
Sampling-based Predictive Database Buffer
Management

by

Theo Vanderkooy

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Theo Vanderkooy 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis presents a database buffer caching policy that uses information about long-
running scans to estimate future accesses. These estimates are used to approximate the
optimal caching policy, which requires knowledge about future accesses. The buffer caching
policy must be efficient with low CPU overhead, which is achieved with sampling: buffer
eviction considers only a small random sample of buffers and access time estimates are
used to select among the sample. This design is easily tuned by adjusting the sample size,
and easily modified to improve the access time estimates and expand the set of workload
types that can be predicted effectively.

This approach is implemented in PostgreSQL and evaluated on a series of experiments
based on TPC-H. Based on the experiments, this approach works very well for workloads
with mainly sequential scans, reducing I/O volume by up to 38% over PostgreSQL’s Clock-
sweep implementation, and is competitive with standard approaches for workloads using a
mix of sequential scans and index accesses.

iii

Acknowledgements

Many thanks to my supervisor, professor Khuzaima Daudjee, for advice, feedback, and
insight throughout my graduate studies, without which this thesis would not have been
possible.

Thanks also to the thesis readers, professor Sujaya Maiyya and professor Tamer Ozsu,
for their time and feedback.

iv

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

List of Figures viii

List of Abbreviations ix

1 Introduction 1

2 Background and Related Work 3

2.1 Optimal Cache Eviction . 3

2.2 Standard Database Buffer Cache Management 3

2.3 Related Work Using Prediction . 4

2.4 Summary of Priority-Queue Based Predictive Buffer Management 5

3 Sampling-based Predictive Buffer Management 9

3.1 Generalizing the Optimal Eviction Strategy 11

3.1.1 Incompleteness of the generalized policy 13

3.1.2 Eviction times of the generalized policy 14

3.2 Sampling-based PBM: Benefits and Trade-offs 14

v

4 Extending and Enhancing Sampling-based PBM 17

4.1 Bulk Eviction . 17

4.2 Frequency Statistics . 18

4.3 Fallback to LRU . 20

4.4 Index scans . 20

4.4.1 Bitmap index scans . 20

4.4.2 Trailing index scans . 21

4.4.3 Almost-sequential index scans . 23

4.4.4 Random access . 23

5 Implementation in PostgreSQL 24

5.1 PostgreSQL’s Existing Buffer Replacement 24

5.2 Changes to PostgreSQL to Support PBM 25

5.2.1 Details of PBM implementation . 25

6 Evaluation 28

6.1 Methodology . 28

6.2 Sequential Microbenchmarks . 29

6.2.1 Comparing Different Levels of Parallelism 29

6.2.2 Comparing Different Cache Sizes 33

6.2.3 Impact of PBM-sampling Parameters 33

6.3 Trailing Index Scan Microbenchmarks . 37

6.4 Sequential Index Scan Microbenchmarks 39

6.5 TPC-H . 39

7 Conclusions 43

References 44

APPENDICES 47

vi

A Probability of good eviction choices with sampling 48

A.1 Single eviction . 49

A.2 Bulk-eviction . 49

vii

List of Figures

2.1 PBM sequential scan tracking . 7

2.2 PBM-PQ’s approximate priority queue . 8

3.1 Higher next-access-time for MIN-optimal cache items 12

3.2 PBM-sampling probability of optimal decision 13

4.1 Bulk eviction example . 18

4.2 PBM bitmap scan tracking . 22

6.1 Sequential Microbenchmarks – Parallelism 30

6.2 Sequential Microbenchmarks – Hit Rate with Data in Main Memory 32

6.3 Sequential Microbenchmarks – Cache Size 34

6.4 Sequential Microbenchmarks – Parallelism vs Hit Rate with Different PBM-
sampling Configurations . 35

6.5 Sequential Microbenchmarks – Parallelism vs Hit Rate with Bulk Eviction 36

6.6 Trailing Index Scan Results . 38

6.7 Sequential Index Scan Results . 40

6.8 TPC-H Results . 42

A.1 Probability of an optimal eviction comparing single- vs bulk-eviction . . . 50

viii

List of Abbreviations

FIFO First-in, First-out 3, 26

LFU Least Frequently Used 3

LRD Least Reference Density 3

LRU Least Recently Used 2, 3, 20, 26

PBM Predictive Buffer Management 2, 9, 14, 21, 25–27

ix

Chapter 1

Introduction

A crucial aspect of database system performance is managing secondary storage. Many
systems are designed for data-sets larger than main memory, and must manage how the
available memory is used to maximize performance. Ideally, the data needed to answer
queries would always be in-memory at the time it is needed, so that queries are not slowed
down waiting for secondary storage. The task of managing what data is kept in memory
and what is returned to permanent storage falls on the buffer manager.

For most database systems, e.g., PostgreSQL, the buffer manager controls the memory
directly. This means that when requests exceed the available space, the buffer manager has
to pick a buffer to evict and replace with the newly requested data. The critical decision
that the buffer manager must make is what block to evict from the buffer (memory)
pool when a new block is requested. For example, PostgreSQL uses the popular Clock
algorithm [18] to make eviction decisions.

The eviction decisions that a buffer manager makes is analogous to cache manage-
ment/eviction policies that apply generally to all forms of caching, e.g. web caches and
CPU caches. Since reading from secondary storage is significantly slower than reading
from memory, it is greatly beneficial to keep as much data in memory as possible. Since
memory is still much more expensive than common forms of secondary storage, systems
are typically forced to choose what to keep in memory for faster access within the available
limit on the server. However, the objective is the same as for buffer pool management:
how to minimize the number of storage accesses (I/O) by increasing the hit rate of data
blocks in memory and improve overall system performance. A key challenge in increasing
buffer pool hit rates is to have low running times for the policy that manages the buffer
pool through low-latency eviction decisions – a computationally expensive eviction policy

1

would also increase query latency.

An optimal eviction strategy requires knowledge about future accesses, making it im-
possible to implement in a real system. As such, real systems tend to use simple heuristics
with low latency computation such as Clock [20] or Least Recently Used (LRU).

The optimal policy can be leveraged in the form of Predictive Buffer Management
(PBM), where the buffer manager predicts future accesses to inform cache eviction decisions
and tries to mimic the optimal caching policy. undefinedwitakowski et al. [23] use such a
strategy, exploiting the structure of sequential database scans to estimate the next access
time of data in the cache. Their approach uses a priority-queue based strategy and was
originally implemented in a closed source system called Actian Vector. This approach is
described in more detail in Chapter 2.4.

Contributions: This thesis proposes an alternate approach to predictive buffer man-
agement using sampling that is simpler, more flexible and extensible, and generally uses
more up-to-date estimates. The sampling-based approach is shown to perform better than
the prior priority-queue based approach for some workloads, reducing I/O volume by up
to 30% over the priority-queue based approach and up to 38% over PostgreSQL’s Clock-
sweep strategy. Moreover, the extensible design of the sampling-based approach allows
for expanding the set of workloads on which predictive buffer management can be used.
An open-source implementation in PostgreSQL is available of both the sampling-based ap-
proach and the prior approach [23], and the details of the implementations are discussed.

The rest of this thesis is organized as follows. Chapter 2 includes background on
aspects of buffer management and caching as well as related work, Chapters 3 and 4
present the sampling-based technique proposed in this thesis, Chapter 5 describes the
PostgreSQL implementation of the technique, Chapter 6 presents performance evaluation,
and Chapter 7 concludes the thesis.

2

Chapter 2

Background and Related Work

This chapter provides background on the concepts related to predictive buffer management,
and discusses other cache management approaches based on related ideas to those in this
thesis.

2.1 Optimal Cache Eviction

Belady’s MIN algorithm [1] is known to be an optimal caching policy: for any sequence
of accesses, it minimizes the number of accesses that are not satisfied by the cache and
must access the next layer in the relevant storage hierarchy. It achieves this by evicting
the cache item that will be accessed furthest in the future, which requires knowing future
accesses. It is impossible to know future accesses in general so real-life systems are forced
to use a (sub-optimal) heuristic policy, but MIN has inspired several more practical caching
approaches. Predicting future accesses with a reasonable degree of accuracy enables better
caching decisions by imitating MIN and evicting items not predicted to be accessed soon.

2.2 Standard Database Buffer Cache Management

Historically, databases used very simple heuristic strategies for buffer cache replacement
such as LRU, Least Frequently Used (LFU), First-in, First-out (FIFO), clock [20], Least
Reference Density (LRD), or some variant of one of these strategies. [5, 7, 9] Such strategies

3

are still commonly used as they are simple to implement with low CPU overhead, and tend
to be effective for common database access patterns.

Some more recent work on database cache management focuses on adapting the buffer
cache to work well with other new technologies and advancements [22], such as LSM-tree
compaction leading to cache invalidation and extra avoidable storage access. Several works
seek to adapt the existing heuristic approaches to perform better on flash drives, taking into
account the distinct characteristics of solid-state storage and in particular the increased
cost of writes compared to reads. [8, 12, 13, 15, 17]

2.3 Related Work Using Prediction

Cache eviction is used in many contexts with different considerations, and as such there
have been many cache eviction strategies that take inspiration from MIN, generally taking
advantage of domain-specific details to create a practical caching strategy.

For CPU caches, Hawkeye [10] is a cache replacement strategy which simulates MIN on
past accesses to identify which load instructions tend to be cache friendly or not. Several
other works expand on this approach: Mockingjay [19] uses a multi-class predictor instead
of binary classification, and Harmony [11] is based on a modified version of MIN that
considers pre-fetching. Other strategies track or estimate time-to-reuse of cache lines to
inform eviction strategies. [14, 24]

In web content caching, Famaey et al. [6] predict future access distributions of web
content to cache most frequently accessed items. Yang and Zhang [25] build a model of
user sessions to predict access probabilities of content based on the current sessions to
inform caching decisions.

For database caching, Yuan and Jin [26] propose two machine-learning based buffer
cache eviction strategies trained on historical accesses: one which classifies buffers as cache
friendly or cache averse similar to Hawkeye, and the other which predicts time-of-next-
access to mimic MIN more directly. Instead of predicting future accesses, [27] instead
reorders future accesses for long-running scans to improve the cache usage.

Prior work that takes inspiration from MIN most related to this thesis are [21] and [23].

Song et al. [21] use machine learning to estimate access times and a similar technique to
the one described in Chapter 3 to choose what to evict, but applied to content distribution
networks instead of database buffer caching. Some key differences between content distri-
bution and database buffer management motivate a slightly different approach: content

4

distribution caches can afford a higher CPU cost since the cache items are much larger
and the latency penalty of a cache miss is higher, and databases have more information
available about near-future accesses.

undefinedwitakowski et al. [23] focus on database caching under a workload with mostly
sequential access, and leverage knowledge about the currently active queries to estimate
the future access pattern. The approach presented in this thesis has some overlap with
this approach, so the techniques from [23] are summarized in Chapter 2.4.

2.4 Summary of Priority-Queue Based Predictive Buffer

Management

Prior approach [23] tracks information about active sequential scans in the database to
predict when different parts of the data will be accessed next. Figure 2.1 shows an example
of how my implementation in PostgreSQL tracks this information. When a scan starts,
based on the information in the query, the scan registers itself indicating the set of blocks
it will eventually access and when it will access those blocks. For each block, the system
stores a list of the scans that will access that block. When a scan reaches a particular
block it removes itself from that block’s list of scans since the same sequential scan will
not return to the same block.

As the scan progresses, it tracks its current position and speed, which together are used
to estimate when it will reach a particular data block assuming it will maintain the current
scan speed.

As mentioned previously, making the actual decisions about what to evict must be done
quickly. In the approach from [23] that will be referred to as PBM-PQ in this thesis, the
authors found that storing the buffers in a true priority queue was too slow and instead
developed an approximate priority queue with O(1) insertion and removal to alleviate this
concern. The approximate priority queue, depicted in Figure 2.2, groups database blocks
into a fixed number of buckets based on the estimated time to next access, with buckets
further in the future having exponentially wider ranges than buckets to be accessed sooner.

Cached blocks are inserted into the approximate priority queue or moved between
buckets in the queue when it is loaded into the cache or when the set of scans that will
access it changes, i.e., when a new scan starts or an existing scan has finished processing
that block. As time progresses, the priority – corresponding to the time to next access – of
each block decreases, so the buckets are periodically shifted to correspond to earlier time

5

intervals with the earliest bucket being removed. Eviction candidates are chosen from the
non-empty bucket furthest in the future, which should have the next-access furthest in the
future to mimic MIN.

6

Figure 2.1: How PBM tracks sequential scans. A list of relevant scans is tracked for each
block in the database. When a scan starts, it adds itself to the list for each relevant block,
and removes itself after the scan has passed that block. Time of access by each scan is
estimated based on the scan speed and the distance from the scan to the block, based on
block position and current scan position. Then the estimated next-access-time of the block
is the minimum access time over the list of scans.

7

Bu
ck

et
 0

Bu
ck

et
 1

Bu
ck

et
 2

Bu
ck

et
 3

...

Never
Next access time

Search for eviction candidates
starting at latest bucket

Bu
ck

et
 4

Bu
ck

et
 5

Bu
ck

et
 N

Figure 2.2: Structure of the approximate priority queue used by PBM-PQ. The time range
associated with each bucket increases exponentially for later buckets, and ∆ is the time
range of the first buckets.

8

Chapter 3

Sampling-based Predictive Buffer
Management

This chapter presents an alternative buffer management strategy based on sampling that
uses the same estimates about future access times as PBM-PQ but removes the need for
the approximate priority queue entirely. This improves prediction accuracy for choosing
eviction candidates, significantly simplifies the design and implementation, and is more
flexible and extensible.

The sampling-based approach, referred to in this thesis as PBM-sampling, tracks the
progress of scans in the same way as PBM-PQ: scans are registered and a list of relevant
scans is kept for each block. The change from PQ-based to sampling-based PBM is in how
it uses the estimated access times to select what to evict. Rather than use a data structure
to rank candidates, the sampling-based strategy selects a random group of candidates and
use the estimated access times to choose the victim from the selected sample.

Pseudocode for choosing which block to evict is shown in Algorithm 1. First, the
system chooses N random blocks from the cache that are not currently in use, where N is
a configurable constant.1 A block cannot be evicted if it is currently in use, so such blocks
must be skipped and something else is selected. The sampling-based approach estimates
the next access time for each of the N blocks in the same way as PBM-PQ, by estimating
when each active scan will reach the block and considering the scan that is predicted to
reach it first. Then from the N sampled blocks, the one with highest estimated next-
access-time is returned.

1N = 10 for most experiments in the evaluation.

9

Function ChooseEvictedBlock():
samples ← array of length N
for i← 1 to N do

blk ← random unused block
t ← EstimateNextAccess(blk)
samples[i] ← (blk, t)

end
for i← 1 to N do

s← sample with highest estimated access time
if s can be evicted then

return s
else

remove s from list of samples
end

end
return random unused block

Function EstimateNextAccess(blk):
if blk has registered scans then

return mins∈blk.scans
s.scan blocks until(blk)

s.est speed

else
return ∞

end

Algorithm 1: Sampling-based eviction strategy

10

Note that it is possible for the selected block to not be evictable anymore if a concurrent
query either already evicted it or started using it. The implementation avoids locking the
blocks when they are initially selected to minimize the possible impact on concurrent
queries while calculating the access time estimates. To handle this race condition, there is
a check at the end for whether the chosen block is still a valid candidate and another block
is selected if it is not valid anymore.

This approach is similar in spirit to the learned relaxed Belady approach of Song et al.
[21]. The next part of this chapter justifies why this approach is expected to work well.

3.1 Generalizing the Optimal Eviction Strategy

The most straight-forward approach to mimic Belady’s optimal caching policy MIN [1]
would be to try to identify the single cache item that will be accessed furthest in the
future. However MIN only provides a single choice for eviction when there may be many
optimal choices, making this approach more difficult to accomplish than it needs to be. To
make the problem easier without sacrificing optimality, consider what MIN will eventually
do with the items currently in the cache: any cache item that MIN would evict before that
item is next accessed is also an optimal choice for eviction. This is established using the
following lemmas:

Lemma 1. Suppose that A and B are items in the cache at time-step t0, both A and B
are next accessed after t1, and some optimal policy (not necessarily MIN) would evict A at
t0 and evict B at t1. If the evictions of A and B are swapped – so B is evicted at t0 and
A is evicted at t1 instead – then the resulting strategy is still optimal.

Proof. Since neither A nor B are accessed between t0 and t1 and the rest of the cache
contents are unaffected in this time range, swapping the evictions will not change the
number of cache hits/misses between t0 and t1. After t1 both A and B have been evicted
and the cache contents are now identical to if the evictions were not swapped, so the
behaviour after this point is identical to the original policy and there are also no additional
cache misses after t1. Thus B would also be an optimal eviction candidate at t0, since
swapping these evictions does not occur any extra cache misses.

Considering the above argument for MIN specifically instead of any optimal policy in
general, then A necessarily has a larger next access time at t0 than B, since otherwise
MIN would evict B before A. This argument applies for all items in the cache at t0 that

11

Accessed before
next eviction

Evicted before
next access

Next access time

Figure 3.1: Cache items evicted by MIN before next-access have later next-access time
than items that will be read from the cache before eviction.

MIN would evict before their next access, so using Lemma 1 they are all optimal eviction
choices at t0. I refer to this set of cache items that MIN would evict before their next
access as MIN-optimal.

Lemma 2. All MIN-optimal cache items have later next-access-time than all items in the
cache that are not MIN-optimal. (depicted in Figure 3.1)

Proof. Suppose A and B are items in the cache, and B has earlier next-access-time than
A. If B is MIN-optimal, then A must be as well.

Let tevictA and tevictB be the times when MIN would evict A and B respectively, and let
taccessA and taccessB be the next access times of A and B.

Suppose that B is MIN-optimal so tevictB < taccessB . As previously stated, B is next
accessed before A so taccessB < taccessA , and as a result MIN will evict A first so tevictA < tevictB .
Then by transitivity, tevictA < taccessA so A is also MIN-optimal.

Thus it is impossible for a MIN-optimal cache item to have earlier next-access-time
than a non-MIN-optimal cache item.

Then at any time there are potentially many cache items that are optimal to evict,
and some subset of optimal choices have next access times larger than all the other cache
items. Based on this, there must be some cut-off time dividing these optimal-to-evict
cache items from the rest – depicted in Figure 3.1 – which if it were known would be very
helpful in identifying good eviction candidates. This is similar to the “Belady boundary”
described by Song et al. [21] as the minimum time-to-next-access of all items evicted by
MIN. Unfortunately this cut-off time is not known in advance, but it is very useful to know
that cache items with later next-access-time have a higher likelihood of being optimal
eviction choices.

12

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

Fraction of cache which is optimal to evict

P
ro

b
ab

il
it

y
of

op
ti

m
al

ev
ic

ti
on

N = 50
N = 10
N = 5

Figure 3.2: Probability of an optimal eviction decision with N samples

Note also that even amongst items that MIN would not evict before their next access,
it is still better to evict the one with larger access time. This is proven as part of the proof
that MIN is optimal. [16]

Thus, evicting the item with highest next-access-time from a sample makes sense and
has a reasonably high chance of making an optimal decision assuming next-access-time
estimates are accurate, and with a large enough sample. Suppose that the fraction of
cache items that are optimal eviction candidates is p. Then the probability of making an
optimal eviction choice is 1 − (1 − p)N where N is the sample size. Figure 3.2 show the
probability of optimal evictions as a function of p for different sample sizes.

3.1.1 Incompleteness of the generalized policy

While the strategy of comparing next-access-time to when MIN would evict a cache item
described in Chapter 3.1 would identify more than one optimal eviction candidate, it is
incomplete in the sense that it does not identify all possible optimal candidates, even with
perfect knowledge of future accesses.

As an example of this: consider a cache of size 2 that initially contains items A and
B, and a sequence of accesses for item C, A, B, A. MIN would evict B to read C, read
A from the cache, then evict C to read B, and finally read A from the cache again. This

13

results in 2 evictions over the whole sequence. In the first step when C is read, A will be
accessed before MIN would choose to evict it so only B is MIN-optimal, not A.

However, it is possible to evict A in the first step and still end up with an optimal
sequence of evictions. Again starting with A and B in the cache, evict A to read C,
then evict C to read A, and for the last two reads B and A are cached. This sequence
of accesses also has only 2 evictions, so it is optimal, but it does not evict only MIN-
optimal candidates. Thus the generalized policy is incomplete in that it does not identify
all possible optimal eviction decisions.

3.1.2 Eviction times of the generalized policy

An interesting observation is that the generalized policy will have its cache misses and
evictions at the same time steps in the access sequence as MIN. However, for the example
in Chapter 3.1.1 of an optimal sequence of evictions that does not follow the generalized
optimal policy, the evictions occur earlier in the sequence, at the first and second access
instead of first and third.

3.2 Sampling-based PBM: Benefits and Trade-offs

To maximize performance, the buffer management policy should maximize the hit rate
of block accesses while minimizing CPU overhead. This includes minimizing the time to
choose what to evict, time to maintain metadata, and limit time holding locks so that
threads can allocate cache blocks concurrently without waiting for each other.

PBM-PQ [23] trades off prediction accuracy by using the approximate priority queue
to avoid the high CPU overhead of maintaining an exact priority queue, and allowing esti-
mates to become stale. Sampling-based PBM benefits from removing the central priority-
queue data structure, allowing it to achieve better hit rate without additional CPU over-
head.

Simplicity: The most obvious advantage after implementing both policies is increased
simplicity – sampling removes the entire approximate priority queue data structure along
with the maintenance required to shift the buckets periodically and ensure block groups
are in the correct bucket as blocks move in and out of the cache or their registered scan
set changes.

14

With sampling, all of this is removed and the eviction logic changes, with almost nothing
added. In the PostgreSQL implementations, PBM-sampling has about 600 fewer lines of
code than PBM-PQ.

Freshness of access-time estimates: The sampling-based approach computes next-
access-time estimates as late as possible – only when a block is being considered for im-
mediate eviction – so the estimates it uses are based on the most up-to-date information
available.

In contrast, the PQ-based approach calculates estimates only when the set of scans
registered for a block changes potentially causing the block to be moved to a different bucket
of the approximate priority queue. If the initial estimated access times were perfectly
accurate this would not matter, but in practice the scans will change speed over time
depending on various run-time factors. A block could remain in the cache for minutes
at a time without its position in the queue being recalculated, leaving plenty of time
for estimates to drift. Less accurate estimates lead to worse eviction decisions and, by
extension, worse performance.

Accuracy of access-time estimates: The approximate priority queue considers
blocks in the same bucket as equivalent when deciding what to evict, with buckets further
in the future – which are checked first for potential eviction candidates – representing expo-
nentially larger time ranges. Sampling compares the exact estimated next-access, however,
it considers only a small sample of blocks for each eviction compared to PBM-PQ, which
chooses among all blocks in the cache. Both methods sacrifices some precision that prevents
them from always picking the best block to evict, even if the estimates were completely
accurate. Chapter 3.1 discusses how to reason about the precision of the sampling-based
strategy.

Extensibility: PBM-PQ is designed for workloads with mostly sequential scans, and
the approximate priority queue makes it difficult to extend it to other workloads. unde-
finedwitakowski et al. [23] suggest, but do not implement, a way to incorporate frequency
statistics to handle blocks that are not requested by sequential scans but may be accessed
by other methods for hybrid workloads. Their proposal requires an entire new data struc-
ture that is processed differently from the existing priority queue because the existing
structure assumes the priorities (time to next access) change in a specific way over time.

With sampling, a complex data structure is not required for ordering blocks, so it is
much easier to extend to support other workload types. Unlike with PBM-PQ, no extra
work is required to make use of improved assess time estimates using new sources of
information.

Tunability: With sampling, the sample size can be changed at run-time without

15

interrupting the workload in any way. Caching policies must compromise between CPU
cost and hit rate, and adjusting the sample size is an easy way to do this with intuitive
impact: more samples should increase the hit rate, but increases the per-eviction CPU
cost.

With PBM-PQ, the number of buckets in the queue and the time ranges represented
by each bucket are adjustable. However, changing these parameters requires modifying the
data structure including potentially recalculating access time estimates, and it is not as ob-
vious when more buckets or a different time range would be beneficial. These adjustments
improve the precision, but do not help when estimates become stale.

Concurrency: PBM-sampling does not have a central data structure used for making
eviction decisions, so evictions can be done in parallel from multiple processes with low
frequency of one thread having to wait for another (one thread will have to wait if two
threads randomly sample the same buffer at the same time). Using the approximate priority
queue prevents concurrent evictions, which could potentially limit the scalability at high
levels of concurrency. PBM-PQ works around this limitation by evicting many blocks at
once so that allocating a buffer usually does not need to wait.

16

Chapter 4

Extending and Enhancing
Sampling-based PBM

This chapter describes improvements to PBM-sampling, some of which are general im-
provements for all workloads and others allow PBM-sampling to perform well on workload
types beyond what PBM-PQ specialises in.

4.1 Bulk Eviction

PBM-PQ evicts several pages at once to amortize the CPU cost of eviction. [23] With
sampling, there is not a direct CPU benefit to evicting multiple blocks at once, but better
hit rate is achievable for the same CPU cost with a similar bulk eviction technique.

Rather than choosing N buffers from the cache and evicting only one each time a buffer
is allocated, consider taking a sample of kN buffers and evicting the k buffers from the
sample with largest next-access time. This technique considers the same kN buffers over
a sequence of k buffer allocations, but can make better eviction decisions by considering
them all together rather than separately.

With separate single evictions, it is possible that one sample may not contain any good
candidates resulting in a bad eviction, while another sample may contain multiple good
eviction candidates but will select only one. With bulk eviction, it is as if one can take
a surplus good eviction candidate from a different recent or near-future sample instead of
evicting the bad candidate, thus reducing the over-all rate of bad eviction choices. Using
the example in Figure 4.1, the first eviction samples two good eviction candidates while the

17

next-access

A G HD E F ICB

(a) Multiple single evictions each evict the single item with latest next-access from a limited
sample.

D G H E F I B CA

next-access

(b) Bulk-eviction considers the same samples, with a better set of eviction choices.

Figure 4.1: Bulk eviction example with N = k = 3. The colour identifies MIN-optimal
eviction candidates as in Figure 3.1, and items to the right of the vertical bars are chosen
for replacement.

second eviction samples only items that should be kept in the cache, so with single eviction
it would end up making a bad eviction. Using bulk eviction for this scenario, the same
sampled cache items from multiple consecutive evictions are considered together allowing
both good candidates from the first single-eviction sample to be evicted and avoiding
evicting something which would optimally be kept in the cache. Appendix A analyses and
demonstrates this benefit mathematically.

With this technique the total number of samples chosen – and therefore next-access
estimates computed – stays the same compared to single-eviction, so the CPU cost is
practically the same, but the eviction decisions are better so hit rate is improved.

4.2 Frequency Statistics

undefinedwitakowski et al. [23] mention, but do not implement, an extension to PBM-
PQ using frequency statistics to prioritize cache blocks that are not requested by any
active sequential scans. This is not expected to help for workloads with only long-running

18

sequential scans, but could be useful for smaller tables and index lookups. The method
proposed by undefinedwitakowski et al. [23] is to store a few recent access times for each
block, and store non-requested blocks in a separate set of buckets corresponding to the
inter-access time. The second set of buckets ages over time, equivalently increasing the
estimated time-to-next-access of these blocks.

This thesis pursues this proposal by developing a similar idea to track frequency statis-
tics in PBM-sampling that is much easier to implement as discussed in Chapter 3.2. In
PBM-sampling, the system tracks an exponentially weighted moving average of the time
between accesses (inter-access time) for each block in the cache. With sampling no special
data structures are needed to handle this scenario, just some extra fields in the existing
buffer headers. As depicted in Algorithm 2, if the time-since-last-access is less than the
average inter-access time, the frequency-based time-to-next-access is estimated to be the
average inter-access time. Once the time-since-last-access exceeds the average inter-access
time, the time-since-last-access is used as the estimated time-to-next-access instead to
decrease the relative priority of these blocks over time.

Function EstNextAccessFreq(blk):
t since access ← now− blk.last access
if blk.num access ≤ 1 then

/* not enough recent access information */

return ∞
else if blk.avg inter access < t since access then

return blk.avg inter access
else

return t since access
end

Algorithm 2: Next-access-time estimate based on recent inter-access times.

If a block is also registered by a sequential scan, the resulting next-access estimate is
the minimum of the frequency-based and registered-scan-based estimates.

These stats are only kept for blocks currently in the cache, so newly loaded blocks
will not have an inter-access time since they have been accessed only once. Newly loaded
blocks are therefore more likely to be evicted prematurely if they are not also requested
by a sequential scan. This is mitigated with sampling since, on average, some time will
pass before the blocks will be sampled. The next sub-chapter discusses another method
for handling the case of non-requested blocks.

19

4.3 Fallback to LRU

The original implementation of PBM-PQ [23] uses LRU to prioritize amongst blocks that
are not requested sequentially.1 With the sampling-based strategy, the frequency statistics
described in Chapter 4.2 mostly serves the same purpose, but as mentioned it has a blind-
spot for blocks that are new to the cache and have not yet been accessed multiple times.
A technique that can be used to improve this case is to use LRU as a tie-breaker for
blocks that are not requested sequentially and do not have frequency statistics. If multiple
sampled blocks are not requested sequentially and do not have frequency statistics, the
system will prefer to keep the ones that have been accessed more recently and evict the
one accessed least-recently.

4.4 Index scans

So far the discussion has been mainly about sequential access patterns. Sequential scans
are the most efficient way to read a large data-set when most of the data is needed to
answer a query, but secondary indexes can greatly reduce I/O and CPU cost for workloads
where this is not the case. PostgreSQL supports various types of indexes, so they should
also be considered to inform caching decisions.

Unfortunately, index scans do not generally have a predictable order for accessing sec-
ondary storage, so they are not as easy to predict as sequential scans. There are, however,
a few situations where the information from an index scan may be useful to help make
eviction decisions.

4.4.1 Bitmap index scans

In PostgreSQL, any index can be scanned as a bitmap scan. In this case, the system first
reads only the index and constructs a bitmap indicating which tuples might match the
query predicate. The table is then scanned in sequential order, using the bitmap to skip
blocks that do not contain any matching tuples. Bitmap scans can be selected by the query
planner for any type of index, but certain index types can only be used with bitmap scans.
Most notably, PostgreSQL’s block range indexes (BRIN) always use bitmap scans. BRIN
splits the table into ranges of blocks and stores a summary of each range, which can be

1The PostgreSQL implementation of PBM-PQ in this thesis takes a different approach, discussed in
Chapter 5.

20

compared to the query predicate to quickly rule out all tuples from a range. The default
form of BRIN is a min-max index, where the summaries store the column’s minimum and
maximum value for each range of blocks, and it also supports bloom filter summaries and
a few other strategies for specific data types.

Bitmap scans are the best-case for index scans with predictive buffer management: the
order is predictable and the set of blocks to be retrieved is known early, after constructing
the bitmap. It is easy to support bitmap scans in both sampling-based and priority-queue
based PBM as the only necessary change is to how the scan is initially registered. The
PBM registration happens after the scan operator constructs the bitmap, and the bitmap
itself is used to determine which blocks will be scanned and when, but the rest of the
implementation is the same as for sequential scans. This is depicted in Figure 4.2.

The original implementation of PBM-PQ supports automatically created min-max in-
dexes in a similar way [23], but PostgreSQL’s bitmap scans are more general and apply to
more types of indexes.

4.4.2 Trailing index scans

Certain index types – such as B-tree indexes – return their results in sorted order. Thus
two independent index range scans with overlapping ranges will visit the tuples from the
shared part of the range in the same order. When there are concurrent index range scans
on the same relation, the system can detect the shared scan range and use information
from one scan to know what the next scan will access.

The way a trailing index scan is detected involves marking blocks as they are accessed
by the leading scan for the trailing scan to detect when it reaches the same point. When an
index scan accesses a block it records in the buffer header: the current time, which tuple
from the block was accessed, and which index is used. When another index scan reaches
the same tuple, it checks the mark to determine whether it is following another scan. If the
mark is for the same index and the same tuple, the scan knows it is trailing the scan that
left the mark and can calculate how far behind it is based on the recorded timestamp. It
then notifies the leading scan that it is trailing with a certain delay, and the leading scan
will also start marking blocks it accesses with the time it estimates the trailing scan will
also reach that block. Estimating next-access-times will now use the estimate left by the
leading scan if this estimate is less than the access time suggested by other factors.

21

Figure 4.2: Bitmap scans are handled similar to sequential scans in Figure 2.1. After the
bitmap is constructed from the index, the bitmap is used to register only blocks relevant
to the scan. Time-to-next-access is estimated for each block in the same way as with
sequential scans.

22

4.4.3 Almost-sequential index scans

Some columns in a table are highly correlated with the physical order of the table. Such
columns are good candidate for BRIN indexes, but a B-Tree index can make sense when
the query optimizer also wants to sort by that column efficiently. Due to the correlation
between the column order and physical order, even an index scan on the column will
access the disk blocks in a mostly-sequential order. The PostgreSQL optimizer already has
statistics for how correlated an index scan will be with the physical order, so when the
correlation is high the index scan can be treated more like a sequential scan. Then the
system can estimate when a specific scan will reach a specific block based on the scan’s
current position and distance between the current and target block, and how fast the scan
is progressing.

4.4.4 Random access

For less predictable accesses, such as point look-ups or index scans with no correlation
between index and physical order, it is much more difficult to reliably estimate next-
access-times. In these scenarios, the frequency statistics from Chapter 4.2 are a reasonable
heuristic for detecting hot-spots in the data.

23

Chapter 5

Implementation in PostgreSQL

This chapter describes the implementation of predictive buffer management in PostgreSQL.
This includes implementing both the sampling-based approach and the PQ-based approach
that is not implemented in an open source system, into PostgreSQL. Having both imple-
mentations in PostgreSQL allows us to conduct an apples-to-apples evaluation and com-
parison of the two approaches. The differences between the implementation in [23] and
this thesis will be pointed out in the relevant parts of this chapter.

5.1 PostgreSQL’s Existing Buffer Replacement

As previously mentioned, PostgreSQL uses a clock-sweep strategy for cache replacement.
PostgreSQL has an in-memory array of buffer headers – separate from the buffer contents –
that include a usage count used by clock-sweep as well as other fields, including a reference
count, identifier of which block is in the buffer, and whether it needs to be written back to
secondary storage among others.

When a buffer is allocated, the system first checks a linked list of free buffers, and if
that is empty it runs the clock-sweep algorithm. The clock-sweep strategy involves reading
and atomically incrementing a global index into the array of buffer headers (the “clock
hand”), and checking the buffer at that index. If the buffer has a zero usage count and is
not in use, it is selected for replacement with the new buffer. Otherwise, its usage count is
decremented and the process is repeated until a suitable buffer is chosen for replacement.

PostgreSQL’s cache replacement selection is very simple, with only a few global vari-
ables, a global linked list of free buffers, and an extra field in each buffer header. To

24

support a predictive buffer management strategy, some changes are required to track the
extra metadata.

5.2 Changes to PostgreSQL to Support PBM

First, some additional data structures are required. This includes a set of the active scans
and a hash map to track the set of registered scans for each block in the database, as well
as some global metadata and other data structures for managing the shared memory used
by the PBM data structures. The hash map of blocks additionally has its entries linked
together in order by block number so that initially registering a scan requires only a single
hash lookup to register with all blocks. The PostgreSQL implementation of PBM-PQ
additionally adds the approximate priority queue as a global data structure. The existing
buffer headers have some additional fields added to track frequency statistics for cached
blocks, and pointers to the relevant entries in the other shared data structures to facilitate
low-latency computation of next-access estimates.

Scan operators are also augmented with extra fields to track their progress – both
current position and speed – and a pointer to the corresponding structure in shared PBM
metadata used by access-time estimates. When a sequential scan first starts it uses the
hash map of blocks to find the blocks it must register with. At run-time, scans update
their local statistics as they go and periodically update the shared statistics to keep them
up-to-date, as well as un-registering the scan from blocks that have been processed and
will not be needed again by that scan.

5.2.1 Details of PBM implementation

This sub-chapter provides more details on specific aspects of the PostgreSQL implementa-
tion.

Block groups: Both PBM approaches store metadata about active scans for every
block in the database. With PostgreSQL’s default 8 KiB block size, even a few tens
of bytes per requested block per scan will require this metadata to consume significant
amounts of memory for a large database when many scans are active. To reduce the
memory footprint, consecutive blocks of each relation are grouped into block groups of a
constant size and PBM metadata for sequential scans is stored at the block group level
instead of for every individual block. The PBM-sampling implementation uses a default
block group size of 1 MiB, so 128 consecutive blocks share metadata about requesting

25

scans. 1 MiB is chosen partially to correspond with the granularity of PostgreSQL BRIN
indexes, which by default also store statistics about 1 MiB chunks of data. The original
PBM-PQ implementation [23] would not need such block groups as they already uses a
much larger default block size. [2]

The block group statistics are stored in a hash map and block groups for the same table
form a linked list such that they can be traversed sequentially without multiple hash table
look-ups when registering a sequential scan. When a block is loaded into the cache, the
hash map is used to find the associated block group. A pointer to the block group is stored
in the buffer header to avoid hash look-ups later when estimating the next access time of
the cached block. For the PQ-based implementation the block group must also store a list
of currently cached blocks from the group, so that the actual blocks can be evicted from
the cache when the block group is chosen for eviction.

Bulk eviction: undefinedwitakowski et al. [23] state that their implementation of
PBM-PQ evicts “groups of 16 or more” buffers at once to amortize eviction cost. In the
PostgreSQL implementation of PBM-PQ, all buffers from the relevant bucket are selected
for eviction, which are then placed on PostgreSQL’s existing free-list to be replaced as
needed. This decision was made primarily to reduce complexity of the eviction method. On
sequential workloads where items will be fairly evenly distributed among the different buck-
ets this should not have much impact, but it will change the behaviour on non-sequential
workloads where the approximate priority queue classifies everything as not requested: the
description from [23] would behave like LRU in this case while the PostgreSQL implemen-
tation will be more similar to FIFO.

The sampling-based approach does not need to amortize eviction cost, which is already
very low with a small sample size. There are some benefits to bulk eviction as discussed in
Chapter 4.1 but with the default configuration, PBM-sampling evicts only a single buffer
at once.

Scan ranges and bitmap scans: As discussed in Chapter 4.4.1, the PostgreSQL
implementation handles min-max indexes by tracking all bitmap scans in a manner very
similar to sequential scans. This implicitly supports other bitmap-only indexes and sce-
narios where a bitmap scan is used for other index types that [23] does not handle. The
PBM implementation treats bitmap scans much like sequential scans, except the bitmap
is used to determine which block will be accessed and should or should not be registered.

Index scans: Unlike sequential and bitmap scans, where the scan is registered with
each block group, non-bitmap index scans are registered once and store statistics about
the scan in a hash map keyed by table ID with a list of active scans for each table. When
a block is loaded into cache, a reference to the list of index scans on the relevant table

26

is stored in the buffer header to avoid hash look-ups each time the next-access-time is
recalculated.

Frequency statistics: The average inter-access time is tracked in new fields added to
the buffer headers. These fields are updated when a block is requested and found to be
already present in the buffer cache.

Shared memory and concurrency: A challenge in the PostgreSQL implementation
of both forms of PBM is dealing with PostgreSQL’s shared memory implementation. Post-
greSQL uses separate processes for each client connection, and more than one process for
the same client if a parallel query plan is used. Using separate processes instead of separate
threads in the same process makes sharing the PBM data structures between all parallel
tasks difficult. Shared data structures in PostgreSQL must be allocated in shared memory
when the database is started, limiting the ability to scale the memory used by PBM data
structures. The implementation deals with this case by over-provisioning shared memory
for PBM data structures. When bits of shared memory is no longer needed, such as when
a scan completes and its PBM metadata could be freed, the PBM implementation keeps
track of the old allocations to be reused by the next scan.

27

Chapter 6

Evaluation

This chapter presents the evaluation of the proposed sampling-based predictive buffer man-
agement policy, starting with the evaluation methodology followed by presentation and dis-
cussion of results. Note that this is the first implementation and comparison of predictive
buffer management policies in an open source system, and PostgreSQL in particular.

6.1 Methodology

Experiments are run on a Ubuntu 20.04.3 LTS server with two 6-core Intel E5-2620v2
CPUs with hyperthreading enabled, 32 GiB of RAM, and a 400 GB Intel S3700 SSD with
an ext4 file system. A modified version of BenchBase [4] is used as a workload generator
for the experiments.

Most experiments measure cache hit rate, workload completion time, and I/O volume
for different caching policies at different levels of parallelism or with different amounts of
memory available. I/O volume isolates the benefits of the improved cache management
strategy, while hit rate and run-time provide a more complete picture of the performance.
The caching policies compared are PostgreSQL’s existing clock-sweep strategy, the Post-
greSQL implementation of PBM-PQ, and PBM-sampling configured in a variety of settings.

Hit Rate is measured using PostgreSQL’s built-in statistics, automatically retrieved
from the pg_statio_user_tables system view by BenchBase.

Unless stated otherwise, the available system memory is limited using Linux cgroups.
This prevents the OS from caching the entire data set and effectively bypassing secondary
storage.

28

Each data point plotted is the average from at least 5 independent experiment runs.
The error bars show 95% confidence intervals around the averages.

6.2 Sequential Microbenchmarks

The first set of experiments is a microbenchmark intended to measure the performance
impact of the buffer management strategy on sequential- and bitmap-scan heavy workloads.
These are similar to the microbenchmarks in [23].

These experiments are based on TPC-H [3] at scale factor 10. At this scale factor,
the lineitem table takes approximately 8.6 GiB, and the whole dataset is around 10
GiB without indexes. For this experiment, the lineitem table has min-max indexes on
the l_shipdate column, which is used as the filter for queries, and the table is clustered
by greatest(l_receiptdate, l_commitdate). This clustering causes the l_shipdate

column to be correlated, but not completely sorted, with the physical order, so the min-
max index can actually be used effectively. This clustering is to simulate a more realistic
physical order than the random order generated by BenchBase’s TPC-H implementation.
In a real data-set the date columns would correspond with when the row is created or last
updated that in turn determines the physical order.1

The workload runs several parallel query streams, each executing a fix number of
queries. To isolate the impact on a workload with only sequential and bitmap scans,
the queries used are modified versions of TPC-H Q1 and Q6 as in [23], which are aggre-
gations on lineitem with a filter by l_shipdate. Each query uses a different randomly
selected range of l_shipdate including roughly 30% of rows in the table.

6.2.1 Comparing Different Levels of Parallelism

For this experiment the number of concurrent query streams varies from 1 to 32, with 16
queries per stream each scanning 30% of the table to measure how the different caching
strategies scale with parallelism. PosgtreSQL is configured with 2.5 GiB of cache memory
(approximately 30% of the data size), with available system memory limited to 3 GiB to
prevent the OS from caching the whole data set.

1PostgreSQL generally appends new or updated rows at the end of the table, but can reuse space from
previously deleted or updated rows, so the physical order will not perfectly correspond with last-updated
time.

29

2 4 6 8 12 16 24 32

0.2

0.3

0.4

0.5

0.6

0.7

Parallelism

H
it

R
at

e

Clock-sweep

PBM-PQ

PBM-sampling (10)

PBM-sampling (10) + freq

(a) Effect on Hit Rate

2 4 6 8 12 16 24 32
0

100

200

300

400

500

Parallelism

I/
O

V
ol

u
m

e
(G

iB
)

Clock-sweep

PBM-PQ

PBM-sampling (10)

PBM-sampling (10) + freq

(b) Effect on I/O Volume

2 4 6 8 12 16 24 32
0

5

10

15

20

25

Parallelism

T
im

e
(m

in
)

Clock-sweep

PBM-PQ

PBM-sampling (10)

PBM-sampling (10) + freq

(c) Effect on Run-time

Figure 6.1: Sequential Microbenchmarks – Parallelism

30

Figure 6.1 shows the results, with PBM-sampling using 10 samples and no bulk eviction.
For all parallelism levels, PBM-sampling without frequency stats delivers significant I/O
reductions. At Parallelism level 8 the reduction is about 60 GiB over PBM-PQ, which is
nearly 30% lower, and at parallelism level 32 PBM-sampling saves 11% I/O volume over
PBM-PQ. This I/O reduction is accompanied by higher hit rates and reduced workload
completion time. At parallelism levels higher than 16, PostgreSQL’s Clock-sweep algorithm
pulls ahead of PBM-PQ and reduces the gap but does not entirely catch up with PBM-
sampling.

It is interesting to note that at higher parallelism, the hit rates of the different policies
seem to be converging along with lower percentage difference in I/O volume and run-time.
I believe this is due to scans automatically synchronizing; when two scans are close to each
other, the one that is behind will benefit from data loaded into cache by the scan ahead,
resulting in a higher hit rate for the scan that is behind allowing it to progress faster and
catch up. As the gap closes, the benefit to the trailing scan increases since there is less
opportunity for the shared data to be evicted between the two scans. With more parallel
queries, the frequency of scans starting close enough together for this situation to occur
increases even for simple strategies, reducing the benefits of prediction.

There are some other results supporting this hypothesis: even a purely random eviction
strategy tends to get better hit rate at higher parallelism as shown in Figure 6.4a, and with
the data set entirely cached in main memory by the operating system – so cache misses do
not impose a run-time penalty – the hit rate does not increase in the same way, as show
in Figure 6.2.

31

2 4 6 8 12 16 24 32

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Parallelism

H
it

R
at

e

Clock-sweep

PBM-PQ

PBM-sampling (10)

Figure 6.2: Sequential Microbenchmarks – Hit Rate with Data in Main Memory

Note also that this experiment shows PBM-PQ performing much worse than PBM-
sampling, though at low parallelism it out-performs PostgreSQL’s clock-sweep strategy.
The PostgreSQL implementation of PBM-PQ seems to be more sensitive to changes in
the workload and seemingly unrelated parameters, such as block group size, than other
policies.

The data also shows that including the frequency statistics (represented by PBM-
sampling + freq in the graphs) as described in Chapter 4.2 reduces the performance on
this workload compared to PBM-sampling without frequency statistics. This is unsurpris-
ing, as this workload is one where one would not expect frequency to provide any useful
information. The workload already has nearly complete information about relevant future
accesses from tracking sequential scans, and blocks accessed multiple times recently are
actually less likely to be accessed again soon for this workload, since the long-running
scans never access the same block more than once. A natural improvement here, which I
leave to future work, would be to track how often each table is accessed sequentially versus
non-sequentially and ignore frequency statistics for relations that are accessed primarily
sequentially. This would remove the penalty of considering frequency statistics when they
are not useful (on highly sequential workloads such as this experiment) without sacrificing
the benefits of these statistics on less sequential workloads.

32

6.2.2 Comparing Different Cache Sizes

This experiment runs 8 query streams with 16 queries per stream, and each query scans
30% of the table. Here the cache size is varied from 0.25 GiB to 8 GiB, with cgroups
limiting the available system memory to the cache size plus 0.5 GiB when cache size is 4
GiB or smaller, and cache size plus 0.6 GiB for larger cache sizes.2

Figure 6.3 shows the results when varying the cache size. Unsurprisingly, all policies
perform better with a larger cache, with the I/O volume and run-time graphs closely
matching (1− hit rate) since each different cache size still accesses the same data. PBM-
sampling outperforms PBM-PQ and Clock-sweep, with at least an 18% reduction in I/O
volume over each when cache size is at least 2 GiB, and 20% or more reduction in run-time
when cache size is 2 or 3 GiB. As the cache size approaches 100% of the data size, as
expected, the run-time improvements nearly disappear despite the percentage difference
in I/O volume increasing between PBM-sampling and PBM-PQ. This is because the I/O
volume is very low with a large cache and therefore contributes very little to the run-time.

6.2.3 Impact of PBM-sampling Parameters

I repeat the same experiment from Chapter 6.2.1 but this time compare the impact of
sample size and bulk eviction on the performance of PBM-sampling at different levels of
parallelism. The “Random” policy is PBM-sampling with sample size set to 1.

Figure 6.4 shows the impact of sample size on the performance of PBM-sampling,
varying the number of query streams. For comparing sample size the focus is on hit rate,
as this shows the small difference with large sample sizes more clearly than I/O volume.
Figure 6.4d shows the run-times as a function of sample size with 16 query streams.

As expected, more samples results in higher hit rate, and therefore reduced I/O vol-
ume and run-time. Interestingly, the diminishing returns of increasing the sample size is
demonstrated – increasing from 20 to 100 samples offers a very small improvement to hit
rate (and seemingly no improvement with 32 query streams), less than the improvement
from 5 to 10. In contrast to the small improvements at large sample sizes, even just 2
samples provides a significant benefit over random selection.

From the run-time results in Figures 6.4c and 6.4d, increased sample size does lead
to better over-all performance, and importantly the extra processing overhead of a larger
sample size is negligible – at least at sample sizes under 100.

2The cache size includes only buffer contents, but each buffer additionally has a metadata header. With
a larger cache, PostgreSQL needs a bit of extra space for the extra buffer headers.

33

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Cache size (GiB)

H
it

R
at

e

Clock-sweep

PBM-PQ

PBM-sampling (10)

PBM-sampling (10) + freq

(a) Effect on Hit Rate

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

Cache size (GiB)

I/
O

V
ol

u
m

e
(G

iB
)

Clock-sweep

PBM-PQ

PBM-sampling (10)

PBM-sampling (10) + freq

(b) Effect on I/O Volume

1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

Cache size (GiB)

T
im

e
(m

in
)

Clock-sweep

PBM-PQ

PBM-sampling (10)

PBM-sampling (10) + freq

(c) Effect on Run-time

Figure 6.3: Sequential Microbenchmarks – Cache Size

34

2 4 6 8 12 16 24 32

0.3

0.4

0.5

0.6

0.7

Parallelism

H
it

R
at

e

PBM-sampling (100)

PBM-sampling (20)

PBM-sampling (10)

PBM-sampling (5)

PBM-sampling (2)

Random

(a) Effect of Sample Size on Hit-Rate

2 4 6 8 12 16 24 32
0

100

200

300

400

500

Parallelism
I/

O
V

ol
u

m
e

(G
iB

)

PBM-sampling (100)

PBM-sampling (20)

PBM-sampling (10)

PBM-sampling (5)

PBM-sampling (2)

Random

(b) Effect of Sample Size on I/O Volume

2 4 6 8 12 16 24 32
0

5

10

15

20

25

Parallelism

T
im

e
(m

in
)

PBM-sampling (100)

PBM-sampling (20)

PBM-sampling (10)

PBM-sampling (5)

PBM-sampling (2)

Random

(c) Effect of Sample Size on Run-time

1 2 5 10 20 100
0

5

10

15

20

Sample size

T
im

e
(m

in
)

(d) Run-times at 16 parallelism

Figure 6.4: Sequential Microbenchmarks – Parallelism vs Hit Rate with Different PBM-
sampling Configurations

35

2 4 6 8 12 16 24 32
0.45

0.5

0.55

0.6

0.65

0.7

Parallelism

H
it

R
at

e

PBM-sampling (100)

PBM-sampling (20)

PBM-sampling (10)

PBM-sampling (bulk: 10/100)

(a) Effect of Bulk Eviction on Hit-Rate

2 4 6 8 12 16 24 32
0

100

200

300

400

Parallelism
I/

O
V

ol
u

m
e

(G
iB

)

PBM-sampling (100)

PBM-sampling (20)

PBM-sampling (10)

PBM-sampling (bulk: 10/100)

(b) Effect of Bulk Eviction on I/O Volume

2 4 6 8 12 16 24 32
0

5

10

15

20

Parallelism

T
im

e
(m

in
)

PBM-sampling (100)

PBM-sampling (20)

PBM-sampling (10)

PBM-sampling (bulk: 10/100)

(c) Effect of Bulk Eviction on Run-time

Figure 6.5: Sequential Microbenchmarks – Parallelism vs Hit Rate with Bulk Eviction

36

Figure 6.5 shows the impact of bulk eviction described in Chapter 4.1 on the perfor-
mance of PBM-sampling. The graph compares choosing 100 samples and evicting 10 of
them to a few different sample sizes with single eviction. Evicting 10 of 100 samples consid-
ers the same average number of samples as a sample size of 10 with single-eviction, but the
measurements show it performing similarly to a sample size of 20 on this workload. This
shows a definite advantage to bulk eviction, achieving better hit rate without increasing
the average number of samples – which is the main factor determining the CPU overhead
of sampling.

6.3 Trailing Index Scan Microbenchmarks

These experiments aim to test the scenario where multiple queries are scanning the same B-
tree index concurrently, and thus will access the same blocks in the same order as described
in Chapter 4.4.2.

Here each query is an index scan on lineitem with a filter on the l_suppkey column,
which is not correlated with the physical order. Each query scans a randomly selected
1% range, chosen from a fixed 5% of the values of the column. Since the column is not
correlated with the physical order, this 5% range covers nearly all the physical blocks and
scanning 1% of the table could access up to half the blocks in the table per query.

Similar to the previous microbenchmarks, the database uses 2.5 GiB of cache with
3 GiB of available system memory. Each query stream executes 6 queries and the number
of parallel query streams ranges from 1 to 32.

Figure 6.6 shows the resulting hit rate, I/O volume, and run-time results. Somewhat
surprisingly, PBM does better than PostgreSQL’s existing Clock-sweep approach even
without any special support for index scans. PBM-PQ performs slightly better than Clock-
sweep, with PBM-sampling doing significantly better than both of them. PBM-sampling
reduces I/O volume and run-time by nearly 12% over PBM-PQ and 15% over Clock-sweep
with 32 query streams. On this workload, PBM-sampling without any extra features (no
frequency stats or index support) is simply choosing a random block to evict (and in fact
performs the same as an explicitly random policy, though this is not shown in the figure).

Comparing PBM-sampling with extra features, adding frequency statistics reduces the
I/O volume of PBM-sampling by 4-7% at most levels of parallelism with similar improve-
ments to run-time. Since this experiment touches only 5% of the rows – but nearly all the
actual blocks – the frequency statistics identify the blocks that contain more relevant rows

37

2 4 6 8 12 16 24 32

0.35

0.4

0.45

0.5

0.55

Parallelism

H
it

R
at

e

Clock-sweep

PBM-PQ

PBM-sampling (10)

PBM-sampling (10) + freq

PBM-sampling (10) + freq, idx

(a) Hit Rate

2 4 6 8 12 16 24 32
0

100

200

300

400

500

Parallelism
I/

O
V

ol
u

m
e

(G
iB

)

Clock-sweep

PBM-PQ

PBM-sampling (10)

PBM-sampling (10) + freq

PBM-sampling (10) + freq, idx

(b) I/O Volume

2 4 6 8 12 16 24 32
0

5

10

15

20

Parallelism

T
im

e
(m

in
)

Clock-sweep

PBM-PQ

PBM-sampling (10)

PBM-sampling (10) + freq

PBM-sampling (10) + freq, idx

(c) Run-time

Figure 6.6: Trailing Index Scan Results

38

than other blocks and prioritize keeping those ones in the cache, explaining the benefits
provided.

6.4 Sequential Index Scan Microbenchmarks

This set of experiments targets the case where the index order is highly correlated with
physical order. The setup here is the same as in Chapter 6.2, except with B-Tree indexes
instead of BRIN. The queries, which are also the same as Chapter 6.2, filter by l_shipdate,
which is correlated with the physical order of the table.

Figure 6.7 show the results for these experiments. PostgreSQL’s existing clock-sweep
algorithm performs the best for this workload, followed closely by PBM-sampling with
frequency statistics which has 35% higher I/O volume and 25% increased run-time at 6
query streams than Clock-sweep, but almost catches up at 32 query streams. Compared
to PBM-PQ, however, it reduces I/O volume by 45% and run-time by 41% at 32 query
streams. Since this workload has no sequential scans, the frequency statistics are the only
information used by PBM-sampling to make caching decisions for this configuration. It is
not surprising that frequency statistics perform well here. Each blocks will contain data
mostly from a small range rather than uniformly distributed over the whole dataset, so
block-level accesses will be skewed in a way that is easily picked up by tracking recent
accesses.

The PBM strategies without any support for index scans predictably do significantly
worse, with PBM-PQ performing significantly better than PBM-sampling without fre-
quency statistics. Using sampling without frequency statistics is essentially a purely ran-
dom policy, since it has no information to inform its decisions on this workload. The
PostgreSQL implementation of PBM-PQ behaves similar to FIFO when it has no infor-
mation about sequential scans, which may explain why it does not do as poorly on this
workload as a random policy.

6.5 TPC-H

Some similar experiments based on the TPC-H [3] benchmark are used to test a hybrid
workload. These experiments run TPC-H queries 1 through 163 once each in a random

3TPC-H has 22 queries, but the query plans chosen by PostgreSQL for a few of the later queries result
in them taking orders of magnitude longer to run than the other queries. Thus those queries are omitted
to keep the run-times reasonable and avoid having only one access pattern dominate the workload.

39

2 4 6 8 12 16 24 32
0.9

0.92

0.94

0.96

0.98

1

Parallelism

H
it

R
at

e

Clock-sweep

PBM-PQ

PBM-sampling (10)

PBM-sampling (10) + freq

PBM-sampling (10) + freq, idx

(a) Hit Rate

2 4 6 8 12 16 24 32
0

200

400

600

800

1,000

1,200

1,400

Parallelism
I/

O
V

ol
u

m
e

(G
iB

)

Clock-sweep

PBM-PQ

PBM-sampling (10)

PBM-sampling (10) + freq

PBM-sampling (10) + freq, idx

(b) I/O Volume

2 4 6 8 12 16 24 32
0

10

20

30

40

50

60

Parallelism

T
im

e
(m

in
)

Clock-sweep

PBM-PQ

PBM-sampling (10)

PBM-sampling (10) + freq

PBM-sampling (10) + freq, idx

(c) Run-time

Figure 6.7: Sequential Index Scan Results

40

order in each query stream. For these experiments, lineitem is still clustered based on
the date columns and orders is clustered base on o_orderdate, while the clustering for
the other smaller tables is unchanged from the insertion order. A mix of BRIN and B-Tree
indexes is used, keeping B-Tree indexes for primary keys and on the partsupp table with
BRIN on other columns, using min-max indexes for columns used in query predicates that
have some correlation with the physical order, and bloom indexes on columns that are used
in equality conditions but are not correlated with the physical order. The cache size stays
constant at 2.5 GiB with 4 GiB of available system memory as parallelism is changed. The
extra system memory compared to the microbenchmarks is required to accommodate extra
memory used for joins.

Figure 6.8 shows results comparing different caching policies at different levels of paral-
lelism. With frequency-based estimates included, PBM-sampling is able to match and even
slightly exceed the Clock-sweep approach at high parallelism, with 3% lower I/O volume
and 4% lower run-time at 32 parallelism. PBM-sampling with frequency statistics also
achieves 14% lower I/O volume and run-time compared to PBM-PQ and PBM-sampling
without frequency statistics.

Without any extra features, PBM-sampling performs similarly to PBM-PQ, and both
perform worse than PostgreSQL’s existing clock-sweep algorithm. It is not unexpected that
they would under-perform, as this workload involves a lot of index access rather than just
sequential access. Considering only sequential and bitmap access causes these strategies
to evict blocks accessed mainly through indexes as soon as possible when they should be
kept instead.

41

2 4 6 8 12 16 24 32

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

Parallelism

H
it

R
at

e

Clock-sweep

PBM-PQ

PBM-sampling (20)

PBM-sampling (20) + freq

PBM-sampling (20) + freq, idx

Random

(a) Hit Rate

2 4 6 8 12 16 24 32
0

1,000

2,000

3,000

4,000

Parallelism

I/
O

V
ol

u
m

e
(G

iB
)

Clock-sweep

PBM-PQ

PBM-sampling (20)

PBM-sampling (20) + freq

PBM-sampling (20) + freq, idx

Random

(b) I/O volume

2 4 6 8 12 16 24 32
0

50

100

150

200

Parallelism

T
im

e
(m

in
)

Clock-sweep

PBM-PQ

PBM-sampling (20)

PBM-sampling (20) + freq

PBM-sampling (20) + freq, idx

Random

(c) Run-time

Figure 6.8: TPC-H Results

42

Chapter 7

Conclusions

This work has introduced sampling-based predictive buffer management, with an openly
available implementation in PostgreSQL. This database cache management policy tracks
statistics about active queries to estimate future accesses, and uses this information to
mimic MIN [1], the optimal cache replacement algorithm.

Using sampling for PBM provides several advantages over [23], a previous predictive
approach that uses a centralized data structure to track access time estimates and make
caching decisions. The sampling-based approach is simpler, can be extended and tuned
more easily, and generally achieves better results due to an improved strategy for selecting
the best eviction candidate based on the statistics.

Sampling-based PBM performs very well on highly sequential workloads, exceeding the
performance of both the prior predictive approach and PostgreSQL’s existing Clock-sweep
strategy by a significant margin. On a mixed analytic workload with both sequential and
index scans, extending PBM-sampling to use frequency statistics allows it to perform well,
outperforming the prior approach – which would be more difficult to modify to support
new workload types – and matching the performance of the existing clock-sweep approach.

Over-all, this new approach is ideal for highly sequential workloads while still being
competitive for analytic workloads with a mix of sequential and index access.

43

References

[1] Laszlo A. Belady. A study of replacement algorithms for a virtual-storage computer.
IBM Systems journal, 5(2):78–101, 1966.

[2] Actian Corporation. Vector 6.3 documentation. URL https://docs.actian.com/

vector/6.3/index.html.

[3] Transaction Processing Performance Council. TPC-H. URL https://www.tpc.org/

tpch.

[4] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudré-Mauroux.
OLTP-bench: An extensible testbed for benchmarking relational databases. PVLDB,
7(4):277–288, 2013. URL http://www.vldb.org/pvldb/vol7/p277-difallah.pdf.

[5] Wolfgang Effelsberg and Theo Haerder. Principles of database buffer management.
ACM Transactions on Database Systems (TODS), 9(4):560–595, 1984.

[6] Jeroen Famaey, Frédéric Iterbeke, Tim Wauters, and Filip De Turck. Towards a
predictive cache replacement strategy for multimedia content. Journal of Network
and computer Applications, 36(1):219–227, 2013.

[7] Ling Feng, Hongjun Lu, and Allan Wong. A study of database buffer management
approaches: towards the development of a data mining based strategy. In SMC’98
Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and
Cybernetics (Cat. No. 98CH36218), volume 3, pages 2715–2719. IEEE, 1998.

[8] Jian Hu, Hong Jiang, Lei Tian, and Lei Xu. Pud-lru: An erase-efficient write buffer
management algorithm for flash memory ssd. In 2010 IEEE International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunication Systems,
pages 69–78. IEEE, 2010.

44

https://docs.actian.com/vector/6.3/index.html
https://docs.actian.com/vector/6.3/index.html
https://www.tpc.org/tpch
https://www.tpc.org/tpch
http://www.vldb.org/pvldb/vol7/p277-difallah.pdf

[9] MEC Hull, FF Cai, and DA Bell. Buffer management algorithms for relational
database management systems. Information and Software Technology, 30(2):66–80,
1988.

[10] Akanksha Jain and Calvin Lin. Back to the future: Leveraging belady’s algorithm for
improved cache replacement. ACM SIGARCH Computer Architecture News, 44(3):
78–89, 2016.

[11] Akanksha Jain and Calvin Lin. Rethinking belady’s algorithm to accommodate
prefetching. In 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), pages 110–123. IEEE, 2018.

[12] Zhiwen Jiang, Yong Zhang, Jin Wang, and Chunxiao Xing. A cost-aware buffer
management policy for flash-based storage devices. In International Conference on
Database Systems for Advanced Applications, pages 175–190. Springer, 2015.

[13] Peiquan Jin, Yi Ou, Theo Härder, and Zhi Li. Ad-lru: An efficient buffer replacement
algorithm for flash-based databases. Data & Knowledge Engineering, 72:83–102, 2012.

[14] Georgios Keramidas, Pavlos Petoumenos, and Stefanos Kaxiras. Cache replacement
based on reuse-distance prediction. In 2007 25th International Conference on Com-
puter Design, pages 245–250. IEEE, 2007.

[15] Yanfei Lv, Bin Cui, Bingsheng He, and Xuexuan Chen. Operation-aware buffer man-
agement in flash-based systems. In Proceedings of the 2011 ACM SIGMOD Interna-
tional Conference on Management of data, pages 13–24, 2011.

[16] R.L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques for
storage hierarchies. IBM Systems Journal, 9(2):78–117, 1970. doi: 10.1147/sj.92.0078.

[17] Yi Ou, Theo Härder, and Peiquan Jin. CFDC: a flash-aware replacement policy for
database buffer management. In Proceedings of the fifth international workshop on
data management on new hardware, pages 15–20, 2009.

[18] PostgreSQL Global Development Group. Postgresql source: Buffer manage-
ment. URL https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob_

plain;f=src/backend/storage/buffer/README;hb=refs/heads/REL_14_STABLE.

[19] Ishan Shah, Akanksha Jain, and Calvin Lin. Effective mimicry of belady’s min policy.
In 2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA), pages 558–572. IEEE, 2022.

45

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob_plain;f=src/backend/storage/buffer/README;hb=refs/heads/REL_14_STABLE
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob_plain;f=src/backend/storage/buffer/README;hb=refs/heads/REL_14_STABLE

[20] Alan Jay Smith. Sequentiality and prefetching in database systems. ACM Trans.
Database Syst., 3(3):223–247, sep 1978. ISSN 0362-5915. doi: 10.1145/320263.320276.
URL https://doi.org/10.1145/320263.320276.

[21] Zhenyu Song, Daniel S. Berger, Kai Li, and Wyatt Lloyd. Learning relaxed belady
for content distribution network caching. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), pages 529–544, Santa Clara, CA,
February 2020. USENIX Association. ISBN 978-1-939133-13-7. URL https://www.

usenix.org/conference/nsdi20/presentation/song.

[22] Dejun Teng, Lei Guo, Rubao Lee, Feng Chen, Siyuan Ma, Yanfeng Zhang, and Xi-
aodong Zhang. LSbM-tree: Re-enabling buffer caching in data management for mixed
reads and writes. In 2017 IEEE 37th International Conference on Distributed Com-
puting Systems (ICDCS), pages 68–79. IEEE, 2017.

[23] Michal undefinedwitakowski, Peter Boncz, and Marcin Zukowski. From cooperative
scans to predictive buffer management. Proc. VLDB Endow., 5(12):1759–1770, aug
2012. ISSN 2150-8097. doi: 10.14778/2367502.2367515. URL https://doi.org/10.

14778/2367502.2367515.

[24] Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Margaret Martonosi, Simon C
Steely Jr, and Joel Emer. Ship: Signature-based hit predictor for high performance
caching. In Proceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 430–441, 2011.

[25] Qiang Yang and Henry Haining Zhang. Web-log mining for predictive web caching.
IEEE Transactions on Knowledge and Data Engineering, 15(4):1050–1053, 2003.

[26] Yigui Yuan and Peiquan Jin. Learned buffer replacement for database systems. In
2022 the 5th International Conference on Data Storage and Data Engineering, pages
18–25, 2022.

[27] Marcin Zukowski, Sándor Héman, Niels Nes, and Peter Boncz. Cooperative scans:
dynamic bandwidth sharing in a dbms. In Proceedings of the 33rd international con-
ference on Very large data bases, pages 723–734, 2007.

46

https://doi.org/10.1145/320263.320276
https://www.usenix.org/conference/nsdi20/presentation/song
https://www.usenix.org/conference/nsdi20/presentation/song
https://doi.org/10.14778/2367502.2367515
https://doi.org/10.14778/2367502.2367515

APPENDICES

47

Appendix A

Probability of good eviction choices
with sampling

This appendix analyses the probability of an optimal eviction decision using PBM-sampling.

This analysis assumes that access time predictions are accurate, or more specifically,
that the estimated access order of next access times is accurate. It also assumes sampling
with replacement, so that each buffer sampled has the same probability of being optimal
independently of the rest of the sample. For single eviction this assumption is actually
true – the PBM-sampling implementation does not check for duplicate samples. For bulk
eviction the sampling is also done with replacement, but if the same buffer is sampled
multiple times it will only be evicted once, so fewer than the desired number of buffers are
evicted. These calculations ignore this possibility, which will happen extremely infrequently
since the number of buffers is much larger than the sample size, (and 8 GiB buffer pool of
8 KiB blocks has a million buffers, with sample sizes being on the order of 10-100) so this
is a very close approximation.

In general, let p be the probability that any given buffer in the cache is optimal to evict,
and has higher next access time than all non-optimal buffers in the cache as discussed in
Chapter 3.1. (or equivalently, p is the fraction of the buffers in the cache which are optimal
to evict)

48

A.1 Single eviction

Single eviction selects N samples and evicts the single best one. If any of the N samples
are an optimal choice it is chosen for eviction, and a sub-optimal choice requires that none
of items in the sample are optimal, so the probability of an optimal eviction is 1− (1−p)N ,
and the long-run expected fraction of optimal evictions is also 1− (1− p)N , assuming that
p stays constant and each eviction is independent.

A.2 Bulk-eviction

Let M be the number of samples selected and k be the number of evictions. Note that the
description in Chapter 4.1 has M = kN , but this does not need to be true in general.

Consider the expected number of optimal evictions in one batch of k evictions. This
will depend on how many of the M samples are optimal: if it is < k then the number of
optimal candidates in the sample is the same as the number of optimal candidates evicted.
If there are ≥ k optimal candidates in the sample, then only k are evicted. The number
of optimal choices from the M samples follows a binomial distribution with M trials and
probability of success p. Let P (i) =

(︁
M
i

)︁
pi(1 − p)M−i be the probability that i of the M

samples are optimal choices.

Then the expected number of optimal evictions from one batch is:

E[# optimal evictions per batch] =
k−1∑︂
i=0

i · P (i) +
M∑︂
i=k

k · P (i)

=
k−1∑︂
i=0

i · P (i) + k

(︄
1−

k−1∑︂
i=0

P (i)

)︄

= k +
k−1∑︂
i=0

(i− k)P (i)

= k −
k−1∑︂
i=0

(k − i)

(︃
M

i

)︃
pi(1− p)M−i

Note than when M = N and k = 1, this is the same as the result for single eviction.

Since k items are evicted at a time, the proportion of evictions which are optimal is:
1−

∑︁k−1
i=0

(︁
1− i

k

)︁ (︁
M
i

)︁
pi(1− p)M−i

49

0 0.1 0.2 0.3 0.4 0.5
0.5

0.6

0.7

0.8

0.9

1

Fraction of cache which is optimal to evict

F
ra

ct
io

n
of

op
ti

m
al

ev
ic

ti
on

s

Bulk: M = 100, k = 10
Single: N = 10
Single: N = 20

Figure A.1: Probability of an optimal eviction comparing single- vs bulk-eviction

Figure A.1 compares the probability of optimal eviction decisions with and without
bulk eviction for selected parameters. At a base sample size of 10, grouping 10 evictions
together improves the eviction decisions considerably compared to separate independent
evictions. The graph shows that evicting 10 of 100 samples is similar to single eviction
with a sample size of 20, as also demonstrated by the experiments in Chapter 6.2.3.

50

	Author's Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Abbreviations
	Introduction
	Background and Related Work
	Optimal Cache Eviction
	Standard Database Buffer Cache Management
	Related Work Using Prediction
	Summary of Priority-Queue Based Predictive Buffer Management

	Sampling-based Predictive Buffer Management
	Generalizing the Optimal Eviction Strategy
	Incompleteness of the generalized policy
	Eviction times of the generalized policy

	Sampling-based PBM: Benefits and Trade-offs

	Extending and Enhancing Sampling-based PBM
	Bulk Eviction
	Frequency Statistics
	Fallback to LRU
	Index scans
	Bitmap index scans
	Trailing index scans
	Almost-sequential index scans
	Random access

	Implementation in PostgreSQL
	PostgreSQL's Existing Buffer Replacement
	Changes to PostgreSQL to Support PBM
	Details of PBM implementation

	Evaluation
	Methodology
	Sequential Microbenchmarks
	Comparing Different Levels of Parallelism
	Comparing Different Cache Sizes
	Impact of PBM-sampling Parameters

	Trailing Index Scan Microbenchmarks
	Sequential Index Scan Microbenchmarks
	TPC-H

	Conclusions
	References
	APPENDICES
	Probability of good eviction choices with sampling
	Single eviction
	Bulk-eviction

