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Abstract

The L2-based mean squared error (MSE) and its variations continue to be the most
widely employed metrics in image processing. This is most probably due to the fact that
(1) the MSE is simple to compute and (2) it possesses a number of convenient mathematical
properties, including differentiability and convexity. It is well known, however, that these
L2-based measures perform poorly in terms of measuring the visual quality of images. Their
failure is partially due to the fact that the L2 metric does not capture spatial relationships
between pixels. This was a motivation for the introduction of the so-called Structural
Similarity (SSIM) image quality measure [32] which, along with is variations, continues
to be one of the most effective measures of visual quality. The SSIM index measures
the similarity between two images by combining three components of the human visual
system—luminance, contrast, and structure. It is our belief that the structure term, which
measures the correlation between images, is the most important component of the SSIM.

A considerable portion of this thesis focusses on adapting the L2 distance for image pro-
cessing applications. Our first approach involves inserting an intensity-dependent weight
function into the integral such that it conforms to generalized Weber’s model of perception.
We solve the associated best approximation problem and discuss examples in both one-
and two-dimensions. Motivated by the success of the SSIM, we also solve the Weberized
best approximation problem with an added regularization term involving the correlation.

Another approach we take towards adapting the MSE for image processing involves
introducing gradient information into the metric. Specifically, we study the traditional L2

best approximation problem with an added regularization term involving the L2 distance
between gradients. We use orthonormal functions to solve the best approximation problem
in both the continuous and discrete setting. In both cases, we prove that the Fourier
coefficients remain optimal provided certain assumptions on the orthonormal basis hold.

Our final best approximation problem to be considered involves maximizing the cor-
relation between gradients. We obtain the relevant stationarity conditions and show that
an infinity of solutions exists. A unique solution can be obtained using two assumptions
adapted from [2]. We demonstrate that this problem is equivalent to maximizing the entire
SSIM function between gradients. During this work, we prove that the discrete derivatives
of the DCT and DFT basis functions form an orthogonal set, a result which has not
appeared in the literature to the best of our knowledge.

Our study of gradients is not limited to best approximation problems. A second major
focus of this thesis concerns the development of gradient-based image quality measures.
This was based on the idea that the human visual system may also be sensitive to distortions
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in the magnitudes and/or direction of variations in greyscale or colour intensities—in other
words, their gradients. Indeed, as we show in a persuasive simple example, the use of the L2

distances between image gradients already yields a significant improvement over the MSE.
One naturally wonders whether a measure of the correlation between image gradients could
yield even better results—in fact, possibly “better” than the SSIM itself! (We will define
what we mean by “better” in this thesis.) For this reason, we pursue many possible forms
of a “gradient-based SSIM”.

First, however, we must address the question of how to define the correlation between
the gradient vectors of two images. We formulate and compare many novel gradient similar-
ity measures. Among those, we justify our selection of a preferred measure which, although
simple-minded, we show to be highly correlated with the “rigorous” canonical correlation
method. We then present many attempts at incorporating our gradient similarity measure
into the SSIM. We finally arrive at a novel gradient-based SSIM, our so-called “gradSSIM1”,
which we argue does, in fact, improve the SSIM. The novelty of our approach lies in its use
of SSIM-dependent exponents, which allow us to seamlessly blend our measure of gradient
correlation and the traditional SSIM.

To compare two image quality measures, e.g., the SSIM and our “gradSSIM1”, we
require use of the LIVE image database [24]. This database contains numerous distorted
images, each of which is associated with a single score indicating visual quality. We suggest
that these scores be considered as the independent variable, an understanding that does not
appear to be have been adopted elsewhere in the literature. This work also necessitated a
detailed analysis of the SSIM, including the roles of its individual components and the effect
of varying its stability constants. It appears that such analysis has not been performed
elsewhere in the literature.
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Chapter 1

Introduction

We entered into this work equipped with a few simple ideas. A major initial interest of
ours concerned best approximation problems involving images. Measuring how well a given
image approximates another image depends entirely on the choice of distance function. It
is well known that using conventional, i.e., L2-based, metrics on images produces distances
that are not in agreement with their visual closeness according to a human observer. By
developing metrics based on simple considerations of the human visual system—e.g., its
nonlinear luminance perception described by Weber’s law, its aptitude for extracting edges
and structural information—one can produce mathematically optimal image approxima-
tions which are more likely to be visually “optimal” according to a human observer.

Our study of image-based best approximation also involved extending previous work
which maximized the Structural Similarity (SSIM) Index and its individual components
using orthonormal functions [3, 2]. The SSIM [32] is a well-known image quality measure
which attempts to predict the visual quality of distorted images in a manner consistent
with the human visual system. Some evaluations showed that the SSIM outperformed
alternative prediction algorithms at the time of its debut [23], and it continues to be
a popular choice in many image processing applications today. The SSIM consists of
three component parts: a luminance component, a contrast component, and a correlation
component. It was our guiding belief that the correlation is the most important component
of the SSIM. Throughout our work, the correlation was a lodestone to which we returned
time and time again.

At the same time, we were also highly motivated to pursue the use of gradients in image
processing. For years, gradients have been used in a variety of image processing applica-
tions; A particularly canonical example is the use of gradient filters in edge detection. For
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our introduction to using gradients, we naturally pursued the best approximation prob-
lem which maximizes the correlation between gradients. During this work, we were able to
show that the discrete derivatives of the DCT and DFT basis functions form an orthogonal
set, a result which has not appeared in the literature to the best of our knowledge.

Our study of gradients, however, was not limited to best approximation problems: We
also undertook a computational exploration of the gradient, which culminated in many
attempts to “improve” the SSIM by incorporating gradient information. (We will define
what is meant by “improve” later in this thesis.) This was based on the idea that the human
visual system may also be sensitive to distortions in the magnitudes and/or direction of
variations in greyscale or colour intensities—in other words, their gradients. Indeed, some
image quality measures centered on gradient information have recently been proposed
in [17, 21]. The mathematical tractability which characterizes our approach, however,
differentiates our gradient-based measures from those existing in the literature. Ultimately,
we obtain a novel gradient-based measure which, based on our results using the LIVE image
database [24], we argue “improves” the traditional SSIM. This pursuit also necessitated a
structured and detailed examination of the SSIM which, to the best of our knowledge, has
not appeared in the literature.

We could not have predicted how our initial interests would continually renew a rich
fountain of ideas upon which our study evolved. Indeed, we were often developing multiple
compelling problems at once, our attention shifting from one task to another and back again
with great interest. Only after surveying this progression in retrospect could we grasp a
complete and satisfying sense in its manner of unfolding. To honour this natural sequence
of events, this thesis is presented as a narrative. Its chapters are organized chronologically
and are outlined briefly below.

In Chapter 2, we present a discussion of some important foundational ideas and the
mathematical preliminaries of our work. Our first best approximation problem is then pre-
sented in Chapter 3, where Weber’s model motivates our initial attempt at adapting the
L2-based distance for image processing applications. Our computational investigation of
the SSIM begins in Chapter 4, where we develop a simple example to investigate whether
correlation is, in fact, the most important component of the SSIM. We return to our “We-
berized” best approximation problem in Chapter 5, adding a regularization term involving
the correlation between signals.

We provide a brief introduction to gradients and their applications in image processing
in Chapter 6. We also consider a simple best approximation problem involving the L2-
distance between gradients. In Chapter 7, we explore the best approximation problem
which maximizes the correlation between gradients. The contents of Chapters 8 and 9
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pertain to our efforts towards engineering a gradient-based image quality measure. In
Chapter 8, we develop and compare different measures of gradient similarity. We then
incorporate those measures into the SSIM in Chapter 9. In order to assess the performance
of our gradient-based measures, we analyze experiments using the LIVE image database.
In this chapter, we also investigate the effect of varying the stability constants in the SSIM.
In Chapter 10, we present some concluding remarks which include some natural avenues
for future research.
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Chapter 2

Mathematical Preliminaries

2.1 The Need for Image Quality Measures

In order to be able to characterize how well a given image is approximated by another
image, or perhaps how much an image has been distorted after being subjected to some
procedure, we need to be able to define some kind of “distance” between images. In many
applications, one simply considers images to be elements of a metric space (more details
are provided below) and then uses the metric space to define distances. However, as we
discuss below, such metrics do not necessarily capture visual quality very well. As a result,
an entire field of research is devoted towards developing perceptually-meaningful image
quality measures. A perceptually-meaningful image quality measure computes distances
between images in a manner consistent with their perceived visual closeness according to
a human observer.

Such image quality measures may be based on known properties of images, of the human
visual system, or both. A given image quality measure is typically classified as being either
a full-reference, reduced-reference, or no reference method. Full-reference methods assume
that a perfect reference image is available for making pixel-by-pixel comparisons against
the distorted image, while no reference methods assume no such availability and use only
the distorted image when inferring its quality. Existing somewhere in the middle are
reduced-reference methods, which require some small set of attributes of the reference
image. In each case, image quality measures can be further characterized by distinguishing
between general-use and application-specific methods. One popular full-reference, general-
use perceptual quality measure which will be discussed below is the Structural Similarity
(SSIM) Index [32].
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The application scope of image quality measures goes far beyond simply quantifying
or predicting image quality. Most, if not all, image processing tasks rely somehow, either
implicitly or explicitly, on an image quality measure. They provide a framework not only
for assessing the performance of an image processing system, but also for optimizing its
performance [30]. In short, developing perceptually-meaningful image quatlity measures
not only motivates many mathematical problems explored in this thesis, but it is has a
profound impact on the integrity of many real-world engineering processes.

2.2 Mathematical Representation of Images

A greyscale image can be defined as a real-valued function f(x, y), where x and y are
continuous real variables. Realistically, as is the case for a photograph, we expect the
image to be defined over a bounded, and typically rectangular, domain D ⊂ R × R. The
value f(x, y) indicates the intensity or grey level at a point (x, y) of the image. In practice,
we also expect the range of f on D, called the greyscale range, to be bounded and non-
negative. As such, the greyscale range is some interval [A,B], where A will be black and
B will be white. Of course, any intermediate value A < f(x, y) < B will represent some
shade of grey. In many applications, it is convenient to normalize the greyscale range [A,B]
to [0, 1].

A digital image can be obtained by a discrete sampling of the continuous image f(x, y).
Such a greyscale digital image is represented by an N ×M matrix u, where N and M
are determined by the sampling frequency. We would like to choose N and M sufficiently
large in order to preserve the visual information of the image. In this way, the sampling
frequency contributes to the perceptual quality of a digital image. Visual distortions and
artifacts can also be introduced in digital images by other processes; some distortion effects
and their impact on perceptual quality are explored in our main work.

The entry uij of the matrix u, often written u[i, j] in image processing applications,
indicates the greyscale value of the digital image at the (i, j)th pixel, for 1 ≤ i ≤ N and
1 ≤ j ≤ M . The intensity range of the digital image takes on discrete values to be stored
in digital memory by an irreversible process known as quantization. An n-bit greyscale
image usually has an intensity range with 2n possible grey values. A particularly popular
case is that of 8-bit images with possible greyscale values {0, 1, 2, · · · , 255}. The largest
possible pixel value, here L = 255, is also called the dynamic range of the image.

Beyond greyscale images, most images one encounters today are coloured. Colour
images are represented mathematically by a vector-valued function. One possibility is to
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employ red, green, and blue components, often referred to as an “RGB” image. At each
point (x, y) in the domain, the entries in the vector f(x, y) = (r(x, y), g(x, y), b(x, y)) define
the red, green, and blue intensities, respectively. For digital images, this translates to three
matrices, one for each of the three colour channels. There are other ways to code colour
images but a discussion of these methods is beyond the scope of this thesis.

Many popular quality measures have been developed on greyscale images. In some
applications, these measures are first applied to each colour channel separately and sub-
sequently aggregated. In other applications, colour images are somehow converted to
greyscale images in order to asses their quality computationally. Neither of these ap-
proaches are completely satisfying. Indeed, there are many interesting open problems when
one considers quality assessment for coloured media. In this work, our focus is restricted
to perceptual quality assessment of greyscale images.

In practice, one is often concerned with the perceptual quality of digital images. Indeed,
this is one of the main subjects of this thesis. Still, we will make use of the continuous
image function f(x, y) to establish some theoretical results. In the one-dimensional case,
i.e, when f(x) : R → R, f(x) is usually called a signal. In the following sections, we will
present some mathematical background for 1D and 2D domains D, and for both continuous
and discrete dependent variables, to be well-equipped for any setting.

2.3 Generalized Weber’s Model of Perception

Weber’s Law is among the first recorded efforts to describe human perception in quanti-
tative terms. In words, Weber’s Law hypothesizes that the first just-noticeable increase
in a stimulus is proportional to the pre-existing stimulus [20]. The statement applies to
a stimulation of any of our five senses: hearing, taste, touch, smell, and, of particular
relevance here, vision.

Indeed, Weber’s Law can be stated mathematically for greyscale images. In this case,
the pre-existing stimulus is a greyscale background intensity I > 0, while a similar grey
level ∆I is the first noticeable deviation according to the human visual system. Weber’s
Law states that I and ∆I are related as follows,

∆I

I
= C,

where C is constant over a significant range of intensities I.
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There are also situations (see, e.g., [18]) in which the following generalization of Weber’s
Law is more applicable,

∆I

Ia
= C, (2.1)

where a > 0 and C is constant, or at least roughly constant, over a significant range of
intensities I. In previous work, this relationship has been referred to as a “generalized”
Weber model of perception in order to distinguish it from the standard Weber model,
i.e., Weber’s Law, where a = 1 [27]. The generalization can be adapted to conform to
more complicated behaviours by adjusting a, with limiting value a = 0 corresponding
to an absence of Weber’s model. Indeed, Weber’s law is also known to fail at low and
high intensities [18]. As will be seen in our discussion of the Structural Similarity image
quality index, one way to accommodate the failure at low intensities is to emply a “stability
constant” A so that Eq. (2.1) becomes

∆I

Ia + A
= C. (2.2)

All of the above mentioned complications, however, are beyond the scope of this thesis.
Here, we focus on the model in Eq. (2.1) with the understanding that our analysis and
methods can be adapted to conform to more complicated behaviours.

In essence, Weber’s model of perception implies that the human visual system will be
less (more) sensitive to a given change in intensity ∆I in regions of an image at which the
local image intensity I is high (low).

2.4 Noteworthy Image Quality Measures

2.4.1 Mean Squared Error (MSE)

In many discussions, we will work with signals f(x) ∈ L2[0, 1]. Recall that the space of
real-valued, squared-integrable functions on [0,1] is defined by

L2[0, 1] =

{
f : [0, 1]→ R

∣∣∣∣∫ 1

0

|f(x)|2dx <∞
}
.

More precisely, the signals of interest to us will be further limited to functions in L2[0, 1]
with bounded range defined by the greyscale values. Regardless, the inner product in this
space is given by

〈f, g〉 =

∫ 1

0

f(x)g(x)dx,
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where, recognizing our restriction to real-valued functions, we have omitted the complex
conjugate. The inner product induces a norm, denoted || · ||2, and together (L2[0, 1], || · ||2)
form a Hilbert space. The 2-norm can be used to define a metric on L2[0, 1]. For two
functions f, g ∈ L2[0, 1], a distance between f and g can be computed by

d2(f, g) = ||f − g||2 =

[∫ 1

0

|f(x)− g(x)|2dx
]1/2

.

For 2D images, the natural extension is to consider functions f(x, y) in the space L2(D), D =
[0, 1]2. In this case, d2(f, g) involves a double integral over D.

For discrete signals, the relevant space is simply RN equipped with the dot product, as
follows, for u, v ∈ RN ,

〈u, v〉 =
N∑
i=1

uivi.

This inner product yields the l2 norm (also called the Euclidean norm) for vectors on RN ,
stated below,

||u||2 =

(
N∑
i=1

|ui|2
)1/2

,

to which corresponds the following metric

d2(u, v) = ||u− v||2 =

(
N∑
i=1

|ui − vi|2
)1/2

.

(RN , || · ||2) is a Hilbert space.

The mean squared error (MSE), obviously related to d2(u, v), can now be defined below,

MSE(u, v) =
1

N
[d2(u, v)]2 =

1

N

N∑
i=1

(ui − vi)2.

The mean squared error is one of the most widely used signal fidelity measures. The MSE
has many advantages, including: it is simple, it is easy to implement, and it satisfies the
properties of convexity, symmetry, and differentiability [31].

For two digital images u, v ∈ RN×M , the MSE is a double sum, as follows,

MSE(u, v) =
1

NM

N∑
i=1

M∑
j=1

(uij − vij)2.
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Sometimes it is useful to compare the root mean squared error (RMSE) between images,
defined by,

RMSE(u, v) =

[
1

NM

N∑
i=1

M∑
j=1

(uij − vij)2
]1/2

.

A peak signal-to-noise ratio (PSNR) can also be computed from the MSE by

PSNR = 10 log10

L2

MSE
,

where L is the dynamic range of the pixel intensities (recall from Section 2.2 that L = 255
for 8-bit images). The PSNR, although just a rescaling of the MSE, is useful for comparing
error across pairs of images having different dynamic ranges.

Finally, having established that our images belong to a Hilbert space, we can state the
following theorem relating to best approximation problems [7], [12].

Theorem 1. Let {φ1, φ2, · · · , φn} be an orthonormal set in a Hilbert space H. Define
Y = span{φi}ni=1. Y is a subspace of H. Then for any x ∈ H, the best approximation of
x in Y is given by the unique element

y = PY (x) =
n∑
k=1

ckφk (projection of x onto Y )

where
ck = 〈x, φk〉, k = 1, 2, · · · , n.

In words, this well-known result is that the MSE is minimized by the Fourier coefficients
of x with respect to the set {φk}.

2.4.2 Structural Similarity (SSIM) Index

Although the MSE has many attractive qualities for both computation and analysis, it
does not accurately predict image quality according to the human visual system. Many
implicit assumptions made by the MSE and its resulting limitations have been discussed in
[31]. A particularly compelling example in [31] shows a set of images obtained by applying
different visual distortions to a single reference image, namely, the well-known “Einstein
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image”. Many of the resulting degraded images have nearly equal MSE, yet strikingly
different degrees of visual quality. In Chapter 4 we present a set of these equal-MSE
“Einstein images” [32] and use them in some experiments.

The Structural Similarity (SSIM) Index was proposed as an alternative to the MSE for
image quality assessment. The underlying philosophy motivating the SSIM is that natural
images are very structured, which suggests that the human visual system is highly adapted
to extract those visual structures. These observations imply that the relationships between
neighbouring pixels in an image are very important. Accordingly, the SSIM evaluates an
image in chunks to preserve the relationships between neighbouring pixels. After extract-
ing structural information between adjacent pixels, the SSIM approach seeks to penalize
structural distortions more than distortions affecting other attributes of the image. By
comparison, the MSE only measures the error at individual pixels in isolation; it does not
consider neighbourhood dependencies or structures.

In order to emphasize the importance of structures, they must somehow be isolated
from the other visual qualities in an image. The SSIM approach decomposes the simi-
larity measurement into three distinct computations: a luminance comparison, a contrast
comparison, and a structure comparison. Because the pixel intensities involved in the com-
putation can exhibit large variations across an entire visual scene, these comparisons are
performed in small, local image patches. (An “image patch” is an n1 × n2 neighbourhood
of greyscale values.)

Let x, y ∈ RN denote local image patches taken from the same location in two images
to be compared. The luminance in a scene is interpreted by the human visual system as the
degree of perceived brightness, i.e., the predominance of light or dark greyscale intensities.
The local luminance similarity between the patches x and y is denoted by S1(x, y). Image
contrast is characterized by the range of brightness levels differentiating the objects in the
image. A high-contrast image is one where there is a large degree of separation between
the brightness levels of different objects. The local contrast similarity is performed by
S2(x, y). Finally, structural information defines the form of the objects, independent of
their perceived brightness. The structural comparison is denoted by S3(x, y). The local
SSIM for the pair of patches x, y is usually defined as the product of these three terms, as
follows,

SSIM(x, y) = S1(x, y) · S2(x, y) · S3(x, y).

The three local elements comprising the SSIM are defined by simple statistics. The
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luminance of the signal is estimated using the mean intensity

x̄ =
1

N

N∑
i=1

xi.

Then the luminance comparison is measured by

S1(x, y) =
2x̄ȳ + C1

x̄2 + ȳ2 + C1

where the presence of the stability constant C1 prevents numerical instability when the
denominator is close to 0.

The signal contrast is estimated by the standard deviation

σx =

(
1

N − 1

N∑
i=1

(xi − x̄)2

)1/2

,

so that the contrast comparison can be defined by

S2(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

.

The correlation coefficient between the patches x and y gives a rating of the similarity
of local structures, written below,

S3(x, y) =
σxy + C3

σxσy + C3

,

where σxy is the covariance of x and y,

σxy =
1

N − 1

N∑
i=1

(xi − x̄)(yi − ȳ).

In detail, the local SSIM is

SSIM(x, y) = S1(x, y) · S2(x, y) · S3(x, y)

=
2x̄ȳ + C1

x̄2 + ȳ2 + C1

2σxσy + C2

σ2
x + σ2

y + C2

σxy + C3

σxσy + C3

.
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The SSIM is bounded, −1 ≤ SSIM(x, y) ≤ 1, and symmetric in its input arguments,
SSIM(x, y) = SSIM(y, x). An SSIM(x, y) closer to 1 indicates better perceptual similarity
between the image patches x and y, and SSIM(x, y) = 1 if and only if x = y. If the stability
constants are chosen so that C3 = C2/2, then the S2(x, y) and S3(x, y) terms collapse into
a single term, as shown below,

SSIM(x, y) =
2x̄ȳ + C1

x̄2 + ȳ2 + C1

2σxy + C2

σ2
x + σ2

y + C2

.

This form of the SSIM has been widely adopted in the literature.

A global SSIM value between two images is often obtained by computing local SSIM
values between sets of corresponding image patches which cover the image and then taking
the mean. Such image patches are often obtained by “sliding” an n1 × n2 pixel “window”
in an overlapping manner. If M such sliding windows are employed, then the global, mean
SSIM, denoted as MSSIM, is given by

MSSIM =
1

M

M∑
i=1

SSIM(x, y).

For improved performance, it is suggested to use a Gaussian-weighted vector to compute
the local statistics [32]. In this formulation, the central pixels in each window contribute
more than those located around the edge. The relative weights of the local SSIM values
as they contribute to the global MSSIM can also be generalized similarly.

The luminance component S1(x, y) is connected to Weber’s Law. S1(x, y) can easily be
rewritten to obtain

S1(x̄, ȳ) =
2(ȳ/x̄) + C ′1

1 + (ȳ/x̄)2 + C ′1
, (2.3)

where C ′1 = C1/x̄
2. The dependence on the ratio ȳ/x̄ already suggests a connection to

Weber’s Law. To make it clear, let x be taken from a perfect reference image, while the
patch y is obtained from applying a small distortion to x. We expect y to approximate x,
i.e., y = x+∆x for some residual term ∆x. By linearity, we have ȳ = x̄+∆x. Substitution
into Equation 2.3 yields

S1(x̄, ȳ) =
2(1 + ∆x/x̄) + C ′1

1 + (1 + ∆x/x̄)2 + C ′1

If the ratio ∆x/x̄ is a constant from Weber’s Law, then as the mean intensity x̄ increases, a
greater deviation ∆x would be required to keep the perceptual luminance similarity index
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S1(x̄, ȳ) constant. This is consistent with Weber’s Law, which states that the human visual
system can tolerate greater discrepancies at high intensity regions of an image.

We conclude this section with one final observation: The correlation between two vec-
tors x, y ∈ RN is related to the angle between them. Indeed, the correlation

S3(x, y) =
σxy
σxσy

=
1

N−1
∑N

i=1(xi − x̄)(yi − ȳ)

[ 1
N−1

∑N
i=1(xi − x̄)2]1/2[ 1

N−1
∑N

i=1(yi − ȳ)2]1/2

can be rewritten using
x0 = x− x̄ and y0 = y − ȳ,

to obtain

S3(x, y) =

∑N
i=1(x0)i(y0)i

[
∑N

i=1((x0)i)
2]1/2[

∑N
i=1((y0)i)

2]1/2
=

x0 · y0
‖x0‖‖y0‖

. (2.4)

Eq. (2.4) shows that the correlation S3(x, y) may be interpreted as the cosine of the angle
θ between the two zero-mean vectors x0 and y0.

2.5 Discrete Fourier Transform (DFT)

The discrete Fourier transform (DFT) provides a frequency-domain representation of a
discrete spatial signal u ∈ RN [4]. The DFT treats the signal u as an entire period obtained
by evenly sampling a periodic sequence. Mathematically, it assumes u[j + N ] = u[j] for
j ∈ Z, which enforces a periodic extension of the data. As such, the basis functions used in
the DFT representation are N -periodic vectors. In particular, the following set of complex
N -periodic vectors, φk, 0 ≤ k ≤ N − 1, forms an orthonormal basis in RN ,

φk[n] =
1√
N

exp

(
i2πkn

N

)
, 0 ≤ n ≤ N − 1. (2.5)

Any signal u ∈ RN will admit an expansion of the form

u =
N−1∑
k=0

ckφk,
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where ck = 〈u, φk〉 denotes the Fourier coefficients of f in the {φk} basis. Substitution
gives

ck = 〈u, φk〉 =
N−1∑
n=0

u[n]φk[n]

=
1√
N

N−1∑
n=0

u[n] exp

(
−i2πkn

N

)
, 0 ≤ k ≤ N − 1.

The vector of coefficients c ∈ RN defines the DFT of the signal u ∈ RN . The original signal
can be retrieved by applying the inverse discrete Fourier Transform (IDFT), defined by,

u[n] =
1√
N

N−1∑
k=0

c[k] exp

(
i2πkn

N

)
, 0 ≤ n ≤ N − 1.

Other versions of the DFT and IDFT exist. Some common variations arise when the basis
functions φk are not normalized, i.e., φk form an orthogonal set, but not an orthonormal
one.

2.6 Discrete Cosine Transform (DCT)

For a signal u ∈ RN , the DFT can exhibit poor convergence near the endpoints u[jN ] for
j ∈ Z. Because the DFT assumes an N -point periodic extension of the data u, convergence
problems occur when u[N − 1] is not close to u[0] = u[N ]. To address this issue, one can
think of reflecting and repeating the data in order to produce an even 2N -point periodic
extension of the signal u ∈ RN . This idea is the key assumption made by the discrete
cosine transform (DCT) [5].

The following set of real N -vectors φk, 0 ≤ k ≤ N − 1, forms an orthonormal basis in
RN ,

φ0[n] =
1√
N
, 0 ≤ n ≤ N − 1

φk[n] =

√
2

N
cos

(
kπ

N

(
n+

1

2

))
, 1 ≤ k ≤ N − 1, 0 ≤ n ≤ N − 1.

14



For convenience, let

λk =

{
1√
2
, k = 0

1, k 6= 0

so that the basis functions φk, 0 ≤ k ≤ N − 1, can be compactly written

φk[n] = λk

√
2

N
cos

(
kπ

N

(
n+

1

2

))
, 0 ≤ n ≤ N − 1.

As before, any signal u ∈ RN can be represented by a linear combination of these basis
functions. Then the DCT is defined by the coefficients

ck = 〈u, φk〉 =
N−1∑
n=0

u[n]λk

√
2

N
cos

(
kπ

N

(
n+

1

2

))
, 0 ≤ k ≤ N − 1.

The original signal can be retrieved using the inverse discrete cosine transform (IDCT),
defined by,

u[n] =

√
2

N

N−1∑
k=0

ckλk cos

(
kπ

N

(
n+

1

2

))
, 0 ≤ n ≤ N − 1.

Like the DFT, there are many forms of the DCT and IDCT. The version provided here
is called the “DCT-II” and is widely used—in fact, it is the one employed in the JPEG
compression standard.
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Chapter 3

Intensity-based Weight Functions in
Generalized Weber’s Model of
Perception

3.1 Intensity-dependent Weight Functions Which Pro-

duce “Weberized” Distance Functions

In this section, we present our first approach towards adapting the MSE for image pro-
cessing applications. We first observe that L2-based distances, including the MSE, do
not accommodate Weber’s model of perception because they integrate point-wise intensity
differences, |u(x) − v(x)|2, with no consideration of the magnitudes of u(x) or v(x). By
contrast, as discussed in Section 2.4.2, the SSIM index is connected to Weber’s Law. In ad-
dition, other classical image processing methods have been adapted to conform to Weber’s
model, including total variation (TV) restoration [25] and Mumford-Shah segmentation
[26]. In this work, the idea is to “Weberize” the L2 distance by introducing a simple
intensity-dependent weighting function into the integral.

In the following discussion, we consider signals supported on D = [0, 1] with bounded
greyscale range Rg = [A,B] ⊂ (0,∞). The restriction A > 0 is necessary due to the
form of the weighting function, as will become clear below. We denote this relevant set of
signals by F = {u ∈ L2[0, 1] |u : [0, 1]→ Rg }. Before continuing, we mention that our
discussion can be extended to higher dimensional cases, including image functions such
that D ⊂ R× R. It also easily extends to the discrete case encountered in practice.
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Recall that Weber’s model of perception states that the human visual system will be
less (more) sensitive to a given change in intensity in regions of an image at which the
local image intensity is high (low). As such, a Weberized distance between two functions
u(x) and v(x) should tolerate greater (lesser) differences over regions in which they assume
higher (lower) intensity values. The degree of toleration as the intensity varies will be
determined by the Weber parameter a.

A Weberized weighting function could take on many interesting forms. One possibility,
which will be the focus of this work, is to consider weight functions which are dependent
upon one or both of the intensities of the image functions u(x), v(x) ∈ F . The general
form of such an intensity-based weighted L2 distance is

d2W (u, v) =

[∫
D

g(u(x), v(x))[u(x)− v(x)]2dx

]1/2
, (3.1)

where g : Rg × Rg → R+ denotes the intensity-dependent weight function.

Eq. (3.1) was first presented and thoroughly investigated in [11] and [10] for Weber’s
standard model with a = 1. The ideas explored in [11] and [10] provide a significant
foundation upon which the main contribution of this section is based, and further inform
other work presented later in this thesis.

A natural first question is that of properties that should be satisfied by the weight
function g as well as possible functional forms that it could assume. As discussed in [11],
for d2W to satisfy the properties of a metric, g(u, v) should be symmetric in its arguments,
i.e., g(u, v) = g(v, u). Furthermore, for d2W to be Weberized, it is desirable that g(u, v)
be decreasing in each of its arguments. These requirements are satisfied by the family of
weight functions, g(u, v) = |uv|−q, where q > 0, resulting in weighted L2 metrics of the
form,

d2W,q(u, v) =

[∫
D

1

u(x)qv(x)q
[u(x)− v(x)]2

]1/2
The appearance of both functions in the denominator, however, complicates mat-

ters when we consider the approximation problem u ≈ v where v is a linear combi-
nator of basis functions—see Sect. (3.2). In [11], two unsymmetric weight functions,
g1(u(x), v(x)) = u(x)−2 and g2(u(x), v(x)) = v(x)−2, were employed to produce two inte-
gral distance functions. The resulting distance functions were shown to conform to Weber’s
standard model for a = 1. We now present an extension of that result to produce distance
functions which conform to Weber’s model for any a > 0.
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For any a > 0, consider the nonsymmetric weight function g1(u(x), v(x)) = u(x)−2a so
that the weighted L2 distance in Eq. (3.1) becomes

∆a(u, v) =

[∫
D

1

u(x)2a
[u(x)− v(x)]2dx

]1/2
. (3.2)

Now consider the nonsymmetric weight function g2(u(x), v(x)) = v(x)−2a so that the
weighted L2 distance in Eq. (3.1) becomes

∆a(v, u) =

[∫
D

1

v(x)2a
[u(x)− v(x)]2dx

]1/2
. (3.3)

Note that in general, ∆a(u, v) 6= ∆a(v, u), which implies that ∆a is not a metric in the strict
mathematical sense of the term. This is once again the price paid for employing weight
functions g(u, v) which are not symmetric in the functions u and v. This complication is
not a serious limitation because of the following results that apply to our space F of image
functions.

Theorem 2. Let u,v ∈ F , once again recalling the assumption that the greyscale range
Rg = [A,B] is bounded away from zero, i.e., A > 0. Then for ∆a(u, v) and ∆a(v, u)
defined in Equations (3.2) and (3.3) respectively,

1

Ba
d2(u, v) ≤

{
∆a(u, v)
∆a(v, u)

}
≤ 1

Aa
d2(u, v), (3.4)

where d2 denotes the L2 metric, from which it follows that(
A

B

)a
∆a(u, v) ≤ ∆a(v, u) ≤

(
B

A

)a
∆a(v, u). (3.5)

Proof. We first proceed to obtain Eq. (3.4). Our restriction of the range Rg = [A,B]
immediately gives

0 < A ≤ u(x) ≤ B.

Because y2a is increasing for y > 0 and for any a > 0, we obtain

1

B2a
≤ 1

u(x)2a
≤ 1

A2a
. (3.6)

Multiply the inequality (3.6) by [u(x)− v(x)]2 ≥ 0 and integrate to get∫
D

1

B2a
[u(x)− v(x)]2dx ≤

∫
D

1

u(x)2a
[u(x)− v(x)]2dx ≤

∫
D

1

A2a
[u(x)− v(x)]2dx.
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Finally, taking the square root,

1

Ba

[∫
D

[u(x)− v(x)]2dx

]1/2
≤
[∫

D

1

u(x)2a
[u(x)− v(x)]2dx

]1/2
≤ 1

Aa

[∫
D

[u(x)− v(x)]2dx

]1/2
,

which—with reference to the definition in Eq. (3.2)—we recognize as

1

Ba
d2(u, v) ≤ ∆a(u, v) ≤ 1

Aa
d2(u, v). (3.7)

Noting that we can equally write Eq. (3.6) for v(x) in place of u(x), the argument proceeds
as before to obtain

1

Ba
d2(u, v) ≤ ∆a(v, u) ≤ 1

Aa
d2(u, v), (3.8)

which, together with the previous inequality, establish Eq. (3.4).

Using Eq. (3.7) from the preceding result, we have

d2(u, v) ≤ Ba∆a(u, v),

which can be combined with the upper bound in Eq. (3.7) to get the first half of the desired
inequality,

∆a(v, u) ≤
(
B

A

)a
∆a(u, v). (3.9)

Similarly, Eq. (3.8) gives
d2(u, v) ≤ Ba∆a(v, u),

which can be used with
Aa∆a(u, v) ≤ d2(u, v)

to obtain
Aa∆a(u, v) ≤ d2(u, v) ≤ Ba∆a(v, u),

or, after rearranging, (
A

B

)a
∆a(u, v) ≤ ∆a(v, u).

Putting Eq. (3.9) and Eq. (3.1) together, we obtain Eq. (3.5),(
A

B

)a
∆a(u, v) ≤ ∆a(v, u) ≤

(
B

A

)a
∆a(v, u),

which completes the proof. �
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The following example illustrates how the weighting function accommodates generalized
Weber’s model of perception. Consider the “flat” reference image u(x) = I, where I ∈ Rg.
For an a > 0, let v(x) = I+∆I be the constant approximation to u(x), where ∆I = CIa >
0 is the minimum perceived change in intensity corresponding to I, according to Weber’s
model. The L2 distance between u and v is

d2(u, v) =

[∫
D

[u(x)− v(x)]2dx

]1/2
=

[∫
D

[I − (I + ∆I)]2dx

]1/2
=

[∫
D

(∆I)2dx

]1/2
=

[∫
D

dx

]1/2
·∆I

= KCIa, where K =

[∫
D

dx

]1/2
. (3.10)

If we impose D = [0, 1], then K = 1. In general, K is a constant independent of u(x) = I.

The weighted L2 distance in Eq. (3.2) is

∆a(u, v) =

[∫
D

1

u(x)2a
[u(x)− v(x)]2dx

]1/2
=

[∫
D

1

I2a
[I − (I + ∆I)]2dx

]1/2
=

[∫
D

1

I2a
(∆I)2dx

]1/2
=

[∫
D

1

I2a
C2I2adx

]1/2
=

[∫
D

dx

]1/2
· C

= KC. (3.11)

Note that the L2 distance in Eq. (3.10) increases with the intensity level I, which is
expected since ∆I increases with I. However, the weighted L2 distance in Eq. (3.11)
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remains constant. As such, we claim that ∆a(u, v) accommodates, or “conforms to”,
Weber’s model of perception for a > 0: Perturbations ∆I of image intensities I according
to Weber’s model, ∆I = CIa, yield the same distance measure, independent of I.

Before concluding this section, it is necessary to mention another related method that
has been devised to Weberize Lp-based metrics, namely, the use of appropriate measures
that are supported on the (positive) range space Rg = [A,B] of functions to reformulate the
integrals which normally define the Lp distance between two functions. Some foundational
ideas in this section also appeared in [15] and [16]; This related method is discussed in
greater detail in [14]. That being said, this method will not be discussed any further in
this thesis.

3.2 Best Approximation in Terms of Weberized Dis-

tance Functions

In what follows, let {φk}∞k=1 denote a set of real-valued functions that form a complete basis
in L2([0, 1]). Now let u ∈ F ⊂ L2[0, 1] denote the reference function to be approximated.
We are interested in best approximations to u having the form,

u ≈ vn =
n∑
k=1

ckφk,

for some n ≥ 1.

We wish to find the “best Weberized” approximation to u which corresponds to mini-
mizing the following weighted L2 distance,

∆a(u, vn) =

∫
D

1

u(x)2a

[
u(x)−

n∑
k=1

ckφk

]2
dx

1/2

for a given n ≥ 1 and a > 0. In practice, it is more convenient to work with the squared
distance function,

[∆a(u, vn)]2 =

∫
D

1

u(x)2a

[
u(x)−

n∑
k=1

ckφk

]2
dx := f(c). (3.12)
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Letting g(x) denote the intensity-dependent weighting function, we can expand Eq. (3.12)
to get,

f(c) =

∫
D

g(x)

[
u(x)−

n∑
k=1

ckφk

]2
dx

=

∫
D

g(x)u(x)2dx− 2
n∑
k=1

ck

∫
D

g(x)u(x)φkdx+
n∑
k=1

n∑
j=1

∫
D

g(x)φkφjdx. (3.13)

While I was not involved in establishing the relevant theoretical results, a proof of the
existence and uniqueness of the minimizer vn ∈ F can be found in [27]. Moreover, in [27],
the space of functions F allows for more general behaviour than what is considered in this
thesis.

We may now pursue the unique optimizer vn by way of the stationarity conditions,

∂f

∂cp
= 0, 1 ≤ p ≤ n.

Differentiating Eq. (3.13), we obtain the following linear system of equations in terms of
the unknown coefficients cp,∫

D

g(x)u(x)φpdx =
n∑
k=1

ck

∫
D

g(x)φkφpdx , for 1 ≤ p ≤ n. (3.14)

Note that in the special case g(x) = 1, we have the usual L2-based distance and
Eq. (7.14) simplifies to

〈u, φp〉 =
n∑
k=1

ck〈φk, φp〉 for 1 ≤ p ≤ n,

which, using the orthonormality of the basis functions, reduces to the Fourier coefficients
as expected,

cp = 〈u, φp〉 for 1 ≤ p ≤ n.

3.2.1 Selected Examples in Best Weberized Approximations

Example 1: Consider the following step function on D = [0, 1],

u(x) =

{
2, 0 ≤ x ≤ 1/2

4, 1/2 < x ≤ 1.
(3.15)
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We use the following set of functions

φ1(x) = 1

φk(x) =
√

2 cos((k − 1)πx), k ≥ 2, (3.16)

which form an orthonormal basis in the space of functions L2[0, 1].

In Fig. 3.1 are presented the plots of the best Weberized approximations vn to u using
N = 5, N = 10, and N = 20 basis functions for the cases a = 0.25, 0.5, · · · , 2.0. The
best L2 approximations, un, corresponding to the case a = 0, are also shown for compar-
ison. To obtain the unknown coefficients in each case, we solve the system of equations
described by Eq. (7.14) in Maple using the ‘int’ command. As expected, the best Weber-
ized approximations vn yield better approximations of u(x) than un over [0, 0.5] and poorer
approximations over [0.5, 1]. Also as expected, the degree of “betterness” over [0, 0.5] and
“worseness” over [0.5, 1] of the Weberized approximations increases with the Weber ex-
ponent a since the weight function g(u) = u−2a decreases more rapidly with increasing
a.

Example 2: Consider the 512 × 512-pixel, 8 bit-per-pixel image Boat. Recall the DCT
basis functions defined previously for vectors in RN ,

φk[n] = λk

√
2

N
cos

(
kπ

N

(
n+

1

2

))
, 0 ≤ n ≤ N − 1, (3.17)

where

λk =

{
1√
2
, k = 0

1, k 6= 0.

Eq. (3.17) can be used to define the 2-dimensional DCT basis,

φkl[n,m] = φk[n]φl[m], 0 ≤ n,m ≤ N − 1, (3.18)

for 0 ≤ k ≤ K − 1 and 0 ≤ l ≤ L− 1, where K and L are the numbers of basis functions
used in the best approximation problem. In the following experiment, we compute the best
approximation in 8×8 image blocks, using 2×2 = 4 2D-DCT basis functions for each block.
This choice corresponds to N = 8 and K = L = 2. To obtain the unknown coefficients
for each block, we minimize the distance function in Eq. (3.12) in Maple using gradient
descent. After processing each block, we combine the block-wise best approximations to
construct the image. Theoretically, we can perfectly reconstruct the Boat image by using
8× 8 2D-DCT basis functions for each block.
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Figure 3.2 depicts (a) the original Boat image, (b) the best L2 approximation, and
the best Weberized approximations for (c) a = 0.5 and (d) a = 1. Overall, there is not
much perceptual difference between the approximations in (b), (c), and (d); Although
the sky is reconstructed fairly well, many of the visual details of the reference image are
obscured by the blockiness of the approximations. Moreover, there are many annoying
ringing artifacts caused by the distortion over regions with edges separating high and low
greyscale intensities. For example, the diagonal posts coming off the central mast exhibit
an obvious ringing effect.

Despite the general similarity of the approximations, upon closer inspection, the dark
shadows throughout the images appear more “shaded in” in (c) and (d) when compared
to (b). For example, the central mast appears more uniformly black in (c) and (d); As a
result, the ringing artifacts are slightly less pronounced here compared to the mast in the
best L2 approximation. Similarly, the name of the boat also appears thicker and darker in
(c) and (d). However subtle, these observations correspond with the expected effect of the
intensity-based weighting function: They suggest that the Weber-based approximations
tolerate lesser differences over lower intensity regions of the image.

The opposite observation can be made in the high intensity regions of the image. In
particular, the original image features a bright rope hanging off the front of the central
boat. The bright end of rope strongly stands out against the dark underside of the boat. As
expected, this line is slightly brighter and more pronounced in (b) than it is in (c) and (d).
This observation complements those made previously, suggesting that the Weber-based
approximations tolerate greater differences over high intensity regions of the image.
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Figure 3.1: Best L2 (a = 0) approximation and best Weberized approximations for
a = 0.25, · · · , 2.00 to the step function u(x) using N = 5, N = 10, and N = 20 ba-
sis functions.

25



(a) Original Image (b) a = 0 (best L2)

(c) a = 0.5 (d) a = 1

Figure 3.2: (a) Original Boat image and best approximations for (b) a = 0 (best L2), (c)
a = 0.5, and (d) a = 1 using 2× 2 = 4 2D-DCT basis functions for each 8× 8 image block.
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Chapter 4

The Einstein Images

4.1 The Einstein Images

We now present our first set of experiments on the well-known Einstein images. These
experiments, the first of many to be presented in this thesis, begin our detailed investigation
of the SSIM. A main goal of the experiments presented in this section is to explore whether
the correlation alone is sufficient to characterize the visual closeness between images.

Figure 4.1 shows six Einstein portraits, each of which is a 256 × 256 pixel, 8 bits-per-
pixel greyscale image. We are grateful to have obtained these Einstein images from Prof.
Z. Wang, Department of Electrical and Computer Engineering, University of Waterloo.
They have been used in several of his papers to illustrate the inadequacy of the traditional
L2 metric for applications in signal and image processing; To the best of our knowledge,
these images were first presented by Wang, Bovik, and Sheikh in [32].

The images blur, contrast, impulse, jpg, and meanshift (Figure 4.1 (b)-(f)) are perturba-
tions of the Einstein image original (Figure 4.1 (a)). Each image (b)-(f) has been degraded
by a particular distortion as indicated by its title. The blur image results from applying
a blurring filter to original. contrast is obtained by performing a “contrast stretch” on
original. (“Constrast stretching” describes an intensity transformation which “stretches”
a dominant interval of greyscale values to span a larger range of values.) impulse is ob-
tained by contaminating original with randomly occurring white and black pixels, usually
called “impulsive salt-and-pepper noise”. jpg is produced by a JPEG compression of orig-
inal using a rather low quality factor. meanshift is obtained by increasing all of the
greyscale values in original by a small constant value, resulting in an overall lighter image.
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(a) original (b) blur (c) contrast

(d) impulse (e) jpg (f) meanshift

Figure 4.1: The reference Einstein image original and its perturbations.

(Greyscale values which, once shifted, would exceed the dynamic range of the image are
simply assigned the highest possible value.)

All of the distortions were adjusted to yield nearly equal MSE relative to original.
Because the degraded images differ significantly and obviously in perceptual quality, they
are a striking example of the failure of the MSE to measure perceptual quality. Table 4.1
reports the RMSE values of the Einstein images in Figure 4.1. It can be seen from the
table that the jpg image is somewhat of an exception, with a slightly lower RMSE than
the others.

The MSSIM scores, reported in [32] and presented in Table 4.3, are more indicative of
the apparent perceptual quality of the images. Unlike the MSE, the MSSIM scores are well
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blur contrast impulse jpg meanshift
11.9962 12.0091 11.9975 11.9144 11.9998

Table 4.1: RMSE between the original Einstein images and its perturbations.

separated, which reflects the significant variations in quality among the degraded images
relative to original.

blur contrast impulse jpg meanshift
0.6940 0.9133 0.8317 0.6624 0.9884

Table 4.2: MSSIM between the original Einstein images and its perturbations.

Perhaps more pertinent than the actual MSSIM values are their relative values. The
values in Table 4.2 imply the following ordering of the distorted images in decreasing order
of quality:

meanshift > contrast > impulse > blur > jpg. (4.1)

Ideally the ranking in Eq. (4.1) is consistent with the reader’s own subjective preferences
of the distorted images in Figure 4.1. While personal preferences among the poorer images
may vary between individiuals, it should not be controversial to assert that the meanshift
and contrast images clearly “look” the closest to original. It would only be reasonable
to choose meanshift as the most similar to original visually, as does the MSSIM. It is
interesting that while the “errors” in the contrast image are evident, it is perhaps the
most visually appealing of all the images. Of course, the MSSIM is concerned with visual
faithfulness to a reference image and not visual enhancement of images.

4.2 Correlation Between the Einstein Images

We now present our first set of so-called “Einstein experiments”. Although simple-minded,
their inclusion preserves the natural unfolding of our explorations, which—we have come
to feel in retrospect—progressed in a satisfying and highly interconnected manner. In the
same way they served us, we believe these experiments may provide an instructive first
example for some readers. This section also prepares us to revisit the Einstein images in
Chapter 8, where we compare different and novel measures of gradient similarity. Moreover,
these two sets of “Einstein experiments” jointly introduce many ideas to be re-explored on
a larger scale in Chapter 9, where we present our experiments on the LIVE database.
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Recall that the SSIM is composed of three component terms,

SSIM(x,y) = S1(x, y) · S2(x, y) · S3(x, y)

=
2x̄ȳ + C1

x̄2 + ȳ2 + C1

2σxσy + C2

σ2
x + σ2

y + C2

σxy + C3

σxσy + C3

, (4.2)

one of which is the correlation (namely, the S3 term). It is our belief that the correlation
is the most important component of the SSIM. Because the S3 term is thought to perform
the structural comparison, this hypothesis certainly aligns with the emphasis on structural
integrity which underlies the entire SSIM approach. Our primary interest in this section
is to explore whether the correlation alone is a sufficient image quality measure. To that
end, we perform a simple experiment which computes the SSIM and correlations between
the original Einstein image and each of its five perturbations.

Our process can be summarized as follows:

1. For a given n > 0, partition the images into n × n nonoverlapping patches. In this
experiment, we employed the following values for n: 8, 16, 32, and 64.

2. Compute the SSIM and correlation between all corresponding pairs of patches in
original and each of its perturbations. Then combine the patchwise scores to obtain
the average SSIM and average correlation for each perturbed image.

Relatively large values of the stability constants C1, C2, and C3 push the three quotients
in Eq. (4.2) towards a perfect similarity index of 1. We seek to limit the influence of the
stability constants on the S3 and SSIM values computed in our experiment. For this
reason, we omit the stability constants in the numerators of the S1, S2, and S3 terms. To
protect against numerical instabilities, we are obliged to include small stability constants
C1 = C2 = C3 = 10−7 in the denominator only. This discussion leads one to question the
extent to which variations in the stability constants affect the SSIM. The sensitivity of the
SSIM to changes in the stability constants will be a focus of Chapter 9.

Our SSIM scores, obtained using the simplistic method described above, are reported in
Table 4.3. Table 4.3 also presents the MSSIM values for comparison, which are computed
as discussed in Chapter 2, p. 12. Before performing a comparison with the correlation, a
few observations can be made on these results alone. For each perturbed image, the SSIM
values increase as the patch size n increases, with one exception: the impulse image from
patches sized 8×8 to 16×16. Across all four values of n, a particularly significant increase
is observed for the poorest images, i.e., blur and jpg. The increase is not as pronounced for
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8× 8 16× 16 32× 32 64× 64 MSSIM
blur 0.5247 0.6891 0.8215 0.9119 0.6940
contrast 0.8962 0.9124 0.9310 0.9640 0.9133
impulse 0.7951 0.7352 0.8210 0.9082 0.8317
jpg 0.3786 0.5966 0.8003 0.9056 0.6624
meanshift 0.9877 0.9887 0.9899 0.9927 0.9884

Table 4.3: Average SSIM values between the original Einstein image and its degradations
for various patch sizes.

contrast and meanshift, both of which look very similar to original, because their minimum
initial SSIM values are already relatively high.

The above discussion leads to the question, “What is the best value of n in this simplistic
method?” If we consider the MSSIM values included in the final column of Table 4.3 as
some kind of reference values, then a patch sized somewhere between 16× 16 and 32× 32
pixels should perform well. The “impulse” image is still the exception, once again due to
its “dip” in SSIM values which occurs at 16 × 16 patches. Despite this issue, the values
obtained using 16× 16 patch size do preserve the ordering implied by the MSSIM values,
as previously stated in Eq. (4.1),

meanshift > contrast > impulse > blur > jpg.

The SSIM values obtained using 8 × 8 patches, although overall lower than their MSSIM
counterparts, preserve this ordering as well and may also be a suitable choice.

The correlation scores are reported in Table 4.4. As observed for the SSIM scores,
the correlation values increase with patch size n—with, once again, the exception of the
impulse image from patches sized 8 × 8 to 16 × 16. The contrast and meanshift images,
which are visually close to original according to the MSSIM, are essentially constant at
the value 1.0 for all patch sizes. At this point, one might suspect that the correlation is
not working as well as the SSIM in ascertaining visual differences between image sublocks.

That being said, the correlation is able to produce a ranking of the distorted images
that is consistent with the ordering imposed by the MSSIM in Eq. (4.1). As in the case
for the SSIM values, for all block sizes, the correlation-based ordering of the images places
meanshift and contrast as first and second, respectively, and jpg in last place. The impulse
and blur images change positions with patch size as before. For 8× 8 patches, impulse is
greater than blur ; But for all higher patch sizes, impulse is less than blur. At a minimum,
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8× 8 16× 16 32× 32 64× 64
blur 0.6698 0.7815 0.8648 0.9260
contrast 0.9936 0.9957 0.9996 0.9997
impulse 0.8218 0.7673 0.8394 0.9126
jpg 0.3881 0.6078 0.8081 0.9074
meanshift 1.0000 1.0000 1.0000 1.0000

Table 4.4: Average S3 values between the original Einstein image and its degradations.

using 8 × 8 patches, the correlation discerns sufficient differences in visual quality among
the degraded images to assign the same relative ordering as the MSSIM.

To see if there is any correlation between the SSIM values in Table 4.3 and the corre-
lation values in Table 4.4, we plot the ordered pairs of values (SSIM, correlation) for all
images and patch sizes. The resulting plot is shown in Figure 4.2. The pairs from contrast

Figure 4.2: Plot of the ordered pairs (SSIM, correlation) for all degraded images and patch
sizes.

and meanshift are concentrated near the top right of the plot, i.e., near (1, 1), from which
little can be concluded. As for the other three images, there is a general correlation be-
tween the SSIM and correlation values which is the result of their simultaneous increase
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with block size. Indeed, even in the case of the exceptional impulse image, the simulta-
neous decrease of the SSIM and correlation values from 8 × 8 patches to 16 × 16 patches
produces ordered pairs which still lie very roughly along a straight line.

All told, the results of our simple experiment suggest that there is reason to be hopeful
that correlation alone may be used in place of the entire SSIM to assess visual quality. But
before any such conclusions should be drawn and the first two components of the SSIM
potentially tossed aside, it is only prudent to examine what information the S1 and S2

terms contribute to the computation.

In Table 4.5 are presented the S1 scores of the degraded Einstein images, computed
using the same method previously described. Recall that the S1 values are dependent upon
the mean intensity of the individual image patches.

8× 8 16× 16 32× 32 64× 64
blur 0.9995 0.9999 1.0000 1.0000
contrast 0.9275 0.9433 0.9616 0.9952
impulse 0.9997 0.9999 1.0000 0.9952
jpg 0.9983 0.9993 0.9998 1.0000
meanshift 0.9877 0.9887 0.9899 0.9927

Table 4.5: Average S1 values between the original Einstein image and its degradations for
various patch sizes.

For each fixed patch size n, the S1 values of all images lie very close to 1.0—with the
exception of the contrast image, whose S1 scores are slightly lower. Because the “contrast
stretch” exaggerates the greyscale intensities across the image, the mean intensities, espe-
cially in small image patches, are more likely to be perturbed away from those in original.
Thus the S1 scores for contrast are understandably more penalized compared to the other
distortions, such as impulse noise and blurring, which have less impact on local image
intensity. constrast aside, the S1 scores of all other images for all patch sizes belong in
the interval [0.99, 1.00] when rounded to two decimal places. As such, no ranking can be
performed. Indeed, we would not expect much, if any, ranking capacity since the S1 values
are determined only by the mean values of image blocks.

In Table 4.6 are presented the values of the second component, S2, of the SSIM as com-
puted for the Einstein images. Recall that the S2 is formulated to measure the similarities
of local patch contrasts.

In the case of 8× 8 patches, a significant differentiation between the degraded images
is achieved, from which a ranking consistent with Eq. (4.1) can be assigned. The degree
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8× 8 16× 16 32× 32 64× 64
blur 0.7481 0.8622 0.9433 0.9845
contrast 0.9679 0.9689 0.9686 0.9689
impulse 0.9083 0.9108 0.9699 0.9948
jpg 0.4862 0.8113 0.9840 0.9980
meanshift 1.0000 1.0000 1.0000 1.0000

Table 4.6: Average S2 values between the original Einstein image and its degradations for
various patch sizes.

of differentiation significantly lessens as the block size n increases. Moreover, for 16 × 16
patches, this ranking falters due to the reversal of the jpg and blur images. For both
patches of size 32 × 32 and 64 × 64, the ranking of the jpg image has increased further,
surpassing even the impulse and contrast images.

From the above results, it appears that the S1 term of the SSIM function performs
a very minor role, if any, in differentiating between images. Although the S2 term does
differentiate between images, the range of the S3 scores is more spread. This is especially
true as the blocksize n increases: For large n, the S2 values differ little between the images,
while the S3 scores are still reflecting more significant differences in visual quality. To
complete our analysis, we now present the values of the product S2S3 in Table 4.7.

8× 8 16× 16 32× 32 64× 64 MSSIM
blur 0.5249 0.6892 0.8216 0.9119 0.6940
contrast 0.9618 0.9646 0.9682 0.9686 0.9133
impulse 0.7951 0.7352 0.8211 0.9082 0.8317
jpg 0.3792 0.5969 0.8005 0.9056 0.6624
meanshift 1.0000 1.0000 1.0000 1.0000 0.9884

Table 4.7: Average product values S2S3 between the original Einstein image and its degra-
dations for various patch sizes. The MSSIM is included in the last column for comparison.

There is, as expected, a high degree of similarity between the S2S3 entries in Table 4.7
and the SSIM values in Table 4.3. The difference between the first three entries of the
contrast row, which have elevated S2S3 values compared to SSIM values, can of course be
explained by their low corresponding S1 values in Table 4.5.
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4.3 Weberized Distance Between the Einstein Images

Before concluding this chapter, we would like to examine the Weberized L2 distances
between the original Einstein image and its perturbations. We are interested to see if they
are roughly constant as observed for the L2 distances presented in Table 4.1. We have used
the following formula, which is the discrete 2D analogue of our distance function discussed
in Chapter 3 with a = 1,

dW (u, v) =
1

N

[
N∑
i=1

N∑
j=1

1

[uij + 1]2
[uij − vij]2

]1/2
, 0 ≤ uij, vij ≤ 2M − 1, (4.3)

where N = 256 and M = 8. Note from the denominator that the greyscale values have
been artificially shifted upward by 1 (this shift is cancelled in the numerator) since the
value of zero is included in the greyscale range 0 to 255. The resulting Weberized distances
are presented in Table 4.8.

blur contrast impulse jpg meanshift
0.5161 0.3041 0.2222 0.2466 0.2011

Table 4.8: Weberized L2 distances between the original Einstein image and its perturba-
tions.

The much lower values of these distances are due to the normalizing influence of the
denominator in Eq. (4.3). Interestingly, these distances are not roughly equal to each other.
In fact, the rather significant deviation of the distance of the blur image from the others
is quite interesting and worthy of more investigation.

Finally, we note that there is little, if any, correlation between the Weberized distances
and the visual quality of the distorted images as characterized by, say, the MSSIM values.
Yes, the meanshift image, which, according to the MSSIM, was closest to original in quality,
is also closest in terms of the Weberized distance. But the worst quality image, jpg, lies
closer to original in Weberized distance than the next best quality image, contrast. The
Weberized distance is a modified L2 distance which contains no explicit information about
correlation. As such, we expect it to play a secondary role to correlation in image quality
assessment.
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Chapter 5

SSIM-based Best Approximation
Using Orthonormal Functions

5.1 Previous Work on SSIM-based Approximation of

Functions Using Orthonormal Functions

We concluded in the preceding chapter that our Weberized distance cannot alone char-
acterize the visual quality of the Einstein images because it suffers from an absence of
correlation-based information. This motivates us to explore, in this section, the possibil-
ity of incorporating the correlation into our Weberized best-approximation problem from
Chapter 3.

The formalism of this chapter follows closely from the mathematics presented in [3],
where the entire SSIM function is maximized using orthonormal basis functions. We also
benefit from important results in [2], which investigates the best approximation problems
seeking to maximize the individual component functions S1, S2, and S3. Below, we will
re-establish a special case of the main result in [3] for the reader’s benefit. While [3] and [2]
are both concerned with the discrete case (i.e., the M -dimensional best approximation of
a signal x ∈ RN), we will re-establish the result for functions of a continuous real variable.

Indeed, consistent with Chapter 3, we will once again be considering function approx-
imation over the space L2[0, 1]. The result of interest pertains to maximizing the local
SSIM function, recalled below,

SSIM(u, v) =
2ūv̄ + C1

ū2 + v̄2 + C1

2σuσv + C2

σ2
u + σ2

v + C2

σuv + C3

σuσv + C3

. (5.1)
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Although the local SSIM is usually computed in overlapping sliding windows, we will ana-
lyze the simpler case where the SSIM function is defined over non-overlapping blocks. This
is a simplifying assumption which we have inherited from [3], as it ensures that a simple
analytic solution for the unique global maximum of the SSIM function is admitted. Very
briefly, the result to be re-established states that the optimal SSIM-based approximation
may be determined from the optimal L2 approximation as follows: The first-order coeffi-
cients are the same, and the higher order SSIM coefficients are obtained from their Fourier
counterparts by scaling.

In re-establishing the above result, our focus will be restricted to a special case which
corresponds to setting C1 = C2 = C3 = 0 in Eq. (5.1). This choice yields the “collapsed”
form of the SSIM, as described on p. 12 and stated below,

SSIM(u, v) =
4ūv̄σuv

(ū2 + v̄2)(σ2
u + σ2

v)
. (5.2)

The more general result provided in [3] allows for arbitrary stability constants and, as a
result, looks messier. That being said, the proof is no more complicated in nature and
follows the same process pursued below.

When introducing the SSIM on p. 12, we defined the quantities in Eq. (7.39) in terms
of discrete statistics. Here, we will work with their continuous analogues, defined for
u, v ∈ L2[0, 1] as follows,

ū =

∫ 1

0

u(x)dx

and

σ2
u =

∫ 1

0

(u(x)− ū)2dx

=

∫ 1

0

u(x)2dx− 2ū

∫ 1

0

u(x)dx+ ū2
∫ 1

0

dx

= u2 − 2ū2 + ū2

= u2 − ū2.
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Similar expressions hold for v. Finally,

σuv =

∫ 1

0

(u(x)− ū)(v(x)− v̄)dx

=

∫ 1

0

u(x)v(x)dx− v̄
∫ 1

0

u(x)dx− ū
∫ 1

0

v(x)dx+ ūv̄

∫ 1

0

dx

= uv − v̄ū− ūv̄ + ūv̄

= uv − ūv̄.

Let {φk}∞k=1 denote a complete orthonormal basis in L2[0, 1]. We once again assume that
u is a reference signal to be approximated and vM is an M -dimensional best approximation
to u. This implies the following expansions,

u(x) =
∞∑
k=1

akφk and vM(x) =
M∑
k=1

ckφk, (5.3)

where

ak = 〈u, φk〉 =

∫ 1

0

u(x)φk(x)dx, k ≥ 1,

and the ck, 1 ≤ k ≤ M , are to be determined. We further require that the first element
of the basis is “flat”, i.e., φ1(x) = 1, 0 ≤ x ≤ 1, and that all other basis functions are

zero-mean, i.e., φk =
∫ 1

0
φk(x)dx = 0, k ≥ 2.

We can express the quantities in the SSIM function in terms of the series expansions
in Eq. (5.3). Beginning with the mean value ū, we have

ū =

∫ 1

0

u(x)dx =

∫ 1

0

∞∑
k=1

akφk(x)dx =
∞∑
k=1

ak

∫ 1

0

φk(x)dx = a1, (5.4)

where the final simplification is due to the assumptions on the basis functions φk. Similarly,

v̄M =

∫ 1

0

vM(x)dx =

∫ 1

0

M∑
k=1

ckφk(x)dx = c1. (5.5)

The orthonormality of the basis functions φk is used to simplify the variance, as shown
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below,

σ2
u = u2 − ū2

=

∫ 1

0

[
∞∑
k=1

akφk(x)

]2
dx− a21

=
∞∑
k=1

∞∑
l=1

akal

∫ 1

0

φkφldx− a21

=
∞∑
k=1

a2k − a21

=
∞∑
k=2

a2k. (5.6)

In the same way, one will also obtain

σ2
vM

=
M∑
k=2

c2k. (5.7)

And finally, the covariance simplifies similarly,

σuvM = uvM − ūv̄M

=

∫ 1

0

[
∞∑
k=1

akφk(x)
M∑
l=1

clφl(x)

]
dx− a1c1

=
∞∑
k=1

M∑
l=1

akcl

∫ 1

0

φkφldx− a1c1

=
M∑
k=1

akck − a1c1

=
M∑
k=2

akck. (5.8)

We will obtain an expression for the optimal SSIM-based coefficients by way of the sta-
tionarity conditions. To simplify the exercise, we will use logarithmic differentiation on
Eq. (7.39). First, taking the logarithm yields

log(SSIM(u, vM)) = log(4ū) + log(v̄M) + log(σuvM )− log(ū2 + v̄2M)− log(σu + σvM ).
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Now differentiate the above expression with respect to each coefficient cp, 1 ≤ p ≤M ,

1

SSIM(u, vM)

∂SSIM(u, vM)

∂cp
=

1

4ū

∂ū

∂cp
+

1

v̄M

∂v̄M
∂cp

+
1

σuvM

∂σuvM
∂cp

− 1

ū2 + v̄2M

∂ū2

∂cp

− 1

ū2 + v̄2M

∂v̄2M
∂cp
− 1

σ2
u + σ2

vM

∂σ2
u

∂cp
− 1

σ2
u + σ2

vM

∂σ2
vM

∂cp
. (5.9)

Clearly, the partial derivatives involving only u vanish, namely,

∂ū

∂cp
=
∂ū2

∂cp
=
∂σ2

u

∂cp
= 0.

After multiplying by SSIM(u, vM), we have already simplified Eq. (5.9) greatly, written
below for 1 ≤ p ≤M ,

∂SSIM

∂cp
= SSIM

[
1

v̄M

∂v̄M
∂cp

+
1

σuvM

∂σuvM
∂cp

− 1

ū2 + v̄2M

∂v̄2M
∂cp
− 1

σ2
u + σ2

vM

∂σ2
vM

∂cp

]
. (5.10)

The remaining partial derivatives can be computed easily using the series expansions in
Eqs. (5.4)-(5.8), as follows,

∂v̄M
∂cp

=
∂

∂cp
c1 =

{
1, p = 1

0, otherwise

∂v̄2M
∂cp

=
∂

∂cp
c21 =

{
2c0, p = 1

0, otherwise

∂σuvM
∂cp

=
∂

∂cp

N∑
k=2

akck =

{
0, p = 1

ap, otherwise

∂σ2
vM

∂cp
=

∂

∂cp

N∑
k=2

c2k =

{
0, p = 1

2cp, otherwise

Once again, the partial derivatives simplify nicely due to the assumptions on the basis
functions φk. In general, the RHS of Eq. (5.9) is a complicated nonlinear expression in the
coefficients cp and a solution of the equations ∂SSIM

∂cp
= 0 is intractable.

At a relative minimum or maximum of SSIM(u, vM), the M partial derivatives described
by Eq.(5.10) must vanish. We substitute the expression obtained above in Eq. (5.10) to
obtain the following stationarity conditions.
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First, for p = 1:

∂SSIM(u, vM)

∂c1
= SSIM(u, vM)

[
1

v̄M
− 2c1
ū2 + v̄2M

]
= 0.

Assuming SSIM 6= 0 and recalling that ū = a1 and v̄M = c1, we get

2c21 = a21 + c21 =⇒ c1 = ±a1. (5.11)

We rule out the solution c1 = −a1 because it will yield an image whose mean is −a1 = −ū.

For p 6= 1:

∂SSIM(u, vM)

∂cp
= SSIM(u, vM)

[
ap
σuvM

− 2cp
σ2
u + σ2

vM

]
= 0

Again assume SSIM 6= 0, and observe that when ap = 0, then we must have cp = 0. For
cp 6= 0, we can rearrange to obtain

ap
cp

=
2σuvM

σ2
u + σ2

vM

, 2 ≤ p ≤M. (5.12)

Notice that the RHS of Eq. (5.13) is constant for all p. In other words, for some constant
α 6= 0, we have

a2
c2

=
a3
c3

= · · · = aM
cM

=
1

α

or, after inverting,
cp = αap, 2 ≤ p ≤M. (5.13)

At this point, we have determined all M SSIM-based coefficients in terms of their
Fourier counterparts. It only remains to find α. To accomplish this, we return to Eq. (5.12)
and substitute the relation in Eq. (5.13) to get

ap
αap

=
2
∑M

k=2 αakak

σ2
u +

∑M
k=2(αak)

2
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Which can be rearranged as follows,

σ2
u + α2

M∑
k=2

a2k = 2α2

M∑
p=2

a2k

α2 = σ2
u

[
M∑
k=2

a2k

]−1

α1,2 = ±σu

[
M∑
k=2

a2k

]−1/2
.

After substituting the expression for σu, this becomes

α1,2 = ±

[
∞∑
k=2

a2k

]1/2 [ M∑
k=2

a2k

]−1/2
.

We choose α = α1 > 0 to be the admissible root, noting that α1 → 1 as M → ∞. In
words, the optimal SSIM-based solution approaches the best L2 expansion in this limit.

To summarize, we have shown that the M -dimensional approximation vM which max-
imizes the SSIM function can be computed from the best-L2 approximation by taking

c1 = a1 (5.14)

and

ck = αak, 2 ≤ k ≤M, where α =

[
∞∑
k=2

a2k

]1/2 [ M∑
k=2

a2k

]−1/2
≥ 1. (5.15)

Our arrival at this simple relation between the best-SSIM coefficients and the best-L2

coefficients is both surprising and interesting. The ease with which one can obtain the
best-SSIM coefficients directly from their L2 counterparts is undoubtedly attractive from
a computational perspective. This practical consideration aside, the result also has an
aesthetic appeal. Since a1 = c1, it follows that the means of the reference signal and
the best-SSIM approximation are equal, i.e., ū = v̄M . Regarding the other coefficients,
the scaling factor α ≥ 1 produces coefficients ck which can only be equal to or larger in
magnitude than the ak. As long as α 6= 1, the SSIM-based approximation vM represents a
contrast-enhanced version of the reference signal u.
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There is one other important property of the SSIM-based approximation vM—its norm
is equal to the norm of u, the function it is approximating. This is easy to show:

‖vM‖2 = c21 +
M∑
k=2

c2k

= a21 + α2

M∑
k=2

a2k

= a21 +

[
∞∑
k=2

a2k

][
M∑
k=2

a2k

]−1 M∑
k=2

a2k

= a21 +

[
∞∑
k=2

a2k

]
= ‖u‖2 (5.16)

Let us summarize these two important properties since they will reappear later in this
thesis. The target function u and its SSIM-based best approximation vM are related as
follows:

1. Equal means, i.e., u = v̄M

2. Equal norms, i.e., ‖u‖ = ‖vM‖

Indeed, the relations ū = a1 and v̄M = c1 also enable the neat elimination of the
first coefficient in each of the sums σ2

u, σ
2
vM

, σuvM , and α. Although we didn’t draw
attention to this simplification during our derivation above, it is of course very satisfying.
But in the context of our new work in this thesis, where we have been concerned with
accommodating Weber’s model of perception, the absence of a1 from α is potentially of
concern. By immediate consequence of the much recalled relation ū = a1, it follows that
the parameter α is also independent of the mean of the reference signal u. In a Weberized
approach, the parameter α might be expected to decrease in magnitude as the mean value
ū is increased.

On the other hand, the absence of the coefficient a1 in the expression for α in Eq. (5.15)
may be viewed as a kind of “blessing” in terms of Weberization. Suppose that the expres-
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sion for α were instead as follows,

α =

[
∞∑
k=1

a2k

]1/2 [ M∑
k=1

a2k

]−1/2
≥ 1.

Now for a fixed M , consider the case that a1 becomes very large. In that case, Weber’s
model states that the human visual system will be tolerant of greater deviations between
u and its approximation vM . One would expect that α would be allowed to increase. But
as a1 → ∞, α → 1+. This is rather “anti-Weberization”. In this way, the fact that a1
does not appear in the expression for α could be viewed as a counter measure against
“anti-Weberization”.

5.2 The Quest for Another Weberized Image Quality

Measure

Having re-established the related result, we are now prepared to present our new contri-
butions. They follow closely from the preceding chapter, and are still driven by our belief
that the correlation is the most important component of the SSIM. Although our simple
experiments on the Einstein images were never intended to be sufficient to convince our-
selves or the reader totally of our guiding claim, the data presented in Chapter 4 does
suggest that together the S2 and S3 components are almost entirely responsible for the to-
tal differentiation by the SSIM. In other words, at the very least, our experiments strongly
suggest that the S1 term is the least important component of the SSIM.

A principled defense of the S1 term is that it is alone responsible for any accommodation
of Weber’s model of perception achieved by the SSIM function. Of course, in practice, any
“Weberization” effect is not overwhelmingly pronounced in the S1 scores (at least for the
albeit limited set of Einstein images). Moreover, as discussed in the previous section, the
SSIM-based best approximation result displays a limited capacity to accommodate Weber’s
model of perception. At best, we find an ambivalent commitment to Weber’s model by
way of the insurance against “anti-Weberizing” in the form of the parameter α.

At this point, our discussion may be arising speculation that we could simply discard
the S1 term in the above SSIM-based best approximation problem with little consequences.
But that is not at all the case. The best approximation problems using only one or either
of the S2 or S3 terms was investigated in [2]. It was found that at least two of the three
components of the SSIM, one of which must be the luminance term, S1, must be present
in order to provide a unique solution for the best approximation problem.
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So the focus of this section is not on discarding the S1 term, but rather on replacing it
with something else. In the best approximation problem discussed above, the “Weberizing”
term of the SSIM function,

S1(u, v) =
2ūv̄

ū2 + v̄2
,

is maximized to the value of 1 if the means of u and v are made equal, i.e., if c1 = a1 (see
Eq. (5.15)). The resulting Weberization is an average Weberization involving means. It is
not enforced pointwise over individual elements of the vector.

By comparison, in Chapter 3 we developed a distance function that accommodates
Weber’s model on a more pointwise level. As we observed during our experiments on
the Einstein images, when used for image quality assessment, this metric suffers from
an absence of correlation-based information. In what follows, we will incorporate the
correlation into our Weberized best approximation problem.

With these ideas in mind, we will consider the following distance function between u
and v in L2[0, 1],

Ga,λ(u, v) = [∆a(u, v)]2 + λ [1− S3(u, v)] , a, λ ≥ 0, (5.17)

where the Weberized metric, previously defined in Chapter 3, is recalled below,

∆a(u, v) =

[∫ 1

0

1

u(x)2a
[u(x)− v(x)]2dx

]1/2
.

Once again, the two terms which comprise the objective function Ga,λ(u, v) both play their
own important role in the minimization:

1. [∆a(u, v)]2: For a > 0, it will impose a kind of pointwise Weberization to the best
approximation problem, as opposed to the mean-value Weberization imposed by the
S1(u, v) term in the SSIM function.

2. [1−S3(u, v)]: By seeking to minimize this function, we try to maximize the correlation
S3(u, v) between the approximation v and the target function u.

The parameters a and λ are both important:

1. The parameter a is the Weber exponent. Recall that the traditional form of “Weber’s
Law” corresponds to a = 1.
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2. As λ increases, we are enforcing a greater pressure on the best approximation v to
be correlated with u.

Recall that in the special case a = 0, the Weberized metric ∆a(u, v) is the usual L2 distance
between u and v, i.e.,

∆0(u, v) =

[∫ 1

0

[u(x)− v(x)]2dx

]1/2
= ‖u− v‖2.

As such, we may consider the distance function G0,0(u, v) as a kind of reference distance
function since

G0,0(u, v) = ‖u− v‖22.
Note that we have chosen the parameter λ to multiply the correlation term [1 − S3(u, v)]
in Eq. (5.17). We consider this term to be a perturbation of the squared Weberized L2

distance term [∆a(u, v)]2. The reason for this is that the “unperturbed problem”, i.e.,
that which corresponds to λ = 0, is well-behaved: It is simply the best Weberized L2

approximation, for which a unique solution exists [27]. Moreover, the solution of the
unperturbed problem involves solving a system of M equations which depend linearly on
the unknown coefficients ck. On the other hand, as we shall see below, the correlation
S3(u, v) is a rather complicated function of the coefficients ck. Once again, in [2], it was
shown that the best approximation problem using only the S3(u, v) portion of the SSIM
function is not unique.

5.2.1 Solving the Weberized Best Approximation Problem with
Correlation as a Regularization Term

A mathematical investigation of the modified best approximation problem can proceed
easily thanks to our work in Section 5.1 re-establishing the result from [3]. As before, let
{φk}∞k=1 denote a complete orthonormal basis in L2[0, 1]. The following assumptions on
the basis functions are still in effect: φ1 = 1 and φ̄k = 0 for all k ≥ 2.

For given values of a ≥ 0 and λ ≥ 0, we wish to find the function of the following form,

vM =
M∑
k=1

ckφk(x),

which minimizes the distance function Ga,λ(u, vM) in Eq. (5.17). The next step is to express
each of the two terms in the objective function Ga,λ(u, vM) in terms of the coefficients ck,
1 ≤ k ≤M .
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The Weberization term,

[∆a(u, vM)]2 =

∫ 1

0

1

u(x)2a
[u(x)− vM(x)]2dx,

can easily be differentiated with respect to each coefficient cp, for 1 ≤ p ≤M ,

∂[∆a(u, vM)]2

∂cp
= −2

∫ 1

0

1

u(x)2a

[
u(x)−

M∑
k=1

ckφk(x)

]
φp(x)dx

= 2
M∑
k=1

ck

∫ 1

0

1

u(x)2a
φk(x)φp(x)dx− 2

∫ 1

0

1

u(x)2a
u(x)φp(x)dx

= 2
M∑
k=1

Akpck − 2bp.

In the “perturbed” case λ > 0, the solution to these linear equations may provide a
suitable starting point for some iterative method, e.g., gradient descent, designed to find
solutions to the perturbed problems.

The quantities σu, σvM , and σuvM were previously computed in Section 5.1. In terms
of these expressions, the correlation becomes

S3(u, vM) =
σuvM
σuσvM

=

[
M∑
k=2

akck

][
∞∑
k=2

a2k

]−1/2 [ M∑
k=2

c2k

]−1/2
. (5.18)

As expected, S3(u, vM) is a nonlinear function of the coefficients ck. We’ll use logarithmic
differentiation to compute the partial derivatives of S3. First,

logS3(u, vM) = log

[
M∑
k=2

akck

]
− 1

2
log

[
∞∑
k=2

a2k

]
− 1

2
log

[
M∑
k=2

c2k

]
.

Taking the partial derivative with respect to cp, 1 ≤ p ≤M ,

1

S3

∂S3

∂cp
=

[
M∑
k=2

akck

]−1
ap −

[
M∑
k=2

c2k

]−1
cp.
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Multiplication by S3 yields,

∂S3

∂cp
= ap

[
∞∑
k=2

a2k

]−1/2 [ M∑
k=2

c2k

]−1/2
− cp

[
M∑
k=2

akck

][
∞∑
k=2

a2k

]−1/2 [ M∑
k=2

c2k

]−3/2
(5.19)

or
∂S3

∂cp
=

ap
σuσvM

− cpσuvM
σuσ3

vM

.

We now combine the results from the equation to compute the gradient of the objective
function

Ga,λ(u, vM) = [∆a(u, vM)]2 + λ [1− S3(u, vM)] , a, λ ≥ 0.

For 1 ≤ p ≤M ,

∂Ga,λ(u, vM)

∂cp
= 2

M∑
k=1

Akpck − 2bp − λ
[

ap
σuσvM

− cpσuvM
σuσ3

vM

]
= 0. (5.20)

Before looking for solutions to Eq (5.20), let us first investigative the correlation in
Eq. (5.18). This discussion is related to following theorem for vectors in RN , stated in [2].

Theorem 3. Let x ∈ RN and y = ax+b1N , where a, b ∈ R, a 6= 0 and 1N = (1, 1, · · · , 1) ∈ RN .
Then

S3(x, y) = sgn(a) =

{
1, a > 0

−1, a < 0.
(5.21)

This result cannot be directly applied to our discussion of functions of a continuous
real variable. In particular, the expression for σu is an infinite series.

In the special case that ck = ak, 1 ≤ k ≤ M , vM is simply a finite-dimensional
truncation of u. The correlation in Eq. (5.18) becomes

S3(u, vM) =

[
M∑
k=2

a2k

]1/2 [ ∞∑
k=2

a2k

]−1/2
≤ 1. (5.22)

In this case, vM is the best L2-based approximation to u. We expect that it is also the
maximizer of S3(u, v). Indeed, in the case ck = ak, 1 ≤ k ≤ M , the partial derivatives of
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S3 are zero. This is easy to see by substitution into Eq. (5.19):

∂S3

∂cp
= ap

[
∞∑
k=2

a2k

]−1/2 [ M∑
k=2

a2k

]−1/2
− ap

[
M∑
k=2

a2k

][
∞∑
k=2

a2k

]−1/2 [ M∑
k=2

a2k

]−3/2
= 0.

On the (M − 1)-dimensional sphere SR of radius R, i.e.,

SR =

{
(c1, · · · , cM)

∣∣∣∣∣
M∑
k=1

c2k = R2

}
,

S3 assumes its maximum value given in Eq. (5.22) above at the point ck = ak, 1 ≤ k ≤M .
As R→∞, this maximum value approaches the value 1.

In the case ck = −ak, 1 ≤ k ≤M ,

S3(u, vM) = −

[
M∑
k=2

a2k

]1/2 [ ∞∑
k=2

a2k

]−1/2
≥ −1. (5.23)

In this case, vM is the minimizer of S3(u, v). This is once again easy to show by substitution
into Eq. (5.19):

∂S3

∂cp
= ap

[
∞∑
k=2

a2k

]−1/2 [ M∑
k=2

(−ak)2
]−1/2

− (−ap)

[
M∑
k=2

ak(−ak)

][
∞∑
k=2

a2k

]−1/2 [ M∑
k=2

(−ak)2
]−3/2

= ap

[
∞∑
k=2

a2k

]−1/2 [ M∑
k=2

a2k

]−1/2
− ap

[
M∑
k=2

a2k

][
∞∑
k=2

a2k

]−1/2 [ M∑
k=2

a2k

]−3/2
= 0.

The functions vM and u are at their maximum anticorrelation.

On the (M − 1)-dimensional sphere SR of radius R defined above, S3 assumes its
minimum value given in Eq. (5.23) at the point ck = −ak 1 ≤ k ≤ M . As R → ∞, this
minimum value approaches the value −1.

We now explore Eq. (5.20) further to see if any analytical solutions are possible. In the
special non-Weber case a = 0, the matrix A is diagonal. When λ = 0, the above equations
yield the following result, as expected,

cp = bp = ap, 1 ≤ p ≤M.

49



Let us now consider the slightly more general case a = 0 and λ > 0. This represents an
L2 best approximation problem with an additional correlation term. With an eye to the
re-estalished result from [3], let us assume a solution to Eq. (5.20) of the form,

ck = αak, 1 ≤ k ≤M. (5.24)

Substitution into Eq. (5.20) yields the following equation,

2α
M∑
k=1

Akpak − 2bp − λap

[
∞∑
k=2

a2k

]−1/2 [ M∑
k=2

a2k

]−1/2
(α−1 − α−1) = 0.

The entire second term corresponding to the S3 term vanishes which seems remarkable. In
retrospect, however, this is to be expected since the c and a vectors are perfectly correlated
by Eq. (5.24), which represents a stationary point (maximum) in terms of the correlation
function S3. (Because c = (c1, · · · , cM) ∈ RM and a = (a1, · · · , aM) ∈ RM , this result is
guaranteed by Theorem 3.) The equation above becomes

2α
M∑
k=1

Akpak − 2bp = 0.

This may appear to be disconcerting since the above equation is independent of λ. As
such, it might seem that the assumption in Eq. (5.24) is invalid. But recall that we have
assumed that a = 0, i.e., the non-Weberized case. We have not yet applied this assumption
with regard to the matrix A. When a = 0, the matrix A is diagonal so that the above
equation becomes

αap = bp, 1 ≤ p ≤M.

But from a = 0 we know that ap = bp, so α = 1. This is actually to be expected. We know
that the best L2 approximation to u is provided by the Fourier coefficients ak of u. The
M -vector of ck coefficients which is most correlated with the M -vector of ak coefficients
is given by Eq. (5.24) for arbitrary α. But if the L2 distance ‖u − v‖2 is included in the
objective function, α = 1.

5.2.2 Selected Examples in Correlation-based Weberized Dis-
tance

Example 1: Consider the following step function,

u(x) =

{
2, 0 ≤ x ≤ 1/2

4, 1/2 < x ≤ 1.
(5.25)
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We use the following set of functions

φ1(x) = 1

φk(x) =
√

2 cos((k − 1)πx), k ≥ 2, (5.26)

which form an orthonormal basis in the space of functions L2[0, 1]. Note that this choice
accommodates our additional assumptions on the basis functions (φ1 is “flat” and φk = 0
for all k 6= 1).

In Fig. 5.1 are presented the plots of the best approximations vM to u using M = 5
basis functions for a = 0.00, 0.50, 1.00 where, in each case, λ = 0.00, 0.25, 0.50, 0.75, 1.00.
The best L2 approximation, corresponding to the case a = 0.00 and λ = 0.00, is also shown
for comparison. To obtain the unknown coefficients in each case, we minimize the distance
function in Eq. (5.17) in Maple using gradient descent, where the starting guess is initialized
as the best Weberized coefficients (which corresponds to the appropriate power of a and
λ = 0). The black box routine ‘fsolve’ in Maple was also able to solve the stationarity
conditions described by Eq. (5.20). We verified that, in each case, the coefficients obtained
using the two methods matched to at least 6 decimal places.

As expected, Figure 5.1 a) confirms that when a = 0, for any λ > 0, the best approx-
imation vM is simply determined by the Fourier coefficients. Interestingly, for non-zero
a, it appears that increasing λ “undoes” the Weberization. For example, Figure 5.1 b)
corresponds to the case a = 0.50: As λ increases, the best approximations move away from
the best-Weberized case (λ = 0) and towards the best-L2 approximation. For a = 1.00
in Figure 5.1 c), this effect is even more pronounced: While the curves around u = 2 are
hugging the best-L2 approximation quite closely, around u = 4 the correlation-based ap-
proximation is below the best-L2 curve. The Weberization at this higher intensity u = 4 is
more than “undone”, it is reduced past the unWeberized L2 best approximation. Interest-
ingly, the curve for λ = 1 does not stay closest to the target function for long: In fact, all
correlation-based best approximations appear to meet the Weberized best approximation
at x = 1.

For interest, we have tabulated the l2 distances between the first M Fourier coef-
ficients of the target function u, (a1, a2, · · · , aM), and the M coefficients defining vM ,
(c1, c2, · · · , cM), i.e.,

Da,λ =

[
M∑
k=1

(ak − ck)2
]1/2

. (5.27)

Table 5.1 reports the distances Da,λ between u and all the best approximations pictured
in Figure 5.1. (Note that this l2 distance represents the L2 distance between the approxi-
mation vM and the best M -dimensional L2 approximation to v, which is sufficient for this
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discussion. The L2 distance between vM and u would be obtained by including the sum of
the squares of the infinite “tail” of coefficients ck in Eq. (5.27).)

λ = 0 λ = 0.25 λ = 0.50 λ = 0.75 λ = 1.00
a = 0 0.000000 0.000000 0.000000 0.000000 0.000000
a = 0.5 0.100568 0.077881 0.065221 0.057478 0.052438
a = 1.0 0.181498 0.114293 0.097834 0.093465 0.092495

Table 5.1: l2 distances computed according to Eq. (5.27) for u(x) and its best approxima-
tions vM , for M = 5 pictured in Figure 5.1.

Unsurprisingly, the row in Table 5.1 corresponding to a = 0 reiterates that D0,λ = 0, i.e.,
for any λ ≥ 0, there is no difference between the Fourier and correlation-based coefficients
when a = 0. For non-zero a, the distance Da,λ decreases as λ increases towards 1. This ob-
servation agrees with our earlier remarks on Figure 5.1. Moreover, for a given λ, increasing
a also increases the distance Da,λ. Because a determines the degree of Weberization, this
trend is also to be expected.
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a) b)

c)

Figure 5.1: Best approximations using a = 0, a = 0.5, and a = 1.0 to the step function
u(x) in Eq. (5.25) using M = 5 basis functions, where in each case λ = 0, 0.25, 0.5, 0.75, 1.
The best L2 approximation (which corresponds to setting a = 0, λ = 0) has also been
plotted for comparison. 53



Example 2: Consider the following “bumpy” step function,

w(x) =



1.5, 0 ≤ x ≤ 0.05

2, 0.05 < x ≤ 0.10

0.3, 0.10 < x ≤ 0.15

3, 0.15 < x ≤ 0.20

1, 0.20 < x ≤ 0.25

2.5, 0.25 < x ≤ 0.75

3.5, 0.75 < x ≤ 0.80

4, 0.80 < x ≤ 0.85

2.3, 0.85 < x ≤ 0.9

5, 0.90 < x ≤ 0.95

3, 0.95 < x ≤ 1.00

(5.28)

We are interested to see if increasing the weighting λ on the correlation term will force vM
to conform more to this bumpy signal.

We will once again be employing the following basis functions,

φ1(x) = 1

φk(x) =
√

2 cos((k − 1)πx), k ≥ 2. (5.29)

Figure 5.2 shows the best approximations vM to w using M = 20 basis functions for
a = 0.00, 0.50, 1.00, where λ = 0.00, 0.50, 1.00. As before, Figure 5.2 a) illustrates little
but to reiterate that, when a = 0, all best approximations are equal to the case λ = 0.

Figure 5.2 c) shows the best approximations for a = 1, which is the highest degree of
Weberization explored in this experiment. First consider the pink curve corresponding to
λ = 0, i.e., having no correlation term. Because the Weberized distance tolerates lesser
deviations at lower intensity regions, this pink curve hovers very low to match the troughs
of the bumpy step function. This behaviour is especially pronounced for the low-intensity
cycle at 0 ≤ x ≤ 0.25. It is also in stark contrast to the much greater amplitudes of the
best-L2 curve in this region. The curves corresponding to non-zero λ move more freely
in 0 ≤ x ≤ 0.25, conforming less tightly to those troughs of the target function. This
is to be expected, as increasing λ should “undo” the Weberization. The behaviour in
0.5 < x < 0.75 is remarkable. As one would expect, the best-L2 and λ = 0 solutions
oscillate around the constant value w = 2.5. On the other hand, the correlation-based
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solutions, corresponding to λ = 0.50 and λ = 1.00, hover below the target function for
most of this region. This may be due to the particular test function examined. A slight
perturbation of this test function could produce approximations which lie above the middle
plateau. We do notice, however, that the approximations lying below the middle plateau
have slightly lower amplitudes of oscillation—apparently the non-zero correlation term in
the cost function is forcing them to at least correlate somewhat with the flat middle region
of w(x). Correlation does not imply closeness in value.

Once again, we have computed the distances between the first M coefficients ak and ck
according to Eq. (5.27). We have computed the distances for more choices of λ than those
which are plotted in Figure 5.2. The results are listed in Table 5.2.

λ = 0 λ = 0.25 λ = 0.50 λ = 0.75 λ = 1.00
a = 0 0.000000 0.000000 0.000000 0.000000 0.000000
a = 0.5 0.221589 0.193961 0.178218 0.167961 0.160842
a = 1.0 0.398554 0.342105 0.322702 0.310653 0.302803

Table 5.2: l2 distances computed according to Eq. (5.27) w(x) and its best approximations
vM , for M = 20 pictured in Figure 5.2.

It should not come as a surprise that we observe the same trends as before. At the
risk of repetition, D0,λ = 0 for any λ ≥ 0. For a fixed a 6= 0, Da,λ decreases as λ increases
towards 1. For a fixed λ, Da,λ increases with a towards 1.

In closing this section, we mention that the approach reported above can be extended
to the two-dimensional case, i.e., images, in a straightforward way. Indeed, work in this
direction was started but interrupted shortly thereafter by seemingly promising new ideas.
Unfortunately, we never returned to complete this investigation and recommend that it be
considered by others in the future.
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a) b)

c)

Figure 5.2: Best approximations using a = 0, a = 0.5, and a = 1.0 to the bumpy step
function w(x) in Eq. (5.28) using M = 20 basis functions, where in each case λ = 0, 0.5, 1.
The best L2 approximation (which corresponds to setting a = 0, λ = 0) has also been
plotted for comparison. 56



5.3 Other Distance Functions Involving the Weber-

ized Distance and Correlation

The distance function Ga,λ in Eq. (5.17) contains a variable parameter λ. The presence
of such a parameter always raises the question, “What is the optimal value of λ”? In
order to avoid this question, we have also considered distance functions composed of the
Weberized metric ∆a(u, v) and the correlation term [1 − S3(u, v)] which have no such
variable parameters.

One possibility is to consider a product of the two terms, as is done in the SSIM.
To simplify the algebra, we explored the squares of the components so that the objective
function to be minimized assumed the form,

Ha(u, v) = [∆a(u, v)]2[1− S3(u, v)]2. (5.30)

We also explored the following objective function which is linear in the second term,

Ja(u, v) = [∆a(u, v)]2[1− S3(u, v)]. (5.31)

In both cases, we performed a similar investigation as presented for Ga,λ(u, v). The
partial derivatives of Eq. (5.30) and Eq. (5.31) can be easily computed from the previous
sections. Using Maple, we found that best approximations to the simple step function
u(x) in Eq. (5.25) which minimize either Ha(u, vM) or Ja(u, vM) are very similar to those
obtained for Ga,λ(u, vM). There appears to be little qualitative difference between the best
approximations obtained using any of the three objective functions, Ha(u, v), Ja(u, v),
and Ga(u, v). As such, we have omitted a detailed discussion of these investigations and
results.
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Chapter 6

Best Approximation Methods for
Signals Which Involve Their
Gradients: Part 1

6.1 An Introduction to the Application of Gradients

in Mathematical Imaging

So far, our efforts have been solely directed towards exploring the use of correlation in
applications relating to signal fidelity and image quality assessment. This chapter intro-
duces a second topic of interest which will maintain our attention for the remainder of this
thesis. In other words, we now pursue the second of two main guiding themes—that being,
of course, the use of gradients in image quality assessment. First, in the following pages, we
explore a simple best approximation method for signals involving their gradients. Later,
in Chapter 7, we explore a problem involving both of our two main topics, by maximizing
the correlation between gradient vectors.

For functions of continuous real variables, the gradient is defined in the usual way.
(Recall that, for a greyscale image f ∈ D ⊂ R2, the gradient of f at a point (x0, y0) ∈ D is
defined as the vector of partial derivatives∇f(x0, y0) = (∂f

∂x
(x0, y0),

∂f
∂y

(x0, y0))). The vector

of values ∇f = (∂f
∂x
, ∂f
∂y

) evaluated along the entire domain of definition D ⊂ R2 represents
the gradient image. Clearly, the gradient image is a higher dimensional image than we
can visualize. We can, however, produce a conventional 2D image depicting the change
along the x-direction by displaying the set of real values ∂f

∂x
evaluated on D. Similarly,
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we can produce another image depicting the change along the y-direction by displaying ∂f
∂y

evaluated on D.

When f is instead a greyscale digital image, the intensity values are only known at
discrete points. In this case, one must define a discrete derivative in both of the x- and y-
directions to obtain a discrete gradient image. (Of course, if we assume that f is obtained
by discrete sampling of a continuous image function, then one hopes that the discrete
derivative accurately approximates the actual gradient values at each sample point.) In
our applications, we will use a simple forward difference scheme to define the discrete
derivative (this will be defined in detail in Section 6.2.1 below). Difference equations, like
our simple forward differences, can easily be implemented as sliding window filters. As
such, the discrete approximation to the gradient is commonly obtained from the original
digital image by convolution with an appropriate filter, such as a Sobel or Scharr filter [6].

In general, the gradient indicates changes in intensity across adjacent pixels. This infor-
mation is very useful in many applications in image processing. One of the most common
uses of gradients in imaging is edge detection. In a typical scene, an edge separates objects
which likely have very different intensities. In other words, we expect the gradient to be
large at edges. Edge detection is useful in many applications, including image sharpening,
computer vision, and medical imaging [6, 1]. Another popular use of the gradient is total
variation (TV) regularization, which computes a best approximation seeking to minimize
a balance of terms, one of which involves the gradient [13]. In essence, the gradient term
to be minimized measures total variability across the entire signal.

More recently, gradient information has also been incorporated into image quality mea-
sures. It is known that the human visual system does not weigh all visual information
equally; In particular, edges communicate very important information in a visual scene.
Distortions affecting boundaries and edges are more bothersome to the human visual sys-
tem than distortions in textural regions [19]. As such, these new measures are based on
the notion that edge similarity, i.e., gradient similarity, is of particular importance when
assessing the visual closeness of images. In [17], an SSIM-like “gradient similarity” measure
is proposed, which seeks to quantitatively rate the presence of edges in an image patch
using gradient operators. Haar wavelet filters are used to detect edges in [21]; then, a few
equations based on the so-called Feature Similarity Index [33] are required to quantify the
similarity of these edge maps.

Our work presented so far in this thesis has also incorporated gradient information.
Recall our exploration in Section 5.1 of the SSIM-based best approximation problem using
orthonormal functions. We found that the unknown coefficients ck which maximize the
SSIM are related to their Fourier counterparts ak by a simple scaling, i.e., ck = αak where
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α ≥ 1. We previously observed that the SSIM-based best approximation is characterized
by the contrast-enhancement ck = αak; In light of this section, this contrast-enhancement
can also be viewed as an amplification of the gradient.

While the result ck = αak does involve gradient information, as do other methods
like TV regularization, the problem of matching gradients has been far less studied. In the
remainder of this thesis, our focus will be to match the gradients of two related signals using
various mathematical formulations. Our work which follows is also quite different from the
“gradient similarity” measures proposed in both [17] and [21]. Both [17] and [21] feed
gradient-based information into rather complicated mathematical machinery. As a result,
it is difficult to understand exactly how the edge data informs the resulting similarity index.
More to the point, it is unclear to what degree these complicated methods of collecting and
aggregating gradient information reflect an honest matching of the gradient vectors. On
the other hand, our approach, based on first principles, is mathematically tractable and
clearly seeks to match the gradients of two signals according to a given similarity/distance
measure.

Behind our approach is the question of how sensitive the human visual system could
be with respect to changes in the gradient vectors of an image, in terms of either direction
or magnitude, or perhaps both. Here we recall the simple model of blurring of an image
by means of convolution with respect to an appropriate operator, e.g., a Gaussian filter.
The blurring clearly modifies the gradient of the image by dampening it. The question is
whether an image quality measure employing gradients can characterize the degradation
of such blurring as well as, or even better, than current image quality measures, such as
the Structural Similarity Index, which do not use gradient information.

6.2 Squared L2 Distance Between Gradients as a Reg-

ularization Term in the L2-based Best Approxima-

tion Problem

In the following sections, we present our first approach to matching gradients between
signals. Below, we present an L2-based best approximation problem which, similar to TV
regularization, features a regularization term involving the gradient. We hope that the
introduction of our gradient term will enforce a higher rate of convergence at the edges
of u, where errors are particularly bothersome to the human visual system. The work
in this section may thus be viewed as our second attempt to adapt the MSE for image
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processing applications, following from our first attempt in Chapter 3 which involved the
intensity-dependent Weberized distance.

We will once more be working in the Hilbert space H = L2[0, 1]. As usual, let
{φk(x)}∞k=1 denote an orthonormal basis of H. We shall assume, as is often the case, that
the orthonormal basis functions φk(x) are at least C1 functions on [0, 1]. (The standard
trigonometric basis is, of course, a special case.)

Given a target function u ∈ L2[0, 1], we know that there is a unique representation of
the form

u =
∞∑
k=1

akφk,

where
ak = 〈u, φk〉, k ≥ 1,

are the Fourier coefficients of u.

We will be looking for an M -dimensional best approximation vM to u, where

vM(x) =
M∑
k=1

ckφk(x)

for some unknown coefficients ck. From our assumptions on the basis functions φk, it
follows that vM ∈ C1[0, 1] and

v′M(x) =
M∑
k=1

ckφ
′
k(x)

in the classical sense, i.e., each function v′M(x) is the classical derivative of vM(x).

For a given M ≥ 1 and a fixed λ ∈ [0, 1], we consider the following approximation
problem. Find coefficients (c1, . . . , cM) which minimize the following squared distance
function involving both vM and v′M ,

∆2
M(λ) =

∥∥∥∥∥u−
M∑
k=1

ckφk

∥∥∥∥∥
2

2

+ λ

∥∥∥∥∥Du−
M∑
k=1

ckφ
′
k

∥∥∥∥∥
2

2

. (6.1)

When λ = 0, we have the standard L2 best-approximation problem. By “Du”, we mean a
function which, in some way, represents a “derivative” of u. For example, if u ∈ C1, then
Du could be u′(x). If u is a discrete (i.e., pixellated) approximation of a signal or image,
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then Du could be a “discrete derivative” obtained by some kind of difference scheme. The
discrete setting will be explored in Section 6.2.1.

We express the squared L2 norms in terms of inner products on H,

∆2
M(λ) =

〈
u−

M∑
k=1

ckφk, u−
M∑
l=1

clφl

〉
+ λ

〈
Du−

M∑
k=1

ckφ
′
k, Du−

M∑
l=1

clφ
′
l

〉
.

We now expand the inner products (which is permissible since the sums are finite). Because
the inner product is symmetric for real-valued functions, we are able to combine the cross
terms,

∆2
M(λ) = 〈u, u〉 − 2

M∑
k=1

ck〈u, φk〉+
M∑
k=1

M∑
l=1

ckcl〈φkφl〉

+ λ

[
〈Du,Du〉 − 2

M∑
k=1

ck〈Du, φ′k〉+
M∑
k=1

M∑
l=1

ckcl〈φ′k, φ′l〉

]
.

Taking into account the orthonormality of the basis functions φk,

∆2
M(λ) = ‖u‖22 − 2

M∑
k=1

ck〈u, φk〉+
M∑
k=1

c2k

+ λ

[
‖Du‖22 − 2

M∑
k=1

ck〈Du, φ′k〉+
N∑
k=1

M∑
l=1

ckcl〈φ′k, φ′l〉

]
.

Now for each integer p ∈ {1, . . . ,M}, we take the partial derivative,

∂∆2
M

∂cp
= −2〈u, φp〉+ 2cp − 2λ〈Du, φ′p〉+ 2λ

M∑
k=1

ck〈φ′p, φ′l〉. (6.2)

The stationarity conditions
∂∆2

M

∂cp
= 0

yield a set of M simultaneous linear equations in the unknowns cp, 1 ≤ p ≤ M . In the
special case λ = 0, Eq. (6.2) yields the standard result, as expected,

cp = 〈u, φp〉, 1 ≤ p ≤M.
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The system in Eq. (6.2) can be rewritten in the following form,

cp + λ
M∑
k=1

Apkck = 〈u, φp〉+ λ〈Du, φ′p〉, 1 ≤ p ≤M, (6.3)

where
Aij = 〈φ′i, φ′j〉, 1 ≤ i, j ≤M. (6.4)

The symmetry of the inner product implies that Aij = Aji, i.e., A is a symmetric matrix.
Eq. (6.3) can be written as the matrix-vector system

[I + λA]c = b + λd,

where A is the M ×M matrix defined in Eq. (6.4) above, I is the M ×M identity matrix,
and c, b, and d are M -vectors.

Note: Here we mention that our work is motivated by practical applications, i.e, relatively
low values of M , and not with the theoretical question of what happens in the limit
M →∞. The latter, certainly a most interesting question, lies in the realm of functional
analysis (possibly involving Sobolev spaces) and is beyond the scope of this thesis.

A Special Case of Gradient-based Best-approximation with Examples

In the following example, we will once again be considering the set of functions,

φ1(x) = 1

φk(x) =
√

2 cos((k − 1)πx), k ≥ 2, (6.5)

which forms an orthonormal basis in the Hilbert space H = L2[0, 1].

Given the well-known orthogonality property of the sine and cosine functions on [−π, π],
one might expect that the scaled derivative functions,

φ′1(x) = 0

φ′k(x) = −
√

2π(k − 1) sin((k − 1)πx), k ≥ 2, (6.6)

also satisfy a set of orthogonality conditions. Indeed, we will demonstrate their orthogo-
nality below.
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First consider the case k = l. For k ≥ 2, we have

〈φ′k, φ′k〉 =

∫ 1

0

2π2(k − 1)2 sin2((k − 1)πx)dx

= 2π2(k − 1)2
∫ 1

0

[
1

2
− 1

2
cos(2(k − 1)πx)

]
dx

= π2(k − 1)2.

Also notice that when k = 1, 〈φ1, φ1〉 = 0 = π2(1 − 1)2. Hence 〈φk, φk〉 = π2(k − 1) for
k ≥ 1.

Now consider the case k 6= l. Clearly, if either k = 1 or l = 1, then 〈φk, φl〉 = 0. When
k, l ≥ 2, we have

〈φ′k, φ′l〉 = 2π2(k − 1)(l − 1)

∫ 1

0

sin((k − 1)πx) sin((l − 1)πx)dx

=
2

π2(k − 1)(l − 1)

∫ 1

0

sin((k − 1)πx) sin((l − 1)πx)dx,

where the final line is obtained after integrating by parts twice. Rearranging shows

(
π4(k − 1)2(l − 1)2 − 1

) ∫ 1

0

sin((k − 1)πx) sin((l − 1)πx)dx = 0.

For any k, l ∈ Z, (π4(k − 1)2(l − 1)2 − 1) 6= 0. Hence,∫ 1

0

sin((k − 1)πx) sin((l − 1)πx)dx = 0,

which implies that 〈φ′k, φ′l〉 = 0 for k 6= l.

The orthogonality of the derivative functions φ′k implies that the matrix A with elements
Aij defined in Eq. (6.4) is diagonal, with

Akk = π2(k − 1)2, k ≥ 1. (6.7)

As such, the system in Eq. (6.3) becomes

cp(λ) =
1

1 + λ(p− 1)2π2
[〈u, φp〉+ λ〈Du, φ′p〉], 1 ≤ p ≤M. (6.8)
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Note the rather special nature of the first coefficient, c1: Given that φ′1 = 0,

c1 = 〈u, φ1〉

= a1.

In other words, c1 is always the first Fourier coefficient of u in the φk basis, and independent
of λ. Furthermore, since φ1(x) = 1,

c1 =

∫ 1

0

u(x)dx, (6.9)

the mean value of u on [0, 1].

We will now consider a simple example to explore the effects of the regularization term
in the objective function ∆2

M in Eq. (6.1).

Example 1: Consider u(x) = x2 on [0, 1]. It is easy to obtain the first coefficient of the
best approximation,

c1 =

∫ 1

0

x2dx =
1

3
.

To obtain the coefficients cp(λ) for p ≥ 2, we need to compute the two inner products in
Eq. (6.8). For the first inner product, we integrate by parts twice,

〈u, φp〉 =

∫ 1

0

x2
√

2 cos((p− 1)πx)dx

= x2
√

2 sin((p− 1)πx)

(p− 1)π

∣∣∣∣∣
1

0

−
∫ 1

0

2x

√
2 sin((p− 1)πx)

(p− 1)π
dx

= 2x

√
2 cos((p− 1)πx)

(p− 1)2π2

∣∣∣∣∣
1

0

−
∫ 1

0

2

√
2 cos((p− 1)πx)

(p− 1)2π2
dx

=
(−1)p−12

√
2

(p− 1)2π2
. (6.10)
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For the second inner product, we will first use the fact that u(x) = x2 ∈ C2 to write

〈Du, φ′p〉 = 〈u′, φp〉

=

∫ 1

0

u′(x)φ′p(x)dx

= u′(x)φp(x)|10 −
∫ 1

0

u′′(x)φp(x)dx. (6.11)

Now substituting u(x) = x2, this becomes

〈Du, φ′p〉 = 2x
√

2 cos((p− 1)πx)
∣∣∣1
0
−
∫ 1

0

2
√

2 cos((p− 1)πx)dx

= (−1)p−12
√

2.

Substitution of these two results into Eq. (6.8) yields

cp(λ) =
(−1)p−12

√
2

1 + λ(p− 1)2π2

[
1

(p− 1)2π2
+ λ

]
, p ≥ 2.

Although the solution appears complete, the above result becomes much more informative
if one thinks to perform the following simple rearrangement,

cp(λ) =
(−1)p−12

√
2

1 + λ(p− 1)2π2

[
1 + λ(p− 1)2π2

(p− 1)2π2

]

=
(−1)p−12

√
2

(p− 1)2π2

= cp(0).

In other words, for any λ ≥ 0, the gradient-based best approximation is given by the
standard best-L2 approximation obtained for λ = 0. This result was verified numerically.

At this point, the above result has been obtained only for the particular choice u(x) =
x2. One may wonder if the result holds in general, perhaps provided that the target
function u is sufficiently “nice”, i.e., sufficiently smooth. Indeed, we can obtain this most
interesting result if the integration by parts performed in Eq. (6.11) is reversed. Let us
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consider any C1 function u so that Du = u′. Then,

〈Du, φ′p〉 = 〈u′, φ′p〉

=

∫ 1

0

u′(x)φ′p(x)dx

= φ′p(x)u(x)
∣∣1
0
−
∫ 1

0

u(x)φ′′p(x)dx

= (p− 1)2π2

∫ 1

0

u(x)φp(x)dx (since φ′p(0) = φ′p(1) = 0)

= (p− 1)2π2〈u, φp〉.

Substitution of this result into Eq. (6.8) yields

cp(λ) = cp(0)

= ap. (6.12)

Although the above result is very interesting, it is perhaps not too surprising. Indeed,
when u and vM are close in terms of the L2 distance, their derivatives u′ and v′M should
understandably also be close in terms of the L2 distance. In the following section, we will
explore whether the result in Eq. (6.12) also holds in the discrete case, i.e., for digital
signals/images.

6.2.1 Discrete Formulation of the Gradient-based Best Approx-
imation Problem

In this section, we will be considering digital signals belonging to the Hilbert space RN ,
where N > 1. Let {φk}Nk=1 denote an orthonormal basis of RN . A signal u ∈ RN admits
an expansion of the form

u =
N∑
k=1

akφk (6.13)

where
ak = 〈u, φk〉, 1 ≤ k ≤ N,

are the Fourier coefficients of u.
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We will once again be looking for M -dimensional approximations vM to u having the
form,

vM =
M∑
k=1

ckφk, 1 ≤M < N.

We now consider the discrete version of the approximation problem associated with Eq. (6.1)
in the previous section. Namely, we are searching for coefficients (c1, . . . , cM) which mini-
mize the following squared distance function,

∆2
M(λ) =

∥∥∥∥∥u−
M∑
k=1

ckφk

∥∥∥∥∥
2

2

+ λ

∥∥∥∥∥Du−
M∑
k=1

ckDφk

∥∥∥∥∥
2

2

, (6.14)

for a fixed λ ∈ [0, 1]. By “Du” and “Dφk”, we mean functions which again represent a
derivative of v and φk, respectively, but in the discrete domain. The discrete derivative
employed throughout this thesis will be a simple forward difference scheme, i.e.,

u = (u1, . . . , uN) =⇒ Du = (u2 − u1, u3 − u2, . . . , uN − uN−1, uN+1 − uN).

The term uN+1 will be determined by the orthonormal basis that we employ which, in
turn, indicates the periodic extension of the data which is assumed. For example,

1. If we use the DCT basis functions, then an even extension of N data points is
assumed, implying that uN+1 = uN .

2. If we use the DFT basis functions, then a periodic extension of the N data points is
assumed, implying that uN+1 = u1.

After expanding the inner products as done for the continuous case, we arrive at the
following expression for our discrete distance function,

∆2
M = ‖u‖22 − 2

M∑
k=1

ck〈u, φk〉+
M∑
k=1

c2k

λ+

[
‖Du‖22 − 2

M∑
k=1

ck〈Du,Dφk〉+
M∑
k=1

M∑
l=1

ckclDφkDφl

]
.

Imposing the stationarity conditions,

∂∆2
M

∂cp
= 0, 1 ≤ p ≤M,

68



produces a set of linear equations in the unknown coefficients cp having the form,

cp + λ

M∑
k=1

Apkck = 〈u, φp〉+ λ〈Du,Dφp〉, 1 ≤ p ≤M, (6.15)

where
Aij = 〈Dφi, Dφj〉, 1 ≤ i, j ≤M. (6.16)

The system of equations in Eq. (6.15) can be written in the following matrix-vector form,

[I + λA]c = b + λd,

where A is the M×M matrix defined in Eq. (6.16) above, I is the M×M identity matrix,
and c, b, and d are M -vectors.

From Eq. (6.13), it follows that

Du =
N∑
k=1

akDφk.

Substitution of this result into Eq. (6.15) yields the following,

cp + λ
M∑
k=1

Apkck = 〈u, φp〉+ λ
N∑
k=1

ak〈Dφk, Dφp〉

= ap + λ
M∑
k=1

akAkp + λ
N∑

k=M+1

akAkp, 1 ≤ p ≤M. (6.17)

Special Cases of the Discrete Gradient-based Best Approximation Problem

We now briefly explore the solution to the discrete problem under simplifying assumptions
on the matrix A defined in Eq. (6.16). Provided either of the special cases listed below
holds, the gradient-based best approximation is once again determined by the Fourier
coefficients of the reference signal.

1. When A is a diagonal matrix—which we encountered in the continuous case when
an orthonormal cosine basis was used—the final summation in Eq. (6.17) vanishes
and the system of equations becomes,

cp − λAppcp = ap + λAppap.
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Factoring both sides,

(1 + λApp)cp = (1 + App)ap, 1 ≤ p ≤M.

Because this equation must hold for all λ ≥ 0, and

App = 〈Dφp, Dφp〉 = ‖Dφp‖22 ≥ 0,

it follows that
(1 + λApp) ≥ 0

and hence
cp(λ) = ap = cp(0), 1 ≤ p ≤M.

2. Suppose that for all 1 ≤ p ≤M ,

Akp = 0, M + 1 ≤ k ≤ N.

Then the final summation in Eq. (6.17) once again vanishes so that the system of
equations becomes,

cp + λ
M∑
k=1

Apkck = ap + λ
M∑
k=1

akAkp, 1 ≤ p ≤M.

Using the fact that A is a symmetric matrix, let us rewrite the above equation as
follows,

λ
M∑
k=1

Apk(ck − ak) = a(cp − ap), 1 ≤ p ≤M.

This equation has the form
Ad = µd,

where

d = c− a and µ = −1

λ
.

This looks like an eigenvector-eigenvalue problem. The problem is that λ, hence µ,
must assume a continuous set of values. This suggests that d = 0 which implies that
c = a, i.e.,

cp(λ) = ap = cp(0), 1 ≤ p ≤M.
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6.3 Orthogonality of the Discrete Derivatives of the

DCT an DFT Basis Functions

We would now like to draw the reader’s attention to the following two results. To the best
of our knowledge, they have not appeared in the literature. We were naturally guided,
during the completion of our work in the previous section, to uncover the following re-
markable property: The discrete derivatives of the DCT and DFT basis functions each
form, respectively, an orthogonal set. These results are formally stated below. Note that,
throughout this section, we employ the standard index notation for the DCT/DFT basis
functions (i.e., a signal x ∈ RN is denoted x = (x0, . . . , xN−1)), which differs from the
notation used previously.

Theorem 4. Let {φ0, · · · , φN−1} denote the following DCT basis functions,

φ0[n] =
1√
N
,

φk[n] =

√
2

N
cos

(
kπ

N

(
n+

1

2

))
, 1 ≤ k ≤ N − 1, 0 ≤ n ≤ N − 1. (6.18)

Let the discrete derivative of these functions be defined by simple forward differences so
that

Dφk[n] = φk[n+ 1]− φk[n], 0 ≤ n ≤ N − 1. (6.19)

Then for a given N > 0, {Dφ0, · · · , DφN−1} forms an orthogonal set in RN .

Theorem 5. Let {φ0, · · · , φN−1} denote the following DFT basis functions,

φk[n] =
1√
N

exp

(
i2πkn

N

)
, 0 ≤ n ≤ N − 1. (6.20)

Let the discrete derivative of these functions be defined by simple forward differences so
that

Dφk[n] = φk[n+ 1]− φk[n], 0 ≤ n ≤ N − 1. (6.21)

Then for a given N > 0, {Dφ0, · · · , DφN−1} forms an orthogonal set in CN .

In Appendix A can be found a proof of both Theorem 4 and Theorem 5. These two
results have also been verified numerically. To the best of our knowledge, at the time of
writing this thesis, these properties have not previously been published.

These results provide a very tidy and satisfying completion to our discussion in the
preceding section. With reference to the discrete problem discussed above, the DCT and
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DFT basis functions both yield a diagonal matrix A, where Aij = 〈Dφk, Dφj〉. In partic-
ular, employing the DCT basis functions in the discrete problem behaves in an analogous
manner to using the orthonormal cosine basis in the continuous case, as one might hope.
The results stated in Theorem 4 and Theorem 5 will also be required for our work in the
next sections. Before moving on, however, we would like to make a few more important
comments about the DCT derivative functions.

The DCT functions φk for N = 8 are plotted in Figure 6.3. Their derivative functions
Dφk for N = 8 are plotted in Figure 6.3. Looking at the plots, it is apparent that the DCT
derivative functions Dφk[n] are either symmetric or antisymmetric about the point n = 3.
By comparison, the DCT functions φk[n] are either symmetric or antisymmetric about the
point n = 3.5.

Recall that both the DCT basis functions φk and their derivative functions Dφk are not
N -periodic, but 2N -periodic. If we were to extend the n-values of the φk[n] for n > N − 1,
the resulting plot would be even-symmetric with respect to the point n = N − 1

2
. In other

words, we have

φk[N ] = φk[N − 1],

φk[N + 1] = φk[N − 2],

and, in general,

φk[N + p] = φk[N − p− 1], for 0 ≤ p ≤ N − 1.

It can be seen in Figure 6.3 that, for all k, Dφk[7] = 0. In general, for all k, Dφk[N−1] =
0 since φk[N − 1] = φk[N ] from the even extension assumed in the DCT case. Moreover,
thinking back to the continuous case, one might expect the derivative functions Dφk to be
sine functions. While the Dφk[n] are “sine-like”, they are not pure sine functions. In fact,
the derivative functions Dφk contain both a sine and cosine component; This property is
fully demonstrated by the expansion Dφk = Ckφk−Dkψk derived in the proof in Appendix
A.2.

Finally, note that the DCT derivative functions Dφk form an orthogonal set for 1 ≤
k ≤ 7. Since the dimensionality of this space is N = 8, this set does not form a basis—we
are essentially one vector short because k = 0 corresponds to the zero vector. For the same
reason, the DFT derivative functions do not form a basis either. As demonstrated in the
proof in Appendix A.1, k = 0 once again corresponds to the zero vector.
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φ0[n] φ1[n] φ2[n]

φ3[n] φ4[n] φ5[n]

φ6[n] φ7[n]

Figure 6.1: The N=8-point DCT orthonormal function φk[n], k = 0, 1, . . . , 7.
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Dφ0[n] Dφ1[n] Dφ2[n]

Dφ3[n] Dφ4[n] Dφ5[n]

Dφ6[n] Dφ7[n]

Figure 6.2: The N=8-point DCT derivative functions Dφk[n] = φk[n + 1] − φk[n], k =
0, 1, · · · , 7. The functions Dφk, k = 0, 1, . . . , 7 form an orthogonal set.
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Chapter 7

Best Approximation Methods for
Signals Which Involve Their
Gradients: Part 2

7.1 Best Approximation by Maximizing the Correla-

tion Between Gradient Vectors

Still motivated by our guiding belief that the correlation is the most important component
of the SSIM, we now investigate a problem which combines both the correlation and the
gradient. In our second approach to matching gradients, presented below, we seek to
maximize the correlation between gradient vectors. Having previously maximized the
SSIM between two signals in Chapter 5.1, we are now interested to see if maximizing
the correlation between their gradients will yield different results. And, if so, we wonder
if these gradient-based results will perhaps yield better approximations according to the
human visual system.

Following from our previous formulation, we will once more be employing orthonormal
basis functions; However, unlike our work in Chapter 5, we will consider the discrete case
below. In the following work, we will make the natural assumption that the discrete
orthonormal basis in use is either the DCT or DFT. Some simplifications will be permitted
throughout our derivation due to known properties of these two sets. In particular, we will
once again be applying Theorem 4 and Theorem 5 which were stated at the conclusion of
the preceding chapter.
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As is well-known to us by now, the correlation is the third component of the SSIM
function. Below, we will once more be considering the special case where the stability
constant C3 = 0. Then, for u, v ∈ RN , the correlation is denoted by S3(u, v) and computed
as follows:

S3(u, v) =
suv
susv

, (7.1)

where

suv =
1

N − 1

N∑
k=1

(uk − ū)(vk − v̄), (7.2)

and
su =

√
suu, (7.3)

with

ū =
1

N

N∑
k=1

uk. (7.4)

Let {φk}Nk=1 denote an orthonormal basis in RN . For both u, v ∈ RN , we shall denote
the components of their gradient functions as follows,

Du = (Du1, . . . , DuN) and Dv = (Dv1, . . . , DvN).

We now wish to consider the following best approximation problem in RN in terms of
the correlation between two gradient vectors: For a given target function u ∈ RN , with
Fourier expansion

u =
N∑
i=1

aiφi, where ak = 〈u, φk〉, 1 ≤ k ≤ N,

and an 1 ≤M < N , find the approximation of the form,

vM =
M∑
i=1

ciφi,

which maximizes the correlation between the gradients of u and v, i.e.,

c = arg max
d∈RM

S3(Du,DvM).
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Here,

Du =
N∑
i=1

aiDφi and DvM =
M∑
i=1

ciDφi.

We will go forward with the understanding that v denotes our best approximation vM ,
i.e., we will omit the subscript, to avoid confusion when extracting its component parts
v = (v1, . . . , vM). The mean values of the gradient vectors will be also important,

Du =
1

N

N∑
k=1

Duk and Dv =
1

N

N∑
k=1

Dvk.

Note that to when defining Dv, we consider Dv to be an N -vector with the last N −M
of its elements being zero instead of an M -vector. (We have to consider both vectors as
N -vectors in order to be able to compute their correlation.)

If the discrete derivative is defined by forward differences, then the above mean values
are telescopic sums that reduce to simple differences, i.e.,

Du =
1

N
(uN+1 − u1) and Dv =

1

N
(vN+1 − v1).

If we further assume an N -periodic extension of the N -vectors—as is the case when using
the DFT basis functions—then,

Du = 0 and Dv = 0.

We are now ready to compute the correlation between gradients, i.e.,

S3(Du,Dv) =
sDuDv
sDusDv

.

For simplicity, we will first consider the square of the term in the denominator sDuDu = s2Du,

sDuDu =
1

N − 1

N∑
k=1

(Duk −Du)(Duk −Du).
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Now expand and substitute the above expressions to get

sDuDu =
1

N − 1

[
N∑
k=1

(Duk)
2 − 2Du

N∑
k=1

Duk + (Du)2
N∑
k=1

1

]

=
1

N − 1

[
N∑
k=1

(Duk)
2 − 2Du(NDu) +N(Du)2

]

=
1

N − 1

[
N∑
k=1

(Duk)
2 −N(Du)2

]
. (7.5)

Similarly, one can obtain

sDvDv =
1

N − 1

[
N∑
k=1

(Dvk)
2 −N(Dv)2

]
. (7.6)

Finally, we also have

sDuDv =
1

N − 1

N∑
k=1

(Duk −Du)(Dvk −Dv)

=
1

N − 1

[
N∑
k=1

(Duk)(Dvk)−Dv
N∑
k=1

Duk −Du
N∑
k=1

Dvk + (Du)(Dv)
N∑
k=1

1

]

=
1

N − 1

[
N∑
k=1

(Duk)(Dvk)−Dv(NDu)−Du(NDv) +N(Du)(Dv)

]

=
1

N − 1

[
N∑
k=1

(Duk)(Dvk)−N(Du)(Dv)

]
. (7.7)

We now express these summations in terms of the expansion coefficients ai and ci. First
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consider the mean values,

Dv =
1

N

N∑
k=1

Dvk

=
1

N

N∑
k=1

(
M∑
i=1

ciDφi

)
k

=
M∑
i=1

ci

(
1

N

N∑
k=1

(Dφi)k

)

=
M∑
i=1

ciDφi.

Recall that Dφ1 = 0 for both the DCT and DFT basis functions. Hence, the summation
will run from i = 2 to i = M , i.e.,

Dv =
M∑
i=2

ciDφi. (7.8)

Similarly, we also find that

Du =
N∑
i=2

aiDφi. (7.9)

We will now deal with the remaining summation in Eq. (7.6), rewritten below,

N∑
k=1

(Dvk)
2 =

N∑
k=1

(
M∑
i=1

ciDφi

)
k

(
M∑
j=1

cjDφj

)
k

=
M∑
i=1

M∑
j=1

cicj

N∑
k=1

(Dφi)k(Dφj)k

=
M∑
i=1

M∑
j=1

cicj〈Dφi, Dφj〉

=
M∑
i=1

M∑
j=1

cicjAij.
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Due to the orthogonality of the discrete derivatives, as stated in Theorem 4 and Theorem
5 in the previous chapter, the matrix A is diagonal for both the DCT and DFT basis
functions. Thus,

N∑
k=1

(Dvk)
2 =

M∑
i=1

c2iAii,

where the values of the diagonal elements Aii will depend on the choice of basis. For either
the DCT or DFT basis functions, A11 = 0 so that the above summation runs from i = 2
to i = M . The resulting expressing for sDvDv in Eq. (7.6) is

sDvDv =
1

N − 1

[
N∑
k=1

(Dvk)
2 −N(Dv)2

]

=
1

N − 1

 M∑
i=2

c2iAii −N

(
M∑
i=2

ciDφi

)2
 . (7.10)

In a similar manner, we can find that the term sDuDu in Eq. (7.5) becomes

sDuDu =
1

N − 1

 N∑
i=2

a2iAii −N

(
N∑
i=2

aiDφi

)2
 . (7.11)

Finally, we must consider the first summation in the expression for sDuDv written in
Eq. (7.7),

N∑
k=1

(Duk)(Dvk) =
N∑
k=1

(
N∑
i=1

aiDφi

)
k

(
M∑
j=1

cjDφj

)
k

=
N∑
i=1

M∑
j=1

aicj〈Dφi, Dφj〉

=
M∑
i=1

aiciAii,

where the simplification in the final line once again results from the orthogonality of the
discrete derivatives of the DCT and DFT basis functions. Once again, A11 = 0 so that the
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above summation runs from i = 2 to i = M . Thus,

sDuDv =
1

N − 1

[
N∑
k=1

(Duk)(Dvk)−N(Du)(Dv)

]

=
1

N − 1

[
M∑
i=2

aiciAii −N

(
N∑
i=2

aiDφi

)(
M∑
j=2

cjDφj

)]
. (7.12)

The final result for the correlation S3(Du,Dv) expressed in terms of the unknown coeffi-
cients ck is as follows,

S3(Du,Dv) =
sDuDv
sDusDv

=

1
N−1

(∑M
i=2 aiciAii −N

(∑N
i=2 aiDφi

)(∑M
j=2 cjDφj

))
sDu

[
1

N−1

(∑M
i=2 c

2
iAii −N

(∑M
i=2 ciDφi

)2)]1/2 . (7.13)

We are now prepared to find the unknown coefficients ci which maximize the correlation
S3(Du,Dv). Note, however, that S3(Du,Dv) does not depend on the first coefficient c1.
(This was also the case when maximizing the SSIM between two discrete N -vectors in
[3].) As such, we’ll have to impose additional conditions in order to determine c1. For
2 ≤ p ≤M , we’ll impose the stationarity conditions

∂S3(Du,Dv)

∂cp
= 0 (7.14)

in an effort to find the optimal coefficients ci.

Of course, we are required to compute the partial derivatives of the components sDuDv
and sDv in Eq. (7.13). (The term sDu contains only the ak coefficients and therefore behaves
as a constant.) Firstly, differentiating Eq. (7.12),

∂sDuDv
∂cp

=
1

N − 1

[
apApp −N

(
N∑
i=2

aiDφi

)
Dφp

]

=
1

N − 1

[
apApp −NDuDφp

]
, (7.15)

where the final line simply results from the resubstitution of Du.
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Now consider the expression for sDvDv written in Eq. (7.10). First notice that sDv =
(sDvDv)

1/2, so that

∂sDv
∂cp

=
1

2
(sDvDv)

−1/2∂sDvDv
∂cp

=
1

2sDv

∂sDvDv
∂cp

.

Hence, differentiating Eq. (7.10) yields,

∂sDvDv
∂cp

=
1

N − 1

[
2cpApp − 2NDφp

(
M∑
i=2

ciDφi

)]
.

And therefore,

∂sDv
cp

=
1

sDv(N − 1)

[
cpAp −NDφp

(
M∑
i=2

ciDφi

)]
.

Let us now examine the structure of the partial derivative of S3(Du,Dv) with respect
to the unknown coefficients cp for 2 ≤ p ≤ M . Letting the prime sign denote the partial
derivative with respect to cp, we have

∂S3(Du,Dv)

∂cp
=

1

sDu

sDvs
′
DuDv − sDuDvs′Dv

s2Dv
.

The stationarity condition in Eq. (7.14) implies that the numerator of the expression on
the right be zero, i.e.,

sDvs
′
DuDv = sDuDvs

′
Dv.

We now proceed as in Chapter 5.1 by rearranging the above equation as follows,

s′Dv
s′DuDv

=
sDv
sDuDv

.

Substitution of the appropriate expressions into the left hand side of the equation yields,

1
sDv(N−1)

[
cpApp −NDφp

(∑M
i=2 ciDφi

)]
1

N−1

[
apApp −NDu,Dφp

] =
sDv
sDuDv

.

Multiply by sDv and cancel the repeated factor 1
N−1 to get

cpApp −NDφp
(∑M

i=2 ciDφi

)
apApp −NDu,Dφp

=
s2Dv
sDuDv

, 2 ≤ p ≤M. (7.16)
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This represents a set of M − 1 equations that must be satisfied by the coefficients cp,
2 ≤ p ≤M . Using the expansions in Eq. (7.10) and Eq. (7.12), Eq. (7.16) becomes,

cpApp −NDφp
(∑M

i=2 ciDφi

)
apApp −NDu,Dφp

=

∑M
i=2 c

2
iAii −N

(∑M
i=2 ciDφi

)2
∑M

i=2 aiciAii −N
(∑N

i=2 aiDφi

)(∑M
j=2 cjDφj

) . (7.17)

Notice that both the numerator of the left hand side and the denominator of the right
hand side are linear in the coefficients ck. The numerator of the right is a quadratic form
in the ck. This leads to the following important result: For a given nonzero α ∈ R, if we
replace all of the coefficients cp, 2 ≤ p ≤M , with αcp, then Eq. (7.17) remains unchanged.
In other words, if the particular set of coefficients {ck}Mk=1 is a solution to the stationarity
conditions in Eq. (7.17), then for any α 6= 0, the set of coefficients {αck}Mk=1 is also a
solution. This implies that the solutions to Eq. (7.17) lie on a ray in RM−1.

This remarkable result can be understood when we recall that we are maximizing the
correlation between functions. In particular, for any constant α 6= 0, the following two
correlations are equal,

S3(Du, αDv) = S3(Du,Dv). (7.18)

This fact can be easily seen from the definition,

S3(Du, αDv) =
1

N−1
∑M

k=1(Duk −Du)(αDvk − αDv)

sDu

[
1

N−1
∑M

k=1(αDvk − αDv)2
]1/2

= S3(Du,Dv).

The right hand sides of Eq. (7.16) and Eq. (7.17) are independent of p. This implies
that the ratio on the left hand side is constant for all p, i.e.,

cpApp −NDφp

(
M∑
i=2

ciDφi

)
= βM

[
apApp −NDuDφp

]
, 2 ≤ p ≤M, (7.19)

for a constant βM (where the subscript M indicates the dependency on the number of basis
functions used). This tactic is reminiscent of what occurred when we maximized the SSIM
in Chapter 5.1. Indeed, recall that stationarity conditions for the SSIM function yielded
the following result,

ck = αak, 1 ≤ k ≤M, (7.20)
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where the ak are the Fourier coefficients of the target function. Once again, the solutions
are seen to lie on a ray in RM−1. In Chapter 5.1, we were then able to obtain an analytical
expression for α in terms of the known Fourier coefficients ak. Unfortunately, the compli-
cated relationship between the ci and ai coefficients in Eq. (7.19) does not permit any kind
of substitution of the ci in terms of the ai to yield a condition on βM . We will have to try
a different approach to determine a value, or a range of values, for βM .

Firstly, note that in special case that Dφp = 0 for 2 ≤ p ≤ M—which would apply in
the continuous case—these equations reduce to

cp = βMap, 2 ≤ p ≤M. (7.21)

In this special case, we retrieve an expression similar to the contrast-enhancement ck = αak.
The hypothesis Dφp = 0 holds for the DFT basis functions when the gradient operator
is defined by forward differences. As one might expect, this assumption is not true in
general. In particular, the same property for the DCT basis functions does not carry over
from the continuous case: When the gradient operator is defined by forward differences,
the derivative DCT basis functions are not necessarily zero mean. In Figure 6.3 at the end
of the previous chapter, we see that some DCT derivative basis functions, but not all, have
zero mean. (For those basis functions with zero mean, Eq. (7.21) will apply.)

For the general case, observe that using Eq. (7.16) and Eq. (7.19), we also have,

βM =
sDvDv
sDuDv

. (7.22)

Using the expression for the correlation S3(u, v) between twoN -vectors given in Eq. (7.1),
we can rewrite the expression for βM as follows,

βM =
S3(Dv,Dv)sDvsDv
S3(Du,Dv)sDusDv

=
1

S3(Du,Dv)

sDv
sDu

, (7.23)

where we have used the fact that S3(Dv,Dv) = 1. We know that 0 ≤ |S3(Du,Dv)| ≤ 1.
Moreover, because v should approximate u, we are expecting a positive correlation, i.e.,
0 ≤ S3(Du,Dv) ≤ 1. This implies that

βM ≥ 0. (7.24)

Unfortunately, this seems to be as far as we can go at this moment since the term sDv
contains the unknown coefficients ck. If, however, we consider the following condition on
the approximation v,

sDu = sDv, (7.25)
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then from Eq. (7.23), it follows that
βM ≥ 1. (7.26)

The condition in Eq. (7.25) implies that the standard deviations (or variances) of the N -
vectors of Du and Dv are equal. It is unclear whether or not such a condition is reasonable
but it does serve as a kind of reference point in our analysis.

We also attempted another approach in our search for valid βM values. For each
2 ≤ p ≤ M in Eq. (7.19), multiply both sides of the equation by cp and then sum over
2 ≤ p ≤M to yield the following equation,

M∑
p=2

c2pApp −N

(
M∑
p=2

cpDφp

)(
M∑
i=2

ciDφi

)

= βM

[
M∑
p=2

apcpApp −NDu

(
M∑
p=2

cpDφp

)]
. (7.27)

Because the above equation has been obtained from the stationarity condition in Eq. (7.16),
it also satisfies the homogeneity property: If {ck}Mk=1 is a solution of Eq. (7.27), then
{αck}Mk=1 is also a solution for any α 6= 0. From our earlier discussion, each of the sum-
mations in the above equation may be identified with a particular quantity, e.g., Dv. As
such, the above equation may be written as follows,

‖Dv‖2 −N(Dv)2 = βM [〈Du,Dv〉 −NDuDv]. (7.28)

Note that if M = N , then u = v which implies that Du = Dv. The above equation would
dictate that βM = 1. That being said, it is not clear that we can simply use Eq. (7.28). So
let us try something else, namely, multiplying both sides of Eq. (7.19) by ap and summing
over 2 ≤ p ≤ M , with the understanding that cp = 0 for M + 1 ≤ p ≤ N . We arrive at
the result,

M∑
p=2

apcpApp −N

(
N∑
p=2

apDφp

)(
M∑
i=2

ciDφi

)

= βM

[
N∑
p=2

a2pApp −NDu

(
N∑
p=2

apDφp

)]
. (7.29)

Note that Eq. (7.29) also satisfies the homogeneity property. As before, Eq. (7.29) is
equivalent to the following equation,

〈Du,Dv〉 −NDuDv = βM
[
‖Du‖2 −N(Du)2

]
. (7.30)
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Let us now exploit the fact that Eq. (7.28) and Eq. (7.30) share a common term, namely,

〈Du,Dv〉 −NDuDv.

We’ll multiply Eq. (7.30) and equate the appropriate terms to arrive at the following result,

‖Dv‖2 −N(Dv)2 = β2
M [‖Du‖2 −N(Du)2],

which can be rewritten as follows,

‖Dv‖2 − β2
M‖Du‖2 = N

[
(Dv)2 − β2

M(Du)2
]
. (7.31)

Once again, it appears that we can go no farther. In [2], it was shown that a unique
solution to the problem of best approximation of vectors using correlation can be obtained
only if two additional constraints are applied. Two such constraints, adapted from [2] for
our gradient approximation problem, are as follows,

1. Equal gradient norms, i.e., ‖Dv‖ = ‖Du‖ and

2. Equal gradient means, i.e., Dv = Du.

Using these constraints, Eq. (7.31) becomes

‖Du‖2(1− β2
M) = N(Du)2(1− β2

M). (7.32)

We see that Eq. (7.32) is satisfied by

βM = ±1 or ‖Du‖ =
√
N‖Du‖. (7.33)

Returning to the result in Eq. (7.26), we can discard the negative root. Given that the right
side of the second equation above depends only on u[1] and u[N ], it is not guaranteed that
all functions u[n] will satisfy it. Therefore we conclude that the application of these two
constraints, i.e., equal gradient norms and equal gradient means, yields the result βM = 1.
In the following section, we shall explore the case βM = 1 in a computational example to
see if “good” approximations are produced. We shall also examine some cases βM > 1.
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Examples in Correlation-based Best Approximation Between Gradients

Example 1: Consider the discrete reference signal u[n] = x[n]2 evenly sampled N = 100
times on the domain of support [0, 1]. We will use the usual DCT functions to define the
basis {φk}Nk=1 of RN , i.e.,

φ0[n] =
1√
N
, 0 ≤ n ≤ N − 1,

φk[n] =

√
2

N
cos

(
kπ

N

(
n+

1

2

))
, 1 ≤ k ≤ N − 1, 0 ≤ n ≤ N − 1, (7.34)

where N = 100 throughout. The discrete derivative will be defined by simple forward
differences, so that

Dφk[n] = φk[n+ 1]− φk[n], 0 ≤ k, n ≤ N − 1. (7.35)

An even extension of the data will be assumed, i.e., φk[N ] = φk[N − 1], for 0 ≤ k ≤ N − 1.

From Theorem 4, the derivatives of the DCT basis functions {φk}Nk=1 defined above
form an orthogonal set. The orthogonality relation is

〈Dφk, Dφl〉 =

{
0, k 6= l

Ak, k = l,
(7.36)

where A0 = 0 and Ak = 4 sin2
(
kπ
2N

)
> 0 for 1 ≤ k ≤ N − 1. Once more, we refer the reader

to the proof in Appendix A.2 for details.

For various choices of M and a given βM , we are now interested in exploring the nature
of solutions vM to Eq. (7.19). Note that when βM is fixed, Eq. (7.19) is a linear system of
coefficients. (When we fix βM , we are fixing a unique solution on the ray in RM−1 which
satisfies Eq. (7.19).) To find the optimal coefficients cp, we will solve Eq. (7.19), which
holds for 2 ≤ p ≤ M , in Maple. For the remaining coefficient, we will simply let c1 = a1,
the first Fourier coefficient of the reference signal u[n] in the {φk} basis.

In our preceding analysis, we found that the constant βM , the reference signal u, and
the best approximation vM should satisfy Eq. (7.31), rewritten below,

‖DvM‖2 − β2
M‖Du‖2 = N

[
(DvM

2 − β2
M(Du

2
)
]
.

We also observed that imposing (1) equal gradient norms and (2) equal gradient means in
the above relation implies that βM = 1.
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In our experiments, we would like to verify that Eq. (7.31) is in fact being satisfied.
Bringing everything to one side and taking the absolute value, we tabulate the value of the
following expression,∣∣‖DvM‖2 − β2

M‖Du‖2 −N
[
(DvM)2 − β2

M(Du)2
]∣∣ , (7.37)

which, once again, we expect to be close to 0. We also tabulate the values of ‖DvM‖ and
‖Du‖, whose equality would satisfy condition (1), along with the values of DvM and Du,
whose equality would satisfy condition (2). If both condition (1) and (2) are met, then it
follows that βM = 1. However, in some experiments we fix βM = 1, from which it is not
guaranteed that the norms and means are pairwise equal.

In this first example, we fix βM = 1 and vary M , the number of basis functions used
in the approximation vM . In Figure 7.1 are plotted the solutions vM to the stationarity
conditions in Eq. (7.19) for (a) M = 5, (b) M = 20, (c) M = 40 and (d) M = 80 basis
functions. In all cases, the best-SSIM approximation and best-L2 approximations, both
also using M basis functions, are plotted for comparison. (In each of Figure 7.1 (a)-(d), to
the resolution of the plot, the best-SSIM and best-L2 approximations are virtually equal.)
As one would expect, vM offers a good approximation to the target function u[n] for large
M . And while we do expect the approximations to get poorer as M decreases, there appears
to be a critical value of M where the poorness of the results is quite staggering. Indeed,
v5, depicted in Figure 7.1 (a), offers a strikingly poor approximation of the target function,
hovering around the average value of u[n]. By comparison, the best-SSIM and best-L2

curves, restricted to same dimensionality, are already performing significantly better.
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(a) N = 100, M = 5, β = 1.0 (b) N = 100, M = 20, β = 1.0

(c) N = 100, M = 40, β = 1.0 (d) N = 100, M = 80, β = 1.0

Figure 7.1: Correlation-based approximations between gradients to the function u(x) = x2

on [0, 1] using (a) M = 5, (b) M = 20, (c) M = 40 and (d) M = 80 basis functions.
In all cases, β = 1. For each M , the M -dimensional best-SSIM approximation and the
M -dimensional best-L2 approximation are plotted for comparison. To the resolution of the
plots, the best-SSIM and best-L2 approximations are virtually equal for all 4 values of M .
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M = 5 M = 20 M = 40 M = 80

Du 0.01000 0.01000 0.01000 0.01000
Dv 0.00091 0.00458 0.00781 0.00993

‖Du‖ 0.11605 0.11605 0.11605 0.11605
‖Dv‖ 0.05222 0.07335 0.09758 0.11545

Eq. (7.37) 8.242× 10−4 1.856× 10−4 5.284× 10−5 1.52× 10−6

Table 7.1: Values of DvM and ‖DvM‖ for variable M where β = 1. The values of Du and
‖Du‖, which do not vary with M , are included for comparison. We also include the value
of the expression in Eq. (7.37), which we expect to be near 0.

In Table 7.1, we present the values of DvM , ‖DvM‖ and Eq. (7.37) for each of M =
5, 20, 40, 80 as depicted in Figure 7.1. The values Du and ‖Du‖, which depend only on
N = 100 and are constant with respect to changes in M , are also included for comparison.
We find that the condition described by Eq. (7.37) is roughly satisfied; for each value of M ,
this number is near 0. As M increases, the value of Eq. (7.37) gets even smaller. We know
that vM → u as M increases towards N = 100, hence it is not surprising that Du ≈ Dv80
and ‖Du‖ ≈ ‖Dv80‖ according to the entries in Table 7.1. On the other hand, conditions
(1) and (2) are not roughly met for the smaller values of M . The fact that Eq. (7.37) is
roughly 0 indicates that some other balance of terms is occurring.

The poorness of the approximations for low M in Figure 7.1 is somewhat surprising.
What is perhaps even more surprising, looking at the plots, is that the correlations between
the gradients of these approximations and that of the target function are greater than the
correlations between the best L2 gradients and SSIM approximation gradients and that of
the target function! (In order to understand this better, one would need to examine the
derivatives, which we have done but have not reported.)

In this example, our value of N = 100 is quite high. By contrast, when approximating
a digital image, we would likely be using such an approximation for rather low values of
N , e.g., the 8×8 blocks that the JPEG standard uses. The candidate values of M will still
be rather moderate by comparison, and may still produce reasonable approximations. It
may be worthwhile to investigate how these approximations differ from their Fourier and
best-SSIM counterparts. However, because this method did not seem too promising, we
did not pursue the 2D case while completing this thesis.

For our second example, we explore the role of the parameter βM in Eq. (7.19). While
we know that Eq. (7.19) holds for some constant βM , we were not able to fully determine
its value. Our analysis in the previous section suggests that we may expect βM ≥ 1. In
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Figure 7.2, we fix M = 60 basis functions and plot the best approximations vM for (a)
βM = 1.0, (b) βM = 1.05, (c) βM = 1.1 and (d) βM = 1.3. In Table 7.2, we present the
values of DvM , ‖Dv‖ and Eq. (7.37) for each of the four plots in Figure 7.2. For the values
of β = 1.0, 1.05, the gradient norms and means are closest to being equal. The values
described by Eq. (7.37) are also at their smallest. As β increases, this value grows away
from 0 as expected. The gradient means and norms also grow further away from each
other, respectively.

βM = 1.0 βM = 1.05 βM = 1.1 βM = 1.3

Du 0.01000 0.01000 0.01000 0.01000
DvM 0.00941 0.00988 0.01035 0.01223

‖Du‖ 0.11605 0.11605 0.11605 0.11605
‖DvM‖ 0.11091 0.11646 0.07335 0.09758

Eq. (7.37) 1.307× 10−5 1.44× 10−5 1.582× 10−5 2.209× 10−5

Table 7.2: Values of DvM and ‖DvM‖ for M = 60 basis functions and variable β. The
values of Du and ‖Du‖, which do not vary with βM , are included for comparison. We also
include the value of the expression in Eq. (7.37), which we expect to be near 0.

In this section, we have derived the stationarity conditions for the maximization of
S3(Du,DvM), the correlation between the gradient of a target function u ∈ RN and
the gradient of its M -dimensional approximation vM . An infinity of solutions exists: If
{ck}Mk=2 is a solution, then so is {αck}Mk=2 for any α ∈ R. This follows from the fact that
S3(Du,DvM) = S3(Du, αDvM). A unique solution can be obtained by imposing two con-
straints employed in best SSIM-based approximation but adapted to this problem, namely,
(1) equal means, Du = Dv, and (2) equal norms, ‖Du‖ = ‖DvM‖. In “nice” cases, i.e.,
when M is sufficiently large, the approximations yielded by this method are reasonably
“good”, as compared to best L2-based and best-SSIM-based approximations. But when M
is small, the approximations yielded by this method can be quite poor. A most likely rea-
son for this problem is the lack of connection between the values of the approximation and
the target function since the method deals only with derivatives. One way to overcome this
difficulty, which also avoids the need to impose the equal norms constraint, is to include a
“regularization term” in the cost function which penalizes large distances between u and
its approximation vM and which can be expressed in terms of their expansion coefficients,
e.g.,

λ‖u− vM‖22 = λ
M∑
k=2

(ak − ck)2 + λ
N∑
k=2

a2k . (7.38)
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(a) N = 100, M = 60, βM = 1.0 (b) N = 100, M = 60, βM = 1.05

(c) N = 100, M = 60, βM = 1.1 (d) N = 100, M = 60, βM = 1.3

Figure 7.2: Correlation-based approximations between gradients to the function u(x) = x2

on [0, 1] using M = 60 basis functions, with (a) βM = 1.0, (b) βM = 1.05, (c) βM = 1.1
and (d) βM = 1.3.
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(Of course, the final term can be ignored.) We have performed a few experiments and
found that for very small values of λ > 0, the approximations yielded by this regularized
scheme are very much improved. That being said, these methods will not be discussed in
this thesis since (1) only a few experiments were performed and (2) a proper discussion
and analysis of the method—which is an extremely interesting one—would require at least
another chapter.

7.2 Best Approximation by Maximizing the SSIM Be-

tween Gradient Vectors

Recall that in Chapter 5.1, we maximized the following SSIM function between two continuous-
time signals,

SSIM(u, v) =
4ūv̄σuv

(ū2 + v̄2)(σ2
u + σ2

v)
. (7.39)

Eq. (7.39) corresponds to a special case of the SSIM in which the S2 and S3 terms have
collapsed into a single term. (This combination is made possible by choosing stability
constants such that C2 = 2C3.) In Eq. (7.39), we have also made the simplifying assumption
that all three stability constants C1, C2, and C3 are equal to 0.

In this section, we will maximize the SSIM between gradient vectors. In the following
problem, we will omit the S1 term of the SSIM since it involves only mean values. We
expect, as occurred in [3], that we will need to use the S1 term in order to determine the
first coefficient c1 of the approximation.

With that understanding, we define the following SSIM-based similarity function for
vectors in RN ,

S(u, v) = S2(u, v)S3(u, v) =
2suv
s2u + s2v

=
2suv

suu + svv
. (7.40)

We now consider the following best approximation problem in RN in terms of this SSIM-
based similarity between two gradient vectors: For a given target function u ∈ RN , with
Fourier expansion

u =
N∑
i=1

aiφi, where ak = 〈u, φk〉, 1 ≤ k ≤ N,

93



and an 1 ≤M < N , find the approximation of the form,

vM =
M∑
i=1

ciφi,

which maximizes the similarity between the gradients of u and v, as measured by S(u, v)
in Eq. (4.2),

c = arg max
d∈RM

S(Du,DvM).

Here,

Du =
N∑
i=1

aiDφi and DvM =
M∑
i=1

ciDφi.

As before, we will let v denote our best approximation going forward, omitting the sub-
script, to avoid confusion when extracting its component parts.

The statistics in the objective function,

S(Du,Dv) =
2sDuDv

sDuDu + sDvDv
, (7.41)

were already expressed in terms of the expansion coefficients in the previous section. As
before, sDuDu does not depend on the unknown coefficients ck. For the remaining terms,
we substitute the expansions obtained in the previous section to get

S(Du,Dv) =
2
[∑M

i=2 aiciAii −N
(∑N

i=2 aiDφi

)(∑M
j=2 cjDφj

)]
sDxDx +

[∑M
i=2 c

2
iAii −N

(∑M
i=2 ciDφi

)2] .

We now examine the structure of the partial derivative of S(Du,Dv) with respect to cp for
2 ≤ p ≤M . As before, letting the prime sign denote the partial derivative with respect to
cp,

∂S(Du,Dv)

∂cp
=

2 [(sDuDu + sDvDv)s
′
DuDv − sDuDvs′DvDv]

(sDuDu + sDvDv)2
, 2 ≤ p ≤M.

The stationarity condition,
∂S(Du,Dv)

∂cp
= 0,

implies that the expression on the right be zero, i.e.,

(sDuDu + sDvDv)s
′
DuDv − sDuDvs′DvDv = 0,
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which implies that,
(sDuDu + sDvDv)s

′
DuDv = sDuDvs

′
DvDv.

We now proceed as before by rearranging the above equation to obtain,

s′DvDv
s′DuDv

=
sDuDu + sDvDv

sDuDv
.

Substituting the expressions for the appropriate derivatives from the previous section into
the LHS of the above equation, we have

2cpApp − 2NDφp

(∑M
i=2 ciDφi

)
apApp −NDxDφp

=
sDuDu + sDvDv

sDuDv
.

Dividing both sides by 2, we arrive at the following result,

cpApp −NDφp
(∑M

i=2 ciDφi

)
apApp −NDxDφp

=
sDuDu + sDvDv

2sDuDv
, 2 ≤ p ≤M.

Once again, the RHS of each of the above M − 1 equations is independent of p, implying
that the ratio on the LHS is constant for all p, i.e.,

cpApp −NDφp

(
M∑
i=2

ciDφi

)
= βM

[
apApp −NDxDφp

]
, 2 ≤ p ≤M,

for some constant βM . But we note that this is the same condition as Eq. (7.19) found in
the previous section. In other words, our use of the SSIM function as a measure of the
similarity of two gradient functions yields nothing new.
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Chapter 8

The Einstein Images Revisited

8.1 MSE Between Gradient Vectors

This chapter marks a transition in our treatment of gradients in image processing appli-
cations. Following our introduction to gradients via best approximation methods, we now
embark on our in-depth investigation of gradient similarity measures and their incorpora-
tion into the SSIM.

We arrived, at this moment in our winding explorations, newly afaced with those Ein-
stein images recalled in Figure 8.1. It may be necessary to restate some details with which
we had been previously well-acquainted: The six Einstein portraits are each a 256 × 256
pixel, 8 bits-per-pixel greyscale image. They are notorious for having nearly-equal MSE,
despite exhibiting varying degrees of perceptual quality. In Chapter 4, the Einstein images
allowed us to analyze the SSIM and, in particular, the respective roles of each of its three
component parts. Although no definitive conclusions could be drawn from our simple ex-
periments, those results did support our belief that the correlation is the most important
component of the SSIM.

We now present our second set of so-called “Einstein experiments”. Although simple-
minded, the following experiments highlight once again our inclination towards a stripped
back approach based on first principles, a position which characterizes our work throughout
this thesis.

Our focus in this section is to begin our computational exploration of the gradient.
The first step is, of course, deciding on the manner in which to compute gradients. There
are numerous reasonable choices: Indeed, we acknowledge that in the image processing
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(a) original (b) blur (c) contrast

(d) impulse (e) jpg (f) meanshift

Figure 8.1: The reference Einstein image original and its perturbations.

literature, many different formulas—which can be expressed in terms of “filters” operating
on the matrices representing the images—are employed. Furthermore, different gradient
filters will most probably yield different computational results. That being said, our pri-
mary purpose here is to introduce the idea of using gradients in image quality measures.
As such, we continue to employ simple forward differences to compute our gradients and
consider an exploration of other methods to be beyond the scope of this thesis.

Let x denote the reference image original and y denote the appropriate degraded image.
For 1 ≤ i, j ≤ 256, the gradient of the reference image x at the (i, j)th pixel is defined by,

∇xij = (x(i+ 1, j)− x(i, j), x(i, j + 1)− x(i, j)), (8.1)
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except at the edges of the image, i.e., when i = 256 or j = 256. Since the index 256 + 1
lies outside the region over which the image is defined, the image must be extended.
We have assumed an even extension of the image, so that x(256 + 1, j) = x(256, j) and
x(i, 256 + 1) = x(i, 256). This produces a zero value for the appropriate component of the
gradient vector. A similar expression holds for a degraded image y.

Underlying the following explorations is the question of how sensitive the human visual
system is to changes in the gradient vector. For our first simple attempt at addressing
this question, we will compute the usual L2 distance between gradients. If the structural
information encoded in our simplistic gradient allows the MSE, which does not otherwise
consider spatial relationships between pixels, to differentiate between the Einstein images,
then this would be substantial evidence in favour of applying gradients in image quality
assessment.

For the original image x and each of the 5 perturbations y, we compute the following
distances,

‖∇x−∇y‖2 :=
1

N

[
N∑
i=1

N∑
j=1

‖∇xij −∇yij‖22

]1/2
, (8.2)

whereN = 256 and the gradients∇x and∇y are computed using simple forward differences
as previously described. The results of the computation are presented in Table 8.1 below.

blur contrast impulse jpg meanshift
17.0349 5.5426 23.9110 17.6135 0.1309

Table 8.1: RMSE between the gradients of the original Einstein images and its perturba-
tions.

We can immediately observe a significant deviation in the values of these distances. It
is clear that computing the MSE between gradients already offers a marked improvement
over the traditional MSE. However, the results in Table 8.1 become even more encouraging
after a closer look. Recall that in Chapter 4, we discussed the following ranking of the
Einstein images as prescribed by the MSSIM,

meanshift > contrast > impulse > blur > jpg. (8.3)

In terms of the distances reported in Table 8.1, the meanshift image is once again closest
to the original Einstein image. Since the meanshift image is produced from original by
merely adding a constant to the greyscale values of the latter, the gradient of the two images
are identical. (The observed deviation is due the presence of a few pixels whose meanshift
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value is restricted by limits on the greyscale range, i.e, restricted to the maximum possible
value L = 255.) The contrast image is next lowest in terms of gradient distance. These
two results are in agreement with the ordering of image quality dictated by the MSSIM
and reported in Eq. (8.3). Indeed, if we let the gradient distances define an ordering of
image quality, it would be as follows,

meanshift > contrast > blur > jpg > impulse . (8.4)

We see that the relative ordering of blur and jpg is also the same as for the MSSIM. In fact,
the only difference between Eq.(8.4) and Eq. (8.3) is the placement of the impulse image.
According to the gradient distance, impulse is moved to the end of the line, the furthest
from original. The addition of impulse noise strongly affects not only the gradient at
each contaminated pixel, but also the gradients of its adjacent neighbours. The increased
disparity between adjacent intensity values is evidently, and understandably, bothersome to
the gradient-based MSE. It is possible that some preprocessing methods, such as blurring
or downsampling of the image, could mitigate this effect, perhaps even to the extent that
one could retrieve a ranking of gradient distance in agreement with Eq. (8.3).

8.1.1 The Quest for a Gradient Similarity Measure

The results of the previous section suggest that there is a compelling relationship between
the visual closeness of images and the distances between their gradients. The question
still remains of how best to measure gradient similarity. In the following section, we will
formulate a few different measures of gradient similarity, all of which clearly seek to match
gradient vectors. We will compare the performance of our various formulations by applying
them to the Einstein images.

Our foremost source of inspiration on which to model a gradient similarity measure was,
of course, the correlation. Indeed, in the same way that the SSIM computes the correlation
between two M ×M patches x and y, one might be tempted to compute the correlation
between their gradients ∇x and ∇y. However, ∇x and ∇y will both be an M ×M block
of vectors, i.e., each component of the M × M matrix will be a 2-vector as written in
Eq. (8.1). These details illuminate our motivating question. We are, in fact, faced with
the following: How does one measure the similarity between two blocks of vectors?

For our first approach, recall that the correlation between two image patches x, y ∈ RN

can be interpreted as the cosine of an angle θ, i.e.,

S3(x, y) =
sxy
sxsy

=
x0 · y0
‖x0‖‖y0‖

= cos θ,
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where
x0 = x− x̄ and y0 = y − ȳ,

as discussed on p. 13.

In a similar fashion, our first gradient similarity measure is based on the angle between
gradient vectors. Given the two blocks of vectors ∇x and ∇y, we compute the cosines of
the angles between their respective components ∇xij,∇yij ∈ R2,

cos θij =
∇xij · ∇yij

‖∇xij‖‖∇yij‖+ C4

, 1 ≤ i, j ≤M, (8.5)

and then take the average of these cosines over the entire block,

cos θ =
1

M2

M∑
i=1

M∑
j=1

cos θij. (8.6)

The gradient vectors ∇xij and ∇yij are both defined by two pieces of information:
the orientation angle and the magnitude. The above approach is, of course, only taking
into consideration the former of these two qualities. It is not yet clear if this is actually
disadvantageous. It is unknown at this point if the human visual system is sensitive to
changes in gradient angle, changes in gradient magnitude, or some weighting of the two.
Testing Eq. (8.6) on the Einstein images should give us an indication of the efficacy of
using angle information only.

Notice that in Eq. (8.5), we have included a small stability constant C4 in the denomi-
nator only. This is, of course, to protect against numerical instabilities should either ∇xij
or ∇yij be close to (0, 0). However, it is quite possible that a given pixel location (i, j),
both gradient vectors ∇xij and ∇yij are close to (0, 0). In such a case, one can make a
claim that the two vectors are quite similar—in fact, identical. It may be tempting, in light
of this possibility, to insert a stability constant in both the numerator and denominator
of Eq. (8.5). On the other hand, it may well be the case that the dot product produces a
bona fide zero value—in which case we would prefer to revert to having a stability constant
in the denominator only. This dilemma involving the stability constants will be further
explored in Chapter 9. For the moment, we simply consider the formulation stated in
Eq. (8.5). In our computations, we set C4 = 10−5.

As discussed in Chapter 4, p.30, we will compute our similarity measures, including
Eq. (8.6), using non-overlapping patches of various sizes. After computing the value of
Eq. (8.6) for each patch, we compute the mean over the entire image. The results of this
computation are presented in Table 8.2 below.
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8× 8 16× 16 32× 32 64× 64
blur 0.3052 0.3052 0.3052 0.3052
contrast 0.9766 0.9766 0.9766 0.9766
impulse 0.9787 0.9787 0.9787 0.9787
jpg 0.1977 0.1977 0.1977 0.1977
meanshift 1.0000 1.0000 1.0000 1.0000

Table 8.2: Average cos θ values between the original Einstein image and its degradations
for various patch sizes using Eq. (8.6).

We not that for each degraded image, the values of cos θ reported in Table 8.2 do not
differ with patch size. This is to be expected. Similar to the computation of the RMSE,
we are first finding the average angle in each block, then averaging over all blocks, so that
the final result is just an average of angles over all pixels in the image.

We also note that the gradient correlations for the blur and jpg images are significantly
lower than the scores for the other degraded images. Blurring and strong JPEG compres-
sion affect the gradients of an image significantly—blurring dampens the gradients while,
in JPEG compression, many blocks with zero gradient are produced.

On the other hand, the cos θ values for contrast, meanshift, and impulse are all quite
high. In the contrast image, the gradients are scaled and therefore correlation is preserved.
In the meanshift image, we expect the gradient to be identical because the degraded image
is simply a shifted version of the original image. In the impulse image, the modification
of a few isolated pixels contributes little to the averages taken. Reflecting on these results,
it may be of concern that the generous impulse value in Table 8.2, which exceeds even the
contrast value, disrupts the ranking of the images imposed by the MSSIM in Eq. (8.3).

A natural variation of this method leads us to our second proposed gradient similarity
measure. In this second related method, we first compute the mean vector of each block,

∇x =
1

M2

M∑
i=1

M∑
j=1

∇xij and ∇y =
1

M2

M∑
i=1

M∑
j=1

∇yij, (8.7)

and then compute the correlation between these two mean vectors as follows,

cos θ =
∇x · ∇y

‖∇x‖‖∇y‖+ C4

. (8.8)

Once again, we have set C4 = 10−5 in our computation. In Table 8.3 we present the average
correlation values obtained by applying this method to the original Einstein image and its
degradations for various block sizes.
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8× 8 16× 16 32× 32 64× 64
blur 0.8245 0.8877 0.9568 0.9979
contrast 0.9938 0.9932 1.0000 0.9999
impulse 0.9055 0.9267 0.9527 0.9969
jpg 0.5252 0.6762 0.8814 0.9834
meanshift 1.0000 1.0000 1.0000 1.0000

Table 8.3: Average cos θ values between the original Einstein image and its degradations
for various patch sizes using Eq. (8.8).

The values in this table are generally quite high, with many individual entries exceeding
0.9. The only exceptions are the blur entries for 8×8 and 16×16 blocks and the jpg entries
for all blocks but those sized 64×64 pixels. By first taking the average value of the gradient
vectors of a block and then computing a correlation, one might argue that a great deal of
information about the block—including any similarities of lack of similarities of component
gradient vectors—is lost. Indeed, the rather large values of the blur entries—and even the
less inflated jpg entries—suggest that the method described by Eq. (8.8) may not be a
good way to compute gradient similarity.

With all of the above work done involving angles of gradient vectors, we haven’t ac-
tually determined any correlation between the entire sets of data ∇x and ∇y. Rather,
we have so far only considered averaging the cosine of angles existing between their indi-
vidual components. For our next formulation, we wanted to compute, in some way, the
correlations of the angles of the corresponding gradient vectors of the two images.

Let the gradient vectors of the images x and y be expressed in both Cartesian and polar
form as follows,

∇xij = (aij, bij) = rije
iθij , where rij =

√
a2ij + b2ij and θij = tan−1(bij/aij)

∇yij = (cij, dij) = rije
iθij , where rij =

√
c2ij + d2ij and φij = tan−1(cij/dij). (8.9)

We then compute the correlation between the two M2 vectors defined by the angles θij
and φij, i.e.,

S4(θ, φ) =
sθφ

sθsφ + C4

(8.10)

where the covariance sθφ and the variances sθ and sφ are defined in the usual way.

The average correlations obtained by the above method as applied to the original
Einstein image and its degradations for various block sizes are presented in Table 8.4.
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8× 8 16× 16 32× 32 64× 64
blur 0.2039 0.2388 0.2529 0.2561
contrast 0.9839 0.9849 0.9852 0.9855
impulse 0.9819 0.9826 0.9828 0.9828
jpg 0.1321 0.1756 0.1982 0.2082
meanshift 1.0000 1.0000 1.0000 1.0000

Table 8.4: Average block-correlation values S4(θ, φ) between the original Einstein image
and its degradations for various patch sizes using Eq. (8.10).

All of this being said, we will not discuss the method defined by Eq. (8.10) at length in
this thesis. Given the periodic nature of the angle, complications are introduced based on
the fundamental interval of definition. The values in Table 8.4 correspond to θij ∈ [−π, π],
the default interval in Matlab. In this scheme, the values −π + ε and π + δ are nearly 2π
apart in the absolute sense, while we would prefer to interpret those angles periodically
as being very close together. Shifting the fundamental interval of definition has significant
impact on the values in Table 8.4, to the extent of changing the relative ordering of the
images, and is based on the unpredictable distribution of the angles of the gradient vectors
in the given images. Although we did explore this issue, we will be omitting any further
discussion relating to Eq. (8.10).

To devise yet another gradient similarity measure, we turned our focus to addressing a
different concern. Up to this point, we had been bothered by the relatively high impulse
scores in Table 8.2 and Table 8.3. It is likely that the impulse noise affects the magnitudes
of the gradient vectors more than their angles, which suggests that we should also examine
the correlations of the magnitudes of the gradient vectors, i.e.,

S4(r, s) =
srp

srsp + C4

, (8.11)

where the magnitudes r, p are computed according to the formulas in Eq. (8.9). In Table
8.5 below we present the average correlation of gradient magnitudes between the original
Einstein image and its degradations for various block sizes.

We see that the impulse correlation values are noticeably lower than their counterparts
in both Table 8.2 and Table 8.3. This indicates that the magnitudes of the gradients vectors
are providing at least some way of detecting the distortion produced by impulse noise. The
relative ordering of the distorted images imposed by the MSSIM and described by Eq. (8.3)
is also maintained for all attempted block sizes. Based on these two observations, it appears
that the gradient magnitudes provide a better indication of image quality than the gradient
angles alone.
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8× 8 16× 16 32× 32 64× 64
blur 0.2298 0.3108 0.4127 0.4649
contrast 0.9807 0.9849 0.9975 0.9974
impulse 0.6971 0.4823 0.4518 0.4737
jpg 0.1361 0.2351 0.3801 0.4565
meanshift 1.0000 1.0000 1.0000 1.0000

Table 8.5: Average block-correlation values S4(r, s) between the original Einstein image
and its degradations for various patch sizes using Eq. (8.11).

For our final proposed measure, we step away from methods using one of either the
gradient angle or magnitude to instead consider the individual x and y components of
the vector. For this final method, we compute the correlation between the components of
the gradient vector separately. For two corresponding image blocks, one taken from the
reference image and one from a degradation, we let a denote the correlation between the
x-components of the blocks and b denote the correlation of the y-component of the blocks.
In this way, we obtain two correlations for each block, which we present as an ordered pair
(a, b). The question is then how to extract one number from this pair of values. There are
a number of reasonable possibilities, e.g., taking the maximum, minimum, or average. We
have chosen to compute the “normalized magnitude” of the vector (a, b), i.e., the quantity

S4(a, b) =
1√
2

(a2 + b2)1/2, (8.12)

which lies in the range [0, 1]. As usual, we then compute the average S4(a, b) across all
blocks in the image. For the original Einstein image and each of its perturbations, we
present those average “normalized magnitudes” for various block sizes in Table 8.6 below.
(When computing the correlations a and b, we have once again included the small stability
constant C4 in the denominator only.)

As was the case for the correlation of magnitudes presented in Table 8.5, these impulse
values are more punished, although not to the same extent. For all block sizes, these values
also maintain the relative ordering imposed by the MSSIM in Eq. (8.3). At this point, it
seems that both the correlation of magnitudes and “normalized magnitude” methods are
performing at least reasonably well.

This completes the presentation of our novel methods of computing gradient similarity.
However, during the course of this work, we became aware of a pre-existing method to
compute the correlation between vectorial data sets. It is known as the “canonical correla-
tion” method, introduced by mathematician Harold Hotelling in 1936 [8]. It is, in a sense,
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8× 8 16× 16 32× 32 64× 64
blur 0.3551 0.3969 0.4391 0.4619
contrast 0.9902 0.9922 0.9964 0.9975
impulse 0.7600 0.5858 0.5573 0.5715
jpg 0.2142 0.2735 0.3571 0.3977
meanshift 1.0000 1.0000 1.0000 1.0000

Table 8.6: Average “normalized magnitude” of the block-correlation between gradient
vectors for the original Einstein image and its degradations for various patch sizes.

a more rigorous approach than our simplistic methods explored above. To conclude this
section, we will compute the canonical correlation of the Einstein images. Before doing so,
we first present a brief description of the method.

First of all, we flatten the original image patches x, y ∈ RM×M to produce column
vectors x, y ∈ RM2

. The individual elements of x, y are K-vectors. In our application to
gradient vectors of images, K = 2. We now represent this data by two M2 ×K matrices,
i.e.,

A =

 a11 . . . a1K
...

...
...

aM21 . . . aM2K

 , B =

 b11 . . . b1K
...

...
...

bM21 . . . bM2K

 .

We shall let ai and bi denote the ith column vectors of A and B respectively, i.e.,

ai =

 a1i
...

aM2i

 , bi =

 b1i
...

bM2i,

 , 1 ≤ i ≤ K.

(We acknowledge that this notation may be rather dangerous but hope that it will serve
its purpose.) In our application, the column M2-vectors a1 and b1 are composed of the
x-components of the gradient vectors of the two images being compared and the column
vectors a2 and b2 are composed of the y-components of the gradient vectors.

Throughout, we assume that all column vectors ai and bi are zero-mean. (In our
earlier computations, the formula defining regular correlations included the subtraction of
the means. This is not the case for the canonical correlation. In any applications, we’ll
have to manually subtract the appropriate means from our original data.)

We now require the following definitions from linear algebra. The collection of col-
umn vectors, {ai}Ki=1, define the column vector space of the matrix A, to be denoted as
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“colsp(A)”, as follows,
colsp(A) = span{a1, · · · , aK},

i.e., the set of all linear combinations of the ai vectors. Likewise, the column vector space
of B is defined as

colsp(B) = span{b1, · · · ,bK}.

By definition, colsp(A) and colsp(B) are subspace of RM2
.

We now come to the main point: The canonical correlation, C(A,B), between the
matrices A and B is the maximum correlation that can be found between a vector u ∈
colsp(A) and a vector v ∈ colsp(B). One way to state this is as follows,

C(A,B) = max
c∈RK ,d∈RK

C

(
K∑
k=1

ckak,
K∑
l=1

dlbl

)
. (8.13)

Very fortunately, there is a Matlab routine which can be used to compute the canonical
correlation between two matrices A and B. The file “subspacea.m” can be downloaded
from the Matlab file exchange [9].

There is one important note to be made regarding the code. The “subspacea.m” routine
tries to find K angles between vectors of both column spaces. Because K = 2 in our
applications, we will ideally be returned two angles. The first angle is the “best”, i.e., the
angle associated with the vectors yielding the highest correlation. Sometimes, the program
can find only one angle. And in some very extreme cases, no angles are found. In this case,
we manually assign the value of 0 to the canonical correlation. Such failures were found,
but only in the case of the jpg image. We have not investigated this problem in detail, but
suspect that it may be due to the flatness of the blocking artifacts in the jpg image.

In Table 8.7 below are presented the average blockwise canonical correlations obtained
by the above method applied to the original Einstein image and its degradation for various
patch sizes.

The values in Table 8.7 seem to be more forgiving than their counterparts in Table
8.5, which considered the correlation of magnitudes, and Table 8.6, which considered the
“normalized magnitude” of the correlations between x- and y-components. This may be
due to the fact that the canonical correlation method is considering the complete gradient
vector as opposed to only one of its components, thereby giving more opportunity to find
good correlation. Moreover, recall that the canonical correlation method searches for the
best correlation. One may well wonder if this is really what we want. Indeed, although this
is perhaps a more rigorous way to approach computing the correlation between gradients,
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8× 8 16× 16 32× 32 64× 64
blur 0.4879 0.5095 0.5459 0.5548
contrast 0.9935 0.9945 0.9989 0.9988
impulse 0.8185 0.6694 0.6512 0.6698
jpg 0.3126 0.3744 0.4690 0.5082
meanshift 1.0000 1.0000 1.0000 1.0000

Table 8.7: Average blockwise canonical correlation values between the original Einstein
image and its degradations for various patch sizes.

we may prefer the results using one of our more simplistic approaches. Answering this
question necessitates the testing of our simplistic methods, as well as the canonical corre-
lation, over a much larger range of distortions. This observation ushers in the arrival of our
next chapter, where we graduate to experimentations on the so-called “LIVE Database”.

107



Chapter 9

Incorporating Gradient Correlation
Into the SSIM

We now present what should be considered as the culmination of our efforts throughout
this thesis: The experiments on the LIVE database. We wish to investigative whether the
incorporation of gradient information could, in some way, “improve” the MSSIM. Of course,
what is meant by “improve” will have to be discussed, and we do so later in this chapter.
It naturally arose, during the completion of this work, to perform a detailed examination
of the MSSIM, with particular attention paid to the role of the stability constants. To the
best of our knowledge, such a systematic analysis of the MSSIM has not appeared in the
literature.

9.1 Introducing the LIVE Database

The Einstein images, which had been greatly useful to us, were no longer sufficient for our
exploits. Little could be said, using the Einstein images alone, about the individual differ-
ences between the gradient similarity measures surveyed in the previous section. Moreover,
our hope now was to improve the SSIM by incorporating gradient information—should our
näıve measures, or perhaps the canonical correlation, be up to the task. In order to per-
form these types of comparisons between measures, we required a large collection of digital
images and some indication of their relative quality according to a typical human observer.

Of course, this is not a new need for the larger image quality assessment community.
A variety of application-specific and general use databases have been assembled over the
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recent years. For our concerns, we naturally referred to a study performed by the Labo-
ratory of Video Engineering (LIVE) at the University of Texas at Austin, in which they
obtained quality scores from human participants for hundreds of distorted images. In what
follows, we use their “LIVE Image Quality Assessment Database”—in particular, the most
recent version, “Release 2”—which is freely available for download at [24].

A brief introduction to the LIVE database is required. Details beyond those sum-
marized here can be found in [23] and [22]. To produce the database, twenty-nine high-
resolution 24 bits-per-pixel RGB colour images were collected. These reference images were
then distorted using one of five distortion types: JPEG 2000, JPEG, white noise in the
RGB components, Gaussian blur, and transmission errors in the JPEG 2000 bit stream
using a fast-fading Rayleigh channel model.

Hundreds of degraded images were generated for each of the distortion types listed
above. In all cases, the level of distortion was slowly increased such that the resulting
collection of degraded images occupied a broad range of visual quality, from imperceptible
levels of distortion to high levels of impairment.

Human participants were then shown the distorted images and asked to provide a sub-
jective quality score. (They were not shown the associated reference image for comparison.)
It is reported that about 20 to 29 observers rated each image. Participants were asked to
rate the quality of the image on a continuous linear scale that was divided into five equal
regions marked by the following adjectives: “Bad”, “Poor”, “Fair”, “Good”, “Excellent”.
The images were shown to each participant in a unique randomized order. More details
about the experiment, e.g., the lighting and viewing conditions, are reported in [23]. In
this way, 982 images were evaluated by human subjects over seven sessions. For reasons
that will become clear, the reference images were mixed in with the distorted images and
also received a subjective quality rating during each of the seven sessions. As such, 203 of
the 982 images in the LIVE database correspond to repeated instances of the 29 reference
images. The distribution of these 982 images over the five distortion types is reported in
Table 9.1.

JPEG JPEG 2000 White Noise Gaussian Blur Fast-Fading Total
233 227 174 174 174 982

Table 9.1: The distribution of the 982 total images comprising the LIVE database across
the five types of distortions.

The subjective ratings obtained from different observers had to be somehow combined
so that each image in the LIVE database could be associated with a single perceptual
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quality score. These amalgamated values are known as the “Difference Mean Opinion
Scores”, or simply DMOS. The DMOS values were computed as follows. Let rij denote
the ith participant’s raw score of the jth image. This raw score was then converted to a
raw difference score dij according to the following formula,

dij = riref(j) − rij,

where riref(j) denotes the raw score given by the ith participant to the reference image
corresponding to the jth distorted image. At this point, outliers were identified according
to conditions specified in [23] and removed from the data. The raw difference scores were
then converted into Z-scores. The Z-score for the ith subject and the jth image is

zij =
dij − di
σi

,

where di is the mean of all raw difference scores associated with participant i and σi is the
standard deviation of those scores (both computed after outlier remover). The Z-scores
were then averaged over all participants i, yielding a single score zj associated with the jth

image.

The mean Z-scores zj were then realigned to produce the DMOS scores. The realign-
ment study was intended to calibrate the quality scales of the seven different sessions. Once
more, we refer the reader to [23] for details related to the realignment study. Here we will
only state that a linear relationship between the DMOS scores and Z-scores was assumed,
and the parameters were obtained according to an error minimization scheme. The range
of the DMOS scores is reported in [23] to be 0 to 100, but we find that the DMOS scores
repackaged in Release 2 range from −2.64 to 111.77. It is unclear what a negative DMOS
score implies about the perceptual quality of the image.

Although these details are rather interesting, the point of this discussion is largely
to understand that perceptual quality decreases as DMOS increases. A “perfect” score
DMOS = 0 does not imply that the corresponding image is an undistorted reference image;
rather, it indicates an imperceptible level of distortion (if at all present) in the image. At
the same time, due to the test methodology described above, the 203 uncorrupted reference
images are not guaranteed to possess a perfect score DMOS = 0.

The parameters associated with the distortions, such as the JPEG quality factor Q or
the standard deviation σ associated with the white noise, were slowly varied to generate the
degraded images. The relationship between changes in these parameters and perceptual
quality is unlikely to be linear. (Later in this chapter, we will investigate the relationship
between the JPEG quality factor Q and the SSIM.) An even distribution across the range
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Figure 9.1: Histograms of the DMOS scores by image type.

of perceptual quality is therefore not guaranteed. For this reason, we were interested to
see the distribution of the DMOS scores in the LIVE database. In Figure 9.1, we have
plotted histograms of the DMOS scores for the entire database and for each individual
distortion type. The tall spikes at DMOS = 0 can likely be attributed, in large part, to
the reference images. For the white noise and Gaussian blur images, the gap between the
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first bar, capturing DMOS near 0, and the second next bar is rather interesting. It appears
that small levels of these distortions are immediately more bothersome to the human visual
system than the others. Overall, the DMOS scores are well-distributed for all five distortion
types.

Figure 9.2, depicting a small set of distorted images from the LIVE database, allows
us to quickly peek behind the curtain. We have selected one example image from each of
the five distortion types. Although a sample of this size is by no means comprehensive,
it does convey the variety in subject and composition among the 29 reference images.
The reference images include portraits, photos of animals, nature, and man-made objects,
among others; In terms of composition, there are images with an obvious subject anchored
in the foreground and images with no obvious focal point.

The representative images in Figure 9.2 were all chosen within a relatively small range
of DMOS values. According to the assigned DMOS scores, these images should all have
essentially equal perceptual quality. In this way, Figure 9.2 is also meant to demonstrate
the difficulty inherent in comparing entirely different images and distortion types on a
single scale, whether one is asking this of humans or a mathematical formula.

A final note should be made about how the distortions affect the colour images in
Figure 9.2. In particular, high levels of JPEG distortion corrupt the colour channels,
yielding greyscale blocks as exhibited in Figure 9.2 (b). This corruption is obvious, and
likely very bothersome, to a human’s eye. However, as we know, the SSIM was formulated
to be computed on greyscale images. The built-in Matlab function “rgb2gray” is typically
used to obtain the required greyscale image. This convention is adopted by us in the
following experiments. One does wonder if the colour corruptions, like in Figure 9.2, are
captured by such a process or if the resulting greyscale image is not as obviously distorted.
This question, and an investigation of the best practices for computing the SSIM on colour
images, is outside the scope of this thesis.

9.2 Experiments on the LIVE database

9.2.1 Analyzing Different S4 Formulations and Introducing a First
“gradSSIM” Measure

Our first practical experience with the LIVE database was to simply compute the MSSIM
for all of its 982 images. The MSSIM [29] of each image was computed using the official
code publicly available at [28]. (For the moment, we use the provided code “ssim index.m”
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(a) JPEG 2000 (b) JPEG

(c) Fast Fading (d) Gaussian Blur

(e) White Noise

Figure 9.2: Example distorted images in the LIVE database. (a) DMOS = 67.8906, (b)
DMOS = 63.3076, (c) DMOS = 62.5892, (d) DMOS = 63.3819, (e) DMOS = 67.6265
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which does not perform any preprocessing of the images. The suggested downsampling
procedure included in “ssim.m” will be explored towards the end of this chapter.) Unlike
our simplistic experiments on the Einstein images, the provided code computes the MSSIM
in overlapping sliding windows of size 11×11 pixels. When computing the statistics in the
local window, a Gaussian-weighted vector is used. In this way, the pixels located centrally
in the window contribute more to the local means and variances than those towards the
window’s border. Further discussion of the Gaussian-weighted vector can be found in
[32]. Unless otherwise indicated, we will use a Gaussian-weighted vector in all of our
computations on the LIVE database.

Unlike our earlier experiments, the official MSSIM we now compute includes stability
constants in both the numerator and denominator of its components. We used the sug-
gested values, as reported in [32]: C1 = (K1×L)2, C2 = (K2×L)2, and C3 = C2/2, where
K1 = 0.01 and K2 = 0.03. The greyscale images produced by “rgb2gray” have dynamic
range L = 255, yielding C1 = 6.5, C2 = 58.5 and C3 = 29.2 when rounded to one decimal
place.

Interested to see if we could corroborate the findings of our näıve Einstein experiments,
we next computed the individual components of the SSIM on the LIVE database. In each
component, we used the appropriate stability constant listed above (in both the numerator
and denominator) and an 11 × 11 Gaussian-weighted vector when computing the local
statistics.

Finally, we also computed one of our gradient similarity measures. Our first choice was
to compute the normalized magnitudes of the correlation between components, i.e.,

S4 =
1√
2

(a2 + b2)1/2, (9.1)

where a denotes the correlation between the x-components of the gradients and b denotes
the correlation between the y-components of the gradients. Our work with the Einstein
images suggested that this is one of the more promising of our simplistic methods. In the
spirit of the MSSIM, we included a stability constant, denoted C4, in both the numerator
and denominator of the correlations a and b. Moreover, because we think of these corre-
lations as gradient-based analogues of the S3 component, we made C4 (practically) equal
to C3, i.e., we let C4 = 30. This reasoning is justified by our observation that the gradient
correlations were similar in magnitude to the regular correlations, at least for the Einstein
images.
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(a) (b)

(c) (d)

(e) (f)

Figure 9.3: Plots illustrating the performance of the MSSIM, its individual components,
and our “normalized magnitude” S4 measure on the LIVE database. The points have been
colour-coded according to degradation type: In the legend, “jp2k” indicates JPEG 2000
distortions, “jpeg” for JPEG, “wn” for white noise, “gblur” for Gaussian blur, and “ff” for
fast-fading. The “dist” measure indicates the variance in the data according to the curve
of best fit.
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The results for this first set of experiments are displayed in Figure 9.3. The convention
in the literature, which we have adopted here (at least for the moment), is to plot the
DMOS scores along the vertical axis. Included in each of the plots in Figure 9.3 is a curve
of best fit obtained using nonlinear regression performed by the Matlab function “fitnlm”.
We use the following nonlinear relationship given in [23] for the regression,

Quality(x) = β1logistic(β2, (x− β3)) + β4x+ β5

logistic(τ, x) =
1

2
− 1

1 + exp(τx)
. (9.2)

To be able to evaluate the performance of the different measures, we compute the
RMSE between the DMOS and the algorithm score after nonlinear regression. (This is one
of a few statistical evaluation techniques explored in [23].) For example, consider the plot
of MSSIM scores in Figure 9.3 (a). For the jth image in the LIVE database, we compute

dist =

[
982∑
j=1

(DMOS(j)−Quality(MSSIM(j)))2

]1/2
. (9.3)

In Figure 9.3, this value is provided in the “dist” measure displayed in the title of each plot.
Because the curve is obtained through least squares regression, our “dist” measure can be
thought of as the variance between the fitted curve and the DMOS values as a function of
the algorithm score. From the plot of the MSSIM and its regression curve in Figure 9.3,
we see that the data points are quite concentrated about the curve at the bottom right
region of the plot, which may be considered as the “low DMOS” region (i.e., under 20) or
“high MSSIM” region (i.e., near 1). As we move leftward and upward, however, the data
points are distributed more diffusely about the regression curve. This led us to think of
one possible criterion for “improving” MSSIM, namely, decreasing the diffusiveness of the
data points in the lower DMOS region.

The plots of the MSSIM and its individual components in Figure 9.3 reflect our earlier
conclusions made using the Einstein images. First looking at Figure 9.3 (b), there is an
incredible amount of compression along the S1 axis towards S1 = 1. This illustrates once
again our earlier conclusion that the S1 term differentiates little between distorted images.
Conversely, the S2 and S3 components are both performing well, with S2 exhibiting a
slightly lower “dist” value than S3. Figure 9.3 (e) shows the result of computing S2 × S3

in the local sliding windows. Unsurprisingly, the S2 × S3 plot and the MSSIM plot are
visually indistinguishable from one another, an attribute which is also reflected in their
nearly equal “dist” values.
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Figure 9.3 (f) illustrates the performance of our first attempted S4 measure as defined in
Eq. (9.1). This plot is, quite plainly, disappointing. Overall, the S4 plots looks like a more
diffuse version of the S3 one pictured above. In particular, the clump of points ballooning
above the fitted curve between S4 = 0.6 and S4 = 0.9 is rather disturbing. Moreover, both
this bothersome clump and the yellow circles (denoting white noise images) near S4 = 0.2
appear to be slipping down the fitted curve, cascading towards S4 = 1.0. The obvious
culprit responsible for overinflating the scores is the stability constant, which appears in
both the numerator and denominator of the gradient correlations. It appears that the
value C4 = 30 is too high, artificially pushing the quotients a and b towards 1.

As mentioned earlier, this value of C4 was chosen to agree with the MSSIM’s stability
constant C3. However, during our research, we were unable to find in the literature any
clear description of how or why this particular C3 value was chosen. In fact, the suggested
values of all three stability constants C1, C2, and C3 were much larger than we had ex-
pected. In [32], the stability constants are described as “small” constants to protect against
instabilities in the denominator; although “small” and “large” can only be understood as
relative terms, their raison d’être could be satisfied by significantly smaller values. For our
second experiment, we were thus motivated to vary the value of C4, in the hope that a
lower value would yield a significant increase in performance.

We were also eager at this time to make a first attempt a modifying the SSIM using
gradient information. We considered this following very simple formulation, which we
called “gradSSIM” to indicate the addition of gradients. For two image patches x and y,
we define the following local similarity measure,

gradSSIM(x, y) = SSIM(x, y) · S4(x, y) = S1(x, y) · S2(x, y) · S3(x, y) · S4(x, y). (9.4)

As is done in the MSSIM, we obtain a global gradSSIM by taking the mean of all the local
values in Eq. (9.4). Because S4(x, y) ≤ 1, gradSSIM ≤ MSSIM. It was not lost on us that
this formulation may be overly punitive. However, a test run of Eq. (9.4) on the LIVE
database was required to be certain.

The results of applying our gradSSIM measure on the LIVE database, for various
choices of C4, are depicted in Figure 9.4. In all cases, the stability constant C4 appears
in the numerator and denominator of the gradient correlations a and b. The stability
constants C1, C2, C3 remain unchanged from their suggested values listed previously.

Unfortunately, the gradSSIM is performing noticeably worse than the MSSIM for all
five C4 values shown in Figure 9.4. For the moderate C4 values considered, i.e., C4 =
1, 10, 30, 50, the corresponding sequence of distgradSSIM values fluctuates in the low-400s.
These “dist” values are significantly elevated compared to distSSIM = 328.
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(a) (b)

(c) (d)

(e) (f)

Figure 9.4: Plots of the MSSIM and our first simple “gradSSIM” measure for various
choices of C4. None of the gradSSIM are performing as well as the MSSIM. For C4 = 1000,
the gradSSIM plot is visually close (but not yet equal) to that of the MSSIM.
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Reflected in all plots is the punitive nature of Eq. (9.4). The MSSIM plot in Figure 9.4
(a) is characterized by the increasingly tighter concentration of points narrowing towards
the “tip” at MSSIM = 1. On the other hand, the gradSSIM plots appear much more
diffuse. This observation is consistent with our impression of the S4 plot in Figure 9.3 (f).
Moreover, there are significantly more images with gradSSIM ∈ [0, 1

2
], i.e., in the lower half

of possible scores, compared to the MSSIM plot.

Indeed, that bothersome clump of points is still ballooning atop the fitted curve in the
gradSSIM with C4 = 30, although there is more spread between points due to the influence
of the SSIM’s components. By comparison, the gradSSIM with C4 = 1 deals with most of
these points quite nicely, sliding many of them back towards gradSSIM = 0. Figure 9.4 (a)
thus achieves a nearly linear relationship. Unfortunately, the red crosses (denoting JPEG
images) in this clump, roughly between DMOS = 80 to DMOS = 100, are the exception:
They shift little between all six plots in Figure 9.4, appearing to be almost invariant to
changes in C4.

For sufficiently large C4, S4 ≈ 1. Hence, we expect distgradSSIM → distSSIM as the
gradSSIM function approaches the SSIM function. Indeed, the gradSSIM plot with C4 =
1000 is visually similar to the MSSIM plot; However, there are still visible differences. It
may be surprising that this C4 value is not large enough to yield a closer agreement in their
“dist” values. This disparity indicates that the quantities involved in the S4 computation
can be very large.

Overall, Figure 9.4 does invite criticism of the punitive nature of the gradSSIM. This
admission aside, we are still first and foremost concerned with the stability constant C4.
None of the configurations just explored are entirely satisfying. To continue our investiga-
tion of C4, we returned to our initial instinct during the Einstein experiments: removing
C4 from the numerator and using a value of C4 � 1. For the moment, we step away from
the gradSSIM to see the effect of this choice on the S4 term alone.

This idea led to the production of six new plots, the presentation of which is split over
Figure 9.5 and Figure 9.6. In the left columns of Figure 9.5 and Figure 9.6 are shown the
result of including the indicated C4 value in both the numerator and denominator. The
right columns show the result of having the corresponding C4 in the denominator only.
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(a) (b)

(c) (d)

(e) (f)

Figure 9.5: Results of varying C4 in our “normalized magnitude” S4. Plots in the left
column correspond to C4 in both the numerator and denominator; The right column cor-
responds to C4 in the denominator only.
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(a) (b)

(c) (d)

(e) (f)

Figure 9.6: Results of varying C4 in our “normalized magnitude” S4. Plots in the left
column correspond to C4 in both the numerator and denominator; The right column corre-
sponds to C4 in the denominator only. The MSSIM has also been plotted for comparison.
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Once again, that invariant group of JPEG images persists throughout the plots in the
left columns of Figures 9.5 and 9.6. The placement of these points is particularly attention
grabbing in Figure 9.5 (a), in which they really stand out from the crowd. Conversely,
in Figure 9.5 (b), which corresponds to having C4 � 1 in the denominator only, these
problematic crosses have been nicely swept towards S4 ∈ [0, 0.2]. This placement is in
much better agreement with their DMOS values and the fitted curve. We also like the
overall shape of Figure 9.5 (b): Although it loses the sharp “tip” of the MSSIM, the points
are reasonably close to the fitted curve along its entire length.

Before moving on, there is one more worthwhile observation to make about the plots
in the right-hand columns of Figures 9.5 and 9.6. Note that, as C4 increases, there is a
growing “trail” of points at DMOS = 0. This phenomenon is also exhibited in the MSSIM
when the stability constants are removed from the numerator (see Figure 9.6 (f)). We
believe this is likely due to instabilities in the numerator, i.e., a situation where sDxDy ≈ 0
and ‖sDx‖‖sDy‖ ≈ 0.

Going forward, we are tempted to adopt the S4 having C4 = 10−5 in the denominator
only. This is, however, a large departure from the conventions set by the MSSIM. We
performed a couple of tasks to validate our preferred S4. Having noted that our preferred
S4 in Figure 9.5 (b) deals quite nicely with those problematic JPEG images, we were
interested to take a closer look at the relationship between JPEG compression and the S4

scores.

For our experiment, we saved many degraded instances of the well-known “Boat” image
by slowly increasing the level of JPEG compression. We obtained a similar sequence
of increasingly degraded “Boat” images using the JPEG 2000 compression method as
well. For both JPEG and JPEG 2000 distortions, we were then able to investigate the
relationship between the S4 scores and image quality. The resulting plots are shown in
Figure 9.7. In all cases, the horizontal axis indicates “bpp”, i.e., “bits-per-pixel”. Here
we simply state that the bits-per-pixel is a measure of compression in the image. The
pure reference “Boat” image is 8 bits-per-pixel; As the degree of compression increases,
the bits-per-pixel decreases. (The determination of these bits-per-pixel values represents a
significant amount of work, but we won’t discuss it here.)

In Figure 9.7 (c), we plot the relationship between our preferred S4 and the bits-
per-pixel for both JPEG images (see the blue curve) and JPEG 2000 images (see the
red curve). Figure 9.7 (b) considers instead the S4 with C4 = 30 in the numerator and
denominator. For comparison, the SSIM is used in Figure 9.7 (a). Our preferred S4

penalizes both JPEG and JPEG 2000 compression much more harshly than the SSIM. A
visual examination of the degraded “Boat” images revealed that the heavily-compressed
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(a)

(b) (c)

Figure 9.7: SSIM and S4 vs. bits-per-pixel for JPEG and JPEG 2000 compressed “Boat”.

images, i.e., having bpp less than 0.5, were very degraded. We felt that the SSIM in
this lower range was undeservedly elevated, while the low scores of our preferred S4 were
arguably more reasonable. This preference is also in agreement with our earlier appreciation
of the manner in which this S4 handles those problematic JPEG crosses in Figure 9.5 (b).
On the other hand, the treatment of these distortion types by the S4 with C4 = 30 is very
similar to, although even worse than, that of the SSIM. Overall, this experiment did justify
the choice of our preferred S4 over the S4 with C4 = 30 in the numerator and denominator.

Seeking further justification of our preferred S4, we also returned to the other formu-
lations of gradient similarity explored using the Einstein images. In particular, we will
now revisit cos θ (see Eq. (8.6)), cos θ (see Eq. (8.8)), and the canonical correlation (see
Eq. (8.13)), all discussed in the previous section.Figure 9.8 depicts the relationship between
the different gradient similarity measures as they perform on the LIVE database. The plots
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reveal the degree of correlation between two different S4 measures, as indicated in the axis
titles. In all cases, the horizontal axis corresponds to our preferred S4. Figure 9.8 (a),
which considers the canonical correlation against our preferred S4, is particularly heart-
ening. These two methods are evidently highly correlated. Recalling that the canonical
correlation is arguably a more rigorous approach, we consider Figure 9.8 (a) to be a big en-
dorsement of our preferred S4. It is also impressive that our efficient and simple-minded S4

is able to produce comparable results to the computationally-costly canonical correlation.

(a) (b)

(c) (d)

Figure 9.8: Comparison of the different S4 measures.

Also exhibiting a nearly linear relationship with our preferred S4 is cos θ, plotted in
Figure 9.8 (b). It is interesting to note the sparse, secondary diagonal line which has formed
above the primary linear relationship existing in the plot. On the other hand, Figure 9.8 (d)
considers our initial choice, S4 with C4 = 30 in the numerator and denominator, against our
preferred S4. As one might expect from our previous experiments, these two formulations
show little correlation.
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9.2.2 Investigating the Stability Constants in the MSSIM and
Presenting an Improved gradSSIM

The experiments surveyed in the previous section culminated in the determination of our
preferred S4 measure. We had devoted much effort to justify its breaking of tradition set
by the MSSIM. Having reached a comfortable level of familiarity with the LIVE database,
and after many hours spent pored over plots, we were emboldened at this point in our
explorations to take yet another step away from convention.

Going forward, we will flip the orientation of the axes such that the DMOS scores are
plotted along the horizontal axis. Because the DMOS scores are obtained from the subjec-
tive experiments, they are, or at least could be considered to be, the independent values.
When developing a new quality measure, we are seeking to map the subject assessment of
an image, i.e., its DMOS value, into a number, e.g., an S4 value.

Given this understanding, it is actually the scatter in the algorithm scores relative to
the curve that characterizes goodness of fit. In order to compute this new “dist” value, we
first have to obtain a best fit curve for the flipped data.

The nonlinearity provided in [23] and written in Eq. (9.2) is a transcendental expression
and cannot be inverted. One could drop the linear term to obtain an invertible expression,
but the resulting inverse function exhibits undesirable behaviour for our application. It is
unclear how the authors of [23] came to expect the complicated relationship in Eq. (9.2).
A simple polynomial fits the flipped data well. In particular, we will proceed using a
quadratic function for the fitted curve.

As discussed, our previous work had also led us to question how the stability constants
in the SSIM were chosen. To attempt to answer this question ourselves, we decided to
vary the stability constants in the SSIM. In keeping with our new rebellious spirit, we
were cautiously wondering, however unlikely, whether the MSSIM could be “improved”
by simply changing the value of these constants. Based on our previous work, we were
particularly interested to attempt the case with C1, C2, C3 � 1 in the denominator only.

The relevant plots are shown in Figure 9.9. (Many other values of the stability con-
stant were considered, but have not been included here.) Figure 9.9 (a) considers the case
C1, C2, C3 � 1 in the denominator only. In Figure 9.9 (b)-(f), all three stability constants
appear in both the numerator and denominator. In these cases, C1 = 6.5 remains un-
changed from its suggested value and C2 = 2C3 for the value of C3 indicated by the title.
The “distDMOS” value, also displayed in the title of each plot, indicates the variance of the
flipped data. The flipped distance has been renamed “distDMOS” in order to distinguish
it from the “dist” value computed previously.

125



(a) (b)

(c) (d)

(e) (f)

Figure 9.9: Vary the stability constants C3 and C2 = 2C3 in the SSIM. The value of
C1 = 6.5 is kept constant.
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For Figure 9.9 (b)-(f), where the stability constants appear in both the numerator and
denominator, increasing C2 and C3 appears to sharpen the tip at DMOS = 0. At the
same time, the diffusiveness in the high-DMOS region worsens as the fit in the low-DMOS
region improves. Based on these observations, we suspect that the suggested values of the
MSSIM stability constants were to chosen to yield a good fit for low-DMOS images. It
does not appear to be advantageous to increase C3 past C3 = 30. According to Figure 9.9
(f), there is even more bulging in the high-DMOS region when C3 is increased past its
suggested value.

On the other hand, Figure 9.9 (b) has a uniform spread relative to the best fit curve
across its entire length. The bulging for high-DMOS images is better controlled, but at the
expense of the great fit in the low-DMOS region. Figure 9.9 (b) also features the lowest
“distDMOS” value. For the cases we considered, “distDMOS” continues to decrease as C3

decreases toward C3 = 1. Interestingly, there is no “critical value” of C3 (and C2) at which
this distance increases, which could have suggested an “optimal” value for the stability
constants.

Finally, Figure 9.9 (a) considers the case C1, C2, C3 � 1 in the denominator only. This
plots looks like a more diffuse, and ultimately worse, version of Figure 9.9 (b). Indeed, the
“distDMOS” is also elevated compared to the value in Figure 9.9 (b).

After these experiments, we were able to offer reasonable speculation on the reasoning
underlying the choice of stability constants in the MSSIM. At the same time, we liked the
plot in Figure 9.9 where C3 = 1. To try and understand which of these two formulations
was working better, we undertook our own detailed subjective evaluation of the images in
the LIVE database. At this point, it must be mentioned that the subjective evaluation
described over the next few paragraphs could be viewed as a kind of “mini-version” of the
evaluation performed by the inventors of the Structural Similarity index in order to come
up with “reasonable” values of its stability constants. We are making use of subjective
assessments, i.e., the DMOS scores, over an image database, i.e., the LIVE database, to
come up with a “reasonable” functional form of our S4 as well as its stability constant.

For our evaluation, we identified various groups of points whose placement in Figure 9.9
(b) and (e) interested us. We then visually inspected the corresponding distorted images,
as well as their reference images, to determine which treatment of the points was more
“fair”.

Over time, the subjective evaluation grew to be a very large set of explorations. We
explored not only many groups of images, but also metrics not discussed here, e.g., our
S4 measure and the RMSE. Below, we will provide only a very brief summary of our
explorations.
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(a) (b)

(c) (d)

Figure 9.10: Subjective Evaluation.

A few examples of the investigated groups are provided in Figure 9.10. For example,
Figure 9.10 (a) and (b) show the same group of JPEG 2000 distorted images, but their
MSSIM values are shifted depending on the chosen constant. We were interested to see
if these images were all distorted to a similar degree, as indicated by the default MSSIM,
or if they covered a wider range of perceptual qualities, as suggested by the MSSIM with
C3 = 1. Ultimately, we concluded that these images were all of very high visual quality
(as one would expect from their placement near DMOS = 0). We could not discern any
visible evidence to justify the spread of scores in Figure 9.10 (a).

We also looked at the JPEG compressed images in Figure 9.9 (c) and (d). Our goal
here was to assess which of the default MSSIM scores or the harsher scores of the modified
MSSIM were more “fair”. We found these images to be heavily distorted, such that it
could be argued that the placement in Figure 9.9 (c) was more appropriate.
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Our evaluation did reiterate many issues with which we had already been wrestling.
Firstly, we found it hard to justify the placement of such vastly different images occupying
an exceptionally large range of visual quality on a single quality scale. When faced with
an image and asking ourselves, “Is this score fair?” we could sometimes only shrug and
conclude, “Maybe?”. Moreover, when a preference between regimes was clearer, it was not
consistent. When something was working well in one regime (e.g., the concentration in
the low-DMOS region for the unmodified MSSIM), something else was going awry (e.g.,
the scatter in the high-DMOS region of the unmodified MSSIM). We began to wonder if
it was possible to expect a single formula to properly handle all distortions and all degrees
of visual quality.

Be that as it may, we put those concerns aside for a moment to revisit our gradSSIM.
For our second attempt at a gradSSIM measure, we maintained our simple definition, i.e,

gradSSIM(x, y) = SSIM(x, y) · S4(x, y),

but this time using our preferred S4 with C4 = 10−5 in the denominator only. The results
are provided in Figure 9.11 (b). Figure 9.11 (a) also provides the MSSIM for comparison.

(a) (b)

Figure 9.11: Our second attempt at a gradSSIM, which uses our preferred S4 with C4 =
10−5 in the denominator only. The MSSIM is shown for comparison.

As we had hoped to do, this version of the gradSSIM has a much improved fit in the
high-DMOS region compared to the MSSIM. Aligning with our earlier impressions, this
success is balanced by a loss in the low-DMOS region, where the gradSSIM is exhibiting
its diffuseness. The overall spread in the Figure 9.11 (b) appears to be slightly less than
Figure 9.11 (a). This observation is also reflected by the gradSSIM’s lower “distDMOS”
value.
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Ultimately, this gradSSIM offers a better choice for applications dealing with heavily
degraded images. Due to the overall lesser scatter, one may also be tempted to claim that
it offers a better choice for applications concerning a wide range of qualities. However, our
subjective evaluation revealed that the high-DMOS images are extremely degraded. Based
on our study, it would be reasonable to assume that the low-to-mid DMOS region captures
reasonable distortion levels for most practical applications. In this light, the spread in
the low-DMOS region of the gradSSIM is probably much more problematic that the high-
DMOS spread of the MSSIM. In other words, a gain in the high-DMOS region may not be
worthwhile if it comes at the expense, as it does in this case, of the good fit for low-DMOS.
These observations led us to wonder if even better results can be achieved using a different
approach.

9.2.3 Blended Image Quality Measures

For some time, we had been questioning the validity of demanding that a single mathemati-
cal formula should accommodate all types of distortions across the entire quality spectrum.
We often speculated that the human visual system may access a variety of processes when
judging different aspects of an image. This thought led us to consider “blending” multiple
formulas in a manner that might be more aligned with how the human visual system ag-
gregates information. For example, one could combine the values from multiple measures
by taking the maximum, minimum, or a convex combination.

We also considered the following “blended” approach. Recall that the MSSIM performs
well in the low-DMOS (high-MSSIM) range, while the gradSSIM performs well in the high-
DMOS (low-gradSSIM) range. In practice, we don’t have access to the DMOS score of a
given image. We can, however, make some inferences based on the MSSIM score, which
can be easily computed. If the MSSIM score is high, we expect the MSSIM to accurately
predict the image quality. If the MSSIM score is low, we expect the gradSSIM to perform
better. Using this idea, we formulate the following piecewise-defined function based on the
MSSIM score: For a given threshold T ∈ [0, 1], define

HybridSSIM =

{
MSSIM, if MSSIM ≥ T

gradSSIM, if MSSIM < T.
(9.5)

If the threshold T made is appropriately close to 1, Eq. (9.5) chooses the score that
we expect to be more indicative of the quality of a given image. (Note that this choice
occurs on the global level, not in the local image patches.) This approach is in the spirit of
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asymptotic analysis, where one has two solutions, both accurate in an isolated region, and
attempts to combine or “stitch” them together to yield a single solution working across
the entire range of values.

The result of using Eq. (9.5) for various thresholds T is provided in Figure 9.12. Varying
the parameter T determines the transition point between regimes. Unfortunately, the
plots for all values of T look strange due to the large gaps between regimes. Perhaps the
highest threshold T = 0.85 in Figure 9.12 (f) looks the best, and it does exhibit the lowest
“distDMOS”. Overall, one would prefer for the points to be positioned such that a seamless
transition is achieved.

We attempted the following to reduce the gaps between regimes in Figure 9.12. Instead
of using the gradSSIM, one could instead simply use the S4 measure in its place, i.e.,

HybridSSIM =

{
MSSIM, if MSSIM ≥ T

S4, if MSSIM < T.
(9.6)

By omitting the SSIM components contained in the gradSSIM, the S4 measure on its own
is less punitive. This should reduce the gap between its values and those of the MSSIM.

The result of using Eq. (9.6) on the LIVE database is shown in Figure 9.13. The
threshold T = 0.85 shown in Figure 9.13 (f) once again appears to working the best.
The “distDMOS” is reduced compared to Figure 9.12 (f), so some improvement has been
made. Although the gap between regimes is reduced, the transition is still not seamless.
In particular, the horizontal line produced by “cutting” the MSSIM is very obvious.

For our final attempt, we use the modified SSIM with C3 = 1, i.e.,

HybridSSIM =

{
MSSIM, if MSSIM ≥ T

modified MSSIM, if MSSIM < T.
(9.7)

While the modified SSIM does not exhibit a particularly good fit in the high-DMOS region,
it does occupy a uniform spread across the entire curve of best fit. The plots produced
using Eq. (9.7) are shown in Figure 9.14. As before, the highest attempted threshold
T = 0.85 in Figure 9.14 (f) appears to be working the best. While this “distDMOS” is the
lowest yet, there is still an unsightly gap between regimes.

Although our piecewise definitions such as Eq. (9.5) are well-motivated, in practice
cutting off the MSSIM at T produces a stark horizontal line which is rather unappealing.
After some reflection, we were able to develop another “blended” image quality measure.
By inferring a preference between measures as before, an appropriate weighting between
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(a) (b)

(c) (d)

(e) (f)

Figure 9.12: A “HybridSSIM” using the gradSSIM as defined in Eq. (9.5).
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(a) (b)

(c) (d)

(e) (f)

Figure 9.13: A “HybridSSIM” using S4 as defined in Eq. (9.6).
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(a) (b)

(c) (d)

(e) (f)

Figure 9.14: A “HybridSSIM” using the modified SSIM with C3 = 1 as defined in Eq. (9.7).
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measures is achieved without relying on piecewise definitions. The presentation of this
image quality measure, the most successful of our attempted formulations, will conclude
this chapter.

For two images patches x and y, we define the following “blended” local similarity
function,

gradSSIM1(x, y) = SSIM(x, y) · S4(x, y)1−SSIM(x,y), (9.8)

where the name “gradSSIM1” differentiates this measure from our previous “gradSSIM”.
For SSIM near 1, S4(x, y)1−SSIM(x,y) ≈ 1 and gradSSIM1 is close to the SSIM function. For
SSIM near 0, S4(x, y)1−SSIM(x,y) is close to S4. In this way, we reduce the effect of S4 in the
low-DMOS region, where it exhibits a great deal of scatter, and increase the effect of S4

in the high-DMOS region, where it is more successful than the MSSIM. Most importantly,
the combination of terms in Eq. (9.8) leverages their strengths in a seamless way.

If the effect of the S4 is not sufficiently strong for large DMOS (low MSSIM) images,
we may prefer the following definition,

gradSSIM1(x, y) = SSIM(x, y) · S4(x, y)1−SSIM(x,y)2 . (9.9)

On the other hand, this might introduce the problem of the S4 term having too much influ-
ence, and hence introducing too might scatter, in the high MSSIM points. In other words,
for low DMOS (high MSSIM) images, S4(x, y)1−SSIM(x,y)2 may no longer be sufficiently close
to 1.

The results of applying both versions of the gradSSIM1, i.e., Eq. (9.8) and Eq. (9.9),
are shown in Figure 9.15. The MSSIM is included in Figure 9.15 (a) for comparison. Both
versions of the gradSSIM1 in Figure 9.15 (a) and (b) appear to be working well, with little
visible difference between the two plots. According to the “distDMOS” value, Eq. (9.9) is
performing slightly better. In general, the gradSSIM1 improves the scatter in the mid-to-
high DMOS without sacrificing the good fit for low-DMOS. At a glance, the central cluster
of points bulging in the MSSIM plot is nicely pulled down by the gradSSIM1 towards to the
lower end of the vertical axis. At the same time, the low-DMOS range of the gradSSIM1
is only somewhat more diffuse compared to the MSSIM.

Throughout our work we had been paying close attention to some problematic groups
of points in this migh-to-high DMOS bulge; Eventually, these concerning points were in-
vestigated during our subjective evaluation. By pulling this central cluster downwards,
the gradSSIM1 handles these problematic groups particularly nicely. Perhaps the most
significant difference between the MSSIM and our blended approach in Figure 9.15 is the
treatment of those (red) JPEG points with high DMOS, i.e., positioned between 90 to 110
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(a)

(b) (c)

Figure 9.15: The gradSSIM1 in Eqs. (9.8) and (9.9). The MSSIM is shown for comparison.

on the horizontal axis. While the MSSIM of these points is rather high, between 0.4 and
0.7 (see Figure 9.15 (a)), the gradSSIM1 reduces these values significantly, down to 0.1 to
0.4. As mentioned when summarizing our subjective evaluation, these lower values seem
to be more appropriate for these images. The same can be said for the similarly placed
(blue) JPEG 2000 points, i.e., with DMOS in the range of 90 to 110.

Our gradSSIM1 also penalizes the (yellow) white noise points with slightly higher
DMOS, i.e., in the range 50 to 80. Because the JPEG and JPEG 2000 points also are
pulled downward, these white noise points are effectively closer to the regression line for
our method. Similarly, the white noise points with in the range 90 to 110 are pulled even
nearer to 0 on the vertical axis. This placement agrees with our subjective evaluation,
during which we observed these images to be extremely degraded.

For the high-DMOS images, i.e., near 100, the attempt to cluster the data points may
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be considered as more of an academic exercise than one of practical value. After all, and
as alluded earlier, these images are heavily distorted, and this is especially true for those
white noise degraded images just discussed. However, it may still be of practical concern
to improve the fit in the mid-DMOS range, i.e., 40 to 80. As we have discussed, the
MSSIM assigns a relatively high value to most images in the mid-DMOS range. Indeed,
with the exception of the white noise images, the great majority of the mid-DMOS points
lie above the fitted curve in Figure 9.15 (a). Importantly, these points remain similarly
elevated for most values of the stability constants. Even when C3 = 1 and the highest
degree of penalty to these points is achieved (see Figure 9.9 (b)), the mid-DMOS MSSIM
is still generally higher than the mid-DMOS gradSSIM1. Our method can produce smaller
quality values for both the mid-DMOS and high-DMOS range which, on the basis of the
subjective evaluation, are warranted. Once again, this placement cannot be achieved simply
by varying the stability constants in the MSSIM.

The Effects of Downsampling

We had finally formulated a gradient-based SSIM-like function which could be seen to
“improve” the MSSIM. However, the optimal application of the MSSIM involves a down-
sampling procedure which we had not yet explored. In order to fully asses the improvements
made by our method, we needed to investigate the effect of the downsampling procedure.

The suggested downsampling procedure is described at [28]. For our gradient-based
measure, the question of when to perform the downsampling is important. One could
either first downsample the images before computing their gradients, or compute the gra-
dients before downsampling the gradient images. We attempt both of these possibilities in
Figure 9.16. The MSSIM with downsampling is also shown in Figure 9.16 (a) for compari-
son. Most interestingly, according to Figure 9.16 (b)-(e), it seems to make little difference
when one downsamples the images relative to the gradient computation. This observation
is reflected in the similar “distDMOS” scores between all four gradSSIM1 plots. Unlike
before, Eq. (9.8) now appears to have the edge, however small, over Eq. (9.9) when down-
sampling is included.

It is striking how much the MSSIM is improved by the downsampling procedure. The
“distDMOS” is significantly decreased between Figure 9.15 (a) and Figure 9.16 (a). By
comparison, the gradSSIM1 doesn’t profit as much from the additional preprocessing of
the images. While the gradSSIM1 is still outperforming the MSSIM in terms of the “distD-
MOS” metric, its lead is much decreased. That being said, this preprocessing method has
been tailored with the MSSIM in mind. It is possible that a different preprocessing method
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could be more advantageous for the gradSSIM1. This question is, of course, outside of the
scope of this thesis.
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(a)

First downsample the images, then compute the gradients:

(b) (c)

First compute the gradients, then downsample the gradient images:

(d) (e)

Figure 9.16: Compute the MSSIM and the gradSSIM1 with downsampling. The suggested
downsampling procedure is included in the file “ssim.m” available at [28].
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Chapter 10

Concluding Remarks

We studied many topics over the course of our work. In this section, we summarize the
main contributions of each chapter in this thesis. Many of these topics invite worthwhile
extensions which, at the time of writing, have not been fully explored due to time lim-
itations. Throughout this discussion, we also highlight some natural avenues for future
work.

The first half of this thesis focusses on the Weberized distance, the correlation, and the
SSIM. In Chapter 3, we inserted an intensity-dependent weight function into the L2-based
distance in order for it to conform to generalized Weber’s model of perception. We solved
the resulting best approximation problem and examined the “Weberization” effect of the
weighting function on solutions in both one- and two-dimension(s). An open question
worthy of exploration is whether there is any relationship between the approximations
yielded by this method and those of the related measure-based approach discussed in
[15, 14]. Moreover, the range-based weight function is in no way limited to Weber’s model:
its behaviour may be tailored to other applications in image processing and beyond.

In Chapter 4, we performed a simple experiment using the set of equal-MSE “Einstein”
images, in which we investigated the roles of each individual component of the SSIM. Our
experiment suggested that jointly the S2 and S3 terms are largely responsible for the total
discernment by the SSIM function. On the other hand, we observed that the Weberized
distance, which was similar for all distortion types except blurring, exhibits no obvious
relationship with perceptual quality. It would be interesting to explore the reason for its
exceptional sensitivity to blurring distortion.

In response to these observations, Chapter 5 explored adding the correlation as a regu-
larization term in our Weberized best approximation problem. We analytically determined
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solutions for the simple case a = 0 and λ ≥ 0. For general values of these parameters,
we showed that increasing λ “undoes” the Weberization in the simple one-dimensional
examples considered. In the future, it would be worthwhile to extend this approach to the
two-dimensional case.

The second half of this thesis is devoted to our exploration of the gradient. In Chapter 6,
we incorporated the squared L2-distance between gradients as a regularization term in the
traditional L2-based best approximation problem. We showed that the Fourier coefficients
remain optimal in some special cases—in particular, if the orthogonal cosine basis is used in
the continuous setting or if the DCT/DFT basis functions are used in the discrete setting.
An interesting open question is whether this result holds for other orthonormal basis sets.
During this work, we also proved that the discrete derivatives of the DCT and DFT basis
functions form an orthogonal set, a result which has not appeared in the literature to the
best of our knowledge.

In Chapter 7, we studied the best approximation problem which maximizes the corre-
lation between gradients. We derived the related stationarity conditions and found that an
infinity of solutions exists. We showed that a unique solution can be obtained by imposing
the conditions of equal gradient means and equal gradient norms. Using some simple ex-
amples, we saw that a significant number of basis functions are required to yield reasonable
approximations. Finally, we showed that the same results are obtained if one considers
maximizing the entire SSIM function between gradients. Although time constraints regret-
tably prevented its inclusion in this thesis, we also explored some initial results of using
gradient ascent to maximize the stationarity conditions. These results are very interesting
and worthy of discussion. Furthermore, we started to explore the addition of a regulariza-
tion term in the correlation-based problem. This method, yielding much improved results,
is undoubtedly worthy of future study.

Chapter 8 begins by showing that, as measures of perceptual quality, the simple L2-
distance between gradients already offers a marked improvement over the conventional
MSE. We then formulated various gradient similarity measures and compared their per-
formance on the “Einstein” images. Our proposed gradient similarity measures differ from
those existing in the literature due to their mathematical simplicity. An interesting open
question which arose during this work was how to compute the correlation between periodic
data, i.e., angles. In the future, it would also be interesting to explore different methods for
computing the image gradients beyond our simple forward differences employed throughout
this thesis.

In Chapter 9, we discussed our numerous experiments using the LIVE image database.
We suggest that the DMOS be considered as the independent (input) variable, an un-
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derstanding which, to the best of our knowledge, has not been adopted elsewhere in the
literature. Of course, this approach can also be applied to other image databases and
associated subjective measures. We also performed a detailed investigation of the SSIM
which involved varying its stability constants. Once again, it appears that such an analysis
has not been performed elsewhere in the literature.

A major goal of Chapter 9 was to explore if the SSIM could be “improved” by in-
corporating gradient information. To that end, we justified the selection of our preferred
gradient similarity measure, which was demonstrated to be highly correlated with the
canonical correlation method. We used this to define a “gradSSIM1” image quality mea-
sure which, compared to the MSSIM, improves the fit in the mid-to-high DMOS range.
The novelty in our approach lies in its ability to seamlessly blend the behaviour of different
measures using SSIM-dependent exponents. Regrettably, time did not permit an examina-
tion of other possible “blended” methods. Even still, our approach introduces a new way
of considering image quality measures. Indeed, it is our hope that this novel framework
will stimulate future research in this area.
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Appendix A

Orthonormality of the Discrete
Derivatives of the DCT and DFT
Basis Functions

A.1 Proof for the DFT Basis Functions

Theorem 5. Let {φ0, · · · , φN−1} denote the following DFT basis functions,

φk[n] =
1√
N

exp

(
i2πkn

N

)
, 0 ≤ n ≤ N − 1. (6.20)

Let the discrete derivative of these functions be defined by simple forward differences so
that

Dφk[n] = φk[n+ 1]− φk[n], 0 ≤ n ≤ N − 1. (6.21)

Then for a given N > 0, {Dφ0, · · · , DφN−1} forms an orthogonal set in CN .

Proof. First use Euler’s formula to rewrite the basis functions

φk[n] =
1√
N

[
cos

(
2πkn

N

)
+ i sin

(
2πkn

N

)]
, 0 ≤ n ≤ N − 1.
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Using this form, the discrete derivatives become

Dφk[n] = φk[n+ 1] + φk[n]

=
1√
N

([
cos

(
2πk(n+ 1)

N

)
− cos

(
2πkn

N

)]
+i

[
sin

(
2πk(n+ 1)

N

)
− sin

(
2πkn

N

)])
. (A.1)

Use the cosine addition formula to rewrite the first cosine function above,

cos

(
2πk(n+ 1)

N

)
= cos

(
2πkn

N

)
cos

(
2πk

N

)
− sin

(
2πkn

N

)
sin

(
2πk

N

)
.

Similarly, use the sine addition formula to rewrite the first sine function above,

sin

(
2πk(n+ 1)

N

)
= sin

(
2πkn

N

)
cos

(
2πk

N

)
+ cos

(
2πkn

N

)
sin

(
2πk

N

)
.

Substitute both expressions in Eq. (6.21) to get

Dφk[n] =
1√
N

([
cos

(
2πkn

N

)(
cos

(
2πk

N

)
− 1

)
− sin

(
2πkn

N

)
sin

(
2πk

N

)]
+i

[
sin

(
2πkn

N

)(
cos

(
2πk

N

)
− 1

)
+ cos

(
2πkn

N

)
sin

(
2πk

N

)])
. (A.2)

We will denote the constants with respect to n by

Ck =

(
cos

(
2πk

N

)
− 1

)
and Dk = sin

(
2πk

N

)
. (A.3)

Now Eq. (A.2) can be written

Dφk[n] =
1√
N

([
Ck cos

(
2πkn

N

)
−Dk sin

(
2πkn

N

)]
+i

[
Ck sin

(
2πkn

N

)
+Dk cos

(
2πkn

N

)])
.
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We can use Euler’s formula to rewrite the above expression as

Dφk[n] =
1√
N

(
Ck exp

(
i2πkn

N

)
+ iDk exp

(
i2πkn

N

))
=

1√
N

(
(Ck + iDk) exp

(
i2πkn

N

))
.

Which, with reference to the definition in Eq. (6.20), we recognize as

Dφk[n] = (Ck + iDk)φk[n], 0 ≤ n ≤ N − 1. (A.4)

We can finally compute the inner product using the simplified expression in Eq. (A.4).

Akl = 〈Dφk, Dφl〉

= 〈(Ck + iDk)φk, (Cl + iDl)φl〉

= (Ck + iDk)(Cl − iDl)〈φk, φl〉

= (C2
k + iD2

k)δkl

Recall that 〈φk, φl〉 = δkl. Substitute the constants definitions given in Eq. (A.3),

Akl =

((
cos

(
2πk

N

)
− 1

)2

+ sin

(
2πk

N

))

=

(
2− 2 cos

(
2πk

N

))
δkl

= 4 sin2

(
πk

N

)
δkl

This completes the proof.

To summarize, we have shown that for a given N > 0, 0 ≤ k, l ≤ N − 1,

〈Dφk, Dφl〉 =

0, k 6= l

4 sin2
(
πk
N

)
, k = l

�
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A.2 Proof for the DCT Basis Functions

Theorem 4. Let {φ0, · · · , φN−1} denote the following DCT basis functions,

φ0[n] =
1√
N
,

φk[n] =

√
2

N
cos

(
kπ

N

(
n+

1

2

))
, 1 ≤ k ≤ N − 1, 0 ≤ n ≤ N − 1. (6.18)

Let the discrete derivative of these functions be defined by simple forward differences so
that

Dφk[n] = φk[n+ 1]− φk[n], 0 ≤ n ≤ N − 1. (6.19)

Then for a given N > 0, {Dφ0, · · · , DφN−1} forms an orthogonal set in RN .

Proof. There are two cases.

Case 1: k = 0. Then,

Dφ0[n] =
1√
N
− 1√

N
= 0, 0 ≤ n ≤ N − 1.

Clearly, for any l ∈ {0, · · · , N − 1},

〈Dφ0, Dφl〉 =
N−1∑
n=0

0 ·Dφl[n] = 0. (A.5)

Case 2: 1 ≤ k ≤ N − 1. The discrete derivatives defined in Eq. (6.19) involve a difference
of cosine functions, i.e., for 0 ≤ n ≤ N − 1,

Dφk[n] = φk[n+ 1]− φk[n]

=

√
2

N
cos

(
kπ

N

(
n+ 1 +

1

2

))
−
√

2

N
cos

(
kπ

N

(
n+

1

2

))
. (A.6)

Omitting for the moment the factor
√

2
N

, we can rewrite φk[n+1] using the cosine addition

formula as follows,

cos

(
kπ

N

(
n+ 1 +

1

2

))
= cos

(
kπ

N

(
n+

1

2

))
cos

(
kπ

N

)
− sin

(
kπ

N

(
n+

1

2

))
sin

(
kπ

N

)
.
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After substituting the difference written above into Eq. (A.6) and factoring, the discrete
derivative is

Dφk[n] =

√
2

N

[
cos

(
kπ

N

(
n+

1

2

))(
cos

(
kπ

N

)
− 1

)
− sin

(
kπ

N

(
n+

1

2

))
sin

(
kπ

N

)]
.

This equation can be more compactly written as

Dφk = Ckφk −Dkψk, (A.7)

where the vector ψk is given by

ψk[n] =

√
2

N
sin

(
kπ

N

(
n+

1

2

))
, 1 ≤ k ≤ N − 1, 0 ≤ n ≤ N − 1, (A.8)

and the constants with respect to n are denoted by

Ck = cos

(
kπ

N

)
− 1, Dk = sin

(
kπ

N

)
, 1 ≤ k ≤ N − 1. (A.9)

Notice the subtle difference between these coefficients and those from proof using the DFT
basis functions.

We may now use the expansion in Eq. (A.7) to compute the following inner product,

Akl = 〈Dφk, Dφl〉

= 〈Ckφk −Dkψk, Clφl −Dlψl〉

= CkCl〈φk, φl〉 − CkDl〈φk, ψl〉 −DkCl〈ψk, φl〉+DkDl〈ψk, ψl〉. (A.10)

We know that the DCT basis functions are orthonormal, i.e., 〈φk, φl〉 = δkl. We claim that
Eq. (A.10) will be further simplified by the following two properties:

(i) The sine functions are also orthonormal, i.e., 〈ψk, ψl〉 = δkl, and

(ii) The cross terms vanish, i.e., CkDl〈φk, ψl〉+DkCl〈ψk, φl〉 = 0 for any 1 ≤ k, l ≤ N−1.

We will first establish (i) by demonstrating that 〈ψk, ψl〉 = δkl. (Should the reader wish
to verify the assumption on the DCT basis functions, the same argument can be used to
prove that 〈φk, φl〉 = δkl.)
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The inner product in (i) is

〈ψk, ψl〉 =
N−1∑
n=0

ψkψl

=
N−1∑
n=0

√
2

N
sin

(
kπ

N

(
n+

1

2

))√
2

N
sin

(
lπ

N

(
n+

1

2

))
,

Rewrite ψk[n] using complex exponentials,

ψk[n] =

√
2

N
sin

(
kπ

N

(
n+

1

2

))

=

√
1

2N

1

i

[
exp

(
i
kπ

N

(
n+

1

2

))
− exp

(
−ikπ

N

(
n+

1

2

))]
, 0 ≤ n ≤ N − 1.

Using this form, the inner product becomes

〈ψk, ψl〉 =
1

2N

N−1∑
n=0

1

i

[
exp

(
i
kπ

N

(
n+

1

2

))
− exp

(
−ikπ

N

(
n+

1

2

))]
· 1

i

[
exp

(
i
lπ

N

(
n+

1

2

))
− exp

(
−i lπ
N

(
n+

1

2

))]

=
1

2N

N−1∑
n=0

[
exp

(
i
(k − l)π
N

(
n+

1

2

))
+ exp

(
−i(k − l)π

N

(
n+

1

2

))
− exp

(
i
(k + l)π

N

(
n+

1

2

))
− exp

(
−i(k + l)π

N

(
n+

1

2

))]
.

Now strategically add 0 to the decaying exponentials,

〈ψk, ψl〉 =
1

2N

N−1∑
n=0

[
exp

(
i
(k − l)π
N

(
n+

1

2

))
+ exp

(
−i(k − l)π

N

(
n+

1

2
+

1

2
− 1

2

))
− exp

(
i
(k + l)π

N

(
n+

1

2

))
− exp

(
−i(k + l)π

N

(
n+

1

2
+

1

2
− 1

2

))]
.
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Then separate the terms independent of the summation,

〈ψk, ψl〉 =
1

2N
exp

(
i
(k − l)π

2N

)N−1∑
n=0

[
exp

(
i
(k − l)π
N

n

)
+ exp

(
−i(k − l)π

N
(n+ 1)

)]

− 1

2N
exp

(
i
(k + l)π

2N

)N−1∑
n=0

[
exp

(
i
(k + l)π

N
n

)
+ exp

(
−i(k + l)π

N
(n+ 1)

)]
.

Reindex the terms involving (n+ 1) in the exponent by letting m = n+ 1,

〈ψk, ψl〉 =
1

2N
exp

(
i
(k − l)π

2N

)[N−1∑
n=0

exp

(
i
(k − l)π
N

n

)
+

N∑
m=1

exp

(
−i(k − l)π

N
m

)]

− 1

2N
exp

(
i
(k + l)π

2N

)[N−1∑
n=0

exp

(
i
(k + l)π

N
n

)
+

N∑
m=1

exp

(
−i(k + l)π

N
m

)]
.

To allow us to combine the exponentials, reindex again letting n = −m,

〈ψk, ψl〉 =
1

2N
exp

(
i
(k − l)π

2N

)[N−1∑
n=0

exp

(
i
(k − l)π
N

n

)
+

−1∑
n=−N

exp

(
i
(k − l)π
N

n

)]

− 1

2N
exp

(
i
(k + l)π

2N

)[N−1∑
n=0

exp

(
i
(k + l)π

N
n

)
+

−1∑
n=−N

exp

(
i
(k + l)π

N
n

)]
.

=
1

2N
exp

(
i
(k − l)π

2N

) N−1∑
n=−N

exp

(
i
(k − l)π
N

n

)

− 1

2N
exp

(
i
(k + l)π

2N

) N−1∑
n=−N

exp

(
i
(k + l)π

N
n

)
.

Reindex a final time, letting m = n+N + 1,

〈ψk, ψl〉 =
1

2N
exp

(
i
(k − l)π

2N

) 2N∑
m=1

exp

(
i
(k − l)π
N

(m−N − 1)

)

− 1

2N
exp

(
i
(k + l)π

2N

) 2N∑
m=1

exp

(
i
(k + l)π

N
(m−N − 1)

)
.
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After some rearranging, we have

〈ψk, ψl〉 =
1

2N
exp

(
i
(k − l)π

2N

)
exp (−i(k − l)π)

2N∑
m=1

exp

(
i
(k − l)π
N

(m− 1)

)

− 1

2N
exp

(
i
(k + l)π

2N

)
exp (−i(k + l)π)

2N∑
m=1

exp

(
i
(k + l)π

N
(m− 1)

)

=
1

2N
exp

(
i
(k − l)π

2N

)
(−1)k−l

2N∑
m=1

exp

(
i
(k − l)π
N

)m−1
− 1

2N
exp

(
i
(k + l)π

2N

)
(−1)k+l

2N∑
m=1

exp

(
i
(k + l)π

N

)m−1
(A.11)

Once more, there are two cases.

Case 1: When k = l, the expression simplifies so that we have

〈ψk, ψk〉 =
1

2N

2N∑
m=1

1− 1

2N
exp

(
i
2kπ

2N

)
(−1)2k

2N∑
m=1

exp

(
i
2kπ

N

)m−1

= 1− 1

2N
exp

(
i
2kπ

2N

)
(−1)2k

2N∑
m=1

exp

(
i
2kπ

N

)m−1
.

The remaining summation is a finite geometric series with r = exp
(
i2kπ
N

)
6= 1. The sum is

given by,

2N∑
m=1

exp

(
i
2kπ

N

)m−1
=

1− exp
(
i2kπ
N

)2N
1− r

=
1− exp (i4kπ)

1− r

=
1− 1

1− r

= 0.

Hence 〈ψk, ψk〉 =1 for 1 ≤ k ≤ N − 1.
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Case 2: Now consider k 6= l. Return to Eq. (A.11),

〈ψk, ψl〉 =
(−1)k−l

2N
exp

(
i
(k − l)π

2N

) 2N∑
m=1

exp

(
i
(k − l)π
N

)m−1

− (−1)k+l

2N
exp

(
i
(k + l)π

2N

) 2N∑
m=1

exp

(
i
(k + l)π

N

)m−1
.

This time, we have two geometric series with r1 = exp
(
i (k−l)π

N

)
and r2 = exp

(
i (k+l)π

N

)
.

The inner product becomes,

〈ψk, ψl〉 =
(−1)k−l

2N
exp

(
i
(k − l)π

2N

)[
1− exp (i2(k − l)π)

1− r1

]

− (−1)k+l

2N
exp

(
i
(k + l)π

2N

)[
1− exp (i2(k + l)π)

1− r2

]
.

Note that 2(k ± l) is even for any 1 ≤ k, l ≤ N − 1. The reindexing performed above
allowed for this simplification, which gives

〈ψk, ψl〉 =
(−1)k−l

2N
exp

(
i
(k − l)π

2N

)[
1− 1

1− r1

]
− (−1)k+l

2N
exp

(
i
(k + l)π

2N

)[
1− 1

1− r2

]
= 0.

All together, we have shown that {ψk, ψl} = δkl for 1 ≤ k, l ≤ N − 1, which completes
the proof of claim (i).

We will now proceed to establish claim (ii). We are required to show that CkDl〈φk, ψl〉+
DkCl〈ψk, φl〉 = 0 for all k, l. First consider the second inner product, written below,

〈ψk, φl〉 =
N−1∑
n=0

ψkφl

=
N−1∑
n=0

√
2

N
sin

(
kπ

N

(
n+

1

2

))√
2

N
cos

(
lπ

N

(
n+

1

2

))
.
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As before, we express the trigonometric functions using complex exponentials,

〈ψk, φl〉 =
1

2Ni

N−1∑
n=0

[
exp

(
i
kπ

N

(
n+

1

2

))
− exp

(
−ikπ

N

(
n+

1

2

))]
·
[
exp

(
i
lπ

N

(
n+

1

2

))
+ exp

(
−i lπ
N

(
n+

1

2

))]
Expand and separate the terms independent of n to get

〈ψk, φl〉 =
1

2Ni

[
exp

(
i
(k + l)π

2N

)N−1∑
n=0

exp

(
i
(k + l)π

N

)n
− exp

(
−i(k + l)π

2N

)N−1∑
n=0

exp

(
−i(k + l)π

N

)n]

+
1

2Ni

[
exp

(
i
(k − l)π

2N

)N−1∑
n=0

exp

(
i
(k − l)π
N

)n
− exp

(
−i(k − l)π

2N

)N−1∑
n=0

exp

(
−i(k − l)π

N

)n]
If k = l, then the difference of terms involving k− l simplifies to 0 immediately. Taking

the sum of the geometric series involving k + l shows that 〈ψk, φk〉 = 0.

For k 6= l, exp
(
±i (k−l)π

N

)
6= 1. We have four geometric series, whose sums are written

below,

〈ψk, φl〉 =
1

2Ni

exp

(
i
(k + l)π

2N

)
1− exp (i(k + l)π)

1− exp
(
i (k+l)π

N

)
− exp

(
−i(k + l)π

2N

)
1− exp (−i(k + l)π)

1− exp
(
−i (k+l)π

N

)


+
1

2Ni

exp

(
i
(k − l)π

2N

)
1− exp (i(k − l)π)

1− exp
(
i (k−l)π

N

)
− exp

(
−i(k − l)π

2N

)
1− exp (−i(k − l)π)

1− exp
(
−i (k−l)π

N

)
 . (A.12)
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The inner product is symmetric because our basis functions are real. In particular,
〈φk, ψk〉 = 〈ψk, φk〉 = 0. Therefore, CkDk〈φk, ψk〉 + DkCk〈ψk, φk〉 = 0, i.e., (ii) is proven
for the case k = l.

For k 6= l, we can obtain 〈φk, ψl〉 by interchanging k and l in the expression for 〈ψk, φl〉
written in Eq. (A.12),

〈φk, ψl〉 =
1

2Ni

exp

(
i
(k + l)π

2N

)
1− exp (i(k + l)π)

1− exp
(
i (k+l)π

N

)
− exp

(
−i(k + l)π

2N

)
1− exp (−i(k + l)π)

1− exp
(
−i (k+l)π

N

)


+
1

2Ni

− exp

(
i
(k − l)π

2N

)
1− exp (i(k − l)π)

1− exp
(
i (k−l)π

N

)
+ exp

(
−i(k − l)π

2N

)
1− exp (−i(k − l)π)

1− exp
(
−i (k−l)π

N

)
 . (A.13)

Using these expansions, the cross terms in (ii), rewritten below,

LHS = DkCl〈ψk, φl〉+DlCk〈ψl, φk〉

become

LHS =
1

2Ni
(DkCl + CkDl)

exp

(
i
(k + l)π

2N

)
1− exp (i(k + l)π)

1− exp
(
i (k+l)π

N

)
− exp

(
−i(k + l)π

2N

)
1− exp (−i(k + l)π)

1− exp
(
−i (k+l)π

N

)


+
1

2Ni
(DkCl − CkDl)

exp

(
i
(k − l)π

2N

)
1− exp (i(k − l)π)

1− exp
(
i (k−l)π

N

)
− exp

(
−i(k − l)π

2N

)
1− exp (−i(k − l)π)

1− exp
(
−i (k−l)π

N

)
 . (A.14)
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If k + l is even, i.e. if k + l = 2m for some integer m, then k − l = 2(m − l) is also even.
Similarly, if k + l is odd, then k − l must also be odd. We will consider those two cases
separately below.

Case 1: k + l, k − l are even. Then each of exp (±i(k − l)π) = exp (±i(k + l)π) = 1 in
Eq. (A.14), so that we immediately obtain the desired result LHS = 0.

Case 2: k + l = p is odd and k − l = q is odd. Then Eq. (A.14) becomes

LHS =
1

2Ni

[
exp

(
i
pπ

2N

) 1− exp (ipπ)

1− exp
(
ipπ
N

) − exp
(
−i pπ

2N

) 1− exp (−ipπ)

1− exp
(
−ipπ

N

)] (DkCl + CkDl)

+
1

2Ni

[
exp

(
i
qπ

2N

) 1− exp (iqπ)

1− exp
(
i qπ
N

) − exp
(
−i qπ

2N

) 1− exp (−iqπ)

1− exp
(
−i qπ

N

)] (DkCl − CkDl)

=
1

Ni

[
exp

(
i
pπ

2N

) 1

1− exp
(
ipπ
N

) − exp
(
−i pπ

2N

) 1

1− exp
(
−ipπ

N

)] (DkCl + CkDl)

+
1

Ni

[
exp

(
i
qπ

2N

) 1

1− exp
(
i qπ
N

) − exp
(
−i qπ

2N

) 1

1− exp
(
−i qπ

N

)] (DkCl − CkDl)

Divide to normalize the numerators,

LHS =
1

Ni

[
1

exp
(
−i pπ

2N

)
− exp

(
i pπ
2N

) − 1

exp
(
i pπ
2N

)
− exp

(
−i pπ

2N

)] (DkCl + CkDl)

+
1

Ni

[
1

exp
(
−i qπ

2N

)
− exp

(
i qπ
2N

) − 1

exp
(
i qπ
2N

)
− exp

(
−i qπ

2N

)] (DkCl − CkDl)

=
1

Ni

[
1

−2i sin
(
pπ
2N

) − 1

2i sin
(
pπ
2N

)] (DkCl + CkDl)

+
1

Ni

[
1

−2i sin
(
qπ
2N

) − 1

2i sin
(
qπ
2N

)] (DkCl − CkDl)

=
1

N

[
1

sin
(
pπ
2N

)] (DkCl + CkDl) +
1

N

[
1

sin
(
qπ
2N

)] (DkCl − CkDl). (A.15)

We will now consider the remaining coefficients. Using the definitions in Eq. (A.9), we
have

DkCl = sin

(
kπ

N

)(
cos

(
lπ

N

)
− 1

)
= sin

(
kπ

N

)
cos

(
lπ

N

)
− sin

(
kπ

N

)
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and, similarly,

CkDl = sin

(
lπ

N

)
cos

(
kπ

N

)
− sin

(
lπ

N

)
.

Then, the remaining coefficients are

DkCl − CkDl = sin

(
kπ

N

)
cos

(
lπ

N

)
− sin

(
lπ

N

)
cos

(
kπ

N

)
− sin

(
kπ

N

)
+ sin

(
lπ

N

)
= sin

(
(k − l)π
N

)
−
[
sin

(
kπ

N

)
− sin

(
lπ

N

)]
(A.16)

and

DkCl + CkDl = sin

(
kπ

N

)
cos

(
lπ

N

)
+ sin

(
lπ

N

)
cos

(
kπ

N

)
− sin

(
kπ

N

)
− sin

(
lπ

N

)
= sin

(
(k + l)π

N

)
−
[
sin

(
kπ

N

)
+ sin

(
lπ

N

)]
. (A.17)

Using p = k + l and q = k − l, we obtain k = 1
2
(p + q) and l = 1

2
(p − q). With an eye to

Eq. (A.16), we use these equations and the sine addition formula to write

sin

(
kπ

N

)
− sin

(
lπ

N

)
= sin

(
(p+ q)π

2N

)
− sin

(
(p− q)π

2N

)
= 2 sin

( qπ
2N

)
cos
( pπ

2N

)
.

Then Eq. (A.16) becomes

DkCl − CkDl = sin
(qπ
N

)
− 2 sin

( qπ
2N

)
cos
( pπ

2N

)
.

Similarly, we can also write

sin

(
kπ

N

)
+ sin

(
lπ

N

)
= sin

(
(p+ q)π

2N

)
+ sin

(
(p− q)π

2N

)
= 2 sin

( pπ
2N

)
cos
( qπ

2N

)
to obtain

DkCl + CkDl = sin
(pπ
N

)
− 2 sin

( pπ
2N

)
cos
( qπ

2N

)
.
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We are finally ready to return to Eq. (A.15). We obtain

LHS =
1

N

[
1

sin
(
pπ
2N

)] (DkCl + CkDl) +
1

N

[
1

sin
(
qπ
2N

)] (DkCl − CkDl)

=
1

N

[
1

sin
(
pπ
2N

)](sin
(pπ
N

)
− 2 sin

( pπ
2N

)
cos
( qπ

2N

))
+

1

N

[
1

sin
(
qπ
2N

)](sin
(qπ
N

)
− 2 sin

( qπ
2N

)
cos
( pπ

2N

))

=
1

N

(
sin
(
pπ
N

)
sin
(
pπ
2N

) − 2 cos
( qπ

2N

))
+

1

N

(
sin
(
qπ
N

)
sin
(
qπ
2N

) − 2 cos
( pπ

2N

))
. (A.18)

Using the sine addition formula,

sin 2A = 2 sinA cosB =⇒ sin 2A

sinA
= 2 cosA,

we can re-express the quotients in Eq. (A.18) in terms of cosine to obtain

LHS =
1

N

(
2 cos

( pπ
2N

)
− 2 cos

( qπ
2N

))
+

1

N

(
2 cos

( qπ
2N

)
− 2 cos

( pπ
2N

))
= 0.

This completes the proof of (ii), i.e., DkCl〈ψk, φl〉+DlCk〈ψl, φk〉 = 0 for 1 ≤ k, l ≤ N − 1.

Having proven properties (i) and (ii), Eq. (A.10) simplifies as follows,

Akl = 〈Dφk, Dφl〉

= CkCl〈φk, φl〉 − CkDl〈φk, ψl〉 −DkCl〈ψk, φl〉+DkDl〈ψk, ψl〉

= (C2
k +D2

k)δkl

=

[(
cos

(
kπ

N

)
− 1

)2

+ sin2

(
kπ

N

)]
δkl

= 4 sin2

(
kπ

2N

)
δkl, (A.19)

where the final simplification results from applying the cosine double angle formula.
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Together, Eqs. (A.5) and (A.19) establish the orthogonality result for all 0 ≤ k ≤ N−1.
This completes the proof. Once again, notice that this orthogonality constant is slightly
different from that of the DFT case.

To summarize, we have shown that for a given N > 0 and 0 ≤ k, l ≤ N − 1,

〈Dφk, Dφl〉 =

{
0, k 6= l

Ak, k = l,

where A0 = 0 and Ak = 4 sin2
(
kπ
2N

)
> 0 for 1 ≤ k ≤ N − 1. �
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