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Abstract

Efficient information processing in ecological environments relies on spatial attention

to selectively process relevant areas in the visual field. Attention has been shown to be

biased ahead of simple, uniform target motion during smooth pursuit [Khan et al., 2010].

However, real-world motion varies in predictability, and as such this study aimed to: a)

determine how motion predictability affects attentional bias, b) characterize how visual

attention adapts to changes in motion predictability, and c) implement a computational

model of visual attention during motion tracking.

Ten high-performance team sport athletes (5 male, 5 female) and ten healthy, young

adults (5 male, 5 female) visually tracked a target moving at varying predictability levels.

A probe was flashed ahead or behind target motion (2° or 6°), and manual response times

(MRT) to probes were collected to indicate attention level. To investigate the temporal

dynamics of attentional bias, a second tracking task was performed where the target

changed predictability levels mid-trial. The effects of group, motion predictability, and

probe distance, time & location on MRT bias were examined. Finally, a state-space model

(input: target motion, output: attentional bias) was trained and tested on the motion

tracking and MRT data using a 5-fold cross-validation.

MRT were significantly biased in athletes (distance=2°) and adults (distance=2°,6°)

during predictable motion (p<0.01). There was no MRT bias for semi- and un-predictable

motions. Furthermore, MRT bias took longer to accumulate, than it did to de-accumulate

(p<0.01). Eye movements showed that catch-up saccades were larger (p<0.01) and more

frequent (p<0.01) during unpredictable motion phases, and gradually reduced in size and

frequency during sustained predictable motion. Cross-validation results demonstrated

that the state-space model performance in predicting attentional bias had a mean absolute

error of 18.6% (SD=0.04%).

In conclusion, the distribution of spatial attention during motion tracking is dependant

on motion predictability, and the accumulation of bias ahead of target motion takes longer

than de-accumulation. These results indicate a conservative attentional allocation scheme

that introduces bias based on predicted future errors in motion extrapolation. The state-
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space model developed based on these experimental results may extend existing dynamic

saliency frameworks to factor in the effects of motion tracking on spatial attention.
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Chapter I: Review of the literature

Introduction

The natural visual scene can be considered a complex system of dynamic stimuli, com-

posed of several objects at various locations, of varying shape, and following a variety

of movement patterns. Such scenes present themselves abundantly in real life: from the

pedestrian crosswalk, with vehicles, bicycles and pedestrians all needing ample consid-

eration before navigating the road, to athletic scenes where the movements of the ball,

opposition and teammates are critical pieces of information in planning actions. In order

to efficiently acquire useful scene information, a selective process of visual attention is

employed to maximize visual processing of relevant scene features which may facilitate

future scene prediction. For example, while visually tracking the motion of a ball in

flight, the allocation of visual attention to regions ahead of ball motion may facilitate the

extrapolation of the ball’s trajectory, and by extension the future location of the ball.

Smooth pursuit eye movements occur when the eye rotates while fixing a moving

target on the fovea [Martin, 2012]. These eye movements are key for tracking objects

in real life scenes, and a number of studies have shown that pursuit, rather than fixa-

tion, improves motion prediction ability [Spering et al., 2011, Bennett et al., 2010]. Ad-

ditionally, several studies have also examined the spatial allocation of visual atten-

tion during smooth pursuit using visual discrimination tasks [Lovejoy et al., 2009], vi-

sual reaction time tasks [Khan et al., 2010, Donkelaar and Drew, 2002], or EEG tagging

[Chen et al., 2017]. While visual discrimination tasks demonstrated no bias in attention

allocation, the reaction time tasks and EEG tagging demonstrated that the allocation of

attention is biased ahead of pursuit target motion. The attentional bias was shown to be

modulated by speed of pursuit, with a faster moving target resulting in more attention

being biased ahead of the target [Donkelaar and Drew, 2002].

To date, the role of attentional bias during smooth pursuit has only been hypothe-

sized as a function of motion extrapolation mechanisms to facilitate visual pre-processing

of areas where the system predicts the target to be [Khan et al., 2010]. However, mo-
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tion prediction occurs on several scales of time. Simple, uniform motion tracking re-

quires time to visually process motion and send motor commands, meaning some level

of prediction mechanism is required to not be constantly lagging behind the target

[Brouwer et al., 2002]. However, longer range motion dynamics (i.e. motion patterns

observed over longer time-frames) also interact with motion extrapolation mechanisms,

as shown with periodic motion [Verfaillie and d’Ydewalle, 1991]. Therefore, the temporal

dynamics of visual spatial bias during smooth pursuit should be further investigated to

determine whether the bias arises due to local motion characteristics or rather emerges

due to longer range motion history.

The visual system

The visual system comprises a variety of pathways in order to effectively process the wide

range of visual information sensed by the retinas. Generally, the visual system can be

separated into a dorsal stream and a ventral stream [Goodale and Milner, 1992]. The

dorsal stream, involving the posterior parietal cortex, is primarily involved in localizing

objects and processing motion, while the ventral stream, involving the inferior temporal

lobe, is primarily involved in object and facial recognition. The focus of the following

review of the visual system will be the relevant structures and pathways which facilitate

visual motion processing, as well as those which produce smooth pursuit eye movements

for visual motion tracking.

Visual motion processing

The segregation of functional neural pathways occurs almost immediately as visual signals

from the photoreceptors of the retina project onto the lateral geniculate nucleus (LGN)

via the optic nerve [Kandel et al., 2000]. Within the LGN, small parvocellular (P) cells

form P-layers and larger magnocellular (M) cells form M-layers. The P cells demonstrate

high spatial acuity, offset by low temporal acuity, and are also sensitive to color. By

contrast, the M cells demonstrate high temporal acuity, offset by low spatial acuity, and

are insensitive to color [Kandel et al., 2000]. The distinction of these two types of visual
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content continues along the visual processing pathway as signals project from the LGN

onto the primary visual cortex (V1) via optic radiations [Nealey and Maunsell, 1994].

The primary visual cortex (or striate cortex) consists of neurons which are mapped

retinotopically and have small receptive field size. In macaque monkeys, the receptive

field sizes in V1 range from <1 degree of visual angle in the fovea to about 5 degrees of

visual angle at 40 degrees of eccentricity to the fovea; by contrast, receptive field sizes of

neurons in the secondary visual cortex (V2) are up to 20 degrees of visual angle in size

at similar eccentricities [Gattass et al., 1981]. As such, the retinotopic spatial encoding

of objects in V1 is highly accurate and matches the subjective visual field well. The

magnocellular and parvocellular projections from the LGN arrive at separate locations in

V1: the M-cells project onto layer 4B/4Ca while the P-cells project onto layer 4A/4Cb

[Martin, 2012]. There is also a columnar organization to the striate cortex, where “orien-

tation” columns have been observed as groups of neurons which all respond to the same

orientation stimulus and span across multiple cortical layers [Hubel and Wiesel, 1974].

In particular, layer 4B contains the highest concentration of cells which are sensitive

to direction and provides the largest output from V1 to the middle temporal region

[Essen and Maunsell, 1983].

The middle temporal (MT) or area V5 has been observed to contain neurons sensi-

tive to motion direction [Zeki, 1980]. A variety of types of directional sensitivity exist,

inferred from the level of neuronal activation when presented with different motion stim-

uli; for example, certain columns of neurons respond maximally when opposing motion

is sensed in each eye (i.e. detection of movement towards or away from the observer)

whereas other columns respond only to centripetal motion, and other still to select mo-

tion directions [Zeki, 1974]. The response fields of neurons can vary in size but are

generally larger than those in V1, demonstrating a capacity for visual motion integration

[Essen and Maunsell, 1983]. In particular, an “aperture” problem arises when sampling

motion information from neurons with small response fields - namely, the limit of the

response field size limits the amount of motion that can be sampled. To overcome such

limitations, motion detected from several neurons with smaller receptive fields are inte-
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grated by neurons with larger receptive fields to generate a larger motion image, as is

the relation with V1 and MT [Pack, 2001]. Finally, inputs to MT are not limited by

the magnocellular dominant afferents of V1, but evidence from trans-synaptic tracing

and EEG studies have demonstrated that direct input from parvocellular pathways of

the LGN exist, thereby providing MT with a robust set of chromatic, spatial, temporal

signals for processing visual motion [Nassi et al., 2006, Schoenfeld et al., 2002].

Smooth pursuit eye movement system

Smooth pursuit eye movements are slow, conjugate eye movements used to continu-

ously track a target on the fovea [Martin, 2012]. In order to smoothly track a vi-

sual target, contributions from various structures are required, from motion processing

to detect velocities [Ilg, 2008] to motion prediction for overcoming sensorimotor delays

[Barnes and Asselman, 1991]. The focus of the following review of the smooth pursuit

system will be to highlight key structures which interact with processing, prediction, and

attention functional networks.

The middle temporal (MT) and medial superior temporal (MST) lobes are heavily in-

volved in motion processing due to the higher number of neurons selective for directional

motion [Essen and Maunsell, 1983] and speed [Duffy and Wurtz, 1997]. Neurons selec-

tively tuned for speed in these regions guide the initial velocity estimates needed for pur-

suit eye acceleration, rather than using the rate of neuronal activation across adjacent re-

ceptive fields [Priebe et al., 2001]. The effect of lesions in MT and MST on smooth pursuit

have been noted, resulting in deficits in the ability to match target speeds during pursuit

initiation, as well as deficits in the ability to maintain eye velocity during smooth pursuit

[Newsome et al., 1985, Dursteler and Wurtz, 1988]. Furthermore, MT and MST can be

affected by attentional modulation during smooth pursuit [Recanzone and Wurtz, 2000].

When neurons in these regions are presented with conflicting motion in the same recep-

tive field, perception of that motion can either be an averaged motion vector or a biased

motion vector. Given a target to overtly attend and pursue that conflicts with motion

of distractor stimuli in the same receptive field, the perception of averaged motion is
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observed up to about 450 milliseconds (ms), after which the perceived motion response

becomes biased towards the attended target [Recanzone and Wurtz, 2000].

Neurons in the frontal eye fields (FEF) have been shown to have directionally se-

lective responses during smooth pursuit which are broadly tuned [Gottlieb et al., 1994].

The firing rate of these neurons which discriminate for motion direction leads pursuit

eye movement onset by an average of about 8 ms, with some neurons leading onset

by about 25 ms [Tanaka and Lisberger, 2002]. However, the inhibition of FEF neurons

has a more pronounced effect on the initial pursuit acceleration and causes a reduction

steady-state velocity, rather than on pursuit initiation latency [Shi et al., 1998]. Con-

versely, electrical stimulation of the FEF increases pursuit velocity gain irrespective of

motion direction [Tanaka and Lisberger, 2001]. Altogether with parallel results indicating

the contribution of FEF neurons in selective visual spatial attention [Schall et al., 1995,

Beauchamp et al., 2001], the omni-directional sensitivity of the FEF to motion and resul-

tant eye movement speed may imply its role in applying target selection for the generation

of oculo-motor plans [Tanaka and Lisberger, 2001].

Target selection for eye movements has also been observed in the superior colliculus

(SC) which has retinotopically arranged superficial layers that encode for covert visual

attention [Carello and Krauzlis, 2004, Katyal et al., 2010]. The intermediate and deep

layers of the superior colliculus also contain “fixation” neurons which are active when

targets are close to the fovea and suppressed when the fovea-target position is large,

in order to produce target-directed saccades [Krauzlis et al., 2000]. However, activity in

these neurons is also present during smooth pursuit eye movements where the fovea-target

distance is relatively small. As such, the role of these “fixation” neurons in the SC is to

encode error signals between the fovea and target in order to determine the generation of

fixation, smooth pursuit, or saccades. As error increases, the suppression of these neurons

allows for catch-up saccades to be produced, while as the error decreases, the activation

of these neurons can result in either fixation or pursuit [Krauzlis et al., 2000].
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Visual spatial attention

Visual spatial attention refers to the selective processing of areas in the visual field. The

need for selectivity is due to a limit on neural processing capabilities, arising from a fi-

nite metabolic supply to the brain and the constant metabolic cost of activating neurons

[Clarke and Sokoloff, 1999, Lennie, 2003]. As such, selectivity allows for a greater amount

of resources to be allocated to processing a smaller portion of the visual field, rather than

spreading resources across larger areas [Müller et al., 2003]. Several theories of spatial

attention have been proposed, along with studies investigating the neural control mecha-

nisms involved in attention allocation; however, investigations of the spatial allocation of

attention during visual motion tracking have been limited to uniform motion warranting

further investigation of complex motion.

Theories of visual spatial attention

Evidently selective processes of attention must exist from both the physiological stand-

point, that is, the metabolic limits of the nervous system mentioned above [Clarke and Sokoloff, 1999,

Lennie, 2003], and from experimental observations of performances during visual search

tasks [Posner et al., 1980, Eriksen and Collins, 1969, Jonides, 1983]. While the area of

the visual field which falls on the fovea of the retina is highly resolved and may explain

the “overt” focus of attention, the manner in which “covert” attention is distributed over

the para-foveal & peripheral regions, and the dynamics of its shifting to new areas have

been subject to a variety of theories.

Of the first theories of visual spatial attention was the notion that attention was

analogous to a ‘spotlight’ [Posner et al., 1980]. Such a model postulated that whatever

area the attentional spotlight shone on was attended to (i.e. visually processed), and

the rest of the visual field was left unattended (i.e. unprocessed). Evidence for selective

attention was seen from experiments involving manual response times to LED flashes at

expected, neutral, and unexpected locations on a display screen. While fixated on screen

center, response times were significantly faster for flashes at expected locations (via a pre-

cue) compared to response times to unexpected locations. The pre-cueing of attention
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was termed ‘orienting’ and the process of selectively attending to objects in the visual

field was termed ‘detection’. The “covert” beam of attention moves independently of the

retina, and as such the larger the distance to cover across the visual field the greater the

time needed to adjust attention.

The spotlight model of attention was then expanded upon by adding to the analogy the

quality of a ‘zoom-lens’ modulating the (quite literal) focus of attention [Eriksen and James, 1986].

The concept of a zoom-lens followed from experimental results noting the capacity of selec-

tive visual processing to spread over a large area of the visual field, or to be concentrated

on smaller areas of the visual field [Eriksen and Collins, 1969]. Additionally, results of

experiments where reaction time decreased when attention was oriented prior to visual

search [Colegatef et al., 1973, Eriksen and Colegate, 1970] were expanded upon to note

that visual reaction times were directly correlated to the reliability of a pre-cue to orient

attention [Jonides, 1983]. As such, a two-process model of attention was hypothesized

where attention shifted between two ‘modes’: one focused for when the pre-cue was reli-

able, and the other dispersed for when the pre-cue was unreliable (so all items needed to

be searched in parallel).

These two modes were then theorized as being two extremes of a continuum of atten-

tional focus ‘levels’ - much like a zoom-lens attachment on a camera [Eriksen and James, 1986].

Fundamentally, the model posits that processing capability and processing area are in-

versely related variables so that the scope of selective attention may vary in size, but

attending to larger areas will reduce overall visual processing efficiency while attending

to smaller areas will increase efficiency. Neuro-physiological evidence for the zoom-lens

model has been seen using fMRI imaging of visual cortical areas and a pre-cueing stimulus

to change the area of attention; an increase of area corresponded to an increase size of

active cortical regions but a decreased level of neural activity [Müller et al., 2003]. The

capability of the attentional system to flexibly allocate resources across the visual field

in order to optimally configure processing resources raises a question as to how and why

the system might favour certain configurations over others, and the manner in which it

adapts to account for dynamic stimuli.
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Behavioural tasks for probing visual spatial attention

A variety of tasks have been used to probe visual spatial attention, specifically ‘covert’

attention (as ‘overt’ attention can be investigated via pupil position tracking). Response

times as a measure of covert attention have been frequently used due to the notion that

pre-allocating visual processing resources to locations in the visual field facilitates the

detection of a target in that location, hence a faster response time [Posner et al., 1980].

Tasks in which response times are used include visual search tasks where participants must

search for a target object among distractor objects [Posner et al., 1980, Posner et al., 1984,

Colegatef et al., 1973, Eriksen and James, 1986, Jonides, 1983]. Other methods for eval-

uating the distribution of visual spatial attention have measured attention by the ability to

discriminate characters, rather than using target detection times [Khurana and Kowler, 1987,

Lovejoy et al., 2009]. In these tasks, participants are presented with rows of alpha-

numeric characters and asked whether a specific character appeared in the array. Finally,

besides visual search tasks, the response times to the abrupt onset of salient visual probes

has been used to evaluate the allocation of spatial attention [Donkelaar and Drew, 2002,

Khan et al., 2010, Seya and Mori, 2012]. As abrupt onsets of stimuli have been shown

to capture attention in general [Yantis and Jonides, 1984], asymmetry in response times

would be indicative of an existing bias in spatial attention prior to stimulus onset [Khan et al., 2010].

Visual spatial attention during motion tracking

During smooth pursuit tracking of motion, spatial attention has been shown to be

directionally focused at locations ahead of target motion [Donkelaar and Drew, 2002,

Khan et al., 2010, Seya and Mori, 2012, Chen et al., 2017]. The extent of the bias in

attention ahead versus behind target motion as a function of target speed has shown

conflicting results, with even low speeds of about 5 degrees per second producing a

more pronounced bias located further ahead in some studies [Seya and Mori, 2012], but

only showing this effect at higher speeds (greater than 10 degrees per second) in oth-

ers [Donkelaar and Drew, 2002]. The reasons for the bias ahead of target motion has

been likened to smooth pursuit (or target motion) acting as an explicit “endogenous”
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(goal-directed) cue to orient spatial attention [Khan et al., 2010].

Visual motion prediction

Visual motion prediction refers to the ability of the nervous system to extrapolate the

motion of an object and predict its future location. Transmission of signals through the

nervous system naturally has delays, and so motion prediction is a necessary process in

order to ‘keep up’ with objects in real-time [Nijhawan, 1994]. The role and capability

of various structures within the visual system (specifically, the dorsal stream responsi-

ble for space localization) to extrapolate motion have been examined, and models of

feedforward-feedback loops among structures such as the primary visual cortex and the

middle temporal region to generate a consistent perception of motion have been proposed

[Hu et al., 2022]. The manner in which these systems interact with visual attention sys-

tems remains to be explored further.

Motion extrapolation

Generally, the ability to predict the future position of an object effectively rests on

the scheme which a system adopts to extrapolate the object motion. Furthermore,

the timescale of extrapolation is also a crucial factor in the practical utility of predic-

tive mechanisms - being able to predict the position of a baseball only once it crosses

home-plate only results in strike-outs. As such, it is critical to understand what types

of visual cues aid motion extrapolation, and for how long the information from those

cues persist (i.e. how far in advance that information is useful) in driving visual mo-

tion extrapolation schemes. The concept that the motion history of an object distorts

the perception of that object’s instantaneous position can be seen via a “flash-lag”

effect [Munger and Owens, 2004, Hubbard and Bharucha, 1988, Freyd and Finke, 1984,

Nijhawan, 1994]. In these experiments, an object is shown to rotate or move in some

predictable fashion for a period of time before disappearing and then reappearing. The

participant is asked to judge whether the object reappeared in the same orientation it

had when it disappeared. A reliable error has been observed that participants perceive
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the object to have moved slightly beyond its disappearance point. The “flash-lag” effect

has been attributed to a mechanism termed representational momentum (RM), where an

object following a pattern of motion has an internal representation which continues to un-

dergo forward dynamics despite the physical state of the object [Freyd and Finke, 1984].

The concept of a “pattern” is dependent on the participant’s a priori expectations of

motion, such as adherence to Newtonian physics [Hubbard and Bharucha, 1988, Nagai et al., 2002].

As such, objects moving in the direction of gravity relative to body position are perceived

as having more forward displacement compared to those moving against the direction of

gravity - a special case of RM specifically termed “representational gravity”. The ob-

ject’s avatar or label may also sway expectations, such as having the motion stimulus

resemble a rocket or a steeple, which are deemed to move (if at all) differently in the

real world [Reed and Vinson, 1996]; participants demonstrated less representational mo-

mentum for steeple avatars compared to rocket avatars, especially when the implied

direction of motion was upwards. Finally, beyond the effect of real-world exposures to

movement, patterns such as periodicity may also be inferred from motion stimuli within

the experimental paradigm [Verfaillie and d’Ydewalle, 1991]. Participants exposed to a

modified flash-lag protocol with periodic rotational motion demonstrated no forward rep-

resentational momentum at direction change-points, and when presented with periodic

velocity fluctuations there were corresponding levels of forward extrapolation at veloc-

ity change-points [Verfaillie and d’Ydewalle, 1991]. In fact, in the absence of patterned

(or predictable) motion, the forward shifts of perceived motion completely disappear

[Kerzel, 2002]. In conclusion, representations of objects and their motion patterns which

may guide motion extrapolation can be extracted from motion history or based in real-

world contexts, and these patterns may manifest across movement orders.

Motion extrapolation in athletic populations

One of the first experiments investigating the “flash-lag” effect involved baseball ath-

letes and examined the manner in which the baseball motion was extrapolated into the

future to facilitate accurate catching [Nijhawan, 1994]. Ball sport athletes, especially
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from sports involving the catching or interception of a ball (such as baseball), have since

been involved in various motion extrapolation paradigms, including the go/no-go task

[Sokhn et al., 2019] and time-to-contact tasks [Spering et al., 2011, Fooken and Spering, 2019].

Notably, the superior predictive ability in athletes may also arise due to contextual knowl-

edge learned from practice which would lead to more effective visual strategies for detect-

ing information which would facilitate prediction. For example, knowing how to “read”

the body mechanics of a pitcher (i.e. what body parts to look at and when) constrains

the possibilities of ball trajectories, thus facilitating the prediction of future ball position

even before the ball is thrown [Abernethy and Russell, 1984]. However, even following

the release of the ball (and hence a lack of contextual body cues), experienced athletes

are better able to predict trajectory from the first 150 milliseconds of ball flight, and thus

initiate a saccade towards the predicted future location quicker than less experienced

athletes [Land and McLeod, 2000]. Furthermore, not only does an athlete’s level of play

reflect performance in motion extrapolation tasks, but also the regular practice of sport

can improve motion extrapolation performance over time [Kida et al., 2005].

Predictive coding of visual motion

The predictive ‘coding’ of sensory stimuli revolves around the theory that the brain is ac-

tively employing an internal model of the surrounding environment [Francis and Wonham, 1976,

Millidge et al., 2021]. The internal model is used to predict the future state of the en-

vironment and the body to overcome delays in neural processing, and is constantly up-

dated by acquiring new sensory input [Rao and Ballard, 1999]. In a predictive coding

framework, the observer’s primary objective is to minimize the error between the in-

ternal model predictions and the sensory information being observed, and in the pro-

cess of this minimization the observing system effectively adapts its internal model. By

considering the brain as a predictive coding machine, a computational model revolv-

ing around the hierarchical organization of cortical layers is proposed [Friston, 2003],

where prediction occurs simultaneously across several levels which interact with each

other via several feed-forward and feed-back loops [Clark, 2013] . From the compu-
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tational framework, the function of the feed-back paths allow for predictions made at

higher levels of the hierarchy to be compared to inputs at lower levels, while feed-forward

pathways allow for the errors in prediction to be fed back into the system to improve

model calibration [Hogendoorn and Burkitt, 2019]. Due to processing delays, informa-

tion reaching the “higher” (or deeper) levels of the hierarchy must compensate by mak-

ing longer range predictions and therefore are likely to encode longer range (or global)

features, while “lower” levels have less time to compensate for and likely encode lo-

cal characteristics [Hogendoorn and Burkitt, 2019, Millidge et al., 2021]. Studies to date

have both developed mathematical frameworks and discovered biological evidence to sup-

port the notion of multi-layered hierarchical neural circuitry driving the prediction of vi-

sual motion [Hogendoorn and Burkitt, 2019, van Heusden et al., 2019, Berry et al., 1999,

Jehee et al., 2006, Spratling, 2012].

Neural mechanisms of predictive coding

The functional architecture of the visual system has often been observed as resembling a

hierarchy of connections [Hubel and Wiesel, 1962, Fukushima, 1988, Riesenhuber and Poggio, 1999].

In the experiments of Hubel & Wiesel [Hubel and Wiesel, 1962], receptive fields of neu-

rons in the lateral geniculate nucleus (LGN) were relatively small and responded optimally

to point light stimuli, whereas receptive fields of neurons in layer IV of the primary visual

cortex (V1) responded optimally to lines of a particular orientation. As the LGN is a

primary source of afferents to V1, the implication is that V1 cells integrate these afferents

to build relatively higher-order features of the visual input. As visually processed features

are passed iteratively onwards to other cortical structures, the afferents signals encoding

those features are combined further to produce even more detailed or complex features

such as contours for object recognition in V4 [Riesenhuber and Poggio, 1999] or optical

flow for motion processing in area MT [Solari et al., 2015].

The capability of motion extrapolation to occur beginning at the level of the retina

has been demonstrated, where retinal ganglion cells ahead of a moving target exhibit an

increase in firing rates irrespective of motion direction and across a range of speeds, al-
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though extrapolation deteriorates at sufficiently high speeds or insufficiently high contrast

values [Berry et al., 1999]. Cells in the LGN also have shown similar “pre-activation”

corresponding to the encoding of future positions of a moving contour which can be

specifically linked to feedback projections from V1 [Sillito et al., 1994]. The receptive

fields of V1 cells in cats have also shown “pre-activation” sensitive to motion speed and

direction, and a peak activation that was quicker for dynamic rather than stationary

stimuli [Jancke et al., 2004]. Indeed, for motion prediction mechanisms to be of any use

there must be advantages in processing speed so that predictions induce responses quicker

than if relying on sensory stimuli alone - evidence for these processing advantages have

been observed via electroencephalographic recordings during a motion anticipation task

[Blom et al., 2020].

In addition to predictive models generated solely by forward dynamics from internal

models and backwards error minimization schemes, the use of motor plan to help predict

into the future has also been explored via the concept of “efference copies”. An efference

copy is a duplicate of the motor plan (the oculomotor plan, in the case of eye movements),

which can be used by internal representations of space to maintain a stable perception

of the world [Stark and Bridgeman, 1983]. During visual motion prediction tasks, where

participants must predict the time-to-contact or final location of a target after partial

occlusion of its trajectory, smooth pursuit of the target resulted in better performance

compared to fixation strategies [Spering et al., 2011, Fooken and Spering, 2019]. The

performance improvement associated with smooth pursuit over fixation remained even

with equivalent retinal stimulation, and more accurate eye movements were indicative of

better motion prediction ability [Spering et al., 2011]. These observed advantages point

towards the use of an efference copy of the oculomotor commands during smooth pursuit

as additional latent variables aiding predictive coding models alongside sensory input

from the visual processing of motion.
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Mathematical framework

In Bayesian statistics, the concept of inference refers to the testing and updating of

the probability that a hypothesis is true, given prior probability distributions on that

hypothesis and sampled data to generate a likelihood function [Berrar, 2018]. The process

of inference is summarized using Bayes’ theorem:

P(H|E) =
P(E|H) ·P(H)

P(E)
(1)

Where P(H|E) is the posterior probability of the hypothesis being true given the

sampled data, P(H) is the prior hypothesis probability distribution, P(E|H) is the like-

lihood of the sampled data occurring given the prior hypothesis, and P(E) is the like-

lihood of the sampled data independent of the hypothesis. Naturally, the computation

of P(E) is typically intractable as it requires the computation of the probability that

the sampled data occurs in any latent (i.e. unobservable) state; to solve the problem,

variational Bayesian inference is employed whereby the posterior probability is computed

via minimizing the relative entropy between it and variations on an arbitrary probability

distribution [Beal, 2003].

The concept of an error reduction system for predictive coding can be reformulated

as variational Bayesian inference [Friston, 2003]. Predictability and information are in-

versely linked [Shannon, 1948], as outcomes from a purely predictable process produce no

new information about that process whereas outcomes from a purely random process are

always producing new information. A model needs to be assumed in order to “predict”

anything, which corresponds to the prior hypothesis probability distribution, P(H), in

Bayes’ theorem. New information sampled by the system can then be used to generate

a likelihood function of that data, given the prior distribution. To solve for the poste-

rior probability distribution (i.e. “update” the model to better reflect the sampled data)

an optimization scheme is run so that the amount of variational “free-energy” (relative

entropy) is minimized [Friston, 2003].

Given a mechanism for inference and learning, a second key aspect of predictive coding
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is a hierarchical structure which integrates the individual learning of multiple components

across the system to produce a coherent perception of motion [Hogendoorn and Burkitt, 2019].

The function of components in higher levels of the hierarchical circuit is to predict the

level of activation in components in lower levels of the hierarchy. The predicted activations

can then be held by the corresponding lower components, compared to sampled values at

the appropriate time, and error in predicted and sampled data can be fed back upstream

to the higher level components [Rao and Ballard, 1999]. However, a key drawback of the

classical conception of the hierarchical model is that since processing delays naturally

occur in the transmission of information across levels, the time delay involved in moving

predictions across feed-forward and feed-back pathways necessarily introduces increased

prediction error as well as incoherence due to each level of the hierarchy representing

the object at a different point in time [Rao and Ballard, 1999]. Hence, one extension to

the classical model involves the modulation of prediction signals along feedback connec-

tions to be modulated to account for transmission time, hence feeding back a predicted

activation of the lower component at the instant of arrival rather than the instant of

relay. Next, in order to temporally bind components across the hierarchy, a forward ex-

trapolation scheme must also be used whereby the prediction errors in the forward loops

are modulated to account for the time of transmission to higher levels, so that higher

components are producing predictions on the activation levels of lower components given

errors modulated to reflect instantaneous values [Hogendoorn and Burkitt, 2019].

Predictive coding frameworks can be simplified into linear, state-space models such as

the Kalman filter [Baltieri and Isomura, 2021]. Such recursive estimators implement two

primary steps: a prediction step iterating the current state estimation using an internal

dynamic model, and a correction step which adjusts the predicted state estimate based

on incoming measurements. Furthermore, Kalman filters can themselves be arranged in

hierarchical networks to combine multiple state estimations into a single optimized state

estimate. For example, in modelling mechanisms underlying smooth pursuit, two Kalman

filters were employed to independently represent the nervous system’s measurement (i.e.

from retinal slip) and prediction (i.e. from an internal memory model) of the pursuit tar-
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get’s position [de Xivry et al., 2013]. The two estimations were then optimally combined

using a Bayesian integrator to generate a final estimate of the target’s state which could

be used to drive eye movements. Beyond the explicit prediction of motion or position,

Kalman filters have also been used to model the nervous system’s estimation of its own

error in tracking future target positions [Nachmani et al., 2020]. Specifically, the state

covariance matrix estimated by the Kalman filter gives an indication of the confidence

of the state prediction, which can be used to generate a probability of the target falling

outside the fovea (i.e. a predicted future error) and thus trigger a catch-up saccade during

smooth pursuit, if appropriate. In conclusion, state space models and recursive estima-

tors have been shown to be effective in characterizing and modeling the manner in which

the nervous system filters noisy measurements, predicts future motion, and controls eye

movements.
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Chapter II: Research questions & hypotheses

Research question 1

During visual motion tracking, is the distribution of visual spatial attention about the

pursuit target dependent on motion predictability?

Hypothesis 1

I hypothesize that when visually tracking a target with predictable, uniform motion

there will be a bias in visual spatial attention ahead of the pursuit target motion. When

tracking a target with unpredictable motion, attention will be evenly distributed about

the target motion (no difference between ahead and behind). Finally, when tracking a

target with intermediate motion predictability will result in attention being distributed

with some bias ahead of target motion, but not as much as in the case of uniform motion.

Research question 2

Is there symmetry in bias accumulation relative to changes in motion predictability? That

is, does the time needed for bias to accumulate when viewing uniform motion following

random motion equate to the time needed to de-accumulate bias when viewing random

motion following uniform motion?

Hypothesis 2

I hypothesize that the time for the accumulation of bias when tracking a target mov-

ing from low-to-high predictability is higher than the time for the de-accumulation of

bias when tracking a target moving from high-to-low predictability. As such, manual

response times to probes located ahead versus behind target motion will take longer pe-

riods of uniform motion to be significantly different for bias accumulation compared to

de-accumulation.
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Research question 3

Can state space models be used to infer the dynamics of visual spatial attention from eye

movement dynamics?

Hypothesis 3

While the research question is exploratory, I expect that state estimators can model

visual spatial dynamics with some effectiveness as Kalman filtering has previously shown

to model smooth pursuit and catch-up saccade dynamics. Assuming that target motion

predictability (and hence, eye movement complexity) are linked to visual spatial attention

(based on research question #1), the extension of such state space models to capture

non-linear features, such as asymmetrical accumulation (based on the results of research

question #2) should be feasible. In particular, the model should aim to take a target

motion time series as input and produce the corresponding time series of visual response

time bias as output. Using normalized values of reaction time bias, it is expected that a

mean absolute error (MAE) of less than 50% is achievable (i.e. model prediction accuracy

of attentional bias occurring is better than random chance).

I hypothesize that eye-movement acceleration can drive the modelling of attentional

bias based on the idea that visual attention is biased ahead of target motion during

linear pursuit due to the anticipation of future target location [Khan et al., 2010]. When

target motion is un-predictable, it is hypothesized that visual tracking error will be high

and hence there will be a need for frequent, high-acceleration eye-movement corrections

(typically, catch-up saccades) to maintain tracking accuracy. Conversely, predictable

target motion would mean a low occurrence of high-acceleration eye movement events.

As such, the frequency and magnitude of eye acceleration events may be able to inform

of the predictability of target motion, and hence the amount of bias in visual attention.
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Chapter III: Methodology

Overview

Participants performed a dual-task paradigm involving smooth pursuit motion tracking

and a visual spatial attention task. Smooth pursuit target motion was constrained to the

horizontal axis. Visual attention was measured as a manual response time to a probe

dot appearing on screen at random times and locations. To address research question

#1, a target was programmed to move at a fixed level of motion predictability for up

to 2400 ms, and attention was probed to determine the effects of motion predictability

on response time bias. To address research question #2, some trials were presented

where target motion predictability changed after 2400ms, and attention was probed to

determine the accumulation or de-accumulation of bias in visual spatial attention. To

address research question #3, a state-space model, taking motion inputs and producing

normalized response time bias outputs, was evaluated with a 5-fold cross-validation using

400 motion trials across all participants.

Data collection

The stimulus was presented on a ViewSonic V3D245, with a resolution of 1920x1080

pixels, 120Hz refresh rate, and physical dimensions of 52cmx29.2cm (37 pixels/cm). Eye

movements were collected using the Eyelink 2 (SR Research Ltd., Ottawa, ON, Canada)

and recorded binocular gaze location from pupil-corneal reflection at 250Hz. Participants

were in a chin-rest to stabilize the head during collection, and infrared trackers connected

to the Eyelink system were used to provide a head-tracking signal to correct for any further

small movements of the head. The chin-rest was placed at a distance of 53cm from the

monitor so that 1° of visual angle is equivalent to ∼40 pixels on screen; seating and chin-

rest positions was adjusted so that the participant’s gaze was centered both horizontally

and vertically on-screen. Manual response times were registered via a standard PC mouse

(polling rate of 125Hz).
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Sample population

A total of 20 participants between the ages of 18-35 were recruited, grouped as high-

performance athletes (n=10; 5 male, 5 female) and healthy, young adults (n=10; 5 male,

5 female). High-performance athletes were considered to be individuals competing in a

dynamic team-sport at the varsity level of play or higher. Athletes have been shown to

exhibit higher and more consistent levels of dynamic visual acuity [Yee, 2017], potentially

providing a population with similar experience levels and practiced visual strategies.

All participants performed a series of visual assessments prior to data collection in-

cluding: static visual acuity, dynamic visual acuity, and stereo-acuity. Additionally, age

and sex were recorded; all personal identifiers were stored separately for confidentiality

purposes. All participants completed an informed consent form prior to participation

in data collection. The research protocol was approved by the University of Waterloo

Research Ethics Board under study #43502.

Sample size

In previous research studies investigating spatial allocation of attention using response

times to probes, population sample sizes ranged from 4 to 9 participants [Donkelaar, 1999,

Lovejoy et al., 2009, Khan et al., 2010]. Pilot data was collected from 6 participants to

determine the effect size (Cohen’s d) of the bias between response times ahead versus

behind target motion during smooth pursuit; the resulting effect size was greater than

1.5 (d=2.11). A power analysis was then run using G-Power [Faul et al., 2007] with the

following input parameters for a paired sample t-test: one-tail, effect size of 1.5, alpha

level of 0.05, power of 0.95. The sample size estimate was 7 participants. A sample size

of 20 individuals in total (10 in each group) was used to be able to compare groups and

account for possible participant data exclusion during analysis due to poor data quality.

Exclusion criteria

Individuals with a history of concussion were excluded due to possible lingering effects

on cognitive ability [Hurtubise et al., 2016]. Individuals with clinically diagnosed atten-
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tion deficiency disorder were also excluded. Additionally, participants were screened for

handedness using the Edinburgh inventory [Oldfield, 1971], and only right-handed indi-

viduals were recruited to control for possible sources of variances arising from differences

in lateralization within the brain which possibly affect performance on visuo-spatial tasks

[Gordon and Kravetz, 1991].

Methods

Motion complexity & persistence

To quantify the predictability of motion, a metric of complexity derived from information

theory was used to define a discrete random walk model which generated the target move-

ment sequences. A random walk is a stochastic process meant to model the movement

of a free particle in space - that is, Brownian motion. A discrete random walk considers

the states of a particle to be discrete, rather than continuous, and can approximate the

continuous random walk by taking the time duration of each state as a limit approaching

zero [Kac, 1947]. However, randomness can also be considered as a state of maximal en-

tropy [Shannon, 1948], thereby allowing for a parametric approach to defining a varying

level of randomness.

Entropy is defined as the level of uncertainty in the state of a system and can be

computed as follows:

H = −
n∑

i=0

pilog(pi) (2)

Here the system is modelled by n states, and pi is the probability of the system being in

the i-th state. If there is equal probability to be in any state (i.e. the system is governed

by a uniform distribution), then entropy is maximal; of course, equal probability of any

state is a synonymous description of pure ‘randomness’. By contrast, if the probability of

a state is 1, the probability of all other states is 0; the logarithmic function itself evaluates

to 0 at 1, and so the entropy is trivially zero as well. In this case, the system is purely

deterministic - there is no uncertainty in the state at all.

The notion of random walks and entropy can be combined via Markov-chain models.

21



A Markov chain considers the probability of the next state of a system as determined by

only the previous N states of that system [Gagniuc, 2017]; the value of N denotes the

order of the Markov chain (or system ‘memory’). By modelling a random walk as a first

order Markov-chain, one can imagine a walker moving to the left on a line who flips a

coin at each step to decide whether to continue in the current direction of motion (heads)

or change direction (tails). Clearly, with a fair coin toss the probability of maintaining or

changing direction is a 50-50 chance. The resulting motion of the walker would thereby

resemble purely random motion along the line. However, consider an unfair coin toss,

where both sides of the coin are heads - then the walker can only ever continue in the

same motion direction.

A Markov-chain model of random walks is not simply constrained to the purely ran-

dom and purely deterministic conditions; intermediate levels of motion randomness can

be achieved by setting the state transition probability to values in between 0 and 1 (and

therefore having recurrence probability values between 1 and 0, respectively). The ‘ran-

domness’ in a motion can then be described in a more generic manner as its ‘complexity’,

with the following implications:

• motion complexity can be quantified by the entropy of the stationary distribution

governing transition and recurrence probabilities. Note that a symmetric definition

of the random walk model results in a single parameter (state transition probability,

PT ) governing transition and recurrence in all states. Therefore, the transition

matrix of the Markov chain reduces to a stationary distribution, and complexity is

equivalent to Shannon’s entropy as defined by Equation 2.

• maximally complex motion (PT = 0.5) is analogous to purely random (“unpre-

dictable”) motion, while minimally complex motion (PT = 0) is analogous to purely

deterministic (“predictable”) motion.

• other levels of motion complexity, where entropy is between 0 and 1, are indicative

of the level of ‘persistence’ in a motion; the lower the entropy value, the more

persistence exists.
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Figure 1: Persistent random walk model: Simulation of a persistent random walk
using a Markov chain model at varying transition probability (PT ) levels. For PT levels
close to 0, the walk results in straight line, uniform motion, whereas when PT levels
increase to 0.5 the uniform motion begins to fluctuate increasingly until it resembles
pure Brownian motion at PT=0.5. Increasing PT past 0.5 and into the range of [0.5, 1]
produces a predictable oscillatory motion pattern (predictable state switching)

Stimulus generation

The target appeared as a white dot (0.5 degree diameter), and moved at a constant ve-

locity of 10 °/sec. Target size and velocity was selected to be comparable to similar studies

[Khan et al., 2010], as well as from consideration of pilot data demonstrating a bias in

manual response times from these target parameters. Target motion was constrained

to the horizontal axis to avoid confounding different systems of control for vertical and

horizontal pursuit [Rottach et al., 1996].

A persistent, Markov-chain random walk model was used to generate target motions

of varying complexity levels by changing transition probability (PT ) values. System states

were defined as target velocity, either moving at a constant positive rate (+10 °/sec) or a

constant negative rate (-10 °/sec).
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Figure 2: Random walk Markov chain: First-order Markov model of the persistent
random walk. A single parameter, PT , governs the transition probability of the system.
System states are symmetric so that the transition probability resembles a “stability”
index (i.e. persistence) of the entire system regardless of its current state (in this case,
its angular velocity).

In order to address research question #1, target motion was generated using the

persistent random walk model by fixing the transition probability at values of PT =

0, 0.25, 0.5. The duration of a single velocity state (or ‘step’ of the motion) was 300 ms

long generated using 8 iterations of the model.

In order to address research question #2, target motion where PT = 0, 0.5 had a

second phase of motion consisting of 8 iterations each lasting 300 ms where PT = 0.5, 0,

respectively. As such, these trials consisted of either predictable-to-unpredictable motion

(PT = 0 → 0.5) or unpredictable-to-predictable motion (PT = 0.5 → 0) lasting 4800 ms

in total (16 iterations of 300 ms each).

In summary, three blocks of target motion were presented to the participant in a

random order:

1. 2400 ms of predictable motion → 2400 ms of unpredictable motion

2. 2400 ms of semi-predictable motion

3. 2400 ms of unpredictable motion → 2400 ms of predictable motion

Probes flashed ahead or behind target motion in the first 2400 ms of motion were used
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to assess visual attentional bias due to motion predictability for research question #1,

while probes flashed in the latter 2400 ms of motion types 1 & 3 were used to assess the

adaptation of attentional bias for research question #2.

Figure 3: Target motion generation: Predictable-to-unpredictable (blue), semi-
predictable (orange), and unpredictable-to-predictable (green) stimulus motion types.
The vertical dashed line distinguishes the first phase of motion (2400 ms) from the sec-
ond phase of motion. Vertical dashed lines separate the 4 probe time windows (1-1200
ms, 1201-2400 ms, 2401-3600 ms, 3601-4800 ms).

Probe generation

Bright red visual probes (0.25 degree diameter) were flashed (10 ms) randomly, either

2 or 6° ahead or behind target location. A probe eccentricity of 2° has been shown to

be most sensitive to attentional bias during smooth pursuit both in previous literature

[Khan et al., 2010, Donkelaar and Drew, 2002] and from pilot data sessions. However,

the 6° eccentricity were also used to probe any effects of motion predictability or motion

dynamics on attention in the peripheral visual field. For each trial, the probe was flashed

in one of the following time windows: 1-1200 ms, 1201-2400 ms, 2401-3600ms, or 3601-

4800ms.
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Response time collection

Previously, both saccadic and manual response times have been collected to measure vi-

sual attention. However, saccadic response times are affected by smooth pursuit based on

saccade target location relative to smooth pursuit target location [Khan et al., 2010]. The

interference effect of smooth pursuit on saccade response time is theorized to stem from a

common control process governing both types of eye movements [Xivry and Lefèvre, 2007].

Saccades to probe locations relatively nearly ahead of target motion are suppressed as

an optimization strategy, as smooth pursuit is deemed to reach the probed location in a

similar amount of time as a saccade [Brouwer et al., 2002]. Therefore, to avoid possible

confounds on probe response times, manual response times via a mouse button press were

recorded.

Experimental protocol

The experimental protocol followed the overall procedure below:

Figure 4: Experimental protocol overview: Schematic outline the flow of procedures
during a data collection session

Visual assessments

Following protocol explanation and informed consent, participants began data collection

by completing a set of visual assessments. Static visual acuity was tested using an Early

Treatment Diabetic Retinopathy Study (ETDRS) letter chart [Bailey and Lovie-Kitchin, 2013].

Dynamic visual acuity was tested using a monitor displaying an ’E’ moving either ran-

domly or horizontally. The ’E’ presented itself on a television monitor in various orienta-

tions (up/right/left/down) and moving at a speed of∼15°/sec and the participant indicates
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orientation via a button press [Hirano et al., 2017]. For both static and dynamic visual

acuity assessments, participants were seated 4 meters from the assessment plane (letter

chart or monitor, respectively) and acuity scores were determined per line.

Calibration & familiarization

A 5-point calibration using pupil-corneal reflection on both eyes was employed. Validation

levels were recorded and calibration repeated if the error in either eye was greater than

0.5 degrees. Following calibration, a maximum of 32 familiarization trials occurred where

participants were acquainted with the dual-task paradigm. Motion generated for the

familiarization trials employed a random walk model as described in stimulus generation,

with transition probability levels randomly set to PT = 0, 0.25, 0.5 and probes randomly

located 2°, 6° ahead or behind target motion. None of the pre-programmed motion for

the familiarization trials were replicated for the experimental trials.

Static visual spatial attention

In order to map the distribution of visual spatial attention in the absence of motion

tracking, 40 trials were presented where the participant fixated a target on the screen

center and manually responded to probes 2° or 6° to either the right or left of screen center.

The resulting static visual spatial attention distribution was then used for comparison to

the dynamic visual attention distribution and to normalize response time data for each

subject.

Dynamic visual spatial attention

For each participant, a total of 320 trials of the dynamic visual spatial attention task were

collected, composed of 128 trials of predictable-to-unpredictable motion (PT = 0 → 1),

64 trials of semi-predictable motion (PT = 0.25), and 128 trials of unpredictable-to-

predictable motion (PT = 1→ 0). Trials were split into blocks of 32 trials, for a total of

10 blocks and all block orders were randomized. Within each block, the probe location

(ahead or behind target motion), the probe distance (2° or 6°) and the probe time was

27



randomized on a trial-by-trial basis.

Data processing

Eye movement data, stimulus motion, probe events and manual response events were

exported via DataViewer software (SR Research Ltd., version 4.3.1) for subsequent offline

processing and analysis. Custom Python scripts were used to extract saccades, filter eye

movement traces, and determine smooth pursuit accuracy as follows:

1. Saccade detection used the Engbert-Kliegl algorithm, with a position threshold of

0.1°, a velocity threshold of 30°/sec and an acceleration threshold of 800°/sec2 (Engbert

& Kliegl, 2003; Engbert, 2006).

2. Filtering eye position time-series data involved replacing detected saccades with

linear interpolations prior to applying a low-pass, second-order Butterworth filter

set to a cutoff frequency of 40Hz.

3. To ensure consistent smooth pursuit accuracy, trials where the mean eye-target

distance exceeds 2° (from 200 ms following target motion onset to probe appearance)

were discarded.

Static trials (used to gauge baseline response time) where manual response times were

less than 100 ms were discarded due to physiological in-feasibility [Baars and Gage, 2018]

and based on previous studies demonstrating simple visual response times in competitive

athletes around 130 ms [TP et al., ]. For dynamic trials, manual response times less than

200 ms were discarded, corresponding to choice reaction times in competitive athletes of

around 260 ms [TP et al., ]. Additionally, outlier response times will be dropped from

the analysis, with outlier bounds determined for each subject as: [1st quartile−1.5∗IQR,

3rd quartile + 1.5 ∗ IQR], where IQR is the inter-quartile range of all response times.

Finally, trials where blinks occurred within 100 ms of probe appearance were discarded.

The above data exclusion criteria stem from similar practices employed in previous re-

search evaluating smooth pursuit quality for attention and motion prediction [Lovejoy et al., 2009,

Khan et al., 2010, Spering et al., 2011].
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Data analysis

Data normalization

Manual response times were normalized linearly by removing the mean baseline response

time, as collected during the static protocol.

Visual spatial attention bias

To obtain a measure of visual spatial attention bias B, the difference between normalized

response times behind (RTB) versus ahead (RTA) target motion was computed, for each

probe time window.

B = RTA −RTB (3)

Visual tracking error

To obtain a measure of visual tracking error, the Euclidean distance between the gaze

and target position was used.

tracking error =
√
(targetx − gazex)2 + (targety − gazey)2 (4)

Statistical analysis

Statistical analyses were primarily be conducted in R [RCoreTeam, 2021]. For all tests,

significance levels were assigned as p < 0.05.

Normality assumptions characteristic of parametric statistics were tested by a Shapiro-

Wilk test. A log transformation of data was used to correct for any deviations from

normality.

Descriptive statistics were calculated for both normalized response times and visual

tracking errors for each combination of a) participant group, b) probe location groups

(ahead, behind), c) probe distance (2°, 6°), d) probe time window (1-1200 ms, 1201-2400

ms, 2401-3600 ms, 3601-4800 ms), and e) motion complexity level (PT = 0, 0.25, 0.5).

To address research question #1, 2 three-way mixed analysis of variances (ANOVAs)
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were conducted to determine the effect of participant group (between), motion predictabil-

ity (within), and probe location (within) on normalized response times, one for each probe

distance (2°, 6°). Additionally, to establish how motion predictability may also affect vi-

sual tracking accuracy, a two-way mixed ANOVA will be performed to determine the

effect of group (between) and motion predictability (within) on tracking error.

To address research question #2, 4 two-way ANOVAs will be performed to determine

the effect of group (between) and probe time window (within) on response time bias (B),

one for each of the following conditions:

• ANOVA #1: probe distance of 2°, predictable-to-unpredictable motion

• ANOVA #2: probe distance of 2°, unpredictable-to-predictable motion

• ANOVA #3: probe distance of 6°, predictable-to-unpredictable motion

• ANOVA #4: probe distance of 6°, unpredictable-to-predictable motion

Modeling visual spatial attention during motion tracking

To address research question #3, a state space model was trained and tested on the

experimental visual tracking and response time data. The inputs of the model were the

stimulus target motion files and the outputs were the corresponding predicted time series

of response time bias (on a normalized scale of 0 - no bias, to 1 - maximal bias).

The state space model relied on two main components: a) a Kalman filter to simulate

smooth pursuit of the target (blue loop in Figure 5), and b) a non-linear adaptation

of the “leaky integrator” (causal filter) to transform simulated pursuit dynamics into

normalized response time bias (red loop in Figure 5).
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Figure 5: State space model overview: Schematic outline of model: components
in blue represent a Kalman filtering scheme for motion tracking, while components in
red represent a leaky integrator for the accumulation of attentional bias. Model inputs
are measured target position and precision (zn, rn); the Kalman filter outputs predicted
future target position (x̂n+1,n) for oculomotor actuation; the predicted target acceleration
(¨̂x) is scaled and passed onto the leaky integrator to output a normalized attentional bias
value (B̂n+1,n)

Kalman filter

A single Kalman filter was used to simulate smooth pursuit performance in response

to target motion. To simulate the lag in eye-movements to target motion, the Kalman

filter was tuned to the visual tracking performances by adjusting the measurement uncer-

tainty covariance matrix (R); larger uncertainties imply longer delays in eye movement

response (slower accumulation of evidence), while smaller uncertainties imply a quicker

eye movement response to target motion (Figure 6).
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Figure 6: Kalman filter simulation: Effect of measurement error covariance matrix
(R) on Kalman filter performance. Target motion (filter inputs) are represented as the
dashed black line. Larger values on the diagonal of R (diag(R)) slow the eye movement
response to target motion.

The covariance matrix was determined by adjusting the diagonal scalars of (R) and

comparing the mean absolute error between the filter outputs and eye position data. The

matrix R producing the lowest error across all trials was used as a hyper-parameter in the

model. The output eye movement acceleration from the Kalman filter was then re-scaled

into a range of [0, 1] using a logistic function with mean set at the third quartile of all

simulated eye-movement data, so as to distinguish periods of recurring high-acceleration

moments.

Non-linear leaky integrator

A “leaky integrator” is a linear filter used to estimate the state of a system based on

a single parameter (α) which scales the residuals between incoming measurements and

previous state estimates. Small values of α cause slow “leakage” of the system’s memory

of its previous state and hence delayed adaptation to incoming measurements, while large

α values cause quicker memory “leakage” and therefore fast adaptation:
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r̂k ← xk − x̂k−1

x̂k ← x̂k−1 + α · r̂k
(5)

Here rk is first computed by taking the difference between the incoming state mea-

surement (xk) and the previous state estimation (x̂k−1. Then the new state estimation is

achieved by adjusting the previous estimation according to the amount of confidence in

state measurement versus state observation (i.e. the amount of leakage, α).

While the α value is typically set at a constant value, a non-linear adaptive imple-

mentation of the filter can be achieved by setting α as a function dependant on the

current system state estimate. Such a scheme would allow for the integrator to have

different rates of accumulation and de-accumulation, which may be necessary based on

the results of research question #2. A suitable α function is the sigmoid function, as it

can operate as a constant function if the rate parameter is set to 0 while increasing the

sigmoid rate parameter approaches a step function for distinguishing accumulation from

de-accumulation (Figure 7).

Figure 7: Assymetric ”leaky integrator”: Effect of rate parameter k of the α sigmoid
function (left) and the corresponding integrator performance for accumulation (middle)
and de-accumulation (right). Setting k=0 (blue) results in the constant function, hence
the symmetric rates of accumulation and deaccumulation; increasing the value of k results
in a slower accumulation rates compared to de-accumulation rates.

The optimal parameters for the α sigmoid function were learned by evaluating model
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outputs to normalized experimental response time bias values using the range of sigmoid

rates: [0, 128]. Model performance was quantified as mean absolute error between model

outputs and experimental data.

Model dataset

In order to evaluate model performance, trials of experimental data were selected where

trial duration lasted at least 4200 ms, in order to capture eye tracking and response

time data across dual-phase motion (see ). From each of the 20 participants, 20 such

trials were randomly chosen, such that 10 trials had predictable-to-unpredictable motion

and 10 trials had unpredictable-to-predictable motion, for a total of 400 trials. From

these 400 trials, eye movement data was extracted in order to tune the measurement

covariance matrix of the Kalman filter and determine acceleration re-scaling thresholds

(); the resulting values were used as hyper-parameters for the rest of the model. Response

time data was aggregated, normalized, and then interpolated using a nearest-value scheme

in order to produce a response time bias time-series for evaluating instantaneous model

outputs.

Model evaluation

The initial dataset (400 trials) was split into a training set (75%, 300 trials) and a testing

set (25%, 100 trials). The training set was split into 5 folds of 60 trials each, where

4 folds (240 trials) were used to train the model parameters and 1 fold (60 trials) was

used to validate the model parameters. All data sub-sets ensured an even split between

predictable-to-unpredictable motion trials and unpredictable-to-predictable motion tri-

als. Five iterations of training & validation occurred so that each fold was used as a

validation set once, thus producing 5 sets of trained model parameters. The optimal

set of parameters was then chosen based on validation performance (least mean absolute

error). The final model with the optimal parameter set was then evaluated as the mean

absolute error between model outputs and the testing set of 100 trials.
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Figure 8: Cross-validation overview: Overview of model evaluation using a 5-fold
cross-validation.
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Chapter IV: Results

Data quality

From a total of 6400 trials presented to the 20 participants, 5984 trials (93%) were

retained after accounting for data quality criteria. A total of 270 trials were removed

from analysis due to poor visual tracking (based on tracking error or blinks), and a total

of 146 trials were removed due to invalid (41 trials) or outlier (105 trials) response times.

Outlier response times were determined from an 1.5IQR rule (see ), where the acceptable

response times across subjects was 199-264 ms as a lower bound and 507-572 ms as an

upper bound; such response time cutoffs are consistent with previous studies on manual

response times during smooth pursuit [Khan et al., 2010].

Trials were not screened nor excluded due to saccades, as the unpredictable motion

induced several “catch-up” saccade events (and often very little pure smooth pursuit) due

to the rapid changes in motion direction. Conversely, very few saccades occurred during

predictable motion. Hence saccade data was deemed a feature of the motion tracking, in

line with the hypothesis of research question #3, which suggested the ability to use eye

movement acceleration to infer target motion predictability.
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Figure 9: Predictable-to-unpredictable motion trials: Eye movement and response
time data across subjects for predictable-to-unpredictable motion trials. Target (black
dashes), eye (blue), and probe (red asterisk) position are represented, as well as moment
of response time (red line) and the distinction of initial (yellow) and final (cyan) phases
of motion.

Figure 10: Semi-predictable motion trials: Eye movement and response time data
across subjects for semi-predictable motion trials. Target (black dashes), eye (blue), and
probe (red asterisk) position are represented, as well as moment of response time (red
line) and the distinction of initial (yellow) and final (cyan) phases of motion.
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Figure 11: Unpredictable-to-predictable motion trials: Eye movement and response
time data across subjects for unpredictable-to-predictable motion trials. Target (black
dashes), eye (blue), and probe (red asterisk) position are represented, as well as moment
of response time (red line) and the distinction of initial (yellow) and final (cyan) phases
of motion.

Population characteristics

Visual acuity

A two-way mixed ANOVA was performed to analyze the effect of group (between factor)

and visual test (within factor) on visual acuity (Figure 12). There was no statistically

significant interaction between group and visual test factors (F(2, 36) = 1.89, p = 0.17).

An analysis of simple main effects showed that both the group factor had a statistically

significant effect on visual acuity (p = 0.008), as well as the visual test factor (p < 0.001).
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Group n Visual Assessment Score Mean (logMAR) Score SD (logMAR)

Athletes 10
Static VA -0.162 0.033
Linear DVA 0.034 0.081
Random DVA 0.074 0.086

Adults 10
Static VA -0.136 0.072
Linear DVA 0.138 0.066
Random DVA 0.136 0.075

Table 1: Visual acuity scores: Mean and standard deviations (SD) for visual acuity
scores for static (SVA) and dynamic (DVA) assessments, by group.

Figure 12: Visual acuity scores: Visual acuity for static (SVA) and dynamic (DVA)
assessments. Asterisks (*) denote statistical significance level of p < 0.05.

Baseline response times

A two-way mixed ANOVA was performed to analyze the effect of group (between factor)

and probe distance (within factor) on baseline manual response times from static trials

(, Figure 13). There was no statistically significant interaction between group and probe

distance (F(1, 18) = 0.00067, p = 0.98).

An analysis of simple main effects showed that the athlete had faster baseline response

times than the adult group (p < 0.01), and that for both groups response times to probes
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at 2° were faster than to probes at 6° (p = 0.02).

Group n Probe distance (°) RT Mean (ms) RT SD (ms)

Athletes 10
2 273 15
6 295 15

Adults 10
2 301 28
6 322 36

Table 2: Baseline response times: Mean and standard deviations (SD) for baseline
manual response times (ms) for each probe distance (2°, 6°), by group.

Figure 13: Baseline response times: Baseline manual response times for each group
and distance. Asterisks (*) denote statistical significance level of p < 0.05.

Research question 1

Para-foveal normalized response times

A three-way mixed ANOVA was performed to analyze the effect of group (between factor),

motion predictability (within factor), and probe location (within factor) on normalized

manual response times from the first phase of motion (t ≤ 2400ms) of dynamic trials () for

trials where probes flashed at a distance of 2° eccentricity (Figure 14, Table 4). There was
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no statistically significant three-way interaction between group, motion predictability and

probe location (F(2, 36) = 0.004, p = 0.996). However, there was a significant interaction

between movement predictability and probe location (F(2, 36) = 30.903, p<0.01). Simple

main effects analysis showed that factors of predictability (F(2,36) = 60.28, p<0.01) and

probe location (F(1, 18) = 118.48, p<0.01) had significant effects on response times.

Pairwise comparisons revealed significantly faster response times to probes ahead of

target motion compared to behind target motion during predictable motion for ath-

letes (p=0.01) and adults (p=0.02). Overall, response times between each motion pre-

dictability condition were significantly different (p<0.01), with lowest response times for

predictable motion, highest response times for unpredictable motion, and intermediate

response times for semi-predictable motion.

Effect DFn DFd F p ges

Group 1 18 0.23 0.64 1.10E-02
Predictability 2 36 60.28 <0.01 3.04E-01
Location 1 18 118.48 <0.01 5.20E-02
Group : Predictability 2 26 0.04 0.96 2.05E-01
Group : Location 1 18 1.73 0.21 8.06E-04
Predictability : Location 2 36 30.90 <0.01 3.60E-02
Group : Predictability : Location 2 36 0.004 0.99 4.35E-06

Table 3: Research question #1 ANOVA results for para-foveal probes: Three-
way mixed ANOVA results for the effect of group, motion predictability, and probe loca-
tion on normalized response times (ms) for a probe distance of 2°.
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Group Motion Probe location n NRT Mean (ms) NRT SD (ms)

Athletes

PT = 0
behind 10 80 30
ahead 10 49 16

PT = 0.25
behind 10 98 19
ahead 10 88 24

PT = 0.5
behind 10 117 30
ahead 10 117 30

Adults

PT = 0
behind 10 74 36
ahead 10 40 26

PT = 0.25
behind 10 92 44
ahead 10 79 43

PT = 0.5
behind 10 114 49
ahead 10 109 50

Table 4: Normalized para-foveal response times: Mean and standard deviations
(SD) for normalized response times (ms) to probes located 2° ahead or behind target
motion that was predictable (PT = 0), semi-predictable (PT = 0.25), and unpredictable
(PT = 0.5), by group.

Figure 14: Normalized para-foveal response times: Normalized response times (ms)
to probes located 2° ahead or behind target motion by group and motion predictability.
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Peripheral normalized response times

A three-way mixed ANOVA was performed to analyze the effect of group (between factor),

motion predictability (within factor), and probe location (within factor) on normalized

manual response times from the first phase of motion (t ≤ 2400ms) of dynamic trials ()

for trials where probes flashed at a distance of 6° eccentricity (Figure 15, Table 6). There

was a statistically significant three-way interaction between group, motion predictability

and probe location (F(2, 36) = 11.876, p<0.01). There were no significant two-way

interactions. Simple main effects analysis showed that factors of predictability (F(2,36)

= 18.96, p<0.01) and probe location (F(1, 18) = 10.15, p<0.01) had significant effects

on response times.

Pairwise comparisons revealed significantly faster response times to probes ahead of

target motion compared to behind target motion during predictable motion for only the

adult group (p<0.01). Normalized response times during predictable motion were also

significantly faster than during unpredictable motion for the athlete group (p<0.01).

Effect DFn DFd F p ges

Group 1 18 0.11 0.74 0.005
Predictability 2 36 18.96 <0.01 0.137
Location 1 18 10.15 <0.01 0.008
Group : Predictability 2 36 0.32 0.73 0.003
Group : Location 1 18 2.72 0.12 0.002
Predictability : Location 2 36 2.42 0.10 0.001
Group : Predictability : Location 2 36 11.88 <0.01 0.006

Table 5: Research question #1 ANOVA results for peripheral probes: Three-way
mixed ANOVA results for the effect of group, motion predictability, and probe location
on normalized response times (ms) for a probe distance of 6°.
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Group Motion Probe location n NRT Mean (ms) NRT SD (ms)

Athletes

PT = 0
behind 10 59 27
ahead 10 60 24

PT = 0.25
behind 10 87 39
ahead 10 83 36

PT = 0.5
behind 10 111 47
ahead 10 103 52

Adults

PT = 0
behind 10 72 44
ahead 10 48 36

PT = 0.25
behind 10 81 58
ahead 10 72 53

PT = 0.5
behind 10 98 56
ahead 10 96 58

Table 6: Normalized peripheral response times: Mean and standard deviations
(SD) for normalized response times (ms) to probes located 6° ahead or behind target
motion that was predictable (PT = 0), semi-predictable (PT = 0.25), and unpredictable
(PT = 0.5), by group.

Figure 15: Normalized peripheral response times: Normalized response times (ms)
to probes located 6° ahead or behind target motion by group and motion predictability.
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Visual tracking error

A two-way mixed ANOVA was performed to analyze the effect of group (between factor)

and motion predictability (within factor) on visual tracking error, as defined in (Fig-

ure 16). There was no statistically significant interaction between group and motion

predictability factors (F(2, 36) = 0.485, p = 0.62).

An analysis of simple main effects showed that motion predictability had a statistically

significant effect on visual tracking error (F(2, 36) = 183.559, p<0.01). Pairwise com-

parisons revealed the tracking error was significantly different (p<0.01) across all motion

predictability levels, with predictable motion resulting in far lower error (p<0.0001) com-

pared to semi-predictable and unpredictable motion, and unpredictable motion resulting

in less error than semi-predictable motion.

Group Motion Predictability n Mean error (degree) SD error (degree)

Athletes
PT = 0 10 0.68 0.12
PT = 0.25 10 1.07 0.08
PT = 0.5 10 1.01 0.12

Adults
PT = 0 10 0.69 0.14
PT = 0.25 10 1.13 0.15
PT = 0.5 10 1.03 0.14

Table 7: Visual tracking error: Mean and standard deviations (SD) for visual tracking
error (degrees) during predictable (PT = 0), semi-predictable (PT = 0.25), and unpre-
dictable (PT = 0.5) motion, by group.
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Figure 16: Visual tracking error: Visual tracking error (degree) by group and motion
predictability.

Research question 2

Para-foveal response time bias

A two-way mixed ANOVA was performed to analyze the effect of group (between factor)

and probe time window (within factor) on normalized response time bias () to probes

flashed 2° about predictable-to-unpredictable target motion (Figure 17). There was no

statistically significant interaction between group and probe time factors (F(3, 54) =

0.541, p = 0.66).

An analysis of simple main effects showed that probe time had a statistically significant

effect on response time bias (F(3, 54) = 14.769, p<0.01). Pairwise comparisons revealed

that the magnitude of response time bias was significantly less (p<0.001) in both of

the first two time windows (1-1200 ms & 1201-2400 ms) which consisted of predictable

motion, compared to both of the final two time windows (2401-3600 ms & 3601-4800 ms)

which consisted of unpredictable motion.

A second two-way mixed ANOVA was performed to analyze the effect of group (be-
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tween factor) and probe time window (within factor) on normalized response time bias

to probes flashed 2° about unpredictable-to-predictable target motion (Figure 18). There

was no statistically significant interaction between group and probe time factors (F(1.89,

34.04) = 1.74, p = 0.19).

An analysis of simple main effects showed that probe time had a statistically significant

effect on response time bias (F(1.89, 34.04) = 5.52, p<0.01). Pairwise comparisons re-

vealed that the magnitude of response time bias was significantly less (p<0.01) in both of

the first two time windows (1-1200 ms & 1201-2400 ms) which consisted of unpredictable

motion, compared to the final time window (3601-4800 ms) of predictable motion.

Figure 17: Para-foveal RT bias to PT = 0 → 0.5 motion: Response time bias to
probes flashed 2° about predictable-to-unpredictable target motion, by probe time and
group.
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Figure 18: Para-foveal RT bias to PT = 0.5 → 0 motion: Response time bias to
probes flashed 2° about unpredictable-to-predictable target motion, by probe time and
group.

Peripheral response time bias

A two-way mixed ANOVA was performed to analyze the effect of group (between factor)

and probe time window (within factor) on normalized response time bias to probes flashed

6° about predictable-to-unpredictable target motion (Figure 19). There was a statistically

significant interaction between group and probe time factors (F(1.93, 34.75) = 3.657, p

= 0.038).

Pairwise comparisons revealed a significantly larger magnitude of bias (p<0.05) in the

adult group compared to the athlete group during both of the first two time windows

(1-1200 ms & 1201-2400 ms) which consisted of predictable motion.

A second two-way mixed ANOVA was performed to analyze the effect of group (be-

tween factor) and probe time window (within factor) on normalized response time bias

to probes flashed 6° about unpredictable-to-predictable target motion (Figure 20). There

was no statistically significant interaction between group and probe time factors (F(3,

54) = 1.92, p = 0.14). There was no significant main effects from either group or probe
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time factors.

Figure 19: Peripheral RT bias to PT = 0 → 0.5 motion: Response time bias to
probes flashed 6° about predictable-to-unpredictable target motion, by probe time and
group.
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Figure 20: Peripheral RT bias to PT = 0.5 → 0 motion: Response time bias to
probes flashed 6° about unpredictable-to-predictable target motion, by probe time and
group.

Visual tracking error

A three-way mixed ANOVA was performed to analyze the effect of group (between factor),

motion type (within factor), and motion phase (within factor) on visual tracking error of

dynamic trials, as defined in (Figure 21). There was no statistically significant three-way

interaction between group, motion type and motion phase (F(1, 18) = 0.366, p=0.553).

There was a significant two-way interaction between motion type and motion phase (F(1,

18) = 68.477, p<0.01).

Pairwise comparisons revealed that for both athletes and adults there was a significant

(p<0.0001) increase in visual tracking error across predictable-to-unpredictable motion

phases, compared to no significant difference in tracking error across unpredictable-to-

predictable motion phases.
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Group Motion type Phase n Mean error (degree) SD error (degree)

Athletes
Predictable-to-unpredictable

1 40 0.676 0.118
2 40 0.989 0.174

Unpredictable-to-predictable
1 40 1.006 0.118
2 40 1.026 0.189

Adults
Predictable-to-unpredictable

1 40 0.693 0.141
2 40 1.014 0.167

Unpredictable-to-predictable
1 40 1.032 0.136
2 40 1.101 0.259

Table 8: Visual tracking error across motion phases: Mean and standard deviations
(SD) for visual tracking error (degrees) by motion type, motion phase, and group.

Figure 21: Visual tracking error across motion phases: Visual tracking error based
on motion type (predictable-to-unpredictable or unpredictable-to-predictable), motion
phase (1 or 2) and group (athlete or adult). For the predictable-to-unpredictable motion
type, motion phase 1 was predictable and motion phase 2 was unpredictable. For the
unpredictable-to-predictable motion type, motion phase 1 was unpredictable and motion
phase 2 was predictable.

Eye movement dynamics

A three-way mixed ANOVA was performed to analyze the effect of group (between factor),

motion type (within factor), and motion phase (within factor) on the number of saccades
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per motion step (300 ms) of dynamic trials (Figure 22). While there was no statistically

significant three-way interaction between group, motion type and motion phase (F(1, 18)

= 0.425, p=0.523), there was a significant two-way interaction between motion type and

motion phase (F(1, 18) = 23.296, p<0.01).

Another three-way mixed ANOVA was performed to analyze the effect of group (be-

tween factor), motion type (within factor), and motion phase (within factor) on the av-

erage saccade amplitude per motion step (300 ms) of dynamic trials (Figure 23). Again,

there was no statistically significant three-way interaction between group, motion type

and motion phase (F(1, 18) = 0.297, p=0.592), and there was a significant two-way

interaction between motion type and motion phase (F(1, 18) = 13.162, p<0.01).

Pairwise comparisons revealed that for both athletes and adults there was a significant

(p<0.0001) increase in the number of saccades and average saccade amplitude per mo-

tion step across predictable-to-unpredictable motion phases, compared to no significant

difference across unpredictable-to-predictable motion phases.
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Figure 22: Saccades per motion step: Average number of saccades per motion
step (300 ms) based on motion type (predictable-to-unpredictable or unpredictable-to-
predictable), motion phase (1 or 2) and group (athlete or adult). For the predictable-
to-unpredictable motion type, motion phase 1 was predictable and motion phase 2 was
unpredictable. For the unpredictable-to-predictable motion type, motion phase 1 was
unpredictable and motion phase 2 was predictable.
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Figure 23: Saccade amplitudes per motion step: Average saccade amplitude per mo-
tion step (300 ms) based on motion type (predictable-to-unpredictable or unpredictable-
to-predictable), motion phase (1 or 2) and group (athlete or adult). For the predictable-
to-unpredictable motion type, motion phase 1 was predictable and motion phase 2 was
unpredictable. For the unpredictable-to-predictable motion type, motion phase 1 was
unpredictable and motion phase 2 was predictable.

Research question 3

Model hyper-parameters

The diagonals of the measurement covariance matrix (R) for the Kalman filter component

of the model was tuned by a linear grid search, by testing the mean absolute error between

filter outputs and experimental eye position data for R in the range of 0 to 5, in steps of

0.04. For reference, in previous implementations of the Kalman filter for smooth pursuit

simulations, the equivalent value of R was set at 5 degrees2 [de Xivry et al., 2013]. The

optimal value of R was determined as 3.52 degrees2 (Figure 24). Acceleration values were

rescaled using a sigmoid function centered at 63.75 °/sec2, which was the 3rd-quartile of

simulated pursuit acceleration values.
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Figure 24: Kalman filter hyperparameter selection: Left: Mean absolute error
of pursuit simulation compared to experimental eye position, based on Kalman filter
measurement covariance (R); Right: Demonstration of Kalman filter pursuit simulation
compared to experimental eye tracking data.

Model validation

A 5-fold cross-validation scheme was used to find the optimal parameters of the α-scaling

sigmoid function, specifically to determine a bias rate parameter (k). Model outputs

were compared to normalized experimental response time bias data, and mean absolute

error was used as a metric to measure performance (Table 9). Based on cross-validation

results, a logistic rate of 54 (taken from the first iteration of the cross-validation) was

used to define the α function of the leaky integrator component.

Iteration n Logistic k Validation MAE (%) Validation MAE SD (%)

1 60 58 19.4 5.5
2 60 54 18.5 5.1
3 60 52 19.8 5.3
4 60 56 18.8 4.3
5 60 52 19.6 4.6

Table 9: Cross-validation results: Table of 5-fold cross-validation results for the selec-
tion of logistic k parameter to tune the sigmoid of α function of the model leaky integrator
component.
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Model performance

The final model was evaluated against a test set of 100 trials separate from the 300

trials used in cross-validation (Figure 25). The mean absolute error between model and

experimental bias values was 18.6% (SD=0.04%).

Figure 25: Model test performance: Model performance against the test set (n=100),
measured by mean absolute error between normalized experimental response time bias
values and model bias estimation.
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Figure 26: Model performance for predictable-to-unpredictable motion: Model
bias estimation performance against experimental data for predictable-to-unpredictable
motion. Top: Pursuit simulation against experimental position data; Bottom: Bias
estimation against experimental bias data.
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Figure 27: Model performance for unpredictable-to-predictable motion: Model
bias estimation performance against experimental data for unpredictable-to-predictable
motion. Top: Pursuit simulation against experimental position data; Bottom: Bias
estimation against experimental bias data.
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Chapter V: Discussion

Comparable performance between athletes and adults

The baseline response time and dynamic visual acuity scores indicated a significance

difference between athlete and adult groups. These results were in line with previous

studies demonstrating faster simple visual reaction times [Ando et al., 2001] and better

dynamic visual acuity scores [Yee, 2017] in athletes compared to healthy controls. How-

ever, despite the clear distinction in baseline ability, for the most part there was a lack of

significant difference between groups in terms of normalized response time performance

during motion tracking. One significant difference between groups was that in the athlete

group a bias in response time during predictable motion tracking was only present at a

probe distance of 2°, while in the healthy controls the bias was present even for probes at

a distance of 6° (Figure 15). The discrepancy in the spread of attention ahead of target

motion may indicate a higher level of processing efficiency in athletes, by only selectively

attending to where the target is likely to be next, rather than broadly in the direction of

target motion. It may also be that team-sport athletes, who are often tracking multiple

objects in the visual field, may need such discrimination of responses to foveal and pe-

ripheral stimuli so that overtly tracking a direct opponent does not affect the ability to

covertly track additional opponents in the peripheral visual field. Overall, the compara-

ble performance between athletes and controls may be due to the lack of a sport-specific

motion stimulus and constrained experimental setup, potentially reducing any advantage

in the trained behaviours of the athletes, which are often practiced in more complex,

open environments.

Visual attention and motion predictability

The primary objective of this work was to determine whether the bias in visual at-

tention ahead of target motion during visual motion tracking was dependent on the

predictability of target motion. Previously, studies had focused assessing visual at-

tention during pure smooth pursuit of targets moving in a predictable, linear fashion
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[Lovejoy et al., 2009, Khan et al., 2010]. However, smooth pursuit of unpredictable mo-

tion is a near paradoxical scenario, as unpredictability requires discontinuity to some

extent (i.e. a lack of smoothness). As such, the current work investigated visual motion

tracking in general, as a combination of pursuit and (“catch-up”) saccadic eye move-

ments. Regardless, both smooth pursuit and saccades have demonstrated a bias towards

the anticipated future location of a target [Khan et al., 2010, Harrison et al., 2012], and

as such, the question of the role of predictability in that future target location on atten-

tional bias during a dynamic motion tracking task remains relevant.

In analyzing the response times to probes flashed ahead versus behind target motion

during predictable, semi-predictable, and unpredictable tracking conditions, only the

predictable condition demonstrated any significant bias towards faster response times

ahead of target motion (Figures 14, 15). These results align with previous studies

demonstrating a bias during pursuit of predictable motion [Donkelaar and Drew, 2002,

Khan et al., 2010]. Additionally, the bias in response to predictable motion was found

to take longer to accumulate (post-random motion) than it took to de-accumulate when

followed by random motion (Figures 17, 18).

Motion predictability, eye movements, & covert attention

An asymmetrical response to motion predictability was not only apparent in response

time data, but in eye movement quality as well. Unpredictable motion had a larger

number of saccadic eye movements, as well as larger visual tracking error (Figure 16,

21). Additionally, while very few saccades were present when the initial motion phase

consisted of predictable motion, the same predictable motion had significantly more catch-

up saccades of larger amplitudes when it followed random motion (Figures 22, 23).

The occurrence of catch-up saccades have been shown to be triggered by the predicted

future eye position error [Nachmani et al., 2020]. The emphasis on the role of predicted

error, as opposed to current error, provides some explanation as to why predictable motion

induced varying amounts of catch-up saccades depending on whether it was the preceded

or followed an unpredictable phase of motion. If the trigger was simply current error, such
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an asymmetry should not be apparent. However, if the trigger is the current prediction

of future error, then when the current motion phase is random then the future prediction

of error will be high (Figure 21) and thus induce catch-up saccades. Furthermore, when

transitioning from unpredictable to predictable motion, initially the prediction of future

error will still be high and as such, catch-up saccades will continue to be triggered during

predictable motion (Figure 22).

From an examination of raw data traces, the scarcity of saccades in the initial pre-

dictable motion condition (Figure 9) indicates that there was a latent effect of unpre-

dictable motion affecting the quality of eye movements into any subsequent motion

phases. Finally, the frequency and amplitude of saccades decreased as more time was

spent tracking predictable motion which could be reflective of the possible adaptation of

future position error predictions (Figure 11).

Dynamics of attentional bias

Prediction is a requirement to visually track even the simplest of motion without any lag

due to the time needed for information to move through the nervous system [Brouwer et al., 2002].

Visual attention to a portion of the visual field results in greater allocation of cogni-

tive resources to process that area [Müller et al., 2003], and as such could facilitate the

faster or higher-resolution (or both) visual processing of stimuli in the attended area

[Eriksen and Colegate, 1970, Carrasco and McElree, 2001]. As such, a lack of prior in-

formation, or unreliable information, of where a stimulus may appear implies that pre-

allocating any resources to process any one area of the visual field provides no particular

advantage than any other area. In fact, should the stimulus appear in a location other

than the one currently being attended to, the time needed to de-allocate and re-allocate

cognitive resources to the new location would be dis-advantageous in terms of process-

ing delays and energy consumption [Posner et al., 1984]. In analyzing response times to

probes ahead versus behind target motion, a bias in response times only occurred in the

predictable condition and not in semi- and unpredictable conditions, despite the evenly

spaced levels of motion predictability (Figure 14). That response time bias was not also
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evenly spaced indicates a conservative attentional allocation scheme to avoid a possible

temporal penalty for incorrectly attending to a location. This is further supported by

results demonstrating that the accumulation of bias ahead of target motion was gradual

compared to the sudden de-accumulation of bias (Figure 17, 18).

Neuro-physiological underpinnings of attentional bias

Visual attention, motion prediction, and eye movements span several areas of the ner-

vous system, and as such specifying a single region responsible for distribution of attention

proves difficult. In particular, the posterior parietal cortex [Steinmetz and Constantinidis, 1995],

the frontal eye fields [Schall, 2004], and the lateral intra-parietal cortex [Bisley and Goldberg, 2003]

have been shown to be involved in attention re-mapping during the planning of eye move-

ments. The frontal eye fields (FEF) are also involved in motion estimation, especially in

the absence (transient disappearance) of visual information [Barborica and Ferrera, 2003].

The FEF may also interact with the middle temporal region (MT) as a possible location

for prior information of pursuit velocity which is needed for predicting motion dynamics

and initiating pursuit, although the supplementary eye fields and lateral intra-parietal

cortex may also be candidates for this interaction [Yang et al., 2012]. As such, the FEF

may act as the location for the update step in the Kalman filtering scheme of the atten-

tion model (Figure 5), where measurements from MT are used to adjust motion velocity

priors based on stored velocity priors.

The representation of target motion dynamics (i.e. an “internal model” of the tracked

object) plays a large role in motion prediction, and the cerebellum contributes signifi-

cantly towards housing and updating such an internal representation. The medium for

the representation may be in the form of tonic spiking of Purkinje cells, which not only

have been shown to encode velocities for arm or eye movements [Coltz et al., 1999], but

also for the movements of external objects [Cerminara et al., 2009]. The cerebellum may

then act as a prediction step in a Kalman filtering scheme, by applying the stored internal

model of object motion to predict future motion steps.

While the update and prediction steps of a Kalman filter scheme, potentially located
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in the FEF and cerebellum may not be directly connected anatomically, there may be an

indirect connection via the superior colliculus (SC). The SC works in conjunction with the

vermis in the cerebellum to integrate the retinal slip and predicted error signals required

for the triggering of saccades [Schreiber et al., 2006, Keller et al., 1996]. As such, the eye

movement circuit among the superior colliculus, vermis, & paramedian pontine nuclei for

dynamically gating smooth pursuit and saccade eye movements [Krauzlis, 2004] may also

be the location of a circuit for the “leaky integration” of the predicted eye position error

signals for the modulation of attentional bias.

Figure 28: Neuro-phsyiological implementation of computational framework:
Computational scheme of attentional modulation from state-space model used in research
question #3 (left) and potential neuro-physiological implementation (right). MT: mid-
dle temporal lobe, FEF: frontal eye fields, SC: superior colliculus, VERM: vermis, PMN:
paramedian pontine nuclei.

The manner in which a magnitude of attentional bias translates into visual (and

subsequently, manual) response times might be explained using a linear approach to

threshold with ergodic rate (LATER) model [Noorani and Carpenter, 2016]. According

to the LATER model, the response to a stimulus is dependant on two parameters: a

baseline activation level for the response decision signal and the rate of evidence accu-

mulation. Once enough evidence is accumulated to activate the decision signal past a

threshold, a response is produced (Figure 29). While the model has been used to ex-
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plain various psycho-physical behaviours, a neuro-physiological correlates have also been

found at the neuronal level in the visual pathway, specifically in the frontal eye fields

[Hanes and Schall, 1996]. Recordings from neurons in the FEF of rhesus monkeys re-

vealed that the variability in saccadic response times was directly correlated with the

rate of accumulation in neural activity to the point of threshold, resulting in a saccade

to the target stimulus. Accordingly, the bias value obtained from “leaky integration”

in the state-space model would then be transmitted back from the superior colliculus to

modulate the distribution of the activation rates of neurons in the frontal eye fields, and

hence drive the bias in response times (Figure 30).

Figure 29: LATER model: LATER
model of decision responses, from
[Noorani and Carpenter, 2016]. Given a
fixed starting activation level, evidence
accumulates at a stochastic rate result-
ing in variability in response time laten-
cies.

Figure 30: Neuro-physiological im-
plementation of bias: A possible feed-
back pathway from the superior collicu-
lus to the frontal eye fields could trans-
form integrated bias values (Figure 28)
into the appropriate distribution of neu-
ral activation rates to generate response
time bias.
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Chapter VI: Conclusion

Study limitations

Regarding the stimulus motion, the simple, random-walk motion generation model ()

which was constrained to the horizontal axis is not representative of the complex, multi-

dimensional motion observed in the real-world. Furthermore, there were only two types of

multi-phase motion used: predictable-to-unpredictable and unpredictable-to-predictable.

The use of intermediate phases, or more continuous motion generation methods, may

help to simulate motion resembling ecological motion behaviours. The lack of natural

motion, or any other contextual factors (such as a ball target avatar, or sport field back-

ground), improved the experimental control regarding visual factors such as luminance

and reference lines, as well as limiting any visual behaviours associated with sport specific

contexts. Conversely, the added control may have been a factor in the resulting lack of

significance between athletes and adults regarding motion tracking and response time

bias data.

Regarding the probing of attention, the assumption was made that manual response

time to a salient probe reflects visual spatial attention, as indicated by previous studies

[Posner et al., 1980, Donkelaar and Drew, 2002, Khan et al., 2010]. Attention response

probes were limited to ahead or behind motion (i.e. along the line of motion) and only

at two distances (2° and 6°), due to the need to limit the number of trials per collection

session to avoid participant fatigue. By comparison, previous studies investigating smooth

pursuit and attention bias probed in all directions around target motion at a range of 1°

to 5° [Khan et al., 2010], however these were collected over several sessions as opposed to

a single collection session for the current study. Additionally, probe temporal dynamics

could only be separated into early and late windows of 1200 ms for each motion phase

(predictable or unpredictable) to compare the evolution of response time bias. However,

the raw eye traces indicate the need for a higher temporal resolution of attention probe

to better determine the rate of bias accumulation or de-accumulation (Figures 9 & 11).

A faster rate of bias accumulation in athletes compared to the adult group may then be
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identified, which the graphical results seemed to hint towards (Figure 18) even though

the statistical results showed no significance.

Future directions

Covert motion tracking

The current study only examined the effect of overt motion tracking on covert spatial at-

tention. However, objects in the visual field can also be tracked “covertly” [Morishige et al., 2021].

Whether any bias in attention occurs due to covert motion tracking still requires explo-

ration, as well as the dynamics of such bias in response to motion predictability. Fur-

thermore, the interaction of overt and covert motion tracking, and their combined effect

on visual spatial attention should be investigated, possibly using multiple-object tracking

paradigms.

Extensions into dynamic saliency models

To date, the development of dynamic saliency models of attention have focused on

the extrapolation of ‘low’-level image features, such as pixel color and contrast, into

a motion domain using ‘high’-level image features, such as motion flow estimations

[Mahmood et al., 2018]. However the integration of intentional actions, such as explicit

motion tracking, is a critical factor yet to be implemented as gaze scan-paths (which

saliency maps attempt to predict) are task-dependant [Yarbus and Yarbus, 1967]. The

model presented in this work can provide a first step to factoring in the effect of motion

tracking on spatial attention for dynamic saliency, by using the bias outputs to tune the

skew parameter of a skewed bi-variate Gaussian distribution (Figure 31).
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Figure 31: Dynamic attention & saliency map: Process of inferring attention and
saliency from video frames. Image qualities such as luminance, edges, and motion flow
are integrated to generate a saliency map. Target motion is extracted and attentional
bias is estimated to form an attention map. Both attention and saliency are combined
into a final output mapping.

The skew bi-variate Gaussian is defined as the product of a bi-variate Gaussian and

the uni-variate cumulative distribution function of a spherical Gaussian:

f(x⃗,B) = 2ϕ2(x⃗,Ω(B))Φ(α(B)T x⃗) (6)

Ω(B) =

σx = 8B+ 2 0

0 σy = 2B+ 2

 (7)

α(B) = 5B2 (8)

Here, 2ϕ2(x⃗,Ω) is the bi-variate Gaussian, with center at x⃗ and covariance matrix of

Ω defined by the estimated bias level. The diagonals of Ω scale so that horizontal and

vertical variances are equal and smaller when there is no bias present, representing a

tighter focus of attention about the target. Conversely, an increase in bias also increases

the variance in the direction of motion which by default is left to right, but can be

transformed according to the motion vector. The factor of Φ(α(B)T x⃗) represents the

uni-variate cumulative distribution function of a spherical Gaussian, where α((B) is the
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skew parameter, which scales the bias value so that no bias in attention results in no

skew, and larger bias values increase the skew parameter accordingly (Figure 32)).

Figure 32: Bi-variate skew Gaussian distribution generation: The response time
bias due to motion predictability (top row) and the corresponding estimation of skew (α)
and variance (σx, σy) parameters to generate an attention map from a bi-variate skew
Gaussian (bottom row). Target motion indicated by white arrow.

Examples of the transformation of target object motion in a dynamic attention map

output, based on the computational framework presented in this work, are shown in

Figures 33-36 using video inputs from team sports (e.g. ball tracking), computer games

(e.g. character tracking), and e-sports (e.g. vehicle tracking).

68



Figure 33: Model simulation for un-
biased attention during ball track-
ing: Tracking of an unpredictable
ball-passing sequence; ball trajectory
shown in yellow (earlier position) to
green (later position) gradient; atten-
tion distribution in green is normally
distributed about ball motion.

Figure 34: Model simulation for bi-
ased attention during ball tracking:
Tracking of a predictable ball-passing
sequence; ball trajectory shown in yel-
low (earlier position) to green (later po-
sition) gradient; attention distribution
in green is skewed ahead of ball motion.

Figure 35: Model simulation for
character tracking: Tracking of an
enemy character in a computer game
(DOOM: Eternal); character trajectory
shown in yellow (earlier position) to
green (later position) gradient; atten-
tion distribution in green is skewed
ahead of the character’s predictable
jumping motion.

Figure 36: Model simulation for ve-
hicle tracking: Tracking of competi-
tors’ motorcycles in an e-sports game
(RIDE 4 ); a motorcycle is trajectory
shown in yellow (earlier position) to
green (later position) gradient; atten-
tion distribution in green is skewed
ahead of the motorcycle’s predictable
motion into the turn.
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