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Abstract

Diffusion models (DMs) have emerged as a powerful class of generative models. DMs
offer both state-of-the-art synthesis quality and sample diversity in combination with a
robust and scalable learning objective. DMs rely on a diffusion process that gradually
perturbs the data towards a normal distribution, while the neural network learns to de-
noise. Formally, the problem reduces to learning the score function, i.e., the gradient of
the log-density of the perturbed data. The reverse of the diffusion process can be approx-
imated by a differential equation, defined by the learned score function, and can therefore
be used for generation when starting from random noise. In this thesis, we give a thorough
and beginner-friendly introduction to DMs and discuss their history starting from early
work on score-based generative models. Furthermore, we discuss connections to other sta-
tistical models and lay out applications of DMs, with a focus on image generative modeling.

We then present CLD: a new DM based on critically-damped Langevin dynamics. CLD
can be interpreted as running a joint diffusion in an extended space, where the auxiliary
variables can be considered “velocities” that are coupled to the data variables as in Hamil-
tonian dynamics. We derive a novel score matching objective for CLD-based DMs and
introduce a fast solver for the reverse diffusion process which is inspired by methods from
the statistical mechanics literature. The CLD framework provides new insights into DMs
and generalizes many existing DMs which are based on overdamped Langevin dynamics.

Next, we present GENIE, a novel higher-order numerical solver for DMs. Many exist-
ing higher-order solvers for DMs built on finite difference schemes which break down in
the large step size limit as approximations become too crude. GENIE, on the other hand,
learns neural network-based models for higher-order derivatives whose precision do not
depend on the step size. The additional networks in GENIE are implemented as small
output heads on top of the neural backbone of the original DM, keeping the computational
overhead minimal. Unlike recent sampling distillation methods that fundamentally alter
the generation process in DMs, GENIE still solves the true generative differential equation,
and therefore naturally enables applications such as encoding and guided sampling.

The fourth chapter presents differentially private diffusion models (DPDMs), DMs trained
with strict differential privacy guarantees. While modern machine learning models rely on
increasingly large training datasets, data is often limited in privacy-sensitive domains. Gen-
erative models trained on sensitive data with differential privacy guarantees can sidestep
this challenge, providing access to synthetic data instead. DPDMs enforce privacy by us-
ing differentially private stochastic gradient descent for training. We thoroughly study the
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design space of DPDMs and propose noise multiplicity, a simple yet powerful modifica-
tion of the DM training objective tailored to the differential privacy setting. We motivate
and show numerically why DMs are better suited for differentially private generative mod-
eling than one-shot generators such as generative adversarial networks or normalizing flows.

Finally, we propose to distill the knowledge of large pre-trained DMs into smaller stu-
dent DMs. Large-scale DMs have achieved unprecedented results across several domains,
however, they generally require a large amount of GPU memory and are slow at inference
time, making it difficult to deploy them in real-time or on resource-limited devices. In
particular, we propose an approximate score matching objective that regresses the student
model towards predictions of the teacher DM rather than the clean data as is done in
standard DM training. We show that student models outperform the larger teacher model
for a variety of compute budgets. Additionally, the student models may also be deployed
on GPUs with significantly less memory than was required for the original teacher model.
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Chapter 1

Introduction

The goal of unsupervised learning is to unveil the hidden underlying structure of a given
dataset D = {xi}ni=1. Commonly used methods in unsupervised learning are, for example,
clustering, dimensionality reduction and generative modeling. In generative modeling, we
attempt to learn a model for the unknown data generating process, i.e., the process that
generated the given dataset D. A generative model allows for a wide range of downstream
tasks, such as probabilistic inference, data completion, density evaluation, outlier detection,
and sampling. As such, modeling the data generating process can be considered the pin-
nacle of unsupervised learning. Generative models are used to model the data commonly
encountered in artificial intelligence, such as images, audio speech, and natural language.

If not stated otherwise, we assume that the dataset D is a subset of Rd and that the
unknown data generating process admits a density (function) p : Rd → R+, where R+ is
the set of non-negative numbers, i.e., R+ = {x ∈ R : x ≥ 0}. Informally, the integral∫
A
p(x) dx, A ⊆ Rd, quantifies the probability of any point xi being an element of A. Con-

sequently, the density p is normalized, i.e.,
∫
Rd p(x) dx = 1. The density p uniquely defines

the data generating process and we indicate that the elements of the dataset D are sampled
from the particular data generating process p by xi ∼ p(x).

We focus on generative models that are parameterized by a neural network and the pa-
rameters θ of the neural network are trained using only the dataset D. After training, the
samples x ∼ pθ generated by our model should closely resemble those generated by the
data generating process p. In addition, we may have (several) secondary objectives such as
fast sampling (on resource limited devices), preventing the leakage of the training data D
through samples, and being able to (approximately) evaluate the model log-density log pθ.
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1.1 The Origins of Score-Based Generative Modeling

1.1.1 Energy-Based Models

Likelihood-based generative models directly model the density p of the unknown data gener-
ating process. Arguably the most flexible likelihood-based generative model is the energy-
based model (EBM). Let eθ : Rd → R be an energy function, with a set of (learnable)
parameters θ, then an EBM is defined as

pθ(x) =
e−eθ(x)

Zθ
, (1.1)

where Zθ =
∫
Rd e

−eθ(x) dx is a, generally intractable, normalizing constant. The parameters
θ of the energy function eθ can be trained via maximum likelihood learning,

max
θ

Ex∼pdata(x)[log pθ(x)], (1.2)

where pdata(x) =
1
n

∑n
i=1 δ(x = xi) is the empirical data distribution and the expectation

E is defined by

Ex∼q(x)[h(x)] =

∫
Rd

h(x)q(x) dx, (1.3)

for any function h : Rd → R and any density q. Note that evaluating log pθ(x) in Equa-
tion (1.2) requires us to compute the logarithm of the normalizing constant Zθ. Thus, to
make maximum likelihood training feasible, EBMs either restrict the (function) space of
the energy function eθ using, for example, invertible networks in normalizing flows [231],
or approximate the normalizing constant Zθ in Equation (1.2) using, for example, (amor-
tized) variational inference in variational autoencoders [149, 232] or Markov chain Monte
Carlo (MCMC) sampling in contrastive divergence [107].

Sampling from EBMs: For differentiable energy functions eθ, we can generate sam-
ples from the EBM pθ by numerically simulating a stochastic differential equation (SDE),
namely overdamped Langevin dynamics,

dxt = ∇xt log pθ(xt) dt+
√
2 dwt, t ∈ [0,∞), (1.4)

where x0 ∼ p0(x0), wt is the standard Wiener process and ∇xt log pθ : Rd → Rd is the
score function [123]. Importantly, for EBMs, the score function ∇xt log pθ = −∇xteθ(xt)

2



is independent of the normalizing constant Zθ. For any smooth density function p0, the
diffusion process converges to the target distribution (under some mild conditions), i.e.,
limt→∞ xt ∼ pθ(x) [154]. To make sampling via overdamped Langevin dynamics tractable,
we need to make two approximations: Firstly, we can only simulate the SDE for a finite
time interval t ∈ [0, T ], and secondly, we cannot solve the SDE analytically, and therefore
need to use a numerical method. Applying, for example, the Euler–Maruyama method to
the overdamped Langevin dynamics in Equation (1.4) (with t ∈ [0, T ] instead of t ∈ [0,∞))
results in the following numerical scheme:

xtn+1 = xtn + hn∇xtn
log pθ (xtn) +

√
2hnεn, (1.5)

where 0 = t0 < t1 < · · · < tN = T is the time discretization of the numerical scheme,
εn ∼ N (0d, Id), and hn = tn+1− tn are the step sizes. If T is sufficiently large and the step
sizes hn are sufficiently small, then the density of xT will be close to pθ in distribution [154].
Rather than considering Equation (1.5) as an approximate sampling scheme for the EBM
pθ it can be useful to consider the combination of the EBM pθ and the particular choice of
the numerical scheme as an independent generative model in itself. Decreasing the number
of steps N while keeping T (and pθ) fixed may therefore result in a worse generative model.

1.1.2 Learning Score Models

Rather than modeling the density p of the data generating process (for example via an
EBM), we may decide to model its score function ∇x log p directly with a neural network
sθ : Rd → Rd. To generate samples from the (learned) score model sθ we can utilize the
numerical scheme defined in Equation (1.5), replacing the score of the EBM with the score
model, i.e.,

xtn+1 = xtn + hnsθ(xtn) +
√
2hnεn. (1.6)

Note that we generally do not restrict our model sθ to be the gradient of a log-density
function, and therefore the above scheme may not converge. That being said, as long as
the distance of sθ to the gradient of any log-density is small compared to the step size
hn, which should be the case for well-trained score models, the numerical scheme should
result in a useful generative model. While a more in-depth discussion on the convergence
of numerical schemes (for SDEs) is out of the scope of this thesis, we refer the reader
to Kloeden and Platen [154] for further discussion.

Furthermore, because sθ may not be the gradient of a log-density function, we cannot
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learn the parameters θ of the score model sθ via maximum likelihood learning (Equa-
tion (1.2)). So how can we learn the score model instead? Let us assume for a moment
that we have access to the true score function ∇x log p. In this case, we could minimize
the expected difference of the true score function and the score model using L2-regression,

min
θ

Ex∼pdata(x)
[
∥∇x log p(x)− sθ(x)∥22

]
. (1.7)

Of course, the above is intractable since we do not have access to the true score function.
However, (approximately) equivalent score matching objectives exist; for example:

Implicit score matching : In their seminal work, Hyvärinen [123] proved that the fol-
lowing objective is equivalent to Equation (1.7):

min
θ

Ex∼pdata(x)
[
∇x · sθ(x) + 1

2
∥sθ(x)∥22

]
. (1.8)

The main reason why implicit score matching is not commonly used in deep learning is that
computing the divergence∇x ·sθ(x) is very expensive if the score model sθ is parameterized
by a large neural network and the dimensionality d of x ∈ Rd is large. In particular, it
requires d forward and backward passes through the network:

∇x · sθ(x) =
d∑
j=1

∂xj(sθ(x))j. (1.9)

Sliced score matching : The divergence∇x ·sθ in implicit score matching [123] can be re-
written usingHutchinson’s trace estimator [122], i.e.,∇x·sθ(x) = Ev∼N (0d,Id)

[
v⊤∇xsθ(x)v

]
.

In sliced score matching, the expectation over the standard normal distribution is estimated
using a single Monte Carlo sample, i.e., ∇x · sθ(x) ≈ v⊤∇xsθ(x)v, v ∼ N (0d, Id) [261].
The Jacobian-vector product ∇xsθ(x)v can be efficiently computed using only a single
forward and backward pass:

∇xsθ(x)v = ∇x

(
s⊤θ (x)v

)
= ∇xh(x), (1.10)

where h : Rd → R. The main drawback of sliced score matching is that the variance of the
single-sample Monte Carlo estimator can be (very) large.

Denoising score matching : Denoising score matching (DSM) [282] entirely circumvents
the computation of the divergence ∇x · sθ by modeling the score function of a perturbed
density qσ(x̃) =

∫
qσ(x̃ | x) p(x) dx. DSM is defined by

min
θ

Ex∼pdata(x), x̃∼qσ(x̃|x)
[
∥∇x̃ log qσ(x̃ | x)− sθ(x̃)∥22

]
, (1.11)
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and can be considered an approximate score matching objective. The perturbation kernel
qσ(x̃ | x) is generally chosen to be a normal distribution, i.e., N (x̃;x, σ2Id), in which case
DSM can be written as

min
θ

Ex∼pdata(x), x̃∼N (x̃;x,σ2Id)

[∥∥∥∥x− x̃

σ2
− sθ(x̃)

∥∥∥∥2
2

]
, (1.12)

Note that sθ⋆ , where θ
⋆ is the minimizer of the above equation, is only a good approxima-

tion to the true score function ∇x log p if σ is sufficiently small.

1.1.3 Practical Denoising Score Matching

As discussed above, the variance σ in the perturbation kernel qσ(x̃ | x) of DSM needs to be
sufficiently small to obtain a useful score model sθ. However, this makes both learning and
sampling challenging [259]: In DSM, the L2-difference between the score model sθ and the
score of the perturbation kernel∇x̃ log qσ(x̃ | x) is effectively weighted by pdata(x) qσ(x̃ | x).
For small σ, we can approximate pdata(x) qσ(x̃ | x) ≈ pdata(x), which implies that differ-
ences of the score model and the score of the perturbation kernel are mostly ignored in
small density regions. This is especially problematic for densities with multiple (highly
peaked) modes. Even if one can successfully train a score model, accurate sampling with
overdamped Langevin dynamics (for multimodal densities) requires extremely small step
sizes hn, making it very computationally expensive [259, 289].

In their seminal work, Song and Ermon [259] propose to learn a set of score models with
DSM for a variety of noise levels {σ0, . . . , σM}, with σ0 < σ1 < . . . , σM . While they even-
tually want to generate samples from the score model sθ(·, σ = σ0), inspired by simulated
annealing [153] and annealed importance sampling [208], the other score models can be
used to build a fast numerical scheme, i.e.,

xtn+1 = xtn + hnsθ(xtn , σj(n)) +
√
2hnεn, (1.13)

where j(n) : {0, . . . , N} → {0, . . . ,M} is a monotonically decreasing function with j(0) =
M and j(N) = 0. Importantly, the step size hn should be decreased as the noise level σm
is decreased [259]. Furthermore, Song and Ermon [259] propose to parameterize all score
models using a single shared neural network that is conditioned on the noise level σ. This
network is trained to minimize the DSM loss for all noise levels jointly:

min
θ

M∑
m=0

Ex∼pdata(x), x̃∼N (x̃;x,σ2
mId)

[
λ(m)

∥∥∥∥x− x̃

σ2
m

− sθ(x̃, σm)
∥∥∥∥2
2

]
, (1.14)
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for some weighting function λ : {0, . . . ,M} → R+.

1.2 Diffusion Models

In the previous section, we saw that multiple noise levels are a crucial ingredient for score-
based generative models trained with DSM. The following question arises: what would
happen in the limit of continuous noise levels? For perturbation kernels based on normal
distributions, this results in a diffusion process which can be described by the following
SDE:

dxt = f(xt, t) dt+G(xt, t) dwt, t ∈ [tmin, tmax], (1.15)

with drift coefficient f : Rd × [tmin, tmax]→ Rd, diffusion coefficient G : Rd × [tmin, tmax]→
Rd×d, standard Wiener process wt, and xtmin

∼ qtmin
(xtmin

). For convenience, we set tmin =
0, and therefore qtmin

= pdata, and abbreviate tmax = T . Note that setting tmin > 0 is
equivalent to setting tmin = 0 and adding an appropriate amount of Gaussian noise to the
data x0 ∼ pdata(x0). So far, most research on diffusion models (DMs) considers drift and
diffusion coefficients of the form f(xt, t) = f(t)xt and G(xt, t) = g(t)Id, respectively. For
these diffusion processes, the perturbation kernel is given by

pt(xt | x0) = N (xt | αtx0, σ
2
t Id), (1.16)

with f(t) = α̇t/αt and g(t) = αt
√
2γ̇tγt, where γt = σt/αt and α̇(t) denotes the derivative

with respect to time, i.e., α̇(t) = d
dt
α(t); see Appendix B of Karras et al. [141] for a

derivation. Note that by definition we have α0 = 1 and σ0 = 0. The functions αt and
σt are generally chosen such that the diffusion process in Equation (1.15) approximately
converges to a tractable normal distribution N (0d, σ

2
maxId) at final time T . The quantity

γ−2
t is often referred to as the signal-to-noise ratio [151].

1.2.1 Generative Modeling with Diffusion Models

Remarkably, the reverse of a diffusion process can be written as another diffusion process [7,
104, 263],

dxt =
(
f(xt, t)−∇xt ·

[
G(xt, t)G(xt, t)

⊤
]
−G(xt, t)G(xt, t)

⊤∇xt log pt(xt)
)
dt+G(xt, t) dwt,

(1.17)
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where dt is now an infinitesimal negative timestep and wt is a Wiener process for which
time “flows backwards” from T to 0. Song et al. [263] propose to learn a time-dependent
score model sθ for the unknown ∇xt log pt(xt) via DSM:

min
θ

Ex0∼pdata(x0), t∼p(t),xt∼pt(xt|x0)

[
λ(t)∥sθ(xt, t)−∇xt log pt(xt | x0)∥22

]
, (1.18)

for some weighting function λ : [0, T ] → R+ and distribution p(t) over the interval [0, T ].
After training, we can generate samples by numerically simulating Equation (1.17) and
replacing the unknown true score function ∇xt log pt(xt) with the score model sθ(xt, t):

dxt =
(
f(xt, t)−∇xt ·

[
G(xt, t)G(xt, t)

⊤
]
−G(xt, t)G(xt, t)

⊤sθ(xt, t)
)
dt+G(xt, t) dwt.

(1.19)

To make DMs tractable, we make the approximation of sampling xT from the tractable
normal distribution pT = N (0d, σ

2
maxId). For the perturbation kernel pt(xt | x0) = N (xt |

αtx0, σ
2
t Id), the above simplifies to

dxt =

(
α̇t
αt

xt − 2α2
t γ̇tγtsθ(xt, t)

)
dt+ αt

√
2γ̇tγt dwt. (1.20)

1.2.2 Likelihood-Based Generative Modeling after all?

The SDE in Equation (1.19) is marginally equivalent to the following ordinary differential
equation (ODE) [263]:

dxt
dt

= f(xt, t)−
1

2
∇xt ·

[
G(xt, t)G(xt, t)

⊤]− 1

2
G(xt, t)G(xt, t)

⊤sθ(xt, t)︸ ︷︷ ︸
=:f̃θ(xt,t)

. (1.21)

The above equation is referred to as the probability flow ODE [263], an instance of continu-
ous normalizing flows [50, 100]. Marginal equivalence means that any intermediate sample
xt, t ∈ [0, T ], is as likely under the SDE in Equation (1.19) as it is under the probability
flow ODE. For the perturbation kernel pt(xt | x0) = N (xt | αtx0, σ

2
t Id), the probability

flow ODE simplifies to

dxt
dt

=
α̇t
αt

xt − α2
t γ̇tγtsθ(xt, t). (1.22)
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Continuous normalizing flows can evaluate the log-density using the instantaneous change
of variables formula [50],

log p0(x0) = log pT (xT ) +

∫ T

0

∇ · f̃θ(xt, t) dt. (1.23)

Computing the divergence ∇ · f̃θ is expensive, and therefore we may approximate it using
Hutchtinson’s trace estimator [50, 100, 122] as is also done in sliced score matching [261];
see Section 1.1.2. This approximation results in an unbiased estimate of the log-density
log p0 (and a biased estimate of the density p0) for any x0. Furthermore, for particular com-
binations of the weighting function λ and the distribution p(t) over the time interval [0, T ],
DSM (Equation (1.18)) is equivalent to maximum likelihood learning [120, 262]. That being
said, at least for image data other combinations have been shown to be considerably more
effective in training models that can generate high perceptual quality samples [53, 115, 262].

1.2.3 A Unified Learning Framework

In DSM (Equation (1.18)) we learn a time-dependent score model sθ by regressing it
towards the time-dependent score of the perturbation kernel ∇xt log pt(xt | x0). Plugging
in the common choice pt(xt | x0) = N (xt | αtx0, σ

2
t Id) results in

min
θ

Ex0∼pdata(x0),t∼p(t),xt∼pt(xt|x0)

[
λ(t)

∥∥∥∥sθ(xt, t)− αtx0 − xt
σ2
t

∥∥∥∥2
2

]
. (1.24)

For this choice, the score model is effectively learning a scaled difference between the clean
data x0 and the noisy data xt. Alternatively, we could also learn a denoiser Dθ(xt, t) that
predicts the clean data x0 [141, 244]. This would still allow us to define a score model via

sθ(xt, t) =
αtDθ(xt, t)− xt

σ2
t

. (1.25)

It has been shown that it can be highly beneficial to not parameterize the denoiser Dθ

directly with a neural network, but rather use a mixed parameterization [75, 141, 244, 280]:

Dθ(xt, t) = cskip(t)xt + cout(t)Fθ (cin(t)xt, cnoise(t)) . (1.26)

where Fθ is the neural network to be trained. In this unified framework, we may rewrite
DSM as learning a denoiser:

min
θ

Ex0∼pdata(x0), t∼p(t),n∼N (0d,Id)[λ(t)∥Dθ(αtx0 + σtn, t)− x0∥22]. (1.27)
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Many existing DM frameworks can be recovered by setting cskip(t), cout(t), cin(t), cnoise(t),
p(t) and λ(t) appropriately; see Karras et al. [141] for some examples (in a slightly modified
framework).

1.2.4 Discrete-Time Diffusion Models

Although we have introduced DMs in a continuous-time framework, they were originally
proposed in a discrete-time framework through the lens of Markov chain models [109, 257].
In the following, we show that the original discrete-time DMs can be recovered by restricting
the support of the distribution p(t), i.e., the set {t ∈ [0, T ] : p(t) > 0}, to the discrete set
{t0 = 0, t1, . . . , tN = T}: In the original discrete-time framework [109, 257], DMs were
presented as latent variable models of the form pθ(xt0) =

∫
xt1
· · ·
∫
xtN

pθ(xt0:tN ) dx1:T . The

joint distribution pθ(xt0:tN ) is a Markov chain,

pθ(xt0:tN ) = p(xtN )
N∏
n=1

pθ(xtn−1 | xtn), pθ(xtn−1 | xtn) = N (xtn−1 ;µθ(xtn , tn), βtnId),

(1.28)

where p(xtN ) = N (0d, Id), {βtn}Nn=1 are fixed variances, and µθ : Rd × {t0, . . . , tN} → Rd

is a learnable neural network. The inference distribution is fixed to a Markov chain that
gradually adds Gaussian noise,

q(xt1:tN | xt0) =
N∏
n=1

q(xtn | xtn−1), q(xtn | xtn−1) = N (xtn ;
√
1− βtnxtn−1 , βtnId). (1.29)

In the limit of small variances {βtn}Nn=1, the generative Markov chain and the inference
distribution have the same functional form [86, 257]. The latent variable model pθ(xt0)
is then trained by maximizing the evidence lower bound, a lower bound to maximum
likelihood learning:

max
θ

Ext0∼pdata(xt0 )
[log pθ(xt0)] (1.30)

= max
θ

Ext0∼pdata(xt0 )
[log

∫
xt1

· · ·
∫
xtN

pθ(xt0:tN ) dxt1:tN ] (1.31)

≥ max
θ

Ext0∼pdata(xt0 ),xt1:tN
∼q(xt1:tN

|xt0 )
[log pθ(x0:T )− log q(xt1:tN | xt0)] (1.32)

= C +max
θ

N∑
n=1

Ext0∼pdata(xt0 ),xtn∼q(xtn |xt0 )

[
1
βtn
∥µ̃tn(xtn ,xt0)− µθ(xtn , tn)∥22

]
, (1.33)
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where C is a constant with respect to θ and

µ̃tn(xtn ,xt0) =

√
ρ̄tn−1(1− ρtn)

1− ρ̄tn︸ ︷︷ ︸
ltn

xt0 +

√
ρtn(1− ρ̄tn−1)

1− ρtn︸ ︷︷ ︸
rtn

xtn , (1.34)

for n > 1 and µ̃t1(xt1 ,xt0) = xt0 [109]. The marginal q(xtn | xt0) of the above inference
distribution can be computed in closed-form as q(xtn | xt0) = N (xtn ;

√
ρ̄tnxt0 , (1− ρ̄tn)Id),

with ρtn = 1− βtn and ρ̄tn =
∏n

s=1 ρts [109]. Maximizing the above evidence lower bound,
up to the additive constant C which is irrelevant for training the parameters θ, can actually
be exactly recovered in our unified framework (see Section 1.2.3) by setting

p(t) = U({t1, . . . , tN}), λ(t) = N
l2t
βt
, cskip(t) = −

rt
lt
, cout(t) =

1
lt
. (1.35)

Furthermore, the generative Markov chain in Equation (1.28) can be recovered by simulat-
ing the reverse diffusion SDE (Equation (1.17)) using the Euler–Maruyama method with
time discretization

hn = tn−1 − tn =
1− ρtn

2ρ̄tn γ̇tnγtn
, γtn =

√
1− ρ̄tn
ρ̄tn

. (1.36)

Importantly, the above connection shows that discrete-time DMs learn a model for the
score function at the discrete points {t0 = 0, t1, . . . , tN = T}. Consequently, we can
define new generative models using other numerical schemes for the reverse diffusion SDE
(Equation (1.17)) or the probability flow ODE (Equation (1.21)) with the restriction of
using the above step sizes; see Section 3.1.1 for an example.

1.2.5 Connections to other Statistical Models

1.2.5.1 Variational Autoencoders

Variational autoencoders [149, 232] are frameworks to train a latent variable model pθ(x |
z) p(z) using amortized variational inference. Similar to discrete-time DMs, variational
autoencoders are trained by optimizing the evidence lower bound, i.e,

log pθ(x) ≥ Ez∼qϕ(z|x)[log pθ(x | z) + log p(z)− log qϕ(z | x)], (1.37)

where qθ is a learnable inference distribution. Therefore, discrete-time DMs are a spe-
cial case of variational autoencoders, in particular a special case of hierarchical variational

10



autoencoders [279]. An important difference of discrete-time DMs to more general (hierar-
chical) variational autoencoders is that the inference model q has no learnable parameters
and all information in the latent variables is progressively destroyed, whereas the latent
variables z of variational autoencoders generally capture global factors of the data.

1.2.5.2 Denoising Autoencoders

Autoencoders are neural network architectures fθ : Rd → Rd that try do predict their in-
puts, i.e., learn the identity function. Without any restrictions on fθ, this task is obviously
trivial, however, the problem becomes more challenging when the neural network has a
bottleneck structure, i.e., fθ(x) = hθ(gθ(x)), where gθ : Rd → Rdb and hθ : Rdb → Rd

with db ≪ d. After training the autoencoder, the hθ part can be discarded and the
network gθ can be used to extract useful representations of the data. Denoising autoen-
coders [283] modify the input to autoencoders by adding noise, i.e., predict x given x+εσ,
εσ ∼ N (0, σ2Id):

Ex∼pdata(x), εσ∼N (0,σ2Id)

[
∥fθ(x+ εσ)− x∥22

]
. (1.38)

Recall that for Gaussian noise, denoiser functions define a score model, and therefore
denoising autoencoders are score-based generative models for a single noise level trained via
DSM. However, for score-based generative modeling we would generally not parameterize
the network with a bottleneck structure since the learned representations of the network are
not of (primary) interest. Interestingly, there have been several works that propose to either
progressively decrease the noise level σ of denoising autoencoders during training [43, 93,
311] or to train denoising autoencoders for multiple noise levels [94]. These modifications
are similar to the ones we discussed in Section 1.1.3 for score-based generative models. For
more ideas and intuition on the connections between denoising autoencoders and DMs, we
refer the reader to Dieleman [67].

1.2.5.3 Continuous Normalizing Flows

Continuous normalizing flows [50, 100] model the probability density function pθ(x0) using
an ODE

dxt
dt

= fθ(xt, t), (1.39)

xT ∼ N (xT ;0d, Id). (1.40)
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Table 1.1: Applications of DMs in image and video modeling.

Application References

Text-to-image synthesis [211],[242],[230],[235], [16]
Personalized image synthesis [237], [92], [91]
Image editing [197], [185], [31], [143]
Image super-resolution [110], [240],[238]
Image-to-image translation [249], [239],[267]
Inverse (medical) image problems [264],[299],[187],[59],[117]
Text-to-video synthesis [112], [252],[145], [292]
Video editing [204], [85], [229], [177]
Personalized video synthesis [204]

where fθ is a deep neural network and the above ODE is simulated backwards from
t ∈ [T, 0]. As already pointed out in Section 1.2.2, the probability flow ODE of DMs
(Equation (1.21)) is a special case of continuous normalizing flows and this fact can be
exploited to compute unbiased estimates of the log-density of the DM. Compared to DMs,
however, more general continuous normalizing flows have to be trained by maximum like-
lihood learning, rather than DSM, which generally involves expensive backpropagation
through an ODE solver [50, 100]. Furthermore, (general) continuous normalizing flows can
only be sampled from by simulating an ODE effectively resulting in a bijection g between
latents, i.e., gt,t′(xt) = xt′ and g−1

t,t′(xt′) = xt for t, t
′ ∈ [0, T ], which can be restrictive. The

stochastic sampling procedure of DMs, on the other hand, naturally allows for secondary
applications such as image editing (see SDEdit [197] in the next section).

1.3 Applications of Diffusion Models

1.3.1 Image and Video Modeling

Although the methods introduced in this thesis are applicable to DMs of many domains
they are primarily tested for image applications. In Table 1.1, we list some image and
video applications together as they are closely related. In the remainder of this section,
we briefly summarize some important concepts and methods of this area which are used
in the following chapters:
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U-Net : The U-Net architecture is a neural network architecture that was initially de-
veloped for semantic image segmentation [236]. The U-Net is comprised of downsampling
and upsampling blocks. The downsampling blocks sequentially decrease the spatial reso-
lution of an image, each block generally by a factor of two, while the upsampling blocks
subsequently bring the spatial resolution back up to the one of the input image. Generally,
each upsampling block receives the output of the downsampling block at the same reso-
lution as an additional input via a skip connection. The U-Net architecture is by far the
most widely used architecture in image generative modeling with DMs. However, recently,
some competing transformer-based architectures have been proposed [125, 223]. The U-
Net architecture has recently also been adapted for video modeling by adding temporal
attention and convolution layers [27, 111, 112].

SDEdit : SDEdit [197] is a general DM-based editing technique that has been widely used
in image generative modeling. The core idea is to bring any input (image) closer to the
data distribution defined by a pre-trained DM by adding some amount of noise (using the
perturbation kernel of the DM) to it. The particular amount of noise is very important:
if too much noise is added all prior information is lost, whereas if too little noise is added
the noisy image will not coincide with the distribution defined by the DM. After noise
is added, the pre-trained DM can be used to denoise. Since the input (image) was only
partially noised the coarse structure of the output (image) will remain the same as the in-
put. In contrast, the high-detail features of the output (image) follow the DM distribution.
This technique can then be used, for example, to synthesize realistic images from brush
strokes [197]. SDEdit is widely used for text-based image editing [235].

Classifier-free guidance: Classifier-free guidance [108] is a technique to guide the itera-
tive sampling process of a DM towards a particular conditioning signal c by mixing the
predictions of a conditional and an unconditional model

Dw(xt, t, c) = (1 + w)D(xt, t, c)− wD(xt, t), (1.41)

where w ≥ 0 is the guidance strength. In practice, the unconditional model can be trained
jointly alongside the conditional model in a single network by randomly replacing the condi-
tioning signal c with a (learnable) null embedding, e.g., 10% of the time [108]. Classifier-free
guidance is widely used to improve the sampling quality, at the cost of reduced diversity,
of text-to-image DMs [211, 235]. Alternatively, noise-aware classifiers can be also be used
to guide the diffusion process [66, 263].

Latent diffusion models : Latent diffusion models (LDMs) [235] are DMs trained in the
feature space of an autoencoder rather than in data space directly. Samples are generated
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by feeding latents, which are sampled from the DM, through the decoder component of
the autoencoder. The main advantage of LDMs compared to data space DMs is that they
use less GPU memory during inference and training, enabling, for example, generation of
very-high resolution images.

Cascaded diffusion models: Cascaded diffusion models [110] are a sequence of DMs used for
image generation. The idea is to generate a low-resolution image using a base DM, followed
by gradually increasing the resolution using upsamplers, e.g., one upsampler from 64× 64
to 256× 256 and another upsampler from 256× 256 to 1024× 1024. The upsamplers are
conditioned on the low-resolution image generated by the previous upsampler (or the base
DM). The upsamplers can be made more robust against imperfections of the conditioning
signal via conditioning augmentation [110], i.e., adding some noise to the conditioning im-
age during training and inference. Generally, most parameters of cascaded diffusion models
are allocated to the base DM, and less and less parameters are assigned to increasingly
higher-resolution upsamplers. Similar to LDMs, this allows for very-high resolution im-
age generation at lower GPU memory cost when compared to direct pixel space generation.

DreamBooth: DreamBooth [237] is a technique to personalize large text-to-image DMs.
The models are fined-tuned on a small set of images (of a particular subject or style). To
prevent overfitting, DreamBooth uses a technique called prior preservation loss. Textual
inversion [90], low-rank adaptation [118], and encoder-based domain tuning [91] are some
alternative fine-tuning techniques for text-to-image personalization.

1.3.2 Other Applications

While this thesis is mainly focused on image modeling, we list some other applications
in Table 1.2.

1.4 Contributions

Each of the next four chapters of this thesis is structured around a central (workshop)
paper, for which I am the sole first author. Besides the publications themselves, I outline
the explicit contributions, and describe novel insights and discuss follow-up work where
applicable. The chapters are purposefully ordered chronologically to provide the reader
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Table 1.2: Some applications of DMs outside image modeling.

Primary application Secondary application References

Computer vision Text-to-3D synthesis [226], [174]
Text-to-4D synthesis [253]
3D shape generation [188], [37]. [319],[190],[82]
Semantic segmentation [21]

Natural language processing Text synthesis [68],[12], [170], [54]
Audio generative modeling Speech synthesis [48],[157],[130],[49],[227],[178]
Temporal data modeling Time series imputation [272]

Time series forecasting [5]
Molecule & protein generation Small-scale molecular generation [251],[300],[298],[133],[114]

Large-scale protein synthesis [287],[124]
Molecular 3D density map generation [159]

with some insight about the development of this fast moving field. In my opinion most
strikingly is the development of the inference time of DMs which has roughly decreased
by a factor of 100 within the last two years. All four chapters follow a common theme of
improving secondary objectives of DMs (such as inference acceleration and privatization)
while optimizing the main objective of high-quality diverse sampling.

The complexity of the learning problem in DMs depends, other than on the training data
itself, only on the perturbation kernel. In Chapter 2, we introduce a new type of DM based
on critically-damped Langevin dynamics. This particular choice allows for fast numerical
sampling schemes from the statistical mechanics and molecular dynamics literature. Dock-
horn et al. [75] was published at ICLR 2022.

In Chapter 3, we introduce a fast higher-order numerical sampling scheme for DMs. Rather
than the common procedure of approximating higher-order derivatives with finite difference
schemes we learn them via distillation. Dockhorn et al. [74] was published at NeurIPS 2022.

In Chapter 4, we propose to learn DMs with strict differential privacy guarantees. We
build on existing techniques form the differential privacy literature and tailor them to the
training of DMs. Dockhorn et al. [73] was submitted to TMLR in April 2023.

Lastly, in Chapter 5 we present a technique to distill the knowledge in DMs into small
student models. Given a fixed budget of floating point operations, we show that the dis-
tilled student models considerably outperform their teachers. Furthermore, the student
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models have the additional benefit that they need less GPU memory, making them po-
tentially suitable for deployment on resource limited devices. Dockhorn et al. [76] was
presented at the CVPR 2023 workshop for “Generative Models for Computer Vision”.

Three (workshop) papers on generative modeling for which I was a shared first author
are not included in this thesis. In Dockhorn et al. [71], we introduce a method for density
deconvolution based on normalizing flows (ICML 2021 workshop for “Invertible Neural
Networks, Normalizing Flows, and Explicit Likelihood Models”). In Kreis et al. [159], we
train latent DMs for Cryo-EM data (NeurIPS 2022 workshop for “Machine Learning for
Structural Biology Workshop”). Lastly, in Blattmann et al. [27] we insert additional layers
into pre-trained image latent DMs and fine-tune them for video generation (CVPR 2023).

Before working in generative modeling, I dabbled my feet in quantization of neural net-
works. The work resulted in a first author paper at NeurIPS 2021: Dockhorn et al. [72].
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Chapter 2

Score-Based Generative Modeling
With Critically-Damped Langevin
Diffusion

2.1 Choosing the Diffusion Process in Diffusion Mod-

els

Recall the general diffusion process from Section 1.2, i.e.,

dxt = f(xt, t) dt+G(xt, t) dwt, t ∈ [0, T ], (2.1)

with drift coefficient f : Rd × [0, T ] → Rd, diffusion coefficient G : Rd × [0, T ] → Rd×d,
standard Wiener process wt, and x0 ∼ q0(x0). Much of the research on DMs has consid-
ered drift and diffusion coefficients of the form f(xt, t) = f(t)xt and G(xt, t) = g(t)Id,
respectively. One popular choice is the variance-preserving diffusion process for which
f(t) = −βt and g(t) =

√
2βt, with positive monotonically-increasing βt [263]. Considering

βt as a time rescaling reveals that the variance-preserving diffusion process is equivalent to
the overdamped Langevin dynamics (Equation (1.4)) for the standard normal distribution
N (0d, Id) [75].

Langevin dynamics are widely used in physics and the natural sciences. They play, for
example, a crucial role in the world of MCMC. Within this field it is widely known that
discretizations of overdamped Langevin dynamics converge relatively slow when compared
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to discretizations of underdamped Langevin dynamics [55],

dxt = M−1vt dt, (2.2)

dvt = ∇xt log p(xt) dt+M−1Γxt dt+
√
2Γ dwt, (2.3)

where vt ∈ Rd are auxiliary variables. Here, the mass parameter M ∈ R+ determines
the coupling between xt and vt, and Γ ∈ R+ is a friction coefficient that determines the
strength of the noise injection into the vt variables. Discretizations of the underdamped
Langevin dynamics can be viewed as a form of Hamiltonian MCMC [209], a very popular
MCMC algorithm. In DMs, the learning problem depends, other than on the data itself,
only on the diffusion process. This makes it imperative to explore the wide variety of
possible diffusion processes and go beyond overdamped Langevin dynamics.

2.2 Preface

This section presents the paper “Score-Based Generative Modeling with Critically-Damped
Langevin Diffusion”. In this work, we propose a new DM (referred to as CLD in the re-
mainder of this work) which is based on critically-damped Langevin dynamics, an instance
of underdamped Langevin dynamics for which the mass and friction parameters are con-
strained to Γ2 = 4M . We motivate the particular choice of critically-damped Langevin
dynamics and propose a fast numerical scheme for the reverse diffusion process, motivated
by the statistical mechanics and the molecular dynamics literature. The paper was ini-
tially put on arXiv in December 2021, and then accepted and presented at the International
Conference on Learning Representations in April 2022. The paper has an average reviewer
score of 8.5/10 (99th percentile).

Naming: At the time of publication, DMs were more commonly referred to as score-
based generative models and if the paper had been published today, the title would have
likely been “Critically-Damped Langevin Diffusion” instead.

Contributions: I was the sole first author of this work. Arash Vahdat and Karsten
Kreis were co-authors, and Karsten supervised this project. Karsten initially proposed to
use underdamped Langevin dynamics for DMs. Eventually, I suggested to use critically-
damped Langevin dynamics, a special form of underdamped Langevin dynamics, for which
I found a closed-form perturbation kernel. Karsten and I jointly came up with the hybrid
score matching loss function and the symmetric splitting CLD sampler. I implemented all
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code and ran all experiments. The paper was written jointly.

Differences in notation: The notation in the reverse diffusion process is different as
the time variable is running from t = 0 to t = T rather than from t = T to t = 0.

Reproducibility: The code and models of this work have been open-sourced. See https:
//github.com/nv-tlabs/CLD-SGM for instructions to reproduce our results.

arXiv: The paper “Score-Based Generative Modeling with Critically-Damped Langevin
Diffusion” is available on ArXiV (v4). The following version is simply reformatted into the
style of the thesis.

Abstract: Score-based generative models (SGMs) have demonstrated remarkable syn-
thesis quality. SGMs rely on a diffusion process that gradually perturbs the data towards
a tractable distribution, while the generative model learns to denoise. The complexity of
this denoising task is, apart from the data distribution itself, uniquely determined by the
diffusion process. We argue that current SGMs employ overly simplistic diffusions, lead-
ing to unnecessarily complex denoising processes, which limit generative modeling perfor-
mance. Based on connections to statistical mechanics, we propose a novel critically-damped
Langevin diffusion (CLD) and show that CLD-based SGMs achieve superior performance.
CLD can be interpreted as running a joint diffusion in an extended space, where the aux-
iliary variables can be considered “velocities” that are coupled to the data variables as in
Hamiltonian dynamics. We derive a novel score matching objective for CLD and show
that the model only needs to learn the score function of the conditional distribution of the
velocity given data, an easier task than learning scores of the data directly. We also derive
a new sampling scheme for efficient synthesis from CLD-based diffusion models. We find
that CLD outperforms previous SGMs in synthesis quality for similar network architec-
tures and sampling compute budgets. We show that our novel sampler for CLD significantly
outperforms solvers such as Euler–Maruyama. Our framework provides new insights into
score-based denoising diffusion models and can be readily used for high-resolution image
synthesis. Project page and code: https://nv-tlabs.github.io/CLD-SGM.
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2.3 Main Paper

2.3.1 Introduction

Score-based generative models (SGMs) and denoising diffusion probabilistic models have
emerged as a promising class of generative models [150, 257, 262, 263, 280]. SGMs offer
high quality synthesis and sample diversity, do not require adversarial objectives, and have
found applications in image [66, 109, 110, 212], speech [48, 130, 157], and music synthesis
[202], image editing [89, 197, 255], super-resolution [168, 240], image-to-image translation
[249], and 3D shape generation [188, 319]. SGMs use a diffusion process to gradually add
noise to the data, transforming a complex data distribution into an analytically tractable
prior distribution. A neural network is then utilized to learn the score function—the gradi-
ent of the log probability density—of the perturbed data. The learnt scores can be used to
solve a stochastic differential equation (SDE) to synthesize new samples. This corresponds
to an iterative denoising process, inverting the forward diffusion.

In the seminal work by Song et al. [263], it has been shown that the score function that
needs to be learnt by the neural network is uniquely determined by the forward diffusion
process. Consequently, the complexity of the learning problem depends, other than on
the data itself, only on the diffusion. Hence, the diffusion process is the key component
of SGMs that needs to be revisited to further improve SGMs, for example, in terms of
synthesis quality or sampling speed.

Inspired by statistical mechanics [277], we propose a novel forward diffusion process, the
critically-damped Langevin diffusion (CLD). In CLD, the data variable, xt (time t along the
diffusion), is augmented with an additional “velocity” variable vt and a diffusion process
is run in the joint data-velocity space. Data and velocity are coupled to each other as in
Hamiltonian dynamics, and noise is injected only into the velocity variable. As in Hamil-
tonian Monte Carlo [81, 209], the Hamiltonian component helps to efficiently traverse the
joint data-velocity space and to transform the data distribution into the prior distribution
more smoothly. We derive the corresponding score matching objective and show that for
CLD the neural network is tasked with learning only the score of the conditional distri-
bution of velocity given data ∇vt log pt(vt|xt), which is arguably easier than learning the
score of diffused data directly. Using techniques from molecular dynamics [34, 165, 277],
we also derive a new SDE integrator tailored to CLD’s reverse-time synthesis SDE.

We extensively validate CLD and the novel SDE solver: (i) We show that the neural
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Figure 2.1: In critically-damped Langevin diffusion, the data xt is augmented with a velocity
vt. A diffusion coupling xt and vt is run in the joint data-velocity space (probabilities in red).
Noise is injected only into vt. This leads to smooth diffusion trajectories (green) for the data
xt. Denoising only requires ∇vt log p(vt|xt).

networks learnt in CLD-based SGMs are smoother than those of previous SGMs. (ii)
On the CIFAR-10 image modeling benchmark, we demonstrate that CLD-based models
outperform previous diffusion models in synthesis quality for similar network architectures
and sampling compute budgets. We attribute these positive results to the Hamiltonian
component in the diffusion and to CLD’s easier score function target, the score of the
velocity-data conditional distribution ∇vt log pt(vt|xt). (iii) We show that our novel sam-
pling scheme for CLD significantly outperforms the popular Euler–Maruyama method.
(iv) We perform ablations on various aspects of CLD and find that CLD does not have
difficult-to-tune hyperparameters.

In summary, we make the following technical contributions: (i) We propose CLD, a novel
diffusion process for SGMs. (ii) We derive a score matching objective for CLD, which
requires only the conditional distribution of velocity given data. (iii) We propose a new
type of denoising score matching ideally suited for scalable training of CLD-based SGMs.
(iv) We derive a tailored SDE integrator that enables efficient sampling from CLD-based
models. (v) Overall, we provide novel insights into SGMs and point out important new
connections to statistical mechanics.
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2.3.2 Background

Consider a diffusion process ut ∈ Rd defined by the Itô SDE

dut = f(ut, t) dt+G(ut, t) dwt, t ∈ [0, T ], (2.4)

with continuous time variable t ∈ [0, T ], standard Wiener process wt, drift coefficient
f : Rd × [0, T ]→ Rd and diffusion coefficient G : Rd × [0, T ]→ Rd×d. Defining ūt := uT−t,
a corresponding reverse-time diffusion process that inverts the above forward diffusion can
be derived [7, 104, 263] (with positive dt and t ∈ [0, T ]):

dūt =
[
−f(ūt, T − t) +G(ūt, T − t)G(ūt, T − t)⊤∇ūt log pT−t(ūt)

]
dt+G(ūt, T − t)dwt,

(2.5)

where ∇ūt log pT−t(ūt) is the score function of the marginal distribution over ūt at time
T − t.

The reverse-time process can be used as a generative model. In particular, Song et al.
[263] model data x, setting p(u0)=pdata(x). Currently used SDEs [146, 263] have drift and
diffusion coefficients of the simple form f(xt, t)=f(t)xt and G(xt, t)=g(t)Id. Generally,
f and G are chosen such that the SDE’s marginal, equilibrium density is approximately
Normal at time T , i.e., p(uT )≈N (0, Id). We can then initialize x0 based on a sample
drawn from a complex data distribution, corresponding to a far-from-equilibrium state.
While the state x0 relaxes towards equilibrium via the forward diffusion, we can learn a
model sθ(xt, t) for the score ∇xt log pt(xt), which can be used for synthesis via the reverse-
time SDE in Eq. (2.5). If f and G take the simple form from above, the denoising score
matching [282] objective for this task is:

min
θ

Et∼U [0,T ]Ex0∼p(x0)Ext∼pt(xt|x0)

[
λ(t)∥sθ(xt, t)−∇xt log pt(xt|x0)∥22

]
(2.6)

If f and G are affine, the conditional distribution pt(xt|x0) is Normal and available an-
alytically [247]. Different λ(t) result in different trade-offs between synthesis quality and
likelihood in the generative model defined by sθ(xt, t) [262, 280].
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2.3.3 Critically-Damped Langevin Diffusion

We propose to augment the data xt ∈ Rd with auxiliary velocity1 variables vt ∈ Rd and
utilize a diffusion process that is run in the joint xt-vt-space. With ut = (xt,vt)

⊤ ∈ R2d,
we set

f(ut, t) :=

((
0 βM−1

−β −ΓβM−1

)
⊗ Id

)
ut , G(ut, t) :=

(
0 0
0
√
2Γβ

)
⊗ Id, (2.7)

where ⊗ denotes the Kronecker product. The coupled SDE that describes the diffusion
process is (

dxt
dvt

)
=

(
M−1vt
−xt

)
βdt︸ ︷︷ ︸

Hamiltonian component=:H

+

(
0d

−ΓM−1vt

)
βdt+

(
0√
2Γβ

)
dwt︸ ︷︷ ︸

Ornstein-Uhlenbeck process=:O

, (2.8)

which corresponds to Langevin dynamics in each dimension. That is, each xi is indepen-
dently coupled to a velocity vi, which explains the blockwise structure of f and G. The
mass M ∈ R+ is a hyperparameter that determines the coupling between the xt and vt
variables; β ∈ R+ is a constant time rescaling chosen such that the diffusion converges to its
equilibrium distribution within t ∈ [0, T ] (in practice, we set T=1) when initialized from a
data-defined non-equilibrium state and is analogous to β(t) in previous diffusions (we could
also use time-dependent β(t), but found constant β’s to work well, and therefore opted for
simplicity); Γ ∈ R+ is a friction coefficient that determines the strength of the noise injec-
tion into the velocities. Notice that the SDE in Eq. (2.8) consists of two components. The
H term represents a Hamiltonian component. Hamiltonian dynamics are frequently used
in Markov chain Monte Carlo methods to accelerate sampling and efficiently explore com-
plex probability distributions [209]. The Hamiltonian component in our diffusion process
plays a similar role and helps to quickly and smoothly converge the initial joint data-
velocity distribution to the equilibrium, or prior (see Fig. 2.1). Furthermore, Hamiltonian
dynamics on their own are trivially invertible [277], which intuitively is also beneficial in
our situation when using this diffusion for training SGMs. The O term corresponds to an
Ornstein-Uhlenbeck process [247] in the velocity component, which injects noise such that
the diffusion dynamics properly converge to equilibrium for any Γ>0. It can be shown that
the equilibrium distribution of this diffusion is pEQ(u) = N (x;0d, Id)N (v;0d,MId) (see
App. 2.4.2.2).

1We call the auxiliary variables velocities, as they play a similar role as velocities in physical systems.
Formally, our velocity variables would rather correspond to physical momenta, but the term momentum
is already widely used in machine learning and our mass M is unitless anyway.
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There is a crucial balance between M and Γ [193]: For Γ2<4M (underdamped Langevin
dynamics) the Hamiltonian component dominates, which implies oscillatory dynamics of
xt and vt that slow down convergence to equilibrium. For Γ2>4M (overdamped Langevin
dynamics) the O-term dominates which also slows down convergence, since the accelerat-
ing effect by the Hamiltonian component is suppressed due to the strong noise injection.
For Γ2=4M (critical damping), an ideal balance is achieved and convergence to pEQ(u)
occurs as fast as possible in a smooth manner without oscillations (also see discussion
in App. 2.4.1.1) [193]. Hence, we propose to set Γ2=4M and call the resulting diffusion
critically-damped Langevin diffusion (CLD) (see Fig. 2.1).

Diffusions such as the VPSDE [263] correspond to overdamped Langevin dynamics with
high friction coefficients Γ (see App. 2.4.1.2). Furthermore, in previous works noise is
injected directly into the data variables (pixels, for images). In CLD, only the velocity
variables are subject to direct noise and the data is perturbed only indirectly due to the
coupling between xt and vt.

2.3.3.1 Score Matching Objective

Considering the appealing convergence properties of CLD, we propose to utilize CLD
as forward diffusion process in SGMs. To this end, we initialize the joint distribution
p(u0)=p(x0) p(v0)=pdata(x0)N (v0;0d, γMId) with hyperparameter γ<1 and let the distri-
bution diffuse towards the tractable equilibrium—or prior—distribution pEQ(u). We can
then learn the corresponding score functions and define CLD-based SGMs. Following a
similar derivation as [262], we obtain the score matching (SM) objective (see App. 2.4.2.3):

min
θ

Et∼U [0,T ]Eut∼pt(ut)

[
λ(t)∥sθ(ut, t)−∇vt log pt(ut)∥22

]
(2.9)

Notice that this objective requires only the velocity gradient of the log-density of the
joint distribution, i.e., ∇vt log pt(ut). This is a direct consequence of injecting noise into
the velocity variables only. Without loss of generality, pt(ut)=pt(xt,vt)=pt(vt|xt)pt(xt).
Hence,

∇vt log pt(ut) = ∇vt [log pt(vt|xt) + log pt(xt)] = ∇vt log pt(vt|xt) (2.10)

This means that in CLD the neural network-defined score model sθ(ut, t) only needs
to learn the score of the conditional distribution pt(vt|xt), an arguably easier task than
learning the score of pt(xt), as in previous works, or of the joint pt(ut). This is the case,
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Figure 2.2: Left: Difference ξ(t) (via L2 norm) between score of diffused data and score of
Normal distribution. Right: Frobenius norm of Jacobian JF (t) of the neural network defining
the score function for different t. The underlying data distribution is a mixture of Normals.
Insets: Different axes (see App. 2.4.5.1 for detailed definitions of ξ(t) and JF (t)).

because our velocity distribution is initialized from a simple Normal distribution, such
that pt(vt|xt) is closer to a Normal distribution for all t≥0 (and for any xt) than pt(xt)
itself. This is most evident at t=0: The data and velocity distributions are independent
at t=0 and the score of p0(v0|x0)=p0(v0) simply corresponds to the score of the Normal
distribution p0(v0) from which the velocities are initialized, whereas the score of the data
distribution p0(x0) is highly complex and can even be unbounded [146]. We empirically
verify the reduced complexity of the score of pt(vt|xt) in Fig. 2.2. We find that the score
that needs to be learnt by the model is more similar to a score corresponding to a Normal
distribution for CLD than for the VPSDE. We also measure the complexity of the neural
networks that were learnt to model this score via the squared Frobenius norm of their
Jacobians. We find that the CLD-based SGMs have significantly simpler and smoother
neural networks than VPSDE-based SGMs for most t, in particular when leveraging a
mixed score formulation (see next section).

2.3.3.2 Scalable Training

A Practical Objective. We cannot train directly with Eq. (2.9), since we do not have
access to the marginal distribution pt(ut). As presented in Sec. 2.3.2, we could employ
denoising score matching (DSM) and instead sample u0, and diffuse those samples, which
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would lead to a tractable objective. However, recall that in CLD the distribution at t=0
is the product of a complex data distribution and a Normal distribution over the initial
velocity. Therefore, we propose a hybrid version of score matching [123] and denoising score
matching [282], which we call hybrid score matching (HSM). In HSM, we draw samples from
p0(x0)=pdata(x0) as in DSM, but then diffuse those samples while marginalizing over the full
initial velocity distribution p0(v0)=N (v;0d, γMId) as in regular SM (HSM is discussed in
detail in App. 2.4.3). Since p0(v0) is Normal (and f and G affine), p(ut|x0) is also Normal
and this remains tractable. We can write this HSM objective as:

min
θ

Et∈[0,T ]Ex0∼p0(x0)Eut∼pt(ut|x0)

[
λ(t)∥sθ(ut, t)−∇vt log pt(ut|x0)∥22

]
. (2.11)

In HSM, the expectation over p0(v0) is essentially solved analytically, while DSM would use
a sample-based estimate. Hence, HSM reduces the variance of training objective gradients
compared to pure DSM, which we validate in App. 2.4.3.1. Furthermore, when drawing a
sample u0 to diffuse in DSM, we are essentially placing an infinitely sharp Normal with un-
bounded score [146] at u0, which requires undesirable modifications or truncation tricks for
stable training [263, 280]. Hence, with DSM we could lose some benefits of the CLD frame-
work discussed in Sec. 2.3.3.1, whereas HSM is tailored to CLD and fundamentally avoids
such unbounded scores. Closed form expressions for the perturbation kernel pt(ut|x0) are
provided in App. 2.4.2.1.

Score Model Parametrization. (i) Ho et al. [109] found that it can be beneficial to
parameterize the score model to predict the noise that was used in the reparametrized sam-
pling to generate perturbed samples ut. For CLD, ut = µt(x0) +Ltϵ2d, where Σt = LtL

⊤
t

is the Cholesky decomposition of pt(ut|x0)’s covariance matrix, ϵ2d ∼ N (ϵ2d;02d, I2d), and
µt(x0) is pt(ut|x0)’s mean. Furthermore, ∇vt log pt(ut|x0) = −ℓtϵd:2d, where ϵd:2d denotes
those d components of ϵ2d that actually affect ∇vt log pt(ut|x0) (since we take velocity
gradients only, not all are relevant).

With Σt =

(
Σxx
t Σxv

t

Σxv
t Σvv

t

)
︸ ︷︷ ︸

“per-dimension” covariance matrix

⊗ Id, we have ℓt :=

√
Σxx
t

Σxx
t Σvv

t − (Σxv
t )2

.

(ii) Vahdat et al. [280] showed that it can be beneficial to assume that the diffused marginal
distribution is Normal at all times and parametrize the model with a Normal score and a
residual “correction”. For CLD, the score is indeed Normal at t = 0 (due to the indepen-
dently initialized x and v at t=0). Similarly, the target score is close to Normal for large
t, as we approach the equilibrium.
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Based on (i) and (ii), we parameterize sθ(ut, t) = −ℓtαθ(ut, t) with αθ(ut, t) = ℓ−1
t vt/Σ

vv
t +

α′
θ(ut, t), where Σvv

t corresponds to the v-v component of the “per-dimension” covari-
ance matrix of the Normal distribution pt(ut|x0 = 0d). In other words, we assumed
p0(x0) = δ(x) when defining the analytic term of the score model. Formally, −v/Σvv

t is
the score of a Normal distribution with covariance Σ̂vv

t Id. Following [280], we refer to this
parameterization as mixed score parameterization. Alternative model parameterizations
are possible, but we leave their exploration to future work. With this definition, the HSM
training objective becomes (details in App. 2.4.2.3):

min
θ

Et∼U [0,T ]Ex0∼p0(x0)Eϵ2d∼N (ϵ2d;02d,I2d)

[
λ(t)ℓ2t∥ϵd:2d − αθ(µt(x0)+Ltϵ2d, t)∥22

]
, (2.12)

which corresponds to training the model to predict the noise only injected into the velocity
during reparametrized sampling of ut, similar to noise prediction in Ho et al. [109], Song
et al. [263].

Objective Weightings. For λ(t) = Γβ, the objective corresponds to maximum likelihood
learning [262] (see App. 2.4.2.3). Analogously to prior work [109, 262, 280], an objective
better suited for high quality image synthesis can be obtained by setting λ(t) = ℓ−2

t , which
corresponds to “dropping the variance prefactor” ℓ2t .

2.3.3.3 Sampling from CLD-based SGMs

To sample from the CLD-based SGM we can either directly simulate the reverse-time
diffusion process (Eq. (2.5)) or, alternatively, solve the corresponding probability flow
ODE [262, 263] (see App. 2.4.2.5). To simulate the SDE of the reverse-time diffusion
process, previous works often relied on Euler-Maruyama (EM) [154] and related methods
[109, 134, 263]. We derive a new solver, tailored to CLD-based models. Here, we provide
the high-level ideas and derivations (see App. 2.4.4 for details).

Our generative SDE can be written as (with ūt = uT−t, x̄t = xT−t, v̄t = vT−t):(
dx̄t
dv̄t

)
=

(
−M−1v̄t

x̄t

)
βdt︸ ︷︷ ︸

AH

+

(
0d

−ΓM−1v̄t

)
βdt+

(
0d√

2Γβdwt

)
︸ ︷︷ ︸

AO

+

(
0d

2Γ
[
s(ūt, T − t) +M−1v̄t

])βdt︸ ︷︷ ︸
S

It consists of a Hamiltonian component AH , an Ornstein-Uhlenbeck process AO, and the
score model term S. We could use EM to integrate this SDE; however, standard Euler
methods are not well-suited for Hamiltonian dynamics [167, 209]. Furthermore, if S was 0,
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we could solve the SDE in closed form. This suggests the construction of a novel integrator.

We use the Fokker-Planck operator2 formalism [165, 166, 277]. Using a similar nota-
tion as Leimkuhler and Matthews [165], the Fokker-Planck equation corresponding to the
generative SDE is ∂pt(ūt)/∂t=(L̂∗

A+L̂∗
S)pt(ūt), where L̂∗

A and L̂∗
S are the non-commuting

Fokker-Planck operators corresponding to the A:=AH+AO and S terms, respectively. Ex-
pressions for L̂∗

A and L̂∗
S can be found in App. 2.4.4. We can construct a formal, but in-

tractable solution of the generative SDE as ūt = et(L̂
∗
A+L̂∗

S)ū0, where the operator e
t(L̂∗

A+L̂∗
S)

(known as the classical propagator in statistical physics) propagates states ū0 for time t
according to the dynamics defined by the combined operators L̂∗

A + L̂∗
S. Although this

operation is not analytically tractable, it can serve as starting point to derive a practical
integrator. Using the symmetric Trotter theorem or Strang splitting formula as well as the
Baker–Campbell–Hausdorff formula [266, 275, 277], it can be shown that:

et(L̂
∗
A+L̂∗

S) = lim
N→∞

[
e

δt
2
L̂∗
AeδtL̂

∗
Se

δt
2
L̂∗
A

]N
≈
[
e

δt
2
L̂∗
AeδtL̂

∗
Se

δt
2
L̂∗
A

]N
+O(Nδt3), (2.13)

for large N ∈ N+ and time step δt := t/N . The expression suggests that instead of directly

evaluating the intractable et(L̂
∗
A+L̂∗

S), we can discretize the dynamics over t into N pieces
of step size δt, such that we only need to apply the individual e

δt
2
L̂∗
A and eδtL̂

∗
S many times

one after another for small steps δt. A finer discretization results in a smaller error (since
N=t/δt, the error effectively scales as O(δt2) for fixed t). Hence, this implies an integration

method. Indeed, e
δt
2
L̂∗
Aūt is available in closed form, as mentioned before; however, eδtL̂

∗
S ūt

is not. Therefore, we approximate this latter component of the integrator via a standard
Euler step. Thus, the integrator formally has an error of the same order as standard EM
methods. Nevertheless, as long as the dynamics is not dominated by the S component, our
proposed integration scheme is expected to be more accurate than EM, since we split off
the analytically tractable part and only use an Euler approximation for the S term. Recall
that the model only needs to learn the score of the conditional distribution pt(vt|xt), which
is close to Normal for much of the diffusion, in which case the S term will indeed be small.
This suggests that the generative SDE dynamics are in fact dominated by AH and AO in
practice. Note that only the propagator eδtL̂

∗
S is computationally expensive, as it involves

evaluating the neural network. We coin our novel SDE integrator for CLD-based SGMs
Symmetric Splitting CLD Sampler (SSCS). A detailed derivation, analyses, and a formal
algorithm are presented in App. 2.4.4.

2The Fokker-Planck operator is also known as Kolmogorov operator. If the underlying dynamics is fully
Hamiltonian, it corresponds to the Liouville operator [166, 277].
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2.3.4 Related Work

Relations to Statistical Mechanics and Molecular Dynamics. Learning a mapping
between a simple, tractable and a complex distribution as in SGMs is inspired by annealed
importance sampling [208] and the Jarzynski equality from non-equilibrium statistical me-
chanics [14, 127–129]. However, after Sohl-Dickstein et al. [257], little attention has been
given to the origins of SGMs in statistical mechanics. Intuitively, in SGMs the diffusion
process is initialized in a non-equilibrium state u0 and we would like to bring the system to
equilibrium, i.e., the tractable prior distribution, as quickly and as smoothly as possible to
enable efficient denoising. This “equilibration problem” is a much-studied problem in sta-
tistical mechanics, particularly in molecular dynamics, where a molecular system is often
simulated in thermodynamic equilibrium. Algorithms to quickly and smoothly bring a sys-
tem to and maintain at equilibrium are known as thermostats. In fact, CLD is inspired by
the Langevin thermostat [34]. In molecular dynamics, advanced thermostats are required
in particular for “multiscale” systems that show complex behaviors over multiple time- and
length-scales. Similar challenges also arise when modeling complex data, such as natural
images. Hence, the vast literature on thermostats [6, 35, 41, 42, 116, 121, 192, 215, 277]
may be valuable for the development of future SGMs. Also the framework for developing
SSCS is borrowed from statistical mechanics. The same techniques have been used to de-
rive molecular dynamics algorithms [34, 42, 158, 165, 166, 276].

Further Related Work. Generative modeling by learning stochastic processes has a
long history [4, 23, 28, 99, 109, 189, 206, 256, 259]. We build on Song et al. [263], which
introduced the SDE framework for modern SGMs. Nachmani et al. [207] recently intro-
duced non-Gaussian diffusion processes with different noise distributions. However, the
noise is still injected directly into the data, and no improved sampling schemes or training
objectives are introduced. Vahdat et al. [280] proposed LSGM, which is complementary to
CLD: we improve the diffusion process itself, whereas LSGM “simplifies the data” by first
embedding it into a smooth latent space. LSGM is an overall more complicated frame-
work, as it is trained in two stages and relies on additional encoder and decoder networks.
Recently, techniques to accelerate sampling from pre-trained SGMs have been proposed
[156, 245, 258, 285]. Importantly, these methods usually do not permit straightforward
log-likelihood estimation. Furthermore, they are originally not based on the continuous
time framework, which we use, and have been developed primarily for discrete-step dif-
fusion models. A complementary work to CLD is “Gotta Go Fast” (GGF) [134], which
introduces an adaptive SDE solver for SGMs, tuned towards image synthesis. GGF uses
standard Euler-based methods under the hood [154, 234], in contrast to our SSCS that
is derived from first principles. Furthermore, our SDE integrator for CLD does not make
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any data-specific assumptions and performs extremely well even without adaptive step
sizes. Some works study SGMs for maximum likelihood training [120, 150, 262]. Note
that we did not focus on training our models towards high likelihood. Furthermore, Chen
et al. [47] and Huang et al. [119] recently trained augmented Normalizing Flows, which
have conceptual similarities with our velocity augmentation. Methods leveraging auxil-
iary variables similar to our velocities are also used in statistics—such as Hamiltonian
Monte Carlo [209]—and have found applications, for instance, in Bayesian machine learn-
ing [52, 69, 250]. As shown in Ma et al. [191], our velocity is equivalent to momentum in
gradient descent and related methods [148, 225]. Momentum accelerates optimization; the
velocity in CLD accelerates mixing in the diffusion process. Lastly, our CLD method can
be considered as a second-order Langevin algorithm, but even higher-order schemes are
possible [205] and could potentially further improve SGMs.

2.3.5 Experiments

Architectures. We focus on image synthesis and implement CLD-based SGMs using
NCSN++ and DDPM++ [263] with 6 input channels (for velocity and data) instead of 3.

Relevant Hyperparameters. CLD’s hyperparameters are chosen as β=4, Γ=1 (or
equivalently M−1=4) in all experiments. We set the variance scaling of the inital velocity
distribution to γ=0.04 and use the proposed HSM objective with the weighting λ(t)=ℓ−2

t ,
which promotes image quality.

Sampling. We generate model samples via: (i) Probability flow using a Runge–Kutta
4(5) method; reverse-time generative SDE sampling using either (ii) EM or (iii) our SSCS.
For methods without adaptive stepsize (EM and SSCS), we use evaluation times chosen
according to a quadratic function, like previous work [156, 258, 285] (indicated by QS).

Evaluation. We measure image sample quality for CIFAR-10 via Fréchet inception dis-
tance (FID) with 50k samples [105]. We also evaluate an upper bound on the negative
log-likelihood (NLL): − log p(x0)≤−Ev0∼p(v0) log pε(x0,v0)−H, where H is the entropy of
p(v0) and log pε(x0,v0) is an unbiased estimate of log p(x0,v0) from the probability flow
ODE [100, 263]. As in Vahdat et al. [280], the stochasticity of log pε(x,v) prevents us from
performing importance weighted NLL estimation over the velocity distribution [33]. We
also record the number of function—neural network—evaluations (NFEs) during synthesis
when comparing sampling methods. All implementation details in App. 2.4.2.5 and 2.4.5.
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2.3.5.1 Image Generation

Following Song et al. [263], we focus on the widely used CIFAR-10 unconditional image
generation benchmark. Our CLD-based SGM achieves an FID of 2.25 based on the prob-
ability flow ODE and an FID of 2.23 via simulating the generative SDE (Tab. 2.1). The
only models marginally outperforming CLD are LSGM [280] and NSCN++/VESDE with
2,000 step predictor-corrector (PC) sampling [263]. However, LSGM uses a model with
≈475M parameters to achieve its high performance, while we obtain our numbers with
a model of ≈100M parameters. For a fairer comparison, we trained a smaller LSGM
also with ≈100M parameters, which is reported as “LSGM-100M” in Tab. 2.1 (details in
App. 2.4.5.2.7). Our model has a significantly better FID score than “LSGM-100M”. In
contrast to NSCN++/VESDE, we achieve extremely strong results with much fewer NFEs
(for example, see n∈{150, 275, 500} in Tab. 2.3 and also Tab. 2.2)—the VESDE performs
poorly in this regime. We conclude that when comparing models with similar network
capacity and under NFE budgets ≤500, our CLD-SGM outperforms all published results
in terms of FID. We attribute these positive results to our easier score matching task.
Furthermore, our model reaches an NLL bound of 3.31, which is on par with recent works
such as Austin et al. [12], Nichol and Dhariwal [212], Vahdat et al. [280] and indicates
that our model is not dropping modes. However, our bound is potentially quite loose (see
discussion in App. 2.4.2.5) and the true NLL might be significantly lower. We did not
focus on training our models towards high likelihood.

To demonstrate that CLD is also suitable for high-resolution image synthesis, we addition-
ally trained a CLD-SGM on CelebA-HQ-256, but without careful hyperparameter tuning
due to limited compute resources. Model samples in Fig. 4 appear diverse and high-quality
(additional samples in App. 2.4.6).

2.3.5.2 Sampling Speed and Synthesis Quality Trade-Offs

We analyze the sampling speed vs. synthesis quality trade-off for CLD-SGMs and study
SSCS’s performance under different NFE budgets (Tabs. 2.2 and 2.3). We compare to Song
et al. [263] and use EM to solve the generative SDE for their VPSDE and PC (reverse-
diffusion + Langevin sampler) for the VESDE model. We also compare to the GGF [134]
solver for the generative SDE as well as probability flow ODE sampling with a higher-order
adaptive step size solver. Further, we compare to LSGM [280] (using our LSGM-100M),
which also uses probability flow sampling. With one exception (VESDE with 2,000 NFE)
our CLD-SGM outperforms all baselines, both for adaptive and fixed-step size methods.
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Table 2.1: Unconditional CIFAR-10 generative
performance.

Class Model NLL↓ FID↓

Score
CLD-SGM (Prob. Flow) (ours) ≤3.31 2.25
CLD-SGM (SDE) (ours) - 2.23

Score

DDPM++, VPSDE (Prob. Flow) [263] 3.13 3.08
DDPM++, VPSDE (SDE) [263] - 2.41
DDPM++, sub-VP (Prob. Flow) [263] 2.99 2.92
DDPM++, sub-VP (SDE) [263] - 2.41
NCSN++, VESDE (SDE) [263] - 2.20
LSGM [280] ≤3.43 2.10
LSGM-100M [280] ≤2.96 4.60
DDPM [109] ≤3.75 3.17
NCSN [259] - 25.3
Adversarial DSM [135] - 6.10
Likelihood SDE [262] 2.84 2.87
DDIM (100 steps) [258] - 4.16
FastDDPM (100 steps) [156] - 2.86
Improved DDPM [212] 3.37 2.90
VDM [150] ≤2.49 7.41 (4.00)
UDM [146] 3.04 2.33
D3PM [12] ≤3.44 7.34
Gotta Go Fast [134] - 2.44
DDPM Distillation [186] - 9.36

GANs

SNGAN [203] - 21.7
SNGAN+DGflow [10] - 9.62
AutoGAN [96] - 12.4
TransGAN [131] - 9.26
StyleGAN2 w/o ADA [138] - 8.32
StyleGAN2 w/ ADA [138] - 2.92
StyleGAN2 w/ Diffaug [317] - 5.79

DistAug [136] 2.53 42.90
PixelCNN [216] 3.14 65.9
Glow [152] 3.35 48.9

Aut.-Reg., Residual Flow [51] 3.28 46.37
Flows, NVAE [279] 2.91 23.5
VAEs, NCP-VAE [8] - 24.08
EBMs DC-VAE [221] - 17.90

IGEBM [80] - 40.6
VAEBM [294] - 12.2
Recovery EBM [92] 3.18 9.58

Figure 2.3: CIFAR-10 samples.

Figure 2.4: CelebA-HQ-256 samples.
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Table 2.2: (right) Performance using adaptive stepsize solvers (ODE is based on probability flow, GGF
simulates generative SDE). †: taken from Jolicoeur-Martineau et al. [134]. LSGM corresponds to the small
LSGM-100M model for fair comparison (details in App. 2.4.5.2.7). Error tolerances were chosen to obtain
similar NFEs.

Table 2.3: (bottom) Performance using non-adaptive stepsize
solvers (for PC, QS performed poorly). †: 2.23 FID is our
evaluation, Song et al. [263] reports 2.20 FID. See Tab. 2.9 in
App. 2.4.6.2 for extended results.

FID at n function evaluations ↓
Model Sampler n=50 n=150 n=275 n=500 n=1000 n=2000

CLD EM-QS 52.7 7.00 3.24 2.41 2.27 2.23
CLD SSCS-QS 20.5 3.07 2.38 2.25 2.30 2.29

VPSDE EM-QS 28.2 4.06 2.65 2.47 2.66 2.60

VESDE PC 460 216 11.2 3.75 2.43 2.23†

Model Solver NFEs↓ FID↓
CLD ODE 312 2.25
VPSDE GGF 330 2.56†

VESDE GGF 488 2.99†

CLD ODE 147 2.71
VPSDE ODE 141 2.76
VPSDE GGF 151 2.73†

VESDE ODE 182 7.63
VESDE GGF 170 10.15†

LSGM ODE 131 4.60

More results in App. 2.4.6.2.

Several observations stand out: (i) As expected (Sec. 2.3.3.3), for CLD, SSCS significantly
outperforms EM under limited NFE budgets. When using a fine discretization of the SDE
(high NFE), the two perform similarly, which is also expected, as the errors of both meth-
ods will become negligible. (ii) In the adaptive solver setting, using a simpler ODE solver,
we even outperform GGF, which is tuned towards image synthesis. (iii) Our CLD-SGM
also outperforms the LSGM-100M model in terms of FID. It is worth noting, however, that
LSGM was designed primarily for faster synthesis, which it achieves by modeling a smooth
distribution in latent space instead of the more complex data distribution directly. This
suggests that it would be promising to combine LSGM with CLD and train a CLD-based
LSGM, combining the strengths of the two approaches. It would also be interesting to
develop a more advanced, adaptive SDE solver that leverages SSCS as the backbone and,
for example, potentially test our method within a framework like GGF. Our current SSCS
only allows for fixed step sizes—nevertheless, it achieves excellent performance.

2.3.5.3 Ablation Studies

We perform ablation studies to study CLD’s new hyperparameters (run with a smaller ver-
sion of our CLD-SGM used above; App. 2.4.5 for details).
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Table 2.4: Mass hy-
perparameter.

M−1 NLL↓ FID↓
1 ≤3.30 3.23
4 ≤3.37 3.14
16 ≤3.26 3.16

Table 2.5: Initial
velocity distribution
width.

γ NLL↓ FID↓
0.04 ≤3.37 3.14
0.4 ≤3.15 3.21
1 ≤3.15 3.27

Mass Parameter: Tab. 2.4 shows results for a CLD-SGM trained
with different M−1 (also recall that M−1 and Γ are tied together
via Γ2 = 4M ; we are always in the critical-damping regime). Differ-
ent mass values perform mostly similarly. Intuitively, training with
smallerM−1 means that noise flows from the velocity variables vt into
the data xt more slowly, which necessitates a larger time rescaling β.
We found that simply tying M−1 and β together via β=8

√
M works

well and did not further fine-tune. Initial Velocity Distribution:
Tab. 2.5 shows results for a CLD-SGM trained with different initial
velocity variance scalings γ. Varying γ similarly has only a small
effect, but small γ seems slightly beneficial for FID, while the NLL
bound suffers a bit. Due to our focus on synthesis quality as measued
by FID, we opted for small γ. Intuitively, this means that the data
at t=0 is “at rest”, and noise flows from the velocity into the data
variables only slowly.

Mixed Score: Similar to previous work [280], we find training with the mixed score
(MS) parametrization (Sec. 2.3.3.2) beneficial. With MS, we achieve an FID of 3.14, with-
out only 3.56.

Hybrid Score Matching: We also tried training with regular DSM, instead of HSM.
However, training often became unstable. As discussed in Sec. 2.3.3.2, this is likely be-
cause when using standard DSM our CLD would suffer from unbounded scores close to
t=0, similar to previous SDEs [146]. Consequently, we consider our novel HSM a crucial
element for training CLD-SGMs.

We conclude that CLD does not come with difficult-to-tune hyperparameters. We ex-
pect our chosen hyperparameters to immediately translate to new tasks and models. In
fact, we used the same M−1, γ, MS and HSM settings for CIFAR-10 and CelebA-HQ-256
experiments without fine-tuning.

2.3.6 Conclusion

We presented critically-damped Langevin diffusion, a novel diffusion process for training
SGMs. CLD diffuses the data in a smoother, easier-to-denoise manner compared to pre-
vious SGMs, which results in smoother neural network-parametrized score functions, fast
synthesis, and improved expressivity. Our experiments show that CLD outperforms previ-
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ous SGMs on image synthesis for similar-capacity models and sampling compute budgets,
while our novel SSCS is superior to EM in CLD-based SGMs. From a technical perspec-
tive, in addition to proposing CLD, we derive CLD’s score matching objective termed as
HSM, a variant of denoising score matching suited for CLD, and we derive a tailored SDE
integrator for CLD. Inspired by methods used in statistical mechanics, our work provides
new insights into SGMs and implies promising directions for future research.

We believe that CLD can potentially serve as the backbone diffusion process of next
generation SGMs. Future work includes using CLD-based SGMs for generative model-
ing tasks beyond images, combining CLD with techniques for accelerated sampling from
SGMs, adapting CLD-based SGMs towards maximum likelihood, and utilizing other ther-
mostating methods from statistical mechanics.

2.3.7 Ethics and Reproducibility

Our paper focuses on fundamental algorithmic advances to improve the generative model-
ing performance of SGMs. As such, the proposed CLD does not imply immediate ethical
concerns. However, we validate CLD on image synthesis benchmarks. Generative modeling
of images has promising applications, for example for digital content creation and artistic
expression [15], but can also be used for nefarious purposes [201, 210, 278]. It is worth
mentioning that compared to generative adversarial networks [97], a very popular class
of generative models, SGMs have the promise to model the data more faithfully, without
dropping modes and introducing problematic biases. Generally, the ethical impact of our
work depends on its application domain and the task at hand.

To aid reproducibility of the results and methods presented in our paper, we made source
code to reproduce the main results of the paper publicly available, including detailed in-
structions; see our project page https://nv-tlabs.github.io/CLD-SGM and the code
repository https://github.com/nv-tlabs/CLD-SGM. Furthermore, all training details
and hyperparameters are already in detail described in the Appendix, in particular in
App. 2.4.5.
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2.4 Appendix

2.4.1 Langevin Dynamics

Here, we discuss different aspects of Langevin dynamics. Recall the Langevin dynamics,
Eq. (2.8), from the main paper:(

dxt
dvt

)
=

(
M−1vt
−xt

)
βdt︸ ︷︷ ︸

Hamiltonian component=:H

+

(
0d

−ΓM−1vt

)
βdt+

(
0√
2Γβ

)
dwt︸ ︷︷ ︸

Ornstein-Uhlenbeck process=:O

. (2.14)

2.4.1.1 Different Damping Ratios

As discussed in Sec. 2.3.3, Langevin dynamics can be run with different ratios between
mass M and squared friction Γ2. To recap from the main paper:

(i) For Γ2 < 4M (underdamped Langevin dynamics), the Hamiltonian component dom-
inates, which implies oscillatory dynamics of xt and vt that slow down convergence to
equilibrium.

(ii) For Γ2 > 4M (overdamped Langevin dynamics), the O-term dominates which also
slows down convergence, since the accelerating effect by the Hamiltonian component is
suppressed due to the strong noise injection.

(iii) For Γ2 = 4M (critical-damping), an ideal balance is achieved and convergence to
pEQ(u)occurs quickly in a smooth manner without oscillations.

In Fig. 2.5, we visualize diffusion trajectories according to Langevin dynamics run in the
different damping regimes. We observe that underdamped Langevin dynamics show unde-
sired oscillatory behavior, while overdamped Langevin dynamics perform very inefficiently,
too. Critical-damping achieves a good balance between the two and mixes and converges
quickly. In fact, it can be shown to be optimal in terms of convergence; see, for exam-
ple, McCall [193].

Consequently, we propose to set Γ2 = Γ2
critical := 4M in CLD.
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Figure 2.5: Langevin dynamics in different damping regimes. Each pair of visualizations corre-
sponds to the (coupled) evolution of data xt and velocities vt. We show the marginal (red) prob-
abilities and the projections of the (green) trajectories. The probabilities always correspond
to the same optimal setting Γ = Γcritical (recall that Γcritical = 2

√
M and Γmax = M/(β(t)δt); see

Sec. 2.4.1.2). The trajectories correspond to different Langevin trajectories run in the different
regimes with indicated friction coefficients Γ. We see in (b), that for critical damping the xt
trajectories quickly explore the space and converge according to the distribution indicated by
the underlying probability. In the under-damped regime (a), even though the trajectories mix
quickly we observe undesired oscillatory behavior. For over-damped Langevin dynamics, (c) and
(d), the xt trajectories mix and converge only very slowly. Note that the visualized diffusion uses
different hyperparameters compared to the diffusion shown in Fig. 2.1 in the main text: Here, we
have chosen a much larger β, such that also the slow overdamped Langevin dynamics trajectories
shown here mix a little bit over the visualized diffusion time (while the probability distribution
and the trajectories for critical damping converge almost instantly).
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2.4.1.2 Very High Friction Limit and Connections to previous SDEs in SGMs

Let us re-write the above Langevin dynamics and consider the more general case with
time-dependent β(t):

dxt = M−1vtβ(t)dt, (2.15)

dvt = − xtβ(t)dt︸ ︷︷ ︸
(ii): potential term

−ΓM−1vtβ(t)dt︸ ︷︷ ︸
(iii): friction term

+
√

2Γβ(t)dwt︸ ︷︷ ︸
(iv): noise term

. (2.16)

To solve this SDE, let us assume a simple Euler-based integration scheme, with the update
equation for a single step at time t (this integration scheme would not be optimal, as
discussed in Sec. 2.3.3.3., however, it would be accurate for sufficiently small time steps
and we just need this to make the connection to previous works like the VPSDE):

xn+1 = xn + β(t)M−1vn+1δt, (2.17)

vn+1 = vn︸︷︷︸
(i): current step velocity

− β(t)xnδt︸ ︷︷ ︸
(ii): potential term

− β(t)ΓM−1vnδt︸ ︷︷ ︸
(iii): friction term

+
√

2β(t)ΓN (0d, δtId)︸ ︷︷ ︸
(iv): noise term

,

(2.18)

Now, let us assume a friction coefficient Γ = Γmax := M
β(t)δt

. Since the time step δt is
usually very small, this correspond to a very high friction. In fact, it can be considered
the maximum friction limit, at which the friction is so large that the current step velocity
(i) is completely cancelled out by the friction term (iii). We obtain:

xn+1 = xn + β(t)M−1vn+1δt (2.19)

vn+1 = −β(t)xtδt+
√

2
M

δt
N (0d, δtId). (2.20)

Now the velocity update, Eq. (2.20), does not depend on the current step velocity on the
right-hand-side anymore. Hence, we can insert Eq. (2.20) directly into Eq. (2.19) and
obtain:

xn+1 = xn − β(t)2M−1xnδt
2 +

√
2β(t)2δtM−1N (0d, δtId)

= xn − β(t)2M−1xnδt
2 +

√
2β(t)2δt2M−1N (0d, Id).

(2.21)

Re-defining δt′ := δt2 and β′(t) := β(t)2, we obtain

xn+1 = xn − β′(t)M−1xnδt
′ +
√
2β′(t)δt′M−1N (0d, Id), (2.22)
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which corresponds to the high-friction overdamped Langevin dynamics that are frequently
run, for example, to train energy-based generative models [80, 294]. Let’s further absorb
the mass M−1 and the time step δt′ into the time rescaling, defining β̂(t) := 2β′(t)M−1δt′.
We obtain:

xn+1 = xn −
1

2
β̂(t)xn +

√
β̂(t)N (0d, Id)

= (1− 1

2
β̂(t))xn +

√
β̂(t)N (0d, Id)

≈
√
1− β̂(t)xn +

√
β̂(t)N (0d, Id),

(2.23)

where the last approximation is true for sufficiently small β̂(t). However, this expression
corresponds to

xn+1 ∼ N (xn+1;

√
1− β̂(t)xn, β̂(t)Id) (2.24)

which is exactly the transition kernel of the VPSDE’s Markov chain [109, 263]. We see that
the VPSDE corresponds to the high-friction limit of a more general Langevin dynamics-
based diffusion process of the form of Eq. (2.14).

If we assume a diffusion as above but with the potential term (ii) set to 0, we can similarly
derive the VESDE [263] as a high-friction limit of the corresponding diffusion. Generally,
all previously used diffusions that inject noise directly into the data variables correspond
to such high-friction diffusions.

In conclusion, we see that previous high-friction diffusions require an excessive amount
of noise to be injected to bring the dynamics to the prior, which intuitively makes denois-
ing harder. For our CLD in the critical damping regime we can run the diffusion for a
much shorter time or, equivalently, can inject less noise to converge to the equilibrium, i.e.,
the prior.

2.4.2 Critically-Damped Langevin Diffusion

Here, we present further details about our proposed critically-damped Langevin diffusion
(CLD). We provide the derivations and formulas that were not presented in the main paper
in the interest of brevity.
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2.4.2.1 Perturbation Kernel

To recap from the main text, in this work we propose to augment the data xt ∈ Rd with
auxiliary velocity variables vt ∈ Rd. We then run the following diffusion process in the
joint xt-vt-space

dut :=

(
dxt
dvt

)
= f(ut, t)dt+G(ut, t)dwt (2.25)

f(ut, t) = (f(t)⊗ Id)ut, f(t) :=

(
0 β(t)M−1

−β(t) −β(t)ΓM−1

)
, (2.26)

G(ut, t) = G(t)⊗ Id, G(t) :=

(
0 0

0
√
2Γβ(t)

)
, (2.27)

where wt is a standard Wiener process in R2d and β : [0, T ]→ R+
0 is a time rescaling.3 In

particular, we consider the critically-damped Langevin diffusion which can be obtained by
setting M = Γ2/4, resulting in the following drift kernel

fCLD(ut, t) = (fCLD(t)⊗ Id)ut, fCLD(t) :=

(
0 4β(t)Γ−2

−β(t) −4β(t)Γ−1

)
. (2.28)

Since we only consider the critically-damped case in this work, we redefine f := fCLD and
f := fCLD for simplicity. Since our drift f and diffusion G coefficients are affine, ut is Nor-
mally distributed for all t ∈ [0, T ] if u0 is Normally distributed at t = 0 [247]. In particular,
given that u0 ∼ N (u0;µ0,Σ0 = Σ0 ⊗ Id), where Σ0 = diag(Σxx

0 ,Σvv
0 ) is a positive semi-

definite diagonal 2-by-2 matrix (we restrict our derivation to diagonal covariance matrices
at t = 0 for simplicity, since in our situation velocity and data are generally independent
at t = 0), we derive expressions for µt and Σt, the mean and the covariance matrix of ut,
respectively.

Following Särkkä and Solin [247] (Section 6.1), the mean and covariance matrix of ut
obey the following respective ordinary differential equations (ODEs)

dµt
dt

= (f(t)⊗ Id)µt, (2.29)

dΣt

dt
= (f(t)⊗ Id)Σt + [(f(t)⊗ Id)Σt]

⊤ +
(
G(t)G(t)⊤

)
⊗ Id. (2.30)

3For our experiments, we only used constant β; however, for generality, we present all derivations for
time-dependent β(t).
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Notating µ0 = (x0,v0)
⊤, the solutions to the above ODEs are

µt =

(
2B(t)Γ−1x0 + 4B(t)Γ−2v0 + x0

−B(t)x0 − 2B(t)Γ−1v0 + v0

)
e−2B(t)Γ−1

, (2.31)

and

Σt = Σt ⊗ Id, (2.32)

Σt =

(
Σxx
t Σxv

t

Σxv
t Σvv

t

)
e−4B(t)Γ−1

, (2.33)

Σxx
t = Σxx

0 + e4B(t)Γ
−1 − 1 + 4B(t)Γ−1 (Σxx

0 − 1) + 4B2(t)Γ−2 (Σxx
0 − 2) + 16B(t)2Γ−4Σvv

0 ,
(2.34)

Σxv
t = −B(t)Σxx

0 + 4B(t)Γ−2Σvv
0 − 2B2(t)Γ−1 (Σxx

0 − 2)− 8B2(t)Γ−3Σvv
0 , (2.35)

Σvv
t = Γ2

4

(
e4B(t)Γ

−1 − 1
)
+ B(t)Γ + Σvv

0

(
1 + 4B(t)2Γ−2 − 4B(t)Γ−1

)
+ B(t)2 (Σxx

0 − 2) ,

(2.36)

where B(t) =
∫ t
0
β(t̂) dt̂. For constant β(t) = β (as is used in all our experiments), we

simply have B(t) = tβ. The correctness of the proposed mean and covariance matrix can
be verified by simply plugging them back into their respective ODEs; see App. 2.4.7.1.

With the above derivations, we can find analytical expressions for the perturbation ker-
nel p(ut|·). For example, when conditioning on initial data and velocity samples x0 and
v0 (as in denoising score matching (DSM)), the mean and covariance matrix of the per-
turbation kernel p(ut|u0) can be obtained by setting µ0 = (x0,v0)

⊤, Σxx
0 = 0, and Σvv

0 = 0.

In our experiments, the initial velocity distribution is set to N (0d, γMId). Conditioning
only on initial data samples x0 and marginalizing over the full initial velocity distribution
(as in our hybrid score matching (HSM), see Sec. 2.4.3), the mean and covariance matrix
of the perturbation kernel p(ut|x0) can be obtained by setting µ0 = (x0,0d)

⊤, Σxx
0 = 0,

and Σvv
0 = γM .

2.4.2.2 Convergence and Equilibrium

Our CLD-based training of SGMs—as well as denoising diffusion models more generally—
relies on the fact that the diffusion converges towards an analytically tractable equilibrium
distribution for sufficiently large t. In fact, from the above equations we can easily see
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that,

lim
t→∞

Σxx
t = 1, (2.37)

lim
t→∞

Σxv
t = 0, (2.38)

lim
t→∞

Σvv
t =

Γ2

4
= M, (2.39)

lim
t→∞

µt = 02d, (2.40)

which establishes pEQ(u) = N (x;0d, Id)N (v;0d,MId).

Notice that our CLD is an instantiation of the more general Langevin dynamics defined by(
dxt
dvt

)
=

(
M−1vt

∇xt log ppot(xt)

)
βdt+

(
0d

−ΓM−1vt

)
βdt+

(
0√
2Γβ

)
dwt. (2.41)

which has the equilibrium distribution p̂EQ(u) = ppot(x)N (v;0d,MId) [166, 277]. How-
ever, the perturbation kernel of this Langevin dynamics is not available analytically any-
more for arbitrary ppot(x). In our case, however, we have the analytically tractable
ppot(x) = N (x;0d, Id). Note that this corresponds to the classical “harmonic oscillator”
problem from physics.

2.4.2.3 CLD Objective

To derive the objective for training CLD-based SGMs, we start with a derivation that
targets maximum likelihood training in a similar fashion to Song et al. [262]. Let p0 and
q0 be two densities, then

DKL(p0 ∥ q0) = DKL(p0 ∥ q0)−DKL(pT ∥ qT ) +DKL(pT ∥ qT )

= −
∫ T

0

∂DKL(pt ∥ qt)
∂t

dt+DKL(pT ∥ qT ),
(2.42)

where pt and qt are the marginal densities of p0 and q0, respectively, diffused by our
critically-damped Langevin diffusion. As has been shown in Song et al. [262], Eq. (2.42)
can be written as a mixture (over t) of score matching losses. To this end, let us consider
the Fokker–Planck equation associated with the critically-damped Langevin diffusion:

∂pt(ut)

∂t
= ∇ut ·

[
1
2

(
G(t)G(t)⊤ ⊗ Id

)
∇utpt(ut)− pt(ut)(f(t)⊗ Id)ut

]
= ∇ut · [hp(ut, t)pt(ut)] , hp(ut, t) :=

1
2

(
G(t)G(t)⊤ ⊗ Id

)
∇ut log pt(ut)− (f(t)⊗ Id)ut.

(2.43)
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Similarly, we have ∂qt(ut)
∂t

= ∇ut · [hq(ut, t)qt(ut)]. Assuming log pt(ut) and log qt(ut) are
smooth functions with at most polynomial growth at infinity, we have

lim
ut→∞

hp(ut, t)pt(ut) = lim
ut→∞

hq(ut, t)qt(ut) = 0. (2.44)

Using the above fact, we can compute the time-derivative of the Kullback–Leibler diver-
gence between pt and qt as

∂DKL(pt ∥ qt)
∂t

=
∂

∂t

∫
pt(ut) log

pt(ut)

qt(ut)
dut

= −
∫

pt(ut) [hp(ut, t)− hq(ut, t)]⊤ [∇ut log pt(ut)−∇ut log qt(ut)] dut

= −1

2

∫
pt(ut) [∇ut log pt(ut)−∇ut log qt(ut)]

⊤ (G(t)G(t)⊤ ⊗ Id
)
[∇ut log pt(ut)

−∇ut log qt(ut)] dut

= −β(t)Γ
∫

pt(ut)∥∇vt log pt(ut)−∇vt log qt(ut)∥22 dut.
(2.45)

Notice that due to the form of G(t), we now have only gradients with respect to the velocity
component vt. Combining the above with Eq. (2.42), we have

DKL(p0 ∥ q0) = Et∼U [0,T ],ut∼pt(u)
[
Γβ(t)∥∇vt log pt(ut)−∇vt log qt(ut)∥22

]
+DKL(pT ∥ qT )

≈ Et∼U [0,T ],ut∼pt(u)
[
Γβ(t)∥∇vt log pt(ut)−∇vt log qt(ut)∥22

]
,

(2.46)

Note that the approximation holds if pT is sufficiently “close” to qT . We obtain a more
general objective function by replacing Γβ(t) with an arbitrary function λ(t), i.e.,

Et∼U [0,T ],ut∼pt(u)
[
λ(t)∥∇vt log pt(ut)−∇vt log qt(ut)∥22

]
(2.47)

As shown in App. 2.4.3, the above can be rewritten, up to irrelevant constant terms, as
either of the following two objectives:

HSM(λ(t)) := Et∼U [0,T ],x0∼p0(x0),ut∼pt(ut|x0)

[
λ(t)∥∇vt log pt(ut | x0)−∇vt log qt(ut)∥22

]
,

(2.48)

DSM(λ(t)) := Et∼U [0,T ],u0∼p0(u0),ut∼pt(ut|u0)

[
λ(t)∥∇vt log pt(ut | u0)−∇vt log qt(ut)∥22

]
.

(2.49)
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For both HSM and DSM, we have shown in App. 2.4.2.1 that the perturbation kernels
pt(ut | x0) and pt(ut | u0) are Normal distributions with the following structure of the
covariance matrix:

Σt = Σt ⊗ Id, Σt =

(
Σxx
t Σxv

t

Σxv
t Σvv

t

)
. (2.50)

We can use this fact to compute the gradient ∇ut log pt(ut | ·)

∇ut log pt(ut | ·) = −∇ut

1
2
(ut − µt)Σ−1

t (ut − µt)
= −Σ−1

t (ut − µt)
= −L−⊤

t L−1
t (ut − µt)

= −L−⊤
t ϵ2d,

(2.51)

where ϵ2d ∼ N (0, I2d) and Σt = LtL
⊤
t is the Cholesky factorization of the covariance

matrix Σt. Note that the structure of Σt implies that Lt = Lt ⊗ Id, where LtL
⊤
t is the

Cholesky factorization of Σt, i.e,

Lt =

(
Lxxt Lxvt
Lxvt Lvvt

)
=

√Σxx
t 0

Σxv
t√
Σxx

t

√
Σxx

t Σvv
t −(Σxv

t )2

Σxx
t

 . (2.52)

Furthermore, we have

L−⊤
t = L−⊤

t ⊗ Id

=

√Σxx
t

Σxv
t√
Σxx

t

0
√

Σxx
t Σvv

t −(Σxv
t )2

Σxx
t

−1

⊗ Id

=

 1√
Σxx

t

−Σxz
t√

Σxx
t

√
Σxx

t Σzz
t −(Σxv

t )2

0
√

Σxx
t

Σxx
t Σvv

t −(Σxv
t )2

⊗ Id.
(2.53)

Using the above, we can compute

∇vt log pt(ut | ·) = [∇ut log pt(ut | ·)]d:2d
=
[
−L−⊤

t ϵ2d
]
d:2d

= −ℓtϵd:2d,
(2.54)
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where

ℓt :=

√
Σxx
t

Σxx
t Σvv

t − (Σxv
t )2

, (2.55)

and ϵd:2d denotes those (latter) d components of ϵ2d that actually affect ∇vt log pt(ut|·) .

Note that ℓt depends on the conditioning in the perturbation kernel, and therefore ℓt
is different for DSM, which is based on p(ut | u0), and HSM, which is based on p(ut | x0).
Therefore, we will henceforth refer to ℓHSM

t and ℓDSM
t if distinction of the two cases is nec-

essary (otherwise we will simply refer to ℓt for both).

As discussed in Section 2.3.3.2, we model ∇vt log qt(ut) as sθ(ut, t) = −ℓtαθ(ut, t). Plug-
ging everything back into our objective functions, Eq. (2.48) and Eq. (2.49), we obtain

HSM(λ(t)) = Et∼U [0,T ],x0∼p0(x0),ut∼pt(ut|x0)

[
λ(t)

(
ℓHSM
t

)2 ∥ϵd:2d − αθ(ut, t)∥22
]
, (2.56)

DSM(λ(t)) = Et∼U [0,T ],u0∼p0(u0),ut∼pt(ut|u0)

[
λ(t)

(
ℓDSM
t

)2 ∥ϵd:2d − αθ(ut, t)∥22
]
, (2.57)

where ut is sampled via reparameterization:

ut = µt +Ltϵ = µt +

(
Lxxt ϵ0:d

Lxvt ϵ0:d + Lvvt ϵd:2d

)
. (2.58)

Note again that Lt is different for HSM and DSM.

Analogously to prior work [109, 262, 280] an objective better suited for high quality image
synthesis can be obtained by “dropping the variance prefactor”:

HSM
(
λ(t) =

(
ℓHSM
t

)−2
)
= Et∼U [0,T ],x0∼p0(x0),ut∼pt(ut|x0)

[
∥ϵd:2d − αθ(ut, t)∥22

]
, (2.59)

DSM
(
λ(t) =

(
ℓDSM
t

)−2
)
= Et∼U [0,T ],u0∼p0(u0),ut∼pt(ut|u0)

[
∥ϵd:2d − αθ(ut, t)∥22

]
. (2.60)

2.4.2.4 CLD-specific Implementation Details

Analytically, ℓHSM
t is bounded (in particular, ℓHSM

0 = 1/
√
γM), whereas ℓDSM

t is diverging
for t→ 0. In practice, however, we found that computation of ℓHSM

t can also be numerically
unstable, even when using double precision. As is common practice for computing Cholesky
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Figure 2.6: Comparison of ℓHSM
t (in green) and ℓDSM

t (in orange) for our main hyperpa-
rameter setting with M = 0.25 and γ = 0.04. In contrast to ℓDSM

t , ℓHSM
t is analytically

bounded. Nevertheless, numerical computation can be unstable (even when using double
precision) in which case adding a numerical stabilization of ϵnum = 10−9 to the covariance
matrix before computing ℓt suffices to make HSM work (see App. 2.4.2.4).
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decompositions, we add a numerical stabilization matrix ϵnumI2d to Σt before computing
ℓt. In Fig. 2.6, we visualize ℓHSM

t and ℓDSM
t for different values of ϵnum using our main

experimental setup of M = 0.25 and γ = 0.04 (also, recall that in practice we have T = 1).
Note that a very small numerical stabilization of ϵnum = 10−9 in combination with the use
of double precision makes HSM work in practice.

2.4.2.5 Lower Bounds and Probability Flow ODE

Given the score model sθ(ut, t), we can synthesize novel samples via simulating the reverse-
time diffusion SDE, Eq. (2.5) in the main text. This can be achieved, for example, via
our novel SSCS, Euler-Maruyama, or methods such as GGF [134]. However, [262, 263]
have shown that a corresponding ordinary differential equation can be defined that gener-
ates samples from the same distribution, in case sθ(ut, t) models the ground truth scores
perfectly. This ODE is:

dūt =

[
−f(ūt, T − t) +

1

2
G(ūt, T − t)G(ūt, T − t)⊤∇ūt log pT−t(ūt)

]
dt (2.61)

This ODE is often referred to as the probability flow ODE. We can use it to generate novel
data by sampling the prior and solving this ODE, like previous works [263]. Note that
in practice sθ(ut, t) won’t be a perfect model, though, such that the generative models
defined by simulating the reverse-time SDE and the probability flow ODE are not exactly
equivalent [262]. Nevertheless, they are very closely connected and it has been shown that
their performance is usually very similar or almost the same, when we have learnt a good
sθ(ut, t). In addition to sampling the generative SDE in our paper, we also sample from
our CLD-based SGMs via this probability flow approach.

With the definition of our CLD, the ODE becomes:(
dx̄t
dv̄t

)
=

(
−M−1v̄t

x̄t

)
βdt︸ ︷︷ ︸

A′
H

+

(
0d

Γ [s(ūt, T − t) +M−1v̄t]

)
βdt︸ ︷︷ ︸

S′

(2.62)

Notice the interesting form of this probability flow ODE for CLD: It corresponds to Hamil-
tonian dynamics (A′

H) plus the score function term S ′. Compared to the generative SDE
(Sec. 2.3.3.3), the Ornstein-Uhlenbeck term disappears. Generally, symplectic integrators
are best suited for integrating Hamiltonian systems [167, 209, 277]. However, our ODE is
not perfectly Hamiltonian, due to the score term, and modern non-symplectic methods,
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such as the higher-order adaptive-step size Runge-Kutta 4(5) ODE integrator [77], which
we use in practice to solve the probability flow ODE, can also accurately simulate Hamil-
tonian systems over limited time horizons.

Importantly, the ODE formulation also allows us to estimate the log-likelihood of given
test data, as it essentially defines a continuous Normalizing flow [50, 100], that we can
easily run in either direction. However, in CLD the input into this ODE is not just the
data x0, but also the velocity variable v0. In this case, we can still calculate a lower bound
on the log-likelihood:

log p(x0) = log

(∫
p(x0,v0)dv0

)
= log

(∫
p(v0)

p(x0,v0)

p(v0)
dv0

)
≥ Ev0∼p(v0) [log p(x0,v0)− log p(v0)]

= Ev0∼p(v0) [log p(x0,v0)] +H(p(v0))

(2.63)

where H(p(v0)) denotes the entropy of p(v0) (we have H(p(v0)) =
1
2
log (2πeγM)). We can

obtain a stochastic, but unbiased estimate of log p(x0,v0) ≈ log pε(x0,v0) via solving the
probability flow ODE with initial conditions (x0,v0) and calculating a stochastic estimate
of the log-determinant of the Jacobian via Hutchinson’s trace estimator (and also calculat-
ing the probability of the output under the prior), as done in Normalizing flows [50, 100]
and previous works on SGMs [262, 263]. In the main paper, we report the negative of
Eq. (2.63) as our upper bound on the negative log-likelihood (NLL).

Note that this bound can be potentially quite loose. In principle, it would be desirable
to perform an importance-weighted estimation of the log-likelihood, as in importance-
weighted autoencoders [33], using multiple samples from the velocity distribution. How-
ever, this isn’t possible, as we only have access to a stochastic estimate log pε(x0,v0). The
problems arising from this are discussed in detail in Appendix F of Vahdat et al. [280]. We
could consider training a velocity encoder network, somewhat similar to [47], to improve
our bound, but we leave this for future research.

2.4.2.6 On Introducing a Hamiltonian Component into the Diffusion

Here, we provide additional high-level intuitions and motivations about adding the Hamil-
tonian component to the diffusion process, as is done in our CLD.
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Let us recall how the data distribution evolves in the forward diffusion process of SGMs:
The role of the diffusion is to bring the initial non-equilibrium state quickly towards the
equilibrium or prior distribution. Suppose for a moment, we could do so with “pure”
Hamiltonian dynamics (no noise injection). In that case, we could generate data from the
backward model without learning a score or neural network at all, because Hamiltonian
dynamics is analytically invertible (flipping the sign of the velocity, we can just integrate
backwards in reverse time direction). Now, this is not possible in practice, since Hamilto-
nian dynamics alone usually cannot convert the non-equilibrium distribution to the prior
distribution. Nevertheless, Hamiltonian dynamics essentially achieves a certain amount of
mixing on its own; moreover, since it is deterministic and analytically invertible, this mix-
ing comes at no cost in the sense that we do not have to learn a complex score function to
invert the Hamiltonian dynamics. Our thought experiment shows that we should strive for
a diffusion process that behaves as deterministically (meaning that deterministic implies
easily invertible) as possible with as little noise injection as possible. And this is exactly
what is achieved by adding the Hamiltonian component in the overall diffusion process.
In fact, recall that it is the diffusion coefficient G of the forward SDE that ultimately
scales the score function term of the backward generative SDE (and it is the score function
that is hard to approximate with complex neural nets). Therefore, in other words, relying
more on a deterministic Hamiltonian component for enhanced mixing (mixing just like in
MCMC in that it brings us quickly towards the target distribution, in our case the prior)
and less on pure noise injection will lead to a nicer generative SDE that relies less on
a score function that requires complex and approximate neural network-based modeling,
but more on a simple and analytical Hamiltonian component. Such an SDE could then
be solved easier with an appropriate integrator (like our SSCS). In the end, we believe
that this is the reason why our networks are “smoother” and why given the same network
capacity and limited compute budgets we essentially outperform all previous results in the
literature (on CIFAR-10).

We would also like to offer a second perspective, inspired by the Markov chain Monte
Carlo (MCMC) literature. In MCMC, “mixing” helps to quickly traverse the high proba-
bility parts of the target distribution and, if an MCMC chain is initialized far from the high
probability manifold, to quickly converge to this manifold. However, this is precisely the
situation we are in with the forward diffusion process of SGMs: The system is initialized
in a far-from-equilibrium state (the data distribution) and we need to traverse the space as
efficiently as possible to converge to the equilibrium distribution, this is, the prior. Without
efficient mixing, it takes longer to converge to the prior, which also implies a longer gen-
eration path in the reverse direction—which intuitively corresponds to a harder problem.
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Therefore, we believe that ideas from the MCMC literature that accelerate mixing and
traversal of state space may be beneficial also for the diffusions in SGMs. In fact, leverag-
ing Hamiltonian dynamics to accelerate sampling is popular in the MCMC field [209]. Note
that this line of reasoning extends to thermostating techniques from statistical mechanics
and molecular dynamics, which essentially tackle similar problems like MCMC methods
from the statistics literature (see discussion in Sec. 2.3.4).

2.4.3 HSM: Hybrid Score Matching

We begin by recalling our objective function from App. 2.4.2.3 (Eq. (2.47)):

Et∼U [0,T ]

[
λ(t)Eut∼pt(u)[∥∇vt log pt(ut)− sθ(ut, t)∥22]

]
, (2.64)

where sθ(u, t) is our score model. In the following, we dissect the “score matching” part
of the above objective:

LSM := Eut∼pt(ut)

[
∥∇vt log pt(ut)− sθ(ut, t)∥22

]
= Eut∼pt(ut)∥sθ(ut, t)∥22 − 2S(θ) + C2(t).

(2.65)

where C2(t) := Eut∼pt(ut)

[
∥∇vt log pt(ut)∥22

]
and S(θ) is the cross term discussed below.

Following Vincent [282], we can rewrite LSM as an equivalent (up to addition of a time-
dependent constant) denoising score matching objective LDSM:

LDSM := Eu0∼p(u0),ut∼pt(ut|u0)∥∇vt log pt(ut | u0)− sθ(ut, t)∥22
= LSM + C3(t)− C2(t),

(2.66)

where C3(t) := Eu0∼p(u0),ut∼pt(ut|u0)

[
∥∇vt log pt(ut | u0)∥22

]
. Something that might not nec-

essarily be quite obvious is that there is no fundamental need to “denoise” with the dis-
tribution p(u0) (this is, use samples from the joint x0-v0 distribution p(u0), perturb them,
and learn the score for denoising).

Instead, we can “denoise” only with the data distribution p(x0) and marginalize over
the entire initial velocity distribution p(v0), which results in

LHSM := Ex0∼p(x0),ut∼pt(ut|x0)∥∇vt log pt(ut | x0)− sθ(ut, t)∥22
= Eut∼pt(ut)∥sθ(ut, t)∥22 − 2Ex0∼p(x0),ut∼pt(ut|x0)[⟨∇vt log pt(ut | x0), sθ(ut, t)⟩] + C4(t),

(2.67)
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where C4(t) := Ex0∼p(x0),ut∼pt(ut|x0)

[
∥∇vt log pt(ut | x0)∥22

]
and ⟨·, ·⟩ donates the inner prod-

uct (notation chosen to be consistent with Vincent [282]). In our case, this makes sense
since p(v0) is Normal, and therefore (as shown in App 2.4.2.1), the perturbation kernel
pt(ut | x0) is still Normal.

In the following, for completeness, we redo the derivation of Vincent [282] and show that
LSM is equivalent to LHSM (up to addition of a constant). Starting from S(θ), we have

S(θ) = Eut∼pt(ut) ⟨∇vt log pt(ut), sθ(ut, t)⟩

=

∫
ut

pt(ut) ⟨∇vt log pt(ut), sθ(ut, t)⟩ dut

=

∫
ut

⟨∇vtpt(ut), sθ(ut, t)⟩ dut

=

∫
ut

〈
∇vt

∫
x0

pt(ut | x0)p0(x0) dx0, sθ(ut, t)

〉
dut

=

∫
ut

〈∫
x0

pt(ut | x0)p0(x0)∇vt log pt(ut | x0) dx0, sθ(ut, t)

〉
dut

=

∫
ut

∫
x0

pt(ut | x0)p0(x0) ⟨∇vt log pt(ut | x0), sθ(ut, t)⟩ dx0 dut

= Ex0∼p0(x0),ut∼p(ut|x0) [⟨∇vt log pt(ut | x0), sθ(ut, t)⟩] .

(2.68)

Hence, we have that

LHSM = LSM + C4(t)− C2(t). (2.69)

This further implies that

LHSM = LDSM + C4(t)− C3(t). (2.70)

Using the analysis from App 2.4.2.1, we realize that C3 and C4 can be simplified to

d
(
ℓDSM
t

)2
and d

(
ℓHSM
t

)2
, respectively. Here, we used the fact that the expected squared

norm of a multivariate standard Normal random variable is equal to its dimension, i.e.,
Eε∼N (0d,Id)∥ε∥22 = d. This analysis then simplifies Eq. (2.70) to

LHSM = LDSM + d
((

ℓDSM
t

)2 − (ℓHSM
t

)2)
. (2.71)
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Using this relation, we can also find a connection between our CLD objective functions
from App. 2.4.2.3. In particular, we have

HSM(λ(t)) = Et∼U [0,T ] [λ(t)LHSM]

= Et∼U [0,T ] [λ(t)LDSM] + dEt∼U [0,T ]

[
λ(t)

((
ℓDSM
t

)2 − (ℓHSM
t

)2)]
,

= DSM(λ(t)) + dEt∼U [0,T ]

[
λ(t)

((
ℓDSM
t

)2 − (ℓHSM
t

)2)]
.

(2.72)

2.4.3.1 Gradient Variance Reduction via HSM

Above, we derived that LHSM = LDSM + const, so one might wonder why we advocate
for HSM over DSM. As discussed in Sec. 2.3.3.2, one advantage of HSM is that it avoids
unbounded scores at t → 0. However, there is a second advantage: In practice, we never
solve expectations analytically but rather approximate them using Monte Carlo estimates.
In the remainder of this section, we will show that in practice (Monte Carlo) gradients
based on HSM have lower variance than those based on DSM.

From Eq. (2.72), we have

∇θHSM(λ(t)) = Et∼U [0,T ] [λ(t)∇θLHSM]

= Et∼U [0,T ] [λ(t)∇θLDSM] ,

= ∇θDSM(λ(t)),

(2.73)

where θ are the learnable parameters of the neural network. Instead of comparing the above
expectations directly, we instead compare λ(t)∇θLHSM with λ(t)∇θLDSM for t ∈ [0, 1] (we
use T = 1 in all experiments) at discretized time values (as is done in practice). Replacing
LHSM and LDSM with a single Monte Carlo estimate (as is used in practice), we have

λ(t)∇θLHSM ≈ λ(t)∇θsθ(ut, t)∇sθ(ut,t)∥∇vt log pt(ut | x0)− sθ(ut, t)∥22, (2.74)

x0 ∼ p(x0),ut ∼ pt(ut | x0),

λ(t)∇θLDSM ≈ λ(t)∇θsθ(ut, t)∇sθ(ut,t)∥∇vt log pt(ut | u0)− sθ(ut, t)∥22, (2.75)

u0 ∼ p(u0),ut ∼ pt(ut | u0),

where we applied the chain-rule. Note that in Eq. (2.74) and Eq. (2.75), ut is sampled
from the same distribution. Hence, λ(t)∇θsθ(ut, t) acts as a common scaling factor, with
the variance difference between HSM and DSM originating from the squared norm term.
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Hence, we ignore λ(t)∇θsθ(ut, t) and only focus our analysis on the gradient of the norm
terms, which we can further simplify:

1

2
∇sθ(ut,t)∥∇vt log pt(ut | x0)− sθ(ut, t)∥22 = sθ(ut, t)−∇vt log pt(ut | x0) =: KHSM,

(2.76)

and

1

2
∇sθ(ut,t)∥∇vt log pt(ut | u0)− sθ(ut, t)∥22 = sθ(ut, t)−∇vt log pt(ut | u0) =: KDSM.

(2.77)

We explore this difference in a realistic setup; in particular, we evaluate KHSM and KDSM

for all data points in the CIFAR-10 training set. We choose sθ to be our trained ablation
CLD model (with the standard setup of M−1 = β = 4, see Sec. 2.4.5.2.1 for model de-
tails). We then use these samples to compute the empirical covariance matrices CovHSM

and CovDSM of the random variables KHSM and KDSM, respectively.

As is common practice in statistics, we consider only the trace of the estimated covariance
matrices.4 The trace of the covariance matrix (of a random variable) is also commonly
referred to as the total variation (of a random variable).

We visualize our results in Fig. 2.7. For HSM, there is barely any visual difference in
Tr(Cov) for γ = 0.04 and γ = 1. For DSM, both γ = 0.04 and γ = 1 result in very large
Tr(Cov) values for small t. For large t, Tr(Cov) is considerably smaller for γ = 0.04 than
for γ = 1. However, in practice, we found that DSM is even unstable for small γ. Given
this analysis, we believe this is due to the large gradient variance for small t. In conclusion,
these results demonstrate a clear variance reduction by the HSM objective, in particular
for large γ. Ultimately, this is expected: In HSM, we are effectively integrating out the
initial velocity distribution when estimating gradients, while in DSM we use noisy samples
for the initial velocity.

Note that re-introducing λ(t) weightings would allow us to scale the Tr(Cov) curves ac-
cording to the “reweighted” objective or the maximum likelihood objective. However, we
believe it is most instructive to directly analyze the gradient of the relevant norm term
itself.

4Arguably, the most prominent algorithm that follows this practice is principal component analy-
sis (PCA).
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Figure 2.7: Traces of the estimated covariance matrices.

2.4.4 Symmetric Splitting CLD Sampler (SSCS)

In this section, we present a more complete derivation and analysis of our novel Symmetric
Splitting CLD Sampler (SSCS).

2.4.4.1 Background

Our derivation is inspired by methods from the statistical mechanics and molecular dy-
namics literature. In particular, we are leveraging symmetric splitting techniques as well
as (Fokker–Planck) operator concepts. The high-level idea of symmetric splitting as well
as the operator formalism are well-explained in [277], in particular in their Section 3.10,
which includes simple examples. Symmetric splitting methods for stochastic dynamics in
particular are discussed in detail in Leimkuhler and Matthews [166]. We also recommend
Leimkuhler and Matthews [165], which discusses splitting methods for Langevin dynamics
in a concise but insightful manner.
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2.4.4.2 Derivation and Analysis

Generative SDE. From Sec. 2.3.3.3, recall that our generative SDE can be written as
(with ūt = uT−t, x̄t = xT−t, v̄t = vT−t):(
dx̄t
dv̄t

)
=

(
−M−1v̄t

x̄t

)
βdt︸ ︷︷ ︸

AH

+

(
0d

−ΓM−1v̄t

)
βdt+

(
0d√

2Γβdwt

)
︸ ︷︷ ︸

AO

+

(
0d

2Γ
[
s(ūt, T − t) +M−1v̄t

])βdt︸ ︷︷ ︸
S

.

(2.78)

Fokker–Planck Equation and Fokker–Planck Operators. The evolution of the prob-
ability distribution pT−t(ūt) is described by the general Fokker–Planck equation [247]:

∂pT−t(ūt)

∂t
= −

2d∑
i=1

∂

∂ūi
[µi(ūt, T − t)pT−t(ūt)] +

2d∑
i=1

2d∑
j=1

∂2

∂ūi∂ūj
[Dij(ūt, T − t)pT−t(ūt)] ,

(2.79)

with

µ(ūt, T − t) =

(
−M−1v̄t

x̄t

)
β +

(
0d

−ΓM−1v̄t

)
β +

(
0d

2Γ [s(ūt, T − t) +M−1v̄t]

)
β, (2.80)

D(ūt, T − t) =

(
0 0
0 Γβ

)
⊗ Id. (2.81)

For our SDE, we can write the Fokker–Planck equation in short form as

∂pT−t(ūt)

∂t
= (L̂∗

A+L̂∗
S)pT−t(ūt), (2.82)

with the Fokker–Planck operators (defined via their action on functions of the variables
ϕ(ūt)):

L̂∗
Aϕ(ūt) := βM−1v̄t∇x̄tϕ(ūt)− βx̄t∇v̄tϕ(ūt) + ΓβM−1∇v̄t [v̄tϕ(ūt)] + Γβ∆v̄tϕ(ūt),

(2.83)

L̂∗
Sϕ(ūt) := −2Γβ∇v̄t

[(
s(ūt, T − t) +M−1v̄t

)
ϕ(ūt)

]
, (2.84)

∆v̄t :=
d∑
i=1

(
∂2

∂x̄2
i

+
∂2

∂v̄2i

)
. (2.85)
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We are providing these formulas for transparency and completeness. We do not directly
leverage them. However, working with these operators can be convenient. In particular,
the operators describe the time evolution of states ūt under the stochastic dynamics defined
by the SDE. Given an initial state ū0, we can construct a formal solution to the generative
SDE via [166, 277]:

ūt = et(L̂
∗
A+L̂∗

S)ū0, (2.86)

where the operator et(L̂
∗
A+L̂∗

S) is known as the classical propagator that propagates states
ū0 for time t according to the dynamics defined by the combined Fokker–Planck operators

L̂∗
A+L̂∗

S (to avoid confusion, note that in Eq. (2.86) the operator et(L̂
∗
A+L̂∗

S) is applied on ū0

in an element-wise or “vectorized” fashion on all elements of ū0 in parallel). The problem
with that expression is that we cannot analytically evaluate it. However, we can leverage
it to design an integration method.

Symmetric Splitting Integration. Using the symmetric Trotter theorem or Strang
splitting formula as well as the Baker–Campbell–Hausdorff formula [266, 275, 277], it can
be shown that:

et(L̂
∗
A+L̂∗

S) = lim
N→∞

[
e

δt
2
L̂∗
AeδtL̂

∗
Se

δt
2
L̂∗
A

]N
≈
[
e

δt
2
L̂∗
AeδtL̂

∗
Se

δt
2
L̂∗
A

]N
+O(Nδt3), (2.87)

for large N ∈ N+ and time step δt := t/N . The expression suggests that instead of di-

rectly evaluating the intractable et(L̂
∗
A+L̂∗

S), we can discretize the dynamics over t into N
pieces of step size δt, such that we only need to apply the individual e

δt
2
L̂∗
A and eδtL̂

∗
S many

times one after another for small time steps δt. A finer discretization implies a smaller
error (since N=t/δt the error effectively scales as O(δt2) for fixed t). Hence, this implies
an integration method. The general idea of such splitting schemes is to split an initially
intractable propagator into separate terms, each of which is analytically tractable. In that
case, the overall integration error for many steps is only due to the splitting scheme error,5

but not due to the evaluation of the individual updates. Such techniques are, for example,
popular in molecular dynamics to develop symplectic integrators as well as accurate sam-
plers [34, 165, 166, 276, 277].

Analyzing the Splitting Terms. Next, we need to analyze the two individual terms:

5In principle, the error of the splitting scheme is defined more specifically by the commutator of the non-
commuting Fokker–Planck operators. See, for example Leimkuhler and Matthews [165, 166], Tuckerman
[277].
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(i) Let us first analyze e
δt
2
L̂∗
Aūt: This term describes the stochastic evolution of ūt un-

der the dynamics of an SDE like Eq. (2.78), but with S set to zero. However, if S is
set to zero, the remaining SDE has affine drift and diffusion coefficients. In that case, if
the input is Normal (or a discrete state corresponding to a Normal with 0 variance) then
the distribution is Normal at all times and we can calculate the evolution analytically. In
particular, we can solve the differential equations for the mean µ̄ δt

2
and covariance Σ̄ δt

2
of

the Normal (see Sec. 2.4.2.1), and obtain

µ̄ δt
2
(ūt) =

(
2β δt

2
Γ−1x̄t − 4β δt

2
Γ−2v̄t + x̄t

β δt
2
x̄t − 2β δt

2
Γ−1v̄t + v̄t

)
e−2β δt

2
Γ−1

, (2.88)

as well as

Σ̄ δt
2
= Σ̄ δt

2
⊗ Id, (2.89)

Σ̄ δt
2
=

(
Σ̄xx

δt
2

Σ̄xv
δt
2

Σ̄xv
δt
2

Σ̄vv
δt
2

)
e−4β δt

2
Γ−1

, (2.90)

Σ̄xx
δt
2

= e4β
δt
2
Γ−1 − 1− 4β

δt

2
Γ−1 − 8

(
β
δt

2

)2

Γ−2, (2.91)

Σ̄xv
δt
2

= −4
(
β
δt

2

)2

Γ−1, (2.92)

Σ̄vv
δt
2

=
Γ2

4

(
e4β

δt
2
Γ−1 − 1

)
+ β

δt

2
Γ− 2

(
β
δt

2

)2

. (2.93)

The correctness of the proposed mean and covariance matrix can be verified by simply
plugging them back in their respective ODEs; see App. 2.4.7.2.

Now, we can write the action of the the propagator e
δt
2
L̂∗
A on a state ūt as:

e
δt
2
L̂∗
Aūt ∼ N (ūt+ δt

2
; µ̄ δt

2
(ūt), Σ̄ δt

2
). (2.94)

(ii): Next, we need to analyze eδtL̂
∗
S ūt. Unfortunately, we cannot calculate the action

of the propagator eδtL̂
∗
S on ūt analytically and we need to make an approximation. From

Eq. (2.78), we can easily see that the propagator eδtL̂
∗
S describes the evolution of the ve-

locity component v̄t for time step δt under the ODE (this can be easily seen by noticing
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that the S term in Eq. (2.78) only acts on the velocity component of the joint state ūt):

dv̄t = 2βΓ
[
s(ūt, T − t) +M−1v̄t

]
dt. (2.95)

We propose to simply solve this ODE for the step δt via a simple step of Euler’s method,
resulting in:

eδtL̂
∗
S ūt ≈ ūt + δt

(
0d

2βΓ [s(ūt, T − t) +M−1v̄t]

)
+O(δt2)

= eδtL̂
∗Euler
S ūt +O(δt2),

(2.96)

with the informal definition

eδtL̂
∗Euler
S ūt := ūt + δt

(
0d

2βΓ [s(ūt, T − t) +M−1v̄t]

)
. (2.97)

Error Analysis. It is now instructive to study the overall error of our proposed inte-
grator. With the additional Euler integration in one of the splitting terms, we have

et(L̂
∗
A+L̂∗

S) ≈
[
e

δt
2
L̂∗
A

(
eδtL̂

∗Euler
S +O(δt2)

)
e

δt
2
L̂∗
A

]N
+O(Nδt3)

=
[
e

δt
2
L̂∗
A

(
eδtL̂

∗Euler
S

)
e

δt
2
L̂∗
A

]N
+NO(δt2)

=
[
e

δt
2
L̂∗
A

(
eδtL̂

∗Euler
S

)
e

δt
2
L̂∗
A

]N
+O(δt),

(2.98)

where we used N = t
δt

and only kept the dominating error terms of lowest order in δt. We
see that, just like Euler’s method, also our SSCS is a first-order integrator with local error
∼δt2 and global error ∼δt, which can be also seen from the last two lines of Eq. (2.98).
This is expected, considering that we used an Euler step for the S term. Nevertheless,
as long as the dynamics is not dominated by the S component, our proposed integration
scheme is still expected to be more accurate than EM, since we split off the analytically
tractable part and only use an Euler approximation for the S term.

To this end, recall that the model only needs to learn the score of the conditional dis-
tribution pt(vt|xt), which is close to Normal for much of the diffusion, in which case the
S term will indeed be small. This suggests that the generative SDE dynamics are in fact
dominated by AH and AO in practice. From another perspective, note that (recalling that
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Figure 2.8: Conceptual visualization of our new SSCS sampler and comparison to Euler-
Maruyama (for image synthesis): (a) In EM-based sampling, in each integration step
the entire SDE is integrated using an Euler-based approximation. This can be formally

expressed as solving the full-step propagator exp
{
δt(L̂∗

A + L̂∗
S)
}

via Euler-based approxi-

mation for N small steps of size δt (see red steps; for simplicity, this visualization assumes
constant δt). (b): In contrast, in our SSCS the propagator is partitioned into an ana-

lytically tractable component exp
{
δt
2
L̂∗
A

}
(blue) and the score model term exp

{
δtL̂∗

S

}
(brown). Only the latter requires numerical approximation, which results in an overall
more accurate integration scheme.
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sθ(ut, t) = −ℓtαθ(ut, t) with αθ(ut, t) = ℓ−1
t vt/Σ

vv
t + α′

θ(ut, t) from Sec. 2.3.3.2):

s(ūt, T − t) +M−1v̄t = −ℓtα′
θ(ut, t)−

vt
Σvv
t

+M−1v̄t

= −ℓtα′
θ(ut, t) + v̄t

(
1

M
− 1

Σvv
t

)
.

(2.99)

For large parts of the diffusion, Σvv
t is indeed close to M , such that the v̄t term is very small

(this cancellation is the reason why we pulled the M−1v̄t term into the S component). In
Sec. 2.3.3, we have also seen that our neural network component α′

θ(ut, t) can be much
smoother than that of previous SGMs. Overall, this suggests that the error of SSCS indeed
might be smaller than the error we would obtain when applying a naive Euler–Maruyama
integrator to the full generative SDE. Our positive experimental results in Sec. 2.3.5.2 val-
idate that. Only in the limit for very small steps, both our SSCS and EM make only very
small errors and are expected to perform equally well, which is exactly what we observe in
our experiments. Our SSCS turns out to be well-suited for integrating the generative SDE
of CLD-SGMs with relatively few synthesis steps.

Note that error analysis of stochastic differential equation solvers is usually performed
in terms of weak and strong convergence [154]. Due to the use of Euler’s method for the
S component, as argued above, we expect our SSCS to formally have the same weak and
strong convergence properties like EM, this is, weak convergence of order 1 and strong
convergence of order 1 as well, since the noise is additive in our case (and assuming appro-
priate smoothness conditions for the drift and diffusion coefficients; furthermore, without
additive noise, we would have strong convergence of order 0.5). We leave a more detailed
analysis to future work.

In practice, we do not use SSCS to integrate all the way from t=0 to t=T , but only
up to t=T − ϵ, and perform a denoising step, similar to previous works [134, 263]. It is
worth noting that our SSCS scheme would also be applicable when we used time-dependent
β(t), as in our more general derivation of the CLD perturbation kernel in App. 2.4.2. How-
ever, since we only used constant β in the main paper, we also presented SSCS in that way.

A promising direction for future work would be to extend SSCS to adaptive step sizes
and to use techniques to facilitate higher-order integration, while still leveraging the ad-
vantages of SSCS.

SSCS Algorithm. Finally, we summarize SSCS in terms of a concise algorithm:
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Algorithm 1 Symmetric Splitting CLD Sampler (SSCS)

Input: Score function sθ(ūt, T − t), CLD parameters Γ, β, M = Γ2/4, number of sampling
steps N , step sizes {δtn ≥ 0}N−1

n=0 chosen such that ϵ := T −∑N−1
n=0 δtn ≥ 0 (stepsizes can vary,

for example in QS).
Output: Synthesized model sample x̄′

N , along with a velocity sample v̄′
N .

x̄0 ∼ N (x̄0;0d, Id), v̄0 ∼ N (v̄0;0d,MId), ū0 = (x̄0, v̄0) ▷ Draw initial prior samples from
pEQ(u)
t = 0 ▷ Initialize time
for n = 0 to N − 1 do

ūn+ 1
2
∼ N (ūn+ 1

2
; µ̄ δtn

2
(ūn), Σ̄ δtn

2
) ▷ First half-step: apply exp{ δtn2 L̂∗A} on ūn

ū′
n+ 1

2

← ūn+ 1
2
+ δtn

(
0d

2βΓ
[
s(ūt, T − t) +M−1v̄t

]) ▷ Full step: apply exp{δtnL̂∗S} on ūn+ 1
2

ūn+1 ∼ N (ūn+1; µ̄ δtn
2
(ū′

n+ 1
2

), Σ̄ δtn
2
) ▷ Second half-step: apply exp{ δtn2 L̂∗A} on ū′

n+ 1
2

t← t+ δtn ▷ Update time
end for

ū′
N ← ūN − ϵ

((
0 βM−1

−β −ΓβM−1

)
⊗ Id

)
ūN + ϵ

(
0d

2βΓs(ūt, ϵ)

)
▷ Denoising

(x̄′
N , v̄

′
N ) = ū′

N ▷ Extract output data and velocity samples

Note that the algorithm uses the expressions in Eqs. (2.88) and (2.89) for µ̄t and Σ̄t.
Furthermore, in practice in the denoising step at the end, we usually only update the x̄′

N

component of ū′
N , since we are only interested in the data sample. This saves us the fi-

nal neural network call during denoising, which only affects the v̄′
N component (also see

App. 2.4.5.2.4). However, we wrote the algorithm in the general way, which also allows to
correctly generate the velocity sample v̄′

N . In Fig. 2.8, we show a conceptual visualization
of our SSCS and contrast it to EM.

Also note that we could combine the second half-step from one iteration of SSCS with
the first half-step from the next iteration of SSCS. This is commonly done in the Leapfrog
integrator [166, 167, 209, 277],6 which follows a similar structure as our SSCS. However, it
is not important in our case, as the only computationally costly operation is in the center
full step, which involves the neural network evaluation. The first and last half-steps come
at virtually no computational cost.

6The Leapfrog integrator corresponds to the velocity Verlet integrator in molecular dynamics.
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(a) Difference ξ(t) (via L2 norm) between score
of diffused data and score of Normal distribu-
tion.

(b) Frobenius norm of Jacobian JF (t) of the
neural network defining the score function for
different t.

Figure 2.9: Toy experiments for mixture of Normals dataset.

2.4.5 Implementation and Experiment Details

2.4.5.1 Score and Jacobian Experiments

In this section, we provide details for the experiments presented in Sec. 2.3.3.1. For both
experiments, we consider a two-dimensional simple mixture of Normals of the form

pdata(x) =
9∑

k=1

1

9
p(k)(x), (2.100)

where p(k)(x) = N (x;µk; 0.04
2I2) and

µ1 =

(
−a
0

)
, µ2 =

(
−a/2
a/2

)
, µ3 =

(
0
a

)
,

µ4 =

(
−a/2
−a/2

)
, µ5 =

(
0
0

)
, µ6 =

(
a/2
a/2

)
,

µ7 =

(
0
−a

)
, µ8 =

(
a/2
−a/2

)
, µ9 =

(
a
0

)
,

and a = 2−
1
2 . The choice of this data distribution is not arbitrary. In fact, mixture of

Normal distributions are diffused by simply diffusing the components, i.e., setting p0(x0) =

62



pdata(x), we have

pt(xt) =
9∑

k=1

1

9
p
(k)
t (xt), (2.101)

where p
(k)
t are the diffused components (analogously for CLD with velocity augmentation).

This means that for both CLD as well as VPSDE [263] we can diffuse pdata(x) with analyt-
ical access to the diffused marginal pt(xt) or pt(ut). This allows us to perform interesting
analyses that would be impossible when working, for example, with image data. We visu-
alize the data distribution in Fig. 2.10.

Score experiment: We empirically verify the reduced complexity of the score of pt(vt|xt),
which is learned in CLD, compared to the score of pt(xt), which is learned in VPSDE. To
avoid scaling issues between VPSDE and CLD, we chose M = γ = 1 for CLD in this exper-
iment; this results in an equilibrium distribution of N (02, I2) (for both data and velocity
components, which are independent at equilibrium), which is the same as the equilibrium
distribution of the VPSDE. We then measure the difference of the respective scores at time
t and the equilibrium (or prior) scores, i.e. (recall that the score of a Normal distribution
p(x) = N (02, I2) is simply ∇x log p(x) = −x),

ξVPSDE(t) := Ext∼p(xt)∥∇xt log pt(xt) + xt∥22, (2.102)

ξCLD(t) := Eut∼p(ut)∥∇vt log pt(vt | xt) + vt∥22. (2.103)

The expectations are approximated using 105 samples from p(xt) and p(ut) for VPSDE
and CLD, respectively. As can be seen in Fig. 2.9a, ξCLD(t) is smaller than ξVPSDE(t) for
all t ∈ [0, T ]. The difference is particularly striking for small time values t. Other previous
SDEs, such as the VESDE, sub-VPSDE, etc., are expected to behave similarly. This result
implies that the ground truth scores that need to be learnt in CLD are closer to Normal
scores than the ground truth scores in previous SDEs like the VPSDE. Since the score of a
Normal is very simple—and indeed directly leveraged in our mixed score formulation—we
would intuitively expect that the CLD training task is easier.

Complexity experiment: Therefore, to understand the above observations in terms
of learning neural networks, we train a small ResNet architecture (less than 100k parame-
ters) for each of the following four setups: both CLD and VPSDE each with and without a
mixed score parameterization. The mixed score of the VPSDE simply assumes a standard
Normal data distribution (which is also the equilibrium distribution of VPSDE) resulting
in adding −xt to the score function. Formally, −xt is the score of a Normal distribution
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(a) Data pdata (b) CLD w/ MS (c) CLD w/o MS
(d) VPSDE w/
MS

(e) VPSDE w/o
MS

Figure 2.10: Mixture of Normals: data and trained models (samples).

with unit variance.

We train the models for 1M iterations using fresh data synthesized from pdata at a batch
size of 512. The model and data distributions are visualized in Fig. 2.10. We see that all
models have learnt good representations of the data. We measure the complexity of the
trained neural networks using the squared Frobenius norm of the networks’ Jacobians. For
CLD, we have

J CLD
F (t) := Eut∼p(ut)∥∇utα

′
θ(ut)∥2F . (2.104)

Similarly, for the VPSDE we compute

J VPSDE
F (t) := Ext∼p(xt)∥∇xtα

′
θ(xt)∥2F . (2.105)

For both CLD and VPSDE, expectations are again approximated using 105 samples. As
can be seen in Fig. 2.9b the neural network complexity is significantly lower for CLD com-
pared to VPSDE. A mixed score formulation further helps decreasing the neural network
complexity for both CLD and VPSDE. This result implies that the arguably simpler train-
ing task in CLD indeed also translates to reduced model complexity in that the neural
network is smoother as measured by JF(t). In large-scale experiments, this would mean
that, given similar model capacity, a CLD-based SGM could potentially have a higher ex-
pressivity. Or, on the other hand, similar performance could be achieved with a smoother
and potentially smaller model. Indeed these findings are in line with our strong results on
the CIFAR-10 benchmark.
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2.4.5.2 Image Modeling Experiments

We perform image modeling experiments on CIFAR-10 as well as CelebA-HQ-256. We
report FID scores on CIFAR-10 for our main model for various different solvers; see Tab. 2.3
and Tab. 2.2. We further present generated samples for both models in Sec. 2.3.5 using
Euler–Maruyama with 2000 quadratic striding steps and Runge–Kutta 4(5) for CIFAR10
and CelebA-HQ-256, respectively. We present additional samples for various solver settings
in App. 2.4.6. All (average) NFEs for the Runge–Kutta solver are computed using a batch
size of 128.

2.4.5.2.1 Training Details and Model Architectures Our models are based on
the NCSN++ and the DDPM++ architectures from Song et al. [263]. Importantly, we
changed the number of input channels from three to six to facilitate the additional veloc-
ity variables. Note that the number of additional neural network parameters due to this
change is negligible.

For fair a comparison, we train our models using the same t-sampling cutoff during training
as is used for VESDE and VPSDE in Song et al. [263]. Note, however, that this is not
strictly necessary for CLD as we do not have any “blow-up” of the SDE due to unbounded
scores as t→ 0 (also see Fig. 2.18 and Fig. 2.19).

We summarize our three model architectures as well as our SDE and training setups in
Tab. 2.6.

2.4.5.2.2 CIFAR-10 Results for VESDE and VPSDE The results reported for
VESDE and VPSDE using the GGF sampler are taken from Jolicoeur-Martineau et al.
[134]. All other results for VESDE and VPSDE are generated using the provided PyTorch
code as well as the provided checkpoints from Song et al. [263].7 We used EM and PC to
sample from the VPSDE and VESDE models, respectively (see Sec. 2.3.5.2), since these
choices correspond to their recommended settings.8

Furthermore, in App. 2.4.6.2 we also used DDIM [258] to sample the VPSDE. DDIM’s
update rule is

xt−1 =
αt−1

αt

[
xt + σ2

t sθ(xt, t)
]
− σt−1σtsθ(xt, t), (2.106)

7https://github.com/yang-song/score_sde_pytorch
8https://colab.research.google.com/drive/1dRR_0gNRmfLtPavX2APzUggBuXyjWW55
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Hyperparameter CIFAR10 (Main) CelebA (Qualitative) CIFAR10 (Ablation)

Model
EMA rate 0.9999 0.9999 0.9999
# of ResBlocks per Resolution 8 2 2
Normalization Group Normalization Group Normalization Group Normalization
Scaling by σ ✗ ✗ ✗

Nonlinearity Swish Swish Swish
Attention resolution 16 16 16
Embedding type Fourier Positional Positional
Progressive None None None
Progressive input Residual None None
Progressive combine Sum N/A N/A
Finite Impulse Response [316] ✓ ✗ ✗

# of parameters ≈ 108M ≈ 68M ≈ 39M

Training
# of iterations 800k 320k 1M
# of warmup iterations 100k 100k 100k
Optimizer Adam Adam Adam
Mixed precision ✓ ✓ ✓

Learning rate 2 · 10−4 10−4 2 · 10−4

Gradient norm clipping 1.0 1.0 1.0
Dropout 0.1 0.1 0.1
Batch size per GPU 8 4 8
# of GPUs 16 16 16
t-sampling cutoff during training 10−5 10−5 10−5

SDE
M 0.25 0.25 varies
γ 0.04 0.04 varies
β 4 4 varies
ϵnum 10−9 10−6 10−9

Table 2.6: Model architectures as well as SDE and training setups for our experiments on
CIFAR-10 and CelebA-HQ-256.
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where αt = exp
(
−0.5

∫ t
0
β(t) dt

)
, σ2

t = 1− exp
(
−
∫ t
0
β(t) dt

)
, and β(t) = 0.1 + 19.9t.

2.4.5.2.3 Quadratic Striding When we simulate our generative SDE numerically, us-
ing for example EM or our SSCS, we need to choose a time discretization. Given a certain
NFE budget NNFE, how do we choose time step sizes? The standard approach is to use an
equidistant discretization, corresponding to a set of evaluation time steps {δti ≥ 0}NNFE−1

i=0

with δti =
1

NNFE
∀ i ∈ [0, NNFE − 1]. However, prior work [156, 258, 285] has shown that it

can be beneficial to focus function evaluations (neural network calls) on times t “close to
the data”. This is because the diffusion process distribution is most complex close to the
data and almost perfectly Normal close to the prior. Among other techniques, these works
used a useful heuristic, denoted as quadratic striding (QS), which discretizes the integra-
tion interval such that the evaluation times follow a quadratic schedule and the individual
time steps follow a linear schedule. We also used this QS approach in our experiments.

We can formally define it as follows (assuming a time interval [0.0, 1.0] here for simplicity):
Denote the evaluation times as τi (including 0.0 and 1.0) and define:

τi = cτ i
2 ∀i ∈ [0, NNFE]. (2.107)

Hence,
δti = τi − τi−1 = cτ (2i− 1) ∀i ∈ [1, NNFE], (2.108)

and cτ =
1

N2
NFE

to ensure that τNFE = 1.0.

This describes the time steps as going from t = 0 to t = 1. During synthesis, however, we
are going backwards. Hence, we can define our time steps as

δtj = cτ [2NNFE − 2j + 1] ∀j ∈ [1, NNFE], (2.109)

where j now counts time steps in the other direction. Note that this can be easily adapted
to general integration intervals [ϵ, T ].

2.4.5.2.4 Denoising As has been pointed out in Jolicoeur-Martineau et al. [135], sam-
ples that are generated with models similar to ours can contain noise that is hard to detect
visually but worsens FID scores significantly.

Denoising Formulas. For a fair comparison we use the same denoising setup for all
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experiments we conducted (including VESDE (PC/ODE) and VPSDE (EM/ODE)) ex-
cept for LSGM.9 We simulate the underlying generative ODE/SDE until the time cutoff
ε = 10−3 and then take a single denoising step of the form

u0 = uε − εf(uε, ε) + εG(uε, ε)G(uε, ε)
⊤
(

0d
sθ(uε, ε)

)
. (2.110)

This denoising step can be considered as an Euler–Maruyama step without noise injection.
For SDEs acting on data directly (VESDE, VPSDE, etc.) the corresponding denoising
formula is

x0 = xε − εf(xε, ε) + εG(xε, ε)G(xε, ε)
⊤sθ(xε, ε). (2.111)

Influence of Denoising on Results. For SDEs acting in the data space directly, it
has been reported that this denoising step is crucial to obtain good FID scores Jolicoeur-
Martineau et al. [135], Song et al. [263]. When we simulate the generative probability flow
ODE we found that denoising is important in order for the Runge–Kutta solver not to
“blow-up” as t→ 0. On the other hand, when simulating CLD using our new SSCS solver,
we found that denoising only slightly influences FID (see Tab. 2.7). We believe that this
might be because the neural network does not have any influence on the denoising step for
CLD. More specifically, the neural network only denoises the velocity component. How-
ever, we are primarily interested in the data component. Putting the drift and diffusion
coefficients of CLD in the denoising formula in Eq. (2.110), we obtain

u0 = uε − ε

((
0 βM−1

−β −βΓM−1

)
⊗ Id

)
uε + ε

(
0d

2Γβsθ(uε, ε)

)
=⇒ x0 = xε − εβM−1vε.

(2.112)

2.4.5.2.5 Solver Error Tolerances for Runge–Kutta 4(5) In Tab. 2.2, we report
FID scores for a Runge–Kutta 4(5) solver [77] as well as the “Gotta Go Fast” solver
from Jolicoeur-Martineau et al. [134] (see their Table 1). For simulating CLD with Runge–
Kutta 4(5) we chose the solver error tolerances to hit certain regimes of NFEs to facilitate
comparisons with VPSDE and VESDE. We obtain a mean number of function evalua-
tions of 312 and 137 using Runge–Kutta 4(5) solver error tolerances of 10−5 and 10−3,

9Denoising has not been used in the original LSGM work [280] and is not needed in their case, since
the output of the latent SGM lives in a smooth latent space and is further processed by a decoder.
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Table 2.7: Influence of denoising step on FID scores (using our main CIFAR-10 model).

FID at n function evaluations ↓
Sampler Denoising n=50 n=500

SSCS ✓ 81.1 2.30
SSCS-QS ✓ 20.5 2.25

SSCS ✗ 78.9 2.32
SSCS-QS ✗ 28.5 2.3

respectively. For VESDE, VPSDE and LSGM we used 10−5 as the ODE solver error toler-
ance, following the recommended default setups [263, 280]. These values are used for both
relative and absolute error tolerances.

2.4.5.2.6 Ablation Experiments The model architecture used for all ablation exper-
iments can be found in Tab. 2.6. As pointed out in Sec. 2.3.5 we found that the hyperpa-
rameters γ and M only have small effects on CIFAR-10 FID scores. On the other hand, we
found that the mixed score parameterization helps significantly in obtaining competitive
FIDs.

2.4.5.2.7 LSGM-100M Model Our CLD-based SGM has ≈108M parameters, while
the original CIFAR-10 Latent SGM from [280], to which we compare in Tab. 2.1, uses
≈476M parameters. To establish a fairer comparison between our CLD-based SGMs and
LSGM [280], we train another smaller LSGM model with ≈109M parameters. To do this,
we followed the exact setup of the “CIFAR-10 (balanced)” model from LSGM (see Table
7 in Vahdat et al. [280]), with a few minor modifications: We used a VAE backbone model
with only 10 groups instead of 20, which corresponds to a reduction in parameters by a fac-
tor of 2 in the encoder and decoder networks. We also reduced the convolutional channels
in the latent space SGM from 512 to 256 and reduced the number of the residual cells per
scale from 8 to 4. With these modifications the resulting “LSGM-100M” uses only ≈109M
parameters overall with approximately half of them in the encoder and decoder networks
and the other half in the latent SGM. Other than these architecture modifications, our
model is trained in exactly the same way as the bigger, original models in Vahdat et al.
[280].

For evaluation, we follow the recommended setting by Vahdat et al. [280] and use the
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same Runge-Kutta 4(5) ODE solver with an error tolerance of 10−5 to solve the proba-
bility flow ODE in LSGM’s latent space. LSGM-100M achieves an FID of 4.60, an NLL
bound of 2.96 bpd, and requires on average 131 NFE for sampling new images. We report
these results in Tabs. 2.1 and 2.2 in the main text.

Note that we also tried training a model following the “CIFAR-10 (best FID)” setup,
but found training to be unstable (however, the orignal “CIFAR-10 (best FID)” model
from Vahdat et al. [280] only performs marginally better in FID than their “CIFAR-10
(balanced)” model anyway). Furthermore, we also tried training another small LSGM
with a similar number of parameters but with more parameters in the latent SGM and less
in the encoder and decoder networks, compared to the reported LSGM-100M. However,
this model performed significantly worse.

2.4.6 Additional Experiments

2.4.6.1 Toy Experiments

2.4.6.1.1 Analytical Sampling In order to test combinations of diffusions and numer-
ical samplers in isolation, we consider a dataset for which we know the ground truth score
function (for all t) analytically. In particular, we use the mixture of Normals introduced
in App. 2.4.5.1; see Fig. 2.10a for a visualization of the data distribution. In Fig. 2.11, we
show samples for VPSDE (Euler–Maruyama (EM) sampler) and CLD (EM and SSCS sam-
plers). For quantitative comparison, we also compute negative log-likelihoods for the three
combinations (which can be done easily due to our access to the ground truth distribution):
as can be seen in Tab. 2.8, for each number of steps n ∈ {20, 50, 100, 200} CLD with SCSS
outperforms both VPSDE and CLD with EM. As discussed in Sec. 2.3.3.3, we can see in
Tab. 2.8 that EM is not well-suited for CLD. This is true, in particular, when using a small
number of synthesis steps n (function evaluations). In Fig. 2.11, we see that CLD with
EM leads to sampling distributions which are too broad. These results are exactly in line
with the “diverging” dynamics that is observed when solving Hamiltonian dynamics with
a non-symplectic integrator, such as the standard Euler method [209]. This problematic
behavior of Euler-based techniques is more pronounced when using fewer steps with larger
stepsizes, which is also what we observe in our experiments. These results further moti-
vate the use of our novel SSCS, which addresses these challenges, for sampling from our
CLD-based SGMs.
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(a) VPSDE + EM, n = 20 (b) CLD + EM, n = 20 (c) CLD + SSCS, n = 20

(d) VPSDE + EM, n = 50 (e) CLD + EM, n = 50 (f) CLD + SSCS, n = 50

(g) VPSDE + EM, n = 100 (h) CLD + EM, n = 100 (i) CLD + SSCS, n = 100

(j) VPSDE + EM, n = 200 (k) CLD + EM, n = 200 (l) CLD + SSCS, n = 200

Figure 2.11: Mixture of Normals: numerical simulation with analytical score function for
different diffusions (VPSDE with EM vs. CLD with EM/SSCS) and number of synthesis
steps n. A visualization of the data distribution can be found in Fig. 2.10a.
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Table 2.8: Performance (measured in negative log-likelihood) using analytical scores for non-
adaptive stepsize solvers for varying numbers of synthesis steps n (function evaluations).

− log p(x) at n function evaluations ↓
Model Sampler n=20 n=50 n=100 n=200

CLD EM 60.6 9.71 0.72 -1.04
CLD SSCS 10.5 1.55 -1.25 -1.54
VPSDE EM 14.2 4.68 -0.35 -1.11

2.4.6.1.2 Maximum Likelihood Training For maximum likelihood training, mod-
els based on overdamped Langevin dynamics such as VPSDE need to learn an unbounded
score for t → 0. Our model, on the other hand, only ever needs to learn a bounded score
even for t = 0. For our image data experiments, we use a reweighted objective function to
improve visual quality of samples (as is general practice).

Here, we also study training towards maximum likelihood on toy dataset tasks. To ex-
plore this, we repeat the neural network complexity experiment from App. 2.4.5.1 with
maximum likelihood training (instead of the reweighted objective). Furthermore, we also
train VPSDE-based and CLD-based SGMs on a challenging toy dataset and find that CLD
significantly outperforms VPSDE. We leave the study of CLD with maximum likelihood
training for high-dimensional (image) datasets to future work.

Complexity Experiment. The setup of this experiment is equivalent to the setup in
App. 2.4.5.1 up to the training objective: in this experiment we do maximum likelihood
learning, i.e., we train CLD models with the objective from Eq. (2.11) with λ(t) = Γβ.10

Furthermore, we test CLD in this setup for three different values of γ. The results of this
experiment can be found in Fig. 2.12. For CLD, we find that larger values of γ generally
lead to less complex networks, in particular for smaller times t. However, even for γ = 0.04
the learned neural network is still significantly smoother than the network learned for the
VPSDE when a mixed score parameterization is used.11 Challenging Toy Dataset.
Using the same simple ResNet architecture (less than 100k parameters) from the above
experiment, we trained a VPSDE-based as well as a CLD-based SGM to maximize the
likelihood of a more challenging toy dataset (the dataset is essentially “multi-scale”, as it
involves both large scale—the placement of the swiss rolls—and fine scale—the swiss rolls

10For the ML objective of the VPSDE, we refer the reader to Song et al. [262].
11The VPSDE-based model with mixed score parameterization did not converge to the target distribu-

tion, and therefore is not included in Fig. 2.12.
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Figure 2.12: Frobenius norm JF (t) of the neural network defining the score function for
different t.
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(a) Data (b) VPSDE (c) CLD

Figure 2.13: Data distribution and model samples for multi-scale toy experiment.

themselves—structure). Similar to the other toy datasets, the models are trained for 1M
iterations using fresh data synthesized from the data distribution in each batch at a batch
size of 512.

In Fig. 2.13, we compare samples of the models to the data distribution. Even with
our simple model architecture, CLD is able to capture the multi-scale structure of the
dataset: the five rolls are adequately resembled and only a few samples are in between
modes. VPSDE, on the other hand, only captures the main modes, but not the fine struc-
ture. Furthermore, VPSDE has the undesired behavior of “connecting” the modes.

Overall, we conclude that also in the maximum likelihood training setting CLD is a promis-
ing diffusion showing superior behavior compared to the VPSDE in our toy experiments.

2.4.6.2 CIFAR-10 — Extended Results

In this section, we provide additional results on the CIFAR-10 image modeling benchmark.

An extended version of Tab. 2.3 (sampling the generative SDE with different fixed-step
size solvers for different compute budgets) including additional baselines can be found in
Tab. 2.9. Note that time stepping with quadratic striding (QS) improves sampling from
VPSDE- and CLD-based models for all settings except for the combination of VPSDE
and EM sampling in the setting n = {1000, 2000}. For the VESDE (using PC sampling),
QS significantly worsens FID scores. The reason for this could be that the variance of
the VESDE already follows an exponential schedule (see Fig. 5 in Song et al. [263]). We
additionally present results for the VPSDE using the DDIM (Denoising Diffusion Implicit
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Table 2.9: Performance using non-adaptive step size solvers. Extended version of Tab. 2.3.

FID at n function evaluations ↓
Model Sampler n=50 n=150 n=275 n=500 n=1000 n=2000

CLD EM 143 31.5 10.9 3.96 2.50 2.27
CLD EM-QS 52.7 7.00 3.24 2.41 2.27 2.23
CLD SSCS 81.1 10.5 2.86 2.30 2.32 2.29
CLD SSCS-QS 20.5 3.07 2.38 2.25 2.30 2.29

VPSDE EM 92.0 30.3 13.1 4.42 2.46 2.43
VPSDE EM-QS 28.2 4.06 2.65 2.47 2.66 2.60
VPSDE DDIM 6.04 4.04 3.53 3.26 3.09 3.01
VPSDE DDIM-QS 3.78 3.15 3.05 2.99 2.96 2.95

VESDE PC 460 216 11.2 3.75 2.43 2.23
VESDE PC-QS 461 388 155 5.47 11.4 11.2

Models) sampler [258]. As was observed by [258], QS also helps for DDIM. Importantly,
for any n ≥ 150, our CLD with our novel SSCS (and QS) even outperforms DDIM. Only
for n = 50, DDIM performs better. It needs to be mentioned, however, that the DDIM
sampler was specifically designed for few-step sampling, whereas our CLD with SSCS is
derived in a general fashion without this particular regime in mind. In particular, DDIM
sampling can be interpreted as a non-Markovian sampling method and it is not clear how to
calculate the log-likelihood of hold-out validation data under this non-Markovian synthesis
approach. Nevertheless, it would be interesting to also explore non-Markovian DDIM-
inspired techniques for CLD-SGMs to further improve sampling speed in CLD-SGMs.

Note that our DDIM results shown in Tab. 2.9 are better than those presented in [258]
itself, because we are relying on the DDPM++ model trained in [263], whereas [258] uses
the DDPM model from [109].

Finally, we present additional generated samples from our CLD-SGM model: see Fig. 2.14
and Fig. 2.15 for samples from EM-QS with 2000 evaluations and SSCS-QS with 150
evaluations, respectively.
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Figure 2.14: Additional samples using EM-QS with 2000 function evaluations. This setup
gave us our best FID score of 2.23.
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Figure 2.15: Additional samples using SSCS-QS. This setup resulted in an FID score of
3.07 using only 150 function evaluations.
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2.4.6.3 CelebA-HQ-256 — Extended Results

In this section, we provide additional qualitative results on CelebA-HQ-256. For high qual-
ity samples using our new SSCS solver see Fig. 2.16.

Samples generated with an adaptive step size Runge–Kutta 4(5) solver at different solver
tolerances can be found in Fig. 2.17. We found that our model still generates very good
samples even for a solver error tolerance of 10−3 using an average of 129 neural network
evaluations.

Lastly, we show “generation paths” of samples from our CelebA-HQ-256 model: see
Fig. 2.18 and Fig. 2.19 for samples from the probability flow ODE and the generative
SDE, respectively. We visualize the continuous generation paths via snapshots of data and
velocity variables at eight different time steps. Interestingly, we can see that the velocity
variables “encode” the data at intermediate t. On the other hand, at time t = 1.0, by
construction, both data and velocity are distributed according to the “equilibrium distri-
bution” of the diffusion, namely, pEQ(u) = N (x;0d, Id)N (v;0d,MId). Furthermore, as
t→ 0 the data variables approximately converge to the data distribution, while the veloc-
ity variables approximately converge to another Normal distribution N (v;0d, γMId) (with
γ = 0.04 in our experiments).

Recall that for CLD, the neural network approximates the score ∇vt log pt(vt|xt). We
believe that the generation paths are further evidence that CLD-SGMs need to learn sim-
pler models: for fixed t the velocity variable vt appears to be a “noisy” version of the data
xt, and therefore we believe pt(vt|xt) to be relatively smooth and simple when compared
to the marginal pt(xt).

Finally, note that in Figs. 2.18 and 2.19, when visualizing the velocity variables, we used
a colorization scheme that corresponds exactly to the inverse of the color scheme used for
visualizing the images themselves. Alternatively, we could also interpret this in such a way
that we are not actually visualizing velocities, but negative velocities with flipped signs.
When using this inverse colorization scheme for the velocities, we see that at intermediate t,
where the velocities encode the data, the color values visualizing image data and velocities
are, apart from the additional noise in the velocities, similar (i.e. the velocities appear as
noisy versions of the actual images). This implies that image pixel values xt translate into
corresponding negative velocities vt that pull the pixel values back towards the mean of
the equilibrium distribution. This is a consequence of the Hamiltonian coupling between
the data and velocity variables. In other words, it is a result of the negative sign in front of
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xt in the H term in Eq. (2.8) (and analogously for the reverse-time generative SDE). Also
see the visualizations on our project page (https://nv-tlabs.github.io/CLD-SGM).

2.4.7 Proofs of Perturbation Kernels

In this section, we prove the correctness of the perturbation kernels of the forward diffusion
(App. 2.4.2.1) as well as for the analytical splitting term in our SSCS (App. 2.4.4.2). All
derivations are presented for general time-dependent β(t).

2.4.7.1 Forward Diffusion

We have the following ODEs describing the evolution of the mean and the covariance
matrix

dµt
dt

= (f(t)⊗ Id)µt, (2.113)

dΣt

dt
= (f(t)⊗ Id)Σt + [(f(t)⊗ Id)Σt]

⊤ +
(
G(t)G⊤(t)

)
⊗ Id, (2.114)

where

f(t) :=

(
0 4β(t)Γ−2

−β(t) −4β(t)Γ−1

)
, (2.115)

G(t) :=

(
0 0

0
√
2Γβ(t)

)
. (2.116)

In App. 2.4.2.1, we claim the following solutions:

µt := Ctµ̂t, (2.117)

µ̂t :=

(
µxt
µvt

)
, (2.118)

Ct := e−2B(t)Γ−1

, (2.119)

µxt := 2B(t)Γ−1x0 + 4B(t)Γ−2v0 + x0, (2.120)

µvt := −B(t)x0 − 2B(t)Γ−1v0 + v0, (2.121)
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Figure 2.16: Samples generated by our model on the CelebA-HQ-256 dataset using our SSCS
solver.
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(a) ODE solver error tolerance 10−5; 273 average NFE.

(b) ODE solver error tolerance 10−4; 190 average NFE.

(c) ODE solver error tolerance 10−3; 129 average NFE.

(d) ODE solver error tolerance 10−2; 99.4 average NFE.

Figure 2.17: Samples generated by our model on the CelebA-HQ-256 dataset using a Runge–
Kutta 4(5) adaptive ODE solver to solve the probability flow ODE. We show the effect of the
ODE solver error tolerance on the quality of samples ((a), (b), (c) and (d) were generated using
the same prior samples). Little visual differences can be seen between 10−5 and 10−4. Low
frequency artifacts can be observed at 10−3. Deterioration starts to set in at 10−2.
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Figure 2.18: Generation paths of samples from our CelebA-HQ-256 model (Runge–Kutta 4(5)
solver; mean NFE: 288). Odd and even rows visualize data and velocity variables, respectively.
The eight columns correspond to times t ∈ {1.0, 0.5, 0.3, 0.2, 0.1, 10−2, 10−3, 10−5} (from left to
right). The velocity distribution converges to a Normal (different variances) for both t → 0 and
t→ 1. See App. 2.4.6.3 for visualization details and discussion.
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Figure 2.19: Generation paths of samples from our CelebA-HQ-256 model (SSCS-QS using only
150 steps). Odd and even rows visualize data and velocity variables, respectively. The eight
columns correspond to times t ∈ {1.0, 0.5, 0.3, 0.2, 0.1, 10−2, 10−3, 10−5} (from left to right). The
velocity distribution converges to a Normal (different variances) for both t → 0 and t → 1. See
App. 2.4.6.3 for visualization details and discussion.
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and

Σt := Σt ⊗ Id, (2.122)

Σt := DtΣ̂t, (2.123)

Σ̂t :=

(
Σxx
t Σxv

t

Σxv
t Σvv

t

)
, (2.124)

Dt := e−4B(t)Γ−1

, (2.125)

Σxx
t := Σxx

0 + e4B(t)Γ
−1 − 1 + 4B(t)Γ−1 (Σxx

0 − 1) + 4B2(t)Γ−2 (Σxx
0 − 2) + 16B2(t)Γ−4Σvv

0 ,
(2.126)

Σxv
t := −B(t)Σxx

0 + 4B(t)Γ−2Σvv
0 − 2B2(t)Γ−1 (Σxx

0 − 2)− 8B2(t)Γ−3Σvv
0 , (2.127)

Σvv
t := Γ2

4

(
e4B(t)Γ

−1 − 1
)
+ B(t)Γ + Σvv

0

(
1 + 4B2(t)Γ−2 − 4B(t)Γ−1

)
+ B2(t) (Σxx

0 − 2) ,

(2.128)

where B(t) =
∫ t
0
β(t̂) dt̂ and µ0 = [x0,v0]

⊤ as well as Σxx
0 and Σvv

0 are initial conditions.

2.4.7.1.1 Proof of Correctness of the Mean Plugging the claimed solution (Eqs. (2.117)-
(2.121)) back into the ODE (Eq. 2.113), we obtain

µ̂t
dCt
dt

+
dµ̂t
dt

Ct = Ct(f(t)⊗ Id)µ̂t. (2.129)

The above can be decomposed into two equations:

−2β(t)Γ−1µxt +
dµxt
dt

= 4β(t)Γ−2µvt , (2.130)

−2β(t)Γ−1µvt +
dµvt
dt

= −β(t)µxt − 4β(t)Γ−1µvt , (2.131)

where we used the fact that dCt

dt
= −2β(t)Γ−1Ct.

Eq. (2.130): Plugging the claimed solution into Eq. (2.130), we obtain:

−2β(t)Γ−1
[
�����
2B(t)Γ−1x0((((((

+4B(t)Γ−2v0��+x0

]
+

[
�����
2β(t)Γ−1x0((((((

+4β(t)Γ−2v0

]
= 4β(t)Γ−2

[
����−B(t)x0((((((−2B(t)Γ−1v0��+v0

]
.

(2.132)

Eq. (2.131): After simplification, plugging in the claimed solution into Eq. (2.131), we
obtain:

2β(t)Γ−1
[
����−B(t)x0((((((−2B(t)Γ−1v0��+v0

]
+

[
����−β(t)x0((((((−2β(t)Γ−1v0

]
= −β(t)

[
�����
2B(t)Γ−1x0((((((

+4B(t)Γ−2v0��+x0

]
. (2.133)

This completes the proof of the correctness of the mean.
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2.4.7.1.2 Proof of Correctness of the Covariance Plugging the claimed solution
(Eqs. (2.122)-(2.128)) back in the ODE (Eq. (2.114)), we obtain[

dΣ̂t

dt
Dt +

dDt

dt
Σt

]
⊗ Id = Dt(f(t)⊗ Id)(Σ̂t ⊗ Id) +Dt

[
(f(t)⊗ Id)(Σ̂t ⊗ Id)

]⊤
+

(
G(t)G⊤(t)

)
⊗ Id. (2.134)

Noting that

(f(t)⊗ Id)(Σ̂t ⊗ Id) = (f(t)Σ̂t)⊗ Id

= β(t)

(
4Γ−2Σxv

t 4Γ−2Σvv
t

−Σxx
t − 4Γ−1Σxv

t −Σxv
t − 4Γ−1Σvv

)
⊗ Id,

(2.135)

and

G(t)G⊤(t) =

(
0 0
0 2Γβ(t)

)
, (2.136)

as well as the fact that dDt

dt
= −4β(t)Γ−1Dt, we can decompose Eq. (2.134) into three

equations:

−4β(t)Γ−1Σxx
t +

dΣxx

dt
= 8β(t)Γ−2Σxv

t , (2.137)

−4β(t)Γ−1Σxv
t +

dΣxv

dt
= β(t)

[
−Σxx

t − 4Γ−1Σxv
t + 4Γ−2Σvv

t

]
, (2.138)

−4β(t)Γ−1Σvv
t +

dΣvv

dt
= β(t)

[
−2Σxv

t − 8Γ−1Σvv
t

]
+ 2Γβ(t)D−1

t . (2.139)

Eq. (2.137): Plugging the claimed solution into Eq. (2.137), we obtain

− 4β(t)Γ−1
[
��Σxx

0 +����
e4B(t)Γ−1

��−1(((((((((
+4B(t)Γ−1 (Σxx

0 − 1)((((((((((
+4B2(t)Γ−2 (Σxx

0 − 2)((((((((
+16B2(t)Γ−4Σvv

0

]
+

[
((((((((
4β(t)Γ−1e4B(t)Γ−1

+ 4β(t)Γ−1 (��Σxx
0 ��−1)

(((((((((((
+8β(t)B(t)Γ−2 (Σxx

0 − 2)(((((((((
+32β(t)B(t)Γ−4Σvv

0

]
= 8β(t)Γ−2

[
�����−B(t)Σxx

0 (((((((
+4B(t)Γ−2Σvv

0 ((((((((((
−2B2(t)Γ−1 (Σxx

0 − 2)(((((((−8B2(t)Γ−3Σvv
0

]
.

(2.140)

Eq. (2.138): After simplification, plugging the claimed solution into Eq. (2.138), we
obtain[

�����−β(t)Σxx
0 +������

4β(t)Γ−2Σvv
0 − 4β(t)B(t)Γ−1 (��Σxx

0 ��−2)(((((((((
−16β(t)B(t)Γ−3Σvv

0

]
= −β(t)

[
��Σxx

0 (((((((
+e4B(t)Γ−1 − 1 + 4B(t)Γ−1 (��Σxx

0 ��−1)((((((((((
+4B2(t)Γ−2 (Σxx

0 − 2)((((((((
+16B2(t)Γ−4Σvv

0

]
+ 4β(t)Γ−2

[
Γ2

4 �������(
e4B(t)Γ−1 − 1

)
����+B(t)Γ + Σvv

0

(
�1������
+4B2(t)Γ−2

�����−4B(t)Γ−1
)
((((((((
+B2(t) (Σxx

0 − 2)
]
.

(2.141)

85



Eq. (2.139): After simplification, plugging the claimed solution into Eq. (2.139), we
obtain

4β(t)Γ−1
[
Γ2

4

(
����
e4B(t)Γ−1

��−1
)
+���B(t)Γ + Σvv

0

(
�1������
+4B2(t)Γ−2

�����−4B(t)Γ−1
)
+(((((((B2(t) (Σxx

0 − 2)
]

+
[
(((((((((
Γ2

4
4β(t)Γ−1e4B(t)Γ−1

����+β(t)Γ + Σvv
0

(
((((((
8B(t)β(t)Γ−2

�����−4β(t)Γ−1
)
+ 2β(t)B(t) (��Σxx

0 ��−2)
]

= −2β(t)
[
�����−B(t)Σxx

0 (((((((
+4B(t)Γ−2Σvv

0 ((((((((((
−2B2(t)Γ−1 (Σxx

0 − 2)(((((((−8B2(t)Γ−3Σvv
0

]
((((((((
+2Γβ(t)e4B(t)Γ−1

.

(2.142)

This completes the proof of the correctness of the covariance.

2.4.7.2 Analytical Splitting Term of SSCS

We have the following ODEs describing the evolution of the mean and the covariance
matrix

dµ̄t
dt

= (f(T − t)⊗ Id)µ̄t, (2.143)

dΣ̄t

dt
= (f(T − t)⊗ Id)Σ̄t +

[
(f(T − t)⊗ Id)Σ̄t

]⊤
+
(
G(T − t)G⊤(T − t)

)
⊗ Id, (2.144)

where

f(T − t) :=

(
0 −4β(T − t)Γ−2

+β(T − t) −4β(T − t)Γ−1

)
, (2.145)

G(T − t) :=

(
0 0

0
√

2Γβ(T − t)

)
. (2.146)

These ODEs are very similar to the ODEs of the forward diffusion in App. 2.4.7.1, the only
difference being flipped signs in the off-diagonal terms of f(T − t) (highlighted in red).

In App. 2.4.4.2, we claim the following solutions

µ̄t = Ctµ̃t, (2.147)

µ̃t =

(
µ̄xt
µ̄vt

)
, (2.148)

Ct = e−2B(t)Γ−1

, (2.149)

µ̄xt = 2B(t)Γ−1x̄t′−4B(t)Γ−2v̄t′ + x̄t′ , (2.150)

µ̄vt = +B(t)x̄t′ − 2B(t)Γ−1v̄t′ + v̄t′ , (2.151)
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and

Σ̄t = Σ̄t ⊗ Id, (2.152)

Σ̄t = DtΣ̃t, (2.153)

Σ̃t =

(
Σ̄xx
t Σ̄xv

t

Σ̄xv
t Σ̄vv

t

)
, (2.154)

Dt = e−4B(t)Γ−1

, (2.155)

Σ̄xx
t = e4B(t)Γ

−1 − 1− 4B(t)Γ−1 − 8B2(t)Γ−2, (2.156)

Σ̄xv
t = −4B2(t)Γ−1, (2.157)

Σ̄vv
t = Γ2

4

(
e4B(t)Γ

−1 − 1
)
+ B(t)Γ− 2B2(t), (2.158)

where B(t) =
∫ t
t′ β(T − t̂) dt̂ and µ̄t′ = [x̄t′ , v̄t′ ]

⊤ is an initial condition. Differences of the
above solution to the solutions of the forward diffusion are again highlighted in red. Note
that by construction the initial covariance for the analytical splitting term of SSCS is the
zero matrix, i.e., Σ̄xx

t′ = Σ̄xv
t′ = Σ̄vv

t′ = 0, since we always initialize from an “updated
sample”, which itself does not have any uncertainty. Also note that in this derivation we
use general initial t′ (whereas in App. 2.4.7.1 we set t′ = 0 for simplicity).

2.4.7.2.1 Proof of Correctness of the Mean Plugging the claimed solution (Eqs. (2.147)-
(2.151)) into the ODE (Eq. (2.143)), we obtain

µ̃t
dCt
dt

+
dµ̃t
dt

Ct = Ct(f(T − t)⊗ Id)µ̃t. (2.159)

The above can be decomposed into two equations:

−2β(T − t)Γ−1µ̄xt +
dµ̄xt
dt

= −4β(T − t)Γ−2µ̄vt , (2.160)

−2β(T − t)Γ−1µ̄vt +
dµ̄vt
dt

= β(T − t)µ̄xt − 4β(T − t)Γ−1µ̄vt , (2.161)

where we used the fact that dCt

dt
= −2β(T − t)Γ−1Ct.

Eq. (2.160): Plugging the claimed solution into Eq. (2.160), we obtain:

− 2β(T − t)Γ−1
[
������
2B(t)Γ−1x̄t′((((((−4B(t)Γ−2v̄t′���+x̄t′

]
+

[
(((((((
2β(T − t)Γ−1x̄t′((((((((−4β(T − t)Γ−2v̄t′

]
= −4β(T − t)Γ−2 [

����B(t)x̄t′((((((−2B(t)Γ−1v̄t′���+v̄t′
]
.

(2.162)
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Eq. (2.131): After simplification, plugging the claimed solution into Eq. (2.131), we
obtain:

2β(T − t)Γ−1 [
����B(t)x̄t′((((((−2B(t)Γ−1v̄t′���+v̄t′

]
+

[
(((((
β(T − t)x̄t′((((((((−2β(T − t)Γ−1v̄t′

]
= β(T − t)

[
������
2B(t)Γ−1x̄t′((((((−4B(t)Γ−2v̄t′���+x̄t′

]
.

(2.163)

This completes the proof of the correctness of the mean.

2.4.7.2.2 Proof of Correctness of the Covariance Plugging the claimed solution
(Eqs. (2.152)-(2.158)) into the ODE (Eq. (2.144)), we obtain[

dΣ̃t

dt
Dt +

dDt

dt
Σ̃t

]
⊗ Id = Dt(f ⊗ Id)(Σ̃t ⊗ Id) +Dt

[
(f ⊗ Id)(Σ̃t ⊗ Id)

]⊤
+

(
GG⊤

)
⊗ Id (2.164)

with f = f(T − t) and G = G(T − t).

Noting that

(f(T − t)⊗ Id)(Σ̃t ⊗ Id) = (f(T − t)Σ̃t)⊗ Id

= β(T − t)

(
−4Γ−2Σ̄xv

t −4Γ−2Σ̄vv
t

Σ̄xx
t − 4Γ−1Σ̄xv

t Σ̄xv
t − 4Γ−1Σ̄vv

)
⊗ Id,

(2.165)

and

G(T − t)G⊤(T − t) =

(
0 0
0 2Γβ(T − t)

)
, (2.166)

as well as the fact dDt

dt
= −4β(T − t)Γ−1Dt, we can decompose Eq. (2.164) into three

equations:

−4β(T − t)Γ−1Σ̄xx
t +

dΣ̄xx

dt
= −8β(T − t)Γ−2Σ̄xv

t , (2.167)

−4β(T − t)Γ−1Σ̄xv
t +

dΣ̄xv

dt
= β(T − t)

[
Σ̄xx
t − 4Γ−1Σ̄xv

t − 4Γ−2Σ̄vv
]
, (2.168)

−4β(T − t)Γ−1Σ̄vv
t +

dΣ̄vv

dt
= β(T − t)

[
2Σ̄xv

t − 8Γ−1Σ̄vv
t

]
+ 2Γβ(T − t)D−1

t . (2.169)

Eq. (2.167): Plugging the claimed solution into Eq. (2.167), we obtain

− 4β(T − t)Γ−1
[
����
e4B(t)Γ−1

��−1�����−4B(t)Γ−1

������−8B2(t)Γ−2
]

[
((((((((((
4β(T − t)Γ−1e4B(t)Γ−1

(((((((−4β(T − t)Γ−1

(((((((((
−16β(T − t)B(t)Γ−2

]
= −8β(T − t)Γ−2

[
������−4B2(t)Γ−1

]
.

(2.170)

88



Eq. (2.168): After simplification, plugging the claimed solution into Eq. (2.168), we
obtain

(((((((((
−8β(T − t)B(t)Γ−1

= β(T − t)

[
������
e4B(t)Γ−1 − 1�����−4B(t)Γ−1

������−8B2(t)Γ−2

]
− 4Γ−2β(T − t)

[
Γ2

4 �������(
e4B(t)Γ−1 − 1

)
����+B(t)Γ����−2B2(t)

]
.

(2.171)

Eq. (2.169): After simplification, plugging the claimed solution into Eq. (2.169), we
obtain

4β(T − t)Γ−1
[
Γ2

4

(
����
e4B(t)Γ−1

��−1
)
����+B(t)Γ����−2B2(t)

]
[
((((((((
Γβ(T − t)e4B(t)Γ−1

(((((
+β(T − t)Γ(((((((−4β(T − t)B(t)

]
=
((((((((((
2β(T − t)

[
−4B2(t)Γ−1]

(((((((((
+2Γβ(T − t)e4B(t)Γ−1

.

(2.172)

This completes the proof of the correctness of the covariance.

To connect back to the SSCS as presented in App. 2.4.4.2, recall that in practice we
use constant β (and T = 1) and that we solve for small time steps of size δt

2
, such that

B(t) = β δt
2
, which leads to the expressions presented in App. 2.4.4.2.

2.5 Epilogue

2.5.1 Hybrid Score Matching Trains a Denoiser

In Section 1.2.3 we present a unified learning framework for DMs that use the perturbation
kernel pt(xt | x0) = N (xt | αtx0, σ

2
t Id). Now, recall the hybrid score matching loss from

the paper (Equation (9)):

min
θ

Ex0∼pdata(x0), t∼U [0,1], ε2d∼N (ε2d;02d,I2d)[λ(t)ℓ
2
t∥αθ(ut, t)− εd:2d∥22], (2.173)

where αθ(ut, t) = ℓ−1
t vt/Σ

vv
t + Fθ(ut, t), with Fθ being the learnable neural network, and

ut = µt(x0) +Ltε2d. (2.174)

Plugging in the definitions of µt and Lt (see Equation (2.31) and Equation (2.52), respec-
tively), we obtain

xt = (2B(t)Γ−1 + 1)e−2B(t)Γ−1

x0 + Lxxt ε0:d, (2.175)

vt = −B(t)e−2B(t)Γ−1

x0 + Lxvt ε0:d + Lvvt εd:2d. (2.176)
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Approximating εd:2d by our model αθ and solving for x0 gives

x0 ≈ Dθ(ut, t) =
(vt − Lvvt

(
ℓ−1
t vt/Σ

vv
t + Fθ(ut, t)

)
− Lxv

t

Lxx
t
xt)

g(t)− f(t)
Lxv
t

Lxx
t

, (2.177)

g(t) = −B(t)e−2B(t)Γ−1

, (2.178)

f(t) = (2Γ−1B(t) + 1)e−2B(t)Γ−1

. (2.179)

Thus, hybrid score matching effectively learns a denoiser model Dθ for the data-velocity
pair ut = (xt,vt)

⊤. We may extend the unified framework from Equation (1.26) to CLD:

Dθ(ut, t) = cxskip(t)xt + cvskip(t)vt + cout(t)Fθ (cin(t)ut, cnoise(t)) . (2.180)

While the original scaling factors in CLD were chosen subjectively, having this unified
framework may allow us to use more principled strategies as has been done for DMs that
use the perturbation kernel pt(xt | x0) = N (xt | αtx0, σ

2
t Id) [141].

2.5.2 Additional Related Work

Zhang et al. [315] developed a fast sampling scheme for CLD using the exponential integra-
tor formalism. Singhal et al. [254] generalize CLD to any number of auxiliary variables.
Furthermore, Singhal et al. [254] propose a method to learn the parameters of the diffu-
sion process and automate the process of finding the perturbation kernel, which was done
manually (and very time-consuming) in CLD. Doucet et al. [79] use CLD to improve an-
nealed importance sampling [208]. Wizadwongsa and Suwajanakorn [291] propose a solver
for DMs using splitting methods [35, 42, 158, 165, 276] similar to the symmetric splitting
CLD sampler introduced in the paper. Not directly related to CLD, other novel diffusion
processes for DMs have been explored [18, 63, 113, 132, 233].
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Chapter 3

GENIE: Higher-Order Denoising
Diffusion Solvers

3.1 An Introduction to Accelerated Sampling for Dif-

fusion Models

When DMs were originally proposed [109, 257, 263], their main drawback, compared to
other generative models, was slow sampling time. Since then, there has been a vast amount
of work on accelerating the sampling process of DMs. Acceleration has primarily focused on
deterministic sampling, i.e., sampling based on the probability flow ODE (Equation (1.21)).

3.1.1 Denoising Diffusion Implicit Models

Denoising diffusion implicit models (DDIMs) [258] were originally proposed as a non-
Markovian generalization of discrete-time DMs (Section 1.2.4). Despite having the same
objective function as discrete-time DMs, DDIMs are more flexible at inference time allow-
ing, for example, for deterministic sampling. Recently, several works independently found
that the deterministic sampling algorithm of DDIM can be recovered with continuous-time
DMs by reparameterizing the probability flow ODE and simulating it using Euler’s method
with a particular time discretization [74, 244, 258, 312]. This finding allows for even further
accelerated sampling by keeping the DDIM reparameterization but using more sophisti-
cated ODE solvers than Euler’s method. In the following, we derive the reparameterization
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for the general perturbation kernel N (xt;αtx0, σ
2
t Id) in the notation of Chapter 1. Let us

recall the probability flow ODE (Equation (1.22))

dxt
dt

=
α̇t
αt

xt − α2
t γ̇tγtsθ(xt, t), (3.1)

where γt = σt/αt. Let us define

x̃t =
xt
αt

, (3.2)

then

dx̃t
dt

=
dxt

dt

αt
− xt

α̇t
α2
t

= −αtγ̇tγtsθ(xt, t) = −γ̇tσtsθ(xt, t). (3.3)

Plugging the DM (Equation (1.25)) into the above equation results in

dx̃t
dt

= − γ̇t
γt
(D(xt, t)− x̃t), (3.4)

and therefore

dx̃t
dγt

=
x̃t −D(xt, t)

γt
. (3.5)

Note that a single step in Euler’s method from any t1 > 0 to t0 = 0 results in

x̃0 = x̃1 − γ1
x̃1 −D(x1, t1)

γ1
= D(x1, t1), (using γ0 = 0), (3.6)

that is, the tangent of the ODE trajectory always points towards the predicted clean data
point x0 which is expected to change slowly with time t and may explain why this particular
reparameterization works so well [141]. Furthermore, the DDIM reparameterization can
also be recovered by applying the exponential integrator formalism to the probability flow
ODE [312]; another possible explanation for its success.

3.1.2 An Introduction to Fast ODE Solvers

There has been a long line of research on solving ODEs efficiently. Arguably, the two most
prominent classes of methods are linear multistep methods and Runge–Kutta methods.
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To better understand these methods, let us apply the p-th order Taylor polynomial to a
generic ODE dy

dt
= f(y, t) at the point ytn , i.e.,

ytn+1 − ytn = hn
dy

dt
|(ytn ,tn) +

1

2
h2
n

d2y

dt2
|(ytn ,tn) · · ·+

1

p!
hpn

dpy

dtp
|(ytn ,tn), (3.7)

where hn = tn+1 − tn is the step size. Note that we can only directly evaluate the first
term on the right-hand-side of Equation (3.7). Both linear multistep and Runge–Kutta
methods (of p-th order) approximate the higher-order derivative terms in Equation (3.7)
(up to p-th derivative) using finite difference schemes. Runge–Kutta methods approximate
the higher order terms using evaluations of the first-order derivative f at additional points
ytn < yt′n ,yt′′n , · · · < ytn+1 . Linear multistep methods, on the other hand, use additional
evaluations of the first-order derivative at “past evaluations” ytn−1 ,ytn−2 , . . . , etc. Note
that linear multistep methods of p-th order need to be warm started, that is, all points up
to ytp need to be evaluated using an alternative method, e.g., a Runge–Kutta method or a
linear multistep method of lower order. Both linear multistep methods and Runge–Kutta
methods have been widely used to solve the probability flow ODE (or the DDIM repa-
rameterization thereof) [176, 183, 184, 312]. Methods based on finite differences, however,
generally break down in the few-step limit for large hn since the approximations of the
higher-order derivatives become increasingly crude.

3.2 Preface

This section presents the paper “GENIE: Higher-Order Denoising Diffusion Solvers”. Rather
than approximating higher-order derivatives using finite difference schemes, as is done in
linear multistep methods and Runge–Kutta methods, in GENIE we propose to learn an
efficient neural model for the second-order derivative, i.e., kϕ ≈ d2y

dt2
. Evaluating the model

kϕ is cheap as it is implemented as a small prediction head on top of the neural network
backbone of the original DM model. Our method can in principle also be extended to
any higher-order derivative, and we show initial results for the third-order derivative. The
paper was initially put on arXiv in October 2022, and then accepted and presented at the
Conference on Neural Information Processing Systems in December 2022.

Contributions: I was the sole first author of this work. Arash Vahdat and Karsten
Kreis were co-authors, and Karsten supervised the project. Karsten initially proposed to
learn higher-order score functions using higher-order denoising score matching [195]. After
little success in this direction, I pitched the idea to instead learn higher-order derivatives
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via distillation. I implemented all code and ran all experiments, derived the loss functions,
and wrote the majority of the paper. Karsten, Arash, and I jointly came up with the mixed
network parameterization and the idea of learning the second-order derivative model kϕ
as a small prediction head which makes use of the internal representations of the neural
network backbone of the DM.

Reproducibility: The code and models for this work have been open-sourced. See https:
//github.com/nv-tlabs/GENIE for instructions to reproduce our results.

arXiv: The paper “GENIE: Higher-Order Denoising Diffusion Solvers” is available on
ArXiV (v1). The following version is simply reformatted into the style of the thesis.

Abstract: Denoising diffusion models (DDMs) have emerged as a powerful class of gen-
erative models. A forward diffusion process slowly perturbs the data, while a deep model
learns to gradually denoise. Synthesis amounts to solving a differential equation (DE) de-
fined by the learnt model. Solving the DE requires slow iterative solvers for high-quality
generation. In this work, we propose Higher-Order Denoising Diffusion Solvers (GENIE):
Based on truncated Taylor methods, we derive a novel higher-order solver that signifi-
cantly accelerates synthesis. Our solver relies on higher-order gradients of the perturbed
data distribution, that is, higher-order score functions. In practice, only Jacobian-vector
products (JVPs) are required and we propose to extract them from the first-order score
network via automatic differentiation. We then distill the JVPs into a separate neural net-
work that allows us to efficiently compute the necessary higher-order terms for our novel
sampler during synthesis. We only need to train a small additional head on top of the
first-order score network. We validate GENIE on multiple image generation benchmarks
and demonstrate that GENIE outperforms all previous solvers. Unlike recent methods that
fundamentally alter the generation process in DDMs, our GENIE solves the true generative
DE and still enables applications such as encoding and guided sampling. Project page and
code: https://nv-tlabs.github.io/GENIE.

3.3 Main Paper

3.3.1 Introduction

Denoising diffusion models (DDMs) offer both state-of-the-art synthesis quality and sample
diversity in combination with a robust and scalable learning objective. DDMs have been
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used for image [66, 109, 110, 212, 235] and video [112, 301] synthesis, super-resolution [168,
240], deblurring [142, 290], image editing and inpainting [185, 197, 235, 239], text-to-
image synthesis [13, 211, 230], conditional and semantic image generation [22, 56, 179,
218, 228], image-to-image translation [239, 249, 267] and for inverse problems in medi-
cal imaging [59, 60, 117, 187, 224, 264, 299]. They also enable high-quality speech syn-
thesis [48, 49, 130, 157, 178, 227], 3D shape generation [37, 82, 188, 190, 319], molecu-
lar modeling [133, 251, 298, 300], maximum likelihood training [120, 151, 262, 280], and
more [29, 213, 214, 246, 272, 305]. In DDMs, a diffusion process gradually perturbs the
data towards random noise, while a deep neural network learns to denoise. Formally, the
problem reduces to learning the score function, i.e., the gradient of the log-density of the
perturbed data. The (approximate) inverse of the forward diffusion can be described by
an ordinary or a stochastic differential equation (ODE or SDE, respectively), defined by
the learned score function, and can therefore be used for generation when starting from
random noise [262, 263].

A crucial drawback of DDMs is that the generative ODE or SDE is typically difficult
to solve, due to the complex score function. Therefore, efficient and tailored samplers are
required for fast synthesis. In this work, building on the generative ODE [258, 262, 263], we
rigorously derive a novel second-order ODE solver using truncated Taylor methods [154].
These higher-order methods require higher-order gradients of the ODE—in our case this
includes higher-order gradients of the log-density of the perturbed data, i.e., higher-order
score functions. Because such higher-order scores are usually not available, existing works
typically use simple first-order solvers or samplers with low accuracy [75, 109, 258, 263],
higher-order methods that rely on suboptimal finite difference or other approximations [134,
176, 269], or alternative approaches [20, 156, 286] for accelerated sampling. Here, we
fundamentally avoid such approximations and directly model the higher-order gradient
terms: Importantly, our novel Higher-Order Denoising Diffusion Solver (GENIE) relies
on Jacobian-vector products (JVPs) involving second-order scores. We propose to calcu-
late these JVPs by automatic differentiation of the regular learnt first-order scores. For
computational efficiency, we then distill the entire higher-order gradient of the ODE, in-
cluding the JVPs, into a separate neural network. In practice, we only need to add a small
head to the first-order score network to predict the components of the higher-order ODE
gradient. By directly modeling the JVPs we avoid explicitly forming high-dimensional
higher-order scores. Intuitively, the higher-order terms in GENIE capture the local cur-
vature of the ODE and enable larger steps when iteratively solving the generative ODE
(Fig. 3.1).

Experimentally, we validate GENIE on multiple image modeling benchmarks and achieve
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Figure 3.1: Our novel Higher-Order Denoising Diffusion Solver (GENIE) relies on the second
truncated Taylor method (TTM) to simulate a (re-parametrized) Probability Flow ODE for
sampling from denoising diffusion models. The second TTM captures the local curvature of the
ODE’s gradient field and enables more accurate extrapolation and larger step sizes than the first
TTM (Euler’s method), which previous methods such as DDIM [258] utilize.

state-of-the-art performance in solving the generative ODE of DDMs with few synthesis
steps. In contrast to recent methods that fundamentally modify the generation process
of DDMs by training conditional GANs [295] or by distilling the full sampling trajec-
tory [186, 244], GENIE solves the true generative ODE. Therefore, we also show that we
can still encode images in the DDM’s latent space, as required for instance for image in-
terpolation, and use techniques such as guided sampling [66, 108, 263].

We make the following contributions: (i) We introduce GENIE, a novel second-order
ODE solver for fast DDM sampling. (ii) We propose to extract the required higher-order
terms from the first-order score model by automatic differentiation. In contrast to existing
works, we explicitly work with higher-order scores without finite difference approximations.
To the best of our knowledge, GENIE is the first method that explicitly uses higher-order
scores for generative modeling with DDMs. (iii) We propose to directly model the neces-
sary JVPs and distill them into a small neural network. (iv) We outperform all previous
solvers and samplers for the generative differential equations of DDMs.

3.3.2 Background

We consider continuous-time DDMs [109, 257, 263] whose forward process can be described
by

pt(xt|x0) = N (xt;αtx0, σ
2
t I), (3.8)

where x0 ∼ p0(x0) is drawn from the empirical data distribution and xt refers to diffused
data samples at time t ∈ [0, 1] along the diffusion process. The functions αt and σt
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are generally chosen such that the logarithmic signal-to-noise ratio [151] log
α2
t

σ2
t
decreases

monotonically with t and the data diffuses towards random noise, i.e., p1(x1)≈N (x1;0, I).
We use variance-preserving [263] diffusion processes for which σ2

t = 1 − α2
t (however, all

methods introduced in this work are applicable to more general DDMs). The diffusion
process can then be expressed by the (variance-preserving) SDE

dxt = −1
2
βtxt dt+

√
βt dwt, (3.9)

where βt = − d
dt
logα2

t , x0 ∼ p0(x0) and wt is a standard Wiener process. A corresponding
reverse diffusion process that effectively inverts the forward diffusion is given by [7, 104, 263]

dxt = −1
2
βt [xt + 2∇xt log pt(xt)] dt+

√
βt dwt, (3.10)

and this reverse-time generative SDE is marginally equivalent to the generative ODE [262,
263]

dxt = −1
2
βt [xt +∇xt log pt(xt)] dt, (3.11)

where ∇xt log pt(xt) is the score function. Equation (3.11) is referred to as the Probability
Flow ODE [263], an instance of continuous Normalizing flows [50, 100]. To generate sam-
ples from the DDM, one can sample x1 ∼ N (x1;0, I) and numerically simulate either the
Probability Flow ODE or the generative SDE, replacing the unknown score function by a
learned score model sθ(xt, t) ≈ ∇xt log pt(xt).

The DDIM solver [258] has been particularly popular to simulate DDMs due to its speed
and simplicity. It has been shown that DDIM is Euler’s method applied to an ODE based

on a re-parameterization of the Probability Flow ODE [244, 258]: Defining γt =
√

1−α2
t

α2
t

and x̄t = xt
√
1 + γ2

t , we have

dx̄t
dγt

=
√

1 + γ2
t

dxt
dt

dt

dγt
+ xt

γt√
1 + γ2

t

= − γt√
1 + γ2

t

∇xt log pt(xt), (3.12)

where we inserted Equation (3.11) for dxt

dt
and used β(t) dt

dγt
= 2γt

γ2t +1
. Letting sθ(xt, t) :=

−εθ(xt,t)
σt

denote a parameterization of the score model, the approximate generative DDIM
ODE is then given by

dx̄t = εθ (xt, t) dγt, (3.13)
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where we used σt =
√

1− α2
t = γt√

γ2t +1
(see Section 3.4.1 for a more detailed derivation

of Equation (3.13)). The model εθ(xt, t) can be learned by minimizing the score matching
objective [109, 282]

min
θ

Et∼U [tcutoff ,1],x0∼p(x0),ε∼N (0,I)

[
g(t)∥ε− εθ(xt, t)∥22

]
, xt = αtx0 + σtε, (3.14)

for small 0 < tcutoff ≪ 1. As is standard practice, we set g(t) = 1. Other weighting
functions g(t) are possible; for example, setting g(t) = βt

2σ2
t
recovers maximum likelihood

learning [120, 151, 262, 280].

3.3.3 Higher-Order Denoising Diffusion Solver

As discussed in Section 3.3.2, the so-known DDIM solver [258] is simply Euler’s method
applied to the DDIM ODE (cf. Equation (3.13)). In this work, we apply a higher-order
method to the DDIM ODE, building on the truncated Taylor method (TTM) [154]. The
p-th TTM is simply the p-th order Taylor polynomial applied to an ODE. For example,
for the general dy

dt
= f(y, t), the p-th TTM reads as

ytn+1 = ytn + hn
dy

dt
|(ytn ,tn) + · · ·+

1

p!
hpn

dpy

dtp
|(ytn ,tn), (3.15)

where hn = tn+1− tn (see Section 3.4.2.1 for a truncation error analysis with respect to the
exact ODE solution). Note that the first TTM is simply Euler’s method. Applying the
second TTM to the DDIM ODE results in the following scheme:

x̄tn+1 = x̄tn + hnεθ(xtn , tn) +
1

2
h2
n

dεθ
dγt
|(xtn ,tn), (3.16)

where hn = γtn+1−γtn . Recall that γt =
√

1−α2
t

α2
t
, where the function αt is a time-dependent

hyperparameter of the DDM. The total derivative dγtεθ := dεθ
dγt

can be decomposed as
follows

dγtεθ(xt, t) =
∂εθ(xt, t)

∂xt

dxt
dγt

+
∂εθ(xt, t)

∂t

dt

dγt
, (3.17)

where ∂εθ(xt,t)
∂xt

denotes the Jacobian of εθ(xt, t) and

dxt
dγt

=
∂xt
∂x̄t

dx̄t
dγt

+
∂xt
∂γt

=
1√

γ2
t + 1

εθ(xt, t)−
γt

1 + γ2
t

xt. (3.18)
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(a) Ground truth (b) DDIM (c) GENIE

Figure 3.3: Modeling a complex 2D toy distribution: Samples in (b) and (c) are generated via DDIM
and GENIE, respectively, with 25 solver steps using the analytical score function of the ground truth
distribution.
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Figure 3.2: Top: Single step
error using analytical score
function. Bottom: Norm
of difference ξt(∆t) between
analytical and approximate
derivative computed via finite
difference method.

If not explicitly stated otherwise, we refer to the second
TTM applied to the DDIM ODE, i.e., the scheme in Equa-
tion (3.16), as Higher-Order Denoising Diffusion Solver
(GENIE). Intuitively, the higher-order gradient terms used
in the second TMM model the local curvature of the ODE.
This translates into a Taylor formula-based extrapolation
that is quadratic in time (cf. Equations (3.15) and (3.16))
and more accurate than linear extrapolation, as in Euler’s
method, thereby enabling larger time steps (see Figure 3.1
for a visualization). In Section 3.4.2, we also discuss the
application of the third TTM to the DDIM ODE. We em-
phasize that TTMs are not restricted to the DDIM ODE
and could just as well be applied to the Probability Flow
ODE [263] (also see Section 3.4.2) or neural ODEs [50, 100]
more generally.

The Benefit of Higher-Order Methods: We showcase
the benefit of higher-order methods on a 2D toy distribu-
tion (Figure 3.3a) for which we know the score function
as well as all higher-order derivatives necessary for GENIE
analytically. We generate 1k different accurate “ground
truth” trajectories xt using DDIM with 10k steps. We compare these “ground truth” tra-
jectories to single steps of DDIM and GENIE for varying step sizes ∆t. We then measure
the mean L2-distance of the single steps x̂t(∆t) to the “ground truth” trajectories xt, and
we repeat this experiment for three starting points t ∈ {0.1, 0.2, 0.5}. We see (Figure 3.2
(top)) that GENIE can use larger step sizes to stay within a certain error tolerance for
all starting points t. We further show samples for DDIM and GENIE, using 25 solver
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steps, in Figure 3.3. DDIM has the undesired behavior of sampling low-density regions
between modes, whereas GENIE looks like a slightly noisy version of the ground truth
distribution (Figure 3.3a).

Comparison to Multistep Methods: Linear multistep methods are an alternative
higher-order method to solve ODEs. Liu et al. [176] applied the well-established Adams–
Bashforth [AB, 36] method to the DDIM ODE. AB methods can be derived from TTMs
by approximating higher-order derivatives dpy

dtp
using the finite difference method [154]. For

example, the second AB method is obtained from the second TTM by replacing d2y
dt2

with
the first-order forward difference approximation (f(ytn , tn)− f(ytn−1 , tn−1))/hn−1. In Fig-
ure 3.2 (bottom), we visualize the mean L2-norm of the difference ξt(∆t) between the
analytical derivative dγtεθ and its first-order forward difference approximation for vary-
ing step sizes ∆t for the 2D toy distribution. The approximation is especially poor at
small t for which the score function becomes complex (Section 3.4.5 for details on all toy
experiments).

3.3.3.1 Learning Higher-Order Derivatives

The above observations inspire to apply GENIE to DDMs of more complex and high-
dimensional data such as images. Regular DDMs learn a model εθ for the first-order score;
however, the higher-order gradient terms required for GENIE (cf. Equation (3.17)) are not
immediately available to us, unlike in the toy example above. Let us insert Equation (3.18)
into Equation (3.17) and analyze the required terms more closely:

dγtεθ(xt, t) =
1√

γ2
t + 1

∂εθ(xt, t)

∂xt
εθ(xt, t)︸ ︷︷ ︸

JVP1

− γt
1 + γ2

t

∂εθ(xt, t)

∂xt
xt︸ ︷︷ ︸

JVP2

+
∂εθ(xt, t)

∂t

dt

dγt
. (3.19)

We see that the full derivative decomposes into two JVP terms and one simpler time deriva-
tive term. The term ∂εθ(xt,t)

∂xt
plays a crucial role in Equation (3.19). It can be expressed as

∂εθ(xt, t)

∂xt
= −σt

∂sθ(xt, t)

∂xt
≈ −σt∇⊤

xt
∇xt log pt(xt), (3.20)

which means that GENIE relies on second-order score functions ∇⊤
xt
∇xt log pt(xt) under

the hood.

Given a DDM, that is, given εθ, we could compute the derivative dγtεθ for the GENIE
scheme in Equation (3.16) using automatic differentiation (AD). This would, however,
make a single step of GENIE at least twice as costly as DDIM, because we would need a
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forward pass through the εθ network to compute εθ(xt, t) itself, and another pass to com-
pute the JVPs and the time derivative in Equation (3.19). These forward passes cannot
be parallelized, since the vector-part of JVP1 in Equation (3.19) involves εθ itself, and
needs to be known before computing the JVP. To accelerate sampling, this overhead is too
expensive.

Figure 3.4: Our distilled model kψ that pre-
dicts the gradient dγtεθ is implemented as a
small additional output head on top of the
first-order score model εθ. Purple layers are
used both in εθ and kψ; green layers are spe-
cific for εθ and kψ.

Gradient Distillation: To avoid this over-
head, we propose to first distill dγtεθ into a
separate neural network. During distillation
training, we can use the slow AD-based cal-
culation of dγtεθ, but during synthesis we call
the trained neural network. We build on the
observation that the internal representations
of the neural network modeling εθ (in our
case a U-Net [236] architecture) can be used
for downstream tasks [21, 57]: specifically, we
provide the last feature layer from the εθ net-
work together with its time embedding as well
as xt and the output εθ(xt, t) to a small pre-
diction head kψ(xt, t) that models the differ-
ent terms in Equation (3.19) (see Figure 3.4).
The overhead generated by kψ is small, for instance less than 2% for our CIFAR-10 model
(also see Section 3.3.5), and we found this approach to provide excellent performance. Note
that in principle we could also train an independent deep neural network, which does not
make use of the internal representations of εθ and could therefore theoretically be run in
parallel to the εθ model. We justify using small prediction heads over independent neural
networks because AD-based distillation training is slow: in each training iteration we first
need to call the εθ network, then calculate the JVP terms, and only then can we call the
distillation model. By modeling dγtεθ via small prediction heads, while reusing the internal
representation of the score model, we can make training relatively fast: we only need to
train kψ for up to 50k iterations. In contrast, training score models from scratch takes
roughly an order of magnitude more iterations. We leave training of independent networks
to predict dγtεθ to future work.

Mixed Network Parameterization: We found that learning dγtεθ directly as single
output of a neural network can be challenging. Assuming a single data point distribution
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p0(x0) = δ(x0 = 0), for which we know the diffused score function and all higher-order
derivatives analytically, we found that the terms in Equation (3.19) all behave very differ-
ently within the t ∈ [0, 1] interval (for instance, the prefactor of JVP1 in Equation (3.19)
approaches 1 as t → 0, while JVP2’s prefactor vanishes). As outlined in detail in Para-
graph 3.4.3.2.3, this simple single data point assumption implies an effective mixed network
parameterization, an approach inspired by the “mixed score parametrizations” in Vahdat
et al. [280] and Dockhorn et al. [75]. In particular, we model

kψ = − 1

γt
k
(1)
ψ +

γt
1 + γ2

t

k
(2)
ψ +

1

γt(1 + γ2
t )
k
(3)
ψ ≈ dγtεθ, (3.21)

where k
(i)
ψ (xt, t), i ∈ {1, 2, 3}, are different output channels of the neural network (i.e. the

additional head on top of the εθ network). The three terms in Equation (3.21) exactly
correspond to the three terms of Equation (3.19), in the same order. We show the superior
performance of this parameterization in Section 3.3.5.3.

Learning Objective: Ideally, we would like our model kψ to match dγtεθ exactly, for all
t ∈ [0, T ] and xt in the diffused data distribution, which the generative ODE trajectories
traverse. This suggests a simple (weighted) L2-loss, similar to regular score matching losses
for DDMs [109, 263]:

min
ψ

Et∼U [tcutoff ,1],x0∼p(x0),ε∼N (0,I)

[
gd(t)∥kψ(αtx0 + σtε, t)− dγtεθ(αtx0 + σtε, t)∥22

]
(3.22)

for diffused data points αtx0 + σtε and gd(t) = γ2
t to counteract the

1/γt in the first and third terms of Equation (3.21). This leads to a
roughly constant loss over different time values t. During training we com-
pute dγtεθ via AD; however, at inference time we use the learned prediction
head kψ to approximate dγtεθ. In Paragraph 3.4.3.2.4, we provide pseudo
code for training and sampling with heads kψ. Note that our distillation ob-
jective is consistent and principled: if kψ matches dγtεθ exactly, the result-
ing GENIE algorithm recovers the second TTM exactly (extended discussion in
App. 3.4.2.4).

Alternative Learning Approaches: As shown in Equation (3.20), GENIE relies on
second-order score functions. Recently, Meng et al. [195] directly learnt such higher-order
scores with higher-order score matching objectives. Directly applying these techniques
has the downside that we would need to explicitly form the higher-order score terms
∇⊤

xt
εθ(xt, t), which are very high-dimensional for data such as images. Low-rank approx-

imations are possible, but potentially insufficient for high performance. In our approach,
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we are avoiding this complication by directly modeling the lower-dimensional JVPs. We
found that the methods from Meng et al. [195] can be modified to provide higher-order
score matching objectives for the JVP terms required for GENIE and we briefly explored
this (see Section 3.4.4). However, our distillation approach with AD-based higher-order
gradients worked much better. Nevertheless, this is an interesting direction for future
research. To the best of our knowledge, GENIE is the first solver for the generative differ-
ential equations of DDMs that directly uses higher-order scores (in the form of the distilled
JVPs) for generative modeling without finite difference or other approximations.

3.3.4 Related Work

Accelerated Sampling from DDMs. Several previous works address the slow sam-
pling of DDMs: One line of work reduces and readjusts the timesteps [156, 212] used in
time-discretized DDMs [109, 257]. This can be done systematically by grid search [48]
or dynamic programming [285]. Bao et al. [20] speed up sampling by defining a new
DDM with optimal reverse variances. DDIM [258], discussed in Sec. 3.3.2, was also in-
troduced as a method to accelerate DDM synthesis. Further works leverage modern
ODE and SDE solvers for fast synthesis from (continuous-time) DDMs: For instance,
higher-order Runge–Kutta methods [77, 263] and adaptive step size SDE solvers [134] have
been used. These methods are not optimally suited for the few-step synthesis regime,
in which GENIE shines; see also Section 3.3.5. Most closely related to our work is Liu
et al. [176], which simulates the DDIM ODE [258] using a higher-order linear multi-
step method [36]. As shown in Section 3.3.3, linear multistep methods can be con-
sidered an approximation of the TTMs used in GENIE. Furthermore, Tachibana et al.
[269] solve the generative SDE via a higher-order Itô–Taylor method [154] and in con-
trast to our work, they propose to use an “ideal derivative trick” to approximate higher-
order score functions. In Section 3.4.2.2, we show that applying this ideal derivative ap-
proximation to the DDIM ODE does not have any effect: the “ideal derivatives” are
zero by construction. Note that in GENIE, we in fact use the DDIM ODE, rather
than, for example, the regular Probability Flow ODE [263], as the base ODE for GE-
NIE.

Alternatively, sampling from DDMs can also be accelerated via learning: For instance,
Watson et al. [286] learn parameters of a generalized family of DDMs by optimizing for
perceptual output quality. Luhman and Luhman [186] and Salimans and Ho [244] dis-
till a DDIM sampler into a student model, which enables sampling in as few as a single
step. Xiao et al. [295] replace DDMs’ Gaussian samplers with expressive generative ad-
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versarial networks, similarly allowing for few-step synthesis. GENIE can also be consid-
ered a learning-based approach, as we distill a derivative of the generative ODE into a
separate neural network. However, in contrast to the mentioned methods, GENIE still
solves the true underlying generative ODE, which has major advantages: for instance,
it can still be used easily for classifier-guided sampling [66, 108, 263] and to efficiently
encode data into latent space—a prerequisite for likelihood calculation [262, 263] and edit-
ing applications [230]. Note that the learnt sampler [286] defines a proper probabilistic
generalized DDM; however, it isn’t clear how it relates to the generative SDE or ODE
and therefore how compatible the method is with applications such as classifier guid-
ance.

Other approaches to accelerate DDM sampling change the diffusion itself [75, 163, 207]
or train DDMs in the latent space of a Variational Autoencoder [280]. GENIE is comple-
mentary to these methods.

Higher-Order ODE Gradients beyond DDMs. TTMs [154] and other methods that
leverage higher-order gradients are also applied outside the scope of DDMs. For instance,
higher-order derivatives can play a crucial role when developing solvers [70] and regulariza-
tion techniques [87, 144] for neural ODEs [50, 100]. Outside the field of machine learning,
higher-order TTMs have been widely studied, for example, to develop solvers for stiff [44]
and non-stiff [44, 62] systems.

Concurrent Works. Zhang and Chen [314] motivate the DDIM ODE from an exponential
integrator perspective applied to the Probability Flow ODE and propose to apply existing
solvers from the numerical ODE literature, namely, Runge–Kutta and linear multistepping,
to the DDIM ODE directly. Lu et al. [183] similarly recognize the semi-linear structure of
the Probability Flow ODE, derive dedicated solvers, and introduce new step size schedulers
to accelerate DDM sampling. Karras et al. [141] propose new fast solvers, both determinis-
tic and stochastic, specifically designed for the differential equations arising in DDMs. Both
Zhang et al. [315] and Karras et al. [141] realize that the DDIM ODE has “straight line
solution trajectories” for spherical normal data and single data points—this exactly corre-
sponds to our derivation that the higher-order terms in the DDIM ODE are zero in such a
setting (see Section 3.4.2.2). Bao et al. [19] learn covariance matrices for DDM sampling
using prediction heads somewhat similar to the ones in GENIE; in Section 3.4.7.1, we thor-
oughly discuss the differences between GENIE and the method proposed in Bao et al. [19].
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3.3.5 Experiments

Datasets: We run experiments on five datasets: CIFAR-10 [160] (resolution 32), LSUN
Bedrooms [308] (128), LSUN Church-Outdoor [308] (128), (conditional) ImageNet [65]
(64), and AFHQv2 [58] (512). On AFHQv2 we only consider the subset of cats; referred
to as “Cats” in the remainder of this work.

Architectures: Except for CIFAR-10 (we use a checkpoint by Song et al. [263]), we train
our own score models using architectures introduced by previous works [66, 109]. The ar-
chitecture of our prediction heads is based on (modified) BigGAN residual blocks [30, 263].
To minimize computational overhead, we only use a single residual block. See Section 3.4.3
for training and architecture details.

Evaluation: We measure sample quality via Fréchet Inception Distance [FID, 105] (see
Section 3.4.6.1).

Synthesis Strategy: We simulate the DDIM ODE from t=1 up to t=10−3 using evalua-
tion times following a quadratic function (quadratic striding [258]). For variance-preserving
DDMs, it can be beneficial to denoise the ODE solver output at the cutoff t=10−3, i.e.,
x0 =

xt−σtεθ(xt,t)
αt

[135, 263]. Note that the denoising step involves a score model evaluation,
and therefore “loses” a function evaluation that could otherwise be used as an additional
step in the ODE solver. To this end, denoising the output of the ODE solver is left as a
hyperparameter of our synthesis strategy.

Analytical First Step (AFS): Every additional neural network call becomes crucial
in the low number of function evaluations (NFEs) regime. We found that we can im-
prove the performance of GENIE and all other methods evaluated on our checkpoints by
replacing the learned score with the (analytical) score of N (0, I) ≈ pt=1(xt) in the first
step of the ODE solver. The “gained” function evaluation can then be used as an ad-
ditional step in the ODE solver. Similarly to the denoising step mentioned above, AFS
is treated as a hyperparameter of our Synthesis Strategy. AFS details in Section 3.4.6.2.

Accounting for Computational Overhead: GENIE has a slightly increased computa-
tional overhead compared to other solvers due to the prediction head kψ. The computa-
tional overhead is increased by 1.47%, 2.83%, 14.0%, and 14.4% on CIFAR-10, ImageNet,
LSUN Bedrooms, and LSUN Church-Outdoor, respectively (see also Paragraph 3.4.3.2.5).
This additional overhead is always accounted for implicitly: we divide the NFEs by the
computational overhead and round to the nearest integer. For example, on LSUN Bed-
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rooms, we compare baselines with 10/15 NFEs to GENIE with 9/13 NFEs.

3.3.5.1 Image Generation

In Figure 3.5 we compare our method to the most competitive baselines. In particular, on
the same score model checkpoints, we compare GENIE with DDIM [258], S-PNDM [176],
and F-PNDM [176]. For these four methods, we only include the best result over the two
hyperparameters discussed above, namely, the denoising step and AFS (see Section 3.4.6.6
for genie/tables with all results). We also include three competitive results from the litera-
ture [20, 156, 286] that use different checkpoints and sampling strategies: for each method,
we include the best result for their respective set of hyperparameters. We do not compare
in this figure with Knowledge Distillation [KD, 186], Progressive Distillation [PG, 244] and
Denoising Diffusion GANs [DDGAN, 295] as they do not solve the generative ODE/SDE
and use fundamentally different sampling approaches with drawbacks discussed in Sec-
tion 3.3.4.

For NFEs ∈ {10, 15, 20, 25}, GENIE outperforms all baselines (on the same checkpoint) on
all four datasets (see detailed results in Section 3.4.6.6 and GENIE image samples in Sec-
tion 3.4.6.7). On CIFAR-10 and (conditional) ImageNet, GENIE also outperforms these
baselines for NFEs=5, whereas DDIM outperforms GENIE slightly on the LSUN datasets
(see genie/tables in Section 3.4.6.6). GENIE also performs better than the three additional
baselines from the literature (which use different checkpoints and sampling strategies)
with the exception of the Learned Sampler [LS, 286] on LSUN Bedrooms for NFEs=20.
Though LS uses a learned striding schedule on LSUN Bedrooms (whereas GENIE simply
uses quadratic striding), the LS’s advantage is most likely due to the different checkpoint.
In Table 3.1, we investigate the effect of optimizing the striding schedule, via learning (LS)
or grid search (DDIM & GENIE), on CIFAR-10 and find that its significance decreases
rapidly with increased NFEs (also see Section 3.4.6.6 for details). In Table 3.1, we also
show additional baseline results; however, we do not include commonly-used adaptive step
size solvers in Figure 3.5, as they are arguably not well-suited for this low NFE regime: for
example, on the same CIFAR-10 checkpoint we use for GENIE, the adaptive SDE solver
introduced in Jolicoeur-Martineau et al. [134] obtains an FID of 82.4 at 48 NFEs. Also on
the same checkpoint, the adaptive Runge–Kutta 4(5) [77] method applied to the Probabil-
ityFlow ODE achieves an FID of 13.1 at 38 NFEs (solver tolerances set to 10−2).

The results in Figure 3.5 suggest that higher-order gradient information, as used in GE-
NIE, can be efficiently leveraged for image synthesis. Despite using small prediction heads
our distillation seems to be sufficiently accurate: for reference, replacing the distillation
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Figure 3.5: Unconditional
performance on four popu-
lar benchmark datasets. The
first four methods use the
same score model check-
points, whereas the last three
methods all use different
checkpoints. (†): numbers
are taken from literature.

heads with the derivatives computed via AD, we obtain FIDs of 9.22, 4.11, 3.54, 3.46 using
10, 20, 30, and 40 NFEs, respectively (NFEs adjusted assuming an additional computa-
tional overhead of 100%). As discussed in Section 3.3.3, linear multistep methods such
as S-PNDM [176] and F-PNDM [176] can be considered (finite difference) approximations
to TTMs as used in GENIE. These approximations can be inaccurate for large timesteps,
which potentially explains their inferior performance when compared to GENIE. When
compared to DDIM, the superior performance of GENIE seems to become less signifi-
cant for large NFE: this is in line with the theory, as higher-order gradients contribute
less for smaller step sizes (see the GENIE scheme in Equation (3.16)). Approaches such
as FastDDIM [156] and AnalyticDDIM [20], which adapt variances and discretizations of
discrete-time DDMs, are useful; however, GENIE suggests that rigorous higher-order ODE
solvers leveraging the continuous-time DDM formalism are still more powerful. To the best
of our knowledge, the only methods that outperform GENIE abandon this ODE or SDE
formulation entirely and train NFE-specific models [244, 295] which are optimized for the
single use-case of image synthesis.

3.3.5.2 Guidance and Encoding

As discussed in Section 3.3.4, one major drawback of approaches such as KD [186], PG [244]
and DDGAN [295] is that they abandon the ODE/SDE formalism, and cannot easily use
methods such as classifier(-free) guidance [108, 263] or perform image encoding. However,
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Method NFEs=5 NFEs=10 NFEs=15 NFEs=20 NFEs=25

GENIE (ours) (∗) 11.2 5.28 4.49 3.94 3.64
GENIE (ours) 13.9 5.97 4.49 3.94 3.67
DDIM [258] (∗) 27.6 11.2 7.35 5.87 5.16
DDIM [258] 29.7 11.2 7.35 5.87 5.16
S-PNDM [176] 35.9 10.3 6.61 5.20 4.51
F-PNDM [176] N/A N/A 10.3 5.96 4.73
Euler–Maruyama 325 230 164 112 80.3

FastDDIM [156] (†) - 9.90 - 5.05 -
Learned Sampler [286] (†/ ∗) 12.4 7.86 5.90 4.72 4.25
Learned Sampler [286] (†) 14.3 8.15 5.94 4.89 4.47
Analytic DDIM [20] (†) - 14.0 - - 5.71
CLD-SGM [75] 334 306 236 162 106
VESDE-PC [263] 461 461 461 461 462

Table 3.1: Unconditional
CIFAR-10 generative perfor-
mance (measured in FID).
Methods above the middle
line use the same score model
checkpoint; methods below all
use different ones. (†): numbers
are taken from literature. (∗):
methods either learn an optimal
striding schedule (Learned Sam-
pler) or do a small grid search
over striding schedules (DDIM &
GENIE); also see Section 3.4.6.6

these techniques can play an important role in synthesizing photorealistic images from
DDMs [66, 211, 212, 230], as well as for image editing tasks [197, 230].

Classifier-Free Guidance [108]: We replace the unconditional diffusion model εθ(xt, t)
with ε̂θ(xt, t, c, w) = (1+w)εθ(xt, t, c)−wεθ(xt, t) in the DDIM ODE (cf Equation (3.13)),
where εθ(xt, t, c) is a conditional model and w > 1.0 is the “guidance scale”.
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Figure 3.6: Sample quality as
a function of guidance scale on
ImageNet.

GENIE then requires the derivative

dγt ε̂θ(xt, t, c, w) = (1 + w)dγtεθ(xt, t, c)− wdγtεθ(xt, t).
(3.23)

for guidance. Hence, we need to distill dγtεθ(xt, t, c)
and dγtεθ(xt, t), for which we could also share pa-
rameters [108]. We compare GENIE with DDIM
on ImageNet in Figure 3.6. GENIE clearly outper-
forms DDIM, in particular for few NFEs, and GE-
NIE also synthesizes high-quality images (see Fig-
ure 3.7).

Image Encoding: We can use GENIE also to solve the
generative ODE in reverse to encode given images. There-
fore, we compare GENIE to DDIM on the “encode-decode” task, analyzing reconstruc-
tions for different NFEs (used twice for encoding and decoding): We find that GENIE
reconstructs images much more accurately (see Figure 3.8). For more details on this ex-
periment as well as the guidance experiment above, see Section 3.4.6.4 and Section 3.4.6.3,
respectively. We also show latent space interpolations for both GENIE and DDIM in Sec-
tion 3.4.6.5.
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Figure 3.8: Encoding and subsequent decoding on LSUN Church-Outdoor. Left: Visual recon-
struction. Right: L2-distance to reference in Inception feature space [268], averaged over 100
images.

3.3.5.3 Ablation Studies

We perform ablation studies over architecture and training objective for the prediction
heads used in GENIE: In Table 3.2, “No mixed” refers to learning dγtεθ directly as single
network output without mixed network parameterization; “No weighting” refers to setting
gd(t) = 1 in Equation (3.22); “Standard” uses both the mixed network parameterization
and the weighting function gd(t) = γ2

t . We can see that having both the mixed network
parametrization and the weighting function is clearly beneficial. We also tested deeper
networks in the prediction heads: for “Bigger model” we increased the number of residual
blocks from one to two. The performance is roughly on par with “Standard”, and we
therefore opted for the smaller head due to the lower computational overhead.

Table 3.2: CIFAR-10 ablation studies (measured in FID).

Ablation NFEs=5 NFEs=10 NFEs=15 NFEs=20 NFEs=25

Standard 13.9 6.04 4.49 3.94 3.67
No mixed 14.7 6.32 4.82 4.31 4.10
No weighting 14.8 7.45 5.89 5.17 4.80

Bigger model 13.7 5.58 4.46 4.05 3.77
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3.3.5.4 Upsampling Table 3.3: Cats (upsampler) generative
performance (measured in FID).

Method NFEs=5 NFEs=10 NFEs=15

GENIE (ours) 5.53 4.90 4.83
DDIM [258] 9.47 6.64 5.85
S-PNDM [176] 14.6 11.0 8.83
F-PNDM [176] N/A N/A 11.7

Cascaded diffusion model pipelines [110] and DDM-
based super-resolution [240] have become crucial
ingredients in DDMs for large-scale image genera-
tion [242]. Hence, we also explore the applicability
of GENIE in this setting. We train a 128× 128 base
model as well as a 128 × 128 → 512 × 512 diffusion
upsampler [110, 240] on Cats. In Table 3.3, we compare the generative performance of
GENIE to other fast samplers for the upsampler (in isolation). We find that GENIE per-
forms very well on this task: with only five NFEs GENIE outperforms all other methods
at NFEs=15. We show upsampled samples for GENIE with NFEs=5 in Figure 3.9. For
more quantitative and qualitative results, we refer to Section 3.4.6.6 and Section 3.4.6.7,
respectively. Training and inference details for the score model and the GENIE prediction
head, for both base model and upsampler, can be found in Section 3.4.3.

3.3.6 Conclusions

We introduced GENIE, a higher-order ODE solver for DDMs. GENIE improves upon the
commonly used DDIM solver by capturing the local curvature of its ODE’s gradient field,
which allows for larger step sizes when solving the ODE. We further propose to distill the
required higher-order derivatives into a small prediction head—which we can efficiently call
during inference—on top of the first-order score network. A limitation of GENIE is that
it is still slightly slower than approaches that abandon the differential equation framework
of DDMs altogether, which, however, comes at the considerable cost of preventing appli-
cations such as guided sampling. To overcome this limitation, future work could leverage
even higher-order gradients to accelerate sampling from DDMs even further (also see Sec-
tion 3.4.7.2).

Broader Impact. Fast synthesis from DDMs, the goal of GENIE, can potentially make
DDMs an attractive method for promising interactive generative modeling applications,
such as digital content creation or real-time audio synthesis, and also reduce DDMs’ envi-
ronmental footprint by decreasing the computational load during inference. Although we
validate GENIE on image synthesis, it could also be utilized for other tasks, which makes
its broader societal impact application-dependent. In that context, it is important that
practitioners apply an abundance of caution to mitigate impacts given generative mod-
eling can also be used for malicious purposes, discussed for instance in Mirsky and Lee
[201], Nguyen et al. [210], Vaccari and Chadwick [278].
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Figure 3.9: High-resolution images generated with the 128 × 128 → 512 × 512 GENIE
upsampler using only five neural network calls. For the two images at the top, the up-
sampler is conditioned on test images from the Cats dataset. For the two images at the
bottom, the upsampler is conditioned on samples from the 128× 128 GENIE base model
(generated using 25 NFEs); an upsampler neural network evaluation is roughly four times
as expensive as a base model evaluation.
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3.4 Appendix

3.4.1 DDIM ODE

The DDIM ODE has previously been shown [244, 258] to be a re-parameterization of the
Probability Flow ODE [263]. In this subsection, we show an alternative presentation to the
ones given in Song et al. [258] and Salimans and Ho [244]. We start from the Probability
Flow ODE for variance-preserving continuous-time DDMs [263], i.e.,

dxt = −1
2
βt [xt +∇xt log pt(xt)] dt, (3.24)

where βt = − d
dt
logα2

t and∇xt log pt(xt) is the score function. Replacing the unknown score
function with a learned score model sθ(xt, t) ≈ ∇xt log pt(xt), we obtain the approximate
Probability Flow ODE

dxt = −1
2
βt [xt + sθ(xt, t)] dt. (3.25)

Let us now define γt =
√

1−α2
t

α2
t

and x̄t = xt
√

1 + γ2
t , and take the (total) derivative of x̄t

with respect to γt:

dx̄t
dγt

=
∂x̄t
∂xt

dxt
dγt

+
∂x̄t
∂γt

(3.26)

=
√
1 + γ2

t

dxt
dγt

+
γt√
1 + γ2

t

xt. (3.27)

The derivative dxt

dγt
can be computed as follows

dxt
dγt

=
dxt
dt

dt

dγt
(by chain rule) (3.28)

= −1

2
βt [xt + sθ(xt, t)]

dt

dγt
(inserting Equation (3.25)) (3.29)

=
1

2

d logα2
t

dt
[xt + sθ(xt, t)]

dt

dγt
(by definition of βt) (3.30)

=
1

2

d logα2
t

dγt
[xt + sθ(xt, t)] (by chain rule) (3.31)

=
1

2

d logα2
t

dα2
t

dα2
t

dγt
[xt + sθ(xt, t)] (by chain rule) (3.32)

=
1

2

1

α2
t

dα2
t

dγt
[xt + sθ(xt, t)] . (3.33)
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We can write α2
t as a function of γt, i.e., α

2
t = (γ2

t + 1)
−1
, and therefore

dα2
t

dγt
= − 2γt

(γ2
t + 1)

2 . (3.34)

Inserting Equation (3.34) into Equation (3.33), we obtain

dxt
dγt

= − γt
γ2
t + 1

[xt + sθ(xt, t)] . (3.35)

Lastly, inserting Equation (3.35) into Equation (3.27), we have

dx̄t
dγt

= − γt√
γ2
t + 1

sθ(xt, t) (3.36)

Letting sθ(xt, t) := −εθ(xt,t)
σt

, where σt =
√

1− α2
t =

γt√
γ2t +1

, denote a particular parame-

terization of the score model, we obtain the approximate generative DDIM ODE as

dx̄t
dγt

=
γt√
γ2
t + 1

εθ(xt, t)

σt
(3.37)

= εθ(xt, t). (3.38)

3.4.2 Synthesis from Denoising Diffusion Models via Truncated
Taylor Methods

In this work, we propose Higher-Order Denoising Diffusion Solvers (GENIE). GENIE is
based on the truncated Taylor method (TTM) [154]. As outlined in Section 3.3.3, the p-th
TTM is simply the p-th order Taylor polynomial applied to an ODE. For example, for the
general dy

dt
= f(y, t), the p-th TTM reads as

ytn+1 = ytn + hn
dy

dt
|(ytn ,tn) + · · ·+

1

p!
hpn

dpy

dtp
|(ytn ,tn), (3.39)

where hn = tn+1 − tn. To generate samples from denoising diffusion models, we can,
for example, apply the second TTM to the (approximate) Probability Flow ODE or the
(approximate) DDIM ODE, resulting in the following respective schemes:

xtn+1 = xtn + (tn+1 − tn)f(xtn , tn) +
1

2
(tn+1 − tn)

2df

dt
|(xtn ,tn), (3.40)
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where f(xt, t) = −1
2
β(t)

[
xt − εθ(xt,t)

σt

]
, and

x̄tn+1 = x̄tn + (γtn+1 − γtn)εθ(xtn , tn) +
1

2
(γtn+1 − γtn)

2dεθ
dγt
|(xtn ,tn). (3.41)

In this work, we generate samples from DDMs using the scheme in Equation (3.41). We
distill the derivative dγtεθ := dεθ

dγt
into a small neural network kψ. For training, dγtεθ is

computed via automatic differentiation, however, during inference, we can efficiently query
the trained network kψ.

3.4.2.1 Theoretical Bounds for the Truncated Taylor Method

Consider the p-TTM for a general ODE dy
dt

= f(y, t):

ytn+1 = ytn + hn
dy

dt
|(ytn ,tn) + · · ·+

1

p!
hpn

dpy

dtp
|(ytn ,tn). (3.42)

We represent, the exact solution y(tn+1) using the (p+ 2)-th Taylor expansion

y(tn+1) = y(tn) + hn
dy

dt
|(ytn ,tn) + · · ·+

1

p!
hpn

dpy

dtp
|(ytn ,tn) +

1

(p+ 1)!
hp+1
n

dp+1y

dtp+1
|(ytn ,tn) +O(hp+2

n ).

(3.43)

The local truncation error (LTE) introduced by the p-th TTM is given by the difference
between the two equations above

∥ytn+1 − y(tn+1)∥ = ∥
1

(p+ 1)!
hp+1
n

dp+1y

dtp+1
|(ytn ,tn) +O(hp+2

n )∥. (3.44)

For small hn, the LTE is proportional to hp+1
n . Consequently, using higher orders p implies

lower errors, as hn usually is a small time step.

In conclusion, this demonstrates that it is preferable to use higher-order methods with
lower errors when aiming to accurately solve ODEs like the Probability Flow ODE or the
DDIM ODE of diffusion models.

3.4.2.2 Approximate Higher-Order Derivatives via the “Ideal Derivative Trick”

Tachibana et al. [269] sample from DDMs using (an approximation to) a higher-order Itô-
Taylor method [154]. In their scheme, they approximate higher-order score functions with
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the “ideal derivative trick”, essentially assuming simple single-point (x0) data distributions,
for which higher-order score functions can be computed analytically (more formally, their
approximation corresponds to ignoring the expectation over the full data distribution when
learning the score function. They assume that for any xt, there is a single unique x0 from
the input data to be predicted with the score model). In that case, further assuming the
score model εθ(xt, t) is learnt perfectly (i.e., it perfectly predicts the noise that was used
to generate xt from x0), one has

εθ(xt, t) ≈
xt − αtx0

σt
. (3.45)

This expression can now be used to analytically calculate approximate spatial and time
derivatives (also see App. F.1 and App. F.2 in Tachibana et al. [269]):

∂εθ(xt, t)

∂xt
≈ ∂

∂xt

(
xt − αtx0

σt

)
=

1

σt
I, (3.46)

and

∂εθ(xt, t)

∂t
≈ ∂

∂t

(
xt − αtx0

σt

)
= −xt − αtx0

σ2
t

dσt
dt
− x0

σt

dαt
dt

. (3.47)

Rearranging Equation (3.45), we have

x0 ≈
xt − σtεθ(xt, t)

αt
. (3.48)

Inserting this expression, Equation (3.47) becomes

∂εθ(xt, t)

∂t
≈

d logα2
t

dt

2σt

(
εθ(xt, t)

σt
− xt

)
. (3.49)

We will now proceed to show that the “ideal derivative trick”, i.e. using the approxima-
tions in Equations (3.46) and (3.49), results in dγtεθ = 0.

As in Section 3.3.3, the total derivative dγtεθ is composed as

dγtεθ(xt, t) =
∂εθ(xt, t)

∂xt

dxt
dγt

+
∂εθ(xt, t)

∂t

dt

dγt
. (3.50)

Inserting the “ideal derivative trick”, the above becomes

dγtεθ(xt, t) ≈
1

σt

(
1

2

1

α2
t

dα2
t

dγt

[
xt −

εθ(xt, t)

σt

])
+

(
d logα2

t

dt

2σt

(
εθ(xt, t)

σt
− xt

))
dt

dγt
, (3.51)
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where we have inserted Equation (3.33) for dxt

dγt
and used the usual parameterization

sθ(xt, t) := −εθ(xt,t)
σt

. Using
d logα2

t

dt
= 1

α2
t

dα2
t

dt
and

dα2
t

dt
dt
dγt

=
dα2

t

dγt
, we can see that the right-

hand side of Equation (3.51) is 0. Hence, applying the second TTM to the DDIM ODE and
using the “ideal derivative trick” is equivalent to the first TTM (Euler’s method) applied
to the DDIM ODE. We believe that this is potentially a reason why the DDIM solver [258],
Euler’s method applied to the DDIM ODE, shows such great empirical performance: it
can be interpreted as an approximate (“ideal derivative trick”) second order ODE solver.
On the other hand, our derivation also implies that the “ideal derivative trick” used in the
second TTM for the DDIM ODE does not actually provide any benefit over the standard
DDIM solver, because all additional second-order terms vanish. Hence, to improve upon
regular DDIM, the “ideal derivative trick” is insufficient and we need to learn the higher-
order score terms more accurately without such coarse approximations, as we do in our
work.

Furthermore, it is interesting to show that we do not obtain the same cancellation effect
when applying the “ideal derivative trick” to the Probability Flow ODE in Equation (3.25):

Let f(xt, t) = −1
2
β(t)

[
xt − εθ(xt,t)

σt

]
(right-hand side of Probability Flow ODE), then

df

dt
|(xt,t) =

β′(t)

β(t)
f(xt, t)−

1

2
β(t)

d

dt

[
xt −

εθ(xt, t)

σt

]
(3.52)

=

[
β′(t)

β(t)
− 1

2
β(t)

]
f(xt, t) +

1

2
β(t)

(
dεθ(xt,t)

dt

σt
− σ−2

t

dσt
dt
εθ(xt, t)

)
, (3.53)

where β′(t) := dβ(t)
dt

. Using the “ideal derivative trick”, we have dεθ
dt

= dγtεθ dtγt ≈ 0, and
therefore the above becomes

df

dt
|(xt,t) ≈

[
β′(t)

β(t)
− 1

2
β(t)

]
f(xt, t)−

β(t)

2σ2
t

dσt
dt
ε(xt, t). (3.54)

The derivative dσt
dt

can be computed as follows

dσt
dt

=
1

2σt

dσ2
t

dt
(3.55)

=
1

2σt

d

dt

(
1− e−

∫ t
0 β(t

′) dt′
)

(3.56)

=
β(t)e−

∫ t
0 β(t

′) dt′

2σt
. (3.57)
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Putting everything back together, we have

df

dt
|(xt,t) =

[
β′(t)

2σt
+

β2(t)

4σt
− β2(t)e−

∫ t
0 β(t

′) dt′

4σ3
t

]
εθ(xt, t) +

[
−β′(t)

2
+

β2(t)

4

]
xt, (3.58)

which is clearly not 0 for all xt and t. Hence, in contrast to the DDIM ODE, applying
Euler’s method to the Probability Flow ODE does not lead to an approximate (in the sense
of the “ideal derivative trick”) second order ODE solver.

Note that very related observations have been made in the concurrent works Karras et al.
[141] and Zhang et al. [315]. These works notice that when the data distribution consist
only of a single data point or a spherical Gaussian distribution, then the solution trajec-
tories of the generative DDIM ODE are straight lines. In fact, this exactly corresponds to
our observation that in such a setting we have dγtεθ = 0, as shown above in the analysis
of the “ideal derivatives approximation”. Note in that context that our above derivation
considers the “single data point” distribution assumption, but also applies to the setting
where the data is a spherical normal distribution (only σt would be different, which would
not affect the derivation).

3.4.2.3 3rd TTM Applied to the DDIM ODE

As promised in Section 3.3.3, we show here how to apply the third TTM to the DDIM
ODE, resulting in the following scheme:

x̄tn+1 = x̄tn + hnεθ(xtn , tn) +
1

2
h2
n

dεθ
dγt
|(xtn ,tn) +

1

6
h3
n

d2εθ
dγ2

t

|(xtn ,tn), (3.59)

where hn = (γtn+1 − γtn). In the remainder of this subsection, we derive a computable

formula for d2εθ
dγ2t

, only containing partial derivatives.

Using the chain rule, we have

d2εθ
dγ2

t

|(xt,t) =
∂dγεθ(xt, t)

∂xt

dxt
dγt

+
∂dγεθ(xt, t)

∂t

dt

dγt
, (3.60)

where, using Equation (3.50),

∂dγεθ(xt, t)

∂xt
=

∂2εθ(xt, t)

∂x2

dxt
dγt

+
∂εθ(xt, t)

∂xt

(
1√

γ2
t + 1

∂εθ(xt, t)

∂xt
− γt

1 + γ2
t

I

)
+

∂2εθ(xt, t)

∂t∂xt

dt

dγt
,

(3.61)
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and

∂dγεθ(xt, t)

∂t
=

∂

∂t

(
∂εθ(xt, t)

∂xt

dxt
dγt

)
+

∂

∂t

(
∂εθ(xt, t)

∂t

dt

dγt

)
. (3.62)

The remaining terms in Equation (3.62) can be computed as

∂

∂t

(
∂εθ(xt, t)

∂t

dt

dγt

)
=

∂2εθ(xt, t)

∂t2
dt

dγt
+

∂εθ(xt, t)

∂t

d
(
dt
dγt

)
dt

, (3.63)

and

∂

∂t

(
∂εθ(xt, t)

∂xt

dxt
dγt

)
=

∂2εθ(xt, t)

∂t ∂xt

dxt
dγt

+
∂εθ(xt, t)

∂xt

∂
(
dxt

dγt

)
∂t

(3.64)

where, inserting Equation (3.35) for dxt

dγt
as well as using the usual parameterization sθ(xt, t) :=

−εθ(xt,t)
σt

,

∂
(
dxt

dγt

)
∂t

=
∂

∂t

(
− γt
γ2
t + 1

[
xt − εθ(xt,t)

σt

])
(3.65)

=

∂

(
1√
γ2t +1

)
∂t

εθ(xt, t) +
1√

γ2
t + 1

∂εθ(xt, t)

∂t
−

∂
(

γt
1+γ2t

)
∂t

xt

(
σt =

γt√
γ2
t + 1

)
(3.66)

=

(
− γt

(γ2
t + 1)

3/2
εθ(xt, t) +

γ2
t − 1

(γ2
t + 1)

2xt

)
dγt
dt

+
1√

γ2
t + 1

∂εθ(xt, t)

∂t
. (3.67)

We now have a formula for d2εθ
dγ2t

containing only partial derivatives, and therefore we can

compute d2εθ
dγ2t

using automatic differentiation. Note that we could follow the same proce-

dure to compute even higher derivatives of εθ.

We repeat the 2D toy distribution single step error experiment from Section 3.3.3 (see
also Figure 3.2 (top) and Section 3.4.5 for details). As expected, in Figure 3.10 we can
clearly see that the third TTM improves upon the second TTM.

In Figure 3.11, we compare the second TTM to the third TTM applied to the DDIM
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3rd TTM, t=0.5

Figure 3.10: Single step error using analytical score function. See also Figure 3.2 (top).

ODE on CIFAR-10. Both for the second and the third TTM, we compute all partial
derivatives using automatic differentiation (without distillation). It appears that for us-
ing 15 or less steps in the ODE solver, the second TTM performs better than the third
TTM. We believe that this could potentially be due to our score model sθ(xt, t) not being
accurate enough, in contrast to the above 2D toy distribution experiment, where we have
access to the analytical score function. Furthermore, note that when we train sθ(xt, t)
via score matching, we never regularize (higher-order) derivatives of the neural network,
and therefore there is no incentive for them to be well-behaved. It would be interesting to
see if, besides having more accurate score models, regularization techniques such as spec-
tral regularization [203] could potentially alleviate this issue. Also the higher-order score
matching techniques derived by Meng et al. [195] could help to learn higher-order derivates
of the score functions more accurately. We leave this exploration to future work.

3.4.2.4 GENIE is Consistent and Principled

GENIE is a consistent and principled approach to developing a higher-order ODE solver
for sampling from diffusion models: GENIE’s design consists of two parts: (1) We are
building on the second Truncated Taylor Method (TTM), which is a well-studied ODE
solver (see Kloeden and Platen [154]) with provable local and global truncation errors (see
also Section 3.4.2.1). Therefore, if during inference we had access to the ground truth
second-order ODE derivatives, which are required for the second TTM, GENIE would
simply correspond to the exact second TTM.
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Figure 3.11: Qualitative comparison of the second and the third TTMs applied to the DDIM
ODE on CIFAR-10 (all necessary derivatives calculated with automatic differentiation). The
number of steps in the ODE solver is denoted as n.
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(2) In principle, we could calculate the exact second-order derivatives during inference
using automatic differentiation. However, this is too slow for competitive sampling speeds,
as it requires additional backward passes through the first-order score network. Therefore,
in practice, we use the learned prediction heads kψ(xt, t).

Consequently, if kψ(xt, t) modeled the ground truth second-order derivatives exactly, i.e.
kψ(xt, t) = dγtϵθ(xt, t) for all xt and t, we would obtain a rigorous second-order solver
based on the TTM, following (1) above.

In practice, distillation will not be perfect. However, given the above analysis, opti-
mizing a neural network kψ(xt, t) towards dγtϵθ(xt, t) is well motivated and theoretically
grounded. In particular, during training we are calculating exact ODE gradients using
automatic differentiation on the first-order score model as distillation targets. Therefore,
in the limit of infinite neural network capacity and perfect optimization, we could in the-
ory minimize our distillation objective function (Equation (3.22)) perfectly and obtain
kψ(xt, t) = dγtϵθ(xt, t).

Also recall that regular denoising score matching itself, on which all diffusion models rely,
follows the exact same argument. In particular, denoising score matching also minimizes
a “simple” (weighted) L2-loss between a trainable score model sθ(xt, t) and the spatial
derivative of the log-perturbation kernel, i.e., ∇xt log pt(xt | x0). From this perspective,
denoising score matching itself also simply tries to “distill” (spatial) derivatives into a
model. If we perfectly optimized the denoising score matching objective, we would obtain
a diffusion model that models the data distribution exactly, but in practice, similar to
GENIE, we never achieve that due to imperfect optimization and finite-capacity neural
networks. Nevertheless, denoising score matching similarly is a well-defined and principled
method, precisely because of that theoretical limit in which the distribution can be repro-
duced exactly.

We would also like to point out that other, established higher-order methods for diffu-
sion model sampling with the generative ODE, such as linear multistep methods [176],
make approximations, too, which can be worse in fact. In particular, multistep methods
always approximate higher-order derivatives in the TTM using finite differences which is
crude for large step sizes, as can be seen in Fig. 3 (bottom). From this perspective, if our
distillation is sufficiently accurate, GENIE can be expected to be more accurate than such
multistep methods.
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3.4.3 Model and Implementation Details

3.4.3.1 Score Models

We train variance-preserving DDMs [263] for which σ2
t = 1−α2

t . We follow Song et al. [263]

and set β(t) = 0.1+19.9t; note that αt = e−
1
2

∫ t
0 β(t

′) dt′ . All score models are parameterized

as either sθ(xt, t) := −εθ(xt,t)
σt

(ε-prediction) or sθ(xt, t) := −αtvθ(xt,t)+σtxt

σt
(v-prediction),

where εθ(xt, t) and vθ(xt, t) are U-Nets [236]. The ε-prediction model is trained using the
following score matching objective [109]

min
θ

Et∼U [tcutoff ,1],x0∼p(x0),ε∼N (0,I)

[
∥ε− εθ(xt, t)∥22

]
, xt = αtx0 + σtε. (3.68)

The v-prediction model is trained using the following score matching objective [244]

min
θ

Et∼U [tcutoff ,1],x0∼p(x0),ε∼N (0,I)

[
∥ε−σtxt

αt
− vθ(xt, t)∥22

]
, xt = αtx0 + σtε, (3.69)

which is referred to as “SNR+1” weighting [244]. The neural network vθ is now effectively
tasked with predicting v := αtε− σtx0.

CIFAR-10: On this dataset, we do not train our own score model, but rather use a
checkpoint1 provided by Song et al. [263]. The model is based on the DDPM++ architec-
ture introduced in Song et al. [263] and predicts εθ.

LSUN Bedrooms and LSUN Church-Outdoor: Both datasets use exactly the same
model structure. The model structure is based on the DDPM architecture introduced in Ho
et al. [109] and predicts εθ.

ImageNet: This model is based on the architecture introduced in Dhariwal and Nichol
[66]. We make a small change to the architecture and replace its sinusoidal time embedding
by a Gaussian Fourier projection time embedding [263]. The model is class-conditional and
we follow Dhariwal and Nichol [66] and simply add the class embedding to the (Gaussian
Fourier projection) time embedding. The model predicts εθ.

Cats (Base): This model is based on the architecture introduced in Dhariwal and Nichol
[66]. We make a small change to the architecture and replace its sinusoidal time embedding

1The checkpoint can be found at https://drive.google.com/file/d/16_

-Ahc6ImZV5ClUc0vM5Iivf8OJ1VSif/view?usp=sharing.
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Table 3.4: Model hyperparameters and training details. The CIFAR-10 model is taken
from Song et al. [263]; all other models are trained by ourselves.

Hyperparameter CIFAR-10 LSUN Bedrooms LSUN Church-Outdoor ImageNet Cats (Base) Cats (Upsampler)

Model
Data dimensionality (in pixels) 32 128 128 64 128 512
Residual blocks per resolution 8 2 2 3 2 2
Attention resolutions 16 16 16 8 (8, 16) (8, 16)
Base channels 128 128 128 192 96 192
Channel multipliers 1,2,3,4 1,1,2,2,4,4,4 1,1,2,2,4,4,4 1,2,3,4 1,2,2,3,3 1,1,2,2,3,3,4
EMA rate 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
# of head channels N/A N/A N/A 64 64 64
# of parameters 107M 148M 148M 283M 200M 80.2M
Base architecture DDPM++ [263] DDPM [109] DDPM [109] [66] [66] [66]
Prediction ε ε ε ε v v

Training
# of iterations 400k 300k 300k 400k 400k 150k
# of learning rate warmup iterations 100k 100k 100k 100k 100k 100k
Optimizer Adam Adam Adam Adam Adam Adam
Mixed precision training ✗ ✓ ✓ ✓ ✓ ✓

Learning rate 10−4 3 · 10−4 3 · 10−4 2 · 10−4 10−4 10−4

Gradient norm clipping 1.0 1.0 1.0 1.0 1.0 1.0
Dropout 0.1 0.0 0.0 0.1 0.1 0.1
Batch size 128 256 256 1024 128 64
tcutoff 10−5 10−3 10−3 10−3 10−3 10−3

by a Gaussian Fourier projection time embedding [263]. The model predicts vθ.

Cats (Upsampler): This model is based on the architecture introduced in Dhariwal
and Nichol [66]. We make a small change to the architecture and replace its sinusoidal
time embedding by a Gaussian Fourier projection time embedding [263]. The upsampler
is conditioned on noisy upscaled lower-resolution images, which are concatenated to the
regular channels that form the synthesized outputs of the diffusion model. Therefore, we
expand the number of input channels from three to six. We use augmentation condition-
ing [242] to noise the lower-resolution image. In particular, we upscale αt′xlow+σt′z, where
xlow is the clean lower-resolution image. During training t′ is sampled from U [tcutoff , 1].
During inference, t′ is a hyper-parameter which we set to 0.1 for all experiments.

We use two-independent Gaussian Fourier projection embeddings for t and t′ and con-
catenate them before feeding them into the layers of the U-Net.

Model Hyperparameters and Training Details: All model hyperparameters and
training details can be found in Table 3.4.
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3.4.3.2 Prediction Heads

We model the derivative dγtεθ using a small prediction head kψ on top of the first-order
score model εθ. In particular, we provide the last feature layer from the εθ network to-
gether with its time embedding as well as xt and the output of ε(xt, t) to the prediction
head (see Figure 3.4 for a visualization). We found modeling dγtεθ to be effective even
for our Cats models that learn to predict v = αtε− σtx0 rather than ε. Directly learning
dγtvθ and adapting the mixed network parameterization (see Paragraph 3.4.3.2.3) could
potentially improve results further. We leave this exploration to future work.

We provide additional details on our architecture next.

3.4.3.2.1 Model Architecture The architecture of our prediction heads is based on
(modified) BigGAN residual blocks [30, 263]. To minimize computational overhead, we
only use a single residual block.

In particular, we concatenate the last feature layer with xt as well as εθ(xt, t) and feed it
into a convolutional layer. For the upsampler, we also condition on the noisy up-scaled
lower resolution image. We experimented with normalizing the feature layer before con-
catenation. The output of the convolutional layer as well as the time embedding are then
fed to the residual block. Similar to U-Nets used in score models, we normalize the output
of the residual block and apply an activation function. Lastly, the signal is fed to another
convolutional layer that brings the number of channels to a desired value (in our case nine,

three for each k
(i)
ψ , i ∈ {1, 2, 3}, in Equation (3.73)).

All model hyperparameters can be found in Table 3.5. We also include the additional com-
putational overhead induced by the prediction heads in Table 3.5; see Paragraph 3.4.3.2.5
for details on how we measured the overhead.

3.4.3.2.2 Training Details We train for 50k iterations using Adam [148]. We ex-
perimented with two base learning rates: 10−4 and 5 · 10−5. We furthermore tried two
“optimization setups”: (linearly) warming up the learning rate in the first 10k iterations
(score models are often trained by warming up the learning rate in the first 100k itera-
tions) or, following Salimans and Ho [244], linearly decaying the learning rate to 0 in the
entire 50k iterations of training; we respectively refer to these two setups as “warmup” and
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Table 3.5: Model hyperparameters and training details for the prediction heads.

Hyperparameter CIFAR-10 LSUN Bedrooms LSUN Church-Outdoor ImageNet Cats (Base) Cats (Upsampler)

Model
Data dimensionality 32 128 128 64 128 512
EMA rate 0 0 0 0 0 0
Number of channels 128 128 128 196 196 92
# of parameters 526k 526k 526k 1.17M 1.17M 302k
Normalize xembed ✗ ✗ ✓ ✗ ✗ ✗

Training
# of iterations 20k 40k 35k 15k 20k 20k
Optimizer Adam Adam Adam Adam Adam Adam
Optimization setup Decay Warmup Warmup Warmup Warmup Warmup
Mixed precision training ✗ ✗ ✗ ✗ ✗ ✗

Learning rate 5 · 10−5 10−4 10−4 10−4 10−4 10−4

Gradient norm clipping 1.0 1.0 1.0 1.0 1.0 1.0
Dropout 0.0 0.0 0.0 0.0 0.0 0.0
Batch size 128 256 256 256 64 16
tcutoff 10−3 10−3 10−3 10−3 10−3 10−3

Inference
Add. comp. overhead 1.47% 14.0% 14.4% 2.83% 7.55% 13.3%

“decay”. We measure the FID every 5k iterations and use the best checkpoint.

Note that we have to compute the Jacobian-vector products in Equation (3.19) via auto-
matic differentiation during training. We repeatedly found that computing the derivative
∂εθ(xt,t)

∂t
via automatic differentiation leads to numerical instability (NaN) for small t when

using mixed precision training. For simplicity, we turned off mixed precision training al-
together. However, training performance could have been optimized by only turning off
mixed precision training for the derivative ∂εθ(xt,t)

∂t
.

All training details can be found in Table 3.5.

3.4.3.2.3 Mixed Network Parameterization Our mixed network parameterization
is derived from a simple single data point assumption, i.e., pt(xt) = N (xt;0, σ

2
t I). This as-

sumption leads to εθ(xt, t) ≈ xt

σt
which we can plug into the three terms of Equation (3.19):

1√
γ2
t + 1

∂εθ(xt, t)

∂xt
εθ(xt, t) ≈

1√
γ2
t + 1

xt
σ2
t

=
1

γt

xt
σt
, (3.70)

and

− γt
1 + γ2

t

∂εθ(xt, t)

∂xt
xt ≈ −

γt
σt (1 + γ2

t )
xt = −

γt
1 + γ2

t

xt
σt
, (3.71)
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and finally

∂εθ(xt, t)

∂t

dt

dγt
≈ −xt

σ2
t

dσt
dt

dt

dγt
= −γ2

t + 1

γ2
t

xt
1

(γ2
t + 1)

3/2
= − 1

γt(1 + γ2
t )

xt
σt
, (3.72)

where we have used σt =
γt√
γ2t +1

. This derivation therefore implies the following mixed

network parameterization

kψ = − 1

γt
k
(1)
ψ +

γt
1 + γ2

t

k
(2)
ψ +

1

γt(1 + γ2
t )
k
(3)
ψ ≈ dγtεθ, (3.73)

where k
(i)
ψ (xt, t), i ∈ {1, 2, 3}, are different output channels of the neural network (i.e. the

additional head on top of the εθ network). To provide additional intuition, we basically
replaced the −xt

σt
terms in Equations (3.70) to (3.72) by neural networks. However, we

know that for approximately Normal data xt

σt
≈ εθ(xt, t), where εθ(xt, t) predicts “noise”

values ε that were drawn from a standard Normal distribution and are therefore varying
on a well-behaved scale. Consequently, up to the Normal data assumption, we can also
expect our prediction heads k

(i)
ψ (xt, t) in the parameterization in Equation (3.73) to pre-

dict well-behaved output values, which should make training stable. This mixed network
parameterization approach is inspired by the mixed score parameterization from Vahdat
et al. [280] and Dockhorn et al. [75].

3.4.3.2.4 Pseudocode In this subsection, we provide pseudocode for training our pre-
diction heads kψ and using them for sampling with GENIE. In Algorithm 2, the analytical
dt
dγt

is an implicit hyperparameter of the DDM as it depends on αt. For our choice of

αt = e−
1
2

∫ t
0 0.1+19.9t′ dt′ (see Section 3.4.3.1), we have

dt

dγt
=

2γt
19.9(γ2t +1)√(

0.1
19.9

)2
+

2 log(γ2t +1)
19.9

, (3.74)

where γt =
√

1−α2
t

α2
t
.

In Line 0, we are free to use any time discretization t0 = 1.0 > t1 > · · · > tN = tcutoff .
When referring to “linear striding” in this work, we mean the time discretization tn =
1.0 − (1.0 − tcutoff)

n
N
. When referring to “quadratic striding” in this work, we mean the

time discretization tn =
(
1.0− (1.0−√tcutoff) nN

)2
.
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Algorithm 2 Training prediction heads kψ

Input: Score model sθ := −εθ(xt,t)
σt

, number of training iterations N .
Output: Trained prediction head kψ.

for n = 1 to N do
Sample x0 ∼ p0(x0), t ∼ U [tcutoff , 1], ε ∼ N (0, I)
Set xt = αtx0 + σtε
Compute εθ(xt, t)

Compute the spatial JVP JVPs =
∂εθ(xt,t)
∂xt

(
1√
γ2t +1

εθ(xt, t)− γt
1+γ2t

xt

)
via AD

Compute the temporal JVP JVPt =
∂εθ(xt,t)

∂t
dt
dγt

via AD ( dtdγt can be computed analytically)
Compute kψ(xt, t) using the mixed parameterization in Equation (3.73)
Update weights ψ to minimize γ2t ∥kψ(xt, t) − dγtεθ(xt, t)∥22, where dγtεθ(xt, t) = JVPs −

JVPt

end for

Algorithm 3 GENIE sampling

Input: Score model sθ := −εθ(xt,t)
σt

, prediction head kψ, number of sampler steps N , time

discretization {tn}Nn=0.
Output: Generated GENIE output sample y.
Sample xt0 ∼ N (0, I)

Set x̄t0 =
√
1 + γ2t0xt0 ▷ Note that x̄tn =

√
1 + γ2tnxtn for all tn

for n = 0 to N − 1 do
if AFS and n = 0 then

x̄tn+1 = x̄tn + (γtn+1 − γtn)xtn
else

x̄tn+1 = x̄tn + (γtn+1 − γtn)εθ(xtn , tn) +
1
2(γtn+1 − γtn)

2kψ(xtn , tn)
end if
xtn+1 =

x̄tn+1√
1+γ2tn+1

end for
if Denoising then

y =
xtN

−σtN εθ(xtN
,tN )

αtN

else
y = xtN

end if
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3.4.3.2.5 Measuring Computational Overhead Our prediction heads induce a slight
computational overhead since their forward pass has to occur after the forward pass of the
score model. We measure the overhead as follows: first, we measure the inference time
of the score model itself. We do five forward passes to “warm-up” the model and then
subsequently synchronize via torch.cuda.synchronize(). We then measure the total
wall-clock time of 50 forward passes. We then repeat this process using a combined for-
ward pass: first the score model and subsequently the prediction head. We choose the
batch size to (almost) fill the entire GPU memory. In particular we chose batch sizes of
512, 128, 128, 64, 64, and 8, for CIFAR-10, LSUN Bedrooms, LSUN Church-Outdoor,
ImageNet, Cats (base), and Cats (upsampler), respectively. The computational overhead
for each model is reported in Table 3.5. This measurement was carried out on a single
NVIDIA 3080 Ti GPU.

3.4.4 Learning Higher-Order Gradients without Automatic Dif-
ferentiation and Distillation

In this work, we learn the derivative dγtεθ, which includes a spatial and a temporal
Jacobian-vector product, by distillation based on automatic differentiation (AD). We now
derive an alternative learning objective for the spatial Jacobian-vector product (JVP) which
does not require any AD. We start with the following (conditional) expectation

E
[
α2
tx0x

⊤
t − αt

[
x0x

⊤
t + xtx

⊤
0

]
| xt, t

]
= −xtx⊤

t + σ4
tS2(xt, t) + σ4

t s1(xt, t)s1(xt, t)
⊤ + σ2

t I,
(3.75)

where s1(xt, t) := ∇xt log pt(xt) and S2(xt, t) := ∇⊤
xt
∇xt log pt(xt). The above formula is

derived in Meng et al. [Theorem 1, 195]. Adding xtx
⊤
t to Equation (3.75) and subsequently

dividing by σ2
t , we have

E
[
α2
t

σ2
t

x0x
⊤
t −

αt
σ2
t

[
x0x

⊤
t + xtx

⊤
0

]
+

1

σ2
t

xtx
⊤
t | xt, t

]
= σ2

tS2(xt, t) + σ2
t s1(xt, t)s1(xt, t)

⊤ + I,

(3.76)

where we could pull the 1
σ2
t
xtx

⊤
t term into the expectation because it is conditioned on t

and xt. Using xt = αtx0 + σtε, we can rewrite the above as

E
[
εε⊤ | xt, t

]
= σ2

tS2(xt, t) + σ2
t s1(xt, t)s1(xt, t)

⊤ + I. (3.77)

For an arbitrary v := v(xt, t), we then have

E
[
εε⊤v | xt, t

]
= σ2

tS2(xt, t)v + σ2
t s1(xt, t)s1(xt, t)

⊤v + v. (3.78)
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Therefore, we can develop a score matching-like learning objective for the (general) spatial
JVP oθ(xt, t) ≈ S2(x,t)v as

Et∼U [tcutoff ,1],x0∼p(x0),ε∼N (0,I)

[
gno−ad(t)∥oθ(xt, t) + sθ(xt, t)sθ(xt, t)⊤v +

1

σ2
t

v − εε⊤v∥22
]
,

(3.79)

for some weighting function gno−ad(t). Setting v(xt, t) = −σt
(

1√
γ2t +1

εθ(xt, t)− γt
1+γ2t

xt

)
,

would recover the spatial JVP needed for the computation of dγtε. In the initial phase of
this project, we briefly experimented with learning the spatial JVP using this approach;
however, we found that our distillation approach worked significantly better.

3.4.5 Toy Experiments

For all toy experiments in Section 3.3.3, we consider the following ground truth distribution:

p0(x0) =
1

8

8∑
i=1

p
(i)
0 (x0), (3.80)

where

p
(i)
0 (x0) =

1

8

8∑
j=1

N (x0, s1µi + s1s2µj, σ
2I). (3.81)

We set σ = 10−2, s1 = 0.9, s2 = 0.2, and

µ1 =

(
1
0

)
, µ2 =

(
−1
0

)
, µ3 =

(
0
1

)
, µ4 =

(
0
−1

)
µ5 =

(
1√
2
1√
2

)
, µ6 =

(
1√
2

− 1√
2

)
, µ7 =

(
− 1√

2
1√
2

)
, µ8 =

(
− 1√

2

− 1√
2

)
.

The ground truth distribution is visualized in Figure 3.3a. Note that we can compute the
score functions (and all its derivatives) analytically for Gaussian mixture distributions.

In Figure 3.3, we compared DDIM to GENIE for sampling using the analytical score
function of the ground truth distribution with 25 solver steps. In Figure 3.12, we repeated
this experiment for 5, 10, 15, and 20 solver steps. We found that in particular for n = 10
both solvers generate samples in interesting patterns.
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(a) DDIM, n = 5 (b) GENIE, n = 5

(c) DDIM, n = 10 (d) GENIE, n = 10

(e) DDIM, n = 15 (f) GENIE, n = 15

(g) DDIM, n = 20 (h) GENIE, n = 20

Figure 3.12: Modeling a complex 2D toy distribution: Samples are generated with DDIM
and GENIE with n solver steps using the analytical score function of the ground truth
distribution (visualized in Figure 3.3a). Zoom in for details.
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3.4.6 Image Experiments

3.4.6.1 Evaluation Metrics, Baselines, and Datasets

Metrics: We quantitatively measure sample quality via Fréchet Inception Distance [FID,
105]. It is common practice to use 50k samples from the training set for reference statis-
tics. We follow this practice for all datasets except for ImageNet and Cats. For ImageNet,
we follow Dhariwal and Nichol [66] and use the entire training set for reference statistics.
For the small Cats dataset, we use the training as well as the validation set for reference
statistics.

Baselines: We run baseline experiments using two publicly available repositories. The
score sde pytorch repository is licensed according to the Apache License 2.0; see also
their license file here. The CLD-SGM repository is licensed according to the NVIDIA Source
Code License; see also their license file here.

Datasets: We link here the websites of the datasets used in this experiment: CIFAR-
10, LSUN datasets, ImageNet, and AFHQv2.

3.4.6.2 Analytical First Step (AFS)

The forward process of DDMs generally converges to an analytical distribution. This
analytical distribution is then used to sample from DDMs, defining the initial condi-
tion for the generative ODE/SDE. For example, for variance-preserving DDMs, we have
p1(x1) ≈ N (x1;0, I).

In this work, we try to minimize the computational complexity of sampling from DDMs,
and therefore operate in a low NFE regime. In this regime, every additional function
evaluation makes a significant difference. We therefore experimented with replacing the
learned score with the (analytical score) of N (0, I) ≈ p1(x1) in the first step of the ODE
solver. This “gained” function evaluation can then be used as an additional step in the
ODE solver later.

In particular, we have

εθ(x1, 1) ≈ x1, (3.82)
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and dεθ(x1,1)
dγ1

≈ 0 as shown below:

dεθ(x1, 1)

dγ1
≈ dxt

dγt
|t=1 (3.83)

= − γt
γ2
t + 1

[xt + sθ(xt, t)]|t=1 (using Equation (3.35)) (3.84)

≈ 0 (using normal assumption sθ(xt, t) ≈ −xt) (3.85)

Given this, the AFS step becomes identical to the Euler update that uses the Normal score
function for x1. This step is shown in the pseudocode in Line 0.

3.4.6.3 Classifier-Free Guidance

As discussed in Section 3.3.5.2, to guide diffusion sampling towards particular classes, we
replace εθ(xt, t) with

ε̂θ(xt, t, c, w) = (1 + w)εθ(xt, t, c)− wεθ(xt, t), (3.86)

where w > 1.0 is the “guidance scale”, in the DDIM ODE. We experiment with classifier-
free guidance on ImageNet. In Equation (3.86) we re-use the conditional ImageNet score
model εθ(xt, t, c) trained before (see Section 3.4.3.1 for details), and train an additional un-
conditional ImageNet score model εθ(xt, t) using the exact same setup (and simply setting
the class embedding to zero). We also re-use the conditional prediction head trained on top
of the conditional ImageNet score model and train an additional prediction head for the
unconditional model. Note that for both the score models as well as the prediction heads,
we could share parameters between the models to reduce computational complexity [108].
The modified GENIE scheme for classifier-free guidance is then given as

x̄tn+1 = x̄tn + (γtn+1 − γtn)ε̂θ(xtn , tn, c, w) +
1

2
(γtn+1 − γtn)

2k̂ψ(xtn , tn, c, w), (3.87)

where

k̂ψ(xtn , tn, c, w) = (1 + w)kψ(xtn , tn, c)− wkψ(xtn , tn). (3.88)

3.4.6.4 Encoding

To encode a data point x0 into latent space, we first “diffuse” the data point to t = 10−3,
i.e., xt = αtx0 + σtε, ε ∼ N (0, I). We subsequently simulate the generative ODE (back-
wards) from t = 10−3 to t = 1, obtaining the latent point x1.
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To decode a latent point x1, we simulate the generative ODE (forwards) from t = 1.0

to t = 10−3. We then denoise the data point, i.e., x0 = xt−σtεθ(xt,t)
αt

. Note that denoising
is generally optional to sample from DDMs; however, for our encoding-decoding experi-
ment we always used denoising in the decoding part to match the inital “diffusion” in the
encoding part.

3.4.6.5 Latent Space Interpolation

We can use encoding to perform latent space interpolation of two data points x
(0)
0 and x

(1)
0 .

We first encode both data points, following the encoding setup from Section 3.4.6.4, and
obtain x

(0)
1 and x

(1)
1 , respectively. We then perform spherical interpolation of the latent

codes:

x
(b)
1 = x

(0)
1

√
1− b + x

(1)
2

√
b, b ∈ [0, 1]. (3.89)

Subsequently, we decode the latent code x
(b)
1 following the decoding setup from Sec-

tion 3.4.6.4. In Figure 3.13, we show latent space interpolations for LSUN Church-Outdoor
and LSUN Bedrooms.

3.4.6.6 Extended Quantitative Results

In this subsection, we show additional quantitative results not presented in the main paper.
In particular, we show results for all four hyperparameter combinations (binary choice of
AFS and binary choice of denoising) for methods evaluated by ourselves. For these meth-
ods (i.e., GENIE, DDIM, S-PNDM, F-PNDM, Euler–Maruyama), we follow the Synthesis
Strategy outlined in Section 3.3.5, with the exception that we use linear striding instead
of quadratic striding for S-PNDM [176] and F-PNDM [176]. To apply quadratic striding
to these two methods, one would have to derive the Adams–Bashforth methods for non-
constant step sizes which is beyond the scope of our work.

Results can be found in Tables 3.8 to 3.13. As expected, AFS can considerably improve
results for almost all methods, in particular for NFEs ≤ 15. Denoising, on the other hand,
is more important for larger NFEs. For our Cats models, we initially found that denoising
hurts performance, and therefore did not further test it in all settings.

Recall Scores. We quantify the sample diversity of GENIE and other fast samplers
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Figure 3.13: Latent space interpolations for LSUN Church-Outdoor (Top) and LSUN Bedrooms
(Bottom). Note that b = 0 and b = 1 correspond to the decodings of the encoded reference images.
Since this encode-decode loop is itself not perfect, the references are not perfectly reproduced at
b = 0 and b = 1.
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Table 3.6: Unconditional CIFAR-10 generative performance, measured in Recall (higher
values are better). All methods use the same score model checkpoint.

Method AFS Denoising NFEs=5 NFEs=10 NFEs=15 NFEs=20 NFEs=25

GENIE (ours)

✗ ✗ 0.28 0.48 0.54 0.56 0.56
✗ ✓ 0.21 0.45 0.52 0.56 0.57
✓ ✗ 0.27 0.47 0.53 0.56 0.56
✓ ✓ 0.19 0.46 0.53 0.55 0.56

DDIM [258]

✗ ✗ 0.10 0.27 0.38 0.43 0.46
✗ ✓ 0.07 0.24 0.35 0.42 0.46
✓ ✗ 0.08 0.27 0.38 0.43 0.46
✓ ✓ 0.04 0.24 0.36 0.42 0.45

S-PNDM [176]

✗ ✗ 0.06 0.30 0.43 0.49 0.52
✗ ✓ 0.02 0.25 0.39 0.46 0.50
✓ ✗ 0.11 0.33 0.45 0.50 0.53
✓ ✓ 0.06 0.29 0.41 0.47 0.51

F-PNDM [176]

✗ ✗ N/A N/A 0.55 0.57 0.58
✗ ✓ N/A N/A 0.52 0.56 0.57
✓ ✗ N/A N/A 0.55 0.58 0.59
✓ ✓ N/A N/A 0.54 0.56 0.57

Euler–Maruyama

✗ ✗ 0.00 0.00 0.00 0.02 0.08
✗ ✓ 0.00 0.00 0.00 0.03 0.06
✓ ✗ 0.00 0.00 0.00 0.03 0.09
✓ ✓ 0.00 0.00 0.00 0.03 0.09

using the recall score [243]. In particular, we follow DDGAN [295] and use the improved
recall score [162]; results on CIFAR-10 can be found in Table 3.6. As expected, we can see
that for all methods recall scores suffer as the NFEs decrease. Compared to the baselines,
GENIE achieves excellent recall scores, being on par with F-PNDM for NFE≥ 15. How-
ever, F-PNDM cannot be run for NFE≤10 (due to its additional Runge–Kutta warm-up
iterations). Overall, these results confirm that GENIE offers strong sample diversity when
compared to other common samplers using the same score model checkpoint.

Striding Schedule Grid Search. As discussed in Section 3.3.5 the fixed quadratic
striding schedule (for choosing the times t for evaluating the model during synthesis under
fixed NFE budgets) used in GENIE may be sub-optimal, in particular for small NFEs.
To explore this, we did a small grid search over three different striding schedules. As
described in Paragraph 3.4.3.2.4, the quadratic striding schedule can be written as tn =
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Table 3.7: Unconditional CIFAR-10 generative performance (measured in FID) using
our GENIE and DDIM [258] with different striding schedules using exponents ρ ∈
{1.5, 2.0, 2.5}.

Method ρ NFEs=5 NFEs=10 NFEs=15 NFEs=20 NFEs=25

1.5 11.2 5.28 5.03 4.35 3.97
GENIE 2.0 13.9 5.97 4.49 3.94 3.67

2.5 17.8 7.19 4.57 3.94 3.64

1.5 27.6 13.5 8.97 7.20 6.15
DDIM 2.0 29.7 11.2 7.35 5.87 5.16

2.5 33.2 13.4 8.28 6.36 5.39

(
1.0− (1.0−√tcutoff) nN

)2
, and easily be generalized to

tn =
(
1.0− (1.0− t

1/ρ
cutoff)

n

N

)ρ
, ρ > 1. (3.90)

In particular, besides the quadratic schedule ρ = 2, we also tested the two additional values
ρ = 1.5 and ρ = 2.5. We tested these schedules on GENIE as well as DDIM [258]; note
that the other two comptetive baselines, S-PNDM [176] and F-PNDM [176], rely on linear
striding, and therefore a grid search is not applicable. We show results for GENIE and
DDIM in Table 3.7; for each combination of solver and NFE we applied the best synthesis
strategy (whether or not we use denoising and/or the analytical first step) of quadratic
striding (ρ = 2.0) also to ρ = 1.5 and ρ = 2.5. As can be seen in the table, ρ = 1.5
improves for both DDIM and GENIE for NFE=5 (over the quadratic schedule ρ = 2),
whereas larger ρ are preferred for larger NFE. The improvement of GENIE from 13.9 to
11.2 FID for NFE=5 is significant.

Discretization Errors of GENIE compared to other Fast Samplers. We compute
discretization errors, in particular local and global truncation errors, of GENIE and com-
pare to existing faster solvers. We are using the CIFAR-10 model. We initially sample 100
latent vectors xT ∼ N (0, I) and then, starting from those latent vectors, synthesize 100
approximate ground truth trajectories (GTTs) using DDIM with 1k NFEs (for that many
steps, the discretization error is negligible; hence, we can treat this as a pseudo ground
truth).

We then synthesize 100 sample trajectories for DDIM [258], S-PNDM [176], F-PNDM [176],
and GENIE (for NFEs={5, 10, 15, 20, 25}, similar to the main experiments) using the same
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Figure 3.14: Global Truncation Error: L2-distance of generated outputs by the fast
samplers to the (approximate) ground truth (computed using DDIM with 1k NFEs) in
Inception feature space [268]. Results are averaged over 100 samples.

latent vectors as starting points that were used to generate the GTTs. DDIM, S-PNDM,
and F-PNDM are training-free methods that can be run on the exact same score model,
which also our GENIE relies on. Thereby, we are able to isolate discretization errors from
errors in the learnt score function. We then compute the average L2-distance (in Inception
feature space [268]) between the output image of the fast samplers and the “output” of the
pseudo GTT. As can be seen in Figure 3.14, GENIE outperforms the three other methods
on all NFEs.

Comparing the local truncation error (LTE) of different higher-order solvers can unfor-
tunately not be done in a fair manner. Similar to DDIM, GENIE only needs the current
value and a single NFE to predict the next step. In contrast, multistep methods rely on
a history of predictions and Runge–Kutta methods rely on multiple NFEs to predict the
next step. Thus, we can only fairly compare the LTE of GENIE to the LTE of DDIM. In
particular, we compute LTEs at three starting times t ∈ {0.1, 0.2, .5} (similar to what we
did in Figure 3.2). For each t, we then compare one step predictions for different step sizes
∆t against the ground truth trajectory (L2-distance in data space averaged over 100 pre-
dictions; since we are not operating directly in image space at these intermediate t, using
inception feature would not make sense here). As expected, we can see in Figure 3.15 that
GENIE has smaller LTE than DDIM for all starting times t.
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Figure 3.15: Local Truncation Error: Single step (local discretization) error, measured
in L2-distance to (approximate) ground truth (computed using DDIM with 1k NFEs) in
data space and averaged over 100 samples, for GENIE and DDIM for three starting time
points t ∈ {0.1, 0.2, 0.5} (this is, the t from which a small step with size ∆t is taken).
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Table 3.8: Unconditional CIFAR-10 generative performance (measured in FID). Methods
above the middle line use the same score model checkpoint; methods below all use different
ones. (†): numbers are taken from literature. This table is an extension of Table 3.1.

Method AFS Denoising NFEs=5 NFEs=10 NFEs=15 NFEs=20 NFEs=25

GENIE (ours)

✗ ✗ 15.4 5.97 4.70 4.30 4.10
✗ ✓ 23.5 6.91 4.74 4.02 3.72
✓ ✗ 13.9 6.04 4.76 4.33 4.18
✓ ✓ 17.9 6.27 4.49 3.94 3.67

DDIM [258]

✗ ✗ 30.1 11.6 7.56 6.00 5.27
✗ ✓ 37.9 13.9 8.76 6.77 5.76
✓ ✗ 29.7 11.2 7.35 5.87 5.16
✓ ✓ 35.2 12.8 8.17 6.39 5.49

S-PNDM [176]

✗ ✗ 60.2 12.1 7.16 5.48 4.62
✗ ✓ 101 17.2 10.8 8.74 7.62
✓ ✗ 35.9 10.3 6.61 5.20 4.51
✓ ✓ 56.8 14.9 10.2 8.37 7.35

F-PNDM [176]

✗ ✗ N/A N/A 12.1 6.58 4.89
✗ ✓ N/A N/A 19.5 10.6 8.43
✓ ✗ N/A N/A 10.3 5.96 4.73
✓ ✓ N/A N/A 15.7 10.9 8.52

Euler–Maruyama

✗ ✗ 364 236 178 121 85.0
✗ ✓ 391 235 191 129 89.9
✓ ✗ 325 230 164 112 80.3
✓ ✓ 364 235 176 120 83.6

FastDDIM [156] (†) ✗ ✓ - 9.90 - 5.05 -
Learned Sampler [286] (†) ✗ ✓ 12.4 7.86 5.90 4.72 4.25
Analytic DDIM (LS) [20] (†) ✗ ✓ - 14.0 - - 5.71
CLD-SGM [75] ✗ ✗ 334 306 236 162 106
VESDE-PC [263] ✗ ✓ 461 461 461 461 462
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Table 3.9: Conditional ImageNet generative performance (measured in FID).

Method AFS Denoising NFEs=5 NFEs=10 NFEs=15 NFEs=20 NFEs=25

GENIE (ours)

✗ ✗ 23.4 8.35 6.13 5.36 5.00
✗ ✓ 35.4 7.59 5.23 4.48 4.13
✓ ✗ 21.6 8.92 6.59 5.73 5.27
✓ ✓ 20.2 7.41 5.36 4.68 4.27

DDIM [258]

✗ ✗ 39.0 14.5 9.47 7.57 6.64
✗ ✓ 39.8 11.1 7.17 5.83 5.19
✓ ✗ 37.4 14.7 9.73 7.86 6.92
✓ ✓ 30.0 10.7 7.14 5.93 5.35

S-PNDM [176]

✗ ✗ 57.9 15.2 10.0 8.12 7.20
✗ ✓ 60.6 12.2 8.69 7.59 6.94
✓ ✗ 39.0 13.7 9.75 8.08 7.22
✓ ✓ 35.5 11.2 8.54 7.52 6.94

F-PNDM [176]

✗ ✗ N/A N/A 13.9 9.45 7.87
✗ ✓ N/A N/A 14.5 9.45 8.05
✓ ✗ N/A N/A 12.5 9.01 7.74
✓ ✓ N/A N/A 12.3 9.26 7.86

3.4.6.7 Extended Qualitative Results

In this subsection, we show additional qualitative comparisons of DDIM and GENIE on
LSUN Church-Outdoor (Figure 3.16), ImageNet (Figure 3.17), and Cats (upsampler con-
ditioned on test set images) (Figure 3.18 and Figure 3.19). In all genie/figures, we can
see that samples generated with GENIE generally exhibit finer details as well as sharper
contrast and are less blurry compared to standard DDIM.

In Figure 3.20 and Figure 3.21, we show additional high-resolution images generated with
the GENIE Cats upsampler using base model samples and test set samples, respectively.

3.4.6.8 Computational Resources

The total amount of compute used in this research project is roughly 163k GPU hours.
We used an in-house GPU cluster of V100 NVIDIA GPUs.
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Table 3.10: Unconditional LSUN Bedrooms generative performance (measured in FID).
Methods above the middle line use the same score model checkpoint; Learned Sampler
uses a different one. (†): numbers are taken from literature.

Method AFS Denoising NFEs=5 NFEs=10 NFEs=15 NFEs=20 NFEs=25

GENIE (ours)

✗ ✗ 74.1 17.1 13.3 11.6 11.1
✗ ✓ 115 11.4 7.18 5.80 5.35
✓ ✗ 55.9 18.4 14.1 12.3 11.6
✓ ✓ 47.3 9.29 6.83 5.79 5.40

DDIM [258]

✗ ✗ 69.6 27.1 19.0 15.8 14.2
✗ ✓ 81.0 16.3 9.18 7.12 6.20
✓ ✗ 62.1 27.1 19.3 16.3 14.6
✓ ✓ 42.5 12.5 8.21 6.77 6.05

S-PNDM [176]

✗ ✗ 70.4 22.1 15.7 13.5 12.4
✗ ✓ 88.9 12.2 8.40 7.33 6.80
✓ ✗ 48.0 20.2 15.2 13.4 12.4
✓ ✓ 45.0 10.8 8.14 7.23 6.71

F-PNDM [176]

✗ ✗ N/A N/A 36.1 18.5 14.6
✗ ✓ N/A N/A 26.8 9.85 7.86
✓ ✗ N/A N/A 29.4 17.5 14.3
✓ ✓ N/A N/A 18.9 9.27 7.69

Learned Sampler [286] (†) ✗ ✓ 29.2 11.0 - 4.82 -

141



Table 3.11: Unconditional LSUN Church-Outdoor generative performance (measured in
FID). Methods above the middle line use the same score model checkpoint; Learned Sam-
pler uses a different one. (†): numbers are taken from literature.

Method AFS Denoising NFEs=5 NFEs=10 NFEs=15 NFEs=20 NFEs=25

GENIE (ours)

✗ ✗ 97.2 25.4 15.9 11.6 9.57
✗ ✓ 147 13.7 11.7 8.52 7.28
✓ ✗ 47.8 13.6 10.6 9.17 8.28
✓ ✓ 60.3 10.5 7.44 6.38 5.84

DDIM [258]

✗ ✗ 81.5 28.5 16.7 11.9 9.9
✗ ✓ 110 25.3 11.5 8.53 7.35
✓ ✗ 44.0 17.4 12.5 10.2 9.07
✓ ✓ 45.8 12.8 8.44 6.97 6.28

S-PNDM [176]

✗ ✗ 59.4 18.7 13.3 11.4 10.4
✗ ✓ 87.5 14.8 9.54 7.98 7.21
✓ ✗ 40.7 17.0 12.8 11.2 10.3
✓ ✓ 48.8 12.9 9.10 7.82 7.12

F-PNDM [176]

✗ ✗ N/A N/A 15.5 12.0 10.6
✗ ✓ N/A N/A 15.7 9.78 7.99
✓ ✗ N/A N/A 15.2 11.8 10.4
✓ ✓ N/A N/A 12.6 9.29 7.83

Learned Sampler [286] (†) ✗ ✓ 30.2 11.6 - 6.74 -

Table 3.12: Cats (base model) generative performance (measured in FID).

Method AFS NFEs=10 NFEs=15 NFEs=20 NFEs=25

GENIE (ours)
✗ 12.2 8.74 7.40 6.84
✓ 13.3 9.07 7.76 6.76

DDIM [258]
✗ 12.7 9.89 8.66 7.98
✓ 13.6 10.0 8.73 7.87

S-PNDM [176]
✗ 12.8 11.6 10.8 10.4
✓ 12.5 11.3 10.7 10.2

F-PNDM [176]
✗ N/A 12.8 10.4 10.6
✓ N/A 11.8 10.4 10.3
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Figure 3.16: Additional samples on LSUN Church-Outdoor with zoom-in on details. GE-
NIE often results in sharper and higher contrast samples compared to DDIM.
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Figure 3.17: Additional samples on ImageNet with zoom-in on details. GENIE often
results in sharper and higher contrast samples compared to DDIM.
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Figure 3.18: Additional samples on Cats with zoom-in on details. GENIE often results in sharper
and higher contrast samples compared to DDIM.
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Figure 3.19: Additional samples on Cats with zoom-in on details. GENIE often results in sharper
and higher contrast samples compared to DDIM.
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Figure 3.20: End-to-end samples on Cats. The GENIE base model uses 25 function eval-
uations and the GENIE upsampler only uses five function evaluations. An upsampler
evaluation is roughly four times as expensive as a base model evaluation.

147



Figure 3.21: Upsampling 128× 128 test set images using the GENIE upsampler with only
five function evaluations.
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Table 3.13: Cats (upsampler) generative performance (measured in FID).

Method AFS NFEs=5 NFEs=10 NFEs=15

GENIE (ours)
✗ 7.03 4.93 4.83
✓ 5.53 4.90 4.91

DDIM [258]
✗ 11.3 7.16 5.99
✓ 9.47 6.64 5.85

S-PNDM [176]
✗ 16.7 12.1 8.83
✓ 14.6 11.0 9.01

F-PNDM [176]
✗ N/A N/A 12.9
✓ N/A N/A 11.7

3.4.7 Miscellaneous

3.4.7.1 Connection to Bao et al. [19]

The concurrent Bao et al. [19] learn covariance matrices for diffusion model sampling using
prediction heads somewhat similar to the ones in GENIE. Specifically, both Bao et al. [19]
and GENIE use small prediction heads that operate on top of the large first-order score
predictor. However, we would like to stress multiple differences: (i) Bao et al. [19] learn the
DDM’s sampling covariance matrices, while we learn higher-order ODE gradients. More
generally, Bao et al. [19] rely on stochastic diffusion model sampling, while we use the
ODE formulation. (ii) Most importantly, in our case we can resort to directly learning
the low-dimensional JVPs without low-rank or diagonal matrix approximations or other
assumptions. Similar techniques are not directly applicable in Bao et al. [19]’s setting.
In detail, this is because in their case the relevant matrices (obtained after Cholesky or
another applicable decomposition of the covariance) do not act on regular vectors but
random noise variables. In other words, instead of using a deterministic JVP predictor
(which takes xt and t as inputs), as in GENIE, Bao et al. [19] would require to model an
entire distribution for each xt and t without explicitly forming high-dimensional Cholesky
decomposition-based matrices, if they wanted to do something somewhat analogous to
GENIE’s novel JVP-based approach. As a consequence, Bao et al. [19] take another route
to keeping the dimensionality of the additional network outputs manageable in practice. In
particular, they resort to assuming a diagonal covariance matrix in their experiments. By
directly learning JVPs, we never have to rely on such potentially limiting assumptions. (iii)
Experimentally, Bao et al. [19] also consider fast sampling with few neural network calls.
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However, GENIE generally outperforms them (see, for example, their CIFAR10 results in
their Table 2 for 10 and 25 NFE). This might indeed be due to the assumptions made
by Bao et al. [19], which we avoid. Furthermore, their stochastic vs. our deterministic
sampling may play a role, too.

3.4.7.2 Combining GENIE with Progressive Distillation

We speculate that GENIE could potentially be combined with Progressive Distillation [244]:
In every distillation stage of [244], one could quickly train a small GENIE prediction head to
model higher-order ODE gradients. This would then allow for larger and/or more accurate
steps, whose results represent the distillation target (teacher) in the progressive distillation
protocol. This may also reduce the number of required distillation stages. Overall, this
could potentially speed up the cumbersome stage-wise distillation and maybe also lead to
an accuracy and performance improvement. In particular, we could replace the DDIM
predictions in Algorithm 2 of [244] with improved GENIE predictions.

Note that this approach would not be possible with multistep methods as proposed by Liu
et al. [176]. Such techniques could not be used here, because they require the history of
previous predictions, which are not available in the progressive distillation training scheme.

We leave exploration of this direction to future work.

3.5 Epilogue

3.5.1 Additional Related Work

Since the publication of Dockhorn et al. [74], there has been a plethora of work on acceler-
ated DM solvers [61, 141, 169, 183, 184, 291]. Furthermore, there have been considerable
efforts to distill the entire iterative sampling process of a DM into a neural network. In
progressive distillation [244] an Euler-like sampler with N steps is distilled into an Euler-
like sampler with N/2 steps. This procedure can be performed iteratively, bringing the
number of evaluations for sampling as low as one. While progressive distillation was pro-
posed around the same time as GENIE, it originally came with a set of limitations (see the
paper). Recently, progressive distillation has been extended to classifier-free guidance [196]
and to ODE solvers beyond Euler’s method [24]. Other distillation methods that distill the
entire iterative sampling process of a DMs have been proposed as well [180, 186, 265, 318].
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Chapter 4

Differentially Private Diffusion
Models

4.1 Differentially Private Generative Modeling: What

and Why?

As we have seen in the last chapters, DMs have the ability to learn complex data dis-
tributions, such as those found in natural images. However, as with any (generative)
model, training DMs on sensitive data raises concerns about privacy. For example, an
adversary may be able to recover training images of deep classifiers using gradients of the
networks [303] or reproduce training text sequences from large transformers [39]. Gen-
erative models may even overfit directly, generating data indistinguishable from the data
they have been trained on. In fact, overfitting and privacy-leakage of generative models
are more relevant than ever, considering recent works that train powerful photo-realistic
image generators on large-scale web-scraped data. Recently, it has been shown that large
text-to-image DMs may almost perfectly memorize (portions of the) training data [40].
Memorization of training data is particularly problematic in privacy-sensitive domains,
such as medical imaging. One potential method to provably avoid memorization in gen-
erative modeling is to train models with strict differential privacy (DP) [83, 84] guarantees.

DP is a rigorous mathematical definition of privacy applied to statistical queries; in ma-
chine learning these queries generally correspond to the training of a neural network using
sensitive training data. Informally, training is said to be differentially private, if, given the
trained weights of the network, an adversary cannot tell with certainty whether a particular
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data point was part of the training data. A popular algorithm for DP training of neural
networks is differentially private stochastic gradient descent (DP-SGD) [1]. DP-SGD pre-
serves privacy by clipping and noising the parameter gradients during training. This leads
to an inevitable trade-off between privacy and utility; for instance, small clipping con-
stants and large noise injection result in very private models that may be of little practical
use. In the past, DP-SGD has, for example, been employed to train generative adversarial
networks [88, 273, 296], which are particularly susceptible to privacy-leakage [288].

4.2 Preface

This section presents the paper “Differentially Private Diffusion Models”. In this work,
we train DMs with strict DP guarantees using DP-SGD [1]. We motivate why we believe
DMs to be better suited for DP-SGD training than one-shot generation models such as
generative adversarial networks. We study the DM parameterization, training settings and
sampling methods in detail, and optimize them for the DP setup. We propose noise mul-
tiplicity, a modification of DP-SGD tailored to the training of DMs. Experimentally, we
significantly surpass the state-of-the-art in DP synthesis on widely-studied image modeling
benchmarks. The paper was initially put on arXiv in October 2022, and then submitted
to the journal Transactions on Machine Learning Research in April 2023.

Contributions: I was the sole first author of this work. Tianshi Cao, Arash Vahdat
and Karsten Kreis were co-authors, and Karsten supervised the project. I implemented
all code and ran all experiments, and wrote the majority of the paper. I proposed “noise
multiplicity”, the main modification of DP-SGD used to train DPDMs.

Reproducibility: The code and models for this work have been open-sourced. See https:
//github.com/nv-tlabs/DPDM for instructions to reproduce our results.

Abstract: While modern machine learning models rely on increasingly large training
datasets, data is often limited in privacy-sensitive domains. Generative models trained
with differential privacy (DP) on sensitive data can sidestep this challenge, providing ac-
cess to synthetic data instead. We build on the recent success of diffusion models (DMs) and
introduce Differentially Private Diffusion Models (DPDMs), which enforce privacy using
differentially private stochastic gradient descent (DP-SGD). We investigate the DM param-
eterization and the sampling algorithm, which turn out to be crucial ingredients in DPDMs,
and propose noise multiplicity, a powerful modification of DP-SGD tailored to the training
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of DMs. We validate our novel DPDMs on image generation benchmarks and achieve state-
of-the-art performance in all experiments. Moreover, on standard benchmarks, classifiers
trained on DPDM-generated synthetic data perform on par with task-specific DP-SGD-
trained classifiers, which has not been demonstrated before for DP generative models.
Project page and code: https://nv-tlabs.github.io/DPDM.

4.3 Main Paper

4.3.1 Introduction

Modern deep learning usually requires significant amounts of training data. However,
sourcing large datasets in privacy-sensitive domains is often difficult. To circumvent this
challenge, generative models trained on sensitive data can provide access to large synthetic
data instead, which can be used flexibly to train downstream models. Unfortunately, typ-
ical overparameterized neural networks have been shown to provide little to no privacy
to the data they have been trained on. For example, an adversary may be able to re-
cover training images of deep classifiers using gradients of the networks [303] or reproduce
training text sequences from large transformers [39]. Generative models may even overfit
directly, generating data indistinguishable from the data they have been trained on. In
fact, overfitting and privacy-leakage of generative models are more relevant than ever, con-
sidering recent works that train powerful photo-realistic image generators on large-scale
Internet-scraped data [16, 230, 235, 241].

To protect the privacy of training data, one may train their model using differential privacy
(DP). DP is a rigorous privacy framework that applies to statistical queries [83, 84]. In
our case, this query corresponds to the training of a neural network using sensitive data.
Differentially private stochastic gradient descent (DP-SGD) [1] is the workhorse of DP
training of neural networks. It preserves privacy by clipping and noising the parameter
gradients during training. This leads to an inevitable trade-off between privacy and utility;
for instance, small clipping constants and large noise injection result in very private models
that may be of little practical use.

DP-SGD has, for example, been employed to train generative adversarial networks (GANs) [88,
273, 296], which are particularly susceptible to privacy-leakage [288]. However, while GANs
in the non-private setting can synthesize photo-realistic images [30, 138–140], their appli-
cation in the private setting is challenging. GANs are difficult to optimize [11, 198] and
prone to mode collapse; both phenomena may be amplified during DP-SGD training.
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Figure 4.1: Information flow during training in our Differentially Private Diffusion Model
(DPDM) for a single training sample in green (i.e. batchsize B=1, another sample shown
in blue). We rely on DP-SGD to guarantee privacy and use noise multiplicity ; here,
K=3. The diffusion is visualized for a one-dim. toy distribution (marginal probabilities in
purple); our main experiments use high-dim. images. Note that for brevity in the visual-
ization we dropped the index i, which indicates the minibatch element in Equations (4.6)
and (4.7).
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Recently, Diffusion Models (DMs) have emerged as a powerful class of generative mod-
els [109, 257, 263], demonstrating outstanding performance in image synthesis [66, 110,
212, 230, 235, 241]. In DMs, a diffusion process gradually perturbs the data towards ran-
dom noise, while a deep neural network learns to denoise. DMs stand out not only by high
synthesis quality, but also sample diversity, and a simple and robust training objective.
This makes them arguably well suited for training under DP perturbations. Moreover,
generation in DMs corresponds to an iterative denoising process, breaking the difficult
generation task into many small denoising steps that are individually simpler than the
one-shot synthesis task performed by GANs and other traditional methods. In particular,
the denoising neural network that is learnt in DMs and applied repeatedly at each synthesis
step is less complex and smoother than the generator networks of one-shot methods, as
we validate in experiments on toy data (synthetically generated mixture of 2D Gaussians).
Therefore, training of the denoising neural network is arguably less sensitive to gradient
clipping and noise injection required for DP.

Based on these observations, we propose Differentially Private Diffusion Models (DPDMs),
DMs trained with rigorous DP guarantees based on DP-SGD. We thoroughly study the DM
parameterization and sampling algorithm, and tailor them to the DP setting. We find that
the stochasticity in DM sampling, which is empirically known to be error-correcting [141],
can be particularly helpful in DP-SGD training to obtain satisfactory perceptual quality.
We also propose noise multiplicity, where a single training data sample is re-used for train-
ing at multiple perturbation levels along the diffusion process (see Figure 4.1). This simple
yet powerful modification of the DM training objective improves learning at no additional
privacy cost. We validate DPDMs on standard DP image generation tasks, and achieve
state-of-the-art performance by large margins, both in terms of perceptual quality and
performance of downstream classifiers trained on synthetically generated data from our
models. For example, on MNIST we improve the state-of-the-art FID from 56.2 to 23.4
and downstream classification accuracy from 81.5% to 95.3% for the privacy setting DP-
(ε=1, δ=10−5). We also find that classifiers trained on DPDM-generated synthetic data
perform on par with task-specific DP-classifiers trained on real data, which has not been
demonstrated before for DP generative models.

We make the following contributions: (i) We carefully motivate training DMs with DP-
SGD and introduce DPDMs, the first DMs trained under DP guarantees. (ii) We study
DPDM parameterization, training setting and sampling in detail, and optimize it for the DP
setup. (iii) We propose noise multiplicity to efficiently boost DPDM performance. (iv)
Experimentally, we significantly surpass the state-of-the-art in DP synthesis on widely-
studied image modeling benchmarks. (v) We demonstrate for the first time that classifiers
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trained on DPDM-generated data perform on par with task-specific DP-trained discrimi-
native models. This implies a very high utility of the synthetic data generated by DPDMs,
delivering on the promise of DP generative models as an effective data sharing medium.
Finally, we hope that our work has implications for the literature on DMs, which are now
routinely trained on ultra large-scale datasets of diverse origins.

4.3.2 Background

4.3.2.1 Diffusion Models

We consider continuous-time DMs [263] and follow the presentation of Karras et al. [141].
Let pdata(x) denote the data distribution and p(x;σ) the distribution obtained by adding
i.i.d. σ2-variance Gaussian noise to the data distribution. For sufficiently large σmax,
p(x;σ2

max) is almost indistinguishable from σ2
max-variance Gaussian noise. Capitalizing on

this observation, DMs sample (high variance) Gaussian noise x0 ∼ N (0, σ2
max) and sequen-

tially denoise x0 into xi ∼ p(xi;σi), i ∈ [0, ...,M ], with σi < σi−1 (σ0 = σmax). If σM = 0,
then x0 is distributed according to the data.

Sampling. In practice, the sequential denoising is often implemented through the simu-
lation of the Probability Flow ordinary differential equation (ODE) [263]

dx = −σ̇(t)σ(t)∇x log p(x;σ(t)) dt, (4.1)

where ∇x log p(x;σ) is the score function [123]. The schedule σ(t) : [0, 1] → R+ is user-
specified and σ̇(t) denotes the time derivative of σ(t). Alternatively, we may also sample
from a stochastic differential equation (SDE) [141, 263]:

dx = −σ̇(t)σ(t)∇x log p(x;σ(t)) dt︸ ︷︷ ︸
Probability Flow ODE; see Equation (4.1)

−β(t)σ2(t)∇x log p(x;σ(t)) dt+
√
2β(t)σ(t) dωt︸ ︷︷ ︸

Langevin diffusion component

,

(4.2)

where dωt is the standard Wiener process. In principle, given initial samples x0 ∼
N (0, σ2

max), simulating either Probability Flow ODE or SDE produces samples from the
same distribution. In practice, though, neither ODE nor SDE can be simulated exactly:
Firstly, any numerical solver inevitably introduces discretization errors. Secondly, the score
function is only accessible through a model sθ(x;σ) that needs to be learned; replacing
the score function with an imperfect model also introduces an error. Empirically, the
ODE formulation has been used frequently to develop fast solvers [74, 176, 183, 258, 313],
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whereas the SDE formulation often leads to higher quality samples (while requiring more
steps) [141]. One possible explanation for the latter observation is that the Langevin dif-
fusion component in the SDE at any time during the synthesis process actively drives
the process towards the desired marginal distribution p(x;σ), whereas errors accumulate
in the ODE formulation, even when using many synthesis steps. In fact, it has been
shown that as the score model sθ improves, the performance boost that can be obtained
by an SDE solver diminishes [141]. Finally, note that we are using classifier-free guid-
ance [108] to perform class-conditional sampling in this work. For details on classifier-free
guidance and the numerical solvers for Equation (4.1) and Equation (4.2), we refer to Sec-
tion 4.4.3.3.

Training. DM training reduces to learning the score model sθ. The model can, for
example, be parameterized as ∇x log p(x;σ) ≈ sθ = (Dθ(x;σ) − x)/σ2 [141], where Dθ

is a learnable denoiser that, given a noisy data point x + n, x ∼ pdata(x), n ∼ N (0, σ2)
and conditioned on the noise level σ, tries to predict the clean x. The denoiser Dθ can be
trained by minimizing an L2-loss

Ex∼pdata(x),(σ,n)∼p(σ,n)
[
λσ∥Dθ(x+ n, σ)− x∥22

]
, (4.3)

where p(σ,n) = p(σ)N (n;0, σ2) and λσ : R+ → R+ is a weighting function. Previous
works proposed various denoiser models Dθ, noise distributions p(σ), and weightings λσ.
We refer to the triplet (Dθ, p, λ) as the DM config. Here, we consider four such configs:
variance preserving (VP) [263], variance exploding (VE) [263], v-prediction [244], and
EDM Karras et al. [141]; Section 4.4.3.1 for details.

4.3.2.2 Differential Privacy

DP is a rigorous mathematical definition of privacy applied to statistical queries; in our
work the queries correspond to the training of a neural network using sensitive training
data. Informally, training is said to be DP, if, given the trained weights θ of the network,
an adversary cannot tell with certainty whether a particular data point was part of the
training data. This degree of certainty is controlled by two positive parameters ε and δ:
training becomes more private as ε and δ decrease. Note, however, that there is an inherent
trade-off between utility and privacy: very private models may be of little to no practical
use. To guarantee a sufficient amount of privacy, as a rule of thumb, δ should not be larger
than 1/N , where N is number of training points {xi}Ni=1, and ε should be a small constant.
More formally, we refer to (ε, δ)-DP defined as follows [83]:

Definition 4.3.1. (Differential Privacy) A randomized mechanism M : D → R with
domain D and range R satisfies (ε, δ)-DP if for any two datasets d, d′ ∈ D differing by at
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most one entry, and for any subset of outputs S ⊆ R it holds that

Pr [M(d) ∈ S] ≤ eεPr [M(d′) ∈ S] + δ. (4.4)

DP-SGD. We require a DP algorithm that trains a neural network using sensitive data.
The workhorse for this particular task is differentially private stochastic gradient descent
(DP-SGD) [1]. DP-SGD is a modification of SGD for which per-sample-gradients are
clipped and noise is added to the clipped gradients; the DP-SGD parameter updates are
defined as follows

θ ← θ − η

B

(∑
i∈B

clipC (∇θli(θ)) + Cz
)
, (4.5)

where z ∼ N (0, σ2
DPI), B is a B-sized subset of {1, . . . , N} drawn uniformly at random,

li is the loss function for data point xi, η is the learning rate, and the clipping function is
clipC(g) = min {1, C/∥g∥2}g. DP-SGD can be adapted to other first-order optimizers,
such as Adam [194].

Privacy Accounting. According to the Gaussian mechanism [84], a single DP-SGD up-
date (Equation (4.5)) satisfies (ε, δ)-DP if σ2

DP > 2 log(1.25/δ)C2/ε2. Privacy accounting
methods can be used to compose the privacy cost of multiple DP-SGD training updates and
to determine the variance σ2

DP needed to satisfy (ε, δ)-DP for a particular number of DP-
SGD updates with clipping constant C and subsampling rate B/N . Also see Section 4.4.1.

4.3.3 Differentially Private Diffusion Models

We propose DPDMs, DMs trained with rigorous DP guarantees based on DP-SGD [1].
DP-SGD is a well-established method to train DP neural networks and our intention is not
to re-invent DP-SGD; instead, the novelty in this work lies in the combination of DMs with
DP-SGD, modifications of DP-SGD specifically tailored to the DP training of DMs, as well
as the study of design choices and training recipes that greatly influence the performance of
DPDMs. Combinations of DP-SGD with GANs have been widely studied [26, 88, 273, 296],
motivating a similar line of research for DMs. To the best of our knowledge, we are the
first to explore DP training of DMs. In Section 4.3.3.1, we discuss the motivation for
using DMs for DP generative modeling. In Section 4.3.3.2, we then discuss training and
methodological details as well as DM design choices, and we prove that DPDMs satisfy
DP.
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Figure 4.2: Frobenius norm of the Jacobian JF (σ) of the denoiser D(·, σ) and constant
Frobenius norms of the Jacobians JF of the sampling functions defined by the DM and a
GAN. Section 4.4.5 for experiment details.

4.3.3.1 Motivation

(i) Objective function. GANs have so far been the workhorse of DP generative model-
ing (see Section 4.3.4), even though they are generally difficult to optimize [11, 198] due
to their adversarial training and propensity to mode collapse. Both phenomena may be
amplified during DP-SGD training. DMs, in contrast, have been shown to produce outputs
as good or even better than GANs’ [66], while being trained with a very simple regression-
like L2-loss (Equation (4.3)), which makes them robust and scalable in practice. DMs are
therefore arguably also well-suited for DP-SGD-based training and offer better stability
under gradient clipping and noising than adversarial training frameworks.

(ii) Sequential denoising. In GANs and most other traditional generative modeling
approaches, the generator directly learns the sampling function, i.e., the mapping of la-
tents to synthesized samples, end-to-end. In contrast, the sampling function in DMs is
defined through a sequential denoising process, breaking the difficult generation task into
many small denoising steps which are individually less complex than the one-shot syn-
thesis task performed by, for instance, a GAN generator. The denoiser neural network,
the learnable component in DMs that is evaluated once per denoising step, is therefore
simpler and smoother than the one-shot generator networks of other methods. We fit both
a DM and a GAN to a two-dimensional toy distribution (mixture of Gaussians, see Sec-
tion 4.4.5) and empirically verify that the denoiser D is indeed significantly less complex
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(quantified by the Frobenius norm of the Jacobian) than the generator learnt by the GAN
and also than the end-to-end multi-step synthesis process (Probability Flow ODE) of the
DM (see Figure 4.2; we calculate denoiser JF (σ) at varying noise levels σ). Generally,
more complex functions require larger neural networks and are more difficult to learn. In
DP-SGD training we only have a limited number of training iterations available until the
privacy budget is depleted. Consequently, the fact that DMs require less complexity out of
their neural networks than typical one-shot generation methods, while still being able to
represent expressive generative models due to the iterative synthesis process, makes them
likely well-suited for DP generative modeling with DP-SGD.

(iii) Stochastic diffusion model sampling. As discussed in Section 4.3.2.1, gener-
ating samples from DMs with stochastic sampling can perform better than deterministic
sampling when the score model is not learned well. Since we replace gradient estimates
in DP-SGD training with biased large variance estimators, we cannot expect a perfectly
accurate score model. In Section 4.3.5.2, we empirically show that stochastic sampling can
in fact boost perceptual synthesis quality in DPDMs as measured by FID.

4.3.3.2 Training Details, Design Choices, Privacy

The clipping and noising of the gradient estimates in DP-SGD (Equation (4.5)) pose a
major challenge for efficient optimization. Blindly reducing the added noise could be fatal,
as it decreases the number of training iterations allowed within a certain (ε, δ)-DP budget.
Furthermore, as discussed the L2-norm of the noise added in DP-SGD scales linearly to the
number of parameters. Consequently, settings that work well for non-private DMs, such
as relatively small batch sizes, a large number of training iterations, and heavily overpa-
rameterized models, may not work well for DPDMs. Below, we discuss how we propose to
adjust DPDMs for successful DP-SGD training.

Noise multiplicity. Recall that the DM objective in Equation (4.3) involves three ex-
pectations. As usual, the expectation with respect to the data distribution pdata(x) is
approximated using mini-batching. For non-private DMs, the expectations over σ and n
are generally approximated using a single Monte Carlo sample (σi,ni) ∼ p(σ)N (0, σ2) per
data point xi, resulting in the loss for training sample i

li = λ(σi)∥Dθ(xi + ni, σi)− xi∥22. (4.6)

160



The estimator li is very noisy in practice. Non-private DMs counteract this by training for
a large number of iterations in combination with an exponential moving average (EMA) of
the trainable parameters θ [260]. When training DMs with DP-SGD, we incur a privacy
cost for each iteration, and therefore prefer a small number of iterations. Furthermore,
since the per-example gradient clipping as well as the noise injection induce additional
variance, we would like our objective function to be less noisy than in the non-DP case.
We achieve this by estimating the expectation over σ and n using an average over K noise
samples, {(σik,nik)}Kk=1 ∼ p(σ)N (0, σ2) for each data point xi, replacing the non-private
DM objective li in Equation (4.6) with

l̃i =
1

K

∑K

k=1
λ(σik)∥Dθ(xi + nik, σik)− xi∥22. (4.7)

Importantly, we show that this modification comes at no additional privacy cost (also see
Section 4.4.1). We call this simple yet powerful modification of the DM objective, which
is tailored to the DP setup, noise multiplicity.

Theorem 1. The variance of the DM objective (Equation (4.7)) decreases with increased
noise multiplicity K as 1/K.

Proof in Section 4.4.4. Intuitively, the key is that we first create a relatively accurate
low-variance gradient estimate by averaging over multiple noise samples before performing
gradient sanitization in the backward pass via clipping and noising. This averaging process
increases computational cost, but provides better utility at the same privacy budget, which
is the main bottleneck in DP generative modeling; see Section 4.4.4.3 for further discussion.
We empirically showcase in Section 4.3.5.2 that the variance reduction induced by noise
multiplicity is a key factor in training strong DPDMs. In Figure 4.3, we show that the
reduction of variance in the DM objective also empirically leads to lower variance gradient
estimates (see Section 4.4.4 for experiment details). The noise multiplicity mechanism is
also highlighted in Figure 4.1: the figure describes the information flow during training for
a single training sample (i.e., batch size B = 1). Note that noise multiplicity is loosely
inspired by augmentation multiplicity [64], a technique where multiple augmentations per
image are used to train classifiers with DP-SGD. In contrast to augmentation multiplic-
ity, our novel noise multiplicity is carefully designed specifically for DPDMs and comes
with theoretical proofs on its variance reduction. The reader may find a more detailed
discussion on the difference between noise multiplicity and data multiplicity (for DPDMs)
in Section 4.4.4.4.

Neural networks sizes. Current DMs are heavily overparameterized: For example, the
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Figure 4.3: Increasing K in noise multiplicity leads to significant variance reduction of
parameter gradient estimates during training (note logarithmic axis in inset). Enlarged
version in Figure 4.6.

current state-of-the-art image generation model (in terms of perceptual quality) on CIFAR-
10 uses more than 100M parameters, despite the dataset consisting of only 50k training
points [141]. The per-example clipping operation of DP-SGD requires the computation of
the loss gradient on each training example ∇θ l̃i, rather than the minibatch gradient. In
theory, this increases the memory footprint by at least O(B); however, in common DP
frameworks, such as Opacus [306], which we use, the peak memory requirement is O(B2)
compared to non-private training (recent methods such as ghost clipping [32] require less
memory, but are not widely implemented) On top of that, DP-SGD generally already relies
on a significantly increased batch size, when compared to non-private training, to improve
the privacy-utility trade-off. As a result, we train very small neural networks for DPDMs,
when compared to their non-DP counterparts: our models on MNIST/Fashion-MNIST and
CelebA have 1.75M and 1.80M parameters, respectively. Furthermore, we found smaller
models to perform better across our experiments which may be due to the L2-norm of the
noise added in our DP-SGD update scaling linearly with the number of parameters. This
is in contrast to recent works in supervised DP learning, which show that larger models
may perform better than smaller models [9, 64, 171, 172].

Diffusion model config. In addition to network size, we found the choice of DM config,
i.e., denoiser parameterization Dθ, weighting function λ(σ), and noise distribution p(σ),
to be important. In particular the latter is crucial to obtain strong results with DPDMs.
In Figure 4.4, we visualize the noise distributions of the four configs under consideration.
We follow Karras et al. [141] and plot the distribution p(log σ) over the log-noise level.
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and EDM [141]; see Section 4.4.3.1.

Especially for high privacy settings (small ε), we found it important to use distributions
that give sufficiently much weight to larger σ, such as the distribution of v-prediction [244].
It is known that at large σ the DM learns the global, coarse structure of the data, i.e.,
the low frequency content in the data (images, in our case). Learning global structure
reasonably well is crucial to form visually coherent images that can also be used to train
downstream models. This is relatively easy to achieve in the non-DP setting, due to the
heavily smoothed diffused distribution at these high noise level. At high privacy levels,
however, even training at such high noise levels can be challenging due to DP-SGD’s gradi-
ent clipping and noising. We hypothesize that this is why it is beneficial to give relatively
more weight to high noise levels when training in the DP setting. In Section 4.3.5.2, we
empirically demonstrate the importance of the right choice of the DM config.

DP-SGD settings. Following De et al. [64] we use very large batch sizes: 4096 on
MNIST/Fashion-MNIST and 2048 on CelebA. Similar to previous works [64, 161, 172], we
found that small clipping constants C work better than larger clipping norms; in particu-
lar, we found C = 1 to work well across our experiments. Decreasing C even further had
little effect; in contrast, increasing C significantly worsened performance. Similar to non-
private DMs, we use an EMA of the learnable parameters θ. Incidentally, this has recently
been reported to also have a positive effect on DP-SGD training of classifiers by De et al.
[64].

Privacy. We formulate privacy protection under the Rényi Differential Privacy (RDP) [199]
framework (see Definition 4.4.1), which can be converted to (ϵ, δ)-DP. For an algorithm for

163



Algorithm 4 DPDM Training

Input: Private data set d = {xj}Nj=1, subsampling rate B/N , DP noise scale σDP, clipping
constant C, sampling function Poisson Sample (Algorithm 5), denoiser Dθ with initial param-
eters θ, noise distribution p(σ), learning rate η, total steps T , noise multiplicity K, Adam [148]
optimizer
Output: Trained parameters θ
for t = 1 to T do

B ∼ Poisson Sample(N,B/N)
for i ∈ B do
{(σik,nik)}Kk=1 ∼ p(σ)N (0, σ2)

l̃i =
1
K

∑K
k=1 λ(σik)∥Dθ(xi+nik, σik)−xi∥22

end for
Gbatch = 1

B

∑
i∈B clipC

(
∇θ l̃i

)
G̃batch = Gbatch + (C/B)z, z ∼ N (0, σ2

DP)
θ = θ − η ∗Adam(G̃batch)

end for

DPDM training with noise multiplicity see Algorithm 4. For the sake of completeness we
also formally prove the DP of DPDMs (DP of releasing sanitized training gradients G̃batch):

Theorem 2. For noise magnitude σDP, releasing G̃batch in Algorithm 4 satisfies
(α, α/2σ2

DP)-RDP.

The proof can be found in Section 4.4.1. Note that the strength of DP protection is inde-
pendent of the noise multiplicity, as discussed above. In practice, we construct mini-batches
by Poisson Sampling (See Algorithm 5) the training dataset for privacy amplification via
sub-sampling [200], and compute the overall privacy cost of training DPDM via RDP com-
position [199]. Tighter privacy bounds, such as the one developed in Gopi et al. [98], may
lead to better results but are not widely implemented (not in Opacus [306], the DP-SGD
library we use).

4.3.4 Related Work

In the DP generative learning literature, several works [45, 88, 273, 296] have explored ap-
plying DP-SGD [1] to GANs, while others [182, 284, 304] train GANs under the PATE [220]
framework, which distills private teacher models (discriminators) into a public student
(generator) model. Apart from GANs, Acs et al. [2] train variational autoencoders on
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DP-sanitized data clusters, and Cao et al. [38] use the Sinkhorn divergence and DP-
SGD.

DP-MERF [102] was the first work to perform one-shot privatization on the data, fol-
lowed by non-private learning. It uses differentially private random Fourier features to
construct a Maximum Mean Discrepancy loss, which is then minimized by a generative
model. PEARL [173] instead minimizes an empirical characteristic function, also based
on Fourier features. DP-MEPF [103] extends DP-MERF to the mixed public-private set-
ting with pre-trained feature extractors. While these approaches are efficient in the high-
privacy/small dataset regime, they are limited in expressivity by the data statistics that
can be extracted during one-shot privatization. As a result, the performance of these meth-
ods does not scale well in the low-privacy/large dataset regime.

In our experimental comparisons, we excluded [270] and [46] due to concerns regarding
their privacy guarantees. The privacy analysis of [270] relies on the Wishart mechanism,
which has been retracted due to privacy leakage [248]. [46] attempt to train a score-
based model while guaranteeing differential privacy through a data-dependent randomized
response mechanism. In Section 4.4.2, we prove why their proposed mechanism leaks pri-
vacy, and further discuss other sources of privacy leakage.

Our DPDM relies on DP-SGD [1] to enforce DP guarantees. DP-SGD has also been used to
train DP classifiers [78, 161, 274]. Recently, De et al. [64] demonstrated how to train very
large discriminative models with DP-SGD and proposed augmentation multiplicity, which
is related to our noise multiplicity, as discussed in Section 4.3.3.2. Furthrmore, DP-SGD
has been utilized to train and fine-tune large language models [9, 172, 307], to protect
sensitive training data in the medical domain [17, 320, 321], and to obscure geo-spatial
location information [309].

Our work builds on DMs and score-based generative models [109, 257, 263]. DMs have
been used prominently for image synthesis [16, 66, 110, 212, 230, 235, 241] and other
image modeling tasks [142, 168, 197, 239, 240, 249]. They have also found applications
in other areas, for instance in audio and speech generation [48, 130, 157], video genera-
tion [27, 111, 112, 252] and 3D synthesis [147, 188, 310, 319]. Methodologically, DMs have
been adapted, for example, for fast sampling [74, 75, 134, 244, 258, 286, 295] and maximum
likelihood training [151, 262, 280]. To the best of our knowledge, we are the first to train
DMs under differential privacy guarantees.
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Figure 4.5: Fashion-MNIST images generated by, from top to bottom, DP-CGAN [273],
DP-MERF [103], Datalens [284], G-PATE [182], GS-WGAN [45], DP-Sinkhorn [38],
PEARL [173], DPGANr [26] (all above bar), and our DPDM (below bar) using the privacy
budget ε=10. See Section 4.4.6.5 for more samples.

4.3.5 Experiments

In this subsection, we present results of DPDM on standard image synthesis benchmarks.
Importantly, note that all models are private by construction through training with DP-
SGD. The privacy guarantee is given by the (ε, δ) parameters of DP-SGD, clearly stated
for each experiment below.

Datasets. We focus on image synthesis and use MNIST [164], Fashion-MNIST [293]
(28x28), and CelebA [181] (downsampled to 32x32). These datasets are standard bench-
marks in the DP generative modeling literature. In Section 4.4.7, we consider more chal-
lenging datasets and provide initial results.

Architectures. We implement the neural networks of DPDMs using the DDPM++ ar-
chitecture [263]. See Section 4.4.3.2 for details.

Evaluation. We measure sample quality via Fréchet Inception Distance (FID) [105].
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Table 4.1: Class-conditional DP image generation performance (MNIST & Fashion-MNIST). For
PEARL [173], we train models and compute metrics ourselves (Section 4.4.6.1). All other results
taken from the literature. DP-MEPF (†) uses additional public data for training (only included
for completeness).

Method DP-ε
MNIST Fashion-MNIST

FID
Acc (%)

FID
Acc (%)

Log Reg MLP CNN Log Reg MLP CNN

DPDM (FID) (ours) 0.2 61.9 65.3 65.8 71.9 78.4 53.6 55.3 57.0
DPDM (Acc) (ours) 0.2 104 81.0 81.7 86.3 128 70.4 71.3 72.3
PEARL [173] 0.2 133 76.2 77.1 77.6 160 70.0 70.8 68.0

DPDM (FID) (ours) 1 23.4 83.8 87.0 93.4 37.8 71.5 71.7 73.6
DPDM (Acc) (ours) 1 35.5 86.7 91.6 95.3 51.4 76.3 76.9 79.4
PEARL [173] 1 121 76.0 79.6 78.2 109 74.4 74.0 68.3
DPGANr [26] 1 56.2 - - 80.1 121.8 - - 68.0
DP-HP [281] 1 - - - 81.5 - - - 72.3

DPDM (FID) (ours) 10 5.01 90.5 94.6 97.3 18.6 80.4 81.1 84.9
DPDM (Acc) (ours) 10 6.65 90.8 94.8 98.1 19.1 81.1 83.0 86.2
PEARL [173] 10 116 76.5 78.3 78.8 102 72.6 73.2 64.9
DPGANr [26] 10 13.0 - - 95.0 56.8 - - 74.8
DP-Sinkhorn [38] 10 48.4 82.8 82.7 83.2 128.3 75.1 74.6 71.1
G-PATE [182] 10 150.62 - - 80.92 171.90 - - 69.34
DP-CGAN [273] 10 179.2 60 60 63 243.8 51 50 46
DataLens [284] 10 173.5 - - 80.66 167.7 - - 70.61
DP-MERF [102] 10 116.3 79.4 78.3 82.1 132.6 75.5 74.5 75.4
GS-WGAN [45] 10 61.3 79 79 80 131.3 68 65 65

DP-MEPF (ϕ1) [103] (†) 0.2 - 72.1 77.1 - - 71.7 69.0 -
DP-MEPF (ϕ1, ϕ2) [103] (†) 0.2 - 75.8 79.9 - - 72.5 70.4 -

DP-MEPF (ϕ1) [103] (†) 1 - 79.0 87.5 - - 76.2 75.0 -
DP-MEPF (ϕ1, ϕ2) [103] (†) 1 - 82.5 89.3 - - 75.4 74.7 -

DP-MEPF (ϕ1) [103] (†) 10 - 80.8 88.8 - - 75.5 75.5 -
DP-MEPF (ϕ1, ϕ2) [103] (†) 10 - 83.4 89.8 - - 75.7 76.0 -
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Table 4.2: Class prediction accuracy on real test data. DP-SGD: Classifiers trained
directly with DP-SGD and real training data. DPDM: Classifiers trained non-privately on
synthesized data from DP-SGD-trained DPDMs (using 60,000 samples, following [38]).

DP-ε
MNIST Fashion-MNIST

Log Reg MLP CNN Log Reg MLP CNN

DP-SGD DPDM DP-SGD DPDM DP-SGD DPDM DP-SGD DPDM DP-SGD DPDM DP-SGD DPDM

0.2 83.8 81.0 82.0 81.7 69.9 86.3 74.8 70.4 73.9 71.3 59.5 72.3
1 89.1 86.7 89.6 91.6 88.2 95.3 79.6 76.3 79.6 76.9 70.5 79.4
10 91.6 90.8 92.9 94.8 96.4 98.1 83.3 81.1 83.9 83.0 77.1 86.2

Table 4.3: DM config ablation on MNIST for ε=0.2. See Table 4.12 for extended results.

DM config FID CNN-Acc (%)

VP [263] 197 24.2
VE [263] 171 13.9
v-prediction [244] 97.8 84.4
EDM [141] 119 49.2

On MNIST and Fashion-MNIST, we also assess utility of class-labeled generated data by
training classifiers on synthesized samples and compute class prediction accuracy on real
data. As is standard practice, we consider logistic regression (Log Reg), MLP, and CNN
classifiers; see Section 4.4.6.1 for details.

Sampling. We sample from DPDM using (stochastic) DDIM [263] and the Churn sampler
introduced in [141]. See Section 4.4.3.3 for details.

Privacy implementation: We implement DPDMs in PyTorch [222] and use Opacus [306],
a DP-SGD library in PyTorch, for training and privacy accounting. We use δ=10−5 for
MNIST and Fashion-MNIST, and δ=10−6 for CelebA. These values are standard [38] and
chosen such that δ is smaller than the reciprocal of the number of training images. Similar
to existing DP generative modeling work, we do not account for the (small) privacy cost of
hyperparameter tuning. However, training and sampling is very robust with regards to hy-
perparameters, which makes DPDMs an ideal candidate for real privacy-critical situations;
see Section 4.4.3.4.
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4.3.5.1 Main Results

Class-conditional gray scale image generation. For MNIST and Fashion-MNIST, we
train models for three privacy settings: ε={0.2, 1, 10} (Table 4.1). Informally, the three
settings provide high, moderate, and low amounts of privacy, respectively. The DPDMs
use the v-prediction DM config [244] for ε=0.2 and the EDM config [141] for ε={1, 10};
see Section 4.3.5.2. We use the Churn sampler [141]: the two settings (FID) and (Acc) are
based on the same DM, differing only in sampler setting; see Table 4.14 and Table 4.15 for
all sampler settings.

DPDMs outperform all other existing models for all privacy settings and all metrics by
large margins (see Table 4.1). Interestingly, DPDM also outperforms DP-MEPF [103],
a method which is trained on additional public data, in 22 out of 24 setups. Generated
samples for ε=10 are shown in Figure 4.5. Visually, DPDM’s samples appear to be of
significantly higher quality than the baselines’.

Comparison to DP-SGD-trained classifiers. Is it better to train a task-specific pri-
vate classifier with DP-SGD directly, or can a non-private classifier trained on DPDM’s
synthethized data perform as well on downstream tasks? To answer this question, we train
private classifiers with DP-SGD on real (training) data and compare them to our classifiers
learnt using DPDM-synthesized data (details in Section 4.4.6.3). For a fair comparison, we
are using the same architectures that we have already been using in our main experiments
to quantify downstream classification accuracy (results in Table 4.2; we test on real (test)
data). While direct DP-SGD training on real data outperforms the DPDM downstream
classifier for logistic regression in all six setups (in line with empirical findings that it is
easier to train classifiers with few parameters than large ones with DP-SGD [274]), CNN
classifiers trained on DPDM’s synthetic data generally outperform DP-SGD-trained clas-
sifiers. These results imply a very high utility of the synthetic data generated by DPDMs,
demonstrating that DPDMs can potentially be used as an effective, privacy-preserving data
sharing medium in practice. In fact, this approach is beneficial over training task-specific
models with DP-SGD, because a user can generate as much data from DPDMs as they
desire for various downstream applications without further privacy implications. To the
best of our knowledge, it has not been demonstrated before in the DP generative mod-
eling literature that image data generated by DP generative models can be used to train
discriminative models on-par with directly DP-SGD-trained task-specific models.

Unconditional color image generation. On CelebA, we train models for ε={1, 10}
(Table 4.4). The two DPDMs use the EDM config [141] as well as the Churn sampler;
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Table 4.4: Unconditional CelebA generative performance. G-PATE and DataLens (†) use δ =
10−5 (less privacy) and model images at 64x64 resolution.

Method DP-ε FID

DPDM (ours) 1 71.8

DPDM (ours) 10 21.1
DP-Sinkhorn [38] 10 189.5
DP-MERF [102] 10 274.0

G-PATE [182] (†) 10 305.92
DataLens [284] (†) 10 320.8

Table 4.5: Noise multiplicity ablation on MNIST for ε=1. See Table 4.11 for extended results.

K FID CNN-Acc (%)

1 76.9 91.7
2 60.1 93.1
4 57.1 92.8
8 44.8 94.1
16 36.9 94.2
32 34.8 94.4

see Table 4.14. For ε=10, DPDM again outperforms existing methods by a significant
margin. DPDM’s synthesized images (see Figure 4.16) appear much more diverse and
vivid than the baselines’ samples.

4.3.5.2 Ablation Studies

Noise multiplicity. Table 4.5 shows results for DPDMs trained with different noise mul-
tiplicity K (using the v-prediction DM config) [244]. As expected, increasing K leads to a
general trend of improving performance; however, the metrics start to plateau at around
K=32.

Diffusion model config. We train DPDMs with different DM configs (see Section 4.4.3.1).
VP- and VE-based models [263] perform poorly for all settings, while for ε=0.2 v-prediction
significantly outperforms the EDM config on MNIST (Table 4.3). On Fashion-MNIST, the
advantage is less significant (extended Table 4.12). For ε={1, 10}, the EDM config per-
forms better than v-prediction. Note that the denoiser parameterization for these configs
is almost identical and their main difference is the noise distribution p(σ) (Figure 4.4). As
discussed in Section 4.3.3.2, oversampling large noise levels σ is expected to be especially
important for the large privacy setting (small ε), which is validated by our ablation.
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Table 4.6: Sampler comparison on MNIST (see Table 4.13 for results on Fashion-MNIST).
We compare the Churn sampler [141] to DDIM [258].

Sampler DP-ε FID
Acc (%)

Log Reg MLP CNN

Churn (FID) 0.2 61.9 65.3 65.8 71.9
Churn (Acc) 0.2 104 81.0 81.7 86.3
Stochastic DDIM 0.2 97.8 80.2 81.3 84.4
Deterministic DDIM 0.2 120 81.3 82.1 84.8

Churn (FID) 1 23.4 83.8 87.0 93.4
Churn (Acc) 1 35.5 86.7 91.6 95.3
Stochastic DDIM 1 34.2 86.2 90.1 94.9
Deterministic DDIM 1 50.4 85.7 91.8 94.9

Churn (FID) 10 5.01 90.5 94.6 97.3
Churn (Acc) 10 6.65 90.8 94.8 98.1
Stochastic DDIM 10 6.13 90.4 94.6 97.5
Deterministic DDIM 10 10.9 90.5 95.2 97.7

Sampling. Table 4.6 shows results for different samplers: deterministic and stochastic
DDIM [258] as well as the Churn sampler (tuned for high FID scores and downstream
accuracy); see Section 4.4.3.3 for details on the samplers. Stochastic sampling is crucial
to obtain good perceptual quality, as measured by FID (see poor performance of deter-
ministic DDIM), while it is less important for downstream accuracy. We hypothesize that
FID better captures image details that require a sufficiently accurate synthesis process.
As discussed in Sections 4.3.2.1 and 4.3.3.1, stochastic sampling can help with that and
therefore is particularly important in DP-SGD-trained DMs. We also observe that the
advantage of the Churn sampler compared to stochastic DDIM becomes less significant as
ε increases. Moreover, in particular for ε=0.2 the FID-adjusted Churn sampler performs
poorly on downstream accuracy. This is arguably because its settings sacrifice sample
diversity, which downstream accuracy usually benefits from, in favor of synthesis quality
(also see samples in Section 4.4.6.5).

4.3.6 Conclusions

We propose Differentially Private Diffusion Models (DPDMs), which use DP-SGD to en-
force DP guarantees. DMs are strong candidates for DP generative learning due to their
robust training objective and intrinsically less complex denoising neural networks. To re-
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duce the gradient variance during training, we introduce noise multiplicity and find that
DPDMs achieve state-of-the-art performance in common DP image generation benchmarks.
Furthermore, downstream classifiers trained with DPDM-generated synthetic data perform
on-par with task-specific discriminative models trained with DP-SGD directly. Note that
despite their state-of-the-art results, DPDMs are based on a straightforward idea, this is, to
carefully combine DMs with DP-SGD (leveraging the novel noise multiplicity). This “sim-
plicity” is a crucial advantage, as it makes DPDMs a potentially powerful tool that can
be easily adopted by DP practitioners. Based on our promising results, we conclude that
DMs are an ideal generative modeling framework for DP generative learning. Moreover,
we believe that advancing DM-based DP generative modeling is a pressing topic, consid-
ering the extremely fast progress of DM-based large-scale photo-realistic image generation
systems [16, 230, 235, 241]. As future directions we envision applying our DPDM approach
during training of such large image generation DMs, as well as applying DPDMs to other
types of data. Furthermore, it may be interesting to pre-train our DPDMs with public
data that is not subject to privacy constraints, similar to Harder et al. [103], which may
boost performance. Also see Section 4.4.8 for further discussion on ethics, reproducibility,
limitations and more future work.

4.4 Appendix

4.4.1 Differential Privacy and Proof of Theorem 2

In this subsection, we provide a short proof that the gradients released by the Gaussian
mechanism in DPDM are DP. By DP, we are specifically refering to the (ε, δ)-DP as defined
in Definition 4.3.1, which approximates (ε)-DP. For completeness, we state the definition
of Rényi Differential Privacy (RDP) [199]:

Definition 4.4.1. (Rényi Differential Privacy) A randomized mechanism M : D → R
with domain D and range R satisfies (α, ϵ)-RDP if for any adjacent d, d′ ∈ D:

Dα(M(d)|M(d′)) ≤ ϵ, (4.8)

where Dα is the Rényi divergence of order α.

Gaussian mechanism can provide RDP according to the following theorem:

Theorem 3. (RDP Gaussian mechanism [199]) For query function f with Sensitiv-
ity S = maxd,d ||f(d) − f(d′)||2, the mechanism that releases f(d) + N (0, σ2

DP) satisfies
(α, αS2/(2σ2))-RDP.
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Note that anyM that satisfies (α, ϵ)-RDP also satisfies (ϵ+ log 1/δ
α−1

, δ)-DP.

We slightly deviate from the notation used in the main text to make the dependency
of variables on input data explicit. Recall from the main text that the per-data point loss
is computed as an average over K noise samples:

l̃i =
1

K

K∑
k=1

λ(σik)∥Dθ(xi + nik, σik)− xi∥22, where {(σik,nik)}Kk=1 ∼ p(σ)N
(
0, σ2

)
. (4.9)

In each iteration of Algorithm 4, we are given a (random) set of indices B of expected
size B with no repeated indices, from which we construct a mini-batch {xi}i∈B. In our
implementation (which is based on Yousefpour et al. [306]) of the Gaussian mechanism
for gradient sanitization, we compute the gradient of li and apply clipping with norm C,
and then divide the clipped gradients by the expected batch size B to obtain the batched
gradient Gbatch:

Gbatch({xi}i∈B) =
1

B

∑
i∈B

clipC (∇θl(xi)) . (4.10)

Finally, Gaussian noise z ∼ N (0, σ2
DP) is added to Gbatch and released as the response

G̃batch:

G̃batch({xi}i∈B) = Gbatch({xi}i∈B) +
C

B
z, z ∼ N (0, σ2

DPI) (4.11)

Now, we can restate Theorem 2 as follows with our modified notation:

Theorem 4. For noise magnitude σDP, dataset d = {xi}Ni=1, and set of (non-repeating)
indices B, releasing G̃batch({xi}i∈B) satisfies (α, α/2σ2

DP)-RDP.

Proof. Without loss of generality, consider two neighboring datasets d = {xi}Ni=1 and d′ =
d∪x′, x′ /∈ d, and mini-batches {xi}i∈B and x′∪{xi}i∈B, where the counter-factual set/batch
has one additional entry x′. We can bound the difference of their gradients in L2-norm as:

∥Gbatch({xi}i∈B)−Gbatch(x
′ ∪ {xi}i∈B)∥2

=

∥∥∥∥∥ 1B∑
i∈B

clipC (∇θl(xi))−
(

1

B
clipC (∇θl(x′)) +

1

B

∑
i∈B

clipC (∇θl(xi))
)∥∥∥∥∥

2

=

∥∥∥∥− 1

B
clipC (∇θl(x′))

∥∥∥∥
2

=
1

B
∥clipC (∇θl(x′))∥2 ≤

C

B
.

173



We thus have sensitivity S(Gbatch) = C
B
. Furthermore, since z ∼ N (0, σ2

DP), (C/B)z ∼
N (0, (C/B)2σ2

DP). Following standard arguments, releasing G̃batch({xi}i∈B) = Gbatch({xi}i∈B)+
(C/B)z satisfies (α, α/2σ2

DP)-RDP [199].

In practice, we construct mini-batches by sampling the training dataset for privacy amplifi-
cation via Poisson Sampling [200], and compute the overall privacy cost of training DPDM
via RDP composition [199]. We use these processes as implemented in Opacus [306].

For completeness, we also include the Poisson Sampling algorithm in Algorithm 5.

Algorithm 5 Poisson Sampling

Input : Index range N , subsampling rate q
Output: Random batch of indices B (of expected size B)
c = {ci}Ni=1∼Bernoulli(q)
B = {j : j ∈ {1, . . . , N}, cj = 1}

4.4.2 DPGEN Analysis

In this subsection, we provide a detailed analysis of the privacy guarantees provided in
DPGEN [46].

As a brief overview, Chen et al. [46] proposes to learn an energy function qϑ(x) by op-
timizing the following objective ([46], Eq. 7):

l(θ;σ) =
1

2
Ep(x)Ex̃∼N (x,σ2)

[∣∣∣∣∣∣∣∣ x̃− x

σ2
−∇x log qϑ(x)

∣∣∣∣∣∣∣∣2
]
.

In practice, the first expectation is replaced by averaging over examples in a private train-
ing set d = {xi : xi ∈ Y, i ∈ 1, . . . ,m}, and x̃−x

σ2 is replaced by dri = (x̃i − xri )/σ
2
i for each i

in [1,m] (not to be confused with d which denotes the dataset in the DP context), where
xri is the query response produced by a data-dependent randomized response mechanism.

We believe that there are three errors in DPGEN that renders the privacy guarantee
in DPGEN false. We formally prove the first error in the following subsection, and state
the other two errors which are factual but not mathematical. The three errors are:

• The randomized response mechanism employed in DPGEN has a output space that
is only supported (has non-zero probability) on combinations of its input private
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dataset. ϵ-differential privacy cannot be achieved as outcomes with non-zero proba-
bility1 can have zero probability when the input dataset is changed by one element.
Furthermore, adversaries observing the output can immediately deduce elements of
the private dataset.

• The k-nearest neighbor filtering used by DPGEN to reduce the number of candidates
for the randomized response mechanism is a function of the private data. The like-
lihood of the k-selected set varies with the noisy image x̃ (line 20 of algorithm 1 in
DPGEN), and is not correctly accounted for in DPGEN.

• The objective function used to train the denoising network in DPGEN depends on
both the ground-truth denoising direction and a noisy image provided to the denoising
network. The noisy image is dependent on the training data, and hence leaks privacy.
The privacy cost incurred by using this noisy image is not accounted for in DPGEN.

To prove the first error, we begin with re-iterating the formal definition of differential
privacy (DP):

Definition 4.4.2. (ϵ-Differential Privacy) A randomized mechanism M : D → I with
domain D and image I satisfies (ε)-DP if for any two adjacent inputs d, d′ ∈ D differing
by at most one entry, and for any subset of outputs S ⊆ I it holds that

Pr [M(d) ∈ S] ≤ eεPr [M(d′) ∈ S] . (4.12)

The randomized response (RR) mechanism is a fundamental privacy mechanism in differen-
tial privacy. A key assumption required in the RR mechanism is that the choices of random
response are not dependent on private information, such that when a respondent draws
their response randomly from the possible choices, no private information is given. More
formally, we give the following definition for randomized response over multiple choices2:

Definition 4.4.3. Given a fixed response set Y of size k. Let d = {xi : xi ∈ Y, i ∈ 1, . . . ,m}
be an input dataset. Define “randomized response” mechanism RR as:

RR(d) = {G(xi)}i∈[1,m] (4.13)

where,

G(xi) =

{
xi, with probability eϵ

eϵ+k−1

x′
i ∈ Y \ xi, with probability 1

eϵ+k−1

. (4.14)

1probability over randomness in the privacy mechanism
2This mechanism is analogous to the coin flipping mechanism, where the participant first flip a biased

coin to determine whether they’ll answer truthfully or lie with probability of lying k
eϵ+k−1 , and if they

were to lie, they then roll a fair k dice to determine the response.
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A classical result is that the mechanism RR satisfies ϵ-DP [84].

DPGEN considers datasets of the form d = {xi : xi ∈ Rn, i ∈ 1, . . . ,m}. It claims to
guarantee differential privacy by applying a stochastic function H to each element of the
dataset defined as follows (Eq. 8 of [46]):

Pr[H(x̃i) = w] =

{
eϵ

eϵ+k−1
, w = xi

1
eϵ+k−1

, w = x′
i ∈ X \ xi

,

where X = {xj : max(x̃i − xj)/σj ≤ β, xj ∈ d} (max is over the dimensions of x̃i − xj),
|X| = k ≥ 2, and x̃i = xi+zi, zi ∼ N (0, σ2I). We first note that H is not only a function of
x̃i but also X∪xi, since its image is determined by X∪xi. That is, changes in X will alter
the possible outputs of H, independently from the value of x̃i. We make this dependency
explicit in our formulation here-forth. This distinction is important as it determines the
set of possible outcomes that we need to consider for in the privacy analysis. The authors
also noted that zi is added for training with the denoising objective, not for privacy, so
this added Gaussian noise is not essential to the privacy analysis. Furthermore, since k (or
equivalently β) is a hyperparameter that can be tuned, we consider the simpler case where
k = m, i.e. X = d, as done in the appendix (Eq. 9) by the authors. Thereby we define the
privacy mechanism utilized in DPGEN as follows:

Definition 4.4.4. Let d = {xi : xi ∈ Rn, i ∈ 1, . . . ,m} be an input dataset. Define “data
dependent randomized response”M as:

M(d) = {H(xi, d)}i∈[1,m] (4.15)

where,

H(xi, d) =

{
xi, with probability eϵ

eϵ+m−1

x′
i ∈ d \ xi, with probability 1

eϵ+m−1

. (4.16)

Since the image of H(xi, d) is d,M(d) is only supported on dm.3 In other words, the image
ofM is data dependent, and any outcome O (which are sets of Rn tensors, of cardinality
m) that include elements which are not in d would have a probability of zero to be the
outcome ofM(d), i.e. if there exists z ∈ O and z /∈ d, then Pr[M(d) = O] = 0.

To construct our counter-example, we start with considering two neighboring datasets:

3We mean dataset-exponentiation in the sense of repeated cartesian products between sets, i.e. d2 =
d⊗ d
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the training data d = {xi : xi ∈ Rn, i ∈ 1, . . . ,m}, and a counter-factual dataset
d′ = {x′

1 : x′
1 ∈ Rn, xi : xi ∈ Rn, i ∈ 2, . . . ,m}, differing in their first element (x1 ̸= x′

1).
Importantly, since differential privacy requires that the likelihoods of outputs to be similar
for all valid pairs of neighboring datasets, we are free to assume that elements of d are
unique, i.e. no two rows of d are identical.

Another requirement of differential privacy is that the likelihood of any subsets of outputs
must be similar, hence we are free to choose any valid response for the counter-example.
Thus, letting O denote the outcome ofM(d), we choose O = d = {x1, . . . , xm}. Clearly, by
Definition 0.3, this is a plausible outcome ofM(d) as it is in the support dm. However, O
is not in the support ofM(d′) since the first element x1 is not in the image of H(· , d′); that
is Pr[H(x, d′) = x1] = 0 for all x ∈ d′. Privacy protection is violated since any adversary
observing O can immediately deduce the participation of x1 in the data release as opposed
to any counterfactual data x′

1.

More formally, consider response set T = {O} ⊂ dm, and dm is the image of M(d),
we have

Pr[M(d) ∈ T ] = Pr[M(d) = O] (4.17)

= Pr[H(x1) = x1]
m∏
i=2

Pr[H(xi) = xi] (independent dice rolls) (4.18)

=
eϵ

eϵ +m− 1

m∏
i=2

Pr[H(xi) = xi] (apply definition 4.4.4) (4.19)

> 0
m∏
i=2

Pr[H(xi) = xi] (4.20)

= Pr[H(x′
1) = x1]

m∏
i=2

Pr[H(xi) = xi] (4.21)

= Pr[M(d′) = O] = Pr[M(d′) ∈ T ]. (4.22)

We can observe that Pr[M(d′) ∈ T ] = 0, as shown in line 9. Clearly, this result violates
ϵ-DP for all ϵ, which requires Pr[M(d) ∈ T ] ≤ eϵ Pr[M(d′) ∈ T ].

In essence, by using private data to form the response set, we make the image of the
privacy mechanism data-dependent. This in turn leaks privacy, since an adversary can
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immediately rule-out all counter-factual datasets that do not include every element of the
response O, as these counter-factuals now have likelihood 0. To fix this privacy leak, one
could determine a response set a-priori, and use the RR mechanism in Definition 4.4.3 to
privately release data. This modification may not be feasible in practice, since constructing
a response set of finite size (k) suitable for images is non-trivial. Hence, we believe that it
would require fundamental modifications to DPGEN to achieve differential privacy.

Regarding error 2, we point out that in the paragraph following Eq. 8 in DPGEN, X
is defined as the set of k points in d that are closest to x̃i when weighted by σj. This
means that the membership of X is dependent on the value of x̃i. Thus, any counter-
factual input x′

i and x̃′
i with a different set of k nearest neighbors could have many possible

outcomes with 0 likelihood under the true input. In essence, this is a more extreme form of
data-dependent randomized response where the response set is dependent on both d and xi.

Regarding error 3, the loss objective in DPGEN includes the term ∇x log qθ(x̃) (Eq. 7
of DPGEN, l = 1

2
Ep(x)Ex̃∼N(x,σ2)

[
|| x̃−x

σ2 −∇x log qθ(x̃)||2
]
), and x̃ is also a function of the

private data that is yet to be accounted for at all in the privacy analysis of DPGEN.
Hence, one would need to further modify the learning algorithm in DPGEN, such that the
inputs to the score model are either processed through an additional privacy mechanism,
or sampled randomly without dependence on private data.

Regarding justifying the premise that DPGEN implements the data-dependent random-
ized response mechanism, we have verified that the privacy mechanism implemented in the
repository of DPGEN (https://github.com/chiamuyu/DPGEN4) is indeed data-dependent:

In line 30 of losses/dsm.py:

sample_ix = random.choices(range(k), weights=weight)[0]

randomly selects an index in the range of [0, k − 1], which is then used in line 46,

sample_buff.append(samples[sample_ix]),

to index the private training data and assigned to the output of

sample_buff.

Values of this variable are then accessed on line 85 to calculate the x̃−xr
σ2 (as xr) term in

the objective function ([46], Eq. 7).

4In particular, we refer to the code at commit: 1f684b9b8898bef010838c6a29c030c07d4a5f87.
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Table 4.7: Four popular DM configs from the literature.

VP [263] VE [263] v-prediction [244] EDM [141]

Network and preconditioning

Skip scaling cskip(σ) 1 1 1/ (σ2 + 1) σ2
data/ (σ

2 + σ2
data)

Output scaling cout(σ) −σ σ σ/
√
1 + σ2 σ · σdata/

√
σ2
data + σ2

Input scaling cin(σ) 1/
√
σ2 + 1 1 1/

√
σ2 + 12 1/

√
σ2 + σ2

data

Noise cond. cnoise(σ) (M − 1) t ln
(
1
2
σ
)

t 1
4
ln(σ)

Training

Noise distribution t ∼ U(ϵt, 1) ln(σ)∼U(ln(σmin), t ∼ U(ϵmin, ϵmax) ln(σ) ∼ N (Pmean, P
2
std)

ln(σmax))
Loss weighting λ(σ) 1/σ2 1/σ2 (σ2+1) /σ2 (“SNR+1” weighting) (σ2+σ2

data) /(σ · σdata)
2

Parameters βd = 19.9, βmin = 0.1 σmin = 0.002 ϵmin = 2
π arccos 1√

1+e−13
Pmean= −1.2, Pstd = 1.2

ϵt = 10−5,M = 1000 σmax = 80 ϵmax = 2
π arccos 1√

1+e9
σdata =

√
1
3

σ(t) =
√

e
1
2βdt2+βmint−1 σ(t) =

√
cos−2(πt/2)− 1

4.4.3 Model and Implementation Details

4.4.3.1 Diffusion Model Configs

As discussed in Section 4.3.2, previous works proposed various denoiser models Dθ, noise
distributions p(σ), and weighting functions λ(σ). We refer to the triplet (Dθ, p, λ) as DM
config. In this work, we consider four such configs: variance preserving (VP) [263], variance
exploding (VE) [263], v-prediction [244], and EDM Karras et al. [141]. The triplet for each
of these configs can be found in Table 4.7. Note, that we use the parameterization of the
denoiser model Dθ from [141]

Dθ(x;σ) = cskip(σ)x+ cout(σ)Fθ(cin(σ)x; cnoise(σ)), (4.23)

where Fθ is the raw neural network. To accommodate for our particular sampler setting
(we require to learn the denoiser model for σ ∈ [0.002, 80]; see Section 4.4.3.3) we slightly
modified the parameters of VE and v-prediction. For VE, we changed σmin and σmax from
0.02 to 0.002 and from 100 to 80, respectively. For v-prediction, we changed ϵmin and ϵmax

from 2
π
arccos 1√

1+e−20 to
2
π
arccos 1√

1+e−13 and
2
π
arccos 1√

1+e20
to 2

π
arccos 1√

1+e9
, respectively.

Furthermore, we cannot base our EDM models on the true (training) data standard de-
viation σdata as releasing this information would result in a privacy cost. Instead, we set
σdata to the standard deviation of a uniform distribution between −1 and 1, assuming no
prior information on the modeled image data.
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4.4.3.1.1 Noise Level Visualization In the following, we provide details on how ex-
actly the noise distributions of the four configs are visualized in Figure 4.4. The reason
we want to plot these noise distributions is to understand how the different configs assign
weight to different noise levels σ during training through sampling some σ’s more and
others less. However, to be able to make a meaningful conclusion, we also need to take
into account the loss weighting λ(σ).

Therefore, we consider the effective “importance-weighted” distributions p(σ) λ(σ)
λEDM(σ)

, where
we use the loss weighting from the EDM config as reference weighting.

The λ(σ)
λEDM(σ)

weightings for VP, VE, v-prediction, and EDM are then, σ2
data/(σ

2 + σ2
data),

σ2
data/(σ

2 + σ2
data), σ

2
data(σ

2 + 1)/(σ2 + σ2
data), and 1, respectively. Figure 4.4 then visual-

izes the “importance-weighted” distributions in log-σ space, following Karras et al. [141]
(that way, the final visualized log-σ distribution of EDM remains a normal distribution
N (Pmean, P

2
std)).

4.4.3.2 Model Architecture

We focus on image synthesis and implement the neural network backbone of DPDMs using
the DDPM++ architecture [263]. For class-conditional generation, we add a learned class-
embedding to the σ-embedding as is common practice [66]. All model hyperparameters
and training details can be found in Table 4.8.

4.4.3.3 Sampling from Diffusion Models

Let us recall the differential equations we can use to generate samples from DMs:

ODE: dx = −σ̇(t)σ(t)∇x log p(x;σ(t)) dt, (4.24)

SDE: dx = −σ̇(t)σ(t)∇x log p(x;σ(t)) dt− β(t)σ2(t)∇x log p(x;σ(t)) dt+
√
2β(t)σ(t) dωt.

(4.25)

Before choosing a numerical sampler, we first need to define a sampling schedule. In this
work, we follow Karras et al. [141] and use the schedule

σi =

(
σ1/ρ
max +

i

M − 1
(σ

1/ρ
min − σ1/ρ

max)

)ρ
, i ∈ {0, . . . ,M − 1}, (4.26)
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Table 4.8: Model hyperparameters and training details.

Hyperparameter MNIST & Fashion-MNIST CelebA

Model
Data dimensionality (in pixels) 28 32
Residual blocks per resolution 2 2
Attention resolution(s) 7 8,16
Base channels 32 32
Channel multipliers 1,2,2 1,2,2
EMA rate 0.999 0.999
# of parameters 1.75M 1.80M
Base architecture DDPM++ [263] DDPM++ [263]

Training
# of epochs 300 300
Optimizer Adam [148] Adam [148]
Learning rate 3 · 10−4 3 · 10−4

Batch size 4096 2048
Dropout 0 0
Clipping constant C 1 1
DP-δ 10−5 10−6
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with ρ=7.0, σmax=80 and σmin=0.002. We consider two solvers: the (stochastic (η =
1)/deterministic (η = 0)) DDIM solver [258] as well as the stochastic Churn solver in-
troduced in [141], for pseudocode see Algorithm 6 and Algorithm 7, respectively. Both
implementations can readily be combined with classifier-free guidance, which is described
in Paragraph 4.4.3.3.1, in which case the denoiser Dθ(x;σ) may be replaced by Dw

θ (x;σ,y),
where the guidance scale w is a hyperparameter. Note that the Churn sampler has four
additional hyperparameters which should be tuned empirically [141]. If not stated other-
wise, we set M=1000 for the Churn sampler and the stochastic DDIM sampler, and M=50
for the deterministic DDIM sampler.

Algorithm 6 DDIM sampler [258]

Input: Denoiser Dθ(x;σ), Schedule {σi}i∈{0,...,M−1}
Output: Sample xM
Sample x0 ∼ N

(
0, σ2

0I
)

for n = 0 to M − 2 do
Evaluate denoiser dn = Dθ(xi, σi)
if Stochastic DDIM then

xn+1 = xn + 2σn+1−σn
σn

(xn − dn) +
√
2(σn − σn+1)σnzn, zn ∼ N (0, I)

else if Deterministic DDIM then
xn+1 = xn +

σn+1−σn
σn

(xn − dn)
end if

end for
Return xM = D(xN−1, σM−1)
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Algorithm 7 Churn sampler [141]

Input: Denoiser Dθ(x;σ), Schedule {σi}i∈{0,...,M−1}, Snoise, Schurn, Smin, Smax

Output: Sample xM
Set σM = 0
Sample x0 ∼ N

(
0, σ2

0I
)

for n = 0 to M − 1 do
if σi ∈ [Smin, Smax] then

γi = min(Schurn
M ,

√
2− 1)

else
γi = 0

end if
Increase noise level σ̃n = (1 + γn)σn
Sample zn ∼ N

(
0, S2

noiseI
)
and set x̃n = xn +

√
σ̃2
n − σ2

nzn
Evaluate denoiser dn = Dθ(x̃n, σ̃n) and set fn = x̃n−dn

σ̃n
xn+1 = x̃M + (σn+1 − σ̃n)fn
if σn+1 ̸= 0 then

Evaluate denoiser d′
n = Dθ(xn+1, σn+1) and set f ′n = xn+1−d′

n
σn+1

Apply second order correction: xn+1 = x̃n +
1
2(σn+1 − σ̃n)(fn + f ′n)

end if
end for
Return xM

4.4.3.3.1 Guidance Classifier guidance [66, 263] is a technique to guide the diffusion
sampling process towards a particular conditioning signal y using gradients, with respect
to x, of a pre-trained, noise-conditional classifier p(y|x, σ). Classifier-free guidance [108],
in contrast, avoids training additional classifiers by mixing denoising predictions of an
unconditional and a conditional model, according to a guidance scale w, by replacing
Dθ(x;σ) in the score parameterization sθ = (Dθ(x;σ)− x)/σ2 with

Dw
θ (x;σ,y) = (1− w)Dθ(x;σ) + wDθ(x;σ,y). (4.27)

Dθ(x;σ) and Dθ(x;σ,y) can be trained jointly; to train Dθ(x;σ) the conditioning signal
y is discarded at random and replaced by a null token [108]. Increased guidance scales w
tend to drive samples deeper into the model’s modes defined by y at the cost of sample
diversity.

183



Table 4.9: DP noise σDP used for all our experiments.

ε MNIST Fashion-MNIST CelebA

0.2 82.5 82.5 N/A
1 18.28125 18.28125 8.82812
10 2.48779 2.48779 1.30371

4.4.3.4 Hyperparameters of Differentially Private Diffusion Models

Tuning hyperparameters for DP models generally induces a privacy cost which should be
accounted for [219]. Similar to existing works [64], we neglect the (small) privacy cost
associated with hyperparameter tuning. Nonetheless, in this subsection we want to point
out that our hyperparameters show consistent trends across different settings. As a result,
we believe our models need little to no hyperparameter tuning in similar settings to the
ones considered in this work.

Model. We use the DDPM++ [263] architecture for all models in this work. Across
all three datasets (MNIST, Fashion-MNIST, and CelebA) we found the EDM [141] config
to perform best for ε={1, 10}. On MNIST and Fashion-MNIST, we use the v-prediction
config for ε = 0.2 (not applicable to CelebA).

DP-SGD training. In all settings, we use 300 epochs and clipping constant C=1. We
use batch size B=4096 for MNIST and Fashion-MNIST and decrease the batch size of
CelebA to B=2048 for the sole purpose of fitting the entire batch into GPU memory. The
DP noise σDP values for each setup can be found in Table 4.9

DM Sampling. We experiment with different DM solvers in this work. We found the
DDIM sampler [258] (in particular the stochastic version), which does not have any hy-
perparameters (without guidance), to perform well across all settings. Using the Churn
sampler [141], we could improve perceptual quality (measured in FID), however, out of the
five (four without guidance) hyperparameters, we only found two (one without guidance)
to improve results significantly. We show results for all samplers in Section 4.4.6.5.

4.4.4 Variance Reduction via Noise Multiplicity

As discussed in Section 4.3.3.2, we introduce noise multiplicity to reduce gradient variance.
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4.4.4.1 Proof of Theorem 1

Theorem. The variance of the DM objective (Equation (4.7)) decreases with increased
noise multiplicity K as 1/K.

Proof. The DM objective in Equation (4.7) is a Monte Carlo estimator of the true in-
tractable L2-loss in Equation (4.3), using one data sample xi ∼ pdata and K noise-level-
noise tuples {(σik,nik)}Kk=1 ∼ p(σ)N (0, σ2). Replacing expectations with Monte Carlo
estimates is a common practice to ensure numerical tractability. For a generic function r
over distribution p(k), we have Ep(k)[r(k)] ≈ 1

K

∑K
i=1 r(ki), where {ki}Ki=1 ∼ p(k) (Monte

Carlo estimator for expectation of function r with respect to distribution p). The Monte
Carlo estimate is a noisy unbiased estimator of the expectation Ep(k)[r(k)] with variance
1
K
Varp[r], where Varp[r] is the variance of r itself. This is a well-known fact; see for example

Chapter 2 of the excellent book by Owen [217]. This proves that the variance of the DM
objective in Equation (4.7) decreases with increased noise multiplicity K as 1/K.

4.4.4.2 Variance Reduction Experiment

In this subsection, we empirically show how the reduced variance of the DM objective
from noise multiplicity leads to reduced gradient variance during training. In particular,
we set xi to a randomly sampled MNIST image and set the denoiser Dθ to our trained
model on MNIST. We then compute gradients for different noise multiplicities K. We
resample the noise values 1k times (for each K) to estimate the variance of the gradient
for each parameter. In Figure 4.6, we show the histogram over gradient variance as well
as the average gradient variance (averaged over all parameters in the model). Note that
the variance of each gradient is a random variable itself (which is estimated using 1k
Monte Carlo samples). We find that an increased K leads to significantly reduced training
parameter gradient variance.

4.4.4.3 Computational Cost of Noise Multiplicity

In terms of computational cost, noise multiplicity is expensive and likely not useful for
non-DP DMs. The computational cost increases linearly with K, as the denoiser needs to
run K times. Furthermore, in theory, noise multiplicity increases the memory footprint by
at least O(K); however, in common DP frameworks, such as Opacus [306], which we use,
the peak memory requirement is O(K2) compared to non-private training. Recent methods
such as ghost clipping [32] require less memory, but are currently not widely implemented.
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Figure 4.6: Variance reduction via noise multiplicity. Increasing K in noise multiplicity
leads to significant variance reduction of parameter gradient estimates during training (note
logarithmic axis in inset). This is an enlarged version of Figure 4.3.
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That being said, in DP generative modeling, and DP machine learning more generally,
computational cost is hardly ever the bottleneck; the main bottleneck is the privacy re-
striction. The privacy restriction implies only a finite number of training iterations and
we need to use that budget of training iterations in the most efficient way (this is, using
training gradients that suffer from as little noise as possible). Our numerical experiments
clearly show that noise multiplicity is a technique to shift the privacy-utility trade-off, ef-
fectively getting better utility at the same privacy budget, using additional computational
cost.

4.4.4.4 On the Difference between Noise Multiplicity and Augmentation Mul-
tiplicity

Augmentation multiplicity [64] is a technique where multiple augmentations per image
are used to train classifiers with DP-SGD. Image augmentations have also been shown
to be potentially helpful in data-limited (image) generative modeling, for example, for
autoregressive models [137] and DMs [141]. In stark contrast to discriminative modeling
where the data distribution pdata can simply be replaced by the augmented data distribution
and the neural backbone can be left as is, in generative modeling both the loss function
and the neural backbone need to be adapted. For example, for DMs [141], the standard
DM loss (Equation (4.3)) is formally replaced by

Ex̃∼pdata(x̃),c∼paug(c),x∼paugdata(x|x̃,c),(σ,n)∼p(σ,n)
[
λσ∥Dθ(x+ n, σ, c)− x∥22

]
, (4.28)

where paug(c) is the distribution over augmentation choices c (for example, cropping at
certain coordinates or other image transformations or perturbations), and paugdata(x | x̃, c)
is the distribution over augmented images x given the original dataset images x̃ and the
augmentation c. Importantly, note that the neural backbone Dθ also needs to be con-
ditioned on the augmentation choice c as, at inference time, we generally only want to
generate “clean images” with c(x) = x (no augmentation).

While noise multiplicity provably reduces the variance of the standard diffusion loss (see
Theorem 1), augmentation multiplicity, that is, averaging over multiple augmentations for
a given clean image x, only provably reduces the variance of the augmented diffusion loss,
which is by definition more noisy due to the additional expectations. Furthermore, it is
not obvious how minimizing the augmented diffusion loss relates to minimizing the true
diffusion loss. In contrast to noise multiplicity, augmentation multiplicity does not prov-
ably reduce the variance of the original diffusion loss; rather, it is a data augmentation
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(a) Data pdata (b) Samples from DM. (c) Samples from GAN.

Figure 4.7: Mixture of Gaussians: data distribution and (1M) samples from a DM as well
as a GAN. Our visualization is based on the log-histogram, which shows single data points
as black dots.

technique for enriching training data.

Pointing out the orthogonality of the two ideas again, note that noise multiplicity is still
applicable for the above modified augmented diffusion loss objective. Furthermore, we
would like to point out that noise multiplicity is applicable for DPDMs in any domain, be-
yond images; in contrast, data augmentations need to be handcrafted and may not readily
available in all fields.

4.4.5 Toy Experiments

In this subsection, we describe the details of the toy experiment from paragraph (ii) Se-
quential denoising in Section 4.3.3.1. For this experiment, we consider a two-dimensional
simple Gaussian mixture model of the form

pdata(x) =
9∑

k=1

1

9
p(k)(x), (4.29)

where p(k)(x) = N (x;µk;σ
2
0) and

µ1 =

(
−a
0

)
, µ2 =

(
−a/2
a/2

)
, µ3 =

(
0
a

)
,

µ4 =

(
−a/2
−a/2

)
, µ5 =

(
0
0

)
, µ6 =

(
a/2
a/2

)
,

µ7 =

(
0
−a

)
, µ8 =

(
a/2
−a/2

)
, µ9 =

(
a
0

)
,
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where σ0 = 1/25 and a = 1/
√
2. The data distribution is visualized in Figure 4.7a.

Fitting. Initially, we fitted a DM as well as a GAN to the mixture of Gaussians. The
neural networks of the DM and the GAN generator use similar ResNet architectures with
267k and 264k (1.1% smaller) parameters, respectively (see Section 4.4.5.1 for training
details). The fitted distributions are visualized in Figure 4.7. In this experiment, we use
deterministic DDIM (Algorithm 6) [258], a numerical solver for the Probability Flow ODE
(Equation (4.1)) [263], with 100 neural function evaluations (DDIM-100) as the end-to-end
multi-step synthesis process for the DM. Even though our visualization shows that the DM
clearly fits the distribution better (Figure 4.7), the GAN does not do bad either. Note that
our visualization is based on the log-histogram of the sampling distributions, and therefore
puts significant emphasis on single data point outliers.

We provide a second method to assess the fitting: In particular, we measure the per-
centage of points (out of 1M samples) that are within a h-standard deviation vicinity of
any of the nine modes. A point x is said to be within a h-standard deviation vicinity
of the mode µk if ∥x − µk∥ < hσ0. We present results for this metric in Table 4.10 for
h={1, 2, 3, 4, 5, 6}. Note that any mode is at least 12.5 standard deviations separated to
the next mode, and therefore no point can be in the h-standard deviation vicinity of more
than two modes for h ≤ 6.

The results in Table 4.10 indicate that the GAN is slightly too sharp, that is, it puts
too many points within the 1- and 2-standard deviation vicinity of modes. Moreover, for
larger h, the result in Table 4.10 suggests that the samples in Figure 4.7c that appear to
“connect” the GAN’s modes are heavily overemphasized—these samples actually repre-
sent less than 1% of the total samples; 99.3% of samples are within a 4-standard deviation
vicinity of a mode while modes are at least 12.5 standard deviations separated.

Complexity. Now that we have ensured that both the GAN as well as the DM fit the
target distribution reasonably well, we can measure the complexity of the DM denoiser D,
the generator defined by the GAN, as well as the end-to-end multi-step synthesis process
(DDIM-100) of the DM. In particular, we measure the complexity of these functions using
the Frobenius norm of the Jacobian [75]. In particular, we define

JF (σ) = Ex∼p(x,σ)∥∇xDθ(x, σ)∥2F . (4.30)

Note that the convolution of a mixture of Gaussian with i.i.d. Gaussian noise is simply
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Table 4.10: h-standard deviation vicinity metric as defined in the paragraph Fitting of Sec-
tion 4.4.5.

h Data DM GAN

1 39.4 37.2 56.8
2 86.5 83.3 95.3
3 98.9 97.7 98.9
4 100 99.8 99.3
5 100 100 99.6
6 100 100 99.9

the sum of the convolution of the mixture components, i.e.,

p(x;σ) =
(
pdata ∗ N

(
0, σ2

))
(x) (4.31)

=
9∑

k=1

1

9
N (x;µk;σ

2
0 + σ2). (4.32)

We then compare JF (σ) with the complexity of the GAN generator (S1) and the end-to-end
synthesis process of the DM (S2). In particular, we define

JF = Ex∼N (0,I)∥∇xSi(x)∥2F , i ∈ {1, 2}. (4.33)

We want to clarify that for S2 we do not have to backpropagate through an ODE but
rather through its discretization, i.e., deterministic DDIM with 100 function evaluations
(Algorithm 6), since that is how we define the end-to-end multi-step synthesis process of
the DM in this experiment. Furthermore, we chose the latent space of the GAN to be
two-dimensional such that ∇xSi(x) ∈ R2×2 for both the GAN and the DM; this ensures a
fair comparison. The final complexities are visualized in Figure 4.2.

4.4.5.1 Training Details

DM training. Training the diffusion model is very simple. We use the EDM config and
train for 50k iterations (with batch size B=256) using Adam with learning rate 3 · 10−4.
We use an EMA rate of 0.999.

GAN training. Training GANs on two-dimensional mixture of Gaussians is notoriously
difficult (see, for example, Sec. 5.1 in [302]). We experimented with several setups and
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found the following to perform well: We train for 50k iterations (with batch size B=256)
using Adam with learning rate 3 · 10−4 and (β1=0.0, β2 = 0.9) for both the generator and
the discriminator. Following Yazıcı et al. [302], we use EMA (rate of 0.999 as in the DM).
We found it crucial to make the discriminator bigger than the generator; in particular, we
use twice as many hidden layers in the discriminator’s ResNet. Furthermore, we use ReLU
and LeakyReLU for the generator and the discriminator, respectively.

4.4.6 Image Experiments

4.4.6.1 Evaluation Metrics, Baselines, and Datasets

Metrics. We measure sample quality via Fréchet Inception Distance (FID) [105]. We fol-
low the DP generation literature and use 60k generated samples. The particular Inception-
v3 model used for FID computation is taken from Karras et al. [140]5. On MNIST and
Fashion-MNIST, we follow the standard procedure of repeating the channel dimension
three times before feeding images into the Inception-v3 model.

On MNIST and Fashion-MNIST, we additionally assess the utility of generated data by
training classifiers on synthesized samples and compute class prediction accuracy on real
data. Similar to previous works, we consider three classifiers: logistic regression (Log Reg),
MLP, and CNN classifiers. The model architectures are taken from the DP-Sinkhorn repos-
itory [38].

For downstream classifier training, we follow the DP generation literature and use 60k
synthesized samples. We follow Cao et al. [38] and split the 60k samples into a training
set (90%) and a validation set (remaining 10%). We train all models for 50 epochs, using
Adam with learning rate 3 · 10−4. We regularly save checkpoints during training and use
the checkpoint that achieves the best accuracy on the validation split for final evaluation.
Final evaluation is performed on real, non-synthetic data. We train all models for 50
epochs, using Adam with learning rate 3 · 10−4.

Note that we chose to only use 60k synthesized samples to follow prior work and therefore
be able to compare to baselines in a fair manner. That being said, during this project we
did explore training classifiers with more samples but did not find any significant improve-
ments in downstream accuracy. We hypothesize that 60k samples are enough to accurately

5https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/metrics/inception-2015-12-05.pkl
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represent the underlying learned distribution by the DPDM and to train good classifiers
on MNIST/FashionMNIST. We believe that a more detailed study on how many samples
are needed to get a certain accuracy is an interesting avenue for future work.

Baselines. We run baseline experiments for PEARL [173]. In particular, we train models
for ε={0.2, 1, 10} on MNIST and Fashion-MNIST. We confirmed that our models match
the performance reported in their paper. In fact, our models perform slightly better (in
terms of the LeNet-FID metric Liew et al. [173] uses). We then follow the same evaluation
setup (see Metrics above) as for our DPDMs. Most importantly, we use the standard
Inception network-based FID calculation, similarly as most works in the (DP) image gen-
erative modeling literature.

Datasets. We use three datasets in our main experiments: MNIST [164], Fashion-
MNIST [293] and CelebA [181]. Furthermore, we provide initial results on CIFAR-10 [160]
and ImageNet [65] (as well as CelebA on a higher resolution); see Section 4.4.7.

We would like to point out that these dataset may contain multiple images per iden-
tity (e.g. person, animal, etc.), whereas our method, as well as all other baselines in this
work, considers the per-image privacy guarantee. For an identity with k images in the
dataset, a model with (ε, δ) per-image DP affords (kε, ke(k−1)εδ)-DP to the individual ac-
cording to the Group Privacy theorem [84]. We leave a more rigorous study of DPDMs
with Group Privacy to future research and note that these datasets currently simply serve
as benchmarks in the community. Nonetheless, we believe that it is important to point
out that these datasets do not necessarily serve as a realistic test bed for per-image DP
generative models in privacy critical applications.

4.4.6.2 Computational Resources

For all experiments, we use an in-house GPU cluster of V100 NVIDIA GPUs. On eight
GPUs, models on MNIST and Fashion-MNIST trained for roughly one day and models
on CelebA for roughly four days. We tried to maximize performance by using a large
number of epochs, which results in a good privacy-utility trade-off, as well as high noise
multiplicity; this results in relatively high training time (when compared to existing DP
generative models). Using a smaller noise multiplicity K decreases computation, although
generally at the cost of model performance; see also Section 4.4.4.3.
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Table 4.11: Noise multiplicity ablation on MNIST and Fashion-MNIST.

K
MNIST Fashion-MNIST

FID
Acc (%)

FID
Acc (%)

Log Reg MLP CNN Log Reg MLP CNN

1 76.9 84.2 87.5 91.7 72.5 76.0 76.3 75.9
2 60.1 84.8 88.3 93.1 61.4 76.7 77.0 77.4
4 57.1 85.2 88.0 92.8 61.1 76.7 77.2 77.0
8 44.8 86.2 89.2 94.1 58.2 75.2 76.3 77.4
16 36.9 86.0 89.8 94.2 58.5 77.0 77.4 78.8
32 34.8 86.8 90.1 94.4 57.7 76.4 77.0 77.1

4.4.6.3 Training DP-SGD Classifiers

We train classifiers on MNIST and Fashion-MNIST using DP-SGD directly. We follow
the setup used for training DPDMs, in particular, batchsize B = 4096, 300 epochs and
clipping constant C = 1. Recently, De et al. [64] found EMA to be helpful in training
image classifiers: we follow this suggestion and use an EMA rate of 0.999 (same rate as
used for training DPDMs).

4.4.6.4 Extended Quantitative Results

In this subsection, we show additional quantitative results not presented in the main paper.
In particular, we present extended results for all ablation experiments.

4.4.6.4.1 Noise Multiplicity In the main paper, we present noise multiplicity abla-
tion results on MNIST with ε=1 (Table 4.5). All results for MNIST and Fashion-MNIST
on all three privacy settings (ε={0.2, 1, 10}) can be found in Table 4.11.

4.4.6.4.2 Diffusion Model Config In the main paper, we present DM config ablation
results on MNIST with ε=0.2 (Table 4.5). All results for MNIST and Fashion-MNIST on
all three privacy settings (ε={0.2, 1, 10}) can be found in Table 4.12.
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Table 4.12: DM config ablation.

Method DP-ε
MNIST Fashion-MNIST

FID
Acc (%)

FID
Acc (%)

Log Reg MLP CNN Log Reg MLP CNN

VP [263] 0.2 197 23.1 25.5 24.2 146 49.7 51.6 51.7
VE [263] 0.2 171 17.9 15.4 13.9 178 22.2 27.9 49.4
V-prediction [244] 0.2 97.8 80.2 81.3 84.4 115 71.3 70.9 71.8
EDM [141] 0.2 119 62.4 67.3 49.2 93.5 64.7 65.9 66.6

VP [263] 1 82.2 59.4 69.3 72.6 73.4 68.3 70.4 72.7
VE [263] 1 165 17.9 20.5 26.0 156 30.7 36.0 49.8
V-prediction [244] 1 34.8 86.8 90.1 94.4 57.7 76.4 77.0 77.1
EDM [141] 1 34.2 86.2 90.1 94.9 47.1 77.4 78.0 79.4

VP [263] 10 12.3 88.8 94.1 97.0 22.3 81.2 81.6 84.5
VE [263] 10 88.6 48.0 56.9 63.8 83.2 69.0 70.4 75.4
V-prediction [244] 10 7.65 90.4 94.4 97.7 23.1 82.0 83.7 85.5
EDM [141] 10 6.13 90.4 94.6 97.5 17.4 82.6 84.1 86.2

4.4.6.4.3 Diffusion Sampler Grid Search and Ablation Churn sampler grid
search. We run a small grid search for the hyperparameters of the Churn sampler (to-
gether with the guidance weight w for classifier-free guidance). For MNIST and Fashion-
MNIST on ε=0.2 we run a two-stage grid search. Using Smin=0.05, Smax=50, and Snoise=1,
which we found to be sensible starting values, we ran an initial grid search over the guid-
ance scale w={0, 0.125, 0.25, 0.5, 1.0, 2.0} and Schurn={0, 5, 10, 25, 50, 100, 150, 200}, which
we found to be the two most critical hyperparameters of the Churn sampler. Afterwards,
we ran a second grid search over Snoise={1, 1.005}, Smin={0.01, 0.02, 0.05, 0.1, 0.2}, and
Smax={10, 50, 80} using the best (w, Schurn) setting for each of the two models. For MNIST
and Fashion-MNIST on ε={1, 10}, we ran a single full grid search over the guidance scale
w={0, 0.25, 0.5, 1.0, 2.0}, Schurn={10, 25, 50, 100}, and Smin={0.025, 0.05, 0.1, 0.2} while set-
ting Snoise=1. For CelebA, on both ε=1 and ε=10, we also ran a single full grid search over
Schurn={50, 100, 150, 200}, and Smin={0.005, 0.05} while setting Snoise=1. The best settings
for FID metric and downstream CNN accuracy can be found in Table 4.14 and Table 4.15,
respectively.

Throughout all experiments we found two consistent trends that are listed in the following:

• If optimizing for FID, set Schurn relatively high and Smin relatively small. Increase
Schurn and decrease Smin as ε is decreased.
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Table 4.13: Diffusion sampler comparison. We compare the Churn sampler [141] to stochas-
tic and determistic DDIM [258].

Sampler DP-ε
MNIST Fashion-MNIST

FID
Acc (%)

FID
Acc (%)

Log Reg MLP CNN Log Reg MLP CNN

Churn (FID) 0.2 61.9 65.3 65.8 71.9 78.4 53.6 55.3 57.0
Churn (Acc) 0.2 104 81.0 81.7 86.3 128 70.4 71.3 72.3
Stochastic DDIM 0.2 97.8 80.2 81.3 84.4 115 71.3 70.9 71.8
Deterministic DDIM 0.2 120 81.3 82.1 84.8 132 71.5 71.6 71.8

Churn (FID) 1 23.4 83.8 87.0 93.4 37.8 71.5 71.7 73.6
Churn (Acc) 1 35.5 86.7 91.6 95.3 51.4 76.3 76.9 79.4
Stochastic DDIM 1 34.2 86.2 90.1 94.9 47.1 77.4 78.0 79.4
Deterministic DDIM 1 50.4 85.7 91.8 94.9 60.6 77.5 78.2 78.9

Churn (FID) 10 5.01 90.5 94.6 97.3 18.6 80.4 81.1 84.9
Churn (Acc) 10 6.65 90.8 94.8 98.1 19.1 81.1 83.0 86.2
Stochastic DDIM 10 6.13 90.4 94.6 97.5 17.4 82.6 84.1 86.2
Deterministic DDIM 10 10.9 90.5 95.2 97.7 19.7 81.9 83.9 86.2

• If optimizing for downstream accuracy, set Schurn relatively small and Smin relatively
high.

Sampling ablation. In the main paper, we present a sampler ablation for MNIST (Ta-
ble 4.6). Results for Fashion-MNIST (as well as) MNIST can be found in Table 4.13.

4.4.6.4.4 Distribution Matching Analysis We perform a distribution matching
analysis on MNIST using the CNN classifier, that is, computing per-class downstream
accuracies at different privacy levels. In Table 4.16, we can see that with increased privacy
(lower ε) classification performance degrades roughly similar for most digits, implying that
our DPDMs learn a well-balanced distribution and cover all modes of the data distribution
faithfully even under strong privacy. The only result that stands out to us is that class 1
appears significantly easier than all other classes for ε=0.2. However, that may potentially
be due to the class 1 in MNIST being a “line” which may be easy to classify by a CNN
even if training data is noisy.
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Table 4.14: Best Churn sampler settings for FID metric.

Parameter
MNIST Fashion-MNIST CelebA

ε=0.2 ε=1 ε=10 ε=0.2 ε=1 ε=10 ε=1 ε=10

w 1 0 0.25 2 1 0.25 N/A N/A
Schurn 200 100 50 150 50 25 200 50
Smin 0.01 0.05 0.05 0.02 0.025 0.2 0.005 0.005
Smax 50 50 50 10 50 50 50 50
Snoise 1 1 1 1 1 1 1 1

Table 4.15: Best Churn sampler settings for downstream CNN accuracy.

Parameter
MNIST Fashion-MNIST

ε=0.2 ε=1 ε=10 ε=0.2 ε=1 ε=10

w 0.125 0 0 0.125 0 0
Schurn 10 10 10 5 10 10
Smin 0.2 0.1 0.025 0.02 0.025 0.1
Smax 10 50 50 80 50 50
Snoise 1.005 1 1 1.005 1 1

Table 4.16: Distribution matching analysis for MNIST using downstream CNN accuracy.

Class 0 1 2 3 4 5 6 7 8 9

ε=10 98.5 98.7 98.7 98.4 99.1 99.0 98.2 97.7 98.1 96.1
ε=1 95.4 98.9 96.7 96.1 96.1 97.3 96.6 91.3 92.3 93.2
ε=0.2 81.9 96.0 80.2 82.3 87.3 85.2 90.7 86.9 83.2 83.5
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Figure 4.8: Additional images generated by DPDM on MNIST for ε=10 using Churn (FID)
(top left), Churn (Acc) (top right), stochastic DDIM (bottom left), and deterministic DDIM
(bottom right).

4.4.6.5 Extended Qualitative Results

In this subsection, we show additional generated samples by our DPDMs. On MNIST,
see Figure 4.8, Figure 4.9, and Figure 4.10 for ε=10, ε=1, and ε=0.2, respectively. On
Fashion-MNIST, see Figure 4.11, Figure 4.12, and Figure 4.13 for ε=10, ε=1, and ε=0.2,
respectively. On CelebA, see Figure 4.14 and Figure 4.15 for ε=10 and ε=1, respectively.
For a visual comparison of our CelebA samples to other works in the literature, see Fig-
ure 4.16.
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Figure 4.9: Additional images generated by DPDM on MNIST for ε=1 using Churn (FID)
(top left), Churn (Acc) (top right), stochastic DDIM (bottom left), and deterministic DDIM
(bottom right).
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Figure 4.10: Additional images generated by DPDM on MNIST for ε=0.2 using Churn
(FID) (top left), Churn (Acc) (top right), stochastic DDIM (bottom left), and deterministic
DDIM (bottom right).
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Figure 4.11: Additional images generated by DPDM on Fashion-MNIST for ε=10 using
Churn (FID) (top left), Churn (Acc) (top right), stochastic DDIM (bottom left), and de-
terministic DDIM (bottom right).
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Figure 4.12: Additional images generated by DPDM on Fashion-MNIST for ε=1 using
Churn (FID) (top left), Churn (Acc) (top right), stochastic DDIM (bottom left), and de-
terministic DDIM (bottom right).
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Figure 4.13: Additional images generated by DPDM on Fashion-MNIST for ε=0.2 using
Churn (FID) (top left), Churn (Acc) (top right), stochastic DDIM (bottom left), and de-
terministic DDIM (bottom right).
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Figure 4.14: Additional images generated by DPDM on CelebA for ε=10 using Churn
(top), stochastic DDIM (middle), and deterministic DDIM (bottom).
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Figure 4.15: Additional images generated by DPDM on CelebA for ε=1 using Churn (top),
stochastic DDIM (middle), and deterministic DDIM (bottom).
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Figure 4.16: CelebA images generated by DataLens (1st row), DP-MEPF (2nd row),
DP-Sinkhorn (3rd row), and our DPDM (4th row) for DP-ε=10.

4.4.7 Additional Experiments on More Challenging Problems

4.4.7.1 Diverse Datasets

We provide results for additional experiments on challenging diverse datasets, namely,
CIFAR-10 [160] and ImageNet [65] (resolution 32x32), both in the class-conditional set-
ting similar to our other experiments on MNIST and Fashion-MNIST. To the best of our
knowledge, we are the first to attempt pure DP image generation on ImagenNet.

For both experiments, we use the same neural network architecture as for CelebA
(32x32) in the main paper; see model hyperparameters in Table 4.8. On CIFAR-10, we train
for 500 epochs using noise multiplicityK = 32 under the privacy setting (ε = 10, δ = 10−5).
In ImageNet, we train for 100 epochs using noise multiplicity K = 8 under the privacy
setting (ε = 10, δ = 7 · 10−7); training for longer (or using larger K) was not possible
on ImageNet due to its sheer size. We achieve FIDs of 97.7 and 61.3 for CIFAR-10 and
ImageNet, respectively. No previous works reported FID scores on these datasets and for
these privacy settings, but we hope that our scores can serve as reference points for future
work. In Figure 4.17, we show samples for both datasets from our DPDMs and visually
compare to an existing DP generative modeling work on CIFAR-10, DP-MERF [102].
Our DPDMs cannot learn clear objects; however, overall image/pixel statistics seem to
be captured correctly. In contrast, the DP-MERF baseline collapses entirely. We are not
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(a) DPDM (ours) (ImageNet) (b) DPDM (ours) (CIFAR-10) (c)

Figure 4.17: Additional experiments on challenging diverse datasets. Samples from our
DPDM on ImageNet and CIFAR-10, as well as CIFAR-10 samples from DP-MERF [102]
in (c).

aware of any other works tackling these tasks. Hence, we believe that DPDMs represent a
major step forward.

4.4.7.2 Higher Resolution

We provide results for additional experiments on CelebA at higher resolution (64x64). To
accommodate the higher resolution, we added an additional upsampling/downsampling
layer to the U-Net, which results in roughly a 11% increase in the number of parameters,
from 1.80M to 2.00M parameters. The only row that changed in the CelebA model hy-
perparameter table (Table 4.8) is the one about the channel multipliers. It is adapted
from (1,2,2) to (1,2,2,2). We train for 300 epochs using K = 8 under the privacy setting
(ε = 10, δ = 10−6). We achieve an FID of 78.3 (again, for reference; no previous works
reported quantitative results on this task). In Figure 4.18, we show samples and visually
compare to existing DP generative modeling work on CelebA at 64x64 resolution. Al-
though the faces generated by our DPDM are somewhat distorted, the model overall is
able to clearly generate face-like structures. In contrast, DataLens generates incoherent
very low quality outputs. No other existing works tried generating 64x64 CelebA images
with rigorous DP guarantees, to the best of our knowledge. Also this experiment implies
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(a) DPDM (ours)

(b) DataLens [284]

Figure 4.18: Additional experiments on CelebA at higher resolution (64x64). Samples from
our method and DataLens [284].

that DPDMs can be considered a major step forward for DP generative modeling.

4.4.8 Ethics, Reproducibility, Limitations and Future Work

Our work improves the state-of-the-art in differentially private generative modeling and
we validate our proposed DPDMs on image synthesis benchmarks. Generative modeling
of images has promising applications, for example for digital content creation and artistic
expression [15], but it can in principle also be used for malicious purposes [201, 210, 278].
However, differentially private image generation methods, including our DPDM, are cur-
rently not able to produce photo-realistic content, which makes such abuse unlikely.

As discussed in Section 4.3.1, a severe issue in modern generative models is that they
can easily overfit to the data distribution, thereby closely reproducing training samples
and leaking privacy of the training data. Our DPDMs aim to rigorously address such
problems via the well-established DP framework and fundamentally protect the privacy of
the training data and prevent overfitting to individual data samples. This is especially im-
portant when training generative models on diverse and privacy-sensitive data. Therefore,
DPDMs can potentially act as an effective medium for data sharing without needing to
worry about data privacy, which we hope will benefit the broader machine learning com-
munity. Note, however, that although DPDM provides privacy protection in generative
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learning, information about individuals cannot be eliminated entirely, as no useful model
can be learned under DP-(ε=0, δ=0). This should be communicated clearly to dataset
participants.

An important question for future work is scaling DPDMs to (a) larger datasets and (b)
more complicated, potentially higher-resolution image datasets. Regarding (a), recall that
an increased number of data points leads to less noise injection during DP-SGD training
(while keeping all other parameters fixed). Therefore, we believe that DPDMs should scale
well with respect to larger datasets; see, for example, our results on ImageNet, a large
dataset, which are to some degree better than the results on CIFAR-10, a relatively small
dataset (Section 4.4.7). Regarding (b), however, scaling to more complicated, potentially
higher-resolution datasets is challenging if the number of data points is kept fixed. Higher-
resolution data requires larger neural networks, but this comes with more parameters,
which can be problematic during DP training (see Section 4.3.3.2). Using parameter-
efficient architectures for diffusion models may be promising; for instance, see concurrent
work by [126]. Generally, we believe that scaling both (a) and (b) are interesting avenues
for future work.

To aid reproducibility of the results and methods presented in our paper, we made source
code to reproduce all quantitative and qualitative results of the paper publicly available,
including detailed instructions. Moreover, all training details and hyperparameters are
already described in detail in this appendix, in particular in Section 4.4.3.

4.5 Epilogue

4.5.1 Public Pre-training of Differentially Private Diffusion Mod-
els

Pre-training on public datasets is a common technique to improve the performance of DP
models [103, 307]. Recently, Ghalebikesabi et al. [95] propose public pre-training of DMs
to improve the performance of DPDMs. In particular, they perform public pre-training on
ImageNet and private DPDM fine-tuning on CIFAR-10 and Camelyon17 [155]. Compared
to from-scratch DPDM training, Ghalebikesabi et al. [95] adapt the time distribution p(t):
they argue that the pre-trained DM transfers well to new tasks for very small and very large
noise levels. In contrast, the “medium” noise levels differ considerably between datasets.
Therefore, they adjust p(t) and “focus” on intermediate times (t ∈ [0.3, 0.6], with T = 1.0).
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Furthermore, Ghalebikesabi et al. [95] extend our noise multiplicity (Equation (7) of the
paper) by also averaging the per-sample DM loss over traditional augmentation strategies
such as random cropping and horizontal flipping.
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Chapter 5

Distilling the Knowledge in Diffusion
Models

5.1 Taming Large Models with Knowledge Distilla-

tion

Recent text-to-image DMs have attracted much attention, being able to generate high-
resolution photorealistic samples [230, 235, 242]. This powerful performance, however,
requires large neural network backbones with billions of parameters. Networks of this size
generally require a large amount of GPU memory and they are slow at inference time,
making it difficult to deploy them in real-time or on resource-limited devices.

In Chapter 3, we have discussed a multitude of methods that accelerate the inference
of DMs, however, none of those methods address the issue of requiring a large amount of
GPU memory. In discriminative modeling, knowledge distillation is a widely used method
that addresses this particular issue: For example, the knowledge of a (teacher) classifier
can be distilled into a smaller (student) model by training the student on the (soft) teacher
predictions rather than the (hard) labels of the data [106]. Knowledge distillation has been
widely used in discriminative modeling [25, 101, 106, 271, 297], but only rarely in generative
modeling [3]. One potential reason for this may be that the objective functions of popular
one-shot generative models such as generative adversarial networks and normalizing flow
do not naturally extend to knowledge distillation.
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5.2 Preface

This section presents the workshop paper “Distilling the Knowledge in Diffusion Models”.
In this work, we distill the knowledge of a large pre-trained DM into a small DM using an
(approximate) score matching objective:

min
θ

Ex0∼pdata(x0), t∼p(t),n∼N (0d,Id)

[
λ(t)∥Dθ(αtx0 + σtn, t)−Dϕ(αtx0 + σtn, t)∥22

]
, (5.1)

where Dϕ is the large teacher model and Dθ the smaller student model. Similar to
knowledge distillation in classifiers, the “hard” predictions x0 in the DM objective (Equa-
tion (1.27)) are replaced by the “soft” teacher predictions Dϕ(αtx0+σtn, t). Furthermore,
the above distillation objective is a natural modification of score matching [123], replacing
the true data score by the teacher score model. The paper was accepted and presented at
the CVPR 2023 workshop for “Generative Models for Computer Vision” in June 2023.

Contributions: I was the sole first author of this work. Robin Rombach, Andreas
Blattmann, and Yaoliang Yu were co-authors, and Yaoliang supervised the project. The
knowledge distillation idea was conceived jointly between myself and Yaoliang. I imple-
mented all code and ran all experiments on CIFAR-10. Throughout the project, I contacted
Robin and Andreas to apply the method on Stable Diffusion [235]. I wrote the paper myself.

Differences in notation: For simplicity, we only consider DMs that use the pertur-
bation kernel pt(xt | x0) = N (xt;x0, σ

2
t Id).

Abstract: Large-scale diffusion models have achieved unprecedented results in (condi-
tional) image synthesis, however, they generally require a large amount of GPU memory
and are slow at inference time. To overcome this limitation, we propose to distill the knowl-
edge of pre-trained (teacher) diffusion models into smaller student diffusion models via an
approximate score matching objective. For classifier-free guided generation on CIFAR-10,
our student model achieves a FID-5K of 8.03 using 273G flops. In comparison, the larger
teacher model only achieves a FID-5K of 294 using 424G flops. We present initial experi-
ments on distilling the knowledge of Stable Diffusion, a large scale text-to-image diffusion
model, and discuss several promising future directions.
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(a) s: 129G flops,
5 steps

(b) s: 273G flops,
10 steps

(c) t: 424G flops,
3 steps

(d) t: 764G flops,
5 steps

(e) t: 1612G flops,
10 steps

Figure 5.1: Guided image generation on CIFAR-10 (guidance strength w=0.5) with student
model s and teacher model t. The student model needs considerably less flops to achieve
similar performance.

5.3 Main Paper

5.3.1 Introduction

Diffusion models (DMs) achieve both state-of-the-art synthesis quality and sample diver-
sity using an iterative sampling process. In computer vision DMs have been used for
(conditional) image [66, 109, 110, 211, 230, 235] and (conditional) video [112, 252, 301]
synthesis, super-resolution [168, 240], deblurring [142, 290], image editing and inpaint-
ing [185, 197, 235, 239], conditional and semantic image generation [22, 56, 179, 218, 228],
image-to-image translation [239, 249, 267], inverse problems in medical imaging [59, 60,
117, 187, 224, 264, 299], and differentially private image synthesis [73, 95].

In particular large-scale text-to-image DMs have recently gained a lot of attention, be-
ing able to synthesize high-resolution photorealistic images [230, 235, 242]. To achieve this
powerful performance these DMs rely on neural network backbones with billions of param-
eters [230, 242]. Networks of this size require a large amount of GPU memory and they are
slow at inference time, making it difficult to deploy them in real-time or on resource-limited
devices.

The issue of slow inference has, for example, been addressed by the development of faster
DM samplers [74, 75, 183, 184, 258]. Another promising approach to tackle this issue is
to distill the entire iterative sampling process of a (teacher) DM into a student (sampling)
model [24, 196, 244, 265]; we refer to this approach as sampling distillation. To accel-
erate training, the student network is initialized from the teacher, and therefore student
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and teacher have the same number of parameters. After distillation, the student model
can synthesize samples using only a few network evaluations rather than tens of network
evaluations needed for the teacher model. Sampling distillation reduces the inference time
while keeping the required GPU memory constant.

In this work, we instead propose to distill the knowledge (rather than the iterative sam-
pling process) of a teacher DM into a smaller student DM, that is, the student should learn
to match the predictions of the teacher for any input. Compared to sampling distillation,
reducing the network size of a DM results in less GPU memory as well as faster inference:
though the student model may still require tens of evaluations for sampling, each eval-
uation is significantly faster. Knowledge distillation (KD) [106] has been widely used in
discriminative modeling [25, 101, 106, 271, 297], but only rarely in generative modeling [3].
We propose a robust approximate score matching objective to perform KD.

We thoroughly evaluate our proposed method on CIFAR-10 [160] and find that we can
drastically decrease the required inference time of students model compared to their teach-
ers; see Figure 5.1. Furthermore, we show early results on distilling Stable Diffusion [235],
a large text-to-image latent DM; see Section 5.3.5. We envision that our framework, which
can potentially be combined with orthogonal ideas such as fast DM samplers and sampling
distillation, paves the way towards fast and high-resolution synthesis of DMs on resource
limited devices.

5.3.2 Background

We consider continuous-time DMs [263] and follow the presentation of Karras et al. [141].
Let pdata(x0) denote the data distribution and p(x;σ) be the distribution obtained by
adding i.i.d. σ2-variance Gaussian noise to the data distribution. For sufficiently large
σmax, p(x;σ

2
max) is almost indistinguishable from σ2

max-variance Gaussian noise. Capitaliz-
ing on this observation, DMs sample high variance Gaussian noise xM ∼ N (0, σ2

max) and
sequentially denoise xM into xi ∼ p(xi;σi), i ∈ {0, . . . ,M}, with σi < σi+1 and σM = σmax.
Assuming the DM is accurate, if σ0 = 0 then the resulting x0 is distributed according to
the data.

Sampling. In practice, this iterative denoising process explained above can be imple-
mented through the numerical simulation of the Probability Flow ordinary differential
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equation (ODE) [263]

dx = −σ̇(t)σ(t)∇x log p(x;σ(t)) dt, (5.2)

where ∇x log p(x;σ) is the score function [123]. The schedule σ(t) : [0, 1] → R+ is user-
specified and σ̇(t) denotes the time derivative of σ(t). Alternatively, we may also numeri-
cally simulate a stochastic differential equation (SDE) [141, 263]:

dx = −σ̇(t)σ(t)∇x log p(x;σ(t)) dt︸ ︷︷ ︸
Probability Flow ODE; see Equation (5.2)

(5.3)

−β(t)σ2(t)∇x log p(x;σ(t)) dt+
√

2β(t)σ(t) dωt︸ ︷︷ ︸
Langevin diffusion component

,

where dωt is the standard Wiener process. In principle, simulating either the Probability
Flow ODE or the SDE above results in samples from the same distribution.

Training. DM training reduces to learning a model sθ(x;σ) for the score function
∇x log p(x;σ). The model can, for example, be parameterized as∇x log p(x;σ) ≈ sθ(x;σ) =
(Dθ(x;σ) − x)/σ2 [141], where Dθ is a learnable denoiser that, given a noisy data point
x0 + n, x0 ∼ pdata(x0), n ∼ N (0, σ2Id), and conditioned on the noise level σ, tries to
predict the clean x0. The denoiser Dθ (or equivalently the score model) can be trained via
denoising score matching (DSM)

E(x0,c)∼pdata(x0,c),
(σ,n)∼p(σ,n)

[
λσ∥Dθ(x0 + n;σ, c)− x0∥22

]
, (5.4)

where p(σ,n) = p(σ)N (n;0, σ2), p(σ) is a distribution over noise levels σ, λσ : R+ → R+

is a weighting function, and c is a conditioning signal, e.g., a class label or a text prompt.
For unconditional modeling, c may simply be ignored.

Classifier-free guidance. Classifier-free guidance [108] is a technique to guide the it-
erative sampling process of a DM towards a particular conditioning signal c by mixing the
predictions of a conditional and an unconditional model

Dw(x;σ, c) = (1 + w)D(x;σ, c)− wD(x;σ), (5.5)

where w ≥ 0 is the guidance strength. In practice, the unconditional model can be trained
jointly alongside the conditional model in a single network by randomly replacing the
conditional signal c with a (learnable) null embedding in Equation (5.4), e.g., 10% of the
time [108]. Classifier-free guidance is widely used to improve the sampling quality, at the
cost of reduced diversity, of text-to-image DMs [211, 235].
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5.3.3 Method

We propose to distill the knowledge of a large DM, with frozen parameters ϕ, into a small
student DM, with parameters θ, via an (approximate) score matching (SM) loss

E
[
λσ∥Dθ(x0 + n;σ, c)−Dϕ(x0 + n;σ, c)∥22

]
, (5.6)

where the expectation is over the same distributions as in Equation (5.4). The loss in Equa-
tion (5.6) is consistent: zero loss implies that the knowledge of the teacher has been
perfectly distilled into the student model (assuming full support of pdata(x0) and p(σ)).
Furthermore, Equation (5.6) becomes standard score matching [123] as the teacher score
model sϕ(x;σ) = (Dϕ(x;σ)− x)/σ2 approaches the true score function ∇x log p(x;σ).

Guided distillation. To distill the knowledge of a jointly trained (un)conditional DM
for classifier-free guidance, we can randomly replace the conditioning signal c with the
null embedding in Equation (5.6). Note, however, that during inference we still need to
evaluate the student model twice to compute Equation (5.5). To accelerate inference even
further, we may follow Meng et al. [196] and directly distill the guidance computation (for
an interval [wmin, wmax]) jointly with the knowledge of the teacher model, i.e.,

E(x0,c)∼pdata(x0,c),
(σ,n)∼p(σ,n),

w∼U [wmin,wmax]

[
λσ∥Dθ(x;σ, c, w)−Dw

ϕ(x;σ, c)∥22
]
, (5.7)

where Dw
ϕ is computed via Equation (5.5) and x = x0 + n. Note that the student model

is now additionally conditioned on the guidance strength w.

5.3.4 Experiments

We focus our efforts on a thorough evaluation on CIFAR-10 [160]. Student and teacher DMs
are implemented using the DDPM++ architecture [263]. The teacher model uses 128 base
channels while we use a variety of student models ranging from 32 to 128 base channels. We
generate samples from our DMs using the deterministic Heun sampler proposed in Karras
et al. [141] and we measure the sample quality via Fréchet Inception Distance (FID) [105]
using 5k synthesized samples and all training samples. All experiment and training details
can be found in Section 5.4.1.1
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Figure 5.2: Unconditional image generation on CIFAR-10. Teacher model t and a variety
of student models s with different number of base channels indicated in the legend. Linear
y-axis as inset.

Table 5.1: Parameters and number of flops (per single forward pass) of the unconditional
teacher model t and student models s.

Model s-32 s-64 s-96 s-128 t

# of M parameters 2.2 8.8 19.8 35.1 55.7
# of G flops 1.64 6.42 14.36 25.44 42.42
# of residual blocks 2 2 2 2 4
# of base channels 32 64 96 128 128
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Figure 5.3: Distilling a large teacher DM into a smaller model (KD) leads to faster conver-
gence and overall better performance than standard DSM training (for the smaller model).

5.3.4.1 Unconditional Distillation

We compare an unconditional teacher model to a variety of student models; see Table 5.1.
We compute FID-5k for each model using a variety of solver steps; see Figure 5.2 for results.
For fair comparison, the x-axis shows the accumulated number of G flops rather than the
number of solver steps. We can see that there exist fixed budgets of G flops for which each
of the four student model performs best, e.g., s-32 at 50 G Flops and s-96 at 400 G Flops,
etc. Therefore, given GPU memory or inference time constraints, the size of the teacher
model can be tuned to optimize performance. Overall, the gap between the larger student
models (with 96 and 128 base channels) and the teacher model are reasonable, i.e., less
than one FID-5K.

We also compare the training speed of our s-96 model to a standard DM (trained with Equa-
tion (5.4)) with the same neural network backbone; see Figure 5.3. The student model
needs less iterations for convergence and overall converges to a better FID-5K value (7.63
vs 8.60). Note that during each iteration of KD we also need to do a forward pass through
the larger teacher model; to reduce additional training time cost, the forward passes of
teacher and student models may be parallelized.
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Figure 5.4: Guided image generation on CIFAR-10 (guidance strength w=0.25). Teacher
model t and student model s. The student is conditioned on the guidance scale w whereas
the teacher model needs to evaluate both a conditional and an unconditional DM per step.
Linear y-axis as inset.

5.3.4.2 Guided Distillation

We additionally train a guided student model (96 base channels) with KD according
to Equation (5.5) where we set wmin=0.0 and wmax=3.0. In Figure 5.4, we compare the
student model to the teacher model for guidance strength w=0.25. The discrepancy of the
performance at small number of G flops between the student and the teacher is even more
striking than in the unconditional case, likely due to the simultaneous KD and guidance
distillation. Overall, the gap between the student and the teacher model is reasonable,
less than 0.75 FID-5K. Samples for both the student and teacher models can be found
in Figure 5.1.

5.3.5 Future Directions

We have shown that the size of the neural network backbone in DMs can be drastically
reduced with our KD approach resulting in faster inference, while keeping overall perfor-
mance drops to a reasonable level. We envision our method as a promising tool for relevant
and novel applications in generative modeling, e.g., text-to-image synthesis on edge devices.
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(a) DSM: 7742G
flops, 50 steps

(b) s: 7742G flops,
50 steps

(c) t: 8145G flops,
12 steps

(d) t: 33936G flops,
50 steps

Figure 5.5: Samples generated for the DSM baseline, the KD student model s and the
original Stable Diffusion (teacher) model t. Prompt: “A beautiful castle, matte painting.”.

In future work, we are planning to expand this work into the following directions:

Combining KD with sampling distillation. Distilling the sampling process of DMs [24,
196, 244, 265] allows for high-quality synthesis of large-scale models in several seconds.
Sampling distillation is orthogonal to our KD approach, and combining these two ideas is
a promising future research direction. An interesting question may be the order of distilla-
tion: Should we first distill the sampling process or the network? Or could we potentially
do both distillations jointly?

Mixed training. In this work, we only considered pure distillation, however, it has
been shown to be helpful to combine KD with standard training in discriminative mod-
els [106]. One approach for mixed training may be a linear combination of Equation (5.4)
and Equation (5.6). As we show in Section 5.4.2, this mixed training approach is equivalent
to performing distillation with an additional term

2αλσ(Dθ(x;σ)−Dϕ(x;σ))
⊤(Dϕ(x;σ)− x0), (5.8)

where α ∈ [0, 1], inside the expectation of Equation (5.6).

Better initialization. Fine-tuning large-scale DMs has been shown to be highly ef-
fective: for example, fine-tuning text-to-image DMs for, say, 100 to 1000 iterations on a
small dataset of a few images results in highly editable personalized text-to-image mod-
els [90, 237]. Similarly, student models in sampling distillation are generally initialized
from the teacher model, which allows for fine-tuning and results in faster convergence. In
contrast, our student architectures are smaller, and therefore we cannot directly make use
of the teacher for initialization. Future work could explore better initialization methods
that may improve the training speed of our KD approach.

219



50 100 150 200 250 300

# of iters ×103

3× 101

4× 101

5× 101

F
ID

-5
K KD

DSM

Stable Diffusion

0.22

0.24

0.26

0.28

0.30

0.32

0.34

C
L

IP
S
IM

Figure 5.6: Initial experiments on Stable Diffusion show that distilling the network of large
scale text-to-image DMs into smaller student models leads to better performance and faster
convergence compared to standard DSM training. The gap of the student to the teacher is,
however, still significant and needs to be addressed in future work. The solid and dotted
lines represent zero-shot FID-5K and CLIPSIM on COCO [175], respectively.

Applying KD to larger models. In this work, we thoroughly study KD of DMs for
CIFAR-10. An obvious future direction is to scale our approach to larger models: To this
end, we perform a preliminary study on Stable Diffusion [235], distilling its latent DM into
a network of less than a quarter of the original size (from 866M to 200M parameters).
Compared to training a standard DM of the same size with DSM (Equation (5.4)), we
find that the KD student converges faster and to a better value; see Figure 5.6. This is a
promising result which may indicate that our results on CIFAR-10 transfer to large-scale
DMs. Compared to our CIFAR-10 results, however, we found that there is still a substan-
tial gap compared to the teacher model; see also samples in Figure 5.5. Experiment details
can be found in Section 5.4.1.2. In future work, we are planning to thoroughly evaluate
our KD approach to large-scale (latent) DMs.
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5.4 Appendix

5.4.1 Experiment Details

5.4.1.1 CIFAR-10

Our teacher models for CIFAR-10 are taken from Karras et al. [141]; one conditional1 and
one unconditional model2. The networks are based on the DDPM++ architecture [263].
The teacher and student models have four and two residual blocks, respectively. The
teacher model has 128 base channels while we train multiple student models ranging from
32 to 128 base channels. All models are trained for 100k iterations, using a batch size of
512, to ensure convergence. We use Adam with learning rate 1× 10−3 and an exponential
moving average half-life of 50M images, following Karras et al. [141]. For KD, we do not
use any dropout while the DSM baseline in Figure 5.3 uses a dropout probability of 10%
to prevent over-fitting. All student models (and the DSM baseline) use the same network
preconditioning, noise distribution p(σ) and loss weighting λσ as the teacher model; see
the last column of Table 1 in Karras et al. [141].

5.4.1.2 Stable Diffusion

Our teacher model is Stable Diffusion [235] fine-tuned to v-parameterization [244]. The
student model (and the DSM baseline) uses the same architecture as Stable Diffusion,
however, the number of base channels is reduced from 360 to 192 and the transformer
block at the highest resolution is removed. We use AdamW with learning rate 3 × 10−4

and batch size 512. The exponential moving average half life, the noise distribution p(σ),
and the loss weighting λσ for both the student model and the DSM baseline are the same
as used in the original Stable Diffusion model.

5.4.2 Mixed Training Derivation

In Section 5.3.5, we propose the following mixed training objective

E[λσ
(
(1− α)∥Dθ(x;σ, c)−Dϕ(x;σ, c)∥22 + α∥Dθ(x;σ, c)− x0∥22

)
], (5.9)

1https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-cifar10-32x32-uncond-vp.pkl
2https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/edm-cifar10-32x32-uncond-ve.pkl
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where x = x0 + n. Let us add and subtract the teacher model Dϕ to the second norm

∥Dθ(x;σ, c)− x0∥22 (5.10)

= ∥Dθ(x;σ, c)−Dϕ(x;σ, c) +Dϕ(x;σ, c)− x0∥22 (5.11)

= ∥Dθ(x;σ, c)−Dϕ(x;σ, c)∥22 + 2(Dθ(x;σ)−Dϕ(x;σ))
⊤(Dϕ(x;σ)− x0) + ∥Dϕ(x;σ, c)− x0∥22

(5.12)

= ∥Dθ(x;σ, c)−Dϕ(x;σ, c)∥22 + 2(Dθ(x;σ)−Dϕ(x;σ))
⊤(Dϕ(x;σ)− x0) + const.

(5.13)

Note that the last term in the above equation is a constant with respect to the learnable
parameters θ. Plugging the above into Equation (5.9), we have

E[λσ
(
∥Dθ(x;σ, c)−Dϕ(x;σ, c)∥22 + 2α(Dθ(x;σ)−Dϕ(x;σ))

⊤(Dϕ(x;σ)− x0)
)
] + const.

(5.14)

This shows that mixed training is equivalent to plain distillation with a regularization term
which uses the clean data x0.

Alternatively, we may similarly add and subtract the clean data x0 to the first norm
in Equation (5.9) which results in

E[λσ
(
∥Dθ(x;σ, c)− x0∥22 + 2(1− α)(Dθ(x;σ)− x0)

⊤(x0 −Dϕ(x;σ))
)
] + const, (5.15)

which shows that mixed training is also equivalent to standard DM training (DSM in Equa-
tion (5.4)) with an additional regularization term involving the teacher network Dϕ.
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Chapter 6

Conclusion

In this thesis, we use DMs to model the data generating processes commonly encoun-
tered in artificial intelligence, focusing on natural images. While the primary objective
of generative models is to generate samples that closely resemble those generated by the
data generating process, there may be (several) secondary objectives which are important
to practitioners. For example, in this thesis, we introduce several methods that acceler-
ate the sampling process of DMs. Furthermore, we introduce one method that privatizes
DMs, that is, prevents revealing training data through (samples from) the trained network.

In Chapter 2 we investigate the underlying diffusion process of DMs and introduce a new
DM based on critically-damped Langevin dynamics. In Chapter 3 we show how reparam-
eterizing the differential equations arising in DMs may naturally lead to faster numerical
schemes. We also discuss several numerical solvers and the pitfall of those based on finite
differences in the large step size limit. To circumvent this issue, we then introduce an
efficient neural higher-order solver that learns higher-order derivatives. We also discuss
recent methods that distill the sampling process of DMs altogether. In Chapter 5 we pro-
pose to distill the knowledge of large pre-trained DMs into smaller student models using an
approximate score matching objective. In particular, the small student model is regressed
towards predictions of the teacher DM rather than the clean data as is done in standard
DM training. The student models are fast at inference time and may also be deployed on
GPUs with significantly less memory than was required for the original teacher model.

In the future, our work on accelerated sampling could be extended in several directions. All
three methods introduced in this thesis are orthogonal, and may therefore be mixed and
matched. For example, we may distill the knowledge of DMs that utilize critically-damped
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Langevin dynamics as their diffusion process, and then use the neural higher-order solver
introduced in Chapter 3 to generate samples. Furthermore, combining the knowledge dis-
tillation technique from Chapter 5 with methods that distill the entire sampling process of
DMs (see Section 3.5.1) may result in very fast and efficient samplers. Not restricted to the
methods introduced in this thesis, we believe that the full potential of accelerated sampling
can be unlocked by customizing samplers to their respective domains. For example, solvers
for DMs modeling video data may not only exploit the spatial redundancy of individual
frames but also the temporal redundancy. We believe that the ultimate goal should be
instant generation across all domains, potentially on resource-limited devices.

To privatize DMs, we build on well-established techniques from the differential privacy lit-
erature. In particular, we enforce privacy in DMs by training the neural network backbone
with differentially private stochastic gradient descent. Overfitting and privacy-leakage of
generative models are more relevant than ever, considering recent works that train powerful
photo-realistic image generators on large-scale web-scraped data and the recent adaption
of DMs in domains with naturally more sensitive data, such as medical imaging.

Differentially private diffusion models with moderate privacy guarantees are able to gen-
erate high quality small-resolution images. However, non-private DMs are currently still
significantly better at generating high-resolution images. To attempt closing this gap,
future research may carefully pre-train DMs on public data and only fine-tune DMs on
sensitive data for a small number of iterations as has been proposed in some recent work.
Additionally, we may consider more parameter-efficient neural network backbones which
are naturally more private given a fixed number of training iterations. More efficient
methods for enforcing differential privacy guarantess in DMs and other generative models
beyond differentially private stochastic gradient descent may also be developed.
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