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Abstract

The ever-increasing volume of web-based documents poses a challenge in efficiently accessing
specialized knowledge from domain-specific sources, requiring a profound understanding of the
domain and substantial comprehension effort. Although natural language technologies, such
as information retrieval and machine reading compression systems, offer rapid and accurate
information retrieval, their performance in specific domains is hindered by training on general
domain datasets. Creating domain-specific training datasets, while effective, is time-consuming,
expensive, and heavily reliant on domain experts. This thesis presents a comprehensive exploration
of efficient technologies to address the challenge of information access in specific domains,
focusing on retrieval-based systems encompassing question answering and ranking.

We begin with a comprehensive introduction to the information access system. We demon-
strated the structure of a information access system through a typical open-domain question-
answering task. We outline its two major components: retrieval and reader models, and the design
choice for each part. We focus on mainly three points: 1) the design choice of the connection
of the two components. 2) the trade-off associated with the retrieval model and the best fron-
tier in practice. 3) a data augmentation method to adapt the reader model, trained initially on
closed-domain datasets, to effectively answer questions in the retrieval-based setting.

Subsequently, we discuss various methods enabling system adaptation to specific domains.
Transfer learning techniques are presented, including generation as data augmentation, further pre-
training, and progressive domain-clustered training. We also present a novel zero-shot re-ranking
method inspired by the compression-based distance. We summarize the conclusions and findings
gathered from the experiments.

Moreover, the exploration extends to retrieval-based systems beyond textual corpora. We
explored the search system for an e-commerce database, wherein natural language queries are
combined with user preference data to facilitate the retrieval of relevant products. To address the
challenges, including noisy labels and cold start problems, for the retrieval-based e-commerce
ranking system, we enhanced model training through cascaded training and adversarial sample
weighting. Another scenario we investigated is the search system in the math domain, character-
ized by the unique role of formulas and distinct features compared to textual searches. We tackle
the math related search problem by combining neural ranking models with structual optimized
algorithms.

Finally, we summarize the research findings and future research directions.
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Chapter 1

Introduction

1.1 Motivation

Information access systems have been a long-lasting and fundamental tool for knowledge-seeking
since the beginning of civilization. From ancient libraries to modern digital platforms, the quest
for information and answers has been a constant pursuit of humankind. They play a pivotal role
in people’s lives by serving as gateways to the vast realm of knowledge and information. In a
world filled with data and information, information access systems like search engines provide a
sense of order and efficiency, allowing people to navigate the vast digital landscape effortlessly.
Whether students conducting research, professionals seeking insights, or individuals looking for
practical solutions, search engines enable users to find relevant and reliable information in seconds.
By organizing and indexing the vast corpus of human knowledge, information access systems
empower individuals to make informed decisions, expand their understanding of the world, and
engage in lifelong learning. The retrieval-based information access system is one of the most
widely used information access systems.

Navigating through vast information sources, such as the internet or an extensive academic
library, poses significant challenges for search. The sheer magnitude and complexity of these
repositories make it difficult for people to find specific and relevant information efficiently. With
the ever-growing volume of digital information, users often people information overload. For
instance, the English Wikipedia 1 dump 2018 contains up to 5.08 million documents with 29.5
million paragraphs. Additionally, platforms like PubMed 2 comprise more than 33 million

1https://en.wikipedia.org/
2https://pubmed.ncbi.nlm.nih.gov/

1
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articles from biomedical literature MEDLINE, life science journals, and online books, with the
article number increasing by hundreds of thousands every year. Seeking specialized knowledge
from these documents requires a specialized understanding of the domain and considerable
comprehension effort. For example, doctors often search through thousands of medical papers
to find specific solutions or cures. The search process can take hours or days, during which the
patient’s life may be at stake.

Recent advancements in large pre-trained language models have played a pivotal role in
boosting the performance of retrieval-based search systems, as demonstrated by examples like Bing
3 and ChatGPT. These pre-trained models have been trained on vast amounts of diverse text data,
enabling them to learn rich language representations and acquire a broad understanding of various
domains. By leveraging these pre-trained models, search systems can tap into their extensive
knowledge and linguistic capabilities to improve the accuracy and relevance of the effectiveness
of information access systems. These models capture semantic relationships, understand context,
and generate coherent responses. The power of these pre-trained models lies in their ability
to leverage the collective knowledge of vast corpora. By applying deep learning models as
automatic information-seeking tools, we can leverage their capabilities to locate the most helpful
information from this vast corpus in minutes or seconds. This can revolutionize how we access
critical information, especially during urgent situations like disease outbreaks affecting millions
of people in a short period, such as COVID-19.

However, using pre-trained models for information access in specific domains can pose several
challenges. Firstly, pre-trained models are typically trained on large-scale general domain data,
which may not adequately capture the nuances and intricacies of specific domains. This lack
of domain-specific knowledge can lead to sub-optimal performance when applied to domain-
specific tasks. Secondly, pre-trained models may struggle with domain-specific vocabulary,
jargon, or terminology not well-represented in their training data. This can result in difficulties in
accurately understanding and processing domain-specific texts. Additionally, pre-trained models
might encounter issues when dealing with domain-specific structures, formats, or data types that
differ from the ones they were trained on. This can hinder their ability to effectively extract
relevant information or generate accurate responses in specific domains. Finally, the limited
availability of labelled training data for fine-tuning pre-trained models in specific domains can be
a significant obstacle. It becomes challenging to adapt the models to perform optimally in the
target domain without sufficient domain-specific training data. These difficulties highlight the
need for specialized techniques, such as domain adaptation, data augmentation, or fine-tuning
strategies, to enhance the performance of pre-trained models in specific domains.

In this thesis, we aim to address the challenges mentioned above and provide potential solutions

3https://www.bing.com/

2

https://www.bing.com/


to enhance the performance of pre-trained models in specific domains for information access
tasks. We recognize the importance of improving the accuracy and effectiveness of retrieval-based
systems in domain-specific contexts, where the challenges of domain knowledge, vocabulary,
structures, and limited training data are prevalent. To tackle these challenges, we propose several
approaches and techniques that tap into domain adaptation, data augmentation, and fine-tuning
strategies. By exploring these avenues, we aim to demonstrate how these methods can mitigate
the difficulties of using pre-trained models in specific domains. Through empirical evaluations
and experiments conducted in various domains, we seek to showcase the efficacy and applicability
of our proposed solutions. By addressing these challenges head-on, we strive to advance retrieval-
based information access systems in specific domains, ultimately providing users with more
accurate and reliable answers in their domain-specific information-seeking endeavours.

1.2 Thesis Overview

This thesis delves into retrieval-based information access systems and explores various approaches
to enhance their performance in specific domains and extend to various formats.

In Chapter 2, we start with a comprehensive introduction to the background of machine
learning, neural networks, pre-trained language models, and the fundamentals of retrieval and
information access systems. These foundational concepts lay the groundwork for understanding
the subsequent chapters. We also discuss some widely used retrieval-based information access
systems and their characteristics.

In Chapter 3, we take a typical information access task: open-domain question answering as
a starting point. We first investigate the challenges and trade-offs encountered in this task. We
address several vital aspects that are crucial for achieving optimal performance in such a system:
Firstly, we discuss the integration of a retriever and a neural reader to extract accurate answers.
This involves finding the right balance between retrieval accuracy and the efficiency of the reader
model, tackle with the distribution difference between the retrieved results and reader inputs. We
proposed a simple yet effective integration which enhances the system’s overall performance. Next,
we examine the trade-off between speed and performance in the retriever component. Retrieving
relevant documents from a large corpus can be time-consuming, and balancing the retrieval time
and quality of the retrieved documents becomes essential. Furthermore, we address the challenge
of training a better neural reader model under the retrieval-based setting. We investigate different
approaches to leverage the retrieved documents and utilize them effectively in the reader training
process. This includes techniques for data augmentation, fine-tuning strategies, and the selection
of training examples. Combining our findings with the broader context of information access

3



systems, we present a comprehensive approach to building a robust and efficient retrieval-based
question-answering system.

In Chapter 4, we explore methods of adapting the information access systems to different
domains. We recognize that each domain possesses unique characteristics, including variations
in text content, vocabulary distribution, and domain-specific knowledge. These distribution
differences will lead to difficulties in directly applying general-domain-trained neural models in
these domains. We build baseline models which applied previous build general domain models to
these new datasets. To address these challenges, we explore various techniques and methodologies
to adapt the system to diverse domains effectively: We begin with synthesizing training data in
specific domains. Furthermore, we experiment with further pre-training, benefiting from training
the models on domain-specific data and the existing pre-training on general domain data. This
approach helps the system to acquire domain-specific knowledge and improve its performance.
We also investigate the progressive domain-clustered training method, which involves selecting
and incorporating data from general domains during training. By carefully scheduling the training
data, we aim to balance general domain knowledge and domain-specific expertise, enabling
the system to handle queries from various domains effectively. Additionally, we introduce a
domain-specific zero-shot ranking method that leverages neural-based compressors. By exploring
these techniques and methodologies, we provide insights and practical guidelines for adapting
the information access system to different domains. Through these efforts, we strive to enhance
the system’s performance, enable it to handle diverse domain-specific queries effectively, and
ultimately broaden its applicability in real-world information access scenarios.

In Chapter 5, we explore the adaptation of the information access systems to different informa-
tion sources: First, we focus on the e-commerce domain, which often involves structured data in
databases. We present methods for effectively leveraging table data, tackling noisy user logs, and
enabling cold start. We demonstrate the effectiveness of our system in ranking relevant products
in a grocery e-commerce setting. Next, we tackle the math domain, which presents a distinct
challenge with including mathematical formulae. We explore techniques to incorporate formulae
understanding and processing into the system, enabling it to retrieve and generate accurate answers
to math-related queries. Additionally, we address the challenges introduced by version updates
when using neural models in real-world deployment scenarios. We explore the potential issues and
discuss strategies to mitigate the impact of version updates, ensuring the robustness and reliability
of the system during deployment. Our findings and insights will contribute to developing more
versatile and reliable information access systems in real-world applications.

In Chapter 6, we provide conclusions of the thesis and discuss future directions. We summarize
the main contributions and findings of the entire thesis and reflect on the accomplishments achieved.
Additionally, we explore potential avenues for future research and expansion.
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1.3 Contributions

This thesis makes several key contributions to the field of retrieval-based information access
systems:

General Domain Retrieval-Based Question Answering System
This section paves the way for future research by introducing BERTserini, the pioneering open-

domain question answering system based on a large pre-trained language model, and exploring
avenues for enhancing system performance and trade-offs, thus advancing the field of question
answering systems.

• In Section 3.1:

– Introduces an open-domain question answering system that combines BERT with the Anserini
information retrieval toolkit.

– The proposed system demonstrates significant improvements in accuracy compared to pre-
vious methods on standard benchmark test collections and achieved state-of-the-art perfor-
mance when publishing.

• In Section 3.2:

– Discusses the trade-offs between retrieval effectiveness and efficiency by analyzing ap-
proximate nearest neighbour search and light-weighted re-ranker in a multi-stage ranking
setting.

• In Section 3.3

– Explores strategies for gathering distantly supervised training samples to train a better reader
under the retrieval-based question-answering setting.

– Experiment with sampling strategies of negative training examples and effectively integrate
existing training data with distant supervision, thereby enhancing the effectiveness of the
reader model.

Zero-shot Adaptation to Domains
This section explores adapting open-domain systems for specific vertical domains like biomed-

ical and finance through rapid zero-shot techniques, including auto data generation and domain-
specific pre-training, notably featuring the GPT-based compressor’s non-parametric adaptation
strategy, which calculates information distance between text documents and shows promising
experimental results, contributing to future domain-specific adaptation research for open-domain
systems.
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• In Section 4.3:

– Explores question generation as a data augmentation that can synthesize domain-specific
training data for the reader.

– Explores further pre-training, which adapts the large neural networks to target domains with
the help of unlabeled in-domain corpus.

– Explores the progressive domain-clustered training method, which utilizes the large general
domain labelled dataset by sorting the data according to the semantic similarity to the target
domain, to boost model transfer ability.

• In Section 4.4:

– Proposed a novel non-parametric zero-shot human-like learning method derived from a
GPT-based compressor.

– Experimented with domain zero-shot ranking datasets shows the effectiveness of the proposed
method.

Generalization to Diverse Sources

This section addresses the challenge of expanding retrieval systems to encompass a variety
of text formats, including tabular data from relational databases and mathematical formulas in
documents with mathematical content. By tackling the task of extending retrieval systems to
handle diverse text formats like tabular data and mathematical formulas, we provides a roadmap
for future investigations in the field.

• In Section 5.1

– Demonstrates an embedding-based model for grocery search at Instacart, utilizing a two-
tower transformer-based encoder architecture.

– Proposes self-adversarial learning and cascade training methods to train the model on noisy
data effectively.

• In Section 5.2

– Demonstrates a retrieval-based question answering system, which requires the system to
conduct a search based on a corpus that contains math formulae as an important component.

In Chapter 6, we encapsulate our discoveries and highlight potential pathways for future
exploration.
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Chapter 2

Background

In this chapter, we introduce basic knowledge of machine learning, deep learning, natural language
processing (NLP), and some widely used retrieval-based information access systems. We cover
key concepts and techniques required for understanding the training and architecture of these
systems.

2.1 Deep Learning for NLP

Supervised Learning: Supervised learning refers to a type of machine learning where a model
learns a function that maps input data to corresponding output labels. In supervised learning, we
have a dataset consisting of input-output pairs, denoted as {(xi, yi)}Ni=1, where xi represents the
input data and yi represents the corresponding output labels, and N is the number of training
examples. The goal is to learn a function f that can accurately predict the output label y given a
new input x. The objective is to find a function f that minimizes the discrepancy between the
predicted output ŷ = f(x) and the true output y, usually quantified by a loss function L. This can
be formulated as an optimization task to find the optimal parameters θ of the function f :

θ∗ = argmin
θ

1

N

N∑
i=1

L(f(xi; θ), yi). (2.1)

Unsupervised Learning: While on the other hand, unsupervised learning is another branch of
machine learning that tries to understand and model data without explicit labels or guidance. It
encompasses various techniques and algorithms designed to discover hidden patterns, cluster
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similar data points or reduces dimensionality. By leveraging the inherent structure and statistics
of the data itself, unsupervised learning enables us to gain insights and make discoveries in an
exploratory manner. We are not going to cover methods using unsupervised learning in this thesis.

Training, Validation and Test Datasets: It is common practice for supervised learning to divide
the available data into three sets: the training, validation and test set.

• The training set is usually the largest subset of the data. The models learn to adjust parameters
to make predictions based on this dataset. It is important to have a sufficiently large and diverse
training set to enable the model to learn patterns and relationships in the data.

• The test set is a smaller independent subset of the data we use to evaluate the trained model. It
measures the model’s performance on unseen data and provides an estimate of how the model
would perform in the real world.

• The validation set is used for hyper-parameter tuning and comparing different versions of
trained models on unseen data.

Linear Regression: Linear regression is one of the simplest supervised learning models, and
formally:

f(x; θ) = θ⊤x+ b,

Mean square error(MSE) is a commonly used loss function to quantify the difference between the
models, defined as follows:

LMSE(θ) =
1

N

N∑
i=1

(yi − f(xi; θ))
2

Multi-layer Perceptron: The Multi-layer Perceptron (MLP) consists of multiple layers of
interconnected nodes, called neurons, organized in a sequential manner. For an MLP with L
layers, including the input layer, hidden layers, and output layer. The input layer consists of n
neurons, and the output layer consists of m neurons. Each hidden layer has ki neurons, where
1 ≤ i ≤ L− 2. Formally, the MLP can be described as follows:

1. Input layer: a0 = x, where x is the input vector.

2. Hidden layers: ai = f
(∑ki−1

j=0 w
(k)
ji ai−1 + bi

)
, where w

(k)
ji represents the weight.

3. Output layer:aL−1 = f
(∑kL−2

j=0 w
(m)
j(L−1)aL−2 + bL−1

)
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Gradient Descent: Gradient descent is an optimization algorithm commonly used to minimize
the loss function. It iteratively adjusts the model’s parameters by following the derivative of the
loss function. The update rule for gradient descent can be represented as:

θ ← θ − α · ∂L(θ)
∂θ

,

where α is the learning rate. It aims to find the optimal parameter that minimizes the loss function.

Stochastic Gradient Descent (SGD) is a variation of gradient descent that is particularly suitable
for large-scale datasets. Instead of calculating the gradient using the entire training set, SGD
randomly selects a subset of training samples, often called mini-batch, to compute the gradient. In
SGD, the parameters are updated after each mini-batch, and the process is repeated for multiple
epochs until convergence.

Over the years, several variants of SGD have been developed to improve its performance and
address challenges associated with the standard SGD algorithm. One variant is Momentum [195],
incorporating a momentum term to accelerate convergence. Adaptive learning rates methods, such
as Adagrad [45], Adadelta [297], RMSprop 1, Adam [97], AdamW [147], and AdaFactor [221],
are other popular variants of SGD. We mainly use mini-batch SGD and Adam for model training
in the experiments of this thesis.

Tokenization: Tokenization refers to the process of breaking down a text into individual tokens,
such as words or subwords, which serve as the basic units of analysis. Tokenization can be
performed at various levels, depending on the specific requirements of the task. For example, the
text is segmented into individual words in word-level tokenization. On the other hand, subword
tokenization, such as Byte-Pair Encoding (BPE) [216] or WordPiece [225], splits the text into
subword units that capture both morphological information and rare or out-of-vocabulary words.
Subword tokenization is particularly useful for languages with complex morphology or large
vocabularies. This thesis mainly adopts subword-level tokenization for English datasets; some
models use character-level tokenization for Chinese datasets.

Word Vector and Embedding: After tokenization, the next step is to represent each token as
a numerical vector, known as word embedding. By representing words as vectors, models can
perform mathematical operations on these vectors to capture similarities, analogies, and contextual
relationships between words. Popular word embedding models, such as Word2Vec [166], and
GloVe [188], use unsupervised learning algorithms to learn these representations based on large
corpora of text data. Word embedding is often pre-trained on large corpora and can be readily
used in various NLP tasks.

1http://www.cs.toronto.edu/∼tijmen/csc321/slides/lecture slides lec6.pdf

9

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf


Figure 2.1: Architecture of Transformers.

RNN and LSTM: Recurrent Neural Networks (RNNs) [47] 2 are a class of neural networks
that excel at modeling sequential data. They are designed to process inputs of varying lengths by
maintaining an internal hidden state that can capture the contextual information from previous
inputs.

One popular variant of RNNs is the Long Short-Term Memory (LSTM) [76] network. LSTMs
address the vanishing gradient problem often encountered in training RNNs by introducing a
gating mechanism that allows the model to selectively retain or discard information at each time
step. LSTMs have been widely used in various NLP tasks such as language modeling, machine
translation, and sentiment analysis.

Attention and Transformers: Unlike RNN and LSTM, transformers rely on a self-attention
mechanism that allows the model to attend to different parts of the input sequence during pro-
cessing. This attention mechanism enables transformers to capture long-range dependencies and
model interactions between all input elements simultaneously. The transformers [245] structure
has been prove to be successful in catch long term dependency in sequence data, which is of
vital importance in natural language processing. Figure 2.1 demonstrates a typical transformer

2The source of these structures dates back to 1982-1986. See https://ai.stackexchange.com/questions/8190/where-
can-i-find-the-original-paper-that-introduced-rnns
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architecture. Transformers have achieved state-of-the-art performance in various NLP tasks,
including machine translation, question answering, and text generation. Most of the models we
used in this thesis are based on Transformers.

Given the input word sequence, the model first map them into vectors {x1, x2, ..., xn} through
a word embedding layer. Following are the transformer encoder layers, each of which is consists
of a multi-head attention block followed by a feed forward block. In a single head attention, the
input sequence {x1, x2, ..., xn} are transformed into corresponding query, key and value vectors
through linear projections:

qi = Wq ∗ xi, ki = Wk ∗ xi, vi = Wv ∗ xi. (2.2)

And then, we compute the self-attention weight matrix for the input sequence, in which each
element represents the similarity of the two tokens

ai,j = q⊤i ∗ kj, (2.3)

and normalize with softmax function. We then apply the attention matrix on the value vectors to
get the re-weighted word representation:

yi =
n∑

j=1

ai,j ∗ vj. (2.4)

To form a multi-head attention block, we use k different linear transformation weights and
concatenate the final results yki as the new output. We pass yi into a feed-forward layer to map it
back to the same dimension as the input vector. We add a skip-connection with layer normalization
after all the layers to help with the convergence of deep neural networks. Transformer decoder
layers have the similar structure. We replace the key and value vectors in the attention with the
transformed output of the last encoder layer.

2.2 Pre-trained Language Models

Pre-trained Language Models(PLM): To familiarize models with the data distribution, [32]
proposed to train the model on un-labeled data before training it on the labeled datasets. This is
also know as a pre-train and then fine-tune learning routine. Based on pre-training, several works,
including GPT [198, 16], BERT [42], XLNET [285], ELECTRA [29], BART [113], T5 [199]
GPT-2, 3, 4 [198, 16, 181], and InstructGPT [182] etc, successfully improve the performance
on many NLP downstream tasks. To reduce the high computation cost for industry applications,
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DistilBERT[211], and MiniLM[260] propose to distill from large pre-trained models into smaller
models.

Pre-training has been adopted in numerous deep learning models with the rise of trans-
former [245] due to its ability of learning task-agnostic representation. In NLP, encoder-only
transformers like BERT [42] has achieved impressive performance on GLUE benchmark [253]
including tasks like natural language inference and sentiment analysis with only MLP and
fine-tuning. Decoder-only transformers like GPT [198, 16] and related models [235, 236] can
treat downstream discriminative tasks in a generative way. However, previous works on few-
shot learning using language models are either prompt-based [190, 189, 126] or fine-tuning-
based [302, 275, 178] while in this work, we propose a new way to leverage pre-trained language
models for few-shot learning without fine-tuning or in-context learning.

After the success of BERT and GPT, most models adopt the transformer model. Either take
the encoder part like BERT, the decoder part like GPT, or the whole structure like T5 and BART.
Yang et al. [277] shows the development of such models over the past several years in Figure 2.2.
We mainly adopt BERT, GPT and T5 in this thesis since they are the most widely used, open
source, parameter available and well-integrated models.

Now we introduce how to pre-train the stacked transformer models. Taking the most widely
used PTM model, BERT, as an example: Figure 2.3 shows the general stacked transformer
architecture and how it can adapt to different downstream tasks. At the very beginning, all
parameters in the model are randomly initialized. Pre-training aims to update model parameters
on unsupervised corpora. BERT pre-train the model with context prediction tasks: mask language
model (predict the missing words) and next sentence prediction (whether two sentence will appear
in sequence order). After the stacked transformer layers, they add a feed-forward layer to map the
representation vector sequence into desired output formats. There are also other training signals
can be used to pre-train the model, most of them can be easily gathered from the natural text, and
are aimed to let the model learn the language distribution.

In the context of neural models, transfer learning involves pre-training a model on a large
corpus of text and then fine-tuning it on a target task or domain-specific dataset. The idea
behind transfer learning is that the pre-training phase enables the model to learn general language
representations, capturing syntactic, semantic, and contextual information. The transfer learning
process typically involves two stages: pre-training and fine-tuning. During pre-training, the model
is trained on a large corpus, such as a collection of books, articles, or web pages. The objective is
to predict masked or corrupted words within a sentence, forcing the model to learn meaningful
representations. In the fine-tuning stage, the pre-trained model is further trained on a task-specific
dataset with labeled examples. Fine-tuning allows the model to adapt its representations to the
specific task and domain, leveraging the knowledge gained during pre-training.
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Figure 2.2: Evolution of Transformer-based large language models [277].
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Figure 2.3: Architecture of BERT.

Codebase

HuggingFace3 provides several easy to use and well maintained repositories . For example Trans-
formers4 provides thousands of pre-trained models to perform tasks on different modalities such
as text, vision, and audio. Text models can be applied for tasks like text classification, information
extraction, question answering, summarization, translation, text generation, in over 100 languages.
Our main experiments are based on their code base. We mainly conduct experiments on PyTorch
backend with Tesla V100 GPUs.

2.3 Information Access Systems

In this section, we briefly introduce the information access system, specifically in the context of
open-domain question answering. We build a retrieval-based question-answering system, which
involves two major components: the retriever and the reader. The retriever is responsible for
retrieving relevant documents or passages from a large corpus given a question. After gathering
top relevant documents from the retriever, the reader processes and understands the retrieved
documents to identify or generate the answers. We provide an overview of the problem formulation,
datasets, and evaluation methodologies commonly used in retrieval-based question-answering
systems. Additionally, we discuss the techniques and models engaged in the retrieval and the
reader.

3https://huggingface.co/
4https://github.com/huggingface/transformers
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2.3.1 The Task: Open-Domain Question-Answering

While the origins of question answering date back to the 1960s, the modern formulation can
be traced to the Text Retrieval Conferences (TRECs) in the late 1990s [249]. With roots in
information retrieval, it was generally envisioned that a QA system would comprise pipeline
stages that select increasingly finer-grained segments of text [232]: document retrieval to identify
relevant documents from a large corpus, followed by passage ranking to identify text segments
that contain answers, and finally answer extraction to identify the answer spans.

As NLP researchers became increasingly interested in QA, they emphasized the later stages of
the pipeline to emphasize various aspects of linguistic analysis. Information retrieval techniques
receded into the background and became altogether ignored. Most popular QA benchmark
datasets today—for example, TrecQA [286], WikiQA [283], and MSMARCO [173]—are best
characterized as answer selection tasks. The system is given the question and a candidate list of
sentences to choose from. Of course, those candidates have to come from somewhere, but their
source lies outside the problem formulation. Similarly, reading comprehension datasets such as
SQuAD [200] eschew retrieval since there is only one document from which to extract answers.

In contrast, what we refer to as open-domain question-answering (ODQA) begins with a large
corpus of documents. Since it is impractical to apply inference exhaustively to all documents in a
corpus with current models (primarily based on neural networks), this formulation necessarily
requires some retrieval technique to restrict the input text under consideration—and hence an
architecture quite like the pipelined systems from over a decade ago. There has been a resurgence
of interest in this task, the most notable of which is Dr.QA [22]. Other papers have examined the
role of retrieval in this end-to-end formulation [255, 101, 108], some of which have, in essence,
rediscovered ideas from the late 1990s and early 2000s.

The SQuAD [200] dataset was initially designed for machine reading comprehension, meaning
the answers should be within the given golden paragraph. Dr.QA [22] proposed to ignore the para-
graphs and directly evaluate ODQA on SQuAD, mainly due to the high quality. However, because
the design goal is machine reading comprehension, some questions cannot be answered under the
“open-domain” setting. For example, there might be a co-reference in the question, making the
question only applies to the specific paragraph. Furthermore, the dataset was constructed based
on hundreds of Wikipedia documents, leading to limited coverage of the topics. TriviaQA [90] is
also widely used for ODQA but was initially designed for machine reading comprehension.

Later, Kwiatkowski et al. [103] construct the NaturalQuestions (NQ) dataset. The NQ corpus
contains questions from real users, and it requires QA systems to read and comprehend an entire
Wikipedia article that may or may not contain the answer to the question. NQ is a more realistic
and challenging task than prior QA datasets because of the inclusion of real user questions and
the requirement that solutions should read an entire page to find the answer.
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2.3.2 Problem Formulation and Evaluation

Problem Formulation: The ODQA problem can be formulated as follows: given a question q
and a corpus of documents or passages D, the task is to find a text answer a∗, which answers the
problem in query q:

a∗ = System(q|D), (2.5)

Evaluation Metrics

To evaluate the ODQA systems, we usually have labelled answer strings; in some cases, there will
be more than one reference answer for a single query. Matching any one of the reference answers
will be an acceptable return. The most common evaluation metrics include:

1. Exact Match: The most strict metric is to check if the predicted answer string is exactly
the same as one of the reference answers after string cleaning:

EM(agold, apredict) =

{
1, if agold = apredict,

0, otherwise ,
(2.6)

where agold = (wg
1, w

g
2, ..., w

g
ng
) is the golden answer and apredict = (wp

1, w
p
2, ..., w

p
np
) is the

model prediction, with w∗
i represents the words in the answers. agold = apredict means

ng = np and wg
i = wp

i ,∀i, < i ≤ ng.

2. F1-score: Another commonly used metric is F1-score measure the word overlap ratio in
the answers:

F1(agold, apredict) =
2 ∗ P ∗R
P +R

(2.7)

P(agold, apredict) =
|{wi|wi ∈ agold, and wi ∈ apredict}|

|apredict|
, (2.8)

R(agold, apredict) =
|{wi|wi ∈ agold, and wi ∈ apredict}|

|agold|
(2.9)

where | · | represents the number of words in the answers.

3. BLUE, Rouge and their variants: We can also consider QA as a text-generation problem.
Typical generation metrics such as BLEU [183] and ROUGE [127] can also be applied as
evaluation metrics.
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Dr.QA [22] was the most notable system of applying machine learning methods to the ODQA
task. It breaks the task down into two parts: retrieval and reader. The retriever is responsible
for gathering the most relevant materials: documents or paragraphs from the corpus, focusing
more on relevance and recall. The reader takes the selected materials to give a precise answer,
focusing more on precision. Other methods [199, 16] enable closed-book question answering,
which directly generates answers without referring to the corpus. These methods mainly rely on
the pre-trained phase for memorizing the knowledge. We mainly follow the first line of research:
the retrieval-based question-answering (RBQA) systems.

2.3.3 Information Retrieval

In the RBQA systems, we first retrieve the most relevant ones to acquire knowledge from a
large corpus, which usually contains millions of documents. Typical retrieval systems compute a
relevance score for each document given the question, and then the top-ranked documents are
selected as the final results.

Task Formulation

The core function in the retrieval systems is a model to measure the similarity between the question
q and the document or passage d: Sim(q, d|θIR). Formally, the goal of a retriever is to generate an
ordered list of texts retrieved from a corpus D in response to a query q:

IR(D, q, k) = [d1, d2, ..., dk], di ∈ D, (2.10)
Sim(q, di|θIR) > Sim(q, di+1|θIR), (2.11)
Sim(q, d|θIR) > Sim(q, d′|θIR), for d ∈ IR(D, q) and d′ /∈ IR(D, q). (2.12)

where k is the number of documents to return. Note that in actual implementation, we allow
some missing retrievals caused by efficiency reasons, meaning IR(D, q) might not be optimal,
and Equation (2.12) might not be satisfied.

Evaluation

To evaluate the quality of a retrieval system, we compute the following metrics based on labelled
test sets. Each test example contains the query and candidates in the corpus, Usually, there should
be positive(relevant) candidates, and sometimes with, negative(non-relevant) candidates. The
positive candidates sometimes have scaled relevancy labels or are presented as a golden ranked
list. We introduce the most widely used metrics for a single query q:
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1. Precision and Recall of a single query are defined similarly as in the classification tasks:

Precision@k(Rk, q) =

∑
d∈Rk

rel(q, d)
|Rk|

, (2.13)

Recall@k(Rk, q) =

∑
d∈Rk

rel(q, d)∑
d∈C rel(q, d)

, (2.14)

where rel(q, d) = 1 if q and d are relevant and otherwise rel(q, d) = 0, and Rk = IR(D, q, k)
contains the top k ranked results from the model, C is the whole corpus.

2. Reciprocal Rank(RR) measures the rank of the top one positive document:

RR@k(Rk, q) =
1

argmin{di∈Rk,rel(q,di)=1}i
. (2.15)

3. Average Precision(AP) measures an averaged precision for different i:

AP@k(Rk, q) =

∑k
i=1 rel(di, q) · Precision@i(Ri, q)∑

d∈C rel(q, d)
. (2.16)

4. Normalized Discounted Cumulative Gain(NDCG) is usually used for datasets with
multi-scale relevance labels or ranked lists:

DCG@k(R, q) =
k∑

i=1

2rel(q,di) − 1

log2(i+ 1)
, (2.17)

nDCG@k(Rk, q) =
DCG@k(Rk, q)

IDCG@k(Rk, q)
, (2.18)

where IDCG represents the DCG score of the ideal ranked list.

Methods

Now we introduce the widely used methods for the retriever.

Unsupervised Sparse Retrievers: A straightforward way to determine whether a document is
relevant to the query is to check the overlapped words. One typical such retrieval system used in
DrQA [22] computes the tf-idf weighted bag-of-word vector for all the documents and queries:

−−−→
V (di) = (t1, t2, ..., tm)

⊤, (2.19)
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where m is the vocabulary size and tj is the tf-idf score for word wj in document di:

tf-idf(wj, di,D) = tf(wj, di) · idf(wj,D), (2.20)

tf(wj, di) =
fwj ,di∑
w∈di fw,di

, idf(wj,D) = log
|D|

|{d ∈ D|t ∈ d}|
, (2.21)

where fw,d is the raw count of word w in document d, and |{d ∈ D|t ∈ d}| is the number of
documents where the term w appears. DrQA takes the dot product

−−−→
V (di) ·

−−→
V (q) as the score for

the query-document pairs and adds n-gram features to catch local word order.

BM25 [209] is the most successful and widely used sparse scoring function, usually performing
better than the tf-idf score. It is defined as:

BM25(d, q) =
∑
wi∈q

idf(q, d) · fwi,d · (k1 + 1)

fwi,d + k1 · (1− b+ b · |d|
avgdl

)
, (2.22)

where |d| is the document length in words, avgdl is the average document length in the corpus, k1
and b are hyper-parameters. It can generalize well to different corpus without training and is still
a strong baseline compared with neural network-based methods.

While the sparse retrievers provide strong performance, they also suffer in many aspects:

• The usually requires stemming the text before indexing. A small difference in the word will
lead to a mismatch.

• They cannot match words semantically.

• They fail to catch word order information and drop it at the beginning.

Supervised Dense Retrievers: With the success of the PLMs in many tasks, people begin to apply
them to re-ranking and retrieval. The PLMs-based systems can benefit from the generalization
ability and better catch the semantic relevance and word order information. PLMs usually encode
all the input in a single sequence to catch the relation between the input parts. To be able to
infer within a reasonable time, people start with applying PLMs as re-rankers: such systems
first use the heuristic retrievers such as BM25 to select a large number of documents and then
apply the fine-tuned PLM-based rankers to form better ranking lists. The PLM-based methods
have been shown effective in passage re-ranking tasks [176, 82] Conneau et al. [30] showed that
training with SNLI [14] would produce sentence representation models that are generalizable and
transferable to other tasks. The Universal Sentence Encoder (USE) [19, 26] went a step further
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to propose a transformer encoder trained on multiple tasks; this work adopts USE as the vector
representation for documents.

However, such methods need to encode the query and document together, which will be
time-consuming if we apply them as the first-stage retrievers. To catch the context-aware semantic
importance of a term with a PLM and enable indexing documents before inference, HDCT [35]
proposed to stack a linear layer after the BERT model to predict the term importance score and
then aggregated the scores into a document-level bag-of-words representation, which can be
stored into a standard inverted index for efficient retrieval. Later, ColBERT [94] and DPR [92]
proposed to train PLM-based models as first-stage retrievers to generate dense representations of
queries and documents separately. Instead of storing an inverted index, such methods store the
dense vectors for each document or token, taking advantage of the approximate nearest neighbour
search for inference.

The learned retrievers can be categorized into several types according to when will the query
and document interact:

• Representation-based Similarity: first transform texts into representation vectors, then take
the vector similarity as the relevance scores [292].

• Query-document interaction: model word and phrase-level relationships across queries and
documents and match them using a deep neural network [67, 273, 37].

• All-to-all interaction: concatenate the document and query together, and rely on the trans-
former’s all-to-all attention to get the interaction between the query and the document [42].

• Late interaction stores the token level representation and applies late interaction at inference
with a MaxSim function [94].
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Other Retrievers: There are also other retriever methods not falling in these two categories, such
as docTTTTquery [177], COIL [59], DeepCT [36], DeepImpact [156], uniCOIL [131]. They all
show promising performance in balancing the time-precision space. However, in this thesis, we
focus mainly on the RBQA system and take the representative methods: BM25 and DPR.

Training, Indexing and Searching

For large corpus, it is usually too expensive to compute all the documents every time during
inference. This makes query-document interaction and all-to-all interaction methods not feasible
for first-stage retrievers. Most first-stage dense retrievers follow the representation-based or late
interaction methods. Typical construction of neural network-based retrievers has three sub-process:
training the scoring model, indexing the corpus, and inference.

Encoder Training: Training the scoring model is usually based on labelled query-document
pairs. Such methods usually encode the query and document with separate encoders. Depending
on what label we have, we can apply different loss functions as the encoder training objectives:

• Point-wise loss: The training data contains (query, positive or negative document) pairs. A cross
entropy loss is widely used for training: L = −

∑
(q,d+) log(s(q, d))−

∑
(q,d−) log(1− s(q, d)),

where d+, d− represents the positive and negative documents respectively, and s(q, d) is the
similarity score predicted by the models.

• Pair-wise loss: The training data contains (query, positive-document, negative-document)
triplets. People usually train the models with a margin loss: L =

∑
(q,d+,d−) max{0, d(q, d+)−

d(q, d−) +m}, where m is a hyper-parameter represents the margin.

• List-wise loss: Listwise approaches directly look at the entire list of documents and try to
come up with the optimal ordering for it, for example, SoftRank [231], AdaRank [274] and
ListNet [18], ListMLE [105].

Indexing: After the scoring function is trained, we index the whole corpus. The purpose is
to optimize speed and performance in finding relevant documents for a search query. We store
each document as a sparse vector in the heuristic retrievers, usually a vector of dimension as
the vocabulary size. We will store the documents in an inverted index, a list of occurrences of
each atomic search criterion [312, 313]. Typically, the index is stored as a hash table or binary
tree [53, 107]. While for the representation-based retrievers, we represent each document as
a dense vector, usually only hundreds of dimensions. Then the document search problem is
converted to a vector search in a high-dimensional space. People usually apply an approximate
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nearest neighbour search to retrieve a “good guess” of the nearest neighbour in return for improved
speed or memory savings.

Searching: During serving, the systems will first compute the query representation. Then, the
systems will apply the query function of the indexing system, either a lookup of the inverted index
or an approximated nearest neighbour search in high-dimensional space.

Codebase

Since the retriever contains several different components, which is more complicated than the
other neural machine learning systems, we adopt several tools for easier experiments:

• Anserini [135, 279, 280] represents recent efforts by researchers to bring academic IR into
better alignment with the practice of building real-world search applications, where Lucene
has become the de facto platform used in industry. Through an emphasis on rigorous software
engineering and regression testing for replicability, Anserini codifies IR best practices today.
Lin [128] showed that a well-tuned Anserini implementation of a query expansion model
proposed over a decade ago still beats two recent neural models for document ranking.

• Pyserini [134] is a Python toolkit for reproducible information retrieval research with sparse
and dense representations. Retrieval using sparse representations is provided via integration
with the Anserini IR toolkit. Retrieval using dense representations is provided via integration
with Facebook’s Faiss library. Pyserini is primarily designed to provide effective, reproducible,
easy-to-use first-stage retrieval in a multi-stage ranking architecture.

• Tevatron [61] is a simple and efficient toolkit for training and running dense retrievers with
deep language models. The toolkit has a modularized design for easy research; command line
tools are also provided for fast development and testing. A set of easy-to-use interfaces to Hug-
gingface’s state-of-the-art pre-trained transformers ensures Tevatron’s superior performance.

2.3.4 Question Answering

The reader part originates from the question-answering task, where a system is designed to
answer certain questions. Question answering can contain the broadest format of natural language
tasks: we can convert any problem into a question and answering format. We mainly consider
knowledge-seeking questions, and the answers should be in the related documents. There are
also some other question-answering tasks, for example, visual question answering and common
knowledge reasoning, which are not in the scope of this proposal.
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Following DrQA’s structure in an RBQA, we adopt a machine reading comprehension model
as the reader. In their paper, this part of the reader follows a Bi-directional LSTM structure,
predicting the answer span within the provided paragraphs. Before the success of BERT-based
models, the most successful machine reading comprehension structures are based on LSTM, such
as BiDAF [217] and R-Net [259].

Methods

There are mainly two formations of the question-answering models: extractive or generative.
Extractive question answering means the answers are a sub-string of the given documents, while
generative QA means the systems can generate any format of text answers.

Extractive QA: In extractive question answering, the systems take the spans or sentences
from the given documents as the answers. We usually take passages as the input unit of the
readers. It can be formulated as a sequence labelling problem: Given a question q and a passage
p = (w1, w2, ..., wn), where wi are the words or tokens in the passage and n represents the total
number of words, find a span (istart, iend), where 1 ≤ istart ≤ iend ≤ n indicates the start and end
position of the answer in the given passage. The most common model architectures are stacking
the pointer network after the backbones [254, 42]. The mentioned system often trains the model
based on a token-wise cross-entropy loss: whether the current position is the start/end of the
answer.

Generative QA: Generative question answering considers the answers as generated texts, where
the answer string does not have to be a sub-string of the background documents. People usually
apply sequence-to-sequence models to tackle such tasks, for example, T5 [199], BART [113] and
GPT-based models [181]. The mentioned methods train the models based on the generative loss,
usually negative log-likelihood, between the model’s output and the referenced answers.
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Chapter 3

The Retrieval-Based Question Answering
System

3.1 System Architecture: BERTserini

In the work BERTserini [281], we introduce such a simple yet effective RBQA system to deal
with the ODQA task based on Wikipedia. We demonstrate an end-to-end question answering
system that integrates BERT with the open-source Anserini information retrieval toolkit. Our
system integrates best practices from IR with a BERT-based reader to identify answers from a
large corpus of Wikipedia articles in an end-to-end fashion. We report large improvements over
previous results on a standard benchmark test collection, showing that fine-tuning pretrained
BERT with SQuAD v1.1 is sufficient to achieve high accuracy in identifying answer spans. The
simplicity of this design is one major feature of our architecture.

3.1.1 Method

The architecture of BERTserini is shown in Figure 3.1 and is comprised of two main modules, the
Anserini retriever and the BERT reader. The retriever is responsible for selecting segments of text
that contain the answer, which is then passed to the reader to identify an answer span. To facilitate
comparisons to previous work, we use the same Wikipedia corpus described in Chen et al. [22]
(from Dec. 2016) comprising 5.08M articles. In what follows, we describe each module in turn.

Anserini Retriever: For simplicity, we adopted a single-stage retriever that directly identifies
segments of text from Wikipedia to pass to the BERT reader—as opposed to a multi-stage retriever
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Figure 3.1: Architecture of a RBQA system: BERTserini.

that first retrieves documents and then ranks passages within. However, to increase flexibility, we
experimented with different granularities of text at indexing time:

• Article: The 5.08M Wikipedia articles are directly indexed; that is, an article is the unit of
retrieval.

• Paragraph: The corpus is pre-segmented into 29.5M paragraphs and indexed, where each
paragraph is treated as a “document” (i.e., the unit of retrieval).

• Sentence: The corpus is pre-segmented into 79.5M sentences and indexed, where each sentence
is treated as a “document”.

At inference time, we retrieve k text segments (one of the above conditions) using the question
as a “bag of words” query. We use a v0.3.0 of Anserini,1 with BM25 as the ranking function
(Anserini’s default parameters).

BERT Reader: Text segments from the retriever are passed to the BERT reader. We use
the model in Devlin et al. [42], but with one important difference: to allow comparison and
aggregation of results from different segments, we remove the final softmax layer over different
answer spans.

Our BERT reader is based on Google’s reference implementation 2 (TensorFlow 1.12.0). For
training, we begin with the BERT-Base model (uncased, 12-layer, 768-hidden, 12-heads, 110M

1http://anserini.io/
2https://github.com/google-research/bert
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Model EM F1 R

Dr.QA [22] 27.1 - 77.8
R3 [255] 29.1 37.5 -
[101] 29.8 - -
Par. R. [108] 28.5 - 83.1
MINIMAL [168] 34.7 42.5 64.0

BERTserini (Article, k = 5) 19.1 25.9 63.1
BERTserini (Paragraph, k = 29) 36.6 44.0 75.0
BERTserini (Sentence, k = 78) 34.0 41.0 67.5

BERTserini (Paragraph, k = 100) 38.6 46.1 85.8

Table 3.1: BERTserini results on SQuAD1.1 development questions.

parameters) and then fine tune the model on the training set of SQuAD (v1.1). All inputs to the
reader are padded to 384 tokens; the learning rate is set to 3× 10−5 and all other defaults settings
are used.

At inference time, for retrieved articles, we apply the BERT reader paragraph by paragraph.
For retrieved paragraphs or setences settings, we directly apply inference over the entired retrieved
snippets. In all cases, the reader selects the best text span and provides a score.

We then combine the reader score with the retriever score via linear interpolation:

S = (1− µ) · SAnserini + µ · SBERT, (3.1)

where µ ∈ [0, 1] is a hyper-parameter. We tune µ on 1000 randomly selected question-answer
pairs from the SQuAD v1.1 training set, considering all values in tenth increments.

3.1.2 Experiments

For evaluation, we mainly show the Exact Match (EM) score, F1-Score of the answers and the
Recall (R) of the retrieved passages, as explained in Section 2.3.1. Our main results are shown in
Table 3.1, where we report metrics with different Anserini retrieval conditions (article, paragraphs,
and sentences). We compare article retrieval at k = 5, paragraph retrieval at k = 29, and sentence
retrieval at k = 78. The article setting matches the retrieval condition in Chen et al. [22]. The
values of k for the paragraph and sentence conditions are selected so that the reader considers
approximately the same amount of text: each paragraph contains 2.7 sentences on average, and
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Figure 3.2: BERTserini effectiveness with different numbers of retrieved paragraphs on SQuAD
v1.1.

each article contains 5.8 paragraphs on average. We found that setting passages as the retrieve
unit provides the best system performance. We were the first to apply BERT-based reader model
to the ODQA task, which beats previous systems to a great extend.

We see that article retrieval under-performs paragraph retrieval by a large margin: the reason,
we believe, is that articles are long and contain many non-relevant sentences that serve as
distractors to the BERT reader. Sentences perform reasonably but not as well as paragraphs
because they often lack the context for the reader to identify the answer span. Paragraphs seem to
represent a “sweet spot”, yielding a large improvement in exact match score over previous results.

Effects of varying k: Our next experiment examined the effects of varying k, the number of text
segments considered by the BERT reader. Here, we focus only on the paragraph condition, with
µ = 0.5 (the value learned via cross validation). Figure 3.2 plots three metrics with respect to k:
recall, top k exact match, and top exact match. Recall measures the fraction of questions for which
the correct answer appears in any retrieved segment, exactly as in Table 3.1. Top k exact match
represents a lenient condition where the system receives credit for a correctly-identified span in
any retrieved segment. Finally, top exact match is evaluated with respect to the top-scoring span,
comparable to the results reported in Table 3.1. Scores for the paragraph condition at k = 100
are also reported in the table: we note that the exact match score is substantially higher than the
previously-published best result that we are aware of.

We see that, as expected, scores increase with larger k values. However, the top exact match
score doesn’t appear to increase much after around k = 10. The top k exact match score continues
growing a bit longer but also reaches saturation. Recall appears to continue increasing all the way
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up to k = 100, albeit more slowly as k increases. This means that the BERT reader is unable to
take advantage of these additional answer passages that appear in the candidate pool.

These curves also provide a failure analysis: The top recall curve (in blue) represents the upper
bound with the current Anserini retriever. At k = 100, it is able to return at least one relevant
paragraph around 86% of the time, and thus we can conclude that passage retrieval does not appear
to be the bottleneck in overall effectiveness in the current implementation. The gap between the
top blue recall curve and the top k exact match curve quantifies the room for improvement with
the BERT reader; these represent cases in which the reader did not identify the correct answer
in any paragraph. Finally, the gap between the red curve and the bottom top exact match curve
represents cases where BERT did identify the correct answer, but not as the top-scoring span. This
gap can be characterized as failures in scoring or score aggregation, and it seems to be the biggest
area for improvement—suggesting that our current approach (weighted interpolation between the
BERT and Anserini scores) is insufficient. We are exploring re-ranking models that are capable of
integrating more relevance signals.

In this Section, we introduced BERTserini, our design of the RBQA system that integrates
BERT and the Anserini IR toolkit. With a simple two-stage pipeline architecture, we are able to
achieve large improvements over previous systems. BERTserini has become a reference point
for researchers working on this problem [261, 48, 112, 101]. Furthermore, error analysis points
to room for improvement in retrieval, answer extraction, and answer aggregation—all of which
represent ongoing efforts.

3.2 Trade-offs in the Retriever

A multi-stage pipeline architecture was a widely-adopted design for building retrieval systems,
both in real-world deployments [186] as well as in the academic literature [3]. In a common
scenario, keyword-based retrieval is utilized to generate a preliminary list of documents. This
list is subsequently re-evaluated and re-arranged through one or more subsequent stages. These
stages often utilize progressively more computationally intensive methods to iteratively improve
the ranking. For instance, they may involve extracting intricate features from the input or applying
deep neural networks for inference. However, these approaches are applied to smaller subsets of
the initial candidates, ensuring a balance between effectiveness and efficiency. The primary goal
of candidate generation (and the early stages) is to maximize the recall of retrieved documents
while minimizing query latency. In this context, we explored two designs in Tu et al. [240]:

• Candidate generation with approximate nearest-neighbors (ANN) search. We explore
whether inverted indexes can be replaced by developments based on ANN search.
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RBQA Deployment: We have deployed
BERTserini as a chatbot that users can inter-
act with RSVP.ai’s intelligent platform that
allows businesses to construct natural dia-
logue services easily and quickly. A screen-
shot of the RSVP.ai chat platform is shown
in Figure 3.3. The current interface uses
the paragraph indexing condition, but we re-
turn only the sentence containing the answer
identified by the BERT reader. The answer
span is highlighted in the response [132].
In the screenshot we can see the diversity
of questions that BERTserini can handle—
different types of named entities as well as
queries whose answers are not noun phrases.
One important consideration in an opera-
tional system is the latency of the responses.
Informed by the analysis in Figure 3.2, in
our demonstration system we set k = 10 un-
der the paragraph condition. While this does
not give us the maximum possible accuracy,
it represents a good cost/quality tradeoff. To
quantify processing time, we randomly se-
lected 100 questions from SQuAD v1.1 and
recorded average latencies; measurements
were taken on a machine with an Intel Xeon
E5-2620 v4 CPU (2.10GHz) and a Tesla
P40 GPU. Anserini retrieval (on the CPU)
averages 0.5s per question, while BERT pro-
cessing time (on the GPU) averages 0.18s
per question.

Figure 3.3: Deployment of BERTserini in a chat-
bot interface.
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• Lightweight dense vector re-ranking. We examine whether work in representational learning
can be deployed as a lightweight re-ranker to achieve better effectiveness–efficiency trade-offs.
By lightweight, we mean representations that can be pre-computed and approaches that do not
depend on costly neural network inference over candidate documents.

A naı̈ve brute-force approach to nearest-neighbor search quickly becomes impractical as the
size of the collection grows. Multi-dimensional indexes (e.g., KD-trees) are not suitable for sparse
vectors with very large feature spaces (such as text), but approximate solutions based on Local
Sensitive Hashing [64] and quantization-based methods [84, 71] have proved workable. However,
previous applications to document retrieval [15] are mixed at best. Recently, we have seen a
revival in graphical methods for ANN search with the proposal of Hierarchical Navigated Small
World (HNSW) graphs [155], which achieves impressive performance in a widely-cited ANN
Benchmark 3. We build on this latest technique for ANN search.

3.2.1 Method

We assume a multi-stage ranking architecture comprising n stages, S1 to Sn. The initial stage S1

is responsible for generating a list of k1 candidates directly from the document collection, and all
subsequent stages perform re-ranking given the output of the previous stage. Specifically, stage
Sp receives a ranked list of kp−1 documents from the previous stage, applies internal re-ranking
logic, and passes along a ranked list kp to the next stage, with the only constraint that kp ≤ kp−1.

Candidate Generation

In most multi-stage ranking architectures, the initial candidate generation stage S1 leverages
inverted indexes, typically with bag-of-words queries, to produce documents that are fed to the
subsequent re-rankers. This approach is compared against an alternative based on approximate
nearest-neighbor (ANN) search on Hierarchical Navigated Small World (HNSW) graphs, con-
structed from the sparse BM25 representation of the documents. At retrieval time, the query is
converted to a tf-idf vector in a similar way as the documents and used to rank the most similar
documents based on inner-product distance.

3http://ann-benchmarks.com/
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Lightweight Re-ranking

Following the candidate generation stage S1, we designed a lightweight re-ranking stage S2 based
on cosine similarity between dense vector representations. Adopting advances reported in the
literature, we selected the Universal Sentence Encoder (USE) [19, 26] for representing documents.
This approach can be considered as a prototype of the learned dense retrievers.

Of course, the effectiveness of this re-ranking approach depends on the quality of the document
representations. Evidence from the literature suggests that the quality of vector representations
degrades, across multiple tasks, as we attempt to encode longer segments of text. We note that
USE is recommended for encoding sentences 4, but we wondered if the approach can be extended
to paragraphs. In our experiments in Tu et al. [240] show that:

1. For S1, ANN is faster but less effective; this holds for our sparse BM25 representations, on
both sentences and paragraphs.

2. For S2, our USE encoder is very effective for re-ranking sentences; this isn’t surprising,
since that was the recommended use case. USE can still be useful for re-ranking paragraphs,
but is not as effective, and thus the ANN + USE combination is preferred for a smaller
range of operating points, although USE can still benefit index-based approaches;

3.2.2 Experiments

To get an overall picture of how the end-to-end performance is affected by the retrieval stage, we
performed the passage retrieval under the open-domain question answering setting. We tested on
SQuAD v1.1 dataset [200], following exactly the evaluation procedure of BERTserini [281].

Index-based S1 stage: For factoid QA, we used the Anserini IR toolkit, matching the setup of
Yang et al. [281]. We use BM25 with the settings of k1 = 0.9 and b = 0.4. In our results, we refer
to this condition as “BM25 (index)”.

ANN-based S1 stage: We used Lucene and gensim5 to generate BM25 sparse document
representations, on which HNSW indexing was performed with nmslib6 using inner product
distance. We limit the vocab size to 200k. Following previous work, HNSW indexing parameters
were set as M = 35 and efconstruction = 2500, similar to Fu et al. [55]; efsearch was kept at 1000. In
our results, we refer to this condition as “BM25 (ANN)”.

4https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3
5https://radimrehurek.com/gensim/
6https://github.com/nmslib/nmslib
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Figure 3.4: The retriever trade-off space for SQuAD v1.1.

USE re-ranking S2 stage: We use USE-multilingual-large as our encoder and feed
documents as strings directly without any pre-processing. We did not explicitly differentiate
between passages and sentences. Queries are processed in exactly the same way.

The trade-off space for the RBQA system is shown in Figure 3.4. The starting point for
comparisons is the two-stage approach of Yang et al. [282]: keyword search with BM25 followed
by a BERT reader to extract the exact answer spans, shown with orange circles, sweeping different
values of k1. Here we focus on an operating region with latency that are practical for real-world
deployment; higher EM is possible but with latency measured in seconds.

In this context, the index-based approaches are preferred to ANN because the slight latency
advantages of the latter are negligible given costly BERT inference. Nevertheless, with each
single stage setup there is a comparable setup where we inject USE re-ranking (i.e., retrieve k1
paragraphs with BM25, re-rank with USE, then feed top k2 paragraphs to the BERT reader).
These are shown as the short colored lines above each solid orange circle. We see that, in each
case, we can increase EM slightly at small cost in latency, which provides the developer with an
alternative of simply varying k1 in a single-stage architecture.
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3.3 Training the Reader

Now, let’s move our focus to the training of the reader models. We fix the underlying system
and focus on data augmentation techniques to explore how to best fine-tune BERT in a RBQA
system. Following BERTserini [281], we first use passage retrieval to identify relevant paragraphs
from Wikipedia and then pass the paragraphs to a BERT reader for answer span extraction (see
Figure 3.1). We adopted the “paragraph” setup in BERTserini [281].

One main shortcoming of BERTserini is that it only fine-tune BERT on the original SQuAD
dataset, means that the BERT reader is exposed to an impoverished set of examples; all SQuAD
data come from a total of only 442 Wikipedia documents. This contrasts with the diversity of
paragraphs that the model will likely encounter at inference time in the retrieval-based setting,
since they are selected from potentially millions of articles. Also, the output of passage retriever
may contain many negative examples (i.e., paragraphs that don’t contain answers), which does
not accurately match the prevalence of answers in the original training data. Additionally, when
performing QA on Wikipedia using a machine-reading comprehension dataset, we do not have
labels for most paragraphs (since they are not from the original source documents). The solution,
of course, is to fine-tune BERT with labeled paragraphs of the type that it is likely to see at
inference time. Distant supervision can provide a bridge.

We further build on BERTserini’s basic design and explores how much further we can improve
effectiveness by data augmentation alone. To illustrate the robustness of our methods, we also
demonstrate gains on another English QA dataset and present results for two additional Chinese
QA datasets (which have not to date been evaluated in a retrieval-based setting). The primary
contribution is a thorough exploration of the design space of distant supervision techniques for
question answering.

The roots of the distant supervision techniques we use trace back to at least the 1990s [287,
207], although the term had not yet been coined. Such techniques have recently become com-
monplace, especially as a way to gather large amounts of labeled examples for data-hungry
neural networks and other machine learning algorithms. Specific recent applications in question
answering include Bordes et al. [13], Chen et al. [22], Lin et al. [140], as well as Joshi et al. [90]
for building benchmark test collections. However, as we explain below, our approach aims to
address a number of issues that are specific to the retrieval-based setting. While such approaches
have been proposed previously, we examine several novel aspects:

• Negative Samples: Most previous work on distant supervision focuses on generating positive
examples. However, under a RBQA system, where the reader consumes the output of passage
retrieval, the model will encounter many non-relevant passages, which means that a data
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collection strategy focused only on positive examples will be inadequate. We show that using
existing datasets to identify negative training examples is critical to effectiveness, and explore
different strategies for gathering negative examples.

• Data Fusion: Another unexplored area in previous work is how to integrate existing training
data with data gathered via distant supervision. We show that a naı̈ve strategy of simply
combining all data may not be the best approach. Instead, we propose a stage-wise approach to
fine-tuning BERT with heterogeneous data, beginning with the dataset that is “furthest” from
the test data and ending with the “closest”.

3.3.1 Method

Starting from a source dataset comprising question–answer pairs (for sample, SQuAD), we can
create additional training examples by fetching paragraphs from the corpus using the system’s
own passage retrieval algorithm (with the question as the query) and give these paragraphs labels
based on the ground truth answers provided in the source dataset. Using the system’s own passage
retrieval algorithm ensures that the model is exposed to the types of input it will receive at
inference time.

Sample Selection: We denote a paragraph as a positive example if the ground truth answers
appear in it; otherwise we consider it a negative example. We keep the best positive example for
each question (i.e., the highest BM25 score), and examined three different methods for selecting
negative examples:

• Top-down: We choose negative examples with the highest paragraph scores from the retrieved
paragraphs.

• Bottom-up: We choose negative examples with the lowest paragraph scores from the retrieved
paragraphs.

• Random: We randomly sample negative examples from the retrieved paragraphs.

Our intuition is that top-down sampling selects “hard” examples, since the paragraphs have high
BM25 scores, while bottom-up sampling selects “easy” examples. Random sampling attempts
to obtain diversity. One important hyper-parameter is the number of negative examples to select
for each positive instance; ideally, this distribution should match the actual prevalence of correct
answers that the reader encounters at test time, giving the model an accurate prior for answer
correctness.

34



Training Set Fusion: Another important design decision is how to make use of both the source
data (SRC) and the distantly-supervised data (DS). We refer to the training set of only positive
augmented examples as DS(+) and refer to the training set contains both positive and negative
examples as DS(±). Other than different datasets we can use, there are three possibilities when
considering the fine-tuning order:

• SRC + DS: Fine-tune BERT with all data, “lumped” together as a single, larger training set. In
practice, this means that the source and augmented data are shuffled together.

• DS→ SRC: Fine-tune the reader in stages, first on the augmented data and then the source
dataset.

• SRC→ DS: Fine-tune the reader in stages, on the source dataset and then the augmented data.

3.3.2 Experiments

To show the generalizability of our data augmentation techniques, we conducted experiments on
two English datasets: SQuAD (v1.1) and TriviaQA [90] (the unfiltered version). The 2016-12-21
dump of English Wikipedia is taken as the document collection from which we are retrieving
answers, following Chen et al. [22]. We also examine two Chinese machine reading comprehen-
sion datasets: CMRC [31] and DRCD [220]. CMRC is in simplified Chinese while DRCD is in
traditional Chinese. For Chinese, we use the 2018-12-01 dump of Chinese Wikipedia, tokenized
with Lucene’s CJKAnalyzer into overlapping bigrams. We apply hanziconv 7 to transform
the corpus into simplified characters for CMRC and traditional characters for DRCD. Since we
don’t have access to the ground truth annotations of the test sets of the four datasets, we use the
development sets in each dataset as the test sets. We use BM25 retriever under the same setting
(k1 = 0.9, b = 4) as in BERTserini. The retriever returns 100 paragraphs and then feeds them into
the BERT reader.

Statistics for the datasets are shown in Table 3.2 DS(+) and DS(±) refer to our augmented
dataset with positive and positive as well as negative examples, respectively. For reference, we also
provide statistics for our distantly-supervised data; these represent the best settings, corresponding
to our main results in Table 3.3, which uses a positive/negative ratio of 1:7, 1:3, 1:7, and 1:6,
respectively, using random sampling.

For model training, we begin with the pre-trained BERT-Base model (uncased, 12-layer,
768-hidden, 12-heads, 110M parameters). We use the pre-trained Chinese BERT-Base for the

7https://pypi.org/project/hanziconv/0.2.1/

35



SQuAD TriviaQA CMRC DRCD

Train 87,599 87,622 10,321 26,936
Test 10,570 11,313 3,351 3,524

DS(+) 64,244 264,192 8,596 41,792
DS(±) 447,468 789,089 68,696 246,604

Table 3.2: Statistics of distant supervision augmented question answering datasets.

Chinese datasets. All inputs are padded to 384 tokens; the learning rate is set to 3× 10−5 and all
other default settings are used. For all datasets, when applying stage-wise fine-tuning, we first
fine-tune on the source dataset (SRC) for two epochs, and then on the augmented dataset for one
epoch.

Main Results: Our main results on all four datasets are shown in Table 3.3. These results are
obtained from the dataset denoted DS(±) in Table 3.2; the training regime is the best stage-wise
configuration, which will be introduced in the next section. In later parts we present a number
of detailed analyses and contrastive conditions under slightly different experimental procedures,
and so there is no exact one-to-one correspondence between results in the main results table
and subsequent results. We updated the Anserini retriever in this version, so the performance
improved on SQuAD v1.1 from the first BERTserini version. We denote the new implementation
as BERTserini*. To the best of our knowledge, there is no previous work on these two Chinese
datasets in the retrieval-based setting, and therefore BERTserini* is the only baseline available.
We can see that our data augmentation leads to large improvements across all datasets, both in
terms of exact match as well as F1. On all four datasets, these results represented the state of the
art.

Effects of Varying k: In Figure 3.5 and Figure 3.6, we show the effects of varying the number of
paragraphs k that is fed into the BERT reader on SQuAD v1.1 and CMRC. We plot the following
metrics:

• Top 1 Exact Match (EM): we feed the top k paragraphs from the retriever to the reader, the
reader extracts the best phrase in each paragraph, and then the aggregator selects the best
answer among all the candidates. If the best answer is the same as the ground truth, the system
receives credit.

• Top k Exact Match (EM): we feed the top k paragraphs from the retriever to the reader, then
the reader extracts the best phrase in each paragraph. If any one of these phrases matches the
ground truth answer, the system receives credit.
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SQuAD
Model EM F1 R

Dr.QA [22] 29.8 - -
R3 [255] 29.1 37.5 -
Kratzwald and Feuerriegel [101] 29.8 - -
Par. R. [108] 30.2 - -
MINIMAL [168] 34.7 42.5 64.0
ORQA [112] 34.7 - 64.0
RankQA [102] 35.8 - -
DenSPI-Hybrid [218] 36.2 44.4 -
MUPPET [48] 39.3 46.2 -
RE3QA-Large [79] 41.9 50.2 -
Multi-passage BERT [261] 51.2 59.0 -

BERTserini* 41.8 49.5 86.3
Ours 51.2 59.4 86.3

TriviaQA
Model EM F1 R

ORQA [112] 47.2 - -
R3 [255] 47.3 53.7 -
DS-QA [140] 48.7 56.3 -
Evidence Agg. [256] 50.6 57.3 -

BERTserini* 51.0 56.3 83.7
Ours 54.4 60.2 83.7

CMRC
Model EM F1 R

BERTserini* 44.5 60.9 86.5
Ours 48.6 64.6 86.5

DRCD
Model EM F1 R

BERTserini* 50.7 65.0 81.5
Ours 55.4 67.7 81.5

Table 3.3: Effectiveness of distant supervised reader on two English and two Chinese datasets.
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Figure 3.5: Effects of the number of retrieved paragraphs k on SQuAD.
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Figure 3.6: Effects of the number of retrieved paragraphs k on CMRC.
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• Recall: the fraction of questions in which at least one retrieved passage contains the answer
(which provides an upper bound on scores with the current passage retrieval approach).

What is interesting here is to compare the effects of data augmentation, which we show
with dotted vs. solid lines; note that the passage retriever (hence, recall) remains the same.
We see that top 1 EM improves quite a bit, although top k EM changes little. This suggests
that distantly-supervised data is helping the model extract better answer phrases—likely due to
improved context modeling—but isn’t fundamentally expanding the coverage of the reader. We
note the same phenomenon in Chinese. However, the gap here between top k EM and upper bound
recall is much larger, which means that the passage retriever is finding relevant paragraphs, but the
reader model is unable to identify the correct answer spans. We suspect that the Chinese BERT
model is weaker than the English BERT model. The SRC-trained BERT-Base model achieves
80 EM and 88 F1 on SQuAD 1.1, while only 65 EM and 83 F1 on CMRC. These results are
comparable to Sun et al. [227]). Also, the two Chinese datasets lack diversity in both questions
and answers compared to English datasets.

Ablation Studies

Fine-tuning Order: Having acquired the augmented data with our distant supervision techniques,
there are a number of options for fine-tuning the model using all available data. Experiments
exploring these possibilities are presented in Table 3.4 for each dataset. The rows marked SRC
refer to fine-tuning with the source data only, which is the same as the BERTserini* baseline
in Table 3.3. While training with positive examples, denoted DS(+), improves effectiveness as
expected, an even larger gain comes from leveraging positive and negative examples, denoted
DS(±). Note that negative sampling here was performed using the top-down approach (see next),
which is slightly less effective than the random sampling approach presented in the Table 3.3;
thus, these numbers are not directly comparable.

The natural question is how to take advantage of both types of data (source and augmented).
The most obvious approach is to simply lump both the source and augmented data together to
create a single, larger training set. This is shown in Table 3.4 as SRC + DS(±), and for three
out of the four datasets, it is not the best approach (we discuss the exception below). In fact, the
SRC + DS(±) condition performs worse than just using the augmented data alone on the English
datasets.

We propose that heterogeneous datasets should be leveraged in a stage-wise manner, starting
with the dataset that is “furtherest” away from the test data. That is, we wish to take advantage of
all available data, but the last dataset we use to fine-tune BERT should be “most like” the test data
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SQuAD TriviaQA CMRC DRCD
EM F1 EM F1 EM F1 EM F1

SRC 41.8 49.5 51.0 56.3 44.5 60.9 50.7 65.0
DS(±) 48.7 56.5 54.4 60.2 48.3 63.9 53.2 66.0
SRC+DS(±) 45.7 53.5 53.1 58.6 49.0 64.6 55.4 67.7
DS(±)→ SRC 47.4 55.0 49.8 55.9 45.6 61.9 53.4 67.1
SRC→ DS(±) 50.2 58.2 53.7 59.3 49.2 65.4 54.4 67.0

Table 3.4: Results of approaches to combining source and augmented training data under retrieval-
based question answering datasets: SQuAD v1.1, TriviaQA, CMRC and DRCD.

the model will see at evaluation time. Since the augmented data is drawn from the same passages
that the system is ultimately evaluated on, we should fine-tune on those data last. This condition
is denoted SRC→ DS(±), which yields the best results for two of the datasets. Note that if we
swap the tuning order, DS(±)→ SRC, effectiveness drops (and quite a bit in three of the four
datasets), which lends credence to our heuristic.

However, two of the datasets appear to behave differently. With TriviaQA, the best condition is
to simply disregard the source dataset, i.e., fine-tune with the augmented data only. We believe this
may be an artifact of how the dataset was constructed to begin with: TriviaQA source paragraphs
are already the product of distant supervision (on noisy web texts), which means that they are
of lower quality of begin with. Our data augmentation procedure actually yields higher quality
training data, since our examples are from Wikipedia and thus better match the passages the BERT
reader encounters at evaluation time. For DRCD, we see that SRC + DS(±) is the most effective
overall, which we explain by how the dataset is constructed. According to Shao et al. [220], the
dataset was assembled by searching Wikipedia (10k paragraphs from 2.1k pages). In this case, the
augmented data are similar enough to the source data that lumping them both together to create a
single, larger dataset is the best strategy. This observation is affirmed by the fact that flipping the
order of fine tuning, DS(±)→ SRC, yields only a small drop in accuracy (much less than on the
other datasets).

While the best conditions appear to be idiosyncratic for two of our datasets (artifacts of how
they were constructed), we believe that our proposed stage-wise tuning approach makes intuitive
sense. Another way to think about using different datasets is in terms of a very simple form of
transfer learning. The stage-wise fine-tuning strategy is in essentially trying to transfer knowledge
from labeled data that is not drawn from the same distribution as the test instances. We wish to
take advantage of transfer effects, but limit the scope of erroneous parameterization. Thus, it
makes sense not to intermingle heterogeneous, qualitatively different datasets, but to fine-tune the
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SQuAD CMRC
EM F1 EM F1

Top-down 49.2 57.2 48.8 64.5
Bottom-up 46.8 54.9 48.6 65.2
Random 49.6 57.6 48.6 64.7

Table 3.5: Effects of different negative sampling strategies on SQuAD and CMRC.

model in distinct stages.

Negative Sampling Strategies: One key insight of our work is that negative sampling is critical
to the effectiveness of distant supervision techniques, particularly in our retrieval-based setting
where the reader is only exposed to the output of the passage retriever. We present results that
explore different negative sampling strategies.

Table 3.5 shows the effectiveness of different negative sampling strategies on two datasets:
SQuAD for English and CMRC for Chinese. In order to better isolate the impact of data
augmentation, these experiments do not take advantage of the source data, and so the figures
are not directly comparable to the main results in Table 3.3. Recall that the top-down negative
sampling strategy selects “difficult” examples (i.e., those with high BM25 scores); for English,
this is more effective than bottom-up sampling, which selects “easy” examples. However, results
suggest that random sampling beats both approaches, showing the importance of selecting diverse
examples. Interestingly, though, for Chinese, the sampling strategy doesn’t make much of a
difference. This was a curious finding that prompted us to examine the retrieved paragraphs
manually; as it turns out, passage retrieval in Chinese does not produce many paragraphs that
are relevant to the question, but do not contain the answer because of our simple bigram-based
retrieval approach. In other words, all of the negative examples are “easy”, regardless of sampling
strategy, and hence we observe few effectiveness differences.

The ratio between positive and negative examples that are generated via our distant supervision
technique is another important hyper-parameter. In Figure 3.7, we plot the effect of this ratio
d; i.e., for every positive example, we select d negative examples. We used a similar setup as
the experiment above, and therefore these results are also not directly comparable to Table 3.3.
Furthermore, in order to experiment with d < 1, we applied a slightly different approach to
negative sampling: Instead of pairing negative examples with positive examples, we first gathered
all positive and negative examples across all questions, and then performed the sampling on those
two groups given the ratio d. These results appear somewhat noisy, but suggest that d > 2 yields
reasonable results—and from the perspective of minimizing training time, we desire the smallest
d value that allows us to fully exploit distant supervision. The same experiments on the other
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Figure 3.7: Effects of varying d, the positive–negative ratio of examples, on SQuAD v1.1.

datasets yield similar conclusions.

Analysis

Performance by Question Types: In Table 3.6, we further break down effectiveness by question
type for SQuAD and CMRC, comparing the BERTserini* baseline and the model trained with
data augmentation (corresponding to the main results in Table 3.3). Question classification in
English is performed simply based on the initial question word. For consistency, we translated all
Chinese questions into English with a state-of-the-art machine translation system8, and applied
the same classification scheme as the English questions. We manually examined translations of
the Chinese questions and confirmed that they look reasonable.

For SQuAD, we see that effectiveness on “how” and “why” questions are lower than the
other categories (which makes sense since they are more difficult), but surprisingly the scores for
“where” questions are quite low as well. We see that data augmentation improves performance
across the board, although gains from “why” questions are quite limited—this is likely because
the exact phrasing of the ground truth answers for these questions are difficult to find. For Chinese,
“why” questions appear more difficult than the other types (not surprising). Interestingly, we see
that data augmentation actually decreases effectiveness for some question types; however, most
categories do see large gains.

8Google Translate API in 2019
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Question BERTserini* Ours
Type percentage EM F1 EM F1

SQuAD
Who 13.0% 43.1 48.6 52.9 (+22.7%) 59.3 (+22.0%)

When 7.9% 46.8 54.7 56.9 (+21.6%) 65.0 (+18.8%)
Where 4.7% 28.7 38.2 41.1 (+43.2%) 51.4 (+34.6%)
What 54.8% 42.9 50.6 51.8 (+20.7%) 60.3 (+19.2%)
Which 6.3% 46.1 53.5 58.6 (+27.1%) 65.8 (+23.0%)
How 11.0% 36.6 44.5 45.0 (+23.0%) 52.5 (+18.0%)
Why 1.4% 34.2 51.4 36.2 (+5.8%) 54.2 (+5.4%)

Others 0.9% 28.9 49.5 40.0 (+38.4%) 52.6 (+6.3%)

CMRC
Who 8.0% 47.9 62.6 46.3 (−3.2%) 63.4 (+1.3%)

When 6.0% 50.0 67.5 58.8 (+17.5%) 73.3 (+8.6%)
Where 10.5% 43.6 61.3 52.2 (+19.7%) 67.1 (+9.4%)
What 48.0% 40.8 55.8 44.3 (+8.6%) 59.2 (+6.2%)
Which 13.2% 57.6 71.3 63.8 (+10.6%) 76.3 (+7.0%)
How 8.4% 43.4 63.8 48.5 (+11.9%) 69.8 (+9.5%)
Why 5.3% 34.3 55.5 32.6 (−5.1%) 53.9 (−2.8%)

Others 0.4% 35.7 53.0 35.7 (+0.0%) 45.3 (−14.5%)

Table 3.6: Breakdown of effectiveness by question type on SQuAD (top) and CMRC (down).
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Question Answer Answers from BERTserini* Answers from augmented model
Super Bowl
50 decided the
NFL cham-
pion for what
season?

2015, the 2015
season

Super Bowl XXXVII was an
American football game between
the American Football Conference
(AFC) champion Oakland Raiders
and the National Football Confer-
ence (NFC) champion Tampa Bay
Buccaneers to decide the National
Football League (NFL) champion
for the 2002 season.

Super Bowl 50 decided the 2015
NFL Champion and was played at
Levi’s Stadium in Santa Clara, Cali-
fornia on Sunday, February 7, 2016.

How did
Tesla know
he was being
struck by the
particle?

He could feel a
sharp stinging
pain (where
it entered his
body)

On 11 July 1934 the “New York Her-
ald Tribune” published an article on
Tesla, in which he recalled an event
that would occasionally take place
while experimenting with his single-
electrode vacuum tubes; a minute
particle would break off the cathode,
pass out of the tube, and physically
strike him. “Tesla said he could feel
a sharp stinging pain where it en-
tered his body, and again at the place
where it passed out.”

On 11 July 1934 the “New York Her-
ald Tribune” published an article on
Tesla, in which he recalled an event
that would occasionally take place
while experimenting with his single-
electrode vacuum tubes; a minute
particle would break off the cathode,
pass out of the tube, and physically
strike him. “Tesla said he could
feel a sharp stinging pain where
it entered his body, and again at the
place where it passed out.”

Table 3.7: Sample questions and answers comparing distantly supervised model with BERTserini*.

An Example: How is data augmentation improving the reader? At a high-level, we believe
that greater diversity in answers gives the reader a more accurate model of answer contexts. We
present two examples that highlight our intuitions in Table 3.7, which provides answers (bolded)
in the source paragraphs before and after data augmentation. In the first example, we notice that
the model before augmentation extracts the phrase right before the word “season” in the answer
paragraph. We believe this is an artifact of how some questions are constructed in SQuAD, where
a question that contains “... what noun” is directly answered by “... X noun” in a text span (i.e.,
the model learns pattern matching).

Thus, a model trained solely on SQuAD is likely to over-fit; via distant supervision, this is
avoided because of exposure to sufficient answer diversity. In the second example, the baseline
model frequently answers “how” question with an adverb, in part because there are relatively few
examples to learn from (note that the question is best categorized as a “why” question, which has
even fewer examples). Here, we believe that distant supervision provides more answer instances
that allow the model to better learn answer contexts.
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Discussions

A noteworthy advantage of our approach is its simplicity and the fact that our gains are demon-
strated on a simple reader model. This means that, essentially, gains come “for free”. Furthermore,
our techniques should be applicable to other neural models as well, including improvements to
the basic BERTserini model architecture proposed by other researchers [261, 48, 112, 101, 79,
218, 218]. These findings confirm perhaps something that machine learning practitioners already
know too well: “there no data like more data”.
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Chapter 4

Zero-shot Adaptation to Domains

Training the retrieval-based information access system requires a large amount of labelled data.
For the retrieval part, we need query-paragraph pairs with their relevance labelled. For the reader
part, we need labelled question-answer pairs. There are many such datasets for general domain
information retrieval and question answering. However, to apply this technology to real-life
scenarios, we need to twit the models to fit the specific domains. It is not possible to construct
individual datasets for each application scenario.

This chapter first discusses methods to distinguish between domains and how zero-shot
systems would perform on them. We then introduce several methods that transfer the RBQA
system learned in the general domain to applications in specific domains.

4.1 Diverse Domains and Their Challenges

We start with an introduction to several specific domains, which have different vocabulary
distribution and language usage from the general domain.

4.1.1 Method to Distinguish Domains

We adopt the more general definition of domains. We treated the texts gathered from a certain
source and used them for a specific purpose in the same domain. The text in the same domain
usually shares similar background knowledge and language style. We consider the corpus that
targets the general public as the general domain. For example, Wikipedia, Common Crawl and
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the Book Corpus are all considered in the general domain. In contrast, we consider the corpus
that targets people with specialized knowledge as specific domains. We give several examples
following.

To understand what a domain is quantitatively, Pogrebnyakov and Shaghaghian [193] proposed
to apply several methods to compute the domain similarity to predict the success of domain
adaptation in text similarity, including:

• Uni-gram coverage, the overlap between corpus’ vocabulary, using Jaccard similarity.

• KL-divergence between the vocabulary distributions.

• Language model perplexity [33]. First, train a tri-gram language model in each domain and
evaluate the perplexity in other domains.

• Word vector variance [33], the word vector variance under word2vec skip-gram trained
embeddings.

We conduct a similar analysis from the retrieval side as in BEIR [233] to demonstrate the
corpus cluster. In Figure 4.1, we first tokenize the corpus with word piece tokenizer, which maps
all the corpus into the same token space as in the most widely used backbone “bert-base-uncased” 1.
Then we compute the Jensen–Shannon divergence between each corpus token distribution and the
query set of each dataset. Red represents low divergence, meaning highly related dataset, while
green represents high divergence, meaning less related dataset. The corpus based on Wikipedia
generally has a higher overlap with other domains, and the bio-medical domain has a high overlap
with the scientific domain.

4.1.2 Datasets

The Biomedical Domain: Science domains are the ones that contain many specialized words,
and the language style is usually more formal. It often contains many proper nouns, which
are rare in the general domain. This also includes abbreviations referring to different entities,
common words with uncommon meanings or uncommon word phrases. We choose the BioASQ
dataset [239] as an example, which is a large-scale biomedical semantic indexing and question
answering (QA) dataset based on PubMed documents2. It aims to assess the ability of systems
to index large numbers of biomedical scientific articles semantically and to return concise and

1https://huggingface.co/bert-base-uncased
2https://pubmed.ncbi.nlm.nih.gov/
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Figure 4.1: Jensen–Shannon divergence between corpus in BEIR
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user-understandable answers to given natural language questions by combining information from
biomedical articles and ontologies. A team of biomedical experts constructs the answers.

We mainly focus on Task B: Biomedical Semantic QA, which involves IR, QA, and summa-
rization. The questions can be split into four categories: yes/no, factoid, list and summary. The
factoid and list questions have the exact answer label, while all the questions have an ideal answer
label, a sentence from the provided paragraphs. We unified the answer format into question,
answer and evidence. Besides taking the answers for exact match evaluations, we also take the
one-sentence reference in the original dataset as evidence and evaluate the models’ F1 score for
generative models. Following is an example of a yes/no question:

• Question: Are long non coding RNAs spliced?

• Answers: Yes

• Evidence: Long non coding RNAs appear to be spliced through the same pathway as the
mRNAs.

The Finance Domain: The finance domain search is another interesting and meaningful
application of the RBQA system. Automatic analysis of financial news and opinions relies on
interpreting multiple unstructured and structured data sources, demanding fast and comprehensive
decision-making. We take the FiQA [154] as our main experiment data sets. FiQA focuses
on advancing state-of-the-art of aspect-based sentiment analysis and opinion-based QA for the
financial domain. Specifically, we focus on Task 2: Opinion-based QA over financial data – Given
a corpus of structured and unstructured text documents from different financial data sources in
English (microblogs, reports, news), build a Question Answering system that answers natural
language questions. However, the answers in this dataset are mainly paragraphs, so we only need
the retrieval part of our system, and we also evaluate from the retrieval perspective 3. An example
from FiQA is shown below:

• Question: Why are big companies like Apple or Google not included in the Dow Jones Industrial
Average (DJIA) index?

• Answers: That is a pretty exclusive club and for the most part they are not interested in highly
volatile companies like Apple and Google. Sure, IBM is part of the DJIA, but that is about as
stalwart as you can get these days. The typical profile for a DJIA stock would be one that pays
fairly predictable dividends, has been around since money was invented, and are not going
anywhere unless the apocalypse really happens this year. In summary, DJIA is the boring
reliable company index.
3The original dataset only evaluates the pair-wise classification accuracy, which is a relatively easy evaluation.
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Model (→) Lexical Sparse Dense Late-Interaction Re-ranking

Dataset (↓) BM25 DeepCT SPARTA docT5query DPR ANCE TAS-B GenQ ColBERT BM25+CE

MS MARCO 0.228 0.296‡ 0.351‡ 0.338‡ 0.177 0.388‡ 0.408‡ 0.408‡ 0.401‡ 0.413‡

BioASQ NDCG@10 0.465 0.407 0.351 0.431 0.127 0.306 0.383 0.398 0.474 0.523
BioASQ R@100 0.714 0.699 0.351 0.646 0.256 0.463 0.579 0.627 0.645 0.714

FiQA-2018 NDCG@10 0.236 0.191 0.198 0.291 0.112 0.295 0.300 0.308 0.317 0.347
FiQA-2018 R@100 0.539 0.489 0.446 0.598 0.342 0.581 0.593 0.618 0.603 0.539

Table 4.1: Domain and zero-shot performances on BioASQ and FiQA retrieval datasets [233].

Model Rouge-2(R) Rouge-2(F1) Rouge-SU4(R) Rouge-SU4(F1)

Best Supervised Model4 0.58 0.36 0.58 0.35

BM25 + BERT(open-squad) 0.13 0.05 0.17 0.05
DPR+BERT(open-squad) 0.06 0.02 0.09 0.03

Table 4.2: RBQA system performance on BioASQ TaskB.

4.2 Baselines

4.2.1 Direct Application of General Domain Systems

The BEIR benchmark [233] has comprehensively analyzed the performance of out-of-the-box
retrieval models on zero-shot domain retrieval datasets. These models are initially trained on the
MS MARCO dataset and then evaluated on other domain-specific datasets, such as BioASQ and
FiQA, which are also interesting for our evaluation. The results of this evaluation are presented in
Table 4.1, showing the performance of different retrieval models on these diverse domains.

Our primary focus is on evaluating the performance of RBQA systems. We consider applying
RBQA systems trained on the general domain to in-domain datasets to establish a baseline. Our
baselines consist of two widely-used retrievers, BM25 and DPR, combined with a classic BERT
reader. The results, presented in Table 4.2, compare the performance of these out-of-the-box
RBQA models with the current state-of-the-art supervised model on the BioASQ dataset. It is
evident that directly applying the retriever and reader trained on the SQuAD-Open dataset yields
relatively low scores compared to domain fine-tuned models. This observation underscores the
significant gap when applying deep neural models to specific domains, which is the primary
motivation for our research.
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Model Shots NDCG@10 R@100 Learning Rate Batch Size Train Steps

BM25 0 0.236 0.539 - - -
DPR 0 0.228 0.342 - - -

DPR 50 0.239 0.302 3e-7 32 128
DPR 100 0.243 0.301 3e-6 64 94
DPR 1000 0.247 0.310 3e-6 64 313

Table 4.3: Few-shot DPR fine-tune performance on FiQA.

4.2.2 Few-shot Training

In this section, we aim to address the research question: “How much labelled training data is
required to fine-tune a pre-trained model for specific domains effectively?” According to the
Vapnik-Chervonenkis (VC) dimension theory [244], the amount of labelled training data needed
is typically around ten times the dimensionality of the data. Considering that our pre-trained
models often have several hundred embedding dimensions, we need at least several thousand
labelled samples. However, since we have already pre-trained the model, the question arises as
to whether we still require such a large volume of labelled domain-specific data. OpenAI’s API
guide provides some insights into this matter, suggesting that “the more training examples you
have, the better”. They recommend having at least a couple of hundred examples, and they have
observed that each doubling of the dataset size leads to a linear increase in model quality. We
conducted a few-shot fine-tuning experiment using the DPR model to gain a deeper understanding
of the data volume required for fine-tuning. By varying the size of the labelled training dataset,
we aim to evaluate the impact on the model’s performance and determine the threshold at which
further improvements become marginal.

To investigate the impact of labelled training data on fine-tuning the DPR model for domain-
specific retrieval, we conducted experiments using the FiQA dataset. We randomly sampled k
examples from the FiQA training set as the training data and fine-tuned the DPR checkpoint after
pre-training on MS MARCO. The results of the experiments are presented in Table 4.3.

For NDCG@10, we observed that the original DPR model, fine-tuned on MS MARCO, had
slightly lower retrieval performance than the BM25 baseline, with a difference of 0.008. However,
after fine-tuning with just 50 training samples, the model surpassed the BM25 baseline. With
increasing training samples, the NDCG@10 score continued to improve, surpassing even the
best zero-shot method on the FiQA dataset listed on the BEIR benchmark. And notably, fine-
tuning with 1000 samples led to further performance gains. On the other hand, when evaluating
Recall@100, we observed a different trend. The fine-tuned models exhibited lower recall scores
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compared to the zero-shot version. This suggests that the fine-tuning process caused overfitting
due to limited training examples.

In additional experiments not included in the table, we found that using a lower learning rate
can help mitigate overfitting when working with smaller training sets. Additionally, we observed
that larger batch sizes generally resulted in better performance.

4.3 Parametric Adaptation Methods

4.3.1 Generation as Augmentation

One approach in domain transfer for RBQA systems involves generating synthesized data [149].
The process typically begins by training a question generation model in a general domain and then
performing inference on the target domain corpus to obtain labelled question-paragraph-answer
triplets as augmented data. Notably, Thakur et al. [233] demonstrate a GenQ baseline for various
datasets, showing promising performance.

However, employing such methods faces challenges, particularly in evaluating the quality
of the generated questions in terms of their contribution to the training of question-answering
models. Additionally, a key difference exists when generalizing the question generation method
for readers. In this case, we want the question generation model to focus on generating questions
aligned with the desired answers, thereby ensuring the correctness of the supervision signal. In
our exploration of domain transfer for RBQA systems, we investigated two key directions:

• Paraphrase Question Generation: In this approach, we focus on generating paraphrase
questions for the general domain dataset. By diversifying the question language formats, we
aim to enhance the reader model’s ability to handle a broader range of question variations. This
helps improve the generalization capability of the model across different domains.

• In-Domain Question Generation: The goal is to augment the in-domain supervision signals
by generating additional labelled question-paragraph-answer triplets. By incorporating domain-
specific questions into the training process, we aim to enhance the model’s performance and
adapt it more effectively to the target domains.

Paraphrase Question Generation

In our experiment, we set out to investigate the impact of question paraphrases on training
question-answering models. To achieve this, we employed the T5 model and utilized the QQP
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Original Train(88k) Augmented data EM F1 Epoch

100% 0k 80.08 87.62 2
100% 190k 79.78 87.59 1
100% 60k 79.75 87.40 1

10% 0k 68.33 78.96 1
10% 27k 67.91 77.91 1
10% 27k 67.67 77.87 3

1% 0k 54.75 64.71 20
1% 0k 53.17 63.61 3
1% 0k 32.56 43.68 1
1% 2.7k 55.30 66.01 20
1% 2.7k 51.04 61.90 1

Table 4.4: Paraphrase question generation augmentation results on SQuAD.

(Quora Question Pairs) dataset as the training data for question paraphrasing. Then, we generated
paraphrases for the questions in the SQuAD training set. For each paraphrased question, we
assigned the original paragraph and corresponding answer to create a question-paragraph-answer
triplet.

We mixed the augmented dataset, consisting of the paraphrase-augmented questions, with
the original SQuAD training set during the training process. This approach allowed the model to
learn from both the original and paraphrased questions, leveraging the additional training data to
improve its question-answering performance potentially.

The results of our experiment are presented in Table 4.4. Surprisingly, we observed that
incorporating the augmented questions into the training set had a negative impact on the question-
answering performance. Across the majority of the training group experiments, the addition of the
augmented dataset resulted in decreased performance. One potential explanation for this outcome
is that the quality of the generated paraphrases may not have been sufficiently high to contribute
positively to the model’s learning.

However, a slight performance improvement was observed in the 1% training group, where
the augmented dataset constituted a relatively larger proportion of the training data. This suggests
that when the original training dataset is relatively small, augmented questions can provide some
enhancement to the supervision signal and contribute to improved performance.
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In-Domain Question Generation

In this experiment, we investigated the potential benefits of incorporating generated in-domain
questions to improve question-answering performance. We employed the T5 model as our question
generation model and trained it on the Natural Question (NQ) and SQuAD datasets. We explored
several variants of prompt formats to guide the question-generation process. The formats we
tested were as follows:

• V1 “Context: context Answer: answer Question: question”:
In this format, we directly connected the three parts of the prompt using the respective keywords.
However, with this version, the generated questions sometimes did not effectively target the
desired answer.

• V2 “Answer: answer Context: context Question: question”:
In this format, we placed the answer at the beginning of the prompt to highlight its importance.
Typically, important information in natural language is often conveyed at the beginning of a
sentence or text.

• V3 “context with answer highlighted with <a> and </a> Question: question”:
In this format, we marked the answers within the context by enclosing them with special
tags (<a> and </a>). This approach aimed to help the model better understand the task by
providing explicit context about the answers.

Based on these prompt formats, we trained the question-answering model using the NQ
baseline. However, we later discovered that this general domain question-answering dataset hurt
the performance of our model when applied to the BioASQ dataset, possibly due to the difference
in question format distribution. Despite this limitation, we believe that the relative comparisons
between the different prompt formats can still provide valuable insights and contribute to drawing
reasonable conclusions.

Based on the results presented in Table 4.5, we have made several key observations:

• The highlight version (V3) of the prompt format tends to have the most significant impact on
the Exact Match performance metric. This suggests that marking the answers within the context
using special tags helps the model produce more accurate and precise questions that directly
target the desired answer.

• Despite various augmentation experiments, we did not observe any improvements in the F1
score. This indicates that the generated in-domain questions did not enhance the model’s ability
to capture relevant information beyond what was already achieved by the T5 model.
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Train Data Epoch EM F1 QG BLEU

Baseline - 2 67.48 76.94 -
NQ 2 64.42 76.14 -
Bioasq 2 68.10 75.93 -

Augment V2 2 65.64 74.30 8.66
V2 5 65.64 74.44 8.66
V3 2 66.26 74.34 5.99

Table 4.5: Question generation results on BioASQ, with T5-base.

• It is worth noting that the T5 model already performs well, and the augmentation with additional
questions only resulted in marginal improvements.

Furthermore, we encountered a significant challenge in evaluating the Question Generation
(QG) model in this experiment. We found that the BLUE score, commonly used to evaluate the
generated text’s quality, did not correlate strongly with the performance of the fine-tuned reader
model. This highlights the difficulty in assessing the quality and relevance of generated questions,
specifically in the context of the question-answering task. Despite these challenges, our findings
provide insights into the limited impact of question generation augmentation in the retrieval-based
information access system. The results suggest that while certain prompt formats can improve
performance on specific metrics, the overall benefits may be modest, and evaluating the QG model
remains an ongoing challenge.

4.3.2 Domain Further Pre-training

In Section 4.1, we discussed the significant difference between specific domains and the gen-
eral domain, particularly regarding vocabulary distribution. To address this data distribution
gap, researchers have explored the effectiveness of further pre-training techniques, which have
consistently shown performance improvements [226].

Our experiments also investigated the effectiveness of these pre-training methods in specific
domains. We explored combining domain pre-trained models with fine-tuning downstream tasks
in the general domain. We started with a pre-trained model that had already undergone fine-tuning
in the general domain datasets. Subsequently, we conducted further pre-training (using the Masked
Language Modeling objective for BERT) on the specific domain corpus. This additional pre-
training aimed to better align the model’s understanding with the vocabulary and characteristics
of the target domain.
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# epoch BM25 DRP 1 2 3 4 5 6 7

NDCG@10 0.236 0.228 0.241 - 0.248 0.254 0.257 0.263 0.265
R@100 0.539 0.342 0.362 - 0.392 0.388 0.380 0.394 0.389
perplexity - 8.573 8.312 - 7.388 7.218 7.054 7.118 6.940

Table 4.6: Effects of further pre-training to retrieval performance on FiQA.
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Figure 4.2: Effects of further pre-training, the retrieval performance based on further pre-trained
model, on FiQA.

Once further pre-training was completed, we fine-tuned the model on general domain tasks
for a few epochs. This fine-tuning step allowed the model to retain its task-specific capabilities
while benefiting from the domain-specific knowledge acquired during further pre-training.

By combining domain pre-training with general domain fine-tuning, we aimed to leverage the
advantages of both approaches and achieve improved performance on specific domain tasks. The
following sections will present the results and insights gained from these experiments.

The results of our experiments are presented inTable 4.6, and we also provide a visual
representation of the findings in Figure 4.2. The results generally indicate that further pre-training
can improve retrieval performance on the specific domain task. It can be observed that there is not
a strong correlation between the NDCG@10 scores and the perplexity of the further pre-trained
model. However, lower perplexity values may have a negative impact on the Recall@100 metric.

Similarly to the challenges discussed in Section 4.3, one of the difficulties encountered in this
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method is the need for a reliable indicator for evaluating the performance of the further pre-trained
model on the target downstream task. Despite the challenge of evaluating the performance of
the further pre-trained model, our experiments suggest that optimizing for lower perplexity may
not necessarily translate to better performance in the downstream task. Further investigation
and analysis are needed to understand better the relationship between pre-training objectives,
perplexity, and task-specific performance.

4.3.3 Progressive Domain-Clustered Training

We explore a clustering and scheduling approach to fully leverage the wealth of labelled datasets
available in the general domain. The goal is to identify training examples more closely related to
the target domain and schedule their training in a remote-to-close order. The MS MARCO dataset
offers various topics, including bio-medical, finance, and computer science. By clustering the
passages and queries in the embedding space, we can prioritize training on samples more similar
to the target domain, thereby improving the performance on the specific domain task.

To measure sentence similarity, we utilize SentenceBERT [202], which provides sentence
embeddings. Initially, we attempted to use the averaged corpus embeddings but found that this
approach led to poor clustering performance. Instead, we conducted preliminary experiments
using individual queries or document similarity. It is important to note that this should not be
considered zero-shot learning, as we utilize in-domain training samples as references.

To implement the clustering-based scheduling approach, we divided the training set into three
portions:

• Initially, the model is trained on the 80% to 95% least relevant examples for one epoch to
familiarize it with the retrieval task.

• Subsequently, the model undergoes training on the 5% to 20% relatively similar examples for
multiple epochs, inducing a domain shift.

• Finally, the top 1% most domain-relevant samples are utilized for extensive training conducted
over the maximum number of epochs.

By progressively training the model, starting with the least similar samples and gradually incorpo-
rating the most similar ones, we aim to improve the model’s ability to handle the target domain
effectively.

The results presented in Table 4.7 indicate that the cluster-based training method does not
significantly enhance the performance of the DPR model on the FiQA dataset. Despite the
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Model Slice Score Epoch Schedule NDCG@10 R@100

FiQA

BM25 - - 0.236 0.539
DPR - - 0.233 0.301

0.03, 0.07 1,3,20 0.191 0.248
0.03, 0.07 1,5,20 0.237 0.303
0.03, 0.08 1,5,10 0.235 0.303
0.03, 0.08 1,3,20 0.235 0.304

SciFact [251]

BM25 - - 0.665 0.908
DPR - - 0.50 0.48
DPR Supervised - - 0.747 0.732

0.03, 0.1 1, 5, 20 0.53 0.51
0.03, 0.1 1, 5, 40 0.52 0.50
0.03, 0.1 1, 3, 10 0.52 0.50

0.02, 0.08 1, 3, 10 0.51 0.49
0.03, 0.1 1, 3, 20 0.53 0.51

0.05, 0.15 1, 3, 20 0.52 0.50

Table 4.7: Results of progressive domain-clustered training on FiQA and SciFact
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progressive training approach is based on domain relevance, the improvements in retrieval
performance are marginal. Further analysis and investigation are required to understand the
reasons behind the limited impact of this method on the model’s performance.

4.4 Non-Parametric Adaptation: GPT-based Compressor

In this section, we delve into another line of research that tackles an even more challenging
learning scenario: human-like few-shot learning. Large labeled datasets are often scarce in the real
world where annotation is expensive and time consuming. This has prompted the development
of few-shot learning, where the model is learned using only a few annotated samples [49]. One
resort to the few-shot scenario is to utilize the pre-trained models like Generative Pre-trained
Transformers (GPTs) [197, 198, 16, 181] with in-context learning [16, 302], fine-tuning [142] or
the combination [8]. However, in-context learning requires heavy engineering to achieve a high
accuracy [144], and its ability to generalize to different tasks is constrained by the input size and
the need for precise formatting. Fine-tuning also has limitations, notably its inability to generalize
to rare out-of-distribution datasets with limited labeled samples [291, 178].

Contrary to the data-hungry nature of machine learning, humans demonstrate exceptional
ability in zero-shot and few-shot learning, where only a handful of labeled examples are needed
to grasp a concept. Inspired by this, [86] proposed a human-like few-shot learning framework
and boils it down to the ability of compressing data at inference time, measured by the universal
information distance. Derived from a simple and accepted assumption in thermodynamics [9],
the universal information distance emerges as the key component in taking the effective usage
of few labeled data. Hence, accurate approximations of the information distance can lead to
improved learning, though its incomputability has posed significant challenges. This information
distance, consisting of Kolmogorov complexity [118], is both data-type-agnostic and distribution-
agnostic. Additionally, its parameter-free usage enables the metric’s applicability across diverse
applications. Inspired by this theory, we propose a novel method GPT-AC, that leverages the
knowledge GPTs learned during pre-training. Our method tackles tasks traditionally challenging
for prompt engineering or fine-tuning, including semantic similarity, zero-shot text classification
and ranking.

Kolmogorov complexity, also known as the length of the shortest computer program for a
target output, is often approximated by the compression length. At the same time, entropy coding
algorithms attempt to approach the code length lower bound declared by Shannon’s source coding
theorem: the entropy of the source. By using rich priors, such as pre-trained language models,
that more accurately predict the source distribution, we can optimize the compression ratio and
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more closely approximate Kolmogorov complexity. Despite the potential of large language model-
based compressors, their direct application to downstream tasks is nearly infeasible due to speed
constraints. In addition to the inference speed required by the language model itself, the overhead
of the compressor is even more substantial. Fortunately, the information distance only requires
the compressed length instead of actual compression of the text sequence. We demonstrate an
equivalence of the compression length under arithmetic coding to the negative log probability
of text tokens when using GPT as the prior. This easy-to-compute compression length enables
us to efficiently approximate the universal information distance without the overheads of the
actual compression. By approximating normalized information distances [27, 119, 120] using
GPT-based compression, we significantly enhance GPT’s ability to quantitatively capture text
similarities, which forms the foundation for its application in downstream NLP tasks. We show
an example application in domain-specific text re-ranking in this thesis.

4.4.1 Related Work

Few-shot Learning

Prior to the emergence of large pre-trained models, the majority of previous works on few-shot
learning can be divided into two streams: meta/transfer-learning based methods [246, 46, 223,
229] and data augmentation based methods [104, 191, 44, 56]. However, the former relies on
constraining the hypothesis space by prior knowledge from other tasks or support datasets while
the latter depends on the heuristics of the datasets, often accompanied with the smoothness
assumption [243] (i.e., close data points in the input space share the same label). Pre-trained
models, on the other hand, have incorporated prior knowledge during the pre-training stage and
are proved to be excellent few-shot learners [16]. However, pre-trained models suffer from (1)
high computational cost and (2) unsatisfactory performance in out-of-distributed datasets [291].
The problem of computational cost is especially prominent for large language models like GPT-3
where it is infeasible to fine-tune locally. We utilize pre-trained language model for one-shot and
zero-shot classification tasks with no fine-tuning required.

Kolmogorov Complexity and Compression Distance

Information distance was first proposed by [9] as a universal similarity metric between two
objects. It was proved to be universal in a way that it is optimal and can discover every possible
metric [9]. Due to the problem of incomputability, [23, 120, 27] have derived computable version
of information distances for tasks like clustering and plagiarism detection, shedding light on the
possibility of using real-world compressors to approximate Kolmogorov complexity. These prior
works utilize traditional compressors, indicating that the performance gain on downstream tasks
mainly comes from the compressor-based distance metric.
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Recently, [85] propose non-parametric learning by compression with latent variables (NPC-
LV) where neural networks are incorporated into information distance. They demonstrate that
trained generative models like variational autoencoders can be used directly with zero parameters
for downstream few-shot image classification. Also, [87] employ this method in text classifica-
tion using GZIP, achieving competitive results compared to several widely-used deep learning
approaches. However, it remains open in how to incorporate pre-trained language models into
this framework, which we aim to address in this paper. A recent study [270] explores the use
of compression length for in-context example selection. They rely on a large candidate set and
applied the model under generation setting. In contrast, we focus on adapting generative models
to zero/one-shot learning for text similarity tasks.

Neural Compression

Our GPT-based compressor falls under the category of neural compression where neural
networks are used for data compression. Shannon’s source coding theorem [219] establishes
the lower bound of the lossless compression on random variables with probability distribution.
With near-optimal coding schemes, the bottleneck is the entropy approximation. Fortunately,
deep generative models with explicit density estimation serve as the entropy model that can learn
adaptively. [237] propose Bits-Back with Asymmetric Numeral Systems (BB-ANS), a lossless
compression algorithm based on VAE. Bit-Swap [98] further improves BB-ANS by incorporating
multiple latent variables and hierarchical networks. In addition to autoencoders, Flow [206, 257]-
based lossless compression [78] outperform Bit-Swap and achieve the state of the art compression
ratio of images. The development of deep neural networks also benefits lossless text compression.
[65] use recurrent neural networks [215] combining with arithmetic coding [266] to achieve
higher compression ratio than GZIP. Recent advancements, such as the fast transformer-based
general-purpose lossless compressor TRACE [163], have demonstrated promising results in
enhancing compression performance with transformer architecture. NNCP [7] v3.1, adaptively
encodes the source message with Transformers, achieves state-of-the-art performance on the Matt
Mahoney’s Large Text Compression Benchmark5.

4.4.2 Method

Human-Like Few-Shot Learning

Formally: we consider the following generalized human-like few-shot learning setting. Assume
a universe of objects Ω comprising various concepts. Given an unlabelled subset U ⊂ Ω (or
a pre-training corpus), a hypothesis ϕ is formulated. For any concept c, we have information

5http://mattmahoney.net/dc/text.html
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Dc representing a description or representations derived from a few examples. The goal is to
determine the concept for any new instance x ∈ Ω under a computable metricM:

argminc∈CM(x,Dc|ϕ(U)). (4.1)

Here, ϕ can be a pre-trained model learned distribution from the unlabeled data U . For instance,
GPT can be seen as the hypothesis ϕ learned from a large unlabeled corpus. Moreover, we can
consider C as the selection space during inference. For example, if we are doing a classification
task, then C is the finite set of all possible classes; if we are doing text re-ranking, then C is an
infinite set of all selected candidates to be ranked.

This learning scenario differs from traditional machine learning settings as it permits extensive
pre-training using unlabeled data but provides very limited labelled data for learning concept
classes. Under this framework, the optimal metricM for few-shot learning algorithms is proven
to be the universal information distance, defined by Kolmogorov complexity, based on the von-
Neuman-Landauer Principle. Formally, the universal information distanceMUID between two
objects x and y is defined as:

MUID(x, y) = max{K(x|y), K(y|x)}, (4.2)

K(x|y) is the Kolmogorov complexity of x given y, or informally, the length of the shortest
program that outputs x given input y. Since the Kolmogorov complexity is not computable [314],
it is often approximated via compression in practice.

GPT-based Compression

We proposed GPT-based Arithmetic Coding (GPT-AC), where GPT is integrated into adaptive
arithmetic coding, an entropy-based compressor. Consider a text T = (t1, t2, ..., tn), composed
of a sequence of tokens. Let ϕ represent a GPT model, where ϕ(t1:(i−1)) = Pi(ti|t1, t2, ..., ti−1)
models the probability distribution Pi of the next token ti. The function ϕ(T ) outputs all next-
token probability distributions (P2, · · · , Pn+1). To derive the distribution for P1, an EOS (End Of
Sentence) token is added at the start of the text as t0. For each token ti, the associated Pi is the
entropy model for encoding and decoding in the compressor.

In practice, since we cannot have float number with infinite precision. We always output the
left several bits and shift the current interval by same bits once we reach the float number overflow
limit.

GPT-based Arithmetic Encoding: In the encoding phase, under the schema of adaptive
arithmetic coding, we start with an initial interval I0 = [0, 1). For each token ti in the sequence,
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(GPT)
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Figure 4.3: Illustration of GPT-based arithmetic encoding

Algorithm 1 GPT-AC Encoding
1: Input: T = {t0, t1, t2, ..., tn} where t0 is the EOS token, GPT model ϕ.
2: Initialize range Ilow = 0, Ihigh = 1
3: for ti ∈ T, i = 1, · · · , (n+ 1) do
4: Obtain Fi(ti) and Pi(ti) based on ϕ(t1:(i−1))
5: Ilow−previous ← Ilow
6: Ihigh−previous ← Ihigh
7: Ilow ← Ilow−previous + (Ihigh−previous − Ilow−previous) ∗ Fi(ti)
8: Ihigh ← Ilow−previous + (Ihigh−previous − Ilow−previous) ∗ (Fi(ti) + Pi(ti))
9: end for

10: Output a single number Ilow ≤ r < Ihigh as the encoded text.
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Algorithm 2 GPT-AC Decoding
1: Input: encoded message r, GPT model ϕ.
2: Initialize decoded text D = {t0} where t0 is an EOS token. i = 0
3: while i = 0 or ti is not EOS token do
4: Calculate Pi+1 = ϕ(D)
5: Find index j such that Fi+1(vj) ≤ r < Fi+1(vj) + Pi+1(vj) where vi represents the i-th

token in GPT vocabulary
6: Update ti+1 ← vj
7: Update D = D + {ti+1}
8: Update r ← r−Fi+1(vj)

Pi+1(vj)

9: Update i← i+ 1
10: end while
11: Output D as the decoded message

we calculate the cumulative distribution function Fi(ti) and Pi(ti) based on ϕ(t1:(i−1)), where
Fi(ti) =

∑
w|w≤ti

Pi(w) and w < ti means v appears before ti in the vocabulary. Then, the
interval I = [Ilow, Ihigh) is updated according to the range assigned to ti:

I ilow = I i−1
low + (I i−1

high − I i−1
low )× Fi(ti),

I ihigh = I i−1
low + (I i−1

high − I i−1
low )× (Fi(ti) + Pi(ti))

(4.3)

After updating I for each token in the sequence, we can pick any number, say x, within the final
interval to represent the entire text sequence. See detailed encoding algorithm in Algorithm 1.

GPT-based Arithmetic Decoding: When decoding the message x, the token t1 can be identified
by finding the range [F1(t1), F1(t1) + P1(t1)] that includes x. The value of x is then updated
by normalizing it within the range of t1, using the formula: x ← x−F1(t1)

P1(t1)
. With this updated x

and the next-token probability distribution ϕ(t2), we can decode the next token t2. This process
is repeated until an EOS token is encountered, indicating the end of the text. The text can be
losslessly decoded using x and ϕ alone. See detailed decoding algorithm in Algorithm 2.

Negative Log Probability as Compression Length: During the arithmetic encoding, the length
of the interval I i equals I i−1 ∗ Pi(ti). From an initial interval of length 1, the entire message’s
encoding results in a final interval with a length of

∏n
i=1 Pi(ti). The number of bits required

to represent this final interval, and thus the message T , is
∑n

i=1− log2 Pi(ti). Interestingly, the
optimization target during pre-training for auto-regressive models such as GPT is defined as:

L(T |pmodel) = − log pmodel(T ) = − log pmodel(t1, t2, ..., tn) =
n∑

i=1

− log2 Pi(ti).
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Consequently, the pre-training phase of GPT models is essentially an exercise in learning a
compressor that optimizes the coding length.

The Rank Coding Variant: In the abovementioned method, we primarily employ arithmetic
coding for text compression. An alternative variant of lossless coding uses ranks instead of
probability [73]. After the GPT model predicts the distribution of the next token, we can rank all
tokens according to their probability. The target token is assigned the corresponding rank index,
with tokens of higher probability having a smaller rank index. In this variant, we approximate the
compression length as

∑n
i=1 log2(ranki) where ranki denotes the rank for token i.

Information Distance Approximation

Having computed the compression length using the GPT-AC method, we can now utilize it to
approximate the information distance. Let x = {x1, · · · , xn} and y = {y1, · · · , ym} denote
two tokenized text sequences, where each xi or yi represents a token in the sequence. We
approximate K(x) using the compression length C(x) =

∑n
i=1− log2 Pi(xi) where Pi represents

the probability distribution for xi based on the GPT model prediction. As in Equation (4.2),
we also need K(x|y), approximated as follows: let Pi = ϕ(y, x1:i−1) denotes the probability
distribution for token xi outputed by the GPT model, given y = (y1, · · · , ym) and previous tokens
in x, K(x|y) can be estimated as C(x|y) =

∑n
i=1− log2 Pi(xi). We denote all compressed-based

approximations in C(·).

However, compression lengths vary when the lengths of the input text differ. We need a
normalized version to enable comparison across diverse object pairs. There are several normalized
measures:

• The max distance, NID: Li et al. [120] introduced a normalized version, referred to as the
Normalized Information Distance (NID):

Mmax(x, y) =
max{K(x|y), K(y|x)}
max{K(x), K(y)}

(4.4)

• The min distance: To tackle challenges such as partial matching, situations where only
portions of two objects match each other, Li [117] proposed the following variants of the
universal distances for broader application scenarios:

Mmin(x, y) =
min{K(x|y), K(y|x)}
min{K(x), K(y)}

. (4.5)
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• The mean distance, CDM: Keogh et al. [93] proposed the Compression-Based Dissimilarity
Measure (CDM) for data mining applications, demonstrating its effectiveness in practice. We
re-scale it to fit within the range [0, 1):

Mmean(x, y) =
C(x|y) + C(y|x)
C(x) + C(y)

= 2 ∗ CDM − 1, CDM =
C(xy)

C(x) + C(y)
(4.6)

Compression-based distance for text re-ranking: To apply the above distances to text re-
ranking, we first compute their compression lengths C(x), C(y), where x is the document and y is
the query. We also calculate the joint and conditional compression lengths C(xy), C(x|y), C(y|x).
Subsequently, we use these values to compute the distance metrics defined in Section 4.4.2 asM.

4.4.3 Experiments

Our experimental evaluation consists of four key components: lossless text compression and
three downstream tasks, namely semantic textual similarity, text classification, and text re-ranking.
For downstream applications, we mainly conduct experiments with the GPT-2 small (124M),
comparing to GPT-2 embedding or prompt tuning baselines and BERT-base-uncased (110M)
models from HuggingFace Hub6. We take GPT-2 as an example due to its light weights and
availability. However, the proposed method is not limited to GPT models. It can be readily applied
to more advanced large language models, such as LLAMA[235, 236], provided that the output
probabilities are available.

Lossless Text Compression

In the Lossless Text Compression task, we assess our method on the Enwik9 [222] and the first
gigabyte of BookCorpus [311] datasets. In addition to GPT-2 models, we tested our method
on LLAMA2-7B [235]. GPT-AC is benchmarked against both traditional methods, such as
GZIP [40], and contemporary neural network-based techniques like DZIP [66] and TRACE [163].
In the actual implementation, GPT-AC processes chunks of 2,500 characters for GPT-2 and
10,000 characters for LLAMA2-7B independently. Although this would slightly compromise the
compression ratio, it enables parallel computing.

As shown in Table 4.8, GPT-AC significantly outperforms conventional methods like GZIP
and 7z in compression ratio. Even with the GPT-2 small model, GPT-AC achieves a more than
2-fold enhancement in compression ratio compared to the widely-used GZIP, on both the Enwik9

6https://huggingface.co/
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Table 4.8: Compression Ratio by Compression Method. Note the compression ratio equals to
Original text length / Compressed text length.

Model→ GPT-AC (Ours) GZIP 7z DZIP TRACE NNCP

Dataset ↓ Llama2-7B GPT2-L GPT2-M GPT2-S

Enwik9 15.56 8.05 7.71 6.53 3.09 4.35 4.47 5.29 9.33
BookCorpus 10.55 8.34 7.89 7.22 2.77 3.80 3.95 4.58 -

4.82 5.87 6.65 8.85
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Figure 4.4: Relation between Compression Ratio and Model Size.

and Book datasets. On Enwik9, GPT-AC with Llama2-7B records a compression ratio of 15.56,
a 67% enhancement over the previous state of the art of 9.33, based on NNCP [7] 7. As the
language model increases, the compression ratio consistently improves, suggesting that larger and
better-trained language models will further amplify these results.

Note that NNCP involves updating the parameters of a large transformer model (v3.1, 199M)
during encoding. We can also achieve an even higher compression ratio with encode-time opti-
mization. However, the encode-time optimization process only enables an increase in compression
ratio as the input message length goes up, and would overfit to the specific message. With random
initialization, the compression ratio will be around 1.0 for the beginning of the input message,
offering no benefits to similarity measurement.

7Refer to:http://mattmahoney.net/dc/text.html
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Model→ GPT-AC(Ours) BM25 GZIP (DPR)
Dataset ↓ # Test Domain

TREC-COVID 50 COVID 0.694 0.656 0.447 (0.332)
TREC-NEWS 57 News 0.225 0.398 0.142 (0.161)
SciFact 300 Scientific 0.648 0.665 0.053 (0.318)
BioASQ 500 Bio-Med 0.517 0.465 0.157 (0.127)
FiQA-2018 648 Finance 0.239 0.236 0.032 (0.112)
ArguAna 1406 Argument 0.327 0.315 0.073 (0.175)

Table 4.9: GPT-AC text re-ranking dffectiveness (NDCG@10).

Text Re-ranking

We mainly conduct experiments with the GPT-2 small (124M) and BERT-base-uncased(110M)
models from HuggingFace Hub8. We opted for this version of GPT-2 mainly due to the need for
complete access to the token probability distribution in the APIs of newer versions. To show the
effectiveness of zero-shot domain adaptation in re-ranking, we evaluate the models on different
domain-specific zero-shot text retrieval datasets, including Trec-Covid [248], Trec-News [224],
SciFact [252], BioASQ [239], FiQA-2018 [154], and ArguAna [250]. Given a query, we first
retrieve the top relevant document with BM25 [209] with Elastic Search API 9. We then re-rank
the documents with the models. We compare our system with the original BM25 ranking and
the Dense Passage Retrieval (DPR) [92] model, a BERT-based model already fine-tuned on the
MS MARCO [173] for ranking, and a text GZIP compressor. We retrieved the top 100 relevant
passages using BM25 and then re-ranking using GPT-AC.

As shown in Table 4.9, our proposed method outperforms the BERT-based DPR model across
all settings. Our performance remains superior despite the DPR model being fine-tuned on
the massive labelled MS MARCO dataset. We also benchmark our model against the GZIP
compression method. The improvements observed indicate that GPT-AC can provide important
semantic information, leading to improved ranking results. Notably, BM25 is a strong baseline in
that the domain-specific texts can contain many out-of-distribution terms, potentially hampering
the performance of the language model. Despite this, our method demonstrates comparable
performance across most datasets and surpasses BM25 in certain domains, particularly in Bio-
Medical and Finance, which requires much domain-specific understanding.

8https://huggingface.co/gpt2, https://huggingface.co/bert-base-uncased
9https://github.com/elastic/elasticsearch
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Log-Prob Log-Rank

Dataset len(x) len(y) Mmax Mmin Mmean Mmax Mmin Mmean

TREC-COVID 303 17 0.459 0.655 0.467 0.473 0.694 0.489
TREC-NEWS 808 16 0.173 0.161 0.167 0.184 0.161 0.186
BioASQ 304 14 0.306 0.517 0.364 0.267 0.507 0.330
FiQA-2018 247 15 0.128 0.239 0.154 0.118 0.222 0.143
ArguAna 276 247 0.277 0.257 0.301 0.282 0.262 0.307
SciFact 345 21 0.389 0.648 0.519 0.351 0.635 0.478

Table 4.10: Distance metric analysis.

Comparison of Distance Metrics

In Table 4.10, we compare the results of all distance metrics with two different coding variants.
For better understanding, let’s take a concrete example from FiQA in re-ranking.

• Query: How to Deduct Family Health Care Premiums Under Side Business?

• Document: ... Health insurance premiums paid or reimbursed by the S corporation are shown
as wages on Form W-2. The insurance plan must be established under your business. Your
personal services must have been a material income-producing factor in the business. If you
are filing Schedule C, C-EZ, or F, the policy can be either in your name or in the name of the
business.

As stated in Section 4.4.2, we always take the longer sequence results withMmax, the shorter
sequence results with Mmin, and the average over both of them with Mmean. If we aim to
avoid bias towards any single sequence when both texts contain similar or equally important
information, suggesting that Mmean is the most suitable. Yet, this is different for re-ranking.
Typically, queries contain fewer than 20 tokens, contrasting with documents that often contain
hundreds. We thus want to focus the measurement on the query part without being disturbed by
the extra or non-relevant information in the document. Therefore,Mmin is the preferred choice.
ArguAna, however, is a unique case as both the query and the document contain about 250 tokens
with similar content, makingMmean more suitable.

Our experiments employ older versions of pre-trained language models due to computational
constraints and limited access - for instance, the GPT-3+ API only provides the top 5 token
probabilities. We surmise that improved base models would enhance our method since a superior
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model NDCG@10 R@100

BM25 0.236 0.539
DPR 0.228 0.342

Further Pre-training 0.263 0.394
Clustering 0.237 0.303
GPT-AC 0.239 -

Table 4.11: Summary of zero-shot transfer performance on FiQA.

prior could yield a better compressor and, subsequently, a more accurate distance measure.
Our method only works for forward-only attention-based models to utilize arithmetic coding
for lossless compression. However, it can generalize to all other models by utilizing a sliding
window.

4.5 Discussion

Comparing across different adaptation methods we have discussed in this chapter (see Table 4.11),
we find the most effective method is further pre-training. Based on this conclusion, we can further
hypothesis that the model pre-trained on large in-domain corpus could boost the transfer learning
performance a lot. We recommend starting from in domain pre-trained models, when they are are
available, such as BioBERT [109], FinBERT [1], MathDPR [308] etc.

Upon comparing the various adaptation methods discussed in this chapter and reviewing
the summary presented in Table 4.11, we observe that further pre-training emerges as the most
effective approach for improving transfer learning performance. Building upon this finding, we
hypothesize that utilizing pre-trained models specifically trained on large in-domain corpora could
significantly enhance the transfer learning process. Consequently, we recommend leveraging
in-domain pre-trained models, such as BioBERT [109], FinBERT [1], MathDPR [308], and others,
when available, to maximize performance gains in specific domains.
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Chapter 5

Generalization to Diverse Sources

An additional challenge when applying information access systems to specific domains arises
from the presence of context that goes beyond plain text, as observed in math formula search and
database search tasks. These domains introduce unique complexities. In database search, the
data involved often consists of semi-structured information, which can include fields, tables, and
relations. This type of data may have missing elements or incomplete information, adding an
extra layer of complexity to the search task. For e-commerce applications, the labeling of data
can be noisy, making it challenging to accurately interpret and retrieve relevant information. In
math search, formulas are involved, which expands the vocabulary beyond plain text and requires
additional logical reasoning.

5.1 Retrieval from Database

In this section, we focus on the dense retrieval model as the first-stage search module for e-
commerce. A high-quality search, or retrieval, system is critical to e-commerce system efficiency
and user experience. We build an embedding model to learn the semantic relationship between
queries and products for Instacart. Both the product information and our learning signal come
from the database, usually in a table format. We present a simple yet effective method that enables
the application of recent advanced pre-trained language models to our application. We concatenate
special tokens and the row element in the table as the input to the models. The trained embeddings
also serve as features for the later stages or other downstream modules, but are out of our scope in
this thesis.
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Beyond formatting considerations, applying retrieval-based systems to e-commerce applica-
tions poses several other challenges. These challenges arise from the specific characteristics of
e-commerce data and the unique requirements of the domain.

Challenge 1, Cold-start: New products or un-seen queries historically don’t perform well due
to the lack of user engagements. Furthermore, according to our user research, new users tend to
send unseen queries because they are not familiar with the e-commerce search engine. It’s critical
to show high-quality results for these queries so that we can retain these new users. Additionally,
retailers expect good ranking results for newly introduced products. We can manually boost some
of the new products to meet business needs, but manual boosting doesn’t scale at all.

Previous works either include historical features, such as clicks, cart adds (conversions),
purchases in the model input, or highly rely on these data in offline evaluation. If a system takes
historical features as inputs, it will favor the products that have higher engagement. Continuous
training on a regular cadence using these historical features will make the cold-start problem even
worse, entering a self-fulfilling circle. Similar behavior will occur if the offline evaluation highly
relies on the user engagement log.

To address this challenge, we propose to use only content-based features such as query text
itself and product information including product name, brand name, categories and attributes
from our catalog. This way, the model will focus on semantic relationships rather than historical
engagement relationships. We also propose to use permutations of product information as synthetic
queries for a product, and include those in the training dataset. This helps the model generalize on
cold-start products when given attribute related queries. For offline evaluation, instead of relying
on user engagement log data, we propose to evaluate the system on a scaled human annotated
dataset, which contains a set of hot and cold products.

Challenge 2, Noisy Data: We follow previous approaches [146, 125], and use the user engage-
ment data to collect positive query-product examples. We treat converted 1 products for queries as
positive training samples. However, for grocery search, user engagement data could be particularly
noisy. People come to Instacart to shop for multiple items. When irrelevant items show up in the
search results, people may add these items to their cart just because they happen to need them
regardless of the original search intent. When we take these conversions as training examples,
it results in false positive labels. Another source of noise is that users may have very different
tolerances for search results: Some users may add items that don’t fully satisfy their search intent,
while others may be very strict due to allergies or religious reasons. Therefore, conversions can
imply a wide range of relevance, ranging from somewhat relevant to strongly relevant.

1In our case, a user converts a product in a search query means the user adds the product presented in the search
results for the query to cart.
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Figure 5.1: Effect of training dataset size for e-commerce search.

To show the effect of noise in the training set, we trained embedding based retrieval models
with different sizes of training data. As the training set gets larger, we potentially add more
relevant but cold examples at the expense of including more noisy examples. As shown in
Figure 5.1, the performance of the model decreases after a point. This shows training with more
data doesn’t necessarily give better model performance due to the inclusion of noise.

To address the noisy data problem, we propose cascade training: We first warm-up the model
with a noisy but large dataset. This way, we transfer the pretrained model’s knowledge to the
grocery domain by letting the model see as much data as possible. And then we train the model
on a smaller yet high quality data. In this step, we best utilize learned knowledge to achieve better
performance by training on the high quality data. We also show that cross architecture training,
first training the two-tower shared encoder and then training with un-tied parameters, is useful in
cascade training. Shared encoder allows the model to learn common grocery knowledge, and two
towers with un-tied parameters allows the model to best fine-tune for each expertise (query and
product knowledge).

We also propose a self-adversarial negative sampling/re-weighting method to select informa-
tive negative samples. Arguably, the straight-forward approach to generate negative samples is to
draw them from a uniform distribution. Such uniform negative sampling is not efficient enough
because many negative samples can be easily distinguished from the positive ones after a few
training epochs. The proposed self-adversarial learning method adjusts the loss term weights for
individual negative samples according to their scores in the current training step. This way, the
model will be punished more, when it predicts high scores for the negative query product pairs,
resulting in more efficient training. As shown in Figure 5.1, our methods utilize the knowledge
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learned from the vanilla training by performing cascade training with self-adversarial loss.

5.1.1 Related Work

Dense Retrieval Systems for E-commerce: Many embedding based retrieval approaches, such
as Nigam et al. [174], Wu et al. [269] have been introduced to solve e-commerce search problems.
Facebook systematically shared their knowledge in modeling, serving and full-stack optimization
in Huang et al. [81], Liu et al. [146]. Taobao [125] and JD [298] shared their exploration in
personalized product search systems. We also apply embedding based methods for product search,
while we focus more on building a semantic relevance model.

Effective Negative Sampling Strategies: Training large models often relies on good optimization
strategies, of which negative sample strategies are one of the most important for representation
learning. Yih et al. [289] introduces the in-batch negative sampling, taking other samples within a
mini-batch as negative samples. This method doesn’t require explicitly labeled negative data and
can reduce computation by re-using other in-batch sample representations. However, uniformly
selecting negative samples is not the optimal choice. Wieting et al. [264] proposes self-adversarial
training, which takes the in-batch negative with the highest score as a hard negative, thus, achieving
improved results for paraphrastic sentence embeddings. Later, self-adversarial negative sampling
is proven useful for relation-aware graph attention models [196] and knowledge graph (KG)
embeddings [228]. In this paper, we introduce a self-adversarial negative sampling strategy to
help improve the training efficiency with noisy data.

5.1.2 Method

Cascade Training

We collect conversions as positive training query-product samples. We gather one years worth of
user engagement log, and only keep the query-product pairs that are converted by at least two
users. As shown in Figure 5.1, including more pairs does not necessarily improve the model
performance due to data noise. To filter out samples that are likely noise, we rank the products
by the conversion rate in descending order and remove ones below a threshold. On one hand,
we need to provide the model with more accurate relevance signals, so that it can learn a better
relevance representation. On the other hand, we also need to train the model on as many unique
queries or products as possible to transfer the pre-trained model’s ability to our domain.

To meet both requirements, we propose cascade training: Starting from a pre-trained model,
we first train the model on a warm-up dataset to transfer the model to the grocery domain. Then we
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Figure 5.2: Cascade training overview.

train it on a cascade training dataset to achieve better performance. The entire training procedure
is summarized in Figure 5.2.

• The warm-up training step: We first collect a relatively large warm-up dataset with lower
conversion rate threshold. For a query qi, we select top kqi%

2 products as positive pairs. To
balance the training examples, we apply smaller/larger kqi% s for queries with higher/lower
frequencies in the log. We finally gathered 14 million unique query-product pairs for the
warm-up dataset.

• The cascade training step: We then collect a smaller but less noisy cascade training dataset.
We repeatedly include positive pairs with higher conversion rate threshold. We start with
threshold k0

qi
%, which is much smaller than kqi% in the warm-up dataset, so that there are less

noisy conversion signals. At step n, we add all the products ranked above top kn
qi

% into the
dataset. Then we decrease kn

qi
= kn−1

qi
∗ θ and repeatedly add sample pairs until there are no

positive pairs. We finally gathered 6 million training samples for cascade training. Details of
constructing the cascade training dataset can be found in Algorithm 3.

Augmentation with Catalog Data

Our users often combine different product keywords to create the queries. Suppose a user wants
to by a product that has product name ”Organic 2% Reduced Fat Milk”, product brand name
”GreenWise”, category ”Milk”, and attributes ”organic, kosher, gluten free”, the user might send
one of the following queries: “GreenWise Milk”, “Organic”, “Organic 2% Reduced Fat Milk”,

2Using kqi % = 100 % means we include all the conversions for query qi.
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Algorithm 3 Cascade Training Dataset Construction
Q← the query set
C<qi,pj> ← the number of conversions of < qi, pj >,
Pqi ← the converted products of qi, sorted by C<qi,pj>,
n← 0, Dcascade ← ∅, kqi ← k0

qi
, θ ← 0.5,

repeat
D′ ← ∅
for qi ∈ Q do

D′ append {< qi, pj > |pj ∈ Pqi , j ≤ len(Pqi) ∗ kn
qi
%},

kn+1
qi
← kn

qi
∗ θ

end for
n← n+ 1
Dcascade ← Dcascade +D′,

until D′ = ∅
return Dcascade

“GreenWise”. Our catalog contains these product meta data. We use hierarchical taxonomy, and
map products into one of taxonomy nodes. So we can apply this heuristic to augment the training
dataset to help address the cold start problem.

We synthesize positive queries using the combination of one or more product feature sources,
including product name, product attributes, categories and brand names. We randomly sample
synthetic data, and merge these with the dataset created from the user engagement data. Although
the synthetic data can be clean, we keep the ratio of the synthetic data relatively low because it
changes the actual distribution.

Features

We use the query text as the input of the query encoder. For the product encoder, we input the
concatenation of product name, brand name, size information, categories and attributes. In this
way, the model can only capture semantic relationships and generalize to cold start products or
queries. We use special tokens to explicitly indicate the start of different features. This provides a
grammar rule so that a model can easily identify different features.

An example of the query and product features would be:

• Query: “[QRY] milk”
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• Product: “[PN] Organic 2% Reduced Fat Milk [PBN] GreenWise [PCS] Milk [PAS] organic,
kosher, gluten free” respectively.

In the above examples, we use [QRY], [PN], [PBN], [PCS] and [PAS] tokens to indicate
the next token is a query, product name, product brand name, product categories and product
attributes respectively.

Negative Sampling Strategies

In grocery search, many products can satisfy the same query intent but the users just favor some
of the them. So, unlike in Huang et al. [81], we do not collect products that are presented in
the search results but not converted as hard negatives. We only collect converted pairs and use
in-batch negative samplings during training. We experimented on adding hard negative products
(presented in search results but not converted). But this gives worse performance on our human
evaluation dataset due to the bias we manually introduce.

Vanilla In-Batch Negatives: The vanilla in-batch negative strategy is to take all other in-
batch products as negative samples, following [289]. Figure 5.3(a) demonstrates the samples we
included in a mini-batch. For a training batch, we have (q1, q2, ...., qb) and (p1, p2, ..., pb), where b
represents the batch size, and qi and pi are query and product embeddings for a positive training
example i respectively. We take the dot products of the embeddings followed by a sigmoid
activation σ(·) as the relevance score, and then we apply binary cross entropy loss BCELoss(·)3

3We also experiment with other loss functions, such as Cosine similarity, Marginal loss, however, the BCE gives
best performance.
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to train the model. The objective is defined by: Lrel = Lpos + λneg ∗ Lneg , where Lpos,neg are
binary cross entropy losses, and λneg is a hyper-parameter to adjust negative loss weight. We
illustrate this in Figure 5.3(a), positive samples are colored in green and negative ones are colored
in red.

Sampled In-Batch Negatives: For a certain query, instead of adding all negative loss terms into
the final loss, we also try uniform sampling of negative products Si Figure 5.3(b). Each negative
example i has a sampling probability of P (pj ∈ Si, i ̸= j) = 1

b−1
. The loss function becomes:

Lrel = Lpos + λneg ∗ Lsampled neg, (5.1)

Lsampled neg =
∑
i

∑
pj∈Si

BCELoss(σ(qi · pj), 0). (5.2)

Self-Adversarial Negatives: Uniform negative sampling is not an optimal strategy: many negative
samples can be easily distinguished after a few epochs of training. We hope the model can focus
more on the difficulty samples. The difficulty of a certain negative sample to the current model
can be measured by the model’s prediction score. We adopt self-adversarial negative product
sampling or re-weighting, shown in Figure 5.3(c), different levels of red represents the different
weight applied to the samples. We take the prediction score of the current model for the negative
sample as a weight term. We then apply either loss re-weighting or re-sampling based on the
weight.

• Self-Adversarial Negative Sample Re-weighting: We first compute the dot product of the
query and product embedding vectors and pass the score through an activation function act()
to get the relevance score. We multiply each sample’s loss with its relevance score. Take the
BCELoss version for example, the new loss function becomes:

Lrel = Lpos + λneg ∗ Lself adv reweight, (5.3)

Lself adv reweight =
∑
i

∑
pj∈Si

wi,j ∗BCELoss(σ(qi · pj), 0), (5.4)

wi,j = act(qi · pj). (5.5)

We experiment with various activation functions act() including identity, sigmoid and ReLU
functions. Identity activation function gives the best performance.

• Self-Adversarial Negative Sampling: Another way of applying the self-adversarial learning
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is to take the similarity score as the sampling probability:

Lrel =Lpos + λneg ∗ Lself adv sampling, (5.6)

Lself adv sampling =
∑
i

∑
pj∈Si

BCELoss(σ(qi · pj), 0), (5.7)

P (pj ∈ Si) =

{
softmax(wi,j/T ) ∗ (T 2), i ̸= j,

0, i = j,
(5.8)

where T is the self-adversarial sampling temperature and wi,j is the similarity score as in
Equation (5.5).

5.1.3 Experiments

We base all our experiments on a pre-trained language model. We choose to use MiniLM-L3-v24

since it achieves relatively good performance and also provide the fastest speed, which can be
beneficial for online inference.

We initialize both the query and the product encoders with the MiniLM-L3 model. As
described in before, we train the model with two steps:

• Warm-up training: Initially, we train the model with shared parameters in both towers in
the first warm-up training step. We train the model on the “warm-up dataset” with binary
classification loss, using all other in-batch products as negative samples.

• Cascade training: In the second cascade training step, we continue training the two towers
but with un-tied parameters. We train the model on the “cascade training dataset” with self-
adversarial negative re-weighting training strategy.

We experiment with different pre-trained models including distilbert 5, MiniLM 6, TinyBERT 7.
We also experiment with their semantically fine-tuned checkpoints, for example the ones fine-tuned
on sts-b or QQP in GLUE [253], or other NLI and paraphrase datasets.

Our implementation is based on the sentence transformer [202] 8. The base model outputs a
hidden vector for each input sentence. We project the hidden vector into a lower (100) dimension
with dense layers to meet the memory requirements.

4https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2
5https://huggingface.co/distilbert-base-uncased
6https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2
7https://huggingface.co/cross-encoder/stsb-TinyBERT-L-4
8https://www.sbert.net/

79



Offline Evaluation Dataset

We create an offline evaluation dataset to measure the model performance so we don’t have to
launch online testing for every training trial. The user engagement log is not an ideal testing
distribution because: first, it comes from the same source as the training data; second, it just
reflects the conversion relationships instead of relevance representation ability; and third, when
evaluating on the test data collected from the user engagement log, we get 0.999 NDCG@5 for
most training trials.

Other than the previous proposed evaluation metric RECALL@K in Huang et al. [81], Liu
et al. [146], we propose to also monitor NDCG@K on a human evaluation dataset as offline
evaluation. We collect sampled search log to human annotators, query product pairs are labeled
into 5 categories:

• Strongly relevant: The product is exactly the (type of) product the query is looking for.

• Relevant: The product is the type of the product the query is looking for, but there are likely
others that fit better.

• Somewhat relevant: The product is not exactly what the query is looking for but I understand
why it was shown.

• Not relevant: The product is not what the query is looking for, and I can’t imagine why it was
shown.

• Offensive: The product is unacceptable and creates a bad experience.

After filtering out records that raters do not achieve agreement on, meaning 3 out of 5 raters
gives the same rate, we got 158k query product pairs. We take “strongly relevant” as a score
of 3, “relevant” as 2, “somewhat relevant” as 1 and the other levels as zero. We then compute
NDCG@K based on these scaled scores. Also, we take the levels with positive scores as positive
labels and compute RECALL@K as other metrics.

Offline Evaluation Results

We show how the proposed method outperforms various baseline models in Table 5.1. We
include BM25 [208] algorithm, Wide & Deep [25] model (our previous production model), and
Que2Search [146] as baseline models. Wide & Deep uses historical conversion features and text
matching scores as features for the wide component, and product raw text data and query text as
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NDCG RECALL
@5 @10 @20 @5 @10 @20

BM25 [208] 0.5413 0.5785 0.6389 0.6365 0.6372 0.6371
Wide & Deep [25] 0.7609 0.7714 0.7936 0.8326 0.8112 0.7955
Que2Search [146] 0.8158 0.8242 0.8367 0.8938 0.8772 0.8650
Proposed 0.8150 0.8246 0.8372 0.9013 0.8863 0.8751

Table 5.1: Offline evaluation results.

MRR CAPS GMV

Wide & Deep [25] - - -
+ Vanilla Embedding +0.7% +2.0% +0.5%
+ Proposed +1.2% +4.1% +1.5%

Table 5.2: Online A/B testing results.

features for the deep component. The deep component is LSTM-based [76] network followed by
2 stage dense layers. For Que2Search [146], we tried symmetrical scaled cross entropy loss in the
1st stage and applied margin ranking loss in the 2nd stage training. We performed extensive hyper
parameter search for fair comparison. We tried scale between 15 and 20 for the symmetrical cross
entropy loss, and margin between 0.1 and 0.2 for the margin ranking loss as in Liu et al. [146].
We didn’t observe improvement using margin ranking loss, thus we only report the best results
obtained with the symmetrical scaled cross entropy loss.

BM25 performs worst compared to any other models which shows the effectiveness of
representation learned from the deep learning models. Compared with the previous production
model (Wide & Deep), the proposed method has shown significant improvement. Que2Search
shows pretty good results, but our proposed method outperforms Que2Search especially for
RECALL@K metrics that are critical when used in retrieval.

Online Evaluation Results

We deploy our system to production and conduct A/B testing to prove the effectiveness of the
proposed methods. In Table 5.2 we show the relative improvement of the proposed methods
compared with our baseline wide and deep model. Here, MRR means the Mean Reciprocal Rank
of the first converted item, CAPS means the Cart Adds Per Search, and GMV means the Gross
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Data NDCG RECALL
@5 @10 @20 @5 @10 @20

Vanilla Cas 0.8051 0.8160 0.8301 0.8855 0.8692 0.8574
+Data Warm 0.8121 0.8215 0.8347 0.8915 0.8756 0.8638
+Self-Adv Cas(Adv) 0.8151 0.8232 0.8362 0.8921 0.8748 0.8623
+Data +Self-Adv Warm(Adv) 0.8074 0.8181 0.8319 0.8880 0.8724 0.8607
+Cascade Warm(Adv)→Cas(Adv) 0.8102 0.8210 0.8342 0.8989 0.8845 0.8728
+Cascade* Warm→Cas(Adv) 0.8139 0.8242 0.8367 0.9006 0.8853 0.8739
+Two Tower Warm→Cas(Adv) 0.8150 0.8246 0.8372 0.9013 0.8863 0.8751

Table 5.3: Ablation study for embedding based search system

Merchandise Value. When we use the embedding model trained with vanilla in-batch negative
samples (Vanilla Embedding in Table 5.2), we observe 0.7 % improvement in MRR, 2.0% gain in
CAPS, and 0.5% of GMV increase. With all the proposed methods applied, we achieve 1.5 %
improvement in MRR, 4.1% gain in CAPS, which turns into 1.2% of GMV increase.

Analysis

The Self-Adversarial Negative Learning Method Helps: Comparing row Vanilla Embedding
and row +Self-Adv, we can see the proposed self-adversarial method can boost the model’s
performance, especially on ranking metrics (NDCG). Comparing row Vanilla Embedding and
+Data in Table 5.1, we find vanilla all in-batch negative training can benefit from adding more
data, by changing the training set from the the cascade training set (6M) to the warm-up set (14M).
However, the model could not gain further benefit while we combine with a self-adversarial
training strategy, comparing row +Self-Adv and +Data&+Self-Adv. This is because although the
warm-up dataset is larger, it is also nosier, thus is not an ideal training ground truth.

Effect of Cascade Training: After adding the cascade training, row +Cascade outperforms
previous rows with a large gap. Another interesting point is that row +Cascade* outperforms row
+Cascade. The second cascade training experiment first makes full use of all the in-batch negative
samples at the warm-up stage and then learns more accurate information in the cascade training
stage through self-adversarial negative re-weighting.

Effect of Cross Architecture Cascade Training: We also observe that two tower model architec-
ture in the cascade training stage gives better performance than Siamese network architecture, see
row +Two Tower. In the cascade training stage, further fine-tuning model parameters individually
makes the model to efficiently learn customized information for each encoder.
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Figure 5.4: Embedding visualization.

Semantic Relevance: To analyze how the embedding model performs, we visualize the product
embedding vectors. We randomly sampled product embeddings and colored them according to
their pre-labeled categories. We apply T-SNE [242] to project the embedding vectors into a 2D
space. Products are colored by different product categories. We sampled products from food and
the light orange color represents the sub-category pantry. As shown in Figure 5.4, products with
the same category labels are well clustered, and different clusters are well separated with a large
margin.

We also plot the model predicted similarity score distribution on our human evaluation dataset
in Figure 5.5. We color samples based on the human rated relevance levels. As can be seen,
higher relevance groups are distributed to the right side, which means higher relevance score
predictions. The non-relevant group is located at the most left area, with a much lower relevance
score, separated from the relevant groups. This distribution shows the proposed method can help
predict the semantic relevance very well.

Learned Semantic Signals Outperforms Historical Engagement Signals: Further more, we
show a top query case to show how our model out perform previous model. We first show the
learned representation performs well with an example query: “Milk”. Users usually send this
query for products under our “Plain Milk” category. We compare the scores under this category
with another category “Milk Chocolate”, which also contains the word “Milk” and might cause
failure in keyword based systems. We collect the click through rates (CTRs) and the embedding
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Figure 5.5: Score distribution over the human evaluation dataset.
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Figure 5.6: Score distribution, comparing embedding scores with Click Through Rate(CTR) for
different queries.
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scores for randomly selected products under both categories given “milk” as a query. Figure 5.6(a)
shows CTRs and embedding scores in descending order. From the figure, we observe that almost
all the products in the “Plain Milk” category have higher embedding scores than “Milk Chocolate”
products. That means embedding score can be used as a good indicator for differentiating between
“Plain Milk” products and “Milk Chocolate” products. Half of the “Plain Milk” products have
zero CTRs and some “Milk Chocolate” products have non-zero CTRs. If we rank items with
CTRs, half of the relevant milk products get ranked lower than several milk chocolate products.
That shows CTR is not a good search relevance indicator.

We then show how the proposed methods perform on the cold-start products with the example
query “red wine”. There are hundreds of different red wines in our product set, and very few of
them are purchased through search. We compare similarity scores for products under “Cabernet
Sauvignon” (one of red wine categories) and “Chardonnay” (one of white wine categories).
We collect the CTRs and the embedding scores for randomly selected products under the two
categories given “red wine” as a query. There are only about 10 % products under the “Cabernet
Sauvignon” with positive CTRs, meaning all the other products are cold but relevant products.
Figure 5.6(b) shows that embedding scores can be used for separating products in “Cabernet
Sauvignon” from the products in “Chardonnay” while CTRs suffer from the cold start problem.

5.1.4 Deployment

We use the trained embedding model for retrieval and ranking. We utilize an approximate nearest
neighbor search (FAISS [89]) for retrieval. We use similarity scores of the query and product
embeddings as one of the features for our ranking model. Figure 5.7 demonstrates the overall
system architecture.

Daily Offline Computation Pipeline: Once we train the embedding model, we pre-compute
product embeddings, train the ANN indices offline daily. At Instacart, we have thousands of
retailers and they don’t share the same product set, and users first choose a retailer they want
to shop at. We build an individual index for each retailer. We can avoid retrieving products
from irrelevant retailers, but the overall ANN model size will increase due to repeated products.
The total size of all the indices is less than 4x of the combined index enough to be fitted in a
single server instance, so we choose to build per-retailer ANN indices. The pre-computed product
embeddings are also indexed into the catalog store daily, so they can be used during online serving.

Online Serving: During serving time, we compute the query embedding with the query encoder
and use the ANN service to retrieve top k nearest neighbors in the product embeddings set.
Embedding based retrieval (EBR) is efficient especially for non-keyword matching cases which
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Figure 5.7: Overall system architecture that utilizes the embedding model for retrieval and ranking.

will be discussed in later However, EBR can include irrelevant products occasionally if we use the
top k method. To address this challenge, we apply the following rules.

• First we retrieve top k products from the ANN service.

• We drop products if the similarity scores are below a certain threshold regardless of the ranking.

• We construct a white list categories based on the most top several products, and drop the
products falling outside the white list categories.

• We apply availability filtering based on warehouse data.

• We finally merge the retrieved products with the keyword-based retrieval results.

5.2 Retrieval-Based Math Question Answering

In section, we further extend our exploration to the information access system with math formulae.
The primary task in MathIR is to retrieve relevant information from documents that contain math
formulas. However, the heterogeneous nature of math content, which includes rich-structured
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formulas and their textual context, requires special treatment to create an effective search engine.
This is because math languages have special semantic properties such as expression commutativity
and symbol substitution equivalence that require consideration different from traditional retrieval
models. With the surge of deep neural retrievers, we witness the capacity of deep models being
able to boost in-domain effectiveness to a new level. Compared to the previous work [307], we
further introduce a domain-adapted retriever backbone named Coco-MAE [309]. We demonstrate
improved effectiveness by incorporating structure search and a ColBERT model built on top of this
backbone. We participated in the ARQMath 3 Lab, where the math ODQA task was introduced.
We demonstrate the system we constructed in this competition, which achieve the best results
among all the participants. For math ODQA, retrieval is still the most challenging part although
the advanced deep learning methods. We start with an overview of the math IR task.

5.2.1 Related work

Early work in the field of MIR simply applies specialized tokenizers to handle math formulas [167].
Later, different intermediate tree representations are utilized to extract unsupervised features for
capturing structure similarities.

Operator Tree Representation: The OPT (Operator Tree) representation is first utilized by
extracting features from leaf-root paths [74, 75]. Following work in this direction [290, 70]
expand the leaf-root path set by extracting prefixes and suffixes and use them for additionally
retrieving sub-expressions in formulas. However, without whole structure comparison, a naive
leaf-root path matching offers high recall but lacks good precision in retrieval. More recently,
Approach0 [304, 305] approximately matches structure holistically without overlapping features
by grouping the root-end nodes of leaf-root paths on the fly.

Symbol Layout Tree: On the other hand, the Symbol Layout Tree (SLT) [293, 214] represents
a lower-level structure semantics for math formulas. Similar to the LATEX representation, it only
captures the layout or the topology of a formula. This creates an advantage of little ambiguity in
parsing. SLT is adopted as the main representation by a line of MIR works, e.g., the Tangent and
Tangent-S systems [185, 294, 296], and the Tangent-L or the MathDowsers system [54, 39, 171,
172, 170]. Local features such as symbols on adjacent nodes or nodes within a distance window
and their spatial relations are together tokenized into math tuples and used for retrieval.

Data-driven Methods for MIR: Different from structure matching, data-driven methods for MIR
discover semantic matches without resorting to formula structure match constraints. Methods in
this direction have been explored initially using linear neighbor tokens with limited success [57].
However, models such as Tangent-CFT [157], NTFEM [34], and FORTE [263] first construct
structure representation(s) and learn word embeddings or tree embeddings from structure features
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have later shown effective. Recent advances in natural language processing have led to the use
of the Transformer model [245] for the MIR domain. The MathBERT model [187] introduces
structure mask in addition to BERT objectives and has been evaluated on the NTCIR-12 collec-
tion [295]. SentenceBERT [202] has been domain-adapted for MIR by regressing QA pair scores
based on user-generated data in the original Math StackExchange thread [179, 180]. The DPRL
QASim method [159] uses two Transformers as similarity assessors, one question-question Sen-
tenceBERT [202] assessor pretrained on the Quora website and fine-tuned using related/duplicate
links on the MSE website, as well as a question-answer TinyBERT [88] assessor pretrained on
the MS-MARCO dataset [173] and fine-tuned on the ARQMath training data. The TU DBS
system utilized an ALBERT-based cross encoder as a primary model [203, 204] which was further
pre-trained on the ARQMath corpus directly with a maximum token input of 512.

The ARQMath Lab Datasets

The ARQMath Tasks [158, 161, 162] have been one of the few tasks trying to address the problem
of retrieving math questions containing structured formulas. The ARQMath Lab includes multiple
tasks:

• Task 1, Community Question and Answer (CQA). Retrieval of relevant answer posts from a
limited set of Math StackExchange (MSE).

• Task 2, Retrieving relevant formulas. The formulas are retrieved together with their context,
given a specified query formula from Task 1.

• Task 3, Open Domain QA task. ARQMath-3 [162] introduced this new task, which challenges
participants to return a single answer for each Task 1 topic.

In this thesis, we mainly cover Task 3, the ODQA part, demonstrate the design choice of building
such math retrieval based question answering system. The math retrieval part, we mainly follow
Zhong et al. [307, 309], please refer to our original paper [307] for the other details.

5.2.2 Method

Structure Search using Approach0: The main idea of parsing and retrieval on math formula is
to matching the the structure according to heuristics. The Approach0 system [304, 305] provide
a tool to construct an OPT representation, designed to maximize retrieval recall. Approach0
tokenizes all nodes along the extracted leaf-root paths (and their prefixes). These paths are used
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similarly as text keywords in regular IR settings, To accelerate query processing, a dynamic
pruning strategy [305] has been applied to help the retriever skip evaluating some documents.

Retrieval of Text Keywords: To handle text keywords, we adopt the BM25+ scoring schema
[148]. The overall score in Approach Zero is a weighted sum of all partial scores obtained
by BM25+ in normal text keywords and those by formula similarity scoring in math formula
keywords. We constructed our version of ColBERT [307, 309] to catch the text semantic. We
gather the further per-taining data of 1.69 million documents, crawled from the MSE and the Art
of Problem-Solving community (AoPS) website.

We merge the top results from both structural and dense retrieval with weighted sum. Studies
have demonstrated that this fusion scheme is more empirically robust than other alternatives for
retrieval purposes [308, 17].

We report our results on the ARQMath-3 collection [162]. The evaluation of our runs in
ARQMath adheres to the official protocols, with the top 1000 hits being considered for each run.
For Task 3, we use our Task 1 retriever for producing a set of candidate answers.

QA Model Selection

When tackling the ODQA problem, there are various approaches to consider. One option is to
use parametric generative models, which are trained with questions as input and output question-
answer pairs without relying on external knowledge. Alternatively, non-parametric models are
commonly employed, following a retrieve-and-read framework as we introduced in Chapter 2.
We adopt non-parametric models in this task, which offer advantages such as smaller model sizes
and the ability to work with limited training data.

In non-parametric models, there are generative or extractive readers. Generally speaking,
generative readers either need much training data to transfer themselves to the target domain or at
least need a few examples to familiarize themselves with the answer formatting. Unfortunately,
we do not have a good amount of training data for MIR. Furthermore, generative models tend to
recall non-overlapping spans in the training data, which leads to non-logical answers that are not
desired for math question answering. Therefore, we adopt extractive readers in this task.

Generating Candidate Answers

We use our Task 1 retriever for producing a set of candidate answers. As a principle, we choose to
base our answer on a single post because different answer posts together will introduce different
notations and dialects which create difficulties to align them in the final answer.
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We design three strategies for selecting the top 1 candidates:

• Original: A straightforward way to narrow down answer posts is to take the top-1 result from
Task 1, we will use this as our first strategy.

• Re-rank: The next strategy is simply considering a larger set of top results – here we use the
top-20 results from Task 1 – and select one of them using the methods in the next subsection.

• Re-map: Another strategy is to trust the community: we first try to retrieve the most similar
corpus question post given a topic question, then we pick the accepted answer post, if non-exists,
the top voted answer post as our candidate answer post.

Snippet Selection

A candidate answer post might be either inappropriately long or exceeding the length limit
imposed by the Task 3 requirements, therefore we add a snippet selection step based on the
candidate answer posts. We split the answer posts into sentences with the PyA0 sentence splitting
utility which takes care of the punctuations and avoids cutting them in the middle of a LATEX string.
Then a window of varied sizes (from a minimum of 5 up to 10 sentences) will go through the
beginning of a post to its end to select a combination of sentence spans to form candidate snippets.
The beginning of a post usually contains some conclusive answers, or it serves as a good start for
smooth reasoning, therefore we also add a selection strategy that always starts the window from
the beginning of candidate answer posts.

Finally, we use the same ColBERT model to score the snippets and pick the top 1 snippet as the
final answer.

5.2.3 Experiments

We show the results for the Open QA task in Table 5.4. The ARQMath contest hosts hired
assessors for result evaluation. They provide mainly two metrics: Average Relevance (AR) score
and Precision@1 (P@1). AR is equivalent to the unnormalized Discounted Cumulative Gain
at position 1 (DCG@1). Please refer to ARQMath-3 Overview work report[162]. The Type
column lists the type of the QA model: ’E’ for extractive and ’G’ for generative. In Task3, text-
davinci-002, GPT-3 [16] is used as the baseline system. Another generative run amps3 se1 hints
by the TU DBS team [205] uses the GPT-2 model [198] but is further fine-tuned on the AMPS
dataset [72]. On the other hand, the DPRL run, SBERT-SVMRank [160], uses an extractive
approach based on SVM and Sentence-BERT models. The Task 3 effectiveness of our model is

90



Runs / Description Type AR’ P’@1

Others (team / run)
GPT-3 (baseline) G 1.346 0.500
DPRL / SBERT-SVMRank E 0.462 0.154
TU DBS / amps3 se1 hints G 0.325 0.078

Ours
Re-map ColBERT E 0.949 0.282
Re-rank Struct. + ColBERT E 1.179 0.372
Original Struct. + ColBERT E 1.231 0.397
Re-rank Struct. (Porter) + ColBERT E 1.282 0.436

Table 5.4: Effectiveness evaluation for ARQMath-3 Labs Task 3.

largely attributed to the ability for our hybrid search using structure search and data-driven model
to generate high top precision in Task 1. However, it is intriguing to note that the text-davinci-002
model, which is a variant of the powerful GPT-3 model, has exhibited a superior ability to answer
math questions compared to our extractive approach that relies on a highly effective retriever
(while it remains uncertain whether the GPT-3 model merely recalls certain answers from its
training data).

Excitingly, large language models such as GPT-3 and others, hold the potential to enable
the active selection and complete automation of query processes in our model. It remains to be
seen whether a generative approach will eventually become the dominant method for directly and
comprehensively handling queries in this domain.
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Chapter 6

Conclusions

6.1 Summary of Findings

In this thesis, we discussed several aspects of designing a neural model for domain-specific
retrieval-based information access.

In Chapter 2, we provided an introduction to RBQA systems. We defined the problem
statement and discussed the dataset used for training and evaluation purposes. Additionally, we
explained the evaluation metrics employed to assess the performance of the system.

In Chapter 3, we delve into the intricacies of each component within the RBQA system. We
introduced BERTserini, an end-to-end open-domain question answering system that seamlessly
integrates BERT and the Anserini IR toolkit. Leveraging a straightforward two-stage pipeline
architecture, our system achieved substantial advancements compared to previous approaches.
A key challenge we addressed in this chapter was enabling cross-paragraph comparison in the
reader model within the RBQA framework. Furthermore, we examined the trade-off space
within the retriever component, focusing on the dimensions of index-based and ANN-based
candidate generation in the context of RBQA. We discovered that the computational overhead
associated with BERT-style reader models significantly restricts the flexibility of trade-offs within
the retriever. Additionally, we delved into strategies for training an improved reader model
through data augmentation in the RBQA setup. Our findings indicated that fine-tuning the reader
model using a distant-to-close dataset schedule facilitates successful knowledge transfer to new
distributions. Moreover, we concluded that randomly selecting positive examples based on distant
supervision aids the model in learning more diverse distributions. We showcased the state-of-the-
art results achieved by our system in retrieval-based question answering tasks across two English
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and two Chinese datasets sourced from Wikipedia. These exceptional outcomes were obtained by
leveraging effective data augmentation techniques.

In Chapter 4, we focus on the study of adapting retrieval-based systems to specific domains
without relying on domain-specific training data. The chapter begins with an introduction to the
concept of domains and methods for distinguishing them. We then establish baselines for domain
adaptation, including directly applying retrieval-based question answering systems trained on
general domain data and fine-tuning models with limited in-domain training data. Next, we explore
several zero-shot adaptation methods, including question generation as data augmentation, in-
domain further pre-training, and progressive domain-clustered training. Through our experiments,
we determine that the most effective method among these is further pre-training in the specific
domain. Additionally, we propose the GPT-based Compressor as a re-ranker for the retrieval-based
system. This approach does not require additional labeled data, prompt tuning, or domain-specific
knowledge. Despite these simplifications, the GPT-based Compressor achieves comparable results
to the aforementioned adaptation methods.

In Chapter 5, we expand our investigation to incorporate non-textual materials into the retrieval-
based systems. Specifically, we explore two main directions: retrieval from e-commerce databases
and question answering involving mathematical formulae. For the e-commerce database retrieval
system, we propose cross architecture cascade training as a method to effectively train the model
on noisy data and address the challenge of cold start. We also introduce self-adversarial negative
sampling and re-weighting techniques to improve the model’s performance. These approaches
help to tackle the inherent difficulties in retrieving information from e-commerce databases. In
the domain of math question answering, we combine the ColBERT model with the Approach0
framework to enhance the retrieval of mathematical formulae and other math-related content. We
propose the use of answer sentence selection with a ColBERT-based re-ranker to improve the
selection of the correct answer. Our approach yields the best results among all the participants in
the task.

6.2 Discussion

I start writing this thesis in the winter of 2022, and the thesis defence was in August of 2023.
Throughout this time span, the field of Natural Language Processing (NLP) experienced significant
developments. Within this discourse, we delve into the two primary streams of research that
emerged.
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Close-Book QA with ChatGPT

A particularly impactful avenue of exploration is centered around ChatGPT [182] and its subse-
quent iterations. ChatGPT stands as a remarkable artificial intelligence language model within the
GPT series. Tailored for conversational contexts, it underwent extensive training on an expansive
corpus of internet text encompassing books, articles, websites, and more. The model’s pre-training
phase involved assimilating language patterns and structures from diverse datasets, honing its
ability to predict forthcoming words within sentences. Fine-tuning followed, incorporating human
reviewer feedback to align the model’s responses with human values and context, thus ensuring
interactions that are both safe and pertinent.

ChatGPT excels across tasks demanding few-shot generalization and language comprehension,
propelling a diverse spectrum of NLP challenges to new pinnacles. Its proficiency in generating
coherent, precise text brings forth a multitude of advantages.

We tested ChatGPT with the exact same questions as in Figure 3.3, the outcomes of which are
delineated in Table 6.1. The results show ChatGPT’s capability to furnish highly reasonable an-
swers. However, in comparison to our system, it tends to generate lengthy responses. Furthermore,
it adopts a cautious stance when confronted with vague questions. These aspects, amenable to
prompt tuning, can be addressed to yield a robust baseline system for factoid question answering.

Retrieval-based Language Models

Large generative models such as GPT, relying solely on pre-trained language model parameters
to encode a wealth of world knowledge, require a prohibitively large number of parameters, and
often struggle to learn long-tail knowledge. Moreover, these parametric language models are
incapable of adapting over time, often hallucinate, and may leak private data from the training
corpus.

To surmount these challenges, an increasing interest has emerged in the realm of retrieval-
based language models [4]. These models integrate non-parametric datastores, such as text
fragments from external corpuses, with their parametric counterparts, akin to the approach laid
out by REALM [69]. This thesis aligns itself within this category, contributing to the progression
of this direction.
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Question Answer

Where did Teska
work in Budapest?

I’m sorry, but as of my last knowledge update in September 2021, I
don’t have information about an individual named “Teska” or their
place of work in Budapest. It’s possible that this information might
have become available after my last update or that it’s not widely
known. If Teska is a relatively recent or obscure figure, you might
want to try searching online or referring to more current sources for
accurate information.

What was the very
first television sta-
tion to broadcast
in Fresno?

The very first television station to broadcast in Fresno, California,
was KFRE-TV (now KSEE-TV). It began broadcasting on June 1,
1953. KFRE-TV was an NBC affiliate and played a significant role
in bringing television programming to the Fresno area.

Why did Mark
Twain call the late
19th century the
glided age?

Mark Twain, along with his co-author Charles Dudley Warner, re-
ferred to the late 19th century as the ”Gilded Age” in their novel
of the same name, published in 1873. The term ”Gilded Age” was
used ironically to describe the era’s superficial appearance of pros-
perity and progress, which masked underlying social, economic, and
political problems.
The word ”gilded” implies a thin layer of gold covering something of
lesser value underneath. Twain and Warner used this term to critique
the era’s excessive wealth, materialism, and ostentatious displays of
affluence, often seen among the upper class and industrialists. They
saw this superficial veneer as masking issues like corruption, social
inequality, and the exploitation of labor.
In essence, Mark Twain used the term ”Gilded Age” to convey the
idea that while there might have been a shiny surface of wealth and
progress, beneath that surface lay a reality that was not as perfect or
prosperous for everyone as it appeared.

continued . . .
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. . . continued

Question Answer

Why do geese
honk while flying?

Geese honk while flying for several reasons, primarily related to
communication and coordination within their flock during migration.
Here are some of the main reasons why geese honk while in flight:
1. Communication: Honking is a way for geese to communicate
with each other while flying. It helps them stay in contact, share
information about their flight path, and maintain their formation.
The honking serves as a form of vocal bonding that keeps the flock
together.
2. Coordination: Geese fly in V-shaped formations during migra-
tion, which offers several aerodynamic benefits. The honking helps
them coordinate their movements within the formation. The lead
goose sets the pace, and the other geese follow, adjusting their posi-
tions to reduce wind resistance. The honking signals help maintain
the formation and synchronize their flight.
3. Motivation: The honking of geese can also serve as a way to
encourage each other to keep up the pace during long flights. It
provides motivation and support to the entire flock.
4. Navigation: Geese migrate over long distances, and their honking
can help them navigate and stay on course. The vocal signals provide
information about the direction and location of the flock.
5. Safety and Alertness: Honking can serve as an alarm call to
warn the flock about potential dangers, such as predators or obsta-
cles. Geese are known to be protective of each other and use their
vocalizations to alert others to possible threats.
6. Group Identity: Honking helps establish and reinforce the social
bonds within the flock. It creates a sense of identity and belonging
among the geese, which is important for their collective survival.
Overall, the honking behavior of geese while flying is a complex and
evolved communication strategy that helps them navigate, cooperate,
and ensure the safety and cohesion of their flock during migration.

continued . . .
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. . . continued

Question Answer

What’s the
weather in
Canada?

I don’t have access to real-time data as my browsing capability is
disabled and my information only goes up until September 2021.
Weather conditions can vary widely across Canada due to its vast
size and diverse geography. It could be warm and sunny in some
areas while cold and snowy in others, depending on the time of year
and the specific region you’re asking about.
If you’re looking for current weather information in Canada, I rec-
ommend using a reliable weather website or app, or you can use a
search engine to find up-to-date weather forecasts for the specific
city or region you’re interested in.

Table 6.1: ChatGPT answers for questions tested with BERTserini in Figure 3.3.

6.3 Future Directions

Reasoning and Explanation: Enhancing the interpretability and explainability of deep learn-
ing models in domain-specific applications is crucial, especially in domains where trust and
transparency are critical. Future research can focus on developing techniques for interpreting
and explaining the model’s decisions and generating human-understandable justifications for the
answers provided, enabling users to trust and understand the model’s responses.

Integration of Domain-specific Knowledge: Incorporating external knowledge sources specific
to the domain can significantly enhance the performance of pre-trained models. Techniques
such as knowledge graph integration, ontology-based reasoning can be leveraged to improve the
model’s ability to access and utilize relevant domain knowledge during the question answering
process. Despite our initial exploration in e-commerce database search, numerous unexplored
research directions remain for further investigation.

Real-time Information Access: Improving the responsiveness and interactivity of ODQA
systems is another area of interest. Future work could focus on developing real-time systems that
provide instant responses to user queries. For industry applications, resource constraints often
necessitate the use of lightweight models to maintain high query per second (QPS) rates. Cache
mechanisms and distilled models are commonly employed, with even linear regression models
finding widespread use in the industry. Consequently, the task of harnessing the capabilities of
large-scale models for real-time inference poses intriguing and challenging opportunities.
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Multi-modal, Multi-lingual: The evolution of retrieval-based question answering systems is
poised to embrace a new era of sophistication through the integration of multi-modal and multi-
lingual capabilities. These systems will adeptly navigate the intricacies of human communication
by seamlessly fusing text, images, audio, and video data. This convergence will enable users
to not only ask questions in their preferred language but also receive responses that incorporate
information from diverse linguistic sources. Furthermore, these advanced systems will discern
context not just from text, but also from visual and auditory cues, leading to a deeper understanding
of user intent. To achieve such systems, we need to overcome challenges in integration of low-
resource language and more diverse sources.

98



References

[1] Dogu Araci and Zulkuf Genc. Finbert: Finacial sentiment analysis with pre-trained
language models, 2020.

[2] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y. Wu.
An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J.
ACM, 1998.

[3] N. Asadi and J. Lin. Effectiveness/efficiency tradeoffs for candidate generation in multi-
stage retrieval architectures. In SIGIR, 2013.

[4] Akari Asai, Sewon Min, Zexuan Zhong, and Danqi Chen. Acl 2023 tutorial: Retrieval-based
language models and applications. ACL 2023, 2023.

[5] A. Atreya and C. Elkan. Latent semantic indexing (LSI) fails for TREC collections.
SIGKDD Explorations, 2010.

[6] Yang Bai, Xiaoguang Li, Gang Wang, Chaoliang Zhang, Lifeng Shang, Jun Xu, Zhaowei
Wang, Fangshan Wang, and Qun Liu. Sparterm: Learning term-based sparse representation
for fast text retrieval, 2020.

[7] Fabrice Bellard. Lossless data compression with transformer, 2021.

[8] Eyal Ben-David, Nadav Oved, and Roi Reichart. Pada: Example-based prompt learning for
on-the-fly adaptation to unseen domains. Transactions of the Association for Computational
Linguistics, 2022.
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[180] Vı́t Novotnỳ, Michal Štefánik, Dávid Lupták, Martin Geletka, Petr Zelina, and Petr Sojka.
Ensembling ten math information retrieval systems. In CLEF, 2021.

[181] OpenAI. Gpt-4 technical report, 2023.

[182] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Gray, John Schulman, Jacob
Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul
Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions
with human feedback. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, editors, NeruIPS, 2022.

[183] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method for
automatic evaluation of machine translation. In 40th Annual Meeting on Association for
Computational Linguistics, ACL ’02, 2002.

114



[184] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In NeruIPS 32, 2019.

[185] Nidhin Pattaniyil and Richard Zanibbi. Combining tf-idf text retrieval with an inverted
index over symbol pairs in math expressions: The tangent math search engine at ntcir 2014.
In NTCIR, 2014.

[186] Jan Pedersen. Query understanding at bing. In SIGIR, 2010.

[187] Shuai Peng, Ke Yuan, Liangcai Gao, and Zhi Tang. Mathbert: A pre-trained model for
mathematical formula understanding. CoRR, 2021.

[188] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for
word representation. In 2014 EMNLP, 2014.

[189] Ethan Perez, Douwe Kiela, and Kyunghyun Cho. True few-shot learning with language
models. Advances in neural information processing systems, 34:11054–11070, 2021.
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