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Abstract

Optical quantum technologies have found applications in all facets of quantum infor-
mation. Single photons are actively being researched for quantum computation, commu-
nication, and sensing, due to their robustness against decoherence stemming from their
minimal interaction with the environment. For communication and networking applica-
tions, specifically, photons are lauded for their speed and coherence over long distances.
While clear benefits arise from the lack of photon-environment interaction, measurement
and control of all photonic degrees of freedom is made challenging. Each degree of free-
dom, be it polarization, space, time, or frequency, comes with its own advantages and
drawbacks. The potential that single photons bring to future quantum technologies may
only be realized by full control over each of these properties of light.

The polarization degree of freedom can be used for high fidelity preparations and mea-
surements and is experimentally controlled with high precision. The spatial degree of
freedom, on the other hand, while comparatively trickier to work with, provides access to
a large Hilbert space for encoding information that polarization falls short of. Together,
these properties of light are combined in structured waves to use the advantages of both de-
grees of freedom simultaneously. One particularly popular spatial encoding, orbital angular
momentum, has received a lot of attention for its high-dimensionality and experimental
realizations. However, these states are not preserved by fiber and decohere in turbulence.
Correlations between polarization and orbital angular momentum have shown robustness
in scattering and turbulent media, demonstrating the advantage of their partnership.

The energy-time degree of freedom of light also provides a large Hilbert space for
encoding, along with preservation of quantum information through fiber transmission. The
accessible state space is determined by the resolution of controls and measurements in both
frequency and time. Specifically, single photon manipulation on ultrafast timescales has
become more practical in recent years, enabling measurement on timescales faster than
state-of-the-art single photon detectors.

In the first experiments presented in this thesis, novel single-photon structured waves
are experimentally demonstrated and imaged with a single photon emICCD camera. First,
these states are propagated in free space and used to demonstrate a Talbot effect with single
photons. Imaging at different fractional Talbot distances shows the near-field interference
patterns of a two-dimensional Talbot carpet. Next, the correlations between the polariza-
tion of one photon and the spatial mode of its partner entangled photon are utilized to
remotely prepare complex spatial arrays by means of heralded polarization measurements.

The final chapter of this thesis moves focus to the energy-time degree of freedom. The
optical Kerr effect, a third order nonlinear optical effect, is used to gate energy-time entan-

iv



gled photons with sub-picosecond resolution, therefore surpassing the timing limitations of
single photon detectors. With this fast optical gating technique, the temporal correlations
of two energy-time entangled photons are measured. In addition to spectral correlation
measurements, these are used to verify energy-time entanglement. This demonstration
adds the optical Kerr effect to the short list of available methods in ultrafast quantum op-
tics, further advancing experimental control of the energy-time degree of freedom of single
photons.
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Chapter 1

Quantum optics

1.1 Chapter Overview

There are many strategies for encoding quantum information in the electromagnetic field,
and throughout this thesis, experiments that focus on multiple encodings which exploit
different degrees of freedom of light will be presented. This chapter sets the stage for
understanding the advantages and disadvantages of working with light’s varying degrees of
freedom by first discussing how we think of light as a quantized field in Sec. 1.2, how we for-
malize the polarization, spatial mode, and energy-time degrees of freedom in Sec. 1.3, how
we can describe correlations between them in Sec. 1.4, and finally how we experimentally
determine these correlations in Sec. 1.5.

1.2 Quantizing the Electromagnetic Field

We start, as many quantum optics texts do [6, 7, 8], by considering a simple electromagnetic
field that is contained in a one-dimensional cavity of length L along the z-axis. The electric
field makes a standing wave in the cavity with nodes at the walls z = 0 and z = L.
Assuming there are no currents, charges, or dielectric materials in the cavity, and setting
the polarization of the field to be along the x-direction, E(r, t) = Ex(z, t)̂i, where î is the
unit vector aligned with the x-axis, Maxwell’s equations reduce to,

∇× E = −∂B
∂t

(1.1)
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∇×B = µ0ϵ0
∂E

∂t
(1.2)

∇ · E = 0 (1.3)

∇ ·B = 0. (1.4)

These equations and boundary conditions are satisfied by an electric field of the form

Ex(z, t) =

(
2ω2

V ϵ0

)1/2

q(t) sin(kz) (1.5)

where the field’s angular frequency ω is related to the wave number k by ω = kc. Angular
frequencies that obey the boundary conditions z = 0 and z = L are valid, and have the
form ωm = c(mπ/L) for m ∈ Z, q(t) is a time dependent electric field amplitude, and
V = LA is the effective volume of the cavity with cross sectional area A. As the electric
field is polarized in the x direction, the magnetic field which satisfies Eqs. 1.2 and 1.4 is
orthogonal and aligned with the y axis, B(r, t) = By(z, t)ĵ, where ĵ is the unit vector
aligned with the y-axis, and has the form

By(z, t) =
(µ0ϵ0

k

)(2ω2

V ϵ0

)1/2

q̇(t) cos(kz) (1.6)

The classical field energy, called the Hamiltonian H, is obtained with an integration
over the cavity volume as

H =
1

2

∫
dV

(
ϵ0E

2(r, t) +
1

µ0

B2(r, t)

)
=

1

2

∫ L

0

dz

∫
dA

(
ϵ0E

2
x(z, t) +

1

µ0

B2
y(z, t)

)
=

1

2
(p2(t) + ω2q2(t))

(1.7)

where we have used the notation q̇(t) = p(t). To go from the second to the third line of

Eq. 1.7, trig integrals
∫ L

0
sin2(kz) and

∫ L

0
cos2(kz) appear. These are straightforward to
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evaluate by noting the boundary conditions limit k = mπ/L for m ∈ Z. This Hamiltonian
is in the same form as a classical one-dimensional harmonic oscillator, which is the key
observation that will help quantize the electromagnetic field. For this analogy, the time
dependent field amplitudes play the role of the canonical position, q(t), and momentum,
p(t).

Using this Hamiltonian, we turn our attention to solving for the energy eigenvalues.
Now that we have noted the similarities of our field amplitudes to the position and mo-
mentum of a particle in a harmonic oscillator, we use the Bohr correspondence principle
to replace our classical q and p variables with the associated Hermitian operators q̂ and p̂
with commutator [q̂, p̂] = iℏ. We define non-Hermitian operators â = (ωq̂+ ip̂)/

√
2ℏω and

â† = (ωq̂ − ip̂)/
√

2ℏω referred to as the annihilation and creation operators, respectively,
or collectively as the ladder operators. These operators have the commutation relation
[â, â†] = 1, which can be used to rewrite the Hamiltonian as

Ĥ = ℏω
(
â†â+

1

2

)
. (1.8)

We now set up the eigenvalue equation by introducing the energy eigenstate, |Ψn⟩, with
energy eigenvalue En as

Ĥ |Ψn⟩ = En |Ψn⟩ . (1.9)

Multiplying Eq. 1.9 by â† and rearranging the equation with the ladder operator commu-
tation relation will reveal how the creation operator earned its name.

ℏω
(
â†â†â+

1

2
â†
)
|Ψn⟩ = Enâ

† |Ψn⟩

ℏω
[
(â†ââ† − â†) +

1

2
â†
]
|Ψn⟩ = Enâ

† |Ψn⟩

ℏω
(
â†â+

1

2

)
(â† |Ψn⟩) = (En + ℏω)(â† |Ψn⟩)

(1.10)

We now see an eigenvalue equation with a new eigenstate, â† |Ψn⟩, and a new energy
eigenvalue, En + ℏω. The common language from which the creation operator adopted
its name says that the action of â† created a quanta of energy ℏω. This created energy
is termed the photon when referring to the electromagnetic field. Similarly, the same
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steps with the annihilation operator yields a new eigenstate â |Ψn⟩ with energy eigenvalue
En − ℏω, from which we say the operator annihilated a photon.

These operators create an energy spectrum with integer multiples of ℏω separating the
rungs of the ladder. The bottom of this ladder is referred to as the ground state, |0⟩,
with energy 1

2
ℏω, and any further use of the annihilation operator results in â |0⟩ = 0.

Throughout this thesis, a photon will be denoted as â† |0⟩ and experimentally it will be
measured by a count in a single photon detector. Photons will be casually discussed a lot
in this thesis but to be more verbose and formal, coming back to this chapter can remind
you that a photon is the canonically quantized energy of the electromagnetic field which
is a solution to Maxwell’s equations.

Working back to the electric field of the cavity, we define the canonically quantized
electric field operator for a single mode, k, in terms of the ladder operators and for arbitrary
polarization direction, ϵ̂k, as

Êk = i

√
ℏωk

2ϵ0V

(
âke

−iωkt+ik·r − â†ke
iωkt−ik·r

)
ϵ̂k, (1.11)

where the operator has a time dependence and is written in the Heisenberg framework of
quantum mechanics. In this framework, states are time independent and time evolution
is completely captured within the operator. To model a superposition of multiple modes
occurring simultaneously within the cavity, we get the total electric field by adding up the
different modes coherently with a discrete sum as

Ê(r, t) =
∑

kx,ky ,kz

Êk(r, t) = i
∑
k

√
ℏωk

2ϵ0V

(
âke

−iωkt+ik·r − â†ke
iωkt−ik·r

)
ϵ̂k, (1.12)

where r = (x, y, z) is a vector of spatial positions, and k = (kx, ky, kz) is a vector of wave
numbers in different directions. Note, quantization in kx, ky, and kz requires generalizing
the 1D cavity to a 3D cubic cavity with length L and volume V [7]. Other than the
canonical quantization that occurred by introducing ladder operators, the derivation is
done purely with classical electrodynamics. Due to this closeness of the quantum and
classical descriptions of light, there are many phenomena that occur in a laboratory with
single photons that would also occur with classical light.

Many students have asked what the size of a photon is. Unfortunately, the answer is
not well defined in general. In our derivation, we assumed the electromagnetic field was
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contained to standing waves in a cavity. That gave us helpful artificial boundary conditions
and answers the question of size because the photon is exactly the size of the cavity, V . Of
course, this need not be the case. If you were to let your photons fly instead of bounding
them, the energy of the photon, like the orbitals of an atomic wave function, technically
expand to infinity and thus a photon has no definable size. In our experiments in the lab,
the energy of each photon is created at the source and radiates to the detector. If the
laser is pulsed, we can be sure that the heavy majority of the photon is contained within
the coherence time of the pulse, but this serves to remind you that mathematically, the
photon’s size is as large as the space you give it to propagate.

There is a mathematical framework for avoiding the constraints of a cavity which in-
stead considers a continuum [9]. This will be helpful when considering the experiments in
this thesis which do not occur inside a cavity. Instead of being represented by quantum
harmonic oscillators in a cavity, the quantized electromagnetic field modes are represented
by continuous wave vectors. To illustrate this change, consider plane waves that traverse
a cavity of length L. The allowed standing waves have a minimum frequency difference of
∆ω = 2πc

L
. Clearly, we move from a cavity to a continuum by taking the limit as L → ∞

which implies there will be no minimum difference in frequency modes: ∆ω → 0. Ladder
operators are transformed to continuous mode operators by â→

√
∆ωâ(ω) which provides

a continuous version of the commutation relation [â(ω), â†(ω′)] = δ(ω−ω′) where δ(x−x′)
is the dirac delta function. The volume term is written as V = LA where we can substitute
L = 2πc

∆ω
. Finally, discrete sums which can keep track of the superposition of electric fields

with different frequencies inside a cavity are replaced with integrals by the transformation∑
k → 1

∆ω

∫
dω. Starting from Eq. 1.12, dropping the polarization label, and making the

substitutions listed above, the continuous mode quantized electric field operator is thus

Ê(z, t) = i
1

∆ω

∫
dω

√
ℏω

2ϵ0A

(
∆ω

2πc

)(√
∆ωâ(ω)e−iωt+ikz −

√
∆ωâ†(ω)eiωt−ikz

)
= i

∫
dω

√
ℏω

4πϵ0cA

(
â(ω)e−iωt+ikz − â†(ω)eiωt−ikz

)
= Ê(+)(z, t) + Ê(−)(z, t),

(1.13)

where we have compactly written the electric field operator as the sum of two components
Ê(+)(z, t) and Ê(−)(z, t) referred to as the positive and negative frequency components
named after the sign in the exponential 1.

1From my perspective they are named backwards, but there is old history from the theory of waves and
oscillations at play behind the naming convention.
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Light carries potential energy through space with its oscillating electric field, but we
don’t measure the field amplitude directly. Instead, power meters in the lab measure power,
which if integrated over time gives the field intensity, Î(z, t). This operator is the quantum
mechanical analog of the classical Poynting vector. The electric field operators in Eq. 1.13
are related to the intensity operator by

Î(z, t) = 2ϵ0cÊ
(−)(z, t)Ê(+)(z, t)

=
ℏ

2πA

∫
dω

∫
dω′

√
ωω′â†(ω)â(ω′)ei(ω−ω′)(t− z

c
),

(1.14)

and integration of the intensity provides the total energy of the system. First, integrating
with respect to position gives the total energy over the entire z-axis at a given time:

A

∫ ∞

−∞
dzÎ(z, t) = c

∫
dωℏωâ†(ω)â(ω), (1.15)

while integrating over all time gives the total energy that passes through a plane at a given
z:

A

∫ ∞

−∞
dtÎ(z, t) =

∫
dωℏωâ†(ω)â(ω). (1.16)

Both of these expressions include an integral over a photon’s energy, ℏω, and both ladder
operators, â†(ω)â(ω). These integrals relate the total field energy to the summation of
single photon energies at a particular frequency, weighted by the number of photons at
that frequency. This counting procedure is formalized by the photon number operator, n̂,
given by

n̂ =

∫
dωâ†(ω)â(ω). (1.17)

The ladder operators are non-Hermitian operators which do not correspond to a physical
observable, while the number operator, a simple multiplication of two ladder operators,
is Hermitian and corresponds to the number of photons. We can define ladder operators
which create and destroy a photon at a particular time by Fourier transforming their
frequency representation as
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â(t) =
1√
2π

∫
dωâ(ω)e−iωt (1.18)

â†(t) =
1√
2π

∫
dωâ†(ω)eiωt, (1.19)

and we can rewrite the number operator with respect to the Fourier transformed ladder
operators as

n̂ =

∫
dtâ†(t)â(t). (1.20)

1.3 Degrees of Freedom of Light

Throughout this thesis, light is the carrier of quantum information. In a beam like geom-
etry, there are four degrees of freedom (DoF) of a single photon - polarization, transverse
spatial mode profile (containing two DoF), and spectrum [10], each of which can be used
to encode, transfer, and read quantum information. Think of DoF as physical parameters
that can be independently manipulated in an experiment. Polarization is the simplest to
work with on an optics table as basic linear optics are capable of high fidelity polarization
preparation, transformation, and measurement. This DoF is limited to a Hilbert space
of two, meaning a single state carries binary information. Spatial modes and spectra, on
the other hand, allow access to a theoretically infinite Hilbert space in which to encode
information. Orbital Angular Momentum (OAM) modes describe a high dimensional state
space in the transverse beam profile limited only by the resolution of current state-of-
the-art spatial light modulators (SLM) and other controllable phase modulation optics.
As engineering advances and provides a higher SLM spatial resolution, the ability to ap-
ply particular phase delays to different coordinates of the transverse mode profile of light
will provide access to larger Hilbert spaces. When working with the spectrum of light,
the Hilbert space is limited by the spectral resolution of single photon spectrometers, or,
equivalently, the temporal resolution of time-of-arrival single photon detectors.

For completeness, one can also consider the number of photons as a degree of free-
dom [11], but working with this DoF requires expensive and early-stage photon number
resolving cryogenic detectors and will not be discussed further. This thesis encompasses a
set of experiments utilizing both the polarization and OAM DoF, and more recent work
focusing on the spectral DoF. These are described in the following sections.
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1.3.1 Polarization

Polarization qubits make for an excellent teaching example for photonic quantum informa-
tion both in theory, and in the lab as they are straightforward to prepare, superimpose, and
measure. The polarization of an electromagnetic field describes the direction of oscillation
of the electric field. It is convention to focus on the electric field rather than the orthogonal
magnetic field, but due to orthogonality one always knows the direction of oscillation of
one when given the other. To begin, consider a photon in an arbitrary superposition of
horizontal, |H⟩, and vertical, |V ⟩ polarizations as

|Ψ⟩ = cos

(
θ

2

)
|H⟩ + eiϕsin

(
θ

2

)
|V ⟩ (1.21)

where θ, ϕ ∈ [0, 2π) are angles that describe the relative combination of |H⟩ and |V ⟩.
In order to see the similarities between polarization qubits and other physical quantum
information systems, it’s useful to assign these polarization states to the two-dimensional
computational basis,

|H⟩ =

(
1
0

)
, |V ⟩ =

(
0
1

)
. (1.22)

Taking θ = 90◦ and ϕ = 0◦, 180◦ gives us the diagonal and anti-diagonal states,

|D⟩ =
1√
2

(|H⟩ + |V ⟩) =
1√
2

(
1
1

)
, |A⟩ =

1√
2

(|H⟩ − |V ⟩) =
1√
2

(
1
−1

)
. (1.23)

|H⟩ , |V ⟩ , |D⟩, and |A⟩, along with all other states described by Eq. 1.21 with real coeffi-
cients, are called linearly polarized states. Starting from one linearly polarized state, it is
straightforward to rotate the polarization to any other linearly polarized state with just a
half-wave plate (HWP). Taking θ = 90◦, and ϕ = 90◦, 270◦ gives the right and left circular
polarization states,

|R⟩ =
1√
2

(|H⟩ + i |V ⟩) =
1√
2

(
1
i

)
, |L⟩ =

1√
2

(|H⟩ − i |V ⟩) =
1√
2

(
1
−i

)
. (1.24)

Starting from |H⟩, a quarter-wave plate (QWP) is sufficient to rotate the polarization to
either circular polarization state. Combining the action of a quarter-wave and half-wave
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plate provides enough freedom to rotate |H⟩ to all polarizations described by Eq. 1.21.
Polarizing beam splitters are used for projective measurements and typically transmit
horizontal polarization and reflect vertical polarization. Inserting a half and quarter-wave
plate before a polarizing beam splitter enables projective measurements onto arbitrary
qubit polarization bases.

Using the matrix formalism provided by the computational basis representation, the
H/V states are eigenstates of the Pauli σz operator, while the D/A and R/L states are
eigenstates of the Pauli σx and Pauli σy operators, respectively. These matrices have the
following form,

σz =

(
1 0
0 −1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
. (1.25)

Polarization qubits are easily visualized by plotting the angles that parameterized the
state in Eq. 1.21 onto a sphere called the Bloch sphere. When referring to the polarization
of light and not just an arbitrary qubit, it is called the Poincaré sphere, and both are il-
lustrated in Fig. 1.1. Throughout the thesis, quantum information protocols and concepts
will be described using the polarization bases and the Poincaré sphere. Note, when dis-
cussing these concepts with quantum information scientists studying other physical qubits,
the Bloch sphere is more common and the bases are labeled {0, 1}, {+,−}, and {+i,−i}
instead of {H,V }, {D,A}, and {R,L}, respectively.

Figure 1.1: Graphical representation of qubit state space. a) Poincaré sphere labelled with
polarization bases. b) Bloch sphere labelled with computational bases.
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Wave plates are a simple optic consisting of a uniaxial birefringent material such as
quartz. Birefringent materials have a polarization dependent index of refraction which
manifests as a relative phase delay between polarizations aligned with one axis we call the
fast axis, and a perpendicular axis called the slow axis. Wave plates can be represented by
2x2 matrices called the Jones matrices [12] which take the form,

HWP (θ) =

(
cos(2θ) sin(2θ)
sin(2θ) −cos(2θ)

)
(1.26)

QWP (θ) =

(
cos2(θ) − isin2(θ) (1 + i)cos(θ)sin(θ)
(1 + i)cos(θ)sin(θ) −icos2(θ) + sin2(θ)

)
, (1.27)

where θ is the rotation angle of each wave plate about the optic axis and θ = 0 corresponds
to the fast axis aligned to the horizontal. It can be helpful to remember what each waveplate
takes the |H⟩ state to. For example, a HWP rotated to +(−) 22.5◦ rotates |H⟩ to |D⟩ (|A⟩),
and a QWP rotated to +(−) 45◦ rotates |H⟩ to |R⟩ (|L⟩).

Operations on a qubit, such as setting a HWP to 22.5◦ and sending a horizontally
polarized photon through, can be visualized as a rotation of the |H⟩ vector on the Poincaré
sphere to the |D⟩ vector as seen in Fig 1.2.

Figure 1.2: Poincaré sphere representation of the action of a HWP at 22.5◦ acting on a
horizontally polarized photonic state. The resulting state is diagonally polarized.
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1.3.2 Spatial Modes

Spatial modes of light generally refer to the amplitude and phase of the transverse compo-
nent of the electromagnetic field. Imagine taking a cross sectional-slice of light perpendic-
ular to the direction of travel. The patterns that emerge are superpositions of orthogonal
fields which can be used to encode quantum information. The mathematical represen-
tations of the electromagnetic fields and their transverse components are usually derived
by combining three of Maxwell’s equations to build a wave equation and then solving to
find transverse field solutions. In this section, the wave equation is derived, the parax-
ial approximation, which closely models laser beams in the lab, will be introduced, and
the Hermite-Gaussian family of solutions will be presented. Although this thesis explores
spatial modes related to the cross-section of light, it should be noted that quantum infor-
mation can be encoded in the path that light travels [13, 14]. Path encoding can also be
considered a spatial mode because it is labeled by a photon’s position in space, but will
not be discussed further here.

Consider an electromagnetic field in an isotropic, linear, source-free media. Take the
curl of Maxwell’s Eq. 1.1, and employ the vector identity ∇×∇×A = ∇(∇ · A) −∇2A
to get

∇×∇× E = ∇(∇ · E) −∇2E

∇×
(
−∂B
∂t

)
= ∇(∇ · E) −∇2E.

(1.28)

The divergence of E is zero by Maxwell’s Eq. 1.3. Note, the time derivative can be brought
outside the curl which leaves the left hand side as ∂

∂t
(∇×B) . We can now substitute

Maxwell’s Eq. 1.2 to bring in a second time derivative to obtain the wave equation

∇2E = µϵ
∂2E

∂t2
. (1.29)

The general solution of the wave equation for a wave travelling in a single direction, say,
the z direction, is a plane-wave (meaning the field has no transverse dependence) which
has the form

E(z, t) = E0

(
t− z

v

)
(1.30)
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where E0 is an x−y plane vector and v = 1/
√
µϵ is the speed of light in the medium. Plane

waves extend their transverse amplitude to infinity and so do not model the collimated
laser beams in the lab. That being said, to good approximation, lasers can be considered
to be a superposition of plane waves that are travelling close to a single direction, z, and
we call beams described by this approximation paraxial. Transverse field variations of
paraxial beams are much smaller than variations in the z-direction.

A monochromatic, paraxial wave, ignoring polarization, may be written as

E(z, t) = u(x, y, z)ei(ωt−kz) (1.31)

where u(x, y, z) is a slowly-varying envelope relative to the wavelength-scale e−ikz term.
Substituting this electric field into the wave equation in Eq. 1.29 yields

∇2
(
uei(ωt−kz)

)
= µϵ

∂2

∂t2
(
uei(ωt−kz)

)
. (1.32)

We will simplify each side of this equation one at a time. First, break the Laplace operator
into transverse and z components as

LHS = (∇2
T +

∂2

∂z2
)
(
uei(ωt−kz)

)
= ei(ωt−kz)∇2

Tu+ eiωt
∂2

∂z2
(
ue−ikz

)
= ei(ωt−kz)∇2

Tu+ ei(ωt−kz)

[
∂2u

∂z2
− 2ik

∂u

∂z
− k2u

] (1.33)

where the chain rule was implemented twice from the second to the last line. Moving to
the right hand side and using the relationship µϵ = k2/ω2, we simplify the following:

RHS = µϵ
∂2

∂t2
(
uei(ωt−kz)

)
= µϵue−ikz ∂

2

∂t2
eiωt

= µϵue−ikz(−ω2eiωt)

= −k2uei(ωt−kz).

(1.34)
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Setting the LHS = RHS, we arrive at a differential equation of u(x, y, z),

∇2
Tu+

∂2u

∂z2
− 2ik

∂u

∂z
= 0. (1.35)

Due to the slowly-varying property of the envelope u(x, y, z),∣∣∣∣∂2u∂z2
∣∣∣∣≪ 2k

∣∣∣∣∂u∂z
∣∣∣∣ , (1.36)

and we can neglect the second derivative of u with respect to z yielding the paraxial wave
equation:

∇2
Tu− 2ik

∂u

∂z
= 0. (1.37)

The Hermite-Gauss (HG) modes are a family of solutions to the paraxial wave equation.
They are labeled and categorized by two indices, m,n ∈ Z, and given by the formula

umn =
1

w(z)
Hm

(√
2x

w(z)

)
Hn

(√
2y

w(z)

)
e−(x2+y2)/w2(z)e−ik(x2+y2)/2R(z)ei(m+n+1)ϕ(z), (1.38)

where we have introduced the beam radius,

w2(z) = w2
0

[
1 +

(
z

zR

2
)]

, (1.39)

the radius of curvature,

R(z) =
z2 + z20
z

, (1.40)

the beam is focused at z = 0 with radius w0, ϕ(z) = tan−1
(

z
zR

)
, the Rayleigh range,

zR = πω2
0nr/λ, is the distance light travels while maintaining only a slow increase in beam

radius, nr is the index of refraction, where the subscript is used to differentiate from the
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mode number n, and Hν(ξ) are Hermite polynomials. These modes are termed Trans-
verse Electromagnetic Modes (TEMmn), and higher mode numbers correspond to more
complicated intensity patterns with regions alternating between high and low intensity.
Figure 1.3 shows the intensity patterns corresponding to the first few TEM modes which
are the result of the squared modulus of the field amplitude, |umn(x, y, z)|2.

Figure 1.3: Intensity patterns of Hermite-Gauss (HG) modes with varying mode indices.
© L. Carbone et al., (2013) [1].

The lowest order solution, TEM00, is of particular interest and has the following form:

u00(x, y, z) =
w0

w(z)
e−(x2+y2)/w2(z)e−ik(x2+y2)/2R(z)eiϕ(z). (1.41)

This mode is a 2D-Gaussian function and is sometimes referred to as the single spatial
mode. It is the dominant spatial mode output from many laser resonators in which the
curvature of the cavity mirrors is matched with the radius of curvature, R(z), of the
desired beam output. Single mode fibers are used throughout this thesis because they
collect/output only the TEM00 spatial mode. They have a very small core of ∼ 5µm
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diameter which filters all higher order modes. Some experiments prefer to collect higher
order spatial modes of light when coupling from free-space to fiber, and can do so with
multi-mode fibers. These have a larger core size of anywhere between 10µm − 100µm in
diameter.

1.3.3 Orbital Angular Momentum

A particularly interesting family of solutions to the paraxial wave equation describe beams
of light that have an azimuthal phase dependency, eilϕ, which are referred to as vortex
beams. A 2D cross section of such a beam reveals a phase singularity at the coordinate
which the phase is varying around with angle ϕ [15]. At this point, the phase is undefined
and the intensity is zero. These singularities are called optical vortices and can occur
sporadically in nature [16], or be specifically engineered with a particular azimuthal phase
dependence. In 3D space, as light propagates, a phase singularity draws out a line at which
the phase is undefined, and the azimuthal phase dependence carves out a helical phase
pattern around the singularity. These beams can have multiple interwoven helical phase
fronts counted by the unbounded integer l ∈ {−∞, ...,−1, 0, 1, ...,∞} and carry orbital
angular momentum (OAM), lℏ, per photon. The sign of l determines the handedness of the
helical phase, and beams with opposite handedness have seen applications in determining
the chirality of molecules and materials [17].

The unbounded nature of the helicity parameter, l, provides access to a large alphabet
in which quantum information can be encoded in a single photon. Two-level quantum
systems, or qubits, were introduced during the discussion of polarization. Here, OAM
is a vehicle to introduce a d-dimensional system called a qudit, where instead of being
constrained by a two-dimensional Hilbert space, we are limited only by our engineering
capability of preparation and measurement of higher-order modes. Higher dimensional
optical quantum states have lead to applications in quantum cryptography [18], quantum
communication [19, 2], and quantum computing [20].

To introduce a mathematical formalism for vortex beams, we move to the cylindrical
coordinates (r, ϕ, z) and represent the electric field as

E(r, ϕ, z, t) = A(r, ϕ, z)e−i(ωt−kz), (1.42)

where A(r, ϕ, z) is the complex amplitude of the field and contains the spatial distribution
of a 2D cross section of light. In the case of vortex beams, the amplitude can be written
as a superposition of helical modes labelled by their azimuthal number, l, as
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A(r, ϕ, z) =
∑
l

cl(r, z)eilϕ (1.43)

where coefficients cl are determined by the angular Fourier transform of the field amplitude
as

cl(r, z) =
1

2π

∫ 2π

0

dϕe−ilϕA(r, ϕ, z). (1.44)

By radially integrating the absolute value squared of these coefficients, we get the proba-
bility, P (l), that a photon is in the l OAM state as

P (l) =
1

B

∫ ∞

0

drr|cl(r, z)|2 (1.45)

where the probability is normalized by the transverse plane beam power,

B =
∑
l

∫ ∞

0

drr|cl(r, z)|2. (1.46)

Note, the probability is not dependent on the longitudinal coordinate z because OAM is
conserved as light propagates [21]. A full analysis of the transverse spatial mode requires
reference to the radial component of the field. While there are many spatial modes with
helical phase factors which differ in their radial amplitude, it is most common to focus
on field amplitudes, A, which are written as superpositions of Laguerre-Gaussian modes,
LGp,l. These are analytic solutions to the wave equation in the paraxial approximation,
Eq. 1.37. Similar to the TEMm,n modes, LGp,l modes are described in reference to special
functions and are labelled by two indices. Before, m,n were indices that indicated x and y
structure. Now that we have moved to cylindrical coordinates, we used the mode indices p, l
to refer to radial and azimuthal structure. LGp,l modes have a lengthy derivation, so only
the results will be presented here. Interested readers looking for a detailed derivation of the
Laguerre-Gaussian modes are encouraged to visit reference [22]. Introducing dimensionless
cylindrical coordinates ρ = r/w0 and ζ = z/zR, Laguerre-Gaussian modes are represented
as

16



LGp,l(ρ, ζ, ϕ) =

√
2|l|+1p!

π(p+ |l|)!(1 + ζ2)

(
ρ√

1 + ζ2

)|l|

× e
−ρ2

1+ζ2L|l|
p (2ρ2/(1 + ζ2))e

iρ2

ζ+1/ζ eilϕ−i(2p+|l|+1)tan−1(ζ),

(1.47)

where p ∈ {0, 1, 2, ...}, and L
|l|
p (ξ) are generalized Laguerre polynomials. Superpositions of

these modes give a more radially detailed picture of the electric field amplitude, A, as

A(r, ϕ, z) =
∑
p

∑
l

bp,lLGp,l(r, ϕ, z), (1.48)

and we can relate these new coefficients bp,l with the angular Fourier transform coefficients
from before using

bp,l =

∫ ∞

0

rdrLG∗
p,l(r, ϕ, z)e−ilϕcm(r, z). (1.49)

Similar to the TEMm,n modes discussed earlier, Fig 1.4 shows the first few LGp,l inten-
sity patterns. Increasing the radial index adds rings to the intensity pattern, but it is less
clear how the azimuthal index changes the state by looking at intensity. This is because
intensity measurements wash out the phase of an electromagnetic field, and the azimuthal
number refers to the helicity of the phase, eilϕ.

The intensity patterns in Fig 1.4 show the theoretical distribution of light in the trans-
verse plane. When measuring the transverse profile of single photons, we use arrays of
single photon detectors, also known as single photon cameras. A single measurement will
only light up one pixel of the camera. It’s only after many subsequent measurements of
photons with similar phase patterns that the doughnut shaped intensity patterns emerge.
This build up of data can be visualized in Fig 1.5. It should be noted that although l = 1
and l = −1 LG modes have the same intensity pattern, a superposition of both yields a
unique intensity pattern. Using this idea, if you only have access to intensity measurements,
it’s possible to measure the LG coefficients bp,l by interfering the signal with a reference
wave that has identical polarization and frequency and a known spatial distribution [21].

There are many ways to generate OAM states experimentally, including spiral phase
plates (SPP), q-plates, fork dislocations, spatial light modulators (SLMs), and metasur-
faces. The simplest to describe, and perhaps the most elegant, is the SPP. A SPP is a
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Figure 1.4: Intensity patterns of Laguerre-Gaussian (LG) modes with varying mode indices.
© L. Carbone et al., (2013) [1].

piece of glass that has thickness which varies with azimuthal angle, ϕ. An input Gaussian
beam will therefore have each transverse coordinate of the electric field delayed based on
its azimuthal coordinate, i.e., how much time the light spent in the glass [23]. With this
method, each OAM state you may want to prepare requires a particular SPP tailored to
your desired output. A similar device with slightly more versatility is the q-plate. These
devices have a birefringence that varies across the face of the optic, which leads to the
output OAM state being dependent on the input polarization [24]. Specifically, the origi-
nal q-plates transformed right circularly-polarized light to OAM with l = 2q where q is a
fabrication controlled integer relating to glass thickness and birefringence, and transformed
left circularly polarized glass to OAM with l = −2q. Similar to waveplates discussed in
Sec. 1.3.1, q-plates can be described by Jones matrices with the form

M =

(
cos(2α) sin(2α)
sin(2α) −cos(2α)

)
, (1.50)
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where α(r, ϕ) = qϕ + α0, and α0 is a constant. Circularly polarized light carries spin-
angular momentum (SAM), so q-plates are an example of spin-orbit coupling where the
OAM component of light is dependant on the SAM component.

Figure 1.5: Single photon images built up over many measurements. © Fickler et al.,
(2013) [2, 3].

While it is straightforward to associate right circularly polarized light with “spinning”
of the electric field, and OAM with an angular phase dependence, it can be less obvious how
these particular instances of light relate to spin and orbital angular momentum. To address
this, it is much easier to think about what happens when light with SAM or OAM interacts
with an atom. Circularly polarized light will transfer spin angular momentum to an atom
and has been used to rotate quartz waveplates [25], while light with helical phase patterns
will transfer orbital angular momentum to an atom causing the atom to revolve around the
optical singularity [26, 27]. These mechanical forces due to OAM transfer have since been
applied to optical tweezers [28], which are light beams that trap and manipulate atoms.
The familiar analogy of the earth-sun system may help to visualize. The earth spins on its
axis with SAM, and revolves around the sun with OAM, much like the atom described in
a light beam.

Optics with fork dislocations, also known as screw dislocations, will impart helical phase
patterns on light beams that pass through [29]. Fork dislocations have also been applied to
beams by holographically imprinting a fork pattern onto a beam using a grating mask [30].
Most recent single photon OAM experiments use SLMs in order to prepare and measure
higher level OAM modes in a programmable way, the first demonstration of which was
done by Gibson et al. [31]. You could consider these SLM preparations as more on-the-fly
programmable successors to the fork dislocation methods, because the pattern encoded in
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the SLM to produce OAM states is also fork-shaped. It’s worth noting that in the broader
community, spatial light modulators are known for modulating beam intensity, such as the
overhead transparencies used in presentations 2. In contrast, for OAM purposes, we are
always referring to SLMs which modulate the phase of light at different spatial positions.

The last generation and measurement method I will mention uses metasurfaces. These
are artificially fabricated thin materials with small scale structures across the transverse
face. They modulate the electromagnetic field either through transmission or reflection and
can generally be printed with finer, sub-wavelength spatial resolution than state-of-the-art
SLMs. [32, 33, 34]

1.3.4 Time & Frequency

The time-frequency degree of freedom provides another high-dimensional Hilbert space for
encoding quantum information. Unlike OAM states which are essentially washed out dur-
ing fiber transmission 1, it is robust against decoherence over long-distance fiber networks
of up to 100 kilometers [37, 38, 39]. Additionally, polarization mode-dispersion, which
can complicate fiber networks using polarization states, does not affect the time-frequency
degree of freedom. For quantum communication specifically, energy-time entanglement
is being considered to take advantage of the current telecommunications infrastructure
around the world which already encodes classical information in frequency and time [40]. I
will discuss three quantum information encodings associated with the time and frequency
of single photons. The first two consider a single property of light by discretizing the
continuous range, of either time-of-arrival or frequency, into bins. The third encoding,
referred to as temporal-mode encoding, uses the continuous nature of time and frequency
simultaneously.

Time-bin encoding makes use of an unbalanced Mach-Zehnder interferometer as illus-
trated in Fig. 1.6. Photons which take the shorter path are given the label |e⟩ for “early”,
while photons taking the longer path are denoted |l⟩ for “late”. A coherent superposition
of the form

|Ψ⟩ = α |e⟩ + β |l⟩ (1.51)

2maybe a relic of the past for some younger readers, but in 2019 I saw Roger Penrose give a talk at
Perimeter using only overhead transparency slides so they’re still out there.

1There are OAM preserving fibers, but they only preserve a specific target spatial mode [35]. Currently,
regular multimode fibers are not sufficient for OAM preservation in quantum optics experiments [36].
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Figure 1.6: Illustration of an unbalanced Mach-Zehnder interferometer generating time-bin
states.

is created by varying the amplitude and phase of each path of the interferometer. Ampli-
tudes may be varied by changing the reflectivity of the beamsplitters and thus the portion
of photons in each path, while phase may be varied by changing relative path length. Beam-
splitters in interferometers are not easy to change out quickly, so it is simpler to implement
relative phase differences and fix the amplitudes. Measurement of time-bin states can also
be done with a Mach-Zehnder (MZ) interferometer, although single photon detectors may
be sufficient if the separation time between |e⟩ and |l⟩ is longer than detector resolution.
High-dimensional time bin states can be made by increasing the number of time slots for
the encoding, for example using cascaded MZ interferometers [41]. The time difference
between each bin is limited by photon coherence length. If the bins are too close together,
it is not possible to deterministically distinguish the two paths.

Frequency bin encoding is conceptually similar with the frequency of light defining the
different basis states instead of the time-of-arrival. Frequency bin states can be created
using ring resonators which produce a frequency “comb” and have been integrated into
silicon chips [42, 43]. Relative phases between bins can be applied using Fourier domain
pulse shaping in which pulses are stretched out in space into their frequency components
with gratings or prisms and an SLM is used to apply the relative phases [44]. Superpositions
are made possible by phase modulators that can selectively interfere particular frequency
bins, and measurements are made with single photon spectrometers. To avoid the loss
in spectrometers, it is also possible to measure frequency bins using a series of dichroic
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mirrors. Similar to the time-bin resolution problem, any detection method must have higher
spectral resolution than the spacing of frequency bins to ensure deterministic readout.

An optical pulse can be decomposed into orthogonal functions that describe the fre-
quency and temporal profile. In Sec. 1.3.2 the electric field as a function of position was
described by 2D Hermite-Gauss modes. In the temporal mode framework, the 1D repre-
sentation of these functions can also be used to describe the electric field as a function of
time or frequency instead. Temporal modes can be produced using pulsed light to pump a
spontaneous parametric downconversion (SPDC) crystal. Specific modes can be selected
for routing or measurement using a quantum pulse gate [45] which uses sum-frequency
generation (SFG) to combine the signal with a spectrally engineered gate pulse [46]. In
addition to quantum communication which time and frequency bin encodings are often
used for, temporal modes have been touted as a basis for optical quantum computing [10].

1.4 Quantum Entanglement

Quantum entanglement is possibly the most astonishing phenomenon in quantum mechan-
ics. It was first postulated in 1935 by Einstein, Podolsky, and Rosen [47], the three authors
which to this day entangled particles, or EPR pairs, are named after. The authors used
the hard-to-believe concept of entanglement that came with their prediction as an argu-
ment that quantum mechanics was an unfinished theory that did not describe reality in its
current form. In 1964, John Bell responded to their claim by narrowing down exactly what
constraints reality must abide by if it is truly described by quantum mechanics, stating
that quantum mechanics is incompatible with local hidden-variable theories [48]. Clauser,
Horne, Shimony, and Holt proposed a test of Bell’s theorem that could be implemented
experimentally [49]. The test amounted to four, two-particle correlation measurements
which combined to create the CHSH inequality, also known as a Bell inequality, which,
if violated, would rule out local hidden-variable theories. Aspect, Grangier, and Roger
were the first to experimentally violate this inequality by measuring the polarization of
correlated photons in 1981[50].

As bothered as the EPR authors seemed to be by their prediction, this experiment
was the first of many to disprove local-realism, i.e. the principles of locality and realism
could not both be true. Locality is the notion that particles can only be affected by their
surroundings, and realism is the theory that describes a particle as having a definite state
before it is measured. Entanglement, now experimentally verified, began to be considered
as a resource for quantum communication. Superdense coding, proposed by Bennett and
Weisner [51] and experimentally demonstrated by Zeilinger et al. [52], uses maximally
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entangled states as a resource shared by a sender and receiver to send two bits of classical
information by only sending a single qubit. Quantum teleportation, proposed by Bennett
et al. [53] and again experimentally demonstrated by Zeilinger et al. [54], allows the receiver
to transport the state of a qubit by sending a classical bit. Entanglement is a property
of generic multi-particle quantum systems, but photons in particular played an important
role in the pivotal experiments proving its existence and using it as a resource. Note,
the original experimental CHSH violations have a number of small issues which have been
the topic of much debate. In the decades since that experiment, there have been many
experiments that closed so-called “loopholes” that could be exploited to show local hidden-
variable theories may indeed describe the experimental outcomes. With each experiment,
the likelihood that nature obeys local-realism diminishes further [55].

1.4.1 CHSH inequality

Here, an experiment is described to derive the CHSH inequality and use it as a working
example to introduce two qubit states. A source prepares two particles in a repeatable
manner. Each particle is sent to a different party, Alice and Bob. They both have two
measurement apparatuses which are capable of measuring physical properties of the particle
they receive. Call the properties Alice can measure PQ and PR, and the properties Bob can
measure PS and PT . When either party receives a particle, they flip a coin to decide which
measurement to take. Each of the four physical properties can result in a measurement
outcome of either 1 or −1. We will give the label Q to the outcome of the measurement of
PQ, and follow a similar convention for R, S, and T . Now, set Alice and Bob far apart from
each other and time the experiment such that they receive and measure their particle at the
same time. Say they are far enough apart that the outcome of one party’s measurement is
unable to affect the other due to physical influences being limited by the speed of light [56].

If this experiment is repeated many times, we can build up a list of the four out-
come pairs, QS,RS,RT, and QT . Consider the following expression of these measurement
outcome pairs:

QS +RS +RT −QT = (Q+R)S + (R−Q)T. (1.52)

Note that (Q + R) = 0 if Q ̸= R, and (Q − R) = 0 if Q = R. From this we can see
that Eq. 1.52 is equal to either ±2. Next, we can introduce state probabilities. Say that
p(q, r, s, t) is the probability that the system is in a state where Q = q, R = r, S = s, and
T = t before Alice and Bob perform their measurements. The mean value, E(·), of our
algebraic quantity is written as
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E(QS +RS +RT −QT ) =
∑
qrst

p(q, r, s, t)(qs+ rs+ rt− qt)

≤
∑
qrst

p(q, r, s, t)(2)

= 2
∑
qrst

p(q, r, s, t)

= 2.

(1.53)

where to move from the first to the second line we have taken the largest possible value
of (qs + rs + rt − qt) which is 2 (See Eq. 1.52). We can also implement the distributive
property on the RHS of the first line to get

E(QS +RS +RT −QT ) =
∑
qrst

p(q, r, s, t)qs+
∑
qrst

p(q, r, s, t)rs

+
∑
qrst

p(q, r, s, t)rt−
∑
qrst

p(q, r, s, t)qt

= E(QS) + E(RS) + E(RT ) − E(QT ).

(1.54)

We can equate Eq. 1.53 and Eq. 1.54 to obtain the CHSH inequality,

E(QS) + E(RS) + E(RT ) − E(QT ) ≤ 2. (1.55)

Experimentally, Alice and Bob can estimate the mean of all four quantities by repeating the
experiment many times. The classical CHSH bound for general measurements described in
this simple experiment is 2, but introducing quantum systems which are entangled changes
the game.

Consider a source that prepares a two-qubit state of the form

∣∣Ψ−〉 =
|HV ⟩ − |V H⟩√

2
, (1.56)

where |HV ⟩ = |H⟩ ⊗ |V ⟩ represents a photon with horizontal polarization in one local
Hilbert space and a second photon with vertical polarization in a second local Hilbert
space. Alice will measure the observables,
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Q = σz R = σx, (1.57)

on her qubit while Bob will measure the observables,

S =
−σz − σx√

2
T =

σz − σx√
2

, (1.58)

on his qubit. Average values of the outcome of QS, denoted ⟨QS⟩, can be calculated as

⟨QS⟩ =
〈
Ψ−∣∣ (Q⊗ S)

∣∣Ψ−〉
=

(
⟨HV | − ⟨V H|√

2

)(
σz ⊗ (

−σz − σx√
2

)

)(
|HV ⟩ − |V H⟩√

2

)
=

−1

2
√

2
(⟨HV | − ⟨V H|)(σz ⊗ σz + σz ⊗ σx))(|HV ⟩ − |V H⟩)

=
−1

2
√

2
(⟨HV | − ⟨V H|)(− |HV ⟩ + |V H⟩ + |HH⟩ + |V V ⟩)

=
−1

2
√

2
(−2)

=
1√
2

(1.59)

where the distributive property of tensor products was used from the second to the third
line, the Pauli matrix properties σz |H⟩ = |H⟩, σz |V ⟩ = − |V ⟩, σx |H⟩ = |V ⟩, and σx |V ⟩ =
|H⟩ are used from the third to the fourth line, and the orthonormality of basis states
⟨H|V ⟩ = ⟨V |H⟩ = 0, and ⟨H|H⟩ = ⟨V |V ⟩ = 1 was used from the fourth to the fifth line.
Similarly, the three other expectation values can be calculated,

⟨RS⟩ =
1√
2
, ⟨RT ⟩ =

1√
2
, and ⟨QT ⟩ =

−1√
2
. (1.60)

substituting these quantities in to the CHSH inequality gives

⟨QS⟩ + ⟨RS⟩ + ⟨RT ⟩ − ⟨QT ⟩ = 2
√

2. (1.61)

This is a clear violation of the classical bound of 2. States which violate this equality are
called entangled states, and the |Ψ−⟩ state used for this example is a maximally entangled
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state meaning it reaches the upper quantum bound of 2
√

2. |Ψ−⟩ is one of the four Bell
states, which are written as

∣∣Φ+
〉

=
|HH⟩ + |V V ⟩√

2
,∣∣Φ−〉 =

|HH⟩ − |V V ⟩√
2

,∣∣Ψ+
〉

=
|HV ⟩ + |V H⟩√

2
,∣∣Ψ−〉 =

|HV ⟩ − |V H⟩√
2

,

(1.62)

which together make a complete two-qubit basis that any two-qubit system can be described
by. States which obey the classical limitation of the CHSH inequality are called separable
states and can be written as a tensor product of two one-qubit states,

|Ψ⟩ = |ϕ⟩ ⊗ |ϕ′⟩ . (1.63)

When a joint state is separable, it is possible to independently describe each single qubit
state it is comprised of. In this section, entanglement was introduced with an operational
definition as a state that exceeds the classical bound of the CHSH inequality. The formal
definition of an entangled state is a state which is not separable.

1.4.2 GHZ States

Entanglement can also be extended to more than two particles. Much like how the Bell
states are a maximally entangled two-qubit state, GHZ states are maximally entangled
d-qubit states. For example, the three-qubit GHZ state is written as

∣∣GHZ+
〉

=
1√
2

(|HHH⟩ + |V V V ⟩). (1.64)

Interestingly, measuring one of the three qubits in the orthogonal D/A basis prepares a
Bell state between the remaining two qubits. This makes the GHZ state a valuable resource
in quantum information because Bell states are often produced probabilistically, while a
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GHZ state gives access to an on-demand Bell state. Photon GHZ states are in general
very difficult to produce with both high count rates and high fidelity [57]. For example,
Hübel et al. generated GHZ states with triple coincidence count rates around four counts
per hour using cascaded SPDC sources [58]. Two of these three-qubit GHZ states may be
combined using entanglement swapping to entangle four qubits together [59]. Continuing
this process, small entangled clusters can be combined to generate a network of entangled
qubits called a cluster state [60]. Generation of cluster states using this technique is referred
to as ballistic quantum computing [61]. For this reason, GHZ states may play a critical
role in photonic quantum computing in the future.

GHZ states are not limited to two-level systems. In theory, higher dimensional systems
such as those presented in the discussion of spatial and time-frequency modes can be
entangled to create d-dimensional GHZ states with the form

|GHZ⟩ =
1√
d

d−1∑
i=0

|i⟩ ⊗ ...⊗ |i⟩ . (1.65)

1.4.3 Density Matrix Formalism

So far throughout the thesis, the bra-ket notation, ⟨|⟩, has been used to indicate the state
vector describing a quantum state. We have seen entangled state vectors describing multi-
particle states; however, a state vector cannot describe particle 1 in an entangled state
precisely because it isn’t possible to separate the state into two separate Hilbert spaces.
In order to describe the state of particle 1, we introduce a more general description of
quantum states involving density operators, denoted ρ, also known as state operators [62].
The density operator is defined as

ρ =
∑
α

pα |ϕα⟩ ⟨ϕα| , (1.66)

where the system has probability pα of being in state |ϕα⟩. This operator can be represented
by a d×d matrix called the density matrix, where d is the dimension of the quantum state
vectors |ϕα⟩. Expectation values of a physical property A are given by

⟨A⟩ =
∑
α

pα ⟨A⟩α =
∑
α

pα ⟨ϕα|A |ϕα⟩ = Tr(ρA). (1.67)
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The density operator is Hermitian, meaning it is self adjoint: ρ = ρ†. It has unit trace,
Tr(ρ) = 1, and is positive-semidefinite, i.e. ⟨ϕ| ρ |ϕ⟩ ≥ 0 for all |ϕ⟩. If there are two or more
terms in the sum

∑
α, we say that the quantum state is a probabilistic mixture, or mixed

state, and the sum carried out in Eq. 1.66 represents an incoherent mixture as opposed to
the coherent superpositions symbolized by the addition of state vectors. If there is only
one term, we say that the state is pure, and the equality ρ2 = ρ holds. So far, all states
described in this thesis have been pure states, but the states we create in the lab are only
approximately pure.

Density operators of different quantum systems ρ and ρ′ can be compared to understand
the degree of similarity between them. Fidelity is a measurement of similarity which can
be calculated using the formula

F (ρ, ρ′) =

(
Tr

√√
ρ′ρ
√
ρ′
)2

. (1.68)

In the special case where both density matrices represent pure quantum states, the fidelity
equation simplifies to

F (ρ, ρ′) = | ⟨ψρ|ψρ′⟩ |2, (1.69)

where ρ = |ψρ⟩ ⟨ψρ| and ρ′ = |ψρ′⟩ ⟨ψρ′| [63].

We have seen how CHSH inequalities are maximally violated by Bell states and not
violated by separable states. Fidelity can also be used to differentiate separable and en-
tangled states when the density matrix is known. This is done by calculating the fidelity
of the state with each of the four Bell states and taking the highest fidelity value of the
four. A qubit separable state can not achieve a Bell state fidelity of more than 0.5, while a
Bell state will acheive a fidelity of exactly 1 [64]. Therefore, states with a Bell state fidelity
greater than 0.5 are entangled. This metric is an example of an entanglement witness and
is a sufficient condition for demonstrating entanglement.

To describe the state of particle 1 in an entangled state, we introduce the reduced
density operator,

ρ(1) = Tr2ρ, (1.70)

where we are assuming the global state space is a tensor product of two Hilbert spaces,
H1 ⊗H2, particle 1 is in H1, ρ is the global density operator, and Tr2 is the partial trace
which represents a trace on the space H2 and can be computed with the formula
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Tr2(ρ) =
∑
j

(I ⊗ ⟨ϕj|)ρ(I ⊗ |ϕj⟩), (1.71)

where |ϕj⟩ is any orthonormal basis for the Hilbert space H2. Now, we can calculate the
expectation value of an operator A which only depends on particle 1 as

⟨A⟩ = Tr(ρ(1)A). (1.72)

As an example, consider the global two-photon Bell state given by

∣∣Φ+
〉

=
1√
2

(|HH⟩ + |V V ⟩). (1.73)

The reduced density operator of this state is

ρ(1) = Tr2ρ

= Tr2
∣∣Φ+

〉 〈
Φ+
∣∣

=
1

2

[
(I ⊗ ⟨H|)

∣∣Φ+
〉 〈

Φ+
∣∣ (I ⊗ |H⟩) + (I ⊗ ⟨V |)

∣∣Φ+
〉 〈

Φ+
∣∣ (I ⊗ |V ⟩)

]
=

1

2
[|H⟩ ⟨H| + |V ⟩ ⟨V |] ,

(1.74)

where we have chosen the computational basis, |H⟩ / |V ⟩, as our orthonormal basis to
compute the partial trace in Eq. 1.71. Even though the global state, ρ, was in a pure
state, particle 1 is in a mixed state with an incoherent mixture of |H⟩ and |V ⟩. Using the
Poincaré sphere for visualization introduced in Sec. 1.3.1, mixed states can be represented
as vectors with length less than one inside the surface of the sphere.

1.4.4 Concurrence

Measures of entanglement are a widely discussed topic in quantum information science [65].
Bell state fidelity as an entanglement witness is useful for classifying states as entangled
or separable, but it doesn’t order entangled states and claim that one entangled state is
more entangled than another. There are many ways to quantify entanglement which can
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be used in different situations [66, 67]. I will focus on concurrence and tangle which have
been favoured by many experimental physicists and can be analytically computed [68, 69].

Concurrence is defined for two qubit states with density matrix ρ as

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (1.75)

where λi are the eigenvalues, in decreasing order, of the matrix

√√
ρ(σy ⊗ σy)ρ∗(σy ⊗ σy)

√
ρ, (1.76)

where ∗ indicates complex conjugate and matrix square roots are calculated by diagonal-
izing the matrix and taking the square root of each of the diagonal elements. This formula
simplifies for a pure state to

C(ρ) =
√

2[1 − Tr(ρ21)]. (1.77)

where ρ1 is the reduced density operator describing particle 1. The concurrence of a sepa-
rable state is zero, the concurrence of a maximally entangled state is one, and, in general,
higher concurrence values indicate a state is more entangled. The square of concurrence is
referred to as tangle and is often reported instead.

Another commonly discussed entanglement measure, especially among theorists, is en-
tanglement of formation, Ef . I’ll leave out a detailed description of the quantity but instead
mention it can be written as a monotonically increasing function of concurrence as

EF (ρ) = h

(
1 +

√
1 − C2(ρ)

2
.

)
, (1.78)

where h(x) = −xlog(x)− (1−x)log(1−x) is the binary entropy function from information
theory. If you calculate the density matrix of your quantum state in an experiment,
concurrence, tangle, and entanglement of formation, to name a few, can be calculated
to quantify the entanglement of the system. This brings us to how we experimentally
determine the density matrix of a system using quantum state tomography.
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1.5 Quantum State Tomography

Systems in quantum mechanics are intrinsically probabilistic, so the same measurement
on two identical qubits can result in different outcomes. Projective measurements of a
quantum system, such as a polarization qubit passing through a PBS, provide a sample
of the statistics describing the possible outcomes associated with the measurement. If the
same measurement is performed many times on copies of the same state, the statistics of the
measurement can be built up enough to calculate the expected value of that measurement.
For a general state, ρ, the expectation value of a single measurement is not sufficient
to reconstruct the full density matrix, but collecting expectation values of the system in
different bases can begin to build up a more complete picture [56]. This process is called
quantum state tomography, and requires a tomographically complete set of measurements
which span the operator space of ρ in order to measure sufficient count statistics so that
the density matrix can be fully constructed.

First we consider a single qubit density operator. It must be trace one, Hermitian, and
positive-semidefinite. These constraints enable the parametrization

ρ =

(
ρ11 ρ12
ρ21 ρ22

)
=

(
ρ11 ρ12
ρ∗12 1 − ρ11

)
. (1.79)

One example of a tomographically complete set of measurements for a single qubit is
{H,V,D,R}. Starting with H, Born’s rule gives the probability of the projective measure-
ment

PH = Tr(ρ |H⟩ ⟨H|). (1.80)

In a quantum optics lab, we typically produce many photons with equivalent quantum
states and measure detector counts (or more colloquially, clicks) to infer the probability
of the measurement. Adding up the counts of both measurements in a basis, for example
NH + NV = N , gives the total number of photons, N , and allows us to convert counts to
probabilities by division, PH = NH/N .

Born’s rule can be applied to all four measurements, {H,V,D,R}, to create the system
of equations
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NH = Nρ11

NV = N(1 − ρ11)

ND =
N

2
(1 + ρ12 + ρ∗12)

NR =
N

2
(1 + iρ12 − iρ∗12),

(1.81)

There are four elements of the density matrix to solve for, and four equations generated
by Born’s rule. Solving this system of equations gives

ρ =

(
NH/N

ND

N
− 1 − i(NR

N
− 1)

ND

N
− 1 + i(NR

N
− 1) 1 −NH/N

)
. (1.82)

This type of quantum state tomography is called linear inversion. Similarly, Born’s rule
can be used to generate equations for two or more qubits and the linear inversion protocol
can reconstruct density matrices of larger quantum systems. In these cases, coincidence
counts are considered instead of detector singles.

Linear inversion can lead to unphysical density matrices when the count statistics are
noisy. For this reason, maximum likelihood estimation quantum state tomography is a more
common method for experimentally determining quantum states [70]. With this approach,
a density matrix which is constrained to be physical is randomly generated as an initial
guess for an optimization routine. These constraints include normalization, hermiticity,
and positivity [71]. To ensure these properties, the density matrix is constrained by

ρ = T †T/Tr(T †T ) (1.83)

where T is a square matrix with the same dimensions as ρ. Any matrix that can be
written as T †T must be positive-semi definite as ⟨ψ|T †T |ψ⟩ = ⟨ψ′|ψ′⟩ ≥ 0, taking the
adjoint proves Hermiticity as (T †T )† = T †(T †)† = T †T , and dividing by Tr(T †T ) ensures
normalization.

The experiments in chapter 3 and chapter 4 implement this method to reconstruct two-
qubit density matrices which require 16 tomographically complete measurements for a 16
element density matrix. The maximum likelihood estimation algorithm requires inverting
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T to relate its elements to the elements of ρ. It is therefore helpful to represent T as a
lower triangular matrix with elements

T =


t1 0 0 0

t5 + it6 t2 0 0
t11 + it12 t7 + it8 t3
t15 + it16 t13 + it14 t9 + it10 t4

 . (1.84)

A likelihood error function, L, is minimized numerically by searching for the physical
density matrix which is most likely to fit the data. The following function is minimized
with respect to the density matrix elements,

L(ρ̂) =
16∑
i=1

[
NTr(ρ̂|ψi⟩⟨ψi|) − ni

]2
2NTr(ρ̂|ψi⟩⟨ψi|)

, (1.85)

where ρ̂ is the density matrix which describes the two-photon state and is parameterized by
Eq. 1.83 and Eq. 1.84, i is the variable which indexes the 16 different measurements required
for a two-qubit density matrix reconstruction, |ψi⟩⟨ψi| are the tomographically complete
measurement operators, ni are the raw coincidence counts measured in the experiment,
and N is the total number of counts before the projective measurement. Similar to the
one-qubit linear inversion example, N is inferred from a subset of the measurements using
the following relationship

N = Tr(ρ̂|HH⟩⟨HH|) + Tr(ρ̂|VV⟩⟨VV|)
+ Tr(ρ̂|HV⟩⟨HV|) + Tr(ρ̂|VH⟩⟨VH|).

(1.86)

In contrast to the linear inversion technique, maximum likelihood estimation can be em-
ployed on a measurement dataset that is tomographically overcomplete containing more
than the minimum number of measurements.
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Chapter 2

Nonlinear optics

2.1 Chapter Overview

Nonlinear media are imperative for each experiment in this thesis, from entangled photon
generation to ultrafast pulse measurement. Nonlinear optics describes the physics behind
phenomena which occur when light modifies the optical properties of material systems,
which generally requires intense light fields as in those provided by lasers. I begin by
introducing the polarization field generated by an electric field in matter in Sec. 2.2, and
discuss the relation between the two fields. Sec. 2.3 derives and discusses the process
of second harmonic generation (SHG). Spontaneous parametric downconversion (SPDC)
for the generation of entangled photons is described in Sec. 2.4. The optical Kerr effect
is presented as a method for measuring ultrafast single photons in Sec. 2.5. I conclude
with a discussion on ultrafast optics in Sec 2.6, which provides details on ultrafast pulse
propagation in dispersive media.

2.2 Electric Fields in Matter

Nonlinear optical processes discussed in this thesis occur in specifically engineered dielectric
materials. These are materials which are poor conductors that can be polarized by an input
electric field. Unlike conductors, the electrons in a dielectric may not flow freely through
the material. When an electric field is applied, the average position of electrons in the
material shifts enough to create a dipole moment between the electron and atomic nucleus.
The dipole moments between each of the electrons and their respective nuclei add up to
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produce a second electric field which we call the polarization field, P (t). The material
response is altered in a perturbative way [4], which means we can describe P (t) as a Taylor
expansion of the applied electric field, E(t), given by

P (t) = ϵ0
[
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + · · ·

]
= P (1)(t) + P (2)(t) + P (3)(t) + · · · .

(2.1)

where the proportionality constants, χ(i), are known as the linear, second order, and third
order optical susceptibilities, for increasing i, respectively. This representation of the field
assumes instantaneous polarization only depends on the instantaneous electric field, which
is true if the medium responds instantaneously. The Kramers-Kronig relations can be used
to show that this implies the medium is lossless and dispersionless [72, 6]. In general, the
susceptibilities are tensors and depend on the frequencies of the electric field, but under
the current assumptions we take them to be constants.

In the linear optic regime, the polarization field is simply the first term in Eq. 2.1.
The study of nonlinear optics refers to polarization fields which depend nonlinearly on the
applied electric field, and as such, the higher order terms in Eq. 2.1 cannot be ignored.
Note, at high intensities of around 1016W/cm2, corresponding to electric field strengths
on the order of atomic field strengths, a Taylor series expansion of E(t) does not converge
and therefore the polarization field cannot be defined in this way. This regime is referred
to as intense-field nonlinear optics [4], and will not be discussed further here 1. The fields
are written as scalars for simplicity, but the full vector representation of the polarization
requires tensor representations of the optical susceptibilities for each spatial component of
the electric field. It is often convenient to group all higher order terms into one nonlinear
polarization term as

P (t) = P (1)(t) + PNL(t). (2.2)

The polarization field is introduced into Maxwell’s equations presented at the beginning of
Sec. 1.2 by rewriting them in terms of D and H as a replacement for E and B, respectively,
where D is the electric displacement field and H is the magnetic auxiliary field [73]. These
substitutions give

∇∇∇ ·D = ρf (2.3)

1Some physicists do not consider this regime nonlinear optics at all. When discussing the regime, be
sure to clarify “intense-field” nonlinear optics.
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∇∇∇ ·B = 0 (2.4)

∇∇∇× E = −∂B
∂t

(2.5)

∇∇∇×H = Jf +
∂D

∂t
, (2.6)

where ρf is the free charge density, the electric displacement field includes the applied
electric field and the material polarization field as D = ϵ0E + P, Jf is the free current
running through the material, the auxiliary magnetic field includes the applied magnetic
field and magnetization, M, as H = 1

µ0
B−M, and µ0 is the permeability of free space. For

the purposes of describing crystals in the lab where we encounter nonlinear optic effects,
dielectric materials do not have free charges, ρf = 0, we have no wires around the crystals
applying free currents, Jf = 0, and the crystals are non-magnetic, M = 0. Therefore, the
effective difference of Maxwell’s equations, as we move from free space to mattter, comes
from the polarization field, P. We will see in the following sections how the nonlinear
components of the polarization field generate new fields with new frequency components.

2.2.1 The Wave Equation in Nonlinear Media

With the previous assumptions on free currents, charges, and magnetization, the forced
wave equation will be derived to illustrate how the nonlinear polarization field affects wave
propagation through a material. Taking the curl of Eq. 2.5 gives

∇∇∇×∇∇∇× E = ∇∇∇×−∂B
∂t

= − ∂

∂t
(∇∇∇×B)

= − ∂

∂t

(
µ0
∂D

∂t

)
= −µ0

∂2

∂t2
(ϵ0E + P) ,

(2.7)

where we substituted in Eq. 2.6 to get from line two to three. Rearranging and replacing
µ0 by 1/ϵ0c

2 we get
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∇∇∇×∇∇∇× E +
1

c2
∂2

∂t2
E = − 1

ϵ0c2
∂2

∂t2
P. (2.8)

Just as we proceeded in Sec. 1.3.2, we employ the vector calculus identity ∇∇∇×∇∇∇×A =
∇∇∇(∇∇∇ · A) −∇∇∇2A which gives

∇∇∇(∇∇∇ · E) −∇∇∇2E +
1

c2
∂2

∂t2
E = − 1

ϵ0c2
∂2

∂t2
P. (2.9)

In previous sections, ∇∇∇ · E was set to zero by Maxwell’s first equation. We have to be
more careful here because Maxwell’s first equation is now written in terms of D and by
extension includes P. However, in practice for the frequencies considered in this thesis
which are fast relative to the field amplitude envelope, this second derivative term is very
small compared to the other terms due to the slowly-varying amplitude approximation
explained in Sec. 1.3.2, so we will leave it out and write the wave equation as

∇∇∇2E− 1

c2
∂2

∂t2
E =

1

ϵ0c2
∂2

∂t2
P. (2.10)

Splitting up the polarization field into its linear and nonlinear components, P = P(1)+PNL,
and labeling the linear component of the electric displaced field as D(1) = ϵ0E + P(1), we
can rewrite the wave equation as

∇∇∇2E− 1

ϵ0c2
∂2

∂t2
D(1) =

1

ϵ0c2
∂2

∂t2
PNL. (2.11)

This equation is simpler to interpret with an example. Suppose the nonlinear medium is
lossless, dispersionless, and isotropic. The linear electric displacement field is simplified
to D(1) = ϵ0ϵ

(1)E, where ϵ(1) is a permittivity constant which is specific to the dielectric
material. The wave equation in this example simplifies to

−∇∇∇2E +
ϵ(1)

c2
∂2

∂t2
E = − 1

ϵ0c2
∂2

∂t2
PNL. (2.12)

Now that the E-field is in both the spatial and temporal second derivatives, this equation
has the form of a driven wave equation where the nonlinear polarization acts as a source
term [4]. This is called a source term because it can generate new waves with different
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frequencies, which will be the key to the nonlinear optical effects discussed in the com-
ing sections and used throughout the experiments in the thesis. If you take away the
source term, the equation describes free waves propagating with velocity c/

√
ϵ(1) with the

same frequency as the applied electric field E. So far, I’ve assumed the electric field is
monochromatic, but a driven wave equation can be given for each frequency component,
n, as

−∇∇∇2En +
ϵ(1)(ωn)

c2
∂2

∂t2
En = − 1

ϵ0c2
∂2

∂t2
PNL

n , (2.13)

where the permittivity, ϵ(1)(ωn), is now a function of frequency.

2.3 Second Harmonic Generation

The field of nonlinear optics is said to have begun with the first demonstration of second
harmonic generation (SHG). In 1961, only one year after the laser was invented, Franken
et al. [74] detected light with twice the energy of the input optical ruby maser after prop-
agation through a crystalline quartz sample. This effect is due to the χ(2) term of the
nonlinear polarization and will be derived below. The electric field of the laser can be
written as

E(t) = Ee−iωt + E∗eiωt. (2.14)

SHG requires a material with a nonzero second-order susceptibility, χ(2), for which you
need a material that is non-centrosymmetric. The nonlinear P (2)(t) term is nonzero and
expressed as

P (2)(t) = ϵ0χ
(2)E2(t)

= ϵ0χ
(2)E(t)E(t)∗

= 2ϵ0χ
(2)EE∗ + ϵ0χ

(2)E2e−i2ωt + ϵ0χ
(2)(E∗)2ei2ωt.

(2.15)

Consider this equation as the source term for the driven wave equation in Eq. 2.12. The
second time derivative will kill the first term, but when applied to the the second and
third terms it will lead to the generation of new electromagnetic modes with frequency 2ω.
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These modes are called the second harmonic of E. Energy conservation must hold, so the
absorption of two input photons results in the emission of a single photon with twice the
energy. SHG is thereby classified as a three-wave mixing processes where the two input
waves have equal frequency. We number the modes involved in this process as E1 and E2

which must satisfy the driven wave equation and so can be represented as

E1(z, t) = A1e
i(k1z−ω1t) + A∗

1e
−i(k1z−ω1t) (2.16)

E2(z, t) = A2e
i(k2z−ω2t) + A∗

2e
−i(k2z−ω2t) (2.17)

where ωi and ki are the frequency and wave number of mode i, respectively. Energy
conservation mandates ω2 = 2ω1, and ki is given by

ki =
niωi

c
(2.18)

where ni =
√
ϵ(1)(ωi). Both of the modes have a corresponding polarization field,

P1(z, t) = B1(z)e−iω1t +B∗
1(z)eiω1t (2.19)

P2(z, t) = B2(z)e−iω2t +B∗
2(z)eiω2t (2.20)

and must independently obey the driven wave equation,

∂2

∂z2
Ej(z, t) −

ϵ(1)(ωj)

c2
∂2

∂t2
Ej(z, t) =

1

ϵ0c2
∂2

∂t2
Pj(z, t) (j = 1, 2), (2.21)

where ∇∇∇2 has been simplified to ∂2

∂z2
as we are considering fields that only depend on a

longitudinal coordinate z. The amplitudes for the polarization fields are written as

B1(z) = 2ϵ0χ
(2)A2A

∗
1e

i(k2−k1)z (2.22)

B2(z) = ϵ0χ
(2)A2

1e
2ik1z. (2.23)
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After substitution of electric and polarization fields into Eq. 2.21, we get the following
coupled-amplitude equations

dA1

dz
=
iω2

1χ
(2)

k1c2
A2A

∗
1e

−i(2k1−k2)z (2.24)

dA2

dz
=
iω2

2χ
(2)

2k2c2
A2

1e
i(2k1−k2)z. (2.25)

where the differential equations have been simplified by employing the slowly-varying am-
plitude approximation introduced in Eq. 1.36 to each Aj to neglect second derivatives
as, ∣∣∣∣d2Aj

dz2

∣∣∣∣≪ ∣∣∣∣kj dAj

dz

∣∣∣∣ . (2.26)

These coupled differential equations describe the propagation of input beam and second
harmonic field amplitudes through the crystal and illustrate how the second harmonic is
generated in the crystal as a consequence of the nonlinear polarization field PNL(z, t) =
P (2)(z, t). The undepleted-pump approximation assumes that A1 is constant and enables a
direct integration of Eq. 2.25 to see how the second harmonic field generates and progresses
through the crystal. As more of the pump field is converted into the second harmonic field,
this approximation is no longer accurate and the two coupled equations must be solved
simultaneously. In the undepleted-pump regime of a crystal with length L,

∫ L

0

dA2 =
iω2

2χ
(2)A2

1

2k2c2

∫ L

0

dzei(2k1−k2)z

A2(L) =
iω2

2χ
(2)A2

1

2k2c2

(
ei∆kL − 1

i∆k

)2 (2.27)

where ∆k = 2k1 − k2 is the SHG wavevector mismatch. The intensity of the second
harmonic field is obtained by the time-averaged Poynting vector, I2 = 2n(ω2)ϵ0c|A2|2,
giving
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I2 =
n(ω2)ϵ0ω

4
2(χ(2))2|A1|4

2k22c
3

∣∣∣∣ei∆kL − 1

i∆k

∣∣∣∣2
=
n(ω2)ϵ0ω

4
2(χ(2))2|A1|4

2k22c
3

L2sinc2(∆kL/2)

==
ω2
2(χ(2))2I21

8c3ϵ0n(ω2)n2(ω1)
L2sinc2(∆kL/2),

(2.28)

where sinc = sin(x)/x, and constants have been simplified using kj = ωjn(ωj)/c. By
tuning the wave vector mismatch parameter, I2 can be maximized. This process is called
phase-matching and will be discussed in more detail in the following section. In general,
nonlinear optical phenomena involving modes with different frequencies have a wave vector
mismatch parameter which changes depending on the number of fields involved and the
type of nonlinear optical phenomenon, but the concept of phase-matching is universal to
all of these processes.

Here, we focused on the second harmonic of a laser. This is the only harmonic used
in experiments in this thesis, but for interested readers, it should be noted that higher
harmonics are also studied. In crystals with strong χ(3) or χ(4) susceptibility components,
third harmonic generation (THG) and fourth harmonic generation (FHG) respectively, is
possible. Note, FHG can also be effectively accomplished with two cascaded SHG crystals,
and thus even higher frequency modes are theoretically accessible using multiple stages of
SHG and THG. High harmonic generation (HHG) refers to the fifth harmonic and above,
and in practice utilizes other strategies such as working with a rare gas medium and high
intensity lasers [75].

SHG has seen many different applications including microscopy [76], characterization
of crystalline materials [77], and ultrashort pulse measurement [78, 79]. Many researchers
employ SHG to produce light with a higher frequency than their laser can generate, or
when multiple frequencies are needed on a table with only one laser. Crystals can be
purchased and mounted for free-space optics, and prealigned fiber-integrated SHG modules
are available for fiber optic applications. Interestingly, many sub-research grade green laser
pointers available to the public are actually IR laser pointers with an inefficient SHG crystal
embedded. You can’t see the IR frequency with your eyes, but it is often the dominant
intensity.
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2.3.1 Phase-matching

We have seen that the intensity of the second harmonic field in the previous section depends
on the length of the crystal and the wavevector mismatch as sinc2(∆kL/2). This function
is presented in Fig. 2.1 and decreases as |∆k|L increases. This efficiency drop occurs when
the second harmonic field falls out of phase with the input laser field. Both fields are
in a medium with an index of refraction which varies with light frequency. As soon as
higher frequency second harmonic light is generated, it travels through the medium with
a different speed than the input light field and the longer the crystal, the more out of
phase the two fields become. Once out of phase, newly generated second harmonic light
will destructively interfere with previously generated second harmonic light. The goal of
phase-matching is to keep the input and SHG fields in phase with each other such that
newly generated light fields will constructively interfere with previously generated light
fields and boost the second harmonic intensity.

Figure 2.1: Visualization of relationship between SHG efficiency and wavevector mismatch.
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Perfect phase-matching occurs when ∆k = 0. In practice, this comes down to tuning
the index of refraction of the material as

∆k = 0

2k1 = k2

2n(ω1)ω1

c
=
n(ω2)ω2

c
n(ω1) = n(2ω1),

(2.29)

where ω2 = 2ω1. The difficulty of phase-matching arises from the fact that the index of
refraction of most materials exhibits normal dispersion. Visualized in Fig. 2.2, normal
dispersion results in an index of refraction which monotonically decreases with increasing
wavelength.

Figure 2.2: Index of refraction in silica as a function of wavelength.
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To circumvent this, a common phase-matching technique takes advantage of birefrin-
gence. If the input light has a different polarization than the second harmonic light, then
the two fields “see” a different index of refraction in a birefringent material.

The relative index of refraction difference between the two fields must be tuned in
order to satisfy n(ω1) = n(2ω1). This is done in two ways: Temperature tuning and
angle tuning. The index of refraction is a function of crystal temperature, and in many
birefringent materials the birefringence also depends on temperature. Nonlinear crystals
can be heated to a particular temperature in an oven with a window for input and output
beams. Angle tuning involves changing the angle between the incoming light and and
optic axis of the crystal in order to tune the relative birefringence experienced by the two
fields. This technique is limited because large angles between the surface of the crystal
and the incoming light will lead to spatial walk-off between the two fields. However, when
combined with temperature tuning, a Goldilocks angle/temperature combination can lead
to perfect phase-matching without large angle changes. In some cases, angle tuning is
sufficient for high efficiency nonlinear optical processes. Crystals are pre-cut to ensure the
incidence angle is very close to the perfect phase-matching angle to avoid large incidence
angles and spatial walk-off.

2.3.2 Non-centrosymmetric Media

Earlier it was stated that as a χ(2) process, SHG requires non-centrosymmetric materials,
that is, materials that do not possess inversion symmetry. Below, SHG is used as an
example of χ(2) vanishing in centrosymmetric media to provide more intuition between the
relationship between χ(2) and crystal symmetry as shown in Ref [4].

We have shown that the nonlinear polarization is related to the incident electric field
as

P (2)(t) = ϵ0χ
(2)E2(t). (2.30)

Assume the applied field is given by

E(t) = Acosωt. (2.31)

Now, if we take an identical applied field with the opposite sign, we expect the polarization
field to change as well because the medium is symmetric under spatial inversion. This would
change Eq. 2.30 to
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−P (2)(t) = ϵ0χ
(2)[−E(t)]2, (2.32)

which simplifies to

−P (2)(t) = ϵ0χ
(2)E2(t). (2.33)

Comparing this to Eq. 2.30, it follows that both statements can only be true if P (2)(t) = 0,
implying that χ(2) = 0.

2.4 Spontaneous Parametric Downconversion

Spontaneous parametric down-conversion (SPDC) is another three-wave mixing process
which occurs in a χ(2) medium. In contrast to SHG, the input field is higher in frequency
and a photon “down-converts” into two lower frequency photons. This process is how all
entangled photon pairs are created in the experiments in this thesis, and for historical rea-
sons, we refer to the high-frequency parent photon as the “pump” and the two entangled
daughter photons as the “signal” and “idler”. The signal and idler photons need not be
equal in energy, but energy conservation must hold giving ωp = ωs +ωi. This phenomenon
was first observed in 1967 by Harris et al. [80] by pumping a lithium niobate (LiNbO3) crys-
tal with a 488 nm argon laser. They observed that spontaneous fluorescence was tunable
from 540 nm to 660 nm by temperature phase-matching the crystal.

Three years later in 1970, Burnham and Weinberg [81] demonstrated SPDC in an am-
monium dihydrogen phosphate crystal by pumping with a 324 nm He-Cd laser. This ex-
periment is particularly important in the history of quantum optics because they recorded
single photon pair coincidence-counts. When they moved one of the two photo-multiplier
detectors in either the horizontal or vertical direction, changed the spectral filters, or altered
the relative delay time between the two paths, the coincidence rates would drop down to
the expected accidental rates. This demonstrated that energy conservation and momentum
conservation of photon pairs both had to be satisfied in order to detect pair-coincidences.
This groundbreaking experiment laid the foundation for SPDC to become the workhorse
of future quantum optics experiments. Other single photon generation methods are em-
ployed today such as quantum dots [82], single atom systems [83], and nitrogen-vacancy
centres in diamond [84], to name a few. While they each have their advantages, SPDC
remains the most commonly used in academia and industry for quantum information and
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communication experiments, with a plethora of applications across quantum cryptogra-
phy, quantum metrology, quantum simulation, and exploring the foundations of quantum
mechanics [85, 86].

Similar to the derivation of the SHG coupled differential equations, the amplitudes of
the fields in a three wave mixing process are described by coupled differential equations
given by

dA1

dz
=
iχ(2)ω2

1

k1c2
A3A

∗
2e

−i∆kz

dA2

dz
=
iχ(2)ω2

2

k2c2
A3A

∗
1e

−i∆kz

dA3

dz
=
iχ(2)ω2

3

k3c2
A1A2e

i∆kz,

(2.34)

where ∆k = k1 + k2 − k3 is the wave vector mismatch, and ω3 = ω1 + ω2. SPDC starts
with a strong A3(t = 0) field coming from the laser and no photons in the other two
modes, A1(t = 0) = A2(t = 0) = 0. Note, these initial conditions set all three coupled
differential equations to zero. So, classically this process cannot be sparked by just the
A3 field. A quantum mechanical description of the fields and the vacuum of unpopulated
modes allows for spontaneous production of signal and idler photons [87]. SPDC has been
wonderfully described quantum mechanically by many past group members. Interested
readers are strongly recommended to check out similar descriptions to what is presented
below in references [88, 89].

2.4.1 SPDC in the Discrete Picture

To begin, we assume the pump is in an initial single-mode coherent state and the signal
and idler are in the vacuum state. We also assume, as we did in the SHG derivation, that
there is only a single component to the χ(2) tensor and it can be treated as a scalar. The
Hamiltonian describing this system will be broken into two terms, the free Hamiltonian in
the media, Ĥ0, and the nonlinear interaction term, ĤNL, as

Ĥ = Ĥ0 + ĤNL. (2.35)

The nonlinear interaction term in the Hamiltonian couples the three fields together and is
given by the normal-ordered energy conserving terms as

46



ĤNL = −ϵ0
3
χ(2)

∫
V

dV Ê(−)
s Ê

(−)
i Ê(+)

p + Ê(−)
p Ê(+)

s Ê
(+)
i , (2.36)

where Ê(+) and Ê(−) are previously defined in Eq. 1.12. Time evolution of our state is
given by

|ψ⟩ = e−iĤNLt/ℏ |0⟩s |0⟩i |α⟩p , (2.37)

which to first order is expanded to

|ψ⟩ = |0⟩s |0⟩i |α⟩p +
itϵ0χ

(2)

3ℏ

∫ t

0

dt′
∫
V

dV Ê(−)
s Ê

(−)
i Ê(+)

p |0⟩s |0⟩i |α⟩p

+
itϵ0χ

(2)

3ℏ

∫ t

0

dt′
∫
V

dV Ê(−)
p Ê(+)

s Ê
(+)
i |0⟩s |0⟩i |α⟩p .

(2.38)

The second term in the state describes the process of SPDC where a pump photon is
annihilated and a signal and idler photon are created. Recall that the Ê(+) and Ê(−)

rather unintuitively correspond to destruction and creation ladder operators, respectively.
The third term describes the reverse process, sum-frequency generation (SFG), where the
signal and idler photons are detroyed to create a pump photon. SHG is the special case of
SFG where both input photons are the same frequency.

Focusing on the second term which we now label as |ψ⟩spdc, and dropping the constant
coefficient, we substitute in Eq. 1.12 to get

|ψ⟩spdc ∝
∑
kski

∫ t

0

dt′
∫
V

dV αa†ks
a†ki
ei(ωs+ωi−ωp)t′ei(ks+ki−kp)·r |0⟩s |0⟩i |α⟩p , (2.39)

where the mathematical definition of a coherent state âkp |α⟩ = α |α⟩ and the fact that the
pump is in a single spatial mode was used to simplify the expression. Carrying out the
time integral over long integration times yields

lim
t→∞

∫ t

0

dt′ei(ωs+ωi−ωp)t′ = 2πδ(ωs + ωi − ωp), (2.40)
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where we can see energy conservation and note that fixing the pump frequency constrains
the sum ωs + ωi. The bandwidth of each photon is not constrained individually, however,
energy conservation leads to anti-correlated frequencies. The higher the signal frequency
is, the lower the idler frequency must be, and vice-versa. The energy level diagram of this
system is displayed in Fig. 2.3.

Figure 2.3: Energy level diagram for spontaneous parametric downconversion. A high
frequency pump field, ωp, is incident on a χ(2)-nonlinear crystal and downconverted to
lower frequency signal, ωs, and idler, ωi, fields.

Assuming a crystal with physical dimensions Lx,Ly, and Lz, we can write the volume
integral as

∫
V

dV e−i(ks+ki−kp)·r =

∫ Lx

0

dxe−i∆kxx

∫ Ly

0

dye−i∆kyy

∫ Lz

0

dze−i∆kzz (2.41)

where ∆kj = ks,j + ki,j − kp,j for j = (x, y, z). Each of these integrals can be solved as

∫ Lx

0

dxe−i∆kxx = e
−i∆kxLx

2 Lxsinc

(
∆kxLx

2

)
(2.42)

Resulting in a sinc(∆kjLj/2) function for each direction. Similar to our classical approach
to phase-matching in SHG, we see an optimal phase-matching region near ∆kzLz/2 = 0.
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2.4.2 SPDC in the Continuum Picture

So far we have been analyzing the Hamiltonian in terms of ladder operators defined for
discrete wave vectors by using the discrete definition of the E(+) and E(−) terms derived in
Eq. 1.12 by assuming the field is quantized in a cavity. We can also learn from an analysis
in the continuum picture using the definitions from Eq. 1.13 instead. In this picture, the
Hamiltonian is written as

ĤNL = − ϵ

3
χ(2)

(
ℏ

4πϵ0cA

) 3
2
∫ Lz

0

dz

(∫
dωs

√
ωs

n(ωs)
a†s(ωs)e

−i(ωst−ksz)

)
×
(∫

dωi

√
ωi

n(ωi)
a†i (ωi)e

−i(ωit−kiz)

)
×
(∫

dωp

√
ωp

n(ωp)
ap(ωp)e

i(ωpt−kpz)

)
+ h.c.

(2.43)

where h.c. implies Hermitian conjugate to avoid writing out the other three integrals de-
scribing three-wave mixing. Although each free wave was originally defined out to L→ ∞
in the z direction, the interaction Hamiltonian only describes waves inside the crystal of
length Lz. An integral along the z-axis will once again provide phase-matching information
as

1

Lz

∫ Lz

0

dzei(kp−ks−ki)z = e
i∆kLz

2 sinc

(
∆kLz

2

)
, (2.44)

where the phase mismatch, ∆k = kp − ks − ki, is along the z-axis. This term is given the
name phase-matching function, denoted

Φ(ωs, ωi, ωp) = e
i∆kLz

2 sinc

(
∆kLz

2

)
, (2.45)

where frequency dependence stems from the dependence of kj on ωj, as kj =
n(ωj)ωj

c
. As

done in Sec. 2.4.1, time evolution of this Hamiltonian to first order gives
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|ψ⟩spdc ∝
∫
dωsdωidωpα(ωp)Φ(ωs, ωi, ωp) (2πδ(ωs + ωi − ωp)) a

†
s(ωs)a

†
i (ωi) |0⟩s |0⟩i |α⟩p

∝
∫
dωsdωiα(ωs + ωi)Φ(ωs, ωi, ωs + ωi)a

†
s(ωs)a

†
i (ωi) |0⟩s |0⟩i ,

(2.46)

where the delta function removes all reference to pump frequency ωp so we drop the coherent
state |α⟩ from the description.

This representation of the SPDC state can be thought of as a distribution of photon
pairs with frequencies ωs and ωi weighted by the pump amplitude α(ωs + ωi) and phase-
matching function Φ(ωs, ωi, ωs + ωi). Depending on these weighting functions, some joint-
frequency probabilities will be larger than others. The pump amplitude is a function of the
incoming laser only, while the phase-matching function is unique to the nonlinear medium.
Note, ωs does not necessarily need to be equivalent to ωi, but can be depending on pump
amplitude and phase-matching. The ωs = ωi case is called degenerate SPDC, and the
ωs ̸= ωi case is called nondegenerate SPDC.

2.4.3 Phase-matching

Just as in SHG, birefringent materials can be used to ensure the pump photons and SPDC
produced photons “see” a different refractive index. A β-barium borate (BBO) crystal
is used to produce photons in chapter 5 and is an example of a negative uniaxial crystal
where the extraordinary wave travels faster than the ordinary wave (ne < no). Ordinary
waves have a polarization parallel to the optic axis, while light waves which travel in the
same direction as ordinary waves but with orthogonal polarization are extraordinary waves.
They get their name from the fact that they do not obey Snell’s law of refraction (which is
extraordinary, I suppose) while ordinary waves do obey Snell’s law. When an e-polarized
pump photon downconverts to two o-polarized photons, its called type-I SPDC. If instead,
an e-polarized pump photon downconverts to one e-polarized photon and one o-polarized
photon, its called type-II SPDC. When type-I SPDC is employed, the photons can not be
separated by polarization. In this case, noncollinear SPDC or nondegenerate SPDC can be
implemented to separate the photons spatially or spectrally, respectively. In comparison,
type-II SPDC can be collinear and degenerate because the photons can be separated by
polarization optics such as a PBS.
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BBO crystals can be phasematched by angle tuning the crystal to change the effective
extraordinary index of refraction [90], ne(θ), given by

1

ne(θ)2
=

sin2θ

n̄2
e

+
cos2θ

n2
o

, (2.47)

where n̄e is the principal value of the refractive index along the extraordinary axis, and no

is the refractive index along the ordinary axis. The orientation of the crystal, θ, can be
tuned to match the phase-matching condition ∆k = 0.

2.4.4 Quasi-phase-matching

Phase matching discussed so far relies on birefringence to compensate for the relative
chromatic dispersion between the pump wavelength and SPDC-photon wavelengths. In
some materials, birefringence is not strong enough to compensate for chromatic dispersion.
Even when it is, birefringence can be insufficient to compensate for dispersion when the
pump has a short wavelength because the refractive index of a material usually increases
more rapidly at shorter wavelengths.

Quasi-phase-matching is an alternative strategy to combat dispersion in a material
which involves fabricating periodically poled materials. These are crystals with alternating
crystal structure that is periodic in space and where the crystalline axes are inverted in
each succeeding segment. The inverted crystalline axes lead to an inversion of the nonlinear
coupling coefficient, deff [4].

We represent d(z) as a square-wave function

d(z) = deffsign(cos(2πz/Λ)), (2.48)

where Λ is the poling period, deff is the magnitude of nonlinear coupling coefficient, z is
the propagation distance, and d(z) is related to χ(2) by d(z) = 1

2
χ(2). In terms of its spatial

Fourier series, d(z) is represented by

d(z) = deff

∞∑
m=−∞

Gme
ikmz, (2.49)

where km = (2πm/Λ) is the grating vector of the mth Fourier component, and Fourier
coefficients are given by
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Gm = (2/mπ)sin(mπ/2). (2.50)

Taking m = 1 gives G1 = 2/π. Coupled amplitude equations presented in Eq. 2.34 are
now influenced by the spatially varying nonlinear coupling coefficient and written as

dA1

dz
=

2idQω
2
1

k1c2
A3A

∗
2e

−i(∆kQ−2km)z

dA2

dz
=

2idQω
2
2

k2c2
A3A

∗
1e

−i(∆kQ−2km)z

dA3

dz
=

2idQω
2
3

k3c2
A1A2e

i(∆kQ)z,

(2.51)

where dQ = deffGm, and the new wave vector mismatch parameter is

∆kQ = k1 + k2 − k3 + km. (2.52)

dQ decreases for higher values of m, and to a good approximation quasi-phase-matching
can be modeled for m = 1. This leads to a mismatch factor of

∆kQ = k1 + k2 − k3 − 2π/Λ, (2.53)

and a nonlinear coupling coefficient of dQ = (2/π)deff. Traditionally, quasi-phase match-
ing is done with perfectly periodic poling where the distance between changing nonlinear
coupling coefficients is constant. However, recent work has shown more effective phase
matching techniques are possible with aperiodic poling involving crystals which are man-
ufactured with numerically optimized pole spacing [91]. More complicated crystal domain
engineering involves changing the magnitude of the nonlinear coupling coefficient between
neighbouring pole sites, as well as building sections shorter than the coherence length of
light to maximize SPDC efficiency and shape the phase-matching function [92].

The experiments described in chapters 3 and 4 use a single photon source where type-II
quasi-phase-matching is used to produce single photons in a periodically-poled potassium
titanyl phosphate (ppKTP) crystal. Periodic poling is often achieved in other common
nonlinear optic materials such as lithium niobate (ppLN) and lithium tantalate (ppLT).
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2.4.5 Spectral and Temporal Correlations in SPDC

When considered together, the weighting terms Φ(ωs, ωi, ωs+ωi) and α(ωs+ωi) introduced
in Sec. 2.4.2 are referred to as the joint spectral amplitude (JSA),

F (ωs, ωi) = α(ωs + ωi)Φ(ωs, ωi, ωs + ωi). (2.54)

The JSA is a probability distribution that determines the spectral correlations of the
two-photon state. If it is factorable into spectral functions that describe each photon
individually, such as F (ωs, ωi) = F (ωs)F (ωi), then we say the state is separable because
a separable JSA implies a separable wavefunction. If this is not the case, the distribution
describes energy-time entangled photons.

Figure 2.4: Illustration of the joint spectral amplitude (JSA) resulting from SPDC
with spectral filters placed in each photon path. The blue rectangle represents the
pump amplitude α(ωs, ωi), the green rectangle represents the phase-matching function,
Φ(ωs, ωi, ωs + ωi), and the two larger pink rectangles represent spectral filters Ss(ωs) (hor-
izontal), and Si(ωi) (vertical). The spectrally filtered JSA is shown in orange where all
four rectangles overlap.
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Often, the side-lobes of the sinc(∆kL/2) part of the phase-matching function are un-
desirable and limit the purity, P = Tr(ρ2), of produced photons [93]. This functional-form
of the JSA can be avoided by domain engineering χ(2)-nonlinear crystals to have sections
of varying nonlinearity smaller than the coherence length of the laser, which are built in
to the crystal in the fabrication stage [92]. In contrast, our lab apodizes the side-lobes of
the phase-matching function by placing spectral bandpass filters, Ss(ωs) and Si(ωi),in each
downconverted photon path. The effect of these filters yields the state

|ψ⟩spdc ∝
∫
dωsdωiF (ωs, ωi)Ss(ωs)Si(ωi)a

†
s(ωs)a

†
i (ωi) |0⟩s |0⟩i , (2.55)

which is visually represented in Fig. 2.4. In the experiments in this thesis, each filter
function is realized with angle-tuned long- and short-pass spectral filters, allowing the
bandwidth to be specifically chosen to filter out the side-lobes without filtering the main
phase-matching peak. This provides the additional advantage of filtering out the remaining
pump light, but comes with the caveat that the brightness of the single photon source is
lowered.

Figure 2.5: Joint spectral intensity (JSI) and joint temporal intensity (JTI) of energy-time
entangled photons.

Characterizing spectral and temporal correlations is a major focus in this thesis. Pho-
tons from SPDC are naturally anticorrelated in frequency to satisfy energy conservation,
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as shown in Fig 2.4, and positively correlated in their time-of-arrival. Since SPDC is a
probabilistic process, there is an uncertainty in the generation time of photon pairs corre-
sponding to where in the crystal they were created. Regardless of when they are created,
they must be produced at the same time, hence the positive time-of-arrival correlations.
The two-photon temporal correlations are obtained by Fourier transforming the joint spec-
tral amplitude,

F (ts, ti) =

∫
dωsdωiF (ωs, ωi)e

iωstseiωiti (2.56)

where the SPDC state can now be written as a double time integral,

|ψ⟩spdc ∝
∫
dtsdtiF (ts, ti)a

†
s(ts)a

†
i (ti) |0⟩s |0⟩i , (2.57)

and F (ts, ti) is called the joint temporal amplitude. Joint measurements of the two-photon
state can be filtered to select specific frequency or time-of-arrival components to probe the
correlations. Single photon detectors measure counts proportional to the intensity of the
spectrally or temporally filtered field, not the amplitude, which are related by the squared
absolute value. The joint spectral intensity, |F (ωs, ωi)|2, and the joint temporal intensity,
|F (ts, ti)|2, of energy-time entangled photons are conceptually represented by Fig. 2.5.
Note, separable states that are not entangled in the energy-time degree of freedom can be
written as F (ωs, ωi) = F (ωs)F (ωi), and therefore exhibit circular or non-correlated oval
shapes in the JSI and JTI, as opposed to positively and negatively correlated ellipses shown
in the figure. The widths of these distributions along the ωs = ωi axis and ts = −ti axis
can together be measured to verify energy-time entanglement which will be the focus of
Chapter 5.

2.5 The Optical Kerr Effect

We have seen how crystals with χ(2) nonlinear optical properties enable three-wave mixing
processes such as SHG and SPDC. In this section, we discuss a four-wave mixing nonlinear
optical effect depending on the third order term in the polarization expansion giving a
nonlinear polarization

PNL(ω) = 3ϵ0χ
(3)(ω = ω + ω − ω)|E(ω)|2E(ω), (2.58)
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where we assume linear polarization and take χ(3) to be a scalar for simplicity. The total
polarization is the sum of linear and nonlinear polarization,

P (ω) = P (1)(ω) + PNL(ω)

= ϵ0χ
(1)E(ω) + 3ϵ0χ

(3)|E(ω)|2E(ω)

= ϵ0χeffE(ω),

(2.59)

where

χeff = χ(1) + 3χ(3)|E(ω)|2 (2.60)

is the effective susceptibility which takes both the linear and nonlinear term into account.
Generally [4], the index of refraction of a medium is given by

n =
√

1 + χeff. (2.61)

In many materials, the index of refraction has a component that increases with increasing
electric field intensity as

n = n0 + n̄2

〈
E2(t)

〉
, (2.62)

where n0 is the weak-field refractive index and n̄2 is the second-order index of refraction,
and

〈
E2(t)

〉
=
〈
(E(ω)e−iωt + E∗(ω)eiωt)2

〉
= 2|E(ω)|2. (2.63)

Comparing the two equations for index of refraction, Eq. 2.61 and Eq. 2.63, gives

[n0 + 2n̄2|E(ω)|2] = 1 + χ(1) + 3χ(3)|E(ω)|2

[n2
0 + 4n0n̄2|E(ω)|2 + 4n0n̄

2
2|E(ω)|4] = 1 + χ(1) + 3χ(3)|E(ω)|2.

(2.64)

By only considering terms up to order |E(ω)|2, the constant terms and squared terms can
be compared to give
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n0 =
√

1 + χ(1), n̄2 =
3χ(3)

4n0

. (2.65)

Here, we see higher χ(3) susceptibilities correspond to a larger intensity-dependent index
of refraction.

Figure 2.6: Two ways of measuring an intensity dependent refractive index. (a) A strong
beam modifies its own propagation via self-phase modulation (SPM), and (b) a strong
beam modifies the propagation of a weak beam via cross-phase modulation (XPM). ©
Boyd (2008) [4].

An intensity-dependent index of refraction can also be measured by a weaker probe
beam, E(ω′), when the nonlinear polarization is due to a strong beam of amplitude E(ω)
like before. In this case, the nonlinear polarization is given by

PNL(ω′) = 6ϵ0χ
(3)(ω′ = ω′ + ω − ω)|E(ω)|2E(ω′). (2.66)

Note, the proportionality constant is bigger than the previous nonlinear polarization by
a factor of two. The derivation of intensity dependent refractive index remains the same
except for this factor yielding an index of refraction,

n = n0 + 2n̄
(cross)
2 |E(ω)|2, (2.67)
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where

n̄
(cross)
2 =

3χ(3)

2n0

. (2.68)

Thus, a strong laser induces an intensity-dependent index of refraction change in a weak
probe wave twice as much as it induces in its own index of refraction. These two processes
are depicted in Fig. 2.6. The intensity-dependent change in the nonlinear index of a
strong beam influencing itself is referred to as self-phase modulation (SPM) and shown in
Fig.2.6(a), while a strong beam influencing a second beam in this way is called cross-phase
modulation (XPM), as shown in Fig.2.6(b).

Note that it is also common to define the intensity-dependent index of refraction as

n = n0 + n2I, (2.69)

where we have written n2 without the bar on top to differentiate it from the previous
definition, and I is the time-averaged intensity given by

I = 2n0ϵ0c|E(ω)|2. (2.70)

Comparing our two definitions of n gives

2n̄2|E(ω)| = n2I, (2.71)

which shows n2 is related to n̄2 by

n2 =
n̄2

n0ϵ0c
. (2.72)

Substitution of Eq. 2.65 gives the relationship between n2 and χ(3) as

n2 =
3

4n2
0ϵ0c

χ(3). (2.73)

This change in the refractive index is called the optical Kerr effect, and the XPM variant
is utilized as the core feature for ultrafast temporal measurements of single photons in the
work presented in Chapter 5. Interestingly, this effect was named because of an analogy
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with a different refractive index effect called the Kerr electrooptic effect. Instead of being
caused by the electric field from an optical beam, the Kerr electrooptic effect describes a
changing refractive index due to an applied static electric field, which also scales as the
square of the field strength.

2.5.1 Optical Kerr Shutter

Cross-phase modulation from a strong pulsed laser can be used to perform a gated mea-
surement of the temporal profile of a probe wave [94]. In this thesis, XPM occurs in a
single mode fiber which is not birefringent 2 and is isotropic with no χ(2) component to
the nonlinear polarization, so for the discussion below we will consider a medium with
these properties. The time-dependent index of refraction in the horizontal and vertical
orientation of the fiber is given by

nx(t) = n0 + 2n2Ip(t)

ny(t) = n0 + 2n2bIp(t),
(2.74)

where Ip(t) is the intensity of the pulsed laser which is horizontally polarized, and b = 1/3
for an isotropic material such as SMF [95, 96]. When Ip(t) = 0, we can see the material
is not birefringent, nx = ny. When Ip(t) is increased, the horizontal index of refraction
increases three times faster relative to the vertical index of refraction which creates an
induced birefringence. For a probe beam of wavelength λs in a SMF of length L, the
induced index of refraction imparts a time dependent phase given in each spatial direction
as

∆ϕx(t) = 2n2Ip(t)

(
2πL

λs

)
∆ϕy(t) =

2

3
n2Ip(t)

(
2πL

λs

)
.

(2.75)

If the probe beam is parallel to one of these two axes, it will maintain its polarization and
receive a phase shift. This has been utilized in previous experiments in a configuration

2Technically, SMF has a slight birefringence that is compensated for in experiments with quarter- and
half-waveplates. Putting tension on fibers can also impart a birefringence, but for the remaining discussion
it is sufficient to consider an SMF with no birefringence.
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called a nonlinear optical loop mirror (NOLM) [97], where the phase shift (or lack of phase
shift when no gating is intended), routes photons in the probe wave to a different output
port of a beamsplitter.

Alternatively, if the probe beam is diagonally polarized relative to the horizontally-
polarized pump, the probe experiences a time dependent polarization rotation. When
this effect is followed by a waveplate and PBS to transmit rotated probe light and reflect
unrotated probe light, the configuration is referred to as an optical Kerr shutter. The
difference in the two phase shifts in Eq. 2.75 provides the time-dependent phase difference
experienced by the components of the probe wave parallel and perpendicular to the pump
and is given by

∆ϕ(t) = ∆ϕx(t) − ∆ϕy(t) =
8πn2LeffIp(t)

3λs
. (2.76)

For a pump and probe wave with different centre wavelengths, the two beams will travel
with different group velocities in the SMF. In this case, the nonlinear phase shift can be
modeled as an integral of the pump pulse intensity in the reference frame of the signal
probe beam, given by

∆ϕ(T ) =
8πn2

3λs

∫ L

0

dzIp(T − dwz), (2.77)

where z is propagation distance in the SMF, the temporal walkoff of the two pulses in
the fiber is dw = v−1

gp − v−1
gs , vgp and vgs are the group velocities of the pump and signal,

respectively, and T = t− z/vgs is the reference frame moving with the signal pulse. In the
OKS configuration, a half-waveplate and PBS are placed after the Kerr medium and the
transmission of signal field through the PBS is called the rotation efficiency, given by

η(T ) = sin2(2θ)sin2

(
∆ϕ(T )

2

)
, (2.78)

where θ is the initial angle between pump and signal polarization incident on the SMF.
This efficiency is maximized by θ = π/4, when the pump is set to horizontal and the signal
is set to diagonal.

60



2.6 Ultrafast Optics

Ultrafast laser pulses provide the ability to measure physical processes with incredible time
resolution. The word ultrafast is held for the timing regime of events with a duration of
picoseconds (10−12s) or shorter [98]. For perspective, nanosecond resolution is approxi-
mately the limit of high speed electronics. When looking to route signals, measure fast
phenomena, or interact with a system for only brief moments, femtosecond (10−15s) lasers
are commonly used as a source of ultrashort optical pulses.

Measurement of fast events typically requires gating from even faster processes, making
ultrashort optical pulses difficult to measure. For example, the sports-mode feature in many
cameras can help a photographer capture the moment a golf club strikes a ball. Gating
the fast event of the strike with faster electronic events breaks up the moment into small
pieces to map out the process. In contrast, an optical pulse with a sub-picosecond width
cannot be gated by faster events simply because faster events are difficult and expensive to
produce. Instead, the pulse is used to gate itself using a technique called autocorrelation.

An autocorrelator splits a pulse up with a beamsplitter in an unbalanced Mach-Zehnder
interfermoter where one arm has a variable time delay. The pulses are then combined and
input to a nonlinear crystal. A common method uses SHG and was proposed in 1967 [99].
The output second harmonic generation is recorded as a function of relative time delay
between the two pulses. This is called the intensity autocorrelation, A(2)(τ), and if the
pulse is faster in time than the resolution of the photodetector (which it likely is if you
need an autocorrelator in the first place), is given by

A(2)(τ) =

∫ ∞

−∞
dtI(t)I(t− τ). (2.79)

The intensity autocorrelation provides an estimate of the pulse length because the SHG
signal will be brighter when both beams overlap in time. However, it is an overestimate
of the true pulse length. In 1993, Trebino et al. [100] showed that although the auto-
correlation is insufficient to reconstruct the ultrafast input pulse, the spectrum of the
autocorrelation, called the spectrogram of the pulse, could be measured to reconstruct the
amplitude and phase of the pulse with phase reconstruction algorithms. This technique
is called frequency resolved optical gating (FROG) and was a major breakthrough in the
ultrafast optics community. Readers interested in a detailed description of the algorithms
used in reconstruction and an in-depth description of phase retrieval are encouraged to
read Trebino’s textbook [78].
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Originally developed for classical fields, FROG requires light with a high enough inten-
sity to measure a spectrum of the upconverted signal. In past experiments, our group has
shown that similar phase reconstruction algorithms can be used to reconstruct the ampli-
tude and phase of the joint spectral amplitude to fully characterize energy-time entangled
photons [101, 102]. This technique requires measurement of the joint temporal intensity
and joint spectral intensity, in addition to the time-frequency and frequency-time joint
correlations of the two photons. This thesis builds on this work in Chapter 5 by exploring
an optical gating method which utilizes the χ(3)-enabled optical Kerr effect instead of the
χ(2) processes previously used.

2.6.1 Pulse Propagation in a Medium

An ultrafast pulse is made up of many different modes. It can have multiple spatial modes,
polarization modes, and frequency modes in superposition. When it travels through a
medium, each of the different modes can interact with dipoles in the medium in different
ways which causes the modes to travel at different speeds. This is called dispersion and
regardless of which modes are being dispersed by the medium, the pulse becomes stretched
out in time as the modes walk off from each other. Each type of dispersion has a different
name related to the associated degree of freedom of light, such as modal dispersion, po-
larization dispersion, and chromatic dispersion. The latter two are self explanatory but to
clarify on the first, modal dispersion specifically refers to the spatial mode of light. Single
mode fibers only allow one spatial mode and so are unaffected by modal dispersion, but
multimode fibers couple in different spatial modes which can be separated in time in the
fiber.

Chromatic dispersion has already been mentioned in Sec. 2.5.1, but it is treated more
rigorously here because it is perhaps the most relevant type of dispersion when considering
ultrafast pulses made of many frequencies, and chromatic dispersion affects energy-time
correlations which are a primary focus of this thesis. The bandwidth and pulse width
are related by the Fourier transform, so the shorter a laser pulse is in time, the larger its
bandwidth and the more frequency modes are in superposition within the pulse. Note, for
this reason, femtosecond lasers can also be referred to as broad band lasers.

Recall the form of the nonlinear driven wave equation from Sec. 2.2.1,

−∇∇∇2E(t) +
ϵ(1)

c2
∂2

∂t2
E(t) = − 1

ϵ0c2
∂2

∂t2
PNL(t). (2.80)
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Chromatic dispersion affects the frequency modes of the electric field, so we can rewrite
the fields in terms of their frequency dependence using the Fourier transform,

E(t) =
1√
2π

∫
dωE(ω)eiωt

PNL(t) =
1√
2π

∫
dωPNL(ω)eiωt.

(2.81)

substituting these into the driven wave equation, taking time derivatives of eiωt, and re-
placing ϵ(1) with n2(ω) gives

−∇∇∇2E(ω) − n2(ω)ω2

c2
E(ω) =

ω2

ϵ0c2
PNL(ω). (2.82)

In the absence of a driving nonlinear polarization field, PNL(ω) = 0, one possible solution
is given by plane waves where the field does not depend on x or y, given by

E(ω, z) = A(ω − ω0)e
−ik(ω)z + A∗(−ω − ω0)e

ik(ω)z, (2.83)

where k(ω) is the wave vector in the linear medium given by

k(ω) =
n(ω)ω

c
. (2.84)

The terms in the complex exponent are often grouped together as

ϕ(ω, z) = k(ω)z, (2.85)

and referred to as the spectral phase. The dynamics of pulse propagation are described by
the frequency dependent wave vector, and for this reason it is also commonly called the
propagation constant. Expanding k(ω) about the central frequency of the pulse, ω0, gives

k(ω) = k(ω0) +
dk

dω
(ω − ω0) +

1

2!

d2k

dω2
(ω − ω0)

2 +
1

3!

d3k

dω3
(ω − ω0)

3 + . . . , (2.86)
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where the derivatives of k(ω) are evaluated at ω0. Each of these derivatives have significant
meaning for understanding pulse propagation, so we will label them as kn = dnk

dωn and write
k(ω) as

k(ω) = k0 + k1(ω − ω0) +
1

2!
k2(ω − ω0)

2 +
1

3!
k3(ω − ω0)

3 + . . . . (2.87)

Note, notation can change between sources giving a description of pulse dispersion. Some
textbooks refer to the propagation constant as β(ω), and others describe dispersion by
expanding the spectral phase, ϕ(ω, z), and labelling its derivatives instead.

The phase velocity is given by the zeroth order term as

vp =
ω0

k0
, (2.88)

while the group velocity of the pulse is a function of the first order term as

vg =
1

k1
. (2.89)

The group velocity can be thought of as the velocity at which the medium transfers the
energy of a pulse. It is equivalent to the speed of light when the pulse is in a vaccuum,
and slows down as the index of refraction of the material increases. In media where
higher order terms, k2, k3 . . . kn are negligible, the pulse does not experience chromatic
dispersion. However, when these terms contribute to the propagation, each higher order
derivative describes a higher order of dispersion where frequency components travel with
a linear, quadratic, or higher order variation in ω. These terms modify the shape of the
pulse in time and frequency.

For example, when k2 is nonzero, each frequency component receives a time delay,

τ(ω) =
dϕ

dω
=
d(k(ω)z)

dω
= k1z + k2(ω − ω0)z. (2.90)

The first term, k1z is the delay corresponding to the central frequency mode, while the
relative delay of each frequency component is given by the coefficient of the second term,
k2z. This is called linear chromatic dispersion because the difference in the velocity of
spectral modes varies linearly.
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Dispersed pulses are also known as chirped pulses. This stems from the fact that a
dispersed pulse has increasing (or decreasing) frequency over time similar to a bird’s chirp.
The amount of chirp is often given by the chirp parameter,

A =
1

2

d2ϕ

dω2
=
k2z

2
, (2.91)

which is also the coefficient of (ω−ω0)
2 in the expansion of spectral phase about the centre

frequency. For this reason, we say that a linear chirp corresponds to a quadratic spectral
phase. Similarly, quadratic chirp corresponds to cubic spectral phase, and so on for higher
orders of dispersion.

The sign of the chirp parameter indicates whether higher or lower frequencies travel faster.
Most materials, such as fiber and nonlinear crystals described in this thesis, lead to a
positve chirp, |A| > 0, where low frequencies travel faster than high frequencies. This is
called normal dispersion. Negative chirp, |A| < 0, is called anomalous dispersion and is
a property of some specifically engineered fibers where the high frequencies travel faster
than the lower frequencies. In the next section, I’ll show how anomalous dispersion can be
introduced by gratings to counteract normal dispersion in fiber.

Optical materials manufacturers often report the index of refraction 3 instead of the
propagation constant. To calculate the dispersion caused by a material, we need to rewrite
the propagation constant terms as functions of the index of refraction. The first three
terms are given by

k0 = k(ω)
∣∣∣
ω=ω0

=
n(ω0)ω0

c

k1 =
dk(ω)

dω

∣∣∣
ω=ω0

=
ω0

c

(
n(ω0)

ω0

+
dn(ω)

dω

∣∣∣
ω=ω0

)
k2 =

d2k(ω)

dω2

∣∣∣
ω=ω0

=
ω0

c

(
2

ω0

dn(ω)

dω

∣∣∣
ω=ω0

+
d2n(ω)

dω2

∣∣∣
ω=ω0

)
.

(2.92)

Therefore, to calculate propagation constant derivatives, we need the entire function,
n(ω). In 1872, Wolfgang Sellmeier proposed equations that modeled the empirical rela-
tionship between the index of refraction of a material and optical wavelength [103] of the
form

3Unfortunately the exact number is actually a trade secret because it can be used to figure out what
dopants the company uses. Fortunately, many online libraries provide decent estimates of n for different
materials.
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n2(λ) = 1 +
∑
k

ckλ
2

λ2 − λ2k
. (2.93)

The constants ck and λk are different for each material and a large table containing the
constants for most relevant materials can be found at [104]. For example, fused silica
(SiO2) in fibers has the following Sellmeier equation in the near infrared (NIR), for λ given
in micrometers (µm):

n2(λ) = 1 +
0.6962λ2

λ2 − (0.06840)2
+

0.4079λ2

λ2 − (0.1162)2
+

0.8975λ2

λ2 − (9.896)2
. (2.94)

This relationship between n and λ isn’t directly compatible with the frequency depen-
dent equations we have derived. So, k0, k1, and k2 can be written in terms of λ by using
the relationship between λ and ω,

λ =
2πc

ω
, (2.95)

and the differentiation chain rule to get

dλ

dω
=

−2πc

ω2
. (2.96)

Substitution of Eq. 2.95 and Eq. 2.96 into Eq. 2.92 gives

k0 = k(λ)
∣∣∣
λ=λ0

=
2πn(λ0)

λ0

k1 =
dk

dω

∣∣∣
ω=ω0

=
dk

dλ

dλ

dω

∣∣∣
λ=λ0

=
λ0
c

(
n(λ0)

λ0
− dn(λ)

dλ

∣∣∣
λ=λ0

)
k2 =

d2k

dω2

∣∣∣
ω=ω0

=
d

dω

(
dk

dλ

dλ

dω

)∣∣∣
λ=λ0

=
λ30

2πc2
d2n(λ)

dλ2

∣∣∣
λ=λ0

.

(2.97)

2.6.2 Dispersion Manipulation

In many optics experiments, single photon sources are compartmentalized and separated
from the experiment by fiber. This is done to filter the spatial modes of the generated
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photons and to ensure that misalignment of the source doesn’t lead to misalignment of the
rest of the experiment. With sources pumped by monochromatic continuous wave (CW)
lasers, polarization rotation in the fiber is all there is to be concerned about. With pulsed
sources, however, normal dispersion in the fiber is also a concern. The frequency modes
separate from each other in time and the pulse stretches out. Chapter 5 involves measuring
the energy-time correlations of photon pairs, and ideally we would like a measurement of
the original pulse structure without normal dispersion altering the correlations.

To combat the normal dispersion in fiber, optics which spread out a beam’s frequency
modes, such as prisms [105] or diffraction gratings [106], can be used to geometrically
engineer an anomalous dispersion setup where low frequency light has a longer path length
to travel. If a pulse has been normally dispersed and spread out by fiber, the act of
applying anomalous dispersion is called pulse compression because the pulse goes back to
being shorter in time. Prism compressors have low loss but can take up a lot of space, and
diffraction grating compressors are more compact but result in higher losses.

A diffraction grating based pulse compressor is illustrated in Fig. 2.7 (a). A light pulse
is guided into the compressor at an angle θi relative to the normal. The first grating re-
flects the incoming pulse at an angle proportional to frequency, with the centre frequency
reflected at angle θd. The second grating collimates the frequency components which are
directed to a mirror. The mirror reflects the pulse back along the path it entered which re-
combines the frequency components spatially. Throughout the two paths, higher frequency
components travelled a shorter distance than lower frequency components, illustrated by
red and blue lines, which results in anomalous dispersion. The dispersion can be tuned by
increasing the distance between the two gratings. To separate the incoming and outgoing
pulses, the mirror can be slightly tilted out of the plane of this diagram. This results in
two beams of slightly different heights before and after the compressor.

In Fig. 2.7 (b) you can see the spread in colours as a function of time within the
pulse, where the blue frequency components are on the leading edge of the pulse, and the
red frequency components trail. This is what we expect for anomalous dispersion where
|A| < 0. Fig. 2.7 (c) shows the process that gives the compressor its name. Normally
dispersed light, such as a pulse that has travelled through a normally dispersive medium,
has its frequency components compressed back to the centre. If tuned properly, it can
cancel out the dispersion applied by the dispersive medium. A picture of the grating
compressor built for the experiment in chapter 5 is shown in Fig. 5.8.

The dispersion angle, θd, is given by the grating equation as

sin(θd) = sin(θi) +mλΛ, (2.98)
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Figure 2.7: Schematic of a diffraction grating based pulse compressor. (a) A pair of gratings
and a mirror make a pulse compressor which applies anomalous dispersion. A pulse comes
in at angle θi relative to the gratings, the centre frequency of the pulse is reflected at
angle θd relative to the gratings, and it travels a distance D to the second grating. The
backwards path recombines the frequency components spatially. (b) An example of a short
pulse having its frequency components spread out in time by a grating compressor. (c) An
example of a normally dispersed pulse compressing back to its short duration by a grating
compressor.

where m is the diffraction order and Λ is the grating frequency usually provided by the
grating manufacturer in units of lines per mm. Taking the derivative of Eq. 2.98 gives,

dθd
dλ

=
mΛ

cos(θd)
. (2.99)

Gratings are built to be most efficient when θi = θd, known as the Littrow configuration.
After two passes and four grating reflections, a total transmission efficiency of 65% is
possible [107, 108, 109]. If the gratings are far apart, it is sufficient to consider only the
path between the two gratings as the wavelength dependent part of the path length, P ,
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given by

P = 2Dcos(θd). (2.100)

Note, for shorter path lengths, the path between the second grating and the mirror should
also be considered to be wavelength dependent. A formal derivation of this case is given
in Ref [89]. Differentiating Eq. 2.100 and substituting in Eq. 2.99 gives

d2P

dλ2
=

−2m2Λ2D

cos2(θd)
, (2.101)

which leads to a chirp given by [98],

A =
1

2

d2ϕ

dω2
=

−m2λ3Λ2

2πc2cos2(θd)
D. (2.102)

Note the negative sign corresponds to anomalous dispersion, and the distance between the
two gratings can be tuned to change the chirp.

To give an example, gratings with Λ = 1200 lines/mm, a centre wavelength of λ =
847 nm, a dispersion angle of θd = 32◦, and a diffraction order of m = 1 provides a
chirp value of A = −2154.4fs2/mm of grating separation, D. If you compare this to the
normal dispersion in fiber of the same wavelength, A = 21.82fs2/mm, the compressor
comparatively applies two orders of magnitude more anomalous dispersion than a fiber
applies normal dispersion. Therefore, a small grating compressor can compensate the
dispersion from a long fiber.
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Chapter 3

Talbot Effect of Orbital Angular
Momentum Lattices with Single
Photons
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3.1 Chapter Overview

The self-imaging, or Talbot Effect, that occurs with the propagation of periodically struc-
tured waves has enabled several unique applications in optical metrology, image processing,
data transmission, and matter-wave interferometry. In this work, we report on the first
demonstration of a Talbot Effect with single photons prepared in a lattice of orbital angu-
lar momentum (OAM) states. We observe that upon propagation, the wavefronts of the
single photons manifest self-imaging whereby the OAM lattice intensity profile is recov-
ered. Furthermore, we show that the intensity at fractional Talbot distances is indicative
of a periodic helical phase structure corresponding to a lattice of OAM states. This phe-
nomenon is a powerful addition to the toolbox of orbital angular momentum and spin-orbit
techniques that have already enabled many recent developments in quantum optics.

3.2 Context

The Talbot Effect [111] is a near-field diffraction phenomenon whereby periodic phase and
amplitude modulations are self-imaged due to free-space propagation. In accordance with
Fresnel diffraction [112], replicas of a periodic transverse intensity profile reappear after
a specific propagation distance known as the Talbot length. The Talbot Effect has been
demonstrated in numerous areas of research involving linear and nonlinear optical waves
[113, 114, 115], single photons [116, 117, 118], x-rays [119], matter-waves [120, 121, 122,
123, 124, 125], exciton polaritons [126], and Bose-Einstein condensates [127]. The Talbot
Effect has a diverse array of applications in optical metrology [128], imaging processing
[129], and lithography [130, 131, 132], with potential in data transmission [133].

Here we consider the Talbot Effect manifested by lattices of orbital angular momentum
(OAM) states. The OAM degree of freedom of light has garnered significant interest in
various fields ranging from optical manipulation and high-bandwidth communication [134,
135, 136, 137] to quantum information processing [138, 2] and medical diagnostics [139,
140, 141]. In addition to the photonic applications, OAM beams have been extended to
neutrons [142, 143, 144] and electrons [145, 146].

The Talbot Effect has been considered with classical light as well as OAM lattices
[147, 148, 149, 5, 150, 151, 152]. In this chapter, we discuss our results of the first demon-
stration of the Talbot Effect with single photons prepared in a lattice of OAM states. The
extension of the Talbot Effect to single photons and OAM techniques offers the possibility
of utilizing quantum information processing protocols, such as remote state preparation,
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to leverage quantum communication advantages [153]. Furthermore, self-imaging has po-
tential applications in implementing quantum logic operations as qudits may be encoded
in the transverse spatial profile of single photons [154, 155].

3.3 Concept and Theory

3.3.1 The Talbot Effect

The Talbot effect, also known as the self-imaging effect, is a classical optics phenomenon
discovered by Talbot in 1836 [111]. Talbot observed that periodic structures of light will
interfere in the near field, and reappear after a specific propagation distance.

Figure 3.1: The setup for the derivation of the Talbot effect begins with multiple source
emitters at z = 0 propagating along the z-axis and interfering in the near field to give
E(x, z).
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Consider a superposition of plane waves in the XZ plane, coming from sources dis-
tributed along the x-axis. To calculate the electric field at a point x′, z′, denoted E(x′, z′),
we must add up all the contributions from different sources as displayed in Fig. 3.1. To
model this, the electric field before propagation, E(x, z = 0), will be derived and propa-
gated forward in the z-direction using Fresnel diffraction [156]. The initial electric field is
given by

E(x, 0) =
∞∑
−∞

Ene
−inkdx, (3.1)

where

kd =
2π

d
. (3.2)

Fourier transforming into momentum space gives

E(kx, 0) =

∫ ∞

−∞
dxE(x, 0)eikxx

=

∫ ∞

−∞
dx

[
∞∑
−∞

Ene
−inkdx

]
eikxx

=
∞∑
−∞

En

∫ ∞

−∞
dxei(kx−nkd)x

=
∞∑
−∞

En(2πδ(kx − nkd)),

(3.3)

where δ(x) is the Dirac delta function. In one dimension (ignoring y), the Fresnel diffraction
approximation is given as, [157],

E(x, z) =
e−ikz

2π

∫ ∞

−∞
dkxE(kx, 0)e

ik2xz

2k e−ikxx, (3.4)

where k = 2π
λ

is the propagation wave vector. Substituting Eq. 3.3 into Eq. 3.4 gives

73



E(x, z) =
e−ikz

2π

∫ ∞

−∞
dkx

[
∞∑
−∞

En(2πδ(kx − nkd))

]
e

ik2xz

2k e−ikxx

= e−ikz

∞∑
−∞

Ene
i(nkd)

2z

2k e−i(nkd)x,

(3.5)

where the delta function handled the integral and subsequently set all terms where kx ̸= nkd
to zero. Now, define the Talbot length as

zT =
2d2

λ
, (3.6)

which enables writing E(x, z) as

E(x, z) = e−ikz

∞∑
−∞

Ene
i2πn2z

zT e−2πinx/d. (3.7)

The Talbot effect emerges at propagation distance z = zT , where

e
i2πn2z

zT

∣∣∣
z=zT

= e
i2πn2(zT )

zT = ei2πn
2

= 1, for all n. (3.8)

Therefore, the electric field at the Talbot length propagation distance, z = zT , becomes

E(x, zT ) = e−ikzTE(x, 0) ⇒ |E(x, zT )| = |E(x, 0)|, (3.9)

which means the field reproduces itself. Fractional Talbot length distances are also inter-
esting. At z = zT/2, the exponential instead simplifies to

e
i2πn2z

zT

∣∣∣
z=zT /2

= e
i2πn2(zT /2)

zT = eiπn
2

= eiπn. (3.10)

The final equality holds because when n is even, eiπn
2

= eiπn, and when n is odd, n = 2m+1,
giving eiπn

2
= eiπ(2m+1)n = e2πinmeiπn = eiπn. This results in an electric field given by
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E(x, zT/2) = e−ikzT /2

∞∑
−∞

Ene
iπne−2πinx/d = e−ikzT /2

∞∑
−∞

Ene
−2πin(x−d/2)/d. (3.11)

Similar to before, we can write the electric field at half the Talbot length in terms of the
electric field before propagation as

E(x, zT/2) = e−ikzT /2E(x− 1

2
d, 0). (3.12)

From this, we can see that the field is also reproduced at half of the Talbot length, but
with a lateral phase shift of d/2. Continuing in this way, one can calculate the electric field
at even smaller fractional lengths, zT/4, zT/8, etc., to recover the electric field with phase
shifts and increasing image frequency. Plotting out the intensity of the field as a function
of z is referred to as the Talbot carpet. An example of this pattern is shown in Fig. 3.3.

As is demonstrated experimentally later on in Sec. 3.6, a periodic transverse field in two
dimensions propagating in z also realizes reimaging at fractional Talbot length propagation
distances.

3.3.2 LOV Prism Pairs Aside

In this section, a quick history of the optics that are used to create periodic OAM structures
in this chapter and chapter 4 will be presented. Our group joined in to this collaboration
when the “Lattice of Optical Vortices” (LOV) prisms had already been proposed and
demonstrated by Dmitry Pushin and David Cory’s group, and it will help bring context
to briefly share the lead up to this collaboration.

In 2016, Nsofini et al. [158] proposed a way to create spin-orbit entangled states in
neutrons. Spin-orbit coupling in this case refers to correlations between the spin of a
neutron and the orbital angular momentum of a neutron. Entanglement of this type
between different degrees of freedom of a physical system is sometimes referred to as
hyperentanglement. They proposed applying a quadrupole magnetic field operator of the
form

UQ = ei(πr/2rc)[cos(ϕ)σ̂x+sin(ϕ)σ̂y ]

= cos

(
πr

2rc

)
I + isin

(
πr

2rc

)
(l̂+σ̂+ + l̂−σ̂−),

(3.13)
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to a spin-up polarized neutron, where r is the radial coordinate of the field, rc is the radius
at which the neutron spin flips its sign, I is the 2 × 2 identity matrix, l̂± = e±iϕ are
raising/lowering OAM operators, and σ± = (σ̂x ± iσ̂y)/2 are superpositions of the Pauli
operators. Once applied to a spin-up neutron, the polarization and OAM would become
entangled. This operator could be realized by passing a spin-up neutron through the centre
of a quadrupole magnetic field.

Next, in 2018, an analogy from neutron beams to laser beams was formed. Sarenac
et al. [5] showed that the quadrupole operator could be approximated by the repeated
application of two simpler unitary operators of the form

ÛQ = ei(πr/2rc)[cos(ϕ)σ̂x+sin(ϕ)σ̂y ] ≈ (ÛxÛy)
N , (3.14)

where

Ûx = ei
π

2rc
(x−x0)σ̂x , Ûy = ei

π
2rc

(y−y0)σ̂y , (3.15)

and (x, y) are the transverse coordinates of the neutron beam with center coordinate
(x0, y0). Sarenac et al. implemented these unitaries physically with neutron beams and
magnetic fields [144], as well as optically with classical laser light and birefringent prisms [5].

The analogy connecting neutrons and photons highlights the similarities of the two
systems and the benefit of describing quantum systems with a common quantum infor-
mation language. The spin of a neutron is referring to the physical property spin angular
momentum. Photon’s that are circularly polarized carry spin-angular momentum as well,
and the two concepts can both be described by the Pauli matrices and a two-dimensional
Hilbert space. Physically, neutron spin is affected by applied magnetic fields, while photon
polarization is affected by birefringent materials. Both systems also have an orbital angular
momentum component as well. Photon OAM has been discussed in detail in Sec. 1.3.2,
and neutron OAM can be thought of in a similar manner where a neutron beam has a
helical phase dependence.

The physical analogy enables the quadrupole approximating magnetic fields to be repre-
sented in the optics regime by birefringent gradients as seen in Fig. 3.2. Each wedge shaped
optic refers to a single unitary Ux or Uy, where the radial constant has been changed to
a = 2rc. Pairs of these optical elements are referred to as LOV-prism pairs. After Sarenac
et al. published their work in the classical optics regime [5], the LOV prism pairs were
brought to our lab to work with single photons. The intensity pattern is periodic in two-
dimensions, which enabled the first experiment described in the following sections where
two dimensional single-photon Talbot carpets are observed.
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Figure 3.2: Circularly polarized light passes through four birefringent wedges called lattice
of optical vortices (LOV) prism pairs. This creates an array of spin-orbit states which
each have a polarization-dependent orbital angular momentum. The displayed intensity
distribution can be seen by projecting the state on to left circularly polarized light and
placing a CCD camera. © D. Sarenac et al., (2018) [5].

3.3.3 2D Talbot Carpet Realized by Spin-orbit Single Photons

We consider spin-orbit states described by the wavefunction

|Ψ⟩ = A(r, ϕ)
[
cos
(πr
d

)
|R⟩ + ieiℓϕ sin

(πr
d

)
|L⟩
]
, (3.16)

where (r, ϕ) are the cylindrical coordinates, ℓ specifies the OAM number, d is the distance
in which the polarization state performs a full rotation on the Poincaré sphere, |R⟩ and
|L⟩ denote the right and left circular polarization states, and A(r, ϕ) denotes the envelope.
A lattice of spin-orbit states can be obtained by passing circularly polarized light through
pairs of birefringent linear gradients whose optical axes are perpendicular to each other [5,
159]. This may be derived by considering the Suzuki-Trotter expansion of the operator Û
which generates the spin-orbit state in Eq. 3.16 when acting on an input state |R⟩, where

Û = ei
π
d
[xσ̂x+yσ̂y ] = lim

N→∞
(ei

πx
Nd

σ̂xei
πy
Nd

σ̂y)N . (3.17)

Truncating the expansion to N terms, the operators in Eq. 3.17 can be realized by sets of
perpendicular birefringent gradients with the general form
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Ûx = ei
π
a
(x−x0)σ̂x , Ûy = ei

π
a
(y−y0)σ̂y , (3.18)

where the origin of the gradients is given by (x0, y0), σ̂x,y are Pauli matrices, and where
a = Nd. It was shown in Ref. [5] that linear gradients of Eq. 3.18 may be implemented
via “Lattice of Optical Vorticies” (LOV) prism pairs. A LOV prism pair consists of two
wedge-shaped birefringent prisms where the optical axis of the first prism is along the
wedge incline direction and that of the second is offset by 45◦ [5]. By sending a photon in
the right circular polarization state |R⟩ through N sets of LOV prism pairs, we prepare
the state ∣∣ΨN

LOV

〉
= α(x, y)(ÛxÛy)

N |R⟩ , (3.19)

where α(x, y) describes the incoming Gaussian beam envelope with beam waist w0. The
periodic nature of polarization rotations enables the linear gradients to prepare a two-
dimensional lattice of spin-orbit states.

Figure 3.3: Simulated intensity distributions in both the xy and yz planes, where the beam
propagates along z. (a) Right-handed circularly polarized light is sent through N = 2
sets of LOV prism pairs, which yields a lattice of ring-shaped intensity structures when
filtered with respect to the left-handed circular polarization, i.e., I(x, y) = |⟨L|

∣∣ΨN=2
LOV

〉
|2

at propagation distance z = 0. Note that here the Gaussian intensity envelope α(x, y) with
beam waist w0 = 3a is added. (b) By plotting the yz intensity at x = a/4 (indicated in
(a) with the dash dotted white line) we recover what is known as the Talbot carpet. (c)
xy intensity patterns at specific propagation distances z. (d-e) The Talbot carpet and the
xy intensity cross sections when the phase structure of the initial beam is removed. This
demonstrates the effect of the OAM lattice phase structure on the intensity profile at the
fractional Talbot distances.
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Filtering on one circular polarization state prepares a periodically structured intensity
distribution with a lattice spacing of a = λ(∆n tan(θ))−1, where ∆n and θ are the birefrin-
gence and the incline angle of the LOV prism pairs respectively, and λ is the wavelength.
In our experiment we use N = 2 LOV prism pairs and we filter on |L⟩ to obtain an initial
intensity distribution of the form

I(x, y) = |⟨L|
∣∣ΨN=2

LOV

〉
|2

= |α(x, y)|2 cos2
[πx
a

]
cos2

[πy
a

]
× (2 − cos

[
2π(x+ y)

a

]
− cos

[
2π(x− y)

a

]
),

(3.20)

which is depicted in Fig. 3.3(a).This periodic beam structure imprinted by the LOV prism
pairs sets up conditions required for the Talbot Effect. The transmitted light interferes
in such a way that after a distance zT = 2a2/λ, the initial periodic intensity pattern
reappears. The same intensity distribution also appears at half the distance, zT/2, but
with spatial shifts ∆a = a/2 along the x- and y-directions. Furthermore, the intensity
distribution at propagation distances much larger than the Talbot distance results in the
Fourier transform of the initial periodic pattern. The Fraunhofer distance (far-field) is
given by zF = 8w2

0/λ, where w0 is the beam waist. In our setup zF ≈ 166 m.

Theory predicts the same self-imaging phenomenon for single photons. We describe the
free-space propagation of single photons by a complex-valued transverse field distribution
E(x, y) convoluted with the Fresnel propagator

KF (x, y, z) =
eikz

iλz
exp

[
ik

2z
(x2 + y2)

]
, (3.21)

where k is the wavevector. The field E(x, y) at position z is evaluated via

E(x, y, z) =
eikz

iλz

∫∫
dx′dy′E(x′, y′, 0) e

ik
2z

[(x−x′)2+(y−y′)2]. (3.22)

Fig. 3.3(a) shows the simulated transverse intensity distribution, I(x, y) = |⟨L|ψN=2
LOV⟩|2,

before beam propagation. Fig. 3.3(b) and Fig. 3.3(d) depict the intensity distribution
in the yz-planes at x = a/4 for the initial states ⟨L|ψN=2

LOV⟩ and |⟨L|ψN=2
LOV⟩|, respectively.

Fig. 3.3(c) and Fig. 3.3(e) illustrate the intensity distribution in the xy-planes for specific
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propagation distances. We observe that the initial phase profile defines the transverse
intensity pattern at fractional Talbot distances. Furthermore, it can be observed that
the OAM phase structure induces an asymmetry between the intensity distributions at
propagation distances {zT/8,zT/4,3zT/8} and {7zT/8, 3zT/4,5zT/8}.

3.4 Description of emICCD Operation for Single Pho-

ton Counting Experiments

The transverse beam profile of the signal photon is imaged with an electron-multiplying
intensified CCD (emICCD) from Princeton Instruments with model number PI-Max4:1024
EM(B) as shown in Fig. 3.4. The camera has an active area of 1024 x 1024 pixels, which
is slightly larger than a typical 1000 x 1000 megapixel. Each pixel is 13µm x 13µm in
size, which makes an active area of around 1.3 cm x 1.3 cm. In photon counting exper-
iments, each of the pixels on the camera acts as a single photon detector with multiple
amplification steps. Measuring multiple copies of the same photonic state slowly builds up
a 2D intensity pattern corresponding to the probability distribution of a single photon’s
transverse position. There are many parameters to select when operating the camera in
single photon experiments, such as emICCD gain, electronic trigger delay, exposures per
frame, number of frames, and trigger rate. Many different parameter combinations were
tested as we aimed to boost the signal to noise ratio of the images. We built up a list of
parameter heuristics that resulted in images that had a sharp contrast without taking too
long to capture.

The first parameter that must be set is the trigger rate. In our experiment, we use
the idler photon as an external trigger. Too many idler photons per second will overload
the electronic camera trigger, but too few will result in images that take too long to build
up. In our case, the maximum number of available idler photons from our single photon
source (200 kHz) was much larger than the maximum trigger rate accepted by the camera
(20 kHz). We adjusted the laser power pumping the SPDC crystal in order to lower the
idler singles rate to a level that was acceptable for camera triggering, and found 15 kHz to
work best. The idler photon singles rate fluctuates slightly, and a rate of 15kHz ensured
we never crossed the boundary of 20 kHz which would cause electronic trigger errors.

The idler trigger can only effectively herald the arrival of the signal photon if the correct
electronic delay is applied. We delayed the signal photon being imaged by a 30 m fiber
(≈ 144 ns delay) to ensure the idler photon trigger was received by the camera before the
signal photon arrived at the camera. The electronic delay was chosen by first estimating
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Figure 3.4: PI-MAX 4: 1024EM(B) Electron-Multiplied Charge-Coupled Device.

the expected delay due to the optical path differences, and then taking images of the signal
photon with different electronic delays until a 2D Gaussian beam pattern emerged in the
image. This process was trial-and-error based, and was sped up by starting with a large
gate width (analogous to a coincidence window between two single photon detectors). First,
a 100 ns window was used. Once we saw the 2D Gaussian image, we knew the electronic
delay to within 100 ns. Next, the gate width was halved to 50 ns and the electronic delay
was varied until we got the image back. This process was repeated until we reached the
typical 3 ns coincidence window for single photon counting experiments.

For setting the correct gain, an understanding of exposures and frames is beneficial.
An exposure is a single instance of data collection where the shutter of the camera opens,
collects light, and closes [160]. A frame is collected when the camera digitizes the analog
signal. Many exposures can gradually build up signal before it is digitized, which gives us
the choice of how many exposures to include per frame. An exposure takes approximately
2 seconds, and the gate width of 3 ns ensures that only the light which arrived at the
predetermined delay time relative to the idler photon will be intensified. In addition to
choosing the number of exposures and frames to take, which affects the total counting
time of an image, the amount of emICCD gain each exposure is boosted by can be set in
the camera parameters section of the LightField software. When choosing a gain value,
a balance between increasing contrast and saturated pixels must be considered. We have
found that for our external trigger rate, 2000 exposures per frame with an emICCD gain of
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9000 and 20 total frames produced images with the largest contrast. Each of the 20 frames
were added together in postprocessing to create the single photon images in this thesis.

With all of the parameters locked in, background images were taken with the same
parameters as the images while blocking the signal photons incident to the camera. If the
single photon source varied in power over the course of an experiment and the number of
trigger idler photons changed, a new background image was taken to ensure images and
background images had the same external trigger rate. In post-processing, background
subtraction was applied on a pixel-by-pixel basis. This was especially helpful for dealing
with “hot” pixels that consistently lit up brighter.

Dark counts can build up false counts on the pixels across the active area. They
are mainly caused by heat produced by the camera in the amplification steps, and are
minimized by air-cooling the device to -20◦ C. We note that further cooling and dark
count reduction could be added to the setup with the addition of a liquid cooling system.
Similar to single photon detectors, cosmic rays can interact with the active area and be
misinterpreted as single photon events. Once a photon is incident on a camera pixel, it is
detected with a quantum efficiency of 25%.

3.5 Experimental Setup

The experimental setup is schematically depicted in Fig. 3.5. Degenerate photon pairs are
prepared using type-II spontaneous parametric down-conversion in a Sagnac interferometer.
We pump a 10 mm long periodically-poled KTP crystal (PPKTP) with a continuous wave
diode laser (404.8 nm) to produce correlated photon pairs centered at λSP = 810.8 nm
with a spectral bandwidth of 0.4 nm. With the pump horizontally polarized, we measure
the second-order correlation function at zero time delay to be g(2)(0) = 0.0251 ± 0.0011,
implying that two-photon events in any coincidence time window are around 1% [161].
Note that a diagonal polarized pump would offer the ability to generate a polarization
entangled target state, however, here we herald the signal by means of measuring the
idler (see Ref. [162] for further details). The outputs of the Sagnac interferometer are
coupled into two single-mode fibers, which allow for a distinct separation of signal and
idler. The signal photons are sent through a telescope to magnify the beam by a factor of
8.3, followed by N = 2 sets of LOV prism pairs. This configuration prepares a lattice of
spin-orbit states where one of the polarization states is coupled to ℓ = 1. Higher values of
ℓ may be achieved by employing a setup with more LOV prism pairs, while negative values
of ℓ may be achieved by changing the input polarization state [5].
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Figure 3.5: Schematic of the experimental setup. Correlated photon pairs are generated via
type-II spontaneous parametric down-conversion in a Sagnac interferometer and coupled
into single mode fibers (SMF). A singles rate of 18 kHz and a coincidence rate of 1.5 kHz
are measured after the SMF. After propagating through a 30 m long fiber, the signal
photon is sent through a telescope with 8.3x magnification, N = 2 sets of LOV prism
pairs, and a polarization filter. The free-space propagation z, can be varied via different
flip mirror combinations. The signal photons are then imaged onto an intensified electron-
multiplying CCD (emICCD), triggered by the detection of the corresponding idler. The
imaging arrangement in the detection unit consists of a telescope with 4x demagnification
(f3 and f4 lenses) followed by a single-lens (f5) that images the beam onto the detection
plane of the emICCD.

The polarization state of the signal photon is prepared using a manual fiber polarization
controller, polarizing beamsplitter (PBS), half wave plate (HWP) and quarter wave plate
(QWP). After transmission through the LOV prism pairs, the signal is filtered with respect
to left-handed or right-handed circulary polarized light using a QWP and PBS. The free-
space propagation of the OAM lattice is then analyzed via an arrangement of flip mirrors
that effectively change the propagation distance z before measurement. The single photon
detection unit consists of a telescope to demagnify the beam by a factor of 4 (f3 and f4
lenses in Fig. 3.5) and a gated intensified electron-multiplying CCD (emICCD PI-Max4:
1024 EMB). The telescope is followed by a single lens (f5 lens in Fig. 3.5) which images
the plane immediately following the telescope.

The idler is detected by an avalanche photodiode with no polarization filtering, which
acts as a trigger for the emICCD to herald the single photon state. We use a 30 m
spool of single-mode fiber to delay the detection of the signal with respect to the idler to
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accommodate for the delays from the triggering electronics. We set the delay time between
the idler and signal photon for each propagation distance z and use the emICCD camera
to align the coincidence window of 3 ns.

In addition to the single photon setup, we couple light from a linearly polarized laser
diode (central wavelength λLD = 813.4 nm) into the signal channel in order to compare
images generated by single photons versus laser diode light. We measure the intensity
profile using a conventional CCD camera (Coherent LaserCam-HR II) at the same positions
as the single photon images captured by the emICCD.

3.6 Experimental Results

Ztheo Zexp
Measured

SNR
Post-processed

SNR
0 0.71 m 0.584 240.377

zT/8 2.86 m 0.547 181.988
zT/4 4.85 m 0.113 102.514
3zT/8 6.87 m 0.159 126.298
zT/2 8.86 m 0.259 264.755

Table 3.1: Experimental propagation distances Zexp which correspond to the fractional
Talbot distances Ztheo, and single photon signal-to-noise ratio (SNR). The SNR is given by
the ratio of the average signal to the standard deviation of the background. In the third
(fourth) column, we list the SNR calculated from raw (post-processed) images.

In Fig. 3.6 we present simulated and measured beam profiles at fractional Talbot dis-
tances. Although the theoretical Talbot length is zT = 16 m, the propagation distances in
the experimental setup were increased by a constant offset of 0.85 m in order to account
for the three lens system in the detection unit [163]. Table 3.1 lists the experimental dis-
tances, Zexp, which effectively correspond to the theoretical distances, Ztheo. The diode
images were also measured at distances z ∈ Zexp. The central wavelength difference of
|λLD − λSP | = 2.6 nm corresponds to a change in Talbot length zT of only ∼ 5 cm.
The LOV prisms were realigned in the transverse plane to obtain the most pronounced
doughnut structures with the diode laser.

The observed intensity profiles are measured with a total exposure time of about 1 hour
and are processed using background subtraction and an adaptive two-dimensional Gaussian
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Figure 3.6: Simulated and experimental self-images at different fractional Talbot lengths.
We measure the two-dimensional intensity profile I(x, y) = |⟨L

∣∣ΨN=2
LOV

〉
|2 at positions z ∈

Zexp. In the simulation, we multiply a Gaussian beam envelope with the same beam waist
w0 as in the experiment (i.e., w0 = (4.1± 0.05) mm) to account for features occurring due
to finite beam sizes when propagating along the z-axis. For comparison, we couple light
from a laser diode into the signal channel, and measure corresponding self-images at the
same positions. Good qualitative agreement is found between the simulated and observed
profiles. We measure a lattice spacing of aexp = (0.573 ± 0.012) mm which corresponds to
(2.229 ± 0.037) mm before the demagnification by the three lens system in the detection
unit. From the simulation, we extract a lattice spacing of asim = (0.577 ± 0.010) mm and
(2.301 ± 0.031) mm, respectively.

image filter. Including the quadratic phase profiles of the imaging lenses in the simulation
yields good agreement between theoretical and observed lattice spacing. For instance,
in the case of single photons, we extract from the transverse intensity distribution at z =
0.071 m a separation between two nearest-neighbor lattice sites of aexp = (0.573±0.012) mm
from experimental data and asim = (0.577±0.010) mm from the simulation. Additionally, at
half Talbot distance zT/2, the expected half period shift ∆a can be evaluated by comparing
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the effective pixel positions of the lattice sites at propagation distance z = 0.071 m with
the pixel positions at z = zT/2 yielding ∆aexp = (0.273± 0.015) mm and ∆asim = (0.279±
0.014) mm, respectively.

The robustness of the Talbot Effect with a lattice of OAM states is demonstrated by the
good qualitative agreement between simulation, single photon, and diode laser images in
Fig. 3.6. The SNR decreases with larger distances, but is increased again depending on the
intensity pattern complexity. In Table 3.1, we present the SNR before and after the imaging
post-processing for different propagation distances. However, it can be noted that the self-
imaging property of this beam can be seen clearly in the similarity between images taken at
distances z = {0, zT/2}, with the correct spatial shift. Images at z = {zT/8, 3zT/8} show
an orientation about each lattice site that appears counter-clockwise in zT/8 and clockwise
in 3zT/8. These features are indicative of the OAM state in each lattice site, as shown in
Fig. 3.3(c). Furthermore, gaps in the outermost rings of the zT/2 image can be mitigated
by using a beam containing more lattice sites.

3.7 Conclusion

In this work we demonstrated and analyzed the Talbot Effect with single photons prepared
in a lattice of OAM states. Heralded single photons are sent through N = 2 sets of LOV
prism pairs and their transverse two-dimensional intensity distribution are measured at
various fractional Talbot lengths. The propagation of structured wavefronts is calculated
in the near-field and shows good agreement with experimental results. We observe that
the initial phase profile defines the transverse intensity pattern at various propagation
distances, and thus the Talbot carpet. Future work will scrutinize the connection between
OAM and Talbot physics as a new characterization tool. Another avenue of exploration
includes the addition of path entangled OAM lattices using the Talbot Effect and the OAM
degree of freedom. Path entangled OAM lattices could also be used to preform quantum
logic using the Talbot Effect and the OAM degree of freedom.

86



Chapter 4

Remote State Preparation of
Single-Photon
Orbital-Angular-Momentum Lattices
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4.1 Chapter Overview

Optical beams with periodic lattice structures have broadened the study of structured
waves. In the present work, we generate spin-orbit entangled photon states with a lattice
structure and use them in a remote state preparation protocol. We sequentially measure
spatially-dependent correlation rates with an electron-multiplying intensified CCD camera
and verify the successful remote preparation of spin-orbit states by performing pixel-wise
quantum state tomography. Control of these novel structured waves in the quantum regime
provides a method for quantum sensing and manipulation of periodic structures.

4.2 Context

Advances in experimental methods have enabled the creation of structured beams of neu-
trons [165]. Matter-waves with structured phase fronts are formed with many different
strategies ranging from spatially-dependent magnetic fields [166, 159, 167] to spiral phase
plates made of thin graphite films [168]. The formalism of quantum information science
is system agnostic, allowing translation of the physics of one system to that of another.
In order to move from neutrons to photons, spin is replaced with polarization, and the
magnetic field gradients are replaced with birefringent gradients shown in Fig. 3.2. Using
this correspondence, a lattice of spin-orbit states originally developed for neutrons has
been implemented with photons. Optical lattices have led to studies of optical Talbot
physics of structured orbital angular momentum (OAM) light beams [169, 110], optical
lattice structure shaping [170, 171], and direct detection of optical spin-orbit states by the
human eye [140, 141]. By translating the physics of a periodic structure of spin-orbit states
further in photonics, we can take advantage of additional capabilities such as multi-particle
entanglement. This opens the possibility for quantum correlations in structured beams and
the capabilities that come with them.

The periodicity of these structured waves are suited for quantum sensing or con-
trol of periodic structures [138, 134, 172]. The interference of OAM lattices has been
used to build all-optical quantum memory devices [173], and the average deviation of
atoms relative to their lattice sites has been measured continuously and nondestructively
with optical lattices [174]. OAM provides access to a high-dimensional Hilbert space
which can enhance the information capacity of a single particle [175, 176], while the
more easily manipulated polarization degree of freedom can be used for enhanced con-
trol and measurement [177, 178, 179, 180, 2, 181, 182]. Working with the OAM and
polarization degrees of freedom simultaneously combines the advantageous characteristics
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of both [183, 184, 185, 186, 187, 188]. To characterize and verify spin-orbit entangle-
ment, quantum state tomography has been done previously using OAM projective mea-
surements with a spatial light modulator [189], and with spatially-dependent polarization
measurements using an intensified CCD camera [190]. Structured waves have recently
attracted attention in the quantum communication community specifically in turbulence
studies [191, 192]. Correlations between polarization and OAM have shown preservation
of the encoded state after propagation through scattering media [193].

In this work, we generate spin-orbit entanglement between the polarization of one pho-
ton and the transverse beam profile of the other. Polarization measurement enables pro-
duction of distinctly different structured beams, and the correlations between these beams
and the polarization can be used to verify entanglement. We confirm the entanglement
using a quantum state tomography procedure between the polarization of one photon, and
the position-dependent polarization of its entangled partner. With these correlations, we
implement a remote state preparation (RSP) protocol to prepare structured single photon
beams. RSP involves transferring a quantum state known by one party to another party via
entanglement [194, 195, 196], and has applications in large-scale quantum communication
networks [197, 198, 153, 199]. In our case, a RSP protocol is used to prepare signal photon
spatial patterns conditioned on idler photon polarization measurements. The spin-orbit
coupling method presented expands lattice structured light preparation and measurement
further into the quantum regime.

4.3 Concept and Theory

We consider polarization-entangled photon pairs which are described by the Bell state
|Φ+⟩ = 1√

2
(|LR⟩ + |RL⟩), where we denote right-handed circular and left-handed circular

polarization states by |R⟩ = 1√
2
(|H⟩ + i|V ⟩) and |L⟩ = 1√

2
(|H⟩ − i|V ⟩). Polarization

states |H⟩ and |V ⟩ correspond to |0⟩ and |1⟩, respectively, in the computational basis.
As described in Ref. [5] in more detail, a lattice of spin-orbit states is obtained by passing
circularly polarized light through perpendicular pairs of birefringent linear gradients whose
optical axes are relatively offset by 45◦. The operators of the two perpendicular birefringent
gradients are described by

Ûx = ei
π
a
(x−x0)σ̂x , Ûy = ei

π
a
(y−y0)σ̂z , (4.1)

where the origin of the gradients is given by (x0, y0), σ̂x,z are Pauli matrices and a =
λ(∆n tan(θ))−1 is the spacing between neighboring lattice sites with wavelength λ, prism
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birefringence ∆n and prism incline angle θ. By sending one photon through N = 2 sets of
Lattice of Optical Vortices (LOV) prism pairs, we prepare the spin-orbit entangled lattice
state

|ΨN=2
LOV⟩(x, y) =

α(x, y)√
2

[
(ÛxÛy)

2 ⊗ I2
]
|Φ+⟩, (4.2)

where α(x, y) describes the incoming Gaussian beam envelope, and I2 is the two-dimensional
identity matrix.

Applying the operators in Eq. 4.1 on the polarization state |R⟩ yields

(ÛxÛy)
2|R⟩ = A(x, y)|R⟩ +B(x, y)|L⟩, (4.3)

where A(x, y) and B(x, y) are complex-valued amplitudes. The LOV prism pairs are thus
represented by unitary matrices that couple the polarization of a photon to its spatial mode.
Different polarization projections on the spin-orbit lattice state lead to different intensity
patterns. To simulate these intensity patterns, polarization projections were applied to
Eq. 4.2. Furthermore, we applied a Gaussian beam profile to the theoretical images in
order to account for the beam intensity envelope.

The two-photon density matrix is recovered via maximum likelihood quantum state
tomography. The information of interest is encoded in the complex two-dimensional spatial
functions as seen in Eq. 4.3, and a single photon camera captures intensity measurements
of the entire pattern simultaneously. Each of the camera’s pixels are treated like individual
detectors when computing tomography. A pixel-wise algorithm loops through them and
uses the maximum likelihood tomography approach specified in Ref. [71]. By recovering
the density matrix at every pixel, we can witness entanglement between polarization and
each transverse position in the beam and verify remote state preparation.

4.3.1 Remote State Preparation

Remote state preparation is a quantum communication protocol that requires shared en-
tanglement between two parties. Like quantum teleportation, the goal is to transmit one
instance of a quantum state by forwarding classical information to the receiver [195]. Re-
mote state preparation and quantum teleportation differ by whether or not the instance of
the quantum state being transmitted is known by the sender. In a teleportation experiment,
the sender may transmit an instance of a quantum state without knowledge of which state
is being “teleported”, while in remote state preparation, the sender is specifically targeting
a particular quantum state.
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In our experiment, the quantum information being transmitted is stored in the po-
larization of the photons. A polarization measurement is made on the idler photon to
specifically prepare a known polarization state on the entangled signal photon. The out-
come of this measurement is forwarded to an emICCD camera to gate the measurement
in time and schedule the camera to take a picture. Different polarization measurements
on the idler photon remotely prepare different states on the signal photon. The resultant
spatial mode of the signal photon after propagation through the LOV prism pairs is polar-
ization dependent, so the spatial mode of the signal photon is therefore remotely prepared
by polarization measurements on the idler photon. The complex spatial modes prepared
by different polarization measurements are presented in Sec. 4.5.

4.4 Experimental Setup

Figure 4.1: Schematic of the experimental setup. Polarization-entangled photon pairs are
generated via type-II spontaneous parametric down-conversion in a Sagnac interferometer
and coupled into single mode fibers. After propagating through a 30 m fiber, the signal
photon is sent through a telescope with 8.3× magnification (f1 and f2 lenses), two sets of
“Lattice of Optical Vortices” (LOV) prism pairs and polarization analyzing optics. The
signal photons are then gated to an electron-multiplying intensified CCD (emICCD) cam-
era, triggered by the detection of the corresponding polarization-filtered idler. The imaging
arrangement in the detection unit consists of a telescope with 4× demagnification (f3 and
f4 lenses) followed by a lens (f5) that images the beam onto the detection plane of the
emICCD camera.

A schematic of our experimental setup is depicted in Fig. 4.1. We generate entangled
photon pairs using type-II spontaneous parametric down-conversion in a Sagnac interfer-
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ometer [110]. We pump a 10 mm long periodically-poled potassium titanyl phosphate
crystal (ppKTP) with a 404 nm continuous wave diode laser to produce signal and idler
photon pairs, both centered at 808 nm with a spectral bandwidth (FWHM) of approx-
imately 0.4 nm. The outputs of the interferometer are coupled into single-mode fibers.
Immediately following the polarization-entangled source, we measured a |Φ+⟩ polarization
state fidelity of 96%. The signal photons are first sent through an optical telescope to be
magnified by a factor of 8.3, followed by two sets of LOV prism pairs. The magnification
controls the number of lattice periods in the emerging intensity pattern by illuminating a
larger portion of the prisms.

The modified signal photons are sent through polarization analyzing optics which con-
sist of a half-wave plate (HWP), a quarter-wave plate (QWP) and a polarizing beam
splitter (PBS). Finally, we demagnify the beam by a factor of 4 by means of a second
optical telescope and send the signal photons to an emICCD camera (PI-Max4: 1024
EMB). The idler photons are directly sent to polarization analyzing optics and detected
by an avalanche photodiode which triggers the emICCD. Signal photons pass through a
30 m spool of single-mode fiber in order to compensate for electronic delay. Once the idler
photon triggers the camera, an electronic gate in the emICCD collects data for 3 ns. We
measure all 16 combinations of the tomographically complete set |H⟩, |V ⟩, |D⟩, and |R⟩
on the signal and idler photons. For each polarization measurement, we accumulate signal
photons for 2000 exposures and trigger the camera at a rate of 15 kHz. Every exposure
takes about 2.35 sec to record. We focus on a 140 × 140 pixel area on the camera, where
each pixel is 13 µm ×13 µm.

4.5 Experimental Results

In Fig. 4.2, we show a comparison of theoretically calculated and experimentally measured
two-dimensional intensity patterns for all 16 measurement configurations. The theoreti-
cal predictions in Fig. 4.2(a) and the experimental data in Fig. 4.2(b) are in qualitative
agreement. LOV prism pair alignment challenges associated with setting and maintaining
the phase leads to slight pattern distortion as compared with theory. In both cases, we
used a grid of 140 × 140 points. In the image plane of the emICCD, the simulated lattice
spacing in Fig. 4.2(a) is 0.519±0.015 mm, while the measured lattice spacing in Fig. 4.2(b)
is 0.522 ± 0.013 mm. For the purpose of computing the density matrices, the raw counts
from the sum of exposures are used. However, when viewing the intensity distributions,
the raw intensity profiles are post-processed using background subtraction and an adaptive
two-dimensional Gaussian image filter.
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Figure 4.2: Theoretical predictions and experimental results. Rows (columns) are orga-
nized by signal (idler) projective measurements labeled by the corresponding polarization.
(a) Theoretical evaluation of the 16 measurement configurations over a 140× 140 grid. (b)
Experimental results of the 16 measurement configurations over a 140 × 140 pixel area.
All theoretical intensity patterns are normalized and all experimental intensity patterns
are normalized and post-processed using background subtraction and an adaptive two-
dimensional Gaussian image filter. The emICCD camera records photon counts, and an
artificial color scheme representing intensity was used for visual clarity.

We take the theoretical (Fig. 4.3(a)) and experimental (Fig. 4.3(b)) density matrices
calculated at each position and present the fidelity with each of the four Bell states. For
example, the top left image in Fig. 4.3(a) shows how similar the theoretical density matrices,
ρ(x, y), are to the |Φ+⟩ Bell state by plotting the fidelity, F (x, y) = Tr(ρ(x, y)|Φ+⟩⟨Φ+|),
at every pixel position (x, y). The input to the LOV prism pairs is the |Φ+⟩ Bell state as
shown in Eq. 4.2, and you can see from the top left images in Fig. 4.3(a) and Fig. 4.3(b)
that the areas around the ring-shaped regions, along with the centre of these regions, have
had a phase rotation of a multiple of 2π from the starting |Φ+⟩ Bell state. Looking at the
four quadrants of Fig. 4.3(a) and Fig. 4.3(b), it is apparent that at different pixel positions,
the input state has been rotated to other Bell states. Pixel-wise quantum state tomography
therefore enables a visualization technique to show how the spin-orbit lattice state evolves
across the transverse beam profile. The theoretical and experimental Bell state fidelities
plotted in Fig. 4.3 are in qualitative agreement, and there is a reduced experimental fidelity
across all pixels.

A histogram presenting the highest Bell state fidelity at each pixel position is presented

93



Figure 4.3: Plots of pixel-wise maximum likelihood tomography by means of the fidelity of
all four Bell states. (a) Tomography seeded with simulated intensity distributions shown
in Fig. 4.2(a). (b) Tomography seeded with experimental intensity distributions shown in
Fig. 4.2(b). In both cases, |Φ+⟩, |Φ−⟩, |Ψ+⟩, and |Ψ−⟩ Bell state fidelities are shown. There
is good qualitative agreement between experiment and theory, with a reduced experimental
fidelity overall.

in Fig. 4.4. In the experimental case, 42.5% of pixel locations have a fidelity of more than
0.5 with one of the four Bell states. This is a witness of entanglement between the signal
photons measured at the pixel locations and the idler photons that trigger the camera
because qubit separable states cannot achieve a Bell state fidelity of more than 0.5 [200].
In the theoretical case, 85.7% of pixel locations are a witness of entanglement in this way,
so even with perfect image contrast and quantum state preparation, not all positions of this
pattern significantly overlap with one of the four Bell states. However, plotting Bell state
fidelities helps to illustrate the spatially-dependent rotation of the two-photon spin-orbit
lattice state. White noise of the form ρnoise = Λρtheory + 1

4
(1 − Λ)I4 can be introduced to

model the discrepancies between the total number of entangled pixels in the theoretical and
experimental density matrix reconstructions. When Λ = 0.4, the percent of pixel locations
exhibiting entanglement drops to the experimentally realized 42.5%. We attribute the
difference to be a consequence of prism alignment, detection noise, and imperfect input
polarization entanglement.

Another common measure of entanglement used for experimental bipartite systems is
concurrence, C. It can be calculated as C = max{λ1 − λ2 − λ3 − λ4, 0}, where λi are the
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Figure 4.4: Histogram of the highest Bell state fidelity over all pixel positions. A red line
is overlaid at 0.5 fidelity. All pixels with a fidelity greater than 0.5 with one of the four
Bell states are definitely entangled. Using this metric, 42.5% of all pixels in the camera’s
region of interest are entangled.

square roots of the eigenvalues of the matrix ρρ̃, ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy), and ρ is the

two photon density matrix [201]. Concurrence was calculated at every pixel location which
resulted in an average value of 0.272 in the experimental data. This is further proof of
entanglement because a concurrence greater than zero is not possible for a separable state,
and verifies successful remote state preparation.

4.6 Conclusion

In this work, we report on the implementation of a remotely prepared optical lattice of spin-
orbit states by means of polarization-entangled photon pairs. We experimentally verify the
successful remote preparation of this spin-orbit entangled state with an emICCD camera
using a pixel-wise maximum likelihood quantum state tomography algorithm. We observe
that the entanglement present in the joint two-photon quantum state transforms such
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that there are overlaps with different Bell states depending on which portion of the LOV
prism pairs the signal photon travels through. Furthermore, we have shown that pixel-
wise tomography on images acquired by an emICCD camera provides a useful method for
observing spatially-dependent two-photon states.

In future work, we plan to study lattices with a higher number of LOV prism pairs
to access higher radial quantum numbers and thus a larger alphabet to encode spin-orbit
states for quantum communication protocols. Our work advances the study of quantum
correlations of structured beams with lattice frameworks, as well as quantum sensing and
control of periodic structures where we can take advantage of the novel lattice patterns of
our spin-orbit states.
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5.1 Chapter Overview

Recent experimental progress in quantum optics has enabled measurement of single photons
on ultrafast timescales, beyond the resolution limit of single photon detectors. The energy-
time degree of freedom has emerged as a promising avenue for quantum technologies, as
entanglement between the frequency and temporal properties of two photons can be fully
explored and utilized. Here, we implement optical Kerr shutters in single mode fibers to
map out the sub-picosecond correlations of energy-time entangled photon pairs. These
measurements, in addition to joint spectral measurements of the photon pair state, are
used to verify entanglement by means of the violation of a time-bandwidth inequality.

5.2 Context

The energy-time degree of freedom is important for many quantum technologies, includ-
ing quantum networks [203, 204], optical quantum computers [205], and quantum sensing
[206]. This degree of freedom is useful due to its intrinsic robustness against decoherence
for long-distance transmission of quantum information [207], increasing imaging resolution
via interferometric techniques [208], and for realizing high-dimensional entangled quantum
states [209]. Energy-time entangled pairs of ultrafast photons (femtosecond-picosecond
duration) are challenging to control and measure with sufficient resolution. Measuring
in the sub-picosecond regime is particularly important because there has yet to be a sin-
gle photon detector with comparable resolution. The highest detector resolution to date
has been demonstrated with superconducting nanowire single-photon detectors (SNSPD),
which have seen timing resolution on the order of a few picoseconds to tens of picoseconds,
depending on the photon’s frequency [210, 211].

Fast gating of optical signals is commonly performed electronically by micromechanical
switches [212, 213] or electro-optic modulators [214] on nanosecond timescales. Optical
gating has been used to surpass these timing restrictions, with resolutions of 450 ps in
ring resonators [215], 10 ps in nonlinear optical loop mirrors [97], and sub-picosecond with
sum-frequency generation (SFG) [216]. Optical gating is paramount in the detection and
control of sub-picosecond energy-time-entangled photon pairs [101]. SFG optical gating
has been used for time-resolved detection of energy-time entangled photon pairs [217],
which can exhibit correlations in time on the order of a few femtoseconds. SFG temporal
measurements have been taken alongside spectral measurements to completely reconstruct
a two-photon joint spectral amplitude [102].
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A promising alternative method for ultrafast optical gating is to use an optical Kerr
shutter (OKS) [94]. This method relies on the optical Kerr effect which, unlike χ(2) effects
as shown in Sec. 2.3.2, can occur in any material, including those which are centrosym-
metric. This makes it suitable for integration in standard single-mode fiber (SMF), where
spatial overlap between the signal and pump is easy to achieve. In an OKS, the tran-
sient birefringence induced by a strong laser pulse will rotate the polarization of a photon
pulse only where the two pulses temporally overlap in the Kerr medium. Picosecond and
sub-picosecond Kerr gating has been shown for classical applications, such as optical com-
munications [218, 219, 220]. Previous demonstrations for quantum applications have shown
near-unit efficiency operation of the Kerr shutter in YAG crystal [221] and short (10 cm)
pieces of SMF on picosecond timescales [222, 223, 224, 225]. In these cases, the group
velocity walk-off between the signal and pump in the SMF was exploited to fully switch
the polarization qubit of a single photon for quantum communication and information ap-
plications. Operation with a photon and pump pulse close in wavelength reduces walk-off
and has been used to demonstrate Kerr shutter resolution as low as 305 fs [226]; however,
this operation regime introduces noise from pump self-phase modulation and cannot easily
be operated above 30% efficiency. Walk-off reduction has also been implemented using
photonic crystal fiber (PCF) as the χ(3) medium to match the group velocities of both
pulses [227].

In this work, we implement an OKS for each entangled photon and demonstrate fast
gated measurements with 320 ± 30 fs and 290 ± 30 fs resolution for the signal and idler
photons, respectively. We characterize photon-pair correlations in time without the need
for an interferometric setup. Unlike previous experiments using SFG for optical gating, no
frequency conversion of the photons is required and the only difference between switched
and unswitched photons is their polarization. Here, we use this polarization rotation to
measure time correlations; however, polarizing optics after an OKS could easily be used
to reroute photons with sub-picosecond resolution for use in other quantum information
protocols.

5.3 Concept and Theory

In the following sections, the uncertainty relations between frequency and time-of-arrival
are presented. First, a classical treatment of electromagnetic pulses and the limits placed
on their uncertainties in time and frequency are analysed, followed by a description of
similar uncertainty relations between separable single photons. This motivates the use of
uncertainty relations, specifically the time-bandwidth inequality, as a metric for verifying
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energy-time entanglement.

5.3.1 Time-Bandwidth Inequality for classical pulses

If light is exactly monochromatic, the time it reaches a detector is totally uncertain. On the
other hand, if light’s time of arrival is known with infinite precision, its frequency is totally
uncertain. In realistic experimental scenarios, neither of these cases are exactly realized.
Instead, light is usually described by a coherence time, ∆t, and this necessarily imparts
an uncertainty of its frequency. These two variables are conjugates and linked together by
the Fourier transform. Similar uncertainty relationships are seen in other areas of physics
where two properties are conjugate to each other, such as position and momentum. To
quantify the uncertainty relationships, a definition of distribution width is required. There
are many 1 common widths to choose from [78], including the full-width at half maximum
(FWHM), the half-width-1/e, and the root-mean-squared width, to name a few. For the
following derivation, we’ll consider the root-mean-squared width. This quantity is the
second-order moment of the mean arrival time, and is also called standard deviation. The
standard deviation of the temporal distribution of a classical pulse is

∆tstd = σt ≡
√

⟨t− ⟨t⟩⟩2

=
√

⟨t2⟩ − 2⟨t⟩2 + ⟨t⟩2

=
√

⟨t2⟩ − ⟨t⟩2,

(5.1)

where the expected value is carried out via the integral

⟨tn⟩ ≡
∫ ∞

−∞
dt(tn)|E(t)|2, (5.2)

and |E(t)|2 is normalized. Similarly, the standard deviation definition of spectral width is
given by

σω =
√

⟨ω2⟩ − ⟨ω⟩2, (5.3)

1Rick Trebino notes this in the “Frequency Resolved Optical Gating” textbook and it stuck with me.
He muses that even the names haven’t been standardized. Pulse length, pulse width, spectral width (but
never spectral length for some reason), are measured with different definitions.

100



where

⟨ωn⟩ ≡ 1

2π

∫ ∞

−∞
dω(ωn)|E(ω)|2, (5.4)

and E(ω) is the Fourier transform of E(t). The bandwidth theorem, commonly studied
in signal processing and electrical engineering, says that a classical pulse has a minimum
bandwidth product of 1/2. Mathematically, this theorem is stated as

∆ω∆t ≥ 1

2
. (5.5)

The proof of the bandwidth theorem follows. AssumeE(t) is differentiable and limt→±∞ t|E(t)|2 =
0. Without loss of generality, take t0 = 0 and ω0 = 0. Parseval’s theorem states that∫ ∞

−∞
|E(t)|2dt =

1

2π

∫ ∞

−∞
|E(ω)|2dω, (5.6)

where E(ω) is the Fourier transform of E(t). Differentiation in the time domain corresponds
to multiplication of iω in the frequency domain, written as

F
(
dE(t)

dt

)
= iωE(ω). (5.7)

Applying Parseval’s theorem to this new Fourier pair gives

∫ ∞

−∞

∣∣∣∣ ddtE(t)

∣∣∣∣2 dt =
1

2π

∫ ∞

−∞
ω2|E(ω)|2dω. (5.8)

We can now evaluate the product

∆t2∆ω2 = (⟨t2⟩ − ⟨t⟩2)(⟨ω2⟩ − ⟨ω⟩2)
= ⟨t2⟩⟨ω2⟩

=

∫ ∞

−∞
t2|E(t)|2dt 1

2π

∫ ∞

−∞
ω2|E(ω)|2dt.

(5.9)

Substituting Eq. 5.8 to Eq. 5.9 gives
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∆t2∆ω2 =

∫ ∞

−∞
t2|E(t)|2dt

∫ ∞

−∞

∣∣∣∣ ddtE(t)

∣∣∣∣2 dt
≥
∣∣∣∣∫ ∞

−∞
tE∗(t)

d

dt
E(t)dt

∣∣∣∣2
(5.10)

where the inequality was introduced via the Cauchy-Schwarz inequality for complex valued
functions, which states that

∣∣∣∣∫ ∞

−∞
f ∗(x)g(x)dx

∣∣∣∣2 ≥ ∫ ∞

−∞
|f(x)|2

∫ ∞

−∞
|g(x)|2. (5.11)

The integral in Eq. 5.10 can be solved via integration by parts as

∆t2∆ω2 ≥
∣∣∣∣∫ ∞

−∞
tE∗(t)

d

dt
E(t)dt

∣∣∣∣2
=

∣∣∣∣12
∫ ∞

−∞
t
d

dt
|E(t)|2dt

∣∣∣∣2
=

∣∣∣∣12
(
t|E(t)|2

∣∣∣∞
−∞

−
∫ ∞

∞
|E(t)|2dt

)∣∣∣∣2
=

∣∣∣∣−1

2

∣∣∣∣2
=

1

4
.

(5.12)

The proof is finished by taking the square root of both sides,

∆t∆ω ≥ 1

2
. (5.13)

In addition to optical pulses, the bandwidth inequality is true of all signals related by the
Fourier transform [228]. The minimum value of this uncertainty relation is achieved when
the electric fields in frequency and time are represented by Gaussian functions. A Gaussian
pulse amplitude and intensity has the form
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E(ω) = e
−(ω−ω0)

2

4σ2
ω |E(ω)|2 = e

−(ω−ω0)
2

2σ2
ω , (5.14)

where ∆ω = σω is the standard deviation width. Fourier transforming to represent the
pulse in time results in a Gaussian with width

∆t =
1

2σω
. (5.15)

Together, substituting these widths into the bandwidth product gives ∆t∆ω = 1/2. Note,
different definitions of width provide different bandwidth product bounds 2.

Pulses that achieve the minimum value of the bandwidth product are called transform
limited pulses. Ti:Sapph lasers produce pulses that are very close to transform limited,
but as soon as chromatic dispersion is applied to a Gaussian function, the pulse starts to
spread out in frequency. Pulse compressors, as described in Sec. 2.6.2, are often used to
keep a pulse transform limited.

5.3.2 Time-Bandwidth Inequality for separable photon-pairs

Energy-time entangled photon pairs are not described by an electric field in the same way
as a classical pulse as discussed in Sec. 1.2. However, we have seen that the spectral
and temporal correlations of entangled photon pairs in a pure state can be described
by F (ωs, ωi) and F (ts, ti) in Sec. 2.4.5. These quantities are Fourier transforms of each
other, and we will see that measurements of the widths of these functions can serve as an
entanglement witness.

To setup this entanglement witness, the derivation outlined in Ref. [229] for a sufficient
criterion for inseparability will be followed. A great description of this criteria is also
presented in Ref. [88]. Instead of frequency and time-of-arrival, we consider the position
and momentum operators of a quantum state defined by

û = |a|x̂1 +
1

a
x̂2 (5.16)

v̂ = |a|p̂1 −
1

a
p̂2 (5.17)

2It is important to note that these widths correspond to the intensity, not the field amplitude. For
standard deviation, intensity and field widths differ by a factor of

√
2
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where x̂1 and x̂2 are the positions of two different particles, p̂1 and p̂2 are the momenta
of the same two particles, a is an arbitrary nonzero real number, and the operators obey
the Heisenberg uncertainty principle, [x̂j, p̂j′ ] = iδjj′ . Two separable particles may be
represented by a separable density matrix of the form

ρ =
∑
i

piρi1 ⊗ ρi2. (5.18)

Duan et al. present the following theorem for a sufficient criterion for inseparability. Sep-
arable quantum states satisfy the inequality

⟨(∆û)2⟩ρ + ⟨(∆v̂)2⟩ρ ≥ a2 +
1

a2
. (5.19)

The proof begins by calculating the LHS and carrying out expectation values for the
separable state. The first term on the LHS is given by

⟨(∆û)2⟩ρ = ⟨⟨û2⟩ − ⟨û⟩2⟩ρ

=
∑
i

pi⟨û2⟩i −

(∑
i

pi⟨û⟩i

)2

=
∑
i

pi⟨(|a|x̂1 +
1

a
x̂2)

2⟩i −

(∑
i

pi⟨û⟩i

)2

=
∑
i

pi

[
a2⟨x̂21⟩i +

a

|a|
⟨x̂1x̂2⟩ +

a

|a|
⟨x̂2x̂1⟩ +

1

a2
⟨x̂22⟩

]
−

(∑
i

pi⟨û⟩i

)2

,

(5.20)

where ⟨. . . ⟩ represents the average over the tensor product of the separable density operator
ρi1⊗ρi2. Note, due to the separability of the two particles, the operators x̂1 and x̂2 commute
and we can rewrite the terms involving both operators as

⟨x̂1x̂2⟩ = ⟨x̂2x̂1⟩ = ⟨x̂1⟩⟨x̂2⟩. (5.21)

This relation is used to simplify Eq. 5.20 by
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⟨(∆û)2⟩ρ =
∑
i

pi

[
a2⟨x̂21⟩i + 2

a

|a|
⟨x̂1⟩⟨x̂2⟩ +

1

a2
⟨x̂22⟩

]
−

(∑
i

pi⟨û⟩i

)2

=
∑
i

pi

[
a2
(
⟨(∆x̂1)2⟩i + ⟨x̂1⟩2i

)
+ 2

a

|a|
⟨x̂1⟩⟨x̂2⟩ +

1

a2
(
⟨(∆x̂2)2⟩i + ⟨x̂2⟩2i

)]

−

(∑
i

pi⟨û⟩i

)2

=
∑
i

pi

[
a2⟨(∆x̂1)2⟩i +

1

a2
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(5.22)

The Cauchy-Schwarz inequality simplifies the terms involving û as
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(5.23)

Similarly, ⟨(∆v̂)2⟩ρ is given by

⟨(∆v̂)2⟩ρ ≥
∑
i

pi

[
a2⟨(∆p̂1)2⟩i +

1

a2
⟨(∆p̂2)2⟩i

]
. (5.24)

Adding Eq. 5.23 and Eq. 5.24 gives

⟨(∆û)2⟩ρ + ⟨(∆v̂)2⟩ρ ≥
∑
i

pi

[
a2(⟨(∆x̂1)2⟩i + ⟨(∆p̂1)2⟩i) +

1

a2
(⟨(∆x̂2)2⟩i + ⟨(∆p̂2)2⟩i)

]
.

(5.25)
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The terms multiplied by a2 depend only on particle one, while the terms multiplied by
1/a2 only depend on particle 2. Each can be simplified using the uncertainty relation

⟨(∆x̂j)2⟩i + ⟨(∆p̂j)2⟩i ≥ |[x̂j, p̂j]| = 1, (5.26)

to get

⟨(∆û)2⟩ρ + ⟨(∆v̂)2⟩ρ ≥
∑
i

pi

[
a2 +

1

a2

]
= a2 +

1

a2
,

(5.27)

which completes the proof. The RHS is minimized by a = 1, which gives

∆(x1 + x2)
2
ρ + ∆(p1 − p2)

2
ρ ≥ 2. (5.28)

This uncertainty relation can be converted to a product instead of a sum, following the
work in ref [230]. The uncertainty relation derived above depends on xj and pj following
the uncertainty relation |[x̂j, p̂j]|. Therefore, it also holds for scaled observables defined by
x′k = sxk and p′k = pk/s. Dropping the ′ notation for convenience, this gives a new scaled
uncertainty relation

s∆(x1 + x2)
2
ρ +

1

s
∆(p1 − p2)

2
ρ ≥ 2. (5.29)

The LHS is minimized for s = ∆(p1 − p2)ρ/∆(x1 + x2)ρ, giving

(
∆(p1 − p2)ρ
∆(x1 + x2)ρ

)
∆(x1 + x2)

2
ρ +

(
∆(x1 + x2)ρ
∆(p1 − p2)ρ

)
∆(p1 − p2)

2
ρ ≥ 2

2∆(x1 + x2)ρ∆(p1 − p2)ρ ≥ 2.

(5.30)

This simplifies to the position-momentum uncertainty product

∆(x1 + x2)ρ∆(p1 − p2)ρ ≥ 1. (5.31)
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Note, every step in the derivation follows exactly the same if û is defined with a negative
sign instead of v̂, as in

û′ = |a|x̂1 −
1

a
x̂2 (5.32)

v̂′ = |a|p̂1 +
1

a
p̂2. (5.33)

Therefore, the position-momentum uncertainty product can also be written as

∆(x1 − x2)ρ∆(p1 + p2)ρ ≥ 1. (5.34)

In either case, measuring a product below 1 indicates the two particles are entangled. The
derivation was carried out with unit free x and p observables by setting ℏ = 1, but can be
rewritten with units using the uncertainty relation [x̂j, p̂j′ ] = iℏδj,j′ .

Energy-time entangled photons exhibit correlations in their frequency and time-of-
arrival, but these quantities can be mapped to momentum and position. Photons travel
at the speed of light, c, which provides a mapping of longitudinal position, x, to the time
of arrival, t = x/c, and a mapping of longitudinal momentum, p, to the light frequency
ℏω = cp [230, 231].

Uncertainty relations can be used to detect energy-time entanglement through temporal
and spectral measurements. Two separable photons labeled signal (s) and idler (i) must
satisfy the inequality [229, 232]

∆(ωs + ωi)∆(ts − ti) ≥ 1, (5.35)

where ω corresponds to frequency, t corresponds to time of arrival, and ∆(ωs+ωi)(∆(ts−ti))
signifies standard deviation in the sum of their frequencies (difference of their detection
times) [230]. The quantities in Eq. 5.35 can be determined experimentally by measuring
the joint spectral intensity (JSI) and joint temporal intensity (JTI) of a two-photon system.
Therefore, violating this inequality is a sufficient condition for witnessing entanglement.

5.3.3 Modeling the Expected Spectral Correlations

Following the model outlined in section 2.4.5, we model the joint spectral amplitude as the
pump bandwidth multiplied by the crystal phase-matching function as

107



F (ωs, ωi) = α(ωs + ωi)Φ(ωs, ωi, ωs + ωi). (5.36)

The pump bandwidth amplitude will be approximated by a Gaussian function, and we’ll
assume energy conservation, ωp = ωs + ωi, giving

α(ωs + ωi) = exp

(
−((ωs + ωi) − ωp0)

2

4∆ω2
p

)
, (5.37)

where ∆ωp is the pump bandwidth and ωp0 is the pump center frequency. The phase-
matching function for SPDC is given by Eq. 2.45 as derived in Sec. 2.4.2 and depends on
the phase mismatch, ∆k = kp − ks − ki, as

Φ(ωs, ωi, ωs + ωi) = e
i∆kL

2 sinc

(
∆kL

2

)
, (5.38)

where L is crystal length. We model each of the wave vectors, kp, ks, and ki as a second
order taylor expansion about each wave’s center frequency, yielding

∆k ≈ k(ωp0) − k(ωs0) − k(ωi0)

+
dk

dω
(ωp − ωp0) −

dk

dω
(ωs − ωs0) −

dk

dω
(ωi − ωi0)

+
1

2

d2k

dω2
(ωp − ωp0)

2 − 1

2

d2k

dω2
(ωs − ωs0)

2 − 1

2

d2k

dω2
(ωi − ωi0)

2.

(5.39)

The wavevector derivatives depend on the index of refraction as shown in Eq. 2.92.
In the BiBO crystals used for SPDC in this experiment, crystal birefringence leads to a
different index of refraction for the ordinary and extraordinary spatial axes. The pump
wave is polarized along the ordinary axis while the signal and idler waves travel along the
extraordinary axis.

BiBO is a bi-axial crystal with three different Sellmeier equations for each geometric
axis, each of which can be found at [104]. Note, this reference refers to the x, y, and z
crystal axes as n(α), n(β), and n(γ), respectively. The ordinary axis is lined up with the
crystal’s x-axis, while the effective extraordinary index of refraction, ne(θ), depends on
angle tuning and the crystal’s z and y index of refractions given by

108



1

ne(θ)2
=

sin2θ

n2
z

+
cos2θ

n2
y

. (5.40)

The calculation is simplified by approximating the sinc term of the phase-matching
function by a Gaussian function with the same bandwidth. This has the effect of removing
the lobes of the sinc pulse, but when adding tunable edge spectral filters Ss(ωs) and Si(ωi)
to each photon we cut off the photon frequencies corresponding to the side lobes anyway.
The spectral filters are approximated by Gaussian functions with bandwidths that match
the 6 nm FWHM filtering measured in the lab. The spectral intensity correlations are given
by

JSI = |α(ωs + ωi)Φ(ωs, ωi, ωs + ωi)Ss(ωs)Si(ωi)|2. (5.41)

The modeled JSI is normalized and presented in Fig. 5.1. Double Fourier transforming
the amplitude function before taking the absolute value squared reveals the correlations
in time. Squaring the temporal correlations provides the JTI which is also presented in
Fig. 5.1.

Figure 5.1: Simulation of the intrinsic joint spectral intensity (JSI) and joint temporal
intensity (JTI) of photon pairs produced from SPDC in 2 mm of β-BiBO.

Our detection methods have a finite resolution which means measurements of these
joint intensity distributions will inevitably widen. The simulation therefore provides insight
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into the intrinsic widths of these functions before they are increased by finite measurement
device resolution. Many cross sectional slices of the JSI about the ωs = ωi axis and JTI
about the ts = −ti axis are averaged to retrieve the intrinsic widths, ∆(ωs + ωi)Int and
∆(ts − ti)Int. The simulation intrinsic widths can also be used to demonstrate energy-
time entanglement and provide an approximate lower bound on the largest possible time-
bandwidth inequality violation.

∆(ωs + ωi)Int∆(ts − ti)Int = (0.000836fs−1)(122fs)

= 0.102 < 1.
(5.42)

5.3.4 Modeling the Expected Temporal Correlations Measured
by an OKS

The overall two-photon temporal measurement resolution can be estimated by the quadra-
ture sum of the pump pulse at each shutter, τp, the walk-off between the pump and
signal (idler) photon, ∆τs(i), and the intrinsic width of the JTI about the ts = −ti axis,
∆(ts − ti)Int, as

∆(ts − ti) =
√

∆τ 2s + ∆τ 2i + 2τ 2p + ∆(ts − ti)2Int, (5.43)

where ∆τs(i) = L(v−1
gs(i)

− v−1
gp ), L is the length of the Kerr medium, vgs(i) is the group

velocity of the signal (idler) photon, and vgp is the group velocity of the pump pulse. Note
that the factor of two in front of the τ 2p term accounts for the pump pulse width at each
of the two shutters. Photons from spontaneous parametric downconversion (SPDC) have
strong correlations in time of arrival and exhibit an intrinsic width ∆(ts−ti)Int. This width
is modelled by first considering the spectral correlations and then using a double Fourier
transform to the time domain as shown in Sec. 5.3.3. The walk-off terms in Eq. 5.43, arising
from the difference in group velocity between the pump and photons, further increase the
width of the JTI. The effect of walk-off on temporal resolution is visualized in 5.2. This
figure also illustrates the photon’s temporal distribution, consisting of short photon pulses
with different possible arrival times.
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Figure 5.2: Visualization of the main operating principle of an OKS. A 775 nm pump pulse
walk-off in a 35 mm fiber in the reference frame of a 714 nm photon (a) Initial temporal
representations of the pump pulse relative to the photon. The broader photon distribu-
tion, shown in blue, is a combination of shorter photons created at varying times in the
crystal, depicted with dotted lines. The pump pulse is shown in red. (b) Final temporal
representation after the pump has swept through a section of the photon pulse, rotating its
polarization. Delaying the pump pulse relative to the photon allows for gated measurement
of different temporal segments of the photon.

5.4 Experimental Setup

An illustration of the experiment is shown in 5.3. Optical pulses with 148 fs full-width
at half maximum (FWHM) from a titanium sapphire laser with an 80 MHz repetition
rate are guided to three parts of the experiment: an energy-time entangled photon source
and two Kerr shutters. The pulsed light is first upconverted by a 2 mm β-bismuth borate
(BiBO) crystal to 387.5 nm, spectrally filtered by a 0.1 nm FWHM bandpass filter, and then
downconverted in a 5 mm BiBO crystal to produce energy-time entangled photon pairs with
wavelengths 714 nm and 847 nm which we refer to as the signal and idler, respectively. Each
photon is spectrally narrowed to a bandwidth of 6 nm FWHM, after which we measure a
signal count rate of 3.6 × 106s−1, an idler count rate of 2.6 × 106s−1, and a signal-idler
coincidence count rate of 4 × 105s−1 using a 3 ns coincidence window. Both photons are
fiber-coupled and directed to (a) an OKS, or (b) a scanning monochromator.

The two photons travel through different lengths of fiber to reach their respective OKS.
Ideally, our final measurement of the temporal profile of each photon would reveal the true
transform-limited widths in time; however, dispersion in each fiber stretches the temporal
profile of each photon. The signal photon passes through 50 cm of fiber which applies
10,910 fs2 of dispersion. The idler photon passes through 21.2 m of fiber which applies
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Figure 5.3: Schematic of experimental setup. (a) A titanium-sapphire (Ti:Sapph) laser
produces 775 nm pulsed light with a repetition rate of 80 MHz. The light is upconverted
in a 2 mm β-BiBO crystal to 387.5 nm to pump the single photon source. Energy-time
entangled photon pairs are generated by Type-I SPDC in a 5 mm BiBO crystal. The
847 nm idler photon is sent through a 21.2 m fiber and a grating compressor for dispersion
control of the idler photon and non-local dispersion compensation of the 714 nm signal
photon. Each photon is Kerr-gated by a strong pulse, picked-off from the output of the
Ti:Sapph laser, within a 35 mm piece of SMF (Thorlabs S630-HP). Coincidence detection of
the output of each OKS enables measurement of the JTI of the two-photon entangled state.
(b) Each photon from the source can alternatively be directed to a scanning monochromator
for measurement of the JSI. In this configuration, a grating is used to spread the single
photon’s optical frequency components spatially, after which a single photon detector can
be spatially scanned to detect a given frequency component.

344,064 fs2 of dispersion. One way to compensate for the dispersion in each path would be
to build a grating compressor after each fiber to apply negative dispersion to each photon.
Optimal gratings with a near-Littrow configuration provide a total compressor transmission
efficiency of around 65% which drops further for shorter wavelength light [107, 108, 109],
so to avoid unnecessary loss in the experiment we build a single grating compressor in the
idler path. Due to the photon pair time-of-arrival correlations, the gratings can locally
cancel the dispersion of the idler and non-locally cancel the dispersion of its partner signal
photon [233] by applying second order dispersion of −(344, 064 + 10910) fs2 on the idler
photon. Experimentally, we adjust the grating position to minimize the temporal width of
the JTI.

Both the signal and idler photon polarizations are prepared along the horizontal axis,
while the pump polarization is prepared at 45◦ relative to the photons to maximize Kerr-
rotation along the interaction region [222]. Each photon is combined with a pump pulse on
a dichroic mirror and directed into a 35 mm SMF (Thorlabs S630-HP). Both devices have
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an equal input pump power of 800mW. Unlike bulk media nonlinear optical crystals, SMF
has the advantage that two modes are confined to a small core on the order of 5µm in
diameter which maintains high intensity to increase the nonlinear effect and also facilitates
alignment. Pump and photon pulses were coupled into their respective SMFs, each with
40% coupling efficiency. In each OKS, only the part of the photon pulse that overlaps with
the pump pulse in the Kerr medium will have its polarization rotated. This portion of the
photon pulse will transmit through the Glan-Taylor polarizing beamsplitter (PBS) at the
output of each 35 mm SMF. The pump pulse and photon are then separated by interference
filters angle-tuned to pass the 6 nm bandwidth of the gated photons. The pump is 61 nm
and 72 nm away from the signal and idler photons in wavelength, respectively, which is an
equal 32 THz on either side of the pump; however, unwanted noise processes, such as self-
phase modulation and Raman scattering, can generate pump noise in the spectral region of
the single photons. As a result, tight spectral filtering is required for lowering background
counts.

The light that transmits through the PBS and spectral filters, consisting of pump noise
and Kerr-gated light from the single photons, is fiber-coupled and detected by avalanche
photodiodes. Counts registered by each detector are time-tagged and analyzed with coin-
cidence logic using a 3 ns coincidence window. The relative time of arrival between each
photon and its corresponding pump pulse is varied by stepper-motors on the output fiber
couplers before each OKS and denoted ts and ti in 5.3(a). Sweeping both motors in a raster
scan pattern and counting coincidences at each position fully maps out the JTI of the two-
photon system. As shown in 5.3(b), spectral measurements are made directly after the
source with each photon fiber-coupled and routed directly to scanning monochromators,
as in previous experiments [101, 102]. Similarly, raster scanning the motors through fre-
quency measurements on each photon builds up the JSI. We note that it would be possible
to work with the energy-time degree of freedom on slower timescales than the requirements
of this experimental setup, but only at the cost of requiring higher frequency resolution in
the scanning monochromators instead of high temporal resolution.

5.4.1 Determining Relative Path Delay with Spectral Interfer-
ence

Each of the photons arrives at their respective OKS at the same time as a strong pump
pulse. If the photon path and pump path have a length difference of more than 1 mm, then
the two pulses have no overlap in time which makes path alignment difficult in the early
stages of the experiment. For this reason, a Ti:Sapph was tuned to the frequency of the
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photons and sent through both the pump and photon paths. Crucially, both paths have
strong laser light of the same frequency. When combined on a beamsplitter, resolving the
resultant spectrum gives a classical signal of temporal overlap. Two copies of the same
pulse arriving at a beamsplitter will interfere with each other, and the fringes can be viewed
on a spectrometer.

A spectrometer receives the signal

|E(ω) + E(ω)eikL|2 (5.44)

where k = ω
c

is the wavevector and L is the difference in path length. The eikL phase
difference will be picked up when the two pulses arrive at the beamsplitter at different
times. Simplifying this expression gives

|E(ω) + E(ω)ei
ω
c
L|2 = |E(ω)|2 + ei

ω
c
L|E(ω)|2 + e−iω

c
L|E(ω)|2 + |E(ω)|2

= |E(ω)|2(ei
ω
c
L + 2 + e−iω

c
L)

= 2|E(ω)|2(1 + cos
(ω
c
L
)

).

(5.45)

The fringe pattern in the spectrum arises from the cos
(
ω
c
L
)

term. Fringe peaks occur
when this term is maximized which happens at multiples of 2π,

ω

c
L = 2πn, n ∈ Z. (5.46)

The difference between neighbouring peaks on a spectrometer is given by

∆ω

c
L = 2π((n+ 1) − n) = 2π. (5.47)

Some spectrometers display the signal as a function of wavelength, λ, instead of angular
frequency, ω = 2πc

λ
. Differentiating with respect to λ relates the change in these variables

as

∆ω = −2πc

λ2
∆λ. (5.48)

Substituting Eq. 5.48 into Eq. 5.47 yields

114



L = − λ2

∆λ
, (5.49)

Where the sign indicates which of the two paths is longer and can be dropped for absolute
path length difference. This equation relates the fringe spacing on the spectrometer to the
path length difference and was used to find initial alignment of paths for each OKS. For
example, 800 nm light with fringe spacing of ∆λ = 0.5 nm indicates the photon path and
pump path have a difference of L = 1.2 mm.

Figure 5.4: Image of the retro reflector mirror used to roughly change optical path length.
The mirror reflects light back along the incident path shifted by 1-4 cm depending on the
difference between the incident light and the centre of the mirror. Moving the retro reflector
by hand along its mounting rail enables a path length range of 50 cm.

When each OKS was built, the original plan was to work with photons at wavelengths
732 nm and 823 nm. At that point, spectral interference was used to align the pump
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and photon path, and a large path length varying retro-reflector, pictured in Fig. 5.4, was
moved by hand until interference was visible on the spectrometer. Once a temporal overlap
was close, the spectrometer changed from a near-Gaussian spectrum to a fringe pattern as
showed in Fig. 5.5 for the 732 nm photon.

Figure 5.5: Spectral interference of two copies of a 732 nm pulse

When the retro reflector was set to a near-perfect temporal overlap position, the in-
stantaneous spectrum oscillated between a flat signal and a signal of twice the height,
indicating perfect destructive and constructive interference, respectfully, in what could
best be described as a trampoline animation. At this position, the retro reflector was fixed
and fiber-couplers on motorized translation stages were used for a finer resolution path
length scan. All joint temporal intensity scans were conducted by these motorized stages.

5.4.2 Grating Compressor Calibration - Spectral Interference

In the previous section, the difference between peaks in the spectral interference of two
copies of the same pulse was used to infer relative path delay. Spectral interference can
also be used to estimate the relative chirp of the two pulses. The output of the Ti:Sapph
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is a transform limited pulse, and the photon path applies normal dispersion in fiber and
anomalous dispersion with a grating compressor as discussed in Sec. 2.6.2. When the
grating compressor does not perfectly cancel the dispersion due to fiber, chirp can be
inferred in the spectral interference as seen in Fig. 5.6(a).

In Fig. 5.6(a), the peaks are further apart in the short wavelength regime and closer
together in the long wavelength regime. Chirp can be directly calculated from these de-
creasing fringe spacings by extracting the phase as a function of wavelength, converting
wavelength to frequency, and fitting the phase with a polynomial. The second order coef-
ficient of this polynomial corresponds to the chirp, A, defined in Eq. 2.91.

Figure 5.6: Spectral interference of two copies of a 823 nm pulse where quadratic dispersion
has been applied to one of the pulses. (a) Spectrometer signal, I(λ) (b) Extracted spectral
phase.

For example, the phase can be extracted from the spectrum in Fig. 5.6(a) by first
obtaining the analytic signal, Ia(λ), of the spectrum intensity I(λ), given by

Ia(t) = F−1(F(I(λ)2U) = I(λ) + iH(I(λ)) (5.50)

where F is the Fourier transform, F−1 is the inverse Fourier transform, U is the unit step
function, also called the heaviside function, given by

U(x) =

{
0 x < 0

1 x > 0,
(5.51)
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and H is the Hilbert transform [228] given by

H(I)(λ) =
2

π
lim
ϵ→0

∫ ∞

ϵ

I(λ− λ′) − I(λ+ λ′)

2λ′
dλ′. (5.52)

In python, the analytic function can be simply calculated using the scipy.signal.hilbert()
function. The spectral phase of interest is the complex argument of the analytic function,
which can be obtained with numpy.angle() and unwrapped with numpy.unwrap() to avoid
resetting the phase to zero every 2π. The spectral phase as a function of wavelength was
converted to angular frequency by the relation λ = 2πc/ω. This resulted in the spectral
phase of the chirped pulse and is shown in Fig 5.6(b).

Visually, the positive curvature in Fig 5.6(b) is apparent indicating a high relative
chirp between the pulses in each path. In the ideal case where the dispersion is cancelled
completely by the compressor, we expect a relative chirp of zero and a linear spectral phase.
This process was completed several times, each time moving the distance, D, between the
two gratings in the grating compressor to tune the relative chirp. A calibration curve
of the chirp as a function of grating distance is presented in Fig. 5.7. As predicted in
Eq. 2.102, A has a linear relationship to D. Eq. 2.102 predicts a compressor sensitivity
of −1962 ± 50 fs2/mm, and the slope of the calibration curve in Fig. 5.7 gives a similar
experimental sensitivity of −2040 ± 50 fs2/mm.

The calibration curve was used for the initial coarse alignment of the grating compressor.
Ultimately, the antidiagonal width of the JTI needs to be as small as possible to minimize
∆(ts − ti) and verify energy-time entanglement through the time-bandwidth inequality. A
finer calibration of the grating compressors was conducted by minimizing this width as
shown in the following section.

5.4.3 Grating Compressor Calibration - Joint Temporal Inten-
sity

Spectral interference enables characterization of the relative path delay and grating com-
pressor as seen in the previous sections. It required the Ti:Sapph to be tuned to the
wavelength of the photons and a beamsplitter to combine the two paths. This simulates
the experiment to a good approximation, but falls short in two ways. First, the frequency
and bandwidth of the photons produced by downconversion may be slightly different than
the classical pulse used for calibration. Second, the beamsplitter that combines the two
pulses is taken out and replaced with a dichroic mirror in the experiment because the pump
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Figure 5.7: Calibration curve of grating compressor. Quadratic dispersion at different
grating separation distances with slope −2040 ± 50 fs2/mm

pulse and photons entering the OKS have different centre wavelengths. When the dichroic
mirror is installed, the path lengths may be slightly different.

The joint temporal intensity is built up in a raster scan pattern by scanning the fiber-
couplers labeled ts and ti in Fig. 5.3. When there is a nonzero chirp present in one of
the photons, the JTI will present a longer antidiagonal width, ∆(ts − ti). The grating
compressor can be tuned to minimize this width. JTI measurements take around 36 hours
each, which is much longer than the spectral interference method, so fewer data points
were taken for calibration.

Table 5.1 shows the JTI width for four different grating positions. An optimal position
is found at position D = 180 mm. Note, this is different than the optimal D = 203 mm
presented in the spectral interference calibration. There are two main reasons for the
difference. First, between the two calibrations, the source was realigned to produce photon-
pairs at different wavelengths. The first setup was for 732 nm and 823 nm signal and idler,
respectively, and the second setup moved to 714 nm and 847 nm. This was done to minimize
Raman scattering to the red of the 775 nm pump creeping into the frequency band of the
idler photon. Second, the first calibration only accounted for the dispersion of the idler

119



Figure 5.8: Image of the grating compressor used to cancel the dispersion on the idler
photon locally and cancel the dispersion on the signal photon non-locally. Red lines have
been added on top of the image to indicate light entering the compressor, and a rainbow
spread of colors has been added to illustrate the spread and collimation of the different
frequency components by the gratings. The second grating’s position can be tuned by the
translation stage its mounted on.

Grating Distance, D [mm] ∆(ts − ti) [fs]
177 413 ± 30
180 340 ± 30
182 417 ± 30
187 472 ± 30

Table 5.1: Grating compressor separation, D, and corresponding JTI widths, ∆(ts − ti).
Each JTI took around 36 hours to measure. D = 180 mm minimizes relative quadratic
spectral phase between the two photons and therefore minimizes ∆(ts − ti).

photon path from the fiber and grating compressor. The second calibration was also done
to nonlocally cancel the dispersion in the short fiber in the signal photon path [233].
Correlations between signal and idler are required for nonlocal dispersion cancellation, so
this could not be factored in to the classical signal from the spectral interference calibration.

5.4.4 Stimulated Raman Scattering

The optical Kerr effect used for gated measurement relies on the χ(3) susceptibility in SMF.
With an average incident laser power of 800 mW in this experiment, other undesirable χ(3)

processes such as self-phase modulation and stimulated Raman scattering occur in the

120



SMF. The photons created in these processes will be spectrally filtered after the SMF as
long as they are outside of the signal and idler photon bandwidth. Self-phase modulation
does not produce unwanted photons in the 714 ± 3 nm or 847 ± 3 nm bands of the signal
and idler at this pump power with a laser center frequency of 775 nm. However, stimulated
Raman scattering does produce noise photons in the idler band. This process will be
discussed in more detail here.

Stimulated Raman scattering is a χ(3) nonlinear optical process where light is absorbed
by a material and emitted at a lower energy, called the Stokes frequency. For conservation
of energy to hold, the excess energy is absorbed by the atoms in the material leaving the
atoms in an excited stated with energy ℏωv, usually corresponding to a vibrational excited
state. The intensity of light produced in stimulated Raman scattering is proportional to
the pump power [4, 234]. This process can be as efficient as 10% of incident laser power
converting to the Stokes frequency. While it is undesirable in our case, Raman scattering
has been exploited to learn about the atomic composition and structure of molecules in a
process referred to as Raman spectroscopy [235].

Figure 5.9: Image of 3.5 mm SMF holder mounted between two lenses in an optical Kerr
shutter.

Raman scattering was minimized in this experiment by implementing a short Kerr
medium and choosing a single photon source wavelength regime sufficiently far from the
pump frequency. In Fig. 5.9, a 3.5 mm SMF is mounted in a holder of the same length
with lenses coupling light in and out of the fiber. This was the shortest fiber we could
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cleave and mount effectively in a stable setup. Short fibers have the advantage of higher
OKS temporal resolution and lower noise from Raman scattering.

Figure 5.10: Raman scattering of a 775 nm strong pump pulse in the frequency band of the
idler photon. (a) An 815 nm low-pass spectral filter blocks the 775 nm pump pulse which is
varied between 150 mW and 300mW average power as measured at the output of the Kerr
medium. Black lines indicate the center frequency of the original idler frequency, 823 nm,
and the modified idler frequency, 847 nm. (b) An orange overlay highlights the frequency
band of the original idler photon, and a green overlay highlights the band of the modified
idler photon. Noise reduction of about 70% is achieved by moving to the 847 nm band.

In the first version of the experiment, we chose a source wavelength regime tighter to
the 775 nm pump pulse with signal and idler wavelengths 732 nm and 823 nm, respectively.
Stimulated Raman scattering was the main reason for eventually moving to wavelengths
further away from the pump. A Raman scattering measurement was made before changing
the source, with results plotted in Fig. 5.10. For this measurement, an 815 nm low pass
spectral filter was placed after the idler OKS. An Ocean Optics USB4000-VIS-NIR spec-
trometer was placed after the filter to examine which frequencies were generated in the
SMF by stimulated Raman scattering.

Fig. 5.10(a) shows the Raman noise spectrum at different pump powers as measured
after the SMF core. The linear scaling of noise with pump power is characteristic of
Raman scattering, and wavelengths further away from the 775 nm pump pulse exhibit less
noise. Black lines indicate the original idler wavelength at 823 nm, and the adjusted idler
wavelength at 847 nm. Fig. 5.10(b) shows the original and modified idler photon bandwidth
in orange and green, respectively. A reduction of Raman scattering noise of about 70% is
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achieved by moving out of the 823 nm band. Avalanche photodiode (APD) single photon
detectors used in this experiment have lower quantum efficiencies at wavelengths longer
than 847 nm, which limited how far we could move the idler frequency away from the
Raman noise.

5.5 Experimental Results

We define the maximum achieved gating efficiency to be the fraction of photons gated out
of all possible photons, acknowledging that the pump samples a short window in time and
photons have varying arrival times related to the width of the downconversion crystal and
the probabilistic pair-generation. The maximum achieved gating efficiency is estimated to
be approximately 16% at the peak of the JTI. The total efficiency of the entire temporal
coincidence measurement which combines coupling losses from the grating compressor, both
OKS coupling losses, both final SMF coupling losses, and gating efficiency is approximately
0.01%.

We present both the raw data and noise from the OKS temporal measurement in 5.11.
Each pixel of the images in (a) and (b) is a coincidence measurement between the signal
OKS and idler OKS with relative delays ts and ti. 5.11(a) shows the raw data which includes
the two-photon correlations as well as the unwanted background consisting of accidental
coincidences and constant pump leakage, while 5.11(b) is an estimate of background. The
coincidence rates between the gated signal and idler photons are a function of electronic
delay between the two detectors. Accidental coincidence peaks occur every 12.5 ns from
the relative zero delay, corresponding to the repetition rate of the laser. The peak directly
following the relative zero delay is used to estimate accidental coincidences plus the constant
pump leakage. The background profile in 5.11(b) reveals a horizontal “stripe” pattern in
the accidental coincidences. The relative noise difference of the signal and idler OKS is
apparent in 5.11(c). The idler noise rate is 480 kHz counts compared to the 200 kHz counts
for the signal channel. This is because Raman scattering is higher on the low-frequency
(Stokes) side of the pump pulse.

Both temporal and spectral correlations are presented in 5.12. The JTI in 5.12(a) is
obtained by pixel-wise subtraction of the raw data and background estimation from 5.11(a)
and (b). Note, there are two timescales of importance: A cross-sectional slice of the JTI
corresponds to the temporal width of an individual photon with 320 ± 30 fs for the signal,
and 290 ± 30 fs for the idler, while the marginals of the JTI correspond to the uncertainty
in arrival time which we measure to be 470 ± 30 fs for signal and 520 ± 30 fs for idler. This
can be visualized in 5.2 where the blue photon pulse has a much wider envelope than any
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Figure 5.11: Background subtraction in post processing. (a) Measured coincidences be-
tween two Kerr shutters at different relative gate delays ts and ti. (b) Estimation of
accidental coincidences and constant pump background, measured by adding 12.5ns of
electronic delay between the two photon counting signals (corresponding to the repetition
rate of the laser). The small number of artifacts that make a speckle pattern across the
image are the result of a momentary fault in time tagging electronics. (c) Single counts at
detectors after each OKS.

given photon, shown as dotted lines, in the temporal distribution. Spectral measurements
taken with single photon scanning monochromators exhibit low noise and therefore do not
require the background subtraction procedure discussed for the temporal measurements.

Measurement uncertainty takes into account the Poissonian statistics of the photon
counting as well as the effect of background subtraction. The JTI is measured by subtract-
ing the estimated background 5.11(b) from the raw data 5.11(a). Because the data and
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Figure 5.12: Experimental characterization of the photon-pair temporal and spectral cor-
relations. (a) Joint temporal intensity, (b) joint spectral intensity, (c) Cross-sectional slices
of (a) about the ts = −ti axis, and (d) Cross-sectional slices of (b) about the ωs = ωi axis.
For both (b) and (d), multiple slices were taken through the distributions and averaged
together. The time-of-arrival of the two photons are positively correlated, while their fre-
quencies are anticorrelated. Negative coincidence values in (c) are possible only because
of the JTI background subtraction demonstrated in 5.11. Gaussian fitting to plots (c) and
(d) yields ∆(ts − ti) = (340 ± 30) fs and ∆(ωs + ωi) = (0.00141 ± 0.00002) fs−1. Together,
these quantities demonstrate entanglement with ∆(ts− ti)∆(ωs +ωi) = (0.48±0.04) which
is less than one by 13 standard deviations.

background are very similar in magnitude, the JTI measurement is highly sensitive to the
estimated background. To quantify this effect, we multiply the estimated background by a
variable scaling factor to determine the dependence of ∆(ts − ti) on the background level.
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This variation is included in the reported measurement uncertainty.

The estimate in Eq.5.43 gives ∆(ts − ti) = (430 ± 30) fs. Experimental data reveals a
somewhat smaller width of ∆(ts − ti) = (340 ± 30) fs. Many cross-sectional slices of the
JTI about the ts = −ti axis and JSI about the ωs = ωi axis are averaged and shown in
5.12(c),(d). Gaussian fits to these curves show an entanglement witness value of ∆(ts −
ti)∆(ωs + ωi) = (340 ± 30) fs (0.00141 ± 0.00002) fs−1 = 0.48 ± 0.04. This demonstrates a
violation of Eq. 5.35 by 13 standard deviations indicating entanglement in the energy-time
degree of freedom.

Our experimental parameters were based on a compromise of the various factors that
influence efficiency, noise, and temporal resolution in an OKS. The OKS efficiency increases
with pump intensity and fiber length; however, increasing these parameters also increases
the generation rate of noise photons by self-phase modulation and spontaneous Raman
scattering. In general, a large frequency difference between the pump and photon pulses
will limit the generation of these noise photons at the signal and idler frequencies. In our
normally dispersive SMF, an increased frequency difference increases the pump-photon
group velocity walk-off and thus reduces the temporal resolution. We operated our experi-
ment with a frequency difference ∆ω = 32 THz, fiber length L = 35 mm, and pump power
P = 800 mW, yielding sufficient efficiency, signal-to-noise ratio, and temporal resolution,
to measure energy-time entanglement. Future OKS pulse metrology experiments might
operate with lower Raman scattering noise levels by using a pump pulse frequency lower
than both the signal and idler pulses. The use of dispersion-engineered photonic crystal
fibers for pump-photon group velocity matching [227] would enable the use of longer fibers
for increased efficiency, while retaining optimal temporal resolution.

As an example of an experiment which could benefit from ultrafast measurement of
photons higher in frequency than the pump, in Ref. [236], spectral correlations of energy-
time entangled photons are engineered to be positively correlated instead of negatively
correlated as is typical of energy conservation in SPDC. This was done with a time lens
using sum frequency generation and resulted in photons of higher frequency than the
pump used to create them. The temporal correlations of the upconverted signal were
modelled, but the experimenters did not temporally resolve the signal to verify energy-
time entanglement experimentally. An OKS would be a good fit this experiment, where
low noise could be achieved due to the photons being higher frequency than the pump and
therefore outside of the stimulated Raman scattering noise regime.

In reference [102], the JSI and JTI of energy-time entangled photons, as well as the
correlations between the frequency of one photon and the time-of-arrival of the other, were
used to reconstruct the entire two-photon amplitude and phase, F (ωs, ωi). The temporal
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measurement technique was limited by tight phase-matching constraints of sum frequency
generation in a 1 mm BiBO crystal, and by the optical gating efficiency of this nonlinear
process. The methods outlined in this chapter, along with the potential high-efficiency
increase provided by dispersion-engineered photonic crystal fibers, could be implemented in
a similar phase reconstruction procedure to realize high efficiency energy-time entanglement
phase estimation, and thus, quantum state reconstruction.

5.6 Conclusion

In this work, we used optical Kerr shutters to directly measure the JTI of two energy-
time entangled photons. Correlations were measured with a temporal resolution of 320 ±
30 fs and 290 ± 30 fs for signal and idler photons, respectively, which provided a sufficient
gating resolution to violate a time-bandwidth inequality and therefore witness energy-time
entanglement. With the capability of distinguishing events less than one picosecond apart,
and therefore outside the temporal resolution of current detector speeds, the optical Kerr
shutter is a valuable addition to the available methods in ultrafast quantum optics control
and metrology.
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Chapter 6

Outlook

Throughout this thesis, generation and measurement of entanglement across multiple de-
grees of freedom was demonstrated. First, in the experiments in chapter 3 and 4, unique
structured waves of light where quantum information was entangled across the polarization
and spatial mode of photons were produced and measured with a gated emICCD camera.
Next, the experiment presented in chapter 5 measured frequency and temporal correlations
of energy-time entangled states using a fast optical-gating method which took advantage
of the optical Kerr effect.

Generally, both the spatial mode experiments and the energy-time experiment were
motivated by high-dimensional Hilbert spaces. With perfect preparation, control, and
measurement methods, a photonic degree of freedom that has access to a high dimensional
Hilbert space would be a very important advancement for optical quantum technologies.
Of these possible technologies, quantum networks stand the most to gain due to the clear
advantage that photons have over other quantum information systems in their speed-of-
light distribution and their high robustness against decoherence. Any successful distributed
quantum computation task or quantum communication protocol we come up with in the
future will likely involve high dimensional photons. There are ways both the spatial modes
and energy-time modes generated in this thesis could be improved and potentially used in
future quantum technologies.

For structured waves, free space channels will likely be the focus of research moving
forward as the quantum states are not maintained in fiber. However, there have been
experiments looking at underwater channels as well [237, 238]. The LOV prism-pair setup
used in this thesis to generate structured waves requires improvements in order to be con-
sidered for future structured wave applications. The remote state preparation experiment
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showed that although entanglement verification is possible, the strength of entanglement
across the pixels was lower than theoretically expected by a significant margin. Further
study is required to fully understand the drop in entanglement, but we suspect the two
major contributions to be beam deflection in the prisms and detection error in the camera.
For example, if a photon is accidentally detected by an emICCD pixel’s neighbour rather
than the intended pixel, a common camera issue referred to as cross talk, then the pixel-
wise quantum state tomography procedure for detecting entanglement will measure density
matrices not indicative of the true quantum state. There are techniques being developed
to reduce cross talk which could help further demonstrate the use of the LOV prism pairs
for quantum communication protocols [239]. If a higher entanglement measurement was
demonstrated, the next step to building out LOV prism pairs for high dimensional appli-
cations would be series of many prisms. A device that could move series of prisms and
beamsplitters in and out of an optical beam would be capable of encoding spatial modes
with different radial and azimuthal quantum numbers [5].

Photonic states encoded in frequency and time, on the other hand, have a high likeli-
hood of being implemented in fiber-based architectures. Whether future quantum networks
use time-bin, frequency-bin, or temporal mode states, fast temporal resolution will be re-
quired to maximize high-dimensional state multiplexing. The optical Kerr measurement
technique explored in this thesis demonstrated a new time-regime for entangled photon
pair measurements. There are further signal-to-noise ratio improvements possible with the
operation of two time-locked lasers each operating at a lower frequency than the photon
it is gating. Avoiding Raman scattering with this relative frequency regime is a promising
path forward for ultrafast optical gating of single photons. A clear next step involves build-
ing on past phase-reconstruction techniques which relied on joint spectral and temporal
measurements as taken in this thesis, as well as time-frequency and frequency-time joint
measurements [102]. This would further demonstrate the utility of the optical Kerr shutter
for quantum optical technologies.

There has been a significant push in laboratory experiments showing high-dimensional
photons are a promising candidate for quantum information science [118]. As investment
in quantum technologies grows, experiments are being built on a larger scale and we are
seeing a move from academia to industry. This trend indicates the future of quantum
information will continue to be an exciting story to follow. The experiments in this thesis
have aimed to play an impactful role in the utility of the photon in this journey.
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and William K. Wootters. Teleporting an unknown quantum state via dual classical
and einstein-podolsky-rosen channels. Phys. Rev. Lett., 70:1895–1899, Mar 1993. 23

[54] Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter,
and Anton Zeilinger. Experimental quantum teleportation. Nature, 390(6660):575–
579, December 1997. 23
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biao Li, Keqing Lu, and Yanpeng Zhang. Two-dimensional linear and nonlinear
talbot effect from rogue waves. Phys. Rev. E, 91:032916, Mar 2015.

[243] Lord Rayleigh. Xxv. on copying diffraction-gratings, and on some phenomena con-
nected therewith. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 11(67):196–205, 1881.

[244] Mariana R. Barros, Andreas Ketterer, Osvaldo Jiménez Faŕıas, and Stephen P. Wal-
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