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Abstract

Topology and symmetry have become one of the backbones of modern condensed matter
physics. These concepts play a large role in determining the possible effects of interactions
and entanglement in both gapped and gapless systems. Gapped systems possess a well-
developed description via topological quantum field theory (TQFT) that has given rise
to many exciting concepts such as topological orders. However gapless systems are far
less well-understood in the context of topology as they cannot be described by a simple
TQFT due to the presence of local degrees of freedom at low energy. In this thesis I will
explore these concepts in the framework of topological response in gapless systems with a
focus on 3+1d Weyl and Dirac semimetallic systems. I develop a theory of unquantized
topological response, as opposed to the usual quantized response of gapped systems, and
explore the effects of strong interaction in the presence of these terms. I show that the
associated unquantized topological quantities arise from crystalline symmetries such as
discrete translations and rotations. Inspired by the topological crystalline quantity of
momentum, I also develop a general theorem involving just discrete translation symmetry
that can distinguish long-range entangled states from short-range entangled states. Such a
statement can be seen as a generalisation of the well-known Lieb-Schultz-Mattis theorems
and many are shown to be consequences from the pure translation theorem that I develop
here.
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may be accomplished by adiabatically shrinking the left loop, then moving it
to the right by crossing the disc, enclosed by the right loop, then expanding
and moving it back to the original place without crossing the disc, enclosed
by the second loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 (Color online) Hall conductivity as a function of the magnetization with a
fractional plateau corresponding to σxy = 1/4π 3D FQHE. . . . . . . . . . 30

3.1 (Color online) Spatial symmetry point defects in 2D. (a) A defect-free 2D
lattice with highlighted (blue) point possessing both translational and π/2
rotational symmetry. (b) A translational symmetry defect, known as a dis-
location, is obtained by inserting an extra (red) half-plane and represented
by the red dot. A Wilson loop around the defect gives

∫
C
Xi = 1. (c) Gluing

together the yellow lines in (a) produces a π/2 rotational defect known as a
disclination. (d) Here we depict a periodic 2D lattice in the xz-plane with

linear size in the z-direction
∫ Lz

z=0
z = Lz (red line) and a shear strain in z

given by
∫ Lx

x=0
z = 1 (green line). The four blue dots are equivalent to each

other due to the periodic boundary conditions. . . . . . . . . . . . . . . . . 40

3.2 (Color online) Illustration of the (1 + 1)d chiral anomaly: (a) A one band
fermionic dispersion at fractional filling ν = 2Q/2π. (b) Once we thread

a flux
∫
dzAz = 2π, which gives rise to an electric field E⃗, all filled states

gain a unit of momentum resulting in a change of 2πν in chiral charge (i.e.
crystal momentum). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 (Color online) Band dispersion corresponding to the Hamiltonian in Eq. (3.20).
The filled red and blue states correspond to different C2 eigenvalue states.
The sum of the individual filled charges gives the total C2 charge which may
be non-trivial, leading to a Z× Z2 chiral anomaly. . . . . . . . . . . . . . . 47

3.4 (Color online) The blue (red) band in Fig. 3.3 is shifted to the right (left) by
δQ. C2 symmetry is not necessary for the protection of the states anymore as
indicated by the colour hybridisation. Instead, the filled states now possess
a non-trivial total momentum, leading to a Z× Z chiral anomaly. . . . . . 50

xi



3.5 (Color online) A C4 disclination with the Frank vector along ẑ is depicted by
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four identical cuts, applied by Ũ (blue rectangle) at every nth link, on a
length L = 4n state |ΨP (L)⟩ (purple circle) produces four decoupled length
n SRE states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 (Color online) Illustration of splitting TV †
LT
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Chapter 1

Introduction

In this chapter I will introduce most of the ideas that are necessary for the comprehension
of this thesis. First I will touch upon the concepts of phases of matter in Sec. 1.1, which
gives an overview into the area of topological quantum phases of matter and entanglement.
Then, in Sec. 1.2, I will explain some of the physics of semimetallic systems which are a
central topic of this thesis. Finally, in Sec. 1.3, I will review topological responses and
quantum anomalies for both gapped and gapless systems and motivate some unsolved
questions that we will tackle in this thesis.

1.1 Phases of matter

One of the central questions in condensed matter physics is the classification and com-
prehension of different phases of matter. Originally, distinct phases were thought to arise
exclusively due to the presence or absence of symmetries [175]. This idea became known as
the Landau symmetry-breaking paradigm, which ascribed a local order parameter to each
symmetry. Phase transitions between symmetry-preserving and symmetry-breaking phases
such as those between paramagnetic states and ferromagnetic states, where the local order
parameter is the local magnetisation, were accounted for by this description. However with
the discovery of high-Tc superconductivity and quantum Hall states there were obvious gaps
to this description. For example, in the quantum Hall phases there were observations of
different Hall conductivity plateaus, which all possessed the same symmetry group, yet
still required a gap closure, i.e. phase transition, to deform to one another. This revelation
led to the development of quantum phases of matter, i.e. phases at zero temperature, such
as topological orders and symmetry-protected topological orders [294, 366]. Additionally,
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the concept of phases of matter for gapless systems such as Fermi surfaces transcended the
Landau symmetry-breaking description. In the following section I will start by giving an
overview of the Landau symmetry-breaking formalism in Sec. 1.1.1. Then I will describe
the issues with Landau’s original formulation, and introduce quantum phases of matter in
Sec. 1.1.2. Following this, in Sec. 1.1.3 I will also touch upon gapless phases of matter and
how we may potentially understand them.

1.1.1 Landau symmetry-breaking

In the Landau symmetry-breaking formalism, we assume the physics of a phase transition
may be described by a local order parameter1 σ. This order parameter transforms non-
trivially, i.e. is charged, under the symmetry of the system and thus indicates the presence
of spontaneous symmetry-breaking when the order parameter acquires a non-zero ground
state expectation value, i.e. ⟨σ⟩ ≠ 0.

The canonical example of such a phase transition is the transverse quantum Ising
chain [218], described by Hamiltonian

H = −J
∑
⟨i,j⟩

σz
i σ

z
i+1 − h

∑
i

σx
i , (1.1)

where σ are the Pauli matrices and ⟨i, j⟩ denotes the nearest-neighbours. This Hamiltonian
has a Z2 symmetry, enacted by operator U =

∏
i σ

x
i , and an associated second-order Z2

phase transition at J = h. The local order parameter is given by σz
i which has a non-trivial

charge under the symmetry operator Uσz
iU

† = −σz
i .

The two phases correspond to the limits where (i) J = 0, h > 0 and (ii) J > 0, h = 0.
In (i) the ground state is |Ψ+⟩ = |+⟩⊗L (where L is the length of the system) so ⟨σz

i ⟩ = 0.
This corresponds to the symmetric disordered state where we have a unique ground state.
In (ii) the ground state manifold is spanned by states |Ψ↑⟩ = | ↑⟩⊗L and |Ψ↓⟩ = | ↓⟩⊗L.
These states give ⟨σz

i ⟩ ≠ 0 and correspond to the spontaneous Z2 symmetry-broken phase.
It is also important to note that we could have chosen the ground state to be a macroscopic
superposition (i.e. a cat state) |Ψ↑⟩±|Ψ↓⟩ which is symmetric under Z2. However this state
is unphysical as it fails to satisfy the cluster decomposition: the connected Green’s function
does not decay with distance limr→∞⟨σz

i σ
z
i+r⟩c ̸= 0. Physically this means that the state is

1Here we follow the initial definition of an order parameter that is local. For simplicity we will gloss
over the existence of non-local order parameters and higher-form symmetries that may be used to also
used to understand topological orders and other equilibrium phases of matter [220].
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‘non-local’ and may easily decohere into either the |Ψ↑⟩ or |Ψ↓⟩ state, i.e. spontaneously
breaks Z2 symmetry.

One of the properties of these ground states is that they have no (or little) entanglement.
All entanglement arises locally and is not connected to any global feature. However it turns
out that there exist states such as the fractional quantum Hall states which have a ground
state degeneracy that depends on the topology of the underlying manifold, i.e. they must
possess some entanglement knowledge that is global. Such states do not fall under the scope
of Landau symmetry-breaking, and indicate that there is a notion of entanglement beyond
that of product states and the like. To understand the notion of entanglement beyond the
Landau symmetry-breaking picture, we must first review the notion of quantum phases of
matter, i.e. phases of matter at T = 0K.

1.1.2 Quantum phases of matter

Quantum phases of matter usually involves the study of zero temperature gapped phases of
matter. The idea of quantum phases can be understood by looking at the continuity of local
operatorsO: if we alter a parameter of the Hamiltonian, the ground state undergoes a phase
transition only when a local operator experiences a singularity, i.e. some discontinuity or
discontinuity in a derivative of the ground state expectation value of the local operator.

Such a definition of a quantum phase transition is equivalent to a gap closure of Hamil-
tonian spectrum [61]. Ground states |Ψ(g)⟩ are in the same phase if there exists a gapped
Hamiltonian that may be adiabatically deformed as a function of g such that there is no
gap closure. In this case one can show that the local operators experience no singularities
as a function of g.

In particular, one may show that two states are in the same phase if and only if they
can be related to each other via a local unitary (LU)

ULU = T
[
e−i

∫ 1
0 dgH̃(g)

]
, (1.2)

where T indicates time-ordering, and H̃(g) is some local Hamiltonian2, potentially with
terms that possess exponential tails [133].

Local unitaries can be equivalently formulated in terms of finite-depth quantum circuits.
Finite depth quantum circuits (FDQC) UFD =

∏D
l=1(
∏

i Uli) are made out of D finite layer

2H̃(g) is not to be confused with the Hamiltonian H(g) for which the state is a ground state. Generally
these will be distinct and not the same.
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of self-commuting local unitary matrices Uli such that [Uli, Ulj] = 0 3. See Fig. 1.1 for
an illustration of a FDQC with a depth of four. Such FDQCs can faithfully represent
local unitaries up to an operator norm error ϵ with depth O(polylog(L/ϵ)) which scales
polylogarithmically with the length of the system L [123]. In the thesis we will generally
use LU and FDQC interchangeably.

|Φ(1)⟩

UFD

|Φ(0)⟩

|Φ⟩

|0⟩
a b

ξ ∼ 𝒪(D)

D

Figure 1.1: (Color online) Finite-depth quantum circuit with a depth of four that connects two
states |Ψ(0)⟩ and |Ψ(1)⟩.

With this definition in hand we may proceed to evaluate the different possible quantum
phases of matter, such as short-range entangled and long-range entangled phases.

Short-range entanglement

Definition 1. A short-range entangled state, and phase of matter, is one that can adiabat-
ically evolved to a product state in real space, i.e. a state of the form |α1⟩⊗ |α2⟩⊗ ...⊗|αL⟩
which has zero entanglement.

Such states can be thought of possessing ‘low’ amounts of entanglement since they are
similar to a product state and only possess entanglement locally.

Although these states possess low entanglement, they form distinct phases of matter
when we allow for symmetries to play a role. We may define symmetric LUs (and symmetric
FDQC) such that the H̃(g) in Eq. 1.2 (or the FDQC) commutes with the symmetry. Note
that the symmetric LU is immediately connected to the identity transformation, however
this is not automatically the case for symmetric FDQC. In this case we require that the
FDQC must be continuously tunable to the identity transformation while being symmetric.

3Here for simplicity we assume that these Uli do not have exponential tails. To represent local unitaries
that possess exponential tails we would also have to allow for Uli with exponential tails.
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Definition 2. Classes of symmetric states that cannot be connected via a symmetric LU to
each other are defined as possessing different symmetry-protected topological orders (SPTs).

Examples of such SPT SRE states include the Su–Schrieffer–Heeger (SSH) chain which
is protected by particle number U(1)q and particle-hole symmetry, quantum spin Hall states
which are protected via particle number U(1)q and spin Sz symmetry, Haldane chain which
is protected via the spin Z2 × Z2 symmetry, and 3 + 1d topological insulators (TIs) which
are protected via particle number U(1)q and time-reversal symmetry.

Another class of SRE states are those that come from the spontaneous symmetry-broken
phases such as |Ψ↑⟩ and |Ψ↓⟩ in the ferromagnetic phase. This does not encapsulate all
symmetry-broken states since some of these may not be purely SRE, as we will discuss in
the next section.

Long-range entanglement

Definition 3. A state is long-range entangled (LRE) if it is not connected to a product
state via a local unitary.

Gapped LRE phases possess a type of global entanglement that may be classified into
two cases. In the first case, such an entanglement structure may allow for features of such
phases to depend on topology of the underlying manifold, thus explaining the features in
the fractional quantum Hall states. In general, such phases are known as topological orders
(TOs) 4, which include both invertible and non-invertible TOs [171]. Invertible TOs can
be stacked such that they can be trivialised to a product state via a local unitary, while
non-invertible TOs cannot. The hallmarks of invertible TOs include the presence of a
gravitational anomaly, examples include the integer quantum Hall phases and the Kitaev
chain. On the other hand, non-invertible TOs possess topology dependent ground state
degeneracy and fractionalized excitation, as well as non-trivial braiding statistics [164].
Examples include the fractional quantum Hall states, the Toric code, and gapped quantum
spin liquids. Similarly to the SRE states, these states may also be symmetry-enriched and
can be (at least partially) classified such as in Ref. [225].

The second class of gapped (and gapless) LRE phase are those that have a GHZ-
type entanglement structure (i.e. those that are related via local unnitary to |GHZ⟩ ≡
(|00...0⟩ + |11...1⟩)/

√
2 [399]), i.e. cat states that are the symmetric superpositions of

spontaneous symmetry-broken states. As previously discussed, these phases disobey the

4Note that there also exist gapless topological orders, but here we will focus on gapped TOs.
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cluster decomposition, are highly non-local, and are a sign of spontaneous symmetry-
breaking in the thermodynamic limit. Examples of such states include the translation-
symmetric superposition of charge-density waves, and the U(1) symmetric superposition
of Bogoliubov-deGennes ground states.

In addition to the gapped phases that are generally covered under the umbrella of
quantum phases, there also exist gapless phases of matter at zero temperature. Now we
turn our attention to LRE gapless phases of matter in the next section.

1.1.3 Gapless phases of matter

We begin by clarifying that the gapless phases of matter that are considered in this section
are those that exhibit algebraic decaying connected correlation functions, i.e. ⟨OiOj⟩c ∼

1
|i−j|n for some n > 0. This requirement for example excludes fine-tuned gapless states

(imagine fully filled bands at a quadratic touching point in 1d [344]), and disordered
gapless states such as from Anderson localization [8].

It is straightforward to see that gapless states, defined in the manner above, must be
LRE: their correlation length ξ is infinite, meaning that in the quantum circuit picture one
can see that one needs at least circuit depth L to create such a correlation length (recall
that circuit depth is approximately the correlation length, as can be seen via lightcone
constructions - see Fig. 1.2). Examples of such LRE gapless phases include conformal field
theories (CFTs), Fermi gasses and liquids, non-Fermi liquids, intrinsically gapless SPTs,
certain high-Tc superconductors, and semimetal systems. Some of the most exciting topics
with yet-to-be unlocked physics appears in these gapless materials.

The classification of gapped quantum phases is relatively well-understood and usually
involves either group cohomology [275, 59, 63, 60, 122, 159, 160] or tensor category the-
ory [164, 171, 17, 81], and can often be summarised in terms of quantized topological
invariants. Examples of such quantized topological invariants includes the ten-fold way for
non-interacting systems [165, 292], pure crystalline topological invariants [336, 323, 310],
and more. These invariants often have implications on transport and other interesting
topological phenomena in a variety of systems [28, 106, 104], and we will explore them in
the context of topological responses in Sec. 1.3.

However this picture becomes complicated for gapless systems where we are often not
able to naively generalise the gapped formulation. In fact, the very notion of what is meant
by ‘topological’ is complicated! The type of topological features for gapless systems that
we are interested in for this thesis are those that are generally non-quantized and can be
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Figure 1.2: (Color online) The lightcone construction shows us that there is only correlation
between operators where there exist some local Hilbert space states that fall under the same
lightcone. We see that the correlation length ξ ∼ O(D) where D is the depth of the circuit.

sometimes be associated with submanifolds of the underlying manifold (e.g. momentum
space or real space). Here we give a few examples of possible topological invariants:

1. A metal with a Fermi surface has a topological invariant associated with translation
and U(1) symmetry: counting the filled energy levels inside and outside the Fermi
surface stabilises the Fermi surface.

2. Graphene is a 2d semimetal where each Dirac cone possesses a Berry phase (also
known as Zak phase) of π. This topological invariant stabilizes the existence of the
Dirac nodes in the presence of U(1) and time-reversal symmetry.

In general we see that for these gapless phases one may associate a quantized topological
invariant with a p−1 dimensional surface, where p is the codimension of the Fermi surface
[334]. In the above examples, 1. p = 1, so there is a p−1 = 0 dimensional surface invariant
(i.e. the counting of the filled states); 2. p = 2, p− 1 = 1, so there is a 1d surface with a
topological invariant, i.e. the Berry phase. In the next section we will see that Weyl and
Dirac semimetals possess similar topological invariants related to 2d surfaces in momentum
space. Finally note that other distinct notions of topology in gapless systems exist, such
as those that are similar to topological orders, but with gapless excitations, such as the
ν = 1/2 Fermi liquid, but this viewpoint will generally not be the focus of this thesis.
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1.2 3+1d semimetals

Three-dimensional (3+1d) semimetal states have garnered increasing interest in the last
years due to their physical realisability [12, 383, 47], and topological properties associated
with their stable point- and line-like Fermi surfaces [45, 385]. Semimetals come in a large
variety such as a Weyl semimetal (WSM), with two-fold nodal degeneracy at the Fermi
energy, Dirac semimetal (DSM), with four-fold degeneracy, and nodalline semimetal with
linelike Fermi surfaces. When the relevant symmetries are taken into account, these gap-
less states possess a topologically-mandated gaplessness, meaning that their gaplessness is
symmetry-protected or enforced such that any perturbation respecting such symmetries
can not open a gap.

There exist two complimentary views of their topological-mandated gaplessness: one
from the aspect of symmetry, and another from the aspect of quantum anomalies. The well-
studied symmetry aspect is often presented in a free fermion context, involving arguments
that rely on the separation of Weyl nodes and Berry curvature conservation arguments. The
quantum anomalies viewpoint on the other hand relies on the idea that anomalies prevent
systems from gapping to a symmetric trivial state, even in the interacting theory [374].
The by-product of this statement is that such a system has to naturally be gapless in
the free fermion picture, and when gapped symmetrically must possess some topological
order to compensate for the anomaly. In effect, one may argue that the anomaly viewpoint
allows for a deeper understanding of gapless states since these statements hold in both
the free fermion and interacting pictures. In this section we will first explore the free-
fermion viewpoint, and in Sec. 1.3 we will explore its connection to quantum anomalies
and topological response theory.

1.2.1 Weyl semimetal

Weyl semimetals are three dimensional (3D) materials that possess non-degenerate energy
bands that cross at points, known as Weyl nodes, creating a two-fold degeneracy at specific
momenta. Initially, one could assume that these crossing points are rare since degeneracies
can often be lifted by perturbations. However this neglects the possibility of accidental
degeneracies that may occur specifically in 3D solids due to the coincidence that there are
three Pauli matrices and three spatial dimensions.

An expansion of the Hamiltonian close to a linearly-dispersing Weyl node, positioned
at crystal momentum k0 and energy ϵ0, can be written as

H(k) = ϵ0σ0 ± ℏvF (k− k0) · σ , (1.3)
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where σ0 is the 2× 2 identity matrix, σ = (σx, σy, σz) is a vector of the Pauli matrices, k
is the crystal momentum vector and vF is the Fermi velocity. If ϵ0 = 0 in Eq. (1.3), we
recover the exact Weyl Hamiltonian for right-handed (+ sign) and left-handed (− sign)
relativistic massless particles [390]. Naturally, all perturbations in this 2-band model can
be written in terms of the identity and Pauli matrices. In 3D these perturbations will
only result in a shift of the position of the Weyl node since the perturbation terms can
all be absorbed into the k0 or ϵ0 terms. Thus the Weyl node cannot be perturbatively
destroyed in the presence of U(1) and translation symmetry, which makes its occurrence in
3D materials much more feasible. These nodes result as accidental degeneracies since their
occurrence requires three parameters to be tuned to zero which in three-dimensions occurs
naturally in momentum space, i.e. kx, ky, kz. Of course, although these band crossing
points occur naturally in many materials, only Weyl nodes close to the Fermi energy will
have a substantial effect on the transport properties of these materials. Therein lies the
true difficulty of finding a Weyl semimetal.

Weyl nodes exhibit non-trivial topological features resulting from a topological invari-
ant associated to their chirality. The topological invariant may be defined via the Berry
curvature Ω(k) generated by a node through an enclosing two-dimensional surface [41].
The Berry curvature may be thought of as a momentum space analogy to the real space
magnetic field. This topological feature is rooted in the fact that the chirality of the
fermion determines the direction of the Berry curvature which forms an outwards or in-
wards pointing ball around the Weyl node. These degeneracies act as monopoles of the
Berry curvature in the Brillouin zone (BZ).

Ω+(k) Ω−(k)

Figure 1.3: (Color online) Positive (left) and negative (right) chirality around Weyl nodes. We
see that the nodes form a sink or source of the Berry curvature.

The expression of the Berry curvature for a linearly-dispersing Weyl node Ω±(k) situ-
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ated at k = 0 takes the form [377]

Ω±(k) = ± k

2|k|3
, (1.4)

from which we can calculate the Chern number C via

C =
1

2π

∮
Ω±(k) · dS = ±1 , (1.5)

where we are integrating over a surface enclosing the Weyl node. The Chern number
characterises the topological charge of the Weyl node. Naturally we see that the negative
(positive) charge corresponds to a sink (source) of Berry curvature that is enabled by the
crossing of two bands. A visualisation of this feature can be seen in Fig. 1.3. Generally,
the charge corresponds directly to the chirality of the node which can be calculated via

C = sign[vx · (vy × vz)] , (1.6)

where vi are the effective velocities that classify the Weyl nodes

H(k) = ϵ0σ0 +
∑

α=x,y,z

vα · kσα . (1.7)

Eq. (1.7) is a generalisation of Eq. (1.3) for different velocities in the kx, ky and kz direc-
tions. So far we have only concentrated on scenarios where the topological charge is ±1
as demonstrated by Eqs. (1.4) and (1.5). However, we may also have materials that pos-
sess Weyl nodes with larger topological charges, such as ±2, which are commonly known
as double Weyl nodes [148]. WSs that harbour these higher charged nodes are generally
referred to as multi-Weyl semimetals [83, 152]. A double Weyl node is characterised by a
quadratic dispersion in two directions around the node, e.g. ∂E/∂kx/y = 0. In general, the
low energy approximation around multi-Weyl nodes possess only higher order momenta
terms in at least two k directions. Their existence has been shown to be stabilised by point
group symmetries [83]. In particular, point groups C4 and C6 contribute to the existence of
quadratically dispersing Weyl nodes (charge magnitude 2) and cubically dispersing Weyl
nodes (charge magnitude 3).

As mentioned before, Weyl semimetals also have non-degenerate bands, the require-
ments for which we have so far skipped over. Non-degenerate bands require a breaking of
parity P or time-reversal T , as well as the breaking of PT . Thus we are restricted to non-
centrosymmetric (broken P symmetry) or magnetic materials (broken T symmetry). It
becomes of importance to note that the Berry curvature, Ω(k) is odd under time-reversal,
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i.e. Ω(−k) = −Ω(k), and even under parity, i.e. Ω(−k) = Ω(k) [390, 35]. In the case
of broken time-reversal symmetry with preserved parity symmetry, if a Weyl point exists
at k then another node of opposite chirality must be present at −k (see Fig. 1.4). Here
the minimum amount of Weyl nodes is two. Alternatively, in the case of broken parity
symmetry and preserved time-reversal symmetry, a Weyl point at k requires the existence
of a node with the same chirality at −k. Here since the total charge of the BZ must come to
zero, i.e. all Berry curvature lines must start and end somewhere in the BZ, we require the
existence of two extra Weyl nodes of opposite charge (see Fig. 1.4) such that the minimum
model possesses at least four Weyl nodes.

One of the appealing features on Weyl semimetals is that they are physically realisable
in a variety of materials [383, 389, 211, 201, 192]. The first experimental discovery of
these materials was in 2015 where the inversion symmetry-breaking Weyl semimetal TaAs
was observed to possess the predicted topological Fermi arcs associated to the surface
projection of the bulk Weyl nodes [383]. Since then a variety of other materials has been
experimentally confirmed including magnetic, i.e. time-reversal breaking, Weyl semimetal
Co3Sn2S2 [194, 192, 356] and nodalline semimetal Co2MnGa [52, 23]. Additionally, an
external magnetic field is also known to induce Weyl semimetallic states in EuCd2Sb2 [328]
and EuCd2As2 [314].

One way of obtaining a Weyl semimetal is to modify a Dirac semimetal by adding, for
example, a magnetic field (i.e. breaking T symmetry). Dirac semimetals possess both time-
reversal and parity invariance, thus doubly degenerate bands, with quadruply degenerate
nodes around the Fermi energy. Thus when we break either the time-reversal or parity
symmetry, we may obtain a WS. In the next section, we introduce some important features
of Dirac semimetals.

Figure 1.4: (Color online) Schematic of a possible transition between a Dirac semimetal (right)
to a Weyl semimetal with broken time-reversal symmetry (middle) or parity symmetry (left).
The charges are annotated and indicated by the colouring of the spheres overlaid on the nodes.
In (left), note that in general the nodes are not necessarily positioned with this exact symmetry.
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1.2.2 Dirac semimetal

As emphasised before, Weyl semimetals require the breaking of at least one of the two
following symmetries: time-reversal or inversion symmetry. When both time-reversal and
inversion symmetry are present (or the combination PT ), each band becomes locally doubly
degenerate at all momenta. Additionally, since in this case Ω(k) = −Ω(k), i.e. Ω(k) = 0
for all k, all Weyl nodes are required to annihilate or, alternatively, merge to uncharged
nodes. The latter mentioned merging phenomenon may allow for the existence of quadru-
ple degeneracies at specific crystal momenta. Generally, these degeneracies are unstable
since they are no longer topologically protected, i.e. there is no Berry curvature, and there
are many extra perturbations that may lift the quadruple degeneracy of the bands. How-
ever, when we are able to stabilise a quadruple degeneracy at a given crystal momentum,
otherwise known as a Dirac node, we form what is called a Dirac semimetal (DSM).

There exist two distinct types of Dirac semimetals: Type I DSMs are facilitated by a
band-inversion mechanism whereby the crossing points are protected, i.e. hybridisation is
prevented, by a rotational symmetry [12]. Type II DSMs have symmetry-enforced Dirac
nodes that may naturally occur at time-reversal invariant momentum (TRIM) points [397].
In this thesis we will primarily deal with type I DSMs, but for the sake of completeness,
we will give a brief overview of both type I and II.

In type I DSMs, a pair of Dirac crossing points must exist along the symmetry axis due
to the nature of the band inversion mechanism. This type of semimetal is achievable since
hybridization, i.e. mixing between different band eigenstates, of separate bands may be
prevented along a symmetry axis where the mixing terms disappear [12, 387]. A motivation
for how this protection may occur is presented in Appendix A and a figure demonstrating
this mechanism can be seen in Fig. 1.5. These points are stable within a range of physical
parameters, but can be eliminated by tuning the material from a band-inverted phase into
a normal phase, which causes the two Dirac points to merge and annihilate. Some examples
of experimentally realised type I Dirac semimetals are Na3Bi and Cd3As2 [197, 359, 360],
where the Dirac semimetal phase is stable for a wide range of system parameters.

In the case of type II DSMs, we may get rid of the necessity of tuning due to the
presence of symmetry-enforced Dirac points which are required and unremovable [397].
Generally, although not necessarily, these Dirac points occur at TRIM points. Due to our
focus, we refrain from giving a more expansive overview of this topic5. Some experimentally
realisable type II DSMs are zirconium pentatelluride (ZrTe5) [186, 56] and thallium-based
ternary chalcogenide alloy (TlBi(S1−xSex)2) [297].

5A comprehensive review on this topic may be found in Ref. [12].
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Figure 1.5: (Color online) The mechanism underlying the creation of a pair of Dirac nodes
in type I Dirac semimetals. (left) The non-inverted/normal regime where there is no crossing
point. (middle) The inverted regime with hybridization of the crossing point, which gaps the
spectrum. (right) Hybridisation is prevented since the rotation symmetry prevents mixing terms
from occurring along the symmetry axis k. This protection results in a pair of Dirac nodes along
k and a type I DSM is obtained. Figure is adapted from Ref. [12].

Now that we have reviewed different types of semimetals, we move on to providing the
reader with an introduction on the topic of topological response and quantum anomalies
in the context of condensed matter physics. However, a (very) brief refresher regarding
quantum anomalies in a more general context can also be found in Appendix B.

1.3 Topological response

Topological response of materials is an incredibly broad subject that spans both gapped
and gapless systems. The basis of topological response lies in the effective action formalism
[364, 219] in the presence of external ‘probe’ gauge fields: imagine for example setting up
a laboratory and applying some electric field to your system and measuring the response
of electric charges. If we assume that the dynamical effects of this laboratory electric field
is small, then we can effectively treat it as a probe to our system. Response to these sort
of probes are encapsulated in the effective action Seff that arises from integrating out the
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dynamical degrees of freedom, such as the charged particles, in the partition function. In
the example of charged particles in some electric field we have

Zeff [Aµ] = eiSeff [Aµ] =

∫
D[Ψ, Ψ̄]eiS[Aµ,Ψ,Ψ̄] , (1.8)

where Zeff is the partition function, Aµ is the U(1) probe gauge field, and Ψ denotes the
charged degree of freedom. The probe gauge field couples to the conserved charge current
of the system jµ, such that S[A,Ψ, Ψ̄] = SΨ[Ψ, Ψ̄]−iqAµj

µ+O(A2) (up to first order in Aµ).
Recall that there exists a gauge redundancy in the U(1) gauge field formalism such that
S[A,Ψ, Ψ̄] must satisfy gauge invariance under the gauge transformationsAµ → Aµ+∂µθ(x)
and Ψ→ eiqθ(x)Ψ. Once we have the correct effective action, there are many things we can
compute such as the expectation value of the current

⟨jµ⟩ =
δSeff [Aµ]

δAµ

=
1

Zeff [Aµ]

∫
D[Ψ, Ψ̄]jµe

iS[Aµ,Ψ,Ψ̄] , (1.9)

as well as many linear response quantities such as conductivity and magnetic suscepti-
bility [89]. The effective action formalism allows for a convenient characterization of the
response of condensed matter systems.

So far there has been no mention of what makes a response topological. Generally we
refer to a response as topological if it only depends on the topology of the underlying
manifold or, more precisely, fiber bundle. These effective action terms appear in such a
way that local deformations have no effect, i.e. the metric does not appear6, and can be
associated to a topological invariant of the fiber bundle. An example of such a term is the
integer Hall conductivity which can be written as

Seff [Aµ] =
n

4π

∫
d2xdt ϵµνλAµ∂νAλ , (1.10)

where n ∈ Z. Note that there is no appearance of the metric in such a term. The
topological aspects of SPT and invertible topological order responses can be summarised
in this effective action formalism. The presence of such a topological response usually
indicates the presence of a boundary ‘t Hooft or gauge anomaly which implies the existence
of a non-trivial gapless edge theory [365]. We will now explore this aspect of the story in
the context of ‘t Hooft anomalies.

6Here we note exceptions such as the gravitational topological responses that describe the thermal Hall
effect. These do inherently involve the metric, and more precisely the frame bundle of the tangent bundle
of the manifold.
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1.3.1 SPT and ‘t Hooft anomalies

A canonical example of an SPT with a ‘t Hooft anomaly at the edge is the quantum spin
Hall (QSH) state. Let us take the system with a charge U(1)q and spin Sz U(1)z symmetry,
with external gauge fields Aµ and Cµ, respectively. The effective action for a QSH insulator
is

Seff [Aµ, Cµ] =
n

2π

∫
d2xdt ϵµνλCµ∂νAλ , (1.11)

where n ∈ Z determines the spin-Hall conductance, as can be seen if we vary with respect
to Cµ. This expression is fully gauge-invariant for n ∈ Z in the absence of a boundary.
However in the presence of a boundary to a trivial insulator (or more generally an insulator
with another spin-Hall coefficient), the gauge transformation of Cµ → Cµ + ∂µα(x) is not
gauge invariant at the boundary (let the boundary be at y = 0 with the upper plane being
the trivial insulator and lower plane being the QSH insulator with σspin

xy = n/2π) via the
term

δSeff [Aµ, Cµ] = −
n

2π

∫
dxdt ϵµνα(x)∂µAν , (1.12)

which at first sight is quite concerning! We of course require our theory to be fully gauge
invariant, so what is going on here? Before we embark on resolving this conundrum, let
us note one other odd feature: U(1)z charge conservation is in fact also violated at the
boundary as can be seen if we vary Eq. 1.11 with respect to Cµ and contract the indices
with ∂µ we get

∂µj
µ
z = −δ(y) n

2π
ϵµν∂µAν . (1.13)

Where does this non-conservation arise from and how do we maintain U(1)z symmetry?

The resolution to both these conundrums is to note that there is some missing low-
energy physics at the interface that both compensates both the gauge non-invariance issues
and also fixes the U(1)z charge non-conservation. In fact, this low-energy physics is exactly
what leads to the U(1)q × U(1)z symmetric n pairs of gapless counterpropagating spin
modes with a right-mover with Sz eigenvalue 1

2
and left mover with Sz eigenvalue −1

2
.

Back-scattering is prevented as long as the U(1)q ×U(1)z symmetries are preserved. Such
a 1d system is known to possess the 1+1d chiral anomaly which leads to non-conservation
of ‘chiral’ charge, i.e. in this case U(1)z charge with spin current jµz , in the presence of a
U(1)q electric field. The non-conservation is given by

∂µj
µ
z =

n

2π
ϵµν∂µAν . (1.14)
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This non-conservation indicates that either U(1)z is only an emergent symmetry at low
energies and is in fact broken in the UV (such as in a Luttinger liquid [105]), or one
or more of these symmetries acts in a non on-site manner (which was recently realized
in [67, 337]) or, alternatively, U(1)z is an exact on-site symmetry but the non-conserved
charge must flow to or from somewhere, i.e. into a higher-dimensional bulk. The latter is
exactly how the non-conservation of the QSH system is preserved: there is U(1)z charge
flow between the bulk (Eq. 1.13) and the gapless surface modes (Eq. 1.14). More generally,
this phenomenon is also known as anomaly inflow.

Now, as to resolving the apparent gauge non-conservation of the bulk at the boundary:
a chiral gauge transformation of the 1+ 1d U(1)q ×U(1)z gapless modes can be shown via
the Fujikawa method [246] to result in a change in the action of

δS1d[Aµ, Cµ] =
n

2π

∫
dxdt ϵµνα(x)∂µAν , (1.15)

which can be seen to be equal and opposite to the term from the bulk in Eq. 1.12. Now
putting the 1 + 1d gapless contribution together with the bulk contribution, we see that
the theory is in fact fully gauge invariant.

The example of QSH demonstrates the power of the effective action: we can differentiate
different states via their effective actions, and also observe the effects of ‘t Hooft anomalies
that govern the physics of their gapless edge states. In general all SPT states may be
described by different effective action terms with quantized coefficients [159, 160] (in the
QSH term n is quantized!). These quantized effective actions can be connected to their
band-theory topological quantities (e.g. Z2 index of a topological insulator [158]), but also
go beyond this description since they are even valid in the interacting regime. Recently
there has also been a shift towards understanding the interplay of crystalline symmetries,
as opposed to the usual on-site symmetries, with SPT phases, resulting in the physics of
crystalline SPT (cSPT) states. In the next section we will explore some general ideas of
effective actions involving crystalline symmetries.

1.3.2 Gauging crystalline symmetries

In order to use the effective action formalism for crystalline phases of matter we need
a method to gauge crystalline symmetries such that we can write responses in terms of
topological defects of these symmetries. We are used to the gauging procedure for on-site
symmetries such as particle number U(1) or spin SO(3) symmetries. However things are
more complicated in the case of crystalline symmetries, which are non on-site symmetries,

16



i.e. they take states from local Hilbert spaces to other local Hilbert spaces. To understand
how to gauge such symmetries we need to recognise that for on-site symmetries one may
choose to view the flux Φ threading non-contractible loops as being the result of a non-
trivial Wilson loop, or alternatively a non-trivial transition functions of the associated
principle bundle7. Such transition functions apply a group element eiqΦ whenever a charge-
q particle winds around the non-contractible loop, i.e. the physics of the Aharanov-Bohm
effect. Similarly, when applied to crystalline symmetries, which are all discrete groups8, we
may consider the physics of non-contractible loops as acting upon the ‘particle’ (charged
under crystalline symmetry) by some crystalline group element, classified by the Wilson
loops (or alternatively the transition functions).

Let us take the example of the discrete translation symmetry group, which is isomorphic
to Z. The unit translation T̂a acts as a single translation of unit cell size a upon a charged
state, i.e. a state with crystalline momentum k, by the phase factor eika. Now imagine a
perfect crystalline lattice with discrete translation in ẑ and taking the state with momentum
k along a contractible loop as shown in Fig 1.6(a). The phase factor gained upon completion
of this loop is 1 = eikna−ikna since we traversed an equal amounts in the positive and
negative ẑ directions. However if we took the loop to be along the whole lattice in the
ẑ direction, i.e. along a non-contractible loop, then we would gain a phase factor of eikL

where L is the length of the lattice in ẑ direction. Since momentum is quantized via
periodic boundary conditions we have eikL = 1 for a perfect lattice. Now consider inserting
a dislocation, see Fig. 1.6(b), with Burgers vector b and evaluating the Wilson loop around
such a configuration to get a phase factor eikb·ẑ = eik

∫
C z̃ where z̃ is the translation gauge

field. So we see that fluxes
∫
z̃ = b · ẑ for discrete translation symmetries are determined

by the Burgers vector and thus the dislocations of the lattice, which is very cute! Having
these tools in our arsenal will allow us to explore topological phases protected by translation
symmetry.

We may also consider another relevant crystalline symmetry that will feature in the
later chapters of this thesis: discrete n-fold rotations of angles 2π

n
(where n is an integer)

which forms a group that is isomorphic to Zn. States charged under rotation symmetry
possess a definite angular momentum j such that these states transform as eij

2π
n under the

7Note that in 1d all U(1) bundles are trivial, meaning that we can always set the transition functions
to triviality and globally define our connection 1-form. In higher dimensions we may have obstructions to
such a description due to non-removable transition function (i.e. non-trivial U(1) bundle) with non-trivial
Chern numbers. Conveniently, all such higher-dimensional bundles can be fully classified by the Wilson
loops by restricting the bundle to a 1d loop upon which you can define a global 1-form connection again
and evaluate the Wilson loop.

8Note that for discrete groups, the connection is fully determined by the principle bundle, i.e. the
transition functions. The connection itself is flat.
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(a) (b)
Figure 1.6: (Color online) (a) A perfect defect-free lattice with translation symmetry in ẑ. (b)
A lattice with an edge dislocation where the Burgers vector is b = ẑ.

action of the unit rotation. Here the fluxes of the rotation gauge field c are determined
by the Frank angle f which details the disclination type in the lattice, see Fig. 1.7, i.e.∫
C
c = f · ẑ mod n for rotations in the xy plane.

This analogy with gauge fluxes has inspired the study of crystalline phases by topo-
logical response [336], and led to the crystalline equivalence principle conjecture. This
conjecture specifically proposes that cSPT phases are classified identically to regular SPT
by treating all crystalline symmetry groups as though they are on-site symmetry groups,
and has been successful in understanding a variety of different materials. Let us consider
one simple example: a 3+1d weak topological insulator, made out of a stack of 2+1d QSH
states. Such a system is a cSPT but not a strong TI since it requires the presence of
translation symmetry to be a well-defined phase. The topological response is

Seff [Aµ, Cµ, z̃µ] =
n

2π

∫
d3xdt ϵµνλδz̃µCν∂λAδ , (1.16)

where if we vary by z̃z we see that each layer is a QSH insulator. Such a term predicts
the existence of surface edge states (the counterpropagating gapless states as discussed
in Sec. 1.3.1) per layer in the stacking direction of the material. If we were to break the
translation symmetry in this direction, then we could hybridise neighbouring gapless modes
and trivially gap out the edge thereby obtaining a trivial insulator with no topologically-
protected features. Additionally, when we insert a dislocation, this becomes equivalent to
inserting a half-layer of QSH. The effective action immediately predicts the existence of
a pair of topologically-protected counterpropagating gapless modes along the dislocation
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(a) (b)

CC

Figure 1.7: (Color online) (a) A perfect lattice with C4 symmetry. (b) A disclinated lattice
where we fold over the shaded region in (a).

line. This can be seen through the Wilson loop of Eq. 1.16 by moving the ∂λ onto the z̃
gauge field and integrating out

∫
xz
dz̃ = 1 to get a 1+1d theory in ŷ of the form

∫
C ∧ A

that is now gauge non-invariant and requires 1+1d U(1)q × U(1)z gapless modes to fix
the gauge non-invariance, as discussed in Sec. 1.3.1. This physics is essentially that of the
weak TI Z2 index (where we use time-reversal symmetry as opposed to spin U(1)z) that
may be calculated in the band theory. Such a term even holds when we add perturbative
symmetry-preserving interaction terms, i.e. it is a stable 3+1d cSPT state.

Now that we have explored ‘t Hooft anomalies, SPT and cSPT phases of matter, and
have seen the usefulness of crystalline gauge fields, we are now ready to discuss topological
response and quantum anomalies in the context gapless systems.

1.3.3 Quantum anomalies in gapless systems

So far we have only discussed gapped systems and their quantized topological responses.
For gapless systems we have seen that the topological invariants are associated to subman-
ifolds, as discussed in Sec. 1.1.3. We will connect these quantized submanifold topological
invariants to unquantized topological responses.

The simplest gapless topological response is that of fractional particle number filling in
Fermi liquids. We saw previously that this was associated with a 0d topological invariant
that counted the difference in the electron filling at two momentum points. To define such

19



a particle filling we need both U(1)q and translation symmetry. Let us take a 1+1d Fermi
liquid as an example: here the topological invariant can in fact be summarised as the
following topological response

Seff [Aµ, z̃µ] = ν

∫
dzdtϵµν z̃µAν , (1.17)

where ν is the filling fraction per unit cell. We can see that ν represents this filling fraction
by varying with respect to At (time component of the current) which gives the charge filling
as

ρq = νz̃z =⇒ Qq = νL ,

which tells us that the ν is the filling fraction of system size L (up to a O(1/L) correction
required to have an integer total number of charges). The filling fraction is defined in the
thermodynamic limit as ν = limL→∞Qq(L)/L. In fact, this term implies the existence of
gapless modes at low energy due to the gauge non-invariance under gauge transformation
of Aµ. Similar to the story with ‘t Hooft anomalies, we see here that low energy gapless
modes are required to maintain gauge invariance. In fact this term also encodes the chiral
anomaly of adiabatic flux threading, but we will see this in Chapter 3. Such a term
can also be generalised to a general n + 1 dimensional system since we may simply write
ν
∫
x̃1 ∧ x̃2 ∧ ... ∧ x̃n ∧ A where x̃i is the translation gauge field in the îth orthonormal

direction.

We see that the topological response of this Fermi liquid in Eq. 1.17 is unquantized and
‘less’ protected compared to the quantized cases as one can symmetrically (keeping U(1)q
and translation symmetry) change the coefficient of such a term by adding, for example,
a chemical potential term to the Hamiltonian. However if we were to play the game of
fixing the microscopic filling, e.g. via experimental measurements or a constraint on the
Hilbert space, then we can have many exciting things to say about the system! This
specific particle number filling example is known under the principle of the U(1)q × Ztransl

Lieb-Schultz-Mattis (LSM) theorem which states that ground states with translation and
U(1)q symmetry at non-integral filling must be long-range entangled. This immediately
implies that the ground state must be gapless, topologically-ordered, or spontaneously
symmetry-breaking. Similarly, Eq. 1.17 also predicts that there must be some non-trivial
IR behaviour; we see that these two formalisms are two sides of the same beautiful coin.

Topological response has also been well-studied in the context of magnetic Weyl semimet-
als [408, 349, 105]. The gaplessness of these systems is protected by a crystal translation
and U(1)q charge symmetry, which in turn gives rise to a chiral anomaly response term
whose coefficient depends on the separation of the Weyl nodes in momentum space. This
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feature can also be understood as a consequence of the Weyl nodes being sinks and sources
of the Berry curvature in momentum space, as was discussed in Sec. 1.2.1. The Berry cur-
vature causes the existence of a Dirac string that connects the two nodes (say, separated in
momentum space by a magnitude 2Q) such that every momentum slice that is pierced by
the string contributes a non-trivial Chern number of one that leads to a Hall conductivity
of

σH =
1

2π

2Q

2π
.

This Hall conductivity effect, as well as the well-known chiral magnetic effect [408], can be
summarised in the term

S = − Q

4π2

∫
dt d3r z̃µϵ

µναβAν∂αAβ, (1.18)

where we assume the Weyl nodes to be separated along the ẑ momentum axis. Importantly
this chiral anomaly does not microscopically involve the usual U(1)q × U(1)a (charge and
axial) symmetry, but instead arises from a U(1)q × Ztransl symmetry, where the Z symme-
try is attributable to the translation symmetry along the axis of Weyl node separation. In
particular, the non on-site nature of the Z translation symmetry allows us to forego the
low-energy emergent U(1)q × U(1)a ‘t Hooft chiral anomaly, and associated no-go theo-
rem, thereby realising such a system in 3+1d, instead of on the boundary of some higher
dimensional object. This situation can be contrasted to that of the 2+1d time-reversal
and U(1) symmetric massless Dirac fermion which suffers the parity anomaly and, due
to the on-site nature of the symmetries involved, can only be realised on the surface of a
3+1d topological insulator [374]. The situation of the U(1)q × Ztransl chiral anomaly can
be viewed as a 3+1d analogue of the 1+1d Lieb-Schultz-Mattis (LSM) statement which
implies that 1+1d states with U(1)q ×Ztransl at non-integral filling must be gapless due to
the 1+1d chiral anomaly which may be tuned by adjusting the filling fraction [189, 70, 80].
In the case of Weyl semimetals, where the filling factor is integral, the gaplessness once
again arises due to the chiral anomaly but is now tuned by the separation of the Weyl
nodes in momentum space.

Some similar studies have been performed on Dirac and other semimetal systems [70,
43, 44], and the filling constraints on gappable 3+1d lattice states have been explored [362],
but a general study of the realisability of quantum anomalies via lattice symmetries has not
yet been accomplished, especially in the context of semimetals. In this thesis we will explore
the effects of strong interactions on the magnetic WSM anomaly term in Chapter 2, where
we will discover an intrinsically 3+1d fractional quantum Hall state with loop excitations
and three-loop braiding. In Chapter 3 we will generalise the magnetic WSM anomaly term
to type-I DSM and time-reversal invariant WSM systems, where we will see that the lowest
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Landau level physics contains non-trivial filling of both rotation and momentum charges,
respectively. In Chapter 4 we will explore this momentum charge in detail and prove an
LSM-type theorem involving pure translation symmetry that can be viewed as the root
of all LSM theories. Finally, in Chapter 5 current work in progress as well as potential
generalisations will be explored.

22



Chapter 2

Fractional quantum Hall effect in
Weyl semimetals

In this chapter we will explore the effects of strong interactions in magnetic Weyl semimetals
when we fix the Hall conductivity per layer to be half of a conductivity quanta. We arrive
at the 3+1d fractional quantum Hall state and show that the resultant Z4 topologically
ordered state possesses interesting qualities such as three-loop braiding. This chapter is
lifted from the published work in Ref. [349]1.

2.1 Introduction

Weyl semimetal is the first example of a bulk gapless topological phase [12, 45, 385, 131].
The gaplessness of the bulk electronic structure in Weyl semimetals is mandated by topol-
ogy: there exist closed surfaces in momentum space, which carry nonzero Chern numbers
(flux of Berry curvature through the surface), which makes the presence of a band-touching
point inside the Brillouin zone (BZ) volume, enclosed by the surface, inevitable. This pic-
ture, however, relies on separation between the individual Weyl nodes in momentum space,
which involves symmetry considerations. In particular, either inversion or time reversal
(TR) symmetry need to be violated in order for the Weyl nodes to be separated. In ad-
dition, crystal translational symmetry needs to be present, since otherwise even separated
Weyl nodes may be hybridized and gapped out.

1Copyright © 2011 by American Physical Society. All rights reserved.
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A very useful viewpoint on topology-mandated gaplessness is provided by the concept
of quantum anomalies. The best known example of this is the gapless surface states of three
dimensional (3D) TR-invariant topological insulator (TI). The relevant anomaly in this case
is the parity anomaly: the θ-term topological response of the bulk 3D TI [280] violates
TR (and parity) when evaluated in a sample with a boundary. This anomaly of the bulk
response must be cancelled by the corresponding anomaly of the gapless surface state [406],
which is simply the parity anomaly of the massless 2D Dirac fermion [305, 288, 374].

Analogously, the gaplessness of the bulk spectrum in Weyl semimetals may be related
to the chiral anomaly [3, 22]. Suppose we have a magnetic Weyl semimetal with two band-
touching nodes, located at k± = ±Q = ±Qẑ. Crystal translations in the z-direction act
on the low-energy modes near the Weyl points as chiral rotations

T †
z c

†
±QTz = e∓iQc†±Q, (2.1)

where we have taken the lattice constant to be equal to unity (we will also use ℏ = c = e = 1
units throughout the paper). However, the chiral symmetry of Eq. (2.1) is anomalous: an
attempt to gauge this symmetry fails and produces a topological term [408]

S = − 1

4π2

∫
dt d3r Qµϵ

µναβAν∂αAβ, (2.2)

which expresses the impossibility to conserve the chiral charge and underlies all of the
interesting observable properties of Weyl semimetals. In particular, variation of Eq. (2.2)
with respect to the electromagnetic gauge potential gives the anomalous Hall conductivity
of the Weyl semimetal

σxy =
1

2π

2Q

2π
, (2.3)

which depends only on the separation 2Q between the Weyl nodes in momentum space.
By Wiedemann-Franz law, Eq. (2.3) also implies a thermal Hall conductivity

κxy = σxy

(
π2k2BT

3

)
=

Q

2π2

(
π2k2BT

3

)
, (2.4)

which, alternatively, may also be viewed as a manifestation of the chiral-gravitational
mixed anomaly [205, 110]. In the Appendix C we discuss a more formal, but physically
equivalent, way to describe the chiral anomaly in a Weyl semimetal.

Tuning the node separation 2Q between 0 and 2π realizes the transition between a
trivial and an integer quantum Hall insulator in 3D [128, 329], which has to proceed
through the intermediate Weyl semimetal phase [47], unlike in 2D, where there is a critical
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point (plateau transition). The chiral anomaly also leads to the appearance of Fermi arc
surface states, since the action in Eq. (2.2) fails to be gauge invariant in the presence of a
boundary, which makes the existence of a boundary-localized state necessary [116].

Apart from giving rise to topological response and protected surface states, anomalies
can also place strong restrictions on the possible effect of electron-electron interactions. In
particular, anomalies prohibit opening a gap without either breaking the protecting symme-
try or creating an exotic state with topological order, as was recently discussed extensively
in the context of strongly-interacting 2D surface states of 3D symmetry-protected topologi-
cal orders [59, 63] in bosonic [340] and fermionic [84, 351, 227, 58, 32, 353, 226, 278] systems.
In this Letter, we aim to answer analogous questions in the case of a 3D Weyl semimetal:
can one open a gap in a Weyl semimetal without breaking translational or charge conserva-
tion symmetries while preserving the chiral and the gravitational anomalies, which lead to
the electrical and thermal Hall conductivities of Eqs. (2.3) and (2.4)? What would be the
universal properties of such gapped phases? We note here that effects of strong correlations
in topological semimetals have been addressed before in Refs. [224, 239, 295, 223, 286], but
from different viewpoints.

To answer these questions we will adopt the strategy known as “vortex condensation”,
which has been successful in the context of 2D surface states of 3D bulk TI [351, 227].
We will start by inducing a phase-coherent superconducting state in a magnetic Weyl
semimetal (with only a single pair of nodes for simplicity, although the results readily
generalize to any odd number of node pairs), which violates the charge conservation. We
then attempt to produce a gapped insulator by proliferating vortices and restoring the
charge conservation symmetry, while keeping the pairing gap intact. In order to make this
procedure well-defined, we will assume the superconducting pairing to be weak, i.e. the
induced gap is taken to be much smaller than vFQ, where vF is the Fermi velocity of the
Weyl cones. In this case it is impossible to gap out the Weyl nodes by simply pushing
them to the edge or the center of the BZ, where they can mutually annihilate without
breaking translational symmetry. In the language of the anomaly, we are demanding that
the coefficient of the anomaly Q, which takes continuous values and is thus not strictly
protected, is fixed throughout the procedure.

2.2 Construction

It is easy to see that, in this situation, a BCS-type pairing of time-reversed states can not
produce a gapped superconductor [222, 69, 19, 187]. It is, however, possible to open a
gap by inducing a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-type superconducting state
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instead, where states on each side of the two Weyl nodes are paired [69, 19]. Since pairing
in the FFLO state may (approximately) be taken to occur independently in each Weyl
cone, let us consider a single (right-handed) Weyl fermion with singlet pairing

H = vF
∑
k

c†kσ · k ck +∆
∑
k

(c†k↑c
†
−k↓ + c−k↓ck↑), (2.5)

Introducing Nambu spinor ψk = (ck↑, ck↓, c
†
−k↓,−c

†
−k↑), this may be written as

H =
1

2

∑
k

ψ†
k(vF τ

zσ · k+∆τx)ψk, (2.6)

which is simply the Hamiltonian of a Dirac fermion of mass ∆. This, however, leads to a
density modulation and thus broken translational symmetry. Since ∆(Q) ∼

∑
k⟨c

†
Q+kc

†
Q−k⟩

carries momentum 2Q, a gauge-invariant density modulation ϱ(Q) ∼ ∆∗(−Q)∆(Q) will
carry momentum 4Q. In general, this breaks translational symmetry, which may not be
restored even when the superconductivity is destroyed by proliferating vortices. This is
true, except when Q = G/4, where G is the smallest nonzero reciprocal lattice vector.
In this case a gapped FFLO state does not break translational symmetry. We will thus
concentrate on the Q = G/4 case henceforth.

An important question is what happens to the Fermi arc surface modes of the Weyl
semimetal in the FFLO state. The Fermi arc is in principle unaffected by pairing since it
is spin-polarized. However, due to the effective doubling of degrees of freedom, induced by
pairing, which is corrected by the factor of 1/2 in Eq. (2.6), the Fermi arc get copied to
the part of the BZ outside of the Weyl points, and occupies the range of 4Q, which always
coincides with the size of the new BZ, reduced by the translational symmetry breaking in
the FFLO state [129]. When Q = G/4, however, this range is identical to the size of the
original BZ, which is another way to see why the FFLO state does not break translational
symmetry when and only when the Weyl node separation is exactly half the size of the
BZ 2. This implies that, while the electrical Hall conductivity in the FFLO state is no
longer the same as in the non-superconducting Weyl semimetal due to the breaking of the
charge conservation symmetry, the thermal Hall conductivity remains unaffected and is
determined by the length of the Fermi (Majorana) line

κxy =
Q

2π2

(
π2k2BT

3

)
=

1

4π

(
π2k2BT

3

)
. (2.7)

2See Supplemental Material for an alternative chiral anomaly formulation, the calculation of the Fermi
surface state in the FFLO superconductor, the derivation of the straight-line vortex Majorana modes, and
some formal details on vortex condensation
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Figure 2.1: (Color online) (a) A vortex loop linked with a dislocation with the Burgers
vector B = ẑ. Fractional quantum numbers and nontrivial braiding statistics can emerge in
such a configuration. (b) A pair of vortex loops linked with a dislocation with the Burgers
vector B = ẑ. Braiding the two loops may be accomplished by adiabatically shrinking the
left loop, then moving it to the right by crossing the disc, enclosed by the right loop, then
expanding and moving it back to the original place without crossing the disc, enclosed by
the second loop.

In other words, the chiral-gravitational mixed anomaly is unaffected by the formation of
the FFLO state.

We now try to restore the charge conservation symmetry by proliferating vortices in
the superconducting order parameter while keeping the pairing gap for the Weyl fermions.
If the vortices can be condensed without breaking the translational symmetry, we will
obtain a gapped state that is fully symmetric. This state must have σxy = 1/4π to match
the chiral anomaly. To accomplish this, we need to understand carefully what does it
mean to condense vortices, which form loops in 3D, without breaking the translational
symmetry. In the simpler case of condensing particles, we would want the particle to carry
zero momentum (up to a gauge choice). Now we want to achieve the same goal for vortex
loops, which means that we want to condense vortex loops that transform trivially under
translation. A good way to probe the properties of a loop under translation is to link the
loop to a lattice dislocation with the Burgers vector B = ẑ, which inserts a half xy-plane,
ending on a dislocation line, as shown in Fig. 2.1(a). If a vortex is truly trivial under
translation, such a link should not create any nontrivial effect.

Consider first a vortex loop with an odd vorticity, trapping a magnetic flux Φ = (2n+
1)π. A straightforward calculation shows that each time the vortex penetrates an atomic
xy-plane, a Majorana zero mode is trapped at the intersection (see Appendix D). An
ordinary closed loop contains an even number of such zero modes since the xy-plane is
penetrated an even number of times. However when linked with a dislocation with B = ẑ,
the total number of such penetrations becomes odd and the vortex now carries an unpaired
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Majorana zero mode.

The effect becomes more drastic when two vortices with an odd vorticity are simul-
taneously linked to a B = ẑ dislocation. In this configuration we can consider braiding
between the two vortices, as illustrated in Fig. 2.1(b). This process was first discussed
in Ref. [348] and is known as three-loop braiding – the only difference in our case is that
the “base” loop is a static dislocation rather than a dynamical excitation. Because of the
Majorana zero modes, carried by the vortices when linked with the dislocation, the loop
braiding process is non-abelian.

The above reasoning shows that odd vortices should be considered nontrivial under
translation symmetry and cannot be condensed without breaking the symmetry. Yet an-
other way to see this is that if we were to condense such vortices, inserting a dislocation
into the system would require the inserted half-plane to be out of the bulk ground state
to cancel the nontrivial braiding statistics of the linked vortices (only then a condensate is
possible). This implies an energy cost ∼ O(L2) instead of ∼ O(L) for an ordinary dislo-
cation, where L is the system size. This simply means that the translation symmetry has
actually been broken in the process.

Now what about vortices with even vorticity? There is no unpaired Majorana zero
mode in this case, even when linked with a dislocation (see Appendix E). But the braiding
statistics between two such vortices, linked with the same dislocation, can still be nontrivial
(though must be abelian). Since to match the chiral anomaly we need the Hall conductivity
of σxy = 1/4π per layer, a two-fold vortex (with flux Φ = 2π) will induce a semionic particle
with the self-statistical phase θ = πσxy/(1/2π) = π/2 each time it penetrates the xy-
plane. As before, an ordinary two-fold vortex loop will not possess nontrivial self-statistics
since the xy-plane is penetrated twice. But when linked with a B = ẑ dislocation, each
vortex traps an unpaired semion, which leads to semion braiding statistics for the two-loop
braiding process in Fig. 2.1(b). This nontrivial abelian braiding of 2π vortices, linked to
dislocations, is the fingerprint of the chiral anomaly when the U(1) symmetry is broken.
We thus come to the conclusion that two-fold vortices are also nontrivial under translations
and cannot be condensed.

Analogous considerations imply that four-fold (Φ = 4π) vortex loops have bosonic
statistics even when linked with dislocations and thus may be condensed. This produces
an insulating state, which does not break either the charge conservation or the transla-
tional symmetry and has an electrical Hall conductivity σxy = 1/4π and a thermal Hall
conductivity κxy = (1/4π)(π2k2BT/3) per layer. This is an insulating state that preserves
all the symmetries and both the chiral and the gravitational anomaly of a Weyl semimetal
with 2Q = π.
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2.3 Symmetric gapped state

The insulator thus obtained is not a trivial one – it possesses a Z4 topological order [16,
306]. The uncondensed one-, two- and three-fold vortices survive as nontrivial gapped
loop excitations in the topological order, with inherited nontrivial braiding statistics when
linked with dislocations. There are also nontrivial particle excitations. The Bogoliubov
fermion in the paired state survives as a neutral fermion excitation. The condensation of
4π vortices also leads to the emergence of a charge-1/2 boson as a gapped excitation – this
can be understood as a point defect which, when taken around the condensed 4π vortex
loop, acquires a Berry phase of 2π. Furthermore, due to a nontrivial mutual braiding
statistical phase of π between a π vortex and a 4π vortex, when linked with a dislocation,
the condensation of 4π vortices will also bind a 1/4-charge on a π vortex.

In fact, all of the above properties are closely related to the 2D topological order
obtained on the surface of an electronic TI through vortex condensation [351, 227]. This
topological order can be viewed as a Moore-Read Pfaffian state plus a neutral antisemion
(with the self-statistics angle −π/2). The only difference in our case is that some of the
“vortex-like” particles in the topological order show up as links between loop excitations
and a dislocation with B = ẑ.

This motivates the following parton construction of the anomalous topological or-
der [303, 278]. We decompose the electron operator as

c = b2f, (2.8)

where b is a charge-1/2 boson, while f is a neutral fermion. The neutral fermion experiences
the same electronic structure as the original Weyl semimetal with 2Q = π and the FFLO
pairing gap, that does not violate translational symmetry. The neutral Fermi surface state
then leads to the thermal Hall conductivity κxy = (1/4π)(π2k2BT/3), which is equivalent
to a layered p + ip superconductor [287]. The charge-1/2 bosons form a layered bosonic
integer quantum Hall state [204, 307]. This state has even integer Hall conductance and zero
thermal Hall conductance (more details can be found in Refs. [204, 307, 375]). In our case
the bosonic integer quantum Hall state contributes a Hall conductivity σxy = 2(1/2)2/2π =
1/4π per layer. This gapped insulating state thus reproduces exactly the chiral and the
gravitational anomalies of the Weyl semimetal, while preserving its translational and charge
conservation symmetries.

The parton decomposition of Eq. (2.8) and the mean field states of b and f are invariant
under a Z4 gauge transform b → inb, f → (−1)nf, n ∈ Z4, which is consistent with the
Z4 topological order. One can check explicitly that the Z4 gauge flux loops have the same
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Figure 2.2: (Color online) Hall conductivity as a function of the magnetization with a
fractional plateau corresponding to σxy = 1/4π 3D FQHE.

properties with the remnants of the uncondensed vortex loops from the vortex-condensation
construction. For example, a fundamental (Φ = π) vortex is seen by the fermion f as a
π vortex, and therefore leads to a Majorana zero mode whenever the vortex penetrates
the xy-plane. The fundamental vortex is also seen by the boson b as a π/2 vortex, which
leads to a fractional charge q = (π/2)σxy/(1/2) = 1/4 whenever the vortex penetrates
the xy-plane. The bosonic integer quantum Hall state also leads to a semion whenever a
two-fold vortex penetrates the xy-plane. Again all these properties are sharply manifested
when the vortices are linked with dislocations.

In addition to realizing the chiral and the gravitational anomalies of the Weyl semimetal,
the above state also provides a realization of the fractional quantum Hall effect (FQHE) in
3D, which may not be regarded as simple layering of weakly-coupled 2D FQHE systems. As
discussed above, a magnetic Weyl semimetal with two Weyl nodes is an intermediate phase
between an ordinary 3D insulator with σxy = 0 and an integer quantum Hall insulator with
σxy = 1/2π. We may tune between the two phases by varying a TR-breaking parameter, i.e.
magnetization m. One may view this as an analog of tuning the filling factor by an applied
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magnetic field in the case of the 2D quantum Hall effect. There are two critical values
of the magnetization, mc1 and mc2, which correspond to transitions from the ordinary
insulator to the Weyl semimetal and from the Weyl semimetal to the integer quantum Hall
insulator correspondingly. The function Q(m), which determines the separation between
the pair of Weyl points and the Hall conductivity σxy(m) = Q(m)/2π2 as a function of
the magnetization, is model-dependent, but becomes universal near each critical point.
For noninteracting electrons, we have [47] Q(m) ∼ A1(m −mc1)

1/2, π − A2(mc2 −m)1/2,
where A1,2 are nonuniversal coefficients. We then claim that, in the presence of strong
electron-electron interactions, a fractional plateau may exist in σxy(m), at which the Hall
conductivity is quantized to half the value of the integer plateau, σxy = 1/4π, as shown in
Fig. 2.2.

It is important to note that the constraint on the possible plateau comes mainly from
the thermal Hall response. For a topological order that is genuinely three dimensional,
in the sense that all excitations can move in all three directions, the particle excitations
can only be bosonic or fermionic. This constrains the thermal Hall conductance per layer
to be quantized to κxy = (n/2)(πk2BT/6), where n is odd only if the fermion excitations
form layered topological (p + ip - like) superconductors. Plateaus at other values of σxy
are certainly possible, but these states will be unrelated to Weyl semimetals.

A general feature of 3D FQHE liquids (with intrinsic 3D topological orders) is that
there will be loop excitations with nontrivial braiding statistics when linked with lattice
dislocations. In particular, there will be a loop excitation that can be induced by a 2π
magnetic flux loop, with an abelian braiding statistical phase of 4π2σxy, when linked with
a dislocation with B = ẑ. This is in parallel with the 2D FQHE, where there always exists
an anyon (known as “fluxon”) with abelian statistics, determined by the fractional Hall
conductance.
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Chapter 3

Unquantized anomalies in topological
semimetals

In this chapter we will elucidate the topological responses of type-I DSMs and time-reversal
invariant WSMs, which were previously unclear. The content of this chapter is lifted from
published work in Ref. [105]1.

3.1 Introduction

While the concepts of nontrivial electronic structure topology have traditionally been as-
sociated with insulators [130, 282], recent work has lead to the realization that gapless
metallic states may also be topological [345, 343, 12]. According to the standard band the-
ory of crystalline solids, whether a given material is a metal or an insulator is determined
by the electron filling per unit cell. When the filling is an odd integer, we necessarily get
a metal with a Fermi surface, whose volume is directly determined by the filling and is
not renormalized by the electron-electron interactions [209, 264, 132]. When the filling
is an even integer, on the other hand, the net Fermi surface volume must be zero, which
corresponds to either an insulator or a compensated semimetal, with electron and hole
Fermi surfaces enclosing equal volume. The compensated semimetal arises due to fact that
the bands may overlap in energy and is accidental, in the sense that the overlap may be
removed without altering the crystal symmetry, whether it exists or not is a matter of
microscopic detail.

1Copyright © 2011 by American Physical Society. All rights reserved.
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Recently discovered topological semimetals are different from compensated semimetals
in that their existence is not accidental, they arise inevitably under certain conditions,
either as intermediate phases between topologically distinct insulators or in crystals with
certain symmetry groups. In particular, Weyl semimetal (WSM) arises as either an in-
termediate phase between a quantum anomalous Hall insulator and an ordinary three-
dimensional (3D) insulator [47]; or as an intermediate phase between a time reversal (TR)
invariant 3D topological insulator and an ordinary 3D insulator, when inversion symmetry
is violated [242].

When TR and inversion symmetry are present and all bands are thus doubly degenerate,
pairs of opposite-chirality Weyl nodes must occur at the same momenta in the Brillouin
zone (BZ), which generally means that a gap is opened. However, certain point group
crystal symmetries may protect four-fold degenerate band-touching points. Such materials
are called Dirac semimetals (DSM). These come in two classes, type-I and type-II [387]. In
type-I Dirac semimetals, such as Na3Bi and Cd3As2 [359, 360], Dirac points occur in pairs
at generic BZ momenta on an axis of rotation, and are protected by a symmetry of rotations
about this axis. This type of Dirac semimetal arises as an intermediate phase between an
ordinary insulator and a weak topological insulator, in which the direction of the weak index
(a reciprocal lattice vector) coincides with the rotation axis. In type-II Dirac semimetals,
in contrast, there is a single Dirac node at a time reversal invariant momentum (TRIM)
at the edge of the BZ, terminating an axis of nonsymmorphic rotation [397, 325] (the
minimum total number of such Dirac points in the BZ is still two, unless TR is explicitly
broken). Such a Dirac semimetal is not an intermediate phase between two insulators, but
exists in crystals with certain nonsymmorphic symmetry groups, which inevitably have
four-fold band degeneracies at TRIM at the edge of the BZ [387, 270, 268].

The band-touching points in both Weyl and Dirac semimetals are stable as long as
the protecting symmetries are present or as long as the points are not pairwise annihi-
lated by bringing them to the same position in the BZ (this applies to Weyl and type-I
Dirac semimetals). This stability may be connected with the existence of a momentum-
space topological invariant, associated with the band-touching point. In the case of Weyl
semimetals, this topological invariant is a nonzero Chern number (±1) of any closed sur-
face in momentum space, enclosing the node. In the Dirac semimetal case, the invariant
is more subtle and involves counting rotation eigenvalues of occupied and empty states on
the rotation axis on the opposite sides of the Dirac point [386].

An important limitation of this picture is that it is based on noninteracting band
eigenstates. A question then arises to what extent topological semimetals are stable with
respect to the electron-electron interactions. By stability here we do not mean perturbative
stability with respect to gap opening: all 3D point-node semimetals are stable in this sense
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thanks to the vanishing density of states at the Fermi energy. Rather, we are interested in
the question to what extent their topologically nontrivial nature is still manifest when the
interactions are not weak. We have recently addressed this issue in the simplest case of
a magnetic Weyl semimetal [349, 335, 301] (see Refs. [224, 239, 295, 223, 286] for related
work). In this paper we generalize this earlier work to TR-invariant Weyl and type-I Dirac
semimetals. As explained above, what unifies these three classes of topological semimetals
is that they arise as intermediate phases between topologically-distinct insulators. Type-II
Dirac semimetals are not of this type, leading to a significantly different physics, which we
will address in a separate publication.

A way to formulate this question precisely in the case of a magnetic Weyl semimetal is
as follows. In addition to topological invariants, formulated in terms of band eigenstates,
magnetic Weyl semimetals are also characterized by topological response, which, in par-
ticular, takes the form of an anomalous Hall effect [47]. Specializing to the simplest case
of a Weyl semimetal with a single pair of opposite-chirality nodes, the anomalous Hall
conductivity is proportional to the distance between the nodes in momentum space

σxy =
1

2π

2Q

2π
, (3.1)

where we are using ℏ = e = c = 1 units here and throughout this paper and the nodes
are taken to be located at kz = ±Q. This Hall conductivity, which is a fraction of a
conductivity quantum 1/2π per atomic layer, is a characteristic property of magnetic Weyl
semimetals, which is well-defined even when the band eigenstates are not. We may then
ask whether a trivial gapped insulator at the same electron filling per unit cell as the Weyl
semimetal may have the Hall conductivity given by Eq. (3.1). The answer to this is no since
Eq. (3.1) implies a σxy

2
AdA term in the Lagrangian for the electromagnetic field, which is

not invariant with respect to large gauge transformations. Gapless modes are needed to
restore gauge invariance, which, in the absence of a Fermi surface, makes the Weyl nodes
necessary. However, a fractionalized insulator with a particular type of topological order
is consistent with Eq. (3.1) when 2Q = π, taking the lattice constant in the z-direction to
be unity [349].

Here we ask whether this line of reasoning may be generalised to other point-node topo-
logical semimetals, in particular TR-invariant Weyl and type-I Dirac semimetals. It is not
at all obvious that this is possible since, unlike the magnetic Weyl semimetal, these do not
possess any topological electromagnetic responses. This makes one wonder if the nontriv-
ial topology of TR-invariant Weyl and type-I Dirac semimetals only exists in the weakly
interacting limit. In this paper we demonstrate that this is not the case. We show that
both TR-invariant Weyl and type-I Dirac semimetals possess “unquantized” topological
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responses, similar to the magnetic Weyl semimetal, except involving crystalline symme-
try, rather than purely electromagnetic, gauge fields. These manifest as fractional electric
charge density induced on crystalline symmetry defect (i.e. dislocations and disclinations)
configurations.

Alternatively, the Hall conductivity of a magnetic Weyl semimetal Eq. (3.1) may be
viewed as being a consequence of a nonzero charge density, induced in the ground state of
the Weyl semimetal by an applied magnetic field, given by the Streda formula

σxy =

(
∂n

∂B

)
µ

. (3.2)

Similarly, we demonstrate that topological responses of TR-invariant Weyl and type-I
Dirac semimetals may be expressed in terms of nontrivial ground state symmetry charges,
induced by the applied magnetic field. These symmetry charges are the crystal momentum
(translational symmetry charge) in the case of the TR-invariant Weyl semimetal and the
angular momentum (rotational symmetry charge) in the case of the type-I Dirac semimetal.

The rest of the paper is organized as follows. In Section 3.2 we introduce and review the
concepts of unquantized anomalies and of symmetry gauge fields, which may be unfamiliar
to some readers. In Section 3.3 we discuss a series of one-dimensional lattice models,
which introduce the mixed crystalline symmetry-electromagnetic anomalies in the simplest
possible setting. We show that these anomalies may be viewed as a generalization of the
familiar notion of fractional U(1) charge density, which is formally related to the (1 + 1)d
chiral anomaly, to discrete symmetry gauge fields. In Section 3.4 we generalize the results
of Section 3.3 to 3D topological semimetals. As familiar from the standard discussions
of the chiral anomaly, when the semimetals are placed in an external magnetic field, the
resulting lowest Landau levels encode the anomaly physics and connect the anomalies in
3+1 dimensions to their 1+ 1-dimensional counterparts. Finally, we generalize the vortex
condensation analysis of Ref. [349] to the cases of TR-invariant Weyl and type-I Dirac
semimetal, which provides yet another viewpoint on their topological nontriviality in the
presence of strong interactions. We conclude in Section 3.5 with a brief summary and
discussion of the main results of the paper.

3.2 Preliminaries

Since we will be using a number of concepts, such as anomalies and symmetry gauge fields,
that may be unfamiliar to some readers, in this section we will briefly review these concepts.
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3.2.1 Topological response and “unquantized quantum anoma-
lies”

We will start by reviewing how certain types of unquantized topological response can
constrain the low energy phases in a way that is similar to the usual quantum anomalies.

We illustrate the idea using a familiar example. Consider a (2 + 1)d fermion system
with charge U(1) symmetry. If the Hall conductance σxy = −σyx is not an integer (in
units of e2/h = 1/2π), then it is well known that the ground state cannot be short-range
entangled: if the ground state is gapped, it should realize a non-trivial topological order,
as in fractional quantum Hall effects; the ground state can also be gapless, for example
by having a Fermi surface that encloses a Berry phase Φ = 4π2σxy [126]. One way to see
this is to notice that if the ground state is short-range entangled, the theory of response
to a probe U(1) gauge field should be expressed as the integral of a local term. The Hall
conductance corresponds to the familiar Chern-Simons (CS) term:∫

d3x
k

4π
AdA , (3.3)

where σxy = k/2π. It is well known that if k ̸∈ Z, the CS term is not consistent as it is not
invariant under certain large gauge transforms. The inconsistency should be cured once
the low energy (IR) degrees of freedom are properly included, namely the full theory

SIR[A] +
∫
d3x

k

4π
AdA , (3.4)

should be fully gauge invariant. A familiar situation is when k = 1/2, where the IR theory
can be a gapless Dirac fermion. The Dirac fermion can be represented in the (Euclidean
time) path integral formulation as

ZIR =

∫
Dψ̄Dψ exp

(∫
d3xψ̄i /DAψ

)
= | det( /DA)| exp

(
iπ

2
η[A]−

∫
d3x

i

8π
AdA

)
, (3.5)

where η[A] is the η-invariant. We refer to Ref. [374] for a detailed review of the η-invariant.
Here we only emphasize that the η-invariant is classically similar to the k = 1/2 CS term
in terms of equation of motion (and hence Hall conductivity), but is fully gauge-invariant
unlike the k = 1/2 CS term. The IR theory of the Dirac fermion thus fulfills two important
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requirements: it carries the opposite gauge non-invariance with the k = 1/2 CS term, with
a vanishing contribution to the net Hall conductance.

From a field theoretic point of view, it is somewhat arbitrary to separate the theory into
a CS term and SIR. In fact the Dirac fermion can be defined in a gauge-invariant way with
just the η-invariant [374], for example using the Pauli-Villars regulator. However, it will be
useful to clearly separate the two contributions since it allows interesting generalizations
that will be discussed later in this paper: the CS term can be interpreted as a “UV”
contribution that comes from integrating out high-energy degrees of freedom and should
therefore be analytic (but not necessarily fully consistent); Eq. (3.5) is interpreted as an
“IR” contribution. The IR contribution does not have to be analytic since it comes from
gapless degrees of freedom (in this case the η-invariant is not analytic), and should restore
gauge invariance while keeping the UV response (in this case Hall conductance) unchanged.

The above story is similar to quantum anomalies, in the sense that the IR theory
should be nontrivial and match certain gauge non-invariance condition. However it is also
different from the standard quantum anomalies, since the gauge non-invariance is imposed
by fine-tuning the Hall conductance to a fixed fractional value. This “unquantized quantum
anomaly” is therefore not protected like the standard anomalies, in the sense that a general
perturbation can in principle change the Hall conductance. However we can adopt a rule
of game in which the Hall conductance is fixed, which is justified if it is measured directly
from the experiments or numerics. Then gauge invariance will impose strong constraints
on the IR phases in a way similar to the standard quantum anomalies. In particular,
the constraints can be applied to strongly correlated system — in this case it leads to the
familiar result that a system with a fractional quantum Hall conductance, even with strong
interactions, must necessarily be long-range entangled.

Our “unquantized anomaly” can be viewed as a type of gauge non-invariant counter
terms. The most familiar example of such counter term in condensed matter physics is
perhaps the diamagnetic term in metals: (n/2m)|A|2, where n is the electron density, m
is the fermion mass and A is the electromagnetic vector potential. The analogue of the
fractional Hall conductance discussed above would be the optical conductivity σ(ω) ∼ 1/iω
due to this counter term. This term is obviously gauge non-invariant and in the case of
metals it demands a nontrivial Fermi surface to restore gauge invariance. The difference
between the diamagnetic term and the fractional CS term is that the former is non-invariant
under general (small and large) gauge transforms while the latter is non-invariant only
under large gauge transforms, and is therefore more “topological”. In the rest of this work
we will focus on such “topological” counter terms.

The rest of this paper is devoted to generalizing the above story to a variety of topo-
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logical semimetals. The theory of such topological semimetals can be written, in a similar
fashion to Eq. (3.4), as

SIR[ψ,A] + SUV [A] , (3.6)

where SIR[ψ,A] represents the low energy degrees of freedom such as the gapless fermions,
SUV is a topological response term, which is a generalization of the Hall conductance,
and A represents the probe gauge fields of the relevant symmetries, such as U(1) and
lattice symmetries. The inconsistency of SUV implies that the topological semimetal phase
must remain long-range entangled even with strong interactions, as long as the topological
response from SUV is fixed.

The relation between the standard and unquantized anomalies can be made more pre-
cise through the notion of emergent anomalies. The IR theory often enjoys a symmetry
larger than that of the microscopic system. This emergent IR symmetry, which we denote
as GIR, can have some nontrivial t’Hooft anomalies, in the sense that if we formally couple
the IR theory to a probe GIR gauge field, the theory is only sensible when viewed as the
boundary of a bulk (denoted as M), with a nontrivial bulk response action i

∫
M
w[GIR]

where w[GIR] is the corresponding topological term. We then re-insist that the true mi-
croscopic symmetry GUV is smaller, and is implemented in the IR theory as a subset of
GIR through a map (a homomorphism)

φ : GUV → GIR , (3.7)

which gives a map (a pullback) φ∗ from the IR anomaly w[GIR] to the anomaly of the UV
symmetry

w[GUV ] = φ∗w[GIR] . (3.8)

The unquantized anomaly we discuss here corresponds to the situation where the above
w[GUV ] is a total derivative as a bulk term: w[GUV ] = dΩ[GUV ], so that the UV anomaly
is trivial at the cohomology level. However, it still reduces to a nontrivial counter term
on the boundary Ω[GUV ]. Ω is the analogue of the unquantized CS term AdA, where the
corresponding bulk term is just the theta term w = dAdA.

Before entering the detailed discussions, we shall first review the notion of gauge fields
for lattice symmetries.

3.2.2 Review of lattice symmetry gauge fields

For an ordinary on-site discrete symmetry G (such as the Ising Z2), what the probe gauge
field A measures is essentially the twisted boundary conditions around each space-time
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1-cycle C. Specifically, a nontrivial Wilson loop
∫
C
A = g ∈ G means that adiabatically

travelling along C for a full cycle is equivalent to acting on the system by g. Here C could
also be a small cycle around a gauge defect (a vortex), in which case

∫
C
A measures the

flux trapped in the defect. If we view vortices (with nontrivial gauge flux) as defects in
the continuum space-time, the discrete gauge field becomes locally flat in the continuum
dA = 0. Mathematically this means that A ∈ H1(M,G), the first cohomology group of G,
where M is the space-time manifold.

The above definition can be generalized to lattice symmetries [336]. We start with
lattice translation symmetries in d space dimensions, where the symmetry forms the group
Z⊗d. For each translation symmetry Txi

in the i’th direction (1 ≤ i ≤ d), we introduce a
Z-gauge field Xi. Just like the Wilson loops in ordinary gauge theories, the integer

∫
C
Xi

measures the number of x̂i-translations one has to go through to travel across the 1-cycle
C. To be more concrete consider a path integral description, with dynamical degrees of
freedom ψ (bosonic or fermionic) defined in continuous time t ∈ [0, T ) and on discrete
lattice sites s in space:

e−iSeff [A,xi] =

∫
D[ψ(s, t)] exp

(
−i
∑
s

∫
dtLs[ψ,A]

)
, (3.9)

where we have used locality and translation symmetries to write the Lagrangian as a
sum of local terms of identical form, Ls[ψ,A], which involves only fields near site s. We
take periodic boundary conditions in space and time (so M is a torus). The translation
gauge fields enter the partition function by specifying exactly how the periodic boundary
conditions are taken:

ψ(s, t) = ψ

(
s+ x̂j

∫
i

Xj, t

)
;

ψ(s, t) = ψ

(
s+ x̂j

∫
t

Xj, t+ T

)
. (3.10)

We now explain these equations in more detail. The Wilson loop of Xi in the x̂i direction
gives the lattice size

∫
i
Xi = Li. For j ̸= i the number

∫
i
Xj measures how much the slice

of the lattice at xi = Li is displaced along the x̂j direction before it is identified with the
slice at xi = 0. Similarly the time component

∫
t
Xi measures the displacement of the entire

lattice at t = T before identified with t = 0. In other words, while the “longitudinal” parts
of the translation gauge fields measure the lattice size, the “transverse” parts measure the
quantized shear strains of the lattice in both space and time. We can also consider a (d−2)
dimensional defect in space, around which

∫
Xi = n ̸= 0: this is simply a lattice dislocation
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with Burgers vector B⃗ = nx̂i. This relation can also be written as
∫
S
dXi = N where N is

the total charge of dislocations penetrating through the 2-surface S. This is illustrated in
Fig. 3.1.

(a) (b)

(c)
Lz

Lx

(d)
Figure 3.1: (Color online) Spatial symmetry point defects in 2D. (a) A defect-free 2D
lattice with highlighted (blue) point possessing both translational and π/2 rotational sym-
metry. (b) A translational symmetry defect, known as a dislocation, is obtained by inserting
an extra (red) half-plane and represented by the red dot. A Wilson loop around the defect
gives

∫
C
Xi = 1. (c) Gluing together the yellow lines in (a) produces a π/2 rotational

defect known as a disclination. (d) Here we depict a periodic 2D lattice in the xz-plane

with linear size in the z-direction
∫ Lz

z=0
z = Lz (red line) and a shear strain in z given by∫ Lx

x=0
z = 1 (green line). The four blue dots are equivalent to each other due to the periodic

boundary conditions.

In the above discussion the lattice is viewed as a set of discrete points, which could exist
without referring to any microscopic continuum geometry. However it is often convenient to
embed the lattice into a continuous space, so that each site s can be assigned a continuous
coordinate u⃗(s). Following usual practice in elasticity, the lattice coordinate can be treated
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as a field in the continuous space-time by assigning to each point r⃗ the value of u⃗(s(r⃗)),
where s(r⃗) is the lattice point closest to r⃗. In this case the translation gauge field Xi can be

interpreted as the elasticity tetrad Xi = ∇⃗ui [76], since the tetrad also satisfies Eq. (3.10).
Different continuum embeddings of the lattice lead to different tetrad representations of the
Xi gauge fields, but the Wilson loops

∫
C
Xi do not depend on the details of the embedding.

In this work we focus on universal properties, such as the Wilson loops, that do not depend
on how the lattice is embedded into a continuum space. For example, we do not discuss
the couplings between local elastic deformations (such as phonons or local strains) and the
electrons [272, 221]. This allows us to treat Xi purely as a Z-valued gauge field, and view
the tetrad representation as a “gauge choice” of the translation gauge fields.

We note that the concept of translation gauge fields and elasticity tetrad have been
used in recent literature in various contexts, including three dimensional integer quantum
Hall effect [9, 254, 255], Weyl semimetals [151, 349, 176], chiral anomaly [256], electric
polarizations [322, 252] and crystalline symmetry-enriched topological orders [214].

We can similarly introduce probe gauge fields for lattice rotation symmetries. For
example for a lattice Cn rotations (n = 2, 3, 4, 6), we can introduce a Zn gauge field c. A
defect around which

∫
c = m ̸= 0 (mod n) is simply a lattice disclination. This lattice

rotation gauge field has been used recently to characterize certain crystalline topological
phases [195].

3.3 Chiral anomaly in (1+1)d lattice systems

3.3.1 U(1)× Z chiral anomaly

We begin by reviewing the well known chiral (or filling) anomaly in (1+1)-dimensional
lattice systems, with the aim to generalize these concepts to more complex situations.
This (1 + 1)d chiral anomaly may be viewed as the fundamental anomaly, from which the
higher dimensional anomalies in topological semimetals, that we will be concerned with in
this paper, follow.

Let us consider a (1 + 1)d ring of length Lz with a single spinless fermionic band at
a fractional filling ν. This system possesses the discrete lattice translational symmetry Z
and the U(1) charge conservation symmetry. The band dispersion is shown in Fig. 3.2(a).
Luttinger [209, 264] or, more generally, Lieb-Schultz-Mattis [189, 263, 132]), theorems tell
us that this system is necessarily gapless in the presence of the U(1) and translational
symmetries. Alternatively, we may view this gaplessness as being mandated by a U(1)×Z
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chiral anomaly that requires the existence of low-energy gapless modes in order to maintain
gauge invariance [101, 68, 70, 228, 156].

This U(1)×Z anomaly is a lattice descendant of the continuum U(1)×U(1)a (1 + 1)d
chiral anomaly, where U(1)a corresponds to the chiral (or axial) symmetry group. In the
presence of a U(1) flux there follows a non-conservation of the chiral charge, despite the
presence of the chiral symmetry (hence anomaly). In the lattice system this continuous
chiral symmetry is replaced by the Z translational symmetry and as such leads to a non-
conservation of the Z translational charge (which is simply the crystal momentum) when
treated as an on-site symmetry. This is most easily demonstrated if we adiabatically thread
a magnetic flux Φ =

∮
dzAz through the center of the ring, which causes a change in Φ = 0

momentum given by

∂tPtot = ν

∫
dz ∂tAz , (3.11)

where ν = 2Q/2π with 2Q being the momentum separation between the chiral modes.
For notational simplicity we will set the lattice constant a to unity henceforth. Upon an
insertion of Φ = 2π we have

∆Ptot

2π
= ν (modZ) , (3.12)

where modZ arises due to the crystal momentum being only defined modulo a reciprocal
lattice vector. This demonstrates non-conservation of the chiral charge, i.e. momentum,
when ν ̸= 0 (modZ) and is illustrated in Fig. 3.2.

Another facet of the chiral anomaly has to do with the overall U(1) charge of the ground
state, which is given by

QU(1) =

Q∑
kz=−Q

1 = νLz , (3.13)

where Lz is the length of the system, which means that the charge per unit cell is ν. Any
noninteger value of ν is incompatible with a trivial gapped insulator state. An intuitive way
to see this is to notice that the total U(1) charge in Eq. (3.13) is not properly quantized for
some Lz if ν /∈ Z. This means that some additional charge δQ ∼ O(1) has to supplement
Eq. (3.13) to make the charge quantized, no matter how large Lz becomes. Furthermore,
this ∼ O(1) additional charge cannot come from a trivially gapped state, since it is non-
analytic with respect to 1/Lz – for example, an acceptable example will be δQ = ⌊νLz⌋ −
νLz, which is badly non-analytic in 1/Lz. The correction δQ then has to come from
some long-range entanglement – in our case the gapless fermions. Although the relation
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Figure 3.2: (Color online) Illustration of the (1 + 1)d chiral anomaly: (a) A one band
fermionic dispersion at fractional filling ν = 2Q/2π. (b) Once we thread a flux

∫
dzAz =

2π, which gives rise to an electric field E⃗, all filled states gain a unit of momentum resulting
in a change of 2πν in chiral charge (i.e. crystal momentum).

Eq. (3.13) is rather trivial, its generalizations, which will be discussed extensively later,
are not.

Both of the above manifestations of the (1 + 1)d chiral anomaly may be compactly
expressed in terms of the following action, involving the translation (chiral) and the elec-
tromagnetic gauge fields

S = ν

∫
z ∧ A = ν

∫
dtdz ϵµνzµAν , (3.14)

where A is the usual U(1) gauge field, z ∈ H1(M,Z) is the Z translational gauge field, and
ϵµν is the Levi-Civita tensor in (1+1)d. All discrete gauge fields should be locally flat in the
continuum limit since discrete fluxes lead to singular points in space. For the z gauge field
this means that

∫
C2 dz = 0 when integrated over any closed 2-cycle C2. Around a 1-cycle

C,
∮
C z counts the number of z translations traversed by the cycle, which is generally zero

unless the loop is non-contractible, i.e. encloses omitted points in space. For example if
we choose the cycle Cz to be along the length of the system then we obtain

∮
Cz z = Lz.

In general
∫
i
zj, where i ̸= j measures the number of z lattice slice displacements that

are traversed along a cycle from xi = 0 and x = Lxi
. Physically the flatness requirement

dz = 0 corresponds to disallowing insertions of defects, i.e. layers which carry U(1) charge,
such that total number of charges stays fixed over time. Let us now show how this action
term reproduces the previously discussed physics of the chiral anomaly.

Recall that the minimal coupling between the current jµ and gauge field Aµ is given
by −jµAµ. This means that when we vary Eq. (3.14) with respect to the time component
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of the gauge field, At, we arrive at the expression for the total U(1) charge as shown in
Eq. (3.13). When we vary with respect to the time component of the translation gauge
field, zt, we get the total ground state momentum

Ptot(Φ) = −
∮
Cz

δS

δzt
= −νΦ . (3.15)

The momentum difference between the Φ = 0 and 2π ground states is then given by

Ptot(2π)− Ptot(0)

2π
= −ν (modZ) . (3.16)

We note that the apparent sign difference between Eq. (3.16) and (3.12) is in fact consistent.
Eq. (3.16) describes the change of ground state momentum in the presence of a 2π-flux,
while Eq. (3.12) is the momentum carried by the low energy (particle-hole) excitation
induced by an adiabatic 2π-flux insertion. The two should sum to zero since the process of
adiabatic flux-insertion commutes with lattice translation and should not induce an actual
momentum change. In our language (discussed in Sec. 3.2) Eq. (3.16) can be interpreted
as a “UV” response since it is fixed by the lattice-scale information (the charge filling),
and Eq. (3.12) can be interpreted as the “IR” contribution since it originates from gapless
particle-hole excitations of the IR theory.

The incompatibility of the anomaly action Eq. (3.14) with a trivial insulator ground
state may be clearly seen by examining how the action transforms under large gauge
transformations. For example, if At is taken to be spatially constant and wind by 2πn
around the temporal cycle, the corresponding contribution to the action is given by

S = −2πνnLz , (3.17)

which is generally nontrivial. This contradicts the fact that such a 2πn winding of At may
be generated by a gauge transformation, i.e. Eq. (3.14) is not gauge invariant. This means
that there must exist gapless modes, which compensate for this gauge non-invariance.

We now comment on the relation between the “unquantized anomaly” Eq. (3.14) and
the standard t’Hooft anomaly. Although physically the only exact symmetry we impose
here is U(1)×Z, at low energy the emergent Dirac fermion possesses an emergent U(1)c×
U(1)a symmetry (the charge and axial charge conservation). If this U(1)c×U(1)a symmetry
is exact and on-site, the system can only be defined on the edge of a (2+1)d “quantum spin
Hall insulator” bulk. This means that when coupled to a U(1)c gauge field A and a U(1)a
gauge field B, the Dirac fermion must be defined together with a mutual Chern-Simons
(CS) term in one higher dimension:

1

π

∫
X3

d3xBdA , (3.18)
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where the Dirac fermion lives on the boundary ∂X3. For our example, A is the electro-
magnetic gauge field. The axial charge is nothing but the crystal momentum, so we should
set B = −kF z – here we temporarily treat the gauge field z as continuous (defined in R
instead of Z), and recall that the charges under z are nothing but the momenta of the
fermion modes ±kF . Using the Luttinger theorem 2kF = 2πν and the fact that dz = 0
for z ∈ H1(X3,Z) (the z gauge field is discrete at the end of the day), the total anomaly
becomes

−ν
∫
X3

zdA = ν

∫
∂X3

z ∧ A , (3.19)

which is just Eq. (3.14). Importantly, the BdA anomaly becomes trivial as a bulk term,
but on the boundary it produces a nontrivial counter term which forces the IR theory to
be nontrivial.

Now we will demonstrate how this basic (1+ 1)d chiral anomaly may be generalized to
more complex situations, involving other crystalline symmetries, such as rotations.

3.3.2 Z× Z2 anomaly

Discrete symmetries, such as discrete lattice rotations and translations, do not admit local
charge densities (in contrast to U(1)). Nevertheless the charges of these discrete symme-
tries are globally defined and much of the discussion from the previous example can be
generalized accordingly. We now discuss the simplest example with lattice Z translation in
ẑ direction and an on-site Z2 symmetry. For later use we interpret this Z2 as a C2 rotation
around the ẑ axis.

Consider a (1+1)d spinful fermionic square lattice model with translational symmetry
in z, and C2 symmetry, described by the following Hamiltonian

H =
1

2

∑
i

(
c†iσ

zci+1 −mc†iσ
zci + h.c.

)
,

=
∑
k

(cos k −m) c†kσ
zck , (3.20)

where σ corresponds to the spin-degree of freedom, and we have two zero energy nodes
at momentum k = ±Q, with Q = cos−1 (m). The dispersion is shown in Fig. 3.3. The
gaplessness of the band dispersion is protected by the combination of C2 = σz symmetry
and translational symmetry. The total C2 charge QC2 , defined through the C2 eigenvalue
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eiQC2 for the many-body ground state, is determined by the filling fraction ν = 2Q/2π of
the band with C2 eigenvalue −1:

QC2 = πνLz +O(1) , (3.21)

where ν = 2Q/2π describes the separation between the band-touching nodes. A trivial
symmetric gapped ground state with C2 may only be a product state in C2 charges of
either 0, or π at every sites. Thus the total C2 charge of a trivial symmetric system can
correspond to 0 or πLz respectively. We see that a trivial state is unable to capture the
total charge of the system for a fixed general nodal separation of 2Q/2π /∈ Z. One can
also heuristically understand the “anomaly” of Eq. (3.21) in a similar way as the previous
example: the C2 charge in Eq. (3.21) is not properly quantized for certain Lz when ν /∈ Z,
so an additional δQC2 ∼ O(1) has to be added. In general δQC2 will be non-analytic in
1/Lz and therefore should come from some nontrivial IR modes, like the gapless fermions
in our example.

Parallel to the U(1) × Z anomaly case, this inability to form a trivial state at certain
nodal separations is the result of a Z × Z2 chiral filling anomaly associated with the z
translation and C2 symmetries. Analogous to the U(1) × Z anomaly, the effect of the C2

charge is encoded in the following topological term

S = πν

∫
z ∧ c , (3.22)

where c ∈ H1(M,Z2) is the C2 gauge field which is the on-site spin rotation gauge field.2

The general trivial states correspond to ν ∈ Z.
By construction, when we vary the action in Eq. (3.22) with respect to the time com-

ponent of the C2 gauge field, ct, we arrive at the QC2 in agreement with Eq. (3.21). In
addition, varying with respect to zt, we obtain

Ptot(Φc) =

∮
Cz

δS

δzt
= −πνΦc , (3.23)

where Φc =
∮
Cz cz is the C2 flux. This means that a nontrivial C2 flux (a periodic boundary

condition twisted by C2) induces a nontrivial momentum. What appears inconsistent is
that even a trivial flux Φc = 2 also induces a nontrivial momentum:

Ptot(2)− Ptot(0)

2π
= −ν (modZ) . (3.24)

2Strictly speaking we should be using the cup product ∪ for discrete gauge fields. But for most purposes
in this paper it suffices to consider the standard wedge product ∧.
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Figure 3.3: (Color online) Band dispersion corresponding to the Hamiltonian in Eq. (3.20).
The filled red and blue states correspond to different C2 eigenvalue states. The sum of the
individual filled charges gives the total C2 charge which may be non-trivial, leading to a
Z× Z2 chiral anomaly.

The resolution is that the trivial Φc = 2 flux induces a gapless excitation with momentum
−2πν = −2Q – this is nothing but a particle-hole excitation near the Fermi points. This
provides another physical reason for the existence of nontrivial IR modes.

Here we comment on the exact meaning of Eq. (3.23). We consider the low energy
spectra of the system with and without the C2 flux – by “low energy spectrum” we mean
the ground state and excitations with energy ∼ O(1/L) (i.e. states that are degenerate
with the ground state in the thermodynamic limit). Of particular interest are two quantum
numbers of these states: the crystal momentum P and the total U(1) charge q ∈ Z (let
us define the charge so that q = 0 for the ground state in the absence of the C2 flux).
In the absence of the C2 flux the low energy states satisfy the relation P = qQ (mod
2Q). With the C2 flux, one can check that the relation is modified to P = qQ + Q (mod
2Q). The difference between these two relations is the true meaning of Eq. (3.23) (recall
that πν = Q). This also shows that although U(1) symmetry is not explicitly involved
in the response function Eq. (3.22), it is required to make the response sharply defined
– otherwise the charge q is no longer defined in the above relations and Eq. (3.23) loses
its sharp meaning. The necessity of the U(1) symmetry can also be seen directly: if the
U(1) is broken, we could gap out the system by simply adding a pairing term, without
breaking either the translation or the C2 symmetry. This phenomenon is similar, though
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perhaps not completely identical, to SPT phases in certain systems – for example, certain
anomalies (SPTs) in charged fermion systems only involve time-reversal symmetry, but the
anomalies become trivial once the U(1) symmetry on the fermions is broken [353].

The formal way to express the above anomaly, just as in the case of the U(1) × Z
anomaly, is to notice that the topological term in Eq. (3.22) is not gauge invariant under
large gauge transformations c → c + 2α where α is an integer 1-form, which mandates
gapless low-energy modes to restore gauge invariance. As we will see later, this anomaly
has a (3+1)d extension, which corresponds to rotation symmetry protected (type-I) Dirac
semimetals.

The Z2 × Z anomaly Eq. (3.22) does have a subtle aspect not present in the U(1)× Z
case. We are always free to redefine the Z2 gauge field c → (2n + 1)c for any n ∈ Z.
Therefore different values of ν should give identical response (or anomaly) if they differ by
a factor of 2n+ 1, which means the following equivalence relation

ν ∼ (2n+ 1)ν, n ∈ Z. (3.25)

This equivalence relation can be understood physically from either Eq. (3.21) or Eq. (3.23).
In Eq. (3.21) we can multiply the total charge by any odd integer without changing the
physical meaning, since the total charge QC2/π is only defined in Z2. Likewise in Eq. (3.23),
we can multiply the flux Φc by any odd integer without changing the physics since Φc is
defined in Z2.

An immediate consequence of the equivalence relation Eq. (3.25) is that the anomaly
is in fact trivial if

ν =
n

2m+ 1
∼ n, n,m ∈ Z. (3.26)

These exceptional values form a measure zero but dense subset within the interval [0, 1].
We can also demonstrate the triviality of these values of ν more explicitly by constructing
a trivial phase starting from the metallic state: we can first gap out all the fermions by
introducing a charge-density-wave (CDW) order that breaks the Z translation symmetry
but keeps the Z2. For the values in Eq. (3.26) the CDW order parameter lives in Z2m+1.
We can recover the Z translation symmetry by proliferating (condensing) domain walls
of the Z2m+1 CDW order parameter. A standard calculation (see Appendix F) shows
that the domain wall (denoted as σ) formally carries Z2 charge π/(2m + 1), namely Z2 :
σ → eiπ/(2m+1)σ. We can combine this with a Z2m+1 gauge transform for the domain wall
σ → ei2mπ/(2m+1)σ and realize that the domain wall in fact carries only an integer charge3

3Mathematically this is the familiar statement that Z2 symmetry cannot be fractionalized on a Z2m+1

gauge-charged particle, or H2(Z2,Z2m+1) = 0.
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of π under Z2. We can therefore neutralize this Z2 charge by attaching to the domain wall
a local operator that is odd under Z2. This way we obtain a domain wall operator σ′ which
can now be condensed without breaking any other symmetry, and the resulting state is
fully symmetric and gapped. Notice that if we had ν = 1/2n instead, the domain wall will
carry Z2 charge π/2n which is now truly fractional, i.e. it cannot be eliminated through
gauge transforms and attaching local operators. In this case the domain walls cannot be
proliferated without breaking Z2 symmetry, and a gapped symmetric phase is impossible.

The anomaly and exceptional points can also be understood using the notion of emer-
gent anomalies[228], which we briefly discuss in Appendix F.

Another consequence of the equivalence relation Eq. (3.25) is that the magnitude of ν
is no longer meaningful. In fact any value of ν can be made arbitrarily close to either 0 or
1 by appropriately multiplying some factor (2n+1)/(2m+1). For rational values of ν, we
can uniquely write ν = 2np/q ∼ 2n with p, q odd and n ∈ Z. Curiously, we can write this
relation more compactly as

ν ∼ |1/ν|2, if ν ∈ Q, (3.27)

where |...|p denotes the p-adic magnitude.

Finally we notice that the Z2×Z anomaly is unambiguously defined only if the U(1)×Z
filling anomaly is trivial (namely the system has integer charge filling). Otherwise we can
make a large U(1) gauge transform A → A + 2πNc (N ∈ Z) in the filling anomaly
Eq. (3.14), which results in a shift of the coefficient of the Z2 × Z anomaly.

3.3.3 Z× Z anomaly

The final (1 + 1)d example we want to discuss is the most nontrivial and involves four
chiral modes, two right-handed and two left-handed, protected only by the translational
symmetry. The U(1) and C2 symmetries can still be there but are not important for the
following discussion. This situation will be relevant to the time-reversal invariant Weyl
semimetal, which will be discussed in Sec. 3.4.3.

We consider a modified model of the previous (1+1)d spinful fermionic system Eq. (3.20),
in which both the C2 rotation and inversion symmetries are broken, so that only the trans-
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Figure 3.4: (Color online) The blue (red) band in Fig. 3.3 is shifted to the right (left) by δQ.
C2 symmetry is not necessary for the protection of the states anymore as indicated by the
colour hybridisation. Instead, the filled states now possess a non-trivial total momentum,
leading to a Z× Z chiral anomaly.

lational symmetry remains

H =
∑
⟨i,j⟩

[
cos δQc†iσ

zcj −mc†iσ
zci +∆c†iσ

xci

− i

2
sin δQ(c†icj − c

†
jci)

]
=

∑
k

c†k [(cos δQ cos k −m)σz +∆σx − sin δQ sin k] ck.

(3.28)

We now have have positive chirality gapless nodes at ±k+ and negative chirality gapless
nodes at ±k−, with k± = Q ± δQ (taking the C2 symmetry breaking parameter ∆ to be
negligible for simplicity). This is essentially a shifted version of the two overlaid bands
studied in the previous section, shown in Fig. 3.3, where each band is moved by δQ in
opposite directions as shown in Fig. 3.4. The low energy modes in this model are solely
protected by translational symmetry in the z direction, which suggests the existence of an
anomaly relating to the translational gauge field.

A key feature of this shifted dispersion is the existence of total ground state z-component
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of the crystal momentum given by

Pz =

k+∑
kz=k−

kz −
−k−∑

kz=−k+

kz = πλLz +O(1) , (3.29)

where λ = 2QδQ/π2 (defined mod 2). This relation is similar to Eq. (3.13) and (3.21),
with the symmetry charge being the total momentum. Similar to the previous examples,
the O(1) piece in Eq. (3.29) is required for proper momentum quantization: LzPz/2π ∈ Z.
For λ = 1 the O(1) piece can simply be δPz = π. For fractional λ /∈ Z one can show that
the O(1) piece has to take some nontrivial form, in particular it can not be analytic in
1/Lz. This means that for λ ∈ [0, 1) some nontrivial IR modes (like gapless fermions) are
needed. Equivalently, a short-range entangled ground state must have λ equal to either
0 or 1 – the latter can be realized by a product state with an odd number of fermions in
each unit cell.

We comment on a subtlety with the above discussion. One may worry that the coef-
ficient λ in Eq. (3.29) is not well defined since Pz is only defined mod 2π. In particular,
we may arbitrarily shift λ → λ + η by simply adding a factor 2π ⌊ηL⌋ to the sequence.
One way to view this issue is to regard different choices of λ as being different choices of
Brillouin zones over which we do our ground state summation in Eq. (3.29). Thus our job
is to fix such a summation convention that allows us to uniquely determine λ.

To specify how λ is determined we demand the following condition on the momentum
choice:

P (L)

2π
≤ P (L+ 1)

2π
≤ P (L)

2π
+ 1 , P (2) = π , (3.30)

which corresponds to determining ground state momentum via purely counting momenta
within 0 and 2π. These two demands uniquely determine the sequence of Ps(L) as L→∞
and thus a unique λ. Using such a sequence of ground state momenta Ps(L), we may then
determine λ via the procedure

λ ≡ lim
L→∞

Ps(L)

πL
. (3.31)

To further elucidate the process, let us first consider the trivial case of a fully-filled band
with one electron per unit cell. If we choose periodic boundary conditions we may obtain
an exact expression for the ground state momentum P (L) = πL−π, where −π is the O (1)
term in Eq. (3.29). Such a P (L) automatically satisfies conditions in Eq. (3.30), and via
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procedure (3.31) yields λ = 1 as expected. It is important to note that in this case the
O (1) term is of an analytic nature in 1/L which expresses the trivial nature of the system
and allows for an insulator to reproduce such a behaviour. However for non-trivial systems
the O (1/L) piece comes about due to the difference between a summation of filled state
momenta at L, and the momentum integral in the thermodynamic limit. This pattern is
highly configuration and length dependent due the difference between the gapless mode
momenta defined in the thermodynamic limit and the corresponding well-defined filled
momentum at L. This sort of difference behaves non-analytically in 1/L and can only be
feasibly reproduced by a gapless or long-range entangled state.

To further support the nontriviality of the Z× Z anomaly, in Appendix G we perform
an explicit stability analysis using Luttinger liquid theory. Now we continue by discussing
the action that expresses the presence of a total gauge-invariant ground state momentum.

Anomaly term

Expressing the Z × Z anomaly as a topological term is a little more subtle than in the
previous two examples. If the spacetime forms a simple torus T 2, i.e. simple periodic
boundary condition in both time and space, then the following term can reproduce the
response in Eq. (3.29):

S = πλ

∫
ztzz , (3.32)

where zt and zz are the time and space components of the z gauge field, respectively.
This action does not appear to be topological, nor does it show any gauge non-invariance
since z ∈ H1(M,Z) does not have any large gauge transform. The resolution is to notice
that translation symmetry is in fact different from an on-site Z symmetry in one impor-
tant aspect: on a finite-size system with length Lz, the many-body total momentum4 is
quantized Pz ∈ 2π

Lz
Z. Since Lz =

∮
Cz zz, the momentum quantization imposes a somewhat

unconventional large gauge symmetry on a spacetime torus T d:

z →z +
(∮

Cz
zz

)
α,∮

Cz
α = 0,

∮
Ci ̸=z

α ∈ Z. (3.33)

4This is true when there is no symmetry flux (twisted boundary condition) from other symmetries,
which is justified here since we are focusing on just the translation symmetry.
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This gauge symmetry can be understood from the definition of the translation gauge field
reviewed in Sec. 3.2.2: the “transverse” part of the gauge field

∮
Ci ̸=z

α measures the dis-

placement in ẑ direction as one moves around the Ci cycle, and this displacement is defined
only modulo Lz. This large gauge symmetry also allows us to have more nontrivial gauge
field configurations (bundles) with nontrivial

∫
C2 dz over some 2-cycles C2. Specifically, we

allow
∫
C2 dz ∈ LzZ for C2 not including any Cz cycle, and

∫
C2 dz = 0 if C2 includes a Cz cycle.

This immediately implies that
∫
dz = 0 in (1 + 1)d, which is relevant for our discussion

here, and
∫
dzdz = 0 in (3+1)d which will be relevant for our later discussion in Sec. 3.4.3.

We can now see why the response term Eq. (3.32) is not gauge invariant: under zt →
Lzα, the term changes by δS = NπλL2

z for some integer N . For λ = 1 this change can
be made trivial by further supplementing a counter term π

∫
zt which changes by NπLz

(recall that Lz(Lz + 1) is always even). For fractional λ there is no such counter term, so
the gauge non-invariance is intrinsic and nontrivial IR modes are required to cancel this
gauge non-invariant.

Similar to the two previous examples, we can also formally write the response Eq. (3.32)
as the boundary descendent of a bulk term

πλ

∫
X3

zdz = πλ

∫
X3

zz(∂uzt − ∂tzu) = πλ

∫
∂X3

ztzz, (3.34)

where u is the direction perpendicular to the boundary. The equality follows from the
requirements on

∫
C2 dz discussed above. The topological nature of the response is more

manifest in this
∫
zdz form – the price we pay is that it is defined in one higher dimension.

We can further illustrate how the
∫
zdz term appears through the standard chiral

anomaly analysis. A chiral fermion, coupled to a continuous (U(1) or R) gauge field A,
can only be defined on the boundary of a bulk with nontrivial Hall conductance:

S = ± 1

4π

∫
A ∧ dA , (3.35)

where the sign is determined by the chirality of the fermion. In our current example, we
should replace A→ kzz, where kz is the crystal momentum of the chiral fermion. For the
theory defined in Eq. (3.28), the full anomaly is

S =
1

4π

∫
[(k+z) ∧ d(k+z) + (−k+z) ∧ d(−k+z)

− (k−z) ∧ d(k−z)− (−k−z) ∧ d(−k−z)]

= πλ

∫
z ∧ dz , (3.36)
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where we have used πλ ≡ 2QδQ/π = (k2+ − k2−)/2π.
Similar to the Z2 × Z anomaly, the Z × Z anomaly is unambiguously defined only if

the U(1)× Z filling anomaly is trivial (i.e. integer charge filling). Otherwise we can make
a large U(1) gauge transform A→ A+2πNz (N ∈ Z) in the filling anomaly Eq. (3.14) to
shift the coefficient of the Z× Z anomaly.

3.4 Three-dimensional topological semimetals

We will now apply the results of Section 3.3 to (3+1)d semimetal systems. The connection
between (1 + 1)d and (3 + 1)d anomalies is well-known: in an externally applied magnetic
field, a (3+1)d system, exhibiting a chiral anomaly, possesses special lowest Landau levels
(LLL), which has the corresponding (1+ 1)d chiral anomaly. Here it is worth emphasizing
again that the following topological semimetals possess “unquantized anomalies”, meaning
that symmetry preserving perturbations can continuously alter a non-trivial anomaly co-
efficient to a trivial one, resulting in a gapped insulator state. In this sense the semimetals
are not afforded the degree of stability of the usual quantized anomalies, associated with
gapless surface states of topological insulators. However, upon manually fixing the non-
trivial anomaly coefficient, which is justified since it is always associated with a conserved
and (at least in principle) observable quantity, the same constraint on the low-energy the-
ory results as would arise from a quantized anomaly. This is exactly analogous to fixing a
noninteger electron filling in a metal.

3.4.1 TR-broken Weyl semimetal

Let us start with the system that may be viewed as the “hydrogen atom” of topological
semimetals, namely the simplest magnetic Weyl semimetal with a pair of nodes, located on
the z-axis in momentum space at kz = ±Q. The gaplessness of such a system is protected
purely by U(1) charge symmetry and translational symmetry in the z direction, and is
well-known for possessing a chiral anomaly of the form [408, 45]

S = −1

2

ν

2π

∫
z ∧ A ∧ dA ,

= −1

2

ν

2π

∫
dt d3r zµϵ

µνληAν∂λAη , (3.37)

with ν = 2Q
2π
. Eq. 3.37 encodes the standard topological responses, which have been

discussed extensively before, i.e. the anomalous Hall conductivity σxy =
ν
2π
, and the chiral
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magnetic effect (CME). In addition, it also encodes more subtle responses, which directly
probe translational symmetry defects and involve nontrivial charges on magnetic flux loops
linked with crystal dislocations. It is this type of phenomena, generalizable to other kinds
of topological semimetals, which do not possess any obvious electromagnetic topological
responses, that will be the main focus of this paper.

When a Weyl semimetal with a pair of nodes, separated by 2Q along the z-axis, is
placed in an external magnetic field along the same direction, it develops a pseudospin-
polarized LLL, which disperses along the direction of the field and crosses the Fermi energy
at the locations of the Weyl points, exactly as shown in Fig. 3.2(a). Thus the LLL of the
magnetic Weyl semimetal in an external magnetic field maps directly onto a (1+1)d metal
with the U(1) × Z chiral anomaly, described in Sec. 3.3.1. Taking into account the LLL
orbital degeneracy NLLL = BLxLy/2π, where Lx,y are the sample sizes in the x and y-
directions, the derivative of the Luttinger volume of this (1+1)d metal with respect to the
magnetic field gives the Hall conductivity of the Weyl semimetal. This is encoded in the
topological response action in the (t, z) plane

S = νNLLL

∫
z ∧ A , (3.38)

which also follows directly from Eq. (3.37). We may also invert this argument and say that
Eq. (3.37) follows from Eq. (3.38). This is the logic we will use to find topological response
terms for other semimetals, for which no purely electromagnetic responses, like the Hall
effect, exist. Namely we will identify topological response terms by mapping the LLL of
these semimetals to one of the (1 + 1)d systems, discussed in Section 3.3.

The incompatibility of the anomalous responses, described above, with a trivial gapped
insulator may also be seen explicitly if one attempts to construct such an insulator start-
ing from a gapped superconductor and disordering the phase of the superconducting order
parameter by proliferating vortices. As discussed in Refs. [349, 335], a gapped supercon-
ducting state can only be obtained in this case using FFLO-type pairing (for weak pairing),
where electrons on each side of the two Weyl nodes are paired and the pairs thus carry
momentum ±2Q [222, 69, 19, 187]. This generally breaks crystal translational symmetry,
except when 2Q = π, i.e. half a reciprocal lattice vector.

Consider, say, a right-handed Weyl fermion with a singlet superconducting pairing. The
pairing Hamiltonian is given by

H =
∑
k

c†kσ · kck +∆
∑
k

(c†k↑c
†
−k↓ + c−k↓ck↑) . (3.39)
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Here σ are Pauli matrices corresponding to the degree of freedom describing the two
bands that touch at the Weyl point and the momentum k is measured from the location
of the Weyl point Qẑ. We have also set the Fermi velocity of the Weyl fermion to unity.
Introducing the Nambu spinor notation ψk = (ck↑, ck↓, c

†
−k↓,−c

†
−k↑), this may be rewritten

as

H =
1

2

∑
k

ψ†
k(τ

zσ · k+∆τx)ψk , (3.40)

where the Pauli matrices τa act on the particle and hole components of the Nambu spinor.
Apart from a factor of 1/2 in front of the sum over momenta, correcting for the doubling of
degrees of freedom in the Nambu representation, Eq. (3.40) has the form of the Hamiltonian
of a free Dirac fermion of mass ∆.

Now consider a straight-line vortex of positive unit vorticity along the z-axis, i.e. we
take the superconducting order parameter to have the following form in cylindrical coordi-
nates ∆(r) = |∆(r)|eiθ, where r =

√
x2 + y2 and θ = arctan(y/x). The momentum-space

Hamiltonian in Eq. (3.40) is replaced by the following Bogoliubov-de Gennes (BdG) Hamil-
tonian

H = −iτ z(σx∂x + σy∂y) + τ zσzkz

+ |∆(r)|(cos θτx − sin θτ y) . (3.41)

This is a classic problem first considered in a different context by Callan and Harvey [50,
342]. Taking first kz = 0 and looking for a θ-independent localized solution of the BdG
equation

HΨ = 0 , (3.42)

one obtains, ignoring normalization factor

ΨR(r) =


1
0
0
−i

 e−
∫ r
0 dr′|∆(r′)| , (3.43)

where the subscript R refers to the right-handed Weyl fermion of Eq. (3.39). It is easy to
see that ΨR(r) is also an eigenstate of the BdG Hamiltonian (3.41) at a nonzero kz with
eigenvalue kz, i.e. it describes a right-moving mode, localized in the vortex core. Repeating
the same calculation for the left-handed Weyl fermion we have

ΨL(r) =


1
0
0
i

 e−
∫ r
0 dr′|∆(r′)| , (3.44)
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which is an eigenstate of the corresponding BdG Hamiltonian with eigenvalue −kz, i.e. it
corresponds to a left-moving mode, localized in the vortex core.

These chiral Majorana modes in the vortex cores prevent a gapped insulating state if
the superconducting phase coherence is destroyed by phase fluctuations. This conclusion
holds for any odd number of pairs of Weyl nodes, i.e. for any magnetic Weyl semimetal. To
obtain an insulating state, we need to condense vortices with higher vorticity, the different
possible states are discussed in detail in Refs. [349, 335, 301]. The vortex condensation
method’s inability to obtain a trivial symmetric gapped insulator with non-trivial Hall
conductivity perfectly reflects the anomalous nature of the magnetic Weyl semimetal. In
the following subsection we will generalize this analysis to other topological semimetals,
which do not have any nontrivial electromagnetic responses, and thus the answer to the
question of what exactly is topological about them is far less obvious.

3.4.2 Type-I Dirac semimetal

We will now attempt to generalize the analysis in the previous subsection to the case
of type-I Dirac semimetals. Type-I Dirac semimetals are TR and parity invariant which
guarantees doubly degenerate bands. Their band dispersions feature a pair of Dirac nodes,
located at time-reversed momenta on an axis of rotation, where each node consists of a pair
of overlapping negative and positive chirality Weyl nodes. Their gaplessness is protected
by a combination of rotational, translational, and U(1) charge conservation symmetries. In
a close analogy to magnetic Weyl semimetal, one may think of a type-I Dirac semimetal as
an intermediate phase between an ordinary insulator and a weak TR-invariant topological
insulator, where the direction of the weak index coincides with the rotation axis.

For concreteness we will consider a specific realization of a type-I Dirac semimetal
with four-fold rotational symmetry, described by the following Hamiltonian in momentum
space [359]

H(k) = sin kx Γ1 + sin ky Γ2 +m(k)Γ3 (3.45)

+ γ1(cos kx − cos ky) sin kz Γ4 + γ2 sin kx sin ky sin kz Γ5.

Here
m(k) = m0 − bxy(2− cos kx − cos ky)− bz(1− cos kz), (3.46)

and the 4× 4 matrices Γa, satisfying Clifford algebra {Γa,Γb} = 2δab, are defined as

Γ1 = σxsz, Γ2 = −σy, Γ3 = σz, Γ4 = σxsx, Γ5 = σxsy, (3.47)
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where the 2 × 2 Pauli matrices σ and s refer to the orbital parity and the spin degrees
of freedom respectively. The parameters in the function m(k) are assumed to be chosen
in such a way that band inversion occurs at the Γ-point in the BZ, producing two Dirac
points along the kx = ky = 0 axis, whose location is given by

kz = ±Q = ± arccos (1−m0/bz) . (3.48)

As mentioned above, this Dirac semimetal state may be regarded as an intermediate phase
between an ordinary insulator when m0 < 0 and a weak topological insulator with the
weak indices (0, 0, 1) when m0 > 2bz and bxy > bz. The simplest way to understand
this statement is to view the Dirac semimetal as a pair of time-reversed Weyl semimetals.
Annihilating the Dirac nodes at the edge of the BZ then creates two time-reversed copies
of the integer quantum Hall insulator, i.e. a weak quantum spin Hall insulator.

As we have chosen to define Eq. (3.45) on a cubic lattice H(k) possesses a C4 rotational

symmetry about the z-axis, with the rotation operator given by R4 = eiπ/4e−
iπ
4
(2−σz)sz ,

where the factor eiπ/4 was inserted for later convenience. This rotational symmetry is what
protects the Dirac points, since it prohibits mass terms sin kzΓ4,5, which are odd under

rotation R†
4Γ4,5R4 = −Γ4,5. Additionally z translation symmetry prevents prohibits a

charge density wave from opening a gap, and U(1) charge conservation symmetry prevents
superconductivity.

Topologically nontrivial properties of type-I Dirac semimetals are related to the pres-
ence of gapless chiral fermions at the Dirac nodes, just as in the simpler magnetic Weyl
semimetal case discussed above. Analogously to the magnetic Weyl case, it is then useful
to place the system in an external magnetic field along the z-direction, which accomplishes
an effective dimensional reduction to a (1 + 1)d problem.

Since type-I Dirac semimetals contain two pairs of Weyl nodes at low energies, there is
a pair of LLL with the following dispersion (see Appendix H for detailed derivation)

E±
LLL(kz) = ±m(0, 0, kz) , (3.49)

with E+
LLL having a C4 charge of 0, and E−

LLL having a C4 charge of π. One can see that
the form of the LLLs is identical to the 1D band dispersions discussed in Section 3.3.2 (see
Fig. 3.3), except that here we consider C4 symmetry and there exists an additional Landau
level degeneracy of NLLL = BLxLy/2π per band. The logic we used in Section 3.3.2 may
then be applied directly, after taking into account the LLL degeneracy. This implies the
following (1 + 1)d topological term (with ν ≡ 2Q/2π)

S = πνNLLL

∫
z ∧ c4 , (3.50)
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where c4 ∈ H1(M,Z4) is the C4 gauge field which around a 1-cycle counts number of C4

disclinations that are traversed – an example of such a disclination is seen in Fig. 3.5.

Extending Eq. (3.50) back to (3+1) dimensions we obtain the generalized chiral anomaly
term, which characterizes type-I Dirac semimetals

S =
ν

2

∫
z ∧ c4 ∧ dA . (3.51)

Unlike the chiral anomaly term in magnetic Weyl semimetal, Eq. (3.51) cannot be
interpreted as a purely electromagnetic response (like the Hall conductance). In the Landau
level interpretation Eq. (3.50), a nontrivial C4 charge per length in the ẑ direction is
associated with a magnetic flux in the xy-plane. Alternatively, we can also consider a C4

disclination (Fig. 3.5(a)) in the ẑ direction (
∫
Cxy dc4 = 1). The action Eq. (3.51) reduces

to the (1 + 1)d filling anomaly Eq. (3.14) with charge density ν/2. This fractional charge
density induced in the disclination is also a characterization of the anomaly of the type-I
Dirac semimetal. The anomalous nature is manifest if we consider a “trivial” four-fold
disclination (

∫
xy
dc4 = 4), which now carries a charge density 2ν and is fractional if ν takes

a nontrivial value. The fractional charge associated with disclinations in symmorphic Dirac
semimetals may alternatively be approached from the viewpoint of hinge states in the non-
interacting limit [24, 369]. The anomalous response in Eq. (3.51) offers a generalisation of
this feature to include both translation and rotational charge responses, valid in both the
free-fermion and strongly-correlated regimes.

The response Eq. (3.51) is invariant under large gauge transformations c4 → c4 + 4α if
ν ∈ 1

2
Z. Similar to the Z2×Z anomaly discussed in Sec. 3.3.2, there is a set of equivalence

relations ν ∼ (4n+1)ν for any n ∈ Z. We therefore conclude that the response is anomalous
unless ν belongs to the set of exceptional values

νex =
n

2(2m+ 1)
, n,m ∈ Z. (3.52)

We note that at the level of free fermion band structure, the theory appears to be nontrivial
at these exceptional values, with Dirac nodes at kz = ±πνex. Our analysis indicates
that with strong interactions, a type-I Dirac semimetal with νex can form a symmetric
short-range entangled state. The resulting insulating state has a gauge invariant response
Eq. (3.51) with ν = ñ/2, where ñ = (−1)mn. For n ̸= 0 (mod 4) this is a nontrivial
crystalline SPT state, and can be viewed as a stack (in ẑ direction) of (2 + 1)d insulators
with charge ñ sitting at the C4 rotation centers. The topological response of such (2 + 1)d
insulators has been discussed in Refs. [195, 321].
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Figure 3.5: (Color online) A C4 disclination with the Frank vector along ẑ is depicted
by gluing two lattice faces, rotated by π/2 with respect to each other, together (shown as
yellow surface) to create a defect line shown as a bold yellow line. Close to this defect the
lattice appears distorted, however far away the regular square lattice shape is retained.

As in the magnetic Weyl case, it is also useful to see how an attempt to construct a
trivial insulator by gapping the Dirac nodes fails, barring the exceptional points Eq. (3.52),
explicitly via the vortex condensation method. For this purpose it is convenient to focus
on low-energy states and expand Eq. (3.45) to linear order in the transverse momentum
components kx,y, which gives

H(k) = kxσ
xsz − kyσy ± (kz ±Q)σz , (3.53)

where we have absorbed the Fermi velocity along the z-direction into the definition of
kz. An ordinary gapped BCS superconducting state is now possible by pairing right- and
left-handed fermions separately. For the pair of right-handed fermions we have

H =
∑
k

c†kσ · kck +∆
∑
k

(c†k1iσ
yc†−k2 + h.c.) , (3.54)

where we have brought the right-handed node Hamiltonian to the form σ · k by a unitary
transformation, which also changes the rotation operator to R4 = e

iπ
4 e−

iπ
4
(σz−2sz); kz is

measured from the corresponding node location and the 1, 2 index labels the two eigenvalues
of sz, which distinguish the two right-handed nodes in the pair. Introducing Nambu spinor

60



ψk = (ck1↑, ck1↓, c
†
−k2↓,−c

†
−k2↑) this becomes

H =
∑
k

ψ†
k(s

zσ · k+∆sx)ψk , (3.55)

which represents two identical copies of Eq. (3.40), describing a single superconducting
Weyl fermion. Thus in this case we obtain a pair of Majorana, or a single chiral right-
moving Dirac mode in the vortex core. Analogously, the left-handed pair of Weyl nodes
produces a single left-moving Dirac mode. From Eqs. (3.43) and (3.44) both of these
modes are linear combinations of ck1↑ and c†−k2↑. This means that they transform under
C4 rotation as

R4 : ψ
R,L
kz
→ iψR,L

kz
, (3.56)

where R4 = e
iπ
4
(2−σz+sz) in the Nambu basis. This means that any pairing of the left- and

right-handed modes of the type

H =
∑
kz

[
kzψ

†
kz
τ zψkz

+
∆

2

(
ψ†
kz
iτ yψ†

−kz
+ h.c.

)]
, (3.57)

where the eigenvalues of τ z label the chirality of the 1D Weyl modes, which would gap
them out, violates the C4 symmetry. We then have to consider non-perturbative ways to
gap out the fermions. For this it is convenient to first introduce a CDW order

mψ†
LψR + h.c. , (3.58)

which gaps out the fermions by breaking translation symmetry. We then ask if translation
symmetry can be restored by condensing defects of m. A calculation similar to that in
Sec. 3.3.2 and Appendix F shows that this is possible only if the momenta of the nodes
±Q = ±πν belong to the exceptional values Eq. (3.52).5 Thus, in a C4 symmetric state
the fermion modes remain gapless and single vortex condensation is impossible unless the
Dirac nodes sit at some exceptional momenta defined in Eq. (3.52).

5There is an additional subtlety with the exceptional value ν = 1/2. A direct calculation shows that the
Z2 domain wall of the CDW order parameter in the vortex core carries C4 charge π/4, which appears to
be fractional and therefore disallows vortex condensation. However, notice that a bulk Bogoliubov fermion
(not the vortex zero modes) sees the vortex as a π-flux, so if a vortex sits on a C4 axis the bulk fermion will
carry C4 angular momentum (2n + 1)π/4 (n ∈ Z4). So the π/4 charge associated with the vortex CDW
domain wall can be canceled by bring in a bulk fermion into the vortex. The domain wall can then be
condensed to give a trivially gapped vortex, which can then be gapped and produce a symmetric insulator.
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3.4.3 TR-invariant Weyl semimetal

Finally, let us discuss the most nontrivial case, that of a TR-invariant Weyl semimetal.
In a TR-invariant Weyl semimetal the nodes always occur in multiples of four since there
are pairs of nodes of equal chirality, related to each other by TR. We will first discuss an
example in which all the nodes lie on the z-axis, which is closely related to the (1 + 1)d
system, discussed in Section 3.3. We will then generalize to the situation when the nodes
are not on the same line.

Nodes separated in the z direction

The simplest model for a TR-invariant Weyl semimetal may be obtained from the model
of a type-I Dirac semimetal Eq. (3.45) by adding a C4 symmetry breaking perturbation
γσxsx and an inversion-breaking perturbation g sin kzσ

zsz. The Weyl node locations kz =
±Q± δQ are nontrivial solutions of the equation

g2 sin2 kz = γ2 +m2(kz) . (3.59)

When a magnetic field is applied along the z-axis, the resulting LLL structure is identical
to the (1 + 1)d system, discussed in Section 3.3.3, and shown in Fig. 3.4.

Extending the (1+1)d anomaly action Eq. (3.36) to (3+1) dimensions, we then obtain6

S = −λ
2

∫
z ∧ dz ∧ A . (3.60)

where λ = 2QδQ/π2. Recall from Sec. 3.3.3 that large gauge transformations in the zi
(i ̸= z) components imply that

∫
C2
dz can be non-zero over some 2-cycle C2 that does

not involve a Cz cycle. This action describes two distinct manifestations of the nontrivial
topology of a TR-invariant Weyl semimetal. One is the nontrivial ground state momentum,
which appears in the presence of an external magnetic field. This may be obtained by
varying the action with respect to the time component of the translation gauge field zt

Pz = πλLzNLLL , (3.61)

6Under a small gauge transform A→ A+dα, the invariance of this action is guaranteed by the relation∫
dzdz = 0 discussed in Sec. 3.3.3. Physically this requirement implies that no loop linkages between a

dislocation line and screw dislocations are inserted over time. Alternatively, if such an object is inserted
into the system, the resulting small gauge non-invariance implies that compensating gapless chiral modes
must exist along the defect line.
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Figure 3.6: (Color online) Cartoon of a screw dislocation, represented by a lattice shear
strain along the green surface. The defect line is shown in bold green with a Burgers vector
b = ẑ.

where N = Cx × Cy × Cz with Cα being the circumference cycle along the direction α̂,∫
Cx×Cy dA/2π = BLxLy/2π = NLLL, and we have taken dz = 0 assuming a perfect crystal

without dislocations. We see that the total momentum is exactly the expected momentum
output as in Sec. 3.3.3 with NLLL copies from the LLL degeneracy. (ii) The second physical
phenomenon can be seen with a screw dislocation where

∫
Cxy dz = b, with the magnitude

of Burgers vector b = ẑ (Fig. 3.6). Varying with respect to At gives a fractional 1D charge
density on the screw dislocation

ρ = −λ
2
b . (3.62)

We comment on the role of time-reversal symmetry here. The response term Eq. (3.60)
does not require time-reversal. But if time-reversal is broken, a Hall conductance term
Eq. (3.37) can be induced as the Weyl nodes can shift in asymmetric ways. A large gauge
transform A → A + 2πNz (N ∈ Z) will then shift the coefficient of the term Eq. (3.60).
The anomaly is therefore sharply defined only in the absence of Hall conductance.

Analogously to the previous cases, topologically nontrivial nature of the TR-invariant
Weyl semimetal also manifests in the impossibility of gapping out the Weyl nodes without
either breaking translational symmetry or inducing topological order. The analysis here
is essentially identical to the type-I Dirac semimetal case above and we will not show the
details for this reason. One starts with a gapped BCS state, obtained by separately pairing
right- and left-handed Weyl fermions at time-reversed momenta, described by Eq. (3.54).
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A π-flux vortex then binds right- or left-moving 1D Weyl fermion modes, which transform
nontrivially under translations, since the modes exist at nonzero momenta, corresponding
to the locations of the Weyl nodes. Since the left- and right-handed Weyl nodes are located
at different momenta, not related to each other by any symmetry, pairing the corresponding
left- and right-moving 1D Weyl fermion modes in the vortex core is impossible without
breaking translational symmetry.

Nodes separated in the xz-plane

Weyl nodes in a TR-invariant Weyl semimetal in general are not located on the same line,
as in the special example considered above. It is, however, straightforward to extend the
above analysis to a more general situation.

For example, consider a system with four Weyl nodes, where the right-handed nodes
are at momenta k = ±(δQ, 0, Q) and the left-handed ones are at k = ±(−δQ, 0, Q). In
such a configuration, an applied magnetic field in the x direction causes the LLL’s to carry
a total momentum of

Px = πλLzNLLL , (3.63)

where λ = 2QδQ/π2, while a magnetic field in the z direction has LLL’s with total mo-
mentum

Pz = πλLxNLLL . (3.64)

Such a response can be described by the action

S = −λ
2

∫
(x ∧ dz + z ∧ dx) ∧ A , (3.65)

where x is the gauge field corresponding to x translational symmetry. It is important
to point out that this term is distinct from the electric polarization action, which has
a superficially similar form P

∫
x ∧ z ∧ dA [322] since the momentum response of the

Weyl semimetal is symmetric under x ↔ z, rather than the antisymmetric response from
polarization. A polarization response is fully gauge invariant in the bulk and known to be
realizable by a short-range entangled insulator and is thus not anomalous. In contrast, the
TR-invariant Weyl semimetal has an anomalous response. Similarly to all previous cases of
semimetals the anomalous nature is also exhibited by the fractional charge density, carried
by a dislocation with Burgers vector bẑ or bx̂.
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All other cases can be easily generalized from the two presented TR-invariant WSM
examples. The most general TR-invariant WSM will have nodes shifted in all three di-
mensions and be described by a combination of different translational gauge field terms∑

i,j

∫
γijxi ∧ dxj ∧ A, where (x1, x2, x3) = (x, y, z). For a related recent work, discussing

topological responses in TR-invariant WSM, see Ref. [75].

3.5 Discussion and conclusion

As we have demonstrated in multiple examples above, the anomalous response of (3 + 1)d
symmetry-protected semimetals may be reduced to (1+1)d chiral anomalies of their lowest
Landau levels in an external magnetic field, involving the relevant protecting symmetries.
We have shown that all these (1 + 1)d anomalies in turn stem from an unquantized filling
anomaly, which essentially specifies the amount of symmetry charge present in the ground
state. The relevant symmetry charges are the U(1) charge, crystalline angular momentum
and linear momentum for the cases of magnetic WSM, type-I DSM and TR-invariant WSM,
respectively. These charges can be tuned to be trivial while preserving the symmetry of
the system, hence leading to tunable quantum anomalies. However if we fix the anomaly
prefactor, and thus the total charge, to be non-trivial, while demanding that the relevant
symmetries remain unbroken, there must exist compensating IR behaviour such as gapless
modes or topological order to maintain gauge invariance. It then becomes natural to view
the gaplessness of (3+1)d semimetals as being topologically mandated by a non-trivial pref-
actor of a tunable anomaly, such as a non-integer (in appropriate units) Hall conductivity
for magnetic WSM. In this work, we have extended this concept to cover other topological
semimetal systems. The anomalies for the TR-invariant Weyl and type-I Dirac semimetals
can also be characterized by fractional U(1) charge densities, induced on crystalline sym-
metry defects, such as disclinations for type-I DSM and screw dislocations for TR-invariant
WSM. To support the non-triviality of these semimetals at a non-perturbative level, we
have also shown that a trivial gapped state with a fixed non-trivial anomaly prefactor is
not achievable via vortex condensation.

These unquantized, tunable, anomalies naturally generalize the notion of fractional
U(1) charge density to other discrete symmetries (like the crystalline symmetries discussed
in this work). In realistic systems, the U(1) charge density (filling fraction) is naturally
fixed by chemistry, while fixing the coefficients of other tunable anomalies, as one turns
on electron-electron interactions, appears to be less natural and necessarily involves some
fine-tuning. We can instead take a different viewpoint: given an interacting system in an
unknown phase, we can in principle measure the coefficient of the tunable anomalies either
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experimentally or numerically, for example by measuring the symmetry charges induced
in various defect configurations. We can then constrain the low energy theory (the phase)
of this system from such measurement — for example, if the system has a fractional σxy
in appropriate units, then it has to be either a metal, a magnetic Weyl semimetal, or a
topologically ordered insulator.

Type-I Dirac semimetals with translational and n-fold rotational symmetry protected
gapless states along the rotational axes were found to possess an unquantized U(1)×Z×Zn

anomaly, except when the momentum separation between the nodes satisfies certain special
conditions like Eq. (3.52) for C4 rotation. Such exceptional points form a measure zero but
dense subset.

There are many additional questions that can be explored, such as whether there exist
gapless (3 + 1)d systems that do not inherently involve U(1) charge symmetry as opposed
to the presented semimetal systems — this would be relevant for the study of nodal super-
conductors. A well known example along this line is the magnetic Weyl semimetal with
nodal seperation 2Q ̸= Nπ, which is nontrivial even without U(1) symmetry due to the
fractional thermal Hall conductivity. A generalization of these anomalies to systems pro-
tected by non-symmorphic symmetries (type-II Dirac semimetals) is also warranted. The
fractional charge density, induced on various crystalline defects, predicted in this work can,
at least in principle, be tested in experiments.
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Chapter 4

Non-zero momentum requires
long-range entanglement

In this chapter we will prove a general theorem regarding how non-zero momentum in
many-body system requires long-range entanglement. We will explore many consequences
of this exciting theorem. The content of this chapter is lifted from published work in
Ref. [108]1.

4.1 Introduction

The ubiquitous appearance of translation symmetry in physical systems signals the im-
portance of having a complete picture of the complex role it may play. In particular,
although the ground state energy (associated with time-translation symmetry) of a many-
body quantum system or a quantum field theory is frequently studied, the ground state
momentum (associated with space-translation symmetry) is rarely discussed. Rather, in
most cases one focuses on the momentum difference between excited states and the ground
state. In this work we reveal a connection between the momentum and the entanglement
structure of a quantum state, in the context of lattice spin (boson) systems:

Theorem 1. If a quantum state |Ψ⟩ in a lattice spin (boson) system is an eigenstate of the
lattice translation operator T : |Ψ⟩ → eiP |Ψ⟩ with a non-trivial momentum eiP ̸= 1, then
|Ψ⟩ must be long-range entangled, namely |Ψ⟩ cannot be transformed to an un-entangled

1Copyright © 2011 by American Physical Society. All rights reserved.
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product state |000...⟩ through an adiabatic evolution or a finite-depth quantum circuit (local
unitary).

The intuition behind this statement follows from the sharp difference between transla-
tion T and an ordinary onsite symmetry G that is defined as a tensor product of operators
acting on each lattice-site (such as the electromagnetic U(1)). A product state may recre-
ate any total symmetry charge Q under G by simply assigning individual local Hilbert
space states to carry some charge Qα such that Q =

∑
αQα. However in the case of non-

onsite translation symmetry, all translation-symmetric product states, which take the form
|α⟩⊗L, can only carry trivial charge (lattice momentum). This suggests that non-trivial
momentum is an inherently non-local quantity that cannot be reproduced without faraway
regions still retaining some entanglement knowledge of each other, i.e. the state must be
long-range entangled.

In condensed matter physics, we are often interested in ground states of translational-
invariant local Hamiltonians. If the ground state is short-range entangled [61] (SRE) in
the sense that it is connected to a product state through a finite-depth (FD) quantum
circuit, then we expect the ground state to be unique, with a finite gap separating it
from the excited states. In contrast for long-range entangled [61] (LRE) ground states, we
expect certain “exotic” features: possible options include spontaneous symmetry-breaking
cat states (e.g. GHZ-like states), topological orders (e.g. fractional quantum Hall states),
and gapless states (e.g. metallic or quantum critical states). Theorem 1 provides us an
opportunity to explore the interplay between translation symmetry and the above modern
notions. An immediate corollary is

Corollary 1.1. If a non-zero momentum state |Ψ⟩ is realized as a ground state of a lo-
cal spin Hamiltonian, then the ground state cannot be simultaneously unique and gapped.
Possible options include (1) gapless spectrum, (2) intrinsic topological order and (3) spon-
taneous translation symmetry breaking.

In fact, we show in Sec. 4.3.2 that option (2) is a special subset of option (3) through
the mechanism of “weak symmetry-breaking” [164].

Our result is reminiscent of the celebrated Lieb-Schultz-Mattis-Oshikawa-Hastings (LSMOH)
theorems [189, 263, 132], which state that in systems with charge U(1) and translation sym-
metries, a ground state with fractional U(1) charge filling (per unit cell) cannot be SRE. In
our case the non-trivial lattice momentum eiP ̸= 1 plays a very similar role as the fractional
charge density in LSMOH. In fact, as we discuss in Sec. 4.3.1, our theorem can be viewed
as a more basic version of LSMOH that only involves translation symmetry, from which
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the standard LSMOH can be easily derived. As a by-product, we also discover a previously
unknown version of LSMOH constraint that involves an onsite Zn symmetry and lattice
translations.

The rest of this paper will be structured as follows: in Sec. 4.2 we provide a proof of
Theorem 1 via a quantum circuit approach, and generalize it to fermion systems. Three
consequences of Theorem 1 are discussed in Sec. 4.3: in Sec. 4.3.1 we discuss several
LSMOH-type theorems; in Sec. 4.3.2 we show that a gapped topological order must weakly
break translation symmetry if one of its ground states on torus has nonzero momentum –
this is a generalization of the Tao-Thouless physics in fractional quantum Hall effect [331,
26]; in Sec. 4.3.3 we discuss the implication of Theorem 1 for the classification of crystalline
symmetry-protected topological (SPT) phases. We end with some discussions in Sec. 4.4.

4.2 Proof

In this section we prove that SRE states necessarily possess trivial momentum, conversely
implying that all non-trivial momentum ground states must be LRE. The approach that
we take utilizes the quantum circuit formalism, which is equivalent to the usual adiabatic
Hamiltonian evolution formulation [198, 61] but conceptually cleaner. In particular we will
harness the causal structure of quantum circuits, which will allow us to ‘cut and paste’
existing circuits to create useful new ones.

We shall first prove Theorem 1 in one space dimension, from which the higher-dimensional
version follows immediately.

4.2.1 Proof in 1d

First let us specify our setup more carefully. We consider a spin (boson) system with a
local tensor product Hilbert space H = ⊗iHi where Hi is the local Hilbert space at unit
cell i. The system is put on a periodic ring with L unit cells so i ∈ {1, 2...L}. In each unit
cell the Hilbert space Hi is q-dimensional (q does not depend on i), with a basis labeled
by {|ai⟩i} (ai ∈ {0, 1...q − 1}). The translation symmetry is implemented by a unitary
operator that is uniquely defined through its action on the tensor product basis

T : |a1⟩1 ⊗ |a2⟩2 ⊗ ...|aL−1⟩L−1 ⊗ |aL⟩L
−→ |aL⟩1 ⊗ |a1⟩2 ⊗ ...|aL−2⟩L−1 ⊗ |aL−1⟩L. (4.1)
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Under this definition of translation symmetry (which is the usual definition), we have2

TL = 1 and any translational-symmetric product state |φ⟩⊗L has trivial lattice momentum
eiP = 1.

Now consider a SRE state |ΨP (L)⟩ with momentum P (L). By SRE we mean that
there is a quantum circuit U with depth ξ ≪ L that sends |ΨP (L)⟩ to the product state
|0⟩ ≡ |0⟩⊗L (we do not assume U to commute with translation). The depth ξ will be
roughly the correlation length of |ΨP (L)⟩. Our task is to prove that P (L) = 0 mod 2π as
long as ξ ≪ L. Notice that this statement is in fact stronger than that for FD circuit
which requires ξ ∼ O(1) as L→∞. For example, our result holds even if ξ ∼ PolyLog(L),
which is relevant if we want the quantum circuit to simulate an adiabatic evolution more
accurately [123]. Our result is also applicable if the existence of U requires extra ancilla
degrees of freedom (DOF) that enlarges the onsite Hilbert space to H̃i with dimension
q̃ > q (for example see Ref. [77]), since ancilla DOFs by definition come in product states
and therefore cannot change the momentum.

The proof will be split into two steps where in Step 1 we first prove that the momentum
is trivial for all L = mn where m,n ∈ Z+ are mutually coprime satisfying m,n ≫ ξ. In
Step 2 we use the results of Step 1 to show that this may be extended to all other lengths.

Step 1: A key ingredient of the proof is to recognize that the entanglement structure of
the SRE state |ΨP (L)⟩ on system size L = mn, wherem,n ∈ Z+ and n≫ ξ, is adiabatically
connected to that of m identical unentangled length n SRE systems. The existence of such
an adiabatic deformation, which is of a similar flavour to those presented in Refs. [320] and
[147], is due to the finite correlation length of SRE systems, and will be explained in the
following paragraph.

Take the SRE state |ΨP (L)⟩ placed on a periodic chain of length L = mn withm,n ∈ Z+

and n≫ ξ. Let us try to decouple this system at some point (say between site i and i+1)
via an adiabatic evolution, creating an ‘open’ chain. To show that such a decoupling cut
exists, we use the fact that SRE states always have a FD quantum circuit U that sends the
ground state to the |0⟩ ≡ |0⟩⊗L product state (see Fig. 4.1(a)). The appropriate cut is then
created by modifying this circuit to form a new lightcone-like FD quantum circuit Ũ with
all unitaries outside the ‘lightcone’, i.e. those that do not affect the transformation that
sends the two sites i and i+1 to |0⟩, set to identity (see Fig. 4.1(b)). Such a modified circuit
would span ∼ ξ qudits on either side of the cut and by construction takes the two sites on

2Importantly, we are not dealing with translation under twisted boundary condition, in which case
TL = g for some global symmetry g. Many of our conclusions in this work need to be rephrased or
reexamined for such twisted translations.
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|ΨP⟩
U

|0⟩|0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩|0⟩|0⟩ |0⟩ |0⟩ |0⟩ |0⟩|0⟩|0⟩|0⟩ |0⟩ |0⟩|0⟩(a)

Ũ

|ΨP⟩
Ũ

|0⟩ |0⟩(b)

Figure 4.1: (Color online) Depiction of finite-depth quantum circuits applied on |ΨP ⟩.
Here qudits are depicted as solid circles while unitaries are depicted as rectangles. (a) A
SRE state |ΨP ⟩ is always connected to the |0⟩ trivial state via a FD quantum circuit U .
From U a lightcone-like ‘adiabatic cut’ Ũ can be created (framed in blue). (b) Ũ connects
|ΨP ⟩ to a state that is completely decoupled across the cut.

either side of the cut to |0⟩, thus completely removing any entanglements across the link3.
Let us concretely take Ũ [0] to denote the appropriate lightcone cut between the last and
first qudit (recall that we are on a ring), and define the shifted adiabatic cut between the
x− 1 and xth qudits to be Ũ [x] ≡ T xŨ [0]T−x. If the ground state is translation-symmetric
we have Ũ [x]|ΨP (L)⟩ = e−ixP (L)T xŨ [0]|ΨP (L)⟩ so we see that Ũ [x] performs the same cut (up
to a phase factor) at any link. By construction this means that the local density matrices
of a region surrounding the cut obeys ρlr = ρl⊗ |00⟩⟨00| ⊗ ρr, where the left (right) region
to the cut is denoted l (r), which in turn implies that the operations Ũ [x] disentangles the
system along that cut.

The cutting procedure may be simultaneously applied to two separate links, as long as
they are separated by a distance much greater than the correlation length. With this in

3This can be better understood in reverse: consider the state constructed by ŨU†|0⟩ (= Ũ |ΨP (L)⟩)
which never directly couples qudits on either side of the cut. Thus Ũ can be understood as completely
removing the entanglement across the applied link.
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L = mn

n

Ũ

Ũ

Ũ

Example : m = 4

L = mn

Ũ[0]Ũ[n] . . . Ũ[(m−1)n] |ΨP(L)⟩ |Ψ̃m⟩|Ψ̃1⟩ |Ψ̃2⟩⊗⊗ ⊗. . .

n

Ũ

Figure 4.2: (Color online) Illustration of the adiabatic cutting procedure on a periodic
length L = mn chain. Here we take m = 4 example to demonstrate how four identical
cuts, applied by Ũ (blue rectangle) at every nth link, on a length L = 4n state |ΨP (L)⟩
(purple circle) produces four decoupled length n SRE states.

mind, let us identically apply the cut on an L = mn length system with a cut after every
nth qudit, as depicted in Fig. 4.2, via the FD quantum circuit Ũ [0]Ũ [n]...Ũ [(m−1)n]. Since
the adiabatic deformation fully disentangles the system across the cuts, the resulting state
should take the form |Ψ̃1⟩ ⊗ |Ψ̃2⟩ ⊗ ...|Ψ̃m⟩ where each |Ψ̃i⟩ is an n-block SRE state.

Now let us examine the symmetries of this resultant system. The original Zmn transla-
tion symmetry, generated by operator T , of the original system is broken by the adiabatic
deformation. However the Zm translation symmetry subgroup, generated by operator T n,
is preserved since by construction identical cuts occurs at every nth junction. This imme-
diately implies that all the n-block states are identical |Ψ̃i⟩ = |Ψ̃⟩ and the total state after
the cut is simply |Ψ̃⟩⊗m. Thus we know that the original Zm quantum number is the same
as the final one which must be trivial since we are dealing with an n-block product state
|Ψ̃⟩⊗m. This implies

nP (L) = 0 mod 2π , (4.2)

∀L = mn with m,n ∈ Z+ and n≫ ξ.

Using this relation on a general system length L = pq11 p
q2
2 ...p

qd
d (here we are using prime
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factorisation notation) we arrive at the condition

P (L) = 0 mod
2π

pr11 p
r2
2 ...p

rd
d

, (4.3)

∀ri ∈ {1, ..., qi} such that pr11 p
r2
2 ...p

rd
d ≫ ξ. If L factorises into at least two mutually coprime

numbers m,n with m,n≫ ξ then these conditions can only be satisfied if

P (L) = 0 mod 2π , (4.4)

which is satisfied for almost all large enough L.

Step 2: There are a sparse set of cases for which Step 1 does not enforce trivial momen-

tum, the most notable case being when L̃ = pq with p prime and q ∈ Z+. Factorisations
such as L̃ = pq11 p2 are also not covered if pq11 ̸≫ ξ.

To show that these cases also possess trivial momentum, once again take a SRE state
|ΨP (L)⟩ on a general length L system with momentum P (L) mod 2π. By the definition of
a SRE state, there exists a FD quantum circuit VL such that |ΨP (L)⟩ = VL|0⟩. This circuit
obeys TVLT

†|0⟩ = eiP (L)VL|0⟩, meaning that it boosts the trivial momentum of the |0⟩
state by P (L) mod 2π. Consider the composition of a circuit(

TV †
LT

†
)
VL|0⟩ = e−iP (L)|0⟩ . (4.5)

As may be understood via the causality structure the phase e−iP (L) will come piecewise
from lightcone circuits. Let us understand this in detail: split ṼL ≡ TV †

LT
†VL into a light-

cone circuit ṼL,1 and reverse lightcone circuit ṼL,2 such that ṼL = ṼL,1ṼL,2, as depicted
in Fig. 4.3. The causal structure of the light cone guarantees that a gate U1 in ṼL,1 and
a gate U2 in ṼL,1 must commute if U2 appears in a layer after U1, which then allows for
the decomposition ṼL = ṼL,1ṼL,2. Although the exact form of this decomposition is quite
malleable, for concreteness let us define ṼL,1 to be constructed causally such that the 1st
(lowest) layer consists of a single 2-qudit gate (as seen in Fig. 4.3). ṼL,1 will have support
over qudits in the range [L − η, L], where by the SRE nature η ≪ L. Due to Eq. 4.5 we
see that

ṼL,2|0⟩ = |0...0⟩[1,L−η−1] ⊗ |α⟩[L−η,L] (4.6)

for some |α⟩. By construction, we have

ṼL,1|α⟩ = e−iP (L)|0...0⟩[L−η,L] , (4.7)
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|ΨP⟩
VL

|0⟩|0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩|0⟩|0⟩ |0⟩ |0⟩ |0⟩ |0⟩|0⟩|0⟩|0⟩ |0⟩ |0⟩|0⟩

TV†
LT†

ṼL,1ṼL,2

e−iP(L)

|0⟩|0⟩ |0⟩ |0⟩ |0⟩ |0⟩ |0⟩|0⟩|0⟩ |0⟩ |0⟩ |0⟩ |0⟩|0⟩|0⟩|0⟩ |0⟩ |0⟩|0⟩

Figure 4.3: (Color online) Illustration of splitting TV †
LT

†VL = ṼL,1ṼL,2 with ṼL,1ṼL,2|0⟩ =
e−iP (L)|0⟩. Here we have taken a snapshot of the circuit to focus on ṼL,1 (framed in blue),
however the support of ṼL,1 (in the depicted example 16 qudits) is actually much smaller
than the system length. Recall that the circuit is periodic such that the orange arrows,
corresponding to components of ṼL,2 (framed in orange), eventually connect on the far side
of the ring.

such that we satisfy Eq. 4.5.

Now we will extend the circuit VL from length L to nL for some n ∈ Z+, where
n, L are coprime and ≫ ξ, and denote this extended circuit VnL. To do this we simply
unstitch the circuit VL at some link and reconnect the ends of n consecutive copies of this
unstitched VL circuit to create a FD quantum circuit VnL. Let us see what happens to
ṼnL ≡ TV †

nLT
†VnL by once again splitting the circuit into two ṼnL = ṼnL,1ṼnL,2, where

ṼnL,k =
∏n−1

j=0 T
jLṼL,k(T

†)jL with k ∈ {1, 2}. By construction and due to the SRE nature
of state construction

ṼnL,2|0⟩⊗n =
(
|0...0⟩[1,L−η−1] ⊗ |α⟩[L−η,L]

)⊗n
. (4.8)

However, by Eq. 4.7, we have

ṼnL,1ṼnL,2|0⟩⊗n = e−inP (L)|0⟩⊗n , (4.9)
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so this implies

TVnLT
†|0⟩⊗n = einP (L)VnL|0⟩⊗n , (4.10)

which means that VnL boosts the momentum of |0⟩ on a length nL system to a state with
momentum P (nL) = nP (L) mod 2π. In Step 1 we showed that P (nL) = 0 mod 2π, so
this implies nP (L) = 0 mod 2π. Since this holds for two mutually coprime values of n,
one concludes that 1d SRE translation-symmetric states have P (L) = 0 mod 2π for all
L≫ ξ.

4.2.2 Higher-dimensional extension

Our result can be extended to higher dimensions. Consider a d-dimensional lattice system
and a state |Ψ⟩ that has nontrivial momentum P along, say, x̂ direction. We can view the
state as a 1d state along the x̂ axis, with an enlarged Hilbert space per unit cell (generally
exponentially large in

∏
i Li with i denoting the transverse directions). A finite-depth

quantum circuit of the d-dimensional system will also be a finite-depth quantum circuit
when viewed as a 1d circuit along the x̂-direction (a proof and a somewhat subtle example
are presented in Appendix I; the converse is not true but that does not concern us here).
This immediately implies that a SRE state on the d-dimensional system must also be SRE
when viewed as a 1d state along x̂. What we proved in Sec. 4.2.1 thus implies that the non-
trivial momentum state |Ψ⟩ must be long-range entangled. In particular, imposing locality
in the transverse directions will only further restrict possible FD circuit, and will certainly
not lead to possibilities beyond the 1d proof. This completes the proof of Theorem 1. ■

4.2.3 Fermion systems

It is not difficult to generalize our Theorem 1 to fermionic system. The only subtlety
is that the usual definition of translation symmetry in fermion systems has an extra Z2

sign structure compared to the naive implementation in Eq. 4.1. Instead of specifying the
sign structure in the tensor product basis as in Eq. 4.1, it is more convenient to define
translation operator through Tci,αT

−1 = ci+1,α where ci,α is a fermion operator in unit
cell i with some internal index α, and cL+1,α = c1,α. This operator relation, together with
T |0⟩ = |0⟩ for the fermion vacuum, uniquely determines the action of T on any state.
Now consider a product state |φ⟩⊗L, it is easy to verify that the momentum is eiP = 1
for odd L and eiP = ±1 for even L, where the sign is the fermion parity on each site

⟨φ|(−1)
∑

α c†αcα|φ⟩. We can then go through the proof in Sec. 4.2, but now with fermion
parity preserving FD quantum circuits, and conclude the following:
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Theorem 2. Any short-range entangled translation eigenstate |Ψ⟩ in a lattice fermion
system must have momentum (say in the x-direction) eiPx = 1 if Lx is odd, and eiPx = ±1
if Lx is even. States violating this condition must in turn be long-range entangled.

The details of the proof are presented in Appendix J.

Using the same proof technique, we can extend the above result further in various
directions. We mention two such extensions without going into the details: (1) for Lx

even, the option of eiPx = −1 is possible for a SRE state only if V/Lx is odd (V = LxLy...
being the volume); (2) if the total fermion parity is odd in a system with even V , then any
translation eigenstate must be LRE.

4.3 Consequences

One of the beauties of Theorem 1 lies in the non-trivial consequences that easily follow.
For this section, it is useful to introduce an alternative, but equivalent, formulation of
Theorem 1

Theorem 1 (Equivalent). If there exists a finite-depth local unitary that boosts a state’s
momentum to a different value (mod 2π), then the state is necessarily long-range entangled.

The equivalence of this new formulation with the one introduced in Sec. 4.1 can be
understood as follows: if all translation-symmetric SRE states possess trivial momentum
then non-trivial momentum states must be LRE. Thus if there exists a finite-depth local
unitary that can boost a state’s momentum to a different value then at least one of either
the original or final state possesses non-trivial momentum and must be LRE. The other
state is connected to the LRE state via a finite-depth local unitary and thus must also
be LRE. The converse follows by contradiction: assume there exists a SRE state that has
non-trivial momentum. Such a state (by definition of SRE) is connected via a FD local
unitary to the translation-symmetric direct-product state |α⟩⊗L which in turn has trivial
momentum. Since there now exists a FD local unitary that boosts the momentum to a
different value, this implies that the original state was LRE which leads to the contradiction.

This equivalent formulation allows for a direct test for long-range entanglement that we
will demonstrate on known and previously unknown LSM theories, and topological orders.
In the following discussions we will mostly focus on spin (boson) systems for simplicity,
but the results can be generalized quite readily to fermion systems as well.
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4.3.1 LSMOH constraints

The original Lieb-Schultz-Mattis (LSM) theory [189] along with the extensions by Os-
hikawa [263] and Hastings [132], collectively referred to as LSMOH, and their descendants
are powerful tools for understanding the low-energy nature of lattice systems. In one of
its most potent forms the theorem states that systems with U(1) and translational sym-
metry that have non-commensurate U(1) charge filling must be ‘exotic’, meaning that
they cannot be SRE states. Since the conception of the original LSM theory the field has
flourished rapidly with many extensions that impose similar simple constraints based on
symmetry [244, 362, 273, 203, 202, 392, 66], and connections to various fields of physics
such as symmetry-protected topological (SPT) order and t’Hooft anomaly in quantum field
theory [68, 156, 70, 228, 79, 394]. These sort of constraints also have immediate experimen-
tal consequences, as they provide general constraints in determining candidate materials
of exotic states such as quantum spin liquids [14]. Thus, unsurprisingly, there has been
a lot of interest in generating more LSMOH-like theorems that provide simple rules to
find exotic states. In the following section we provide simple proofs of some known and
previously unknown LSMOH theorems.

The first example we consider is the aforementioned non-commensurate 1d U(1) × T
LSM (T denotes the translation symmetry). In this case there exists a local unitary mo-

mentum boost that is the large gauge transformation U = ei
2π
L

∑
xn̂x , where n̂x is the local

number operator at x. Notice that this transformation is an on-site phase transformation
and thus a FD quantum circuit of depth 1. The commutation relation with translation

is TUT † = ei2π
N̂
LU (N̂ being the total charge) which means that for non-commensurate

filling N̂
L
/∈ Z, we may always boost the momentum by a non-trivial value 2π N̂

L
. Via the

equivalent formulation of Theorem 1, this immediately implies that non-commensurate
filling leads to a LRE state. This observation may be summarised as

Corollary 2.1. (U(1)×T LSM) A 1d translation and U(1) symmetric state that possesses
non-commensurate U(1) charge filling must be long-range entangled.

The standard LSM theorem follows from this statement since we may now apply it to a
ground state of a 1d translation and U(1) symmetric local spin Hamiltonian to show that
the state must be either gapless or a spontaneously symmetry-broken cat state. Notice that,
strictly speaking, the statement we proved differs slightly from the standard LSM theorem,
in that we did not directly prove the vanishing of the energy gap. Rather we showed that
any simultaneous eigenstate of translation and N̂ such that ⟨N̂⟩/L /∈ Z must be LRE.
In principle we do not even need to assume the parent Hamiltonian to be translation or
U(1) symmetric, just that the state itself be translation and U(1) symmetric. In fact the
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statement encompasses all states, not just the ground state, which is perhaps unsurprising
since LRE is fundamentally a property of a state and not the Hamiltonian.

The higher-dimensional U(1)× T LSMOH theorem may be proved following the same
logic if ⟨N̂⟩/Li /∈ Z for some direction i (similar to what was done in Ref. [263]). For
generic values of Li the above condition may not hold, and more elaborate arguments are
needed (for example see Ref. [393]) which we will not discuss here.

Our proof of the LSM theorem has an appealing feature compared to the classic
proof [189]: we did not need to show that the state |Ω′⟩ = U |Ω⟩ had excitation energy
∼ O(1/L) (relative to the ground state |Ω⟩); rather it suffices for us to show that |Ω′⟩ has a
different lattice momentum compared to |Ω⟩, which is enough to establish the LRE nature
of |Ω⟩. Next we shall use this simplifying feature to generalize the U(1)× T LSM theorem
to a new constraint involving only discrete Zn × T symmetries.

Let us consider a spin chain (1d) with translation symmetry and an onsite Zn symmetry
generated by Z ≡ ⊗iZi (Z

n
i = 1). We consider the case when the system size L = nM for

some M ∈ N, and study simultaneous eigenstates of the translation and Zn symmetries. If
such a state is an unentangled product state ⊗i|φ⟩i, then by definition Z = 1 when acting
on this state, namely the state carries trivial Zn charge. This turns out to be true for
any symmetric SRE state, which we now prove. Suppose a translation eigenstate |Ψ⟩ has
Z|ΨP ⟩ = ei2πQ/n|Ψ⟩ for some Q ̸= 0 (mod n). We can construct a local unitary which is
an Zn-analogue of the large gauge transform

U = ⊗iZ
i
i , (4.11)

where i is the unit cell index. For system size L = nM one can verify that TUT−1U † = Z†.
This means that the momentum of the twisted state U |Ψ⟩ will differ from that of the
untwisted |Ψ⟩ by ⟨Ψ|Z†|Ψ⟩ = e−i2πQ/n ̸= 1. By the equivalent form of Theorem 1 |Ψ⟩ must
be LRE. We therefore have

Corollary 2.2. (Zn × T LSM) A 1d translation and Zn symmetric ground state that
possesses non-trivial Zn charge on system lengths L = nM for some M ∈ N cannot be
short-range entangled, and thus is either gapless or spontaneously symmetry-broken cat
state.

The above statement also generalizes to higher dimensions if Li = nM for some direc-
tion i. For systems with U(1) symmetry, we can choose to consider a ZL subgroup of the
U(1), and the above Zn×T LSM theorem leads to the familiar U(1)×T LSMOH theorem.

The two LSM-type theorems discussed so far, together with our Theorem 1, can all
be viewed as “filling-type” LSM theorems, in the sense that these theorems constraint a
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symmetric many-body state |Ψ⟩ to be LRE when |Ψ⟩ carries certain non-trivial quantum
numbers, such as lattice momentum eiP ̸= 1, total U(1) charge Q /∈ LZ or total Zn charge
Q /∈ LZ/nZ.

There is another type of LSM theorems that involve projective symmetry representa-
tions in the onsite Hilbert space, the most familiar example being the spin-1/2 chain with
SO(3) symmetry. Our Theorem 1 can also be used to understand some (but possibly not
all) of the projective symmetry types of LSM. Here we discuss one illuminating example
with onsite Z2×Z2 symmetry in one dimension [62, 259, 258], such that the generators of
the two Z2 group anti-commutes when acting on the local Hilbert space: XiZi = −ZiXi

(this can simply be represented by the Pauli matrices σx, σz). Now set the length L = 2N
with odd N , and consider the three local unitaries Ux = (1 ⊗ σx)⊗N , Uz = (1 ⊗ σz)⊗N ,
and Uxz = (σx ⊗ σz)⊗N . One can verify the commutation relations TUxT

† = (−1)QxUx,
TUzT

† = (−1)QzUz, and TUxzT
† = (−1)N+Qx+QzUxz. These commutation relations imply

that the momentum of any symmetric state |Ψ⟩ will be boosted by ∆P = π by at least
one of the three unitaries, therefore |Ψ⟩ must be LRE by Theorem 1.

4.3.2 Topological orders: weak CDW

We now consider an intrinsic (bosonic) topological order on a d-dimensional torus. By
definition there will be multiple degenerate ground states, separated from the excitation
continuum by a finite energy gap. If one of the ground states |Ψa⟩ has a non-trivial
momentum, say along the x̂ direction, then according to Theorem 1 this state should
be LRE even when viewed as a one-dimensional system in x̂ direction (with the other
dimensions y, z... viewed as internal indices). Since there is no intrinsic topological order
in one dimension, the only mechanism for the LRE ground state is spontaneous symmetry
breaking. The lattice translation symmetry is the only relevant symmetry here – all the
other symmetries can be explicitly broken without affecting the LRE nature of |Ψa⟩, since
the state will still have nontrivial momentum. Therefore |Ψa⟩ must be a cat state that
spontaneously breaks the x̂-translation symmetry 4, also known as a charge density wave
(CDW) state [118]. Furthermore, any other ground state |Ψb ̸=a⟩ can be obtained from |Ψa⟩
by a unitary operator Uba that is non-local in the directions transverse to x̂, but crucially
is local in x̂ – for example in two dimensions Uba corresponds to moving an anyon around
the transverse cycle. By Theorem 1 we then conclude that |Ψb⟩ is also a CDW in x̂.

4Another way to see this is to note that a cat state is composed of individual SRE states. Since we
have proven that translation symmetric SRE states possess trivial momentum, it follows that the cat state
may only achieve non-trivial momentum when the individual SRE states break translation symmetry, i.e.
the cat state must correspond to translation symmetry breaking.
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Perhaps the most familiar example of the above statement is the fractional quantum
Hall effect. It is known that the 1/k Laughlin state on the torus is adiabatically con-
nected to a quasi-one-dimensional CDW state in the Landau gauge, also known as the
Tao-Thouless state [331, 26]. For example for k = 2 the Tao-Thouless state with momen-
tum P = πn, in the Landau orbit occupation number basis, reads

|101010...⟩+ eiπn|010101...⟩. (4.12)

The CDW nature of the ground states is perfectly compatible with the topological
order being a symmetric state, since there is no local CDW order parameters with nonzero
expectation value. The CDW order parameter in this case is non-local in the directions
transverse to x̂. For example, in two-dimensions the CDW order parameter is defined on
a large loop that wraps around the cycle transverse to x̂. This phenomenon is dubbed
weak symmetry breaking in Ref. [164]. The weak spontaneous symmetry breaking requires
a certain degeneracy for the ground state. This degeneracy is naturally accommodated
by the ground state manifold of the topological order. For example for the above Tao-
Thouless state at k = 2 the CDW order requires a two-fold ground state degeneracy, which
is nothing but the two degenerate Laughlin states on torus.

The above results can be summarized as follows:

Corollary 2.3. If a ground state of a gapped topological order on a d-dimensional torus
(d > 1) has a non-trivial momentum in x̂, then any ground state of this topological order
must weakly break translation symmetry in x̂.

A further example of these results, alongside the effects of anyon condensation, applied
upon the Z2 topologically ordered Toric code is demonstrated in the Appendix K. The
above result also implies the following constraint on possible momentum carried by a
topologically ordered ground state:

Corollary 2.4. If a gapped topological order has q degenerate ground states on torus, then
the momentum of any ground state in any direction is quantized:

P
(a)
i = 2πN

(a)
i /q, (4.13)

where N
(a)
i is an integer depending on the ground state (labeled by a) and direction i.

This is simply because for other values of the momentum, the ground state degeneracy
required by the spontaneous translation-symmetry-breaking order will be larger than the
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ground state degeneracy from the topological order, which results in an inconsistency. An
immediate consequence of the above corollary is that invertible topological orders (higher-
dimensional states that are LRE by our definition but has only a unique gapped ground
state on closed manifolds), such as the chiral E8 state[164], cannot have nontrivial momen-
tum on a closed manifolds since q = 1.

The above statement immediately implies that the momenta of topological ordered
ground states are robust under adiabatic deformations, as long as the gap remains open
and translation symmetries remain unbroken. For the Tao-Thouless states this conclusion
can also be drawn from the LSM theorem if the U(1) symmetry is unbroken. Our result
implies that the momenta of Laughlin-Tao-Thouless states are robustly quantized even if
the U(1) symmetry is explicitly broken.

4.3.3 Crystalline symmetry-protected topological phases

There has been growing interest and successes in understanding the symmetry-protected
topological (SPT) phases associated with crystalline symmetries [320, 336, 147, 310, 323,
78]. When the protecting symmetry involves lattice translation, a crucial “smoothness”
assumption [336, 147] is used. Essentially one assumes that for such SPT phases the
inter unit-cell entanglement can be adiabatically removed, possibly with the help of ad-
ditional ancilla degrees of freedom. This allows one to formally “gauge” the transla-
tion symmetry [336] and build crystalline topological phases out of lower-dimensional
states [147, 323, 78].

Our result, namely Theorem 1, serves as a non-trivial check on the smoothness assump-
tion in the following sense. If there were SRE states with non-trivial lattice momenta, such
states would have irremovable inter-unit cell entanglement since unentangled states cannot
have non-trivial momentum. Equivalently the correlation length ξ cannot be tuned to be
smaller than the unit cell size a. In fact, if such states exist, they would by definition be
non-trivial SPT states protected solely by translation symmetry – such SPT states would
be beyond all the recent classifications.

We note that our result is a necessary condition, but not a proof, for the smoothness
assumption, as there may be other ways to violate the assumption without involving a
ground state momentum. It will be interesting to see if the arguments used in this work
can be extended to fully justify the smoothness assumption.
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4.4 Discussions

In this paper we have shown that a quantum many-body state with non-trivial lattice
momentum is necessarily long-range entangled, hence establishing a simple yet intrigu-
ing connection between two extremely familiar concepts in physics: translation symmetry
and quantum entanglement. Many directions can be further explored, which we briefly
comment on in the remainder of this Section.

One important aspect that we have so far skipped over is that LSM theory is in fact
intimately connected to quantum anomalies [68, 156, 70, 228, 79, 394]. This is natural
since they both provide UV conditions that constraint the low-energy behaviours. For the
“projective symmetry” type of LSM theorems, this connection has been precisely estab-
lished and it is known that such LSM constraints correspond to certain discrete (quantized)
t’Hooft anomalies. For the “partial filling” type of LSM such as the familiar U(1)×T con-
straint, however, the connection has been discussed [322, 80, 349, 105] but has yet to be
fully developed. As we discussed in Sec. 4.3.1, our main result (Theorem 1) can be viewed
as a “partial filling” type of LSM that only involves translation symmetry. It is therefore
natural to ask whether Theorem 1 can be understood from an anomaly perspective. To
achieve this goal, it is clear that the standard quantized t’Hooft anomaly is insufficient (a
point which was also emphasized in Ref. [80] for the U(1) × T LSM) – for example, the
toric code discussed in Appendix K has no t’Hooft anomaly since one can condense the e
particle to obtain a trivial symmetric state. One would therefore need to expand the notion
of anomaly to accommodate the partial-filling type of LSM constraints including the one
discussed in this work, possibly along the line of the “unquantized anomaly” discussed in
Ref. [105]. We leave this aspect to future work.

Another powerful consequence of the traditional U(1)×T LSM theorem is on the stabil-
ity of the LRE ground states (with partial charge filling) under symmetric perturbations:
assuming the charge compressibility is finite (could be zero), then a small perturbation
will not change the charge filling discontinuously, so the system remains LRE under small
symmetric perturbations (unless the perturbation leads to spontaneous symmetry-breaking
like the BCS attraction). It is natural to ask whether the other “partial filling” types of
LSM theorems can serve similar purposes. In fact Ref. [105] discussed precisely this point
under the notion of “unquantized anomaly”. The unquantized anomalies are very similar
to Theorem 1 and 2 and Corollary 2.2, except that the key quantity is not the discrete
charges (lattice momentum or Zn charges) on a specific systems size L, but the charge den-
sities (momentum density or Zn charge density). Such discrete charge densities can not be
defined for a fixed L, but may be defined for a sequence of systems with L→∞. Ref. [105]
argued that, in the context of Weyl and Dirac semimetals, as long as these discrete charge
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densities are well behaved in the L→∞ limit, the unquantized anomalies will protect the
LRE nature of the states under symmetric perturbations. Our work here can be viewed as
a rigorous justification of the unquantized anomalies in Ref. [105] on fixed system sizes.

Assuming a well-behaving momentum density in the thermodynamic limit, we can
also apply our results to a Fermi liquid with a generic Fermi surface shape, such that the
ground state from the filled Fermi sea has a non-vanishing momentum density (this requires
breaking of time-reversal, inversion and reflection symmetries). This can be viewed as a
non-perturbative explanation for the stability of such low-symmetry Fermi surface, even in
the absence of the charge U(1) symmetry. (Recall that perturbatively the stability comes
from the fact that the Cooper pairing terms no longer connect opposite points on the Fermi
surface).

Another question one may ask is whether a broader group of non-onsite symmetries
obey similar charge and entanglement restrictions. It is easy to see that exactly the same
constraint holds for glide reflections and screw rotations, since when the system is viewed
as 1d there is no difference between glide reflection, screw rotation and translation. It is
also easy to see that the constraint does not hold for point group symmetries (rotations
and reflections), because such symmetries will be onsite at some points in space (the fixed
points of point groups). It is therefore important that translation symmetry is everywhere
non-onsite. The question becomes even more intriguing if we consider more general unitary
operators (such as quantum cellular automata [117]).

There are many more natural avenues for further exploration. The interplay between
the non-local nature of translation symmetry with crystalline symmetry anomalies is not
yet well understood and requires more concrete mathematical grounding such as a rigorous
proof of when the smoothness condition is valid. Relatedly it remains to be determined
whether translation symmetry may be truly treated as an onsite symmetry and gauged, or
whether its non-locality and non-trivial momentum may hinder or require modifications to
the usual gauging process. Implications of our results on the “emergibility” of phases may
also provide fruitful insights to achievable and unachievable states on the lattice [407, 394].
Our work has shown without a doubt that translation symmetry is many-faceted and plays
a crucial role in the entanglement properties of crystalline materials.
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Chapter 5

Outlook

In experimental condensed matter physics it is often a challenge to realise the same ideal
conditions that their theoretical counterparts may work under. One of the most common
deviances from ideal conditions occurs during the growing phase of the crystal in which
crystalline defects, such as stacking faults and dislocations, are often inadvertently intro-
duced. Therefore, it is integral to understand how such such defects affect the intrinsic
material properties, such as the conductivity, of the system, and perhaps with such under-
standing comes the possibility to even harness the defect physics in order to create novel
phases of matter. Some of our current work in progress [216] includes making a connection
between the type-I DSM anomaly and the RF term in cSPT systems [217] and the effect of
disclinations in both systems. Here we find that we can create an RF-insulator via a charge-
density wave in the DSM case, and draw some fun comparisons of the anomaly terms. We
are also exploring the topological filling constraints in the context of topological response
terms in upcoming work [107]. This applies to classes of gapless materials protected by
non-symmorphic symmetries such as type-II DSMs. In future work we also explore possible
no-go theorems of Dirac cones in all dimensions via analysis of the quantum anomalies of
single Dirac cones [109].

Topological invariants allow us to detect experimentally-measurable features that are
stable to local deformations (sometimes, in the context of symmetries). Many famous
topological invariants have been explored in the context of gapped systems, such as the
Chern number in Chern insulators, or the index in time-reversal protected topological in-
sulators. More recently, the topology of gapless systems, such as semi-metallic systems,
has also gained traction with progress on both quantised quantities, e.g. Euler character-
istics of Fermi surfaces, and unquantized quantities such as anomalous Hall conductivity
in magnetic Weyl semimetals or electron filling in Fermi liquids. As we have seen in previ-
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ous chapters, time-reversal invariant Weyl semimetals possess an unquantized topological
invariant that is related to the ground state momentum of the lowest Landau level when a
magnetic flux is inserted along the separations of the nodes. Such a momentum invariant
can also be present in Fermi surfaces where inversion symmetry is broken. Since these
invariants are purely associated to translation symmetry, they are likely generalisable to
gapless charge symmetry broken systems such as Bogoliubov Fermi surfaces. If so, do
these states posses non-trivial responses to dislocations? Does there exist a Luttinger’s
theorem for momentum filling instead of charge filling? Relatedly, one may ask whether a
continuously tunable momentum filling necessitates strong constraints on the low-energy
properties of the system.

Regarding momentum, there are many more questions to be asked: how do we even
define momentum or momentum density in the thermodynamic limit? What observable
features exist in ground states with non-zero momentum? One may also ask, what hap-
pens if we add strong interactions to states that have non-trivial ground state momentum?
Can we arrive at even more exotic gapped systems that host unusual topological orders?
What is the field theory language required to capture such exotic states that involve mo-
mentum? Can the momentum LSM type theorem be generalised to quantum cellular
automata (QCA)? QCAs are an effective method to model both quantum computations
and quantum simulation of physics such as in periodically-driven Floquet systems. QCA
are locality-preserving, meaning that local operators are mapped to local operators, which
allows the system to emulate relativistic causality. One intuitive example of a QCA is the
translation operator, which displaces each qubit to the next qubit along some direction.
This concept may be extended to generalized translations, known as shifts, which in lower
dimensions may be completely classified by the GNVW indices. The conjecture is that
such shifts will obey a similar theorem to the one proved for the simple translation op-
erator: shift-symmetric quantum many-body states with non-trivial eigenvalues must be
long-range entangled, which is desirable for topological order and stability. Additionally,
such statements may be applicable to Majorana, para-fermionic, and fractonic systems.

Many fun things remain to be explored, which is really what this journey in physics is
about, isn’t it? I look forward to what the future brings!
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[193] E. Liu, Y. Sun, L. Müechler, A. Sun, L. Jiao, J. Kroder, V. Süß, H. Borrmann,
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Appendix A

Band inversion mechanism motivated

In this section we motivate how Dirac nodes may arise from the band inversion mechanism
(BIM) using a minimalistic four band model. The most general form of a four band
Hamiltonian is given by [387]

H(k) =
3∑

i,j=0

aij(k)τ
iσj , (A.1)

where τ and σ refer to the orbital and spin degrees of freedom respectively and τ0,1,2,3
(σ0,1,2,3) are the usual identity and Pauli matrices. To obtain Dirac nodes via BIM, we
require a Cn point group symmetry to be present, which means the Hamiltonian must obey[

Ri
2π/n

]
H(k)

[
Ri

2π/n

]−1
= H(Ri

2π/nk) . (A.2)

Without loss of generality, we choose the rotation axis to be along kz. This means that
Rz

2π/nk = k when k is along the kz axis. From this it follows that along the kz axis we
have

[Rz
2π/n, H(k)] = 0 , (A.3)

This condition allows us to find a basis that simultaneously diagonalises H(kz) ≡ H(kx =
0, ky = 0, kz) and R

z
2π/n. Thus the Hamiltonian in this basis takes the general form

H(kz) = a0 + a1σ
3 + a2τ

3 + a3τ
3σ3 (A.4)

where a0,1,2,3 are real functions that depend on kz and some system parameters m. Since
we require doubly degenerate bands for DSs, this reduces all but one of a1,2,3 to zero.
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Additionally degenerate bands are also required to be of opposite spin eigenstates which
means a1 = 0. This reduces H(kz) to

H(kz) = a0 + a(kz,m)Γ (A.5)

where Γ is either τ z or τ zσz. The energy gap of this reduced Hamiltonian is given by
2|a(kz,m)|. Thus a crossing point, i.e. a Dirac node, may be achieved when the system
parameters are tuned such that a(kz,m) = 0. In order to obtain a DS, we may simply
determine the value of m for which this is true in the BZ. The crossings may exist for a
range of parameter m since kz ∈ (−π, π). In particular, this has been found to occur in the
band inverted regimes of Na3Bi and Cd3As2 [359, 360]. These types of crossings are also
referred to as accidental band crossings [346] since the crossing are not symmetry enforced
and only occur due to the tuning of a(kz,m).
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Appendix B

Quantum anomalies in high-energy
physics

In this section we present a brief review and example of how quantum anomalies may arise.
We will focus our discussion on the chiral anomaly. Consider a massless Dirac Lagrangian
in the presence of an electromagnetic field, Aµ, which has a Lagrangian of the form

L = iΨ̄γµ(∂µ + ieAµ)Ψ−
1

4
FµνF

µν (B.1)

where Ψ is the Dirac fermion wavefunction, Ψ̄ = Ψ†γ0 and Fµν = ∂µAν − ∂νAµ is the
electromagnetic field tensor. This Lagrangian is invariant under the chiral transformation

Ψ→ eiαγ
5

Ψ , Ψ̄→ Ψ̄eiαγ
5

, (B.2)

where γ5 = iγ0γ1γ2γ3 is the chiral operator and α is assumed to be real. Using Noether’s
theorem, this implies that there exists an associated conserved chiral current, jµ5 = iΨ̄γµγ5Ψ,
which is expressed by

∂µ j
µ
5 = 0 . (B.3)

However it turns out that, when the system is quantised, this chiral conservation no longer
holds. One way to understand this is to consider the partition function of a massless QED
system which is given by

Z[A] =
∫
D[Ψ̄,Ψ] exp(

i

ℏ

∫
L d4x) (B.4)

124



where we are integrating over the fermionic degrees of freedom and have ignored the ghost
fields (and other complications) for the purpose of a simplified demonstration of the con-
cepts. Under the chiral gauge transformations:

Ψ→ eiα(x)γ
5

Ψ , Ψ̄→ Ψ̄eiα(x)γ
5

, (B.5)

the Lagrangian L varies as

L → L′ = L+ α(x) ∂µj
µ
5 . (B.6)

Initially one might assume that the variation of the action S ≡
∫
L d4x is

δS =

∫
α(x) ∂µj

µ
5 d

4x,

which is equal to zero when the fields satisfy the equations of motion and hence ∂µj
µ
5 = 0.

However, this conclusion neglects the fact that the measure D[Ψ̄,Ψ] also varies. When
we consider the contribution of the variation due to the measure using the Fujikawa
method [96, 30], we obtain an extra term in the action of the form:

Sextra = −
∫

1

16π2
ϵµνρσα(x)Fµν(x)Fρσ(x) d

4x , (B.7)

where ϵµνρσ is the Levi-Cevita tensor. The variation of the partition function now demands
that

∫
α(x) ∂µj

µ
5 d

4x + Sextra = 0 since the chiral transformation may be regarded simply
as a change of variables. Thus we have a chiral current that takes the form

∂µj
µ
5 =

1

16π2
ϵµνρσα(x)Fµν(x)Fρσ(x) . (B.8)

which clearly shows that the chiral current is not generally conserved in the presence of an
electromagnetic field. Hence we have shown that the term that arises from the variation
of the measure [Eq. (B.7)] gives rise to the anomalous behaviour. This highlights that
classical symmetries, such as the chiral symmetry, may be violated in quantum systems.
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Appendix C

Another formulation of the chiral
anomaly

Consider a (magnetic) Weyl semimetal with two Weyl nodes in the Brillouin zone separated
by a momentum ∆k = 2Qẑ. We assume charge neutrality so there is no Fermi surface.
The symmetries involved in the “chiral anomaly” are the U(1) charge conservation and the
translation symmetry in ẑ (call the group Zz and the generator Tz).

To see the anomaly, we consider “gauging” the U(1) × Zz symmetry by introducing
probe gauge fields Aµ and z ∈ H1(M,Z) (M is the space-time manifold). The integer
gauge field z associated with translation symmetry [336] has the following properties: it is
locally flat (dz = 0), and the Wilson loop

∫
C1
z ∈ Z over a 1-cycle C1 essentially counts the

number of ẑ-translations around C1, and a unit defect in z represents a lattice dislocation
with Burgers vector B⃗ = ẑ. To probe the thermal response, we also couple the system (in
the continuum limit) to a metric g. The chiral anomaly can be understood as a (4 + 1)d
“bulk” term:

SCA = i2Q

∫
M5

z ∪
(
1

2

dA

2π
∧ dA

2π
+

1

192π2
R ∧R

)
, (C.1)

where R is the Riemann curvature. The expression in the parenthesis takes integer value
on a 4-cycle – this is nothing but the well-known statement that the periodicity of Θ-angle
for charged fermions in (3+1)D is 2π (more formally A is a spinc connection instead of an
ordinary U(1) gauge field). Therefore the coefficient 2Q takes continuous value in [0, 2π),
which is consistent with the interpretation that 2Q is the momentum separation between
the two Weyl nodes in the non-interacting limit. Of course even for interacting fermions
the expression Eq. (C.1) still makes sense.
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The physical interpretation of Eq. (C.1) is actually quite simple: there is a Hall con-
ductance per layer σxy =

∆k
2π

and thermal Hall conductance per layer κxy =
∆k
2π
(π2k2BT/3),

as already discussed in the main text. For 2Q = 2π, these conditions can be satisfied by
a gapped state which is equivalent to a stack (in ẑ direction) of 2D integer quantum Hall
states, which is why the anomaly disappears. Again this phenomena is well known from
band theory, and we emphasize that it remains well-defined in interacting systems.

The chiral anomaly Eq. (C.1) has another consequence, namely a U(1) instanton with∫
d3xdtE ·B = 4π2 carries a lattice momentum kins = 2Qẑ. In the non-interacting limit

this follows from textbook U(1)×U(1) chiral anomaly, but the statement also makes sense
in interacting systems (where the axial U(1) no longer makes sense but the translation Zz

does). When charged degrees of freedom are gapless (as in the semimetal phase), the lattice
momentum overlaps with physical charge current, which leads to a charge current induced
by the instanton – this is the well-known magnetoresistance from Weyl semimetal [269]. If
the system becomes gapped but still preserves the chiral anomaly as defined in Eq. (C.1),
the instanton will still carry lattice momentum, but may not induce a charge current.

We also comment that the anomaly Eq. (C.1) is different from the ones typically en-
countered in the physics of symmetry-protected topological phases, in the sense that the
coefficient 2Q is not quantized, and therefore is not strictly “protected”. Physically this is
simply because one can always smoothly bring the two Weyl cones to the same momentum
point and eliminate the anomaly. In our study we keep 2Q fixed based on the intuition
that we demand nontrivial interactions to take effect well below the electron band width.
In the most general parameter space this corresponds to fine tuning one parameter. This
is similar to another much more familiar situation: in an ordinary metal the charge density
is fixed by tuning the chemical potential. There is also an “anomaly” associated with
non-integer charge density, which is related to the celebrated Lieb-Schultz-Mattis theo-
rem [189, 264, 132]. In this case the anomaly also comes with a non-quantized coefficient
(the density), and generically require fine tuning the chemical potential [322].
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Appendix D

Fermi arcs in the FFLO Weyl
superconductor

In this section we discuss the effects of the intranodal s-wave interaction on the Fermi arcs
of a magnetic Weyl semimetal. We demonstrate the existence of the Fermi arc surface
states despite the FFLO pairing interactions creating a bulk gap [129].

To study the Fermi arcs, we need to extend the linearized Weyl Hamiltonian, used in the
main text, to the whole Brillouin zone. We choose the following regularized Hamiltonian

H0 = sin kxσ
x + sin kyσ

y − (cos kz − cosQ)σz

+m (2− cos kx − cos ky)σ
z , (D.1)

where Q = π/2 and the lattice constant has been set to one.

The superconducting s-wave coupling occurs intranodally, i.e. coupling states with
momentum k to those of momentum 2Q − k, where Q = (0, 0, π/2). This situation
requires a Nambu basis Φ†

k = (c†k↑, c
†
k↓, c2Q−k↑, c2Q−k↓) and the Nambu Hamiltonian then

takes the form

HNambu
0 =

1

2

∑
k

Φ†
k

(
H0(k) 0

0 −HT
0 (2Q− k)

)
Φk . (D.2)

In order to calculate the Fermi arc surface states, we break the translational symmetry
along the x-direction, leaving a finite-size sample of Nx atomic layers. This leaves ky and
kz as good quantum numbers. Fourier transforming kx to a real-space coordinates nx, the
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Hamiltonian takes the form

HNambu
0 =

1

2

∑
nxkykz

Φ†
nxkykz

[
h(ky, kz)Φnxkykz

+ h+Φnx+1kykz + h−Φnx−1kykz

]
.

(D.3)

with

h(ky, kz) =

(
h0(ky, kz) 0

0 −hT0 (−ky, 2Q− kz)

)
, (D.4)

h+ = −1

2
(iσx +mτ zσz) = h†− , (D.5)

where h0(ky, kz) = sin kyσ
y +

[
− (cos kz − cosQ) + m(2 − cos ky)

]
σz, and τ are Pauli

matrices in the Nambu pseudospin space. Diagonalizing this Hamiltonian at every kz for
the ky = 0 slice gives eigenenergies as shown in Fig. D.1a. Since the components of the
Nambu spinor involve states at momenta k and 2Q−k, the set of eigenenergies effectively
involve states, shifted by 2Q = π relative to each other. The same principle applies to the
Fermi surface states which now span the whole Brillouin zone. Notice that this is purely
the result of the doubling of degrees of freedom in the Nambu formalism. Naturally this
has no effect on the bulk Weyl nodes at kz = ±Q.

Now let us observe what happens when we couple the two Nambu copies in Eq. D.2
with the FFLO pairing interaction of the form

Hint =
1

2

∑
k

Φ†
k∆τ

yσyΦk . (D.6)

Under a Fourier transform of kx, we arrive at

Hint =
∆

2

∑
nxkykz

Φ†
nxkykz

τ yσyΦnxkykz , (D.7)

such that our full Hamiltonian is now given by

H = HNambu
0 +Hint . (D.8)

When this full Hamiltonian is now diagonalised at every kz for the ky = 0 slice we arrive
at Fig. D.1b. While the bulk states are now gapped, the Fermi arc, spanning the whole
Brillouin zone, remains unaffected.
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D.1 Helical Majorana fermions in a vertical vortex

line

Let us consider a straight-line vortex of vorticity n along the z-direction, which we will
take to coincide with the direction of the vector 2Q, separating the pair of Weyl nodes.
The corresponding Bogoliubov-de Gennes (BdG) Hamiltonian is given by

H = −ivF τ z(σx∂x + σy∂y) + vF τ
zσzkz

+ ∆(r)[cos(nθ)τx − sin(nθ)τ y], (D.9)

where r =
√
x2 + y2, ∆(r) is the real magnitude of the superconducting order parameter

and θ is the azimuthal angle in the xy-plane. The eigenstates of H may be easily found
explicitly if one assumes ∆(r) = ∆ = const [300]. In this case one finds exactly n chiral
modes, localized in the vortex core, with the following wavefunctions

Ψpkz(r) =
(∆r/vF )

n
2√

Np


ei

π
4 ei(p−1)θKn

2
−p+1

(
∆r
vF

)
0
0

e−iπ
4 e−i(n−p)θKn

2
−p

(
∆r
vF

)
 ,

(D.10)

where Np is a normalization factor given by

Np =
π3/2v2F
∆2

Γ(1 + n/2)Γ(n− p+ 1)Γ(p)

Γ(n/2 + 1/2)
, (D.11)

which is finite and positive when p = 1, . . . , n. As mentioned above, these localized modes
are chiral with the dispersion ϵp(kz) = vFkz. The degeneracy of the chiral modes with
respect to the eigenvalue p is not protected and is lifted when perturbations, such as a
finite Fermi energy, are introduced. A finite Fermi energy leads to a term −ϵF τ z in the
BdG Hamiltonian Eq. (D.9). The problem may no longer be solved exactly (except at
kz = 0), but may be solved perturbatively. At first order one obtains

ϵp(kz) = ϵF

(
1− 2p

n+ 1

)
+ vFkz. (D.12)

Thus, even though the degeneracy is lifted, exactly n fermionic modes are still always
present at zero energy in the core of an n-fold vortex. This is in contrast to the analogous
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problem of vortex bound states in a superconducting 2D Dirac fermion [98], in which case
there is always a single zero mode for odd vorticities and no zero modes for even vorticities.
The left-handed Weyl node will have an identical set of modes, but with the left-handed
dispersion (simply send vF → −vF ).

The nontrivial helical Majorana modes in a straight, vertical vortex with odd vorticity
can also be understood using the argument in the main text. Recall that a Majorana zero
mode is induced whenever a odd vortex penetrates the xy-plane. For a straight, vertical
vortex the translation Tz is a good symmetry. We can therefore view the vortex line as
a 1D translationally-invariant chain with one Majorana zero mode per unit cell. Such a
system has a Lieb-Schultz-Mattis type of constraints on the low energy theory, and cannot
be gapped without breaking translation symmetry [144].

For even vorticity, taking ϵF = 0, pairs of Majorana modes may be combined into
chiral 1D Weyl modes. Since the charge conservation is already violated, pairing terms
are always present for these Weyl modes, and they are gapped out by the ordinary BCS
pairing interaction of the form

H = vF
∑
kz

[kzc
†
kz
τ zckz +∆(c†kz iτ

yc†−kz
+ h.c.)/2], (D.13)

where the eigenvalues of τ z label the chirality of the 1D Weyl modes. This state is also
stable to small fluctuations in ϵF since it is gapped. Thus vortices with even vorticity do
not have zero modes in their cores.
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Figure D.1: (Color online) Energy eigenstates for ky = 0 slice along kz corresponding to
Nambu Hamiltonians given by Eq. D.3 (a) and D.8 (b). (a) The zero mode spans the entire
Brillouin zone due to doubling of degrees of freedom in the Nambu picture. (b) Intranodal
interaction gaps out the bulk Weyl nodes but leaves the surface states unaltered. For both
figures m = 1.1, Nx = 50 and for (b) ∆ = 0.5.
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Appendix E

Some formal details on vortex
condensation in (3+1) dimensions

Here we briefly review some formal aspects of vortex condensation in (3 + 1) dimensions.
The logic is in fact very similar to that used in (2 + 1) dimensional vortex condensation.

Consider a charged system in (3 + 1) dimensions (Euclidean for simplicity), with con-
served U(1) current satisfying continuity equation ∂µjµ = 0. This equation can be solved
by re-writing

jµ =
1

2π
ϵµνλρ∂νbλρ, (E.1)

where bλρ is an anti-symmetric two-form gauge field, and the normalization is chosen so
that a 2π flux in

∫
db corresponds to a unit charge of

∫
space

j0 – namely b obeys standard

Dirac quantization. For the rest of this section we take unit charge to be 2e (Cooper pair),
so the coupling to electromagnetism is 2Aµjµ.

A free Maxwell-like theory of b, L ∼ (∂[νbλρ])
2 ([, ] represents anti-symmetrization)

corresponds to a superconductor. This can be most easily seen by integrating out the b
fields (which can be done since the theory is Gaussian), and obtain an effective response
theory ∼ A2. Vorticity in this superconductor is represented as a two-form antisymmetric
“current” Jµν that couples to the b field through Jµνbµν . Gauge invariance in b (or simply
the fact that vortex lines do not terminate) requires a continuity equation on J which reads
∂µJµν = 0. This can be solved by re-writing

Jµν =
1

2π
(∂µaν − ∂νaµ), (E.2)

133



where aµ is a dynamical U(1) gauge field – the normalization is chosen so that a 2π flux
loop in a corresponds to a single vortex.

Now a “vortex condensation” of the simplest kind, where single vortices (together with
all higher vortices) have condensed, means that the gauge field a has only a Maxwell action
(∂[µaν])

2. At low energy the Maxwell terms for both a and b becomes irrelevant and we are
left with the topological action

L =
1

2π
ϵµνλρbµν∂λaρ −

2

2π
ϵµνλρbµν∂λAρ. (E.3)

This is also known as a BF theory and describes a gapped phase of matter. With the
coefficients in the above equation, this particular BF theory describes a trivial insulator
with no intrinsic topological order.

Now consider condensing n-fold vortices (n > 1), leaving all the lower vortices un-
condensed. This is formally implemented by writing a = nã in Eq. (E.2) where ã obeys
standard Dirac quantization, and introduce Maxwell term for ã. The physical meaning is
that J can only fluctuate in units of n, which is what we mean by n-fold vortices. Now
the resulting BF theory at low energy becomes

L =
n

2π
ϵµνλρbµν∂λãρ −

2

2π
ϵµνλρbµν∂λAρ. (E.4)

This is known to represent a Zn topological order, with particle charges of ã being the
topological particle excitations, and line charges of b being the topological loop excitations.
Charge fractionalization on the particles can also be seen by introducing a j̃µãµ term and
taking variation on b, which leads to 2

n
Aµj̃µ, meaning that the topological quasi-particle

carries electric charge 2/n. The example considered in this work corresponds to n = 4.
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Appendix F

The Z2 × Z anomaly in (1 + 1)d:
exceptional points and emergent
anomalies

We analyze the low energy theory with four chiral fermions in the bosonized language. The
Luttinger liquid consists of four compact bosons eiϕI (I ∈ {1, 2, 3, 4}), with the Lagrangian

L = − 1

4π
[KIJ∂tϕI∂zϕJ + VIJ∂zϕI∂zϕJ ] , (F.1)

where

K =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , (F.2)

and V = vF1 is the velocity matrix. The fermion creation operators are expressed as
ψ†
I ∼ κ+eiϕI , where κ+ are the Klein factors, taking care of the anticommutation rela-

tions between different species of fermions. Upon the charge U(1), translational Z and Z2

symmetry transformations, the boson phases change as

U(1) : ϕI → ϕI + θ ,

Z : ϕI → ϕI + kI ,

Z2 : ϕI → ϕI + γI , (F.3)
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where kI = πν(1,−1, 1,−1) and γI = π(1, 0, 0, 1).

We now gap out the fermions by breaking the translation symmetry, keeping U(1)×Z2,
through a CDW order parameter

m[ei(ϕ1−ϕ4) + ei(ϕ3−ϕ2)] + h.c. , (F.4)

Under translation m→ ei2πνm. For ν ∈ Q, we write ν = p/q with coprime p, q ∈ Z. Then
m takes value in Zq. A domain wall of m is defined as a nonlocal operator, such that the
CDW operator Eq. (F.4) rotates by a phase ei2π/q when commuted with the domain wall.
It is not hard to see that the appropriate choice of the domain wall operator is

σ = exp

[
i
(ϕ1 + ϕ4)− (ϕ2 + ϕ3)

2q

]
. (F.5)

This operator transforms trivially under U(1) (this is expected since the U(1) × Z filling
anomaly vanishes in this case), but under Z2 it transforms as

Z2 : σ → eiπ/qσ . (F.6)

For even q, the above transformation signals fractional (or projective) Z2 symmetry charge
on σ. For odd q, we can choose a different gauge, for example by demanding that under
Z2: ϕ1,4 → ϕ1,4 + qπ. In this gauge Z2 : σ → −σ, so σ no longer carries fractional charge
under Z2.

We can also consider irrational values of ν (incommensurate CDW). In this case the
CDW order parameter m lives on U(1). If we try to disorder m and recover translation
symmetry, we should proliferate vortices of m. The vortex operator of m is simply

V = exp

[
i
(ϕ1 + ϕ4)− (ϕ2 + ϕ3)

2

]
, (F.7)

which transforms nontrivially under Z2 : V → −V . Notice vortices are local operators and
we are not free to attach other local operators to it. Therefore the nontrivial action of Z2

on the vortex operator signals an obstruction to having a symmetric gapped phase.

The above discussions can be rephrased in terms of emergent anomalies[228]. First, as
the U(1) gauge field does not explicitly appear in the anomaly Eq. (3.22), we can view
the anomaly as coming entirely from the charge neutral sector of the system. But since
charge neutral objects are all bosonic in the system, we will only need to consider bosonic
anomalies. The t’Hooft anomaly in (1+1)d corresponds to symmetry-protected topological
(SPT) phases in (2 + 1)d, which are classified by group cohomology H3(G,U(1)) [59, 60].

136



For rational ν = p/q, the translation symmetry acts on the low energy theory effectively
as a Zq symmetry (up to some U(1) gauge transforms). Neglecting U(1) from now on, the
effective symmetry group of the low energy theory is Z2 × Zq. In (2 + 1)d the mutual
anomaly between Z2 and Zq is classified [60] by Z(2,q) which is Z2 for even q and trivial
for odd q. Therefore for odd q the anomaly of the Luttinger liquid considered above
automatically vanishes. For even q, using standard argument (see for example Ref. [204])
the Luttinger liquid described in Eq. (F.1), (F.2) and (F.3) (with Z replaced by Zq in
Eq. (F.3)) has a nontrivial Z2 anomaly. The anomaly can be described by the (2 + 1)d
bulk action (π/q)cda, where a ∈ H1(M,Zq) and c ∈ H1(M,Z2). The anomaly vanishes in
the bulk once we re-insist that a = z is in fact a Z-valued (instead of Zq) gauge field and
we recover Eq. (3.22) (up to the equivalence relation Eq. (3.25)).

The logic is similar for irrational ν = p/q, except that now Z acts in the low energy
theory effectively as a U(1) symmetry (call it U(1)z to avoid confusing it with the charge
conservation U(1)). The Luttinger liquid in Eq. (F.1), (F.2) and (F.3) (with Z replaced
by U(1)z in Eq. (F.3)) now has a t’Hooft anomaly, described by the (2 + 1)d bulk action
πcdAz. Again the anomaly vanishes in the bulk when we insist that Az = νz with z being
an integer-valued gauge field.
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Appendix G

Stability analysis of the Z× Z
anomaly

To further support the nontriviality of the Z × Z anomaly discussed in Sec. 3.3.3, we
perform an explicit stability analysis using Luttinger liquid theory. Specifically, we will
show that a symmetric gapped state cannot be achieved through symmetric perturbations
using the Haldane’s Luttinger liquid stability analysis [182, 183].

To address the Luttinger liquid physics, we focus on the four low-energy fermionic
modes: two right-movers ψ1 at −k+, ψ2 at k+, and two left-movers ψ3 at −k−, ψ4 at k−.
Via the standard bosonization procedure, we may then describe these low-energy modes
in terms of bosons eiϕI (I ∈ {1, 2, 3, 4}), with the Lagrangian

L = − 1

4π
[KIJ∂tϕI∂zϕJ + VIJ∂zϕI∂zϕJ ] , (G.1)

where

K =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ,

and V = vF1 is the velocity matrix. The fermion creation operators are expressed as
ψ†
I ∼ κ+eiϕI , where κ+ are the Klein factors, taking care of the anticommutation relations

between different species of fermions. Upon the charge U(1) and translational symmetry
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transformation, the boson phases change as

U(1) : ϕI → ϕI + θ ,

Tz : ϕI → ϕI + kI ,

where kI = (−k+, k+,−k−, k−).

We now wish to examine whether we can gap these low-energy modes via symmetry-
preserving interactions. A general product of creation and annihilation operators in this
language will take the form eiΛ

Tϕ, where Λ is a four component integer vector. The par-
ticular perturbations we examine are of the form

U(Λ) = U(z) cos
(
ΛTϕ− α(z)

)
. (G.2)

This term describes the scattering of electrons between the modes of opposite chirality.
Since we have two sets of chiral modes, we must add two sets of backscattering terms∑2

i=1 U(Λi) with two linearly independent Λ1 and Λ2 terms. As the amplitude of U is
increased, we eventually will reach a symmetric gapped state, provided there exists a
suitable symmetry-respecting set of {Λi}. However we will now show that such a set does
not exist.

The Λi must satisfy several conditions, including symmetry conditions∑
I

[Λi]I = 0 , (G.3)

∑
I

[Λi]I
kI
2π

= n , (G.4)

derived from the U(1) charge and translational symmetry respectively, where the conditions
must be satisfied for some n ∈ Z. We will limit out stability analysis to the charge-
conserving Luttinger liquids only, keeping in mind application to the 3 + 1d topological
semimetals in the following section.

Additionally we must impose the Haldane null vector criterion [182]

ΛT
i KΛj = 0 , (G.5)

which essentially guarantees that there exists a linear transformation ϕ → Mϕ that de-
couples the Lagrangian into two non-chiral Luttinger liquids, which may be gapped out by
the backscattering terms.
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We first consider rational values of k±. Let k+
2π

= p
q
and k−

2π
= l

m
, where p, q, l,m ∈ Z

and p, q and l, m are respective coprimes. The conditions given by Eqs. (G.3), (G.4) and
(G.5) yield the general solution

Λi = [Λi]1


1
1
−1
−1

+ ñ±


0
qm
−qm
0

 , (G.6)

where ñ± = n
pm±lq

∈ Z. Now that the general solution is found, the final step is to find two
linearly independent Λ vectors which do not spontaneously break any relevant symmetries
when the gap is opened. Specifically we need to check that for all combination a1 and a2
with no common factors there does not exist a1Λ1 + a2Λ2 = bΛ3, where b ∈ Z, such that
Λ3 is an integer vector that does not obey symmetry constraints given in Eqs. (G.3) and
(G.4). This last condition is known as the primitivity condition. It is this constraint in
combination with the necessity of two linearly independent Λ1 and Λ2 terms that causes
any solution of the form in Eq. (G.6) to fail: any linearly independent choice of Λ1 and Λ2

will always result in Λ3 = (0, 1,−1, 0)T , which breaks the translational symmetry. Thus we
cannot open a gap with perturbations of the form U(Λ) without spontaneously breaking
any symmetries. A similar consideration for irrational values of k± also shows that a gap
cannot be opened.

We comment that in principle there is the possibility that a gap can be opened if we
include additional “trivial” Luttinger liquids into the theory and couple the additional
modes with the original modes. Therefore the analysis here does support, but not prove,
the nontriviality of the theory.
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Appendix H

Lowest Landau Levels for type-I
DSM

The Hamiltonian of a C4-symmetric type-I Dirac semimetal in an external magnetic field
along the z-direction is given by

H±(k) = tπxσ
xsz − tπyσy +m(0, 0, kz)σ

z , (H.1)

where πα = −i∂α − Aα, ∇ ×A = Bz ẑ, and [πx, πy] = −ieBz, α ∈ {x, y}. We may easily
solve this by squaring the Hamiltonian to give

H±(k)
2 = t2

(
π2
x + π2

y − eBzσ
zsz
)
+m(0, 0, kz)

2, (H.2)

which may be written as

H±(k)
2 = 2eBzt

2

(
a†a+

1

2
(1− σzsz)

)
+m(0, 0, kz)

2, (H.3)

using the standard ladder operators

a =
1√
2eBz

(πx − iπy) , a† =
1√
2eBz

(πx + iπy) .

This gives the LLL dispersions ±m(0, 0, kz) with the corresponding eigenvectors

|Ψ1⟩ =


1
0
0
0

 |0⟩ , |Ψ2⟩ =


0
0
0
1

 |0⟩ , (H.4)

where |0⟩ is the state with a†a|0⟩ = 0. These are also eigenstates of C4z, with eigenvalues
C4Ψ1 = ei0Ψ1 and C4Ψ2 = eiπΨ2.
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Appendix I

Higher dimensional FD quantum
circuit

Here we will show that a higher dimensional (d > 1) FD quantum circuit viewed in 1d (say
along x̂), where each enlarged unit cell Hilbert space is now exponential in the transverse
dimension

∏
i Li, is also a FD quantum circuit.

To see this, let us decompose the higher dimensional FD quantum circuit U into two sets
of unitaries via ‘zig-zag’ cuts following lightcone pathways along x̂. We depict an example
of such a cut applied to a 2d FD quantum circuit U in Fig. I.1. The two sets of unitaries
consist of self-commuting ‘extended lightcone’ unitaries {Vi} and a set of self-commuting
‘extended reverse lightcone’ unitaries {Wi}, such that U =

∏
iWi

∏
j Vj. Due to the finite

correlation length ξ in SRE systems and correlations necessarily arise from the lightcone
structure, each unitary component spans ∼ ξ ≪ L unit cells in x̂. This decomposition
forms a 1d FD quantum circuit with two layers ({Vi} and {Wi}).

Thus we have shown that higher-dimensional SRE states remain SRE when viewed in
1d.

We now discuss a somewhat subtle example to further illustrate the point1. Consider a
(2 + 1)d system of fermions with global symmetry Z2 × Zf

2 where Zf
2 is the fermion parity

conservation. Essentially we have two flavors of fermions, one that transforms trivially
under the global Z2 and another that transforms with a minus sign. Now put the Z2-even
fermion in a p+ ip superconductor and the Z2-odd fermion in a p− ip superconductor. It
seems natural to consider this state SRE since the state can be trivialized by breaking the

1We thank an anonymous referee for raising this example.
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U

Wi Vi+1 Wi+1Vi

∼ ξ

Vi Wi

∼ ξ

̂x

Figure I.1: (Color online) A sample 2d FD quantum circuit U decomposed along x̂ into
‘extended lightcone’ unitaries {Vi} (shaded red) and ‘extended reverse lightcone’ unitaries
{Wi} (shaded blue). The exact position to begin the lightcone cut is variable, although
here we have done so symmetrically.

Z2 symmetry (which can be seen, for example, by examining the edge states). However, it
turns out that when put on torus, the state is strictly SRE only if the two fermions (Z2 even
and odd) have the same boundary conditions in space. If the two fermions have opposite
boundary conditions – say one with periodic and the other with anti-periodic boundary
conditions in ŷ, then when viewed as a one-dimensional system along x̂, the system forms
a Kitaev chain with unpaired Majorana zero modes at the ends. Crucially, a Kitaev chain
does not require any global symmetry (besides the Zf

2 which is anyway un-breakable) and
therefore cannot be adiabatically connected to a trivial state. Such “invertible” topological
state is considered LRE in the definition adopted in this work. So by simply twisting the
boundary condition in ŷ direction, we have converted a SRE state to a LRE one!

The above example in fact does not contradict our result in this section. What it really
shows is that the Z2 boundary condition cannot be twisted adiabatically for this state.
Namely, there is no adiabatic path (FD quantum circuit) that can change the boundary
condition (along a space cycle) from Z2-periodic to Z2-anti-periodic. Indeed the most
familiar adiabatic operation that could change the boundary condition (say in ŷ) involves
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creating two Z2 vortices, moving one in x̂ across the entires system, and re-annihilate
with the other one at the end. This process requires a time scale (or circuit depth) of
order O(Lx). One may wonder if a more clever construction can bring the circuit depth
down to O(1), but the previous discussion on the SRE vs. LRE nature shows that this is
impossible2.

2If the symmetry is not Z2 but a continuous one such as U(1), the twist can be achieved adiabatically
by slowly threading a (continuous) gauge flux. So for continuous symmetries we do not expect the SRE
vs. LRE nature to change under twisted boundary conditions – this is indeed compatible with the fact
that p± ip superconductors are not compatible with U(1) symmetry.
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Appendix J

Proof for fermion systems

In this section we will carefully go through the 1d proof for fermionic systems. The key
difference between fermionic and bosonic systems, as discussed in Sec. 4.2.3, is that a
product state in fermion system has momentum P = 0 mod π instead of mod 2π for
bosons. More specifically, for fermion systems with odd system length, all product states
have zero momentum, just like the bosonic case. However for even system length, product
states may either have zero or π momentum depending on the fermion parity per site being
even or odd respectively.1 Additionally we note that for even system length all translation
symmetric product states possess even total fermion parity.

Fermionic local unitaries are defined via fermion parity preserving Hamiltonians [121],
and thus can only be represented via parity preserving FD quantum circuits. More specifi-
cally, since parity is an on-site symmetry, each unitary that makes up the parity preserving
FD quantum circuit must themselves be parity preserving. The proof in Sec. 4.2.1 directly
carries over for SRE fermionic systems, but we must now keep in mind the system size and
total fermion parity of the system. These initial conditions lead to different possibilities
dependent on the achievable translation symmetric fermionic product states, as alluded to
above.

The proof for odd length fermionic systems for both even and odd total fermion parity
follows step by step with the bosonic proof. For example, in Step 1 there is no trouble
with ‘cutting’ a system of length L = mn into m segments of length n since the amount of
segments (m) will still be odd if L is odd. The resulting odd number of segments implies

1Here we demand the translationally-invariant product state to be an eigenstate for the fermion parity
in each unit cell. This is because the state must be an eigenstate of the total fermion parity, as required
by the fermion parity superselection rule.
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trivial momentum when translating by n such that nP (L) = 0 mod 2π, just as in the
bosonic case. Similarly, in Step 2, we may always glue n amounts of length L segments
with n being odd; nL will still be odd so that we may then apply Step 1 to arrive at the
same conclusion that P (L) = 0 mod 2π.

The story is slightly more complicated for even length fermionic systems. Let us first
consider the even total parity case. Here, in Step 1 we must be careful when we cut
the L = mn length system into m length n segments. If m is even, then we have the
condition nP (L) = 0 mod π (note that this is π instead of 2π). If m is odd, then n
must be even, and we have the condition nP (L) = 0 mod 2π. If L is divisible by two
mutually-coprime numbers p1 ≫ ξ and p2 ≫ ξ, i.e. L = p1p2p3 for some p3 ∈ Z+, then
we have two scenarios: 1. One is even, say p1, and one is odd, say p2, such that we
have p1P (L) = 0 mod π, p2P (L) = 0 mod 2π for which we conclude P (L) = 0 mod π;
2. Both p1, p2 are odd (in this case p3 will be even such that L is even), then we have
p1P (L) = 0 mod π and p2P (L) = 0 mod π such that P (L) = 0 mod π. So the best
condition we may arrive at is P (L) = 0 mod π, as opposed to P (L) = 0 mod 2π in the
bosonic case. For length that Step 1 does not cover (e.g. L = 2p where p is a prime and
2≪ ξ), we again turn to Step 2. Here the proof for the bosonic case applies with a minor
alteration that in the final step, after the glueing procedure, we can only conclude via Step
1 that nP (L) = 0 mod π. Choosing two mutually-coprime values for n, we may then
conclude that P (L) = 0 mod π for all L. Here we may intuitively gain an understanding
of the modπ factor from observing the translation symmetric product states with even
total fermion parity on even system lengths: the fermion vacuum state |0⟩ possesses zero
momentum and a state with one fermion per site, say

∏L
i=1 c

†
i |0⟩ possesses π momentum.

The two states can be related to one another via a fermionic FD quantum circuit, e.g. a
layer of |0⟩i⊗|0⟩i+1 → c†ic

†
i+1|0⟩i⊗|0⟩i+1 operators. This indicates that for SRE states zero

and π momentum may be adiabatically connected with each other, thus leading to mod π
rather than mod 2π.

The story is drastically different for even length systems with odd total fermion parity.
Here, the cutting procedure in Step 1 leads to a contradiction: for L = mn with m,n≫ ξ,
m and/or n must be even. Let m be even such that we may create a FD quantum circuit
that can divide the system into m identical segments of length n. However since m is
even and the segments are identical then the total fermion parity must be even. This
contradicts our initial assumption, so we must conclude that the initial state cannot be
SRE, i.e. a FD quantum circuit that divides the system cannot be created since the FD
quantum circuit U : |ΨP (L)⟩ → |0⟩ does not exist. For lengths that Step 1 does not cover,
we may again apply the logic of Step 2 to arrive at a contradiction: if |ΨP (L)⟩ is SRE
then, via the glueing procedure, we may construct a FD quantum circuit for length nL
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with odd n such that the total fermion parity is still odd. n may always be chosen such
that nL = ñm̃ with m̃ is even and m̃ ≫ ξ so we may again create a circuit that divides
the system into m̃ identical segments of length ñ, from which we conclude that the total
fermion parity is even. By contradiction, this means that all translation symmetric even
length fermionic systems with odd total fermion parity must be LRE. Intuitively this may
be understood since there exist no even length translation symmetric product states with
odd total fermion parity.
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Appendix K

Weak CDW example - Toric code

In this section we will demonstrate the effects of weak translation symmetry breaking and
anyon condensation on a well-known Z2 topological order example: the Toric code with a
gauge charge at each lattice site.

Take such a modified Toric code on a square lattice Lx × Ly with even Lx and odd Ly

and periodic boundary conditions, with a Hamiltonian given by

H = Je
∑
+

∏
i∈+

σx − Jm
∑
□

∏
i∈□

σz , (K.1)

where Je, Jm > 0. Here we have chosen a positive sign in front of the + term instead of the
usual negative sign, which corresponds to a configuration with a gauge charge (“e” anyon)
at each lattice site. By construction this system respects translation symmetry in x and
y, enacted by operators Tx and Ty.

Let us define large cycle electric and magnetic charge operators Vx =
∏

C̄x
σx, Vy =∏

C̄y
σx, Wx =

∏
Cx
σz, Wy =

∏
Cy
σz, where Cx,y are given by cycles along the lattice links

in the x/y directions and C̄x,y are cycles in the x/y direction that are perpendicular to the
lattice links. Physically these operators correspond to creating anyon pairs (charge “e”
excitations for W operators and flux “m” excitations for V operators), moving one of the
anyons along the relevant cycle and then re-annihilating the anyons.

The degenerate ground states of such a system may be derived from the following
translation symmetric topological ground state

|0⟩ = (1 + Vx)
∏
+

(1−
∏
i∈+

σx)| ⇑⟩ , (K.2)
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where | ⇑⟩ is the all spin-up state and for simplicity we have ignored normalization. This
state is an eigenstate of Vx and Wx with eigenvalue |vx, wx⟩ = |1, 1⟩. Due to the relations

WxVy = −VyWx , WyVx = −VxWy , (K.3)

TxVy|0⟩ = −VyTx|0⟩ , TxWy|0⟩ = WyTx|0⟩ , (K.4)

operators Vy and Wy will allow us to generate the remaining ground states {|0⟩, Vy|0⟩ =
|1,−1⟩,Wy|0⟩ = | − 1, 1⟩, VyWy|0⟩ = | − 1,−1⟩} of which Vy|0⟩ and VyWy|0⟩ have an x̂
momentum boost of π compared to the other two ground states. Thus, by Corollary 2.3,
all ground states must weakly break translational symmetry. How can we see this more
concretely?

The easiest way to see this CDW effect is to take this Toric code system with Ly =
1. Since all topological information is contained in a single plaquette, such a system is
topologically no different compared to a general odd Ly system. With Ly = 1, the system
reduces to two spins per unit cell in the x̂ direction, which we depict in Fig. K.1.

̂x

̂y Ly

= Spin d.o.f

Figure K.1: (Color online) The Toric code system on a periodic lattice with Ly = 1.
There are two spin degrees of freedom (d.o.f) per unit cell in x̂.

Here the Toric code Hamiltonian reduces to

H = Je
∑
i∈−

σ[i]
x σ

[i+1]
x − Jm

∑
i∈|

σ[i]
z σ

[i+1]
z , (K.5)

where the i sum is over the horizontal lattice sites (denoted −) for the first term and over
vertical lattice sites (denotes |) for the second term. This Hamiltonian simply describes
two decoupled Ising chains, where the first term is in an antiferromagnetic state while
the second term is in a ferromagnetic state. The ground states for the respective chains
are {| ⇒⇐⟩ ≡ | →←→← ... →←⟩, | ⇐⇒⟩ ≡ | ←→←→ ... ←→⟩} and {| ⇑⟩ ≡ | ↑↑
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... ↑⟩, | ⇓⟩ ≡ | ↓↓ ... ↓⟩}. The four ground states of the total system are thus given by
{| ⇒⇐⟩| ⇑⟩, | ⇒⇐⟩| ⇓⟩, | ⇐⇒⟩| ⇑⟩, | ⇐⇒⟩| ⇓⟩}. It is clear that these correspond to CDW
states since the antiferromagnetic Ising chain breaks the x̂ directional translational ZLx

symmetry group to ZLx/2. Relating back to our original ground (“cat”) state notation, we
have

|0⟩ = | ⇒⇐⟩| ⇑⟩+ | ⇒⇐⟩| ⇓⟩
+ | ⇐⇒⟩| ⇑⟩+ | ⇐⇒⟩| ⇓⟩ , (K.6)

Vy|0⟩ = | ⇒⇐⟩| ⇑⟩+ | ⇒⇐⟩| ⇓⟩
− | ⇐⇒⟩| ⇑⟩ − | ⇐⇒⟩| ⇓⟩ , (K.7)

Wy|0⟩ = | ⇒⇐⟩| ⇑⟩ − | ⇒⇐⟩| ⇓⟩
+ | ⇐⇒⟩| ⇑⟩ − | ⇐⇒⟩| ⇓⟩ , (K.8)

VyWy|0⟩ = | ⇒⇐⟩| ⇑⟩ − | ⇒⇐⟩| ⇓⟩
− | ⇐⇒⟩| ⇑⟩+ | ⇐⇒⟩| ⇓⟩ , (K.9)

so we see that the toric code ground states indeed corresponds to weak translation sym-
metry breaking with non-local order parameter ⟨Vy⟩, which when viewed in 1d along x̂ can
be interpreted as a local order parameter.

Let us now consider the effects of anyon condensation, and the phases that it may
lead to. On general ground we expect that a symmetric, confined state could arise from
condensing the e anyon, since the e anyon does not carry any nontrivial projective quantum
number in the toric code model. This means that when viewed as a 1d system, the e-
condensation gives a transition between the CDW phase and a symmetric phase. Since the
CDW phase has two-fold symmetry breaking, it is natural to expect that the transition
is simply of the Ising type. These phenomena can be easily demonstrated in the Ly = 1
limit, as we describe as follows. To drive condensation of the e anyons, we may add a
−he

∑
i σz term to Eq. K.1. For the horizontal bonds this simply leads to a transverse-field

Ising model. For he < Je, we will still be in the topological ordered state, for he = Je we
will have the Ising critical point, and for he > Je we are in the disordered (trivial) state.
In the Ly = 1 example, increasing he corresponds to transitioning to the | ⇑⟩ phase for the
antiferromagnetic Ising chain, which has restored the x̂ directional translation symmetry
to give the trivial symmetric state.
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Similarly we may try to condense the type m anyons by adding a −hm
∑

i σx term to
Eq. K.1. In this case the anyon behaves non-trivially under either Tx or Ty since they
anticommute when acting on m. Condensing the anyon leads to symmetry breaking of
either Tx or Ty (dependent on the specific energetics of the system), so we expect to
transition to a true 2d cat (i.e. symmetry-broken) state. The effects of this condensation
cannot be readily seen on the Ly = 1 lattice example since translation in ŷ ceases to have
meaning. However it is known that such a translation symmetry-breaking transition occurs
such that the final state forms a valence bond solid [293].
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