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Abstract

The Stanley-Stembridge conjecture is a longstanding conjecture that has evaded proof
for nearly 30 years. Concerned with the e-basis expansions of the chromatic symmetric
functions of unit-interval graphs, this conjecture has served as a significant motivator of
research in algebraic graph theory in recent years. We summarize a great deal of the existing
work done in favor of this conjecture, giving an overview of the various techniques that have
previously been used in the study of this problem. Moreover, we develop a novel technique
using methods from linear algebra and use it to obtain an e-basis expansion of graphs known
as single clique-blowups of paths. Using this same method, we use this result to prove the
e-positivity of double clique-blowups of paths, a previously unknown result.
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Chapter 1

Introduction

Graph theory is a rich and varied branch of mathematics that has many applications in math,
computer science, and physics. A branch of graph theory that is of particular interest today
is algebraic graph theory, an area that applies algebraic methods to graphs and examines
certain invariants related to different graph structures. The chromatic polynomial is a central
invariant in algebraic graph theory, dating back to 1912 where it was introduced by Birkhoff
in an attempt to prove the 4-color theorem [6]. Since then, it has been generalized and
seen applications in many different research areas such as algebraic geometry [24, 28] and
mathematical physics [8, 32] to name a few.

On the other hand, symmetric function theory is a branch of algebra closely related to
combinatorics. It considers functions that are invariant under the order of their arguments,
which, as a result, have a nice combinatorial structure. First introduced in 1815 by Cauchy
[7], symmetric functions have been studied for many years, and still remain relevant to this
day, with applications in quantum physics [8] and statistics [22], among others.

The focus of this thesis is a combination of these two major areas of study, the chromatic
symmetric function; introduced in 1995 by Stanley, the chromatic symmetric function has
spawned a large area of research in algebraic graph theory. In particular, the introduction
of the Stanley-Stembridge conjecture in [31] (which was later rephrased in the context of
chromatic symmetric functions in [30]) has inspired a wealth of research in algebraic graph
theory and remains a prominent open problem in the field to this day. This conjecture seeks
to characterize the positivity of the e-basis expansion of the chromatic symmetric functions
of certain graphs. While there has been significant progress made towards a proof of this
problem [4, 21, 27, 28], a complete proof has evaded discovery for decades.

In this thesis, we present a new method that can be used to prove the e-positivity of
certain classes of graphs. This method works by using the triple-deletion property from [27]
to recursively add or remove edges from a graph until a known e-positive graph is obtained.
This method allows us to convert a graph theoretical problem into a purely algebraic problem.
While in some cases this can result in a very tedious algebraic argument, it always gives one
or more e-basis expansions for the given graph and its “intermediary graphs” (that is, the
graphs that can be obtained by adding or removing edges from the original graphs) in terms
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of graphs with known e-basis expansions. Unfortunately though, there are some limits on
the graphs that this method is applicable to.

In Chapter 1, we begin with a discussion of the preliminary information necessary for
the thesis and then dive into the research done in this particular topic. Section 1.1 includes
a background on graph theory, posets, and symmetric functions. This thesis is meant to be
self-contained for those that have a bit of background knowledge in graph theory, so it may
not be exhaustive in all the information needed in certain sections, particularly section 1.2.
The reader looking for a more in-depth background can refer to [15].

In section 1.2, we begin by providing some background and a bit of history on chromatic
symmetric functions and the Stanley-Stembridge conjecture. We then examine the common
methods and theorems used by people to prove similar problems and build a better under-
standing of how we can work on this conjecture. We then end this section by providing a
look at the state of the research in this area today. Section 1.2.3 is meant to serve as a
starting resource for those interested in this field of research to gain an understanding of
what has been done and what else can be done. It aims to give a broad understanding of a
large area of research rather than a deep examination of one or a few areas.

In Chapter 2, we present this new method by using it to prove the e-positivity of paths,
a class of graphs that is already known to be e-positive. In doing so, we also reprove the e-
positivity of lollipop graphs and melting lollipop graphs, showing the power that this method
holds. Furthermore, in Chapter 3, we use a modified version of this method to prove the
e-positivity of what we call single clique-blowups of paths and their melting variety. While
these classes of graphs are known to be e-positive, their exact e-basis expansions were not
previously known. We use this method to obtain an e-basis expansion of these graphs. Using
this expansion, we determine the e-positivity of double clique-blowups of paths, a result that
was previously unknown.

1.1 Preliminaries

1.1.1 Graph Theory

A graph G is a pair (V,E) where V is a set and E is a set of pairs of elements of V . The
elements of V are called vertices while the elements of E are called edges. Given a graph
G = (V,E), we define V (G) = V and E(G) = E. We considers only simple graphs, that is,
E is not a multiset. We say that U ⊆ V (G) is a stable set in G if for all vertices v, u ∈ U ,
(v, u) /∈ E(G). Let G be graph and n be a positive integer. A function κ : V (G) → [n] is
called an n-coloring of G. κ is said to be a proper coloring if for all i ∈ [n], κ−1(i) is a
stable set. Let χG(n) denote the number of n-colorings of G. It is a classic result in graph
theory that χG(n) is a polynomial function on n, which is called the chromatic polynomial
of G [15].

We define a labelled graph on d vertices to be a graph with vertex set [d]. While it is
often useful to have a labelling scheme for graphs to define them and examine them in greater
detail, we don’t always want the graphs we work with to behave like labelled graphs. As
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such, throughout this paper we will often define a labelling scheme for convenience. However,
we consider graphs to be unlabelled unless explicitly stated otherwise.

For graphs G, H such that V (G) ∩ V (G) = ∅, the disjoint union of G and H (denoted
G⊔H) is defined as the graph where V (G⊔H) = V (G)∪V (H) and E(G⊔H) = E(G)∪E(H).
For labelled graphs G, H on m, n vertices, respectively, we label the vertices of G ⊔H such
that each vertex originally appearing in G has the same label, while each vertex i originally
appearing in H is labelled with i +m. For these same labelled G, H let G +H denote the
concatenation of G and H, the labelled graph on [m + n − 1] obtained from G ⊔ H by
formally identifying vertices m and m + 1 together and appropriately shifting labels such
that they have the same relative order.

For clarity, we will now define a few important classes of graphs that are relevant to this
research. A complete graph on m ≥ 1 vertices, denoted Km, is the graph where each pair
of vertices is adjacent. When an induced subgraph H of a graph G is a complete graph,
we call H a clique. Note that the term clique is often used interchangeably with complete
graph. A path on n ≥ 1 vertices, denoted Pn, is the tree on that contains 2 vertices of degree
1 and n− 2 vertices of degree 2 when n ≥ 2; when n = 1, say P1 = K1. By convention, we
label paths in increasing order; that is to say in Pn, the vertices of degree 1 are labelled with
either 1 or n and each remaining vertex i ∈ [n] is adjacent to i− 1 and i+ 1.

1.1.2 Lollipops and Blowups

We now turn our attention to some of the graphs we study in greater detail throughout the
thesis. We first examine lollipop graphs. A lollipop graph is the concatenation of a com-
plete graph and a path, denoted by Lm,n = Km + Pn+1. We can also define a generalization
of this with melting lollipop graphs.

Definition 1. For 0 ≤ k ≤ m−1, let L
(k)
m,n denote the graph obtained from Lm,n by removing

edges (m, 1), (m, 2), . . . , (m, k). Any graph that can be obtained in such a way is known as a
melting lollipop graph.

For an example of these two kinds of graphs, Figure 1.1 shows the lollipop graph L6,3

and the melting lollipop graph L
(2)
6,3. Note that L

(0)
m,n = Lm,n, L

(m−2)
m,n = Lm−1,n+1, and that

L
(m−1)
m,n is the disjoint union of Km−1 and Pn+1.

We will now explore a method of constructing graphs known as blowups. Given a graph
G, we say that G′ is a blowup of G if G′ can be obtained by replacing each vertex v in G
with a graph Hv such that vertices u and v are adjacent in G if and only if every vertex of Hu

is adjacent to every vertex of Hv in G′. For the purposes of this paper, we look specifically
at clique-blowups; that is, a blowup of G where each vertex is replaced with a complete
graph. We are particularly concerned with clique-blowups where the original graph G is a
path.

Let G′ be a blowup of a graph G where each v ∈ V (G) is replaced with the graph Hv.
We define the blasted vertices of Hv to be the set of vertices B(Hv) = {v′ ∈ V (G′) :
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v′ ∈ Hu∀u ∈ N(v)}, where N(v) is the open neighborhood of v. In other words, the
blasted vertices of Hv are the vertices in G′ that are adjacent to everything in Hv, but are
not in Hv themselves. As the focus of this paper is on clique-blowups, it is important to
make the distinction between the cliques and their blasted vertices. For example, note that
the subgraph induced by a clique K and one of its blasted vertices makes a larger clique;
however, if there are multiple, disconnected blasted vertices, it becomes difficult to determine
how large the clique actually is without explicit notation.

Definition 2. Let b = (b1, b2, . . . , bn) be a list of positive integers. Let Pb denote the clique-
blowup of the path Pn obtained by replacing vertex i in Pn with Kbi.

When there is only one i ∈ [n] such that bi > 1, we say that Pb is a single clique-blowup
of the path Pn (abbreviated SCBP). Furthermore, when there exists distinct i, j ∈ [n] such
that bi, bj > 1, we say that Pb is a double clique-blowup of the path Pn (abbreviated
DCBP). This can be generalized for any integer 1 ≤ k ≤ n; when there exists distinct
i1, i2, . . . , ik ∈ [n] such that bi1 , bi2 , . . . , bik > 1, we say that Pb is a k clique-blowup of the
path Pn (abbreviated kCBP).

Our work will focus mostly on SCBPs and DCBPs. As such, it is helpful to make the
notation for these cases a bit more compact. In general, given integers n1, n2 ≥ 0, m > 1 we
denote the SCBP as

Pb = P1n1 ,m,1n2 for b = (1, 1, . . . , 1︸ ︷︷ ︸
n1

,m, 1, 1, . . . , 1︸ ︷︷ ︸
n2

).

removing the parentheses for ease of notation. For the DCBP case, we can define a similar
notation for the general case; given integers n1, n2, n3 ≥ 0, m1,m2 > 1 we denote the DCBP
as

Pb = P1n1 ,m1,1n2 ,m2,1n3 for b = (1, 1, . . . , 1︸ ︷︷ ︸
n1

,m1, 1, 1, . . . , 1︸ ︷︷ ︸
n2

,m2, 1, 1, . . . , 1︸ ︷︷ ︸
n3

).

However, for the purposes of this thesis, it is helpful to make a distinction for the case where
n2 = 0 (that is, where the blown-up vertices are adjacent to one another). As such, we
generally denote the DCBP with adjacent blown-up vertices using

Pb = P1n1 ,m1,m2,1n2 for b = (1, 1, . . . , 1︸ ︷︷ ︸
n1

,m1,m2, 1, 1, . . . , 1︸ ︷︷ ︸
n2

).

We consider SCBPs and DCBPs to be a sort of generalization of lollipop graphs; note
that Lm,n = P10,m,1n . As such, we also define a melting version of SCBPs and DCBPs.

Definition 3. For 0 ≤ k ≤ m − 1, let P
(k)
1n1 ,m,1n2 denote the graph obtained from P1n1 ,m,1n2

by removing edges (n1, n1 +m), (n1, n1 +m − 1), . . . , (n1, n1 +m − k + 1). Any graph that
can be obtained in such a way is known as a melting SCBP. Moreover, for 0 ≤ k ≤
m1 − 1, let P

(k)
1n1 ,m1,m2,1n2 denote the graph obtained from P1n1 ,m1,m2,1n2 by removing edges

(n1, n1+m1), (n1, n1+m1− 1), . . . , (n1, n1+m1− k+1) from P1n1 ,m1,m2,1n2 . Any graph that
can be obtained in such a way is known as a melting DCBP.
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Figure 1.1: The lollipop graph L6,3 (left) and the melting lollipop graph L
(2)
6,3 (right). These

graphs are the incomparability graphs of natural unit-interval orders P (6, 6, 6, 6, 6, 7, 8, 9)
and P (5, 5, 6, 6, 6, 7, 8, 9), respectively.
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Figure 1.2: The SCBP P12,4,14 (left) and the melting SCBP P
(2)

12,4,14 (right). Note that vertices
{3, 4, 5, 6} form a clique corresponding to one vertex of a path, and vertices 2 and 7 are its
blasted vertices.
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Figure 1.3: The DCBP P12,5,3,12 (left) and the melting DCBP P
(3)

12,5,3,12 (right). We use
three lines between the cliques to represent the edges between them without compromising
legibility.
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First, note that our definition of melting DCBPs uses only the case where the blown-up
cliques are adjacent; while this can be generalized to all DCBPs, it is not necessary for
the work done here and is omitted to avoid confusion. Also note that in both the single
and double cases, edges are only removed from the first path in the clique-blowup, i.e. the
“leftmost” path. While it may seem natural to define melting SCBPs and DCBPs such that
we can remove edges from either path, doing so complicates the notation as it can become
unclear when certain vertices in the clique are missing one, both, or neither edge to the path.
Additionally, proofs in later chapters only require that we remove edges between one path
and one cliques. However, we often switch the placement of the paths to denote the removal
of edges between Pn2 and the cliques (that is, we will write P

(k)
1n2 ,m,1n1 or P

(k)
1n2 ,m2,m1,1n1 to

denote this removal of edges).

1.1.3 Posets

The work of this thesis takes particular interest in incomparability graphs, graphs that are
obtained from algebraic structures known as posets. We define a partially-ordered set
(P,<P ), commonly known as a poset, to be a set P together with a binary relation <P

placing some partial ordering on the elements of the set. We say that two elements p, q ∈ P
are comparable if p <P q or q <P p; otherwise, they are incomparable. We represent
posets using Hasse diagrams, where each element is represented by a vertex in the plane
and p has a line segment going upward to q when p <P q. Lastly, let inc(P ) denote the
incomparability graph of P , the graph obtained from P by letting V (inc(P )) = P and
E(inc(P )) = {(p, q) : p, q are incomparable}. Any graph that can be obtained in this way is
said to be an incomparability graph.

We are particularly concerned with posets that avoid certain induced subposets. For a
positive integer a, suppose we have a subset {p1, p2, . . . , pa} ⊂ P where p1 <P p2 <P · · · <P

pa; we call this an a-element chain of P . For a, b ∈ N+, we say that a+ b is the poset made
up of a disjoint union of an a-element chain and a b-element chain. Then, a poset is said to
be (a+ b)-free if it contains no induced subposet isomorphic to a+ b.

There are also special types of posets that are of great interest for this thesis, which
we define here. We say that a poset is a unit-interval order if it is isomorphic to the
poset formed by a finite collection I of intervals of the form [a, a + 1] on the real line,
partially-ordered by the relation [a, a + 1] <I [b, b + 1] if a + 1 < b (see Figure 1.4). It is
well-known that a poset is a unit-interval order if and only if it is (3+1)-free and (2+2)-free
[29]. Furthermore, if a graph G is isomorphic to the incomparability graph of a unit-interval
order, we say G is a unit-interval graph.

Now, let l = (l1, l2, . . . , ln−1) be a list of non-decreasing positive integers with i ≤ li ≤ n
for each i ∈ [n− 1]. We say that the natural unit-interval order with respect to l is the
poset P (l) on [n] that is partially-ordered by the relation i <P (l) j if i < n and li < j ≤ n, for
i, j ∈ [n]. It was shown in [28] that the incomparability graph of any natural unit-interval
order is a unit-interval graph; furthermore, every unit-interval graph is isomorphic to the
incomparability graph of a unique natural unit-interval order. See Figure 1.4 for an example
of how these relate to unit-interval orders.
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[0, 1] [0.5, 1.5] [1, 2]

[2, 3] [3, 4]

Figure 1.4: The Hasse diagram of the unit-interval order on intervals I = {[0, 1], [0.5, 1.5],
[1, 2], [2, 3], [3, 4]} (left) and the incomparability graph of this poset (right). This corresponds
to the natural unit-interval order P (3, 3, 4, 5).

For the purposes of this thesis, we are greatly concerned with the incomparability graphs
of these natural unit-interval orders. As such, it is important to understand the relationship
between these posets and their incomparability graphs. Note for example that the path
graph Pn is the incomparability graph of P (2, 3, . . . , n). We now make some observations
about the posets related to some of the important graphs defined in Section 1.1.1. Firstly,
note that the lollipop graph Lm,n is the incomparability graph of P (l) where for each li ∈ l,

li = m when i < m and li = i+1 otherwise. Moreover, the melting lollipop graph L
(k)
m,n is the

incomparability graph of the natural unit-interval order obtained from the poset of Lm,n by
subtracting 1 from the first k elements of l. For an example of these properties, the graphs
L6,3 and L

(2)
6,3 (see Figure 1.1) are the incomparability graphs of natural unit-interval orders

P (6, 6, 6, 6, 6, 7, 8, 9) and P (5, 5, 6, 6, 6, 7, 8, 9), respectively. Furthermore, observe that the

(melting) SCBP P
(k)
1n1 ,m,1n2 is the incomparability graph of P (l) where for each li ∈ l,

li =


i+ 1, if i < n1 or i > n1 +m

n1 +m− k, if i = n1

n1 +m+ 1, otherwise.

Lastly, note that the (melting) DCBP P
(k)
1n1 ,m1,m2,1n2 is the incomparability graph of P (l)

where for each li ∈ l

li =


i+ 1, if i < n1 or i > n1 +m

n1 +m1 − k, if i = n1

n1 +m1 +m2, if n1 < i ≤ n1 +m1

n1 +m1 +m2 + 1, otherwise.

Note that since each of these graph classes have a corresponding natural unit-interval order,
they are therefore unit-interval graphs.

1.1.4 Symmetric Functions

In addition to graph theory, this thesis focuses a great deal on symmetric functions. We will
provide a rigorous definition of symmetric functions and their bases throughout this section,
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but they can generally be thought of as functions that are invariant under the order of their
arguments. We rely on much of the definitions from [1] and [16] for this background.

We begin with a basic definition of symmetric polynomials in finite variables. Let Sn

denote the symmetric group of size n. Consider a polynomial f on a finite set of variables
Xn = {x1, x2, . . . , xn}; we say that f is a symmetric polynomial if for any permutation
σ ∈ Sn

f(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n)).

Then let Λ(Xn) denote the set of symmetric polynomials on n variables with coefficients in
Q. Furthermore, we say that a symmetric polynomial is homogeneous of degree k if every
term in the polynomial has total degree k; we use Λk(Xn) to denote the set of symmetric
polynomials with coefficients in Q that are homogeneous of degree k on n variables.

We now extend the idea of symmetric polynomials to infinite variables using formal power
series. Let N denote the set of nonnegative integers and let N∞ = N×N×· · · . Then a formal
power series with coefficients in Q is a function f : N∞ → Q such that if f(n1, n2, . . . ) ̸= 0,
then only finitely many of n1, n2, . . . are nonzero [16].

Definition 4. Suppose X = {xi}∞i=1 be a set of variables and f a formal power series in X.
Moreover, let Z+ denote the set of positive integers. We say f is a symmetric function
in X if for any automorphism π : Z+ → Z+, f(x1, x2, . . . ) = f(xπ(1), xπ(2), . . . ). Let Λ(X)
denote the set of all symmetric functions in X and let Λk(X) denote the set of all symmetric
functions in X that are homogeneous of degree k.

Throughout this thesis, we look only at symmetric functions on infinitely many variables;
as such, we drop theX and write Λ and Λk for brevity. Furthermore, note that we can provide
Λ and Λk with a ring structure using the conventional addition and multiplication rules. As
such Λ is often called the ring of symmetric functions.1

We now provide some of the background and notation used to define the algebraic bases
of Λ. An integer partition λ = (λ1, λ2, . . . , λl) is a weakly decreasing sequence of positive
integers (for the sake of brevity, we often refer to them just as ”partitions”). That is to say,
λ1 ≥ λ2 ≥ · · · ≥ λl > 0. We call each λi a part of the partition, and we say l = l(λ) is the
length of the partition and that |λ| = λ1 + λ2 + · · ·+ λl is the size of λ. When |λ| = n for
some positive integer n, we write λ ⊢ n.

Partitions can be represented combinatorially using objects called Young diagrams (some-
times called Ferrer’s diagrams). The Young diagram of a partition λ is a left-justified
drawing of empty boxes where the topmost row has λ1 boxes, the row below it has λ2 boxes,
and so on (see Figure 1.5). We call λ the shape of the Young diagram. Given another
partition µ with µi ≤ λi for all i, a Young diagram can also be defined by a skew shape
λ/µ. In this case, we get a skew Young diagram which can be obtained by drawing a
Young diagram of shape λ and removing the left-justified set of boxes of shape µ.

1In fact, Λ admits the conventional scalar multiplication in Q, so it is more accurate to call it the algebra
of symmetric functions. This scalar multiplication is extremely important for the idea of e-positivity that
we introduce later on.
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Figure 1.5: A Young diagram of the partition λ = (6, 4, 4, 2, 1) (left) and a semi-standard
Young Tableaux of the same shape with content C(T ) = (1, 2, 2, 2, 5, 3, 0, 2) (right).

A tableau T of shape λ is a Young diagram with shape λ where the boxes are filled with
positive integers. We say that a tableau of shape λ is a semi-standard Young tableau if
the boxes are filled such that they are weakly increasing across the rows from left to right
and strongly increasing along the columns from top to bottom. We let SSY T (λ) denote the
set of all semi-standard Young tableau of shape λ. We let C(T ) = (c1(T ), c2(T ), . . . , c|λ|(T ))
denote the content of T , where ci(T ) := the number of time i appears in the tableau T .

We now present a number of commonly used bases of Λ. These bases give us a way to
rewrite symmetric functions, which is fundamental to the work done in this thesis. Firstly,
we define the monomial symmetric functions of a partition λ as

mλ =
∑
α∼λ

xα1
1 xα2

2 . . . ,

where α ∼ λ if α is a permutation of the partition λ. Note that {mλ|λ ⊢ k} forms a basis
for Λk. Next, for an integer k and partition λ, let the elementary symmetric functions
be defined as

ek = m1k =
∑

0<i1<i2<···<ik

xi1xi2 . . . xik , eλ =
∏
i>0

eλi

for any set of positive integers i1, i2, . . . , ik. Note that the elementary symmetric function
{en}∞n=1 form an algebraic basis of Λ; that is to say, every element of Λ can be written as
a polynomial in {en}∞n=1 [16]. Similar to the elementary symmetric functions, we define the
homogenous symmetric functions for an integer k and a partition λ to be

hk =
∑
λ⊢k

mλ =
∑

0<i1≤i2≤···≤ik

xi1xi2 . . . xik , hλ =
∏
i>0

hλi
.

We also define the power-sum symmetric functions for an integer k and partition λ as

pk = mk = xk
1 + xk

2 + . . . , pλ =
∏
i>0

pλi
.

Finally, we define the Schur symmetric functions for a partition λ as

sλ =
∑

T∈SSY T (λ)

∏
i>0

x
ci(T )
i
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Each of the common types of symmetric functions listed above act as a basis for Λ.
Note additionally that there are commonly known transition matrices between these bases.
Furthermore, we say that a symmetric function is e-positive if it can be written in the
e-basis using only nonnegative coefficients. There are similar positivity definitions for the
m-, p-, h-, and Schur-bases, but the main focus of this paper is on e-positivity.

1.2 The State of the Research

1.2.1 History of CSFs and the Stanley-Stembridge Conjecture

The work of this thesis is focused on the chromatic symmetric functions (CSFs) of
certain kinds of graphs. The idea of the CSF was first introduced by Stanley in [30] as a
generalization of the chromatic polynomial. He defined it as follows:

Definition 5. Let x1, x2, . . . be commuting indeterminates. For a simple graph G = (V,E),
the chromatic symmetric function of G, denoted XG, is defined as

XG = XG(x) = XG(x1, x2, . . . ) =
∑
κ

∏
v∈V

xκ(v)

where the sum ranges over all proper colorings κ of G.

Since their introduction, these functions have been of great interest in the field of algebraic
graph theory. In particular, there has been one open problem of great interest regarding the
e-positivity of these functions, known as the Stanley-Stembridge conjecture, that has evaded
proof for nearly three decades. In [30], Stanley shows that the net and claw graphs (Figure
1.6) are not e-positive, and he notes the following conjecture:

Conjecture 6 (Stanley-Stembridge Conjecture). Let P be a (3+1)-free poset. Then, Xinc(P )

is e-positive.

First introduced in [31] and then reworked into the context of CSFs in [30], there have
been many results in favor of this conjecture since its initial statement. We will examine
many of these later in this chapter. Note that we say a graph G is e-positive to mean that
the CSF of G is e-positive.

There have been several reductions and refinements to this conjecture. One of the more
significant findings came from Guay-Paquet in 2013. In unpublished work [21], he found
that it was sufficient to prove that the statement holds for (3+1)- and (2+2)-free posets,
also known as unit-interval orders. This is equivalent to proving that (claw, net, anti-net,
and Cn for n ≥ 4)-free graphs are e-positive.

Another major refinement of this conjecture followed the introduction of chromatic
quasisymmetric functions (CQSFs) by Shareshian and Wachs in [28]. This serves as a
q-analogue of the typical CSF definition. q-analogues are a common type of generalization in
combinatorics, wherein a variable q is added such that the original expression is obtained as q
approaches 1, so the discovery of CQSFs is a very natural generalization of CSFs. Shareshian
and Wachs define CQSFs as follows:

10



Figure 1.6: The net graph (left) and the claw graph (right).

Definition 7. Let x1, x2, . . . be commuting indeterminates. For a simple graph G = (V,E)
with V ⊂ N+, the chromatic quasisymmetric function of G is

XG(x; q) =
∑
κ

∏
v∈V

qasc(κ)xκ(v)

where asc(κ) = |{(i, j) ∈ E : i < j and κ(i) < κ(j)}|.

Note that when q = 1, CQSFs are CSFs. So, while the focus here is on CSFs, we are able
to use many of the results about CQSFs in our methods. Note the commonly used notation
[n]q = 1 + q + · · · + qn−1 when writing out e-basis expansions for CQSFs; while we do not
make use of this notation often here, it appears very often in the literature. Additionally, in
[28], Shareshian and Wachs generalize the Stanley-Stembridge conjecture in terms of CQSFs
using the results from Guay-Paquet:

Conjecture 8 (Shareshian-Wachs Conjecture). Let G be the incomparability graph of a
unit-interval order. Then, XG(x; q) is e-positive.

1.2.2 Tools

We will use this section to illustrate the common theorems and properties that are used in the
modern study of the Stanley-Stembridge and Shareshian-Wachs conjectures. Additionally,
we will describe some of the ideas from linear algebra and matrix theory that we make use
of later in our proofs.

Firstly, we describe the deletion-contraction property. A function f on graphs is said
to have the deletion-contraction property if for any graph G and any edge e of G, we can
rewrite f(G) as a function of f(G− e) and f(G/e) where G− e represents the deletion of an
edge and G/e represents the contraction of an edge. We call the formula itself the deletion-
contraction relation of a function f . In the most cases, f will have a deletion-contraction
relation similar to the following expression:

f(G) = f(G− e) + f(G/e).

This property is typically very useful when studying graph functions, as it allows functions of
complicated graphs to be broken up into linear combinations of functions of smaller, easier
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Figure 1.7: A visual representation of the triple deletion property.

to compute graphs. Additionally, this relationship is common for many graph functions;
in fact, a whole class of functions derived from Tutte polynomials are known to have this
property. Furthermore, with regard to the focus of this thesis, the chromatic polynomial has
the deletion-contraction property.

Theorem 9. Let G be a graph and χG(n) be the chromatic polynomial of G. Then,

χG(n) = χG−e(n)− χG/e(n).

However, CSFs and CQSFs do not satisfy the deletion-contraction property [10]. This is
because each monomial in XG has degree |V (G)|; since contraction reduces the number of
vertices, its CSF is made up of monomials with a smaller degree than XG. As such, much
of the focus of research in CSFs and CQSFs has been on either finding a similar property
or modifying the current definitions of CSFs such that they admit a deletion-contraction
property. Perhaps the most important example of a similar kind of property comes from
[27], where Orellana and Scott prove the following property:

Theorem 10. [27, Theorem 3.1] Let G be a graph where e1, e2, e3 ∈ E(G) form a triangle.
Then,

XG = XG−e1 +XG−e2 −XG−{e1,e2}

See Figure 1.7. Known as the triple deletion property (and sometimes called the
Orellana-Scott modular relation), this property has motivated many of the algebraic methods
used in other e-positivity results. Another small point to note in regards to the algebra we
can do with CSFs is that the CSF of a disjoint union of graphs is the product of those graphs,
i.e. XG⊔H = XGXH .

Additionally, as an aside, there are several modifications to the definitions of CSFs and
CQSFs that do admit a deletion-contraction property. One such example is the development
of YG and (e)-positivity–a reformulation of the XG and e-positivity definitions in a different
basis–in [20], which we discuss in the next section. Another example of modifications to
CSFs comes from [10], where Crew and Spirkl consider CSFs of graphs with a vertex-weight
function. They are then able to redefine the CSF of the pair (G,w), where G is a graph and
w : V (G)→ N is a weight function, as

X(G,w) = X(G,w)(x) = X(G,w)(x1, x2, . . . ) =
∑
κ

∏
v∈V (G)

x
w(v)
κ(v)
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which admits a deletion-contraction relation of the form

X(G,w) = X(G−e,w) −X(G/e,w/e)

where w/e represents the function obtained from w by mapping the vertex obtained by
contracting e to the sum of the weights of the endpoints of e, and mapping every other
vertex to its original weight.

The goal of the method outlined in this paper is to convert a problem in symmetric
functions and graph theory into a purely algebraic problem. So, on top of the numerous
graph theory and symmetric functions tools we use, there are also several ideas that come
from linear algebra used here. Firstly, as many of the matrices can be very large, it is helpful
to reduce them as much as possible. As such, we often interpret our matrices as block
matrices, which is just a way of breaking a matrix up into its submatrices. Block matrices
have some nice properties, including having a formula for calculating their inversion.

Lemma 11. Given a block matrix divided into four submatrices, we can calculate the inverse
of that matrix as follows:

[
A B
C D

]−1

=

[
(A−BD−1C)−1 0

0 (D − CA−1B)−1

] [
I −BD−1

−CA−1 I

]
where A and D are invertible square matrices.

It will also be important to know a few types of matrices so we can use their properties
later on. First, we say a tridiagonal Toeplitz matrix [26], Ta, is a square matrix that has
the form

Ta =


a −1
−1 a −1

. . .

−1 a −1
−1 a


where all other entries are 0. These matrices in particular are so important because in [26],
Meurant determines the exact values of their inverses, which becomes extremely useful in
later proofs.

A real matrix M is a Z-matrix if M = (mij) and mij ≤ 0 for all i ̸= j. Furthermore,
M is an L-matrix if M is a Z-matrix and mij > 0 for all i = j [5]. M is said to be weakly
diagonally dominant (w.d.d.) if |mii| ≥

∑
j ̸=i |mij|.

Let M be a square matrix. Then the spectral radius of M , denoted ρ(M), is the
maximum of the absolute values of its eigenvalues. M is called singular if M does not have
an inverse. M is called an M-matrix if it can be expressed in the form M = sI −B, where
B is a non-negative square matrix and s ≥ ρ(B). While M-matrices are interesting in their
own right, it is not so important here what they are. The main reason we utilize them is
because the inverse of a non-singular M-matrix is non-negative, a fact that will help us prove
e-positivity [17].
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Figure 1.8: A pyramid graph (left) and a bull graph (right). Clique-blowups of the unfilled
vertices give us generalized pyramids and generalized bulls, respectively. Note that the
pyramid is the complement of the net graph (see Figure 1.6).

1.2.3 Summary of e-Positivity Results

The main endeavor of this thesis is to resolve the Stanley-Stembridge conjecture for some
clique-blowups of paths. As such, it is important to understand the current state of the
research, so this section will be devoted to summarizing many of the major results made
towards proving this conjecture. We summarize a great deal of the results at the end in
Tables 1.1 and 1.2 and provide explanations of the methods used throughout this section.
We hope that this will act as a guide to those who are becoming newly acquainted with the
subject so they understand what has been done and where they can begin their work.

Much of the work in this thesis is related to the work done by Dahlberg and van Willi-
genburg in [14], the paper that originally proved the e-positivity of lollipop graphs and gave
an e-basis expansion of their CSFs. As these methods are so similar, we refer to the proof
of e-positivity of paths and lollipop graphs in Chapter 2 for an understanding of how this
works. The work in this paper was very influential, and was used in particular in [23] to
prove the Shareshian-Wachs conjecture for melting lollipop graphs as well. By using a family
of symmetric functions called LLT polynomials (which we discuss later in this section, see
Definition 22), Huh, Nam, and Yoo are able to convert the e-basis formula of lollipop graphs
found in [14] to a CQSF and extend this to an e-basis expansion for CQSFs of melting
lollipop graphs.

In [18] and [19], Foley, Hoàng, and Merkel summarize and prove some smaller known e-
positivity results, which we list in the tables below. In particular, [19] resolves the Stanley-
Stembridge conjecture for (claw, H)-free graphs, for all graphs H with 4 vertices except
the co-diamond. As one might predict from the study of induced subgraphs, these proofs
rely mostly on case work and techniques similar to those found in structural graph theory.
The rest of the paper is then dedicated to making progress toward a proof for the (claw,
co-diamond)-free case, ending with conjectures that graphs called generalized pyramids and
(claw, co-diamond)-free graphs are e-positive. A generalized pyramid is a graph obtained
from taking a clique-blowup of the unfilled vertices of the pyramid graph in Figure 1.8. While
the latter of these still remains open, the former was proven in [25].

Furthermore, in [18], Foley, Hoàng, and Merkel show that unit-interval graphs whose
complements are also unit-interval are e-positive. This was discovered initially by examining
the case of H-free unit-interval graphs, where H is a four-vertex graph, proving the case
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4K1 co-diamond co-paw 2K2 co-claw

P4

Figure 1.9: All 4 vertex graphs.

for co-claw-free unit-interval graphs with exhaustive case work, and then showing that these
are exactly the same class of graphs. They also prove numerous properties related to the
e-positivity of unit-interval graphs, with particular interest given to 2K2-free unit-interval
graphs (see Figure 1.9). While no proof was given for 2K2-free unit-interval graphs here,
their e-positivity was also shown in [25].

In [25], Li and Yang resolve two conjectures from [18] and [19]. Firstly, they consider
generalized pyramids. Using results from Stanley, they obtain the monomial basis expansion
of the CSF of generalized pyramids. They are then able to use transition matrices to convert
this CSF into the elementary basis and explicitly determine its coefficients to prove their
non-negativity. They then consider 2K2-free unit-interval graphs. Using a characterization
of these graphs from a different paper, Li and Yang are able to show that 2K2-free unit-
interval graphs are either 3K1-free or generalized bull graphs, both of which are known to
be e-positive (see [18]).

In addition to the study of induced subgraphs as in the previous three papers, there is also
some interest in the contractability of certain graphs. We say a graph G is contractible to
another graph H if there is a series of contractions we can perform on G to obtain H. Even
in the original paper by Stanley defining CSFs, there were questions about contractability;
he observed that there was no known graph that is not contractible to the claw that is not
e-positive [30]. In other words, there was an implied conjecture that any graph that is not
contractible to the claw is e-positive. This, however, was proven false in [12], where Dahlberg,
Foley, and van Willigenburg give multiple infinite graph classes that are not contractible to
the claw and not e-positive. In particular, they show that a class of graphs known as
triangular towers, which are not contractible to the claw and are claw-free, are not e-positive.

In [20], Gebhard and Sagan generalize the idea of symmetric functions, CSFs, and e-
positivity to variables that don’t commute. This can essentially be thought of as e-positivity
on labelled graphs. In this algebra (called NCSym), rather than being based on integer
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partitions like the classical symmetric function, the functions are based on set partitions
π of [d].

Definition 12. Let π ⊢ d denote a set partition of [d], which is a collection of disjoint,
nonempty sets B1, B2, . . . , Bl(π) called blocks whose union is [d]. Moreover, for an integer
i ∈ [d], let Bπ,i denote the block of π containing i.

These set partitions allow us to label the elements of the symmetric function so that
we ensure they don’t commute. By removing the requirement of commutability, Gebhard
and Sagan discovered a generalization of the CSF that they denote with YG, and then they
considered the problem of e-positivity on these functions. However, as this work is done on
a different algebra, the e-basis functions are slightly different. Given a set partition π,

eπ =
∑

(i1,i2...,id)

xi1xi2 · · ·xid

where we sum over all tuples (i1, i2 . . . , id) such that ij ̸= ik when Bπ,j = Bπ,k. While this
may seem to over complicate things a bit, the motivation comes from the ability to apply
a deletion-contraction relation on YG, something that is not possible on XG. Without any
modification to the definition, the problem of e-positivity is extremely simple for YG, as
most graphs are not e-positive. In fact, a graph is e-positive on non-commuting variables if
and only if G = Kπ for some set partition π [4]. Here, Kπ is the graph on [d] where i, j share
an edge when Bπ,i = Bπ,j. However, a modification to the classical definition of e-positivity
was defined using the equivalence relation

eπ1 ≡i eπ2 if and only if λ(π1) = λ(π2) and |Bπ1,i| = |Bπ2,i|

where π1, π2 are set partitions and λ(π) denotes the integer partition whose parts are
|B1|, |B2|, . . . , |Bl(π)|. This relation is called congruence modulo i by Gebhard and Sagan.
Using this congruence relation, they found numerous graphs that they called (e)-positive.

Definition 13. A graph G is said to be (e)-positive if YG is congruent to an e-positive
function modulo |V (G)|.

To provide some more motivation to this definition, we provide the example used in [20]
to exhibit the difference between YG before and after applying this relation. As mentioned
above, most graphs are not e-positive in this basis; for example, consider YP3 . We can
compute the e-basis expansion of this in NCSym, finding that YP3 = 1

2
e12/3 − 1

2
e13/2 +

1
2
e1/23 +

1
2
e123, where adjacent numbers represent blocks, which are separated by a diagonal

line. However, applying the congruence relation to this same function, we find that YP3 ≡3
1
2
e12/3 +

1
2
e123, and thus P3 is (e)-positive.

The pattern here is not unique to paths though. In fact, if a graph is (e)-positive in
NCSym, then it is also e-positive in Λ [20]. Making use of the deletion-contraction law that
NCSym admits, Gebhard and Sagan end their paper by using this notion of (e)-positivity
to prove the e-positivity of XG when G is a Kα-chain.
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Definition 14. [20] First, define an indifference graph as a graph G with vertex set
V (G) = {v1, v2, . . . , vn} and edge set

E(G) = {(vi, vj) : i, j ∈ [k, l] ∈ C}

where C is a collection of discrete intervals [k, l] = {k, k + 1, . . . , l} ⊂ [n].

Let α = (α1, α2, . . . , αk) be a composition of n and let α̃i =
∑

j≤i αj. A Kα-chain is the
indifference graph using the collection of intervals C = {[1, α̃1], [α̃1, α̃2], . . . , [α̃k−1, α̃k]}.

In other words, a Kα-chain can be thought of as the graph obtained from a series of
concatenations of complete graphs (((Kα1 +Kα2) +Kα3) + · · ·+Kαk

). Note that Kα-chains
are not a type of clique-blowup of a path, as the blasted vertices of a clique-blowup of a path
are not adjacent.

In [4], Aliniaeifard, Wang, and van Willigenburg expand on the ideas of NCSym and YG

with the definition of a new space UBCSym, which works by projecting the e-basis vectors
of NCSym to an e-basis with a single distinguished point. This leads to the development of
a different generalization of YG in yG:v, which distinguishes a single vertex v in the graph G;
this requires a slightly modified version of (e)-positivity that takes the distinguished vertex
into account, but is consistent with the definition found in [20]. Using this modified (e)-
positivity, the authors explore the concatenations of graphs and define a new concept that
they call appendable (e)-positivity.

Definition 15. [4, Definition 4.3] We say that a labelled graph H is appendable (e)-
positive if and only if G +H is (e)-positive for all (e)-positive labelled graphs G. Equiva-
lently, H is appendable (e)-positive if and only if Kd +H is (e)-positive for all d ∈ Z+.

Note that all graphs that are appendable (e)-positive are (e)-positive themselves (and
hence e-positive). Appendable (e)-positivity is extremely useful in proving the e-positivity
of large classes of graphs, as it allows one to combine different types of graphs together while
maintaining positivity. In many ways, these concatenations of graphs behave similarly to
blowups of paths, which we will explore in greater detail in a later chapter. After proving
the appendable (e)-positivity of certain graphs, such as complete graphs and cycles, Aliniaei-
fard, Wang, and van Willigenburg summarize how one can combine graphs in the following
theorem:

Theorem 16. [4, Corollary 6.6] For a labelled graph G on d vertices, let Gr denote the
reverse graph, where vertex i is relabelled with d + 1 − i. Furthermore, for a sequence of
graphs (Hi)

k
i=1, let

∑k
i=1Hi denote the sequential concatenation of graphs H1+H2+ · · ·+Hk.

If G,G′ are (e)-positive and (Hi)
k
i=1 are appendable (e)-positive, then

1.
∑k

i=1Hi is appendable (e)-positive,

2. G+
∑k

i=1Hi is (e)-positive, and
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Figure 1.10: The Triangular ladder TL7.

3. G+
∑k

i=1Hi +G′r is e-positive.

Finally, after their exploration of appendable (e)-positivity, they prove a general property
about their version of e-positivity that allows for even more results.

Theorem 17. [4, Theorem 6.8] For a graph G, if G is (e)-positive at v, i.e. if yG:v is
(e)-positive, then G− v is e-positive.

In [11], the ideas of Gebhard and Sagan are even further expanded to prove the e-positivity
of triangular ladders, sometimes also known as zigzag graphs.

Definition 18. Let Pn,k denote the class of unit-interval graphs defined by the intervals
[1, 1 + k], [2, 2 + k], . . . , [n − k, n]. When k = 2, we call these graphs triangular ladders
and denote them by TLn.

Another way we can think of the triangular ladder TLn is as the incomparability graphs of
natural unit-interval order P (3, 4, . . . , n − 1, n, n) (for example, the graph in Figure 1.10 is
inc(P (3, 4, 5, 6, 7, 7))). Dahlberg proves the e-positivity of these graphs by examining the
arc diagrams of unit-interval graphs, which are a way of encoding the intervals in a more
condensed manner. Using these diagrams and the deletion-contraction property of YG, she
obtains a combinatorial formula for YG when G is a unit-interval graph. She then proves a
few properties about the arc diagrams of triangular ladders and is able to use this formula
to obtain a formula for them, allowing her to show their e-positivity.

In [13], the e-positivity of trees is examined in great detail. While they may seem simple,
the e-positivity of trees is a fairly complicated topic. In fact, the CSF of trees are of great
interest in algebraic combinatorics, and are in fact the center of their own unsolved conjecture
by Stanley in [30]:

Conjecture 19. For any two non-isomorphic trees S, T , XS ̸= XT .

Commonly known as Stanley’s isomorphism conjecture, this conjecture has inspired
a lot of work in the study of the CSFs of trees. In particular, Dahlberg, She, and van
Willigenburg combine the ideas used in studying the Stanley-Stembridge conjecture with
ideas that arose from Stanley’s isomorphism conjecture. Through this investigation, they
discovered that n-vertex connected graphs with no perfect matching (when n even) and no
almost-perfect matching (when n odd) are not e-positive. They then used this to show that
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Figure 1.11: (from left to right) A Dyck path, it’s corresponding Dyck diagram, and the
corresponding graph. Note that in the Dyck diagram, the grey squares represent the outer
shape while the white squares represent the inner shape.

a number of other very large classes of claw-free graphs are not e-positive, including n-vertex
trees (for n ≥ 4) with a degree d vertex such that d ≥ log2 n + 1. They then generalized
this even further in a proof showing that any n-vertex connected graph with a cut vertex
whose removal disconnects the graph into d ≥ log2 n+ 1 components is not e-positive. This
is expanded upon in [33], where Zheng shows that any tree with a vertex of degree at least
6 is not e-positive.

In [2], Alexandersson and Panova explore e-positivity in a more directly combinatorial
light. They study a class of graphs called circular unit arc digraphs, which serve as a
generalization of unit-interval graphs. They are able to examine these graphs by presenting
them using (circular) Dyck diagrams and Dyck paths.

Definition 20. Given an n × n lattice of square cells, a Dyck path is a lattice path from
(0, 0) to (n, n) using only north steps n = (0, 1) and east steps e = (1, 0) such that the
walk never crosses below the diagonal y = x. Given a Dyck path P , the squares above P are
known as the outer shape while the squares between P and the diagonal are known as the
inner shape. These two shapes together form the Dyck diagram of P .

Dyck paths and diagrams can then be placed in bijection with unit-interval graphs. Let
each cell in a Dyck diagram correspond to an edge in an n-vertex graph as in Figure1.11.
Then we obtain a graph ΓP with vertex set [n] and edge set E(G) corresponding to the
edges in the inner shape of the Dyck diagram of P . Thusly, we have encoded unit-interval
graphs using Dyck paths. Circular Dyck diagrams are a slightly more general version of the
figures and explanations here; we refer the interested reader to Section 1 of [2] for a deeper
understanding of these diagrams. These graphs are then given an orientation to make them
directed graphs:

Definition 21. An orientation of a unit-interval graph Γ = (V,E) is a function θ : E →
V 2 that assigns each edge uv ∈ E a directed edge −→uv or −→vu. We call an orientation the
natural orientation if θ assigns each edge uv with the directed edge −→uv where u < v.

This then leads to an examination of a kind of symmetric function called LLT polyno-
mials, which are closely related to chromatic quasisymmetric functions and share many of
the same properties.
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Definition 22. [2, Definition 10] Let ν be a k-tuple of skew Young diagrams. Given such a
tuple, let SSY T (ν) = SSY T (ν1)×SSY T (ν2)× · · ·×SSY T (νk), where SSY T (λ) is the set
of skew semi-standard Young tableaux of shape λ. Given T = (T 1, T 2, . . . , T k) ∈ SSY T (ν),
let xT denote the product xT 1

xT 2
. . .xTk

where xT i
is the usual weight of the semi-standard

Young tableau T i. For cells u, v, entries T i(u) > T j(v) form an inversion if either

• i < j and c(u) = c(v), or

• i > j and c(u) = c(v) + 1

where c(u) denotes the content of u and the content of a cell (i, j) in a skew diagram is
i− j. Finally, we can define the LLT polynomial

Gν(x; q) =
∑

T∈SSY T (ν)

qinv(T )xT

where inv(T ) is the total number of inversions appearing in T . In particular, when q = 1,
Gν is a product of the Schur functions of ν1, ν2, . . . , νk.

Using these ideas, Alexandersson and Panova are able to (among other things) give a
natural combinatorial interpretation of the e-coefficients of line graphs and cycle graphs.
While the e-coefficients of these graphs were well-known at the time, most methods relied
heavily on algebraic techniques. Hence, the combinatorial approach of this method is unique
and inspired some of the initial work done in this thesis.

Additionally, and perhaps most importantly, Alexandersson and Panova present an ana-
logue of the Stanley-Stembridge conjecture for LLT polynomials.

Conjecture 23. [2, Conjecture 25] Let ν be a (circular) Dyck diagram. Then Gν(x; q + 1)
is e-positive.

A generalization of this conjecture was later proven in [3], which we now discuss. Here,
Alexandersson and Sulzgruber expand on the study of the relations between Dyck diagrams
and CQSFs, giving a completely new characterization of CQSFs of unit-interval graphs
in terms of Dyck paths. They do this by studying a generalization of Dyck paths called
Schröder paths, that are defined to be Dyck paths that also allow a diagonal step d =
(1, 1). From here, they explore the idea of bounce paths and bounce decompositions.

Definition 24. [3, Section 2.4] Let P be a Schröder path and let (u1, u0) ∈ Z2 be a point on
P . Define the bounce path of P starting at point (u1, u0) with the following steps:

1. From the starting point (ui, ui−1), move south until you reach the point (ui, ui) on the
main diagonal.

2. Now move west until you reach the point (ui+1, ui) on P .

3. If (ui+1, ui) lies between two diagonal steps, repeat the previous two steps with (ui+1, ui)
as the starting point. Otherwise, stop.
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Figure 1.12: (left) The black path represents a Schröder path and the grey path represents
the bounce path starting at point (3, 6). In this example, the bounce points are (3, 3) and
(1, 1) while the bounce decomposition of this Schröder path is Un.nV d.eW , where U = ∅,
V = ddn, and W = ee. The Schröder path in the middle lists the edges that appear in the
decorated unit-interval graph on the right (excluding the strict edges, which have a diagonal
through them). The edges with arrows in the graph are the strict edges.

The points (ui, ui) for all i ∈ [k] where the bounce path touches the main diagonal are called
bounce points (of the path).

Lastly, we define the bounce decomposition of P to be the unique decomposition

P = Us1.s2V s3.s4W

where s1, s2, s3, s4 ∈ {n, d, e} and U, V,W ∈ {n, d, e}∗ such that Us1 is a path from (0, 0) to
the endpoint (uk+1, uk) of the bounce path, and s4W is a path from the starting point (u1, u0)
of the bounce path to (n, n). Note that dots are used to indicate the start and end points of
the bounce path.

For an example of Schröder paths and bounce paths, see the left image in Figure 1.12.
We associate each Schröder path P with a decorated unit-interval graph ΓP = (V,E, S),
where S ⊂ E is called the set of strict edges. ΓP is defined to have V = [n] with the edge
set and strict edge set defined as follows: for each u, v ∈ [n] with u < v, there is a non-strict
edge uv (in E \ S) for every cell in column u and row v below the Schröder path P and
above the diagonal. Furthermore, if (u, v) is the endpoint of a diagonal step in P , then uv
is a strict edge (in S) in ΓP .

These strict edges are used as a way to fix the direction of an edge when we apply an
orientation to the graph ΓP . Let O(P ) denote the set of orientations θ of ΓP where for any
edge uv ∈ S, θ(uv) = −→uv if and only if u < v. We furthermore define the ascending edges
of ΓP with orientation θ to be the edges uv /∈ S such that u < v and θ(uv) = −→uv. Then let
asc(θ) denote the number of ascending edges in ΓP with orientation θ.

They furthermore define set and integer partitions that arise from this orientation by
using the concept of the highest reachable vertex of ΓP .

Definition 25. Let P be a Schröder path and θ ∈ O(P ) an orientation of P . For a vertex
u ∈ [n], the highest reachable vertex is the maximal vertex v ∈ [n] such that there is a
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directed path from u to v using only strict and ascending edges. Then θ defines a set partition
π(θ) of the vertices of ΓP where two vertices are in the same block if and only if they have
the same highest reachable vertex. We then let λ(θ) denote the integer partition given by the
sizes of the blocks of π(θ).

To achieve the main results of their paper, Alexandersson and Sulzgruber realized that
when bounce paths followed certain patterns, they were able to prove several nice properties
that were helpful in an e-positivity proof (to see these, refer to Section 2.4 and Figure 3 of
[3]. To begin using them, they define a set of initial conditions that allow them to use a set
of modular relations on bounce paths and associate the Schröder paths with certain LLT
polynomials (see Theorem 2.1 of [3]). Finally, they discover an e-basis expansion that leads
to a proof of Conjecture 23:

Theorem 26. [3, Theorem 2.9, Corollaries 2.10, 6.19] Given a Schröder path P of size
n, GP (x; q + 1) expands positively into elementary symmetric functions. In particular, we
obtain an explicit expansion of the vertical-strip LLT polynomials in terms of elementary
symmetric functions as follows:

GP (x; q + 1) =
∑

θ∈O(P )

qasc(θ)eλ(θ)(x).

In particular, when P is a Dyck path, we obtain the following positive e-basis expansion:

XP (x; q) =
∑

θ∈O(P )

(q − 1)asc(θ)−neλ(θ)[x(q − 1)].

At the time of writing, this is the most recent significant progress that has been made
towards a proof of the Stanley-Stembridge conjecture.

The idea of bounce paths have also been useful in proving other e-positivity results. In
[9], Cho and Hong examine Dyck paths that have 2 bounce points.2 They are then able
to show that the unit-interval graph corresponding to a Dyck path with n bounce points
has independence number n + 1. Thusly, by examining Dyck paths with 2 bounce points,
Cho and Hong show that unit-interval graphs with independence number 3 are e-positive.
Furthermore, they note that independence number 2 follows directly from their proof, even
though this was known before.

2Note from Definition 24 that a Dyck path can have at most 1 bounce point. [9] uses a slightly different
definition of bounce paths that relies on Hessenberg functions, something we will not cover here.
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Set H e-Positive? Reference

P3 yes [18]
3K1 yes [18]

claw, co-P3 yes [18]
claw, K3 yes [18]
claw, P4 yes [18]
claw, paw yes [19]

claw, co-paw yes [19]
claw, co-claw (excluding net) yes [18]
claw, co-diamond, diamond yes [19]
claw, co-diamond, co-claw yes [19]

claw, co-diamond conjectured yes [18]
claw not necessarily [18]

claw, diamond not necessarily [19]
claw, K4 not necessarily [19]
claw, 4K1 not necessarily [19]
claw, C4 not necessarily [19]
claw, 2K2 not necessarily [19]

Table 1.1: Table of known e-positivity results for H-free graphs.

Graph Class e-Positive? Reference

paths yes [30]
cycles yes [30]

complete graphs yes [30]
Kα-chains yes [20]

generalized bulls yes [18]
generalized pyramids yes [25]

lollipops yes [14], Cor. 32
melting lollipops yes [23], Cor. 32
triangular ladders yes [11]
(melting) SCBPs yes [4], Thm. 37, Cor. 38

DCBPs yes Thm. 40
graphs contractible to the claw not necessarily [30]

the claw no [30]
the net no [30]

trees with a vertex of degree d ≥ log2 n+ 1 no [13]
trees with a vertex of degree ≥ 6 no [33]

graphs with no (almost) perfect matching no [13]

Table 1.2: Table of graph classes that are known to be e-positive.
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Chapter 2

Proof of Concept: Paths and
(Melting) Lollipops

In this chapter, we provide a novel proof of the e-positivity of paths and (melting) lollipop
graphs. Recall that a lollipop graph is the concatenation of a complete graph and a path,
denoted Lm,n = Km + Pn+1. Furthermore, recall from Definition 1 that melting lollipop
graphs are any graph that can be obtained by removing edges between the path and the
clique in a lollipop graph. Our proof finds the explicit formula for the CSF of (melting)
lollipop graphs in terms of the elementary symmetric functions. This chapter is meant to
serve as a simple introduction to the methodology used later in the paper while also showing
some of the inspiration behind its development.

2.1 Definitions and Preliminaries

In this proof, we use a diagram to represent the adjacencies of a labelled graph.

Definition 27. Let G be a graph with |V (G)| = n and labelling function l : V (G) → [n].
Let A be a Ferrer’s diagram of shape (n − 1, n − 2, . . . , 1). Label the columns from left to
right with 1, 2, . . . , n − 1 and the rows from the bottom up with 2, 3, . . . , n. Denote by Ai,j

the box in row i and column j of A. We say A is an adjacency diagram of G if when
v1v2 ∈ E(G), l(v1) < l(v2), the box Al(v1),l(v2) is filled.

Let A be an adjacency diagram. We define a total ordering < to the boxes of A as
follows: if i1 < i2, then Ai1,j1 < Ai2,j2 . Otherwise when i1 = i2, if j1 > j2 then Ai1,j1 < Ai2,j2 .
Additionally, we denote by A+Ai,j and A−Ai,j the adjacency diagram obtained from A by
filling or emptying, respectively, box Ai,j. In other words, the boxes are ordered right-to-left,
bottom-to-top.

Additionally, recall the definitions of L-matrices, M-matrices, and weakly diagonally dom-
inant (w.d.d) from Section 1.2.2. We will use the properties of these matrices to prove e-
positivity, particularly that the inverse of a non-singular M-matrix is non-negative [17] and
the following Lemma:
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Figure 2.1: A graph and its adjacency diagram.

Lemma 28. [5, Theorem 2.24] A matrix M is a non-singular w.d.d. L-matrix if and only
if it is a non-singular w.d.d. M-matrix.

2.2 The Proof

We prove the e-positivity of paths by setting up a system of linear equations for each path,
which we obtain by iteratively applying the Orellana-Scott modular relation. This creates a
system of equations on the chromatic symmetric functions of melting lollipop graphs, which
we also show are e-positive. Let T denote the graph that we update throughout this process
and let L denote the set of linear equations involving the chromatic symmetric functions.
We define this process as follows:

Algorithm 1 Obtaining a set of linear equations of CSFs given an adjacency diagram.

Require: A is a path
T ← A
L← ∅
while T contains an unfilled box do

(i, j)← location of smallest unfilled box
Add XT +XT+Ti,j−Ti,j+1

= XT+Ti,j
+XT−Ti,j+1

to L
T ← T + Ti,j

end while

Note that we use adjacency diagrams and the graphs they represent interchangeably.
Additionally, note that each step of the algorithm fills an additional box in the adjacency
diagram, so it will always terminate, doing so when the complete graph is obtained. Further-
more, due to the reverse lexicographic ordering, this algorithm fills one row of the adjacency
diagram at a time from the bottom up, with each row being filled from right to left. However,
the symmetry of the diagram means that instead the columns can be filled one at a time
from right to left to obtain the same result. This method of filling ensures that every graph
obtained during this process is a melting lollipop graph. We now prove two short lemmas
about this algorithm.

Lemma 29. In Algorithm 1, the graphs produced by T and T + Ti,j − Ti,j+1 are isomorphic.
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Figure 2.2: A visual representation of the process described in Algorithm 1 using tableau.
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Figure 2.3: A visual representation of the process described in Algorithm 1 using graphs.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
+ = +

Figure 2.4: The result of the first step of Algorithm 1 on P5. Note that the two graphs on
the left-hand side of the equation are isomorphic.
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Proof. Let T be the adjacency diagram at step n in the algorithm. Let i be the row with
the smallest unfilled box. Then for all i′ > i, the box (i′, j) is filled for all j ≤ i′. These filled
rows form a clique, with row i determining the adjacencies of vertices in this clique with a
single vertex. But then, T and T + Ti,j − Ti,j+1 are both melting lollipop graphs with the
same clique size, path length, and number of edges adjacent to the clique, and are hence
isomorphic.

Lemma 30. In Algorithm 1, the graph produced by T − Ti,j+1 is either the disjoint union of
a clique and a smaller path or a graph that has already been obtained earlier in the algorithm

Proof. Let T be the adjacency diagram at step s in the algorithm, let (i, j) be the location
of the smallest unfilled box at step s, and let n be the number of vertices in the path.

If n− i = j+1, then Ti,j+1 is the box on the diagonal. As the algorithm fills the smallest
boxes first, row i and every row above it is completely unfilled other than the box on the
diagonal. Furthermore, every row below row i is completely filled, forming a clique. Hence,
T − Ti,j+1 is the disjoint union of a clique and a smaller path

Otherwise, consider the diagram T ′ at step s − 1 in the algorithm and let (i′, j′) be the
location of the smallest box. Clearly, i′ = i. Further, since T ′ has one fewer box filled and
the boxes are filled from right to left, j′ = j + 1, so T − Ti,j+1 = T ′.

For an example of this process with initial graph P5, see Figure 2.3. This figure serves as
a visual representation of the following system of questions:

2(P5) = L3,2 + P2P3

2(L3,2) = L
(1)
4,1 +K3P2

2(L
(1)
4,1) = L4,1 + L3,2

2(L4,1) = L
(2)
5,0 +K4P1

2(L
(2)
5,0) = L

(1)
5,0 + L4,1

2(L
(1)
5,0) = K5 + L

(2)
5,0


2 −1 0 0 0 0
0 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 0 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2





P5

L3,2

L
(1)
4,1

L4,1

L
(2)
5,0

L
(1)
5,0


=


K2P3

K3P2

0
K4P1

0
K5


.

Note that both the left and right hand side are the same system of equations, just
represented in different ways.

Theorem 31. Paths are e-positive.

Proof. We prove this by induction on the length of the path. As a base case, we know that
P2 and K2 are isomorphic, so XP2 = e2.

For the inductive step, suppose this holds for all Pn−1, n ≥ 3 and consider Pn with
vertices p1, . . . , pn. Label the vertices of Pn such that l(pi) = i for each vertex in the path.
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Then, the adjacency diagram A of Pn is filled only on the outermost diagonal. Let Lx = e be
the matrix representation of the system of linear equations obtained by applying Algorithm
1 to A, where x is a vector of CSFs and e is a vector of linear combinations of elementary
symmetric functions.

From Lemma 29, we know that L can be written up to rearrangement such that the
diagonal is only 2’s. Further, by induction, we know how to write the CSF of a path in
terms of the e-basis. Hence from Lemma 30, we can fill e with the CSFs of a clique and a
smaller path. Additionally, we know that the entries that do not have such known CSFs are
found elsewhere in the process, so we can write L as follows:

L =



2 −1
2 −1
−1 2 −1

2 −1
−1 2 −1

−1 2 −1
. . .


More explicitly, if we let Di denote the i× (i+ 1) matrix of the form

Di =


2 −1
−1 2 −1

. . .

−1 2 −1
−1 2 −1


and D′

i denote the i× i matrix of the form

D′
i =


2 −1
−1 2 −1

. . .

−1 2 −1
−1 2


,

we can instead write L as follows:

L =


D1

D2

. . .

Dn−3

D′
n−2


such that the diagonal is just made up of 2’s

This matrix is clearly a w.d.d. L-matrix, so by Lemma 28 it is a w.d.d. M-matrix. Since
non-singular M-matrices have non-negative inverses, it suffices to show that L is non-singular,
i.e. that it is invertible. To do this, we show that det(L) = (n− 1)!.
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Note for a path of length n, det(L) =
∏n−2

i=1 det(D′
i). Moreover, note that det(D′

i) =
2det(D′

i−1)−det(D′
i−2) and det(D′

1) = 2, so det(D′
i) = i+1. Hence, det(L) = (n−1)! and

thus L is non-singular. So L is a M-matrix and therefore has a non-negative inverse.

Note that while this clearly proves the positivity of paths, it also proves the positivity of
all the graphs obtained by each step of the algorithm as the entire matrix is shown to have
a non-negative inverse. As such, we can conclude the following:

Corollary 32. Lollipop and melting lollipop graphs are e-positive.

Furthermore, this process allows us to obtain e-basis expansions for paths, lollipops and
melting lollipops. These expansions are already well known, so we will not show the process
of extracting them here. However, we provide the expansions of lollipop graphs and melting
lollipop graphs here as they become much more useful later:

Theorem 33. [23, Proposition 4.4, 4.8] For m ≥ 2 and n ≥ 0, the e-basis expansion of the
CSF of a lollipop graph is

XLm,n = (m− 1)!

(
(m+ n)em+n +

n−1∑
i=0

(m+ i− 1)XPn−i
em+i

)

Furthermore, the CSF of melting lollipop graphs have the following relation:

X
L
(k)
m,n

=
m− k − 1

m− 1
XLm,n + k(m− 2)!XPn+1em−1

Note here that we leave the CSF of paths unexpanded as it is a very well-known expansion.
In general, these expansions get fairly large and difficult to read, so when possible we leave
CSFs with known expansions unexpanded when writing them out.

This alternate proof of the e-positivity of paths really shows the power of this method.
It allows us to swiftly prove e-positivity and find e-basis expansions of multiple large classes
of graphs all at once. As we will see in the following chapter, though, it is not always quite
as simple as taking an inverse and this method sometimes requires a lot of computation to
arrive at a usable answer.
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Chapter 3

Clique-Blowups of Paths

In this chapter, we prove the e-positivity of single clique-blowups of paths (SCBPs) and
their melting variety (recall Definition 2). Both of these results were implicitly proven in
[4], however the method used here allows us to obtain an e-basis expansion of these graphs,
something that was previously unknown. Moreover, we prove the e-positivity of double
clique-blowups of paths (DCBPs), another previously unknown result. These results suggest
a potential to extend this proof to more general clique-blowups of paths, which we elaborate
on in the final section of this chapter.

We will begin this chapter with a brief explanation of the methods used to prove the
positivity of (melting) SCBPs and DCBPs in [4]. We will then use our new method to
expand these results, obtaining some e-basis expansions and new e-positivity results along
the way.

3.1 Previous Methods

Here we will explain the methods used by Aliniaeifard, Wang, and van Willigenburg in
[4] for proving the positivity of certain clique-blowups of paths. Recall from Definition
15 and Theorem 16 the usefulness of appendable (e)-positivity. Proving that a graph is
appendable (e)-positive allows one to concatenate graphs together while maintaining (e)-
positivity. While not explicitly stated, Aliniaeifard, Wang, and van Willigenburg implicitly
prove the (e)-positivity of certain clique-blowups of paths with their examples of appendable
(e)-positive graphs.

Firstly, they note that complete graphs are appendable (e)-positive. This is significant
in particular because of K2; the appendability of K2 combined with the continuous concate-
nation found in Theorem 16 allows one to prove the appendable (e)-positivity of all paths
and lollipops. However, note that this is not yet sufficient for a proof of clique-blowups of
paths, as the blasted vertices of a clique are not adjacent in a clique-blowup. In other words,
when placed between two paths, cliques have an extra edge (e.g. Pn1 +Km + Pn2 is not a
clique-blowup).
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They are able to remedy this by proving the appendable (e)-positivity of what they call
twin peaks graphs on n ≥ 3 vertices, where TPn is obtained by removing the edge (1, n)
fromKn. The proof of this is reduced down to an expansion into the (e)-basis and a positivity
check. Furthermore, they prove the appendable (e)-positivity of what they call melting ice
cream scoop graphs and their reverse graphs on n ≥ 3 vertices; these graphs are denoted
with IC

(k)
n , which is obtained by deleting edges (1, n + 1), (2, n + 1), . . . , (k, n + 1) in Kn.

The proof for this comes from a clever use of the known results about twin peaks graphs and
a corollary obtained earlier in their paper.

These proofs definitively prove the e-positivity of a large number of clique-blowups of
paths and their melting varieties, including (melting) SCBPs and DCBPs with non-adjacent
cliques. However, proving appendable (e)-positivity does not directly lead to the discovery
of an e-basis expansion for these graphs as there is not yet a method to derive an expansion
from the concatenated parts of the graph. Furthermore, there is no appendable graph given
that allows one to create a DCBP with adjacent blown-up vertices. Throughout the rest of
this chapter, we will resolve these issues for (melting) SCBPs and DCBPs.

3.2 Single Clique-Blowups of a Path

This proof hinges on using the Orellana-Scott relation in two ways to perform an inductive
step. Namely, we use this modular relation to first remove and then add edges so that the
position of the blown-up vertex changes. This allows us to obtain a system of linear equations
and prove inverse positivity similarly to the proof for paths. We begin by proving what the
system of linear equations is.

Corollary 34. We can obtain a linear equation including P1n1 ,m,1n2 of the form

[
Am−1 Bm−1

0m−1 Dm−1

]



XP1n1 ,m,1n2

X
P

(1)

1n2 ,m,1n1

...
X

P
(m−2)

1n2 ,m,1n1

X
P

(m−1)

1n1−1,m,1n2+1

X
P

(m−2)

1n1−1,m,1n2+1

...
X

P
(1)

1n1−1,m,1n2+1


=



0
...
0

−XLm+1,n1−1XPn2

XLm+1,n2
XPn1−1

0
...
0

XP
1n1−1,m,1n2+1



m− 2

m− 3

(3.1)

where Am, Bm, Dm,0m are m×m square matrices such that 0m is the matrix of all zeros and

Am =



1 −2 1
1 −2 1

. . .

1 −2 1
1 −2

1


, Bm =


0 0 . . . 0
...

. . .

0 0 . . . 0
1 0 . . . 0
−2 0 . . . 0

 , Dm =


2 −1
−1 2 −1

. . .

−1 2 −1
−1 2

 .

32



Proof. Let G = P1n1 ,m,1n2 . Without loss of generality, assume that n1 ≤ n2. We begin by
providing an alternate labeling of some notable vertices for convenience.

Label the blasted vertices in Pn1 and Pn2 with b1 and b2, respectively. Furthermore, label
the vertex in Pn1 adjacent to b1 with b′1; note that in our conventional labelling scheme, b1,
b′1, and b2 correspond to n1, n1−1, and n1+m+1, respectively. Finally, we arbitrarily label
the vertices of Km with k1, k2, . . . , km; note that in our conventional labelling scheme, these
vertices correspond to n1 + 1, n1 + 2, . . . , n1 +m.

We now describe the process of removing edges in Algorithm 2. Where the proof for
paths started by looking at induced P2 subgraphs and adding an edge to it, this process
starts with an induced K3 subgraph and removes an edge.

Algorithm 2 Removing edges from a single clique-blowup.

Require: H = G
L1 ← ∅
for i = (1, . . . ,m− 1) do

e1 ← (b2, ki)
e2 ← (b2, ki+1)
Add XH +XH−e1−e2 = XH−e1 +XH−e2 to L1

H ← H − e1
end for

First, note that in each step of Algorithm 2, H − e1 is isomorphic to H − e2, as e1 and
e2 are edges adjacent to a clique. Furthermore, note that when i > 1, H − e1 in step i is
isomorphic to H − e1 − e2 in step i− 1, as both are missing the same number of edges from
b2 to the clique. Lastly, note that in the final step of the for loop, H − e1− e2 is the disjoint
union of a lollipop and a path, both of which are known to be e-positive (see the first three
lines of Figure 3.1).

Combining all of this, we find L1 to be the following system of linear equations:

A′
m−1x = b ⇐⇒


1 −2 1

1 −2 1
. . .

1 −2 1
1 −2



XP1n1 ,m,1n2

X
P

(1)

1n2 ,m,1n1

...
X

P
(m−1)

1n2 ,m,1n1

 =


0
...
0

−XLm+1,n1−1XPn2


m− 2

where A′
m−1 is a (m− 1)×m matrix. Note that XLm+1,n1−1⊔Pn2

= XLm+1,n1−1XPn2
.

After removing edges, we then add edges from b′1 to Km using a nearly identical method
to that used in the argument for paths. Let km be the vertex adjacent to b2 at the end of
Algorithm 2. Furthermore, note that the subgraph induced by {b1, k1, . . . , km−1} is a clique.
Then, continuing from the end of Algorithm 2, we apply Algorithm 3:
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Algorithm 3 Adding edges in a single clique-blowup of a path.

Require: H = P
(m−1)
1n1 ,m,1n2

L2 ← ∅
for i = 1, . . . ,m− 1 do

e1 ← (b′1, b1)
e2 ← (b′1, ki)
Add XH +XH−e1+e2 = XH−e1 +XH+e2 to L1

H ← H + e2
end for

We now note some important facts about Algorithm 3. Firstly, since {b1, k1, . . . , km−1}
induces a clique, H is isomorphic to H − e1+ e2 at each step in the algorithm. Furthermore,
when i > 1, H − e1 in step i is isomorphic to H in step i − 1, as both are missing the
same number of edges from b′1 to the clique. Additionally, note that in the first step of the
algorithm, H− e1 is the disjoint union of a lollipop and a path. Finally, note that in the last
step of the algorithm, H + e2 is a single clique-blowup of the same path with the clique in a
different place, namely P1n1−1,m,1n2+1 (see the last three lines of Figure 3.1).

Let G = P
(m−1)
1n2 ,m,1n1 . Combining all the information above, we find L2 to be the following

system of linear equations:

Dm−1x = b ⇐⇒


2 −1
−1 2 −1

. . .

−1 2 −1
−1 2





X
P

(m−1)

1n1−1,m,1n2+1

X
P

(m−2)

1n1−1,m,1n2+1

X
P

(m−3)

1n1−1,m,1n2+1

...
X

P
(1)

1n1−1,m,1n2+1


=


XLm+1,n2

XPn1−1

0
...
0

XP
1n1−1,m,1n2+1


m− 3

Note that X
P

(m−1)

1n2 ,m,1n1

= X
P

(m−1)

1n1−1,m,1n2+1
. Then, by combining L1 and L2 we obtain the

desired result.

For an example of the process explained in the previous proof, see Figure 3.1. This figure
visually represents the following system of equations obtained from this process with initial
graph P12,4,13 :
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XP12,4,13
+X

P
(2)

13,4,12
= 2X

P
(1)

13,4,12

X
P

(1)

13,4,12
+X

P
(3)

11,4,14
= 2X

P
(2)

13,4,12

X
P

(2)

13,4,12
+XL5,1XP3 = 2X

P
(3)

11,4,14

2X
P

(3)

11,4,14
= X

P
(2)

11,4,14
+XL5,3XP1

2X
P

(2)

11,4,14
= X

P
(1)

11,4,14
+X

P
(3)

11,4,14

2X
P

(1)

11,4,14
= X

L
(1)
6,3

+X
P

(2)

11,4,14

Note that P
(3)

11,4,14 is isomorphic to P
(3)

13,4,12 ; for consistency, we use only the former both here
and in Figure 3.1, but in practice we use them interchangeably.

Now that we have obtained a system of equations for SCBPs, we need to extract their
e-basis expansion. To do so, we begin by obtaining some interesting intermediary results
using some ideas from linear algebra. Recall the definition of tridiagonal Toeplitz matrices
from Section 1.2.2. In [26], Meurant describes an equation for the values of the inverse of
tridiagonal Toeplitz matrices. In particular, he proves the following:

Lemma 35. [26, Theorem 2.8] For a tridiagonal Toeplitz matrix Ta with a = 2, we have
that

(Ta)
−1
i,j = i

n− j + 1

n+ 1
.

Using this lemma, we prove the following:

Corollary 36. Let n1, n2 ≥ 1, be integers. For P1n1 ,m,1n2 ,

XP1n1 ,m,1n2
= (m− 1)XLm+1,n2

XPn1−1 − (m− 1)XLm+1,n1−1XPn2
+XP

1n1−1,m,1n2+1 (3.2)

Furthermore, for P
(k)
1n1 ,m,1n2 with 1 ≤ k ≤ m− 2,

X
P

(k)

1n1 ,m,1n2

=
m− k

m
XP1n1 ,m,1n2

+
k

m
XLm+1,n2−1XPn1

(3.3)

Proof. We begin by finding Mm−1, the inverse of the matrix from Corollary 34:

Mm−1 =

[
Am−1 Bm−1

0m−1 Dm−1

]−1

.

Using the block matrix inversion formula from Lemma 11, we rewrite Mm−1 as

Mm−1 =

[
A−1

m−1 0
0 D−1

m−1

] [
I −Bm−1D

−1
m−1

0 I

]
.

35



8 91

53

2

4 6

7
+
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+
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3 5

6
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7
+
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4 5
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6



2
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1
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6
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1
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6
+

3

2 6

4 5

7 8 91

2
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42

1

3 5

6

 =
7 8 9
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1

3 5

6
+

7 8 9

42

1

3 5

6

2
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42

1

3 5

6

 =
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42

1
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6
+

7 8 9

42

1

3 5

6

Figure 3.1: A visual representation of the process described in the proof of Corollary 34 with
initial graph P12,4,13 . The first three lines show Algorithm 2 and the last three lines show
Algorithm 3.
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Now, note that the inverse of Am−1 is the matrix

A−1
m−1 =


1 2 3 . . . m− 1
0 1 2 . . . m− 2

. . .

0 0 0 . . . 1


.

We can verify this by consideringA−1
m−1Am−1. Clearly, the resulting matrix is upper triangular

with 1’s along the diagonal. Now note that for any positive integer x, (x−1)−2x+(x+1) = 0,
so A′

m−1Am−1 has only 0’s above the diagonal.

Moreover, note that Dm−1 is the (m−1)×(m−1) tridiagonal Toeplitz matrix with a = 2.

So, by Lemma 35, when j ≥ i, (Dm−1)
−1
i,j = i(m−j)

m
; otherwise when j < i, j(m−i)

m
. Hence,

−Bm−1D
−1
m−1 =


0 0 . . . 0

. . .

−1 0 . . . 0
2 0 . . . 0




m−1
m

m−2
m

. . . 1
m

m−2
m

2m−2
m

. . . 2
m

. . .
1
m

2
m

. . . m−1
m

 =


0 0 . . . 0

. . .

0 0 . . . 0

− (m−1)
m

− (m−2)
m

. . . − 1
m

2 (m−1)
m

2 (m−2)
m

. . . 2 1
m


Thus,

Mm−1 =

[
A−1

m−1 0
0 D−1

m−1

] [
I −Bm−1D

−1
m−1

0 I

]
=

[
A−1

m−1 Em−1

0 D−1
m−1

]
,

where

Em−1 =


m−1
m

(2(m− 1)− (m− 2)) m−2
m

(2(m− 1)− (m− 2)) . . . 1
m
(2(m− 1)− (m− 2))

m−1
m

(2(m− 2)− (m− 3)) m−2
m

(2(m− 2)− (m− 3)) . . . 1
m
(2(m− 2)− (m− 3))

. . .
m−1
m

(4− 1) m−2
m

(4− 1) . . . 1
m
(4− 1)

m−1
m

(2) m−2
m

(2) . . . 1
m
(2)



=


m− 1 m− 2 . . . 1

(m− 1)m−1
m

(m− 1)m−2
m

. . . (m− 1) 1
m

. . .

3m−1
m

3m−2
m

. . . 3 1
m

2m−1
m

2m−2
m

. . . 2 1
m


.

Multiplying Mm−1 on the left to both sides of (3.1), we obtain (3.2). To obtain (3.3),
notice that after this multiplication, we obtain the equation

X
P

(k)

1n2 ,m,1n1

= (m−k)(m− 1)

m
XLm+1,n2

XPn1−1−(m−k−1)XLm+1,n1−1XPn2
+
m− k

m
XP

1n1−1,m,1n2+1

But notice that XP
1n1−1,m,1n2+1 = XP

1n2+1,m,1n1−1 . Applying (3.2) and relabelling, we obtain

(3.3).
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While this matrix is inverse positive, that alone does not suffice in proving the e-positivity
of single clique-blowups of paths. This is because the linear equation found in Theorem 34
contains a negative on the right hand side of the equation. Therefore, we must directly
examine the formulae we obtained to deduce the desired e-basis expansion.

Theorem 37. The chromatic symmetric functions of single clique-blowups of a path are
e-positive. Furthermore, the e-basis expansion of the CSF of a SCBP is

XP1n1 ,m,1n2
= m!

[
m

(m+ n1)!
XLm+n1+1,n2−1 +XPn1+n2−1em+1

+

n1−1∑
k=1

m− 1

(m+ k)!
XPn1−k

XLm+k+1,n2−1
+ (n1 − k + 1)XPn2+k−1

em+n1−k+1

]
(3.4)

Proof. Let G = P1n1 ,m,1n2 and assume without loss of generality that n1 ≤ n2. First, note
that when n1 < 2, P1n1 ,m,1n2 is either a lollipop graph (n1 = 0) or a melting lollipop graph
(n1 = 1), which we know to be e-positive.

To begin, let G+
k = Lm+1,n2+k−1 ⊔Pn1−k and G−

k = Lm+1,n1−k ⊔Pn2+k−1. Consider first G
where n1 = 2. Applying Corollary 36 to such a G, we obtain the equation

XG = (m− 1)XG+
1
− (m− 1)XG−

1
+XP

11,m,1n2+1 .

Notice that P11,m,1n2+1 = L
(1)
m+2,n2

, a melting lollipop graph. Therefore, for G with n1 ≥ 2,
recursively applying Corollary 36 will terminate, and we obtain the following equation:

XG = X
L
(1)
m+2,n1+n2−2

+ (m− 1)

n1−1∑
k=1

XG+
k
−XG−

k
(3.5)

Note that 1 ≤ k ≤ n1−1, since we remove a vertex from the shorter side each time, meaning
k = n1 − 1 corresponds to only one vertex left. From here, it suffices to show that each
instance of G−

k cancels with something in the positive terms.

To begin, we write out the chromatic symmetric functions in more explicit terms. Using
Theorem 33, we find that

XG−
k
= m!XPn2+k−1

[
(m+ n1 − k + 1)em+n1+1−k +

n1−k−1∑
i=0

(m+ i)XPn1−k−i
em+i+1

]
(3.6)

XG+
k
= m!XPn1−k

[
(m+ n2 + k)em+n2+k +

n2+k−2∑
i=0

(m+ i)XPn2+k−i−1
em+i+1

]
(3.7)

X
L
(1)
m+2,n1+n2−2

= m(m!)

[
(m+ n1 + n2)em+n1+n2 +

n1+n2−3∑
i=0

(m+ i+ 1)XPn1+n2−2−i
em+i+2

]
+m!XPn1+n2−1em+1 (3.8)
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From here, it is just a matter of ensuring that every term in each instance of XG−
k
cancels

out. First, consider the XPn2+k−1
em+n1+1−k term from (3.6). In (3.5), each XG−

k
will contain

this term with coefficient −m!(m−1)(m+n1+1−k) = −m!(m2+(m−1)n1−(m−1)k−1).
Now consider the sum in (3.8) and note that when i = n1− k− 1, we obtain this same term
with coefficient m!m(m + n1 − k) = m!(m2 +mn1 −mk) in (3.5). Additionally, note that
since i is dependant on k, this term in each XG−

k
corresponds to a unique term in the sum

from (3.8). Adding these two coefficients together, we obtain m!(n1 − k + 1). But since
k ≤ n1 − 1, n1 − k + 1 ≥ 2 and hence the negative occurrences of this term in XG−

k
cancel

out. This leaves the following from X
L
(1)
m+2,n1+n2−2

in the e-basis expansion:

m!

[
m

(
(m+ n1 + n2)em+n1+n2 +

n1+n2−3∑
i=n1−1

(m+ i+ 1)XPn1+n2−2−i
em+i+2

)

+ XPn1+n2−1em+1 +

n1−1∑
k=1

(n1 − k + 1)XPn2+k−1
em+n1−k+1

]

Reindexing the sum across i in this equation, we find that

n1+n2−3∑
i=n1−1

(m+ i+ 1)XPn1+n2−2−i
em+i+2 =

n2−2∑
j=0

(m+ n1 + j)XPn2−j−1
em+n1+j+1

Notice that this reindexed sum combined with the em+n1+n2 term produces the e-basis ex-
pansion of a lollipop graph. Hence, we find that after cancelling the corresponding negative
terms from each XG−

k
, the e-basis expansion of X

L
(1)
m+2,n1+n2−2

is

m!

[
m

(m+ n1)!
XLm+n1+1,n2−1 +XPn1+n2−1em+1 +

n1−1∑
k=1

(n1 − k + 1)XPn2+k−1
em+n1−k+1

]
(3.9)

Now consider the sum in (3.6). Note that the ith term of this sum in each XG−
k

is

XPn2+k−1
XPn1−k−i

em+i+1 with coefficient −m!(m − 1)(m + i) in (3.5). Now, from (3.7), we

see that the ith term of the sum in XG+
k+i

is XPn2+k−1
XPn1−k−i

em+i+1 with coefficient m!(m−
1)(m + i) in (3.5). As such these terms cancel out and we need only confirm that each
term appearing with a negative coefficient in XG−

k
also appears with a positive coefficient

in XG+
k+i

. First note that since k + i ≤ k + (n1 − k − 1) = n1 − 1, the needed XG+
k+i

will

always appear in (3.5). Moreover, note that the terms required for cancelling out in each
XG+

k+i
are the first k terms of the sum. From (3.7), the sum has n2 + k − 1 terms, so since

n2 ≥ n1 ≥ 2, the sum will always have at least k+ 1 terms. Hence, for each XG−
k
, the terms

in the sum will always cancel out. This leaves the following from the sum of all XG+
k
in the

e-basis expansion:

m!(m− 1)

n1−1∑
k=1

Pn1−k

(
(m+ n2 + k)em+n2+k +

n2+k−2∑
i=k

(m+ i)XPn2+k−i−1
em+i+1

)
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Reindexing the sum across i in this equation, we find that

n2+k−2∑
i=k

(m+ i)XPn2+k−i−1
em+i+1 =

n2−2∑
j=0

(m+ k + j)XPn2−j−1
em+k+j+1

Notice that this reindexed sum combined with the em+n2+k term produces the e-basis ex-
pansion of a lollipop graph. Hence, we find that after cancelling the corresponding negative
terms from each XG−

k
, the e-basis expansion of each XG+

k
is

m!

n1−1∑
k=1

m− 1

(m+ k)!
Pn1−kLm+k+1,n2−1 (3.10)

Hence, all terms with negative coefficients in XG cancel out and SCBPs are e-positive.
Moreover, we obtain the e-basis expansion for SCBPs by taking the sum of (3.9) and (3.10).

Note that the e-basis expansion of SCBPs can nearly be expressed in one sum from k = 0
to n1, but there is a slight difference in coefficients that prevents this.

While this result is not obvious from (3.2) alone, the proof relies solely on algebra and
known e-basis expansions for the required graphs. In summary, once a linear equation has
been obtained, this method allows us to prove the e-positivity of the graph of interest using
algebra alone. Furthermore, it allows us to obtain an equation for the intermediary graphs,
in this case being the melting SCBPs, which were not previously known to be e-positive.

Corollary 38. All melting SCBPs are e-positive.

Proof. Follows directly from Corollary 36 and Theorem 37.

3.3 Double Clique-Blowups of Paths

As we explained in Section 3.1, a large number of clique-blowups of paths are known to be e-
positive. It remains to extend this result to the case where blown-up vertices are adjacent. As
such, we focus the rest of this thesis on finding results on adjacent clique-blowups, beginning
here with double clique-blowups of paths.

Theorem 39. Let m1,m2 ≥ 2 and n1, n2 ≥ 1 be positive integers. We can obtain a linear
equation including P1n1 ,m1,m2,1n2 of the form


XP1n1 ,m1,m2,1

n2

X
P

(1)

1n1 ,m1,m2,1
n2

...
X

P
(m1−2)

1n1 ,m1,m2,1
n2

 =


1 2 3 · · · m1 − 1
0 1 2 · · · m1 − 2

. . .

0 0 0 · · · 1





0
0
...
0

−X
P

(m1−1)

1n2 ,m1+m2−1,1n1+1

2X
P

(m1−1)

1n2 ,m1+m2−1,1n1+1
−X

L
(m1)
m1+m2+1,n2−1

XPn1
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Therefore,

XP1n1 ,m1,m2,1
n2

= m1XP
(m1−1)

1n2 ,m1+m2−1,1n1+1
− (m1 − 1)X

L
(m1)
m1+m2+1,n2−1

XPn1
(3.11)

and

X
P

(k)

1n1 ,m1,m2,1
n2

= (m1 − kX
P

(m1−1)

1n2 ,m1+m2−1,1n1+1
− (m1 − k − 1)X

L
(m1)
m1+m2+1,n2−1

XPn1
(3.12)

= P1n1 ,m1,m2,1n2 − k

(
X

P
(m1−1)

1n2 ,m1+m2−1,1n1+1
−X

L
(m1)
m1+m2+1,n2−1

XPn1

)
(3.13)

Proof. We begin by describing the process used to obtain this linear equation in Algorithm
4.

Algorithm 4 Removing edges in a double clique-blowup of a path.

Require: G = P1n1 ,m1,m2,1n2

L← ∅
for i = 1, . . . ,m1 − 1 do

e1 ← (n1, n1 + i)
e2 ← (n1, n1 + i+ 1)
Add XG +XG−e1−e2 = XG−e1 +XG−e2 to L1

G← G− e1
end for

In this algorithm, we obtain a linear equation by recursively applying the triple deletion
property (Theorem 10) with a fixed edge (i, i + 1) (and hence swapping edges (n1, i) and
(n1, i + 1) with each other) where n1 < i < n1 + m1 and i = n1 + 1 initially. In less
precise terms, we use the triple deletion property to remove edges from the leftmost path
to the clique Km1 until there are no more edges left. Now, notice that the graph obtained
by removing all but one of these edges is a melting SCBP and furthermore that the graph
obtained by removing all of these edges is the disjoint union of a path and a melting lollipop
graph (see Figure 3.2) for an example of this). Doing so, we obtain the following linear
equation:


1 −2 1

1 −2 1
. . .

1 −2
1



XP1n1 ,m1,m2,1

n2

X
P

(1)

1n1 ,m1,m2,1
n2

...
X

P
(m1−2)

1n1 ,m1,m2,1
n2

 =



0
0
...
0

−X
P

(m1−1)

1n2 ,m1+m2−1,1n1+1

2X
P

(m1−1)

1n2 ,m1+m2−1,1n1+1
−X

L
(m1)
m1+m2+1,n2−1

XPn1


From here, recall that we found the inverse of the leftmost matrix in the proof of Corollary

36. Multiplying both sides of this linear equation by this inverse, we obtain the desired
result.
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Figure 3.2: P
(4)

12,5,3,12 (left) and P
(4)

12,7,13 (right). Since the two cliques in the melting DCBP are
complete to one another, we can combine them into one clique to obtain a melting SCBP.
Furthermore, notice that when we remove the edge (2, 3) from both figures, we find that

P
(5)

12,5,3,12 and L9,1 ⊔ P2 are isomorphic, as desired.

For an example of the process described in Algorithm 4, see Figure 3.3. This process
visually represents the following system of equations obtained by applying this Algorithm to
the graph P12,5,3,12 :

XP12,5,3,12
+X

P
(2)

12,5,3,12
= 2X

P
(1)

12,5,3,12

X
P

(1)

12,5,3,12
+X

P
(3)

12,5,3,12
= 2X

P
(2)

12,5,3,12

X
P

(2)

12,5,3,12
+X

P
(4)

12,7,13
= 2X

P
(3)

12,5,3,12

X
P

(3)

12,5,3,12
+X

L
(5)
9,1
XP2 = 2X

P
(4)

12,7,13

Now, combining Theorems 37 and 39, we are able to prove that DCBPs are e-positive.

Theorem 40. DCBPs are e-positive.

Proof. First note that from [4], non-adjacent clique-blowups of paths are e-positive, so we
need only consider the case where cliques are adjacent. As such, we consider cases of the
form P1n1 ,m1,m2,1n2 . First note that if either n1, n2 = 0, P1n1 ,m1,m2,1n2 is a melting lollipop
and thus e-positive. Additionally, if either m1,m2 = 1, P1n1 ,m1,m2,1n2 is a SCBP and thus
e-positive. Hence, consider P1n1 ,m1,m2,1n2 for n1, n2 ≥ 1 and m1,m2 ≥ 2.

From Theorem 39, we know that

XP1n1 ,m1,m2,1
n2

= m1XP
(m1−1)

1n2 ,m1+m2−1,1n1+1
− (m1 − 1)X

L
(m1)
m1+m2+1,n2−1

XPn1

As we know that SCBPs, melting lollipop graphs, and paths are e-positive, we need only
ensure that the negative term in this process cancels. Applying Theorem 33, we find that
the negative term can be written as

(m1 − 1)X
L
(m1)
m1+m2+1,n2−1

XPn1

= (m1 − 1)XPn1

(
m2

m1 +m2

XLm1+m2+1,n2−1 +m1(m1 +m2 − 1)!XPn2
em1+m2

)
(3.14)
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Figure 3.3: A visual representation of the process described in Algorithm 4 starting with the
graph P12,5,3,12 .
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We can also use Corollary 36 to rewrite the positive term of this equation:

m1XP
(m1−1)

1n2 ,m1+m2−1,1n1+1
=

m1

m1 +m2 − 1

(
m2XP

1n2 ,m1+m2−1,1n1+1 + (m1 − 1)XLm1+m2,n1
XPn2

)
(3.15)

We first consider the term XPn1
XPn2

em1+m2 from 3.14; note that this term has coefficient
(m1 − 1)m1(m1 +m2 − 1)!. From 3.15, note that we have the term

XLm1+m2,n1
XPn2

= XPn2
(m1 +m2 − 1)!(m1 +m2 + n1)em1+m2+n1

+XPn2
(m1 +m2 − 1)!

n1−1∑
i=0

(m1 +m2 + i− 1)XPn1−i
em1+m2+i

after applying Theorem 33. When i = 0 in the sum of this expansion, we get the term
XPn2

XPn1
em1+m2 with coefficient (m1−1)m1(m1+m2−1)!. Hence this term with a negative

coefficient cancels out.

Now consider the term XPn1
XLm1+m2+1,n2−1 from 3.15; note that this term has coefficient

(m1−1)m2

m1+m2
. Now consider SCBP term from 3.15. Note that we can swap the placement of n2

and n1 + 1 and obtain a graph that is isomorphic. We expand out this term after swapping
using Theorem 37:

XP
1n1+1,m1+m2−1,1n2

= (m1 +m2− 1)!

(
m1 +m2 − 1

(m1 +m2 + n1)!
XLm1+m2+n1+1,n2−1 +XPn1+n2

em1+m2

+

n1∑
k=1

m1 +m2 − 2

(m1 +m2 + k − 1)!
XPn1−k+1

XLm1+m2+k,n2−1
+ (n1 − k + 2)XPn2+k−1

em1+m2+n1−k+1

)

When k = 1, notice that we get the termXPn1
XLm1+m2+1,n2−1 with coefficient m1m2(m1+m2−2)

(m1+m2−1)(m1+m2)
.

Finally, note that

m1m2(m1 +m2 − 2)

(m1 +m2 − 1)(m1 +m2)
− (m1 − 1)m2

m1 +m2

=
m2

m1 +m2

(
m2

1 +m1m2 − 2m1

m1 +m2 − 1
− (m1 − 1)

)
=

m2(m2 − 1)

(m1 +m2)(m1 +m2 − 1)

Thus, the negative instance of this term cancels out and P1n1 ,m1,m2,1n2 is e-positive.
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Chapter 4

Conclusion and Future Works

There are a few aspects of this method that would seem to be very useful in determining
e-positivity and e-basis expansions of certain graphs. Firstly, adjacency diagrams are very
useful in finding the algorithms used throughout this paper. It would be useful to generalize
a few of the properties that these diagrams hold to expand their usefulness in these cases–in
particular, determining what different graph structures look like in adjacency diagrams. A
more clear determination of how the triple-deletion property applies to these diagrams would
make them much more usable as well.

In general, this method is held back a bit by the arithmetic required to find e-basis
expansions and the difficulty in determining how and where to apply the triple deletion
property. As such, a generalization of the ways and places one can add and remove edges and
develop an algorithm would make this method a lot faster. Furthermore, a characterization
of the graphs and structures that this method is applicable to would help with scaling up
the method to larger classes of graphs. In particular, determining the structures that result
in isomorphic graphs when swapping two edges.

The results about DCBPs point to many potential future directions. Firstly, the most
obvious thing to do is to find the precise formula for DCBPs with adjacent cliques and
then expand this to a general e-basis expansion for all DCBPs. While there is an e-basis
expansion implicitly found from the process we describe, a more general formula would more
difficult to develop. There is most likely a different formula for DCBPs with non-adjacent
clique-blowups than the one found from DCBPs with adjacent cliques and a new process
would need to be found to discover the expansion for the non-adjacent case. This could
likely be achieved by applying modified versions of Algorithms 2 and 3 to the non-adjacent
cases and inducting on the length of one of the paths.

Once these expansions have been discovered, this process could most likely be expanded
to 3-clique-blowups of paths (3CBPs) and beyond. We predict that a proof for 3CBPs could
be discovered in the following way: as we know from [4], 3CBPs with non-adjacent cliques
are e-positive, we need only consider the cases with adjacent cliques. First, consider the case
where the blown-up vertices are an endpoint and two adjacent vertices and use induction
on the size of the endpoint clique to prove e-positivity. Then, consider the case where the
blown-up vertices are two adjacent vertices and one vertex not adjacent to either of these
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vertices. Applying an adjusted version of Algorithms 2 and 3 to this non-adjacent clique
and performing induction on the length of the path to the endpoint to produce this result.
The case where all three blown-up vertices are adjacent will likely require a different method
all together, but the most probably case is performing induction on one of the outer cliques
and removing edges from one of the vertices to the inner clique. A similar kind of process
could be used to expand this to 4-clique-blowups of paths, which would hopefully expand to
a more general version of this process.

Another potential method that would expand these findings would be to prove the ap-
pendable (e)-positivity of adjacent DCBPs. In particular, a proof for the appendable (e)-
positivity of P1,m1,m2,1 (that is, where n1 = n2 = 1) would allow one to prove the e-positivity
of a great deal of clique-blowups of paths. It is unlikely that this process itself would allow
for such a proof, but it would likely generalize to the appendable (e)-positivity of larger
adjacent clique-blowups which would, in general, help the proof for clique-blowups of paths
quite a bit.
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