
The Hardness of Learning Access
Control Policies

by

Xiaomeng Lei

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2023

© Xiaomeng Lei 2023

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

This thesis is adapted from my published paper “The Hardness of Learning Access
Control Policies” collaborated with my supervisor Mahesh V. Tripunitara.

Citation: Lei, Xiaomeng, and Mahesh Tripunitara. ”The Hardness of Learning Access
Control Policies.” Proceedings of the 28th ACM Symposium on Access Control Models
and Technologies. 2023.

iii

Abstract

The problem of learning access control policies is gaining significant attention in re-
search. We contribute to the foundations of this problem by posing and addressing mean-
ingful questions on computational hardness. Our study focuses on learning access con-
trol policies within three different models: the access matrix, Role-Based Access Control
(RBAC), and Relationship-Based Access Control (ReBAC), as described in existing liter-
ature. Our approach builds upon the well-established concept of Probably Approximately
Correct (PAC) theory, with careful adaptations for our specific context. In our setup, the
learning algorithm receives data or examples associated with access enforcement, which
involves deciding whether an access request for resource should be accepted or denied.
For the access matrix, we pose a learning problem that turns out to be computationally
easy, and another that we prove is computationally hard. We generalize the former result
so we have a sufficient condition for establishing other problems to be computationally
easy. Building upon these findings, we examine five learning problems in the context of
RBAC, of which three are identified as computationally easy and two are proven to be
computationally hard. Finally, we consider four learning problems in the context of Re-
BAC, all of which are found to be computationally easy. Every proof for a problem that
is computationally easy is constructive, in that we propose a learning algorithm for the
problem that is efficient, and probably, approximately correct. As such, our work makes
contributions at the foundations of an important, emerging aspect of access control, and
thereby, information security.

iv

Acknowledgements

I would like to thank my supervisor, Mahesh V. Tripunitara, whose guidance, expertise,
and unwavering support have been essential in shaping my research and academic journey.
His mentorship and encouragement has not only enriched my understanding of the subject
matter but also inspired me to push the boundaries of my knowledge and capabilities.

I would also like to thank my loving boyfriend, whose belief in me has been a constant
source of motivation. His support, understanding, and encouragement have provided me
with the strength to overcome challenges and pursue my academic goals.

Furthermore, I would like to thank my parents, whose endless love and unwavering
support have been the foundation of my educational journey.

v

Table of Contents

Author’s Declaration ii

Statement of Contributions iii

Abstract iv

Acknowledgements v

List of Figures viii

List of Tables x

1 Introduction 1

1.1 The Access Control Policy . 1

1.2 The learning problem . 3

1.3 Computational hardness . 5

1.4 Organization . 6

2 Methodology 7

2.1 Learning Access Control Policies . 7

2.1.1 Definition of the PAC-learning model 8

2.1.2 The adapted PAC-learning model in our context 10

vi

2.1.3 Learning access control policies using PAC-learning model 11

2.2 Reduction to Prove Hardness . 12

2.2.1 Problems, RP and NP . 13

2.2.2 Reductions in our context . 14

2.2.3 Comparison to prior work . 15

3 The Access Matrix 16

3.1 Learning an Access Matrix with positive rights only 16

3.2 Access Matrix with both positive rights and negative rights 18

3.3 Generalization . 20

4 Role-Based Access Control (RBAC) 21

4.1 Learning as an Access Matrix . 21

4.2 Learning as an Equivalent RBAC policy 22

4.3 Isomorphic RBAC policy . 23

4.4 Learning as an Equivalent RBAC policy with role-activation 25

5 Relationship-Based Access Control (ReBAC) 29

5.1 Learning as an access matrix with allow/deny 31

5.2 Learning G ⊓ P as a DFA . 32

5.3 Learning G ⊓ P as a min. DFA . 34

5.3.1 Reconciling the work of Gold [7] . 34

5.3.2 Comparison to prior work [13] . 35

5.4 Learning as a system graph . 36

6 Related Work 37

7 Conclusions and Future Work 39

References 41

vii

List of Figures

1.1 A policy in a variant of the access matrix model. 3

1.2 A Role-Based Access Control (RBAC) policy. Its authorizations are equiv-
alent to the access matrix in Figure 1.1. 4

2.1 The measure of error, adapted from the work of Kearns and Vazirani [14]. X,
l, and t represent the instance space, the underlying target, and the output
target, respectively. The error can be quantified as the ratio between the
shaded region, where the underlying and hypothesis targets do not overlap,
and the total area of X, the entire region. 8

3.1 An access matrix instance containing only positive rights r is represented
using the symbol✓ within the table, whereas figure 3.2 illustrates a different
version of the access matrix that has both positive and negative rights. . . 17

3.2 An instance of VertexCoverCC and its encoding as an access matrix
with positive and negative rights. “✓” represents positive rights r, and “✗”
represents negative rights r̃. The three shaded vertices comprise a vertex
cover of size k = 3. 18

4.1 Some examples and the output RBAC policy constructed for those by the
algorithm we propose for Row (4) of Table 4.1, where the underlying RBAC
policy is the one from Figure 1.2. 25

4.2 The graph and vertex cover of size k = 3 from Figure 3.2 encoded as a table
m of edges to vertices, and the underlying RBAC policy to which we map,
for the reduction for Row (5) of Table 4.1. 28

viii

5.1 An example, adapted from prior work [13], of a ReBAC policy that com-
prises a system graph and a set of label-sequences. The access-request
⟨Bob,Alice-record⟩ is allowed; ⟨Daniel,Alice-record⟩ is denied, as is ⟨Daniel,Carol⟩. 30

5.2 The output access matrix from our algorithm for Row (1) of Tabel 5.1 for
the three examples shown in the figure. 31

5.3 The output DFA from our algorithm for Row (2) of Table 5.1 for the two
examples shown in the figure. An accepting state is shown with a double
circle; the initial state is to the far left. 32

5.4 A DFA of the minimum number of states corresponding to the DFA of Figure
5.3. 35

5.5 The system graph for the examples shown above that our algorithm for Row
(4) of Table 5.1 outputs. What we call anonymous vertices are shown as
circles without names. 36

ix

List of Tables

4.1 The hardness of five learning problems for RBAC (From the work of. . . . 22

5.1 The hardness of four learning problems for ReBAC. We clarify the notion
of error for each, and what we mean by “G ⊓ P”, in the prose. π denotes a
string, i.e., label-sequence. 31

x

Chapter 1

Introduction

Access control policies often suffer from opacity, affecting not only users but also admin-
istrators overseeing the policies. The complexity of access control policies, particularly
in large organizations, systems, companies, and complex network environments, makes
them difficult to intuitively understand and explain. Additionally, the lack of comprehen-
sive documentation and explanations further hinders administrators’ comprehension of the
policy rules. The application of machine learning in the field of access control policies has
become a hot topic. By leveraging machine learning techniques and analyzing a significant
volume of input-output data from access control policies, machine learning models can
automatically learn and adapt policies, providing a cost-effective approach. In this paper,
we employ the theoretical framework of the PAC-learning model from the field of machine
learning and computational complexity theory to investigate the feasibility of applying
machine learning in access control policies.

1.1 The Access Control Policy

Access control plays a crucial role in computer privacy and security. It ensures that only
authorized users are able to exercise certain actions on resources. It is an important part
of the security of a system and its data. Whether a particular request for access is allowed
or denied is typically dictated by an access control policy.

A policy is an articulation of who may access what, and in what manner. For example,
a policy may state that Alice is allowed to read a particular file, but Bob is not. It ensures
that only authorized users are able to carry out specific operations, such as reading or

1

writing, on protected resources or files. They also prevent unauthorized users from making
access requests for performing operations on protected resources or files, thereby denying
their access. A typical example is the policy in a file system. Suppose there is a file
system with a folder containing protected files. The defines two roles: an administrator
role and a regular user role, and specifies which roles can access the folders and files. The
administrator role has the ability to view and modify all files, while the regular user role
can only read the files without the ability to modify. The access control policy achieves
user access control by setting permissions for each file to allow only the administrator
role full access, while the regular user role has only read permissions. This ensures that
only users with the appropriate roles can perform corresponding operations on the files.
Consequently, for example, a user Alice with the administartor role is allowed to read and
write all files in the folder, while bob with a regular user role is restricted to read-only
access for all the files.

An access control policy is typically based on an access control model. In this paper,
our main focus is on three access control models: the Access matrix, RBAC (Role-Based
Access Control), and ReBAC (Relationship-Based Access Control), which are widely used
for implementing access control policies. An access control model specifies two things:
(i) a syntax in which a policy is expressed, and, (ii) a syntax for an access-request and
the manner in which access-enforcement is carried out. An access-request, as the term
suggests, is a request by a subject to exercise a right on an object. The set of all possible
access requests is induced by the policy. Access-enforcement is an algorithm that, given
input an access-request, decides whether it should be allowed or denied.

As an example, consider the following variant of the access matrix model [9] (we in-
troduce a different variant in Chapter 3). An example of a policy in this model is shown
in Figure 1.1. As the figure suggests, a policy in this model is specified by a 4-tuple: a
set of subjects S, a set of objects, O, a set of rights R and a function m : S × O → 2R

where 2R denotes the power set, i.e., set of subsets, of R. In the example in Figure 1.1,
S = {alice, bob, carol}, O = {alice, bob, carol, secret-file} (it is customary for policies in
this model that S ⊆ O), R = {admin, read, write} and m is rendered as a two-dimensional
table in the figure.

The set of all access-requests induced by a policy in this model is S × O × R, i.e., an
access-request is a tuple ⟨s, o, r⟩ which expresses that a subject s seeks to exercise the right
r on an object o. An access-request is allowed if and only if in the policy, it is true that
s ∈ S, o ∈ O, r ∈ R and r ∈ m[s, o]. Access-enforcement is the corresponding straightfor-
ward set of lookups. For example, the access request ⟨alice, bob, admin⟩ is allowed, while
⟨bob, secret-file,write⟩ is denied.

2

alice bob carol secret-file

alice admin admin read, write

bob read

carol admin read

Figure 1.1: A policy in a variant of the access matrix model.

1.2 The learning problem

Interest in learning access control policies is motivated by prior work, for example, that of
Le et al. [16] and Masoumzadeh [17]. The former suggests that a reason is the validation of
an access control policy that is implemented, i.e., learning a policy from access enforcement
so we can then reason about whether the policy is indeed what we intend. The latter
suggests also learning from access enforcement, except in the somewhat different situation
that the policy impacts particular entities, e.g., users in a social network, to whom the
policy is not made explicit. The more recent work of Iyer and Masoumzadeh [12, 13]
leverages these motivations to then construct an approach to learning a policy in such
“black box” settings, i.e., from information that is generated during access enforcement.

We address the somewhat fundamental question as to whether there exists an algorithm
with desirable properties that learns such an access control policy. The desirable properties
we seek are that the algorithm is efficient, i.e., runs in time polynomial in certain parameters
we associate with the problem, and that the output policy, with high probability, suffers
low error only. (We make these precise in Section 2.1.)

A question with any learning problem is what data we provide an algorithm. Our focus,
as in prior work [16, 17, 13, 12], is data generated by the process of access-enforcement. In
practice, such information is typically logged for later use such as audits and forensics. An
example of such data are ⟨access-request, allow/deny⟩ pairs, e.g., ⟨⟨alice, bob, admin⟩ , allow⟩
and ⟨⟨bob, secret-file,write⟩ , deny⟩ for our example policy from Figure 1.1. Other kinds of
data are possible as well as input to a learning algorithm; for example, intermediate data
that is generated towards determining an allow or deny verdict by access-enforcement (see
the problems of Rows (2)–(4) in Table 5.1 of Chapter 5).

Another question is what the model for the policy that is output by the learning algo-
rithm should be. What we suggest here, by intent, is that the model for the policy that is
output by the learning algorithm does not necessarily have to be the same as that of the
underlying policy. There is prior work that adopts this mindset; in the work of Iyer and
Masoumzadeh [13] for example, the underlying policy is in a Relationship-Based Access

3

Figure 1.2: A Role-Based Access Control (RBAC) policy. Its authorizations are equivalent
to the access matrix in Figure 1.1.

Control (ReBAC) model whereas the policy output by the learning algorithm is a state-
machine. (We address exactly this problem in Chapter 5). There is also work outside of
learning access control policies that addresses a different syntax for the output of the learn-
ing algorithm than the underlying concept, for example, requiring a learning algorithm to
output an underlying boolean formula in disjunctive normal form [20]. In this regard,
we can perceive our class of learning problems as a variant of the policy-mining problem
that has been the subject of several pieces of prior work (see, for example, the survey of
Mitra et al. [18]). In the policy-mining problem, one is given as input a policy in a model,
and asked to output an equivalent policy in a different model. By “equivalent” here, we
mean that the two policies allow exactly the same accesses. For example, in role-mining
[18], the input policy model is an access matrix, and the output is a policy in Role-Based
Access Control (RBAC). Indeed, as we address in Chapter 4, it is possible to pose exactly
a generalization of some of the role mining problems that has been addressed in prior work
as learning problems as we pose them.

To illustrate this point further here in the introductory chapter, we present an RBAC
policy in Figure 1.2 that is equivalent, from the standpoint of authorizations, to the ac-
cess matrix from Figure 1.1. In this variant of the RBAC model, a policy is a 5-tuple,
⟨U, P,R,UA,PA⟩, where U, P,R are pairwise disjoint sets of users, permissions and roles,
respectively, UA : U → 2R \{∅} is a function that associates a user with a non-empty set of
roles, and PA : P → 2R\{∅} is a function that associates a permission with a non-empty set
of roles. A user u ∈ U is authorized to a permission p ∈ P if and only if UA(u)∩PA(p) ̸= ∅.
In associating the access matrix from Figure 1.1 with the RBAC policy in Figure 1.2, we
have adopted as the set of users U in RBAC exactly the set of subjects S in the access
matrix. And, each permission in the RBAC policy is a pair ⟨object, right⟩ from the access
matrix.

In the context of learning, depending on the data from access-enforcement that is

4

provided to a learning algorithm, the kinds of errors we are willing to tolerate in a policy
that is output by the learning algorithm and any other constraints we impose, learning
an RBAC policy from an underlying policy, be it an access matrix or another RBAC
policy, may be computationally easy or hard. For example, the RBAC policy in Figure 1.2
minimizes the number of roles across all RBAC policies that are equivalent to the access
matrix of Figure 1.1 and adopt the encoding that a permission is an ⟨object, right⟩ pair.
We can demand that a learning algorithm satisfy such a constraint as well, as we discuss
in Chapter 4. Then, the learning problem would be computationally hard, given that the
problem of computing an RBAC policy of the minimum number of roles that is equivalent
to a given access matrix is known to be NP-hard [4].

1.3 Computational hardness

The focus of our work is an identification, given a learning problem as we discuss above,
as to whether there exists an efficient algorithm for it or not. Accordingly, our results
are an association of “easy” or “hard” with each learning problem we consider (see, for
example, Table 4.1 in Chapter 4). The setting we adopt so we can infer such results is that
of Probably Approximately Correct (PAC)-learning [23], for which we provide background
in Section 2.1. Some of the learning problems we consider do not conform strictly to PAC-
learning, and in such cases, we extend the setting carefully and limitedly so we are still
able to make such inferences (see, for example, the problems of Rows (2)–(4) in Table 5.1
in Chapter 5).

Under PAC-learning, we can dichomotize the computational hardness of a particular
learning problem as either “there exists an efficient algorithm”, i.e., “easy” in our parlance,
or “an efficient algorithm is unlikely to exist”, i.e., “hard”. A proof for the former is by
construction, i.e., by presentation of an algorithm, and a claim and associated proof for
its correctness and efficiency. A proof for the latter is via reduction, and relies on the
customary conjecture, RP ̸= NP, where RP is the class of decision problems for which
there exists a polynomial-time randomized algorithm, and NP is the class for which there
exists a polynomial-time non-deterministic algorithm. The particular kind of reduction we
leverage is similar to the polynomial-time Turing reduction [8], and the kind of problem
from which we reduce is what we can call the certificate construction problem that corre-
sponds to a decision problem that is NP-complete. An example certificate construction
problem, denote it qcc, which we use in two of our reductions (see Theorem 5 in Chapter
3, and the problem of Row (5) in Table 4.1 in Chapter 4) is: given an undirected graph
G = ⟨V,E⟩ that is known to have a vertex cover of size k, where V and E are the vertex

5

set and the edge set of G respectively, output such a vertex cover C, i.e., a subset of V such
that |C| = k and every edge e ∈ E is incident on a least one vertex in C. A correspond-
ing decision problem, denote it qdec, that is NP-complete is: given ⟨G, k⟩ where G is an
undirected graph, does G have a vertex cover of size k? We can prove that if there exists a
randomized polynomial-time algorithm for qcc, then qdec ∈ RP, and because we know that
qdec is NP-complete, this would imply RP = NP, which conflicts with the conjecture that
RP ̸= NP. We refer the reader to Section 2.2 for a complete discussion.

1.4 Organization

The remainder of the paper is organized as follows. In the next chapter, we provide the
necessary background and notions that we leverage in our work, in particular, the PAC-
learning setting that we adopt. In Chapter 3 we address two learning problems for the
access matrix. We address five learning problems for RBAC in Chapter 4. In Chapter 5,
we address four learning problems for ReBAC. We discuss related work in Chapter 6, and
conclude with Chapter 7 where we discuss also future work.

6

Chapter 2

Methodology

In this chapter, we elaborate on our theoretical understanding of the two primary tech-
niques employed to study the hardness of access control policies. The first technique is
the Probably Approximately Correct Learning model (PAC), which enables us to classify
problems as either easy or hard. We refer to problems that can be effectively learned using
PAC as easy, while those that cannot are considered hard. The second technique involves
reductions, which we employ to prove that a learning problem is hard.

2.1 Learning Access Control Policies

When we seek to learn an underlying access control policy (a policy we aim to learn,
often treated as a black box where only partial information is available), typically by
sending access requests to the black box and receiving corresponding responses containing
certain information, such as whether the access request is allowed or denied, about the
policy, it is only natural to inquire whether it is feasible to produce a policy that closely
approximates or is essentially identical to the underlying policy within a reasonable time,
i.e. in polynomial time. The PAC-learning model, a highly influential theory in the field of
machine learning, offers a solid foundation for addressing whether an access control policy
can be learned efficiently or not. For a thorough understanding of the PAC-learning model,
we suggest referring to the book mentioned [14].

7

Figure 2.1: The measure of error, adapted from the work of Kearns and Vazirani [14].
X, l, and t represent the instance space, the underlying target, and the output target,
respectively. The error can be quantified as the ratio between the shaded region, where
the underlying and hypothesis targets do not overlap, and the total area of X, the entire
region.

2.1.1 Definition of the PAC-learning model

The fundamental idea of the PAC learning model can be condensed into the following
statement. Suppose there exists an unknown underlying target class L, and the objective
of a learner is to learn any l ∈ L where the underlying target l is just a set or a boolean
function, and output t that is only approximations to l efficiently. The question we want
to address is whether the underlying target class L is learnable, i.e., whether an efficient
learning algorithm for learning every l ∈ L approximate correctly exists. The PAC-learning
model, in essence, defines the answer to this question: if a learning algorithm satisfying
specific properties exists for a given underlying target set L, then we can say that the class
L is PAC-learnable. In other words, we refer to the learning problem such that learning
the class L as ”easy.”

The entire learning process is divided into two phases: training and testing. In the
training phase, the learner is provided with labeled examples x ∈ X that are randomly
drawn from some fixed probability distribution D over X. Here, X refers to the instance
space, which represents the set of all possible examples. Each example is assigned a label
of either 0 or 1 by the underlying target l, indicating whether the example belongs to l or
not. For example, consider an interval [a, b] as the underlying target l, and the examples
consist of tuples ⟨x, label⟩. If a ≤ x ≤ b, the label is set to 1, otherwise it is set to 0. The
learner processes these examples and generates an output target t.

In the testing phase, the output t is evaluated using examples drawn from the same
distribution D over the same instance space X used during training. Both the underlying
target l and the output t can be seen as functions that map any given example x to either

8

0 or 1. Therefore, the label of an example x in the underlying target is denoted as l(x),
while the label assigned by the output is denoted as t(x).

To quantify the disparity between the underlying target l and the output t, we use
the term error, which measures the proportion of examples for which the labels provided
by the underlying target and the output do not match. Mathematically, the error can be
defined as:

error =Prx∼D {l(x) ̸= t(x)}

The error can also be visualized in figure 2.1, representing the probability that an
example is randomly drawn from some fixed distribution D over X and falls within the
shaded region.

When our goal is to learn an underlying target l, it is natural to aim for error that is
as small as possible. This expectation aligns with the requirements of the PAC-learning
model. Specifically, the PAC-learning model requires that the error should be bounded
by any chosen value of ϵ, where 0 < ϵ < 1/2, with a high probability. When considering
errors, we can rely on two intuitions. The first intuition is that the more examples the
learner learns during the training process, the smaller the error is likely to be. The second
intuition suggests that examples that the learner fails to learn during training are unlikely
to contribute to errors during testing because they are also unlikely to appear during
testing. This assumption holds since both the training and testing examples are drawn
from the same distribution.

Formally, the PAC-learning defines that for any given values of ϵ and δ, where 0 <
ϵ < 1/2 and 0 < δ < 1/2, class L is PAC-learnable if for every l ∈ L, the probability
of the error being less than or equal to ϵ, denoted as Pr {error ≤ ϵ}, is greater than or
equal to 1 − δ, and if the learning algorithm exhibits polynomial time efficiency with
respect to the size of the underlying target, i.e., size(l), 1/δ, and 1/ϵ. In this context,
we refer to problems that learning an efficiently PAC-learnable class as ”easy” or while
problems that learning an non-PAC-learnable class are considered ”hard”. Here, the term
ϵ corresponds to ”approximately,” and 1 − δ corresponds to ”probably” in the phrase
”probably approximately correct.”

It is crucial to highlight that the choice of encoding for the underlying target class L
can have a substantial effect on its PAC-learnability. We represent the encoding of the
underlying class as the encoding class E. For instance, let us consider L as the underlying
boolean formula class. If the encoding class is a 3-term conjunctive normal form (CNF),
then the class L encoded in CNF is PAC-learnable. However, if the encoding class is a

9

3-term disjunctive normal form (DNF), then L encoded in DNF is non-PAC-learnable.

Lastly, we formally provide the definition of the PAC-learning model, which is adapted
from [14].

Theorem 1. Let L be a underlying target class over the instance space X and E be an
encoding class over X. We say that L is PAC-learnable using E if there exists an algorithm
A such that: for every target e ∈ E, for every distribution D on X, and for all 0 < ϵ < 1

2

and 0 < δ < 1
2
, if algorithm A is given access to EX(e,D) and inputs ϵ and δ, then with

probability at least 1− δ, algorithm A outputs t satisfying error(t) ≤ ϵ. This probability is
taken over the random examples drawn by calls to EX(e,D).

2.1.2 The adapted PAC-learning model in our context

In this section, We introduce and customize some of the terminology and notions from
Section 2.1.1 to our particular context of learning access control policies. Firstly, we present
a formal definition to determine whether learning access control policies can be classified
as ”easy” or ”hard”. Then, in the subsequent paragraph, we establish a correspondence
between the notations used in PAC learning, as discussed in Section 2.1.1, and the notations
employed in the context of learning access control policies.

Theorem 2. Let Pl be the underlying policy class over the access request space X and Ml

be an encoding model over X. Let the learning problem P be: for each underlying policy
pl ∈ Pl encoded in ML, learn an output policy pt over the access request space X and Mt

be an encoding model over X. We say that the learning problem pis easy if there exists
an algorithm A such that: for every pl ∈ Pl, for every distribution D on X, and for all
0 < ϵ < 1

2
and 0 < δ < 1

2
, if algorithm A is given access to EX(pl,D), then with probability

at least 1− δ, algorithm A outputs a policy pt satisfying error(pt) ≤ ϵ. This probability is
taken over the random examples drawn by calls to EX(pl,D).

The underlying policy class Pl in the learning access control policies context of learning
the access control policies represents the underlying target class L, and the model Ml

represents the encoding class E. The goal of learning Pl in model Mt over the access
request space X is essentially learning L using E over the instance space X. The output
policy pt corresponds to t from the PAC-learning model. Furthermore, we extend our
approach by not restricting the encoding of the output policy pt, to be the same as the
underlying policy pl. In the subsequent discussions, for any learning problem, we explicitly
indicate the encoding model Ml and Mt of the input and output policies, respectively. If
there exists an algorithm A that satisfies the requirements stated in Theorem 1 for a given
learning problem, we refer to that problem as ”easy”; otherwise, it is considered ”hard”.

10

2.1.3 Learning access control policies using PAC-learning model

In this section, we provide a more detailed introduction to the learning notions that are
relevant to our contributions. Additionally, we expand these notations to enhance their
applicability within the access control policy learning domain.

Every learning problem we consider is set up as follows. There is an underlying access
control policy pl ∈ Pl in some model Ml that the learning algorithm seeks to learn. We
ask that the learning algorithm output a policy pt in a model Mt where it may or may
not be the case that Ml = Mt. We call each unit of data that is provided the learning
algorithm an example; each such example is of the form ⟨access-request, π⟩, where π is
some string that is generated as part of the process of access enforcement for the access-
request. (Recall, from Chapter 1 that every such model Ml is associated with an algorithm
for access enforcement.)

For example, Ml may be the access matrix model we discuss in Chapter 1 in the context
of Figure 1.1, andMt may be the RBAC model we discuss in the context of Figure 1.2. And
if the examples provided the learning algorithm are ⟨access-request, b⟩, where b ∈ {0, 1}
denotes “allow” or “deny”, then this would exactly be a learning version of the role-mining
problem from the literature [18]. If we impose no further constraints on the output RBAC
policy pt, then the corresponding role-mining problem is easy: e.g., we could simply create
one role per subject in the access matrix, and assign to the role those permissions, each of
which is an ⟨object, right⟩ pair, to which the subject is authorized in the access matrix.

There are two goodness properties we seek in a learning algorithm. One is that the
output policy needs to be probably approximately correct. To characterize what this means,
we first specify a meaningful notion of an error in the output policy pt when compared
to the underlying policy pl. An error is the probability that for an access-request that is
drawn from the same distribution D as was adopted at the time the learning algorithm ran
(but where the ⟨access-request, π⟩ pair was not necessarily seen by the learning algorithm
before it outputs pt), pl differs from pt. That is, if a represents an access-request, and we
think of each of the underlying and output policies pl, pt as polynomial-time computable
functions that take a as input, then, error =Pra←D {pl(a) ̸= pt(a)}.

For example, if Ml is the access matrix model from Chapter 1, and Mt the RBAC
model, then we may adopt as error the probability that an access-request is drawn from
the distribution D for which the allow/deny verdict is different for the underlying access
matrix policy pl than the output RBAC policy pt. Under this notion of error then, the
error in the RBAC policy in Figure 1.2 relative to the underlying access matrix policy
in Figure 1.1 is 0. Suppose, as a different example but for the same notion of error, the

11

output RBAC policy does not have the permission ⟨secret-file,write⟩ assigned to role 1,
but otherwise, our output RBAC policy is the same as in Figure 1.2. Then, the error is
the probability that the access request ⟨alice, secret-file,write⟩ is drawn, because for that
access-request, the underlying policy would issue an “allow” verdict, but the output policy
would issue a “deny”.

In allowing an arbitrary string π as the second component of an example, and in leaving
the exact characterization of what difference between pl and pt can cause non-zero error,
we generalize classical PAC-learning [23]. In that classical setup, π ∈ {0, 1}, and pl, pt are
functions whose codomain is {0, 1}.

Given a characterization for an error as we discuss above, we then require that the
probability that the output policy suffers error more than an input parameter ϵ is bounded
by another input parameter δ. For a learning algorithm to be deemed to be probably ap-
proximately correct, we require that for every ϵ, δ and distribution D, where 0 < ϵ < 1/2
and 0 < δ < 1/2, it is the case thatPr {error ≤ ϵ} ≥ 1− δ. That is, ϵ corresponds to “ap-
proximately”, and 1− δ corresponds to “probably” in the phrase “probably approximately
correct”.

The other goodness property we seek in a learning algorithm is that it must be efficient,
i.e., run in time polynomial in (i) the size of (the encoding of) the underlying policy pl,
(ii) the inverse of the error-threshold, i.e., 1/ϵ, and, (iii) the inverse of the probability we
have an error beyond the error-threshold, i.e., 1/δ. This implies that the size of the output
policy pt must be at worst polynomial in (i)–(iii), and so must the number of examples the
algorithm is allowed to see before it outputs pt. The reason for the former is that the size
of any algorithm’s output is bounded by the time it is allowed to run. The reason for the
latter is that we think that it takes at least some non-zero time for the learning algorithm
to read an example.

If there exists an algorithm that satisfies both the above goodness properties, then we
deem the learning problem to be “easy” in our parlance.

2.2 Reduction to Prove Hardness

We now discuss the manner in which we say that a learning problem is “hard”. It is via
a reduction. Our reduction is akin to the polynomial-time Turing reduction [8]. Such a
reduction is conjectured to be weaker than the one that is akin to the polynomial-time
many-one reduction that some prior work on learning adopts, e.g., the work of Pitt and
Valiant [20]. Nonetheless, our reduction derives a contradiction to the claim that both the

12

following are simultaneously true: RP ̸= NP, and an efficient, PAC-learning algorithm
exists for the problem. In other words, our reduction proves that under the assumption
RP ̸= NP, an efficient PAC-learning algorithm does not exist for the problem.

2.2.1 Problems, RP and NP

A decision problem is a function whose codomain is {true, false}. For example: given ⟨G, k⟩
where G = ⟨V,E⟩ is an undirected graph whose set of vertices is V ̸= ∅ and edges is E, and
k is an integer such that k ∈ {1, . . . , |V |}, does G have a vertex cover of size k? A vertex
cover C ⊆ V is a subset of the vertices such that every edge in E is incident on at least one
of the vertices in C. This decision problem, denote it VertexCoverDec, is known to
be NP-complete [6]. A decision problem is in NP if for each true instance of the problem,
there exists a string called a certificate whose size is at worst polynomial in the size of
the instance which attests to the true-ness of the instance, and a two-input verification
algorithm that, given input the instance and certificate, outputs true in polynomial-time.
For VertexCoverDec, a natural certificate is a subset C ⊆ V of the vertices that is a
vertex cover of G. A corresponding verification algorithm would simply check that |C| = k,
and that every edge is indeed incident on some vertex in C.

A randomized algorithm is one that is allowed to toss fair coins, where each coin-
toss takes some non-zero, constant time. A decision problem is in RP if there exists a
randomized polynomial-time algorithm that given as input a true instance of the problem,
the algorithm outputs true with probability ≥ 1/2, and given a false instance, outputs false
with probability 1. We know that RP ⊆ NP; the customary conjecture is that RP ̸= NP.

The problem that we call certificate construction for a decision problem in NP is the
following. Given an instance of the decision problem that is known to be true, compute
a certificate for it. For example, corresponding to VertexCoverDec and the certificate
above that we adopt for it, the certificate construction problem VertexCoverCC is:
given ⟨G, k⟩ where G has a vertex cover of size k, compute and output such a vertex cover.
Via the following theorem, we establish that if there exists a randomized algorithm for
VertexCoverCC, then RP = NP.

Theorem 3. Suppose there exists a randomized algorithm for VertexCoverCC that
given input ⟨G, k⟩ such that G has a vertex cover of size k, outputs such a vertex cover
with probability ≥ 1/2 in polynomial-time. Then, RP = NP.

To prove the above theorem, we adapt a proof from Cormen et al. [2], for the different
question as to whether a polynomial-time algorithm exists that correctly outputs true

13

or false given input an instance of a decision problem, given only an algorithm that is
guaranteed to correctly output true give input a true instance of the problem in polynomial-
time.

Denote the randomized algorithm A. As A is a randomized polynomial-time algorithm,
we know that there exist three positive constants n0, c, c

′ such that given an input ⟨G, k⟩
whose size is n, where n > n0, A returns a vertex cover for G of size k with probability
≥ 1/2 in time ≤ c · nc′ provided G indeed has such a vertex cover.

We construct a randomized polynomial-time algorithm B for VertexCoverDec as
follows. The existence of such an algorithm immediately implies RP = NP because
VertexCoverDec is NP-complete. If an input instance ⟨G, k⟩ of VertexCoverDec
is of size n ≤ n0, B solves by brute-force and returns. Otherwise, B invokes A with input
⟨G, k⟩. If A returns within time c ·nc′ , B checks whether the returned set is indeed a vertex
cover of size k for G. If yes, B outputs true and halts. Otherwise, B outputs false and
halts. For an input instance of VertexCoverDec, B is guaranteed to output true with
probability ≥ 1/2, and for an input instance that is false, B is guaranteed to output false
with probability 1, as desired.

2.2.2 Reductions in our context

Given an access control model Ml for the underlying policy, we reduce as follows. We
choose a decision problem, denote it L, that is known to be NP-complete, for example
VertexCoverDec from above. We produce a policy pl in Ml that encodes (i) a true
instance i of L, and (ii) a certificate ci for that true instance i. Also, we map the instance i
only (and not the certificate) to examples ⟨access-request, π⟩ such that knowledge of all the
examples implies, at most, knowledge of the problem instance i only, and not the certificate
ci. We then challenge a learning algorithm to produce an output policy pt in the desired
model Mt that is equivalent to the underlying policy pl, i.e., encodes not only the instance
i but also the certificate ci.

If a learning algorithm is able to produce such an output policy pt, then that learning
algorithm will have computed the certificate that is encoded as part of pl. However, if
there exists an algorithm that can compute such a certificate in an efficient, probably
approximately correct manner, then RP = NP because there would exist a randomized
polynomial-time algorithm for the decision problem L that we know is NP-complete.

We can produce such an algorithm by adapting arguments from Kearns and Vazirani
[14]. A PAC-learning algorithm, denote it A, needs to be able to support any distribution D
under which the examples are chosen. Adopt as the distributionD the uniform distribution.

14

Also suppose the set S is the set of all pairs of examples each of the form ⟨access-request, π⟩,
and adopt ϵ = 1/ (2 |S|). Now, if A errs on even one example in S, i.e., if there exists
⟨a, π⟩ ∈ S such that pl(a) = π ̸= pt(a), then the error incurred by the algorithm is
≥ 1/ |S| = 2ϵ > ϵ. Thus, pt must encode the certificate ci of the true instance i as well,
and A is now a randomized polynomial-time algorithm for the certificate construction
problem that corresponds to L. And by Theorem 3, this would imply RP = NP.

2.2.3 Comparison to prior work

As mentioned in Section 2.2, the reduction we use differs from the approach used in prior
work of Pitt and Valiant[20]. They employed the polynomial-time many-one reduction, also
known as Karp reduction, to prove that learning 3-term DNF boolean formula is hard. In
their approach, the examples used are the assignments for the boolean formula.

We use a different reduction method for two main reasons. Firstly, the learning problem
from Pitt and Valiant’s is restricted that the syntax or encoding of the underlying target
and the output should be the same, whereas we do not have such a restriction. Secondly,
the relationship between the number of examples and the size of the underlying target
varies across our learning problems and their’s. In the three cases we consider: learning an
access matrix, learning an RBAC, and learning an ReBAC?? the set of all access requests
is, under reasonable assumptions about the encoding of the underlying policy, polynomial
in the size of the underlying policy. For instance, in the case of an underlying access
matrix pl = ⟨Sl, Ol, Rl,ml⟩, the size of pl is polynomial with respect to the number of
access requests, which is |Sl| · |Ol| · |Rl|. This is under the assumption that ml is encoded as
a one-dimensional array of size |Sl| · |Ol| · |Rl|, with elements stored sequentially according
to a specific order. However, when learning a 3-term DNF boolean formula using the
assignment examples, let us assume the size of a 3-term DNF boolean formula with n
literals is polynomial with n (the boolean formula is encoded using binary representation).
In this case, the total number of assignments is 2n, which can be exponential in the size of
the boolean formula in the worst case.

15

Chapter 3

The Access Matrix

We now pose two learning problems for the access matrix. In both, the models for the un-
derlying and output policies are the same, and the examples are ⟨access-request, allow/deny⟩
pairs. One of the problems turns out to be easy, and the other hard.

3.1 Learning an Access Matrix with positive rights

only

In this section, we consider the problem of learning the access matrix with positive rights
only. The access matrix is encoded as a tuple ⟨S,O,R,m⟩, where S, O, and R refer to
subjects, objects, rights, and a matrix, which is a function m : S × O → 2R. An example
of the access matrix is shown in 3.1.

In this learning problem, the models Ml and Mt for the underlying and output policies,
respectively, is the access matrix model. Adopt as examples for the learning algorithm
pairs ⟨access-request, response⟩, where an access-request is a triple
⟨subject, object, right⟩ and the response is “allow” or “deny”, such that the response is
“allow” if and only if each of the subject, object and right exist, and the subject has the
right over the object in the matrix m. Adopt Mt = Ml as the model for the output of the
learning algorithm. We will show that this learning problem is easy.

Theorem 4. The above learning problem is easy.

Proof. By construction. Consider the simple learning algorithm, denote it A that builds
an output access matrix pt = ⟨St, Ot, Rt,mt⟩ as follows. Initially, St, Ot, Rt and mt are all

16

s1 s2 s3 s4 s5 o
s1 ✓ ✓
s2 ✓ ✓
s3 ✓ ✓ ✓ ✓
s4 ✓ ✓ ✓
s5 ✓ ✓

Figure 3.1: An access matrix instance containing only positive rights r is represented using
the symbol✓ within the table, whereas figure 3.2 illustrates a different version of the access
matrix that has both positive and negative rights.

empty. For every access-request ⟨s, o, r⟩ that is allowed, A performs St ← St ∪ {s} , Ot ←
Ot ∪ {o} , Rt ← Rt ∪ {r}, and mt[s, o]← mt[s, o] ∪ {r} after first creating a row for s and
column for o in mt if either does not already exist. A ignores any access-request that is
denied. The Pseudo-code of A is shown in Algorithm 1.

To prove that this algorithm is effective, we observe that pt can err only in denying
some request ⟨s, o, r⟩ that is allowed by the underlying policy pl; any request that is denied
by pl is denied by pt as well. Now suppose we are given some ϵ, δ and any fixed distribution
D over the access-request set X (Note that in this distribution setting, each access request
can be independently drawn from the distribution, and each request can be drawn from
the access request set X multiple times. The probability of each example being drawn is
not necessarily equal.). And suppose n = |Sl| · |Ol| · |Rl|, representing the cardinality of the
access-request set X. We observe that n is polynomial in the size of the underlying policy
pl.

Consider any request, denote it α = ⟨s, o, r⟩ that is allowed by pl but denied by pt and
occurs with probability ≥ ϵ/n. If no such request α exists, then the error in pt ≤ ϵ, because
the number of possible distinct access requests ≤ n. We ask: how many examples m suffice
so no such request α exists? We observe that after m examples, the probability that any
such α has not been seen by the learning algorithm is ≤ n

(
1− ϵ

n

)m
, where the “n” is from

the union bound across all possible examples, and the “
(
1− ϵ

n

)m
” is the probability that

any one particular α has not been seen across m examples. And because (1 − x) ≤ e−x,
for it to be true that n

(
1− ϵ

n

)m ≤ δ, it suffices that m ≥ (n/ϵ) (ln (n) + ln (1/δ)), which
is polynomial in the size of pl, 1/ϵ and 1/δ.

17

Algorithm 1: Learning as an access matrix with positive rights only

Input : E which is a set of examples ⟨⟨s, o, r⟩ , allow\deny⟩
Output: An access matrix with positive rights

1 Initialize ⟨S,O,R,m⟩ to ∅;
2 foreach example ⟨⟨s, o, r⟩ , allow\deny⟩ ∈ E do
3 if example is “allow” then
4 if m[s, o] ̸= r then
5 S ← S ∪ s;
6 O ← O ∪ o;
7 R← R ∪ r;
8 m[s, o]← r

9 return ⟨S,O,R,m⟩

5

4

3

2

1

s1 s2 s3 s4 s5 o
s1 ✗ ✓ ✓
s2 ✓ ✓
s3 ✓ ✓ ✓ ✓
s4 ✓ ✓ ✗ ✓
s5 ✓ ✓ ✗

Figure 3.2: An instance of VertexCoverCC and its encoding as an access matrix with
positive and negative rights. “✓” represents positive rights r, and “✗” represents negative
rights r̃. The three shaded vertices comprise a vertex cover of size k = 3.

3.2 Access Matrix with both positive rights and neg-

ative rights

Consider a variant of the access matrix model in which for every “positive” right r, there
is a “negative” right r̃, but an access-request remains the same as we specify for an ac-
cess matrix with positive rights only. In this variant, a policy is specified by a tuple〈
S,O,R ∪ R̃,m

〉
, where S,O are the sets of subjects and objects respectively, and the

set of rights is R ∪ R̃, where R ∩ R̃ = ∅ and r ∈ R ⇐⇒ r̃ ∈ R̃. The access matrix is
m : S × O → 2R∪R̃. An access-request is a triple ⟨s, o, r⟩ as before, where r ∈ R. The
request is allowed if and only if s ∈ S, o ∈ O, r ∈ R, r ∈ m[s, o] and r̃ ̸∈ m[s, o]. That is,

18

we adopt a “deny overrides” discipline in access enforcement.

Adopt as the model for the output policy the same model as the underlying policy, and
characterize an error as any difference in the entries of the underlying and output access
matrices. That is, if ml is the access matrix in the underlying policy and mt in the output
policy, given an access-request ⟨s, o, r⟩ drawn from some distribution D, an error is the
probability that ml[s, o] ∩ {r, r̃} ̸= mt[s, o] ∩ {r, r̃}. (If one of s, o does not exist in the
output policy, simply assume mt[s, o] = ∅.)

Theorem 5. The above learning problem is hard.

Our proof is via reduction from VertexCoverCC, the certificate construction prob-
lem for VertexCoverDec (see Section 2.2). Suppose we are given ⟨G, k⟩ where G =
⟨V,E⟩ is an undirected graph which has a vertex cover of size k, and that C ⊆ V is such
a vertex cover. The high idea behind our reduction is as follows: we encode G, k, and C
as an underlying policy pl, and G, k as the set of all access-requests ⟨s, o, r⟩. This setting
prevents the learning algorithm from obtaining information about the certificate, i.e. the
vertex cover. If a learning algorithm that can output a policy which is probably approxi-
mately correct to the underlying policy exists, this suggests the existence of a randomized
algorithm for the VertexCoverCC problem. Based on Theorem 3, this leads to the
conclusion that RP = NP. (Illustration of the reduction is provided through an example
in Figure 3.2.)

Here is the specific setting of the reduction. We encode G, k, C in an underlying policy
pl as follows. Assume the set of vertices in G, V = {1, . . . , |V |}. For each vertex i ∈ V ,
create a subject si. Each subject si is also an object in pl. In addition, create another
object, denote it o. Our set of positive rights comprises one right r only; thus, our set of
negative rights is {r̃}. For each edge ⟨i, j⟩ ∈ E, add the right r toml[si, sj]. For each vertex
i in the vertex cover C, add the negative right r̃ into ml[si, si]. Finally, for i = 1, . . . , k,
add the right r into ml[si, o]. (We assume k ∈ {1, . . . , |V |}.)

The set of all access requests is Sl × Ol × Rl, where Sl =
{
s1, . . . , s|V |

}
, Ol = S ∪

{o} and Rl = {r}. Thus, from the set of all examples, a learning algorithm discovers
⟨G, k⟩. Any cell along the diagonal would correspond to “deny” examples only; for example,
⟨⟨s1, s1, r⟩ , deny⟩ and ⟨⟨s3, s3, r⟩ , deny⟩, and a learning algorithm is unable to distinguish
that one has a negative right and the other does not, means that it does not get any
information about the certificate that it is requested to output.

19

3.3 Generalization

A utility of the above two results is that they serve as the basis for other learning problems
in access control, as is apparent in the following two chapters. The proof for Theorem 5
serves as a template for proving other hardness results in this context. And Theorem 4
can be generalized to the following, which is for any model for the underlying policy.

Corollary 1. Suppose we have a model M with the property that for every policy p in M ,
there exists a policy pa in the model for an access matrix we characterize in Chapter 1 such
that the size of pa is at worst polynomial in the size of p. Assume also that the examples
are ⟨access-request, allow/deny⟩, and an error is characterized as the probability that an
authorization is allowed in pa but denied in p, or denied in pa but allowed in p.

If there are no more constraints on the output policy, then the learning problem is easy.

The statement in the above corollary does not constrain us to a model for the output
policy, and therefore, towards a proof, we choose the access matrix that we characterize in
Chapter 1. Then, the proof for the corollary is identical to that of Theorem 4, except that
we would first adopt the access matrix policy, pa, in lieu of the original policy p, to carry
out the proof.

20

Chapter 4

Role-Based Access Control (RBAC)

In this chapter, we focus on the learning problem that the underlying policy is encoded
as a RBAC model, while the encoding of the hypothesis policy can be vary. RBAC is a
kind of access control policy model that is specified by a tuple ⟨U, P,R,UA,PA⟩. U, P,R
are sets of users, permissions, and roles respectively. UA : U → 2R \ {∅} represents the
relationship between U and P . It is a function that maps a user to a non-empty set of
roles. PA : P → 2R \ {∅} is a function that associates a permission with a non-empty set
of roles.

In the rest of this chapter, we propose 5 learning problems and provide the proof of
their hardness. For the learning problems that are easy, we also provide efficient algorithms
for them. The underlying policy of those 5 learning problems is encoded in RBAC while
the encoding of the hypothesis policy is vary. The learning problems are summarized in
Table 4.1.

4.1 Learning as an Access Matrix

The first row of Table 4.1 indicates that the desired output model is an access matrix, the
examples we present to a learning algorithm consist of tuples containing user-permission
pairs along with allow/deny labels, i.e., ⟨⟨user, permission⟩ , allow/deny⟩, and the error is
characterized as the probability of authorization mismatches. Under these conditions, the
learning problem is easy.

This result follows immediately from Corollary 1 in the previous Chapter. The only
nuance is that the variant of an access matrix to which an RBAC policy is related poly-

21

Examples Output policy Hardness

(1) ⟨user-permission, allow/deny⟩ equivalent access matrix easy

(2) ⟨user-permission, allow/deny⟩ equivalent RBAC easy

(3) ⟨user-permission, allow/deny⟩ isomorphic RBAC hard

(4)
⟨user-role, allow/deny⟩,

equivalent RBAC easy
⟨user-permission, allow/deny⟩

(5)
⟨user-role, allow/deny⟩,

isomorphic RBAC hard
⟨user-permission, allow/deny⟩

Table 4.1: The hardness of five learning problems for RBAC (From the work of.

nomially is of the form ⟨U, P,m⟩, where U, P are the sets of users and permissions from
the RBAC policy, and the matrix is a function of the form m : U × P → {allow, deny}.
However, this variant of the access matrix is, in turn, related polynomially to the variant
we characterize in Chapter 1: to map a policy in that variant to this one, we would simply
introduce a single right r, adopt as the objects exactly the set of permissions P , adopt
as the set of subjects the users U , and add the right r to the cell for ⟨u, p⟩ if and only if
m(u, p) = allow.

4.2 Learning as an Equivalent RBAC policy

Row (2) of Table 4.1 states that if our desired output model is the RBAC model, the
examples we provide a learning algorithm are ⟨⟨user, permission⟩ , allow/deny⟩. The label of
an example is “allow” if UA(u)∩PA(p) ̸= ∅, and “deny” otherwise. An error is characterized
as the probability of a mismatch in authorizations, and there are no more constraints on
the output policy, then the learning problem is easy. By “mismatch in authorizations”
for the error, what we mean is the following. Let the underlying RBAC policy and the
hypothesis RBAC policy be pl and pt respectively, and function pl(u, p) and pt(u, p) both
return “allow” or “deny”. Then, the error is: Pr⟨u,p⟩∼D {pk(u, p) ̸= pt(u, p)}.

The proof is via construction. Denote a learning algorithm as A, and it works as
follows. A simply ignores any example whose second component is “deny”. For an example
⟨⟨u, p⟩ , allow⟩ that A sees, A checks whether there already exists a role in the output policy

22

to which the permission p is assigned. If not, A creates a new role rp and assigns each of
u and p to it. If such a role already exists, A assigns u to the role. Thus, in the output
policy, there is an invertible mapping between the permissions and roles, and a user to
assign to a role r if and only if the user is authorized (in an “allow” example seen by A)
to the unique permission p which is assigned to the role. The Pseudo-code of A is shown
in Algorithm 2.

It is easy to know that in lines 3-12 of Algorithm 2, the time for algorithm A to process
each example is in polynomial. The only question that remains is what the minimum
number of examples it needs to see is, given the error and probability parameters ϵ and δ.
The proof that it needs to see at worst polynomially many in the size of the underlying
policy, 1/ϵ and 1/δ is identical to that of Theorem 4 in the previous Chapter.

Algorithm 2: Learning as an Equivalent RBAC policy

Input : Example ⟨⟨u, p⟩ , allow\deny⟩
Output: An equivalent RBAC policy

1 Initialize ⟨U, P,R,UA,PA⟩ to ∅;
2 foreach example ⟨u, p, allow⟩ do
3 if u /∈ U then
4 U ← U ∪ u;
5 if p /∈ P then
6 P ← P ∪ p;
7 if PA(p) = ∅ then
8 Initialize a new role rp;
9 PA(p)← rp;

10 UA(u)← rp;
11 R← R ∪ rp;

12 else if PA(p) ̸= ∅ then
13 UA(u)← PA(p);

14 return ⟨U, P,R,UA,PA⟩

4.3 Isomorphic RBAC policy

Row (3) of Table 4.1 addresses learning as an RBAC policy, with the same examples as Row
(2). A difference with Row (2) is that we impose the additional constraint that the output
policy needs to be isomorphic to the underlying policy. Isomorphism, in this context, is

23

characterized in a natural way, in a manner similar to that for graphs [15]. Given two
RBAC policies α1 = ⟨U1, P1, R1,UA1,PA1⟩ and α2 = ⟨U2, P2, R2,UA2,PA2⟩, we say that
they are isomorphic to one another if and only if: (i) U1 = U2, P1 = P2, |R1| = |R2|, and
(ii) there exists an invertible function g : R1 → R2 such that a user u is authorized to a
permission p through a role r in the policy α1 if and only if u is authorized to p through
g(r) in α2; that is, r ∈ UA1(u)∩PA1(u) if and only if g(r) ∈ UA2(u)∩PA2(u). Our notion
of error for the learning algorithm is the probability, given that examples are drawn under
some distribution D, that the output RBAC policy is isomorphic to the underlying policy.

We introduce this notion of isomorphism, and not simply say “the same RBAC policy”
to emphasize that the names of roles are inconsequential. Note that there may be good
reasons to seek to learn an isomorphic policy. Given a set of user-permission authorizations,
there can exist exponentially many (in the size of that set) RBAC policies that encode
exactly those authorizations. The question as to which of those RBAC policies are “good”
is the topic of role-mining for which there has been considerable prior work [18]. Imposing
the additional constraint of isomorphism on a learning algorithm expresses an intent that
the goodness of the underlying policy is preserved in the output policy.

In Row (3) of Table 4.1, we assert that this learning problem is hard. Our reduction is
similar to the proof for Theorem 5 in the previous Chapter, except that the problem from
which we reduce is the certificate construction problem that corresponds to role-mining for
the minimum number of roles [4]. That is, the certificate construction problem we adopt
is the one that corresponds to the following decision problem: given as input an access
matrix of the form ⟨U, P,m⟩ as we characterize under our discussions above for Row (1) of
Table 4.1, and an integer n, does there exist an RBAC policy as we characterize in Chapter
1 which is equivalent in authorizations to the input access matrix, and whose number of
roles is n? This problem is known to be NP-complete [4], and is related polynomially to
the optimization problem: given as input such an access matrix, compute an equivalent
RBAC policy whose number of roles is minimized.

In our reduction, we adopt as an underlying RBAC policy one that minimizes the
number of roles for the access matrix that corresponds to that policy. The set of all
examples communicates the access matrix only to a learning algorithm.

24

⟨⟨alice, role 1⟩ , allow⟩
⟨⟨carol, role 3⟩ , allow⟩
⟨⟨alice, role 3⟩ , deny⟩

⟨⟨alice, ⟨bob, admin⟩⟩ , allow⟩
⟨⟨alice, ⟨alice, admin⟩⟩ , allow⟩
⟨⟨alice, ⟨carol, admin⟩⟩ , deny⟩
⟨⟨carol, ⟨carol, admin⟩⟩ , allow⟩

Figure 4.1: Some examples and the output RBAC policy constructed for those by the
algorithm we propose for Row (4) of Table 4.1, where the underlying RBAC policy is the
one from Figure 1.2.

4.4 Learning as an Equivalent RBAC policy with role-

activation

This is the learning problem stated in Row (4) of Table 4.1, which expands the examples,
and the notion of error of the PAC model, to incorporate user-role activation.

In systems that adopt RBAC for access control, it is common to require a user to first
activate a role before they are able to exercise a permission that is assigned to that role.
The intent is to provide the user a mechanism by which they can adhere to the principle of
least-privilege [21] — in a session, a user should assume only those privileges that the user
requires, and not necessarily all privileges they can. For example, for the RBAC policy in
Figure 1.2, the user carol may activate role 2 in a session, but not role 3, if they do not
intend to exercise the ⟨carol, admin⟩ permission in that session.

Role activation by a user is part of access-enforcement; a user u requests a role r to be
activated, and it is allowed if and only if the u is assigned to r in the policy, i.e., r ∈ UA(u).
When u seeks to exercise a permission p, that is allowed if and only if the u has previously
activated a role r to which u and p are assigned, i.e., r ∈ UA(u) ∩ PA(u) for some r for
which ⟨⟨u, r⟩ , allow⟩ has occurred previously.

For the problem that corresponds to Row (4) in Table 4.1, we are (can be) more
demanding with regards to the error when compared to our notion of error for Row (2),
given that the learning algorithm is provided the additional information on role-activation.
Specifically, we ask not only that user-permission authorizations are the same in the output
policy as the underlying policy, but also that user-role assignments are preserved.

More precisely, suppose, given a user u and role r, Event1 is: pl(u, r) ̸= po(u, r), where
pl and po are the underlying and the output RABC policies respectively. This is the event

25

that the user u is assigned to the role r in the underlying policy if and only if u is assigned
to r in the output policy. (Note that when we refer to a role that exists in both the
underlying and output policies, we mean a role of the same name.) And suppose, given a
user u and permission p, Event2 is: pl(u, p) = pt(u, p). This is the event that u is authorized
to the permission p in the underlying policy if and only if u is authorized to p in the output
policy. Our notion of error for the problem that corresponds to Row (4) of Table 4.1 is the
probability that (at least) one of Events (1), (2) does not occur. This probability is under
some distribution Dr under which a user-role pair ⟨u, r⟩ is chosen for Event1, and some
distribution Dp under which a user-permission pair ⟨u, p⟩ is chosen for Event (2). We can
represent it as:

Pr⟨u,r⟩∼Dr,⟨u,p⟩∼Dl
{pl(u, r) ̸= po(u, r)||pl(u, p) ̸= po(u, p)}

In Row (4) of Table 4.1, we state that this learning problem is easy. With some
tweaks, the learning algorithm we use for Row (2) can be used as a proof by construction.
Specifically we ignore any examples of the form ⟨·, deny⟩. For an example ⟨⟨u, r⟩ , allow⟩
that we see, we create a role r in the output policy if it does not already exist, and assign u
to r. For an example ⟨⟨u, p⟩ , allow⟩ that we see, do exactly what the algorithm we propose
for Row (2) does. The pseudo-code is shown in Algorithm 3. As with the algorithm for
Row (2), the algorithm above is polynomial-time in the number of examples. Also, we can
prove that the number of examples we need to see to ensure that we meet the bounds set
by ϵ and δ is at worst polynomial in the size of the underlying policy in the same manner
as we do for Theorem 4 in Chapter 3.

However, this algorithm can be seen as somewhat unsatisfactory, as it results in roles
to which no permission is assigned, and there are roles in the output policy that were
never activated. As an example, we show in Figure 4.1 the output policy the algorithm
would construct given the examples shown there. It is possible to construct a “better”
algorithm that assigns permissions to the roles it sees in ⟨⟨u, r⟩ , allow⟩ examples; we leave
a characterization of such an algorithm and the tighter notion of error that it satisfies for
future work.

Isomorphic policy with role-activation Row (5) of Table 4.1 addresses the problem
of learning an RBAC policy that is isomorphic to the underlying policy (see our character-
ization under our discussions for Row (3) above), given both user-role and user-permission
examples. To show that this problem is hard, it suffices for us to retain the notion of
error that we propose for Row (3). That is, our error is the probability that the output
policy is isomorphic to the underlying policy, given that examples are drawn under some

26

Algorithm 3: Learning as an Equivalent RBAC policy

Input : Example ⟨⟨u, p⟩ , allow\deny⟩ and example ⟨⟨u, r⟩ , allow\deny⟩
Output: An equivalent RBAC policy

1 Initialize ⟨U, P,R,UA,PA⟩ to ∅;
2 foreach example ⟨u, r, allow⟩ do
3 R← R ∪ r;
4 UA(u)← r;

5 foreach example ⟨u, p, allow⟩ do
6 if u /∈ U then
7 U ← U ∪ u;
8 if p /∈ P then
9 P ← P ∪ p;

10 if PA(p) = ∅ then
11 Initialize a new role rp;
12 PA(p)← rp;
13 UA(u)← rp;
14 R← R ∪ rp;

15 else if PA(p) ̸= ∅ then
16 UA(u)← PA(p);

17 return ⟨U, P,R,UA,PA⟩

distribution D.
Our reduction is from the certificate construction problem for vertex cover,VertexCoverCC

(see Section 2.2). Note, however, that unlike in Row (3), we need to account for the fact
that a learning algorithm may learn user-role assignments. To adapt for this, we adopt a
different certificate than we do in the previous section. Suppose we are given an undirected
graph G = ⟨V,E⟩ which has a vertex cover of size k. Then, a certificate that attests to
the fact that G has such a vertex cover is a function m : E → V which identifies, for each
edge e ∈ E, the vertex that covers it. That is, if ⟨u, v⟩ = e ∈ E, then m(e) ∈ {u, v}, and
m(e) identifies exactly which of u or v we include in our vertex cover of size k for the edge
e. The function m is a valid certificate, and can be encoded, e.g., as a table, whose size is
linear in G.

Our reduction is as follows. Assume that we are given ⟨G, k,m⟩, where G = ⟨V,E⟩ is
an undirected graph, k ∈ [1, |V |] is an integer, and m : E → V is a mapping that encodes a
vertex cover of G of size k as we characterize above. We encode ⟨G, k,m⟩ in an underlying
RBAC policy as follows. We have one user u only. We have k roles, r1, . . . , rk, where each

27

Edge m(·)
⟨1, 3⟩ 1
⟨2, 4⟩ 4
⟨3, 4⟩ 4
⟨3, 5⟩ 5
⟨4, 5⟩ 5

role 1 role 2 role 3

Figure 4.2: The graph and vertex cover of size k = 3 from Figure 3.2 encoded as a table m
of edges to vertices, and the underlying RBAC policy to which we map, for the reduction
for Row (5) of Table 4.1.

rj corresponds to a vertex vj in the vertex cover encoded by m, i.e., {v1, . . . , vk} is the
range of m. For each edge e1, . . . , eq ∈ E, we have a permission, p1, . . . , pq. The user u is
assigned to all the roles r1, . . . , rk. A permission pi is assigned to a role rj if and only if
m(ei) = vj, i.e., the edge ei that corresponds to the permission pi is covered by the vertex
vj that corresponds to the role rj.

The set of all user-role examples communicates k to the learning algorithm. The set
of all user-permission examples communicates the set of all edges, i.e., the graph G, to
the learning algorithm. The challenge for the learning algorithm is to identify the role-
permission edges; knowledge of those edges would identify m, and thereby, a vertex cover of
size k for G. In Figure 4.2, we show the function m encoded as a table and the underlying
RBAC policy to which we map for the graph with k = 3 of Figure 3.2.

28

Chapter 5

Relationship-Based Access Control
(ReBAC)

We now address four learning problems in the context ReBAC. The particular model of
ReBAC on which we focus is the one on which prior work on learning focuses [13].

The intent of ReBAC is to capture authorizations that result from relationships between
entities. In recognition that there can exist different kinds of relationships, a component
of a ReBAC policy is a set, L, of relationship labels, which we can perceive as a finite set
of symbols or an alphabet. Each symbol can usually be thought of as a word or phrase in
English, for example, the relationship label “CHILD” corresponds to “child” in English.
A relationship pattern is a finite string in the alphabet L, i.e., a finite sequence of labels
from L, e.g., if L = {α, β}, then α.α.β is a relationship pattern, where we use the “.” as a
separator between labels. A component of a ReBAC policy is a set, P , of such relationship
patterns; the significance of a pattern p belonging to this set P is that the only accesses
we allow are those between entities that are related by such a pattern p.

Finally, there is a system graph G that specifies the entities in the system, and the
manner in which they are related. G = ⟨V,E, l⟩, where V is the set of entities, E is a set of
directed edges, each of which represents a (direct) relationship, and l : E → L is a labelling
function, which labels an edge.

A ReBAC policy is characterized as a triple, ⟨G,L, P ⟩. An access-request is a pair
⟨u, v⟩ where u, v ∈ V . It is allowed if and only if there exists a path u⇝ v in G of, say, k,
edges such that the sequence of labels of edges on that path α1.α2.αk ∈ P .

We show an example of ReBAC policy in Figure 5.1. In the example, as the caption
of the figure says, the access request ⟨Bob, Alice-record⟩ is allowed because there is a path

29

Figure 5.1: An example, adapted from prior work [13], of a ReBAC policy that comprises
a system graph and a set of label-sequences. The access-request ⟨Bob,Alice-record⟩ is
allowed; ⟨Daniel,Alice-record⟩ is denied, as is ⟨Daniel,Carol⟩.

in the system graph Bob
treats−−−→ ⃝ owns−−→ Alice-record, and the label-sequence treats.owns

is in the set P . We render the intermediate vertex on the path as “⃝” because we do
not care which vertex it is from the standpoint of access-enforcement. The access-request
⟨Daniel, Alice-record⟩ is denied because given any path Daniel⇝ Alice-record in the graph,
the sequence of labels on the path is not a member of P . For the same reason, the access-
request ⟨Daniel, Carol⟩ is denied as well.

One more notion to which three of our learning problems in Table 5.1 pertain is what
we can think of an “intersection” between G and P in a ReBAC policy, which we denote
G ⊓ P . It is motivated by the fact that a label-sequence must exist in both G and P for
an access-request to be allowed, and also because it underlies prior work that is related to
ours [13]. A perspective towards G⊓P is as a set of strings, i.e., label-sequences, that is a
subset of P . G⊓ P perceived as a set of strings is a subset S ⊆ P where s ∈ S if and only
if s ∈ P and a path exists in G with the label-sequence s. For our example in Figure 5.1,
such a set of strings is exactly the set P , because every string in P appears in a path of G
there.

Another perspective towards G ⊓ P is as a system graph, which is the subgraph of
G with the same set of vertices, but in which an edge e exists if and only if any path
contains the edge e exists in G and the label-sequence along the path is a member of P .
For example, the system graph that corresponds to G ⊓ P in our example of Figure 5.1

would not have the edge Daniel
assists−−−→ Alice, but otherwise would be the same as G. The

reason is that no path that includes that edge has a label-sequence that is in the set of
label-sequences P .

We summarize our results for the four learning problems we consider in Table 5.1, and
now discuss each in turn.

30

Learning objective Examples Output policy Hardness

(1) Entire policy ⟨G,L, P ⟩ ⟨⟨u, v⟩ , allow/deny⟩ access matrix easy

(2) G ⊓ P as a set of strings ⟨⟨u, v⟩ , π⟩ DFA easy

(3) G ⊓ P as a set of strings ⟨⟨u, v⟩ , π⟩ DFA of min. size easy

(4) G ⊓ P as a system graph ⟨⟨u, v⟩ , π⟩ System graph easy

Table 5.1: The hardness of four learning problems for ReBAC. We clarify the notion of
error for each, and what we mean by “G ⊓ P”, in the prose. π denotes a string, i.e.,
label-sequence.

⟨⟨Daniel,Bob-record⟩ , allow⟩
⟨⟨Bob,Alice-record⟩ , allow⟩
⟨⟨Daniel,Alice-record⟩ , deny⟩

Alice Bob Carol Daniel Alice-record Bob-record

Alice

Bob r

Carol

Daniel r

Alice-record

Bob-record

Figure 5.2: The output access matrix from our algorithm for Row (1) of Tabel 5.1 for the
three examples shown in the figure.

5.1 Learning as an access matrix with allow/deny

In Row (1) of Table 5.1, we address learning an underlying ReBAC policy pl = ⟨Gl, Ll, Pl⟩,
where an example is a ⟨access-request, allow/deny⟩ pair, i.e., ⟨⟨u, v⟩ , allow/deny⟩, where
u, v are vertices in the underlying system graph Gl. Our characterization of error is a
mismatch in authorizations between the output policy and underlying policy. We ask
whether we can learn the underlying policy as an access matrix, and otherwise, do not
impose any constraints.

This learning problem is easy; Corollary 1 in Chapter 3 applies. That is, given any
ReBAC policy R = ⟨G,L, P ⟩, there exists an encoding of it as an access matrix M such
that the size of M is at worst polynomial in the size of R. If we adopt the variant of the
access matrix from Chapter 1, M simply adopts as its set of subjects and objects the set
of vertices V in G. There is only one right, denote it r, and we add this right to a cell
⟨u, v⟩ in the matrix if and only if u has access to v as per the access-enforcement rules of
ReBAC. Thus, the size of M is at worst quadratic in the size of R.

31

⟨⟨Daniel,Bob-record⟩ , ⟨assists.treats.owns⟩⟩
⟨⟨Bob,Alice-record⟩ , ⟨treats.owns⟩⟩

assists

treats owns

assists,
owns

assists,
treats

treats

owns

owns

assists,
treats

assists,
treats,
owns

Figure 5.3: The output DFA from our algorithm for Row (2) of Table 5.1 for the two
examples shown in the figure. An accepting state is shown with a double circle; the initial
state is to the far left.

In figure 5.2, we show the access matrix learned by the algorithm we propose above
using three examples, where the underlying policy is the one from Figure 5.1.

5.2 Learning G ⊓ P as a DFA

In Row (2) of Table 5.1, we address learning the set of strings that corresponds to Gl ⊓Pl;
that is, the set of strings in the alphabet Ll each of which exists both as a sequence of
edge-labels in Gl, and is a member of the set of label-sequences Pl.

Our intent with the learning problems of Rows (2) and (3) is to pose, in our framework,
the learning problem of prior work [13]. With that in mind, an example is a pair ⟨⟨u, v⟩ , π⟩,
where ⟨u, v⟩ is an access-request, i.e., a pair of vertices, and π is a label-sequence, i.e., a
string in the alphabet Ll with the following property. If the access-request ⟨u, v⟩ is allowed,
then π is a label-sequence that is a member of Pl and a sequence of edges in a path u⇝ v
in Gl. If the access-request ⟨u, v⟩ is denied, then π is the special symbol ϕ ̸∈ Ll. For the
ReBAC policy in Figure 5.1, the following are some examples that a learning algorithm
may be provided: ⟨⟨Bob, Alice-record⟩ , treats.owns⟩, ⟨⟨Daniel, Alice-record⟩ , ϕ⟩,
⟨⟨Daniel, Carol⟩ , ϕ⟩ and ⟨⟨Bob, Bob-record⟩ , owns⟩.

Thus, the examples provide richer information than the examples we adopt for the
problem in Row (1) of Table 5.1. We can certainly infer from the second component
π as to whether an access-request ⟨u, v⟩, is allowed or denied. In addition, we get the
label-sequence π which is presumably computed as part of access-enforcement, because
we need to check that such a label-sequence exists in both a sequence of edges in Gl and

32

in the set Pl, and a straightforward way of doing that is by generating π as part of the
access-enforcement process.

Our output policy for Row (2) is a DFA. Our notion of error is natural: it is the
probability that either the output DFA Dt rejects a string that is in the set of strings that
corresponds to Gl ⊓ Pl, or it accepts a string that is not in the latter set.

The proof that this learning problem is easy is similar to that of Theorem 4 in Chapter
3. Specifically, we propose the following algorithm. We start withDt as a DFA that accepts
no strings — e.g., Dt has one state only, which is the initial state and non-accepting; every
transition on any symbol is back to that state. For every ⟨⟨u, v⟩ , π⟩ that we see where
π ̸= ϕ, we “grow” Dt to accept the string π. A way to grow Dt in this manner is to
simply add at most as many states as symbols in π. We say “at most as many” and not
“exactly as many” because there may already exist transitions in Dt to states that are
not the initial state for some prefix string of π. Thus, the size of Dt is guaranteed to be
at-worst polynomial in the size of the set of strings that corresponds to Gl ⊓Pl, where our
characterization of the size of the latter is the sum of lengths of each of its members. The
pseudo-code of the above algorithm is shown in Algorithm 4

Algorithm 4: Learning G ⊓ P as an DFA

Input : Example ⟨⟨u, v⟩ , π⟩
Output: A DFA

1 Initialize a DFA Dt to ∅;
2 Add a dead state sϕ to Dt;
3 foreach example ⟨u, v, π = {π[1], π[2],, π[n]}⟩ do
4 foreach π[i] ∈ π do
5 if the transitions from state sπ[i−1] to the state sπ[i] does not exist then
6 break

7 Create n− i states {sπ[i−1], ..., sπ[n]} as symbols in {π[i],, π[n]};
8 Connect the goal state sπ[n] to sϕ whose transition Condition contains all

relationship labels from Gl ⊓ Pl ;
9 return Dt

In Figure 5.3, we show the DFA of this learning algorithm that has seen the examples
shown there, where the underlying policy is the one from Figure 5.1.

The only possible errors in Dt are that it may reject strings that are in the set of strings
that correspond to Gl ⊓ Pl; any string not in the latter set is guaranteed to be rejected by
Dt. The only remaining question regards the minimum number of examples our learning

33

algorithm needs to be provided to guarantee that we meet the ϵ and δ bounds. In exactly
the manner we establish in the proof for Theorem 4, we can establish that this number is
at worst polynomial in the size of the underlying policy; more specifically, the size of the
set of strings that corresponds to Gl ⊓ Pl.

5.3 Learning G ⊓ P as a min. DFA

In Row (3) of Table 5.1, we address the same problem as Row (2), except that we addi-
tionally demand that the output DFA must be one of minimum size, i.e., has the fewest
number of states across all DFAs that accept exactly the set of strings that corresponds
to Gl ⊓ Pl, and rejects all other strings. The notion of error is then expanded to: the
probability that our output DFA (i) either accepts a string not in Sl or rejects a string in
Sl, or, (ii) is not of minimum size.

Our algorithm that establishes that this learning problem is easy as well adds to the
algorithm we propose for Row (2) above. Given the set of examples, we first construct
a DFA as we say for Row (2). We then employ a well-known, efficient algorithm for
minimizing the number of states with that DFA as input [10].

We have already established for Row (2) that we can efficiently meet the ϵ and δ bounds
for an error of type (i). For an error of type (ii), we first observe that the only way our
output DFA, denote it Dt, is not of minimum size is if Dt does not accept a string that is
in the set of strings that corresponds to Gl ⊓ Pl. Therefore:

Pr⟨⟨u,v⟩,π ̸=ϕ⟩←D {Dt rejects π} ≤ ϵ

=⇒
Pr⟨⟨u,v⟩,π ̸=ϕ⟩←D {Dt is not minimum-sized} ≤ ϵ

That is, guaranteeing that we meet the ϵ and δ bounds for an error of type (i) is a
sufficient condition to guarantee that we meet the ϵ and δ bounds for an error of type (ii).
Figure 5.4 shows a DFA of minimum size (number of states) that corresponds to the DFA
of Figure 5.3.

5.3.1 Reconciling the work of Gold [7]

Our “easy” result for the problem of Row (3) of Table 5.1 may appear to be at odds with
the result of Gold [7], from which we can infer that learning a DFA of minimum-size which

34

assists,
owns

treats owns

treats

assists

assists,
treats,
owns

assists,
treats

owns

Figure 5.4: A DFA of the minimum number of states corresponding to the DFA of Figure
5.3.

is consistent with a given set of positive and negative examples is (NP-)hard — a positive
example is a string the DFA must accept; a negative example is one it must reject. The
reason is that our problem and that one are different. In our problem, the input is one
set of strings only, and our demand is for a DFA of minimum size that accepts all strings
in the set and rejects all other strings. In the corresponding problem as it pertains to the
work of Gold [7], the input is two sets of strings, one of which must be accepted and the
other rejected. Also, most importantly, the union of the two sets is not necessarily the set
of all strings. Thus, the problem in that work introduces a “degree of freedom” for the
learning algorithm in that a string in the underlying alphabet may appear in neither of
the two sets that are the input, and the algorithm must choose whether its DFA accepts or
rejects such a string; the choice can determine whether the output DFA indeed minimizes
the number of states. In our problem, no such degree of freedom exists for the learning
algorithm.

5.3.2 Comparison to prior work [13]

The learning problem we consider in Row (3) of Table 5.1 is the same as that of prior work
[13]. That work adopts the rather different learning model of Angluin [1]. In that learning
model, the learning algorithm gets to choose the distribution under which examples are
provided to it; in our case, an algorithm needs to support any distribution. However, in
that work, an example that is provided to the learning algorithm may be a false-positive;
that is, the learning algorithm may be provided as an example a string that is not a member
of the set of strings it seeks to learn. However, that learning model allows for so-called
equivalence queries, whereby the learning algorithm is able to query an oracle with the

35

⟨⟨Bob,Bob-record⟩ , owns⟩
⟨⟨Daniel,Bob-record⟩ , ⟨assists.treats.owns⟩⟩
⟨⟨Bob,Alice-record⟩ , ⟨treats.owns⟩⟩

Figure 5.5: The system graph for the examples shown above that our algorithm for Row
(4) of Table 5.1 outputs. What we call anonymous vertices are shown as circles without
names.

DFA it has constructed so far, and ask whether there exists a counterexample, i.e., a string
that the DFA accepts that it should reject.

Thus, the two learning models are qualitatively different. Whether one learning model
is more appropriate than the other in a particular setting would depend on which of the
two sets of assumptions can be satisfied in that setting. It is unclear whether the learning
model from prior work [13] can be used to infer computational hardness results in the
manner we do in this work.

5.4 Learning as a system graph

As we say at the start of this section, Gl ⊓ Pl can be perceived as a system graph, denote
it G̃l, which is a subgraph of Gl whose only paths are those with label-sequences that are
members of Pl. As a final learning problem, in Row (4) of Table 5.1, we address learning

G̃l as a graph. We adopt as our examples the same as those for Rows (2) and (3), i.e.,

tuples of the form ⟨⟨u, v⟩ , π⟩. Suppose the output system graph is denoted G̃t. We adopt

as our notion of error the probability that there exists a path in G̃l with a label-sequence
for which no path exists in G̃t, or a path in G̃t with a label sequence for which no exists

in G̃l, i.e. Pr⟨⟨u,v⟩,π⟩∼D

{
G̃l(u, v) ̸= G̃t(u, v)

}
.

This learning problem is easy, as we say for Row (4) in Table 5.1. An algorithm,
which sees an example ⟨⟨u, v⟩ , π⟩ where π ̸= ϕ simply adds a path with the labels in π,
with “anonymous” intermediate vertices. We show in Figure 5.5 the output graph for the
examples we show there. We can prove, exactly in the same way that we do for Theorem
4 in Chapter 3, that the number of examples we need to see to meet the ϵ and δ bounds is
at worst polynomial in the size of the underlying policy ⟨Gl, Ll, Pl⟩.

36

Chapter 6

Related Work

Our work addresses learning access control policies under a slight generalization of the
PAC-learning framework. As such, work that is closely related to ours are those on PAC-
learning, access control and those at the intersection of access control and machine learning.

PAC-learning was, to our knowledge, first characterized by the work of Valiant [23].
The book of Kearns and Vazirani [14] provides an excellent overview. Of particular inter-
est to us is the manner in which one establishes that a problem lends itself to an efficient
learning algorithm, i.e., is “easy” in our parlance, or is unlikely to, i.e., is “hard”. To-
wards the former, the book provides a few examples and proofs, which we have leveraged,
e.g., to prove Theorem 4 in Chapter 3. Towards the latter, we rely on a version of the
polynomial-time Turing (or Cook) reduction, which is conjectured to be weaker than the
more customary polynomial-time many-to-one reduction [8]. Nonetheless, it is evidence
of computational hardness. An example of the latter kind of reduction in the context of
PAC-learning is in the work of Pitt and Valiant [20]. For our proofs of hardness, we have
leveraged the well-known problem of computing a vertex cover of a given size [6] and an
RBAC policy of a certain number of roles given an access matrix as input [4], each of which
is known to be NP-complete.

The access control policy models to which our work refers are the access matrix [9],
RBAC [22] and ReBAC [5]; for ReBAC, the model we address is one that prior work on
learning has adopted [13].

As for the intersection of machine learning and access control, there are already con-
siderably many pieces of work, as the survey of Nobi et al. [19] discusses. None, to our
knowledge, addresses computational hardness as we do. The work that is closest to ours

37

is that of Iyer and Masoumzadeh [13], which addresses learning a ReBAC policy under a
different learning model than ours, as we discuss in Chapter 5 above.

38

Chapter 7

Conclusions and Future Work

We have addressed several learning problems in the context of access control across three
models: the access matrix, RBAC and ReBAC. Our setting is one in which there is an
underlying access control policy in a particular model, and the learning algorithm seeks to
output an equivalent policy in the same or a different model. We consider different kinds
of examples a learning algorithm is provided; however, in all cases, our examples are data
generated during the process of access-enforcement, when an access-request is made that is
evaluated against the underlying policy. The framework we adopt which allows us to infer
computational hardness results is slightly generalized PAC-learning. Of the two problems
we consder for the access matrix, one is computationally easy and the other is hard. Of
the five problems we consider for RBAC, two are hard and the others are easy. All the
four problems we consider for ReBAC are easy. An advantage with an “easy” result is that
the proof is constructive: in each case we propose a learning algorithm that is not only
polynomial-time in the size of the underlying policy and the inverse of the error parameters
ϵ and δ, but also probably-approximately correct, i.e., meets the bounds prescribed by the
parameters ϵ and δ.

There is tremendous scope for future work. One is to consider more access control
models; a natural candidate is Attribute-Based Access Control (ABAC) [11], for which
there is prior work on policy-mining [3, 24], which can be seen as a counterpart of learning.
Another is to propose algorithms for the learning problems that turn out to be easy that
are superior to our algorithms in the kinds of errors they can tolerate. For example, we
comment in this work that the algorithm we propose for the learning problem of Row (4)
in Table 4.1 in Chapter 4 may be deemed to be unsatisfactory. Devising an algorithm that
satisfies a tighter notion of error, e.g., that in the output policy a role must be assigned to at

39

least one user and at least one permission, or showing that the problem is computationally
hard, would be interesting future work.

40

References

[1] Dana Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75(2):87–106, 1987.

[2] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Introduction
to Algorithms, Fourth Edition. MIT Press, 2022.

[3] Carlos Cotrini, Thilo Weghorn, and David Basin. Mining abac rules from sparse logs.
In 2018 IEEE European Symposium on Security and Privacy (EuroS&P), pages 31–46.
IEEE, 2018.

[4] Alina Ene, William Horne, Nikola Milosavljevic, Prasad Rao, Robert Schreiber, and
Robert E. Tarjan. Fast exact and heuristic methods for role minimization problems. In
Proceedings of the 13th ACM Symposium on Access Control Models and Technologies,
SACMAT ’08, pages 1–10, New York, NY, USA, 2008. Association for Computing
Machinery.

[5] Philip W.L. Fong. Relationship-based access control: Protection model and policy lan-
guage. In Proceedings of the First ACM Conference on Data and Application Security
and Privacy, CODASPY ’11, pages 191–202, New York, NY, USA, 2011. Association
for Computing Machinery.

41

[6] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

[7] E Mark Gold. Complexity of automaton identification from given data. Information
and Control, 37(3):302–320, 1978.

[8] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge
University Press, 2008.

[9] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in operating
systems. Commun. ACM, 19(8):461–471, aug 1976.

[10] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata
theory, languages, and computation. Acm Sigact News, 32(1):60–65, 2001.

[11] Vincent C. Hu, David Ferraiolo, Rick Kuhn, Adam Schnitzer, Kenneth San-
dlin, Robert Miller, and Karen Scarfone. Guide to attribute based access con-
trol (abac) definition and considerations. NIST Special Publication 800-162,
https://doi.org/10.6028/NIST.SP.800-162, 2014.

[12] Padmavathi Iyer and Amirreza Masoumzadeh. Active learning of relationship-based
access control policies. In Proceedings of the 25th ACM Symposium on Access Control
Models and Technologies, SACMAT ’20, pages 155–166, New York, NY, USA, 2020.
Association for Computing Machinery.

[13] Padmavathi Iyer and Amirreza Masoumzadeh. Learning relationship-based access
control policies from black-box systems. ACM Transactions on Privacy and Security,
25(3):1–36, 2022.

[14] Michael J Kearns and Umesh Vazirani. An introduction to computational learning
theory. MIT press, 1994.

[15] Johannes Kobler, Uwe Schöning, and Jacobo Torán. The graph isomorphism problem:
its structural complexity. Springer Science & Business Media, 2012.

[16] Ha Thanh Le, Cu Duy Nguyen, Lionel Briand, and Benjamin Hourte. Automated
inference of access control policies for web applications. In Proceedings of the 20th
ACM Symposium on Access Control Models and Technologies, SACMAT ’15, pages
27–37, New York, NY, USA, 2015. Association for Computing Machinery.

42

[17] Amirreza Masoumzadeh. Inferring unknown privacy control policies in a social net-
working system. In Proceedings of the 14th ACM Workshop on Privacy in the Elec-
tronic Society, WPES ’15, pages 21–25, New York, NY, USA, 2015. Association for
Computing Machinery.

[18] Barsha Mitra, Shamik Sural, Jaideep Vaidya, and Vijayalakshmi Atluri. A survey of
role mining. ACM Comput. Surv., 48(4), feb 2016.

[19] Mohammad Nur Nobi, Maanak Gupta, Lopamudra Praharaj, Mahmoud Abdelsalam,
Ram Krishnan, and Ravi Sandhu. Machine learning in access control: A taxonomy
and survey. https://arxiv.org/abs/2207.01739, 2022.

[20] Leonard Pitt and Leslie G Valiant. Computational limitations on learning from ex-
amples. Journal of the ACM (JACM), 35(4):965–984, 1988.

[21] Jerome H. Saltzer. Protection and the control of information sharing in multics.
Commun. ACM, 17(7):388–402, jul 1974.

[22] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access control
models. Computer, 29(2):38–47, 1996.

[23] Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984.

[24] Zhongyuan Xu and Scott D Stoller. Mining attribute-based access control policies.
IEEE Transactions on Dependable and Secure Computing, 12(5):533–545, 2014.

43

	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	The Access Control Policy
	The learning problem
	Computational hardness
	Organization

	Methodology
	Learning Access Control Policies
	Definition of the PAC-learning model
	The adapted PAC-learning model in our context
	Learning access control policies using PAC-learning model

	Reduction to Prove Hardness
	Problems, RP and NP
	Reductions in our context
	Comparison to prior work

	The Access Matrix
	Learning an Access Matrix with positive rights only
	Access Matrix with both positive rights and negative rights
	Generalization

	Role-Based Access Control (RBAC)
	Learning as an Access Matrix
	Learning as an Equivalent RBAC policy
	Isomorphic RBAC policy
	Learning as an Equivalent RBAC policy with role-activation

	Relationship-Based Access Control (ReBAC)
	Learning as an access matrix with allow/deny
	Learning GP as a DFA
	Learning GP as a min. DFA
	Reconciling the work of Gold gold1978
	Comparison to prior work iyer2022learning

	Learning as a system graph

	Related Work
	Conclusions and Future Work
	References

