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Abstract

In this thesis, we introduce JDM GEN, an algorithm designed to uniformly generate
graphical realizations of a given joint degree matrix. Amanatidis and Kleer [2] previously
employed an MCMC-based method to address this problem. Their method fully resolved
the case of two degree classes, and showed that their switch Markov chain is rapidly mixing.
While our algorithm imposes certain restrictions on the maximum degrees, it is applicable
to any bounded number of degree classes and has a runtime complexity linear in the number
of edges.
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Chapter 1

Introduction

Research into the generation of random graphs has a rich and varied history with
numerous distinct branches. The most fundamental problem is the uniform generation of a
simple graph with a given degree sequence. Tinhofer presented an approach to address this
problem in [17]. However, the exact runtime of Tinhofer’s algorithm is still undetermined.

Based on the enumeration works of Bender and Canfield [5], Békéssy et al.[4], and Bol-
lobás[6], some simple algorithms can be designed to uniformly generate random graphs.
These algorithms have a runtime complexity that is linear in the number of vertices, de-
noted by n, but exponential in the average degree. Therefore, these algorithms are only
efficient when the average degree is small.

Using the configuration model presented in [6], one can easily generate multi-graphs
with a given degree sequence. With this, McKay and Wormald [16] introduced switchings,
a novel technique for removing multi-edges and loops from generated multi-graphs. They
also developed a carefully crafted rejection scheme to maintain uniformity. As a result, the
algorithm they designed could efficiently and uniformly generate random graphs even with
a larger average degree. Specifically, when tasked with generating d-regular graphs, the
algorithm can achieve a running time of O(nd3), provided that d = O(n1/3). While this was
a major breakthrough, there was still room for further improvements. Expanding upon this,
Gao and Wormald [10] introduced different classes of switchings and improved the degree
requirements to d = o(n1/2). Subsequently, Arman, Gao, and Wormald [3] introduced the
method of incremental relaxation, which enhanced the rejection scheme used during the
algorithm’s execution. This further improved the running time to O(dn + d4), provided
d = o(n1/2).

Another significant approach to generating random graphs is the utilization of Markov
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Chain Monte Carlo (MCMC) methodologies. The core idea behind MCMC-based meth-
ods involves constructing a Markov chain where the states of this chain represent graphs
that satisfy the given degree sequence, along with some auxiliary structures. Transitions
between these states are achieved through random operations, such as the addition or
deletion of edges. Over time, these transitions can lead the system towards a distribution
that is approximately uniform across all states. The time taken to approach this result is
known as the ’mixing time’. Remarkably, for specific degree sequences, the system may
converge to the uniform distribution very quickly. When it only takes polynomially many
steps to achieve this, the phenomenon is referred to as ’rapid mixing’. Jerrum and Sinclair
[13] introduced a fully polynomial almost uniform generator that achieves ’rapid mixing’
for a particular class of degree sequences, known as the P-stable class. Notably, this class
includes all degree sequences for regular graphs.

Another distinct Markov chain, known as the switch chain, was first introduced by
Kannan, Vempala, and Tetali [14]. In the switch chain, transitions occur by switching
two edges in a specific manner. This method achieved rapid mixing for the generation of
random bipartite regular graphs. Since its introduction, the switch chain has been used to
handle various problems in the field of random graph generation. In [7], Cooper, Dyer, and
Greenhill utilized the switch chain to generate d-regular graphs, achieving a mixing time of
approximately d24n9 log n. Subsequently, Greenhill adapted this approach to non-regular
graphs [11], with the limit of mixing time calculated as ∆14M10 logM , where ∆ and M
represent the maximum degree and the degree sum, respectively. As per the recent results
in [12], the current restrictions on ∆ and M have been set as 3 ≤ ∆ ≤ 1

3

√
M .

The two methods for generating random graphs discussed above each have their own
strengths. The switching-based algorithms typically offer a more efficient runtime and can
generate results that follow an exact uniform distribution. On the other hand, MCMC-
based algorithms generate results with an approximately uniform distribution, but they
generally have more lenient requirements on the degree sequence.

In this thesis, our research is centered around the generation of graphical realizations
of a given joint degree matrix (JDM). The motivation for studying this particular type
of random graph generation was originally proposed by Mahadevan et al. in [15]. They
argued that, unlike the traditional problem which aims to generate graphs based on a given
degree sequence, generating graphs that satisfy a certain joint degree matrix allows for the
creation of synthetic graphs that more closely resemble real-world network topologies.

The problem we address involves a family of q pairwise disjoint vertex sets denoted
by V = (V1, ..., Vq), where q ≥ 1 is a positive integer, and a sequence of q nonnegative
integers, denoted by d = (d1, ..., dq). Additionally, a joint q × q “degree matrix” M is
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given. A graphical realization of the triple (V ,M,d) is a simple graph G with vertex set
V = ∪qi=1Vi such that every vertex u ∈ Vi has degree di for each 1 ≤ i ≤ q, and the number
of edges with one end in Vi and the other end in Vj is precisely Mij for every 1 ≤ i ≤ j ≤ q.
Without loss of generality, we may assume that di ≥ 1 for every 1 ≤ i ≤ q. We may also
assume that

(a) M is symmetric, and

(b) 2Mii +
∑

j:j ̸=i Mij = di|Vi| for every 1 ≤ i ≤ q, and

(c)
∑n

i=1 di|Vi| is even,

as otherwise, there is no graphical realization for (V ,M,d) (indeed, (a) and (b) above imply
(c)). The goal of this research is to uniformly generate a graphical realization conforming
to a given (V ,M,d).

Following the proposal of the problem, Amanatidis, Green, and Mihail [1] presented a
simple polynomial algorithm that produces a graphical realization of a given joint degree
matrix, although it is not uniformly generated. They also considered the switch chain as a
potential method to solve the problem, but they were uncertain about how to bound the
mixing time. In [9], Erdös, Miklós, and Toroczkai prove a suitable MCMC algorithm is
rapid mixing over a subspace of realizations of a given JDM (namely the space of balanced
realizations). Later, Amanatidis and Kleer [2] demonstrated rapid mixing for strongly
stable degree sequences, which include the cases of 2-degree classes (i.e., q = 2) in the
context of JDM. However, they noted that their proof might not be applicable to cases
with q > 2.

In this thesis, we concentrate on a different approach to graph generation problems,
as discussed earlier, using switching-based methods. Compared to prior work [2], our
method provides better running time and works for any bounded number of degree classes.
However, we do require some additional restrictions on the input parameters (V ,M,d).

In the subsequent chapters, we’ll first provide a high-level overview of the switching-
based algorithm developed by McKay and Wormald in [16], while also introducing the
new ideas used in this thesis in Chapter 2. Then we present the essential aspects of the
configuration model and discuss its adaptation for the graphical realizations of a joint
degree matrix in Chapter 3. Following this, we demonstrate the generation of an initial
multi-graph for our problem in Chapter 4. For a comprehensive understanding of our
problem-solving process, we depict the base case with 2-degree classes in Chapter 5. We
introduce new types of switching operations and show their use in removing multi-edges
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and loops in the initial graph. In Chapter 6, we extend our problem to a general case,
which mostly aligns with the approach detailed in Chapter 5. Finally, we explore potential
enhancements to our method in Chapter 7.
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Chapter 2

Overview of switching-based
algorithm

In this chapter, we provide a general description of the switching-based algorithm de-
signed by McKay and Wormald in [16], along with some improvements made to the al-
gorithm. Subsequently, we will demonstrate how to adapt their algorithm to address our
problem and clarify the new ideas presented in this thesis.

2.1 Overview

The algorithm starts by generating a multigraph G with the given degree sequence
d = {d1, d2, . . . , dn} by using the configuration model introduced by Bollobás [6]. Here,
we aim for the generated graph G to be in a specific set G0, where G0 is a predefined set
based on the degree sequence d such that graphs in G0 share the same degree sequence
d and satisfy the following conditions: they do not contain multi-edges of multiplicity
greater than two or loops of multiplicity greater than one. Additionally, they have at most
d double edges and l loops, where the values of d and l are determined by the sequence d.
If G fails to meet these conditions, the algorithm will terminate and reject G, which we
refer to as an initial rejection. In Section 3.1, we will provide a detailed introduction to
the configuration model and demonstrate how it can be employed to generate multi-graphs
that satisfy any valid degree sequence.

Next, two phases are employed to process the graph G with the goal of removing loops
and double edges from it. The first phase is dedicated to eliminating all loops from G,
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while the second phase focuses on the removal of all double edges within G. In these
phases, two operations designed by McKay and Wormald are utilized. The first operation,
called l-switching, is used to remove loops, while the second, called d-switching, is used to
remove double edges. The general idea behind these switching operations is to eliminate
non-simple structures from the graph by adding and removing edges while preserving the
degree of each vertex. Detailed explanations of these two operations will be provided in
Section 5.1.

Throughout these two phases, specific rejection schemes are designed to ensure that
uniformity is maintained throughout the process. To illustrate the general idea behind
the design of these rejection schemes, we will use the second phase, which is dedicated to
removing double edges from the graph, as an example. Suppose we obtain a graph G1 after
the first phase. In this graph, there are no loops, and it contains at most d double edges.
We define Sk ⊆ G0 to be the set of multigraphs containing no loops and exactly k double
edges, where 0 ≤ k ≤ d. Hence, G1 ∈ Sk for some k. Subsequently, we proceed to perform
d-switching on G1 sequentially. Each d-switching reduces the number of double edges in
G1 by one. In other words, after applying a single d-switching operation to G1, we obtain
a graph in Sk−1. After two d-switching operations, we end up with a graph in Sk−2, and so
on. This process continues until we have reduced the number of double edges in the graph
to zero, which means we will end up with a graph in S0.

If G1 is uniformly chosen from Sk for some k, then applying a d-switching uniformly
at random to G may result in a graph that is not uniformly distributed in Sk−1. This is
because the number of ways to apply a d-switching to each graph in Sk is different, and
the number of ways to generate each graph in Sk−1 by a d-switching is also different.

To resolve this issue, two rejection steps are designed. We now briefly introduce these
two steps and show how they preserve uniformity. Suppose G1 is uniformly chosen from
Sk for some k, then we uniformly at random choose some d-switching that can be applied
on G1 and suppose it produces G′

1 ∈ Sk−1. Let’s define the following parameters:

(a) Let f(G) be the number of ways to perform a d-switching on graph G.

(b) Let b(G) be the number of ways to generate G through a d-switching.

Additionally, two parameters fk and bk are chosen such that for each 1 ≤ k ≤ d,

fk ≥ max
G∈Sk

f(G), bk ≤ min
G∈Sk

b(G).

6



A simplest choice would be fk = maxG∈Sk
f(G) and bk = minG∈Sk

b(G). However,
computation of maxG∈Sk

f(G) and minG∈Sk
b(G) can take a long time. Instead, we can

specify fk and bk as some function of d and k and prove that they satisfy the conditions
above.

Recall that we perform some d-switching on G1 and produce G′
1. Next, the f-rejection

rejects with probability 1− f(G)

fk
and the b-rejection rejects with probability 1− bk−1

b(G′)
. The

probability that G1 = G is the same for every G ∈ Sk. For any G′ ∈ Sk−1, the event
G′

1 = G occurs, if G1 = G for some G ∈ Sk, and a d-switching S that coverts G to G′ is
selected by the algorithm. Hence,

P(G′
1 = G′) =

∑
(G,S)

P(G1 = G)
1

f(G)
· f(G)

fk

bk−1

b(G′)
,

where the summation is over all (G,S) such that S converts G to G′. Note that 1
f(G)

is the

probability that S was selected, f(G)

fk

bk−1

b(G′)
is the probability that S is neither f -rejected,

nor b-rejected. Since the number of (G,S) such that S converts G to G′ is equal to b(G′),
and P(G1 = G) is a constant, P(G′

1 = G) does not depend on G′. Hence, G′
1 is uniform in

Sk−1.

By applying this process inductively, the resulting graph after removing all double edges
from G1 is uniformly distributed in S0.

In the process described above, the only term that cannot be computed in constant time
is the calculation of the values of f(G) and b(G′). However, based on the switching selection
strategy, it is shown that there is no need to compute the value of f(G). Consequently,
the only computation left to perform is to determine the value of b(G′). This computation
involves counting specific local structures within G′, which can be efficiently executed.

To improve the algorithm’s running time, Arman, Gao, and Wormald [3] introduced the
technique of incremental relaxation by modifying the b-rejection steps during the phase
of removing double edges and loops from the graph. To briefly explain the concept of
incremental relaxation, let’s consider the example above. As we said, the majority of
running time is spent on computing the value of b(G′) in each iteration. Upon examining the
structure of d-switching, b(G′) is the number of two vertex disjoint simple ordered two-paths
u1v1w1, u2v2w2 in G′ such that there are no edges between u1 and u2, v1 and v2, as well as w1

and w2. The computation of b(G′) involved enumerating all pairs of simple ordered 2-paths
and verifying their availability, which is a time-consuming process. However, incremental
relaxation breaks down the b-rejection into multiple rejection steps, with each step focusing
on counting simpler structures than those considered in the calculation of b(G′). As a result,
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this significantly reduces the computation time in each iteration. For a more comprehensive
explanation, readers can refer to Section 3 of [3] for more details.

2.2 Adaptation

The main difference in our problem is that we have a joint degree matrix M , which
regulates the number of edges within and between vertex sets. As a result, we’ve made
specific adjustments to both the initial graph generation and the removal of loops and
double edges for our problem.

For the initial generation, we made slight modifications to the procedure for generating
multigraphs using the configuration model. These modifications ensure that the number of
edges within and between vertex sets satisfies the requirements imposed by the joint degree
matrix M . Similarly, the set G0 is predefined based on the input parameters (V ,M,d).
Within G0, graphs must satisfy all the requirements for being a graphical realization of
(V ,M,d), except they may contain loops and multi-edges. Furthermore, the graphs in G0
must meet the following requirements:

(a) They should not contain multi-edges of multiplicity greater than two or loops of
multiplicity greater than one.

(b) They should have at most li loops within Vi for i ∈ [q].

(c) They should have at most dij double edges with one endpoint in Vi and the other in
Vj for 1 ≤ i ≤ j ≤ q.

The values of lis and dijs are determined by (V ,M,d). The procedure for generating
the initial graph for our problem will be provided in Section 4.1.

After obtaining an initial graph G from G0, we then remove double edges and loops
from it. For our problem, we divide the process into several phases, each phase is dedicated
to removing double edges or loops within or between particular vertex sets. For example,
we address double edges with one endpoint in V1 and the other in V2, double edges with
both endpoints in V3, loops within V4, etc.

In order to remove loops and double edges from G, the most intuitive idea is to apply the
l-switching and d-switching designed by McKay and Wormald. However, directly applying
these switchings may result in a relatively high rejection probability and lead to poor
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algorithm performance. We will provide a detailed explanation of why this can lead to a
high rejection probability in Section 5.1, after introducing the l-switching and d-switching.
To reduce the rejection probability, we draw on ideas from [10] by designing various types
of switchings for each phase. Due to the requirements imposed by the joint degree matrix
M , these switchings not only ensure that the degree of each vertex remains unchanged
before and after the switching but also maintain the same number of edges within or
between any vertex sets. We will provide examples of switchings used for two vertex sets
(i.e. q = 2) in Section 5.2, with the general definitions of the switchings presented in
Section 6.1. Furthermore, similar rejection schemes are designed to maintain uniformity
in each phase.
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Chapter 3

Preliminaries and main results

3.1 Configuration Model

The configuration model, also known as the pairing model in the literature, was origi-
nally introduced by Bollobás [6] in order to asymptotically enumerate graphs with a given
degree sequence. Soon it became the indispensable tool for analysing random graphs with
given degree sequences. Given a degree sequence d = {d1, d2, . . . , dn}, the configuration
model creates n cells, denoted by C1, . . . , Cn, where the i-th cell Ci contains exactly di
points. Take a uniformly random matching P over the total

∑n
i=1 di points. Note that for

a graphical degree sequence d,
∑n

i=1 di must be even. The matching P is called a paring,
and every pair of points matched by P is called a pair in P . Let G(P ) be the (multi)graph
produced by P by representing each cell as a vertex, and each pair in P as an edge (See
Figure 3.1 as an example). It is easy to show, by a simple counting argument, that G(P )
is a uniformly random simple graph, conditioned on that G(P ) is simple.

To facilitate the discussion, we introduce the following terminology for graphs and the
configuration model:

1. Cells and Vertices: The term cells is used exclusively in the configuration model,
while vertices is used in the graph. Each cell corresponds to a unique vertex where
the number of points the cell contains is the same as the degree of its corresponding
vertex.

2. Pairs and Edges: The term pairs is used exclusively in the configuration model,
while edges is used in the graph. Each pair corresponds to a unique edge, or part
of a multi-edge, in the graph.

10



Here is an example of the configuration model for the degree sequence {1, 2, 3, 2} with
a pairing, along with its corresponding graph:

Figure 3.1: Example of the configuration model

As our algorithm will operate on multigraphs, we give a formal definition of it.

Definition 3.1. A multigraph G is defined by a triple-element set (V,E,M) where V is
the set of vertices, E ⊆

(
V
2

)
∪V is the set of multi-edges, and M : E → N\{0} denotes the

multiplicities of the multi-edges in E. A multi-edge uv contributes M(uv) to the degrees
of u and v respectively. A loop at u contributes 2M(u) to the degree of u.

This definition aligns with that of Diestel [8], if one considers the isomorphism class
of different edge labelings. In Diestel’s definition, each multi-edge uv ∈ E is replaced by
M(uv) distinct edges, all connecting vertices u and v. However, for the purposes of this
thesis, it’s more straightforward to consider a multi-edge as a single entity. Specifically, we
refer to a multi-edge uv with a multiplicity of 2 as a double edge.

Bollobás’ configuration model naturally extends to generate graphs realising (V ,M,d)
as follows. Let Ci, where 1 ≤ i ≤ q, be a set of |Vi| cells representing vertices in Vi. Each
cell in Ci contains exactly di points. Let Φ(V ,M,d) be the set of all pairings P on the
set of

∑q
i=1 di|Vi| points such that there are exactly Mij pairs with one end contained in a

cell in Ci and the other end contained in a cell in Cj, for all 1 ≤ i ≤ j ≤ q. As before, let
G(P ) denote the multigraph produced by P for any P ∈ Φ(V ,M,d). Again, by a simple
counting argument (see the Appendix for a proof), G(P ) is a uniformly random graphical
realization for (V ,M,d), if P is a uniformly random pairing in Φ(V ,M,d) conditional on
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G(P ) being simple. Figure 3.2 illustrates an example of the graphical realization (and its

corresponding pairing) of ((V1, V2),

(
3 3
3 0

)
, (3, 1)), where |V1| = |V2| = 3.

In the pairing on the left-hand side of the figure, cells C1 through C6 correspond to
vertices v1 through v6 in the graph on the right-hand side of the figure. Specifically, we
have C1 = {C1, C2, C3} and C2 = {C4, C5, C6}. Additionally, Ui in the figure denotes the
set of points contained within the cells in Ci, where U1 contains nine points and U2 contains
three points.

Figure 3.2: graphical realization and its corresponding pairing

Let P be a uniformly random pairing in Φ(V ,M,d). If G(P ) is simple then we are
done. However, unless each of the di is relatively small, the probability that G(P ) is simple
is very close to zero, and thus, we almost always end up with a multigraph G(P ). The
first step of our algorithm is to generate P from a reasonably large subset Φ0(V ,M,d) of
Φ(V ,M,d). To define Φ0(V ,M,d) we need to define a few parameters.

Let G(V ,M,d) = {G(P ) : P ∈ Φ(V ,M,d)}. For any G ∈ G(V ,M,d), we define
L(G) = (Li(G))i∈[q], where Li(G) is the number of simple loops in G whose ends are in Vi

for i ∈ [q]. Additionally, define D(G) = (Dij(G))1≤i≤j≤q, where Dij(G) is the number of
double edges in G that join a vertex in Vi and a vertex in Vj.

Let ni = |Vi| for each i ∈ [q] and set L = (Li)i∈[q] and D = (Dij)1≤i≤j≤q where

Li =
2q2Mii

ni

for i ∈ [q]; Dij =
2q2M2

ij

ninj

for 1 ≤ i ≤ j ≤ q. (3.1)
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Let Φ0(V ,M,d) be the set of pairings P in Φ(V ,M,d) such that L(G(P )) ≤ L,
D(G(P )) ≤ D, and G(P ) has no loops of multiplicities greater than one, or multiple
edges of multiplicity greater than two. The following lemma ensures that Φ0(V ,M,d) is
reasonably large compared to Φ(V ,M,d).

Lemma 3.2. Let P be a uniformly random pairing in Φ(V ,M,d). Provided that

M3
ij∆

2

n2
in

2
j

= o(1) for all 1 ≤ i ≤ j ≤ q, (3.2)

then,

Pr(P ∈ Φ0(V ,M,d)) ≥ 3

8
+ o(1).

The proof of the lemma is a simple first moment argument and is deferred to Section 4.2.

In this thesis, we introduce a new algorithm called JDM GEN that generates a uni-
formly random graphical realization of (V ,M,d). The algorithm starts by repeatedly
generating a uniformly P in Φ(V ,M,d) until P is in Φ0(V ,M,d). Lemma 3.2 above
shows that O(1) rounds is necessary in expectation. Let G0 = G(P ) where P is the pair-
ing obtained. We know that P is a uniformly random pairing in Φ0(V ,M,d). Next, our
algorithm starts from G0, and produces a sequence of multigraphs G0, G1, G2, . . . using
some switching operations defined in Section 5.1. These switching operations repeatedly
replace multiple edges and loops with simple edges while maintaining the resulting multi-
graph in G(V ,M,d). Once all the multiple edges are removed, the resulting simple graph
is output. However, each application of the switching operations changes the distribution
of Gt slightly from uniform. The central work is to design and combine the use of a set
of switching operations, together with a carefully crafted rejection scheme, to maintain
the uniformity in each step of the algorithm. Whenever a rejection occurs, the algorithm
restarts from the beginning. Thus, in order to control the running time of the algorithm,
it is necessary that the overall rejection probability is not too big. This further imposes
certain constraints on (V ,M,d) in our main theorem.

We will discuss the uniformity of G0 in Section 4.1, and examine the running time of
generating G0 in Section 4.2. In Section 5.3.3, we will explore how uniformity is maintained
during the process of removing multiple edges and loops where we will use a specific phase
that focuses on removing crossing double edges between two vertex sets as an example,
and the time required for this process will be discussed in Section 5.4.1.

The main theorem of this thesis is stated as follows:
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Theorem 3.3. JDM GEN generates a uniformly random graphical realization of (V ,M,d),
where V = (V1, V2, . . . , Vq), M = (Mij)i,j∈[q] and d = (d1, d2, . . . , dq) are given and q ≥ 2
is a fixed constant. Provided that

M3
ij∆

2

n2
in

2
j

= o(1) for all 1 ≤ i ≤ j ≤ q,

where ∆ = max{di : i ∈ [q]}, and ni = |Vi| for i ∈ [q], the expected running time of
JDM GEN is

O

∑
i∈[q]

nidi

 .

Corollary 3.4. JDM GEN generates a uniformly random graphical realization of (V ,M,d),
where V = (V1, V2, . . . , Vq), M = (Mij)i,j∈[q] and d = (d1, d2, . . . , dq) are given and q ≥ 2
is a fixed constant. Provided that all |Vi| for i ∈ [q] are of the same asymptotic order n, all
di for i ∈ [q] are of the same asymptotic order d, and

d5 = o(n),

the expected running time of JDM GEN is

O (nd) .

Furthermore, when all entries of M are of the same asymptotic order, we can improve
the condition stated in the Theorem 3.3, yielding the following result.

Theorem 3.5. JDM GEN generates a uniformly random graphical realization of (V ,M,d),
where V = (V1, V2, . . . , Vq), M = (Mij)i,j∈[q] and d = (d1, d2, . . . , dq) are given and q ≥ 2 is
a fixed constant. Provided that Mij are of the same asymptotic order m for all 1 ≤ i ≤ j ≤ q
and

m∆2

ninj

= o(1) for all 1 ≤ i ≤ j ≤ q,

where ∆ = max{di : i ∈ [q]}, and ni = |Vi| for i ∈ [q], the expected running time of
JDM GEN is

O

∑
i∈[q]

nidi

 .
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Corollary 3.6. JDM GEN generates a uniformly random graphical realization of (V ,M,d),
where V = (V1, V2, . . . , Vq), M = (Mij)i,j∈[q] and d = (d1, d2, . . . , dq) are given and q ≥ 2 is
a fixed constant. Provided that Mij are of the same asymptotic order for all 1 ≤ i ≤ j ≤ q,
all |Vi| for i ∈ [q] are of the same asymptotic order n, all di for i ∈ [q] are of the same
asymptotic order d, and

d3 = o(n),

the expected running time of JDM GEN is

O (nd) .
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Chapter 4

Initialization

In this chapter, we present the details in the procedure for the generation of the initial
graph, denoted as G0, and discuss the distribution of G0.

4.1 Generation of G0

As discussed earlier, the algorithm finds G(P ) where P is a uniformly random pairing
in Φ0(V ,M,d). Recall that Ci denotes the set of cells representing the vertices in Vi, for
each i ∈ [q]. Let Ui denote the set of points in the cells of Ci. The procedure for generating
a uniformly random pairing P in Φ0(V ,M,d) is given below. Recall that when a rejection
occurs, the algorithm restarts from the beginning.

16



procedure PairingGen(V ,M,d)
for each i ∈ [q] do

Uniformly at random partition Ui into q parts, denoted by {Xij, j ∈ [q]},
subject to |Xij| = Mij for each j ̸= i

end for
for each 1 ≤ i < j ≤ q do

Match the points in Xij to the points in Xji uniformly at random.
end for
for each i ∈ [q] do

Take a uniform random perfect matching over the points in Xii

end for
Let P be the pairing generated by the above steps; reject P if P /∈ Φ0(V ,M,d).
Return (P,G(P ))

end procedure

We first verify that the pairing output by PairingGen is uniformly distributed in
Φ0(V ,M,d).

Lemma 4.1. Each P ∈ Φ0(V ,M,d) is output by PairingGen with equal probability.

Proof. For each i ∈ [q], let

Ni = |Ui| = n1d1.

Claim 4.2. Each pairing P ∈ Φ0(V ,M,d) is output by PairingGen with the probability:

(
q∏

i=1

1(
Ni

Mi1,...,Mii−1,2Mii,Mii+1,...,Miq

)) ·( ∏
1≤i<j≤q

1

(Mij)!

)
·

(
q∏

i=1

(Mii)!2
Mii

(2Mii)!

)
. (4.1)

Since 4.1 only depends on (V ,M,d), this completes the proof.

Proof of Claim 4.2. For each i ∈ [q], there are
(

Ni

Mi1,...,Mii−1,2Mii,Mii+1,...,Miq

)
different ways to

partitionNi points into q subsetsXi1, ..., Xiq with sizesMi1, . . . ,Mii−1, 2Mii,Mii+1, . . . ,Miq,
respectively.

For any 1 ≤ i < j ≤ q, once the partitions Xij and Xji are determined, there are (Mij)!
different perfect matchings that can be created between Xij and Xji.
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Furthermore, for each i ∈ [q], when the partition Xii is determined, there are |Xii|!
|Xii|

2
!2

|Xii|
2

,

which simplifies to (2Mii)!

(Mii)!2Mii
, ways to create perfect matchings on Xii.

Hence, by following the steps in PairingGen, each P ∈ Φ(V ,M,d) is generated with
the probability demonstrated by 4.1. Since the procedure rejects P if P /∈ Φ0(V ,M,d),
each P ∈ Φ0(V ,M,d) is output by PairingGen with the probability demonstrated by
4.1.

Let G0 be the G(P ) output by PairingGen. Given that P is uniformly distributed in
Φ0(V ,M,d), it is not true thatG(P ) is uniformly distributed in {G(P ) : P ∈ Φ0(V ,M,d)}.
However, we show that G(P ) is uniformly distributed in a certain conditional probability
space. We need a few definitions to formalize this. Recall that for any G ∈ G(V ,M,d), we
denote L(G) = (Li(G))i∈[q] as a q-tuple, where Li(G) represents the number of simple loops
whose ends are in Vi. Similarly, D(G) = (Dij(G))1≤i≤j≤q has been defined as a q2-tuple,
where Dij(G) denotes the number of double edges in G that have one end in Vi and the
other end in Vj for 1 ≤ i ≤ j ≤ q.

Given L = (L1, L2, ..., Lq) and D = (Dij)1≤i≤j≤q, let G0(D,L) denote the set of multi-
graphs in {G(P ) : P ∈ Φ0(V ,M,d)} such that L(G) = L, D(G) = D. We show that G0

has uniform distribution after conditioning on L(G0) and D(G0).

Lemma 4.3. Conditioning on L(G0) = L, D(G0) = D, G0 is uniform in G0(D,L).

Proof. Let (P ∗, G(P ∗)) denote the output of the PairingGen procedure.

For any G ∈ G0(D,L), the probability of obtaining G0 = G is given by:

Pr(G0 = G) =
∑

P∈Φ0(V ,M,d),G(P )=G

Pr(P ∗ = P ).

Each P ∈ Φ0(V ,M,d) is generated with the same probability by Lemma 4.1. Therefore,
it suffices to prove that for each G ∈ G0(D,L), the cardinality of the set {P : P ∈
Φ0(V ,M,d), G(P ) = G} is the same.

Given D = (Dij(G))1 ≤ i, j ≤ q and L = (Li(G))i ∈ [q], it is easy to see that for any
G ∈ G0(D,L):

|{P : P ∈ Φ0(V ,M,d), G(P ) = G}| =
q∏

i=1

(di!)
|Vi| ·

(
1

2

)∑q
i=1 Li+

∑
1≤i≤j≤q Dij

. (4.2)
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(We include a proof for (4.2) in Appendix A. ) Hence, the size of the set only depends on
L and D, which completes the proof.

4.2 Running time of PairingGen and Proof of

Lemma 3.2

Recall L and D in (3.1). Given a nonnegative integer t, let [x]t denote the t-th falling
factorial of x; i.e. [x]t = x(x− 1)...(x− t+ 1). Moreover, let

Ni = |Ui| = nidi for i ∈ [q],

N∗
i = Ni −

∑
j∈[q],j ̸=i

Mij = 2Mii for i ∈ [q],

and recall that ni = |Vi| and ∆ = max{di : i ∈ [q]}.
By analogous proofs as [16, Lemma 1] and [16, Lemma 2] we obtain the following

two simple lemmas. We include their proofs for completeness.

Lemma 4.4. Let P be a uniform random pairing in Φ(V ,M,d).

(a) The probability of tij given pairs which have one endpoint in Ui and another in Uj

occurring in P is
[Mij]tij

[Ni]tij [Nj]tij
= (1 + o(1))

(
Mij

NiNj

)tij

if tij = o(
√
Mij).

(b) The probability of ti given pairs whose both endpoints are in Ui occurring in P is

[Mii]ti2
ti

[Ni]2ti
= (1 + o(1))

(
2Mii

N2
i

)ti

if ti = o(
√
Mii).

Proof. The precise probability of (a) is(
Ni−tij
Mij−tij

)(
Nj−tij
Mij−tij

)
· (Mij − tij)!(

Ni

Mij

)(
Nj

Mij

)
·Mij!

=
[Mij]tij

[Ni]tij [Nj]tij
.
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For the denominator, Ni

Mij
indicates the number of ways to choose Mij points from Ui,

which is the number of possible outcomes of Xij in PairingGen. Similarly,
Nj

Mij
indicates

the number of possible outcomes of Xij. And Mij! is the number of possible pairings that
can be created between Xij and Xji.

For the numerator, since tij pairs are already given, it accounts for the number of ways
to choose Mij − tij points from Ui, Uj and pair them up.

The precise probability of (b) when i = 1 is

(
Ni−2ti

2Mii−2ti

)(
Ni

2Mii

) ·

(N
∗
1−2t1
2 )(N

∗
1−2t1−2

2 )...(22)
(
N∗
1−2t1
2

)!

(N
∗
1
2 )(

N∗
1−2

2 )...(22)
(
N∗
1
2

)!

=
[N∗

1 ]2t1
[N1]2t1

· [N
∗
1/2]t12

t1

[N∗
1 ]2t1

=
[N∗

1/2]t12
t1

[N1]2t1
=

[M11]t12
t1

[N1]2t1
.

For the first term, it represents the probability that the endpoints of given ti pairs are
contained in Xii. The denominator of the second term is the number of all perfect matching
that can be taken over the points in Xii. The numerator of the second term indicates the
number of all perfect matching, which contains ti given pairs, that can be taken over the
points in Xii.

Lemma 4.5. Let P ∈ Φ(V ,M,d) be a uniformly random pairing

(a) The probability that G(P ) contains at least one triple edge between Vi and Vj is at

most O
(

M3
ij

n2
in

2
j

)
for all 1 ≤ i ≤ j ≤ q;

(b) The probability that G(P ) contains at least one triple edge in Vi is at most O
(

M3
ii

n4
i

)
for i ∈ [q];

(c) The probability that G(P ) contains at least one loop of multiplicity at least two in Vi

is at most O
(

M2
ii

n3
i

)
for i ∈ [q].

Provided that

M3
ij∆

2

n2
in

2
j

= o(1) for all 1 ≤ i ≤ j ≤ q, (4.3)

all the above probabilities are o(1).
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Proof. By Lemma 4.4 we can compute the expected number of triple edges inG(P ) between
Vi, Vj as following:

(1 + o(1))(
Mij

NiNj

)3 · 6
(
di
3

)(
dj
3

)
n1n2 < (1 + o(1))(

Mij

NiNj

)3 · 6
d3i d

3
j

36
ninj = (1 + o(1))

M3
ij

6n2
in

2
j

.

Similarly, the expected number of triple edges in G(P ) in Vi is:

(1 + o(1))

(
2Mii

N2
i

)3

· 6
(
di
3

)2(
ni

2

)
= (1 + o(1))

(
2Mii

N2
i

)3

· 6
(
di
3

)2(
ni

2

)
< (1 + o(1))

2M3
ii

3n4
i

.

Similarly, the expected number of double loops in G(P ) in Vi is:

(1 + o(1))

(
2Mii

N2
i

)2

· 3
(
di
4

)
ni < (1 + o(1))

M2
ii

2n3
i

.

Then, by employing Markov’s Inequality, we can determine three probabilities (a), (b), (c)

as stated previously. It’s evident that O
(

M3
ij

n2
in

2
j

)
= o(1) and O

(
M3

ii

n4
i

)
= o(1), considering

the given assumption. To verify that O
(

M2
ii

n3
i

)
= o(1), we have:

M2
ii

n3
i

· Mii

ni

·∆2 =
M3

ii∆
2

n4
i

.

Let’s consider the case Mii

ni
̸= o(1), then we obtain

M2
ii

n3
i
= O

(
M3

ii∆
2

n4
i

)
= o(1). However,

if Mii

ni
= o(1), then

M2
ii

n3
i
=
(

Mii

ni

)2
· 1
ni

= o(1). Therefore, the probability that G(P ) contains

at least one double loop in Vi is also o(1).

Proof of Lemma 3.2. Let P be a uniformly random pairing in Φ(V ,M ,d), we want
to show that

Pr(P ∈ Φ0(V ,M,d)) ≥ 3

8
+ o(1),
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which is equivalent to showing that

Pr(P /∈ Φ0(V ,M,d)) ≤ 5

8
+ o(1).

Let li be the number of loops in Vi in G(P ) for i ∈ [q], dij be the number of double edges
in G(P ) with one endpoint in Vi and the other endpoint in Vj for 1 ≤ i ≤ j ≤ q. Then if
P /∈ Φ0(V ,M,d), it might be one of the following cases:

(a) G(P ) contains triple edges or double loops.

(b) li > Li for some i ∈ [q].

(c) dij > Dij for some 1 ≤ i ≤ j ≤ q.

By Lemma 4.5, we have the probability of case (a) is o(1). Next, we compute the
probability of case (b) and (c) by employing the similar idea of the proof for Lemma 4.5.

First, we compute the expected value for each li and dij, where we have

E(li) < (1 + o(1))

(
2Mii

N2
i

)
·
(
di
2

)
ni < (1 + o(1))

Mii

ni

for i ∈ [q];

E(dii) < (1 + o(1))

(
2Mii

N2
i

)2

· 2
(
di
2

)2(
ni

2

)
< (1 + o(1))

M2
ii

n2
i

for i ∈ [q];

E(dij) < (1 + o(1))

(
M12

N1N2

)2

· 2
(
d1
2

)(
d2
2

)
n1n2 < (1 + o(1))

M2
12

2n1n2

for all 1 ≤ i < j ≤ q.

Hence we have

Pr(li > Li) <
1

2q2
+ o(1) for i ∈ [q];

Pr(dii > Dii) <
1

2q2
+ o(1) for i ∈ [q];

Pr(dij > Dij) <
1

4q2
+ o(1) for all 1 ≤ i < j ≤ q.
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Thus, the probability of case (b) or case (c) occurs can be bounded as following:

Pr(li > Li for some i ∈ [q] or dij > Dij for some 1 ≤ i ≤ j ≤ q)

< q · 1

2q2
+ q · 1

2q2
+

q(q − 1)

2
· 1

4q2
+ o(1)

=
1

q
+

(q − 1)

8q
+ o(1)

<
1

q
+

1

8
+ o(1)

≤ 5

8
+ o(1) for q ≥ 2.

Together with the probability of case (a) being o(1), we may conclude that

Pr(P /∈ Φ0(V ,M,d)) ≤ 5

8
+ o(1),

and it completes the proof.

Finally, generating P in PairingGen is equivalent to generating uniform random per-
mutations of points in Ui, which can be done in time linear in |Ui|. This immediately
implies the following.

Lemma 4.6. Provide that no rejection occurs, the running time of PairingGen is
O (
∑q

i=1 nidi).

During the execution of PairingGen, we use data structures to store the positions of
multi-edges and loops of each time. This data will be useful in the subsequent phases of
JDM GEN.

23



Chapter 5

Special case when q = 2

The case q = 1 reduces to the problem of uniform generation of random regular graphs,
which has been studied in [3], [10], and [16]. Thus we may assume that q ≥ 2. For an
easier exposition, we first describe our algorithm JDM GEN for the special case where
q = 2, i.e. V = (V1, V2). In this case, V1 consists of vertices with degree d1, V2 consists of
vertices with degree d2, and the matrix M is a 2 × 2 matrix that specifies the number of
edges between V1 and V2 as well as the number of edges within V1 and V2. The algorithm
extends naturally to the general case where q ≥ 2 is a fixed integer, which will be discussed
in Chapter 6.

Recall that G0 is the multigraph output by PairingGen. By the definition of
Φ0(V ,M,d) and recalling (3.1), G0 does not contain loops of multiplicity greater than one,
or multiple edges with multiplicity greater than two. Moreover, the numbers of loops and
double edges in G0 are bounded from above by L and D, respectively.

As mentioned earlier, our algorithm JDM GEN generates a sequence of multigraphs
G0, G1, . . . , by repeatedly removing loops and double edges in G0, using a set of “switching
operations”. These switchings will be formally defined in Section 5.1. In Section 5.3, we
will define JDM GEN for the case q = 2 and prove the uniformity of Gt for every t ≥ 1.
In Section 5.4, we will analyze the running time of JDM GEN. Before proceeding to the
definition of the switchings JDM GEN uses, it is insightful to see how switchings were
used in the literature for the case q = 1. Hence, we start our discussions by reviewing these
switchings.
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5.1 Switchings: the old

The switching shown in Figure 5.1 demonstrates how a loop can be removed. The
operation shown in the figure replaces the loop on v1 and two other simple edges v2v3 and
v4v5, by three simple edges, v1v2, v1v5, and v3v4. This switching operation preserves the
degree sequence of the graph while reducing the number of loops by 1. Similarly, Figure 5.2
illustrates the elimination of a double edge.

These switchings illustrated in Figure 5.1 and Figure 5.2 were introduced by McKay
and Wormald [16]. As mentioned earlier, each application of the switchings distorts the
distribution of the resulting multigraph slightly from the uniform. This is due to the fact
that some multigraphs permit more number of switchings that can be applied to them than
the others, as well as that some multigraphs can be created in more ways via switchings
than the others. McKay and Wormald [16] designed reject schemes to correct the distortion
of the distribution caused by the application of the switchings, maintaining uniformity
of Gt in each step. More recently, Gao and Wormald [10] introduced the “boosting”
technique, which complements the switchings in Figure 5.1 and Figure 5.2 by a new set of
switchings called “boosters” that are performed only “occasionally”. These boosters boost
the probability of the multigraphs that are otherwise generated less frequently compared
to the others, which would consequently result in a high chance of rejection without the
help of boosters. The introduction of the boosting technique significantly broadened the
family of degree sequences for which the switching-based generation algorithms can work
efficiently.

Figure 5.1: l-switching
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Figure 5.2: d-switching

For the problem we study in this thesis, the most intuitive idea would be to use the two
switchings above, with the natural restrictions to maintain the number of edges restricted
by M , to remove the loops and double edges in G0. For instance, if v2v5 in Figure 5.2 is a
double edge with both ends in V1, then one would choose the other two edges both lying
entirely in V1. However, a naive application of switchings like this would result in a high
overall rejection probability, even for rather small d1 and d2.

We give an intuitive explanation of the cause of frequent rejections. Suppose G0 has d
double edges with both ends in V1. For simplicity and for exposition purposes we assume
that G0 does not have other types of multiple edges or loops. Suppose that G0 is uniformly
distributed in the set Sd of multigraphs with exactly d double edges lying in V1 (and
no other types of multiple edges). Let us consider the multigraphs in Sd−1. If G is a
multigraph in Sd−1, the number of ways that G can be created is equal to the number
of pairs of vertex-disjoint 2-paths v1v2v3 and v4v5v6 lying in V1 such that v1v4, v2v5 and
v3v6 are not edges of G. Let d′v denote the number of neighbours of v lying in V1 in G
for every v ∈ V1. Thus, the number of pairs of 2-paths described above is approximately
ρ(G) := (

∑
v∈V1

d′v(d
′
v−1))2. This graph parameter is larger for some members in Sd−1, and

smaller for some other members. We have to reject more often for the graphs G with larger
ρ(G) in order to maintain uniformity. It is not hard to work out the distribution of ρ(G)
for a uniformly random G in Sd−1, and we find that ρ(G) is not sufficiently concentrated
to guarantee a small rejection probability.

To resolve this problem, our algorithm instead uses a set of switchings including the one
in Figure 5.2, allowing G in Sd−1 to be created by different types of switchings. Although
the number of ways that G can be created by the particular type of switching in Figure 5.2
varies significantly for differentG in Sd−1, the total number of ways thatG can be created by
any type of switchings the algorithm is permitted to apply will be sufficiently concentrated.

26



This idea is similar to the use of boosters. However, in all previous work, the boosters are
applied very rarely, and they complement a “main type” of switching that is applied almost
always in each step.

In our case, all types of switchings are applied with similar frequencies. This signifies
a notable distinction from the role of boosters from the previous research.

5.2 Switchings: the new

We formally define the set of switchings used in JDM GEN. For all the switchings
described below, we refer to the operation of transforming a multigraph from the left-hand
side to the right-hand side as a forward switching, while the reverse operation is referred to
as a backward switching. Additionally, given a graph G and some switching S that can be
applied on G, we let S(G) represent the graph that emerges after applying the switching
S to G.

5.2.1 Switchings to remove crossing double edges between V1 and
V2

After the generation of G0, our algorithm will repeatedly remove all double edges with
one end in V1 and the other end in V2. For convenience, we call these double edges the
crossing double edges. After the removal of all crossing double edges, the algorithm proceeds
to remove the other types of multiple edges, which are treated in a similar manner. Thus,
we start by defining the set of switchings used by the algorithm to remove the crossing
double edges.

There are in total 16 different types of switchings that the algorithm uses to remove
the crossing double edges. We use Di

12, 1 ≤ i ≤ 16, to denote the names of the types.
The letter ”D” indicates that these switchings are designed to eliminate double edges. The
subscript ”12” signifies that the crossing double edges have one end in V1 and the other
end in V2, and the superscripts 1 to 16 represent the 16 different types.

We define theD5
12 type switching in detail, and explain how it is illustrated in Figure 5.3.

All the remaining switching types are visually depicted through figures; see Figure 5.5 and
Figure 5.6. We omit the lengthy explanations, as their absence will not lead to confusion,
given the evident visual illustrations in the figures.
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Figure 5.3: D5
12 switching

To perform a D5
12 type switching, we choose an ordered set of ten vertices

(v1, v2, v3, v4, v5, v6, u1, u2, u3, u4)

subject to the following constraints:

(a) v2 ∈ V1, v5 ∈ V2 and v2v5 induces a crossing double edge;

(b) v1, v3, v4, u1, u3 ∈ V1, v6, u2, u4 ∈ V2 where v1u1, v3u3, v4u2, v6u4 are all simple edges;

(c) v1v2, v2v3, v4v5, v5v6, u1u2, u3u4 are all non-edges.

Then, we remove the edges v1u1, v3u3, v4u2, v6u4 and the double edge v2v5, and add
the edges v1v2, v2v3, v4v5, v5v6, u1u2 and u3u4. This operation is illustrated in Figure 5.3.
All solid arcs (except for the two arcs between v2 and v5) denote simple edges, and all the
dashed arcs indicate non-edges. Vertices belonging to different vertex sets of V are put
into different square boxes.

It is obvious that the degree sequence and the number of edges between any Vi and Vj,
i, j ∈ [2], do not change after the application of the switchings.

All the 16 switchings are similar, with the main distinction being the placement of
v1, v3, v4, and v6, each of which can be either in V1 or V2. This results in a total of 24 = 16
different switchings.
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5.2.2 Switchings to remove the other types of multiple edges and
loops

Figure 5.4 illustrates the 4 types of switchings that are used to eliminate loops within
Vi, i ∈ [2].

Figure 5.7 and Figure 5.8 illustrate the 16 types of switchings that are used to eliminate
the double edges within Vi, i ∈ [2].

In the figures, the square box on the left-hand side is the vertex set Vi.

Figure 5.4: L1 switching 1-4
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Figure 5.5: D12 switching 1-8
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Figure 5.6: D12 switching 9-16
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Figure 5.7: D1 switching 1-8
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Figure 5.8: D1 switching 9-16
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5.3 JDM GEN for q = 2

Recall again that G0 is the multigraph output by PairingGen. We are ready to
define JDM GEN. The algorithm consists of three phases. In the first phase, all the
crossing double edges are sequentially removed. Then, the double edges within each Vi,
and the loops within each Vi, are sequentially removed in the second and the third phase
respectively. We start with the discussions of the first phase. The general idea of the other
two phases is similar.

5.3.1 Definition

Recall that for any L = (L1, L2) ∈ N2 and D = (D11, D22, D12) ∈ N3, the set G0(L,D)
is defined as follows. For any G ∈ G0(L,D), the following conditions hold:

(a) G has no loops of multiplicity greater than one or multiple edges of multiplicity
greater than two.

(b) The number of simple loops in G in V1 and V2 is L1 and L2 respectively.

(c) The number of double edges in G in V1 and V2 is D11 and D22 respectively.

(d) The number of double edges in G between V1 and V2 is D12.

Suppose we have G0 ∈ G0(L,D) for some L = (L1, L2) andD = (D11, D22, D12). Recall
the 16 types of switchings demonstrated in Figure 5.5 and Figure 5.6 for the removal of the
crossing double edges. Note that these switchings do not alter the number of double edges
or loops within V1 or V2. Thus, during the whole execusion of the first phase of JDM GEN,
L1(Gt), L2(Gt), D11(Gt) and D22(Gt) will not change. Hence, for convenience and without
the danger of confusion, we suppress the lengthy notation (L,D), and instead use the
notation Hm to represent the set G0((L1, L2), (D11, D22,m)) for 0 ≤ m ≤ D12 throughout
the discussions of the first phase of JDM GEN.

For each τ ∈ {Di
12 : 1 ≤ i ≤ 16}, let fτ (G) denote the number of switchings of type

τ that can be applied to G. Recall that M is the joint degree matrix. The following are
parameters set by JDM GEN. Given m ∈ N, set fm

Di
12

as follows:
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f
m

D1
12
= 4mM2

12M
2
11; (5.1a)

f
m

D2
12
= f

m

D3
12
= 2mM3

12M11; (5.1b)

f
m

D4
12
= f

m

D5
12
= 8mM12M

2
11M22; (5.1c)

f
m

D6
12
= mM4

12; (5.1d)

f
m

D7
12
= f

m

D8
12
= f

m

D9
12
= f

m

D10
12
= 4mM2

12M11M22; (5.1e)

f
m

D11
12
= 16mM2

11M
2
22; (5.1f)

f
m

D12
12
= f

m

D13
12
= 2mM3

12M22; (5.1g)

f
m

D14
12
= f

m

D15
12
= 8mM12M11M

2
22; (5.1h)

f
m

D16
12
= 4mM2

12M
2
22. (5.1i)

The parameters f
m

τ here serve a similar role as fd(m) in [3]. We prove that parameters
f
m

τ are upper bounds for fτ (G) for G ∈ Hm.

Lemma 5.1. Given m ∈ N, for any graph G ∈ Hm and for each τ ∈ {Di
12 : 1 ≤ i ≤ 16},

fτ (G) ≤ f
m

τ .

Proof. We will use the D5
12 switching as an example to demonstrate that fD5

12
(G) ≤ f

m

D5
12
=

8mM12M
2
11M22.

Figure 5.9: D5
12 switching

In the D5
12 switching, we have m choices for the double edge v2v5, at most M12 choices

for the edge v4u2, at most 2M11 choices for each of the edges v1u1 and v3u3( order matters ),
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and at most 2M22 choices for the edge v6u4. Therefore, without considering the forbidden
cases such as vertex coincidences or the presence of non-edges, we have at most f

m

D5
12

=

8mM12M
2
11M22 possible choices for fD5

12
(G). Hence, we conclude that fD5

12
(G) ≤ f

m

D5
12
.

By following a similar reasoning, it can be verified that fτ (G) ≤ f
m

τ for all τ ∈ {Di
12 :

1 ≤ i ≤ 16}.

For each τ ∈ {Di
12 : 1 ≤ i ≤ 16}, set

pmτ =
f
m

τ∑
i∈[16] f

m

Di
12

.

This set of parameters will be used by JDM GEN to probabilistically choose a particular
type of switchings to perform in each step. Note that by definition,

∑
τ∈{Di

12:1≤i≤16} p
m
τ = 1,

and thus (pmτ )τ∈{Di
12:1≤i≤16} defines a probability distribution over {Di

12 : 1 ≤ i ≤ 16}.

Now we define NoDoubles12, which is a procedure called by JDM GEN to eliminate
all the crossing double edges. NoDoubles12 calls a subprocedure RelaxGraph, which
computes the probability of rejecting the switching S selected by NoDoubles12, so that
the resulting multigraph maintains uniformity after performing S. RelaxGraph is rather
complicated and we will explain the details in the next section.

procedure NoDoubles12(G)
while G has double edges between V1, V2 do

Suppose G ∈ Hm

Choose switching type τ with probability pmτ , for τ ∈ {D1
12, . . . , D

16
12}

Choose a uniform random type τ switching S that can be applied to G
f-rejection: reject with probability 1− fτ (G)

f
m
τ

b-rejection: RelaxGraph(G,S)
G← S(G)

end while
end procedure

5.3.2 Incremental Relaxation

Now we define RELAXGRAPH, which uses a technique called incremental relaxation,
developed by Arman, Gao and Wormald [3]. Before introducing incremental relaxation,
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it is helpful to understand how b-rejection would work without incremental relaxation,
and the advantages of using this technique. Recall NoDoubles12. Suppose at step t we
have Gt uniformly distributed in Hm for some m. By the definition of NoDoubles12, the
probability that a particular type τ switching S is selected, and is not f-rejected is

pmτ ·
1

fτ (G)
· fτ (G)

f
m

τ

=
f
m

τ∑
i∈[16] f

m

Di
12

· 1

f
m

τ

=
1∑

i∈[16] f
m

Di
12

. (5.2)

Note that the right hand side above is constant for all (G,S) where G ∈ Hm and S is any
switching that NoDoubles12 may select. In particular, the quantity does not depend on
τ , the type of the switching selected by NoDoubles12. Let b(G′) denote the number of
all possible switchings (of any of the 16 types) that can produce G′ for G′ ∈ Hm−1. Given
(G,S) in NoDoubles12, let G

′ denote the multigraph that S transforms G into. Suppose
we b-reject (G,S) with probability C/b(G′) for some constant C that does not depend on
G′. Then, the probability that any graph G′ ∈ Hm−1 is created after a switching step and
is not rejected (either f-rejected or b-rejected) is equal to∑

(G,S):S produces G′

1

|Hm|
1∑

i∈[16] f
m

Di
12

C

b(G′)
,

where 1/|Hm| is the probability that the multigraph obtained before the switching step is
G, 1/

∑
i∈[16] f

m

Di
12

is the probability that S is selected and is not f-rejected, and C/b(G′)

is the probability that (G,S) is not b-rejected. Note that the right hand side above is
constant since C is constant and

|{(G,S) : S produces G′}| = b(G′),

by definition of b(G′). Inductively, the resulting multigraph obtained after the switching
step is uniform in Hm−1.

This is essentially the idea of rejection schemes used in the literature [16] before the
technique of incremental relaxation. The drawback is that the computation of b(G′) is time
costly. With a brute-force search, it takes O(∆4n2) time to compute b(G′) by navigating
through each pair of 2-paths in G′ and checking if they can be created by a d-switching
as in Figure 5.2. The time complexity can be reduced to O(d3n) in the case of a d-regular
degree sequence, by sophisticated counting schemes using inclusion and exclusion, and by
using proper data structure. The time cost will be even higher in our case, as the structures
created by a switching (recalling Figure 5.3) is more complicated than just a pair of 2-paths.

Incremental relaxation is a new rejection scheme that performs b-rejection without
computing b(G′). We give an intuitive explanation of how it works in NoDoubles12.
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After the procedure chooses S, the resulting multigraph G′ produced by S is determined.
Instead of viewing G′ as the output of S, we view the 5-tuple (G′, v1v2v3, v4v5v6, u1u2, u3u4)
as the output of S, where each coordinate in the tuple except for G′ signifies a certain
structure in G′ created by S (e.g. v1v2v3 is a 2-path in G′); moreover, these structures
satisfy certain constraints (e.g. all vertices involved are disjoint, u1v1 is a non-edge, etc.).
By (5.2), every possible such 5-tuple is generated with equal probability. However, some
G′ produces more such 5-tuple than others. Instead of computing how many 5-tuples there
are with the first coordinate being G′, which is equivalent to computing b(G′), incremental
relaxation computes b(G′, v1v2v3), which is the number of simple 2-paths in G′, and then
b(G′, v1v2v3, v4v5v6), which is the number of choices for v4v5v6, given a particular choice of
(G′, v1v2v3), etc. Finally, using these b() values that are computed, incremental relaxation
performs a sequence of b-rejections and sequentially produces (G′, v1v2v3, v4v5v6, u1u2),
and then (G′, v1v2v3, v4v5v6), and then (G′, v1v2v3) and finally G′, each time uniformly
distributed in their corresponding probability spaces. The essence of incremental relaxation
is that computing the new b() functions costs much less time than computing b(G′).

Here, we adopt the notation in [3]. For a more detailed explanation of incremental
relaxation, readers are referred to Section 3 of [3]. In the following discussion, we will
explain how incremental relaxation is applied to our problem. We always start with a
general setting as in [3], followed by how it is applied in our particular problem.

Given a finite set F and a positive integer k, we are also provided with multisets Si for
1 ≤ i ≤ k, where each Si consists of subsets of F .

Let Fk be any subset of F × S1 × . . . × Sk such that for F = (G,C1, . . . , Ck) ∈ Fk,
F satisfies G ∈ Ck ⊆ Ck−1 ⊆ . . . ⊆ C1. For any F = (G,C1, . . . , Ck) ∈ Fk, we define
Pi(F ) = (G,C1, . . . , Ci) for 1 ≤ i ≤ k.

For 1 ≤ i ≤ k − 1, we define Fi = {Pi(F ) : F ∈ Fk}, and we set F0 = F .

For 1 ≤ i ≤ k, let F = (G,C1, . . . , Ci) ∈ Fi. We define P (F ) = (G,C1, . . . Ci−1) be the
prefix of F .

For our problem, suppose RelaxGraph is called with parameters (S,G) such that
S(G) ∈ Hm. Then F will be Hm and k = 4. We define Si in the following way:

Let v1, . . . , v6, u1, . . . , u4 be distinct vertices. We use ES(G) to denote the set of simple
edges in graph G.

We define the following sets:
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C
(v1,v2,v3)
1 = {G ∈ F : v1v2, v2v3 ∈ ES(G)};

C
(v1,...,v6)
2 = {G ∈ C

(v1,v2,v3)
1 : v4v5, v5v6 ∈ ES(G), v2v5 /∈ E(G)};

C
(v1,...,v6,u1,u2)
3 = {G ∈ C

(v1,...,v6)
1 : u1u2 ∈ ES(G), v1u1, v4u2 /∈ E(G)};

C
(v1,...,v6,u1,...,u4)
4 = {G ∈ C

(v1,...,v6,u1,u2)
1 : u3u4 ∈ ES(G), v3u3, v6u4 /∈ E(G)}.

These sets can be considered as subsets of F .
Now, we define the following sets:

S1 = {C(v1,v2,v3)
1 : v1, v2, v3 are distinct, v2 ∈ V1};

S2 = {C(v1,...,v6)
2 : v1, . . . , v6 are distinct, v2 ∈ V1, v5 ∈ V2};

S3 = {C(v1,...,v6,u1,u2)
3 : v1, . . . , v6, u1, u2 are distinct, v2, u1 ∈ V1, v5, u2 ∈ V2};

S4 = {C(v1,...,v6,u1,...,u4)
4 : v1, . . . , v6, u1, . . . , u4 are distinct, v2, u1, u3 ∈ V1, v5, u2, u4 ∈ V2}.

We let Fk = F4 be

F4 = {(G,C
(v1,v2,v3)
1 , C

(v1,...,v6)
2 , C

(v1,...,v6,u1,u2)
3 , C

(v1,...,v6,u1,...,u4)
4 ) : G ∈ C

(v1,...,v6,u1,...,u4)
4

v1, . . . , v6, u1, . . . , u4 are distinct and v2, u1, u3 ∈ V1, v5, u2, u4 ∈ V2}.

Let v1, . . . , v6, u1, . . . , u4 be distinct vertices where v2, u1, u3 ∈ V1, v5, u2, u4 ∈ V2 such
that

F = (G,C
(v1,v2,v3)
1 , C

(v1,...,v6)
2 , C

(v1,...,v6,u1,u2)
3 , C

(v1,...,v6,u1,...,u4)
4 ) ∈ F4.

Then we have

P1(F ) = (G,C
(v1,v2,v3)
1 ) ∈ F1;

P2(F ) = (G,C
(v1,v2,v3)
1 , C

(v1,...,v6)
2 ) ∈ F2;

P3(F ) = (G,C
(v1,v2,v3)
1 , C

(v1,...,v6)
2 , C

(v1,...,v6,u1,u2)
3 ) ∈ F3;

P (G,C
(v1,v2,v3)
1 , C

(v1,...,v6)
2 , C

(v1,...,v6,u1,u2)
3 ) = (G,C

(v1,v2,v3)
1 , C

(v1,...,v6)
2 );

P (G,C
(v1,v2,v3)
1 , C

(v1,...,v6)
2 ) = (G,C

(v1,v2,v3)
1 );

P (G,C
(v1,v2,v3)
1 ) = G.
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Get back to the general setting, for 0 ≤ i ≤ k − 1 and F = (G,C1, . . . , Ci) ∈ Fi,
we define b(F ) to be the number of F ′ ∈ Fi+1 such that P (F ′) = F .

Suppose Bi (0 ≤ i ≤ k − 1) are numbers specified such that b(F ) ≥ Bi for all F ∈ Fi

and we assume that Bi > 0 for all 0 ≤ i ≤ k − 1.

For our problem, for 0 ≤ i ≤ 3 and F = (G,C1, . . . , Ci) ∈ Fi, b(F ) will be the

number of F ′ ∈ Fi+1 such that P (F ′) = F . For example, let F = (G,C
(v1,v2,v3)
1 ) ∈ F1, then

b(F ) is the number of F ′ ∈ F2 such that P (F ′) = (G,C
(v1,v2,v3
1 ). In other words, b(F ) is

the number of three tuples (v4, v5, v6) such that (G,C
(v1,v2,v3
1 , C

(v1,...,v6)
2 ) ∈ F2, we will have

a more detailed discussion on b(F ) in Section 5.3.4 to give a more specific combinatorial
interpretation of b(F ).

Recall that ∆ is the maximum degree, that is ∆ = max{d1, d2}. We specify parameters
below that correspond to Bi mentioned above in the general setup:

B
(0)
12 = n1d1(d1 − 1)− 32M2

12d1
n1n2

− 64M2
11d1

n2
1

− 16M11d1
n1

; (5.3a)

B
(1)
12 = n2d2(d2 − 1)− 32M2

12d2
n1n2

− 64M2
22d2

n2
2

− 16M22d2
n2

− 8d2∆− d22∆; (5.3b)

B
(2)
12 = M12 −

16M2
12

n1n2

− 10∆− 2∆2; (5.3c)

B
(3)
12 = M12 −

16M2
12

n1n2

− 12∆− 2∆2. (5.3d)

The parameters B12 here serve a similar role as bd in [3]. The following lemma verifies

that the above B
(i)
12 s are indeed lower bounds for b(F ) for F ∈ Fi. Its proof is deferred to

Section 5.4.2.

Lemma 5.2. Provided that

M3
ij∆

2

n2
in

2
j

= o(1) for all 1 ≤ i ≤ j ≤ 2,

b(F ) ≥ B
(i)
12 > 0 for all F ∈ Fi for 0 ≤ i ≤ 3.

Incremental consists of two main procedures: Loosen and Relax.
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The Loosen procedure takes an input F ∈ Fi. It may either reject with a certain
probability or output the prefix P (F ) of F .

The Relax procedure takes an element F from Fk. It repeatedly calls the Loosen
procedure until the value returned is an element from F0.

procedure Loosen(F )
Suppose F ∈ Fi

Reject with probability 1− Bi−1

b(P (F ))

Return P (F )
end procedure

procedure Relax(F )
Suppose F ∈ Fk

i := k
while i ≥ 1 do

F = Loosen(F )
i = i− 1

end while
end procedure

The following three lemmas(5.3, 5.4 and 5.5) are proved in [3], which states that if F is
chosen uniformly from Fk, then the output of theRelax procedure, denoted asRelax(F),
is uniform in F if no rejection occurs.

Lemma 5.3. [3, Lemma 5] Assume that i ∈ [k] and Bi > 0. Provided that F ∈ Fi is
chosen uniformly at random, the output of Loosen(F) is uniformly in Fi−1 assuming no
rejection occurs.

Lemma 5.4. [3, Corollary 7] When applied Relax to (G,C1, . . . , Ck) ∈ Fk, the algo-
rithm outputs G with probability

∏k−1
i=0

Bi

b(G,C1,...,Ci)
, and ends in rejection otherwise.

Lemma 5.5. [3, Corollary 6] Assume that for all i ∈ [k], Bi−1 > 0, and assume F ∈ Fk

is chosen uniformly at random. Then the output of Relax(F ) is uniform in F if there is
no rejection.
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5.3.3 Uniformity of NoDoubles12

In this section we show that NoDoubles12 preserves the uniformity under the as-
sumption of B

(i)
12 > 0 for 0 ≤ i ≤ 3. The idea is to apply Relax to our problem. First,

we define the procedure RelaxGraph which is called within NoDoubles12. Suppose
RelaxGraph(G,S) is called in NoDoubles12 for some G and S where S involves an or-
dered set of ten vertices (v1, v2, v3, v4, v5, v6, u1, u2, u3, u4). We define the following notation
for simplicity:

(a) V1(S) = (v1, v2, v3);

(b) V2(S) = (v1, v2, v3, v4, v5, v6);

(c) V3(S) = (v1, v2, v3, v4, v5, v6, u1, u2);

(d) V4(S) = (v1, v2, v3, v4, v5, v6, u1, u2, u3, u4).

Then, the procedure RelaxGraph is defined as follows:

procedure RelaxGraph(G,S)

Let F = (S(G), C
V1(S)
1 , C

V2(S)
2 , C

V3(S)
3 , C

V4(S)
4 )

Relax(F )
end procedure

By employing a similar proof strategy as presented in [3, Corollary 15], we derive the
following lemma.

Lemma 5.6. Provided that B
(i)
12 > 0 for 0 ≤ i ≤ 3, if no rejection occurs during the

execution of NoDoubles12(G0), then the resulting G0 is uniformly distributed in H0.

Proof. We prove it by induction. Let G′
0 = G0 and G′

i be the graph obtained after the
i-th iteration for 1 ≤ i ≤ m where m is the number of crossing double edges in G0. If no
rejection occurs in the first i iterations, we have G′

i ∈ Hm−i. We will now demonstrate
that G′

i is uniformly distributed in Hm−i.

When i = 0, we have G′
0 = G0 chosen uniformly at random from Hm according to

Lemma 4.3. Suppose no rejection occurs in the first k iterations and G′
i is uniformly

distributed in Hm−i for all i ≤ k. Now, suppose no rejection occurs in the (k + 1)-th
iteration. We will prove that G′

k+1 is uniformly distributed in Hm−(k+1).
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Since G′
k is uniformly distributed in Hm−k, the probability that G′

k = G is the same
for all G ∈ Hm−k where we denote this probability as δk. Now, consider G ∈ Hm−k and
a type τ switching S for some τ . The probability that (G,S) is called by RelaxGraph
can be expressed as:

δkp
(m−k)
τ

1

fτ (G′)

fτ (G
′)

f
(m−k)

τ

= δk
p
(m−k)
τ

f
(m−k)

τ

,

where this probability only depends on m and k.

Hence for each possible (G,S) pair, the corresponding term F = (S(G), C
V4(S)
4 , C

V3(S)
3 ,

C
V2(S)
2 , C

V1(S)
1 ) ∈ F4 is called by Relax with the same probability.

The remaining task is to show that for every F ∈ F4, there exists G ∈ Hm−k and S such
that the corresponding term of (G,S) is precise F . By establishing this, we can conclude
that each F ∈ F4 is called by Relax with the same probability. This allows us to apply
Lemma 5.5.

Suppose F = (G′, C
(v1,v2,v3)
1 , C

(v1,...,v6)
2 , C

(v1,...,v6,u1,u2)
3 , C

(v1,...,v6,u1,...,u4)
4 ) ∈ F4 for some

graph G′ ∈ F = Hm−k+1 and vertices v1, . . . , v6, u1, . . . , u4. We can get a graph G ∈ Hm−k

by performing a backward switching on G′ with the vertices v1, . . . , v6, u1, . . . , u4, which
involves the following steps:

(a) Remove the edges v1v2, v2v3, v4v5, v5v6, u1u2, u3u4 from G′.

(b) Add the simple edges v1u1, v3u3, v4u2, v6u4 to G′.

(c) Add the double edge v2v5 to G′.

Let S be the switching such that S(G) = G′. It can be observed that the corresponding
term of (G,S) is F .

Hence, each F ∈ F4 is called by Relax with the same probability. Thus, if no rejec-
tion occurs during the (k + 1)-th iteration, G′

k+1 is uniformly distributed in Hm−(k+1) by
Lemma 5.5.

By induction, if no rejection occurs in the first m iterations, we can conclude that the
final graph G = G′

m is uniformly distributed in Hm−m = H0.
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5.3.4 Combinatorial interpretation of b(F )

Recall that in the b-rejection scheme, we need to compute the value of b(P (F )) when
Loosen is called. In this section, we will give a combinatorial description of b(P (F )) in
our problem by interpreting Fi from a different perspective. This will be used to verify
that parameters in (5.3) are lower bounds for the b(F )s, yielding a proof for Lemma 5.2.
It will also be used to design a counting scheme for efficient computation of b(F ). These
will be further discussed in Section 5.4.1.

Suppose RelaxGraph is called with parameters (G,S), where G′ = S(G). In Relax-

Graph, Relax is called with parameters (G′, C
V4(S)
4 , C

V3(S)
3 , C

V2(S)
2 , C

V1(S)
1 ). If no rejection

occurs in Relax, the following values need to be computed when Loosen is processed:

b(P (G′, C
V1(S)
1 , C

V2(S)
2 , C

V3(S)
3 , C

V4(S)
4 )) = b(G′, C

V1(S)
1 , C

V2(S)
2 , C

V3(S)
3 ); (5.4a)

b(P (G′, C
V1(S)
1 , C

V2(S)
2 , C

V3(S)
3 )) = b(G′, C

V1(S)
1 , C

V2(S)
2 ); (5.4b)

b(P (G′, C
V1(S)
1 , C

V2(S)
2 )) = b(G′, C

V1(S)
1 ); (5.4c)

b(P (G′, C
V1(S)
1 )) = b(G′). (5.4d)

Suppose F ∈ Fi for some i. Recall that b(F ) represents the number of F ′ ∈ Fi+1 such
that P (F ′) = F , and Fi = {Pi(F ) : F ∈ F4} for 1 ≤ i ≤ 3. Currently, we lack an efficient
method to compute the value of b(F ). Hence, we introduce a different perspective on Fi,
which brings a combinatorial meaning of b(F ) and hence leads to an efficient approach for
computing b(F ).

Define

F ′
1 = {(G,C

(v1,v2,v3)
1 ) : G ∈ C

(v1,v2,v3)
1 , v1, . . . , v3 be distinct vertices where v2 ∈ V1};

F ′
2 = {(G,C

(v1,v2,v3)
1 , C

(v1,...,v6)
2 ) : G ∈ C

(v1,...,v6)
2

v1, . . . , v6 be distinct vertices where v2 ∈ V1, v5 ∈ V2};
F ′

3 = {(G,C
(v1,v2,v3)
1 , C

(v1,...,v6)
2 , C

(v1,...,v6,u1,u2)
3 ) : G ∈ C

(v1,...,v6,u1,u2)
3

v1, . . . , v6, u1, u2 be distinct vertices where v2, u1 ∈ V1, v5, u2 ∈ V2}.

Claim 5.7. Provided that B
(i)
12 > 0 for 0 ≤ i ≤ 3, Fi = F ′

i for 1 ≤ i ≤ 3.

Proof. The proof can be seen as an inductive argument, starting with the case for i = 3
and using the results of F3 = F ′

3 to establish the proof for i = 2. By extending this
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approach, we can then prove the cases for i = 1 in a similar manner. We start by showing
that F3 = F ′

3.

Suppose F ∈ F3. Then, there exists F ∗ ∈ F4 such that F = P3(F
∗). Let us assume

that
F ∗ = (G,C

(v1,v2,v3)
1 , C

(v1,...,v6)
2 , C

(v1,...,v6,u1,u2)
3 , C

(v1,...,v6,u1,...,u4)
4 )

for some v1, . . . , v6, u1, . . . , u4.

By definition of F4, we have that v1, . . . , v6, u1, u2 are distinct, v2, u1 ∈ V1, v5, u2 ∈ V2,
and G ∈ C

(v1,...,v6,u1,...,u4)
4 ⊆ C

(v1,...,v6,u1,u2)
3 . Therefore, we can conclude that

F = P3(F
∗) = (G,C

(v1,v2,v3)
1 , C

(v1,...,v6)
2 , C

(v1,...,v6,u1,u2)
3 ) ∈ F ′

3.

Next, let’s suppose F ∈ F ′
3 where we assume that

F = (G,C
(v1,v2,v3)
1 , C

(v1,...,v6)
2 , C

(v1,...,v6,u1,u2)
3 )

for some distinct vertices v1, . . . , v6, u1, u2.

To show that F ∈ F3, we need to find (u3, u4) such that G ∈ C
(v1,...,v6,u1,u2,u3,u4)
4 and

C
(v1,...,v6,u1,u2,u3,u4)
4 ∈ S4. Then we have

(G,C
(v1,v2,v3)
1 , C

(v1,...,v6)
2 , C

(v1,...,v6,u1,u2)
3 , C

(v1,...,v6,u1,...,u4)
4 ) ∈ F4,

and hence we have

P3(G,C
(v1,v2,v3)
1 , C

(v1,...,v6)
2 , C

(v1,...,v6,u1,u2)
3 , C

(v1,...,v6,u1,...,u4)
4 ) = F,

which shows that F ∈ F3.

It is equivalent to find (u3, u4) that satisfy the following conditions:

(a) u3 and u4 are distinct vertices, different from v1, . . . , v6, u1, u2,

(b) u3 ∈ V1 and u4 ∈ V2,

(c) u3u4 ∈ ES(G), and v3u3, v6u4 /∈ E(G).

Conditions (a), (b) ensure that C
(v1,...,v6,u1,u2,u3,u4)
4 ∈ S4, and condition (c) ensures that

G ∈ C
(v1,...,v6,u1,u2,u3,u4)
4 .
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The existence of such (u3, u4) will be demonstrated later in Section 5.4.2. This com-
pletes the proof that F3 = F ′

3.

Next, let’s consider the case for i = 2. The direction of showing F2 ⊆ F ′
2 is almost the

same as the case for i = 3 and can be considered trivial.

So let’s show the direction of F ′
2 ⊆ F2. Suppose F ∈ F ′

2 such that

F = (G,C
(v1,v2,v3)
1 , C

(v1,...,v6)
2 )

for some vertices v1, . . . , v6. Similarly, if we want to show that F ∈ F2, we need to find
(u1, u2, u3, u4) such that G ∈ C

(v1,...,v6,u1,...,u4)
4 ⊆ C

(v1,...,v6,u1,u2)
3 , C

(v1,...,v6,u1,...,u4)
4 ∈ S4 and

C
(v1,...,v6,u1,u2)
3 ∈ S3.

Instead of finding the four-vertex tuple, we first try to find (u1, u2) such that G ∈
C

(v1,...,v6,u1,u2)
3 and C

(v1,...,v6,u1,u2)
3 ∈ S3. This is equivalent to finding (u1, u2) that satisfy the

following conditions:

(a) u1 and u2 are distinct vertices, different from v1, . . . , v6.

(b) u1 ∈ V1 and u2 ∈ V2.

(c) u1u2 ∈ ES(G), and v1u1, v4u2 /∈ E(G).

Similarly, the existence of such (u1, u2) will be demonstrated later in Section 5.4.2.

Once we have such (u1, u2), we have

(G,C
(v1,v2,v3)
1 , C

(v1,...,v6)
2 , C

(v1,...,v6,u1,u2)
3 ) ∈ F ′

3 = F3.

Hence, there exists F ∗ ∈ F4 such that

P3(F
∗) = (G,C

(v1,v2,v3)
1 , C

(v1,...,v6)
2 , C

(v1,...,v6,u1,u2)
3 ).

Thus, we have

P2(F
∗) = (G,C

(v1,v2,v3)
1 , C

(v1,...,v6)
2 ) = F,

which shows F ∈ F2, and it completes the proof of F2 = F ′
2.

For the case i = 1, the approach remains the same. Following a similar idea, we need
to solve the following problem when proving for F ′

1 ⊆ F1:

We are given vertices (v1, v2, v3) and we need to find (v4, v5, v6) that satisfy the following
conditions:
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(a) v4, v5, v6 are distinct vertices, different from v1, v2, v3.

(b) v5 ∈ V2.

(c) v4v5, v5v6 ∈ ES(G), v2v5 /∈ E(G).

Similarly, the existence of (v4, v5, v6) will be demonstrated in Section 5.4.2.

Now with the new perspective on Fi, let’s explore the combinatorial meaning of the
value (5.4) we need to compute. For example, one of the values we need to compute in

Loosen is b(G′, C
V1(S)
1 ), where b(G′, C

V1(S)
1 ) represents the number of F ′ ∈ F2 such that

P (F ′) = (G′, C
V1(S)
1 ). Suppose V1(S) = (v1, v2, v3), given that

F2 = F ′
2 = {(G,C

(v1,v2,v3)
1 , C

(v1,...,v6)
2 ) : G ∈ C

(v1,...,v6)
2

and v1, . . . , v6 are distinct vertices, where v2 ∈ V1 and v5 ∈ V2},

we can express b(G′, C
V1(S)
1 ) as the number of tuples (w1, w2, w3) such that w1, w2, w3 are

distinct vertices and different from v1, v2, v3, and w2 ∈ V2, w1w2, w2w3 ∈ ES(G
′), w2v2 /∈

E(G′).

Next, following a similar approach, we can determine the meaning of b(F ) for each term
in (5.4). To do so, we introduce the following definitions:

Let G′ ∈ Hm for some 0 ≤ m ≤ D12. Let S be a switching that is used to remove
double edges with one endpoint in V1 and the other endpoint in V2 and S produce G′.
Suppose S involves an ordered set of ten vertices (v1, v2, v3, v4, v5, v6, u1, u2, u3, u4). We

define b
(i)
12 (G

′, S) for 1 ≤ i ≤ 4 as follows:

(a) Let b
(1)
12 (G

′, S) be the number of tuples (w1, w2, w3) in G′ such that w1, w2, w3 are
distinct vertices, and w2 ∈ V1, w1w2, w2w3 ∈ ES(G

′) .

(b) Let b
(2)
12 (G

′, S) be the number of tuples (w1, w2, w3) in G′ such that w1, w2, w3 are dis-
tinct vertices and different from v1, v2, v3, and w2 ∈ V2, w1w2, w2w3 ∈ ES(G

′), w2v2 /∈
E(G′).

(c) Let b
(3)
12 (G

′, S) be the number of tuples (w1, w2) in G′ such that w1, w2 are distinct ver-
tices and different from v1, . . . , v6, and w1 ∈ V1, w2 ∈ V2, w1w2 ∈ ES(G

′), w1v1, w2v4 /∈
E(G′).
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(d) Let b
(4)
12 (G

′, S) be the number of tuples (w1, w2) in G′ such that w1, w2 are dis-
tinct vertices and different from v1, . . . , v6, u1, u2, and w1 ∈ V1, w2 ∈ V2, w1w2 ∈
ES(G

′), w1v3, w2v6 /∈ E(G′)

Claim 5.8. For every 0 ≤ m ≤ D12 and every G′ ∈ Hm. Let S be a switching produce
G′, then we have

b(G′, C
V1(S)
1 , C

V2(S)
2 , C

V3(S)
3 ) = b

(4)
12 (G

′, S);

b(G′, C
V1(S)
1 , C

V2(S)
2 ) = b

(3)
12 (G

′, S);

b(G′, C
V1(S)
1 ) = b

(2)
12 (G

′, S);

b(G′) = b
(1)
12 (G

′, S).

Proof. We have already shown that b(G′, C
V1(S)
1 ) = b

(2)
12 (G

′, S) in the above discussion. The
other three equations can be shown in a similar way.

Corollary 5.9. For every 0 ≤ m ≤ D12 and every G ∈ Hm. Let S be a switching that can
be applied on G where S(G) = G′, then RelaxGraph(G,S) rejects with probability

1− B
(0)
12

b
(1)
12 (G

′, S)

B
(1)
12

b
(2)
12 (G

′, S)

B
(2)
12

b
(3)
12 (G

′, S)

B
(3)
12

b
(4)
12 (G

′, S)
.

Proof. This result follows directly from the definition of Loosen and Claim 5.8.

5.3.5 Definiton of JDM GEN for q = 2

We are ready to define JDM GEN for q = 2. Recall that NoDoubles12 is a procedure
that repeatedly removes crossing double edges joining vertices in V1 and vertices in V2. The
procedures NoDoubles1, NoDoubles2, NoLoops1, and NoLoops2 will be defined in
Chapter 6 to remove the other types of double edges and loops. Our algorithm JDM GEN
simply calls these procedures in sequence and returns the graph obtained after the last
iteration of NoLoops2.

Additionally, we include a step for parameter validation. This step is processed after
generating the initial graph using PairingGen. Its purpose is to ensure that JDM GEN
can handle all possible inputs (V ,M,d). Specifically, if any of the parameters used in
RelaxGraph are not greater than zero, we reject the initial graph if it’s not a simple
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graph. The parameters for NoDoubles1, NoDoubles2, NoLoops1, and NoLoops2 will
be declared in Section 6.3, which can be found in (6.4a)–(6.4d) and (6.6a)–(6.6b).

Algorithm JDM GEN(V ,M,d) for q = 2

(P,G) = PairingGen(V ,M,d)

if not (B
(k)
ij > 0 for 0 ≤ k ≤ 3 for all 1 ≤ i ≤ j ≤ 2 and

B
(k)
i > 0 for 0 ≤ k ≤ 1 for i ∈ [2]) then

Reject if G is not a simple graph
end if
NoDoubles12(G)
NoDoubles1(G)
NoDoubles2(G)
NoLoops1(G)
NoLoops2(G)
Return G

5.4 Running time and rejection probabilities

In this section, we analyze the overall running time of JDM GEN. As part of the
analysis, we bound the overall probability that any rejection occurs.

5.4.1 Running time of NoDoubles12

In this section, we first analyze the running time of NoDoubles12. We then provide
proof of Lemma 5.2 and complete the proof for Claim 5.7. Finally, we bound the probability
that any rejection occurs during the execution of NoDoubles12.

Lemma 5.10. If no rejection occurs during the execution of NoDoubles12, then the
running time of NoDoubles12 is O(M2

12∆
2/n1n2).

Proof. Recall the procedure NoDoubles12 defined in Section 5.3.1.

The time cost of each step of NoDoubles12 comes from computing the values of fτ (G),

b
(1)
12 (G

′, S), b
(2)
12 (G

′, S),b
(3)
12 (G

′, S), and b
(4)
12 (G

′, S).

Computation of fτ (G) We show that we can perform f-rejections without computing
fτ (G). Consider the case of type D5

12 as an example, and all the other cases of types are
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similar. Assume that G has m crossing double edges. Instead of choosing a uniform
random type τ = D5

12 switching that can be applied to G and then computing fD5
12
(G),

we randomly select a double edge v2v5 between V1 and V2, a simple edge v3v6 between
V1 and V2, two simple edges within V1 (namely, v1v4 and u1u2), and a single simple edge
u3u4 within V2. Then f-reject if the choice does not produce a valid type τ -switching, i.e.
one that can be applied to G. The total number of choices is exactly f

m

D5
12
, recalling that

f
m

D5
12
= 8mM12M

2
11M22. The total number of valid choices is fD5

12
(G). Thus, the rejection

probability is exactly 1− fD5
12
(G)/f

m

D5
12
, as desired.

Computation of b
(i)
12 (G

′, S) We will prove the following claim.

Claim 5.11. For each 1 ≤ i ≤ 4, b
(i)
12 (G

′, S) can be computed in O(∆2) time.

SinceG0 has at mostD12 = O(M2
12/n1n2) crossing double edges by (3.1),NoDoubles12

lasts O(M2
12/n1n2) steps. Multiplying it by O(∆2) gives the desired bound for the running

time of NoDoubles12 by Claim 5.11.

Proof of Claim 5.11. To compute b
(i)
12 (G

′, S) for 1 ≤ i ≤ 4, we first define some

parameters. For each vertex v in G, for j ∈ {1, 2}, define k
(j)
v to be the number of

neighbours of v in Vj such that the edge between these neighbours and v is a simple edge.

Additionally, let kv = k
(1)
v + k

(2)
v for each vertex v. The values of k

(1)
v , k

(2)
v , and kv for all

vertices can be determined in O(n1d1 + n2d2) time once the initial graph G0 is generated.
This step is prepared before we run NoDoubles12, so the running time is not included
here. We update the value of k

(1)
v , k

(2)
v , and kv after each switching is applied during the

algorithm. Since each switching involves at most 10 vertices, and we only need to update
k
(1)
v , k

(2)
v ,and kv for these 10 vertices, it takes O(1) time for updating after each switching

is applied.

Computation of b
(1)
12 (G

′, S) By Claim 5.8, b
(1)
12 (G

′, S) =
∑

v∈V1
kv(kv − 1). We

can store the value for
∑

v∈V1
kv(kv − 1) simultaneously when computing the value for

k
(1)
v , k

(2)
v ,and kv during the preparation. And the update for

∑
v∈V1

kv(kv − 1) can be done

in O(1) time after each switching is applied. Hence it takes O(1) time to compute b
(1)
12 (G

′, S)
in each iteration.

Computation of b
(2)
12 (G

′, S) By Claim 5.8, b
(1)
12 (G

′, S) ≤
∑

v∈V2
kv(kv−1) since there

are forbidden cases that need to be considered. The value of
∑

v∈V2
kv(kv − 1) can be

computed and updated similar to
∑

v∈V1
kv(kv − 1). Hence, the value of b

(2)
12 (G

′, S) can be
computed by subtracting the number of forbidden cases from

∑
v∈V2

kv(kv − 1) where the
number of forbidden cases can be computed as follows:
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Suppose V1(S) = (v1, v2, v3), set p = 0 to store the data for the number of forbidden
cases.

(a) For each neighbour v of v2 in G′, if v ∈ V2, then we add kv(kv − 1) to p.

(b) For each neighbour v of v1 in G′, if v ∈ V2 then:

(i) If v is adjacent to v2, this situation has been accounted for in case (a).

(ii) If v is not adjacent to v2 but is adjacent to v3, then we add 4kv − 6 to p.

(iii) If v is not adjacent to both v2 and v3, then we add 2kv − 2 to p.

(c) For each neighbour v of v3 in G′, if v ∈ V2 then:

(i) If v is adjacent to v2 or v1, these situations have been accounted for in cases (a)
and (b).

(ii) If v is not adjacent to both v2 and v1, then we add 2kv − 2 to p.

Once we finish the above process, we have b
(2)
12 (G

′, S) =
∑

v∈V2
kv(kv − 1)− p. It takes

O(∆) time to go through the above process and thus, to compute b
(2)
12 (G

′, S).

Computation of b
(3)
12 (G

′, S) By Claim 5.8, b
(3)
12 (G

′, S) ≤ M12. Similarly, we need to
compute the number of forbidden cases, and the process is as follows:

Suppose V2(S) = (v1, v2, v3, v4, v5, v6) and there are m crossing double edges in G′. Set
p = 0 to store the data for the number of forbidden cases.

(a) Add 2m to p.

(b) Add k
(2)
v2 + k

(1)
v5 to p.

(c) For i ∈ {1, 3, 4, 6}, if vi ∈ V1, add k
(2)
vi to p; if vi ∈ V2, add k

(1)
vi to p.

(d) For each edge with both endpoints in {v1, . . . , v6} and being a crossing edge in G′,
subtract 1 from p.

(e) For each neighbour v of v1, if v ∈ V1, and v does not coincide with {v1, . . . , v6} then:

(i) For each neighbour u of v, if u does not coincide with {v1, . . . , v6}, then add 1
to p.
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(f) For each neighbour v of v4, if v ∈ V2, and v does not coincide with {v1, . . . , v6} then:

(i) For each neighbour u of v, if u does not coincide with {v1, . . . , v6} and v1u /∈
E(G′), then add 1 to p.

Case (a) includes forbidden cases of double edges, cases (b), (c), (d) include the forbidden
cases of vertex coincidence, and cases (e), (f) include forbidden cases of presence non-edges.

Once we finish the above process, we have b
(3)
12 (G

′, S) = M12 − p. It takes O(∆2) time

to go through the above process and thus, to compute b
(3)
12 (G

′, S).

Computation of b
(4)
12 (G

′, S) The computation for b
(4)
12 (G

′, S) is very similar to

b
(3)
12 (G

′, S) and also takes O(∆2) time.

Hence, for each 1 ≤ i ≤ 4, b
(i)
12 (G

′, S) can be computed in O(∆2) time.

5.4.2 Proof of Lemma 5.2 and Completion of the Proof for
Claim 5.7.

Next, we proceed with the proof of Lemma 5.2 and fulfill the proof for Claim 5.7.
Initially, we establish the following claim, which is essential to our proof of Claim 5.7.

Recall that we have

B
(0)
12 = n1d1(d1 − 1)− 32M2

12d1
n1n2

− 64M2
11d1

n2
1

− 16M11d1
n1

;

B
(1)
12 = n2d2(d2 − 1)− 32M2

12d2
n1n2

− 64M2
22d2

n2
2

− 16M22d2
n2

− 8d2∆− d22∆;

B
(2)
12 = M12 −

16M2
12

n1n2

− 10∆− 2∆2;

B
(3)
12 = M12 −

16M2
12

n1n2

− 12∆− 2∆2.

Claim 5.12. Suppose some graph G appears during the execution of NoDoubles12. Let
(v1, . . . , v6, u1, . . . , u4) be a set of ten vertices such that

(a) v1, . . . , v6, u1, . . . , u4 are distinct,

(b) v2, u1, u3 ∈ V1, v5, u2, u4 ∈ V2,
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Then:

(a) Let b1 be the number of distinct 3-tuple (w1, w2, w3) such that w2 ∈ V1, w1w2, w2w3 ∈
ES(G).

(b) Let b2 be the number of distinct 3-tuple (w1, w2, w3) such that w1, w2, w3 distinct
from (v1, v2, v3), w2 ∈ V2, w1w2, w2w3 ∈ ES(G), v2w2 /∈ E(G).

(c) Let b3 be the number of distinct 2-tuple (w1, w2) such that w1, w2 distinct from
v1, . . . , v6, w1 ∈ V1, w2 ∈ V2, w1w2 ∈ ES(G), w1v1, w2v4 /∈ E(G).

(d) Let b4 be the number of distinct 2-tuple (w1, w2) such that w1, w2 distinct from
v1, . . . , v6, u1, u2, w1 ∈ V1, w2 ∈ V2, w1w2 ∈ ES(G), w1v3, w2v6 /∈ E(G).

We claim

(a) B
(0)
12 ≤ b1 ≤ n1d1(d1 − 1);

(b) B
(1)
12 ≤ b2 ≤ n2d2(d2 − 1);

(c) B
(2)
12 ≤ b3 ≤M12;

(d) B
(3)
12 ≤ b4 ≤M12.

We give detailed proof for b2 and b4 where the other two can be proved with similar
ideas.

proof for (b). The value of b2 is clearly bounded by n2d2(d2 − 1), where n2 represents the
number of choices for w2, and d2(d2 − 1) represents the number of choices for the two
ordered neighbors w1 and w3 of w2. To compute the lower bound, we need to subtract the
number of following forbidden cases from n2d2(d2 − 1):

1. w1w2 or w2w3 is a double edge;

2. v1, v2, v3, w1, w2, w3 are not distinct vertices;

3. v2w2 is present.

For the second case, two subcases could be
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2.i {w1, w2, w3} ∩ {v1, v2, v3} ≠ ∅;

2.ii w1, w2, w3 are not distinct.

For case (1), it has a maximum of 4D12d2 + 8D22d2 possible cases.

For case (2.i), it has a maximum of 8d2∆ possible cases.

For case (2.ii), the equation n2d2(d2− 1) ensures that w1 and w3 do not coincide. If w1

or w3 coincides with w2, it implies the existence of a loop at w2, resulting in a maximum
of 2L2d2 possible cases.

For case (3), it has a maximum of d22∆ possible cases.

Hence we have

b2 ≥ n2d2(d2 − 1)− 32M2
12d2

n1n2

− 64M2
22d2

n2
2

− 16M22d2
n2

− 8d2∆− d22∆ = B
(1)
12

proof for (d). The value of b4 is clearly bounded by M12. To compute the lower bound, we
need to subtract the number of following forbidden cases from M12

1. w1w2 is a double edge

2. v1, . . . , v6, u1, u2, w1, w2 are not distinct vertices

3. w1v3 or w2v6 is present

Since w1 ∈ V1, w2 ∈ V2, we don’t need to consider the case of w1 = w2 in the second
case.

For case (1), it has a maximum of 2D12 possible cases.

For case (2), it has a maximum of 12∆ possible cases.

For case (3), it has a maximum of 2∆2 possible cases.

Hence we have:

b4 ≥M12 −
16M2

12

n1n2

− 12∆− 2∆2 = B
(3)
12

Claim 5.12 fulfill the proof for Claim 5.7. Next, we complete the proof for Lemma 5.2,
where the following claim shows that B

(i)
12 > 0 for 0 ≤ i ≤ 3 under the assumption of

Lemma 5.2.
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Claim 5.13. Provided that

M3
ij∆

2

n2
in

2
j

= o(1) for 1 ≤ i ≤ j ≤ 2, (5.5)

B
(i)
12 > 0 for 0 ≤ i ≤ 3

Proof. Let’s compute the case of i = 1:

B
(1)
12 = n2d2(d2 − 1)− 8M2

12d2
n1n2

− 48M2
22d2

n2
2

− 12M22d2
n2

− 8d2∆− d22∆

= n2d2(d2 − 1)

(
1−O

(
M2

12

n1n2
2d2

+
M2

22

n3
2d2

+
M22

n2
2d2

+
∆

n2

))

The claim will be verified if we can demonstrate that O
(

M2
12

n1n2
2d2

+
M2

22

n3
2d2

+ M22

n2
2d2

+ ∆
n2

)
=

o(1). In fact, a stronger form of this will be demonstrated in Lemma 5.16, where we are
going to show that

O

(
M2

12

n1n2
2d2

+
M2

22

n3
2d2

+
M22

n2
2d2

+
∆

n2

)
·O
(
M2

12

n1n2

)
= o(1).

Without loss of generality, we may assume that

8M2
12

n1n2

≥ 1,

as otherwise D12 < 1 by (3.1), in which case, G0 would have no crossing double edges and
NoDoubles12 would not be executed.

Hence we have
M2

12

n1n2
= Ω(1) and it can be concluded that B

(1)
12 > 0. An analogous proof

can be applied for i ∈ {0, 2, 3}.

Proof for Lemma 4.2. Claim 5.13 addresses the positivity part of the proof, it remains to
show that b(F ) ≥ B

(i)
12 for all F ∈ Fi for 0 ≤ i ≤ 3. We prove for the case of i = 1, the

idea for the remaining three cases is identical.

Suppose F = (G,C
(v1,v2,v3)
1 ) ∈ F1 for some vertices v1, v2, v3. b(F ) is the number of

F ′ ∈ F2 = F ′
2 (by Claim 5.7) such that P (F ′) = F , which is equivalent to the number of

(w1, w2, w3) that satisfy the following conditions:
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(a) w1, w2, w3 are distinct vertices, different from v1, v2, v3.

(b) w2 ∈ V2.

(c) w1w2, w2w3 ∈ ES(G) and v2w2 /∈ E(G).

By Claim 5.12, we may conclude that have b(F ) ≥ B
(1)
12 .

5.4.3 Rejection probability of NoDoubles12

In this section, we analyze the rejection probabilities of both f-rejections and b-rejections.

Corollary 5.14. For every 0 ≤ m ≤ D12 and every G′ ∈ Hm. Let S be a switching
removes crossing double edges between V1, V2 and produce G′, then we have

B
(0)
12

b
(1)
12 (G

′, S)
≥1−O

(
M2

12

n2
1n2d1

+
M2

11

n3
1d1

+
M11

n2
1d1

)
= 1−O

(
∆2

M12

+
∆2

M11

)
B

(1)
12

b
(2)
12 (G

′, S)
≥1−O

(
M2

12

n1n2
2d2

+
M2

22

n3
2d2

+
M22

n2
2d2

+
∆

n2

)
= 1−O

(
∆2

M12

+
∆2

M22

)
B

(2)
12

b
(3)
12 (G

′, S)
≥1−O

(
M12

n1n2

+
∆2

M12

)
= 1−O

(
∆2

M12

)
B

(3)
12

b
(4)
12 (G

′, S)
≥1−O

(
M12

n1n2

+
∆2

M12

)
= 1−O

(
∆2

M12

)

Proof. The initial inequality is derived by Claim 5.12. The subsequent equality is obtained
by using the fact that Mii ≤ nidi and Mij ≤ nidi.

Lemma 5.15. Let G ∈ Hm for some m ≤ D12. For every τ ∈ {Di
12 : 1 ≤ i ≤ 16},

fτ (1−O(ξ)) ≤ fτ (G) ≤ fτ ,

where ξ = ∆2

M12
+ ∆2

M11
+ ∆2

M22
.
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Proof. We prove the case that τ = D5
12 where the switching is shown in Figure 5.10. The

proof for all the other cases is analogous.

Figure 5.10: D5
12 switching

Suppose G has m double edges between V1, V2. We showed that the upper bound for
fD5

12
(G) is fD5

12
= 8mM12M

2
11M22 by Lemma 5.1. To find the lower bound, we need to

subtract the number of the following forbidden cases:

1. Edge other than v2v5 is a double edge.

2. v1, ..., v6, u1, ..., u4 are not distinct.

3. some of the non-edges present

For case (1),

1a) If v4u2 is a double edge, there are at most O(m2M2
11M22) choices.

1b) If v1u1 or v3u3 is a double edge, there are at most O(mM12M11M22D1) choices.

1c) If v6u4 is a double edge there are at most O(mM12M
2
11D2) choices.

For case (2),

2a) If some of {v1, v3, u1, u3} coincides with other vertices, there are at most
O(mM12M11M22∆) choices. (Please note that the scenario where v1 coincides with
u1, or in other words, u1 and v1 form a loop, is included in this calculation. This

is because there are at most O
(
mM12M11M22

M11

n1

)
such cases. And given that

M11 ≤ n1∆, it implies M11

n1
≤ ∆.).

57



2b) If v4 or u2 coincide with other vertices, there are at most O(mM2
11M22∆) choices.

2c) If v4 or u6 coincides with other vertices, there are at most O(mM12M
2
11∆) choices.

For case (3), suppose there is some edge xy which should be a non-edge but it presents.

3a) If {x, y} ∩ {v1, u1, v3, u3} ≠ ∅, there are at most O(mM12M11M22∆
2) choices.

3b) If {x, y} ∩ {u2, v4} ≠ ∅, there are at most O(mM2
11M22∆

2) choices.

3c) If {x, y} ∩ {v6, u4} ≠ ∅, there are at most O(mM12M
2
11∆

2) choices.

Hence we have the lower bound for fD5
12
(G) is

f
D5

12

(G) = 8mM12M
2
11M22−O(m2M2

11M22)−O(mM12M11M22D1)−O(mM12M
2
11D2)

−O(mM2
11M22∆)−O(mM12M11M22∆)−O(mM12M

2
11∆)

−O(mM2
11M22∆

2)−O(mM12M11M22∆
2)−O(mM12M

2
11∆

2)

Recall that Di =
6M2

ii

n2
i

= O(
M2

ii

n2
i
),m ≤ D12 =

8M2
12

n1n2
= O(

M2
12

n1n2
)

Hence we have

f
D5

12

(G) =8mM12M
2
11M22 −O(m2M2

11M22)−O(mM12M11M22
M2

11

n2
1

)−O(mM12M
2
11

M2
22

n2
2

)

−O(mM2
11M22∆

2)−O(mM12M11M22∆
2)−O(mM12M

2
11∆

2)

=8mM12M
2
11M22

(
1−O

(
m

M12

+
M11

n2
1

+
M22

n2
2

+
∆2

M12

+
∆2

M11

+
∆2

M22

))
=fD5

12

(
1−O

(
M12

n1n2

+
M11

n2
1

+
M22

n2
2

+
∆2

M12

+
∆2

M11

+
∆2

M22

))
Using the fact that Mii < nidi and Mij ≤ nidi, we get

fD5
12

(
1−O

(
∆2

M12

+
∆2

M11

+
∆2

M22

))
≤ fD5

12
(G) ≤ fD5

12

Using a similar idea, we have the following:
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fDi
12

(
1−O

(
∆2

M12

))
≤ fDi

12
(G) ≤ fDi

12
for i ∈ {6} (5.6a)

fDi
12

(
1−O

(
∆2

M11

+
∆2

M12

))
≤ fDi

12
(G) ≤ fDi

12
for i ∈ {1, 2, 3} (5.6b)

fDi
12

(
1−O

(
∆2

M22

+
∆2

M12

))
≤ fDi

12
(G) ≤ fDi

12
for i ∈ {12, 13, 16} (5.6c)

fDi
12

(
1−O

(
∆2

M11

+
∆2

M22

))
≤ fDi

12
(G) ≤ fDi

12
for i ∈ {11} (5.6d)

fDi
12

(
1−O

(
∆2

M12

+
∆2

M11

+
∆2

M22

))
≤ fDi

12
(G) ≤ fDi

12
for i ∈ {4, 5, 7, 8, 9, 10, 14, 15}

(5.6e)

Hence for τ ∈ {Di
12 : 1 ≤ i ≤ 16}

f τ (1−O(ξ)) ≤ fτ (G) ≤ f τ

for ξ = ∆2

M12
+ ∆2

M11
+ ∆2

M22

By employing a similar proof strategy as presented in [3, Lemma 16], we derive the
following lemma.

Lemma 5.16. The probability of an f-rejection or b-rejection occurring in NoDoubles12
is

1−O

(
M12∆

2

n1n2

+
M2

12∆
2

M11n1n2

+
M2

12∆
2

M22n1n2

)
Proof. By Corollary 5.14 and Lemma 5.15. The probability that no rejection occurs in a
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single iteration of NoDoubles12 is

p ≥
(
1−O

(
∆2

M12

+
∆2

M11

+
∆2

M22

))
·
(
1−O

(
∆2

M12

+
∆2

M11

))
·
(
1−O

(
∆2

M12

+
∆2

M22

))
·
(
1−O

(
∆2

M12

))2

Hence we have

p ≥ exp

(
−O

(
∆2

M12

+
∆2

M11

+
∆2

M22

))

Given that the maximum number of double edges between V1, V2 is D12 =
8M2

12

n1n2
, the

NoDoubles12 algorithm iterates at most
8M2

12

n1n2
times. Therefore, the probability that no

rejection occurs during the execution of NoDoubles12 is

p
8M2

12
n1n2 ≥ exp

(
−O

(
∆2

M12

+
∆2

M11

+
∆2

M22

)
8M2

12

n1n2

)
=exp

(
−O

(
M12∆

2

n1n2

+
M2

12∆
2

M11n1n2

+
M2

12∆
2

M22n1n2

))
=1−O

(
M12∆

2

n1n2

+
M2

12∆
2

M11n1n2

+
M2

12∆
2

M22n1n2

)
Hence, the probability that no rejection occurs during NoDoubles12 can be expressed

as

1−O

(
M12∆

2

n1n2

+
M2

12∆
2

M11n1n2

+
M2

12∆
2

M22n1n2

)
(5.7)

5.4.4 The remaining phases

NoDoublesi andNoLoopsi for i = 1, 2 follow exactly the same frame asNoDoubles12
defined in Section 5.3.1. To complete the definitions we only need to specify parameters pmτ ,

60



f
m
and all the B

(j)
i analogous to the B

(j)
12 in (5.3a)–(5.3d). These parameters are specified

in Section 6.3 for general q. See (6.4a)–(6.4d) and (6.6a)–(6.6b). The uniformity of the
output after each phase is guaranteed by the call of the subprocedure RelaxGraph, and
by Lemma 5.5. The running time in each phase for general q is discussed in Section 6.4.
See Lemma 6.1. We state below the corresponding lemmas for the special case q = 2 so
that we can complete the proof for Theorem 3.3 for the case q = 2.

Lemma 5.17. Suppose that there is no rejection in any of the phases NoDoublesi and
NoLoopsi for i = 1, 2. Then, the total running time of these four phases is bounded by

O(
M2

11∆
2

n2
1

+
M2

22∆
2

n2
2

+ M11∆2

n1
+ M22∆2

n2
).

Proof. This follows as a corollary of Lemma 6.1.

Lemma 5.18. The probability of any rejection occurring during NoDoublesi for i ∈
{1, 2} is:

O

M2
ii

n2
i

·
∑

j∈{1,2}

∆2

Mij


Proof. This follows as a corollary of Lemma 6.2.

Lemma 5.19. The probability of any rejection occurring during NoLoopsi for i ∈ {1, 2}
is:

O

Mii

ni

·
∑

j∈{1,2}

∆2

Mij


Proof. This follows as a corollary of Lemma 6.2.

5.5 Proof of Theorem 3.3 for q = 2

Without loss of generality, we may assume that D12 > 1 when discussing running time
and rejection probability of NoDoubles12, as otherwise, G0 would have no crossing edges
between V1, V2 and NoDoubles12 would not be executed.

Similarly, we may assume that Dii > 1 when discussing NoDoublesi for i ∈ {1, 2},
and assume that Li > 1 when discussing NoLoopsi for i ∈ {1, 2}.
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Lemma 5.20. Provided that

M3
ij∆

2

n2
in

2
j

= o(1) for all 1 ≤ i ≤ j ≤ 2, (5.8)

The probability of an f-rejection or b-rejection occurring in NoDoubles12, NoDoubles1,
NoDoubles2, NoLoops1, and NoLoops2 is o(1).

Proof. Let’s start with NoDoubles12, by Lemma 5.16, it remains to show that M12∆2

n1n2
+

M2
12∆

2

M11n1n2
+

M2
12∆

2

M22n1n2
= o(1) under the assumption of

M3
12∆

2

n2
1n

2
2

= o(1).

First, we note that
M3

12∆
2

n2
1n

2
2

= M12∆2

n1n2
· M

2
12

n1n2
, where we may assume D12 =

8M2
12

n1n2
> 1 by (3.1).

Hence,
M2

12

n1n2
= Ω(1), which leads us to the conclusion that M12∆2

n1n2
= O

(
M3

12∆
2

n2
1n

2
2

)
= o(1).

To demonstrate that
M2

12∆
2

M11n1n2
+

M2
12∆

2

M22n1n2
is o(1), let’s take

M2
12∆

2

M11n1n2
as a example.

We notice that
M2

12∆
2

M11n1n2
· M11M12

n1n2
=

M3
12∆

2

n2
1n

2
2
. Therefore, if we can show that M11M12

n1n2
is not

negligibly small (i.e., M11M12

n1n2
̸= o(1)), it follows that

M2
12∆

2

M11n1n2
= O

(
M3

12∆
2

n2
1n

2
2

)
= o(1).

Before we proceed, let’s first examine the origin of the error term
M2

12∆
2

M11n1n2
.

The error O
(

∆2

M11

)
from Lemma 5.15 leads to an error of O

(
M2

12∆
2

M11n1n2

)
in the com-

putation. Looking into the outcome (5.6) from Lemma 5.15, we notice that this error
emerges for all types of switchings require a single edge in V1 as the starting graph on
which the switching occurs. Specifically, these switchings correspond to types Di

12 for
i ∈ {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15}.

Let’s calculate the probability of choosing these types of switchings in each round and

multiply it by the number of iterations, which is O(
M2

12

n1n2
). The probability of choosing

these types of switchings in each round is as follows:
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∑
i∈{1,2,3,4,5,7,8,9,10,11,14,15} fDi

12∑
i∈[16] fDi

12

=

∑
i∈{1} fDi

12∑
i∈[16] fDi

12

+

∑
i∈{2,3} fDi

12∑
i∈[16] fDi

12

+

∑
i∈{4,5} fDi

12∑
i∈[16] fDi

12

+

∑
i∈{7,8,9,10} fDi

12∑
i∈[16] fDi

12

+∑
i∈{11} fDi

12∑
i∈[16] fDi

12

+

∑
i∈{14,15} fDi

12∑
i∈[16] fDi

12

<

∑
i∈{1} fDi

12

fD2
12

+

∑
i∈{2,3} fDi

12

fD6
12

+

∑
i∈{4,5} fDi

12

fD7
12

+

∑
i∈{7,8,9,10} fDi

12

fD12
12

+∑
i∈{11} fDi

12

fD14
12

+

∑
i∈{14,15} fDi

12

fD16
12

=
4mM2

12M
2
11

2mM3
12M11

+
4mM3

12M11

mM4
12

+
16mM12M

2
11M22

4mM2
12M11M22

+
16mM2

12M11M22

2mM3
12M22

+

16mM2
11M

2
22

8mM12M11M2
22

+
16mM12M11M

2
22

4mM2
12M

2
22

=O

(
M11

M12

)
Thus, by multiplying it by the number of iterations, we derive:

O

(
M11

M12

· M
2
12

n1n2

)
= O

(
M11M12

n1n2

)

If M11M12

n1n2
= o(1), the error resulting from these switchings can be disregarded. Conse-

quently, the term
M2

12∆
2

M11n1n2
in the rejection probability formula in (5.7) is deemed negligible.

On the other hand, if M11M12

n1n2
̸= o(1), then

M2
12∆

2

M11n1n2
= O

(
M3

12∆
2

n2
1n

2
2

)
= o(1), in alignment

with our claim earlier.

A similar discussion can be carried out for
M2

12∆
2

M22n1n2
. Consequently, we can conclude that

M12∆2

n1n2
+

M2
12∆

2

M11n1n2
+

M2
12∆

2

M22n1n2
= o(1). Therefore, the probability of any rejection occurring

during NoDoubles12 is o(1).
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Next, by Lemma 5.18 the probability of any rejection occurring during NoDoublesi
for i ∈ {1, 2} is

O

M2
ii

n2
i

·
∑

j∈{1,2}

∆2

Mij

 .

Use a similar discussion, such probability is bounded by
M3

ii∆
2

n4
i

= o(1) for i ∈ {1, 2}.

Next, by Lemma 5.19 the probability of any rejection occurring during NoDoublesi
for i ∈ {1, 2} is

O

Mii

ni

·
∑

j∈{1,2}

∆2

Mij


Use a similar discussion, such probability is bounded by Mii∆

2

n2
i

for i ∈ {1, 2}.

Where we have Mii∆
2

n2
i
· M

2
ii

n2
i
=

M3
ii∆

2

n4
i

= o(1). Since we may assume that Li =
8Mii

ni
> 1,

we have Mii

ni
= Ω(1). Hence Mii∆

2

n2
i

= o(1) for i ∈ {1, 2}.

Lemma 5.21. Provided that

M3
ij∆

2

n2
in

2
j

= o(1) for all 1 ≤ i ≤ j ≤ 2, (5.9)

Under the assumption that no rejection occurs, the running time of NoDoubles12, NoDoubles1,
NoDoubles2, NoLoops1, and NoLoops2 can be bounded by O(n1d1 + n2d2).

Proof. We start with NoDoubles12, by Lemma 5.10, the running time of NoDoubles12
is O(

M2
12∆

2

n1n2
), where we have

M2
12∆

2

n1n2

· M
2
12

n1n2

=
M3

11∆
2

n2
1n

2
2

·M12 = o(M12) = O(n1d1).

Since we may assume that D12 > 1 and hence
M2

12

n1n2
= Ω(1). We have

M2
12∆

2

n1n2
= O(n1d1).

Similarly, we can show that the running time of NoDoublesi is O(nidi) for i ∈ {1, 2}

64



For NoLoops1, the running time is O(M11∆2

n1
) by Lemma 5.17 where we have

M11∆
2

n1

· M
3
11

n3
1

=
M3

11∆
2

n4
1

·M11 = o(M11) = O(n1d1).

Since we may assume that L1 > 1 and hence M11

n1
= Ω(1). We have M11∆2

n1
= O(n1d1).

Similarly, we can show that the running time of NoLoops2 is O(n2d2)

Proof of Theorem 3.3 for the case q = 2. By the assumption of the theorem, the
probability of any rejection occurring during JDM GEN is 3

8
+ o(1) by Lemma 3.2 and

Lemma 5.20. Then by Lemma 4.6 and Lemma 5.21, the running time of JDM GEN is
O(n1d1 + n2d2) where the time for the preparation of kv, as discussed in Lemma 5.10, is
also included.

Regarding uniformity, Lemma 4.3 guarantees the uniformity of G0. Then the call of
the subprocedure RelaxGraph in each phase, together with Lemma 5.5, ensures that the
uniformity is preserved throughout the process.
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Chapter 6

General case

In this chapter, we discuss how to extend the algorithm for q = 2 to the general case.
The extension is natural and straightforward, and thus we only briefly describe the main
difference.

Recall that in the general setting we have V = (V1, V2, ..., Vq) for some q ≥ 2 that is
a family of q disjoint vertex sets, M is a q × q matrix where Mij specifies the number of
required edges between Vi and Vj in the graph we aim to generate, and d = (d1, . . . , dq)
are positive integers specifying the degrees of the vertices in each vertex set.

JDM GEN for general q is defined in the same way as for q = 2 in Section 5.3.5.
After calling PairingGen, it calls a sequence of procedures to remove multiple edges of
different types. I.e., procedures NoDoublesij for removing multiple edges crossing Vi and
Vj, for 1 ≤ i < j ≤ q, procedures NoDoublesi for removing multiple edges inside Vi, and
NoLoopsi for removing loops inside Vi, for 1 ≤ i ≤ q. These procedures follow exactly
the same frame as NoDoubles12 given in Section 5.3.1. In each of these procedures,
a set of switching types and switching operations will be used, which are similar to the
ones in Section 5.2 for q = 2. In each step, a switching type will be chosen according to
distribution pmτ , and then a uniform switching of the selected type will be chosen. If the
switching is not rejected, then a new multigraph is obtained by performing that switching.
To complete the definitions of these procedures, it suffices to define the set of switchings,
and specify the set of parameters pmτ , f

m

τ and the B
(j)
i used to perform the b-rejections.

In Section 6.1 we explain how to extend the switchings for q = 2 to the switchings for
general q. In Section 6.3, we set all parameters required by the algorithm. Finally, in
Section 6.3 we discuss the uniformity and the running time, and complete the proof for
the main theorem in the general case.
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6.1 Switchings

The set of switchings for general q extends naturally from those for q = 2. We briefly
describe the differences.

6.1.1 Switchings to remove crossing double edges between Vi and
Vj

For the case when q = 2, there are 16 different types of switchings to remove double
edges between V1 and V2. As shown in the image in Section 5.2.1, the number 16 corre-
sponds to all possible combinations of the vertex sets to which the vertices v1, v3, v4, and
v6 can belong, where each of these vertices can be in either V1 or V2. Therefore, there are
24 = 16 different types of switchings available.

Now for the general case where there are q vertex sets V1, V2, ..., Vq. If we want to
remove double edges between any two distinct parts Vi and Vj, there will be q4 different
types of switchings. Since it is impractical to use images to display all switchings, we will
provide a general definition for all the switching.

Suppose we have a double edge v2v5 where v2 ∈ Vi and v5 ∈ Vj for i ̸= j. The switching
that removes this double edge involves an ordered set of ten vertices (v1, v2, v3, v4, v5, v6, u1,
u2, u3, u4) such that

1. v1, v2, v3, v4, v5, v6, u1, u2, u3, u4 are distinct vertices

2. u1, u3 ∈ Vi, u2, u4 ∈ Vj are allocated for edge balancing purposes.

3. v1u1, v3u3, v4u2, v6u4 induce four simple edges.

4. v1v2, v2v3, v4v5, v5v6, u1u2, u3u4 are non edges.

The switching replaces the edges mentioned above with v1v2, v2v3, v4v5, v5v6, u1u2, u3u4.

Indeed, the degree sequence of the 10 vertices involved stays constant. Concerning the
number of edges between distinct vertex sets, the edges v1u1 and v3u3 are replaced by v1v2
and v2v3 respectively. As v2, u1, and u3 all belong to Vi, this guarantees that the numbers
of edges between Vi and the vertex sets where v1 and v3 belong remain unchanged. In
a similar manner, the numbers of edges between Vj and the vertex sets where v2 and v4
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belong are preserved. Finally, the double edge v2v5 is removed, and two simple edges u1u2

and u3u4 are added. Hence, the count of edges between Vi and Vj remains constant.

The type of switchings is determined by the vertex sets to which v1, v3, v4, and v6 are
assigned. Each of these vertices may belong to any of the q sets V1, V2, ..., Vq, leading to q4

possible types of switchings.

6.1.2 Switchings to remove double edges within each Vi

There are q4 different types of switchings available to remove double edges within each
Vi. Suppose we have a double edge v2v5 in Vi for some i. The switching that removes this
double edge involves an ordered set of ten vertices (v1, v2, v3, v4, v5, v6, u1, u2, u3, u4) such
that

1. v1, v2, v3, v4, v5, v6, u1, u2, u3, u4 are distinct vertices

2. u1, u2, u3, u4 ∈ Vi are allocated for edge balancing purposes.

3. v1u1, v3u3, v4u2, v6u4 induce four simple edges.

4. v1v2, v2v3, v4v5, v5v6, u1u2, u3u4 are non edges.

The switching replaces the edges mentioned above with v1v2, v2v3, v4v5, v5v6, u1u2, u3u4.

It can be verified that the degree sequence of the vertices remains unchanged, and the
number of edges between any two vertex sets remains unaffected by the switchings.

Similarly, the type of switchings is determined by the vertex sets to which v1, v3, v4,
and v6 are assigned.

6.1.3 Switchings to remove loops within each Vi

There are q2 different types of switchings available to remove loops within each Vi.
Suppose we have a loop at vertex v2 ∈ Vi for some i. The switching that removes this loop
involves an ordered set of five vertices (v1, v2, v3, v4, v5) such that

1. v1, v2, v3, v4, v5 are distinct vertices
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2. v4, v5 ∈ Vi

3. v1v4, v3v5 induce two simple edges.

4. v1v2, v2v3, v4v5 are non edges.

The switching replaces the edges mentioned above with v1v2, v2v3, v4v5.

Such switching preserves the degree sequence and maintains the number of edges be-
tween vertex sets, and the type of switchings is determined by the vertex set to which v1, v3
belong.

6.2 JDM GEN

Now, we define the algorithm JDM GEN for the general case. The parameters used
for validation will be defined in Section 6.3.

Algorithm JDM GEN(V ,M,d)

(P,G) = PairingGen(V ,M,d)

if not (B
(k)
ij > 0 for 0 ≤ k ≤ 3 for all 1 ≤ i ≤ j ≤ q and

B
(k)
i > 0 for 0 ≤ k ≤ 1 for i ∈ [q]) then

Reject if G is not a simple graph
end if
for each 1 ≤ i < j ≤ q do

NoDoublesij(G)
end for
for each i ∈ [q] do

NoDoublesi(G)
end for
for each i ∈ [q] do

NoLoopsi(G)
end for
return G

Each procedure called in the algorithm can be defined by replacing the parameters in
NoDoubles12 with the parameters defined in Section 6.3.
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By applying the approach we used to derive Corollary 5.9, it is equivalent to define
RelaxGraph called in each procedure as follows. The parameters used in them are also
defined in Section 6.3.

For RelaxGraph(G,S) called in NoDoublesij for some G and S:

procedure RelaxGraph(G,S)

Reject with probability: 1− B
(0)
ij

b
(1)
ij (S(G),S)

B
(1)
ij

b
(2)
ij (S(G),S)

B
(2)
ij

b
(3)
ij (S(G),S)

B
(3)
ij

b
(4)
ij (S(G),S)

end procedure

For RelaxGraph(G,S) called in NoDoublesi for some G and S:

procedure RelaxGraph(G,S)

Reject with probability: 1− B
(0)
ii

b
(1)
ii (S(G),S)

B
(1)
ii

b
(2)
ii (S(G),S)

B
(2)
ii

b
(3)
ii (S(G),S)

B
(3)
ii

b
(4)
ii (S(G),S)

end procedure

For RelaxGraph(G,S) called in NoLoopsi for some G and S:

procedure RelaxGraph(G,S)

Reject with probability: 1− B
(0)
i

b
(1)
i (S(G),S)

B
(1)
i

b
(2)
i (S(G),S)

end procedure

6.3 Parameters

6.3.1 Parameters for NoDoublesij

Suppose we are removing double edges from some graph G during the execution of
NoDoublesij, where G contains m crossing double edges between Vi and Vj for some

0 < m ≤ Dij. We use D1
ij to Dq4

ij to represent all the types of switchings that are used to
remove the crossing double edges between Vi and Vj.

For each type τ ∈ {Dk
ij : 1 ≤ k ≤ q4}, fτ (G) represents the number of type τ switching

that can be applied on G.
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Given a specific type τ ∈ {Dk
ij : 1 ≤ k ≤ q4}, where the type τ switching involves

vertices v1 ∈ Va, v3 ∈ Vb, v4 ∈ Vc, and v6 ∈ Vd for some a, b, c, d ∈ [q], we define f
m

τ as the
value

f
m

τ = mMiaMibMjcMjd · 2t, (6.1a)

where each case where a = i, b = i, c = j, or d = j contributes a value of 1 to the
variable t, otherwise, t = 0.

Then for each τ ∈ {Dk
ij : 1 ≤ k ≤ q4}, we define the probability pmτ as

pmτ =
f
m

τ∑
k∈[q4] f

m

Dk
ij

.

For the parameters in b-rejection, we define

B
(0)
ij = nidi(di − 1)− 4Dijdi − 8Diidi − 2Lidi; (6.2a)

B
(1)
ij = njdj(dj − 1)− 4Dijdj − 8Djjdj − 2Ljdj − 8dj∆− d2j∆; (6.2b)

B
(2)
ij = Mij − 2Dij − 10∆− 2∆2; (6.2c)

B
(3)
ij = Mij − 2Dij − 12∆− 2∆2. (6.2d)

Recall the definitions of b
(k)
12 (G

′, S) for 1 ≤ k ≤ 4 in Section 5.3.4. Similarly, for some S

used in NoDoublesij and S produces G′, we define b
(k)
ij (G′, S) for 1 ≤ k ≤ 4 by replacing

V1, V2 in the definition of b
(k)
12 (G

′, S) with Vi, Vj.

6.3.2 Parameters for NoDoublesi

Suppose we are removing double edges from some graph G during the execution of
NoDoublesi, where G contains m double edges within Vi for some 0 < m ≤ Dii. We

use D1
ii to Dq4

ii to represent all the types of switchings that are used to remove the double
edges within Vi.

For each type τ ∈ {Dk
ii : 1 ≤ k ≤ q4}, fτ (G) represents the number of type τ switching

can be applied on G.
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Given a specific type τ ∈ {Dk
ii : 1 ≤ k ≤ q4}, where the type τ switching involves

vertices v1 ∈ Va, v3 ∈ Vb, v4 ∈ Vc, and v6 ∈ Vd for some a, b, c, d ∈ [q], we define f
m

τ as the
value

f
m

τ = 2mMiaMibMicMid · 2t, (6.3a)

where each case where a = i, b = i, c = i, or d = i contributes a value of 1 to the
variable t, otherwise, t = 0.

Then for each τ ∈ {Dk
ii : 1 ≤ k ≤ q4}, fτ (G), we define the probability pmτ as

pmτ =
f
m

τ∑
k∈[q4] f

m

Dk
ii

.

Then for the parameters in b-rejection, define

B
(0)
ii = nidi(di − 1)− 8Diidi − 2Lidi; (6.4a)

B
(1)
ii = nidi(di − 1)− 8Diidi − 2Lidi − 9d2i − d3i ; (6.4b)

B
(2)
ii = Mii − 4Dii − Li − 10di − 2di∆; (6.4c)

B
(3)
ii = Mii − 4Dii − Li − 12di − 2di∆. (6.4d)

For some S used in NoDoublesi and S produces G′, we define b
(k)
ii (G′, S) for 1 ≤ k ≤ 4

by replacing V1, V2 in the definition of b
(k)
12 (G

′, S) with Vi, Vi.

6.3.3 Parameters for NoLoopsi

Suppose we are removing loops from some graph G during the execution of NoLoopsi,

where G contains m loops within Vi for some 0 < m ≤ Li. We use L1
i to Lq2

i to represent
all the types of switchings that are used to remove the loops within Vi.

For each type τ ∈ {Lk
i : 1 ≤ k ≤ q2}, fτ (G) represents the number of type τ switching

can be applied on G.

Given a specific type τ ∈ {Lk
i : 1 ≤ k ≤ q2}, where the type τ switching involves

vertices v1 ∈ Va, v3 ∈ Vb for some a, b ∈ [q], we define f
m

τ as the value
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f
m

τ = mMiaMib · 2t, (6.5a)

where each case where a = i, b = i contributes a value of 1 to the variable t, otherwise,
t = 0.

Then for each τ ∈ {Lk
i : 1 ≤ k ≤ q2}, fτ (G), we define the probability pmτ as

pmτ =
f
m

τ∑
k∈[q2] f

m

Lk
i

.

Then for the parameters in b-rejection, define

B
(0)
i = nidi(di − 1)− Lidi(di − 1); (6.6a)

B
(1)
i = Mii − Li − 6di − 2di∆. (6.6b)

Due to the variations between the structures for removing loops and those for removing
double edges, we provide a detailed definition for b

(k)
i (G′, S) for 1 ≤ k ≤ 2 in cases where

S is used in NoLoopsi and produces G′.

1. b
(1)
i (G′, S) as the number of distinct 3-tuples (w1, w2, w3) where w2 ∈ Vi, w1w2, w2w3 ∈
ES(G

′) and no loops at w2.

2. b
(2)
i (G′, S) as the number of simple edges w1w2 in Vi such that {w1, w2, v1, v2, v3} are
distinct vertices, and w1v1, w2v3 /∈ E(G).

6.4 Running time and proof of Theorem 3.3

In this section, we extend our analysis of running time for q = 2 to general q.

The running time analysis follows the same approach as in Lemma 5.10. Similarly to
the case q = 2, there is no need to compute f

m

τ for performing the f -rejection. For the
b-rejection, the computation of b(G′, S) involves counting the number of 2-paths, or edges,
satisfying certain adjacency constraints. Thus all these b functions can be computed in
time O(∆2). Thus we obtain the following.
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Lemma 6.1. Provide that no rejection occurs, the expected running time of JDM GEN
is

O (µ1 + µ2 + µ3) ,

where

µ1 =

q∑
i=1

nidi;

µ2 =
∑

1≤i<j≤q

(
M2

ij∆
2

ninj

)
;

µ3 =

q∑
i=1

(
Mii∆

2

ni

)
.

Similarly, by observing that in each phase, fτ (G) = (1 + O(ξ))f
m

τ , and bk(G′, S) =
(1 + O(ξ))B(k), for ξ given in the lemma below, we immediately obtain the following
lemma.

Lemma 6.2. The probability of any rejection occurring after the call of PairingGen in
JDM GEN is O(ξ), where

ξ =
∑

1≤i<j≤1

M2
ij

ninj

·

 ∑
m∈{i,j},n∈[q]

∆2

Mmn

+
∑
i∈[q]

M2
ii

n2
i

·

∑
m∈[q]

∆2

Mim

+
∑
i∈[q]

Mii

ni

·

∑
m∈[q]

∆2

Mim

 .

Proof. The proof follows the same strategy as for Lemma 5.16, applied to each phase of
the general case.

Lemma 6.3. Provided that

M3
ij∆

2

n2
in

2
j

= o(1) for all 1 ≤ i ≤ j ≤ 2, (6.7)

the probability of any rejection occurring after the call of PairingGen in JDM GEN is
o(1).

Proof. The proof idea is identical to Lemma 5.20.
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Lemma 6.4. Provided that

M3
ij∆

2

n2
in

2
j

= o(1) for all 1 ≤ i ≤ j ≤ 2, (6.8)

under the assumption of no rejection occurs, the running time of all procedures after the
call of PairingGen in JDM GEN is O (

∑q
i=1 nidi).

Proof. The proof idea is identical to Lemma 5.21.

Proof of Theorem 3.3. By the assumption of the theorem, the probability of any re-
jection occurring during JDM GEN is 3

8
+ o(1) by Lemma 3.2 and Lemma 6.3. Then by

Lemma 4.6 and Lemma 6.4, the running time of JDM GEN is O (
∑q

i=1 nidi) where the
time for the preparation of kv, as discussed in Lemma 5.10, is also included.

Regarding uniformity, Lemma 4.3 guarantees the uniformity of G0. Then the call of
the subprocedure RelaxGraph in each phase, together with Lemma 5.5, ensures that the
uniformity is preserved throughout the process.

6.5 Proof of Theorem 3.5

Lemma 6.5. Provided that Mij are of the same asymptotic order m for all 1 ≤ i ≤ j ≤ q
and

m∆2

ninj

= o(1) for all 1 ≤ i ≤ j ≤ q,

the probability of any rejection occurring after the call of PairingGen in JDM GEN is
o(1).

Proof. Under this assumption, the probability demonstrated in Lemma 6.2 can be simpli-
fied to O(ξ) where

ξ =
∑

1≤i<j≤q

Mij∆
2

ninj

+
∑
i∈[q]

Mii∆
2

n2
i

+
∑
i∈[q]

∆2

ni

= o(1) +
∑
i∈[q]

∆2

ni

.

The term ∆2

ni
is the rejection probability of NoLoopsi for i ∈ [q]. Since we may assume

that Li = 2q2Mii

ni
> 1, hence Mii

ni
= Ω(1). Thus ∆2

ni
· Mii

ni
= Mii∆

2

n2
i

= o(1) implies that
∆2

ni
= o(1).

Thus we have o(1) +
∑

i∈[q]
∆2

ni
= o(1).
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Corollary 6.6. Provided that Mij are of the same asymptotic order m for all 1 ≤ i ≤ j ≤ q
and

m∆2

ninj

= o(1) for all 1 ≤ i ≤ j ≤ q,

B
(k)
ij > 0 for 0 ≤ k ≤ 3 for all 1 ≤ i ≤ j ≤ q, and B

(k)
i > 0 for 0 ≤ k ≤ 1.

Proof. The proof idea is identical to Lemma 5.13 where Lemma 6.5 fulfills the proof.

Lemma 6.7. Let P be a uniformly random pairing in Φ(V ,M,d). Provided that Mij are
of the same asymptotic order m for all 1 ≤ i ≤ j ≤ q and

m∆2

ninj

= o(1) for all 1 ≤ i ≤ j ≤ q,

then,

Pr(P ∈ Φ0(V ,M,d)) ≥ 3

8
+ o(1).

Proof. Using the idea from the proof for Lemma 3.2, it remains to show that the probability
of G(P ) contains triple edges or loops of multiplicity at least two is o(1)

By Lemma 4.5, we need to show that the following hold:

(a) O
(

M3
ij

n2
in

2
j

)
= o(1) for all 1 ≤ i ≤ j ≤ q;

(b) O
(

M2
ii

n3
i

)
= o(1) for i ∈ [q].

For (a), we have
M3

ij

n2
in

2
j
· ninj∆

2

M2
ij

=
Mij∆

2

ninj
. Since Mij ≤ nidi ≤ ni∆, we have

M3
ij

n2
in

2
j
=

O
(

Mij∆
2

ninj

)
= o(1).

For (b), we have
M2

ii

n3
i
· ni∆

2

Mii
= Mii∆

2

n2
i

. SinceMii ≤ nidi ≤ ni∆, we have
M2

ii

n3
i
= O

(
Mii∆

2

n2
i

)
=

o(1).

Lemma 6.8. Provided that Mij are of the same asymptotic order m for all 1 ≤ i ≤ j ≤ q
and

m∆2

ninj

= o(1) for all 1 ≤ i ≤ j ≤ q,

under the assumption of no rejection occurs, the running time of all procedures after the
call of PairingGen in JDM GEN is O (

∑q
i=1 nidi).
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Proof. By Lemma 6.1, it is equivalent to show the following

(a)
∑

1≤i<j≤q

(
M2

ij∆
2

ninj

)
= O (

∑q
i=1 nidi);

(b)
∑q

i=1

(
Mii∆

2

ni

)
= O (

∑q
i=1 nidi).

For (a), we have
M2

ij∆
2

ninj
= Mij · Mij∆

2

ninj
= o(Mij) = O(nidi) for all 1 ≤ i ≤ j ≤ q. Hence,

(a) holds.

For (b), we have Mii∆
2

ni
= ni · Mii∆

2

n2
i

= o(ni) = O(nidi) for i ∈ [q]. Hence, (b) holds.

Proof of theorem 3.5. By the assumption of the theorem, the probability of any rejection
occurring during JDM GEN is 3

8
+o(1) by Lemma 6.7 and Lemma 6.5. Then by Lemma 4.6

and Lemma 6.8, the running time of JDM GEN is O (
∑q

i=1 nidi) where the time for the
preparation of kv, as discussed in Lemma 5.10, is also included.

Regarding uniformity, Lemma 4.3 guarantees the uniformity of G0. Then the call of
the subprocedure RelaxGraph in each phase, together with Lemma 5.5, ensures that the
uniformity is preserved throughout the process. Additionally, Corollary 6.6 ensures that
the process of incremental relaxation is valid during the subprocedure RelaxGraph.
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Chapter 7

Future work

In this chapter, we discuss possible improvements that can be made to further optimize
our results.

Currently, the condition
M3

ij∆
2

n2
in

2
j

= o(1) for 1 ≤ i ≤ j ≤ q is required in Theorem 3.3

to guarantee that the rejection probability of NoDoubles and NoLoops is o(1). Let’s
revisit the q = 2 case and investigate possible improvements that could be made.

While establishing Lemma 5.16, we noticed that the probability of any rejections occur-
ring during the execution of NoDoubles12 is mainly determined by f-rejections, where
the probability of an f-rejection occurring is mainly determined by the count of forbidden
cases involving non-edges, as discussed in Lemma 5.15.

Figure 7.1: D5
12 switching

Let’s revisit the type D5
12 switching as an example. As shown in Figure 7.1, the blue

dotted lines indicate forbidden edges. Using our current approach to count forbidden cases
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that involve a non-edge being present, for instance, v2v3, we count the number of ways
to choose all edges other than v3u3. This calculation gives us O(mM2

11M22M12), where m
represents the number of double edges between V1 and V2. We then find a neighbor for v2,
called v3, and then a neighbor for v3, named u3. This gives O(∆2) possible choices, leading
to a total of O(mM2

11M22M12∆
2) possible forbidden cases. This then gives the term ∆2

M11

in the rejection probability.

However, when M11 is relatively small, this rejection probability can become signifi-
cant. At the same time, with a small M11, it becomes less likely for the edge v2v3 to be
present. This suggests that the instances where v2v3 appears might be fewer than our cur-
rent estimation of O(mM2

11M22M12∆
2). Hence, there’s potential to further improve this

estimate.

The method introduced by [10, Lemma 9] offers an approach to determine the prob-
ability of a specific edge being present, considering particular structures. In our sce-
nario, if we can compute the probability of v2v3 being present, given that the tuple
(v1, . . . , v6, u1, . . . , u4) satisfies the requirements for performing a D5

12 switching, then it
might yield a more accurate estimate than what’s currently available. However, the design
of specific ’subsidiary switchings’ is essential for computation. Given our problem’s com-
plexity, we might have to create various types of these switchings, which makes it more
challenging.
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Appendix A

Proofs

A.1 Proof of 4.2

Proof. For any G ∈ G0(V ,M,d), we prove the equation by giving bijection on sets S and
T . We first define these two sets.

For each vertex v ∈ V (G), let Cv denote the cell corresponding to v in the pairing P
associated with the graph G. We define Nv as the set containing all points in Cv, and SNv

as the permutation group on Nv. The set T is defined as the Cartesian product over all
SNv , i.e., T =

∏
v∈V (G) SNv . Therefore, we have:

|T | =
∏

v∈V (G)

|SNv | =
∏

v∈V (G)

(deg(v)!) =

q∏
i=1

(di!)
ni .

Let PG = {P : P ∈ Φ0(V ,M,d), G(P ) = G}.

For any P ∈ PG, we define a colored pairing of P as follows:

1. For each pair in P corresponding to a simple edge in G, the edge is colored red.

2. For each pair in P corresponding to a loop in G, the pair is colored red, and the two
endpoints of the pair are colored with different colors: one is colored red, and the
other is colored blue. Thus, there are two possible ways to color a loop.
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3. For every two pairs in P corresponding to a double edge in G, the two pairs are
colored with different colors: one is colored red, and the other is colored blue. Hence,
there are two possible ways to color these two pairs.

We define Cl(P ) as the set of all colored pairings derived from P . Let S :=
⋃

P∈PG
Cl(P ),

which represents the set of all colored pairings for the pairings in PG.

Since the number of loops and double edges in G is given by D and L, for any pairing
P in PG, we have |Cl(P )| = 2

∑q
i=1 Li+

∑
1≤i≤j≤q Dij . Additionally, Cl(P ) ∩ Cl(P ′) = ∅ for

P ̸= P ′. Therefore, we have the following:

|S| = |PG| · 2
∑q

i=1 Li+
∑

1≤i≤j≤q Dij .

We complete the proof by demonstrating a bijection between S and T .

To facilitate this bijection, we label the edges of G. For a graph G ∈ G0(V ,M,d),

we label the edges in G arbitrarily with distinct labels from 1 to m = |d|1
2
. Each edge is

assigned a unique label, and every double edge is assigned two consecutive labels.

Here is an example of a labelled graph in Figure A.1:

Figure A.1: labelled graph

Let G be the graph shown in Figure A.1. In Figure A.2, the right image represents a
possible pairing P ∈ PG, where the pairs in P are labelled based on the labelling in the
graph G. The left image is a possible colored pairing belonging to Cl(P ).
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Figure A.2: coloured pairing

Note that the method of labeling a graph is not unique. However, for the purpose
of our discussion, we assume that every graph G ∈ G0(V ,M,d) has a predetermined
labeling. This means that for each pair in a pairing, we can retrieve the label of the edge
corresponding to that pair.

We define the function f : S → T . Given a colored pairing from S, its corresponding
element in T is well-defined if we can determine the permutation σ for each set Nv, where
v ∈ V (G).

For any v ∈ V (G), we define the permutation σ on Nv such that for any i, j ∈ Nv,
σ(i) < σ(j) if and only if li < lj, where li is the label of the edge corresponding to the pair
that contains i as one of its endpoints. Note that for pairs corresponding to a double edge
(i.e., the pair labeled 4 and 5 in Figure A.2), we do not have specific rules on which pair
corresponds to which edge. Therefore, the permutation order for the four points involved
is not determined at this point.

In addition, for the pair (i, j) that corresponds to a loop in G, we have σ(i) < σ(j) if
and only if i is colored red and j is colored blue.

Furthermore, for the pair (i1, j1) and (i2, j2) corresponding to a double edge in G, where
i1 and i2 are in the same cell, and j1 and j2 are in the same cell, we have σ(i1) < σ(i2) and
σ(j1) < σ(j2) if and only if (i1, j1) is colored red and (i2, j2) is colored blue.

Using this approach, the permutation on Nv is well-defined, and consequently, f is
well-defined. By applying a similar idea, we can obtain f−1, which maps T back to S.
Therefore, f and f−1 together form a bijection between S and T .

85


	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	Introduction
	Overview of switching-based algorithm
	Overview
	Adaptation

	Preliminaries and main results
	Configuration Model

	Initialization
	Generation of G0
	Running time of PairingGen and Proof of  Lemma 3.2

	Special case when q = 2
	Switchings: the old
	Switchings: the new
	Switchings to remove crossing double edges between V1 and V2
	Switchings to remove the other types of multiple edges and loops

	JDM_GEN for q = 2
	Definition
	Incremental Relaxation
	Uniformity of NoDoubles12
	Combinatorial interpretation of b(F)
	Definiton of JDM_GEN for q = 2

	Running time and rejection probabilities
	Running time of NoDoubles12
	Proof of Lemma 5.2 and Completion of the Proof for Claim 5.7.
	Rejection probability of NoDoubles12
	The remaining phases

	Proof of Theorem 3.3 for q=2

	General case
	Switchings
	Switchings to remove crossing double edges between Vi and Vj
	Switchings to remove double edges within each Vi
	Switchings to remove loops within each Vi

	JDM_GEN
	Parameters
	Parameters for NoDoublesij
	Parameters for NoDoublesi
	Parameters for NoLoopsi

	Running time and proof of Theorem 3.3
	Proof of Theorem 3.5

	Future work
	References
	APPENDICES
	Proofs
	Proof of 4.2


