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Abstract

Partitioning precipitation into rain or snow is an important aspect of hydrologic and

climatological modelling, affecting a wide variety of downstream processes (Harpold et al.,

2017). Current conventional methods typically rely on surface temperature, either as a

strict threshold or to inform a probability function which predicts a 0% chance of rain

at one temperature to 100% chance of rain at another (Jennings et al., 2019, Feiccabrino

et al., 2015). However, recent studies have shown that variables such as wind, pressure,

humidity, and atmospheric profiles of temperature can all have a significant effect on pre-

cipitation phase at the surface (Wang et al., 2019, Sims and Liu, 2015, Jennings et al.,

2018). This study utilized CloudSat data of precipitation phase and associated environ-

mental variables ground-truthed at ECCC stations across Canada to build an improved

statistical parameterization of precipitation phase. Our results showed that using a ran-

dom forest model with atmospheric profiles of wetbulb temperature in addition to surface

wetbulb temperature, elevation, and wind resulted in a probability of detection of 97.8%

across the -1, 4°C temperature interval, compared to a probability of detection of below

80% across the same interval for conventional methods. The random forest parameteri-

zation was also spatially robust, performing well on stations it had not been trained on.

Additionally, adding Sturm’s snow classes as an indicator variable to the model did not

result in any significant improvement, indicating that a model trained on all available data

is adequately able to capture spatial variability in rain-snow partitioning across the study

area.
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Chapter 1

Introduction

Precipitation phase partitioning, the separation of precipitation into rain or snow, is an im-

portant aspect of hydrologic and climatological modelling and inaccurate methods can lead

to biases in estimates of SWE and snow depth and errors in streamflow, soil moisture, and

land-atmosphere energy and water exchanges [Jennings et al., 2018, Wang et al., 2019].

Outside of the tropics, precipitation typically starts out as solid and its phase at the surface

is determined by the properties of the atmosphere through which it passes as well as those

of the hydrometeor itself [Harder and Pomeroy, 2013]. Conventional methods, which typi-

cally only incorporate ambient air temperatures at the surface, have been found to be inad-

equate at expressing the complex environmental factors which contribute to precipitation

phase at the surface [Harpold et al., 2017, Harder and Pomeroy, 2013, Wang et al., 2019].

Previous research has indicated that incorporating a comprehensive set of environmen-

tal and spatial variables is an essential step for the creation of improved precipitation phase

models [Harpold et al., 2017]. This first requires an understanding of the physical and spa-

tial factors which influence the temperature at which the 50/50 rain-snow threshold occurs

and the ability to incorporate this information into a parameterization which can accu-

rately predict precipitation phase. In doing so, this will provide more realistic conditions

for climate and hydrologic models and reduce bias in estimations of precipitation related

factors such as snow depth and SWE.
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This section will summarize previous research as it pertains to the classification of

precipitation phase and the influence of various factors, both environmental and spatial,

which can impact precipitation phase. It will focus on empirical estimation of precipitation

phase, as that is where research is most needed in order to improve climate and hydrologic

model outputs. The goal of this is to support our work on applying this knowledge to

create a phase partitioning model which can be integrated into more general climate and

hydrologic models.

1.1 Importance of Accurate Precipitation Phase Par-

titioning

While the 0°C mark is generally thought of as the point at which frozen precipitation melts,

this threshold can vary depending on a variety of other factors, meaning that using a simple

0°C threshold is rarely accurate for precipitation phase partitioning [Harpold et al., 2017].

In reality, the phase of precipitation reaching the surface can be influenced by atmo-

spheric conditions such as wind speed, humidity, the presence of inversions, lapse rate,

and velocity of the hydrometeors [Feiccabrino et al., 2015]. This creates a high degree of

uncertainty around the temperature at which the 50/50 rain-rain snow threshold occurs,

with a reduction in skill across all methods in the range of -3C – 5C [Froidurot et al., 2014,

Jennings et al., 2018].

Comparative studies of precipitation phase partitioning methods have shown that the

selection of methods can significantly influence SWE and snow depth estimates. These

uncertainties hold true across hydrological models. Comparisons between different phase

partitioning methods using the Cold Regions Hydrological Model have shown that using

an ambient temperature-based method can produce uncertainties in peak SWE of up to

160mm at the same site. In contrast, using a method which incorporates humidity can re-

duce these uncertainties, particularly in high elevation regions [Harder and Pomeroy, 2014].

Similarly, comparisons of the performance of wet bulb and ambient temperature thresh-

olds ran using the Noah-MP Land Surface Model (LSM) found that the use of wet bulb
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temperature reduced bias in SWE estimates by 11.8% and 10.4% over the elevation ranges

of 1,500-2,000m and 2,000-2,500m, respectively [Wang et al., 2019]. Finally, comparisons

of a variety of methods ranging from simple thresholds to logistic regression results in

the SNOWPACK model showed that the 0°C static temperature threshold and -0.5°C to

0.5°C ranged temperature threshold tended to underpredict snow accumulations while the

2°C and 3°C thresholds overpredicted it. The binary logistic regression, which incorporated

both temperature and relative humidity, performed the best [Jennings and Molotch, 2019].

Accurate snowfall monitoring is especially important in cold countries such as Canada

where a significant portion of precipitation falls as snow. In particular, predicting the frac-

tion and conditions under which precipitation falls as snow is important for environmental

modelling, snowpack monitoring, and flood forecasting [McAfee et al., 2014, Dai, 2008].

Changing rain/snow fraction can result in changes to snowpack and streamflow dynam-

ics, affecting water availability for ecosystems and society [Harder and Pomeroy, 2014,

Harpold et al., 2017]. Figure 1.1 illustrates how overpredicting the rain and snow por-

tion in models can affect model predictions of the timing and magnitude of peak flow. As

cold regions often rely on water stored as snowpack higher amounts of rain will result in a

lowered water budget, increasing the likelihood of drought. Obtaining accurate estimates

of snowpack, and by proxy snowfall, is important for water resource managers, agriculture,

and wildfire prediction [Harpold et al., 2017].

1.2 Conventional Phase Partitioning Methods

Currently, there are a few different conventional methods for assessing precipitation phase,

both by observation and empirically. While hydrologic and climate models rely on empirical

phase partitioning methods to estimate the amount of precipitation falling as either rain or

snow, it is important that these methods are tested against in-situ observations in order to

ensure their accuracy. In turn, it is necessary to consider the strengths and weaknesses of

in-situ observations to assess their suitability for the ground truthing of empirical methods.

One of the most common and well-established methods is the collection of in-situ ob-
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Figure 1.1: Precipitation phase has numerous implications for modeling the magnitude,

storage, partitioning, and timing of water inputs and outputs. Potentially affecting impor-

tant ecohydrological and streamflow quantities important for prediction. (Harpold et al.,

2017)
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servations from human observers, such as those stationed at manual stations or citizen

scientists [Kodamana and Fletcher, 2021]. This data is generally well trusted and seen

as valuable for snow-related studies but suffers issues such as the ability of observers to

discern precipitation types in low-light conditions, a lack of observations in remote areas,

and the difficulty in identifying mixed phase events [Harpold et al., 2017]. However, the

difficulty of collecting in-situ observations is especially apparent in sparsely populated ar-

eas such as Northern Canada, where despite the importance of precipitation monitoring

in the region the remoteness provides a major challenge for researchers. To get around

this and other issues associated with human observations, remote sensing is also often used

to detect precipitation phase [Harpold et al., 2017]. While this method still requires some

degree of validation, it has been shown to be able to accurately assess precipitation phase

with a high degree of accuracy [Kodamana and Fletcher, 2021]. In high latitude regions

CloudSat has also been shown to be particularly suited to capturing snowfall related data

due do its spatial coverage in higher latitudes and high sensitivity of the W-band CPR

[Tang et al., 2017]

While satellite and ground-based radar is a valuable tool in retrieving precipitation

estimates, instrumental and environmental factors can reduce its accuracy. For instance,

attenuation from water vapour and hydrometeors can cause errors in CloudSat retrievals.

Additionally, the accuracy of retrievals is significantly reduced in the bottom two kilometers

of the atmosphere due to surface clutter caused by the interaction of the radar pulses

with the surface [Kodamana and Fletcher, 2021, Harpold et al., 2017] To alleviate this,

data from the bottom two kilometers is often cut out of analysis, which can create some

inaccuracy in phase estimation of hydrometeors in this area. Mountainous regions in

particular are vulnerable to this issue as inversions are common in these areas, meaning that

hydrometeors can melt or refreeze relatively close to the surface [Feiccabrino et al., 2015].

Algorithmic precipitation partitioning using a temperature threshold is often used

in modeling applications. There are a few common methods for estimating the prob-

ability of precipitation falling as either rain or snow, including a static threshold, lin-

ear transition, minimum and maximum temperature, or as a sigmoidal curve [Dai, 2008,

Harpold et al., 2017, Wang et al., 2019]. A static threshold presumes that all precipita-
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tion occurring above a certain temperature is rain while all the precipitation occurring

below said temperature is snow. This method ignores the occurrence of events such as

mixed-phase precipitation [Kienzle, 2008]. A more in-depth approach involves the use of

some probability function of precipitation phase that represents the probability of precipi-

tation falling as snow from 0% at some temperature to 100% at another temperature. This

probability function can either be linear or sigmoidal and is typically centered on the 0°C
threshold [Dai, 2008, Wang et al., 2019]. In general, static threshold produce the highest

error while sigmoidal relationships produced the lowest error [Harpold et al., 2017].

Modelling climate in complex terrain has always presented a major challenge to re-

searchers and precipitation phase partitioning is no exception. Rain-snow transitions are

widely variable across mountain terrain and temperature and humidity gradients along

mountain slopes are poorly understood [Marks et al., 2013]. For instance, cold air damming

caused by topographic barriers can create inversions and cause previously melted hydrom-

eteors to partially or fully refreeze before reaching the ground [Feiccabrino et al., 2015].

Uncertainties are exacerbated due to the fact that networks of meteorological stations are

often sparse in mountain areas and the ability of vertically pointing ground-based radar to

retrieve data is significantly reduced due to the presence of physical barriers This creates

a particular issue for regions that rely on water stored as snowpack in mountains, as it can

lead to higher levels of error in SWE estimation [Harpold et al., 2017].

In order to address the shortcomings of current precipitation phase partitioning meth-

ods, a variety of new techniques have been introduced. These typically focus on the use

of multivariate models in the form of a regression or machine learning model instead of

a single or dual value ambient air temperature threshold [Jennings and Molotch, 2019].

The ability of these models to integrate multiple variables has made them a powerful al-

ternative to conventional methods, though they are not yet commonly used operationally

[Harpold et al., 2017].
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1.3 Variables Relevant to Precipitation Phase

The state of the atmosphere is a major control on precipitation phase at the surface

[Harpold et al., 2017]. A melting layer in the atmosphere, where ambient temperatures

are above 0◦C, must be of adequate size for precipitation to fully melt as it falls through

in order to produce rain. The presence of an inversion, where precipitation falls through a

melting layer and then refreezing layer, can generate freezing rain or sleet at the surface,

Figure 1.2. Atmospheric temperature profiles can also produce mixed-phase precipitation,

where precipitation is partially melted or re-frozen when it reaches the surface. Atmo-

spheric settings with high lapse rates, where temperatures increase rapidly as hydromete-

ors near the surface, mean a smaller melting layer and less opportunity for precipitation

to fully melt before it reaches the surface [Dai, 2008]. If surface conditions in this case

are above 0◦C, surface-based parameterizations might predict rain when precipitation is

falling as snow.

While ambient temperature has traditionally been relied upon for phase partitioning,

recent literature on precipitation phase has revealed a wide variety of complex environ-

mental factors which contribute to phase at the surface. Factors such as humidity, which

influences the energy balance of the hydrometeor, and pressure, which influences the fall

rate of the hydrometeor and therefore the amount of time its spending in an above 0°C
environment, all play a role in shifting the rain-snow threshold [Harpold et al., 2017]. In

addition, the spatial variability of the rain-snow threshold demonstrates the need for in-

creased spatial discrimination in phase partitioning models. It is therefore important to

investigate and quantify the influence of a wide variety of environmental and spatial vari-

ables in order to determine the most effective way to improve precipitation phase models.

A growing body of research has shown that variables which incorporate both tempera-

ture and humidity, such as dewpoint and wetbulb temperature, can provide a far more accu-

rate estimate of precipitation phase [Wang et al., 2019, Harder and Pomeroy, 2013]. Wet-

bulb temperature, approximated by Equation 1.1, defined as the lowest temperature achiev-

able by the evaporation of water, has been found to be especially useful as it the closest

approximation to the actual temperature of the hydrometeor [Harder and Pomeroy, 2013].
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Figure 1.2: Schematic of typical temperature profiles for different precipitation types: (a)

snow, (b) melting/wet snow, (c) ice pellets and (d) freezing rain (all assuming 100% relative

humidity) (Forbes et al., 2014).
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Evaporation and sublimation create latent heat exchanges at the surface of the hydrome-

teor, causing the hydrometeor surface to cool off relative to the ambient air temperature

[Sims and Liu, 2015, Wang et al., 2019]. Unlike similar variables such as dewpoint tem-

perature, approximated here by Equation 1.2 and defined as the temperature at which

air becomes 100% saturated, and relative humidity, which is the percent saturation of

the air, wetbulb temperature provides a direct physical relationship to the phase of the

hydrometeor by taking into account the sensible and latent heat fluxes to its surface

[Harder and Pomeroy, 2013, Lawrence, 2005].

Tw ≈ T ∗ atan(0.152 ∗ (RH + 8.3136)
1
2 ) + atan(T +RH)− atan(RH − 1.6763)

+0.00391838 ∗ (RH)(
3
2
) ∗ atan(0.0231 ∗RH)− 4.686

(1.1)

Td ≈ t− 100−RH

5
(1.2)

Low RH environments facilitate evaporative cooling through latent heat exchange, slow-

ing down the melting of the hydrometeors [Harder and Pomeroy, 2013]. This means that

the lower the RH in a given environment, the higher the rain/snow threshold. As il-

lustrated in Figure 1.3, in observational studies across the Northern Hemisphere a 10%

increase in RH has been associated with a 0.8°C decrease in the 50% rain-snow threshold.

Meaning that at 40%-50% humidity the 50% rain-snow threshold corresponds to approx-

imately 4.5°C whereas the 90%-100% humidity the 50% rain-snow threshold corresponds

to approximately 0.7°C [Jennings et al., 2018]. The influence of humidity on phase is re-

lated to the thermodynamics of the hydrometeor, as hydrometeor energy balance theory

dictates that low RH environments facilitates evaporative cooling through latent heat ex-

change, resulting in precipitation that stays frozen longer in environments above freezing

[Harder and Pomeroy, 2013]. The importance of humidity in phase partitioning has been

demonstrated by multiple studies which show that using a partitioning scheme which in-

corporates humidity related variables such as wetbulb temperature reduces biases in model

outputs. For example, Wang et al. (2019) found that estimating snowfall fraction as a

9



Figure 1.3: Snowfall frequency curves calculated using observations from 11,924 stations

across the Northern Hemisphere (1978–2007). a) Snowfall frequency curves plotted by RH

bin. b) Snowfall frequency curves plotted by Ps bin (Jennings et al., 2018).
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sigmoid function of wetbulb temperature reduced bias in the Noah-MP land surface model

over the Western United States by up to 11.8%.

The contribution of atmospheric humidity is particularly important in high elevation

mountain regions where the average relative humidity is low [Wang et al., 2019, Jennings et al., 2018,

Marks et al., 2013]. Relative to more humid regions, these areas see the greatest underesti-

mation of snow depth when using precipitation phase methods which don’t include humid-

ity related parameters [Wang et al., 2019, Jennings and Molotch, 2019]. As the influence

of evaporative cooling is stronger in these low humidity regions the rain-snow threshold

tends to be higher, meaning that snow will fall at higher temperatures compared to warmer

or more humid areas [Jennings et al., 2018].

As precipitation requires time to melt as it falls through warmer layers in the atmo-

sphere, a quicker fall rate can decrease the chance of it reaching the surface in solid form.

While fall rate is a lesser on influence on precipitation phase relative to humidity, it can

still play a role while also being difficult to quantify [Jennings et al., 2018]. Pressure is

one variable typically used to try and capture the influence of fall rate as hydrometeor

speed decreases with air pressure, meaning that snow falls quicker at lower pressure. This

creates the effect of lower surface pressures being more likely to see snowfall at a given sur-

face temperature, meaning a higher temperature threshold for snow at higher elevations

[Sims and Liu, 2015, Dai, 2008].

The rain/snow threshold demonstrates great variability across space, particularly in

areas of complex terrain and coastal regions [Marks et al., 2013]. For instance, in high

mountain areas the rain/snow threshold has been shown to behave differently relative to

lower elevations due to lower air pressure and humidity [Dai, 2008, Wang et al., 2019].

While spatial variations can often be explained by the variability of moisture, tempera-

ture, and pressure along longitudinal, latitudinal, and elevation gradients, there has been

evidence that there are more complex spatial relationships at play which may not easily

represented by environmental variables alone. The influence of air pressure on precipitation

phase, for example, has been found to be higher at higher elevations [Dai, 2008]. Addition-

ally, satellite retrievals of precipitation phase have been shown to be less accurate at above
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50°N despite experiencing no limitations on sampling with little apparent explanation as

to why [Kodamana and Fletcher, 2021].

Overviews of precipitation phase models have found that certain climate regions show

a higher degree of sensitivity to method selection than others. Across the Northern Hemi-

sphere lower humidity areas, such as the Rocky Mountains in North America and the

Tibetan Plateau in Asia, were found to be most sensitive to method selection when esti-

mating snowfall frequency. In contrast, warm maritime sites have been found to be the

most sensitive to method selection when modelling SWE [Jennings and Molotch, 2019].

This demonstrates the complexity in selecting optimal precipitation phase partitioning

methods when dealing with climatologically complex regions and that any given option

may result in different biases at different sites, indicating the need for acknowledging spa-

tial complexity when modeling precipitation phase.

1.4 Research Gaps and Objectives

There is a major gap between the methods that climate and hydrological models use to

discriminate precipitation phase and the real-world complexity of precipitation phase. A

growing body of literature has shown that the incorporation of humidity-related vari-

ables in particular is a key step in improving precipitation phase partitioning models

[Jennings and Molotch, 2019, Harder and Pomeroy, 2013]. The use of ambient tempera-

ture alone is inadequate as it does not consider the energy balance of the falling precip-

itation, but nevertheless humidity-related variables are rarely considered in precipitation

partitioning methods [Harpold et al., 2017].

This work will build on previous research by using CloudSat-CPR data to train a pre-

cipitation phase partitioning model based on multiple environmental variables. The aim of

this approach is to fill in gaps caused by lack of precipitation phase-related meteorological

data and to address the calls for the creation and validation of phase partitioning models

which utilize multiple environmental variables to improve upon conventional, mainly am-

bient air temperature-based methods. CloudSat-CPR data is a valuable resource in terms
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of spatial coverage, volume of data collected, and its accuracy at estimating precipitation

phase. As such, it provides an extensive dataset from which machine learning models can

be trained and tested to predict precipitation phase.

In order to determine the simplest and most effective method for predicting precipita-

tion phase, a series of statistical prediction methods will be applied. While some previous

studies have predicted precipitation phase as a melted fraction, here we will be classifying

it as binary rain or snow. Our methods will advance from the simplest, logistic regression,

to the more complex, machine learning. A key difference between these two methods is

that logistic regression assumes a linear relationship between the independent variables and

the log of the odds while machine learning does not. This may make machine learning a

more effective tool for phase prediction, as there is evidence to suggest that the relationship

between precipitation phase and predictor variables often varies across the landscape in a

nonlinear fashion. For example, pressure has been shown to exhibit a stronger control on

phase at higher elevations [Dai, 2008]. A comparison between these two methods will aid in

determining which type of relationship is a more suitable representation of the relationship

between precipitation phase and its predictors. The goal of this approach is to create a

method that is accurate while still being simple enough to be operationally useful.

Spatial variability has hampered past efforts in phase prediction, making the application

of a single model difficult across large areas. While the integration of humidity related

variables has decreased biases in phase partitioning models in mountainous regions, there

is still room for improvement by the creation of a spatially aware phase partitioning scheme.

There are multiple options for achieving this, such as through the integration of spatial

variables as predictor values or through creating a series of phase partitioning methods

divided by some spatial schema. For instance, a separate precipitation phase prediction

method for each snow class. Alternatively, as the creation of a gridded phase partitioning

product is something which has the potential to be particularly beneficial, a gridded surface

which each cell representing the rain-snow threshold based on the climatological parameters

at that specific location.

In order to fill in the gaps in previous research as presented here, this work seeks to

answer the following questions: (1) what is the relationship between the vertical profile

13



of temperature and humidity and precipitation phase across Canada? (2) Does a pa-

rameterization based on these factors improve precipitation phase prediction relative to

conventional methods?
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Chapter 2

Data and Methods

2.1 Data Sources

Satellite remote sensing in the form of microwave sensors is commonly used for the retrieval

of precipitation related information such as occurrence, rate, and phase. Sensors work by

either passively detecting the radiation emitted by the earth’s surface or actively emitting

radiation and measuring the returns, with the degree of radiance measured by the sensor

determining precipitation characteristics. Liquid hydrometeors reflect small amounts of

microwave radiation, creating a bright band in the atmospheric profile. Solid hydrometeors,

on the other hand, scatter microwave radiation, attenuating the radiation received by the

sensor [Harpold et al., 2017]. Despite this, it is difficult to separate rain and snow based

on reflectivity alone as various other factors may influence the brightness of returns. For

instance, surface clutter and the presence of thick or convective clouds can all reduce the

accuracy of returns [Liu, 2008] As such, additional information is required to successfully

partition satellite-based retrievals of precipitation.

Of the various satellites dedicated to monitoring precipitation, CloudSat in particular

is well suited at high latitudes due to its near-daily level of coverage above 80°N. For the
Canadian Arctic this provides a high degree of spatial and temporal coverage in a region
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that is otherwise challenging to monitor by ground [King and Fletcher, 2020]. CloudSat

was launched in 2006 as a joint project by the North American Space Agency, the Cana-

dian Space Agency, and the California Institute of Technology’s Jet Propulsion Laboratory.

CloudSat’s Cloud Profiling Radar (CPR) is a 94 GHz active radar that measures backscat-

ter from clouds and precipitation and relates reflectivity to snowfall occurrence, rate, and

phase [Liu, 2008]. This frequency allows a higher degree of sensitivity in measuring pre-

cipitation relative to other weather detecting radars [Tang et al., 2017]. The orbital track

it covers is its overpass, which is made up of retrievals from its CPR consisting of radar

returns recorded every 0.16 seconds from surface level to a height of 30km. Returns are

split into 125 vertical bins of 240m in height [Kodamana, Rithwik, 2020].

Kodamana and Fletcher (2021) validated CloudSat-CPR retrievals of precipitation oc-

currence and phase by comparing estimates to ground-based human observations across

Canada for the period from 2006-2016. They found that it has an approximate 65% chance

of accurately detecting precipitation occurrence and an approximate 90% chance of accu-

rately detecting the phase of precipitation occurrence. This means that while it is only

moderately accurate at detecting the occurrence of precipitation when it can do so cor-

rectly it is highly accurate at detecting precipitation phase. The implications of this are

that CloudSat data, when verified correctly, can provide a large amount of valuable in-

formation on precipitation phase and the surrounding environmental conditions. Which

makes it a useful tool for the development of precipitation partitioning algorithms through

the use of machine learning or logistic regression.

This research will focus on Canada, using meteorological data collected by CloudSat-

CPR along with Environment Canada weather station data. CloudSat-CPR’s 2C-PRECIP-

COLUMN provides data on precipitation-related factors such as precipitation rate and

phase while its ECMWF-AUX data product provides data on other atmospheric variables

such as humidity, wind, and temperature. Atmospheric wetbulb temperatures were derived

from CloudSat ECMWF-AUX vertical profiles of drybulb temperature, humidity, and pres-

sure using Equation 1.1. ECMWF-AUX utilizes two datasets: an independent dataset and

a reference dataset. The independent dataset is AN-ECMWF, a dataset provided by the

European Center for Medium-Range Weather Forecasts which contains 3-hour forecast at-
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mospheric state variable data on a half-degree lat/lon grid. The reference dataset is the

geolocation data from the 1B-CPR product. The meteorological information from the in-

dependent dataset is interpolated to the geolocation data from the reference dataset using

the procedure described in the following paragraph [Cronk and Partain, 2017].

The interpolate-to-reference algorithm operates by taking one CloudSat ray at a time

and using the reference and independent dataset to find the four bounding ECMWF grid

points around it. The height of the bin from the reference data is then used to find the

two adjacent vertical bounding levels from AN-ECMWF at each of the grid points. Linear

interpolation is then used on these four values to calculate a value for the given radar

bin height at each of the bounding grid points. Using bilinear interpolation on these four

values, a single value is then calculated at the location of the CPR ray at each bin height.

As the AN-ECMWF data includes multiple forecasts for the same time, this procedure

is repeated for both of the forecast times that bound the ray of interest and a linear

temporal interpolation is performed on the two resulting values to produce the final value

of the AN-ECMWF data field interpolated to the time and location of the radar bins

[Cronk and Partain, 2017].

In order to classify the phase of precipitation in CPR returns, the Cloudsat algorithm

utilizes a decision tree approach based on temperature and reflectivity profiles. Tem-

perature is derived from ECMWF-AUX, which provides atmospheric state variables in-

terpolated to CPR radar bins. Precipitation phase at the surface is classified as snow

when temperatures are below 0°C, rain when temperatures are above 2°C, and mixed

when temperatures are between 0°C and 2°C. Further classification of precipitation pro-

files is then performed using an occurrence algorithm on information from Cloudsat’s 2B-

GEOPROF product, which identifies radar reflectivity from hydrometeors. The occurrence

algorithm utilizes the reflectivity of the fifth radar bin above the surface ( 1200m, Z5),

the cloud layer maximum reflectivity (Zmax), the cloud layer cloud base height (Hbase),

and the surface layer cross section (σ0) [Smalley et al., 2014]. It then flags precipitation

with a value from the following: 1 (”rain possible”), 2 (”rain probable”), 3 (”rain cer-

tain”), 4 (”snow possible”), 5 (”snow certain”), 6 (”mixed possible”), 7 (”mixed certain”)

[Wood and L’Ecuyer, 2018]. Profiles classified as rain are flagged as ”rain certain” if Z5
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> 5 dBZ or if there is evidence of heavy attenuation in the variables Zmax, Hbase, and σ0.

Mixed precipitation is classified as certain when Z5 > -2.5 dBZ, with an additional check

for attenuation given the likely presence of liquid precipitation in these scenarios. Snow is

classified as certain when Z5 > -5 dBZ, with no additional check for attenuation from the

other three variables as attenuation by frozen precipitation at the 94 GHZ frequency tends

to be small [Smalley et al., 2014].

This study will utilize the set of validated Cloudsat precipitation returns from Ko-

damana and Fletcher (2021). This dataset was created by first aggregating Cloudsat

retrievals that fell within a 100km radius of an ECCC weather station. The proportion of

solid and liquid precipitation flags from each overpass were then used to classify the phase

of that overpass, where a higher proportion of solid flags classifies it as solid and a higher

proportion of liquid flags classifies it as liquid. Mixed precipitation was classified as either

solid or liquid based on the value of the melted mass fraction retrieved from Cloudsat’s

2C-PRECIP-COLUMN, where a melted mass fraction value of ¡= 0.15 is considered snow.

The phase of each overpass was then validated at the corresponding ECCC stations using

a combination of human observations and observations from a Precipitation Occurrence

Sensor System (POSS), a ground-based radar, upward-looking, X-band radar that pro-

vides an estimate of precipitation phase and intensity. In terms of temporal resolution,

human observations are taken every hour and POSS observations are taken every minute.

Cloudsat overpasses were considered temporally co-located if they fell within a half-hour

of a human observation and 30 seconds of a POSS observation. Cloudsat estimates of

precipitation phase were considered correct if they agreed with either the human or POSS

observed phase. The final set of 26 ECCC stations utilized in this study were chosen due

to having coincident datasets for Cloudsat observations, human observations, and POSS

observations of precipitation phase.

2.2 Methods

While precipitation phase has commonly been determined with thresholds, a growing body

of research has demonstrated that using logistic regression in order to predict phase can
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produce far more accurate results [Jennings and Molotch, 2019]. This approach incorpo-

rates various predictor values, such as ambient temperature, wet bulb temperature, and

surface pressure, in order to estimate the probability of precipitation falling as either rain

or snow. Relative to conventional threshold methods it has shown to be more accurate

at predicting precipitation phase, likely due to the integration of multiple meteorological

variables [Jennings and Molotch, 2019, Froidurot et al., 2014].

Froidurot et al. (2014) tested a variety of meteorological predictors in order to build

a logistic regression precipitation phase partitioning model based on data from the Swiss

Alps. They found that a model using a combination of wet bulb and ambient temperature

performed the best at predicting precipitation phase, with a model using a combination of

relative humidity and ambient temperature providing comparable performance. They also

found that models which incorporated two variables performed better than those which

just used one. These findings are corroborated by Jennings and Molotch (2019), who found

that the use of a logistic regression model incorporating ambient temperature and relative

humidity outperformed other partitioning methods.

A second recent advancement is the use of machine learning for the estimation of

precipitation phase. Currently, these methods have mainly been applied to satellite data

retrievals as they have been proven to be especially powerful when working with image-

based data. For instance, the Precipitation Estimation from Remotely Sensed Information

Using Artificial Neural Networks (PERSIANN) product uses machine learning techniques

to estimate precipitation from infrared satellite data [Tao et al., 2016]. Despite advances

in remote sensing data applications, little research has been conducted on using machine

learning to predict precipitation phase from ground-based observations or in climate and

hydrological models.

Our approach will utilize static variables such as latitude, longitude, and elevation as

well as environmental variables such as wind speed, relative humidity, and temperature,

allowing us to finetune our model according to different climatological regimes based on

spatial variables. A hierarchy of classification methods will then be applied beginning

with the simplest, logistic regression, and progressing to more complex machine learning

methods such as Random Forest. The goal of this approach is to determine the phase par-
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titioning method that is the simplest and most efficient while still producing a significantly

positive impact on model estimates of snow accumulation.

Model performance will be assessed using the probability of detection (POD) within

the -1◦C to 4◦C temperature range. This range was chosen by calculating model accuracy

in temperature steps of 1◦C and choosing the range in which minimums were most likely

to occur. The advantage of this approach is that it allows us to finetune our model based

on where uncertainty in precipitation phase is highest, as we found that outside this range

the likelihood of misidentifying phase was so low as to be negligible.

In order to get a true assessment of how our parameterization performs, we will compare

it to a set of conventional methods. This includes three different static thresholds as well

as the more sophisticated method created by Sims and Liu. The Sims and Liu method

utilizes look up tables to predict precipitation phase based on a combination of 2m air

temperature, surface temperature, surface type, the 0-1000m lapse rate, surface pressure,

and relative humidity [Sims and Liu, 2015].

In order to assess the spatial performance of the model, two different tests will be

applied. The first, titled the leave-one-out test, retrains the model excluding data from the

target ECCC station, then assesses model performance at that station. This test allows

us to assess how well the model performs on regions on which it has not been trained.

The second, titled the all-station test, tests how well the model trained on data from all

stations performs at individual stations. This test allows us to determine if there are any

spatial patterns to model performance.

Multiple studies have suggested that increasing the spatial discrimination of phase

partitioning parameterizations might also improve their performance. In order to determine

if our parameterization would benefit from this, we added Sturm snow classes as a predictor

variable. Sturm’s snow classification system provides a global dataset of snow cover type

at a ◦0.5 x ◦0.5 resolution. It classifies snow cover into one of 7 types based on regional

wintertime climate conditions including mean temperature, precipitation, and wind speed

[Sturm and Liston, 2021]. Meaning that not only does it present a classification of snow

type, but wintertime climates as well.
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The code and data for reproducing our model is available at:

github.com/cdmballantyne/PrecipPhaseParameterization.git.
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Chapter 3

An Improved Statistical

Parameterization for Precipitation

Phase Partitioning Across Canada

3.1 Introduction

Partitioning precipitation into rain or snow is an important aspect of hydrologic and clima-

tological modelling, affecting a wide variety of downstream processes [Harpold et al., 2017].

However, conventional methods are often inadequate, leading to biases in model out-

put [Jennings et al., 2018, Wang et al., 2019]. In mid-latitudes, precipitation typically

starts out as solid during its formation and its phase at the surface is determined by

whether it passes through the melting layer before reaching the ground. This, in turn,

is affected heavily by atmospheric profiles of temperature and humidity along with fall

rate and hydrometeor size [Harpold et al., 2017]. Neglecting these complexities can cause

inaccurate estimates of the proportion of precipitation falling as rain or snow, leading

to biases in model outputs of snow water equivalent, snow depth, and snow cover area

[Imura and Michibata, 2022]. This leads to a cascading effect which can result in biases
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in other parts of the model such as streamflow, soil moisture, and land-atmosphere energy

and water exchanges [Dai, 2008, McAfee et al., 2014]. Therefore, the ability to accurately

estimate precipitation phase is a critical component of land surface modelling.

When creating precipitation partitioning parameterizations it is often most useful to

consider the 50/50 rain-snow threshold, or the point at which there is a 50% chance of

precipitation falling as either rain or snow. Thresholds can vary from a strict boundary at

0°C, below which all precipitation is classified as snow and above which all precipitation is

classified as rain, to a linear or sigmoidal probability function ranging from 0% chance of

rain at the lower threshold to a 100% chance of rain at the higher [Harpold et al., 2017].

Thresholds are typically centered on the 0°C surface temperature point, but as the 50/50

rain-snow threshold can vary around this point with factors such as humidity and pres-

sure, this often leads to inaccuracies in precipitation phase estimation, particularly when

models are evaluated at locations spread over large distances [Jennings and Molotch, 2019,

Feiccabrino et al., 2015].

While temperature is a major control on the melting of hydrometeors, recent stud-

ies have shown that wet bulb, rather than ambient or dewpoint temperature, is a more

effective parameter to use in precipitation phase estimation [Behrangi et al., 2018]. La-

tent heat exchanges at the surface of the hydrometeor through evaporation and sublima-

tion can cause the hydrometeor surface to cool off relative to the ambient air temper-

ature [Sims and Liu, 2015, Wang et al., 2019]. While the temperature of the hydrome-

teor itself would be the ideal way to determine its physical state, the environmental wet

bulb temperature provides a close approximation and one that is much easier to obtain

[Harder and Pomeroy, 2013]. Similar variables which incorporate humidity, such as the

dewpoint temperature or relative humidity, don’t consider the sensible and latent heat

fluxes between the hydrometeor and the environment, therefore they do not provide the

same physical relationship to phase as wet bulb temperature does [Harder and Pomeroy, 2013].

Vertical lapse rates of temperature, particularly those in the lowest 500m of the atmo-

sphere, can influence the phase of hydrometeors in a variety of ways [Sims and Liu, 2015].

The presence of an inversion, where the temperature profile increases with height, may

cause a hydrometeor to fall as rain when the temperature at the surface would classify it
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as snow. On average, steeper vertical temperature gradients tend to promote snowfall over

rainfall, because they are associated with a shallower melting layer [Dai, 2008]. Interest-

ingly, while the state of the upper atmosphere does influence the precipitation phase at

the surface due to the aforementioned reasons, some studies have found that incorporating

atmospheric predictors such as lapse rates does not necessarily present an improvement

compared to surface predictors [Casellas et al., 2021, Froidurot et al., 2014] while others

have found the opposite [Vionnet et al., 2022]. This suggests that additional scrutiny is

required when incorporating atmospheric predictors into phase partitioning parameteriza-

tions.

Atmospheric humidity plays an important role in determining precipitation phase at

temperatures close to 0°C [Harpold et al., 2017, Jennings et al., 2018]. Precipitation at

lower relative humidity (RH) is more likely to fall as snow at higher temperatures rel-

ative to precipitation at higher RH, which makes the 50% rain and snow threshold in

drier conditions higher than in moister conditions. In observational studies across the

Northern Hemisphere, a 10% increase in RH is associated with a 0.8°C decrease in the

50% rain-snow threshold. As an example, at 40%-50% humidity the 50% rain-snow

threshold is at approximately 4.5°C whereas for 90%-100% humidity the 50% rain-snow

threshold is at approximately 0.7°C [Jennings et al., 2018]. The influence of humidity

on phase is related to the thermodynamics of the hydrometeor, as drier environments

are more readily associated with evaporate cooling through latent heat exchange, re-

sulting in precipitation that stays frozen longer with ambient temperatures above freez-

ing [Harder and Pomeroy, 2013]. The power of this relationship is corroborated by mul-

tiple studies showing that the integration of humidity related variables, in particular

wet bulb temperature and relative humidity, has significantly improved phase estimates

[Wang et al., 2019, Jennings et al., 2018, Behrangi et al., 2018].

The selection of precipitation phase partitioning method can significantly influence

SWE and snow depth estimates. For instance, comparisons between different phase parti-

tioning methods using the Cold Regions Hydrological Model have shown that using an am-

bient temperature-based method can produce uncertainties in peak SWE of up to 160mm

at the same site [Harder and Pomeroy, 2013]. Incorporating a comprehensive set of en-
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vironmental and spatial variables is essential for the creation of improved precipitation

phase models. This requires an understanding of the physical and spatial factors which

influence the temperature at which the 50/50 rain-snow threshold occurs and the ability

to incorporate this information into a model which can accurately predict precipitation

phase. This will provide more realistic boundary conditions for climate and hydrologic

models and reduce bias in estimations of precipitation related factors such as snow depth

and SWE. In order to achieve this goal, this study seeks to answer the following questions:

1. What is the relationship between the vertical profile of temperature and humidity

and precipitation phase across Canada?

2. Does a parameterization based on diverse environmental factors improve precipita-

tion phase prediction relative to conventional methods?

The primary goal of this work is to use CloudSat estimates of precipitation phase

in order to create a statistical parameterization of precipitation phase across Canada.

Section 2 describes the data and methods utilized, including how the training data was

derived and the metrics for assessing model skill. Section 3 provides the results of our

parameterization, including comparisons of spatial performance as well as performance

relative to conventional methods. Finally, Section 5 provides a discussion and summary of

our findings, limitations, and future research.

3.2 Data and Methods

3.2.1 Data

Building on the work done by Kodamana and Fletcher, 2021, this study utilized ground-

truthed CloudSat-CPR returns of precipitation characteristics from 26 Environment and

Climate Change Canada (ECCC) weather stations across Canada during the period from

2006-2016, the distribution of which is seen in Figure 3.1. Note that due to sampling

restrictions not all stations were used in the final analysis. Observations of precipitation
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Figure 3.1: Map of Canada with Sturm snow classes and ECCC weather station locations

occurrence and type are recorded by trained human observers at these locations once every

hour. CloudSat observations within a 100km radius of each station are then compared to

coincident ground observations. The surface precipitation of a CloudSat profile is classified

as solid when its flag indicates either snow possible or snow certain and as liquid when

its flag indicates rain possible, rain probable, or rain certain. Individual profiles are then

aggregated into overpasses using the weights of the solid and liquid profiles, where the

weight is estimated as the inverse distance from the target ECCC weather station. If the

sum of the weights of both liquid and solid precipitation profiles in each overpass exceeds

30%, the overpass is classified as precipitating. Precipitating overpasses are then classified

as liquid if the weight of the liquid profiles exceeds the weight of the solid profiles and solid

if the reverse is true.

CloudSat was launched in 2006 as a joint project by the National Aeronautics and Space
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Administration, the Canadian Space Agency, and the California Institute of Technology’s

Jet Propulsion Laboratory. It carries a 94 GHz Cloud Profiling Radar (CPR) which sends

radar pulses to the surface and utilizes the backscatter to form a vertical profile extending

from surface level to 30 km of altitude in the atmosphere. The data utilized in this study

comes primarily from its 2C-PRECIP and ECMWF-AUX products, both of which are

post-processed products which contain information on environmental variables such as

vertical profiles of temperature, humidity, and pressure, elevation, surface wind speed, and

precipitation phase. The vertical profiles of atmospheric variables co-located with phase

present one advantage of satellite data using station-based observations, as the latter often

only records surface variables.

Due to the nature of Cloudsat’s orbit, the number of observations at a given ECCC

station increases significantly with latitude. For instance, the station with the lowest

number of Cloudsat observations was Kindersley at 51.52◦N, -109.18◦W with a total of

8843 data points whereas the station with the highest number of Cloudsat observations was

Eureka at 79.98◦N, -85.93◦W with 88343 data points. This can lead to issues with spatial

bias, as the training data includes more observations from northern stations, potentially

leading to decreased performance at more southern stations. In order to determine if

spatial bias was an issue with the full dataset, the data was subset based on station,

with a random selection of 8843 observations taken from each station. This resulted in

a dataset with a total of 66,902 observations, down from the 341,512 observations in the

full dataset. However, the difference in model accuracy for both the logistic regression

and random forest models was not significantly different between the full dataset and the

spatially robust dataset, indicating that spatial bias was not an issue with the full dataset.

As such, the full dataset was utilized for the final analysis.

CloudSat utilizes a decision tree in order to classify precipitation phase. Using mete-

orological information from ECMWF AUX which has been interpolated to CPR bins, it

classifies precipitation as snow when the surface temperature is below 0◦C, rain when the

surface temperature is above 2◦C, and mixed phase when surface temperature is between

0◦C and 2◦C [Smalley et al., 2014].

Atmospheric wetbulb temperatures were derived from CloudSat ECMWF-AUX vertical
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profiles of drybulb temperature, humidity, and pressure. CloudSat ECMWF-AUX contains

AN-ECMWF modeled atmospheric state variable data interpolated to each CloudSat CPR

bin at a vertical resolution of 240m. Input data is obtained from the European Center for

Medium-Range Weather Forecasts’ AN-ECMWF dataset. Using CloudSat’s geolocation

data, the four ECMWF grid points bounding the CloudSat ray are located and a linear

interpolation is utilized to calculate the value of each AN-ECMWF variable of interest at

the radar bin height for the four points. Bilinear interpolation is then performed to find

the value of each variable at the location of the CPR ray [Cronk and Partain, 2017].

A two step process was used to derive wetbulb temperatures for the full atmospheric

profile. First, relative humidity was calculated using Equation 3.1, where q is specific

humidity, p is pressure, and T is air temperature.

RH =
q ∗ p

0.378∗q+0.622

6.112 ∗ e((17.67∗T )/(T+243.5))
(3.1)

Then, relative humidity was used along with drybulb temperature to calculate wetbulb

temperature using the approximation shown in Equation 3.2 [Stull, 2011]:

Tw ≈ T ∗ atan(0.152 ∗ (RH + 8.3136)
1
2 ) + atan(T +RH)− atan(RH − 1.6763)

+0.00391838 ∗ (RH)(
3
2
) ∗ atan(0.0231 ∗RH)− 4.686

(3.2)

3.2.2 Methods

A standard logistic regression based on the following equation was run in R on the full

set of predictor variables as well as various iterations. This model predicted precipitation

phase as a binary where 1 indicated rain and 0 indicated snow.

p(rain) =
eβ0+β1X1+β2X2+...+βpXp

1 + β0 + β1X1 + β2X2 + ...+ βpXp

(3.3)
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The Cloudsat-CPR data was then split into training and testing data based on a 80/20

split. The training data was utilized to generate the model, which was then validated by

predicting the values of the reserved testing data and comparing the modeled values to

the actual values. Model accuracy was calculated based on the ratio of correctly predicted

values to incorrectly predicted values. As precipitation partitioning is most important

around the 0◦C mark a more detailed breakdown of model accuracy across the temperature

gradient was required in order to get a better picture of model performance. In order

achieve this, accuracy was calculated for each 1◦C bin in the full range of temperatures

captured in the testing data, approximately -40◦C to 30◦C.

The logistic regression model was evaluated using several combinations of variables in

order to select the combination which produced the most accurate results. Initially, this

included surface drybulb temperature, surface specific humidity, surface pressure, surface

wind, and elevation Sensitivity testing was performed by running the model with one

variable removed in order to determine how each variable affected model performance.

Following a similar process to the logistic regression model, a random forest model was

generated using the randomForest package in R, as documented in [Liaw and Wiener, 2002].

Random forests work by growing a large number of decision trees based on the predictor

variables in order to predict the response variable. Each tree is grown based on a random

subset of the training data, with the number and depth of the trees being determined by

the user. This presents an advantage over logistic regression as the random forest makes no

assumptions about the linearity of the relationship between the predictors and the response

variable and therefore is better able to represent nonlinear relationships.

Random forests were initially trained with 50 trees and 3 variables randomly sampled

at each split. The best performing model was then selected to undergo additional tuning

in order to determine the optimal fit. Tuning was done using the caret package in R and

resulted in an optimal number of variables at each split of 2 and 75 trees. K-fold cross

validation utilizing 10 folds was used in order to reduce overfitting and provide a more

robust assessment of model accuracy.

Variable importance for the random forest model was assessed using the sperrorest
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package in R, [Brenning, 2012]. This package utilizes a permutation-based method to assess

the predicative power of each variable by calculating the cross-validated mean square error

(MSECV ), shown in the formula below.

MSECV =
1

kn

n∑
i=1

k∑
j=1

(yij − ŷij)
2 (3.4)

Where yij represents the observed values and ŷij represents the modeled values. The

test data is divided into n test folds where k is the total number of values in a given test fold.

Next, the MSECV is calculated for r permutations on each test fold and the mean across

each permutation is taken in order to obtain a final MSECV for each predictor. Finally,

the change in MSE (∆MSE) produced by each predictor is calculated by subtracting the

forecast MSECV from the mean MSECV across all permutations. A larger value of ∆MSE

indicates a higher degree of predicative importance.

Spatial validation of both the random forest and logistic regression model was performed

using two different tests. The first involved using all the observations related to one ECCC

as the testing dataset and using the observations from the remaining observations as the

training dataset. The goal of this test is to obtain an estimate of how well the model

performs in climates which were not included in the training data. The second test involved

evaluating how well the model trained on all the data performed at each individual station.

The goal of this test is to obtain an estimate of how model performance varies over space.

Two different metrics were utilized to evaluate model performance. The first is the

model accuracy over the [-1◦C,4◦C] interval, calculated as the ratio of hits to misses when

the model is applied to the unseen testing data. The reason this interval was selected

was twofold; first, calculating model accuracy over the full temperature interval does not

provide the most informative measure of model performance, as there is a large portion of

the temperature interval wherein uncertainty in precipitation phase is low and therefore

model accuracy is high. Second, this interval is where minimums of model accuracy are

most likely to occur, indicating that uncertainty is highest there and therefore the region

we are most interested in when evaluating phase partitioning models.

30



3.3 Results

3.3.1 Surface-Only Model

We start by using two different statistical models, logistic regression and random forest,

to quantify variable importance. The outcome will define the subset of surface predictors

to be used in all subsequent models. Multiple versions of the logistic regression were run,

one with the full suite of variables five with a single variable from the full suite left out

each time. As shown in Figure 3.2, the variables which had the biggest impact on model

performance were temperature and humidity. Pressure, wind, and elevation all had a very

small influence on model performance.

Figure 3.2: Logistic regression accuracy as a function of temperature.

Following a similar process to the logistic regression model, a random forest model was

generated using the same suite of surface variables. This was done in order to determine if

the random forest was better able to capture nonlinear relationships between the predictor

variables. As seen in Figure 3.3, the removal of singular variables had a similar effect to the
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logistic regression, wherein the removal of temperature and humidity had the largest effect

on model performance while the removal of wind, pressure, and elevation had a smaller

effect on model performance. While all models performed well, with all maintaining an

accuracy above 0.9 across the temperature range, the model with the full suite of variables

performed the best. Compared to the logistic regression models, all of the random forest

models showed superior performance with a significantly smaller reduction in accuracy

around the 0°C mark. The improved performance of the random forest suggests that there

are nonlinear relationships present between the predictors that the logistic regression fails

to capture.

Figure 3.3: Random forest accuracy as a function of temperature.

Motivated by the knowledge that additional predictive information for rain-snow parti-

tioning may be drawn from atmospheric variables above the surface, we next incorporated

vertical profiles of Twb into the model in addition to the surface variables discussed in the

previous section. Additionally, we replaced surface pressure, surface temperature, and sur-

face specific humidity with surface wetbulb temperature. This replacement was done with

the goal of simplifying the final model, as wetbulb temperature is calculated using pres-

sure, temperature, and humidity. As shown in Figure 3.4, the random forest model with
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atmospheric profiles of wetbulb temperature did not reveal a decrease in accuracy when

surface wetbulb temperature was included over surface drybulb temperature, pressure, and

humidity.

Figure 3.4: Logistic regression accuracy as a function of temperature for two models using

atmospheric profiles of wetbulb temperature, one with surface wetbulb temperature, wind,

and elevation, and the other with surface T, humidity, pressure, wind, and elevation, as

well as one model with only surface variables.

In order to determine which levels of wetbulb temperature from ECMWF-AUX to use

in the random forest and logistic regression models, a random forest model was run using

all available levels, from 240m to 24,240m. As seen in Figure 3.5, the lowest seven levels

from 240m-1680m had the highest mean decrease in accuracy, with a steep drop off above

that. As such, these levels were selected for inclusion in the final model.

Narrowing in on the seven lowest levels of Twb, the model was retrained with various

combinations of these in order to determine the optimal configuration. This included

running the model with only the four levels below 1000m, only the 3 levels above 1000m,

and averaging the levels from 240-1440m together in sets of two to determine the impact of
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Figure 3.5: Variable importance of all atmospheric levels when used in random forest

model.

sampling at a 240m vertical resolution. When performance was calculated over the entire

study area, all variable combinations performed at approximately 97% accuracy. However,

when broken down by station some differences began to emerge (Figure 3.6). Generally,

the model with the 1680m, 1440m, and 1200m levels performed the worst out of the three.

While the model with the averaged levels performed well, it still showed lower performance

relative to the other two at 15 out of the 20 total stations. The model with the full suite

of the seven lowest levels and the model with the four sub-1000m levels of Twb performed

similarly, therefore the sub-1000m level model was selected as the final parameterization.

From Figure 3.7, the wetbulb temperature levels from 240-960m were the most im-

portant for model performance. After the importance of the atmospheric Twb levels was

determined in the random forest, those were also added to the logistic regression model

as well. This resulted in a further increase in accuracy from 96.5% to 97.8% in the ran-

dom forest and 79.1% to 89.4% in the logistic regression. The final logistic regression and

random forest model both included the seven predictors included in Figure 3.7.

34



Figure 3.6: Model performance at individual stations for various combinations of atmo-

spheric wetbulb temperature levels

Figure 3.7: Variable importance of the full set of predictors for the random forest model.
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In addition to overall improved performance, the inclusion of atmospheric Twb also

resulted in an improvement to the spatial robustness of the random forest model. When

the leave-one-out test was applied to the random forest model without atmospheric Twb,

it resulted in an average accuracy across all stations of 83.4%. When it was applied to

the random forest model with Twb, it resulted in an average accuracy across all stations of

92.7%.

The high performance of the random forest model reinforces that it is able to capture

some non-linear relationships in precipitation phase threshold which conventional mod-

els do not. The inclusion of wetbulb temperature profiles in the lowest 1000m of the

atmosphere was also instrumental in improving model performance of both the logistic re-

gression and random forest model, indicating that temperature profiles in the near-surface

atmosphere are highly important for precipitation phase at the surface.

3.3.2 Model Validation

In order to gain an understanding of how well our models performed compared to conven-

tional methods, we compared them to a set of existing methods. The first are the static

temperature thresholds set at 0°C, 1°C, 2°C, and 3°C. As seen in Figure 3.8, these ranged

in performance from the 3°C threshold with an accuracy over the -1,4°C interval of 62.9%

to the 1°C temperature threshold, with an accuracy of 79.2%. The second method is the

more sophisticated Sims-Liu phase partitioning method. The Sims-Liu method, with an

accuracy of 79.4%, performs similarly to the 1°C temperature threshold. Both the logistic

regression and random forest model, with respective accuracies of 89.4 and 97.8%, showed

improvement over the simple threshold methods as well as the Sims-Liu method. While

the logistic regression model performs better than the static threshold and Sims-Liu model

but worse than the random forest model.

When a random forest was trained using the same predictors as the Sims-Liu model it

produced similar overall performance, with an accuracy of 96.6%, but reduced performance

for the leave-one-out test, with an average accuracy of 83.7%. This performance was similar
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Figure 3.8: Comparison of model performance on the full set of ground-truthed Cloudsat

data for the random forest, logistic regression, Sims-Liu, and simple temperature threshold

methods.
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to the performance of the random forest with only surface variables, suggesting that the

0-1000m lapse rate alone does not provide enough atmospheric information to improve

phase partitioning.

However, it should be noted that spatial differences in training datasets may contribute

to the relatively lower performance of the Sims-Liu model here. Their training dataset

included global observations from weather stations and atmospheric soundings, mostly

concentrated in the Northern Hemisphere. In comparison, our training dataset included

solely ground-truthed satellite observations over Canada, the majority of which were con-

centrated in Northern Canada due to the nature of Cloudsat’s orbital track.

3.3.3 Spatial Variability in Rain-Snow Partitioning

We next sought to understand whether a single parameterization worked well for the entire

country or if regional variations in weather and climate make it necessary to have a re-

gionalized parameterization. Determining the spatial variation in the skill of the rain-snow

partitioning model across Canada was done in two ways. The first method was to address

the skill at each individual station, including how well the model generalizes to stations it

was not trained on. The second was grouping the stations by Sturm snow class in order

to determine if having multiple models trained by individual snow class produced better

performance to have one general model.

Figure 3.9 shows the difference in performance at individual stations between the leave-

one-out and all-station tests for the random forest models. For the leave-one-out out test,

mean accuracy was 92.7%, whereas for the all-station test mean accuracy was 98.5%.

Generally, the difference between the two tests was smaller at the northern stations, on the

right side of the plot, and slightly larger at the more southern stations, on the left side of

the plot. However, this could be an artifact of the distribution of samples, since Cloudsat

samples more with increasing latitude

As a potential alternative to the model fitted with all the data across Canada, a re-

gionalized version of the random forest model was generated. This model involved fitting
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Figure 3.9: Accuracy comparison for the random forest model between the leave-one-out

(green) and all-station (yellow) tests.

individual models for locations grouped by Sturm snow class, a total of five unique regions

across the study area. Sturm snow classes were chosen as they are based on a combination

of geographical and climatological variables. This was done in order to determine both

if fitting by individual snow class improved overall model performance and if there was

variation in predictor importance across snow class.

Figure 3.10 shows normalized variable importance for each snow class. Wetbulb tem-

peratures (Twb) at the 240m and 480m levels were generally the most important, followed

by 720m, 960m and surface Twb. Elevation and surface wind were generally the least im-

portant in terms of phase prediction, and their importance showed low variation across

model runs. This lines up well with variable importance in the pan-Canada model, which

showed a similar distribution.

Overall, the regionalized random forest had an accuracy averaged over all the snow

classes over of 97.7%, while the pan-Canada model had an accuracy of 97.8%. Accuracy

between individual snow classes ranged between 94.6% in Ephemeral to 98.7% in Montane
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Figure 3.10: Normalized variable importance for the five snow classes included in the study

region.

Forest, though significant variation in sample size between snow class meant the mean was

weighted towards the higher end. For example, the class with the fewest observations,

Ephemeral, had 16,454 observations while the class with the most observations, Tundra,

had 186,676 observations.

Figure 3.11 shows model performance by individual snowclass compared to the non-

regionalized model. With the exception of the Ephemeral snow class, model performance

shows very little variation across snow classes, indicating that in terms overall model perfor-

mance there is little impact of fitting models by region. It also suggests that the influence

of the geophysical parameters picked for the final models does not vary significantly by

region. This is in contrast to other studies which suggested some spatial component to

variable importance which caused degradation in model performance in certain regions.

However, these studies also mainly used surface variables and atmospheric information

integrated in the form of lapse rates.

Figure 3.12 shows the performance of both the regionalized and pan-Canada models for
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Figure 3.11: Comparison of model performance across the temperature gradients for the

regionalized and non-regionalized random forest and logistic regression models.

the leave-one-out and all-station tests. Vancouver was eliminated from this section as it was

the only station in its snowclass, therefore had no other stations against which it could be

compared. Overall, the regionalized models performed fairly similarly to the pan-Canada

models. For the leave-one-out test, the mean accuracy across stations of the regionalized

model was 90.4% and the mean accuracy of the pan-Canada model was 92.7%. For the

all-station test, the mean accuracy across stations of the regionalized model was 98.3%

and the mean accuracy of the pan-Canada model was 98.4%. The similar performance

between the regionalized and non-regionalized models for the two spatial tests agrees with

the relative variable importance in each model.

3.4 Conclusion

This study presents an improved method for the parameterization of precipitation into rain

and snow. This random forest parameterization has an accuracy of 97.8% over the -1◦C
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Figure 3.12: Comparisons of leave-one-out (top) and all-station test (bottom) non-

regionalized (blue) and regionalized (yellow) model accuracy at each stations. Stations

names have been colour-coded by snow class

to 4◦C temperature range where phase uncertainty is highest. In contrast, conventional

methods such as simple thresholds and the Sims-Liu parameterization range from accura-

cies of 62.9% to 79.4% over the same interval. This method is also spatially robust and

still performs well at stations it has not been trained on, with an average drop in accuracy

of 5% between when the parameterization has been trained on a station and when it has

not.

This improvement in accuracy can be attributed to two main things: the first is the

use of a random forest, which can model nonlinear relationships between parameters and

the second is the use of atmospheric levels of wetbulb temperature. While previous studies

have found mixed results on using lapse rates and vertical profiles of wetbulb temperature
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[Casellas et al., 2021, Froidurot et al., 2014] this study found that not only did incorpo-

rating wetbulb temperature at four levels below 1000m improve overall accuracy, it also

improved the performance of the model on stations on which it had not been trained.

The spatial robustness of our parameterization is important for the application of the

parameterization over large, climatologically diverse areas such as Canada. Previous stud-

ies have found that the performance of phase partitioning methods varies over space and

finding a method which performs universally well has proven difficult [Wang et al., 2019,

Harpold et al., 2017]. As the spatial robustness improved when atmospheric levels of Twb

were added, this suggests that incorporating atmospheric information is a key component

in creating phase parameterizations which generalize well across space.

One possible reason for the lower performance of the regionalized model is that the

regionalization scheme selected had too much climatological variation within regions. For

instance, Kindersley and Inuvik showed lower performance with the regionalized models

than the pan-Canada models. This could indicate that these stations are climatological

outliers compared to the rest of the stations in those snow classes, resulting in reduced

model performance. This is supported by looking at the other stations included in their

respective snow classes. Kindersley was included in the Prairie class, snow class 5, which

also includes several eastern stations such as Quebec, Montreal, Toronto, and London.

The climate in these regions tends to be more humid than Kindersley, which is located in

Saskatchewan. Similarly, Inuvik is included in the Boreal Forest class, snow class 2, but is

the most northern of any of the other boreal forest stations and is close to the boundary

between the Boreal Forest and Tundra snow classes. Regionalization of the model has

the effect of introducing more edge cases like Kindersley and Inuvik, degrading the overall

performance of the model.

As precipitation phase and occurrence is ground-truthed by human observers, errors

may result from misclassification by either Cloudsat or observers on the ground. An is-

sue when it comes to light precipitation events due to the difference in sensitivity be-

tween instrumentation and the human eye. As instrumentation is far more sensitive than

human observers, it is possible for human observers to classify precipitation events in-

correctly [Kodamana and Fletcher, 2021]. While Cloudsat has shown to be quite accu-
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rate at classifying precipitation phase there is still a small degree of uncertainty which,

particularly in larger datasets, may add up to thousands of misclassified observations

[Kodamana and Fletcher, 2021].

Future work could utilize this parameterization in a climate or hydrological model to

determine if it improves model outputs relative to conventional methods. Additionally,

expanding this work to include mixed-phase precipitation would also be a significant im-

provement.
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Chapter 4

Discussion and Conclusions

4.1 Summary

Building on previous work on validating Cloudsat returns of precipitation phase and inves-

tigating the environmental factors which control phase at the surface, we have created an

improved parameterization scheme for partitioning precipitation into rain and snow. We

started by comparing the performance of a logistic regression and random forest model

using surface variables only to predict precipitation phase. Both models presented an im-

provement over conventional methods, with the random forest performing the best out

of all. We found that, in terms of surface variables, temperature and humidity have the

highest impact on model performance for both the logistic regression and random forest.

As previous literature has pointed out the importance of atmospheric profiles of tempera-

ture and humidity, we then added this to the random forest model in the form of wetbulb

temperature to determine whether they improved performance. We found that not only

did this improve overall performance, it also improved the performance of the model at

when applied to regions on which it had not been trained. Finally, we found that dividing

our study area by Sturm snow class and training individual models for each class did not

provide any improvement in model performance, indicating that a single model is adequate

to capture the variability in the behaviour of the rain snow threshold across the study site.
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The accurate partitioning of precipitation into phase is an important but often over-

looked aspect of climate and hydrological modeling. Small errors in phase prediction can

lead to major downstream impacts on biases in snow depth and snow cover. For exam-

ple, overpredicting rain can lead to hydrological models predicting a peak discharge that’s

earlier in the season and lower in magnitude than in reality [Harpold et al., 2017]. This,

in turn, can effect the ability of water resource managers to make decisions. In hydrologic

and land surface models such as the Cold Regions Hydrological Model, Noah-MP, and

SNOWPACK the proper selection of phase partitioning methods can significantly reduce

biases in predicted snow depth and SWE [Wang et al., 2019, Harder and Pomeroy, 2014,

Jennings and Molotch, 2019]. In climate models such as the MIROC6 GCM, phase par-

titioning schemes have been found to overpredict the fraction of snowfall in the arctic.

As snow has a large effect on Earth’s energy budget, while the effect of rain is negligible,

this can impact the climate sensitivity of the model [Vionnet et al., 2022]. More accurate

parameterizations which take into account the complexity of the factors which contribute

to precipitation phase at the surface can, in turn, reduce these biases.

Conditions at near 0°C surface temperature can result in hazardous weather such as

freezing rain and rain-on-snow events which can cause significant damage to infrastructure.

As climate change warms cold regions, it is expected that many northern areas will ex-

perience near 0°C temperatures more frequently and therefore become more vulnerable to

these hazards. Additionally, the timing of these events is expected to change as less near

0°C events occur in the summer and more occur in the winter [Klos et al., 2014]. Improv-

ing precipitation phase estimation can result in better prediction of these events, helping

mitigate the impacts of hazardous weather [Mekis et al., 2020].

4.2 Limitations and Challenges

The training data used in this work was ground-truthed Cloudsat observations of precip-

itation phase which, while highly accurate, can still contain errors in the form of either

misclassification by Cloudsat or observers on the ground [Kodamana and Fletcher, 2021].
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In large datasets, even a small percentage of errors can add up to potentially thousands of

misclassified observations. This can affect the ability of the parameterization to accurately

express the physical relationships which lead to phase, as non-physical observations are

included in the training dataset. Additionally, even if the parameterization does correctly

classify the incorrectly ground-truthed observations, it will reduce the calculated accuracy

of the parameterization.

Uncertainty in Cloudsat estimates of precipitation phase can be introduced by both

instrumentation and the assumptions made by the algorithms used. As Cloudsat’s CPR is

designed to retrieve cloud properties rather than precipitation, the attenuation of the radar

by water vapour can be significant [Wood, 2011]. High concentrations of liquid hydromete-

ors and high-intensity snowfall rates can both cause attenuation, with reductions in reflec-

tivity of up to 10 DBZ for the former and 5 DBZ for the latter [Kodamana, Rithwik, 2020].

As assumptions on the distribution of hydrometeor size and shape are built into Cloudsat’s

scattering models, variations in these characteristics can also cause over or underestimates

of reflectivity. More compact hydrometeors can result in reflectivity overestimates, while

less compact hydrometeors can result in reflectivity underestimates [Wood et al., 2014].

While Cloudsat classifies all precipitation below -2◦C as snow and all precipitation above

2◦C as rain, with caveats based on the reflectivity of the returns, it is possible for snow

to occur at above 2◦C and for rain to occur at below -2◦C [Wang et al., 2019]. Meaning

that, for example, Cloudsat would be likely to classify heavy, wet snow occurring at surface

temperatures above 2◦C as ”rain certain” due to the attenuation caused by the presence of

liquid water, as its algorithm uses significant attenuation as evidence of rain. Alternatively,

light rain occurring at temperatures below -2◦C might be classified as ”snow certain”, as it

may not cause significant enough attenuation to be flagged otherwise [Smalley et al., 2014].

The presence of surface clutter causes significant problems for Cloudsat retrievals be-

low 1.2 km. As the surface is typically more reflective than hydrometeors, this causes

a significant enhancement of the signal within the first four radar bins from the sur-

face [Marchand et al., 2008]. To avoid this, it mainly relies on reflectivity in the fifth

bin from the surface, at approximately the 1.2 km level, to classify phase uncertainty

[Smalley et al., 2014]. While this may make phase uncertainties due to conditions below
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this level difficult to detect, the high accuracy of Cloudsat estimates of precipitation phase

when compared to surface level ground-truth datasets indicates that this does not have a

substantial negative impact on Cloudsat’s performance [Kodamana and Fletcher, 2021].

Another limitation of this study was that the atmospheric state data was derived from

the AN-ECMWF model, not taken directly from coincident observations. Meaning that

it only represents an approximation of the atmospheric state at the observation time,

not the actual conditions. This adds a layer of uncertainty to any physical relationships

expressed in this model which could propagate into errors down the line. The use of

atmospheric soundings in future work could serve to reduce these uncertainties by taking

direct measurements of atmospheric conditions instead of relying on modeled data.

4.3 Future Work

In order to assess how well this parameterization improves model outputs, a next step would

be to use it in a hydrologic or climate model. Previous work has found that incorporating

both humidity-based measures and atmospheric profiles into phase partitioning parameter-

izations improves model accuracy [Wang et al., 2019, Harder and Pomeroy, 2013]. While

this parameterization shows good potential compared to conventional methods, it is still

uncertain whether or not it will produce the same results when applied in a hydrologic or

climate model or outside of the study area.

Our work paid particular attention to the -1◦C to 4◦C interval, as that is where uncer-

tainty in precipitation phase is the highest. This is particularly relevant to cold countries

like Canada, where near-0◦C conditions are common [Mekis et al., 2020]. Previous studies

have looked at overall parameterization performance, or how well the parameterization

performs when placed into a climate model, but as far as we are aware none have focused

on model performance only at near-0◦C conditions. Integrating this approach into future

work could prove advantageous as it provides a clearer estimate of how well the model

performs in the area of highest uncertainty.
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While we utilized Sturm’s snow classifications to test the regionalized version of the

model in this study, there are other climate classification systems that could be utilized

in its place. For instance, the Koppen Climate Classification system provides a more

detailed division of climate regions. While our study found no benefit of breaking down

the parameterization by region, it is possible that using a different regionalization scheme

could prove beneficial as previous studies have suggested that regionalization could be

useful in phase partitioning [Harpold et al., 2017].

Due to the nature of the ground-truthing stations, this parameterization has been

trained over a limited area and not tested anywhere else. As such, there is no way of

knowing if it is able to perform well on regions outside of Canada. In particular, regi0ons

with very different climates from anywhere in Canada,. Assessing its performance on a

global scale would be useful for determining the generalizability of the parameterization

and applicability outside of Canada.

Along with an increased interest in more complex precipitation phase partitioning meth-

ods, a need for an increased level of spatial discrimination has emerged. Multiple studies

have pointed out that phase partitioning accuracy varies across latitudes, potentially due to

the nonlinear influence of humidity [Sims and Liu, 2015, Kodamana and Fletcher, 2021].

Despite this, very few studies have utilized spatial variables or some other spatial delin-

eation scheme when creating phase partitioning models. Calls to address this gap through

the creation of gridded phase partitioning products have been raised with the reasoning

that this is one way in which spatial variability can easily be integrated into precipitation

phase methods. Additionally, these gridded products could benefit climate and hydrolog-

ical applications by providing spatially resolved data which can easily be integrated into

models [Harpold et al., 2017]. In the past, the creation of spatially resolved precipitation

phase products has been hindered by the lack of gridded meteorological data outside of am-

bient air temperature and precipitation, particularly at the smaller scales needed to predict

precipitation phase. The emergence of new meteorological products in the form of satellite

data, reanalysis products, and ground monitoring networks presents an opportunity to fill

in these gaps.
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