3. A full

characterization of coherent R without translation invariance of S is open at the moment. A

similar question arises in a setting where S is allowed to be multi-dimensional; these questions are

planned for future research.
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4.8 Lemmas and proofs of several results

4.8.1 Lemmas in the proof of Theorem 4.2

Below we derive a few lemmas which lead to the proof of Theorem 4.2, implication (i)⇒(iii).

The other implications are already shown in the proof sketch in Section 4.3. In all lemmas below,

X is a linear space satisfying L∞ ⊆ X ⊆ L1.

Lemma 4.1. Suppose that (S,R) is a Bayes pair with loss function L, and S and R are translation

invariant. The function (x, y) 7→ x+L(0, y− x) is also a loss function for (S,R). As consequence,

there exists a real function v such that

R(X) = min
x∈R
{x+ E[v(X − x)]}, X ∈ X .

Proof. Define L∗(x, y) = x+ L(0, y − x), (x, y) ∈ R2, and

R∗(X) = min
x∈R

E[L∗(x,X)], X ∈ X .

We aim to show R∗ = R. For a random variable X ∈ X , denote by S∗ the left end-point of

S, that is, S∗(X) = min{arg minx∈R E[L(x,X)]}, X ∈ X . By translation invariance of S, we have

S∗(X+c) = S∗(X)+c for c ∈ R. Then by translation invariance of R we have R(X) = c+R(X−c),

that is,

min
x∈R

E[L(x,X)] = c+ min
x∈R

E[L(x,X − c)].

As a consequence,

E[L(S∗(X), X)] = c+ E[L(S∗(X − c), X − c)] = c+ E[L(S∗(X)− c,X − c)], (4.16)

where the last equality follows from S∗(X + c) = S∗(X) + c. By setting x∗ = S∗(X), we have

R∗(X) = min
x∈R

E[L∗(x,X)] = min
x∈R
{x+ E[L(0, X − x)]}

6 x∗ + E[L(0, X − x∗)] = x∗ + E[L(S∗(X)− x∗, X − x∗)]

= x∗ + E[L(S∗(X − x∗), X − x∗)] = x∗ + min
x∈R

E[L(x,X − x∗)]

= x∗ +R(X − x∗) = R(X),

where the last equality is due to the translation invariance of R. Thus we have R∗ 6 R. In order

to show R∗ > R, take y∗ ∈ arg minx∈R{x+ E[L(0, X − x)]}. By (4.16), we have

R∗(X) = y∗ + E[L(0, X − y∗)] > y∗ + min
x∈R

E[L(x,X − y∗)]

= y∗ + E[L(S∗(X − y∗), X − y∗)] = E[L(S∗(X), X)] = R(X).
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Hence, we have R = R∗. Taking v(y) = L(0, y) gives the last statement.

Using Lemma 4.1, we can write

R(X) = min
x∈R
{x+ E[v(X − x)]}, where v(y) = L(0, y). (4.17)

In the following lemmas, we allow v to take the value ∞, and obtain results that are slightly more

general than required, i.e., we will also include ES1 which is the essential supremum. We define the

increasing version of v as

ṽ(x) = inf
y>x

v(y), x ∈ R.

Note that R in (4.17) is real-valued, and

R(x) = inf
c∈R
{c+ v(x− c)} 6 inf

y>x
v(y).

Hence, ṽ(x) > −∞ for all x ∈ R. The finiteness of R also implies that v is not always ∞ on R.

Lemma 4.2. Suppose that R : X → R in (4.17) is monotone. Then

R(X) = inf
c∈R
{c+ E[ṽ(X − c)]}, X ∈ X .

Proof. Let us denote by R̃(X) = infc∈R{c+E[ṽ(X−c)]}, X ∈ X .Obviously,R(X) > R̃(X), X ∈ X .

Below we show R 6 R̃. Take ε > 0 and c ∈ R. By definition of ṽ, for any x ∈ R, there exists

y > x such that v(y) 6 ṽ(x) + ε, and such y admits an increasing (hence measurable) selection. As

a consequence, there exists Y ∈ X such that Y > X and v(Y − c) 6 ṽ(X − c) + ε. This implies

c+ E[v(Y − c)] 6 c+ E[ṽ(X − c)] + ε. By monotonicity of R and Y > X, we further have

R(X) 6 R(Y ) 6 c+ E[v(Y − c)] 6 c+ E[ṽ(X − c)] + ε.

Taking an infimum of the above inequality over c ∈ R and ε > 0 yields R(X) 6 R̃(X).

Next, for an increasing function v, we define the largest convex function dominated by v as

v̂(x) = sup{g(x) : g 6 v on R, g is convex}, x ∈ R.

By definition, v̂ is convex. To state the following lemma, we define

U =
{
v : v is increasing and convex, 1 ∈ int ∂v(R)

}
, (4.18)

where ∂v(R) = cx{v′−(x), v′+(x), x ∈ R}, intA is the interior of a set A, and cx(A) is the convex

hull of A. Here we define the right derivative v′+(x) =∞ if v(y) =∞ for any y > x.
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Lemma 4.3. Suppose that R : X → R in (4.17) is monetary and convex, and v is an increasing

function. Then

R(X) = inf
c∈R
{c+ E[v̂(X − c)]}, X ∈ X .

Specifically, if v̂ 6∈ U , then either R(X) ≡ −∞ or R(X) = E[X]− v̂∗(1), where v̂∗(x) = supy{xy −

v̂(y)} is the conjugate function of v̂.

Proof. Let us denote by

R′(X) = inf
c∈R
{c+ E[v̂(X − c)]}, X ∈ X .

Obviously, R > R′. Below we show R 6 R′. Take ε > 0 and c ∈ R. Note that a law-invariant

convex risk measure is monotonic with respect to convex order (e.g., Proposition 3.2 of Mao and

Wang, 2020). For X ∈ X , we assert that there exists Y ∈ X be such that

X ≺cx Y and E[v(Y − c)] 6 E[v̂(X − c)] + ε. (4.19)

To show this assertion, we use Theorem 4.1 of Mao et al. (2018), which gives

E[v̂(X)] = lim
n→∞

1

n
inf {E [v (X1)] + · · ·+ E [v (Xn)] : X1 + · · ·+Xn = nX} .

Then for any ε > 0, there exist n ∈ N and X1, . . . , Xn such that X1 + · · ·+Xn = nX and

1

n

(
E [v (X1)] + · · ·+ E [v (Xn)]

)
6 E[v̂(X)] + ε.

Denote by Fi the distribution of Xi, i = 1, . . . , n and take a random variable Y such that its

distribution is H =
∑n

i=1 Fi/n. We then have

E[v(Y )] =

∫
R
v(y) dH(y) =

1

n

n∑
i=1

E[v(Xi)] 6 E[v̂(X)] + ε.

For any convex function `, we have E[`(Y )] = 1
n

∑n
i=1 E[`(Xi)] > E[`(X)], where the inequality

follows convexity. This implies X ≺cx Y , and hence (4.19) holds. This implies c + E[v(Y − c)] 6

c + E[v̂(X − c)] + ε. By monotonicity of R with respect to convex order and X ≺cx Y , we further

have

R(X) 6 R(Y ) 6 c+ E[v(Y − c)] 6 c+ E[v̂(X − c)] + ε.

Taking an infimum of the above inequality over c ∈ R and ε > 0 yields R(X) 6 R′(X). Therefore,

R = R′. The last statement is shown in the discussion below Definition 3.1 of Wu et al. (2020).

By Lemma 4.3, in order to avoid the trivial cases of R, we only need to consider v ∈ U .

99



Lemma 4.4. Let v be a function such that v(x) > v(x) := λx+ (γ − λ)x+, x ∈ R, and

min
x∈R
{x+ E[v(X − x)]} = min

x∈R
{x+ E[v(X − x)]}, X ∈ X .

Then v = v.

Proof. We show the result by contradiction. Suppose that v(x0) > v(x0) for some x0 ∈ R. Define

a random variable X such that 1 − P(X = 0) = P(X = x0) = p, where p ∈ (0, 1) satisfies

1− p > α := 1− (1− λ)/γ. Then we have VaRα(X) = 0 and thus

R(X) = min
x
{x+ E[v(X − x)]} = 0 + E[v(X − 0)] = v(x0).

Note that 0 is the unique minimizer of the above minimization problem, which implies that

x+ E[v(X − x)] > x+ E[v(X − x)] > R(X), x 6= 0. (4.20)

For x = 0, note that E[v(X)] = (1− p)v(0) + pv(x0) > pv(x0) = R(X). This combined with (4.20)

yields a contradiction to the fact that minx∈R x+ E[v(X − x)] can be attained. Hence, v = v.

Theorem 3.1 of Ben-Tal and Teboulle (2007) showed that an OCE in (4.17) is positively

homogeneous if and only if v(x) = λx + (γ − λ)x+ for some γ, λ. The following lemma gives a

similar result under slightly different conditions. It states that R defined by (4.17) with v ∈ U

is positively homogeneous if and only if v can be replaced by v̄. For completeness, we give a

self-contained proof that is different from Ben-Tal and Teboulle (2007).

Lemma 4.5. For v ∈ U , suppose that R : X → R in (4.17) is positively homogeneous and v is an

increasing convex function. Then there exist γ ∈ [1,∞] and λ ∈ [0, 1], such that

R(X) = inf
c∈R
{c+ E[v̄(X − c)]}, X ∈ X , (4.21)

where v̄(x) = λx+ (γ − λ)x+ for all x 6= 0.

Proof. Since R is positively homogeneous, we have R(0) = infc∈R{c + E[v(−c)]} = 0. Note that

one minimizer of the above infimum is −ζv given by ζv := inf{x : v′−(x) > 1} ∈ R, where v′− is

the left-derivative of v. One can easily verify that 1 ∈ [v′−(ζv), v
′
+(ζv)] and v(ζv) = ζv. Define

u(x) := v(x + ζv) − ζv, x ∈ R. We have 1 ∈ [u′−(0), u′+(0)], and thus, u ∈ U with u(0) = 0. It is

obvious that R(X) = infc∈R{c+E[u(X−c)]}, X ∈ X . Hence, without loss of generality, we assume

that v ∈ U and v(0) = 0.
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For λ > 0, denote by vλ(x) = v(λx)/λ and v̄(x) = infλ>0 vλ(x), x ∈ R. It is clear that v̄ is

convex, increasing and positively homogeneous. Since v is convex, we have, for 0 < λ 6 γ,

v(λx) 6
λ

γ
v(γx) +

(
1− λ

γ

)
v(0) =

λ

γ
v(γx).

As a consequence, vλ(x) 6 vγ(x). Thus we know that vλ(x) is increasing in λ. Hence, v̄(x) =

limλ↓0 vλ(x). Note that if v(x) = ∞ for any x > 0, then we have v̄(x) = ∞ for x > 0; if however

v(x) <∞ for some x > 0, then for any x ∈ R, there exists λ > 0 such that vλ(x) <∞. For X ∈ X

with an upper bound and c ∈ R, the Monotone Convergence Theorem gives

E[v̄(X − c)] = E
[
lim
λ↓0

vλ(X − c)
]

= lim
λ↓0

E [vλ(X − c)] = inf
λ>0

E [vλ(X − c)] .

By definition, for λ > 0 and X ∈ X ,

R(λX) = inf
c∈R
{c+ E[v(λX − c)]} = inf

c∈R
{λc+ E[v(λ(X − c))]} = λ inf

c∈R
{c+ E[vλ(X − c)]}.

Hence, positive homogeneity of R implies

R(X) =
R(λX)

λ
= inf

c∈R
{c+ E[vλ(X − c)]}.

Taking an infimum over λ > 0 yields that for any X ∈ X with an upper bound

R(X) = inf
c∈R

{
c+ inf

λ>0
E[vλ(X − c)]

}
= inf

c∈R
{c+ E[v̄(X − c)]} ,

thus showing that (4.21) holds for X ∈ X with an upper bound. By Lemma 4.4, we have v = v,

and thus, (4.21) holds for all X ∈ X . Positive homogeneity and monotonicity of v̄ imply that

v̄(x) = γx+ − λx− = λx+ (γ − λ)x+, x 6= 0,

for some γ ∈ [0,∞] and λ ∈ [0,∞). Using Lemma 4.3, we further know that either R(X) = E[X]+c

for some constant c or v̄ ∈ U . If R(X) = E[X] + c, then c = 0 due to positive homogeneity of

R. In this case, v̄ can be chosen as v̄(x) = x, corresponding to γ = λ = 1. If v̄ ∈ U , then

int ∂v(R) = (λ, γ), which implies λ < 1 < γ.

Proof of Theorem 4.2. It remains to prove the last step in the implication (i)⇒(iii). Combining

Lemmas 4.1-4.5, we know that (4.17) holds, and v can be chosen as v(x) = λx+ (γ−λ)x+ for some

γ ∈ [1,∞] and λ ∈ [0, 1]. If λ < 1, write α = (γ − 1)/(γ − λ) ∈ (0, 1]. Using (4.4), including the

case α = 1, we have

R(X) = inf
c∈R
{c+ λE[(X − c)] + (γ − λ)E[(X − c)+]}

= (1− λ)ESα(X) + λE[X].
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If λ = 1, then R(X) = infc∈R {(γ − 1)E[(X − c)+]} + E[X] = E[X]. In either case, R = ES1−λ
α =

(1−λ)ESα+λE. If, moreover, v is real-valued (it is in the definition of the loss function for a Bayes

pair), then we have γ <∞ and thus, α < 1.

4.8.2 Proof of Proposition 4.1

Proof of Proposition 4.1. Note that the implications (iii)⇔(iv)⇒(ii) are obvious, and the implica-

tion (ii)⇒(i) is implied by Proposition 4.3 in Section 4.5. We next show the implication (i)⇒(iii).

By Lemma 4.1, there exists a function v : R→ R such that

S(X) = arg min
x∈R

{x+ E[v(X − x)]}, R(X) = min
x∈R
{x+ E[v(X − x)]}.

On the other hand, by Theorem 4.2, R(X) = ESλα(X) for some λ ∈ [0, 1] and α ∈ (0, 1). That is,

there exists v(x) = λ′x + (γ − λ′)x+ with λ′ = 1 − λ ∈ [0, 1] and γ = (1 − αλ′)/(1 − α) ∈ [1,∞)

such that

R(X) = ESλα(X) = min
x∈R
{x+ E[v(X − x)]}.

Denote by v̂ the largest increasing convex function dominated by v. That is,

v̂(x) = sup{g(x) : g 6 ṽ on R, g is convex}, x ∈ R, (4.22)

with ṽ(x) = infy>x v(y). We then show the result by considering the following two cases.

(i) If v̂(0) = 0, then by the proofs of Lemmas 4.2 to 4.5, we have v 6 v, and hence v = v by

Lemma 4.4. By S(0) = 0, which excludes λ = 1, we have S(X) = VaRα(X).

(ii) If v̂(0) > 0, then by the proof of Lemma 4.5, there exists c ∈ R such that v̂(c) = c. Define

v∗(x) = v(x + c) − c, x ∈ R and the corresponding v̂∗ of v∗ by (4.22). One can verify that

v̂∗(x) = v̂(x+ c)− c, which implies v̂∗(0) = 0, and

R(X) = min
x∈R
{x+ E[v∗(X − x)]}.

Similar to Case (i), we have v∗ > v and thus, v∗ = v by Lemma 4.4. Since S(0) = 0 excludes

λ = 1, it follows that S(X) = VaRα(X)−c. By S(0) = 0 again, we have c = 0. This completes

the proof.
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4.8.3 Proof of Theorem 4.4

We present two lemmas used in the proof of Theorem 4.4. The first lemma uses a weaker

continuity (C’) than (C) in Theorem 4.4. This result is similar to Theorem 3.1 of Weber (2006)

which uses a different condition of ψ-weak lower semi-continuity to replace mixture concavity.

(C’) There exists x 6 0 such that for any y > 0, R̂((1− α)δx + αδy) 6 0 for small enough α > 0.

Lemma 4.6. Let R be a monetary risk measure on X = L∞ satisfying continuity (C’) with R(0) =

0. If R is mixture concave and has CxLS, then there exist z ∈ R and an increasing and left-

continuous g such that

R(X) = inf{x ∈ R : E[g(X − x)] 6 z}, X ∈ X . (4.23)

Proof. Take x 6 0 in assumption (C’) and any fixed constant y > 0, and let z ∈ (0, 1) be such that

[0, z] = {α ∈ [0, 1] : R̂((1− α)δx + αδy) 6 0}; the interval is closed since α 7→ R((1− α)δx + αδy) is

concave. We define the function g as

g(t) =


z−α(t)
1−α(t) , t 6 0,

z
α(t) , t > 0,

(4.24)

where

α(t) =


sup{α ∈ [0, 1] : R̂((1− α)δt + αδy) 6 0}, t 6 0,

sup{α ∈ [0, 1] : R̂((1− α)δx + αδt) 6 0}, t > 0.

(4.25)

This is the same construction as in Eq. (3.5) and (3.7) of Weber (2006). Since for any t 6 0,

α 7→ R̂((1− α)δt + αδy) is increasing concave in α ∈ [0, 1] and R̂(δy) = y > 0, we have α(t) < 1 for

t 6 0. By (C’), we have α(t) > 0 for t > 0. Hence, g is well defined. By monotonicity of R, one can

verify that g is increasing and satisfies g(0) = z. Next we show (4.23) and the left-continuity of g.

1. Denote by S the convex hull of {δxi , i = 1, . . . , n}, that is,

S =

{
n∑
i=1

αiδxi : αi > 0, i = 1, . . . , n,

n∑
i=1

αi = 1

}
,

where x1 = x, x2 = y are those fixed above. By mixture concavity of R, one can verify

that (α1, . . . , αn) 7→ R̂(
∑n

i=1 αiδxi) is a concave function, and thus is lower-semicontinuous by

Theorem 10.2 of Rockafellar (1970). It follows that N := {(α1, . . . , αn) : R̂(
∑n

i=1 αiδxi) 6 0} is
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closed sets in the Euclidean topology. By CxLS of R, we have N and S \N are both convex sets.

Using similar arguments of Weber (2006), one can verify that (4.23) holds for random variable

X which has distribution in S.

2. We next show g is left-continuous. Since g is increasing, it suffices to show lims↑t g(s) = g(t) for

t ∈ R, which is equivalent to lims↑t α(s) 6 α(t) as α is decreasing.

(a) For t > 0, if α(t) = 1, then lims↑t α(s) 6 α(t) holds trivially as α(s) 6 1 for any s.

(b) For t > 0 with α(t) < 1, by definition of α(t), we have for any ε ∈ (0, 1 − α(t)), R̂((1 −

α(t) − ε)δx + (α(t) + ε)δt) > 0. Since R is monetary, R̂((1 − α)δx + αδt) is continuous in

t ∈ R, and hence there exists s0 < t such that R̂((1−α(t)− ε)δx + (α(t) + ε)δs0) > 0. That

is, α(s0) 6 α(t) + ε. Therefore, lims↑t α(s) 6 α(s0) 6 α(t) + ε. As ε is arbitrary, we have

lims↑t α(s) 6 α(t).

(c) For t 6 0, we have α(t) < 1. Similar arguments as in (b) yield lims↑t α(s) 6 α(t).

3. Next we show that (4.23) holds for any X ∈ X . Since R is monetary, there exist Xn, n ∈ N,

each taking values in a finite set, such that Xn ↑ X and limn→∞R(Xn) = R(X). Since g is

left-continuous, we have g(Xn − x) ↑ g(X − x) and by the Monotone Convergence Theorem, we

obtain limn→∞ E[g(Xn − x)] = E[g(X − x)] for any x ∈ R. This implies

lim
n→∞

inf{x ∈ R : E[g(Xn − x)] 6 z} = inf{x ∈ R : E[g(X − x)] 6 z}.

It then follows from limn→∞R(Xn) = R(X) and R(Xn) = inf{x ∈ R : E[g(Xn − x)] 6 z} that

(4.23) holds for any X ∈ X .

Lemma 4.7. Let R be defined by (4.23) for an increasing function g and z ∈ R satisfying R(0) = 0.

Then R satisfies (C) if and only if g(t) < z for all t < 0. Moreover, if R is mixture concave and

satisfies (C), then g in (4.23) can be chosen continuous and strictly increasing on either (−∞, 0)

or (0,∞), and R(X) is the unique solution x to the equation E[g(X − x)] = z.

Proof. 1. We first show that R satisfies (C) if and only if g(t) < z for t < 0. To see the “if”

statement, by translation invariance, it suffices to show that R̂((1−α)δx +αδy) is continuous at

α = 0 for x 6 0 < y. For this, we will verify limα↓0 R̂((1−α)δx+αδy) 6 x. For any ε ∈ (0, y−x),

we have

lim
α↓0

(1− α)g(x− x− ε) + αg(y − x− ε) = g(−ε) < z.
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Hence, there exists α0 ∈ (0, 1) such that (1 − α0)g(x − x − ε) + α0g(y − x − ε) < z, implying

R̂((1 − α0)δx + α0δy) 6 x + ε. By monotonicity of R, we have limα↓0 R̂((1 − α)δx + αδy) 6

R̂((1− α0)δx + α0δy) 6 x+ ε. As ε is arbitrary, we have limα↓0 R̂((1− α)δx + αδy) 6 x.

To see the “only if” statement, suppose that there exists ε > 0 such that g(t) = z for z ∈ (−ε, 0).

By R(0) = 0, we have z < g(t) for any t > 0. It follows that R̂((1− α)δ0 + αδε/2) > ε/2 for any

α > 0. This contradicts (C).

2. In what follows, we take g from (4.24) in the proof of Lemma 4.6. We will show that g is

continuous and strictly increasing on either (−∞, 0) or (0,∞) by contradiction. We have seen

from Step 1 above that (C) and R(0) = 0 together imply that g is strictly increasing at 0.

Suppose that there exist a < b < 0 < c < d such that [a, b] = {x : g(x) = g(a)} and [c, d] = {x :

g(x) = g(c)}. As g(a) < z < g(c), there exists α0 ∈ [0, 1) such that (1−α0)g(a) +α0g(c) = g(0),

and hence

(1− α)g(a) + αg(c) > z for any α > α0. (4.26)

Since g(t) < z for t < 0, there exist α1 > α0 and ε ∈ (0,min{(b− a)/2, (d− c)/2}) such that

1− α1

2
g(a) +

α1

2
g(c) +

1

2
g(−ε) < z. (4.27)

Define the distribution Fx,y = (1 − α1)δx + α1δy with x ∈ [a + 2ε, b] and y ∈ [c + 2ε, d]. Then

by (4.26), we have R̂(Fx,y) > 2ε. By letting G = 1
2Fx,y + 1

2δ0, (4.27) implies R̂(G) 6 ε <

R̂(Fx,y)/2 + R̂(δ0)/2, yielding a contradiction. Hence, g is strictly increasing on either (−∞, 0)

or (0,∞).

3. Using results in Steps 1 and 2, for any X ∈ X , we have E[g(X − x)] is strictly decreasing for x

in the range of X, and thus, the equation E[g(X − x)] = z has a unique solution x.

4. Finally we show that g is continuous. Using (C), α defined by (4.25) satisfies that α(t) is the

unique solution to the equation in α, R̂((1 − α)δt + αδy) = 0, if t 6 0, and it is the unique

solution α to R̂((1 − α)δx + αδt) = 0 if t > 0. Since R is monetary and hence L∞-continuous,

we have that R̂((1 − α)δx1 + αδx2) is continuous in (x1, x2) ∈ R2. Hence, α is continuous and

thus, g is continuous.

Proof of Theorem 4.4. The “if” statement is argued in (ii) of Example 4.1, where we see that the

entropic risk measure is both a Bayes risk measure and a Bayes estimator. Hence, it is mixture

concave and has CxLS. To prove the “only if” statement, first note that by using Lemmas 4.6 and
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4.7, we have (4.15) holds with g and z satisfying that g is continuous, and strictly increasing on

either (−∞, 0) or (0,∞), and the equation E[g(X − x)] = z always has a unique solution. Further,

by Lemma 4.7 and R(0) = 0, we have g(−t) < z < g(t) for all t > 0. We then employ the following

steps to show that R must be an entropic risk measure.

1. Note that a monotone function g has derivatives almost everywhere. Let t be a point such that

g(t) < z and g is differentiable at t. Take arbitrary x, y > 0. Since g(t) < z < min{g(x), g(y)},

for each ε ∈ (0,min{x, y}), there exist unique λ1(ε) ∈ (0, 1) and λ2(ε) ∈ (0, 1) such that

λ1(ε)g(x− ε) + (1− λ1(ε))g(t) = z and λ2(ε)g(y − ε) + (1− λ2(ε))g(t) = z. (4.28)

As g is increasing, λi(ε) is decreasing in ε, i = 1, 2. Let λ0
i = limε↓0 λi(ε) ∈ (0, 1) for i = 1, 2,

and we have

λ0
1g(x) + (1− λ0

1)g(t) = z and λ0
2g(y) + (1− λ0

2)g(t) = z. (4.29)

2. Let a random variable X be given by P(X = x) = λ0
1 and P(X = t) = 1−λ0

1, and Yε be given

by P(Yε = y + ε) = λ2(ε) and P(Yε = t+ 2ε) = 1− λ2(ε) for ε > 0.

3. Since g is strictly increasing at either t or x, the first equation of (4.29) gives the inequality

λ0
1g(x + δ) + (1 − λ0

1)g(t + δ) > z for any δ > 0. This implies R(X) = 0. Similarly, we have

R(Yε) = 2ε.

4. Let Z have a distribution with is a mixture of the distributions of X and Yε with weight 1/2

each. Using mixture concavity, we have R(Z) > ε, meaning that E[g(Z − ε)] > z. Hence, we

have

λ0
1g(x− ε) + (1− λ0

1)g(t− ε) + λ2(ε)g(y) + (1− λ2(ε))g(t+ ε) > 2z.

Subtracting the second equality in (4.28) and the first equality in (4.29) from the above

equation, we get

λ0
1 (g(x− ε)− g(x)) + λ2(ε) (g(y)− g(y − ε))

+ (1− λ0
1) (g(t− ε)− g(t)) + (1− λ2(ε)) (g(t+ ε)− g(t)) > 0.

Divide the above equation by ε, and letting ε ↓ 0, we obtain

λ0
2 lim inf

ε↓0

g(y)− g(y − ε)
ε

− λ0
1 lim sup

ε↓0

g(x)− g(x− ε)
ε

> (λ0
2 − λ0

1)g′(t), (4.30)
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where we use λ0
2 = limε↓0 λ2(ε). Since the positions of (x, λ0

1) and (y, λ0
2) are symmetric, we

also have

λ0
1 lim inf

ε↓0

g(x)− g(x− ε)
ε

− λ0
2 lim sup

ε↓0

g(y)− g(y − ε)
ε

> (λ0
1 − λ0

2)g′(t), (4.31)

Combining (4.30) and (4.31), we conclude that the two inequalities in (4.30) and (4.31) are

both equalities, and because λ0
1, λ

0
2 > 0, we have

lim inf
ε↓0

g(x)− g(x− ε)
ε

= lim sup
ε↓0

g(x)− g(x− ε)
ε

.

That is, g has a left-derivative at x and y. Similarly, we can show that it also has a right-

derivative at x and y, so that

λ0
2g
′(y)− λ0

1g
′(x) = (λ0

2 − λ0
1)g′(t), (4.32)

for all x, y > 0. By (4.29), we can write λ0
1 = z−g(t)

g(x)−g(t) and λ0
2 = z−g(t)

g(y)−g(t) . Substituting them

into (4.32) yields

(g′(x)− g′(t))(g(y)− g(t)) = (g′(y)− g′(t))(g(x)− g(t)). (4.33)

5. By fixing t and y and noting that g(y) > g(t), (4.33) can be rewritten as

g′(x)− bg(x) = d (4.34)

for some constants b and d. Solving (4.34), we obtain that, on (0,∞), either g is linear or

g(x) = aebx + c for some constants a, b, c. Similarly, by fixing x and y, we have that, almost

everywhere on (−∞, 0), either g is linear or g(x) = a′eb
′x + c′ for some constants a′, b′, c′;

continuity of g now implies that the above for holds on (−∞, 0).

6. From the previous step, g indeed has a positive derivative at any point t < 0. Hence, (4.33)

holds for all x, y > 0 and t < 0. Note that (4.33) and the continuity of g imply that g′ is

continuous at 0. The forms of g on (−∞, 0) and on (0,∞) have three parameters each (the

linear case corresponds to the limit of b→ 0 after normalization). We obtain three equations

from g′(x)(g(y)− c′) = g′(y)(g(x)− c′) (obtained by letting t→ −∞) and the continuity of g

and g′ at 0, and these three equations give a = a′, b = b′ and c = c′. Hence, we conclude that

either g is linear or g(x) = aebx + c on R.

7. If g is linear, then R = ER0 = E. If g is not linear, then ab > 0 since R is monotone.

Moreover, (4.15) implies

R(X) =
1

b
logE[ebX ], X ∈ X .
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Since log is a concave function, mixture concavity does not hold if b < 0 (in this case, R is

mixture convex). Hence, b > 0, and R = ERb.
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Chapter 5

Risk measures induced by efficient

insurance contracts

5.1 Introduction

Optimal insurance and reinsurance design problems have been a prevalent topic for both re-

searchers and practitioners in insurance for decades, since the seminal work of Arrow (1963) showing

that deductible insurance is optimal for a risk-averse insured when the insurer is risk neutral. As

natural extensions, Raviv (1979) studied conditions for optimality of deductible insurances when

the insured and the insurer are both risk averse. Schlesinger (1981) examined the optimal choice of

a risk-averse insured given that the insurance is of deductible type.

Previous studies on optimal (re)insurance design problems have shown considerations from sev-

eral different perspectives. The majority of the studies focus on optimization under specific classes

of optimization criteria quantifying the risk of decision makers; see e.g., Gollier and Schlesinger

(1996) and Schlesinger (1997) for criteria preserving second-order stochastic dominance; Cai and

Tan (2007), Cai et al. (2008) and Bernard and Tian (2009) for Value-at-Risk (VaR) and the Expected

Shortfall (ES, also called CTE or TVaR in the above literature); Cui et al. (2013) for distortion

risk measures or dual utilities (Yaari, 1987); and Braun and Muermann (2004) for regret-theoretical

expected utilities. For more recent developments on optimal insurance with risk measures, we refer

to Cai and Chi (2020) and the references therein. Moreover, optimal (re)insurance contract design

problems are studied under a variety of constraints and formulations. We refer to studies on efficient

insurance contracts with background risk (e.g., Gollier, 1996; Dana and Scarsini, 2007) and limited
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liability (e.g., Cummins and Mahul, 2004; Hofmann et al., 2019). More recently, Lo et al. (2021)

analyzed the set of universally marketable indemnities with risk measures preserving convex orders.

Most of the previous literature aims to derive optimal forms of ceded loss functions under

various scenarios and constraints. To the best of our knowledge, there is no relevant research

on (re)insurance contract design problems focusing on identifying risk measures adopted by the

insured and the insurer. Therefore, we study optimal insurance contract design problems through

a distinctive perspective if compared to previous literature. Namely, the main goal of the present

chapter is to answer the following (converse) question: In order for efficient contracts to be some

sets of contracts commonly seen in insurance practice (e.g., of deductible form), which risk measures

should the insurer and the insured use as their objectives? Specifically, we characterize different

classes of risk measures adopted by the insured and the insurer given different sets of ceded loss

functions that are Pareto optimal.

The risk measure ES has been widely applied in the contexts of financial regulation, risk

management, and insurance. In particular, ES is the standard measure for market risk in the Fun-

damental Review of the Trading Book (FRTB) of BCBS (2016, 2019). In the insurance regulation

framework of Solvency II, the risk measure Value-at-Risk (VaR) is the dominating risk measure.

There is a growing academic literature on various problems using ES in actuarial science (where

ES is often called TVaR). Most of these studies motivate the use of ES as a coherent risk measure

(Artzner et al., 1999) and its advantages over VaR. Recently, Wang and Zitikis (2021) proposed

the axiom called “no reward for concentration” (NRC) which, together with a few other standard

axioms, characterizes ES.1 The main objective of Wang and Zitikis (2021) is to separate ES from

other coherent risk measures via the axiom of NRC, thus answering the question of why one uses

ES instead of other risk measures from an axiomatic point of view. The interpretation and implica-

tion of the NRC axiom in financial regulation have been extensively discussed in Wang and Zitikis

(2021) in the context of FRTB; see also an alternative formulation for axiomatizing ES in Han et

al. (2021).

Given the big volume of research with ES in actuarial science, it is of great interest to under-

stand whether ES plays a special role in insurance. The NRC axiom of Wang and Zitikis (2021)

does not apply in the insurance context since it is interpreted as a requirement of portfolio risk

1The NRC axiom for a risk measure ρ means that there exists a regulatory stress event A such that ρ(X + Y ) =

ρ(X) +ρ(Y ) whenever X and Y both have the tail event A, meaning that X satisfies X(ω) > X(ω′) for almost surely

all ω ∈ A and ω′ ∈ Ac, and so does Y .
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assessment. To understand the special role of ES in insurance, new insights that are specific to

insurance design are therefore needed.

We work mainly within the framework of convex risk measures of Föllmer and Schied (2002b),

which is a flexible and popular class of risk measures in risk management. As the main contribution

of this chapter, we show that the set of efficient ceded loss functions of deductible form corresponds to

the family of mixtures of ES and the mean (Theorem 5.2). If we further impose lower semicontinuity

as in Wang and Zitikis (2021), then we arrive at the family of ES (Lemma 5.3). Our work also

extends Chapter 4, which characterizes the mixture of the mean and ES, called an ES/E-mixture,

as the only coherent Bayes risk measure from the perspective of statistical inference. In addition, if

the set of efficient ceded loss functions is the set of all slowly growing (1-Lipschitz) functions, then

the corresponding risk measures are precisely the convex distortion risk measures (Theorem 5.1).

Mathematically, our results are based on connecting various risk measures with different additivity

forms over the ceded losses and the retained losses.

For illustrative purposes, we take the perspective of an insurance design problem between an

insurer and an insured. Our technical results can certainly be applied in the reinsurance setting as

well, where risk measures are often encountered.

The rest of the chapter is organized as follows. Section 5.2 contains some preliminaries on

insurance losses and risk measures. Section 5.3 sets up the formulation of the insurance contract

design problem and states economic assumptions. Section 5.4 contains our main characterization

results of the risk measures used by the insured and the insurer given different Pareto-optimal sets

of ceded loss functions. The results make natural connections between some common sets of ceded

loss functions and common classes of risk measures in insurance practice. We also discuss economic

implications of these results on the design of insurance menus by the insurer. Section 5.6 contains

proofs of the main results accompanied with relevant technical lemmas.

5.2 Preliminaries on risk measures

Let X be the set of all bounded random variables, and let X+ be the set of all non-negative

random variables in X representing insurable losses. Let I be a class of non-negative functions

on [0,∞) which represent possible insurance ceded loss functions. For an insurable loss random

variable X ∈ X+ and a contract f ∈ I, f(X) represents the payment to the insured, and X − f(X)

represents the retained loss of the insured. Losses are usually quantified by risk measures which are
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mappings from X to the set of real numbers, representing riskiness. For X ∈ X , a distortion risk

measure is defined as

ρ(X) =

∫ ∞
0

h(P(X > x)) dx+

∫ 0

−∞
(h(P(X > x))− 1) dx,

where h : [0, 1] → [0, 1] is an increasing function with h(0) = 0 and h(1) = 1, and h is called the

distortion function of ρ. Distortion risk measures are always monetary, positively homogeneous,

and law invariant, and they are coherent if and only if their distortion functions are concave; see e.g.,

Yaari (1987) and Wang et al. (1997). For the application of distortion risk measures to insurance

premium principle calculation, see Wang et al. (1997). For X ∈ X and p ∈ (0, 1], the left-ES risk

measure (see e.g., Embrechts et al., 2015) is defined by

ES−p (X) =
1

p

∫ p

0
VaRt(X) dt.

5.3 Optimal insurance contract design

In this section, we explain the optimal insurance design problem. For the economic setting,

we make the following assumptions:

(A) The insured and the insurer may hold different attitudes towards risk. The insured adopts the

risk measure ρ : X → R while the insurer uses the risk measure ψ : X → R. The insured and

the insurer do not observe the risk measure of their counterparty.

(B) The premium functional is specified as π : I → R, which usually does not take negative values.

For insurance loss X ∈ X+, note that X − f(X) +π(f) is the total risk (i.e., total loss random

variable) of the insured, and f(X)− π(f) is the total risk of the insurer. Thus, the risk values

of the insurance loss to the insured and the insurer are ρ(X−f(X)+π(f)) and ψ(f(X)−π(f)),

respectively.

(C) The insured and the insurer agree on an insurance contract f ∈ I that is Pareto optimal

defined next.

Definition 5.1. For X ∈ X+, π : I → R, and ρ, ψ : X → R, an insurance contract f ∈ I is called

Pareto optimal if there is no g ∈ I, such that

ρ(X − f(X) + π(f)) > ρ(X − g(X) + π(g))
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and

ψ(f(X)− π(f)) > ψ(g(X)− π(g)),

with at least one of the two inequalities strict. Pareto optimality is also known as (Pareto) efficiency.

A Pareto optimization problem is closely related to the minimization of a convex combination

of the objective functionals of all parties, which can be seen in, e.g., Gerber (1974), Barrieu and

Scandolo (2008), Cai et al. (2017) and Embrechts et al. (2018). For X ∈ X+, π : I → R, and

ρ, ψ : X → R, we define the set of minimizers of the sum of the two objectives for the insured and

the insurer as

IXρ,ψ = arg min
g∈I

{ρ(X − g(X) + π(g)) + ψ(g(X)− π(g))}.

If we further assume that ρ and ψ are translation invariant, then we have

IXρ,ψ = arg min
g∈I

{ρ(X − g(X)) + ψ(g(X))}. (5.1)

In this case, the set IXρ,ψ is independent of the choice of the premium functional π. Below we give

a characterization of the Pareto-optimal problem in our context as the minimization of the total

insurance value of the insured and the insurer.

Proposition 5.1. For two translation-invariant risk measures ρ, ψ : X → R and X ∈ X+, the

following are equivalent:

(i) an insurance contract f ∈ I is Pareto optimal for all π : I → R+;

(ii) an insurance contract f ∈ I is Pareto optimal for π : h 7→ ψ(h(X));2

(iii) f ∈ IXρ,ψ.

Proofs of all results in this chapter are in Section 5.6.

In a similar spirit to Proposition 5.1, a characterization of Pareto optimality in the context

of risk sharing problems can be found in Embrechts et al. (2018). Proposition 5.1 ensures that if

the objectives ρ and ψ for the two parties are translation invariant, then by (5.1), a Pareto-optimal

insurance contract can typically be obtained by solving the following minimization problem:

min
g∈I
{ρ(X − g(X)) + ψ(g(X))} . (5.2)

2This means φ(h) = ψ(h(X)) for all h ∈ I.
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A minimizer of (5.2) may not be unique in many situations. Hence, the set IXρ,ψ of efficient

ceded loss functions is not a singleton in general. In the literature on optimal insurance design

problems, there are many common sets of ceded loss functions. Some notable refinements include:

1. The set I0 of all non-negative functions f on [0,∞) satisfying f(x) 6 x for x > 0. This

property means that the payment cannot exceed the total loss incurred, and it is a common

feature of almost all insurance contracts in practice. In particular, f(0) = 0, and thus there

is no insurance payment if there is no loss incurred.

2. The set I1 of all increasing functions in I0. This property means that larger incurred losses

lead to higher payments to the insured.

3. The set I2 = {f ∈ I1 : f(y) − f(x) 6 y − x for all y > x > 0}, which is the set of all

slowly growing increasing functions in I1. The slowly growing property is commonly assumed

to avoid the problem of ex-post moral hazard (Huberman et al. (1983)) via the concept of

comonotonicity; see Proposition 5.2 below.

4. The set Id1 = {f ∈ I1 : f(x) 6 (x − d)+ for all x > 0}. Ceded loss functions within this set

does not exceed the direct deductible form. Note that

Id1 = {f ∈ I1 : f(d) = 0, x− f(x) > d for all x > d}.

Thus this class includes contract functions with deductible d > 0. Also, we require that the

retained loss of the insured should be at least at the deductible level d, given that the random

loss exceeds the deductible level. In particular, we have I0
1 = I1.

Among the above sets, we have

I2 ⊂ I1 ⊂ I0 and Id1 ⊂ I1 ⊂ I0.

Throughout, ⊂ represents non-strict set inclusion. Contracts of deductible forms within the set Id1
are commonly seen in the insurance market. We next give some examples.

Example 5.1 (Deductible insurance with coinsurance). Consider the following ceded loss function:

f(x) = α(x− d)+, x > 0,

which presents an insurance contract with deductible d > 0 and coinsurance parameter α ∈ [0, 1].

We have f ∈ Id1 since f is bounded from above by (x− d)+. See Figure 5.1 (left-hand panel).
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Example 5.2 (Deductible insurance with policy limit). The following ceded loss function

f(x) = (x− d)+ ∧ u, x > 0,

is also in the set Id1 . It represents an insurance contract truncated at deductible d > 0 and censored

at the policy upper limit u > 0. The function is plotted in Figure 5.1 (right-hand panel).

x

f(x)

d

(x− d)+

x

f(x)

d

(x− d)+

u

Figure 5.1: Solid lines represent the ceded loss functions of deductible insurance with coinsur-

ance (left-hand panel) and deductible insurance with policy limit (right-hand panel); dashed lines

represent ceded loss function with direct deductible

We focus on the above three subsets due to their prominence in real-world insurance contracts.

Other subsets of I1, such as classes of convex functions, piece-wise linear functions, or functions

with the Vajda condition, have also been studied in the literature, but they correspond to different

practical considerations; see e.g., Vajda (1962), Cai et al. (2008), Chi and Weng (2013) and Chen

(2021).

5.4 Risk measures implied by Pareto-optimal contracts

5.4.1 Main characterization results

In this section, we characterize measures ρ and ψ for the insured and the insurer in the optimal

insurance design problem with different Pareto-optimal sets of ceded loss functions.

We first collect some dependence concepts that will be helpful to distinguish different properties

of risk measures in our main results. A risk measure ρ : X → R is said to be comonotonic-additive if
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ρ(X +Y ) = ρ(X) + ρ(Y ) for all comonotonic (X,Y ) ∈ X 2. Following similar definitions as those of

Wang and Zitikis (2021), for an event A ∈ F with 0 < P(A) < 1, we call A a tail event of a random

variable X ∈ X if X(ω) > X(ω′) for almost surely all ω ∈ A and ω′ ∈ Ac. A tail event A is called

a p-tail event if P(A) = 1 − p. We say that a random vector (X1, . . . , Xn) ∈ X n is p-concentrated

if there exists a common p-tail event of X1, . . . , Xn. For fixed d > 0 and p ∈ [0, 1], define the sets

X dp = {X ∈ X+ : p = P(X 6 d)}

and

Xp = {X ∈ X : p = P(X 6 d) for some d > 0} ⊃
⋃
d>0

X dp .

We note that Xp ⊃ X dp and Xp contains random variables that may take negative values and may

be discrete. The following proposition connects the dependence structure of (f(X), X−f(X)) with

the function f ∈ I1.

Proposition 5.2. The following statements hold.

(i) (f(X), X − f(X)) is comonotonic for all f ∈ I2 and X ∈ X+.

(ii) For fixed d > 0 and p ∈ [0, 1), (f(X), X−f(X)) is p-concentrated for all f ∈ Id1 and X ∈ X dp .

Following the terminology in Chapter 4, for λ ∈ R and p ∈ (0, 1), we say that the linear

combination

ESλp(X) = λESp(X) + (1− λ)E[X], X ∈ X

of the mean and ESp is an ES/E-mixture. Note that we allow λ < 0 in the definition of ESλp , so the

ES/E-mixture is not necessarily a monotone risk measure. Define the sets

Iρ,ψ =
⋂

X∈X+

IXρ,ψ and Ip,dρ,ψ =
⋂

X∈X dp

IXρ,ψ,

which are the intersections of all Pareto optimal contract sets with respect to all models of random

losses in X+ and X dp , respectively. Different choices of Iρ,ψ pin down different forms of ρ and ψ, as

we will show below. Obviously, we shall arrive at a narrower class of risk measures as the set of

efficient contracts enlarges.

Theorem 5.1. Suppose that ρ and ψ are law-invariant convex risk measures. Then:

(i) Iρ,ψ = I2 if and only if ρ = ψ and ρ is a convex distortion risk measure on X ;
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(ii) Iρ,ψ = I0 if and only if ρ = ψ = E on X .

Our next result, Theorem 5.2, establishes a relationship between deductible contracts and ES,

and it is the most sophisticated result of the present chapter. The proofs of Theorems 5.1 and 5.2

are technical and rely on additional lemmas, which are presented in Section 5.6 together with proofs

of the theorems.

Theorem 5.2. Suppose that ρ and ψ are law-invariant convex risk measures with ρ(0) = ψ(0) = 0.

For any fixed d > 0 and p ∈ [0, 1), we have Ip,dρ,ψ ⊃ I
d
1 if and only if ρ = ψ = ESλp on Xp for some

λ > 0.

We note that, given that the ceded loss functions in the set Id1 are Pareto optimal for all

insurance losses in the set X dp , in Theorem 5.2 we can identify the risk measure adopted by the

insured and the insurer as an ES/E-mixture on a larger space of random losses Xp, which does

not depend on the deductible level d. In particular, the set Xp includes all random variables with

continuous distributions on bounded supports.

Theorems 5.1 and 5.2 reveal profound connections between common sets of ceded loss functions

and common classes of risk measures, as shown in Table 5.1.

Sets of ceded loss functions Classes of risk measures

all 1-Lipschitz ceded loss functions ⇐⇒ distortion risk measures

all non-negative ceded loss functions ⇐⇒ the mean

ceded loss functions with deductible form ⇐⇒ an ES/E-mixture

Table 5.1: Connections between sets of ceded loss functions and classes of risk measures

As one of the most important economic interpretations of the above results, we show that if

the set of Pareto-optimal contracts between the insured and the insurer contains the set Id1 , then

the risk measures of the two parties have to be an ES/E-mixture. Furthermore, if the ES/E-mixture

in Theorem 5.2 satisfies lower semicontinuity with respect to almost sure convergence, then it has

to be an ES; see Lemma 5.3.

If we remove some conditions from the convex risk measures ρ in Theorems 5.1 and 5.2, then

we arrive at larger classes of risk measures. For instance, without monotonicity in statement (i) of

Theorem 5.1, we expect to arrive at the distortion riskmetrics in Chapter 2.
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5.4.2 Designing insurance menus

In this section, we discuss economic implications of our characterization results of risk mea-

sures. We assume that the risk measures ρ and ψ for the insured and the insurer are coherent

throughout this section.

Apart from the link between the common sets of ceded loss functions and the popular classes

of risk measures, it is also interesting that all the three sets of Pareto-optimal contracts in Theorems

5.1 and 5.2 lead to the fact that the two risk measures ρ and ψ of the insured and the insurer are

the same. In fact, when the risk measures ρ and ψ are coherent, a set of Pareto-optimal contracts

with identical risk measures of the two parties is large enough to include all efficient contracts

where the insurer is more optimistic than the insured, which can be seen from the next proposition.

In this sense, the Pareto-optimal set that we obtain with identical risk measures is the union of

Pareto-optimal sets with general risk measures ρ > ψ.

Proposition 5.3. We have IXρ,ψ ⊂ IXψ,ψ for all X ∈ X+ and all coherent risk measures ρ and ψ

such that ρ > ψ.

The relation ρ > ψ in Proposition 5.3 indicates that the insured is more pessimistic, or more

risk averse, than the insurer in the sense of Pratt (1964). Indeed, the certainty equivalent of any

random loss X under the preference described by the coherent risk measure ρ is the risk measure

ρ(X) itself. Therefore, we compare risk aversion of the insured and the insurer through a direct

comparison of magnitudes between coherent risk measures ρ and ψ.

In practice, the insurer with the risk measure ψ does not know the risk measure ρ of the

insured. Thus it is necessary for the insurer to provide a menu of contracts that is large enough to

include all possible efficient contracts that might be chosen by the insured who is more pessimistic

than the insurer. Specifically, we consider the following process for the design of insurance menus.

1. An insurer adopts the coherent risk measure ψ as her own risk attitude.

2. The insurer does not have exact information about the risk attitudes of her customers. In

other words, the insurer does not know the coherent risk measure ρ held by any insured.

However, in order to achieve the deal, the insured should be more pessimistic than the insurer

(i.e. ρ > ψ).
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3. Due to incomplete information, the insurer provides a menu of contracts IXψ,ψ =
⋃
ρ>ψ IXρ,ψ

for a random loss X ∈ X+. The set IXψ,ψ is large enough so that Pareto optimality can be

obtained for any insured that is more pessimistic than the insurer. The deal can be achieved

as long as we have ρ > ψ since both parties benefit from the final deal.

4. If the insurer aims to design a “universal” menu of contracts so that Pareto optimality can

be achieved for a bundle of random losses, the menu is then obtained by taking intersections

of IXψ,ψ with respect to a set of random losses. In this case, the insurer must choose specific

classes of risk measures ψ, provided that the “universal” menu of contracts contains some

common sets of contracts in the insurance market. Specifically, Table 5.2 illustrates our

characterization results.

Pareto-optimal menu Insurer’s risk measure ψ

Iψ,ψ = I2 ⇐⇒ ψ is a distortion risk measure

Iψ,ψ = I0 ⇐⇒ ψ = E

Ip,dψ,ψ ⊃ I
d
1 ⇐⇒ ψ = ESλp

Table 5.2: Connections between Pareto-optimal sets of contracts and the insurer’s risk measures

5.5 Concluding remarks

In this chapter, the optimal insurance design problem is considered in the sense of Pareto

optimality. Unlike existing studies, we solved a characterization problem of the risk measures of

the insured and the insurer given the form of the Pareto-optimal contracts, and thus this chapter

is in an opposite direction to the vast majority of the literature on optimal insurance. As our main

finding, we are able to link the ES family, the most popular convex risk measures, to the set of ceded

loss functions with a deductible form, commonly seen in insurance practice. It is not our intention

to assert that ES dominates other convex risk measures in the insurance market, since there are

so many other factors that need to be taken into account. Nevertheless, given the large volume of

research based on ES in insurance and actuarial science, we hope that the present chapter brings

in additional insights on why ES is a natural risk measure to use by the insurer when evaluating

risks in the insurance market.

We note that our characterization results can be extended to the multi-player case with multiple
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insurers. This naturally links our study to the characterization of risk measures in risk sharing

problems. Another potential application that can be further developed through our characterization

results is that insurance companies may wish to evaluate risk attitudes of their customers based on

contracts chosen from provided menus. This research direction requires more experimental studies

as well as theoretical justifications. As yet another future direction, viewing the insured and the

insurer as two economic agents in a competitive game, characterization problems may be explored

via game theoretic approaches.

5.6 Proofs of main results and related technical lemmas

In this section, we present proofs of our main results as well as several related lemmas. As we

will see, the results are technical and require highly sophisticated analysis.

5.6.1 Technical lemmas

We first collect technical lemmas that are related to, or are needed for proving, Theorems

5.1 and 5.2. We note in this regard that some parts of the proofs of the main results needed

characterizations without assuming translation invariance. Hence, our next lemma characterizes

risk measures ρ and ψ without this assumption and is restricted to the space X 0
0 . The lemma was

used in the proof of Theorem 5.2.

Lemma 5.1. Suppose that risk measures ρ and ψ are law invariant, monotone, convex and uni-

formly continuous with respect to L∞-norm. Then we have the following two characterization

results.

(i) The inclusion ⋂
X∈X 0

0

arg min
g∈I

{ρ(X − g(X)) + ψ(g(X))} ⊃ I2

holds if and only if

ρ(X) = ψ(X) =

∫ ∞
0

h(P(X > x)) dx (5.3)

for all X ∈ X 0
0 , where h : [0, 1]→ [0,∞) is an increasing concave function with h(0) = 0.3

3Functionals of form (5.3) belong to the family of distortion riskmetrics in Chapter 2 with increasing distortion

functions.
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(ii) The inclusion ⋂
X∈X 0

0

arg min
g∈I

{ρ(X − g(X)) + ψ(g(X))} ⊃ I1

holds if and only if ρ = ψ = λE on X 0
0 for some λ > 0.

Proof. (i) For convenience of the proof for Theorem 5.1, we prove the result on space X+, and the

proof of (i) holds by directly changing X+ to X 0
0 .

“⇒”: Suppose that Iρ,ψ ⊃ I2. Let h0(x) = 0 and h1(x) = x, x > 0, the constant zero function

and the identity, respectively. Since h0, h1 ∈ I2, we have

ρ(X) = ψ(X) = min
g∈I
{ρ(X − g(X)) + ψ(g(X))} , X ∈ X+.

Hence ρ = ψ on X+ and ρ(X − f(X)) + ρ(f(X)) = ρ(X) for all f ∈ I2 and X ∈ X+.

By Proposition 4.5 of Denneberg (1994), for any comonotonic (Y,Z) ∈ X 2
+ with Y + Z = X,

there exists f ∈ I2 such that Y = f(X) and Z = X − f(X). Since X is arbitrary, we therefore

have the equation ρ(Y ) + ρ(Z) = ρ(Y + Z) for all comonotonic (Y,Z) ∈ X 2
+. This shows that ρ is

comonotonic-additive on X+. Thus (5.3) holds by Theorems 1 and 3 of Wang et al. (2020).

“⇐”: Suppose that ρ and ψ satisfy (5.3) on X+. For all f ∈ I2 and X ∈ X+, we have by

Proposition 5.2 that (f(X), X − f(X)) is comonotonic. By comonotonic-additivity of ρ, we have

ρ(X − f(X)) + ρ(f(X)) = ρ(X). Furthermore, due to subadditivity of ρ, we have f ∈ Iρ,ρ. It

follows that I2 ⊂ Iρ,ρ.

(ii) The “if” part is straightforward by linearity of the mean. We prove the “only if” part.

Since I1 ⊃ I2, by (i), we have ρ(X) = ψ(X) =
∫∞

0 h(P(X > x)) dx for all X ∈ X 0
0 . By Theorem

2.5 in Chapter 2, there is a finite Borel measure µ on [0, 1] such that ρ(X) =
∫ 1

0 ESα(X)µ(dα)

for X ∈ X 0
0 . For all 0 < α 6 1, there exists differentiable f ∈ I1 such that f ′(x) 6 1 for all

x ∈ [0,VaRα(X)) and f ′(x) > 1 for all x ∈ [VaRα(X),∞). Thus x 7→ x − f(x) is increasing

on [0,VaRα(X)) and decreasing on [VaRα(X),∞) in strict sense. According to Lemma A.3 and

Lemma A.7 of Wang and Zitikis (2021), we have a p-tail event A of X and f(X) with

{X > VaRα(X)} ⊂ A ⊂ {X > VaRα(X)}

such that

ESα(X) = E[X|A] and ESα(f(X)) = E[f(X)|A].

121



On the other hand, for a p-tail event B of X − f(X) satisfying

{X − f(X) > VaRα(X − f(X))} ⊂ B ⊂ {X − f(X) > VaRα(X − f(X))},

we have

ESα(X − f(X)) = E[X − f(X)|B] > E[X − f(X)|A].

Thus we have

ESα(f(X)) + ESα(X − f(X)) > E[f(X)|A] + E[X − f(X)|A] = E[X|A] = ESα(X)

and so

ρ(f(X)) + ρ(X − f(X)) =

∫ 1

0
ESα(f(X)) + ESα(X − f(X))µ(dα)

>

∫ 1

0
ESα(X)µ(dα) = ρ(X),

which leads to a contradiction. Hence, µ((0, 1]) = 0 and ρ(X) = ψ(X) = λE[X] for some λ > 0 and

for all X ∈ X 0
0 .

The next lemma characterizes an ES/E-mixture. The lemma implies that a law-invariant

convex risk measure dominated by an ES/E-mixture must be the ES/E-mixture itself provided that

it coincides with the ES/E-mixture somewhere. We used the lemma when proving Theorem 5.2.

Lemma 5.2. Let ρ : X → R be a law-invariant convex risk measure. Fix d > 0 and p ∈ (0, 1). We

have ρ(X) = ρ((X − d)+) + ρ(X ∧ d) and ρ(X ∨ d) = λESp(X) + (1 − λ)d for all X ∈ X dp with

λ ∈ R if and only if ρ(X) = λESp(X) + (1− λ)ES−p (X) for all X ∈ X dp with λ > 1− p.

Proof. The “if” part follows immediately from the definitions of ESp and ES−p . Hence, we prove

the “only if” part.

Since ρ is a law-invariant convex risk measure, for all X ∈ X dp we write

ρ(X) = sup
Z∈Q
{E[ZX] + V (Z)},

where Q is a set of Radon-Nikodym derivatives and V is a mapping from Q to [−∞, 0] (see e.g.,

Jouini et al., 2006). We first show that Z 6 λ/(1 − p) for all Z ∈ Q. Assume for the sake of

contradiction that P(Z ′ > λ/(1 − p)) > 0 for some Z ′ ∈ Q. Take A ⊂ {Z ′ > λ/(1 − p)} and

Y = 1A(d + 1)γ + 1B(d + 1) for γ > 1, where P(A ∪ B) = 1 − p and A ∩ B = ∅. It is clear that
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Y ∈ X dp . We have

sup
Z∈Q
{E[ZY ] + V (Z)} > E[Z ′(1A(d+ 1)γ + 1B(d+ 1))] + V (Z ′)

> (d+ 1)γE[Z ′1A] + V (Z ′)

= E[Z ′|A]E[1A(d+ 1)γ] + V (Z ′).

On the other hand, we have

λESp(Y ) + (1− λ)d = λESp(1A(d+ 1)γ + 1B(d+ 1)) + (1− λ)d

=
λ

1− p
E[1A(d+ 1)γ + 1B(d+ 1)] + (1− λ)d.

Since E[Z ′|A] > λ/(1− p), we have

lim
γ→∞

(E[Z ′|A]E[1A(d+ 1)γ] + V (Z ′)) > lim
γ→∞

(λESp(Y ) + (1− λ)d),

which contradicts the assumption that ρ(X) 6 λESp(X) + (1− λ)d for all X ∈ X dp . Therefore, we

have Z 6 λ/(1− p) for all Z ∈ Q. On the other hand, since E[Z] = 1, we have λ/(1− p) > 1 and

thus λ > 1− p.

We next show that ρ(X) = λESp(X) + (1− λ)ES−p (X) for all X ∈ X dp . Note that {X > d} is

a common p-tail event of X and X ∨ d. We have ESp(X) = ESp(X ∨ d) and

d =
1

p
E[(X ∨ d)1{X6d}] = ES−p (X ∨ d).

It follows that

sup
Z∈Q
{E[Z(X ∨ d)] + V (Z)} = ρ(X ∨ d)

= λESp(X) + (1− λ)d = λESp(X ∨ d) + (1− λ)ES−p (X ∨ d).

For X1, X2, . . . ∈ X dp and Xn ↓ X, since Z is non-negative and bounded from above by 1/(1 − p),

the dominated convergence theorem implies

lim
n→∞

sup
Z∈Q
{E[ZXn] + V (Z)} = sup

Z∈Q
{E[ZX] + V (Z)},

which means that ρ is continuous from above. Hence,

ρ(X) = max
Z∈Q
{E[ZX] + V (Z)}

for all X ∈ X dp ; see e.g., Corollary 4.35 of Föllmer and Schied (2016). It follows that there exists

Z0 ∈ Q such that

E[Z0(X ∨ d)] + V (Z0) =
λ

1− p
E[(X ∨ d)1{X>d}] +

1− λ
p

E[(X ∨ d)1{X6d}]. (5.4)
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We claim that Z0 = λ1{X>d}/(1−p)+(1−λ)1{X6d}/p. Indeed, assume for the sake of contradiction

that Z0 6= λ1{X>d}/(1− p) + (1− λ)1{X6d}/p. Since

E[Z0] = 1 = E
[

λ

1− p
1{X>d} +

1− λ
p

1{X6d}

]
,

we have

P
((

Z0 −
λ

1− p
1{X>d} −

1− λ
p

1{X6d}

)
+

> 0

)
> 0

and

P
((

Z0 −
λ

1− p
1{X>d} −

1− λ
p

1{X6d}

)
−
> 0

)
> 0.

Note that λ/(1− p) > 1 > (1− λ)/p. Hence,{(
Z0 −

λ

1− p
1{X>d} −

1− λ
p

1{X6d}

)
+

> 0

}
⊂ {X 6 d}.

We also note that{(
Z0 −

λ

1− p
1{X>d} −

1− λ
p

1{X6d}

)
−
> 0

}
∩ {X > d} 6= ∅.

Otherwise, we must have Z0 = λ/(1− p) and

P
((

Z0 −
λ

1− p
1{X>d} −

1− λ
p

1{X6d}

)
−
> 0

)
= 0,

which leads to contradiction. These considerations imply that

E
[(
Z0 −

λ

1− p
1{X>d} −

1− λ
p

1{X6d}

)
(X ∨ d)

]
= E

[(
Z0 −

λ

1− p
1{X>d} −

1− λ
p

1{X6d}

)
+

(X ∨ d)

]
− E

[(
Z0 −

λ

1− p
1{X>d} −

1− λ
p

1{X6d}

)
−

(X ∨ d)

]
< d

(
E
[(
Z0 −

λ

1− p
1{X>d} −

1− λ
p

1{X6d}

)
+

]
− E

[(
Z0 −

λ

1− p
1{X>d} −

1− λ
p

1{X6d}

)
−

])
= 0,

which contradicts equation (5.4). Therefore, we must have Z0 = λ1{X>d}/(1−p)+(1−λ)1{X6d}/p.

Hence, Z0 = λ1{X>d}/(1− p) + (1− λ)1{X6d}/p ∈ Q and V (Z0) = 0. It follows that

sup
Z∈Q
{E[ZX] + V (Z)} > E

[
λ

1− p
X1{X>d} +

1− λ
p

X1{X6d}

]
= λESp(X) + (1− λ)ES−p (X).

On the other hand, we have

ρ(X) 6 λESp(X) + (1− λ)d = γESp(X) + (1− γ)ES−p (X),
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for some 1 − p 6 λ 6 γ 6 1 since ES−p (X) 6 d 6 ESp(X). Hence, there exists λ 6 λ′ 6 γ, such

that ρ(X) = λ′ESp(X) + (1− λ′)ES−p (X).

Take Xm = X1{X6d} + (X +m)1{X>d} for m > 0. We have Xm ∈ X dp . For some λm ∈ [λ, 1],

ρ(Xm) = λmESp(Xm) + (1− λm)ES−p (Xm) = λmESp(X) + λmm+ (1− λm)ES−p (X). (5.5)

Since ρ(Xm ∨ d) = λESp(X) + λm + (1 − λ)d, this implies that there exists m > 0 such that

λm = λ. Indeed, otherwise we can take m → ∞ and have a contradiction to ρ(Xm) 6 ρ(Xm ∨ d)

by monotonicity of ρ. On the other hand, for m such that λm = λ, we have

ρ(Xm) = ρ(Xm ∨ d)− d+ ρ(Xm ∧ d) = λESp(X) + λm− λd+ ρ(X ∧ d)

= ρ(X) + λm = λ′ESp(X) + (1− λ′)ES−p (X) + λm.
(5.6)

Equations (5.5) and (5.6), together with λm = λ, yield that λ′ = λ for all X ∈ X dp . This completes

the proof.

Finally, we give a lemma on properties of ES/E-mixtures that can precisely pin down the

family of ES within the class of ES/E-mixtures obtained in Theorem 5.2.

Lemma 5.3. For an ES/E-mixture ρ = λESp + (1− λ)E, we have the following statements:

(i) ρ is lower semicontinuous with respect to almost sure convergence if and only if λ > 1;

(ii) ρ is convex if and only if λ > 0;

(iii) ρ is monotone if and only if λ ∈ [1− 1/p, 1].

In particular, ρ is monotone and lower semicontinuous with respect to almost sure convergence if

and only if it is ESp.

Proof. (i) Suppose that λ < 1. Let Xk = −k1{U<1/k}, where U ∼ U[0, 1]. Clearly, Xk → 0 almost

surely as k →∞, E[Xk] = −1, and ESp(Xk) = 0 for k > 1/p. Therefore,

lim inf
k→∞

((1− λ)E[Xk] + λESp(Xk)) = −(1− λ) < 0 = ρ(0),

contradicting lower semicontinuity.

(ii) We note that ρ is a signed Choquet integral of Wang et al. (2020) with the (not necessarily

increasing) distortion function

h(t) = λ

(
t

1− p
∧ 1

)
+ (1− λ)t, t ∈ [0, 1].
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By Theorem 3 of Wang et al. (2020), ρ is convex if and only if h is concave. It is straightforward

to verify that h is concave if and only if λ > 0.

(iii) By Lemma 1 (i) of Wang et al. (2020), ρ is monotone if and only if h is increasing. Clearly,

λ > 1 implies that h is strictly decreasing on (1− p, 1]. For λ 6 1, increasing monotonicity of h is

equivalent to
λ

1− p
+ 1− λ > 0 ⇐⇒ λ > 1− 1

p
.

Hence, ρ is monotone if and only if λ ∈ [1− 1/p, 1].

5.6.2 Proofs of all results

Proof of Proposition 5.1. “(i)⇒(ii)”: This is straightforward by taking π : h 7→ ψ(h(X)).

“(ii)⇒(iii)”: Suppose that f ∈ I is Pareto optimal for π : h 7→ ψ(h(X)). Assume for the sake

of contradiction that f /∈ IXρ,ψ. It follows that there exists g ∈ I, such that

ρ(X − g(X)) + ψ(g(X)) < ρ(X − f(X)) + ψ(f(X)).

By translation invariance of ρ and ψ, we have

ρ(X − g(X) + π(g)) = ρ(X − g(X)) + ψ(g(X))

< ρ(X − f(X)) + ψ(f(X)) = ρ(X − f(X) + π(f))

and

ψ(g(X)− π(g)) = ψ(g(X)− ψ(g(X))) = 0 = ψ(f(X)− π(f)),

which leads to a contradiction to Pareto optimality of f . Therefore, f ∈ IXρ,ψ.

“(iii)⇒(i)”: Suppose that f ∈ IXρ,ψ. Assume for the sake of contradiction that f is not Pareto

optimal for some π : I → R. It follows that there exists g ∈ I such that

ρ(X − g(X) + π(g)) 6 ρ(X − f(X) + π(f))

and

ψ(g(X)− π(g)) 6 ψ(f(X)− π(f)),

with at least one of the above two inequalities being strict. Hence,

ρ(X − g(X) + π(g)) + ψ(g(X)− π(g)) < ρ(X − f(X) + π(f)) + ψ(f(X)− π(f)),

which contradicts the fact that f ∈ IXρ,ψ. Therefore, the function f is Pareto optimal for all

π : I → R.
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Proof of Proposition 5.2. (i) Suppose that f ∈ I2. Define the function g by g(x) = x − f(x) for

x ∈ [0,∞). For all X ∈ X+, we have X − f(X) = g(X). Since f ∈ I2, the function g is increasing

and (f(X), g(X)) is comonotonic.

(ii) Suppose that f ∈ Id1 for d > 0. For all X ∈ X dp , the set {X > d} is a common tail

event of f(X) and X − f(X) by the definitions of the tail event and the set Id1 . Also note that

P(X > d) = 1− p. Therefore, (f(X), X − f(X)) is p-concentrated.

Here we present the proof of Theorem 5.2 first because it is useful for the proof of Theorem

5.1.

Proof of Theorem 5.2. “⇐”: For all f ∈ Id1 , note that (f(X), X − f(X)) is p-concentrated for

all X ∈ X dp by Proposition 5.2. By p-additivity of ESp (see Wang and Zitikis, 2021), we have

ESp(X − f(X)) + ESp(f(X)) = ESp(X) and thus f ∈ Id,pESp,ESp
. Hence Id,pESp,ESp

⊃ Id1 .

“⇒”: It suffices to show that ρ = ψ = ESλp on X dp for some λ > 0, and that ρ = ψ = ESλp on

Xp holds due to translation invariance of ρ and ψ. Write hd(x) = (x− d)+, x > 0, for all d > 0 and

recall that h0(x) = 0, x > 0. Since h0, hd ∈ Id1 , we have

ρ(X) = ρ(X ∧ d) + ψ((X − d)+) = min
g∈I
{ρ(X − g(X)) + ψ(g(X))} (5.7)

for all X ∈ X dp .

We first prove the case when d = p = 0. We know from Lemma 5.1 that ρ(X) = ψ(X) = λE[X]

for some λ > 0 and for all X ∈ X 0
0 . Since ρ is translation invariant and X + c ∈ X 0

0 for all X ∈ X 0
0

and c > 0, we have

λE[X] + c = ρ(X) + c = ρ(X + c) = λE[X + c] = λE[X] + λc.

It follows that λ = 1.

We now prove the case when d = 0 and p ∈ (0, 1). We know from statement (5.7) that ρ = ψ

on X0
p . For all X ∈ X 0

0 , we define φ(X) = ρ(X1A) by taking an event A independent of X with

P(A) = 1 − p (a specific choice of A does not matter since ρ is law invariant). It is clear that φ

is law invariant, monotone, convex and uniformly continuous with respect to L∞-norm. Note that

for all X ∈ X 0
0 and all events B and C independent of X with P(B) = P(C) = 1 − p, we have

X1B
d
= X1C . Hence, φ(X) = ρ(X1B) = ρ(X1C) and thus φ is well defined. Since X1A ∈ X 0

p and
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I0,p
ρ,ψ ⊃ I1, we have

φ(f(X)) + φ(X − f(X)) = ρ(f(X)1A) + ρ((X − f(X))1A)

= ρ(f(X1A)) + ρ(X1A − f(X1A)) = ρ(X1A) = φ(X)

for all f ∈ I1 and X ∈ X 0
0 . It follows from Lemma 5.1 that φ(X) = λE[X] for some λ > 0 and for

all X ∈ X 0
0 . For all X ∈ X 0

p , we take any random variable Y such that Y
d
= X|X > 0. We have

Y ∈ X 0
0 and X1{X>0}

d
= Y 1A. Thus

ρ(X1{X>0}) = ρ(Y 1A) = λE[Y ] = λESp(X).

It follows that

ρ(X) = ψ(X) = ρ(X1{X>0}) + ρ(X1{X=0}) = λESp(X) (5.8)

for all X ∈ X 0
p . Note that for all X ∈ X 0

p ,

ESp(X) =
1

1− p
E[X1X>0] =

1

1− p
E[X].

Hence, we have

ρ(X) = λ′ESp(X) + (1− λ′)E[X]

for all X ∈ X 0
p , where λ′ = (λ − 1 + p)/p. By equation (5.8) and Lemma 5.2, we have λ > 1 − p

and thus λ′ > 0.

Next, we prove the case when d > 0 and p = 0. For all X ∈ X 0
0 , we have X + d ∈ X d0 . We

obtain from Id,0ρ,ψ ⊃ I
d
1 that

ρ(X + d− f(X + d)) + ψ(f(X + d)) = ρ(X + d) (5.9)

for all f ∈ Id1 . Take those f that are of the form f(x) = g(x − d) for any g ∈ I1 and all x > d.

Noting that ρ is translation invariant, we have

ρ(X − g(X)) + ψ(g(X)) = ρ(X) (5.10)

for all g ∈ I1. Hence, ρ(X) = ψ(X) = λE[X] = λES0(X) for some λ > 0 and for all X ∈ X 0
0 by

Lemma 5.1. Since ρ is translation invariant, we have λ = 1.

We finally prove the case when d > 0 and p ∈ (0, 1). For all X ∈ X 0
p , we have X + d ∈ X dp .

Following similar arguments as those we used to derive equations (5.9) and (5.10), we obtain

ρ(X − g(X)) + ψ(g(X)) = ρ(X)
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for all g ∈ I1. Hence, ρ(X) = ψ(X) = λESp(X) for some λ > 1− p and for all X ∈ X 0
p by equation

(5.8). For all X ∈ X dp , we have (X − d)+ ∈ X 0
p . Therefore,

ρ((X − d)+) = ψ((X − d)+) = λESp[(X − d)+] = λ(ESp(X)− d).

Hence, ρ(X ∨ d) = ρ((X − d)+ + d) = λESp(X) + (1−λ)d and ψ(X ∨ d) = λESp(X) + (1−λ)d. By

Lemma 5.2, we have ρ(X) = ψ(X) = λESp(X) + (1− λ)ES−p (X) for all X ∈ X dp . Since

(1− p)ESp(X) + pES−p (X) = E[X],

we have ρ(X) = ψ(X) = γESp(X) + (1− γ)E[X], where γ = 1− (1− λ)/p > 0.

Proof of Theorem 5.1. Let h0(x) = 0 and h1(x) = x, x > 0, the constant zero function and the

identity, respectively.

(i) “⇒”: Suppose that Iρ,ψ = I2. By the proof of Lemma 5.1 (i) and translation invariance of

ρ and ψ, we have ρ = ψ on X and ρ is comonotonic-additive on X . Moreover, we know that ρ is

uniformly continuous with respect to L∞-norm since ρ is monetary, and ρ is law invariant. Hence,

ρ is a convex distortion risk measure on X (see e.g., Kusuoka, 2001).

“⇐”: Suppose that ρ = ψ is a convex distortion risk measure on X . We will prove that

Iρ,ρ = I2. Since ρ is a convex distortion risk measure, it is also coherent by e.g., Corollary 2.1 of

Chapter 2; see Acerbi (2002). Following the same logic as the proof of Lemma 5.1 (i), we have

I2 ⊂ Iρ,ρ.

We next prove that Iρ,ρ ⊂ I2. For each f /∈ I2, we will show that there exists X ∈ X+ such that

ρ(X − f(X)) + ρ(f(X)) > ρ(X). Indeed, there exists 0 6 x < y, such that |f(y) − f(x)| > y − x.

It is clear that f(x) 6= f(y). Since ρ is a coherent distortion risk measure, there exists a Borel

measure µ on [0, 1] such that ρ =
∫ 1

0 ESt dµ(t) on X . Take X = x1A + y1Ac where P(A) = 1/2. If

f(x) < f(y), then

ESt(X) =


(1−2t)x+y

2−2t , 0 6 t 6 1/2,

y, 1/2 < t < 1,

ESt(f(X)) =


(1−2t)f(x)+f(y)

2−2t , 0 6 t 6 1/2,

f(y), 1/2 < t < 1,

ESt(X − f(X)) =


x−f(x)+(1−2t)(y−f(y))

2−2t , 0 6 t 6 1/2,

x− f(x), 1/2 < t < 1.
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Hence,
ρ(X − f(X)) + ρ(f(X))− ρ(X)

y − x

=

∫ 1/2

0

t

1− t

(
f(y)− f(x)

y − x
− 1

)
dµ(t) +

∫ 1

1/2

f(y)− f(x)

y − x
− 1 dµ(t) > 0.

Similarly, if f(x) > f(y), then we have

ESt(X) =


(1−2t)x+y

2−2t , 0 6 t 6 1/2,

y, 1/2 < t < 1,

ESt(f(X)) =


f(x)+(1−2t)f(y)

2−2t , 0 6 t 6 1/2,

f(x), 1/2 < t < 1,

ESt(X − f(X)) =


(1−2t)(x−f(x))+y−f(y)

2−2t , 0 6 t 6 1/2,

y − f(y), 1/2 < t < 1,

and thus

ρ(X − f(X)) + ρ(f(X))− ρ(X)

=

∫ 1/2

0

t

1− t
(f(x)− f(y)) dµ(t) +

∫ 1

1/2
f(x)− f(y) dµ(t) > 0.

Therefore, Iρ,ρ ⊂ I2 and thus Iρ,ρ = I2.

(ii) The “if” part is straightforward by linearity of the mean. Hence, we prove the “only if”

part. Similar to (i), since h0, h1 ∈ I0, we have by translation invariance of ρ and ψ that ρ = ψ on

X . Since I1 ⊂ I0 and X 0
0 ⊂ X+, we know from Theorem 5.2 that ρ(X) = E[X] for all X ∈ X 0

0 .

Since X ∈ X is bounded, we take c > 0 such that X + c ∈ X 0
0 . It follows that ρ(X + c) = E[X + c].

Hence, translation invariance of ρ implies ρ(X) = E[X].

Proof of Proposition 5.3. Take any X ∈ X+ and coherent risk measures ρ, ψ : X → R with ρ > ψ.

For all f /∈ IXψ,ψ, we have

ρ(X − f(X)) + ψ(f(X)) > ψ(X − f(X)) + ψ(f(X)) > ψ(X),

where the last inequality is due to subadditivity of ψ. With h1(x) = x, x > 0, which belongs to I,

we have ρ(X − h1(X)) + ψ(h1(X)) = ψ(X) and thus

min
g∈I
{ρ(X − g(X)) + ψ(g(X))} 6 ψ(X).

It follows that f /∈ IXρ,ψ and therefore IXρ,ψ ⊂ IXψ,ψ.
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Chapter 6

Cash-subadditive risk measures

without quasi-convexity

6.1 Introduction

The quantification of market risk for pricing, portfolio selection, and risk management purposes

has long been a point of interest to researchers and practitioners in finance. Measures of risk have

been widely adopted to assess the riskiness of financial positions and determine capital reserves.

Value-at-risk (VaR) has been one of the most commonly adopted risk measures in industry but

is criticized due to its fundamental deficiencies; for instance, it does not account for “tail risk”

and it lacks for subadditivity or convexity; see e.g., Dańıelsson et al. (2001) and McNeil et al.

(2015). In light of this, the notion of coherent risk measures that satisfy a set of reasonable axioms

(monotonicity, cash additivity, subadditivity and positive homogeneity) was introduced by Artzner

et al. (1999) and extensively treated by Delbaen (2002). Convex risk measures were introduced

by Frittelli and Rosazza Gianin (2002) and Föllmer and Schied (2002a) with convexity replacing

subadditivity and positive homogeneity. There have been many other developments in the past two

decades on various directions; see Föllmer and Schied (2016) and the references therein.

A common feature of all above risk measures is that the axiom of cash additivity (also called

cash invariance or translation invariance) is employed. The cash additivity axiom has been chal-

lenged, in particular, by El Karoui and Ravanelli (2009), in a relevant context. The main motivation

for cash additivity is that the random losses should be discounted by a constant numéraire. There-

fore, cash additivity fails as soon as there is any form of uncertainty about interest rates. For this
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reason, El Karoui and Ravanelli (2009) replaced cash additivity by cash subadditivity and provided

a representation result for convex cash-subadditive risk measures. In this context, Cerreia-Vioglio et

al. (2011) argued that quasi-convexity rather than convexity is the appropriate mathematical trans-

lation of the statement “diversification should not increase the risk” and introduced the notion of

quasi-convex cash-subadditivie risk measurses. Farkas et al. (2014) studied general risk measures

to model defaultable contingent claims and discussed their relationship with cash-subadditive risk

measures. For other related work on cash subadditivity and quasi-convexity, see Frittelli and Mag-

gis (2011), Cont et al. (2013), Drapeau and Kupper (2013) and Frittelli et al. (2014). In decision

theory, the economic counterpart of quasi-convexity of risk measures is quasi-concavity of utility

functions, which is classically associated to uncertainty aversion in the economics of uncertainty;

see, e.g., Schmeidler (1989), Cerreia-Vioglio et al. (2011) and Mastrogiacomo and Rosazza Gianin

(2015).

The main aim of this chapter is a thorough understanding of cash-subadditive risk measures

when quasi-convexity, or the stronger property of convexity, is absent. This class of risk measures is

very broad and, with proper normalization, it contains a wide majority of risk measure or preference

functional considered in the literature. By relaxing cash additivity, both the theory of risk measures

and that of expected utility and rank-dependent utility (Quiggin, 1982) can be included within the

same framework. For instance, the mapping X 7→ −E[u(−X)]/m for any increasing utility function

u with derivative bounded above by m > 0 belongs to this class (recall that the constant m does not

matter when modeling utility preferences); the same holds true if E is replaced by a non-additive

and normalized Choquet integral (Yaari, 1987; Schmeidler, 1989). Here, the a loss function ` may

not be convex or concave; see the recent discussions and examples in Müller et al. (2017) and

Castagnoli et al. (2022) for non-convex and non-concave loss and utility functions.

Cash-additive risk measures without convexity have been actively studied in the recent litera-

ture. In particular, a few representation results were obtained by Mao and Wang (2020), Jia et al.

(2021) and Castagnoli et al. (2022). As a common feature, such risk measures can be represented

as the infimum over a collection of convex and cash-additive risk measures (see Table 6.1 below),1

in contrast to the classic theory of convex risk measures where representations are typically based

on a supremum. In a similar fashion, one of our main results states that a general cash-subadditive

risk measure can be represented as the lower envelope of a family of quasi-convex cash-subadditive

1The risk measures studied by Jia et al. (2021) and Castagnoli et al. (2022) have similar representations; their

differences are studied by Moresco and Righi (2022).
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risk measures.

In addition to a representation of general cash-subadditive risk measures, we will also give

implicit and explicit representations of cash-subadditive risk measures with additional proper-

ties including quasi-star-shapedness, normalization and SSD-consistency (that is, consistency with

second-order stochastic dominance). In particular, similarly to the argument that convexity does

not fit well with cash-subadditive risk measures, star-shapedness introduced by Castagnoli et al.

(2022) is no longer a natural property beyond the framework of cash-additive risk measures. In this

sense, we introduce the property of quasi-star-shapedness induced naturally from quasi-convexity,

and obtain a representation result of cash-subadditive risk measures that are normalized and quasi-

star-shaped. It turns out that the representation result also holds true if we change normalization

to a weaker version which we call quasi-normalization. We examine a few other problems studied

by Mao and Wang (2020), now under a general framework of cash subadditivity. Apart from the

major differences, it also turns out that some of results obtained by Mao and Wang (2020) hold

under the extended framework of cash subadditivity. We summarize some related results in the

literature and compare them with our results in Table 6.1.

a (...) risk measure is an infimum of (...) risk measures

Mao and Wang (2020) CA, SSD-consistent CA, convex, law-invariant

Jia et al. (2021) CA CA, convex

Castagnoli et al. (2022) CA, star-shaped, normalized CA, convex, normalized

Theorem 6.4 CS, SSD-consistent CS, quasi-convex, law-invariant

Theorem 6.2 CS CS, quasi-convex

Theorem 6.3 CS, quasi-star-shaped, normalized CS, quasi-convex, normalized

Table 6.1: Representation results related to this chapter, where monotonicity is always assumed;

definitions of the properties are in Sections 6.2 and 6.3. CA stands for cash additivity and CS

stands for cash subadditivity.

The new property of quasi-star-shapedness has a sound decision-theoretic foundation. Trans-
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lating it into the setting of Anscombe and Aumann (1963), it means that the decision maker always

prefers to replace part of an uncertain (random) payoff with an equally favourable certain (non-

random) payoff. This property is a weaker requirement than the uncertainty aversion axiom studied

by Maccheroni et al. (2006), which corresponds to quasi-convexity in our setting.

The rest of the chapter is organized as follows. In Section 6.2, some preliminaries on risk

measures are collected and the definition of cash-subadditive risk measures is given. Two new

properties, quasi-star-shapedness and quasi-normalization, are introduced in Section 6.3 and we

provide a few related results. In particular, we obtain a new formula (Theorem 6.1) for ΛVaR in-

troduced by Frittelli et al. (2014), which is an example of quasi-star-shaped, quasi-normalized and

cash-subadditive risk measures. In Section 6.4, representation results for general cash-subadditive

risk measures are established. Section 6.5 contains representation results and other technical re-

sults on cash-subadditive risk measures with further properties including quasi-star-shapedness and

SSD-consistency. Section 6.6 concludes the chapter, and Section 6.7 contains some further technical

results and discussions that are not directly used in the main text. As the main message of this

chapter, most of the existing results on non-convex cash-additive risk measures have a nice paral-

lel version on non-quasi-convex cash-subadditive risk measures, although they often require more

sophisticated analysis to establish.

6.2 Cash-subadditive risk measures

Fix an atomless probability space (Ω,F , P ). Let Mf denote the set of finitely additive prob-

abilities on (Ω,F) that are absolutely continuous with respect to P , and let M represent the

subset of Mf consisting of all its countably additive elements, i.e., probability measures. Let

X = L∞(Ω,F , P ) be the set of all essentially bounded random variables on (Ω,F , P ), where P -

a.s. equal random variables are treated as identical.2 Let a random variable X ∈ X represent the

random loss faced by financial institutions in a fixed period of time.

To clarify, a functional ρ : X → R is called a risk measure if it is monotone. Monotonicity is self-

explanatory and common in the literature of risk management, e.g., Artzner et al. (1999). It means

that if the loss increases for almost all scenarios ω ∈ Ω, then the capital requirement in order for the

financial position to be acceptable should increase as well. As one of the fundamental properties to

define monetary risk measures, cash additivity (also called cash invariance or translation invariance),

2As such, equalities and inequalities should be understood in a P -a.s. sense.
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defined in Chapter 1, intuitively guarantees the risk measure ρ(X) to be the capital required added

to the financial position X. Cash additivity is a nice and simplifying mathematical property, but the

class of cash-additive risk measures is too restricted to include some common functionals such as the

expectation of a convex loss function. From the viewpoint of financial practice, the assumption of

cash additivity of a risk measure may fail when uncertainty of interested rates is taken into account.

In this sense, we consider the more general class of risk measures ρ, as argued by El Karoui and

Ravanelli (2009), satisfying

Cash subadditivity : ρ(X +m) 6 ρ(X) +m for all X ∈ X and m > 0.3

The assumption of cash subadditivity allows non-linear increase of the capital requirement as cash is

added to the financial position but the increase should not exceed linear growth. Cash-subadditive

risk measures are often studied in the literature together with convexity, or more generally, with

quasi-convexity; see El Karoui and Ravanelli (2009), Cerreia-Vioglio et al. (2011) and Frittelli et

al. (2014).

As the main objective of this chapter is to study cash-subadditive risk measures without

quasi-convexity, we first note that the lack of quasi-convexity arises in many economically relevant

contexts, such as aggregation of risk measures, non-convex utility functions, and risk mitigation.

Castagnoli et al. (2022) argued with examples that many operations on a collection of convex risk

measures lead to a non-convex one; the same applies in the context of quasi-convexity. Other than

those built from operations, we provide a few simple examples of cash-subadditive risk measures in

the literature, which are not cash-additive or quasi-convex.

Example 6.1 (Expected insured loss). Suppose that an insurance contract pays f(X) for an

insurable loss X (often non-negative), where f is an increasing function on R that is 1-Lipschitz

and f(x) = 0 for x 6 0.4 A typical example is f(x) = (x − d)+ ∧ ` for some ` > d > 0, which

represents an insurance contract with deductible d and limit `. The expected losses to the policy

holder and to the insurer are given by, respectively,

ρph(X) = E[X − f(X)] and ρin(X) = E[f(X)].

It is straightforward to check that ρph and ρin are both monotone and cash subadditive, but generally

neither cash additive nor quasi-convex. In particular, ρin (resp. ρph) is concave if f is concave

3An equivalent definition of cash subadditivity is ρ(X +m) > ρ(X) +m for all X ∈ X and m 6 0.
4A function f : R→ R is called 1-Lipschitz if |f(x)− f(y)| 6 |x− y| for all x, y ∈ R.
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(resp. convex). For a related example in finance, take f : x 7→ x+ and fix a probability measure Q

representing a pricing measure in a financial market. The put option premium on the insolvency of

a firm with future asset value −X is defined as EQ[X+], which is convex and cash subadditive but

not cash additive; see Jarrow (2002) and El Karoui and Ravanelli (2009) for a connection between

the put option premium and risk measures.

The risk measure Value-at-Risk (VaR) is given by, for t ∈ (0, 1],

VaRt(X) = inf{x ∈ R | P (X 6 x) > t}, X ∈ X . (6.1)

Note that VaR1(X) = ess-sup(X). VaR is one of the most popular risk measures used in the

banking industry; see McNeil et al. (2015). The next example is a generalization of VaR introduced

by Frittelli et al. (2014) without cash additivity.

Example 6.2 (Λ-Value-at-Risk). The risk measure Λ-Value-at-Risk is defined as, for some function

Λ : R→ [0, 1] that is not constantly 0,

ΛVaR(X) = inf{x ∈ R : P (X 6 x) > Λ(x)}, X ∈ X . (6.2)

In particular, if Λ is a constant t ∈ (0, 1), then ΛVaR = VaRt. The function Λ is often chosen as a

decreasing function to avoid pathological cases; see the discussion in Bellini and Peri (2021). Here,

we will assume that Λ is a decreasing function. Since for c > 0, ΛVaR(X + c) = Λ∗VaR(X) + c

where Λ∗(t) = Λ(t + c) 6 Λ(t) for t ∈ R, we obtain ΛVaR(X + c) 6 ΛVaR(X) + c, and therefore

ΛVaR is cash subadditive; we can check that it is not cash additive in general. Moreover, ΛVaR

is generally not quasi-convex either, as the following argument illustrates. For any decreasing

Λ : R → (0, 1/3] and a standard normal random variable X, we have ΛVaR(X) = ΛVaR(−X) 6

z1/3 < 0, where z1/3 is the 1/3-quantile of the standard normal distribution. Hence, ΛVaR(0) =

0 > max{ΛVaR(X),ΛVaR(−X)} violating quasi-convexity.

Example 6.3 (Certainty equivalent with discount factor ambiguity). Consider the following α-

maxmin expected utility (α-MEU, see e.g., Ghirardato et al., 2004; Marinacci, 2002) with a profit-

loss adjustment:

α min
Q1∈Q1

EQ1 [eγX ] + (1− α) max
Q2∈Q2

EQ2 [eγX ], X ∈ X , α ∈ [0, 1], γ > 0

with the loss function x 7→ eγx, where Q1 and Q2 are two nonempty, weak*-compact and convex

sets of finitely additive functions. Its certainty equivalent with ambiguity of a discount factor is
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given by

ρ(X) = sup
λ∈I

{
1

γ
log

(
α min
Q1∈Q1

EQ1 [eγλX ] + (1− α) max
Q2∈Q2

EQ2 [eγλX ]

)}
, X ∈ X

with the ambiguity set I ⊆ [0, 1]. Cash subadditivity induced by ambiguity of the discount factor

was discussed in El Karoui and Ravanelli (2009) with stochastic discount factors. We can check

that ρ is a cash-subadditive risk measure, and it is generally not cash additive. Moreover, because

of the presence of both minimum and maximum in α-MEU, quasi-convexity does not hold for ρ.

Example 6.4 (Risk measures based on an eligible risky asset). Take an acceptance set A ⊆ X and

a reference asset S = (S0, ST ) ∈ X 2, where ST is a nonzero and positive terminal payoff. Define

the mapping ρA,S as in Farkas et al. (2014) by

ρA,S(X) = inf

{
m ∈ R : X − m

S0
ST ∈ A

}
, X ∈ X .

They showed that ρA,S is S-additive and monotone.5 Cash subadditivity of ρA,S is equivalent to

ρA,S (X + λ) 6 ρA,S

(
X +

λ

S0
ST

)
for all λ > 0 and X ∈ X .

Hence, under the assumption of P (ST < S0) = 0 (e.g., S generates a non-negative random interest

rate), the risk measure ρA,S is cash subadditive. As shown by Farkas et al. (2014), ρA,S is quasi-

convex if and only if A is convex; thus, such risk measures are not quasi-convex in general.

Some other relevant properties for a risk measure ρ are collected below, which will be used

throughout the chapter; we refer to Föllmer and Schied (2016) for a comprehensive treatment of

properties of risk measures.

Normalization: ρ(t) = t for all t ∈ R.

Law invariance: ρ(X) = ρ(Y ) for all X,Y ∈ X with X
d
= Y .

Monetary, convex and positively homogeneous risk measures are called coherent by Artzner et al.

(1999).6

Next, we define two most important notions of stochastic dominance in decision theory, the

first-order stochastic dominance (FSD) and the second-order stochastic dominance (SSD). Given

two random variables X,Y ∈ X , we denote by X �1 Y , if E[f(X)] > E[f(Y )] for all increasing

5The functional ρ is said to be S-additive if ρ (X + λST ) = ρ(X) + λS0 holds for all λ ∈ R and X ∈ X .
6The functional ρ is said to be positively homogeneous if ρ(λX) = λρ(X) for all X ∈ X and λ > 0.
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functions f : R → R, and denote by X �2 Y , if E[f(X)] > E[f(Y )] for all increasing convex

functions f : R→ R. Consistency with respect to FSD or SSD is defined as monotonicity in these

partial orders.

FSD-consistency : ρ(X) > ρ(Y ) for all X,Y ∈ X whenever X �1 Y .

SSD-consistency : ρ(X) > ρ(Y ) for all X,Y ∈ X whenever X �2 Y .

It is well known that either FSD-consistency or SSD-consistency implies law invariance. For mon-

etary risk measures, SSD-consistency is characterized by Theorem 3.1 of Mao and Wang (2020).

Finally, the notion of comonotonicity is useful for some results in this chapter. A random vector

(X1, . . . , Xn) ∈ X n is called comonotonic if there exists a random variable Z ∈ X and increasing

functions f1, . . . , fn on R such that Xi = fi(Z) almost surely for all i = 1, . . . , n.

6.3 Quasi-star-shapedness, quasi-normalization, and Lambda VaR

In this section, we discuss two new properties that are specific to cash-subadditive risk measures

without quasi-convexity, and they will be used in the representation results in Section 6.5.1.

6.3.1 Quasi-star-shapedness and quasi-normalization

In the context of cash-additive risk measures, Castagnoli et al. (2022) studied a weaker property

than convexity:

Star-shapedness: ρ(λX) 6 λρ(X) + (1− λ)ρ(0) for all X ∈ X and λ ∈ [0, 1],

and formulated star-shapedness via ρ(λX) 6 λρ(X) for λ ∈ [0, 1] with the extra normalization

ρ(0) = 0. Star-shapedness is discussed in Artzner et al. (1999) and it has a natural economic

motivation that additional liquidity risk may arise if a position is multiplied by a factor larger than

1. In case ρ(0) 6= 0, it is more natural to define star-shapedness via our formulation, which means

convexity at 0 (has also been called “positive superhomogeneity” for obvious mathematical reasons),

thus weaker than convexity. In the context of the cash-additive risk measures, we introduce the

corresponding property for cash-subadditive risk measures:

Quasi-star-shapedness: ρ(λX+(1−λ)t) 6 max{ρ(X), ρ(t)} for all X ∈ X , t ∈ R and λ ∈ [0, 1].
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Since quasi-star-shapedness is new to the literature of risk measures, it may need some ex-

planation. As explained by Castagnoli et al. (2022), star-shapedness reflects the consideration of

liquidity risk, in a way similar to (but weaker than) convexity which reflects the consideration of

diversification. For cash-additive risk measures, star-shapedness is equivalent to ρ(λX+(1−λ)t) 6

λρ(X) + (1 − λ)ρ(t) for all X ∈ X , t ∈ R and λ ∈ [0, 1]; indeed, it means that ρ has convexity

at each constant. This reformulation of star-shapedness implies our quasi-star-shapedness, which

means that ρ has quasi-convexity at each constant. Obviously, quasi-star-shapedness is weaker than

quasi-convexity.

Quasi-star-shapedness has a sound decision-theoretic interpretation, which we explain in Propo-

sition 6.1 below. For a risk measure ρ : X → R, the preference associated with ρ is a binary relation

� on X defined by, for all X,Y ∈ X , X � Y ⇐⇒ ρ(X) 6 ρ(Y ). The equivalence relation of � is

denoted by '. In other words, � represents the preference of an agent favouring less risk evaluated

via ρ.

Proposition 6.1. An L∞-continuous risk measure ρ : X → R satisfies quasi-star-shapedness if and

only if its associated preference � satisfies, for X ∈ X , t ∈ R and λ ∈ [0, 1],

X ' t =⇒ λX + (1− λ)t � X. (6.3)

Proof. By definition of �, (6.3) is equivalent to

ρ(X) = ρ(t) =⇒ ρ(λX + (1− λ)t) 6 ρ(X), (6.4)

which is clearly implied by quasi-star-shapedness. Hence, “only-if” statement holds true. To show

the “if” statement, take arbitrary X ∈ X and t ∈ R. If ρ(X) 6 ρ(t), then we take s > 0 such that

ρ(X + s) = ρ(t). Such s exists since s 7→ ρ(X + s) is continuous and X + s > t for s large enough.

Using monotonicity of ρ and (6.4), we have

ρ(λX + (1− λ)t) 6 ρ(λ(X + s) + (1− λ)t) 6 ρ(t) = max{ρ(X), ρ(t)}

for each λ ∈ [0, 1]. If ρ(X) > ρ(t), then we take s > 0 such that ρ(X) = ρ(t + s). Such s exists

since s 7→ ρ(t + s) is continuous and t + s > X for s large enough. Using monotonicity of ρ and

(6.4), we have

ρ(λX + (1− λ)t) 6 ρ(λX + (1− λ)(t+ s)) 6 ρ(X) = max{ρ(X), ρ(t)}

for each λ ∈ [0, 1]. Hence, quasi-star-shapedness holds.
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Remark 6.1. Proposition 6.1 requires L∞-continuity, which is a weak property satisfied by essentially

all risk measures in the literature. We can check from definition that all cash-subadditive risk

measures are L∞-continuous. The result in Proposition 6.1 holds true with the same proof if L∞-

continuity is replaced by the property of solvability in decision theory: For each X ∈ X , there exists

t ∈ R such that ρ(X) = ρ(t).

Proposition 6.1 gives the following decision-theoretic interpretation of quasi-star-shapedness.

Suppose that the preference � of an agent satisfies (6.3). If a random loss X is seen as equally

favourable as a constant loss t, then λX + (1 − λ)t is favourable compared to X. That is, a

combination of random X and constant t reduces the riskiness of X. In contrast, quasi-convexity

requires the above relation to hold for random Y in replace of constant t. Indeed, in the setting of

Anscombe and Aumann (1963) where X and Y represent acts with uncertainty (thus, they are not

necessarily R-valued), the property, for X,Y ∈ X and λ ∈ [0, 1],

X ' Y =⇒ λX + (1− λ)Y � X, (6.5)

is the uncertainty aversion axiom of Maccheroni et al. (2006), and it corresponds to quasi-convexity

of the risk measure ρ in our setting. It is clear that (6.3) is weaker than (6.5) as the riskiness of

X is only reduced when combined with an equally favourable constant loss, instead of an arbitrary

equally favourable loss Y .

The difference between quasi-star-shapedness and quasi-convexity, or between (6.3) and (6.5),

can also be explained via considerations for the dependence between pooled risks. For a law-

invariant ρ and two losses X and Y with fixed distributions, the dependence structure of X and

Y affects ρ(λX + (1− λ)Y ) but not ρ(X) or ρ(Y ), and hence quasi-convexity imposes inequalities

over all dependence structures. Such an issue does not appear for λX + (1− λ)t as dependence is

irrelevant between a random variable X and a constant t. Hence, relaxing quasi-convexity to quasi-

star-shapedness gives rise to more flexibility on preferences over dependence. In particular, under

quasi-convexity, comonotonicity is the worst-case dependence in risk aggregation; see Lemmas 6.3

and 6.4. This is not the case for quasi-star-shapedness, since VaRt for t ∈ (0, 1) is quasi-star-shaped

but it does not take comonotonicity as the worst-case dependence.

Next, we discuss the issue of normalization. The risk measures in Examples 6.1 and 6.2 are

not necessarily normalized. In general, cash-subadditive risk measures may not have the range of

the entire real line. Hence, normalization may also need to be weakened in our setting of cash

subadditive risk measures, which we define as follows.
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Quasi-normalization: ρ(t) = t for all t ∈ Dρ, where Dρ = {ρ(X) | X ∈ X} is the range of ρ.

The risk measure X 7→ E[min{X, d}] in Example 6.1 satisfies quasi-normalization with range

(−∞, d], and ΛVaR in Example 6.2 satisfies quasi-normalization with range (−∞, z] where z =

inf{x ∈ R : Λ(x) = 0} with the convention inf ∅ =∞.

6.3.2 A new representation of Lambda VaR

The next result gives quasi-star-shapedness of ΛVaR, complementing the fact observed by

Castagnoli et al. (2022) that VaR is star-shaped. We also obtain, as a by-product, an alternative

representation of ΛVaR. In what follows, set VaR0(X) = −∞ for any X ∈ X , which follows from

plugging t = 0 in (6.1).

Theorem 6.1. Let Λ : R → [0, 1] be a decreasing function that is not constantly 0. The risk

measure ΛVaR in (6.2) has the representation

ΛVaR(X) = inf
x∈R

{
VaRΛ(x)(X) ∨ x

}
= sup

x∈R

{
VaRΛ(x)(X) ∧ x

}
, X ∈ X , (6.6)

and moreover, ΛVaR is quasi-star-shaped.

Proof. Note that for X ∈ X , x ∈ R and t ∈ [0, 1], P (X 6 x) > t if and only if VaRt(X) 6 x.

Moreover, since Λ is decreasing, the set {x ∈ R : VaRΛ(x)(X) 6 x} is an interval with right

end-point ∞. By definition, for X ∈ X ,

ΛVaR(X) = inf{x ∈ R : P (X 6 x) > Λ(x)}

= inf{x ∈ R : VaRΛ(x)(X) 6 x}

= inf{VaRΛ(x)(X) ∨ x : VaRΛ(x)(X) 6 x} > inf
x∈R

{
VaRΛ(x)(X) ∨ x

}
.

On the other hand,

ΛVaR(X) = inf{x ∈ R : VaRΛ(x)(X) 6 x}

= sup{x ∈ R : VaRΛ(x)(X) > x}

= sup{VaRΛ(x)(X) ∧ x : VaRΛ(x)(X) > x} 6 sup
x∈R

{
VaRΛ(x)(X) ∧ x

}
.

Since VaRΛ(x)(X) ∧ x 6 VaRΛ(y)(X) ∨ y for any x, y ∈ R, we have

ΛVaR(X) 6 sup
x∈R

{
VaRΛ(x)(X) ∧ x

}
6 inf

x∈R

{
VaRΛ(x)(X) ∨ x

}
6 ΛVaR(X),
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thus showing (6.6). Next, verify that the mapping X 7→ VaRα(X) ∨ x is quasi-star-shaped for all

α ∈ [0, 1] and x ∈ R. Note that if α = 0 then it is trivial. If α > 0, then VaRα(X)∨x = VaRα(X∨x).

For all X ∈ X , t ∈ R and λ ∈ [0, 1],

VaRα(x ∨ (λX + (1− λ)t)) 6 VaRα(λ(x ∨X) + (1− λ)(x ∨ t))

= λVaRα(x ∨X) + (1− λ)VaRα(x ∨ t)

6 max{VaRα(x ∨X),VaRα(x ∨ t)}. (6.7)

Finally, we need to use Lemma 6.1 below, which states that the infimum of quasi-normalized, quasi-

star-shaped and cash subadditive risk measures is quasi-star-shaped. Since X 7→ VaRΛ(x)(X)∨x is

quasi-normalized, quasi-star-shaped and cash subadditive for all x ∈ R, ΛVaR is quasi-star-shaped

by Lemma 6.1.

Remark 6.2. We note that ΛVaR is generally not star-shaped. For instance, take Λ : x 7→ 1{x61}.

For this choice, we have ΛVaR(x) = x ∧ 1 for x ∈ R. It follows that ΛVaR(1) = 1 > 1/2 =

ΛVaR(2)/2 + ΛVaR(0)/2, and hence ΛVaR is not star-shaped. Indeed, any Λ with inf{x ∈ R :

Λ(x) = 0} = 1 suffices for this example. Note that each X 7→ VaRα(X) ∨ x in the representation

(6.6) is star-shaped (including α = 0); see (6.7). Therefore, the infimum of quasi-normalized, star-

shaped and cash-subadditive risk measures is not necessarily star-shaped, in sharp contrast to the

corresponding result on quasi-star-shaped risk measures in Lemma 6.1. This example shows that

quasi-star-shapedness is more natural than, and genuinely different from, star-shapedness in the

context of cash-subadditive risk measures.

Theorem 6.1 can be applied to solve portfolio optimization problems with ΛVaR constraints.

Let Λ : R → [0, 1] be a decreasing function which is not constantly 0. In a portfolio optimization

problem, one often maximizes an objective, e.g., an expected utility or an expected return, under

the constraint that a risk measure does not exceed a certain level z (and often together with a

budget constraint). For X ∈ X , by Theorem 6.1, we have

ΛVaR(X) 6 z ⇐⇒ inf
x∈R
{VaRΛ(x)(X) ∨ x} 6 z ⇐⇒ inf

x6z
VaRΛ(x)(X) 6 z ⇐⇒ VaRΛ(z)(X) 6 z.

Therefore, optimization under a ΛVaR constraint below a constant level z is equivalent to that under

a VaRΛ(z) constraint below the same level z, which has been well studied in the risk management

literature; see e.g., Basak and Shapiro (2001) and Basak et al. (2006).
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6.3.3 A few useful technical results

The next lemma shows that quasi-normalization and quasi-star-shapedness are preserved under

a minimum operation, a fact used in the proof of Theorem 6.1.

Lemma 6.1. The infimum of quasi-normalized, quasi-star-shaped, and cash-subadditive risk mea-

sures (assuming it is real-valued) is again quasi-normalized, quasi-star-shaped and cash-subadditive.

Proof. Let C be a class of quasi-normalized, quasi-star-shaped and cash-subadditive risk measures,

and denote by ρ = infψ∈C ψ. It is obvious that ρ is cash subadditive and monotone. It remains to

show that ρ is quasi-normalized and quasi-star-shaped. Denote by d = inf Dρ, u = supDρ, dψ =

inf Dψ and uψ = supDψ for ψ ∈ C. For any X ∈ X and ψ ∈ C, if u < dψ, then ρ(X) 6 u < ψ(X).

Hence, we can write

ρ(X) = inf
ψ∈C′

ψ(X) where C′ = {ψ ∈ C | u > dψ}.

Note that d 6 dψ 6 u 6 uψ for each ψ ∈ C′. Moreover, for any ψ ∈ C ∪ {ρ}, ψ(t) = t ∧ uψ for all

t > dψ and ψ(t) = t ∨ dψ for all t 6 uψ by monotonicity and quasi-normalization of ψ.

We first show that ρ is quasi-normalized. Take a constant t ∈ (d, u]. Since t 6 u 6 uψ, we have

ψ(t) > t for all ψ ∈ C′. Hence, ρ(t) = infψ∈C′ ψ(t) > t. Moreover, since t > d and d = infψ∈C′ dψ,

there exists ψ ∈ C′ such that dψ < t. This gives ψ(t) 6 t. Hence, ρ(t) = infψ∈C′ ψ(t) 6 t. Thus, we

obtain ρ(t) = t for t ∈ (d, u]. It remains to verify ρ(d) = d if d > −∞. This follows from the fact

that a cash-subadditive risk measure is L∞-continuous. Therefore, ρ(t) = t for t ∈ Dρ, and thus ρ

is quasi-normalized.

Next, we show that ρ is quasi-star-shaped. For X ∈ X , t ∈ R and λ ∈ [0, 1], quasi-star-

shapendess of ψ ∈ C′ gives

ρ(λX + (1− λ)t) = inf
ψ∈C′

ψ(λX + (1− λ)t) 6 inf
ψ∈C′

max{ψ(X), ψ(t)}. (6.8)

If t > u, then ρ(t) = u and

ρ(λX + (1− λ)t) 6 u = ρ(t).

If t < u, then ψ(t) = t ∨ dψ for ψ ∈ C′ and ρ(t) = t ∨ d. It follows that

inf
ψ∈C′

max {ψ(X), ψ(t)} = inf
ψ∈C′

max {ψ(X), t, dψ}

= inf
ψ∈C′

max {ψ(X), t} = max

{
inf
ψ∈C′

ψ(X), t

}
6 max {ρ(X), ρ(t)} .
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Using (6.8) and combining both cases, we obtain ρ(λX + (1 − λ)t) 6 max{ρ(X), ρ(t)} for all

λ ∈ [0, 1], X ∈ X and t ∈ R and thus ρ is quasi-star-shaped.

Finally, we show that in the classic setting of cash-additive risk measures, we do not need to

distinguish between each of normalization, star-shapedness and covexity and their quasi-versions.

This result further illustrates that quasi-star-shapedness is a natural property to consider for cash-

subadditive risk measures.

Proposition 6.2. For cash-additive risk measures,

(i) normalization is equivalent to quasi-normalization;

(ii) star-shapedness is equivalent to quasi-star-shapedness;

(iii) convexity is equivalent to quasi-convexity.

In contrast, for cash-subadditive risk measures, none of the above equivalence holds true.

Proof. The statements on normalization are straightforward. Those on convexity are well known

and can be checked with acceptance sets; see e.g., Proposition 2.1 and Example 2.2 of Cerreia-Vioglio

et al. (2011). We only show the statements on star-shapedness.

(a) For cash-subadditive risk measures, the fact that these star-shapedness and quasi-star-shapedness

are not necessarily equivalent is illustrated in Remark 6.2.

(b) Suppose that a cash-additive risk measure ρ is star-shaped. Cash additivity and star-shapedness

yield that, for all X ∈ X , t ∈ R and λ ∈ [0, 1],

ρ(λX + (1− λ)t) = ρ(λX) + (1− λ)t 6 λρ(X) + (1− λ)ρ(t) 6 max{ρ(X), ρ(t)},

which implies that ρ is quasi-star-shaped.

(c) Suppose that a cash-additive risk measure ρ is quasi-star-shaped. Let ρ̃ = ρ− ρ(0), and hence

ρ̃ is normalized. The acceptance set of ρ̃ is given by

Aρ̃ = {X ∈ X : ρ̃(X) 6 0}.

Note that 0 ∈ Aρ̃ and ρ̃ is quasi-star-shaped. Therefore, for any X ∈ Aρ̃ and λ ∈ [0, 1], we

have ρ̃(λX) 6 max{ρ̃(X), ρ(0)} 6 0. Hence, λX ∈ Aρ̃, and thus the set Aρ̃ is star-shaped. By

Proposition 2 of Castagnoli et al. (2022), we know that ρ̃ is star-shaped. In turn, this implies

that ρ is star-shaped.
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6.4 Representation results on cash-subadditive risk measures

In this section, we present a representation result, Theorem 6.2, of general cash-subadditive

risk measures, which illustrates that a cash-subadditive risk measure is the lower envelope of a

family of quasi-convex cash-subadditive risk measures. Quasi-convexity of risk measures has been

extensively studied for instance in Cerreia-Vioglio et al. (2011) and Drapeau and Kupper (2013),

and it is argued by many authors as the minimal property that a risk measure needs to satisfy to

properly reflect diversification effects.

Theorem 6.2. For a functional ρ : X → R, the following statements are equivalent.

(i) ρ is a cash-subadditive risk measure.

(ii) There exists a set C of quasi-convex cash-subadditive risk measures such that

ρ(X) = min
ψ∈C

ψ(X), for all X ∈ X . (6.9)

In order to prove Theorem 6.2, we need the following lemma, which will also be useful for a

few other results.

Lemma 6.2. If ρ : X → R is a risk measure, then ρ(X) = minZ∈X ρZ(X) for all X ∈ X , where

ρZ(X) = inf{ρ(Z +m) | m ∈ R, Z +m > X}, X, Z ∈ X .

Proof. For all X,Z ∈ X , by the definition of ρZ , we have

ρZ(X) = ρ(Z + ess-sup(X − Z)).

Note that ρ is monotone, Z+ ess-sup(X −Z) > X, and ρX(X) = ρ(X). We have minZ∈X ρZ(X) =

ρ(X).

Proof of Theorem 6.2. “(ii) ⇒ (i)” is obvious. We now prove “(i) ⇒ (ii)”. Assume that ρ is a

cash-subadditive risk measure. By Lemma 6.2, we have ρ(X) = minZ∈X ρZ(X) for all X ∈ X ,

where

ρZ(X) = inf{ρ(Z +m) | m ∈ R, Z +m > X} = ρ(Z + ess-sup(X − Z)), X, Z ∈ X .
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It is clear that ρZ is monotonic. We show that ρZ is cash subadditive. Indeed, for all m > 0 and

X ∈ X , we have

ρZ(X +m) = ρ(Z + ess-sup(X +m− Z)) = ρ(Z + ess-sup(X − Z) +m)

6 ρ(Z + ess-sup(X − Z)) +m = ρZ(X) +m.

Next, we show that ρZ is quasi-convex. To this end, we need to show that, for all α ∈ R, X1, X2 ∈

X and λ ∈ [0, 1],

ρZ (Xi) 6 α, i = 1, 2 =⇒ ρZ (λX1 + (1− λ)X2) 6 α.

Assume that ρZ (Xi) 6 α for i = 1, 2. For all ε > 0 and i = 1, 2, there exists some mi ∈ R such

that Z +mi > Xi and ρ (Z +mi) 6 ρZ (Xi) + ε 6 α+ ε. Thus we have

λX1 + (1− λ)X2 6 Z + λm1 + (1− λ)m2.

It then follows that

ρZ (λX1 + (1− λ)X2) 6 ρ(Z + λm1 + (1− λ)m2) 6 ρ(Z + max{m1,m2}) 6 α+ ε.

The arbitrariness of ε implies that ρZ (λX1 + (1− λ)X2) 6 α. Therefore, ρZ is quasi-convex. Fi-

nally, {ρZ | Z ∈ X} is a desired family of quasi-convex cash-subadditive risk measures.

Remark 6.3. Theorem 6.2 is more general than the result of Jia et al. (2021) for monetary risk

measures, which says that any monetary risk measure can be written as the infimum of some

convex risk measures. Indeed, the proof of Theorem 6.2 does not depend on, but leads to Theorem

3.1 of Jia et al. (2021) as a special case; see Proposition 6.7 in Section 6.7 for more details on this

statement.

As far as we are aware of, Theorem 6.2 is the first characterization result of cash-subadditive

risk measures that are not necessarily quasi-convex. We also note that, by straightforward argument,

an equivalent statement of Theorem 6.2 (ii) is

ρ(X) = min{ψ(X) | ψ is a quasi-convex cash-subadditive risk measure, ψ > ρ}, X ∈ X .

Remark 6.4. Using the same argument as for Theorem 6.2, a similar result holds for risk measures

without cash subadditivity; that is, a functional ρ : X → R is a risk measure if and only if

ρ(X) = min{ψ(X) | ψ is a quasi-convex risk measure, ψ > ρ}, X ∈ X .
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Example 6.5 (ΛVaR). For a decreasing function Λ : R → [0, 1] that is not constantly 0, by

Theorem 6.1, the ΛVaR in (6.2) admits the representation ΛVaR(X) = infx∈R{VaRΛ(x)(X) ∨ x},

X ∈ X . Since VaR commutes with continuous increasing transforms, we have

ΛVaR(X) = inf
x∈R

VaRΛ(x)(X ∨ x). (6.10)

Let Ct be the set of coherent risk measures dominating VaRt for t ∈ (0, 1). By Proposition 5.2 of

Artzner et al. (1999), VaRt has the representation

VaRt(X) = min
ρ∈Ct

ρ(X), X ∈ X . (6.11)

For x ∈ R, denote by τx : X 7→ τ(X ∨ x) for τ ∈ CΛ(x) and by CΛ,x = {τx : τ ∈ CΛ(x)}. Using (6.10)

and (6.11), we get the representation (6.9) for ΛVaR as

ΛVaR(X) = min

{
ρ(X)

∣∣∣∣∣ ρ ∈ ⋃
x∈R
CΛ,x

}
, X ∈ X . (6.12)

We check that τx ∈ CΛ,x is cash subadditive and quasi-convex for any x ∈ R. Indeed, τx is convex

since it is the composition of a convex risk measure τ and a convex transform y 7→ y ∨ x. To see

that it is cash subadditive, it suffices to note that τx(X + c) 6 τ(X ∨ x+ c) = τx(X) + c for c > 0.

A special case of ΛVaR is the two-level ΛVaR in Example 7 of Bellini and Peri (2021), which

is the simplest form of ΛVaR different from VaR; we give a more explicit formula for this case. Fix

0 < α < β < 1 and z ∈ R. Define Λ′ : x 7→ β1{x6z} + α1{x>z}. The corresponding risk measure is

given by Λ′VaR(X) = min{VaRβ(X),VaRα(X ∨ z)}, X ∈ X . Write Ct,x = {τx : τ ∈ Ct} for x ∈ R

and t ∈ (0, 1). By (6.12),

Λ′VaR(X) = min{ρ(X) | ρ ∈ Cβ ∪ Cα,z}, X ∈ X .

Next, we look at a more explicit representation of cash-subadditive risk measures. An existing

result of Cerreia-Vioglio et al. (2011) states that a quasi-convex cash-subadditive risk measure can

be represented by the supremum of a family of functions (t, Q) 7→ R(t, Q) that are upper semi-

continuous, quasi-concave, increasing and 1-Lipschitz in its first argument t. Combining Theorem

6.2 and Theorem 3.1 of Cerreia-Vioglio et al. (2011), we obtain a representation of a general cash-

subadditive risk measure based on the above functions R.

Proposition 6.3. A functional ρ : X → R is a cash-subadditive risk measure if and only if there

exists a set R of upper semi-continuous, quasi-concave, increasing and 1-Lipschitz in the first ar-

gument functions R : R×Mf → R such that

ρ(X) = min
R∈R

max
Q∈Mf

R (EQ[X], Q) , for all X ∈ X .
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Proposition 6.3 has a similar form to the minimax representation of star-shaped risk measures

in Proposition 8 of Castagnoli et al. (2022).

6.5 Cash-subadditive risk measures with further properties

6.5.1 Normalized and quasi-star-shaped cash-subadditive risk measures

In this section, we present the representation result, Theorem 6.3, of cash-subadditive risk

measures that are normalized and quasi-star-shaped and other relevant technical results. Before

showing Theorem 6.3, we need the representation result below of quasi-normalized, qusi-star-shaped

and cash-subadditive risk measures, which is in similar sense with Lemma 6.2 but based on a

more sophisticated construction with techniques different from the literature. In what follows, the

convention is sup ∅ = −∞ so that all quantities are well defined.

Proposition 6.4. Let ρ : X → R be a quasi-normalized, quasi-star-shaped and cash-subadditive

risk measure. For Z ∈ X and t ∈ R, define

mZ(t) = sup{m ∈ R | ρ(Z +m) = t} and AtZ =
⋃

λ∈[0,1]

{X ∈ X | X 6 λ(Z +mZ(t)) + (1− λ)t}.

We have ρ(X) = minZ∈X ρ̃Z(X) for X ∈ X , where ρ̃Z(X) = inf{t ∈ R | X ∈ AtZ}.

Proof. Since a cash-subadditive risk measure is L∞-continuous, for each Z ∈ X , the range of the

function m 7→ ρ(Z + m) on R is an interval of R. Moreover, recall the definition of Dρ = {ρ(X) |

X ∈ X}, since ρ is quasi-normalized, the function m 7→ ρ(m) on R takes all possible values in Dρ,

which is an interval on R, and by monotonicity, so does m 7→ ρ(Z +m). Hence, ρ(Z +mZ(t)) = t

for all t ∈ Dρ. For X,Z ∈ X , we can write

ρ̃Z(X) = inf{t ∈ R | X ∈ AtZ}

= inf{t ∈ R | X 6 λ(Z +mZ(t)) + (1− λ)t for some λ ∈ [0, 1]}

= inf
λ∈[0,1]

inf{t ∈ R | X 6 λ(Z +mZ(t)) + (1− λ)t}.

It is straightforward that ρ̃Z(X) ∈ Dρ. For X,Z ∈ X and t ∈ Dρ, if ρ̃Z(X) < t, then

X 6 λ(Z + mZ(t)) + (1 − λ)t for some λ ∈ [0, 1]. By monotonicity, quasi-normalization and

quasi-star-shapedness of ρ, we have

ρ(X) 6 ρ(λ(Z +mZ(t)) + (1− λ)t) 6 max{ρ(Z +mZ(t)), t} = t.
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Thus we have ρ(X) 6 infZ∈X ρ̃Z(X). On the other hand,

ρ̃Z(X) 6 inf{t ∈ R | X 6 Z +mZ(t)}

= inf{t ∈ R | mZ(t) = ess-sup(X − Z)} = ρ(Z + ess-sup(X − Z)),

which is ρZ(X) in Lemma 6.2. Using Lemma 6.2, we have

ρ(X) = min
Z∈X

ρZ(X) > inf
Z∈X

ρ̃Z(X) > ρ(X). (6.13)

Moreover, attainability of the infimum is guaranteed by ρ(X) = ρX(X) > ρ̃X(X) > ρ(X). There-

fore, ρ(X) = minZ∈X ρ̃Z(X) holds.

The representation in Proposition 6.4 is closely linked to that in Lemma 6.2 through (6.13).

Remark 6.5. Although arising from completely different considerations, the risk measure ρ̃Z in

Proposition 6.4 has a similar form to an acceptability index of Cherny and Madan (2009). For more

recent results on acceptability indices, see e.g., Righi (2021).

The following representation result concerns cash-subadditive risk measures that are normal-

ized and quasi-star-shaped. We show that a normalized, quasi-star-shaped and cash-subadditive

risk measure can be represented by the lower envelope of a family of ones that are normalized,

quasi-convex, and cash subadditive.

Theorem 6.3. For a functional ρ : X → R, the following statements are equivalent.

(i) ρ is a normalized, quasi-star-shaped and cash-subadditive risk measure.

(ii) There exists a family C of normalized, quasi-convex and cash-subadditive risk measures such

that

ρ(X) = min
ψ∈C

ψ(X), for all X ∈ X . (6.14)

Proof. “(ii) ⇒ (i)”: Assume that there exists a family C of normalized, quasi-convex and cash-

subadditive risk measures such that ρ = minψ∈C ψ. Monotonicity, normalization and cash subaddi-

tivity of ρ are straightforward. Quasi-star-shapedness follows from Lemma 6.1.

“(i) ⇒ (ii)”: Assume that ρ is a normalized, quasi-star-shaped and cash-subadditive risk

measure. Using Proposition 6.4, it suffices to show that ρ̃Z(X) defined via

ρ̃Z(X) = inf
λ∈[0,1]

inf{t ∈ R | X 6 λ(Z +mZ(t)) + (1− λ)t}
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for each Z ∈ X is a normalized, quasi-convex and cash-subadditive risk measure.

We first verify that each ρ̃Z is normalized. For all s ∈ R, by taking λ = 0, we have ρ̃Z(s) 6

inf{t ∈ R | s 6 t} = s. On the other hand, for all t ∈ R and λ ∈ [0, 1] such that s 6 λ(Z+mZ(t)) +

(1− λ)t, by normalization, monotonicity and quasi-star-shapedness of ρ, we have

s = ρ(s) 6 ρ(λ(Z +mZ(t)) + (1− λ)t) 6 max{ρ(Z +mZ(t)), t} = t.

Hence we obtain ρ̃Z(s) > s, and further ρ̃Z(s) = s.

Next, we show that each ρ̃Z is quasi-convex. We first note that AtZ is a convex set for each

t ∈ R, which follows from the fact that AtZ is the set of all X ∈ X dominated by the segment

{λ(Z+mZ(t))+(1−λ)t | λ ∈ [0, 1]}. Take t ∈ R. ForX1, X2 satisfying ρ̃Z(X1) 6 ρ̃Z(X2) 6 t, for any

s > t, we have X1, X2 ∈ AsZ . Convexity of AsZ implies, for each λ ∈ [0, 1], λX1+(1−λ)X2 ∈ AsZ , and

it further gives ρ̃Z(λX1 +(1−λ)X2) 6 s. Since s > t is arbitrary, we have ρ̃Z(λX1 +(1−λ)X2) 6 t.

This gives quasi-convexity of ρ̃Z .

Finally, we prove that ρ̃Z is cash subadditive for all Z ∈ X . Since ρ is cash subadditive, for all

Z ∈ X , t ∈ R and c > 0,

mZ(t+ c) = sup{m+ c ∈ R | ρ(Z +m+ c) = t+ c}

> sup{m ∈ R | ρ(Z +m) = t}+ c = mZ(t) + c.

For all c > 0 and X ∈ X , we have

ρ̃Z(X + c) = inf
λ∈[0,1]

inf{t ∈ R | X + c 6 λ(Z +mZ(t)) + (1− λ)t}

= inf
λ∈[0,1]

inf{t+ c ∈ R | X + c 6 λ(Z +mZ(t+ c)) + (1− λ)(t+ c)}

= inf
λ∈[0,1]

inf{t ∈ R | X 6 λ(Z +mZ(t+ c)− (t+ c)) + t}+ c

6 inf
λ∈[0,1]

inf{t ∈ R | X 6 λ(Z +mZ(t)− t) + t}+ c = ρ̃Z(X) + c.

In summary, {ρ̃Z | Z ∈ X} is a desired family of normalized, quasi-convex and cash-subadditive

risk measures.

The proof of Theorem 6.3 is based on a delicate construction of the dominating risk measures,

different from those used for Theorem 6.2. Normalization in both (i) and (ii) of Theorem 6.3 is

important and cannot be removed, but it can be replaced by quasi-normalization. The modified ver-

sion of Theorem 6.3 using quasi-normalization follows from combining Proposition 6.4 and Lemma

6.1.
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Theorem 6.3 can be seen as a parallel result, although obtained via different techniques, to the

representation result of Castagnoli et al. (2022), which uses star-shapedness, convexity, and cash

additivity instead of quasi-star-shapedness, quasi-convexity and cash subadditivity. It is clear that

(ii) of Theorem 6.3 is equivalent to the following alternative formulation

ρ(X) = min

ψ(X)

∣∣∣∣∣∣ ψ is a normalized, quasi-convex and

cash-subadditive risk measure, ψ > ρ

 , X ∈ X . (6.15)

6.5.2 SSD-consistent cash-subadditive risk measures

In this section, we present below the representation result of SSD-consistent cash-subadditive

risk measures. For this, we define the Expected Shortfall (ES) at level t ∈ [0, 1] as

ESt(X) =
1

1− t

∫ 1

t
VaRα(X) dα, t ∈ [0, 1) and ES1(X) = ess-sup(X), X ∈ X .

As a coherent alternative to VaR, ES is the most important risk measure in current banking regu-

lation; see Wang and Zitikis (2021) for its role in the Basel Accords and an axiomatization. It is

well known that the class of ES characterizes SSD via

X �2 Y ⇐⇒ ESt(X) > ESt(Y ) for all t ∈ [0, 1].

Mao and Wang (2020) investigated SSD-consistent monetary risk measures and provided four

equivalent conditions of SSD-consistency; see their Theorem 2.1. The result can also be extended

to cash-subadditive risk measures, which is shown in the following lemma.

Lemma 6.3. Let ρ be a cash-subadditive risk measure on X . The following are equivalent.

(i) ρ is SSD-consistent.

(ii) ρ(X) > ρ(Y ) for all X,Y ∈ X with X �2 Y and E[X] = E[Y ].

(iii) ρ(X) > ρ(Y ) for all X,Y ∈ X with E [(X −K)+] > E [(Y −K)+] for all K ∈ R.

(iv) ρ(X) > ρ(Y ) for all X,Y ∈ X with Y = E[X | Y ].

(v) ρ(Xc +Y c) > ρ(X +Y ) for all X,Y,Xc, Y c ∈ X such that (Xc, Y c) is comonotonic, X
d
= Xc,

and Y
d
= Y c.

Moreover, any of these properties imply that ρ is law invariant.
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Proof. The equivalence among (i)-(iv) is easy to verify from classic properties of SSD by the same

logic of the proof of Theorem 2.1 in Mao and Wang (2020). The equivalence between (i) and (v) for

continuous functions follows from Theorem 2 of Wang and Wei (2020). Hence, we only need to show

that cash-subadditive risk measures also satisfy ‖ · ‖∞-continuity; namely, limn→∞ ρ (Xn) = ρ(X)

for any sequence Xn ∈ X satisfying ess-sup (|Xn −X|) → 0 as n → ∞. Clearly, for all X,Y ∈ X ,

X 6 Y + ‖X−Y ‖. By monotonicity and cash subadditivity of ρ, we have ρ(X)−ρ(Y ) 6 ‖X−Y ‖.

Switching the roles of X and Y yields the assertion.

The following lemma is needed in the proof of Theorem 6.4, which was obtained by Cerreia-

Vioglio et al. (2011) with the additional assumption of continuity from above. We include a self-

contained proof of Lemma 6.4.

Lemma 6.4. If ρ : X → R is a quasi-convex cash-subadditive risk measure, then ρ is law invariant

if and only if ρ is SSD-consistent.

Proof. It is obvious that SSD-consistency implies law invariance. We will only show the “only if”

statement. By Lemma 6.3, it suffices to show that ρ(X) 6 ρ(Y ) for X �2 Y satisfying E[X] = E[Y ].

By Proposition 3.6 of Mao and Wang (2015), there exists a sequence of Yk = (Y k
1 , . . . , Y

k
nk

), k ∈ N,

such that each Y k
j

d
= Y , nk →∞ as k →∞, and

1

nk

nk∑
j=1

Y k
j → X in L∞.

Note that a cash-subadditive risk measure is L∞-continuous. Quasi-convexity and L∞-continuity

lead to

ρ(Y ) > ρ

 1

nk

nk∑
j=1

Y k
j

→ ρ(X),

and thus ρ is SSD-consistent.

In the following theorem, we establish a representation for an SSD-consistent cash-subadditive

risk measure as the lower envelope of some family of law-invariant, quasi-convex and cash-subadditive

risk measures.

Theorem 6.4. For a functional ρ : X → R, the following statements are equivalent.

(i) ρ is an SSD-consistent cash-subadditive risk measure.
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(ii) There exists a family C of law-invariant, quasi-convex and cash-subadditive risk measures such

that

ρ(X) = min
ψ∈C

ψ(X), for all X ∈ X .

Proof. “(ii) ⇒ (i)” is implied by Lemma 6.4 and the fact that cash subadditivity and SSD-

consistency are preserved under the infimum operation. We will show “(i) ⇒ (ii)”.

Suppose that ρ is an SSD-consistent cash-subadditive risk measure. For all X ∈ X and Z ∈ X ,

define the risk measure

ψZ(X) = inf{ρ(Z +m) | m ∈ R, Z +m �2 X}.

It is straightforward to check that ρ(X) = minZ∈X ψZ(X) and

ψZ(X) = inf{ρ(Z +m) | m ∈ R, ESt(Z) +m > ESt(X), for all t ∈ [0, 1]}

= ρ

(
Z + sup

t∈[0,1]
(ESt(X)− ESt(Z))

)
.

It is clear that ψZ is monotone, cash subadditive and law invariant. We prove that ψZ is quasi-convex

with similar manner to the proof of Theorem 6.2. Assume that ψZ (Xi) 6 α for i = 1, 2. For all ε > 0

and i = 1, 2, there exists some mi ∈ R such that Z+mi �2 Xi and ρ (Z +mi) 6 ψZ (Xi)+ε 6 α+ε.

We have Z + λm1 + (1 − λ)m2 �2 λX1 + (1 − λ)X2 for all λ ∈ [0, 1]. This can be obtained by

observing that

ESt(λX1 + (1− λ)X2) 6 λESt(X1) + (1− λ)ESt(X2) 6 ESt(Z + λm1 + (1− λ)m2),

for all t ∈ [0, 1], due to convexity and cash additivity of ESt. It follows that

ψZ (λX1 + (1− λ)X2) 6 ρ(Z + λm1 + (1− λ)m2) 6 ρ(Z + max{m1,m2}) 6 α+ ε.

The arbitrariness of ε implies that ψZ (λX1 + (1− λ)X2) 6 α. Therefore, ψZ is quasi-convex. We

conclude that {ψZ | Z ∈ X} is a desired family of law-invariant, quasi-convex and cash-subadditive

risk measures.

Theorem 6.4 can be seen as a parallel result to Theorem 3.3 of Mao and Wang (2020) which

showed that any SSD-consistent monetary risk measure is the lower envelope of law-invariant and

convex monetary risk measures. Similarly to (6.15), we can reformulate (ii) of Theorem 6.4 as

ρ(X) = min

ψ(X)

∣∣∣∣∣∣ ψ is a law-invariant, quasi-convex and

cash-subadditive risk measure, ψ > ρ

 , X ∈ X .
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A representation result in a similar spirit to Proposition 6.3 for SSD-consistent cash-subadditive

risk measures follows directly from Theorem 5.1 of Cerreia-Vioglio et al. (2011) and Theorem 6.4.

Proposition 6.5. A functional ρ : X → R is an SSD-consistent cash-subadditive risk measure if

and only if there exists a set R of upper semi-continuous, quasi-concave, increasing and 1-Lipschitz

in the first component functions R : R×M→ R such that

ρ(X) = min
R∈R

max
Q∈Mf

R

(∫ 1

0
VaRt(X)VaRt

(
dQ

dP

)
dt, Q

)
, for all X ∈ X .

6.5.3 Risk sharing with SSD-consistent cash-subadditive risk measures

Risk sharing problems for law-invariant and cash-additive risk measures are extensively studied

in the literature; see e.g., Barrieu and El Karoui (2005), Jouini et al. (2008) and Filipović and

Svindland (2008) for convex risk measures and Embrechts et al. (2018, 2020), Liebrich (2021) and

Liu et al. (2022) for some classes of non-convex risk measures. Moreover, Mao and Wang (2020)

discussed the risk sharing problem for consistent risk measures, i.e., risk measures that are SSD-

consistent and cash additive. Cash additivity is assumed in the above results. We present a simple

result in this section on cash-subadditive and SSD-consistent risk measures.

For a given random loss X ∈ X , the set of its possible allocations is defined as An(X) =

{(X1, . . . , Xn) ∈ X n : X1 + · · ·+Xn = X}. The inf-convolution of risk measures ρ1, . . . , ρn : X → R

is defined as
n
�
i=1

ρi(X) = inf

{
n∑
i=1

ρi(Xi)

∣∣∣∣∣ (X1, . . . , Xn) ∈ An(X)

}
, X ∈ X . (6.16)

The solution (X∗1 , . . . , X
∗
n) ∈ An(X) to the problem (6.16), if exists, is called optimal.

Proposition 6.6. Let ρ1, . . . , ρn : X → R be SSD-consistent cash-subadditive risk measures.

(i) Define Acn(X) = {(X1, . . . , Xn) ∈ An(X) | (X1, . . . , Xn) is comonotonic}. We have

n
�
i=1

ρi(X) = inf

{
n∑
i=1

ρi(Xi)

∣∣∣∣∣ (X1, . . . , Xn) ∈ Acn(X)

}
, X ∈ X .

(ii) �ni=1 ρi is an SSD-consistent cash-subadditive risk measure.

Proof. (i) This follows similarly from the proof of Theorem 4.1 of Mao and Wang (2020).

(ii) It is straightforward that �ni=1 ρi is a cash-subadditive risk measure. To prove that �ni=1 ρi

is SSD-consistent, by Lemma 6.3, we show that �ni=1 ρi(X) > �ni=1 ρi(Y ) for all X,Y ∈ X such
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that Y = E[X | Y ]. Indeed, we take (X1, . . . , Xn) ∈ An(X) and Yi = E[Xi | Y ] for all i = 1, . . . , n

and have (Y1, . . . , Yn) ∈ An(Y ). Since ρ1, . . . , ρn are SSD-consistent and cash subadditive, we have

by Lemma 6.3 that ρi(Xi) > ρi(Yi) for all i = 1, . . . , n. It follows that

n
�
i=1

ρi(X) = inf

{
n∑
i=1

ρi(Xi)

∣∣∣∣∣ (X1, . . . , Xn) ∈ An(X)

}

> inf

{
n∑
i=1

ρi(Yi)

∣∣∣∣∣ (Y1, . . . , Yn) ∈ An(Y )

}
=

n
�
i=1

ρi(Y ).

Remark 6.6. Different from Theorem 4.1 of Mao and Wang (2020), we note that the inf-convolution

of SSD-consistent cash-subadditive risk measures does not need to be finite. An example is given by

ρ : X 7→ min{E[X], 0}. It is straightforward to verify that ρ is an SSD-consistent cash-subadditive

risk measure. The inf-convolution of ρ and ρ at 0 is infX∈X {min{E[X], 0}+min{−E[X], 0}} = −∞.

6.6 Conclusion

We provide a systemic study of cash-subadditive risk measures, which were traditionally stud-

ied together with convexity (El Karoui and Ravanelli, 2009) or quasi-convexity (Cerreia-Vioglio

et al., 2011). Different from the literature, our study focuses on cash-subadditive risk measures

without quasi-convexity, which include many natural examples as discussed in the chapter. As

our major technical contributions, a general cash-subadditive risk measure is shown to be repre-

sentable by the lower envelope of a family of quasi-convex cash-subadditive risk measures (Theorem

6.2). The notions of quasi-star-shapedness and quasi-normalization were introduced as analogues

of star-shapedness and normalization studied by Castagnoli et al. (2022). It turns out that quasi-

star-shapedness and quasi-normalization fit naturally in the setting of cash subadditivity, leading

to a new representation result (Theorem 6.3). A representation result of SSD-consistent cash-

subadditive risk measures was also obtained (Theorem 6.4). Furthermore, we obtain several results

on the risk measure ΛVaR proposed by Frittelli et al. (2014), including a new representation result

(Theorem 6.1). In particular, the class of ΛVaR serves as a natural example of quasi-star-shaped,

quasi-normalized and cash-subadditive risk measures, which are not star-shaped, normalized, or

cash additive.

Risk measures without cash additivity have received increasing attention in the recent literature

due to their technical generality and intimate connection to decision analysis, risk transforms,

portfolio optimization, and stochastic interest rates; many references and examples were mentioned
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in the introduction and throughout the chapter. Results in this chapter serve as a building block

for future studies on cash subadditivity and the new properties of quasi-star-shapedness and quasi-

normalization, for which many questions and applications remain to be explored.

6.7 Additional results and technical discussions

This section includes a few additional technical results, examples and discussions of the rep-

resentation results of cash-subadditive risk measures, which are not used in the main text of the

chapter. Some of them may be of independent interest.

6.7.1 Connection to a representation of monetary risk measures

The proposition below illustrates how Lemma 6.2 can be used to show that any monetary risk

measure is the minimum of some convex risk measures (Jia et al., 2021, Theorem 3.1).

Proposition 6.7. A functional ρ : X → R is a monetary risk measure if and only if

ρ(X) = min
Z∈Aρ

ess-sup(X − Z), for all X ∈ X ,

where Aρ is the acceptance set of ρ given by Aρ = {Z ∈ X | ρ(Z) 6 0}.

Proof. The “if” part is straightforward. We prove the “only if” part. For all X ∈ X , by Lemma

6.2 and cash additivity of ρ, we have

ρ(X) = min
Z∈X

ρ(Z + ess-sup(X − Z)) = min
Z∈X
{ρ(Z) + ess-sup(X − Z)} .

By taking Z0 = X−ρ(X), we have ρ(Z0)+ess-sup(X−Z0) = ρ(X), where the minimum is obtained.

Define A0
ρ = {Z ∈ X | ρ(Z) = 0}. We have Z0 ∈ A0

ρ and thus

ρ(X) = min
Z∈A0

ρ

(ρ(Z) + ess-sup(X − Z)) = min
Z∈A0

ρ

ess-sup(X − Z) > min
Z∈Aρ

ess-sup(X − Z).

On the other hand, since ρ(Z) 6 0 for all Z ∈ Aρ, we have

ρ(X) = min
Z∈Aρ

{ρ(Z) + ess-sup(X − Z)} 6 min
Z∈Aρ

ess-sup(X − Z).

Therefore, we have ρ(X) = minZ∈Aρ ess-sup(X − Z).
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6.7.2 Comonotonic quasi-convexity

Since law-invariant, quasi-convex and cash-subsdditive risk measures are SSD-consistent (Lemma

6.4), a general law-invariant cash-subadditive risk measure (such as VaR in Section 6.2) does not

admit a representation via the lower envelope of a family of law-invariant, quasi-convex and cash-

subsdditive risk measures. One remaining question is whether a law-invariant cash-subadditive risk

measure can be represented as the infimum of a set of law-invariant cash-subadditive risk measures

with some other properties. For such a representation, we need comonotonic quasi-convexity.

Comonotonic quasi-convexity : ρ(λX + (1 − λ)Y ) 6 max{ρ(X), ρ(Y )} for all comonotonic

(X,Y ) ∈ X 2 and λ ∈ [0, 1].

The property of comonotonic quasi-convexity appeared in various contexts; e.g., Xia (2013), Tian

and Long (2015) and Li and Wang (2019). Before showing the representation result, we first give

the following equivalence result demonstrating the relations among several properties of ρ, similarly

to Lemma 6.4.

Lemma 6.5. If ρ : X → R is a cash-subadditive risk measure, then ρ is law invariant and quasi-

convex if and only if ρ is SSD-consistent and comonotonic quasi-convex.

Proof. The “only if” part follows directly from Lemma 6.4. We prove the “if” part. Suppose that

ρ is SSD-consistent and comonotonic quasi-convex. It is clear that ρ is law invariant by taking

X
d
= Y and observing X �2 Y and Y �2 X. For all X,Y ∈ X , take Xc, Y c ∈ X such that (Xc, Y c)

is comonotonic, Xc d
= X, and Y c d

= Y . It follows that λXc + (1 − λ)Y c �2 λX + (1 − λ)Y for all

λ ∈ [0, 1] (see e.g., Rüschendorf, 2013, Theorem 3.5). Hence, we have

ρ(λX + (1− λ)Y ) 6 ρ(λXc + (1− λ)Y c) 6 max{ρ(Xc), ρ(Y c)} = max{ρ(X), ρ(Y )},

which indicates that ρ is quasi-convex.

With the extra requirement of comonotonic quasi-convexity, we obtain a unifying umbrella for

the representation of cash-subadditive risk measures with various properties. This result is parallel

to the result of Jia et al. (2021) on monetary risk measures, where comonotonic convexity (Song

and Yan, 2006, 2009) is in place of our comonotonic quasi-convexity.

Proposition 6.8. For a functional ρ : X → R, we have the following statements.
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(i) ρ is a cash-subadditive risk measure if and only if it is the lower envelope of a family of

comonotonic quasi-convex and cash-subadditive risk measures.

(ii) ρ is a law-invariant cash-subadditive risk measure if and only if it is the lower envelope of a

family of law-invariant, comonotonic quasi-convex and cash-subadditive risk measures.

The equivalence (ii) holds true if “law-invariant” is replaced by “normalized and quasi-star-shaped”

or “SSD-consistent”.

Proof. Note that each of law invariance, normalization, quasi-star-shapedness, SSD-consistency and

cash subadditivity is preserved under taking an infimum, and hence the “if” parts in all statements

are obvious. Since comonotonic quasi-convexity is weaker than quasi-convexity, the representations

(“only if”) in Theorems 6.2, 6.3 and 6.4 hold true by replacing quasi-convexity with comonotonic

quasi-convexity. This, together with Lemma 6.4, gives the “only if” parts except for the case of

law-invariant cash-subadditive risk measures in (ii). Below we show this part.

Assume ρ is a law-invariant cash-subadditive risk measure. According to Proposition 6.10

below, for all X ∈ X , we have ρ(X) = minZ∈X φZ(X) in which

φZ(X) = ρ

(
Z + sup

t∈(0,1)
(VaRt(X)−VaRt(Z))

)
.

It is clear that φZ is monotone, cash subadditive and law invariant. We prove that φZ is comono-

tonic quasi-convex by the similar way to Theorems 6.2 and 6.4. Assume that (X1, X2) ∈ X 2 is

comonotonic and φZ (Xi) 6 α for i = 1, 2. For all ε > 0 and i = 1, 2, there exists some mi ∈ R such

that Z +mi �1 Xi and ρ (Z +mi) 6 φZ (Xi) + ε 6 α+ ε. For all λ ∈ [0, 1], comonotonic additivity

of VaRt yields that

VaRt(λX1 + (1− λ)X2) = λVaRt(X1) + (1− λ)VaRt(X2) 6 VaRt(Z + λm1 + (1− λ)m2),

for all t ∈ (0, 1). We thus have Z +m �1 λX1 + (1− λ)X2. It follows that

φZ (λX1 + (1− λ)X2) 6 ρ(Z + λm1 + (1− λ)m2) 6 ρ(Z + max{m1,m2}) 6 α+ ε.

Since ε is arbitrary, φZ (λX1 + (1− λ)X2) 6 α. Therefore, φZ is comonotonic quasi-convex.

6.7.3 Writing cash-subadditive risk measures via monetary ones

Theorem 6.2 focuses on the representation of a general cash-subadditive risk measure in terms

of some family of quasi-convex cash-subadditive risk measures. In general, we cannot write a cash-

subadditive risk measure as the lower envelope of monetary risk measures, because cash additivity
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is preserved under infimum operations. Nevertheless, we can obtain a connection by allowing the

monetary risk measures to be indexed by some functions β which depend on X.

Proposition 6.9. For a risk measure ρ : X → R, the following statements are equivalent.

(i) ρ is cash subadditive.

(ii) ρ satisfies

ρ(X) = min
β∈BX

max
Q∈Mf

{EQ[X]− β(Q)} , for all X ∈ X , (6.17)

where BX is a set of mappings from Mf to (−∞,∞] for all X ∈ X , with BX1 ⊆ BX2 for all

X1, X2 ∈ X such that X1 6 X2. Moreover, the set BX can be chosen as

BX = {β :Mf → (−∞,∞], Q 7→ EQ[Z]− ρ(Z) | Z ∈ X , Z 6 X}, for all X ∈ X .

(iii) ρ satisfies

ρ(X) = min
ψ∈CX

ψ(X), for all X ∈ X ,

where CX is a set of convex monetary risk measures on X for all X ∈ X , with CX1 ⊆ CX2 for

all X1, X2 ∈ X such that X1 6 X2.

(iv) ρ satisfies

ρ(X) = min

ψ(X)

∣∣∣∣∣∣ ψ is a convex monetary risk measure,

ψ(X + c) > ρ(X + c) for all c > 0

 , for all X ∈ X .

Proof. “(ii) ⇒ (iii)” is straightforward. We prove “(i) ⇒ (ii)”, “(iii) ⇒ (iv)” and “(iv) ⇒ (i)”.

(i) ⇒ (ii): Suppose that ρ is cash subadditive. For all X ∈ X , by Lemma 6.2, we have

ρ(X) = min
Z∈X

ρ(Z + ess-sup(X − Z)).

Since the minimum above can be obtained by taking Z = X, we have

ρ(X) = min
Z∈X , Z6X

ρ(Z + ess-sup(X − Z)) 6 min
Z∈X , Z6X

{ess-sup(X − Z) + ρ(Z)} 6 ρ(X),

where the second last inequality is due to cash subadditivity of ρ and the last inequality is implied

by taking Z = X. Hence, we have

ρ(X) = min
Z∈X , Z6X

{ess-sup(X − Z) + ρ(Z)} = min
Z∈X , Z6X

max
Q∈Mf

{EQ[X − Z] + ρ(Z)}

= min
Z∈X , Z6X

max
Q∈Mf

{EQ[X]− βZ(Q)} ,
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where βZ(Q) = EQ[Z]− ρ(Z) for all Q ∈ Mf . Therefore, we show that {βZ | Z ∈ X , Z 6 X} is a

desired family of convex functionals on Mf .

(iii) ⇒ (iv): Suppose that for X ∈ X , there exists a family CX of convex monetary risk

measures on X such that ρ(X) = minψ∈CX ψ(X), where the sets CX1 ⊆ CX2 for all X1, X2 ∈ X such

that X1 6 X2. It suffices to show that ψ(X + c) > ρ(X + c) for all ψ ∈ CX and all c > 0.

For all m > 0, since CX ⊆ CX+m and ψ is cash additive for all ψ ∈ CX+m, we have

ρ(X +m) = min
ψ∈CX+m

ψ(X +m) 6 min
ψ∈CX

ψ(X) +m = ρ(X) +m.

Thus ρ is cash subadditive. It follows that for all ψ ∈ CX and all c > 0, we have

ψ(X + c) = ψ(X) + c > ρ(X) + c > ρ(X + c).

(iv) ⇒ (i): For all X ∈ X and m > 0, we have

ρ(X +m) = min

ψ(X +m)

∣∣∣∣∣∣ ψ is a convex monetary risk measure,

ψ(X +m+ c) > ρ(X +m+ c) for all c > 0


6 min

ψ(X) +m

∣∣∣∣∣∣ ψ is a convex monetary risk measure,

ψ(X + c) > ρ(X + c) for all c > 0


= ρ(X) +m.

Thus ρ is cash subadditive.

A particularly interesting property is (iv) of Proposition 6.9, which says that a risk measure ρ

is cash subadditive if and only if, for each X, ρ(X) is the minimum of ψ(X) for all convex monetary

risk measures ψ dominating ρ for risks of the type X + c for c > 0.

Remark 6.7. It is straightforward to see that the equivalence result in Proposition 6.9 holds true if

the maximum in (6.17) is replaced by a supremum. In that case, the set Mf can be conveniently

replaced by M.

6.7.4 Law-invariant cash-subadditive risk measures and VaR

We first connect law-invariant cash-subadditive risk measures to VaR defined in Section 6.2.

It is well known that the class of VaR characterizes FSD via

X �1 Y ⇐⇒ VaRt(X) > VaRt(Y ) for all t ∈ (0, 1).
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Proposition 6.10. If ρ : X → R is a risk measure, then ρ is law invariant and cash subadditive if

and only if it satisfies

ρ(X) = min
g∈GX

sup
t∈(0,1)

{VaRt(X)− g(t)} , for all X ∈ X ,

where GX is a set of measurable functions from (0, 1) to (−∞,∞] for all X ∈ X , with GX1 ⊆ GX2

for all X1, X2 ∈ X such that X2 �1 X1. Moreover, the set GX can be chosen as

GX = {g : (0, 1)→ (−∞,∞], t 7→ VaRt(Z)− ρ(Z) | Z ∈ X , X �1 Z}, for all X ∈ X .

Proof. “⇒”: Suppose that ρ is a law-invariant cash-subadditive risk measure. For all X ∈ X and

Z ∈ X , define the risk measure

φZ(X) = inf{ρ(Z +m) | m ∈ R, Z +m �1 X}.

For all m ∈ R such that Z +m �1 X, since any law-invariant risk measure is FSD-consistent (e.g.,

Föllmer and Schied, 2016, Remark 4.58), we have ρ(Z +m) > ρ(X). It follows that φZ(X) > ρ(X)

for all Z ∈ X . Noting that φX(X) = ρ(X), we have ρ(X) = minZ∈X φZ(X). By definition of φZ ,

we have

φZ(X) = inf {ρ(Z +m) | m ∈ R, VaRt(Z) +m > VaRt(X) for all t ∈ (0, 1)}

= ρ

(
Z + sup

t∈(0,1)
(VaRt(X)−VaRt(Z))

)
.

Similarly to the proof of Proposition 6.9, we have

ρ(X) = min
Z∈X , X�1Z

sup
t∈(0,1)

ρ(Z + VaRt(X)−VaRt(Z))

6 min
Z∈X , X�1Z

sup
t∈(0,1)

{VaRt(X)−VaRt(Z) + ρ(Z)} 6 ρ(X).

It follows that

ρ(X) = min
Z∈X , X�1Z

sup
t∈(0,1)

{VaRt(X)− gZ(t)} ,

where gZ(t) = VaRt(Z) − ρ(Z) for all t ∈ (0, 1). Therefore, {gZ | Z ∈ X , X �1 Z} is a desired

family of measurable functions on (0, 1).

“⇐”: We first show that ρ is cash subadditive. Indeed, for all X ∈ X and m > 0, we have

X +m �1 X. Hence, GX ⊆ GX+m and

ρ(X +m) = min
g∈GX+m

sup
t∈(0,1)

{VaRt(X)− g(t)}+m

6 min
g∈GX

sup
t∈(0,1)

{VaRt(X)− g(t)}+m = ρ(X) +m.
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To show law invariance of ρ, for all X,Y ∈ X such that X
d
= Y , we have X �1 Y and Y �1 X. It

follows that GX = GY and thus ρ is law invariant.

Remark 6.8. Although the functional

φZ(X) = inf{ρ(Z +m) | m ∈ R, Z +m �1 X}, X ∈ X ,

defined in the proof of Proposition 6.10 is monotone, cash subadditive and law invariant, φZ is not

quasi-convex. This is because VaR does not satisfy quasi-convexity.

6.7.5 Certainty equivalents of RDEU with discount factor ambiguity

The rank-dependent expected utility (RDEU) of Quiggin (1982) is a popular behavioral deci-

sion model specified by the preference functional∫
Ω
`(X) dT ◦ P, X ∈ X ,

where ` : R→ R is a strictly increasing and convex loss function (positive random variables represent

losses), and T : [0, 1]→ [0, 1] is a probability distortion function. We consider the choice of T given

by T = αT1 +(1−α)T2 where T1 (resp. T2) are increasing, differentiable and convex (resp. concave)

probability distortion functions with T1(0) = T2(0) = 0 and T1(1) = T2(1) = 1. Following Carlier

and Dana (2003), for an increasing, differentiable and convex distortion function h : [0, 1] → [0, 1]

with h(0) = 0 and h(1) = 1, define

core(h ◦ P ) = {Q ∈Mf | Q(A) > h(P (A)) for all A ∈ F}.

We have∫
Ω
`(X) dT ◦ P = α min

Q1∈core(T1◦P )
EQ1 [`(X)] + (1− α) max

Q2∈core(T̂2◦P )
EQ2 [`(X)], (6.18)

where T̂2 : x 7→ 1 − T2(1 − x). Functional of the form (6.18) above belongs to the family of α-

maxmin expected utility as in Example 6.3. The certainty equivalent of the RDEU with ambiguity

of a discount factor is given by

ρ(X) = sup
λ∈I

`−1

(∫
Ω
`(λX) dT ◦ P

)
= min

Q1∈core(T1◦P )
max

Q2∈core(T̂2◦P )
sup
λ∈I

`−1 (αEQ1 [`(λX)] + (1− α)EQ2 [`(λX)]) ,
(6.19)
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where the ambiguity set I ⊆ [0, 1]. It is clear that if we take the loss function to be ` : x 7→ eγX for

γ > 0, then ρ is a cash-subadditive risk measure, while ρ pines down to a monetary risk measure

without ambiguity of the discount factor λ.

Note that for all λ ∈ I, Q1 ∈ core(T1 ◦ P ) and Q2 ∈ core(T̂2 ◦ P ), the mapping

X 7→ `−1 (αEQ1 [`(λX)] + (1− α)EQ2 [`(λX)])

is quasi-convex and upper semi-continuous. Theorem 3.1 and Proposition 5.3 of Cerreia-Vioglio et

al. (2011) showed an explicit representation of the certainty equivalent of the expected loss given

by `−1(EP [`(·)]). In the proposition below, we show the representation result of a more general ρ

in a similar sense. Define ¯̀ : [−∞,∞] → [−∞,∞] as the extended-valued function with inverse

function given by

¯̀−1(x) =


`−1(x), x ∈ (inft∈R `(t),∞),

−∞, x ∈ [−∞, inft∈R `(t)],

∞, x =∞.

Let `∗ : [−∞,∞]→ [−∞,∞] be the conjugate function of ¯̀ given by

`∗(x) = sup
y∈[−∞,∞]

{xy − ¯̀(y)}, x ∈ [−∞,∞].

Proposition 6.11. Let Q̃ = αQ1 + (1 − α)Q2 for Q1 ∈ core(T1 ◦ P ) and Q2 ∈ core(T̂2 ◦ P ). For

X ∈ X , the risk measure ρ in (6.19) adopts the following representation:

ρ(X) = min
Q1∈core(T1◦P )

max
Q2∈core(T̂2◦P )

sup
λ∈I

max
Q∈Mf

R(EQ[X], Q),

where we have

R(t, Q) = `−1

(
max
x>0

[
λxt− E

Q̃

(
`∗
(
x

dQ

dQ̃

))])
for all (t, Q) ∈ R×Mf .

Proof. For all X ∈ X , λ ∈ I, Q1 ∈ core(T1 ◦ P ) and Q2 ∈ core(T̂2 ◦ P ), by Theorem 3.1 of

Cerreia-Vioglio et al. (2011), we have

`−1 (αEQ1 [`(λX)] + (1− α)EQ2 [`(λX)]) = `−1
(
E
Q̃

[`(λX)]
)

= max
Q∈Mf

R(EQ[X], Q),

where for all (t, Q) ∈ R×Mf ,

R(t, Q) = inf
{
`−1

(
E
Q̃

[`(λX)]
) ∣∣∣ EQ[X] = t

}
.
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It is clear by definition that P is absolutely continuous with respect to Q1 and Q2 and thus P is

absolutely continuous with respect to Q̃. It follows that all Q ∈Mf are also absolutely continuous

with respect to Q̃. By Proposition 5.3 of Cerreia-Vioglio et al. (2011), we have

R(t, Q) = `−1

(
max
x>0

[
λxt− E

Q̃

(
`∗
(
x

dQ

dQ̃

))])
.

6.7.6 An additional result on the inf-convolution in Section 6.5.3

In the proposition below, we consider general cash-subadditive risk measures and give a math-

ematical representation result of the inf-convolution �ni=1 ρi, whose penalty is given by the sum of

the penalty functions of individual risk measures ρ1, . . . , ρn.

Proposition 6.12. Let ρ1, . . . , ρn : X → R be cash-subadditive risk measures. Suppose that an

optimal allocation of (6.16) exists. Define

BiX = {β :Mf → (−∞,∞], Q 7→ EQ[Z]− ρi(Z) | Z ∈ X , Z 6 X}, for all X ∈ X .

We have
n
�
i=1

ρi(X) = min
β∈ΣX

max
Q∈Mf

{EQ[X]− β(Q)} , for all X ∈ X ,

where

ΣX =
⋃

(X1,...,Xn)∈An(X)

B1
X1

+ · · ·+ BnXn .
7

Proof. We only prove the case n = 2 and the cases n > 3 are similar. Suppose that ρ1 and ρ2 are

cash-subadditive risk measures. It is clear that �2
i=1 ρi as shown in (6.16) is a cash-subadditive risk

measure. By Proposition 6.9, we have

2
�
i=1

ρi(X) = min
β∈BX

max
Q∈Mf

{EQ[X]− β(Q)} , for all X ∈ X ,

where

BX = {β :Mf → (−∞,∞], Q 7→ EQ[Z]−
2
�
i=1

ρi(Z) | Z ∈ X , Z 6 X}, for all X ∈ X .

For all Z,X ∈ X with Z 6 X, (Z1, Z2) ∈ A2(Z), (X1, X2) ∈ A2(X) with Z1 6 X1, Z2 6 X2, and

Q ∈Mf , we have �2
i=1 ρi(Z) 6 ρ1(Z1) + ρ2(Z2) by definition. It follows that

2
�
i=1

ρi(X) = min
Z∈X , Z6X

max
Q∈Mf

{EQ[X]− EQ[Z] +
2
�
i=1

ρi(Z)}

6 min
(Z1,Z2)∈ZX

max
Q∈Mf

{EQ[X]− EQ[Z] + ρ1(Z1) + ρ2(Z2)} = min
β∈ΣX

max
Q∈Mf

{EQ[X]− β(Q)} ,

7The sum of two sets B1 and B2 is defined as B1 + B2 = {β1 + β2 | β1 ∈ B1, β2 ∈ B2}.
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where

ZX = {(Z1, Z2) ∈ A2(Z) | Z1 6 X1, Z2 6 X2, (X1, X2) ∈ A2(X)}, X ∈ X .

On the other hand, for all X ∈ X and β ∈ BX , there exists Z ∈ X with Z 6 X, such that

β(Q) = EQ[Z]−�2
i=1 ρi(Z) for all Q ∈Mf . Since an optimal allocation with respect to �2

i=1 ρi(Z)

exists, written as (Z∗1 , Z
∗
2 ) ∈ A2(Z), we have �2

i=1 ρi(Z) = ρ1(Z∗1 ) + ρ2(Z∗2 ). Hence,

β(Q) = EQ[Z]− ρ1(Z∗1 ) + ρ2(Z∗2 ).

It is also clear that there exists (X1, X2) ∈ A2(X) such that Z∗1 6 X1 and Z∗2 6 X2. It follows that

β ∈ ΣX and thus BX ⊆ ΣX . This implies that

2
�
i=1

ρi(X) > min
β∈ΣX

max
Q∈Mf

{EQ[X]− β(Q)} , for all X ∈ X .

Therefore, we have

2
�
i=1

ρi(X) = min
β∈ΣX

max
Q∈Mf

{EQ[X]− β(Q)} , for all X ∈ X .
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Chapter 7

E-backtesting

7.1 Introduction

Forecasting risk measures is important for financial institutions to calculate capital reserves

for risk management purposes. Regulators are responsible to monitor whether risk forecasts are

correctly reported by conducting hypothesis tests known as backtests (see e.g., Christoffersen, 2011;

McNeil et al., 2015, for general treatments). Regulatory backtests have several features distinct

from traditional testing problems; see Acerbi and Szekely (2014) and Nolde and Ziegel (2017).

First, risk forecasts and realized losses arrive sequentially over time. Second, due to frequently

changing portfolio positions and the complicated temporal nature of financial data, the losses and

risk predictions are neither independent nor identically distributed, and they do not follow any

standard time-series models. Third, the tester (e.g., a regulator) is concerned about risk measure

underestimation, which means high insolvency risk, whereas overestimation (i.e., being conservative)

is secondary or acceptable. Fourth, the tester does not necessarily accurately know the underlying

model used by a financial institution to produce risk predictions.

In financial practice, a well-adopted simple approach exists for backtesting the Value-at-Risk

(VaR), which is the so-called three-zone approach based on binomial tests described in BCBS (2013);

this approach is model-free in the sense that one directly tests the risk forecast without testing any

specific family of models. The Basel Committee on Banking Supervision BCBS (2016) has replaced

VaR by the Expected Shortfall (ES) as the standard regulatory measure for market risk, mostly

due to the convenient properties of ES, in particular, being able to capture tail risk.1 However,

1Quoting BCBS (2016, p.1): Use of ES will help to ensure a more prudent capture of “tail risk” and capital
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Literature

Parametric or

dependence

assumptions

Forecast

structural

assumptions

Fixed sample

size

Asymptotic

test

Reliance on VaR

or distributional

forecasts

MF00 yes yes yes yes yes

AS14 yes yes yes yes yes

DE17 yes yes yes yes yes

NZ17 yes yes yes yes yes

BD22 yes yes yes yes no

HD22 yes yes no no yes

This chapter no no no no yes

Table 7.1: Comparison of existing backtesting methods for ES

Notes: We use shortcuts MF00 for McNeil and Frey (2000), AS14 for Acerbi and Szekely (2014), DE17 for Du

and Escanciano (2017), NZ17 for Nolde and Ziegel (2017), BD22 for Bayer and Dimitriadis (2022), and HD22

for Hoga and Demetrescu (2022). Parametric or dependence assumptions refer to those on loss distributions,

time series models, stationarity, or strong mixing. Forecast structural assumptions refer to requirements on

the forms and properties of risk forecasts. Acerbi and Szekely (2014) proposed three methods of backtesting

ES; The first two methods do not require specific forms of ES forecasts, but the third method requires ES

to be estimated as realized ranks.

as discussed by Gneiting (2011), ES is not elicitable, and backtesting ES is substantially more

challenging than VaR. Table 7.1 summarizes the main features of existing methods backtesting

ES. To the best of our knowledge, there is no model-free non-asymptotic backtesting method for

ES. Moreover, except for Hoga and Demetrescu (2022), most of the backtesting methods in the

existing literature only work for a fixed data size, and are thus not valid under option stopping, or

equivalently, not anytime valid (see e.g., Chu et al., 1996, for discussions). This creates limitations

to financial regulation practice where early rejections are highly desirable.

In this chapter, we develop a model-free backtesting method for risk measures, including ES,

using the concepts of e-values and e-tests (Shafer, 2021; Vovk and Wang, 2021; Grünwald et al.,

2020). E-tests have important advantages over classical statistical tests (p-tests) based on p-values.

adequacy during periods of significant financial market stress. See also Wang and Zitikis (2021) for an axiomatic

justification of ES in financial regulation.
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Wang and Ramdas (2022, Section 2) collects many reasons for using e-values and e-tests, regarding

high-dimensional asymptotics, composite models, sequential (any-time valid) inference, information

accumulation, and robustness to model misspecification and dependence; other advantages of e-

values are illustrated by Grünwald et al. (2020), Vovk and Wang (2021) and Vovk et al. (2022). As

a particularly relevant feature to our context, our proposed e-tests allow regulators to get alerted

early as the e-process accumulates to a reasonably large value. This is different from scientific

discoveries (such as genome studies) where a scientist may not be entitled to reject a hypothesis

based on merely “substantial” evidence. Noticing this, a multi-zone approach similar to the three-

zone approach can be developed by setting different e-value thresholds in financial regulation.

The main contribution of this chapter is four-fold: First, we introduce the new notion of model-

free e-statistics and propose e-backtesting methods. In particular, we obtain model-free e-statistics

for ES in Section 7.2 (Theorem 7.1), allowing us to construct e-processes to backtest ES, as well

as other risk measures in Section 7.3 (Theorem 7.2). The backtesting method for VaR and ES is

discussed in Section 7.4. Second, with model-free e-statistics chosen, the next important step to

construct an e-process by choosing a suitable betting process, which we address in Section 7.5. We

propose three new methods to calculate the betting processes based on data. It turns out that

these methods are asymptotically optimal (equivalent to an oracle betting process) under different

situations (Theorem 7.3). Third, we characterize model-free e-statistics for the mean, the variance,

VaR (Theorem 7.4), and ES (Theorem 7.5) in Section 7.6 by establishing a link between model-free

e-statistics and identification functions. All model-free e-statistics for these functionals take similar

forms as mixtures between 1 and a simple model-free e-statistic. Finally, through the simulation

study and data analysis in Sections 7.7 and 7.8, we demonstrate detailed procedures of backtesting

VaR and ES using e-values for practical operations of financial regulations. In addition to our main

content, Section 7.10 shows the betting processes calculated via Taylor approximation for VaR and

ES; Section 7.11 discusses the link between model-free e-statistics and identification functions in

preparation for the characterization results in Section 7.6; except for Theorems 7.1 and Theorem

7.3, proofs of all results are relegated to Section 7.12; Section 7.13 contains some necessary details

of our simulation and data analysis. To support our new methodology, extended simulation studies

and data analyses are presented in the separate paper Wang et al. (2022) for the interested reader.
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7.1.1 Related literature

Besides financial regulation, evaluating forecasting models and methods for major economic

variables is also essential in the decision-making processes of government institutions and regulatory

authorities. Earlier work on predictive ability tests and forecast selection includes Diebold and

Mariano (1995), whose method was extended by West (1996), Clark and McCracken (2001), and

Giacomini and White (2006). Unconditional backtests of VaR were considered by Kupiec (1995)

on testing Bernoulli distributions, which were extended by Christoffersen (1998) to include testing

independence of the VaR-violations. Engle and Manganelli (2004) tested conditional autoregressive

VaR; Berkowitz et al. (2020) unified existing evaluation methods of VaR; and Ziggel et al. (2014)

proposed a Monte Carlo simulation-based backtesting method for VaR.

Due to its increasing importance and challenging nature, there are ample studies in the more

recent literature on backtesting ES with different approaches and limitations. McNeil and Frey

(2000) proposed bootstrap tests with iid innovations; Acerbi and Szekely (2014, 2017) studied three

backtesting methods under independent losses; Du and Escanciano (2017) designed parametric

test using cumulative violations; Nolde and Ziegel (2017) studied comparative backtests among

forecasting methods; Bayer and Dimitriadis (2022) built backtesting through a linear regression

model; and Hoga and Demetrescu (2022) proposed sequential monitoring based on parametric

distributions. Their main features are summarized in Table 7.1.

The literature on e-values has also been growing fast recently. E-values were used in the

early literature in different disguises, although the term “e-value” was proposed by Vovk and Wang

(2021). For instance, e-values and e-tests were essentially used in the work of Wald (1945) and

Darling and Robbins (1967), and they are central to the ideas of testing by betting and martingales

(Shafer et al., 2011; Shafer and Vovk, 2019) and universal inference (Wasserman et al., 2020). E-

values are shown to be useful in multiple hypothesis testing with dependence (Vovk and Wang,

2021), parametric tests with optional sampling (Grünwald et al., 2020), false discovery rate control

(Wang and Ramdas, 2022), and many other statistical applications. We refer to the recent survey

paper of Ramdas et al. (2022) for recent progresses on e-values.
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7.2 E-values and model-free e-statistics

7.2.1 Definition and examples

Let P be the set of probability measures on (Ω,F). A (composite) hypothesis H is a subset

of P. A hypothesis H is simple if it is a singleton. Following the terminology of Vovk and Wang

(2021), an e-variable for H ⊆ P is an extended random variable E : Ω→ [0,∞] such that EP [E] 6 1

for each P ∈ H. We denote by EH the set of e-variables for a hypothesis H and by EP the set of e-

variables for the simple hypothesis {P}. An e-test rejects the hypothesis H if a realized e-variable,

called an e-value, is larger than a threshold. A common rule of thumb is that an e-value of 10

represents strong evidence.2 A non-negative stochastic process (Et)t∈K , K ⊆ N, adapted to a given

filtration, is an e-process for H if EP [Eτ ] 6 1 for all stopping times τ taking values in K and each

P ∈ H.

Let d be a positive integer. The model space M is a set of distributions on R. The value

of the functional ψ = (ρ, φ1, . . . , φd−1) : M → Rd represents the collection of available statistical

information, where ρ is the risk prediction to be tested, and φ contains auxiliary information. If

d = 1, then the only available information is the predicted value of ρ. Let Mq, M∞, and M0

represent the set of distributions on R with finite q-th moment for q ∈ (0,∞), that of compactly

supported distributions on R, and that of all distributions on R, respectively. Define ψ for a random

variable X ∈ L0 via ψ(X) = ψ(F ), where F is the distribution of X. For level p ∈ (0, 1), denote the

the lower p-quantile by Qp(F ) for F ∈M0. VaR and ES belong to the class of dual utilities in Yaari

(1987) and Schmeidler (1989). For ψ = (ρ, φ1, . . . , φd−1), the natural domains of ρ, φ1, . . . , φd−1 are

not necessarily identical, and the domain of ψ is set to be their intersection. In the following

Definitions 7.1 and 7.2, we introduce the key tool we use for our e-tests.

Definition 7.1 (Model-free e-statistics). Let P ⊆M. An P-model-free e-statistic for ψ :M→ Rd

is a measurable function e : Rd+1 → [0,∞] satisfying
∫
R e(x, ψ(F )) dF (x) 6 1 for each F ∈ P. If

P =M, then we simply call e a model-free e-statistic for ψ.

To consider P-model-free e-statistics for ψ in Definition 7.1, it suffices to consider the restriction

of ψ on P. Using the language of e-variables, a model-free e-statistic for ψ is a function e such

2Thresholds may be chosen according to the rule of thumb of Jeffreys (1961) in the disguise of likelihood ratios:

3.2 (substantial), which roughly corresponds to a p-value of 0.05; 10 (strong), which roughly corresponds to a p-value

of 0.01; 100 (decisive), which roughly corresponds to a p-value of 0.0001. See Vovk and Wang (2021) for details and

comparisons of these recommendations.
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that e(X,ψ(F )) ∈ EP for each F ∈ P, where X has distribution F under P. The term “model-free”

reflects that the e-statistic is valid for all F ∈ P.

Definition 7.2 (Model-free e-statistics testing ρ). Let P ⊆M. For ψ = (ρ, φ) :M→ R×Rd−1, a

P-model-free e-statistic e : Rd+1 → [0,∞] for ψ = (ρ, φ) is testing ρ if
∫
R e(x, r, z) dF (x) > 1 for all

(r, z) ∈ ψ(P) and F ∈ P with ρ(F ) > r. The e-statistic is strictly testing ρ if (x, r, z) 7→ e(x, r, z)

is decreasing in r. If d = 1, e is simply called a P-model-free e-statistic testing ρ.

Intuitively, Definition 7.1 addresses the validity of the e-test: if a true value of the risk predic-

tion for ψ = (ρ, φ) is provided, then the e-statistic will have a mean that is no larger than 1. On the

other hand, Definition 7.2 addresses the consistency of the e-test: if the risk ρ is underestimated,

then the e-statistic will have a mean that is larger than 1, regardless of whether the prediction of

the auxiliary functional φ is truthful. The special case where d = 1, i.e., no auxiliary functional φ

is involved, will be discussed in detail in Section 7.6.1.

We are only interested in forecast values (r, z) in the set ψ(P). Any forecast values outside

ψ(P) can be rejected directly.

Our idea of model-free e-statistics specifically addresses the underestimation of ρ, which is

consistent with the motivation in regulatory backtesting. If an e-statistic is strictly testing a risk

measure ρ, then an overestimation of the risk is rewarded: An institution being scrutinized by the

regulator can deliberately report a higher risk value (which typically means higher capital reserve)

to pass to the regulatory test, thus rewarding prudence.

First, we give a few examples of model-free e-statistics for some common risk measures.

Throughout, we use the convention that 0/0 = 1 and 1/0 =∞, and let R+ = [0,∞).

Example 7.1 (Model-free e-statistic testing the mean). Let P be the set of distributions on R+

in M1. Define the function e(x, r) = x/r for x, r > 0. In this case, we have E[e(X,E[X])] = 1 for

all random variables X with distribution in P. Moreover, for any such X, E[X] > r > 0 implies

E[e(X, r)] > 1. Therefore, e is a P-model-free e-statistic strictly testing the mean.

Example 7.2 (Model-free e-statistic for (var,E) testing the variance). Consider (var,E) : M2 →

R2. For all random variables X with distribution in M2, we have

E[e(X, var(X),E[X])] =
E[(X − E[X])2]

var(X)
= 1.
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Moreover, since z = E[X] minimizes E[(X − z)2] over z ∈ R and var(X) = E[(X − E[X])2],

var(X) > r > 0 implies

E[e(X, r, z)] =
E[(X − z)2]

r
>

var(X)

r
> 1.

Hence, e(x, r, z) = (x − z)2/r for x, z ∈ R and r > 0 is a model-free e-statistic for (var,E) strictly

testing the variance.

Example 7.3 (Model-free e-statistic testing a quantile). Take p ∈ (0, 1). Define the function

eQp (x, r) =
1

1− p
1{x>r}, x, r ∈ R. (7.1)

We have E[e(X,Qp(F ))] 6 1 for any random variables X with distribution F . Moreover, Qp(F ) > r

implies P(X > r) > 1− p, and hence E[e(X, r)] > 1. Therefore, e is a model-free e-statistic strictly

testing the p-quantile.

Example 7.4 (Model-free e-statistic testing an expected loss). For some a ∈ R, let ` : R→ [a,∞)

be a function that is interpreted as a loss. Define the function e(x, r) = (`(x)−a)/(r − a) for x ∈ R

and r > a. Analogously to Example 7.1, e is a model-free e-statistic strictly testing the expected

loss F 7→
∫
`dF on its natural domain.

The choice of a model-free e-statistic e for ψ is not necessarily unique. For instance, a linear

combination of e with 1 with the weight between 0 and 1 is also a model-free e-statistic for ψ.

Depending on the specific situation, either e-statistic may be useful in practice.

Remark 7.1. The functional ψ = (ρ, φ) = (var,E) in Example 7.2 is an example of a Bayes pair,

that is, a there exists a measurable function L : Rd+1 → R, called the loss function, such that

φ(F ) ∈ arg min
z∈Rd

∫
L(z, x) dF (x) and ρ(F ) = min

z∈Rd

∫
L(z, x) dF (x), F ∈M, (7.2)

where
∫
L(z, x) dF (x) is assumed to be well-defined for each z ∈ Rd, F ∈ M (see e.g., Fissler

and Ziegel, 2016; Frongillo and Kash, 2021, and Chapter 4). Bayes pairs often admit model-free

e-statistics. A typical example commonly used in risk management practice is (ES,VaR),3 which

we mainly focus on in this chapter.

Next, we see that, for p ∈ (0, 1) the function

eES
p (x, r, z) =

(x− z)+

(1− p)(r − z)
, x ∈ R, z 6 r. (7.3)

3We omit the probability level p in VaRp, ESp and (VaRp,ESp) in the text (but never in equations) where we do

not emphasis the probability level.
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defines a model-free e-statistic for (ESp,VaRp) testing ESp. Recall the convention that 0/0 = 1 and

1/0 =∞, and set eES
p (x, r, z) =∞ if r < z, which is a case of no relevance since ESp(F ) > VaRp(F )

for any F ∈M1.

Theorem 7.1. The function eES
p is a model-free e-statistic for (ESp,VaRp) strictly testing ESp.

Proof. By the VaR-ES relation of Rockafellar and Uryasev (2002), for any random variable X with

finite mean,

VaRp(X) ∈ arg min
z∈R

{
z +

1

1− p
E[(X − z)+]

}
, (7.4)

and

ESp(X) = min
z∈R

{
z +

1

1− p
E[(X − z)+]

}
. (7.5)

This indicates that (ESp,VaRp) is a Bayes pair by (4.2) with loss function L : (z, x) 7→ z + (x −

z)+/(1− p). Since L(z, x) > z, for r > z, we have that eES
p (x, r, z) = (L(z, x)− z)/(r− z) > 0, and

it is decreasing in r. Furthermore, for z < r 6 ESp(X),

E
[
L(z,X)− z

r − z

]
>

ESp(X)− z
r − z

> 1

with equality if and only if r = ESp(X).

While Examples 7.1-7.4 and Theorem 7.1 show that interesting model-free e-statistics exist,

much more can be said about their general structure; see Section 7.6.

7.3 E-backtesting risk measures with model-free e-statistics

We next present a general methodology for backtesting risk measures via model-free e-statistics

in a sequential setting.

Let T be any time horizon, which may be fixed, infinite, or adaptive, i.e., depending on the

data observed. The flexibility of infinite or data-dependent time horizons is a feature of e-tests,

which allows us to address situations more general than the ones considered in the literature, e.g.,

Hoga and Demetrescu (2022), where T is a pre-specified fixed time horizon and the tester has to

start over when time T is reached. For any positive integer n, denote by [n] = {1, . . . , n}, and for

n =∞ it is [n] = N, the set of positive integers.

Let the σ-algebra Ft represent all the available information up to time t ∈ [T ], such that

Fm ⊆ Fn for all m 6 n. Let (Lt)t∈[T ] be a sequence of realized losses that are adapted to the
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filtration (Ft)t∈[T ]. Denote by ρ(Lt|Ft−1) and φ(Lt|Ft−1), respectively, the values of ρ and φ applied

to the conditional distribution of Lt given Ft−1. Let rt and zt be forecasts for ρ(Lt|Ft−1) and

φ(Lt|Ft−1) made at time t − 1, respectively. Note that ρ(Lt|Ft−1) and φ(Lt|Ft−1) are themselves

random variables and Ft−1-measurable for all relevant functionals of interest (see e.g., Fissler and

Holzmann, 2022).

We assume that the risk forecasts rt and zt are obtained based on past market information and

all other possible factors that may affect the decisions of risk predictors in financial institutions. For

instance, the information may even include throwing a die or random events such as coffee spilling;

all these events up to time t− 1 are included in Ft−1.

We test the following null hypothesis:

H0 : rt > ρ(Lt|Ft−1) and zt = φ(Lt|Ft−1) for t ∈ [T ]. (7.6)

Rejecting (7.6) implies, in particular, rejecting rt = ρ(Lt|Ft−1) and zt = φ(Lt|Ft−1) for all t ∈ [T ].

In the special case that d = 1 (i.e. we do not need auxiliary information from φ), (7.6) becomes

H0 : rt > ρ(Lt|Ft−1) for t ∈ [T ].

Remark 7.2. Since ρ is the regulatory risk measure of interest, over-predicting ρ is conservative.

On the other hand, φ represents some additional statistical information and it may not relate to

measuring financial risk. Hence, over-predicting φ is not necessarily conservative. See Example

7.5 below for a sanity check. Therefore, it is more natural to test an equality of the auxiliary

information zt in (7.6) instead of an inequality; note also that this hypothesis is still more lenient

than testing a specified loss distribution. For the case where a financial institution is conservative

for both the risk measures ρ and φ, see Section 7.4.

For a nonnegative function e : Rd+1 → [0,∞], let Xt = e(Lt, rt, zt) for each t. We construct

the following stochastic process: M0 = 1 and

Mt(λ) = (1− λt + λtXt)Mt−1(λ) =
t∏

s=1

(1− λs + λsXs), t ∈ [T ], (7.7)

where the process λ = (λt)t∈[T ] is chosen such that λt is a function of (Ls−1, rs, zs)s∈[t] and takes

values in [0, 1] for t ∈ [T ].4 Suppose that e is a model-free e-statistic for (ρ, φ) : M → R × Rd−1.

4More generally, we may allow λt to be Ft−1-measurable instead of σ((Ls−1, rs, zs)s∈[t])-measurable, but this adds

no further methodological value.
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We have by definition that Xt is an e-variable conditional on Ft−1 under H0 for all t ∈ [T ]. As

suggested by Vovk and Wang (2020), the only admissible (or unwasteful) way to combine these

e-variables is through the martingale function (7.7). The e-process in (7.7) may be interpreted as

the payoffs of a betting strategy against the null hypothesis H0 as in Shafer and Vovk (2019). In

this betting game, the initial capital is M0 = 1 and all the money is invested at each step. The

payoff per capital at each step is 1 − λt + λtXt for t ∈ [T ]. As a result, the player earns money

at step t if Xt > 1. In this sense, we call the process λ in (7.7) a betting process. The following

theorem follows from Ville’s well-known inequality (Ville, 1939), indicating that (Mt(λ))t∈{0,...,T}

in (7.7) is a non-negative supermartingale, so in particular an e-process under the null hypothesis

in (7.6).

Theorem 7.2. Suppose that e is a model-free e-statistic for (ρ, φ) : M → R × Rd−1. Under H0

in (7.6), (Mt(λ))t∈{0,...,T} in (7.7) is a non-negative supermartingale with M0 = 1, and for each

α ∈ (0, 1),

P

(
sup

t∈{0,...,T}
Ms(λ) >

1

α

)
6 α.

Based on Theorem 7.2, we will use the e-test that arises by using the e-variable Mτ (λ) where

M(λ) is given by (7.7) and τ is the stopping time min{T, inf{t > 0 : Mt(λ) > 1/α}}. This is

common practice in testing with e-values.

Remark 7.3. Our framework of backtesting risk measures can be applied to a simpler hypothesis

testing problem in a static setting. Suppose that r and z are fixed forecasts of risk measures

ρ : M → R and φ : M → Rd, respectively, for some random variable L. Consider the following

testing problem:

H0 : r > ρ(L) and z = φ(L) or H̃0 : (r, z) = (ρ(L), φ(L)). (7.8)

We observe iid samples L1, . . . , Ln from L and assume that the observations arrive sequentially.

Suppose that there exists a model-free e-statistic e : Rd+1 → [0,∞] for (ρ, φ) testing ρ. We obtain

e-values under the null hypotheses H0 and H̃0 in (7.8) given by e(Li, r, z), i ∈ [n]. A simulation

study on this setting is provided in the separate paper Wang et al. (2022).

7.4 E-backtesting Value-at-Risk and Expected Shortfall

To put our general ideas in the context of financial regulation, we focus on backtesting VaR

and ES in this section. Let Lt be the random loss at time t. For the case of backtesting VaR,
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(rt)t∈[T ] are the forecasts for VaRp(Lt|Ft−1), p ∈ (0, 1). As we see in Example 7.3, the function

eQp (Lt, rt) defined in (7.1) is an e-variable under the following null hypothesis that we are testing,

H0 : rt > VaRp(Lt|Ft−1), t ∈ [T ].

For the case of backtesting ES, (rt)t∈[T ] are the forecasts for ESp(Lt|Ft−1) and (zt)t∈[T ] are the

forecasts for VaRp(Lt|Ft−1), p ∈ (0, 1). By Theorem 7.1, eES
p (Lt, rt, zt) is an e-variable under the

following null hypothesis:

H0 : rt > ESp(Lt|Ft−1) and zt = VaRp(Lt|Ft−1), t ∈ [T ]. (7.9)

In practice, a financial institution may use a conservative model for risk management purposes,

which leads to underestimation of both VaR and ES. In the following proposition, we illustrate that

eES
p (Lt, rt, zt) is a valid e-variable in case both VaRp(Lt|Ft−1) and ESp(Lt|Ft−1) are over-predicted,

together with their difference.

Proposition 7.1. For p ∈ (0, 1), (eES
p (Lt, rt, zt))t∈[T ] are e-variables for

H0 : zt > VaRp(Lt|Ft−1) and rt − zt > ESp(Lt|Ft−1)−VaRp(Lt|Ft−1), t ∈ [T ]. (7.10)

The hypothesis H0 in (7.10) is stronger than

H0 : zt > VaRp(Lt|Ft−1) and rt > ESp(Lt|Ft−1). (7.11)

In contrast to (7.10), we note that eES
p (Lt, rt, zt) is not necessarily an e-variable for (7.11). For

instance, E[eES
p (Lt, rt, zt)] =∞ if rt = zt = ESp(Lt|Ft−1) and P(Lt > zt) > 0. It implies that over-

predicting VaRp(Lt|Ft−1) does not always leads to a smaller e-value realized by eES
p (Lt, rt, zt); in

contrast, over-predicting ESp(Lt|Ft−1) always reduces the resulting e-value. The following example

illustrates that a poor VaR forecast could result in large e-values although it is obtained by over-

prediction.

Example 7.5. For p ∈ (0, 1), a continuously distributed random variable X with a = VaRp(X) <

ESp(X) = 1 (this implies P(X 6 1) < 1) has a heavier tail than Y with VaRp(Y ) = ESp(Y ) = 1

(this implies P(Y 6 1) = 1). Thus, intuitively, a forecaster producing the random loss X is more

conservative than that producing Y . This shows that over-predicting both VaRp and ESp does not

always mean that the forecaster is more conservative about the risk. Our model-free e-statistic eES
p

can detect this, because E[eES
p (X, 1, a)] 6 1 while E[eES

p (X, 1, 1)] = ∞, thus correctly rejecting the

forecast (1, 1) of (ESp(X),VaRp(X)) but not rejecting the truthful forecast (1, a), although a < 1.
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The following example collects some practical situations of conservative forecasts. In each case,

eES
p (Lt, rt, zt) yields a valid e-variable.

Example 7.6. (i) rt = ESq(Lt|Ft−1) and zt = VaRq(Lt|Ft−1) for q > p:

E[eES
p (Lt, rt, zt)] =

1− q
1− p

E[eES
q (Lt,ESq(Lt|Ft−1),VaRq(Lt|Ft−1))] =

1− q
1− p

< 1.

In this situation, VaRp and ESp are over-predicted by lifting the confidence level p to q.

For instance, this may represent the output of a stress-testing scenario which amplifies the

probability of extreme losses.

(ii) rt = c1ESp(Lt|Ft−1) and zt = c2VaRp(Lt|Ft−1) > 0 for c1 > c2 > 1, as justified by Proposition

7.1. In particular, VaRp and ESp can be over-predicted by the same multiplicative factor.

(iii) rt = ESp(Lt|Ft−1)+b1 and zt = VaRp(Lt|Ft−1)+b2 for b1 > b2 > 0, as justified by Proposition

7.1. In particular, VaRp and ESp can be over-predicted by the same absolute amount.

Remark 7.4. Our e-backtesting method of ES and the method based on cumulative violations intro-

duced in Du and Escanciano (2017) (we call it the cumulative violation method) have several major

different features discussed as follows. First, the cumulative violation method requires distributional

forecasts ût(θ̂) as input based on some parametric distribution; our e-backtesting method needs ES

and VaR forecasts that can be arbitrarily reported. The arbitrary structure of the forecasts provides

more flexibility in practice. Due to this nature, our e-backtesting method does not require special

consideration and treatment of estimation effects as discussed in Du and Escanciano (2017) and

Hoga and Demetrescu (2022). Second, the cumulative violation method focuses more on detecting

model misspecification and is a two-sided test on both overestimation and underestimation of risk;

our e-backtesting method is a one-sided test focusing only on the underestimation of ES. This means

that we do not reject the null as long as ES is not underestimated even though the forecasts are

obtained based on a wrong model or no specific model is assumed. Third, the cumulative violation

method relies on a fixed sample size T and relies on an asymptotic model, which means its sta-

tistical validity requires it to be only evaluated at the end of the sampling period T that is large

enough; our e-backtesting method is sequential and is valid at any stopping time, where detections

can be achieved much earlier. This is desirable in risk management applications as early detection

of insufficient risk predictions is valuable. Most other classical backtesting methodologies become

invalid when evaluated before the end of the pre-specified time period set for testing; see Table 7.1.
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7.5 Choosing the betting process

One of the essential steps in the testing procedure is choosing a betting process λ = (λt)t∈[T ]

in (7.7). Throughout this section, e is a P-model-free e-statistic for ψ = (ρ, φ) : M → R × Rd−1

and P ⊆M. We omit P when P is the domain of ψ. Any predictable process λ with values in [0, 1]

yields a supermartingale in (7.7) under H0, and thus the testing procedure is valid at all stopping

times by Theorem 7.2. However, the statistical power of the tests, and the growth of the process

(Mt(λ))t∈{0,...,T} if the null hypothesis H0 is false, heavily depends on a good choice of the betting

process.

7.5.1 GRO, GREE, GREL and GREM methods

Our methods are related to maximizing expected log-capital originally proposed by Kelly

(1956), adopted by Grünwald et al. (2020) in their GRO (growth-rate optimal) criterion, and

studied for testing by betting by Shafer (2021) and Waudby-Smith and Ramdas (2023). For an

e-variable E and a probability measure Q representing an alternative hypothesis, the key quantity

to consider is EQ[logE], which is called the e-power of E under Q by Vovk and Wang (2022).

Let T be the time horizon of interest, which either can be a finite integer or ∞. Let Qt,

t ∈ [T ], be specified probability measures representing alternative scenarios for the distribution

of (Lt, rt, zt) given the information contained in Ft−1. Since (rt, zt) is Ft−1-measurable, the only

relevant information from Qt is the conditional distribution of Lt given Ft−1. When choosing the

betting process (λt)t∈[T ], we fix an upper bound γ ∈ (0, 1) and restrict λt ∈ [0, γ] for all t ∈ [T ].

The upper bound γ is not restrictive and it only prevents some ill-behaving cases. We can safely

set γ = 1/2 (see Remark 7.5 below). Below we formally introduce a few methods to determine the

betting process.

1. GRO (growth-rate optimal): The optimal betting process maximizing the log-capital growth

rate is given by

λGRO
t = λGRO

t (r, z) = arg max
λ∈[0,γ]

EQt [log(1− λ+ λe(Lt, r, z))|Ft−1], (r, z) ∈ R× Rd−1. (7.12)

The optimal λGRO
t in (7.12) can be calculated through a convex program since the function

λ 7→ log(1 − λ + λe(Lt, r, z)) is concave. This requires the knowledge of the conditional

distribution Qt of Lt given Ft−1. In practice, Qt is unknown to the tester, and one may need
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to choose a model to approximate Qt. If the probability measure Qt is unknown but from

a certain family, one can use the method of mixtures or mixture martingales (see e.g., de la

Peña et al., 2004, 2009) of alternative scenarios to obtain an e-process close to that based on

the unknown true model. The optimizer λGRO
t may not be unique in some special cases, e.g.,

e(Lt, r, z) is the constant 1 or the expectation in (7.12) is ∞, but in most practical cases it is

unique.

2. GREE (growth-rate for empirical e-statistics): In case the alternative Qt is unknown, one

possibility is to define a betting process based on the empirical probability measures Q̂t−1 of

the sample (Ls, rs, zs)s6t−1, solving the following optimization problem:

λGREE
t = arg max

λ∈[0,γ]
EQ̂t−1 [log(1− λ+ λe(Lt, rt, zt))|Ft−1]

= arg max
λ∈[0,γ]

1

t− 1

t−1∑
s=1

log(1− λ+ λe(Ls, rs, zs)).

(7.13)

Since (7.13) uses the empirical distribution of the e-statistics e(Ls, rs, zs), we call the method

based on (7.13) the GREE method. The problem (7.13) can be solved directly via convex

programming. This approach is closely related to the GRAPA method introduced in Waudby-

Smith and Ramdas (2023, Section B.2).

3. GREL (growth-rate for empirical losses): Another alternative method is to choose the betting

process solving

λGREL
t = λGREL

t (r, z) = arg max
λ∈[0,γ]

EQ̂t−1 [log(1− λ+ λe(Lt, r, z))|Ft−1]

= arg max
λ∈[0,γ]

1

t− 1

t−1∑
s=1

log(1− λ+ λe(Ls, r, z)), (r, z) ∈ R× Rd−1,

(7.14)

where Q̂t−1 is the empirical distribution of the sample (Ls)s6t−1. Since λGREL
t in (7.14) is

calculated based on the empirical distribution of the losses, we call this method the GREL

method. The betting process at t in (7.14) is a function of the risk predictions r and z, where

r and z are usually chosen as the latest risk predictions rt and zt, respectively. The problem

(7.14) can be solved by convex programming, similarly to (7.13). The idea of constructing a

betting process depending on predictions has previously been explored by Henzi and Ziegel

(2022). By definition, the GREE and GREL methods are equivalent when the risk forecasts

rt and zt are constant for all t ∈ [T ].
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4. GREM (growth-rate for empirical mixing): The GREE and GREL methods are asymptot-

ically optimal in different practical situations; see Theorem 7.3 for a rigorous statement and

Example 7.7 for an illustration. It is usually difficult to identify the most suitable method

based on observations of the losses and forecasts arriving sequentially. Motivated by this, we

propose the GREM method, for which we calculate the e-process by taking the mixture of

the GREE and GREL methods:

Mt(λ
GREM) =

Mt(λ
GREE)

2
+
Mt(λ

GREL)

2
,

where M is defined in (7.7), λGREM = (λGREM
t )t∈[T ], λ

GREE = (λGREE
t )t∈[T ], and λGREL =

(λGREL
t )t∈[T ]. By Lemma 1 of Vovk and Wang (2020), there exists a betting process for the

GREM method. More precisely,

λGREM
t =

Mt−1(λGREE)λGREE
t +Mt−1(λGREL)λGREL

t

Mt−1(λGREE) +Mt−1(λGREL)
.

The GREM method is asymptotically optimal for all practical cases when either the GREE

or the GREL method is optimal (see Theorem 7.3).

An alternative and simple way to get an approximate for (7.13) and (7.14) is to use a Taylor

expansion log(1 + y) ≈ y − y2/2 at y = 0 and the first-order condition. This leads to

λGREL
t ≈ 0 ∨

∑t−1
s=1 e(Ls, r, z)− t+ 1∑t−1
s=1(e(Ls, r, z)− 1)2

∧ γ (7.15)

for the GREL method (7.14), and we replace (r, z) in (7.15) by (rs, zs) for the GREE method (7.13).

The special cases of (7.15) for VaR and ES are given in Section 7.10.

Remark 7.5. We restrict the betting process below the upper bound γ to avoid the e-process

collapsing to 0. For an illustration, suppose that for each t, Xt = e(Lt, r, z) given Ft−1 takes value

0 with a small probability and value 2 with a large probability, so its expected value is larger than

1 and the null hypothesis is not true. As long as we do not observe 0 up to time t, the empirical

distribution is concentrated at 2, leading to an optimal strategy λGREE
t = 1 if there is no upper

bound γ < 1. This betting process yields an e-process that becomes 0 as soon as we observe a 0

from Xt and therefore should be avoided. In all our numerical and data experiments, the optimal

λt from each method is typically quite small (< 0.1) for tail risk measures like VaR and ES. Hence,

it is harmless to set γ = 1/2 by default.
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7.5.2 Optimality of betting processes

Next, we discuss the optimality of the betting process. We first define an intuitive notion of

asymptotic optimality. For asymptotic results discussed in this section, we will assume an infinite

time horizon; that is, we consider t ∈ N. All statements on probability and convergence are with

respect to the true probability generating the data.

Definition 7.3. For (Lt−1, rt, zt)t∈N adapted to (Ft−1)t∈N and a given function e : Rd+1 → [0,∞],

(i) two betting processes λ = (λt)t∈N and λ′ = (λ′t)t∈N are asymptotically equivalent, denoted by

λ ' λ′, if
1

T
(logMT (λ)− logMT (λ′))

L1

−→ 0 as T →∞,

where M is defined in (7.7);

(ii) a betting process λ is asymptotically optimal if λ ' (λGRO
t (rt, zt))t∈N.

Intuitively, the asymptotic equivalence between two betting processes means that the long-term

growth rates of the two resulting e-processes are the same. Furthermore, the asymptotic optimality

of a betting process is defined by asymptotic equivalence using the GRO method as a benchmark be-

cause the GRO method is the best-performing method if we know the full distributional information

of the losses.

The following proposition characterizes the situations where the betting processes in the GRO

method do not reach 0 and 1. In our formulation, λ is not allowed to reach 1 due to the upper

bound γ < 1, but we nevertheless give a theoretical condition that the unconstrained optimizer is

less than 1.

Proposition 7.2. For (r, z) ∈ R×Rd−1 and t ∈ N and any optimizer λGRO
t of (7.12), the following

statements hold.

(i) λGRO
t (r, z) > 0 if and only if EQt [e(Lt, r, z)|Ft−1] > 1.

(ii) With γ = 1 in (7.12), λGRO
t (r, z) < 1 if and only if EQt [1/e(Lt, r, z)|Ft−1] > 1.

Below we present an assumption for the asymptotic analysis. The condition is very weak

because the interesting case in backtesting is when EQt [log(e(Lt, r, z))] is small. Denote by ψ∗(P) ⊆

ψ(P) as the set of all values (r, z) ∈ ψ(P) such that e(x, r, z) <∞ for all x ∈ R.
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Assumption 1. For all (r, z) ∈ ψ∗(P), supt∈N EQt [log(e(Lt, r, z))] <∞.

The following theorem addresses the asymptotic optimality of the GREE, GREL and GREM

methods in different situations with its proof put in Section 7.5.3.

Theorem 7.3. For (Lt−1, rt, zt)t∈N adapted to (Ft−1)t∈N such that (rt, zt) takes values in ψ∗(P)

and e : Rd+1 → [0,∞], under Assumption 1, the following statements hold.

(i) (λGREE
t )t∈N is asymptotically optimal if (e(Lt, rt, zt))t∈N is iid and (rt, zt)t∈N is deterministic.

(ii) (λGREL
t (rt, zt))t∈N is asymptotically optimal if (Lt)t∈N is iid and either:

(a) (rt, zt)t∈N takes finitely many possible values in Rd.

(b) (rt, zt), t ∈ N, are in a common compact set, e(x, r, z) is continuous in (r, z), and (rt, zt)
p−→

(r0, z0) as t→∞ for some (r0, z0) ∈ Rd.

(iii) (λGREM
t )t∈N is asymptotically optimal if either (λGREE

t )t∈N or (λGREL
t (rt, zt))t∈N is asymptot-

ically optimal.

The asymptotic optimality results in Theorem 7.3 are based on strong, and perhaps unrealistic,

assumptions; they are imposed for technical reasons. Nevertheless, we obtain some useful insight on

the comparison between the GREE and GREL. Intuitively, the GREE method should outperform

the GREL method when the model-free e-statistics e(Lt, rt, zt), t ∈ N, are iid and (rt, zt) is not in-

formative about how to choose λt (i.e., they are noises), while the GREL method should outperform

the GREE method when the losses Lt, t ∈ N, are iid and (rt, zt) is informative about how to choose

λt; recall that GREL uses the information of (rt, zt) whereas GREE does not. Moreover, we expect

the asymptotic optimality results to hold (approximately) without strong assumptions on the risk

predictions (rt, zt)t∈N as imposed in Theorem 7.3. We illustrate the insights for the comparison

between the GREE and GREL methods through Example 7.7 below. In most practical cases, we

do not know clear patterns of the losses and forecasts as they arrive sequentially over time. In this

sense, the GREM method is recommended because Theorem 7.3 suggests that it would perform

well in all the cases where either the GREE or the GREL method is asymptotically optimal.

Example 7.7. Let the size of training data be l = 10, the sample size for testing be n = 1, 000,

and Z1, . . . , Zn+l be iid samples simulated from the standard normal distribution. We report the

average performance of backtesting methods over 1, 000 simulations.
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Figure 7.1: Realized losses and ES forecasts with a linear extending business (left panel); average

log-transformed e-processes obtained by different methods over 1, 000 simulations (right panel)

(a) The iid condition of the whole model-free e-statistics implies that the GREE method works

better than the GREL method when losses and risk forecasts exhibit co-movements over time.

Such situations are common in the financial market; for instance, risk forecasts will increase

over time when a company is extending its business. Assume that Lt = (1 + t/(n + l))Zt for

t ∈ [n+ l]. This model represents the case where the financial institution’s investment generates

iid cash flow but the institution increases the investment amount over time. Following the

increasing trend of the investment, the risk forecaster announces the under-estimated forecasts

of VaR0.95(Lt|Ft−1) and ES0.95(Lt|Ft−1) as zt = 1.48(1 + t/(n+ l)) and rt = 1.86(1 + t/(n+ l)),

respectively, for t ∈ [n + l]. Figure 7.1 plots the realized losses Lt, ES forecasts rt, and the

e-processes obtained by the GRO, GREE, GREL and GREM methods for t = l + 1, . . . , n+ l.

We observe from Figure 7.1 that the GREE e-process dominates the GREL e-process. This

is consistent with the result of Theorem 7.3 by noting the co-movements of the losses and the

VaR and ES forecasts which makes the model-free e-statistics (ep(Lt, rt, zt))t∈[n+l] iid.

(b) Another example of co-movements between the losses and forecasts is where a company exhibits

a non-linear business cycle. Take the random losses to be Lt = Zt(1 + sin(θt)) for t ∈ [n + l],

where θ = 0.01. The risk forecasts of VaR0.95(Lt|Ft−1) and ES0.95(Lt|Ft−1) also have a similar

trend but are under-estimated. Namely, we have zt = 1.48(1 + sin(θt)) for VaR and rt =
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Figure 7.2: Realized losses and ES forecasts with a non-linear business cycle (left panel); average

log-transformed e-processes obtained by different methods over 1, 000 simulations (right panel)

1.86(1 + sin(θt)) for ES. The losses and forecasts, and the average log e-processes for different

methods are plotted in Figure 7.2. Similarly to (i), we also observe better performance of the

GREE method than GREL because of the overall iid pattern of the whole e-statistics.

(c) It is expected from Theorem 7.3 that the GREL method will dominate the GREE method

when the losses exhibit an iid pattern and there is no clear evidence of co-movements between

losses and risk forecasts. Let the random losses be Z1, . . . , Zn+l; thus, they are iid. Suppose

that the risk forecaster announces the forecasts of VaR0.95(Zt|Ft−1) and ES0.95(Zt|Ft−1) to

be zt = 1.64 + εt and rt = 2.06 + εt, respectively, for t ∈ [n + l], where ε1, . . . , εn+l are

iid samples uniformly distributed on the support {±i/10 : i = 0, . . . , 5}. In this case, the

forecaster is able to obtain risk forecasts close to the true values but is subject to a forecasting

error (εt)t∈[n+l]. Figure 7.3 plots the realized losses Zt, ES forecasts rt, and the corresponding

e-processes obtained by the GRO, GREE, GREL and GREM methods for t = l + 1, . . . , n+ l.

We observe from Figure 7.3 that the GREL method outperforms the GREE method. This

example shows that the GREL method is able to detect evidence against risk forecasts due to

downward fluctuations of the forecasts, while GREE does not perform well in this case because

it only uses historical forecasts whose average is close to the true value.
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Figure 7.3: Realized losses and ES forecasts with iid losses (left panel); average log-transformed

e-processes obtained by different methods over 1, 000 simulations (right panel)

7.5.3 Proof of Theorem 7.3

We first present a proposition used in the proof of Theorem 7.3. Its proof is put in Section 7.12.

This proposition says that under the iid assumption, the betting process computed from empirical

distributions is asymptotically equivalent to that computed from the true distribution.

Proposition 7.3. Let X1, X2, . . . be nonnegative iid random variables with E[log(X1)] <∞. Let

λt = arg max
λ∈[0,γ]

1

t− 1

t−1∑
s=1

log(1− λ+ λXs); λ∗ = arg max
λ∈[0,γ]

E[log(1− λ+ λXt)], t ∈ N.

We have T−1
∑T

t=1(log(1− λt + λtXt))− log(1− λ∗ + λ∗Xt))
L1

−→ 0 as T →∞.

Proposition 7.3 gives a simplified illustration of the asymptotic optimality of the GREE

method, which uses historical model-free e-statistics as iid input. A rigorous statement of this

point is already presented in Theorem 7.3.

Proof of Theorem 7.3. For (i), because (rt, zt)t∈N is deterministic and (e(Lt, rt, zt))t∈N is iid, we

have for all t ∈ N,

λGRO
t (rt, zt) = arg max

λ∈[0,γ]
EQt [log(1−λ+λe(Lt, rt, zt))|Ft−1] = arg max

λ∈[0,γ]
E[log(1−λ+λXt)|Ft−1] =: λ∗,
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where Xt = e(Lt, rt, zt). The statement thus follows directly from Proposition 7.3.

For (ii), we first show the result for any fixed (r, z) ∈ ψ∗(P). This follows directly from

Proposition 7.3 by taking Xt = e(Lt, r, z), λt = λGREL
t (r, z), and λ∗ = λGRO

t (r, z) for t ∈ N.

(a) Suppose that (rt, zt)t∈N takes finitely many possible values in RN. Let (Mt)t∈N be defined

in (7.7), λGREL = (λGREL
t (rt, zt))t∈N and λGRO = (λGRO(rt, zt))t∈N. We have

1

T
(log(MT (λGREL))− log(MT (λGRO)))

L1

−→ 0

by taking mixtures of all possible values of (rt, zt)t∈N that are finitely many.

(b) It suffices to show the result for d = 1 and the general case holds similarly. Since e(x, r) is

continuous in r and rt, t ∈ N, are in a common compact set, e(x, r) is uniformly continuous with

respect to r. Define M(r, λ) = EQt [log(1− λ+ λe(Lt, r))|Ft−1] with r ∈ R, λ ∈ [0, γ] and Lt ∼ Qt

for t ∈ N.

Let Qt be the empirical probability measure Q̂t−1 for all t ∈ N. We now prove that for all t ∈ N

and ε > 0, there exists δ1 > 0, such that for all |r − r′| < δ1, |λGREL
t (r)− λGREL

t (r′)| 6 ε. Suppose

that the negated statement is true. Hence there exists t ∈ N and ε0 > 0, such that for all δ > 0,

there exist |rδ − r′δ| < δ, |λGREL
t (rδ)− λGREL

t (r′δ)| > ε0. Because λGREL
t (r) = arg maxλ∈[0,1]M(r, λ)

and M(r, λ) is strictly concave in λ, we have

min
{
M(rδ, λ

GREL
t (rδ))−M(rδ, λ

GREL
t (r′δ)), M(r′δ, λ

GREL
t (r′δ))−M(r′δ, λ

GREL
t (rδ))

}
> l

for some l > 0. By uniform continuity of M(r, λ) with respect to r, there exists δ0 > 0, such that

for all |r − r′| < δ0,

max
{∣∣M(r, λGREL

t (r))−M(r′, λGREL
t (r))

∣∣ , ∣∣M(r, λGREL
t (r′))−M(r′, λGREL

t (r′))
∣∣} < l.

Therefore,

2l < M(rδ0 , λ
GREL
t (rδ0))−M(rδ0 , λ

GREL
t (r′δ0)) +M(r′δ0 , λ

GREL
t (r′δ0))−M(r′δ0 , λ

GREL
t (rδ0))

6
∣∣M(rδ0 , λ

GREL
t (rδ0))−M(r′δ0 , λ

GREL
t (rδ0))

∣∣+
∣∣M(rδ0 , λ

GREL
t (r′δ0))−M(r′δ0 , λ

GREL
t (r′δ0))

∣∣ < 2l.

This leads to a contradiction.

Similarly, we can show that there exists δ2 > 0, such that for all |r − r′| < δ2, |λGRO(r) −

λGRO(r′)| 6 ε by taking Qt to the probability measure Q for the iid random variables Lt, t ∈ N. Take

δ̂ = min{δ1, δ2}. Because rt
p−→ r0, for all η > 0, there exists N ∈ N, such that Q(|rt−r0| < δ̂) > 1−η

for all t > N . It follows that

max
{
Q(|λGREL

t (rt)− λGREL
t (r0)| > ε), Q(|λGRO(rt)− λGRO(r0)| > ε)

}
6 Q(|rt − r0| > δ̂) < η.
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Since we also have λGREL
t (r0)

p−→ λGRO(r0) as t → ∞, it is clear that λGREL
t (rt)

p−→ λGRO(r0) and

λGRO(rt)
p−→ λGRO(r0) as t→∞. By boundedness of the betting processes, we have λGREL

t (rt)
L1

−→

λGRO(r0) and λGRO(rt)
L1

−→ λGRO(r0) as t→∞. The result thus holds by (7.16).

For (iii), write λGREE = (λGREE
t )t∈N and λGREM = (λGREM

t )t∈N. It suffices to notice that

MT (λGREM) > max{MT (λGREL),MT (λGREE)}/2, and by taking a limit as T → ∞ we obtain the

asymptotic optimality of λGREM from that of λGREE or λGREL.

7.6 Characterizing model-free e-statistics

In this section, we present several results on the characterization of model-free e-statistics. The

main practical message is that the two e-statistics which we introduced, eQp and eES
p in Section 7.2,

are essentially the only useful choices for VaR and (ES,VaR), respectively, in building up e-processes

in Section 7.3. The reader more interested in applications may skip this section in the first reading,

while keeping in mind the above practical message.

7.6.1 Necessary conditions for the existence of model-free e-statistics

Not all functionals ρ onM admit model-free e-statistics that are solely based on the information

of ρ. Below we give a necessary condition for a model-free e-statistic testing ρ to exist. A functional

ρ : M → R is monotone if ρ(F ) 6 ρ(G) for all F 61 G, where 61 is the usual stochastic order;

namely, F 61 G if and only if F > G pointwise on R. We also say that ρ is uncapped if for each

F ∈ M and r > ρ(F ), there exists F̄ ∈ M such that F̄ >1 F and ρ(F̄ ) = r. All monetary risk

measures (Föllmer and Schied, 2016) are monotone and uncapped. A functional ρ : M → R is

quasi-convex if ρ(λF + (1 − λ)G) 6 max{ρ(F ), ρ(G)} for all λ ∈ [0, 1] and F,G ∈ M. Similarly,

ρ is quasi-concave if −ρ is quasi-convex, and ρ is quasi-linear if it is both quasi-convex and quasi-

concave.

Proposition 7.4. Suppose that ρ :M→ R is monotone and uncapped. If there exists a model-free

e-statistic testing ρ, then ρ is quasi-convex.

When M is convex, quasi-convexity of ρ is equivalent to the condition that the set {F ∈ M :

ρ(F ) 6 r} is convex for each r ∈ R. The requirement in Proposition 7.4 rules out a large class
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of coherent risk measures including ES.5 As is shown in the following proposition, if the e-statistic

testing ρ is strict, then ρ is necessarily quasi-linear, which is stronger than the quasi-convexity in

Proposition 7.4, and this result does not require that ρ is monotone and uncapped.

Proposition 7.5. If there exists a model-free e-statistic e : R2 → [0,∞] strictly testing ρ :M→ R,

then ρ is quasi-linear.

We say a functional ρ : M→ R has convex level sets (CxLS) if the set {F ∈ M : ρ(F ) = r}

is convex for each r ∈ R. Quasi-linearity of ρ is stronger than the condition that ρ has CxLS,

and they are equivalent when M is convex and ρ is monotone. Functionals with CxLS have been

studied extensively in the recent literature due to their connection to elicitability and backtesting

(Gneiting, 2011; Ziegel, 2016). For a recent summary of related results, see Wang and Wei (2020).

7.6.2 Characterizing model-free e-statistics for common risk measures

In this section we offer several characterization results of model-free e-statistics for some com-

mon risk measures using identification functions. The link between model-free e-statistics and

identification functions is presented in Section 7.11. The following two propositions characterize all

continuous model-free e-statistics testing the mean and for (var,E) testing the variance; see also

Examples 7.1 and 7.2.

Proposition 7.6 (Model-free e-statistics for the mean of bounded random variables). Let a ∈ R and

P be the set of distributions in M1 with support in [a,∞). All continuous P-model-free e-statistics

e′ testing the mean are of the form

e′(x, r) = 1 + h(r)
x− r
r − a

, x > a, r > a,

where h is a continuous function on [a,∞) with 0 < h 6 1. Moreover, the functions h and

r 7→ (r − a)/h(r) are increasing if and only if e′ is strictly testing the mean.

Proposition 7.7 (Model-free e-statistics for the variance). All continuous model-free e-statistics

e′ for ψ = (var,E) testing var are of the form

e′(x, r, z) = 1 + h(r, z)
(z − x)2 − r

r
, x, z ∈ R, r > 0,

where h is a continuous function on [0,∞)×R with 0 < h 6 1. Moreover, the functions r 7→ h(r, z)

and r 7→ r/h(r, z) are increasing for all z ∈ R if and only if e′ is strictly testing var.

5In particular, all comonotonic-additive coherent risk measures except for the mean are monotone and uncapped

but not quasi-convex (see e.g., Wang et al. 2020, Theorem 3).
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The simplest model-free e-statistic for VaR is given in (7.1) in Example 7.3. The following

proposition exhausts all model-free e-statistics testing VaR with an additional continuity require-

ment. We say a model-free e-statistic e is non-conservative if
∫
R e(x, ψ(F )) dF (x) = 1 for each

F ∈ P.

Theorem 7.4 (Model-free e-statistics for VaR). Let p ∈ (0, 1) and P be the set of all distributions

with a quantile continuous at p. All P-model-free e-statistics e′ that are continuous except at x = r,

non-conservative, and testing VaRp are of the form

e′(x, r) = 1 + h(r)
p− 1{x6r}

1− p
,

where h is a continuous function on R with 0 < h 6 1. The function h is constant if and only if e′

is strictly testing VaRp.

Next, we consider the model-free e-statistics for (VaR,ES) testing ES. It is straightforward

that ESp is monotone, uncapped, and {F ∈ M : ESp(F ) 6 r} is not convex.6 Hence, Proposition

7.4 implies that there does not exist a model-free e-statistic testing ESp using solely the information

of ESp. A similar point was made in Acerbi and Szekely (2017) that ESp is not backtestable in some

specific sense. As is shown in Theorem 7.1, there exists a model-free e-statistic eES
p testing ESp using

the information of (ESp,VaRp). The following theorem characterizes all model-free e-statistics for

(ESp,VaRp) testing ES, which is slightly more than eES
p .

Theorem 7.5. Let p ∈ (0, 1) and P be the set of all distributions with finite mean and a quantile

continuous at p. All continuous and non-conservative P-model-free e-statistics e′ for (ESp,VaRp)

testing ESp are of the form

e′(x, r, z) = 1 + h(r, z)

(
(x− z)+

(1− p)(r − z)
− 1

)
, x ∈ R, z < r,

where h is a continuous function such that 0 < h 6 1. Moreover, the functions r 7→ h(r, z) and r 7→

(r − z)/h(r, z) are increasing for all z < r if and only if e′ is strictly testing ESp.

Theorems 7.4 and 7.5 illustrate the essential roles of eQp and eES
p among all possible choices

of e-statistics for VaR and the pair (ES,VaR). All choices of e-statistics for VaRp have the form

1 − λ + λeQp (x, r), and all those for (ESp,VaRp) has the form 1 − λ + λeES
p (x, r, z), where λ is a

function taking values in [0, 1]. Therefore, in view of (7.7), the e-statistics e can be without loss of

6It might be interesting to note that ESp is concave onM, implying that the set {F ∈M : ESp(F ) > r} is convex

for each r; see Theorem 3 of Wang et al. (2020).
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generality chosen as eQp for VaRp and eES
p for (ESp,VaRp), and λ can be chosen separately depending

on the risk forecasts.

7.7 Simulation studies

In this section, we provide simulation studies on backtesting the Value-at-Risk and the Ex-

pected Shortfall. This illustrates the details of our backtesting methodology numerically. Further-

more, we examine how different factors affect the quality of the backtesting procedure, especially

the impact of the choice of the betting process in (7.7). We evaluate the backtesting performance

when the risk measures are under-reported, over-reported, or reported exactly by the risk forecaster.

For all e-tests, we report evidence against the forecasts when the e-process exceeds thresholds

2, 5, or 10.7 We call such evidence a detection. From the practical viewpoint, the three thresholds

we choose form four zones for levels of alerts to financial institutions. This is in a similar sense to

the standard three-zone approach for backtesting VaR in the financial industry.

Remark 7.6. In classical statistical terminology, what we call a detection is a rejection of the null

hypothesis based on our e-test with thresholds 2, 5, and 10, respectively. Since the threshold of 2

has a guaranteed significance level of 50%, it would be unconventional to speak of a rejection of

the null hypothesis. However, having detected evidence of size 2 with the e-test may be a useful

early warning that risk predictions might not be prudent enough. Recall that Jeffrey’s threshold of

e-values for “substantial” evidence is 3.2 and for “decisive” evidence is 10; see Shafer (2021) and

Vovk and Wang (2021) for more discussions on observing moderately large e-values.

The simulation and data analysis in Sections 7.7 and 7.8, together with those in Section 7.13,

illustrate our main methodology. They are supplemented by extended results and discussions in a

separate paper Wang et al. (2022).8

7We usually do not compare the e-value thresholds with p-value thresholds in traditional p-tests. However, if

necessary, the reader can obtain significance levels in p-tests by taking inverse (significance levels 50%, 20%, and 10%

from the e-value thresholds 2, 5, and 10, respectively), but this conversion generally loses statistical evidence.
8Wang et al. (2022) includes detailed descriptions and results for e-tests with iid observations, stationary time series

data, detecting structural change of time series, analysis with NASDAQ index on an extended data period, optimized

portfolios, results for VaR0.95 and ES0.875, and comparison between the GREE, GREL and GREM methods.
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7.7.1 Backtests via stationary time series

We apply our e-backtesting procedure to a setting with time series. For comparison, we use the

same setup as in Nolde and Ziegel (2017) and simulate data from an AR(1)–GARCH(1, 1) process

for daily negated log-returns of a financial asset:

Lt = µt + σtZt, µt = −0.05 + 0.3Xt−1, σ2
t = 0.01 + 0.1ε2t−1 + 0.85σ2

t−1, t ∈ N

where {Zt}t∈N is a sequence of iid innovations following a skewed-t distribution with shape param-

eter ν = 5 and skewness parameter γ = 1.5. In total, 1, 000 independent simulations are produced,

each of which includes a sample of size 500 used for backtesting. A rolling window of size 500 is

applied for risk estimation at each time spot t.

For forecasting, we assume that the data follow an AR(1)–GARCH(1, 1) process {Lt}t∈N with

Lt = µt + σtZt, where {Zt}t∈N is assumed to be a sequence of iid innovations with mean 0 and

variance 1, following a normal, t-, or skewed-t distribution. Thus, the forecaster has a correct

time-series structure with possibly incorrect innovation. Here, {µt}t∈N and {σt}t∈N are adapted

to (Ft−1)t∈N. The details of the forecasting procedure are described in Section 7.13.1. The risk

forecaster deliberately under-reports, over-reports, or reports the exact point forecasts of VaRp or

(ESp,VaRp) she obtains.

For backtesting, the e-processes in (7.7) are calculated with the betting process (λt)t∈[T ] chosen

by the GREM method using Taylor approximation via (7.15). The results for the GREE and GREL

methods and their comparison are demonstrated in Section 7.13.2. We detect evidence against the

forecasts when the e-processes exceed thresholds 2, 5, or 10. We first present results for backtesting

VaR0.99. The percentage of detections, the average number of days taken to detect evidence against

the forecasts (conditional on detection occurring), and the average final log-transformed e-values

are shown in Tables 7.2 and 7.3.

As expected, the results show that evidence against normal and t-innovations is more likely to

be detected than against skewed-t innovations, which is the true model. The percentage of detections

for exact skewed-t forecasts, or the Type I error, is 0.5% for threshold 10. Under-reporting VaR

leads to earlier detections than reporting the exact VaR forecasts and the converse holds true for

over-reporting.

Results on backtests of ES are reported in Tables 7.4 and 7.5. The results in Table 7.4

confirm our intuition that under-reporting or using a wrong innovation can be detected with a large
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normal t skewed-t

threshold 2 5 10 2 5 10 2 5 10

−10% 99.6 98.0 94.3 97.8 88.8 76.1 46.0 14.4 5.9

exact 97.0 87.9 75.0 86.8 60.9 40.2 17.8 2.5 0.5

+10% 86.1 62.4 41.4 62.5 26.3 11.9 6.3 0.4 0

Table 7.2: Percentage of detections (%) for VaR0.99 forecasts over 1, 000 simulations of time series

and 500 trading days using the GREM method

normal t skewed-t

threshold 2 5 10 2 5 10 2 5 10

−10% 116 185 228 (5.489) 156 238 285 (3.390) 230 284 332 (0.3707)

exact 158 239 287 (3.311) 200 284 322 (1.759) 219 244 217 (−0.07467)

+10% 196 277 316 (1.858) 224 305 351 (0.7341) 183 227 – (−0.2135)

Table 7.3: The average number of days taken to detect evidence against VaR0.99 forecasts conditional

on detection over 1, 000 simulations of time series and 500 trading days using the GREM method;

numbers in brackets are average final log-transformed e-values

probability, whereas forecasts from the true model and their more conservative versions appear the

opposite. Moreover, under-reporting (resp. over-reporting) both of ES and VaR and under-reporting

(resp. over-reporting) only ES have similar performance in terms of probability of detection and

time of detection. The average time to detection (Table 7.5) is useful for risk management since

early warnings (threshold 2) are often issued after about a fourth of the sampling time, and decisive

warnings (threshold 10) after about half of the considered trading days.

7.7.2 Monitoring structural change of time series

We examine the power of our e-backtesting method to monitor the structural change of sim-

ulated time series data. We refer to Chu et al. (1996) and Berkes et al. (2004) for earlier work

on monitoring the structural change of data sets. For a comparison with the results in Hoga and

Demetrescu (2022), we use the same setup as described in their Section 6, and call their method the
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normal t skewed-t

threshold 2 5 10 2 5 10 2 5 10

−10% ES 99.8 99.5 98.5 98.4 88.8 77.1 47.6 16.1 6.2

−10% both 99.8 99.5 98.1 98.5 91.4 82.0 48.0 15.7 6.5

exact 99.3 95.7 88.3 88.1 63.9 43.1 18.8 4.0 0.8

+10% both 95.2 80.4 61.9 64.9 27.6 9.9 7.1 1.0 0

+10% ES 94.8 79.8 62.1 70.0 34.9 15.6 7.9 1.1 0.1

Table 7.4: Percentage of detections (%) for ES0.975 forecasts over 1, 000 simulations of time series

and 500 trading days using the GREM method

sequential monitoring method. We simulate the losses {Lt}t∈N following the GARCH(1, 1) process:

Lt = −σtZt, σ2
t = 0.00001 + 0.04X2

t−1 + βtσ
2
t−1,

where {Zt}t∈N is a sequence of iid innovations following a skewed-t distribution with shape param-

eter ν = 5 and skewness parameter γ = 0.95, βt = 0.7+0.251{t>b∗} and b∗ represents the time after

which the model is subject to a structural change. We simulate 250 presampled data for forecasting

risk measures and another 250 data for backtesting.

We choose the probability level for VaRp and ESp to be p = 0.95. Via the presampled data,

the forecaster obtains the forecasts of VaR0.95(Lt|Ft−1) and ES0.95(Lt|Ft−1) using empirical VaR

and ES of the residuals and the estimated model parameters θ̂ = (ω̂, α̂, β̂). See Section 7.13.3

for details of the forecasting procedure. Due to the model-free nature, we only use the losses and

forecasts (Lt, rt, zt) for our e-backtesting method, while the sequential monitoring method also uses

the estimated volatility σt(θ̂) by assuming the GARCH model of the losses. As suggested by Hoga

and Demetrescu (2022), the Monte Carlo simulations detector with a rolling window performs the

best among others for both VaR and ES monitoring. Therefore, we take this method for comparison

with ours. We choose the size m = 50 of the rolling window. The significance level of the sequential

monitoring method is set to be 5%, while we choose the rejection threshold of our e-backtesting

method to be 1/5% = 20.

Figure 7.4 plots the average results we get based on 10, 000 simulations, where the betting

processes of e-backtesting are chosen by the GREE, GREL or GREM method. The top panels

plot the percentage of detections over the total 10, 000 simulations, including those before and
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normal t skewed-t

threshold 2 5 10 2 5 10 2 5 10

−10% ES 89 137 176 (6.671) 151 223 277 (3.428) 224 271 264 (0.5072)

−10% both 94 146 189 (6.347) 141 215 271 (3.720) 218 256 251 (0.4679)

exact 129 201 247 (4.311) 185 267 311 (1.953) 198 195 251 (−0.04676)

+10% both 171 250 292 (2.737) 217 283 289 (0.8275) 141 206 – (−0.2072)

+10% ES 168 247 297 (2.702) 207 286 298 (0.9865) 147 158 165 (−0.2323)

Table 7.5: The average number of days taken to detect evidence against ES0.975 forecasts conditional

on detection over 1, 000 simulations of time series and 500 trading days using the GREM method;

“–” represents no detection; numbers in brackets are average final log-transformed e-values

after the structural changes at t = b∗ + 1, while the bottom panels show the average number of

trading days from the structural changes at t = b∗+1 to detections through backtesting, given that

detections occur after t = b∗+1. We call this quantity the average run length (ARL) as in Hoga and

Demetrescu (2022). As expected, all three methods of e-backtesting are dominated by the sequential

monitoring method since they do not rely on the model information. However, the GREE, GREL

and GREM methods exhibit reasonable performance for all values of b∗. From the ARL plots, the

GREE, GREL and GREM methods detect evidence against the forecasts around 0 to 30 days later

than the sequential monitoring method. Near b∗ = 0 and b∗ = 250, the GREE, GREL and GREM

methods yield similar detection percentages as the sequential monitoring method.

7.8 Financial data analysis

7.8.1 The NASDAQ index

We calculate the negated percentage log-returns using data of the NASDAQ Composite index

from Jan 16, 1996 to Dec 31, 2021. An AR(1)-GARCH(1, 1) model is fitted to the data with

a moving estimation window of 500 data points. The e-processes in (7.7) are calculated with

the betting process (λt)t∈[T ] chosen by the GREE, GREL or GREM method. Different from the

backtesting methods used in Section 7.7.1, for each t ∈ [T ], the empirical mean in (7.15) is calculated

using a moving window of data in the past 500 days. This choice is made to reflect the practice of
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Figure 7.4: Percentage of detections (%) of VaR0.95 (left panels) and ES0.95 (right panels) forecasts

over 10, 000 simulations of time series and 250 trading days with structural changes at b∗ (top

panels); ARLs of backtesting procedures (bottom panels); black lines (“monitor”) represent the

results of the sequential monitoring method

risk modeling where more recent data represent better the current market and economic conditions.

Therefore, the first 500 forecasts use 500 data points each, and we start the backtesting procedure

after the first 500 forecasts are available, thus after the first 1, 000 data points. The sample size for

backtesting is 5536, corresponding to forecasts of risk measures from Jan 3, 2000 to Dec 31, 2021.

We plot the negated log-returns and the forecasts of ES0.975 fitted by normal, t-, and skewed-t

distributions for the innovations over time in Figure 7.5. In addition to the parametric methods,

we also plot the empirical risk forecasts with a non-parametric rolling window approach in Figure

7.5.

We present backtesting results using data from Jan 3, 2005 to Dec 31, 2021 to examine the

impact of the 2007 – 2008 financial crisis. Figure 7.6 shows the e-processes over time. Table

7.6 demonstrates the average ES0.975 forecasts and the number of days taken to detect evidence

against the forecasts, where the second last rows contain the results for ES forecasts deliberately

over-reported by 10% assuming skewed-t innovations as a forecasting model that is prudent.

We observe most of the detections in Table 7.6 happen around 500 – 700 trading days after

Jan 3, 2005, where significant losses occurred during the financial crisis. Correspondingly, there

are sharp jumps of the e-processes in Figure 7.6 at around 500 – 700 trading days. In general,

we observe that detections for lower thresholds 2 and 5 are significantly earlier than those for the
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Figure 7.5: Negated percentage log-returns of the NASDAQ Composite index (left panel); ES0.875

and ES0.975 forecasts fitted by normal distribution (right panel) from Jan 3, 2000 to Dec 31, 2021

final threshold 10. This features one of the advantages of our e-backtesting procedure in practice:

Our procedure is inherently sequential, and thus, no extra effort is required to allow for monitoring

of predictive performance in comparison to testing only at the end of a sampling period. This

allows regulators to get alerted much earlier than using the traditional p-tests when e-processes

exceed the first threshold 2 or further exceed 5. The backtesting procedure may be stopped when

an e-process exceeds 10, which indicates a “decisive” failure of the underlying model used by the

financial institution.

The GREL method performs better than the GREE method in this case except for the empir-

ical forecasts. This may be because the sharp increase of losses upon the occurrence of the financial

crisis violates the growth trend and co-movements of the losses and the risk forecasts, making the

GREE method not favorable compared with the GREL method as discussed in Example 7.7. It

seems from the result that the GREL method is more likely to detect evidence against the risk

forecasts for extreme events (e.g., financial crisis) causing an abnormally sharp increase in losses.

The GREL method does not perform well in detecting evidence against the empirical forecasts for

both VaR and ES. This is expected because the empirical forecasts and the betting process of the

GREL method are both obtained only by the information of the empirical distribution of losses,

making GREL lack additional information to reject the empirical forecasts. Compared with the
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Figure 7.6: Log-transformed e-processes testing ES0.975 with respect to the number of days for the

NASDAQ index from Jan 3, 2005 to Dec 31, 2021; left panel: GREE method, middle panel: GREL

method, right panel: GREM method

GREE and GREL methods, the performance of the GREM method is more stable in different cases

with all cases of underestimation detected. Therefore, the GREM method is recommended as a

default choice for implementation.

7.8.2 Optimized portfolios

Apart from the NASDAQ index, we perform the e-backtesting procedure on data of a portfolio

of n = 22 stocks from Jan 5, 2001 to Dec 31, 2021. Suppose that a bank invests in the above

portfolio. After each trading day at time t ∈ [T ], the weights

wt = (w1
t , . . . , w

n
t ) ∈ ∆n =

{
(w1, . . . , wn) ∈ [0, 1]n :

n∑
i=1

wi = 1

}

are determined by a mean-variance criterion. Specifically, the bank solves the following optimization

problem:9

max
wt∈∆n

E[−w>t Lt]−
γ

2
var(−w>t Lt),

where Lt = (L1
t , . . . , L

n
t ) is the vector of negated percentage log-returns for all stocks in the port-

folio modeled by an AR(1)-GARCH(1, 1) process. The bank reports VaR and ES of the weighted

portfolio by assuming w>t Xt to be normal, t-, or skewed-t distributed, respectively. Some of the

9We use the mean-variance strategy to illustrate our method for its simplicity, despite its performance may not

be empirically satisfactory; see e.g., DeMiguel et al. (2009). Recall that our backtesting method does not require

knowledge of the trading strategy or the statistical model, and can be applied to any trading strategy.
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GREE GREL GREM

threshold 2 5 10 2 5 10 2 5 10

normal (2.676) 540 704 756 479 540 650 540 610 713

t (2.997) 650 941 1545 479 540 1344 540 933 1381

skewed-t (3.202) 1661 3477 – 540 1545 2676 540 2639 2889

st +10% ES (3.522) – – – – – – – – –

empirical (3.656) 719 758 876 941 3823 – 756 862 931

Table 7.6: Average ES0.975 forecasts (boldface in brackets) and the number of days taken to detect

evidence against the forecasts for the NASDAQ index from Jan 3, 2005 to Dec 31, 2021; “–” means

no detection is detected till Dec 31, 2021

assumptions in the estimation procedure are simplistic, and hence we do not expect to obtain pre-

cise risk forecasts. Suppose that a financial institution reports its risk forecasts based on the naive

approach described above. We are more likely to get detections if the simplistic assumptions lead

to underestimation. The detailed setup and the list of stocks can be seen in Section 7.13.4.

Table 7.7 shows the average forecasts of ES0.975 and backtesting results with different inno-

vation distributions. The e-processes are plotted in Figure 7.7. The portfolio data differ from the

simulated time series in the sense that the random losses and risk predictions exhibit much more

complicated temporal dependence. Detections are obtained in most of the cases for thresholds 2

and 5 before large losses come in during the financial crisis in 2008. This demonstrates one of the

practical advantages of our method, that is, due to the model-free nature, our e-backtesting method

is able to detect evidence against risk forecasts when losses and risk forecasts exhibit complicated

temporal dependence. This enables regulations for most real portfolio investments in financial mar-

kets, where model assumptions (e.g., stationarity) made by previous literature on backtesting ES

are less likely to hold.

Between the two methods, the GREL method works better than the GREE method for ES0.975

in most of the cases. However, there is no clear general guidance on which method dominates the

other due to the complexity of the strategy, which may not be known. As such, we recommend the

GREM method in general.
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GREE GREL GREM

threshold 2 5 10 2 5 10 2 5 10

normal (1.224) 547 730 767 438 541 541 461 541 714

t (1.385) 767 934 3036 1009 2207 2411 778 2207 2502

skewed-t (1.435) 767 – – 469 1009 2502 541 2411 2972

st +10% ES (1.578) – – – – – – – – –

Table 7.7: Average ES0.975 forecasts (boldface in brackets) and the number of days taken to detect

evidence against the forecasts for portfolio data from Jan 3, 2005 to Dec 31, 2021; “–” means no

detection is detected till Dec 31, 2021

7.9 Concluding remarks

The e-backtesting method proposed in this chapter is the first model-free and non-asymptotic

backtest for ES, the most important risk measure in financial regulation implemented by BCBS

(2016). Our methodology contributes to the backtesting issues of ES, which have been a central

point of discussions in the risk management literature (e.g., Nolde and Ziegel, 2017; Du and Escan-

ciano, 2017; Hoga and Demetrescu, 2022, and the references therein). Our methods are constructed

using the recently developed notions of e-values and e-processes, which are shown to be promis-

ing in many application domains of statistics other than risk management. Some topics on which

e-values become useful include sequential testing (Shafer, 2021; Grünwald et al., 2020), multiple

testing and false discovery control (Vovk and Wang, 2021; Wang and Ramdas, 2022), probability

forecast evaluation (Henzi and Ziegel, 2022), meta-analysis in biomedical sciences (ter Schure and

Grünwald, 2021), and composite hypotheses (Waudby-Smith and Ramdas, 2023). Our work con-

nects two active areas of research through theoretical results and methodologies, and we expect

more techniques from either world to be applicable to solve problems from the other.

Our e-test procedures feature advantages of e-values, including validity for all stopping times

and feasibility for no assumptions on the underlying models. Central to our proposed backtesting

method, the notion of model-free e-statistics is introduced, which is useful also for traditional testing

problems (Remark 7.3), although the main focus of the chapter is backtesting. The characterization

results in Section 7.6 give guidelines on how to choose model-free e-statistics to build the e-processes.
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Figure 7.7: Log-transformed e-processes testing ES0.975 with respect to the number of days for

portfolio data from Jan 3, 2005 to Dec 31, 2021; left panel: GREE method, middle panel: GREL

method, right panel: GREM method

Remarkably, for VaR and ES, the unique forms of model-free e-statistics are identified, leaving little

doubt on how to choose them for real-data applications.

If the sample size of a test is fixed, and accurate forecasts for the risk model are available and

to be tested together with forecasts for the risk measure, then traditional model-based methods

may be recommended to use in practice, as they often have better power than our e-backtests.

In the more realistic situations where the sample size is not fixed, or no models are to be tested

along with the risk measure forecasts, our e-backtests are useful, and their multifaceted attractive

features are illustrated by our study.

As for any other new statistical methodology, e-backtests have their own limitations, challenges,

and possible extensions. As the main limitation, since e-backtests require very little information on

the underlying model, they could be less powerful than traditional model-based or p-value-based

approaches. Therefore, there is a trade-off between flexibility and power that a risk practitioner

has to keep in mind. For future directions, an important task is to obtain theoretically optimal

betting processes using some data-driven procedures under practical assumptions. The methodology

can be extended to more general risk measures and economic indices useful in different contexts,

each demanding its own model-free e-statistics and backtesting procedure. Another future direction

interesting to us is a game-theoretic framework in which the financial institution actively decides its

optimal forecasting strategy by providing the least possible risk forecasts that are barely sufficient to

pass a regulatory backtest. The intuition is that, since e-backtests are robust to model assumptions,

they should be less vulnerable to this type of adverse strategies of the financial institutions compared
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to some model-based tests, but a full theoretical analysis is needed before any concrete conclusion

can be drawn.

7.10 Taylor approximation formulas for GREE and GREL

We give formulas for the betting processes of the GREE and GREL methods for VaR and ES

via Taylor approximation. For the GREL method, the special case of VaR, that is, taking e = eQp

in (7.15), yields

λGREL
t ≈ 0 ∨

(1− p)
(

(t− 1)p−
∑t−1

s=1 1{Ls6r}

)
(t− 1)p2 + (1− 2p)

∑t−1
s=1 1{Ls6r}

∧ γ.

For the special case of ES, taking e = eES
p in (7.15), the approximation is

λGREL
t ≈ 0 ∨

(1− p)(r − z)
(∑t−1

s=1(Ls − z)+ − (t− 1)(1− p)(r − z)
)

∑t−1
s=1((Ls − z)+ − (1− p)(r − z))2

∧ γ.

The corresponding formulas for the GREE method are obtained by replacing r and (r, z) by rs and

(rs, zs) in the s-th summand in above formulas, respectively.

7.11 Link between model-free e-statistics and identification func-

tions

The link between model-free e-statistics and identification functions is useful for deriving

the characterization results of model-free e-statistics in Section 7.6.2. An integrable function

V : Rd+1 → Rd is said to be an M-identification function for a functional ψ : M → Rd if∫
R V (x, ψ(F )) dF (x) = 0 for all F ∈M. Furthermore, V is said to be strict if∫

R
V (x, y) dF (x) = 0 ⇐⇒ y = ψ(F )

for all F ∈ M and y ∈ Rd (Fissler and Ziegel, 2016). We say that ψ is identifiable if there exists a

strict M-identification function for ψ.

There is a connection between model-free e-statistics strictly testing ρ and identification func-

tions. Let e : R2 → R be a model-free e-statistic strictly testing ρ : M → R. For F ∈ M and

r > ρ(F ) > r′ it holds that ∫
e(x, r) dF (x) 6 1 <

∫
e(x, r′) dF (x),
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and hence, 1−e(x, r) is often a strict identification function for ρ. Since identifiability of a functional

coincides with eliciability under some assumptions detailed in Steinwart et al. (2014), Proposition

7.5 is not surprising since elicitable functionals are known to have CxLS.

Proposition 7.8. Let e : Rd+1 → [0,∞] be a non-conservative model-free e-statistic for ψ =

(ρ, φ) : M → Rd, and assume that φ has a P-identification function v. We have V (x, r, z) =

(v(x, z), 1− e(x, r, z))> is a P-identification function for ψ.

Proof. Let F ∈ P. By assumption,∫
V (x, ρ(F ), φ(F )) dF (x) =

(∫
v(x, φ(F )) dF (x), 1−

∫
e(x, ρ(F ), φ(F )) dF (x)

)>
= 0.

The connection of model-free e-statistics to identification functions is useful because under

some regularity conditions there are characterization results for all possible identification functions

for a functional (Fissler, 2017; Dimitriadis et al., 2023). Below, we use these results to derive char-

acterizations of model-free e-statistics. Roughly speaking, given a model-free e-statistic e strictly

testing ρ, then all other possible model-free e-statistics e′ strictly testing ρ must be of the form

e′(x, r) = 1 + h(r)(e(x, r)− 1)

for some non-negative function h. Clearly, h must fulfill further criteria to ensure that e′ is a

model-free e-statistic strictly testing ρ.

A further consequence of these considerations is that for a functional ρ with model-free e-

statistic strictly testing ρ, there must be an identification function V (x, r) that is bounded below

by −1. This rules out a number of functionals including the expectation without further conditions

on M.

7.12 Omitted proofs of all results

Proof of Proposition 7.1. Suppose that H0 in (7.10) holds. By the VaR-ES relation in (7.4) and

(7.5),

E[eES
p (L, r, z)] =

E [(L− z)+]

(1− p)(r − z)
6

E [(L−VaRp(L))+]

(1− p)(ESp(L)−VaRp(L))
= 1.

Hence, eES
p (L, r, z) is an e-variable for (7.10).
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Proof of Proposition 7.2. For all (r, z) ∈ R× Rd−1 and t ∈ N, write Xt = e(Lt, r, z).

(i) For the “⇐” direction, suppose that λGRO
t (r, z) = 0. By Taylor expansion at λ = 0 and

continuity of λ 7→ EQt [(Xt − 1)λ|Ft−1],

d

dλ
EQt [log(1− λ+ λXt)|Ft−1] = EQt [(Xt − 1)|Ft−1] + o(λ).

Taking λ ↓ 0 yields that EQt [Xt|Ft−1] 6 1. For the “⇒” direction, suppose that EQt [Xt|Ft−1] 6 1.

It follows that

EQt [log(1− λ+ λXt)|Ft−1] 6 EQt [(Xt − 1)λ|Ft−1] 6 0.

By strict concavity of λ 7→ EQt [log(1 − λ + λXt)|Ft−1], we have λGRO
t (r, z) = 0, where the upper

bound 0 is obtained.

(ii) For the “⇐” direction, suppose that λGRO
t (r, z) = 1. It is clear that Qt(Xt = 0) = 0. It

follows by continuity of λ 7→ EQt [log(1− λ+ λXt)|Ft−1] and λ 7→ EQt [(Xt − 1)/(1− λ+ λXt)] that

0 6
d

dλ
EQt [log(1− λ+ λXt)|Ft−1]

∣∣∣∣
λ=1

= EQt
[
Xt − 1

Xt

∣∣∣∣Ft−1

]
.

Hence, EQt [1/Xt|Ft−1] 6 1. For the “⇒” direction, suppose that EQt [1/Xt|Ft−1] 6 1. It follows

that

EQt [log(1− λ+ λXt)− log(Xt)|Ft−1] = EQt
[
log

(
1− λ
Xt

+ λ

)∣∣∣∣Ft−1

]
6 EQt

[
(1− λ)

(
1

Xt
− 1

)∣∣∣∣Ft−1

]
6 0.

By strict concavity of λ 7→ EQt [log(1 − λ + λXt)|Ft−1], we have λGRO
t (r, z) = 1, where the upper

bound log(Xt) is obtained.

The following lemma will be used in the proof of Proposition 7.3.

Lemma 7.1. If M,Mt : [0, 1]→ L0 are convex for all t ∈ N, M is continuous and Mt(λ)
a.s.−−→M(λ)

as t→∞ for all λ ∈ [0, 1], then supλ∈[0,1] |Mt(λ)−M(λ)| p−→ 0 as t→∞.

Proof. For all t ∈ N, define an affine function ψt : [0, 1] → L0 such that ψt(0) = Mt(0) and

ψt(1) = Mt(1). This is clear that ψt converges uniformly to the affine function ψ : [0, 1]→ L0 such

that ψ(0) = M(0) and ψ(1) = M(1). Therefore, replacing Mt by Mt − ψt and M by M − ψ, we

assume without loss of generality that Mt(0) = M(0) = Mt(1) = M(1) = 0 for all t ∈ N.

For all η > 0, take ε = η/4. By continuity of M , there exists δ0 > 0, such that |M(λ)−M(λ′)| <

ε for all |λ− λ′| < δ. By convexity of M , there exists λ̃ ∈ (0, 1), such that M is decreasing on [0, λ̃]
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and increasing on [λ̃, 1]. Define K = (M(1) −M(λ̃))/(1 − λ̃) and δ = min{ε/K, δ0}. There exist

λ1 < · · · < λI−1 for I ∈ N \ {1}, such that λi+1 − λi < δ for all i ∈ {0, . . . , I − 1}, where we write

λ0 = 0 and λI = 1. It follows that δ 6 1− λi for all i ∈ {0, . . . , I − 1}.

Because Mt(λ)
a.s.−−→ M(λ) as t → ∞ for all λ ∈ [0, 1], there exists an event A with P(A) = 1

as follows: There exists T ∈ N, such that for all t > T , we have |Mt(λi) − M(λi)| < ε for all

i = 0, . . . , I. For all λ ∈ [0, 1], there exists i ∈ {0, . . . , I}, such that λ ∈ [λi, λi+1]. Without loss of

generality, we assume 0 6 λi 6 λ 6 λi+1 6 λ̃. The case of λ̃ 6 λi 6 λ 6 λi+1 6 1 can be shown

analogously by symmetry. If A holds, then

|Mt(λ)−M(λ)| 6 |Mt(λ)−M(λi)|

< ε+
M(1)−M(λi+1) + ε

1− λi+1
δ + |M(λi)−M(λi+1)|

< 3ε+K min
{ ε

K
, δ0

}
6 4ε = η.

Therefore, we have P(supλ∈[0,1] |Mt(λ)−M(λ)| > η) = 0 for all t > T . It follows that supλ∈[0,1] |Mt(λ)−

M(λ)| p−→ 0 as t→∞.

Proof of Proposition 7.3. Write M(λ) = E[log(1− λ+ λXt)] and

Mt(λ) =
1

t− 1

t−1∑
s=1

log(1− λ+ λXs) for λ ∈ [0, γ], t ∈ N.

By the strong law of large numbers, we have Mt(λ)
a.s.−−→M(λ) as t→∞ for all λ ∈ [0, γ]. Since the

functions M and Mt are concave for all t ∈ N, by Lemma 7.1, we have supλ∈[0,γ] |Mt(λ)−M(λ)| a.s.−−→

0. For all ε > 0, we have

sup
λ:|λ−λ∗|>ε

M(λ) 6M(λ∗)

by the definition of λ∗ and the concavity of M . For all t ∈ N, we have Mt(λt) > Mt(λ
∗) by the

definition of λt. Therefore, we have by Theorem 5.7 of van der Vaart (1998) that λt
p−→ λ∗ as t→∞.

Because λt is bounded for all t ∈ N, {λt}t∈N is uniformly integrable. It follows that λt → λ∗ with

respect to the L1-norm as t→∞, denoted by λt
L1

−→ λ∗; see e.g., Resnick (2019, Theorem 6.6.1).

Next, we show that

1

T

T∑
t=1

(log(1− λt + λtXt)− log(1− λ∗ + λ∗Xt))
L1

−→ 0 (7.16)

as T → ∞. For all ε1 > 0 and t ∈ N, by continuity and the monotone convergence theorem, there

exists δ > 0, such that log(1− δ) > −ε1 and E[log(1 + (Xt − 1)δ)|Xt > 1] < ε1. If λ∗ = 0, we have
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λt
p−→ 0 as t → ∞. Hence, there exists N > 0, such that for all t > N , P(λt > δ) < ε1. We write

x− = min{x, 0} and x+ = max{x, 0} for x ∈ R. It follows that

E[log(1− λt + λtXt)−] > E[log(1− λt)] > log(1− γ)P(δ < λt 6 γ) + log(1− δ)P(0 6 λt 6 δ)

> (log(1− γ)− 1)ε1,

and

E[log(1− λt + λtXt)+]

= E[log(1− λt + λtXt)(1{Xt>1,06λt6δ} + 1{Xt>1,δ<λt6γ})]

6 E[log(1 + (Xt − 1)δ)|Xt > 1]P(0 6 λt 6 δ) + E[log(1 + (Xt − 1)γ)|Xt > 1]P(δ < λt 6 γ)

6 (1 + E[log(1 + (Xt − 1)γ)|Xt > 1])ε1.

It is clear that supt∈N E[log(1 + (Xt − 1)γ)|Xt > 1] is bounded because supt∈N E[log(Xt)] < ∞.

Hence, E[| log(1 + λt + λtXt)|] < M1ε1 for some M1 > 0 and for all t > N . Therefore, there exists

N1 > 0, such that for all T > N1,

E

[∣∣∣∣∣ 1

T

T∑
t=1

log(1− λt + λtXt)

∣∣∣∣∣
]
6

1

T

N∑
t=1

E[| log(1− λt + λtXt)|] +
1

T

T∑
t=N+1

E[| log(1− λt + λtXt)|]

6 ε1 +
(T −N)M1

T
ε1.

Hence (7.16) holds for λ∗ = 0.

If λ∗ ∈ (0, γ], we write K = max{1/λ∗, 1/(1− λ∗)} <∞. Thus

Xt − 1

1 + (Xt − 1)λ∗
∈ [−K,K] for all t ∈ N.

For all ε2 > 0, it is clear by continuity that there exists δ > 0, such that log(1−δ/K) > −ε2. Because

λt
L1

−→ λ∗ as t → ∞, there exists N > 0, such that P(|λt − λ∗| > δ) < ε2 and E[|λt − λ∗|] < ε2 for

all t > N . It follows that for all t > N ,

E [(log(1− λt + λtXt)− log(1− λ∗ + λ∗Xt))−]

= E
[
log

(
1 +

Xt − 1

1 + (Xt − 1)λ∗
(λt − λ∗)

)
−

]
= E

[
log

(
1 +

Xt − 1

1 + (Xt − 1)λ∗
(λt − λ∗)

)(
1{Xt>1,06λt6λ∗} + 1{Xt<1,λ∗<λt>γ}

)]
> P(|λt − λ∗| 6 δ) log(1− δ/K) + P(|λt − λ∗| > δ)(E[log(1 + (Xt − 1)λt)|Xt > 1, 0 6 λt < λ∗ − δ]

+ E[log(1 + (Xt − 1)λt)|Xt < 1, λ∗ + δ 6 λt < γ]− E[log(1− λ∗ + λ∗Xt)])

> (log(1− γ)− E[log(1− λ∗ + λ∗Xt)]− 1)ε2,
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and

E [(log(1− λt + λtXt)− log(1− λ∗ + λ∗Xt))+] = E
[
log

(
1 +

Xt − 1

1 + (Xt − 1)λ∗
(λt − λ∗)

)
+

]
6 KE[|λt − λ∗|] < Kε2.

Because E[log(1−λ∗+λ∗Xt)] is bounded, we have E [| log(1− λt + λtXt)− log(1− λ∗ + λ∗Xt)|] <

M2ε2 for some M2 > 0 and for all t > N . Similar argument as the case of λ∗ = 0 leads to (7.16).

Proof of Proposition 7.4. Let e be a model-free e-statistic testing ρ. Write Mr(ρ) = {F ∈ M :

ρ(F ) 6 r}. Take F,G ∈ Mr(ρ) satisfying ρ(F ) = ρ(G) = r. We have
∫
e(x, r) dF (x) 6 1 and∫

e(x, r) dG(x) 6 1, and hence
∫
e(x, r) d(λF+(1−λ)G)(x) 6 1. Thus, ρ(λF+(1−λ)G) 6 r. Next,

for any F,G ∈ Mr(ρ), without loss of generality we assume q := ρ(F ) > ρ(G). Take Ḡ ∈ M such

that Ḡ >1 G and ρ(Ḡ) = q. From the above analysis, we know that λF+(1−λ)Ḡ ∈Mq(ρ) ⊆Mr(ρ).

Since λF + (1− λ)G 61 λF + (1− λ)Ḡ, we have λF + (1− λ)G ∈Mr(ρ).

Proof of Proposition 7.5. Take F,G ∈ M, r ∈ R, λ ∈ [0, 1], and write Hλ = λF + (1− λ)G. First,

suppose that ρ(F ), ρ(G) 6 r. Since (x, r) 7→ e(x, r) is decreasing in r, we have
∫
e(x, r) dF (x) 6 1

and
∫
e(x, r) dG(x) 6 1, and hence

∫
e(x, r) dHλ(x) 6 1 for all λ ∈ [0, 1]. This implies ρ(Hλ) 6 r.

Further, suppose that ρ(F ), ρ(G) > r. Assume that ρ(Hλ) < r. Write q = ρ(Hλ). There exists

ε > 0, such that q + ε < r. Since (x, r) 7→ e(x, r) is decreasing in r,
∫
e(x, q + ε) dHλ(x) 6 1,∫

e(x, q + ε) dF (x) > 1, and
∫
e(x, q + ε) dG(x) > 1. This leads to a contradiction. Therefore,

ρ(Hλ) > r. Summarizing the above arguments, ρ(F ), ρ(G) 6 r implies ρ(Hλ) 6 r, and ρ(F ), ρ(G) >

r implies ρ(Hλ) > r. This gives the quasi-linearity of ρ.

Proof of Proposition 7.6. Let e′(x, r) be a continuous non-conservative model-free e-statistic testing

the mean. By Proposition 7.8 in Section 7.11, 1 − e′(x, r) is an P-identification function for the

mean. The function V (x, r) = x− r is a strict P-identification function for the mean which satisfies

Dimitriadis et al. (2023, Assumption (S.5)). By Dimitriadis et al. (2023, Theorem S.1), there is a

function h̃ : (a,∞)→ R such that

1− e′(x, r) = h̃(r)(x− r), x > a, r > a.

It is clear that h(r) = h̃(r)(r − a) has to be continuous. The condition 0 6 h 6 1 arises since

e′(x, r) > 0. Since e′ is testing the mean, it has to hold that h > 0. The condition that e′ is strictly

testing implies the remaining conditions.
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Proof of Proposition 7.7. Let e′(x, r, z) be a continuous non-conservative model-free e-statistic for

(var,E) testing var. By Proposition 7.8 in Section 7.11, (x−z, 1−e′(x, r, z))> is anM2-identification

function for (var,E). The function V (x, r, z) = (x − z, r − (x − z)2)> is a strict M2-identification

function for (var,E) which satisfies Dimitriadis et al. (2023, Assumption (S.5)). By Dimitriadis et

al. (2023, Theorem S.1), there are functions h1 and h2 such that

e′(x, r, z) = 1 + h1(r, z)(z − x) + h2(r, z)
(z − x)2 − r

r
, x, z ∈ R, r > 0. (7.17)

Since e′ is continuous, one can see that h2 has to be continuous by choosing x = z, but then also

h1 has to be continuous. Putting t = z − x and considering the resulting quadratic function in t,

one sees that rh2
1(r, z) 6 4h2(r, z)(1− h2(r, z)) is necessary and sufficient for e′(x, r, z) > 0.

For all r > 0, z ∈ R, p ∈ (0, 1), and ε1, ε2 > 0, consider a random variable

X =

(
z + ε1 +

(
r(1− p)

p
+
ε2
p2

)1/2
)
1A +

(
z + ε1 −

(
rp

1− p
+

ε2
(1− p)2

)1/2
)
1Ac ,

where A is a set with P(A) = p and Ac denotes the complement of A. It follows that E[X] = z+ ε1

and var(X) = r + ε2/(p(1− p)) > r. By (7.17) and since e′ is testing var, we have

1 < E[e′(X, r, z)] = 1 + h1(r, z)(z − E[X]) + h2(r, z)
E[(z −X)2]− r

r

= 1− h1(r, z)ε1 + h2(r, z)

(
ε21
r

+
ε2

rp(1− p)

)
.

(7.18)

Arbitrariness of ε1 and ε2 yields that h1 6 0. Similarly, for all r > 0, z ∈ R, p ∈ (0, 1), and

ε1, ε2 > 0, consider the random variable

X =

(
z − ε1 +

(
r(1− p)

p
+
ε2
p2

)1/2
)
1A +

(
z − ε1 −

(
rp

1− p
+

ε2
(1− p)2

)1/2
)
1Ac .

It yields the condition

1 + h1(r, z)ε1 + h2(r, z)

(
ε21
r

+
ε2

rp(1− p)

)
> 1,

which implies that h1 > 0. It follows that h1(r, z) = 0 for all r > 0 and z ∈ R. Thus 0 = rh2
1(r, z) 6

4h2(r, z) (1− h2(r, z)), and thus 0 6 h2 6 1. Since (E[(z − X)2] − r)/r > 0 for all X with finite

variance, all z ∈ R and r < var(X), the first line of (7.18) yields that h2 > 0. It is also clear that

h1 = 0 and 0 < h2 6 1 is sufficient for e′ to be a model-free e-statistic for (var,E) testing var.

Substituting h2 by h yields the assertion. The final statement is directly obtained from the same

argument as the proof of Proposition 7.6.
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Proof of Theorem 7.4. Let e′(x, r) be an e-statistic satisfying the stated conditions. By Proposition

7.8 in Section 7.11, 1− e′(x, r) is a P-identification function for VaRp. The function 1{x6r}− p is a

strict P-identification function for VaRp which satisfies Dimitriadis et al. (2023, Assumption (S.5)).

By Dimitriadis et al. (2023, Theorem S.1), for any F ∈ P it has to hold that∫
e′(x, r) dF (x) =

∫
1 + h(r)

p− 1{x6r}
1− p

dF (x).

Since e′ is assumed to be continuous except for points in a set of Lebesgue measure zero, it satisfies

Dimitriadis et al. (2023, Assumption (S.7)). All Dirac measures can be approximated by distribu-

tions in P with compact support. Therefore, P satisfies Dimitriadis et al. (2023, Assumption (S.6)).

Together this implies that the stated form of e′ holds for almost all (x, r). Due to the continuity

assumption, we obtain it for all (x, r).

The condition 0 6 h 6 1 ensures that e′(x, r) > 0. In order to obtain that e′ is testing, it is

necessary and sufficient that h > 0. Fix x ∈ R. For r > x, the function r 7→ e′(x, r) is decreasing if

and only if h is increasing; for r < x, the same function is decreasing if and only if h is decreasing.

Since these considerations hold for any x ∈ R, h has to be constant.

We first show the following auxiliary lemma for the proof of Theorem 7.5.

Lemma 7.2. Let p ∈ (0, 1) and P be the set of all distributions with finite mean with a quantile

continuous at p. All P-model-free e-statistics e′ for (ESp,VaRp) that are non-conservative and

continuous except at points with x = z are of the form

e′(x, r, z) = 1 + h1(r, z)
1{x6z} − p

1− p
+ h2(r, z)

(
(x− z)+

(1− p)(r − z)
− 1

)
, x ∈ R, z < r, (7.19)

where h1, h2 are continuous functions such that h2 > 0 and

−1 + h2(r, z) 6 h1(r, z) 6
1− p
p

(1− h2(r, z)) , z < r.

Proof of Lemma 7.2. Let e′(x, r, z) be an e-statistic satisfying the stated conditions. By Proposition

7.8 in Section 7.11, (1{x6z}− p, 1− e′(x, r, z))> is a P-identification function for (ESp,VaRp), since

the function 1{x6z}− p is a P-identification function for VaRp. The strict P-identification function

(1{x6z}− p, (x− z)+− (1− p)(r− z)) for (ESp,VaRp) satisfies Dimitriadis et al. (2023, Assumption

(S.5)). With exactly the same arguments as in the proof of Theorem 7.4, we now obtain (7.19) first

in an integrated version, and then pointwise for all (x, z, r) with z < r. Considering separately the

cases that x 6 z and x > z, we find that necessary and sufficient conditions for e′(x, r, z) > 0 are

h2 > 0 and −1 + h2 6 h1 6 ((1− p)/p) (1− h2).
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Proof of Theorem 7.5. Suppose that (x, r, z) 7→ e′(x, r, z) is a model-free e-statistic for (ESp,VaRp)

testing ESp that is non-conservative on P and continuous except at x = z. For all r ∈ R, z 6 r,

ε > 0, and for some q ∈ (p, 1], consider a random variable

X = ((r − z)(1− p)/(1− q) + ε)1A + z,

where P(A) = 1 − q. It follows that E[(X − z)+] = (1 − p)(r − z) + ε(1 − q) and ESp(X) =

r + ε(1 − q)/(1 − p) > r, since VaRp(X) = z. By Lemma 7.2, there exist continuous functions h1

and h2, such that

1 < E[e′(x, r, z)] = 1 + h1(r, z)
P(X 6 z)− p

1− p
+ h2(r, z)

(
E[(X − z)+]

(1− p)(r − z)
− 1

)
= 1 + h1(r, z)

q − p
1− p

+ h2(r, z)

(
(1− q)ε

(1− p)(r − z)

)
.

(7.20)

Arbitrariness of ε implies that h1 > 0 and h2 > 0, with at least one of the two inequalities being

strict. Similarly, for all r ∈ R, z 6 r, ε > 0, and for some q ∈ [0, p), take

X = (r − z + ε)1A + ε1B + z,

where P(A) = 1−p and P(B) = p−q and A∩B = ∅. We have E[(X−z)+] = (1−p)(r−z)+ε(1−q)

and ESp(X) = r + ε > r. Thus, condition (7.20) also has to hold for q ∈ [0, p), which implies that

h1 6 0 and h2 > 0, with at least one of the two inequalities being strict. According to the previous

arguments, we have h1 = 0 and h2 > 0. This implies that (x, r, z) 7→ e′(x, r, z) is also continuous at

points with x = z. The inequality −1 + h2 6 h1 6 ((1− p)/p) (1− h2) in Lemma 7.2 yields h2 6 1.

Substituting h2 by h completes the proof. The final statement is obtained by the same argument

as the proof of Proposition 7.6.

7.13 Supplementary simulation and data analysis

7.13.1 Forecasting procedure for stationary time series data

This section describes the details of the forecasting procedure for VaR and ES in Section 7.7.1.

We assume that the data generated above follow an AR(1)–GARCH(1, 1) process {Lt}t∈N with

Lt = µt + σtZt, where {Zt}t∈N is assumed to be a sequence of iid innovations with mean 0 and

variance 1, and {µt}t∈N and {σt}t∈N are Ft−1-measurable. Specifically, we have

µt = c+ ψXt−1 and σ2
t = α0 + α1ε

2
t−1 + βσ2

t−1, t ∈ N. (7.21)
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We first assume the innovations Zt to follow a normal, t-, or skewed-t distribution, and estimate

{µ̂t}t∈N and {σ̂2
t }t∈N through obtaining the maximum likelihood estimators of (c, ψ, α0, α1, β) un-

der the assumption on the distribution of Zt. For t- and skewed-t distributions, parameters are

estimated by the maximum likelihood method via the standardized residuals {(Lt − µ̂t)/σ̂t}t∈N.

For a risk measure ρ (ρ = VaRp or ρ = ESp), the value of ρ(Zt) can be calculated explicitly for

the assumed parametric models (see e.g., McNeil et al., 2015; Nolde and Ziegel, 2017; Patton et

al., 2019). For estimation, the estimated parameters are plugged into these formulas resulting in

estimates ρ̂(Zt). The final risk predictions are then µ̂t + σ̂tρ̂(Zt), where µ̂t and σ̂t are computed

from (7.21) with the estimated parameters. Table 7.8 shows the average of the forecasts of VaR

and ES at different levels over all 1, 000 trials and all trading days, where the last line shows the

average forecasts of VaR and ES using the true information of the data generating process.

VaR0.95 VaR0.99 VaR0.875 ES0.875 VaR0.975 ES0.975

normal 0.619 0.906 0.411 0.620 0.752 0.910

t 0.534 0.999 0.300 0.576 0.722 1.065

skewed-t 0.676 1.281 0.369 0.727 0.922 1.358

true 0.674 1.271 0.368 0.723 0.918 1.343

Table 7.8: Average point forecasts of VaR and ES at different levels over 1, 000 simulations of time

series and 500 trading days; values in boldface are underestimated by at least 10% compared with

values in the last line

7.13.2 Comparing GREE and GREL methods for stationary time series

This section serves as a supplement to Section 7.7.1 by demonstrating the results of backtest-

ing VaR and ES using the GREE and GREL methods through Taylor approximation in (7.15).

Meanwhile, we compare the performance of the GREE and GREL methods. The results of VaR

are shown in Tables 7.9 and 7.10 and those for ES are shown in Tables 7.11 and 7.12. The GREL

method is better than the GREE method in terms of percentage of detections in all cases of VaR

and ES. This is consistent with the result in Theorem 7.3 because for the time series data, the losses

used by the GREL method are relatively closer to an iid pattern compared to the whole e-statistics

used by the GREE method. This is also not a contradiction to the slightly longer expected time to

detection conditional on the detection of the GREL method, noting that the GREL method detects
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more often.

GREE

normal t skewed-t

threshold 2 5 10 2 5 10 2 5 10

−10% 99.0 96.5 92.1 95.5 84.2 72.4 38.3 13.7 5.6

exact 95.0 84.4 72.0 79.5 55.4 37.2 14.0 2.8 0.8

+10% 80.5 56.8 38.2 52.3 22.0 9.8 5.3 0.6 0

GREL

normal t skewed-t

threshold 2 5 10 2 5 10 2 5 10

−10% 99.7 98.3 94.5 98.2 88.7 76.7 51.0 15.1 6.6

exact 97.8 88.6 75.9 87.4 62.4 39.8 24.3 3.2 0.6

+10% 87.7 65.0 43.9 67.5 28.9 13.6 10.8 0.4 0.1

Table 7.9: Percentage of detections (%) for VaR0.99 forecasts over 1, 000 simulations of time series

and 500 trading days
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GREE

normal t skewed-t

threshold 2 5 10 2 5 10 2 5 10

−10% 123 186 228 (5.475) 159 236 278 (3.327) 206 260 300 (0.2856)

exact 164 239 283 (3.236) 197 272 311 (1.638) 189 229 265 (−0.1012)

+10% 197 268 300 (1.734) 217 280 318 (0.5933) 158 224 – (−0.1706)

GREL

normal t skewed-t

threshold 2 5 10 2 5 10 2 5 10

−10% 116 185 233 (5.338) 158 241 293 (3.290) 239 281 330 (0.3492)

exact 160 241 295 (3.240) 196 286 332 (1.736) 233 238 289 (−0.1463)

+10% 189 284 330 (1.849) 226 304 358 (0.7599) 230 211 377 (−0.3472)

Table 7.10: The average number of days taken to detect evidence against VaR0.99 forecasts condi-

tional on detection over 1, 000 simulations of time series and 500 trading days; numbers in brackets

are average final log-transformed e-values
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GREE

normal t skewed-t

threshold 2 5 10 2 5 10 2 5 10

−10% ES 99.7 98.9 97.9 96.7 85.6 73.8 39.9 14.9 6.1

−10% both 99.8 98.9 97.3 97.9 89.2 79.3 41.1 13.6 6.4

exact 98.6 93.2 86.1 83.0 59.8 41.1 13.5 3.2 1.1

+10% both 91.1 75.7 59.8 54.2 22.3 10.2 5.1 0.8 0

+10% ES 91.0 76.1 60.2 60.6 28.3 13.8 6.0 1.1 0.1

GREL

normal t skewed-t

threshold 2 5 10 2 5 10 2 5 10

−10% ES 99.9 99.2 98.2 97.5 86.2 74.1 49.3 16.6 6.5

−10% both 99.9 99.0 97.6 98.1 89.2 78.8 49.9 17.4 6.6

exact 99.2 94.6 85.7 87.6 62.4 41.9 25.3 5.6 0.9

+10% both 94.1 77.3 56.2 66.0 31.6 12.5 11.5 1.5 0.1

+10% ES 94.4 76.7 57.4 72.7 36.1 16.9 13.1 1.7 0.2

Table 7.11: Percentage of detections (%) for ES0.975 forecasts over 1, 000 simulations of time series

and 500 trading days
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GREE

normal t skewed-t

threshold 2 5 10 2 5 10 2 5 10

−10% ES 95 141 181 (6.596) 158 226 274 (3.365) 213 250 234 (0.3991)

−10% both 95 152 194 (6.341) 149 220 269 (3.674) 207 242 224 (0.3594)

exact 139 201 250 (4.278) 193 265 307 (1.822) 208 233 220 (−0.1011)

+10% both 177 249 292 (2.669) 219 267 286 (0.6485) 106 109 – (−0.1843)

+10% ES 174 248 295 (2.625) 210 266 288 (0.8098) 90 96 156 (−0.2005)

GREL

normal t skewed-t

threshold 2 5 10 2 5 10 2 5 10

−10% ES 97 147 189 (6.344) 155 231 282 (3.238) 235 264 277 (0.4990)

−10% both 99 154 201 (5.963) 146 221 271 (3.511) 223 263 278 (0.4565)

exact 134 209 258 (4.027) 191 266 318 (1.892) 208 233 220 (−0.09266)

+10% both 174 257 291 (2.577) 217 289 298 (0.8661) 186 207 70 (−0.3171)

+10% ES 173 254 296 (2.557) 215 282 301 (1.007) 189 185 271 (−0.3653)

Table 7.12: The average number of days taken to detect evidence against ES0.975 forecasts condi-

tional on detection over 1, 000 simulations of time series and 500 trading days; “–” represents no

detection; numbers in brackets are average final log-transformed e-values

7.13.3 Forecasting procedure for time series with structural change

This section provides details for the forecasting procedure for time series data with structural

change in Section 7.7.2. After a burn-in period of length 1, 000, 500 data points are simulated,

within which 250 presampled data L1, . . . , L250 are for forecasting risk measures and the rest 250

data L251, . . . , L500 are for backtesting. The forecaster obtains the estimates θ̂ of the model pa-

rameters θ = (ω, α, βt) once using the standard Gaussian QML for the presampled 250 losses.

For t ∈ {251, . . . , 500}, the forecasts of VaR0.95(Lt|Ft−1) and ES0.95(Lt|Ft−1) are obtained by

zt = σt(θ̂)V̂aR0.95 and rt = σt(θ̂)ÊS0.95, respectively, where V̂aR0.95 and ÊS0.95 are empirical fore-

casts of VaR and ES using presampled residuals L1/σ1(θ̂), . . . , L250/σ250(θ̂). We choose the size
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m = 50 of the rolling window and a leg d = 5 of autocorrelations.10

7.13.4 Detailed setup of data analysis for optimized portfolios

For the data of optimized portfolios we use in Section 7.8.2, the first 500 data points are

used for the initial forecast and another 500 data points are for computing the first value of the

betting process of the backtesting procedure. The final sample for backtesting contains 4280 negated

percentage log-returns from Jan 3, 2005 to Dec 31, 2021. The selected stocks are those with the

largest market caps in the 11 S&P 500 sectors divided by the GICS level 1 index as of Jan 3, 2005.

The list of selected stocks is shown in Table 7.13.

Communication Services Customer Discretionary Consumer Staples

Verizon Communications Inc. Time Warner Inc. The Procter & Gamble Co.

AT&T Inc. The Home Depot, Inc. Walmart Inc.

Energy Financials Health Care

Exxon Mobil Corp. Citigroup Inc. Johnson & Johnson

Chevron Corp. Bank of America Corp. Pfizer Inc.

Industrials Information Technology Materials

United Parcel Service Inc. International Business Machines Corp. EI du Pont de Nemours and Co.

General Electric Co. Microsoft Corp. The Dow Chemical Co.

Real Estate Utilities

Weyerhaeuser Co. Exelon Corp.

Simon Property Group Inc. The Southern Co.

Table 7.13: 22 selected stocks in S&P 500 sectors divided by GICS level 1 as of Jan 3, 2005 for the

portfolio

For forecasting, we assume Lit = µit+σ
i
tZ

i
t with µit and σit defined to be the same as (7.21) for all

i ∈ [n]. The innovations {Zit}t∈N are iid with respect to time with mean 0 and variance 1 for i ∈ [n],

assumed to be normal, t-, or skewed-t distributed. If a stock delists from the S&P 500 during the

period from Jan 3, 2005 to Dec 31, 2021, it is removed from the portfolio as soon as it delists with all

of its weight redistributed to the other stocks in the portfolio. The bank reports the VaR and the ES

of the weighted portfolio by assuming w>t Xt to be normal, t-, or skewed-t distributed, respectively,

10The leg d = 5 is not necessary for the Monte Carlo simulations detector. We choose it to be consistent with the

simulation setting of Hoga and Demetrescu (2022) for comparison.
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with the mean
∑n

i=1w
i
tµ
i
t and the variance (w1

t σ
1
t , . . . , w

n
t σ

n
t )>Σt(w

1
t σ

1
t , . . . , w

n
t σ

n
t ), where Σt is the

covariance matrix of (Z1
t , . . . , Z

n
t ). The assumption is true when the innovations follow the normal

distribution or follow the t-distribution with the same degree of freedom. We use this assumption to

approximate the true distribution of the portfolio for t-distributions of different degrees of freedom

and skewed-t distributions. The parameters of the t- and skewed-t distributions of the weighted

portfolio are estimated by the maximum likelihood method assuming the negated percentage log-

return of the portfolio to be the AR(1)-GARCH(1, 1) process with innovations belonging to the same

class of distribution. Figure 7.8 shows the negated log-returns of the portfolio and the forecasts of

ES0.975 over time assuming different innovation distributions.
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Figure 7.8: Portfolio data fitted by different distribution from Jan 3, 2005 to Dec 31, 2021; left

panel: negated percentage log-returns, right panel: ES0.975 forecasts
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Chapter 8

Concluding remarks and future work

8.1 Concluding remarks

Most of the important topics on riskmetrics are within the categories of characterization,

optimization, and statistical approaches. My Ph.D. thesis research aims to explore various topics

on riskmetrics to get myself well prepared for potential future research. The following are several

summaries and remarks for all major chapters of this thesis.

Chapter 2 serves as a theoretical foundation of my thesis research. The class of riskmet-

rics we study, distortion riskmetrics, is general enough to include several common risk measures

and deviation measures. Besides characterization, we study and summarize properties of distor-

tion riskmetrics including finiteness, convexity, and continuity. Most of the results are not ground

breaking, but are good as a starting point to study other interesting applications and deep theoret-

ical extensions of distortion riskmetrics. Several followup questions on distortion riskmetrics have

already been done, including risk sharing problems and robust optimization. In the future, it will

be interesting to study distortion riskmetrics in other contexts, such as optimal insurance. Some

specific classes of distortion riskmetrics are also worth exploring, such as the difference between two

distortion risk measures, which measures the disagreement between two couterparties. Distortion

riskmetrics are also not general enough to include all common risk functionals. We can also consider

extending this class to a setting based on RDEU.

Chapter 3 is a natural extension of our study on distortion riskmetrics in Chapter 2 to distribu-

tionally robust optimization, a hot topic in operations research. The core message of this chapter is

that we are able to find a unifying result leading to the equivalence between the original problem to
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its convex counterpart. Taking the advantage of distortion riskmetrics as a large class of objective

functional, we can solve many practical optimization problems in finance and operations research.

However, the theory is not complete yet in the sense that we only obtain a sufficient condition for

the equivalence to hold. It is important to find a necessary one on the uncertainty set, so that

we can obtain a complete characterization of the equivalence result. The sufficient property we

proposed, closedness under concentration, does not cover all common practical cases where we can

freely convert from the original problem to its convex counterpart, some optimal insurance problems

as examples. Future research can also focus on obtaining more general sufficient conditions holding

as least under common setups such as moment constraints and Wasserstein balls.

Chapters 4-6 are all characterization of various riskmetrics. Chapter 4 proposes the notions of

Bayes pair and Bayes risk measure under the context of statistical elicitation. We characterize ES

as the only coherent Bayes risk measure and entropic risk measure as the only elicitable Bayes risk

measure. Chapter 5 characterizes several classes of riskmetrics in the context of optimal insurance

design problems. In particular, we find the only objective the insured and the insurer use must

be an ES/E-mixture when the Pareto optimal set of contracts is with a deductible. Chapter 6

studies characterization of cash-subadditive risk measures. We find a general cash-subadditive risk

measure can be represented by the lower envelope of a family of cash-subadditive and quasi-convex

risk measures. We propose a new property called quasi-star-shapedness and find that our charac-

terization result also holds true with quasi-star-shapedness and normalization. A characterization

problem is a good starting point to study further extensions of riskmetrics. For instance, it is

attracting to study characterization of riskmetrics under optimal insurance for a fixed distribution

rather than a class of random losses, since practical problems of insurance design are usually under

the situation where a loss distribution is given. This will make the problem and result much more

practical. We can use the result to further deduce insured’s risk attitude according to their optimal

decision, which is very helpful for insurance companies. Moreover, it is surprising that the property

of quasi-star-shapedness has sound economic interpretations of ambiguity aversion. Future research

can focus on possible links between this property and deep economic problems.

Chapter 7 studies a new topic on riskmetrics about risk forecast and backtest, which has long

been great interest and challenge to financial regulators and researchers. We propose a model-free

and non-asymptotic backtesting method that works for various riskmetrics including VaR and ES.

Through our study, we create an interesting link between backtesting riskmetrics and e-values, a

recently developed powerful tool as an alternative to p-values. Our characterization of model-free e-
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statistics and optimality results of e-backtesting methods provide useful guidelines for practitioners

to deal with real financial regulation situations. Given the importance of backtest and the promising

potential extensions of e-values, the direction of this chapter is worth exploring and focusing on

in the future. Our approach can be naturally extended to backtesting other riskmetrics beyond

VaR and ES, provided that proper model-free e-statistics are obtained for specific riskmetrics.

Considering the regulator and the financial institution as two players, we can study a game-theoretic

framework of real backtesting problems. Moreover, as one of the limitations of e-values is its

lack of power due to its model-free nature, we can improve the current methods by incorporating

partial information of the underlying distribution. Some study can be done on this direction and

comparisons can be made between e-value tests and p-value tests in terms of the power.

We discuss some specific future directions in the following section. All the notes are for possible

future references.

8.2 Future work and open questions

8.2.1 On characterization

1. Chapter 2 has discussed about the characterization of distortion riskmetrics. The class of

dual utilities or distortion risk measures have also been studied by earlier literature. We refer

to Yaari (1987) and Schmeidler (1989) in economics and Denneberg (1994) and Wang et al.

(1997) in actuarial science. However, it is still an open question about the characterization of

rank-dependent expected utility (RDEU) in Quiggin (1982), defined under probability space

(Ω,F ,P) as ∫
Ω
`(X) dT ◦ P, X ∈ X ,

where ` : R → R is a strictly increasing and convex loss function (positive random variables

represent losses), and T : [0, 1] → [0, 1] is a probability distortion function. It may be either

RDEU is not natural, or it is still difficult to find a characterization. If the former is true,

then why it is unnatural but so popular?

2. Motivated from Chapter 2, it might be interesting to consider the class of functionals which

are differences of distortion risk measures, defined as

ρh(X) = ρh1(X)− ρh2(X), X ∈ X , (8.1)
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where ρh1 , ρh2 are defined by (1.3), h1 and h2 are increasing and normalized, and h = h1−h2.

This class of functionals measure the disagreement between two risk attitudes. By the main

result of Chapter 3, we are able to compute the upper and lower bounds of this measure of

disagreement in (8.1). This class of distortion riskmetrics has also appeared in Lauzier et al.

(2023), where an optimal allocation for risk sharing problems of distortion riskmetrics exisits

when hi(1) = 0 for all i = 1, . . . , n. But this condition does not guarantee the equivalence

between sum optimality and Pareto optimality unless the objectives are inter-quantile-ranges

(IQDs). Above work suggests that the functional (8.1) has some special roles in different

contexts. We can explore different characterizations of (8.1) in different problems. It is also

interesting to find other applications of this class of functionals to practice?

3. One limitation of our main result in Chapter 5 is that we have only characterized ES as an

objective functional so that deductible insurance contracts are optimal for all distributions of

random losses. This makes the result unrealistic although it provides interesting mathematical

insights, because the insured and the insurer usually consider a fixed distribution of the

insurance loss for a specific contract. In this sense, we are motivated to explore if similar

results to that in Chapter 5 can be obtained for any fixed distribution of the underlying

random loss. Namely, we have the following conjecture.

Conjecture 8.1. Suppose that ρ and ψ are law-invariant convex risk measures with ρ(0) =

ψ(0) = 0. For any fixed X ∈ X+, the following statements hold true:

(i) IXρ,ψ = I2 if and only if ρ(X) = ψ(X) and ρ and ψ are convex distortion risk measures;

(ii) IXρ,ψ = I0 if and only if ρ(X) = ψ(X) = E[X].

(iii) For any fixed d > 0 and p ∈ [0, 1), we have IXρ,ψ ⊇ Id1 if and only if ρ(X) = ψ(X) =

ESλp(X) for some λ > 0.

The notations in Conjecture 8.1 follow from Chapter 5. The enhancement of the model

seems slight, but it involves nontrivial theoretical analysis. More importantly, characteriza-

tion results for any fixed distribution will provide much deeper economic insights in terms of

evaluating the risk attitudes of decision makers given their optimal choices of insurance con-

tracts. This further links our work to the inverse optimization problem in operations research;

see e.g., Bertsimas et al. (2012) and Li (2021) for inverse optimization problems involving risk

measures. Several other extensions are subject to further investigation. First, it is unknown
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whether Conjecture 8.1 is true when we change the inclusion IXρ,ψ ⊇ Id1 to equation IXρ,ψ = Id1 .

This will complete the theory with a concrete characterization. Second, in practical situation,

the risk attitudes of the insured and the insurer are not necessarily the same. Hence, it will

be interesting to consider the case where the two risk measures ρ and ψ are different. Third,

our study does not consider coinsurance contracts, which are also very common in insurance

practice. It is promising to find the potential link between coinsurance contracts and some

specific forms of riskmetrics.

4. I am still not so clear about the following direction but would be interested to write it down for

future deeper thoughts and explorations. As discussed in Chapter 6, comonotonic allocations

turn out to be optimal in many cases with law-invariant convex or consistent risk measures.

The result reflects that comonotonicity is closely related to risk aversion. However, in some (or

most) other cases where the objective functionals are not convex (see e.g., Embrechts et al.,

2018, for the case of quantile-based risk sharing), optimal allocations are negatively dependent.

One natural question is whether negative dependence corresponds to risk seeking preferences.

In fact, negative dependence is also very common in the real life (such as gamblings and

lotteries). What risk attitude does negative dependence correspond to? Can we characterize

some measures of preferences (such as RDEU) given that negative dependence is optimal?

8.2.2 On optimization

1. Beyond the framework of Chapter 3, it is also possible that a nonconvex optimization problem

is equivalent to its convex counterpart if the uncertainty set is not closed under concentra-

tion. In this sense, we are motivated to explore DRO problems where closedness under

concentration does not necessarily hold. For example, it has been shown in Chapter 3 that

the Wasserstein uncertainty set is only closed under concentration under some special condi-

tions. We can study more general cases where such conditions are loosed and derive the worst-

and best-case distortion riskmetrics to see if they are still equal to the bounds for its convex

counterpart. This will help weaken the sufficient condition of closedness under concentration

for the equivalence result to hold, and therefore leads to more practical applications in more

general scenarios. Moreover, we can extend the current framework to an optimal insurance

problem with distributional uncertainty. In general, we aim to solve the following problem:

min
f∈I

sup
FX∈M

ρh(X − f(X) + π(f(X))). (8.2)
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Liu and Mao (2022) discussed a special case of the problem (8.2) withdeductible contract,

expected premium, moment constraint, and VaR/ES as the objective functionals. Although

the uncertainty set for the random variable X − f(X) + π(f(X)) is not closed under concen-

tration, it still holds true that the worst-case VaR and ES are the same under the setup of

Liu and Mao (2022). It will be of great interest to study the more general version (8.2) and

obtain a sufficient (or necessary) condition for the equivalence

sup
FX∈M

ρh(X − f(X) + π(f(X))) = sup
FX∈M

ρh∗(X − f(X) + π(f(X)))

to hold.

2. Following Chapter 3, it remains to be an open question that what is the necessary condition

on the uncertainty set for the equivalence result between the nonconvex optimization problem

and its convex counterpart to hold. Chapter 3 only demonstrates that if such an equivalence

holds, the set of the optimizers should be closed under concentration. However, a necessary

condition on the uncertainty set itself is still unknown. Such a necessary condition, if found,

will demonstrate a complete characterization of the equivalence result between the original

problem and its convex counterpart, and thus deepen our understanding of similar DRO

problems in decision theory, finance, game theory, and operations research.

3. Optimal insurance under belief heterogeneity is a popular topic recently. Chi (2019) studied

the following problem:

max
I∈C

EP[U(W −X + I(X)− (1 + ρ)EQ[I(X)])], (8.3)

where U is an increasing concave utility function and ρ > 0 is a safety loading coefficient. Chi

(2019) found that the optimal solution of (8.3) is still of a deductible form when belief het-

erogeneity satisfies the so-called monotone hazard rate (MHR) condition, which is expressed

as

Hr(t) =
Q(X > t)

P(X > t)
is decreasing over [0,max{MP(X),MQ(X)}),

where MP(X) and MQ(X) represent the essential supremums of X under probability measures

P and Q respectively. However, it seems that the MHR condition is not necessary for the

optimal contract to be of a deductible form. My numerical studies indicate that the optimal

indemnity is still close to a deductible form under some special cases where MHR is not

satisfied. For example, it turns out that we still get deductible insurance as the optimal

contract when we take P and Q as shown in the following example:
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Example 8.1 (MHR condition is not satisfied). One natural example of belief heterogeneity

violating the MHR condition is where X
Q∼ U[0, 5] and X

P∼ F such that the probability

density function f of F is given by

f(t) =



0.3, 0 < t < 1,

0.25, 1 < t < 2,

0.2, 2 < t < 3,

0.15, 3 < t < 4,

0.1, 4 < t < 5.

In this case, the insurer believes the random loss is uniformly distributed from 0 to 5, while

the insured believes there would be lower probability to have large losses compared with small

losses. The insured and insurer’s beliefs on risks, as described above, are also commonly seen

in real cases. However, the MHR condition is no longer satisfied since the ratio Q(X >

t)/P(X > t) is not deceasing with respect to t over [0,max{MP(X),MQ(X)}).

In light of the numerical findings, it is worth further exploration to find a more general con-

dition than MHR at least for some special classes of loss distributions. Also, the optimization

problem under belief heterogeneity beyond expected utility (EU) framework may also be

interesting to investigate.

8.2.3 On elicitability and backtesting

1. It is natural to extend the backtesting method described in Chapter 7 to other riskmetrics

beyond VaR and ES. Gini deviation (GD) and Gini coefficient (GC) are important measures

of statistical dispersion widely applied in statistics and economics. The Gini deviation GD :

L1 → R is defined as

GD(X) =
1

2
E[|X −X ′|],

where X ′ is and iid copy of X. Alternatively, we can write GD as a function from M1 → R

as a signed Choquet integral

GD(F ) =

∫ 1

0
F−1(t)(2t− 1) dt =

∫
R
F (t)(1− F (x)) dx;

see e.g., Wang et al. (2020, Example 1). The Gini coefficient GC : L1
+ → [0, 1] is defined as

GC(X) =
GD(X)

E[X]
=

∫∞
0 F (t)(1− F (x)) dx∫∞

0 (1− F (x)) dx
.
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It remains to be an open question about the elicitability and elicitation complexity of GD

and GC. This creates a barrier in evaluating the estimation performance of GD and GC in

practice. We are motivated to studying the elicitation complexity of GD and GC, and it is

conjectured that the answer to this question may be infinity. Furthermore, we are interested

in exploring more about hypothesis tests for the forecasts of GD and GC using e-values. E-

testing GD and GC has promising applications in statistical and economic practice. Possible

forms of the model-free e-statistics for GD have been derived. The main idea is to use a pair

of two data points to form a model-free e-statistic for GD, which is of the following form

e(r, x1, x2) =
|x1 − x2|

2r
.

This e-statistic requires the input of iid copies of the data we have. This restricts the tractabil-

ity of our method. An e-testing method for GD or GC without using iid copies is still not

known.

2. The characterization results of model-free e-statistics in Chapter 7 are all based on the setup

of one single time period. Since backtesting risk measures is usually done in a dynamic

framework, it is natural to consider extensions of the current characterization results to a

multi-dimensional setup in multiple time periods. Based on the results in Vovk and Wang

(2022), we have proved that the product form of e-processes dominates other merging functions

of e-values for general risk measures, expressed in the following conjecture:

Conjecture 8.2. For all sequential e-variables E1, . . . , ET , let St = F (E1, . . . , Et, 1, . . . , 1),

t ∈ [T ], and S0 = 1, where F : [0,∞]T → [0,∞]. If (St)t∈[T ] is an e-process, then for t ∈ [T ],

there exist λs taking values in [0, 1] that are functions of (E1, . . . , Es−1) for s ∈ [t], such that

St 6
t∏

s=1

(1− λs + λsEs).

Proof. The proof follows directly from Lemma 3 and Theorem 2 of Vovk and Wang (2022).

We have also obtained a characterization result for the form of multi-time-period e-processes

backtesting ES; see the following conjecture:

Conjecture 8.3. Let F : [0,∞]3T → [0,∞] satisfy the following properties:

(i) F is continuous.

(ii) (r1, . . . , rT ) 7→ F (x1, r1, z1, . . . , XT , rT , zT ) is strictly decreasing.
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(iii) For all (Xt)t∈[T ] adapted to (Ft)t∈[T ] such that FX1 , . . . FXT ∈ M′ and t ∈ [T ], if

rt = ESp(Xt|Ft−1) and zt = VaRp(Xt|Ft−1), then E[St/St−1|Ft] = 1, where St =

F (X1, r1, z1 . . . , Xt, rt, zt, 1, . . . , 1) for t ∈ [T ] and S0 = 1.

For t ∈ [T ], xs ∈ R, zs < rs, and s ∈ [t], there exist λs : R2 → R, such that

F (x1, r1, z1 . . . , xt, rt, zt, 1, . . . , 1) =

t∏
s=1

(1− λs(rs, zs) + λs(rs, zs)e
ES
p (xs, rs, zs)).

The following is a tentative idea for proofing the conjecture.

We prove this result by mathematical induction. For t = 1, it follows from Theorem 7.5 that

F (x1, r1, z1, 1, . . . , 1) = 1 − λ1 + λ1e
ES
p (x1, r1, z1) for some λ1 that is a function of r1 and z1

taking values in (0, 1]. Next, suppose that for t > 1,

F (x1, r1, z1 . . . , xt, rt, zt, 1, . . . , 1) =

t∏
s=1

(1− λs + λse
ES
p (xs, rs, zs)).

For all t ∈ [T ], we can write Ft = σ(At1, A
t
2, . . . ) for disjoint At1, A

t
2, · · · ∈ Ft. For all (Xs)s∈[t]

adapted to (Fs)s∈[t], define

F ′(xt+1, rt+1, zt+1) =
∑

n:P(Atn)>0

F (X1, r1, z1 . . . , Xt, rt, zt, 1, xt+1, rt+1, zt+1, 1, . . . , 1)

F (X1, r1, z1 . . . , Xt, rt, zt, 1, . . . , 1)

1Atn
P(Atn)

.

For all FX1 , . . . , FXt ∈ M′, if rt+1 = ESp(Xt+1|Ft) and zt+1 = VaRp(Xt+1|Ft), then by (iii),

E[F ′(Xt+1, rt+1, zt+1)] = E[St+1/St|Ft] = 1. By (i) and (ii), the function (xt+1, rt+1, zt+1) 7→

F ′(xt+1, rt+1, zt+1) is also continuous and strictly decreasing with respect to r. It follows that

F ′ is anM′-model-free e-statistic for (VaRp,ESp) strictly testing ESp that is non-conservative

on M′. By Theorem 7.5, there exists λt+1 as a function of (rt+1, zt+1) taking values in (0, 1],

such that

F ′(xt+1, rt+1, zt+1) = 1− λt+1 + λt+1e
ES
p (xt+1, rt+1, zt+1), xt+1 ∈ R, zt+1 < rt+1,

and hence

F (x1, r1, z1 . . . , xt+1, rt+1, zt+1, 1, . . . , 1) =
t+1∏
s=1

(1− λs + λse
ES
p (xs, rs, zs)).

It is promising to explore further on this project about the forms of model-free e-statistics for

other risk measures in the dynamic framework.
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3. Given the close link between elicitability and backtestability, we are motivated to explore

further on backtesting the general class of elicitable risk measures using e-values. As is

discussed in Chapter 7, identification functions (closely related to elicitability) can usually

be derived using model-free e-statistics. Therefore, it is promising to obtain a general form

of model-free e-statistics for elicitable risk measures. After establishing such as result, we

can construct a procedure for e-backtesting all elicitable risk measures. This will lead to

great practical convenience in terms of backtesting various forms of risk measures in financial

regulation. Besides elicitable risk measures, distortion risk measures may also be a potential

general class of risk measures that we can backtest. Further investigations are needed on this

direction.

4. Backtesting is important from the practical side in financial regulations. We are thinking

about empirical projects on applying our e-backtesting model to more real financial datasets

and see whether the method works well for various kinds of real financial data. Moreover,

following the methodology of e-backtesting, we are also designing trading strategies of cryp-

tocurrencies, a popular topic in financial technology. Real trading data of cryptocurrencies

are applied to evaluate the performance of various trading strategies based on e-values. More-

over, as discussed in Chapter 7, procedures of backtesting risk measures involves both banks

and regulators. The whole model can be formulated as a game between financial institutions

and regulators, where a financial institution provides the forecasts rt of risk measures to pass

the backtest and a regulator adopts a test martingale by choosing λt. There might be some

equilibrium between the two players. It will be interesting to examine the optimal choices of

the bank and the regulator in some equilibrium.
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