
Android Access Control
Recommendation as a Deep Learning

Task

by

Dheeraj Vagavolu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Dheeraj Vagavolu 2023

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

This thesis consists of material which I co-authored with my supervisors, Professor Yousra
Aafer and Professor Meiyappan Nagappan, which has been submitted to ICSE 2024 con-
ference and is currently under review.

iii

Abstract

Android enforces access control checks to protect sensitive framework APIs. If not
properly protected, framework APIs can open the door for malicious apps to access sensi-
tive resources without having the necessary privileges. Unfortunately, as reported in the
existing literature, such access control anomalies are prevalent in Android APIs, notably
those introduced by customization parties. Therefore, various solutions have been pro-
posed to detect anomalies, particularly those due to inconsistencies in the enforcement of
access checks across the Android framework(s). The solutions can be largely divided into
two categories: convergence-based techniques which rely on the convergence of two APIs
on similar resources, and probabilistic approaches which incorporate additional hints in
the form of manually defined structural and semantic code constructs. In this paper, we
are motivated by the promising application of using code constructs, beyond convergence
as proposed by the probabilistic approaches, to recommend access control enforcement and
detect inconsistencies.

Specifically, we propose a deep learning-based approach that aims to automatically
learn the correspondence between various code constructs and access control requirements.
To this end, we fine-tune CodeBert on statically derived features from the Android Open
Source Project (AOSP). Our feature engineering process addresses various peculiarities that
characterize Android implementations. The resulting fine-tuned model can be queried to
recommend access control for vendor-customized APIs.

The fine-tuned model achieves an accuracy of 93%, a precision of 91%, and a recall
of 92% in the AOSP data. Additionally, our evaluation of custom ROMs shows that the
model is able to not only rediscover previously reported inconsistencies but also discover
new ones.

iv

Acknowledgements

I would like to thank my supervisors, professor Mei Nagappan and professor Yousra
Aafer for guiding me during my Master’s. My appreciation also goes to Zeinab El-Rewini
and Parjanya Vyas for their invaluable assistance.

v

Dedication

This work is dedicated to my Parents, Brother, Friends, and Alizeh, in recognition of
their unwavering support.

vi

Table of Contents

Author’s Declaration ii

Statement of Contributions iii

Abstract iv

Acknowledgements v

Dedication vi

List of Figures x

List of Tables xi

1 Introduction 1

2 Background & Motivation 3

2.1 Convergence-based Inconsistency Detection 3

2.1.1 Limitations of Convergence Analysis 4

2.2 Probabilistic Inconsistency Detection . 8

2.2.1 Limitations of Probabilistic Analysis 8

2.3 Our Proposed Solution . 11

vii

3 Priming for Deep Learning 13

3.1 How to construct meaningful features to reflect access control enforcement
in Android APIs? . 13

3.2 Why Finetuning CodeBert? . 14

3.3 What is the access control label/recommendation granularity? 15

4 Approach 16

4.1 Phase-1: Data collection and Pre-Processing 16

4.2 Phase-2: Feature Selection . 17

4.3 Phase-3: Feature Reduction . 19

4.4 Phase-4: IR Decompilation . 22

4.5 Phase-5: Label Extraction . 24

5 Model Evaluation and Experiments 26

5.1 Experimental Setup . 26

5.1.1 Training Samples Collection . 27

5.1.2 Training samples vs. testing samples 27

5.1.3 Evaluation Metrics . 28

5.2 RQ1: Baseline and Combined Model Performance 28

5.3 RQ2: Impact of Various Design Decisions on Model Performance 29

5.4 RQ3: Runtime and Memory Overhead . 29

5.5 RQ4: Detecting Access Control Inconsistencies 30

5.6 RQ5: Comparison to Poirot . 32

6 Discussions 34

6.1 Threats to Validity . 34

6.1.1 Reliance on AOSP . 34

6.1.2 We Assume that Combining Two Unprotected Paths Retains Unpro-
tected Status . 35

viii

6.2 Limitations . 35

6.2.1 False Positives due to internal and implicit access checks 35

6.2.2 Inability to evaluate our model on vendor customized ROMs 35

7 Related Work 36

7.1 Deep Learning for Software Engineering 36

7.2 Inconsistency Analysis . 37

8 Conclusion 38

References 39

ix

List of Figures

2.1 Call chain of clearAutoHotspotLists() Method in SemWifiServiceImpl Class 5

2.2 Call chain of clearDebuggingKeys() Method in AdbService class 7

2.3 (A) Strong Clue that mInputLockingMode requires Signature Permission 9

2.4 (B) Low confidence propagation of protection for the resource showInput-
LockingNotification(mode, true) due to manually tuned control rules in Poirot 9

2.5 Implementation of the resource showInputLockingNotification (R2) 10

2.6 (C) Missing Access Check in method showInputLockingNotification 11

4.1 Data Collection Pipeline for Training CodeBert to Predict Access Control
Inconsistencies . 17

x

List of Tables

4.1 IR Transformation Guide (varN is recursively resolved) 21

5.1 Android ROM Statistics . 27

5.2 Model performance under different design decisions adopted individually
and collectively . 28

5.4 Inconsistencies Landscape in Vendor-Customized ROMs. 30

5.3 Runtime and memory overhead for fine-tuning CodeBert using AOSP ROMs
(Time is in minutes, and memory is in MB) 30

5.5 Access control recommendation overhead for custom ROMs (Time is in min-
utes, and Memory is in MB) . 32

5.6 Evaluation of Recommendation Accuracy (Utilizing 90% of AOSP Data for
Training/Rule Extraction Purposes) . 32

xi

Chapter 1

Introduction

Android Framework APIs enforce access control checks to prevent unauthorized access
from third-party applications. Erroneous enforcement of access control checks can result
in potential vulnerabilities that put mobile users at risk. Due to the lack of security
specifications for Android APIs, the research community has adopted inconsistency analysis
to detect underprotected APIs; which can be divided into two main strategies: convergence
analysis and probabilistic inference. Kratos [27], AceDroid [3], and ACMiner [16] are
examples of convergence analysis-based approaches. They assume that system service APIs
that converge on the same resource must have similar access control policies. For example,
if two APIs allow deleting the same file (the delete operation is the convergence point) such
that two APIs enforce different access control, then an inconsistency is detected. The API
enforcing the weakest access control is flagged as likely vulnerable. However, these tools
tend to generate false positives due to the imprecise nature of the assumption that powers
these tools: the convergence point might not be security sensitive. For example, consider
the case where two APIs converge on an insensitive database sync operation.

Recently, probabilistic approaches have been proposed to address the inherent limita-
tion of convergence analysis. Poirot [10] regards the relationship connecting access control
to reachable instructions as uncertain. As such, it models the intuition that a reachable
resource might not be the target of a preceding access control. Poirot solves the uncertainty
by collecting various probabilistic rules – i.e., structural and semantic code constructs and
properties connecting access control to resources and resources to each other. Probablistic
inference is then employed to aggregate the constructs and properties in order to project
a protection recommendation for a resource.

Although promising, Poirot suffers from a few limitations: (1) the probabilistic rules

1

are manually compiled using domain knowledge; as such, they might not comprehensively
capture all diverse properties in Android APIs. (2) Due to the specific nature of the rules,
certain resources might not exhibit sufficient observations, and hence Poirot cannot project
a high-confidence access control recommendation for these resources.

To address the limitations of existing work, we advocate for a deep learning-based ap-
proach which can automatically learn the correspondence between structural and semantic
features of Android APIs and an access control label. Unlike probabilistic inference tools,
automatic learning of rules can allow our approach to have a more complete overview
of various code constructs that warrant access control. Recent studies have shown that
deep learning-based approaches can achieve state-of-the-art performance in various soft-
ware engineering (SE) tasks of similar nature to ours, such as vulnerability detection and
malware detection [11, 19, 26]. However, adapting a deep learning-based approach to rec-
ommend accurate access control poses several challenges. First, Android APIs may enforce
conjoined/disjoined access control depending on the supplied arguments and system prop-
erties. Therefore, it is challenging to derive a label at the level of the whole API. Second,
the path-sensitive nature of APIs implementations implies that each execution path may
reflect different code properties; as such, two execution paths may require different labels.
Therefore, expecting a deep learning model to learn path-specific correspondences from
the entire API implementation may not be suitable. These challenges motivated us to
propose a new API representation that abstracts the implementation to execution paths.
Specifically, we detect individual execution paths leading to various resources and extract
the respective access control enforced along the path. The resulting features provide a
more fine-grained and precise representation of access control targets compared to using
all the instructions in an API.

Our proposed method addresses various technical challenges observed while curating
the features. Essentially, we introduce a few optimizations and insights to guide the model.
Among others, we statically preprocess and reduce the paths to eliminate prevalent noisy
patterns (seemingly protected code constructs that are actually insensitive). We perform
IR decompilation to convert WALA IR instructions into a form that is amenable to the
model. We further decompose paths into subsequences to allow the model to learn the cases
where only a subset of the path instructions is the target of access control. To derive the
labels accurately, we perform path-sensitive access control extraction and normalization.
The evaluation of our approach yields an accuracy of 93%, a precision of 91%, and a recall
of 92% in the test data set. We further evaluate the effectiveness of our tool in identifying
security sensitive access control inconsistencies in vendor-customized ROMs by manually
verifying the APIs flagged by our tool. Our findings demonstrate that our approach is
capable of identifying both already known and new cases of access control inconsistencies.

2

Chapter 2

Background & Motivation

Detecting access control anomalies in Android APIs has long been a center of attention
by the Android research community for various reasons. First, the security specification
for Android APIs is known to be incomplete for public APIs and missing for private APIs.
Second, due to the large code base size of the Android framework and the highly diverse
and complex nature of Android access control, it is challenging for Android OEMs to en-
sure that access and operations on all sensitive resources are adequately protected in a
consistent manner. Third, such inconsistencies imply that attackers with insufficient privi-
leges can access the under-protected resource, thus leading to various privacy and security
consequences. And fourth, the Android framework allows OEMs and device manufacturers
to incorporate significant customizations to the system services. Such customizations of-
ten introduce new end points, increasing the risk of access control inconsistencies if proper
checks are not enforced.

To address these issues, the research community has developed methods that can de-
tect inconsistencies in access control enforcement. In general, the approaches work either
through convergence analysis [3, 16, 17, 27, 34] or through probabilistic inference [10].
Although the two approaches have been successful in finding substantial access control
anomalies, they suffer from some limitations. Next, we describe the general methodology
of these approaches and describe the relevant limitations, which have motivated our work.

2.1 Convergence-based Inconsistency Detection

.

3

This approach asserts that two or more system service APIs that converge on the same
resource must require a similar level of protection. The earliest effort, Kratos [27] de-
tects inconsistencies by looking at the access control checks along the paths leading to
the same sensitive resources. AceDroid [3] improves Kratos’s method by addressing the
diverse nature of Android access control, which was mainly responsible for Kratos’s false
positives. Specifically, AceDroid normalizes and converts diverse access control checks
along the paths leading to same resource into a canonical representation. As such, syn-
tactically diverse but semantically similar checks will be mapped to the same form, hence
reducing false positives. ACMiner [16] uses text analysis techniques to statically detect
potential authorization checks, which may be overlooked by Kratos and AceDroid. As
such, ACMiner can detect exclusive access control vulnerabilities. IAceFinder [34] extends
convergence-based approaches to pinpoint inconsistent access control enforcement across
the Java context and native context of Android. FReD [17] identifies another type of cross-
context access control inconsistency; those where Java APIs APIs accessing a file and the
actual concrete file path are protected differently.

2.1.1 Limitations of Convergence Analysis

. Despite their highly promising application in detecting access control anomalies, conver-
gence based methods suffer from the following significant inaccuracies.

• (LC-1): First, the methods over-approximate access control requirements for re-
sources as they rely solely on control dependencies, i.e., a given resource is assumed
to be protected by an access control check if it is control dependent on it. However,
this may be inaccurate if the check is targeting other sensitive resources co-located
with the given resource. Therefore, the assumption could inherently lead to false
positives.

• (LC-2): Existing convergence analysis methods can only identify explicit reachability-
based inconsistencies. That is, a vulnerability can be detected if two APIs, enforcing
two distinct access control requirements, lead to the same resource. However, re-
sources in Android may be connected via other types of implicit relations. Therefore,
the existing approaches will fail to detect pertaining vulnerabilities.

In addition, to understand the limitations described in LC-2, consider the following
system service API clearAutoHotspotLists() in the class SemWifiServiceImpl shown in
Figure 2.1.

4

Figure 2.1: Call chain of clearAutoHotspotLists() Method in SemWifiServiceImpl Class

5

This method calls another method with the same name in the internal class SemWifi-
ApServiceImpl, which invokes the method clearLocalResults() in SemWifiApSmartClient.
The method clearLocalResults operates on the private fields mWifiApBleScanResults and
mSmartMHSDevices, completely removing their contents. The mWifiApBleScanResults
and mSmartMHSDevices fields play a significant role within the SemWifiApSmartClient
class. These fields are accessed and used in multiple places throughout the class. Their
repeated usage suggests that they contain essential information critical to the function-
ality of the SemWifiApSmartClient. Considering the sensitive nature of hotspot-related
operations, protecting the data stored in these fields is crucial. Unauthorized access to
completely clear the data stored in the mWifiApBleScanResults and mSmartMHSDevices
fields could lead to disturbances in the proper functioning of SemWifiApSmartClient.

Upon inspection, we observe that convergence to the reachable resources clearLocal-
Results(), mWifiApBleScanResults, and mSmartMHSDevices do not exist across the An-
droid ROM. Therefore, the missing access control in the system service API clearAuto-
HotspotLists cannot be detected by convergence analysis-based approaches, demonstrating
the limitation described in LC-2.

To address the lack of convergence in the system service API, we can consider inspecting
a method which is similar in structure and implements similar functionality in a different
context. For example, consider the system service API clearDebuggingKeys() in ADB-
ManagerService which clears debugging keys and enforces the calling or self permission of
“android.permission.MANAGE DEBUGGING”. This access control measure ensures that
only authorized callers can perform debugging-related operations. Similar to clearAuto-
HotspotLists(), clearDebuggingKeys deletes the content of the private fields, mConnect-
edKeys and mWifiConnectedKeys, in the AdbDebugginManager class. The similarities
in structure and semantics between the two APIs, clearDebuggingKeys() and clearAuto-
HotspotLists(), can be leveraged to provide motivation for the existence of the missing
access control in the latter. By analyzing the access control measures and permission en-
forcement in clearDebuggingKeys(), we can infer with some confidence that a similar level
of access control protection might be necessary for clearAutoHotspotLists().

Although convergence analysis-based approaches will not be able to detect the missing
access control for the method clearAutoHotspotLists(), we can draw insights from simi-
lar methods, such as clearDebuggingKeys(), to anticipate the need for access control in
clearAutoHotspotLists() based on shared structural and semantic characteristics. To this
end, we aim to provide a solution that can learn such structural and semantic patterns in
system service APIs to predict the requirement of access control enforcement, addressing
the limitation LC-2.

6

Figure 2.2: Call chain of clearDebuggingKeys() Method in AdbService class

7

2.2 Probabilistic Inconsistency Detection

To tackle the inaccuracies of existing convergence-based approaches, Poirot [10] reconcep-
tualizes inconsistency detection to account for uncertainty. It follows a different angle to
pinpoint inconsistencies. It leverages a set of rules (derived from Android domain knowl-
edge) to probabilistically infer an access control recommendation for resources and APIs.
The recommendations can naturally be used to detect access control inconsistencies – i.e.,
an inferred recommendation is different from the actual implementation.

Technically, Poirot works as follows: it begins by extracting a broad range of proba-
bilistic relations that (1) assign access control to resources and (2) link resources to each
other, hence allowing to transitively transfer access control across linked resources. The
relations encapsulate both certain and uncertain code constructs, termed facts and hints,
respectively. An example of a fact is 1-1 control dependencies (i.e., one resource is pro-
tected by a single access control check). Hints are less certain than facts; for instance,
if two resources r1 and r2 share similar names, we can speculate that r1’s protection is
required for r2. Lastly, Poirot uses a probabilistic inference engine to aggregate the facts
and hints to project a high confidence protection recommendation for a resource.

2.2.1 Limitations of Probabilistic Analysis

. Although Poirot proved to be successful in detecting new vulnerabilities and suppressing
false alarms of convergence-based approaches, it suffers from the following limitations.

• (LP-1): Poirot depends on a set of rules (i.e., code constructs and program proper-
ties), that are manually compiled and derived through domain knowledge. As such,
their completeness is not guaranteed.

• (LP-2): Poirot models the importance of the rules by using preset probability values.
Although probabilistic inference is insensitive to variations in these values [10], we
note that a wrongly present value may affect the recommendation accuracy; consider
an uncertain clue that Poirot deemed to be highly certain.

• (LP-3): The rules are highly specific to a target resource(s) and cannot be applicable
to other resources that share semantic properties with the target.

• (LP-4): Third, due to the rules’ narrow application (or specificity), certain resources
may not exhibit a sufficient number of rules, that is enough for Poirot to learn from.

8

As reported, a lower number of observations (pertaining to the rules) can hinder the
ability of the probabilistic engine to make confident recommendations. This is indeed
demonstrated by Poirot’s (relatively) low coverage.

Using the system service class AmazonInputManagerService in the Amazon Fire HD
10 device, we demonstrate the limitation of manually defining the rules and probability
values (LP-1) and (LP-2), of the current probabilistic approach and illustrate the effec-
tiveness of our proposed solution to address these limitations. We provide the simplified
implementation of the methods (A) getInputLockingMode(), (B) setInputLockingMode(int
mode), and (C) showInputLockingMode(int inputLockingMode) in Figures 2.3, 2.4, and 2.6
respectively.

Figure 2.3: (A) Strong Clue that mInputLockingMode requires Signature Permission

Figure 2.4: (B) Low confidence propagation of protection for the resource showInputLock-
ingNotification(mode, true) due to manually tuned control rules in Poirot

9

First, by performing a depth-first search (DFS), Poirot [10] would be able to detect that
the field this.mInputLockingMode has a one-to-one relation with the signature level per-
mission PERMISSION INPUT LOCK and assign it a high confidence score. Hence, a high
confidence recommendation for AmazonInputmanagerService.this.mInputLockingMode can
be determined in method A (Fig. 2.4). Further, Poirot uses rules to control the propa-
gation of access control checks for resources using implicit rules such as parameter flow,
naming similarity, and one-to-many mapping using manually set confidence scores. Using
probabilistic inference, Poirot aggregates all the probabilities and generates final predic-
tions based on a selected cutoff. However, we observe that using rules with manually tuned
probabilities, Poirot cannot determine with high confidence that the resource showInput-
LockingNotification(inputLockingMode, false) (R2) in the method (B) requires an access
control protection. Thus, Poirot cannot detect the missing access control check for R2 in
method (C).

Figure 2.5: Implementation of the resource showInputLockingNotification (R2)

10

Figure 2.6: (C) Missing Access Check in method showInputLockingNotification

Lowering the cutoff percentage to include this case as a potential inconsistency could
cause several other cases to be included resulting in an increased number of False Positives.
For example, the resource recordInputLockingModeUpdateEvent(mode) (R1) in method (B)
also has implicit one-to-many relation, naming similarity, and a parameter flow from the
caller. Hence, similar probability scores will be propagated through the probabilistic in-
ference. If the cutoff percentage were any lower, Poirot would flag R1 and R2 as requiring
Access Control Protection. However, upon closer inspection of the implementation, we see
that R1 is used for logging and updating fields internally by the MetricsHelper class and
does not require access control protection. From the implementation of R2 in Fig. 2.5, we
see that this method can generate system-level notifications using the NotificationManager
framework channel and does indeed require access control protection. However, Poirot
could not distinguish between the access control requirements between the two resources,
R1 and R2, without introducing addition rules, highlighting LP-1. Moreover, it could
not take advantage of the implementation of the resource at a deeper level to recommend
access control requirement for the resource based on other system service APIs with similar
functionality, demonstrating the limitation LP-2.

2.3 Our Proposed Solution

To address the limitations discussed in Section 2, we propose a deep learning-based solu-
tion to automate the extraction of structural and semantic clues from the source code of
framework APIs. Specifically, we leverage the capabilities of deep learning, through the
use of a pretrained language model, CodeBert. We start by extracting individual execution
paths in the API leading to sensitive resources and extracting the respective access control
enforced along these paths. This process results in precise and granular data, compared
to using instructions from the entire API, that address the limitation LC-1. Additionally,
CodeBert is capable of automatically extracting the structural and semantic code features

11

from the source code, which is best suited for our task. Using these features, CodeBert
can make predictions for individual execution paths without the need for detecting con-
vergence, which addresses the limitation LC-2. Furthermore, automatic extraction of rules
alleviates the need for human input in devising clues for access control recommendation,
effectively addressing LP-1 and LP-2. By looking for rules over the entire dataset, the
model learns generalizable patterns, which allow it to make predictions for semantically
similar resources addressing the limitations LP-3 and LP-4.

12

Chapter 3

Priming for Deep Learning

In this section, we answer fundamental questions to guide the design of our proposed deep
learning-based solution.

3.1 How to construct meaningful features to reflect

access control enforcement in Android APIs?

Since deep learning tasks operate on vectors, we need to represent Android APIs imple-
mentations as features which can be converted to vectors by the appropriate models. In
other words, we need to convert a given API implementation into features that (1) are the
expected input for a specific deep learning model and, more importantly, (2) reflect pre-
cisely code patterns requiring access control. In literature BERT based language models
have been extensively used for source code related tasks which expect a continuous piece
of text as the input feature. Note that we cannot arbitrarily feed the whole API code due
to the inherent complexities that characterize Android access control implementations.

Characteristic I: Android APIs can enforce conjoined and / or disjoint conditional access
control. As such, the access control requirement (i.e., a label in our context) cannot be easily
derived at the granularity of the whole API. As reported by Arcade [4], an API’s access
control can be represented as a first-order logic formula that captures security conditions
and their correlations, which is inherently difficult to abstract as a single label.

Characteristic II: As noted in the Motivation Section 2, not all code blocks in an API are
of interest to access control. For example, failed input validation logic and failed security

13

checks are unrelated to the API’s functionality. Blindly assigning the API’s label(s) to these
noisy code may negatively impact the model’s accuracy as reported in our experiment (see
5.3). The pre-trained model should be able to recognize that such blocks of code are not
related to access control, given enough training data. However, due to the lack of ground
truth data in the context of Android access control, we use static analysis to remove code
that does not contribute to the API’s functionality.

The above characteristics lead us to propose a new API representation that abstracts
the implementation to execution paths. A path is a set of sequential instructions that (1)
starts at the API’s entry point, (2) can be tagged with a single access control label, and
(3) should ideally capture semantic information pertaining to the label, i.e., contains the
access control targets.

Note that the last requirement is challenging; as mentioned earlier, accurately locating
access control targets in Android APIs is a highly uncertain process. It requires understand-
ing various semantic properties (e.g., similarity between API and reachable instructions)
and structural constructs (e.g., instructions must follow a specific order). As such, expect-
ing the model to learn the correspondence between the target instruction(s) and the access
control label is difficult, particularly in light of insufficient training data.

As we will elaborate later, this observation suggests that offering some guidance to the
model may be helpful in learning the correspondences effectively. Hence, instead of feeding
all instructions in a given execution path to the model as input (and expecting the model
to infer the correspondence from such a sequence), we decompose the path into subse-
quences. Essentially, we transfer to the model our understanding that any subsequence
of the execution could be the target of access control. More details on subsequences are
discussed in Section 4.2.

3.2 Why Finetuning CodeBert?

Given the success of Poirot [10], it is evident that the structural constructs and semantic
features of the Android APIs (termed clues) are crucial to recommend access control.
Therefore, we sought a solution capable of understanding and automatically extracting
such clues. Deep learning models have been very successful in inferring important features
to solve complex software engineering tasks such as vulnerability [30, 7, 13, 22] and malware
detection [15, 26, 23, 31, 5], all without the involvement of human experts.

Specifically, in line with the existing Android literature, we treat the Android Open
Source Project (AOSP) code bases as ground truth, from which we statically construct

14

and automatically label a large corpus of training data. The statically constructed training
corpus can be used to train a DL model, which can be queried to recommend access control
(and detect anomalies) in vendor-customized ROMs.

By analyzing 3 AOSP ROMs, we observe that the constructed training set is relatively
smaller with 20145 data points (73.9% ‘Requires Protection’ and 26% ‘No Protection’)
compared to the 2.1M datapoints used to pre-train CodeBert [12]. Given the immense
capacity of deep learning models for learning, training from scratch on such a relatively
smaller and unbalanced data set is insufficient, potentially leading to overfitting and lack
of generalizability [33, 18]. According to recent studies [19, 29], we have chosen to fine-tune
CodeBert, a transformer pre-trained model that works with bimodal data (source code and
documents) and has demonstrated promising results. As such, CodeBert is able to extract
structural and semantic code constructs to make accurate recommendations.

3.3 What is the access control label/recommendation

granularity?

As we represent APIs at a finer granularity, we need to pinpoint the exact access control
requirement for each execution path leading to a given resource.

This implies that our training data labeling process requires a path-sensitive analysis
of the APIs. In particular, for each execution path leading to a given resource, we identify
access control checks (e.g., conditional statement enforcing a permission). The checks can
then be conjointed (using AND operator) to represent the label for the resource-specific
execution path. Given the diverse nature of Android permissions, we observe that such
a process would lead to a significant number of labels. Therefore, we opt to use the
normalization procedure proposed by AceDroid [3] to convert the highly diverse labels to
a canonical format (leading to four labels). We further leverage the representation and
our domain knowledge to reduce the number of labels to two labels due to class imbalance
(more details are demonstrated in Section 4.5). This solution is sufficient for the present
study, but may need to be refined if the goal is to propose a finer-grained access control
recommendation.

15

Chapter 4

Approach

Figure 4.1 presents a high-level overview of our proposed solution. It consists of five
phases: data collection, feature selection, reduction, IR decompilation, and model fine-
tuning. As input, the solution expects (1) a set of Android ROMs for training, and (2) a
target custom ROM to be analyzed for access control recommendation (and vulnerability
detection). As output, the solution generates a mapping of custom APIs to access control
recommendation.

4.1 Phase-1: Data collection and Pre-Processing

AOSP is known to have significantly less access control anomalies compared to vendor-
customized ROMs [27, 3]. Therefore, we treat AOSP ROMS (versions 11, 12, and 13) as
ground truth and use it for fine-tuning CodeBert. Observe that this choice is inline with
the body of literature on Android access control evaluation. We preprocess the ROMs to
collect important information for further phases, as follows.

We statically analyze the ROMs to identify app-accessible system services by look-
ing for corresponding registration points. We look for the methods addService and
publishBinderService which allow to publish public system services in the Service Man-
ager1. We then resolve the registered system service class types. Afterwards, we extract
the exposed interface class of the service and retrieve its declared public methods – these
methods correspond to Android service APIs.

1Central registry that contains running system services

16

Figure 4.1: Data Collection Pipeline for Training CodeBert to Predict Access Control
Inconsistencies

4.2 Phase-2: Feature Selection

Our solution enumerates all execution paths in each API. Formally, a path is composed
of a number of sequential program statements which are correlated via control or data
dependency. To extract the paths, we begin by building an interprocedural control flow
graph (icfg) of each API. Starting from the entry basic block of the icfg, we perform a
depth-first traversal along the control dependence edges to traverse all paths. The traversal
ensures control dependencies among the statements are correctly preserved.

Optimization. Enumerating all the paths in the APIs requires significant resources.
Hence, we make the following optimizations for the path traversal:

• Fixed Depth of Traversal: We consider a three-level depth for the DFS traversal
of the icfg, which significantly reduces the total number of paths being traversed –
though this can be configured based on the available resources.

• Early Stopping during Access Control Enumeration: During enumeration of
Access Control Checks we stop early when we detect a higher level of access control
(corresponding to ‘dangerous’ or ‘system’). The Normalization process explained in
Section 4.5 removes the need for further traversal.

17

• Parallelization and Memoization: We use parallel processing to enumerate paths
for multiple APIs concurrently, thereby reducing the overall computation time. Fur-
ther, we store the results of expensive or frequently-calculated path traversals for
specific methods, so they do not have to be recalculated during the interprocedural
traversal.

• Early stopping of traversal in noisy paths: We remove conditional branches
associated with failed input validation and access control validation as described in
Section 4.3, which allows us to stop the interprocedural DFS for methods in those
removed parts.

Decomposing execution paths into subsequences. As noted earlier, inferring the
precise correspondence between instructions (along a single path) and the access control
label is a highly challenging task. Here, we aid the model to address this challenge by
transferring our domain-knowledge that any (ordered) subsequence of instructions might
be the target of access control.

Specifically, we decompose each identified execution path (which starts a API’s entry
point and ends at an exit node, e.g., return statement) into subsequences. We use a
sliding window over the execution path. The window begins with a fixed initial size of one
instruction starting from the first instruction that is control-dependent on an access control
check. It then moves forward incrementally by d instructions, partially overlapping with the
previous subsequence. The variable d denotes the number of instructions required to reach
a protected resource; that is, a potentially sensitive instruction. We use the taxonomy
provided by Axplorer [6] to identify protected resources, which can be categorized into
method calls, field updates, method invocations, return (value) statements, and throw
(RuntimeException) instructions. This choice ensures that a subsequence includes at least
one potential protected resource.

The process is repeated until the sliding window covers the entire execution path. The
resulting subsequences naturally overlap and depict a shorter execution of the decomposed
execution path.

Generated features. This phase synthesizes the following pair for each Android API:
(m i , p i) where m is metadata pertaining to the API (i.e., name, parent class, and
signature), and p is the list of identified and execution paths. Each execution path p j is
further represented as a pair (s j, l j) where s is a list of a (decomposed) path’s subsequences
and l is the label for the path p j. Observe that all subsequences of a particular execution
path share the same label, implying that we aggregate all subsequences into a single feature.

18

In other words, we combine all subsquences that are protected by the same access control
into a single feature.

Modifying CodeBert Architecture to incorporate multiple subsequences. Bert-
based models rely on three main embeddings to generate the final embeddings for a given
input sequence: token embeddings, positional embedding, and segment embedding [9]. To-
ken embedding capture the uniqueness of each token, while positional embedding captures
the position of the token in relation to the other tokens in the input. In downstream tasks
that require the input to be composed of multiple segments (such as question-answering
and sentence-completion tasks), Bert-based models use special segment embeddings to rep-
resent the two different segments in a single input. The models based on Bert architecture
are designed to process a maximum of two segments in the input, which are separated
by the [SEP] token. However, in our case, it is possible that the combined input con-
tains more than two segments (subsequences). To ensure that the CodeBert tokenizer
accurately reflects the separation of these segments, we have modified its architecture.
Specifically, in addition to the [CLS] (special Start token) and [SEP] (special end token),
we incorporate a special token [SUB] into the model that separates the ‘n’ segments (sub-
sequences) in the combined input. Furthermore, we modify the tokenizer to use a distinct
segment embedding for each unique subsequence identified using the special token. Sim-
ilarly, the truncation process is modified to give higher priority to longer subsequences
since they retain the entire execution path. Upon fine-tuning, the model learns to use the
special segment embedding to make accurate recommendations.

4.3 Phase-3: Feature Reduction

Not all operations provided by an API are of interest to enforced access control; certain
program statements or even a whole execution path may be unrelated to a detected access
control check (along the path). Consider the simplified code snippet depicted in Listing 4.1,
extracted from the public AOSP API PackageManger. addCrossProfileIntentFilter:

1 public void addCrossProfileIntentFilter(IntentFilter

intentFilter , String ownerPackage , int sourceUserId , int

targetUserId , int flags) {

2 ...

3 enforceCallingOrSelfPermission(INTERACT_ACROSS_USERS_FULL ,

null);

19

4 enforceShellRestriction(DISALLOW_DEBUGGING_FEATURES ,

callingUid , ...);

5 ...

6 if (intentFilter.countActions () == 0) {

7 Slog.m232w(TAG , "Cannot set a crossProfile intent filter

with no filter actions");

8 return;

9 }

10 ...

11 resolver.addFilter(newFilter);

Listing 4.1: addCrossProfileIntentFilter

As shown, the API consists of a few execution paths, including the following2:

1. Path 1: a permission enforcement, a shell restriction enforcement, an input validation
(conditional statement at line 6), a method invocation Slog.m232w method, and a
return statement.

2. Path 2: a permission enforcement, a shell restriction enforcement, an input validation
(conditional statement at line 6), and a method invocation addFilter.

We observe that Path 1 denotes a failed input validation while Path 2 implements
the actual functionality provided by the API. As such, the permission enforcement and
shell restrictions requirements in Path 1 are not related to the reachabled resources (i.e.,
Slog.m232w and the return statement).

This observation leads us to propose a reduction technique to remove such noisy paths
from our training dataset. Particularly, we identify and remove paths that do not contribute
to the core functionality of the system service API. Since it is not straightforward to define
contribution due to its subjective nature, we rely on the following rules to pinpoint paths
depicting common error handling logic:

Failed input validations. Different from general conditional statements, an input val-
idation has the following two unique properties (1) it compares input with predefined
constants or dynamically derived results from other methods, and (2) terminates the ex-
ecution shortly after the validation fails. The termination may be carried out after a few
operations for post-failure diagnosis and/or cleanup. By leveraging these observations, we

2The actual implementation of the API includes more paths which we have omitted to ease readability

20

automatically identify failed input validation paths as follows: First, for each path, we
inspect all conditional statements to identify those where at least one of the operands is
a parameter. Second, we ensure that the path corresponds to a failed branch by check-
ing if it leads to some exception (i.e., IllegalArgumentException) or a return with a
constant (i.e., error code) such that there is no other statement along the path except
of cleanup operations (e.g., public interface recycling) and diagnostic operations (e.g., log
statements). The failed validation path may legitimately include other statements for con-
structing inputs to a cleanup / diagnostic operation, so we further tolerate its transitively
data-dependent instructions.

Failed access control paths. We leverage the following observations to automatically
identify failed access control paths: (1) the path should include an access control check,
and (2) the API terminates the execution shortly after failure. The termination action is
similar in nature to that of a failed input validation. Thus, we repurposed our detection
procedure of failed input validation paths to tackle this case. More details on how we
identify access control checks are discussed later in Section 4.5.

We demonstrate the benefit of our path reduction technique in Section 5.3.

IR Instruction Transformation

SSAAbstractInvokeInstruction methodName (var1, ..., varM) ;

SSAGetInstruction varType varName = object.fieldName;

SSACheckCastInstruction varType1 var1 = (varType2) var2;

SSAPutInstruction object.fieldName = var1;

SSABinaryOpInstruction varType varName = var1 [binary operator] var2;

SSAReturnInstruction returnType var1;

SSANewInstruction varType varName = new varType (var1, ... , varM);

Table 4.1: IR Transformation Guide (varN is recursively resolved)

21

4.4 Phase-4: IR Decompilation

At this stage, the program statements in the collected execution paths are in WALA In-
termediate Representation (IR). IR abstracts away a lot of the source code constructs,
which can be helpful for the model to understand structural and semantic dependencies.
Furthermore, Gallagher et al. have shown that CodeBert performs better on C source
code than its IR representation (LLVM) for the task of vulnerability detection [14]. This
representation is not amenable to CodeBert, which has been pre-trained in source code
and documentation [29]. Thus, it is necessary to transform the IR statements to a suitable
representation before fine-tuning can be applied. To tackle this challenge, we devise a
decompilation technique for WALA IR that preserves general source code constructs such
as method invocations, assignments, and binary operations. Specifically, we adopt a set of
transformation rules (shown in Table 4.1) to convert IR execution paths into abstracted ex-
ecution paths. The latter are akin to a pseudo-source code representation, which CodeBert
can understand, as they maintain key constructs and structure found in source code.

1 1. getfield < Application ,

Lcom/android/server/pm/PackageManagerService , mContext , \

2 <Application ,Landroid/content/Context > > v1

3 2. invokevirtual < Application , Landroid/content/Context ,

enforceCallingOrSelfPermission(

4 Ljava/lang/String;Ljava/lang/String ;)V >

v7 ,v8 ,v9:#0 @5 exception:v10

5 3. invokestatic < Application , Landroid/os/Binder ,

getCallingUid ()I > v12:@8 exception:v11

6 4. invokestatic < Application ,

Lcom/android/server/pm/PackageManagerServiceUtils , \

7 enforceShellRestriction(Ljava/lang/String;II)V >

8 v14 ,v12 ,v4 @18 exception:v15

9 5. invokevirtual < Application , Landroid/content/IntentFilter ,

countActions ()I > v17: v2 @21 exception:v16

10 6. conditional branch(ne , to iindex =-1) v17 ,v9

11 7. invokevirtual < Application , Lcom/android/server/pm/Settings , \

12 editCrossProfileIntentResolverLPw(I) \

13 CrossProfileIntentResolver; > v23:v21 ,v4 @45 exception:v22

14 8. new <Application ,.../ pm/CrossProfileIntentFilter >@38:v19

15 9. invokevirtual < Application , .../pm/CrossProfileIntentResolver ,

16 addFilter(Landroid/content/IntentFilter ;)V >

22

v23 ,v19 @79 exception:v40

Listing 4.2: IR Execution Path: Path-1

1 [get]: this.mContext;

2 [inv]: var7.enforceCallingOrSelfPermission(var8 ,param2);

3 [inv]: Binder.getCallingUid ();

4 [inv]: PackageManagerServiceUtils. \

5 enforceShellRestriction(var14 ,var12 ,param4);

6 [inv]: countActions ();

7 [Con -fail]: if (var17 != var9)

8 [inv]: this.mHandler.editCrossProfileIntentResolverLPw(param4);

9 [new]: new CrossProfileIntentFilter ();

10 [inv]: var23.addFilter(var19);

Listing 4.3: Abstract Execution Path: Path-1

Consider the unmodified execution path (2) and its corresponding abstracted path
depicted in the listings 4.2 and 4.3. As shown, method invocations are abstracted into
the form returnType varName = methodName (var1, ..., varM) , return statements
in the form returnType var1, etc. The abstracted forms are substantially shorter, with a
reduced number of possible tokens; yet expressive enough to preserve the original logic.

Incorporating data flow information. Program statements may exhibit different be-
havior depending on supplied parameters. As such, it is crucial that the model learns such
contextual information to properly infer its access control requirement. We noticed though
that our model was not sufficiently able to observe this contextual information from the
abstracted paths, which we speculate is due to the indirect nature of certain data flows.
Therefore, we augment the abstracted paths with data flow information. In particular,
we leverage interprocedural def-use chains to transitively resolve indirect data flows. We
note that our analysis cannot resolve certain flows (e.g., a variable that may hold different
values depending on certain conditions). We differentiate those unresolved values from pa-
rameters (which cannot be resolved inherently through static analysis) by using different
place holders during augmentation. In particular, we use the place holder PARAM index to
denote a parameter in the abstracted paths and UNRESOLVED to denote an unresolved value
in the rest of the cases.

1 [inv]: this.mContext.enforceCallingOrSelfPermission(

2 INTERACT_ACROSS_USERS_FULL ,0);

23

3 [inv]: int var12 = Binder.getCallingUid ();

4 [inv]: PackageManagerServiceUtils.enforceShellRestriction(

5 no_debugging_features , var12 , param4);

6 [inv]: int var17 = countActions ();

7 [Con -fail]: if (var17 != 0)

8 [inv]: CrossProfileIntentResolver var23 =

var21.editCrossProfileIntentResolverLPw(param4);

9 [new]: CrossProfileIntentFilter var19 = new

CrossProfileIntentFilter ();

10 [inv]: var23.addFilter(var19);

Listing 4.4: Execution Path with Data Resolution: Path-1

Our model demonstrates a significant improvement in accuracy when using our pro-
posed IR decompilation. More details are discussed in Section 5.3.

4.5 Phase-5: Label Extraction

As mentioned earlier, access control labels are extracted at the granularity of execution
paths, rather than the whole API. We traverse the statements along each identified path.
When a conditional statement is encountered, we inspect it to check if it is related to
access control using the patterns defined in Kratos [27] and AceDroid [3]. For example, if
one operand in the predicate is evaluated to an invocation of checkPermission, we tag
the statement as an access control. We then extract more information related to these
checks using DefUse chains, including the operator, operand values, if any, and parameters
to operands when applicable. For example, if the operand is an invoke statement for the
method checkPermission, we resolve its concrete parameter permission.

If multiple access control-related checks are identified along the same path, our solution
merges them using an AND. The resulting union of the identified checks is further normal-
ized using the procedure proposed in AceDroid [3]. Normalization (privilege-perspective)
yields four labels Signature, Dangerous, Normal and No Protection.

Merging access control classes. Application of the AceDroid normalization procedure
in our collected training corpus led to significant class imbalance. In particular, the nor-
malized labels Normal and Dangerous had substantially fewer samples compared to the
other labels. To address the issue, we group the labels Normal and No Protection under
the class No Protection; since normal permissions are granted to applications without user
intervention. Similarly, we group Dangerous and Signature labels into the class Protected

24

– since Dangerous permissions require explicit user approval. As such, our overarching
access control recommendation is translated into a binary classification problem, that is,
whether an API requires access control.

25

Chapter 5

Model Evaluation and Experiments

Our evaluation experiments are designed to answer the following research questions:

• RQ1: Can the (baseline and combined) model correctly predict the access control
requirement for Android APIs?

• RQ2: What is the impact of various design decisions on the model performance?

• RQ3: What is the runtime and memory overhead of the recommendation pipeline?

• RQ4: Can the model predict access control inconsistencies?

• RQ5: How effective is the model compared to results from Poirot?

5.1 Experimental Setup

We employ the static analysis components of our tool with the help of WALA [2] and
leverage Akka-Typed [1] for parallelization. We construct CodeBERT using PyTorch and
fine-tune it on an Intel Xeon CPU @2.20 GHz with 12GB Ram and Tesla T4 GPU, with
a learning rate (lr) of 0.0001 for ten epochs and an early stopping strategy to prevent
overfitting. We use the binary cross-entropy loss function and the ‘Adam optimizer to
modify the model’s weights.

26

5.1.1 Training Samples Collection

Our training corpus for fine-tuning CodeBERT was obtained by analyzing three AOSP
ROMs (versions 11, 12, and 13). Row 2 of Table 5.1 lists the statistics – Column #2
reflects the number of unique APIs recovered by analyzing the three ROMs. Since the
ROMs share the majority of APIs, we remove duplicate ones and merge inconsistencies by
prioritizing the latest version.

Column #3 shows the resulting number of data points. Observe that the recovered
data points reflect the total number of enhanced execution paths in the APIs, excluding
those corresponding to common error handling logic (see 4.3). Recall that we enhanced
the execution path to represent the path’s subsequences (see more details in Section 4.2).

ROM # (Unique) # Data # ‘Requires # ‘No
APIs Points Protection’ Protection’

AOSP (11, 12, 13) 3529 20145 14903 (73.9%) 5242 (26%)
Xiaomi Civi 1S 811 6539 4258 (65.1%) 2281 (34.8%)
Xiaomi POCO 765 3739 2196 (58.7%) 1543 (41.2%)
Lenovo TB300FU 708 4085 2264 (55.4%) 1821 (44.5%)
Amazon Fire HD 698 5809 3056 (52.6%) 2753 (47.2%)

Table 5.1: Android ROM Statistics

Our analysis of AOSP yielded 20,145 labeled data points, with 14,903 (73.9%) protected
samples and 5242 (26%) unprotected samples. Class imbalance can lead to low precision,
over-fitting, and loss of information about the minority class during fine-tuning. To ad-
dress the imbalance, we use a combination of task-specific and MixUp data augmentation
techniques [28].

Specifically, we combine unprotected execution paths belonging to different APIs to
generate a synthetic unprotected training sample. This operates under the intuition that
the combination of two unprotected paths would also not require protection.

5.1.2 Training samples vs. testing samples

We utilize 10-fold cross-validation during model training to evaluate the model’s perfor-
mance on the dataset curated from AOSP. The results of cross-validation support the
generalizability of the model on unseen data. During each iteration of the cross-validation
process, we divide the training dataset into ten folds. For each iteration, 9 out of the ten

27

folds act as training data, and the remaining fold acts as validation data. This process is
repeated ten times, ensuring that the model is trained and evaluated on different subsets
of the dataset.

5.1.3 Evaluation Metrics

To evaluate the performance of our model, we use four metrics ‘accuracy,’ ‘precision,’ ‘f1-
score’, and ‘recall’ [19]. To obtain the best model, we monitor these metrics during the
training phase.

Modification Accuracy Precision Recall F1-score
Baseline 73% 78% 76% 77%
Feature Reduction 77% 79% 75% 77%
Path Decomposition 79% 81% 76% 78%
IR Decompilation 82% 83% 79% 81%
Synthetic Data 85% 83% 88% 85%
Combined 93% 91% 92% 91%

Table 5.2: Model performance under different design decisions adopted individually and
collectively

5.2 RQ1: Baseline and Combined Model Performance

Here, we report the predication results of our baseline model, where we only employ in-
dividual execution traces (without decomposition) and their labels as data points. Row
1 in Table 5.2 reports the performance results. As shown, the baseline model achieves
mediocre performance (73% accuracy). This means that the model cannot sufficiently
learn the correspondence between the extracted code paths and access control labels with-
out our optimizations. However, as we will show in RQ2 results, the combined model,
where we adopt all our proposed design decisions, achieves a significantly higher accuracy.
Next, we discuss these improvements.

28

5.3 RQ2: Impact of Various Design Decisions on Model

Performance

To evaluate the performance gain of each individual design decision (Section 4), we con-
ducted five experiments using the AOSP dataset. In each experiment, we turn on an
individual design decision and turn off the rest. For each iteration, we re-evaluate the
(modified) model’s performance using a 10-fold cross-validation. The experiments led to
the results reported in rows 3-6 in Table 5.2.

We observe that each individual feature leads to an improvement in (almost) all metrics.
Certain features resulted in better gains than others. Our proposed decompilaiton of the
program instructions from WALA’s IR to the abstracted form led to a substantial increase
in the accuracy metric; from 0.73 to 0.82. Besides, adding the Not Protected synthetic data
to reduce class imbalance led to a significant gain in terms of all four metrics (see Section
5.3)

As shown in the last row of Table 5.2, optimum performance is obtained by combining
all design decisions; all metrics exhibit a notable gain.

5.4 RQ3: Runtime and Memory Overhead

Table 5.3 reports the time and memory overhead required to fine-tune CodeBert using the
AOSP ROMs collected. The results are broken down in two stages:

1. Static analysis: This reflects the analysis required to collect and process the features
and extract corresponding labels to fine-tuning CodeBert.

2. Training and evaluation : this reflect fine-tuning and evaluating the model using
10-fold cross validation.

As shown, static analysis takes 148 minutes and 510 mb of memory, while training and
evaluation take more than 12 hours (790 minutes). Note that this is a one-time process,
and hence the overhead is acceptable.

29

ROM # Detected # Manually # Manually confirmed
(Android Version) Inconsistencies Examined (Previously Known)
Amazon Fire HD (10) 31 10 8 (5)
Xiaomi Poco C3 (10) 25 5 3 (2)
Xiaomi Civi 1S (11) 5 3 2
Lenovo TB300FU (12) 6 2 1

Table 5.4: Inconsistencies Landscape in Vendor-Customized ROMs.

Metrics Static Analysis Fine-Tuning
Memory 510 5800
Time 148 790

Table 5.3: Runtime and memory overhead for fine-tuning CodeBert using AOSP ROMs
(Time is in minutes, and memory is in MB)

5.5 RQ4: Detecting Access Control Inconsistencies

Recall that our overarching goal is to fine-tune CodeBert to learn access control recom-
mendations for a given (custom) API. We can detect access control inconsistencies by
comparing them against the actual implementations. Here, we demonstrate this ability on
four custom ROMs from three vendors: Xiaomi Civi 1S (ver. 11) and Poco C3 (ver. 10),
Lenovo TB300 (ver. 12), and Amazon Fire HD 10 (ver. 10). Rows 3-6 in Table 5.1 show
the pertaining statistics.

Our target APIs for access control recommendation correspond exclusively to non-
protected APIs; i.e., those for which static analysis identifies a lack of access control en-
forcement.

To aid the model in learning vendor-specific semantic properties, we augment our train-
ing data with the rest of the protected vendor APIs, since they are not used as targets. We
highlight that we only consider protected data points from custom ROMs for training (i.e.,
execution paths with access control enforcement); since unlike AOSP, we cannot assume
that unprotected data points are correctly implemented.

Results. Table 5.4 presents the inconsistency landscape as detected by the fine-tuned
model. Column #1 reports the total number of inconsistencies for each custom ROM;

30

they range from as low as 5 in Xioami Civi 1S (ver. 12) to as high as 31 in Amazon Fire
HD (ver. 10). Observe that due to the lack of ground truth, it is difficult to evaluate
the validity of reports. Therefore, we resorted to manual examination (as performed by
related work [27, 3]). Specifically, two authors investigated a subset of reports. Note that
not all reports could be understood due to the proprietary nature of custom APIs, and
therefore only a subset could be examined as shown in Column #3 in the table. Manual
validation led to the confirmation of the cases listed in Column #4, ranging from 1 in
Lenovo TB300FU (ver. 11) to 8 in Amazon Fire HD (ver. 10). In total, of the 20 manually
examined cases, 14 were confirmed to be indeed inconsistent. Of the 14 cases, 7 have been
previously reported by Poirot [10]. We reported the remaining 7 cases to the corresponding
vendors; at the time of writing, 4 have been acknowledged, 2 are currently being reviewed
and 1 was deemed informative (but not harmful)1.

Estimated False Positive Rate. Previous approaches estimate False Positive (FP) Rate
by manually investigating a sample of reported inconsistencies and detecting the ones
which lead to exploitable vulnerabilities [10]. Our manual investigation of the reported
inconsistencies suggest that 6 of the 20 cases are false positives. This implies that 30%
is our (estimated) false positive rate. Due to the lack of ground truth and difficulty in
understanding proprietary code, it is difficult to validate the rate at a larger scale.

Note: the aforementioned Estimated False Positive Rate represents the ability of our
model to detect exploitable vulnerabilities based on reported inconsistencies. This is differ-
ent from the precision and f1-score from the evaluation of the model in RQ1 5.2, which
represents the ability of our model to report inconsistencies.

Access control recommendation overhead. Table 5.5 shows the time and memory
overhead incurred by our model to predict access control recommendations for custom
APIs. The static analysis stage reflects the analysis required to extract various features
from the custom (unprotected APIs for which prediction is to be made. Our tool takes less
than a minute to predict a recommendation for all APIs.

1The inconsistency allows accessing a protected file, which does not exist anymore in the updated
firmware

31

Android ROM # APIs Static Analysis Prediction
Time Mem Time Mem

Xiaomi Civi 1S 811 24 225 <1 2200
Xiaomi POCO 765 22 232 <1 2100
Lenovo TB300FU 708 21 200 <1 2200
Amazon Fire HD 698 35 200 <1 2000

Table 5.5: Access control recommendation overhead for custom ROMs (Time is in minutes,
and Memory is in MB)

5.6 RQ5: Comparison to Poirot

A closely-related work to our proposed approach is Poirot [10], which projects access control
recommendations though probabilistic inference. Our work is motivated by Poirot’s success
in using code patterns to infer access control requirement. Here, we compare our model’s
accuracy against Poirot and demonstrate the unique benefits of using our approach.

Comparison of Model Accuracy with Poirot. Poirot [10] reports a maximum accu-
racy of 82.7% when analyzing AOSP ROMs. Our model achieves an improved accuracy
rate of 93% as shown in Table 5.6.

Approach Accuracy Coverage
Poirot: (Cutoff 0.80) 75.3% 60.2%
Poirot: (Cutoff 0.90) 77.4% 59.4%
Poirot: (Cutoff 0.95) 82.7% 55.6%
CodeBert 93% 100%

Table 5.6: Evaluation of Recommendation Accuracy (Utilizing 90% of AOSP Data for
Training/Rule Extraction Purposes)

Comparison of Estimated False Positive Rate with Poirot on custom ROMs.
Similar to our approach, Poirot estimates false positives for custom vendor APIs through
manual investigation. Out of the discovered inconsistencies, it reports 32.7% as false
alarms. This is comparable to our estimated False Positive Rate of 30%.

Coverage Comparison with Poirot. As mentioned in the Motivation Section 2, Poirot’s
approach is inherently susceptible to the number of collected observations. Namely, a lower

32

number of observations can hinder its ability to make confident recommendations. As
reported in the paper, this limitation has led to a relatively lower coverage, ranging from
55. 6% to 60. 2%, as shown in Table 5.6. In contrast, our approach does not suffer from
this limitation; the model can predict recommendations for all (seen & unseen) APIs.

Discovered Inconsistencies. We acquired the list of reported inconsistencies by Poirot
for Amazon Fire HD and Xiaomi Poco C32, and compared it with the inconsistencies
detected by our model. We confirm that our tool can discover all of Poirot’s detected
inconsistencies (7 in total).

2We purposely analyzed these two ROMs to allow comparison with Poirot; we could not correctly
decompile the other LG ROM by our tool chain

33

Chapter 6

Discussions

6.1 Threats to Validity

6.1.1 Reliance on AOSP

The accuracy of our dataset used to train the model could be a potential issue that could
compromise its validity. An accurate mapping of code properties to access control require-
ment is not readily available due to the lack of security specification for Android APIs.
To achieve ground truth for model training, we used the data collected from AOSP as a
reference. Although this decision is in line with the body of work on Android access control
evaluation, this does not guarantee that AOSP is free of inconsistencies and errors in access
control. Moreover, we assume that the data collected from AOSP is reflective of the access
control enforcement in the vendor-customized ROMs. To ensure that our model is effective
on non-AOSP ROMs, we take a conservative approach and assume that the Protected APIs
in vendor-customized ROMs are reliable. Therefore, we frequently update our model on
unseen vendor ROMs (by combining the Unprotected class from AOSP and the Protected
class from the vendor-customized ROM) and generate predictions on custom Unprotected
APIs defined in the vendor ROM. We only freeze the update if the performance in the
validation set increases.

34

6.1.2 We Assume that Combining Two Unprotected Paths Re-
tains Unprotected Status

To generate synthetic data examples for our dataset, we combine path data from several
unprotected resources to generate a new data point. This approach assumes that we can
simulate a new unprotected API by combining resources from multiple unprotected APIs.
However, we acknowledge that there is an implicit risk in such a synthesis. Although the
likelihood remains low, there is still a chance that not all synthetically generated entry
points retain their unprotected status in real-world scenarios. This serves to remind us
that synthetic data, while highly beneficial, should be employed with an understanding of
its implicit assumptions and potential restrictions.

6.2 Limitations

6.2.1 False Positives due to internal and implicit access checks

Due to the diverse nature of access control checks, detecting and modeling them as labels
can cause problems for the deep learning model. Therefore, to generate labels for the
training and testing data, we employ access control detection and normalization techniques
to standardized the diverse access checks. However, the static analysis tools struggle to
detect two prominent cases: implicit access control checks and internal access control,
which can affect our dataset’s reliability. Addressing the accurate detection of implicit
access control checks is beyond the scope of this work.

6.2.2 Inability to evaluate our model on vendor customized ROMs

To evaluate our approach, we performed a 10-fold cross-validation on AOSP data. How-
ever, we were unable to test our model’s performance on vendor-customized Android ROMs
using the deep learning evaluation metrics (accuracy, precision, recall and f1-score). This
is because we assume that AOSP is reliable and use it as training data; however, vendor-
customized ROMs lack the ground truth labels, which are necessary to evaluate the per-
formance of our model. Instead, we evaluated our model on vendor-customized ROMs by
manually analyzing the flagged APIs and noting the cases of potential inconsistencies.

35

Chapter 7

Related Work

7.1 Deep Learning for Software Engineering

In literature, several software engineering tasks have adapted machine learning and deep
learning approaches to achieve state-of-the-art performance for their respective tasks [32].
For example, Feng et al. proposed CodeBERT, a bimodal pre-trained model for natural
language and source code [12]. In their work, Zhou et al. demonstrate that fine-tuned
CodeBERT performs well for unseen data in code summarization, code-to-document gen-
eration tasks, and new tasks that the model was not trained on, such as defect predic-
tion tasks. [35]. To our knowledge, deep learning approaches have yet to be extensively
investigated for access control recommendation as a task. The access control check’s di-
verse nature and the ground truth data’s limited availability could be possible reasons.
Nonetheless, we provide some insight into the vulnerability detection task, as there is a
close relationship between vulnerability detection and access control recommendation re-
garding the necessary features for the decision-making process of the deep learning model.
Researchers have adapted deep learning models for vulnerability detection to improve the
static and dynamic analysis-based tools [24, 37, 25, 8]. VulDeePecker implements BiLSTM
networks to implement code attention which allows them to discover and pinpoint the lo-
cation of vulnerabilities in source code [22]. SySeVR uses Bidirectional Gated Recurrent
Unit (BGRU) in conjunction with a systematic framework for extracting and encoding
syntactic and semantic features from C/C++ source code into vector representations to
discover vulnerabilities [21]. In their work, Zhou et al. propose Devign, which uses graph
neural network to locate vulnerabilities in C projects using Abstract Syntax Trees (AST)
enhanced with control and data flow information as features [36]. Kim et al. fine-tune Bert

36

to detect system vulnerabilities in C/C++ source code [19]. Instruction2Vec encourages
us to perform IR decompilation to enhance the performance of our model. Specifically,
Lee et al. [20] used binary code modelling to generate assembly instructions, taking ad-
vantage of the syntax of the code. Gallagher et al. motivate us further to implement IR
Abstraction by showing that CodeBert performs better on C source code compared to it’s
IR representation [14].

7.2 Inconsistency Analysis

Kratos is a static analysis tool that discovers inconsistencies in the hard-coded access con-
trol checks along the path to sensitive resources [27]. Due to the diverse nature of access
control checks, Kratos suffers from high false positive rates. AceDroid improves upon the
previous convergence analysis tools by normalizing access control checks and converting di-
verse access control checks into their canonical form to reduce false positives [3]. ACMiner
uses text analysis techniques to statically detect potential authorization checks and discover
access control inconsistencies without oversimplifying access control checks as compared to
AceDroid [16]. Doing so allows ACMiner to detect vulnerabilities more precisely when an-
alyzing single system images. IAceFinder [34] analyse sensitive APIs and Intent objects to
detect leakage of sensitive data. FRED [17] enhances the convergence-based inconsistency
by identifying mappings between Remote Procedure Call (RPC) entry points and concrete
file paths in the Android ROM to detect permission re-delegation vulnerabilities. Although
all of the mentioned inconsistency detection approaches simulate access control checks in
distinct ways, their underlying mechanism remains the same. Poirot [10] demonstrates
that convergence analysis suffers from high false positives due to inaccurate resource ac-
cess control mapping. Furthermore, they introduce Poirot, a static analysis tool that uses
probabilistic inference to generate access control recommendations for system APIs based
on pre-defined heuristics.

37

Chapter 8

Conclusion

In this paper, we introduce a deep learning-based access control recommendation approach
that predicts access control requirements for Android APIs. Our approach can automat-
ically learn and fine-tune contextual relations in Android APIs, eliminating the need to
manually describe and fine-tune rules. Through extensive evaluation, we demonstrate the
promising application of our fine-tuned model: The model achieves 93% accuracy, 91%
precision, and 92% recall in access control recommendations. Our approach further iden-
tifies 7 previously undiscovered access control inconsistencies, of which 4 were recognized
by the respective vendors in 4 Android ROMs.

As part of the future work, one might obtain a more balanced dataset by sourcing data
from AOSP and vendor-customized ROMs, specifically handpicking the system service
APIs with fine-grained access control protections. Such data would require manual anno-
tation, especially since it would incorporate system service APIs from vendor-customized
Android ROMs. The curated dataset would then serve as a basis to further train and eval-
uate models, pushing them towards recommending more detailed access control checks.
Finally, we highlight the benefits of this approach and address the unique challenges we
faced while adapting a deep learning approach to recommend access control enforcement in
Android, underscoring the need for continued research and advances in this critical domain.

38

References

[1] Akka. https://akka.io/, 2022.

[2] Wala. https://github.com/wala/WALA, 2022.

[3] Yousra Aafer, Jianjun Huang, Yi Sun, Xiangyu Zhang, Ninghui Li, and Chen Tian.
Acedroid: Normalizing diverse android access control checks for inconsistency detec-
tion. In NDSS, 2018.

[4] Yousra Aafer, Guanhong Tao, Jianjun Huang, Xiangyu Zhang, and Ninghui Li. Precise
android api protection mapping derivation and reasoning. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, pages 1151–
1164, 2018.

[5] Esraa Saleh Alomari, Riyadh Rahef Nuiaa, Zaid Abdi Alkareem Alyasseri,
Husam Jasim Mohammed, Nor Samsiah Sani, Mohd Isrul Esa, and Bashaer Abbuod
Musawi. Malware detection using deep learning and correlation-based feature selec-
tion. Symmetry, 15(1):123, 2023.

[6] Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien Octeau, and Se-
bastian Weisgerber. On demystifying the android application framework: Re-visiting
android permission specification analysis. In 25th {USENIX} security symposium
({USENIX} security 16), pages 1101–1118, 2016.

[7] Zeki Bilgin, Mehmet Akif Ersoy, Elif Ustundag Soykan, Emrah Tomur, Pinar Çomak,
and Leyli Karaçay. Vulnerability prediction from source code using machine learning.
IEEE Access, 8:150672–150684, 2020.

[8] Saikat Chakraborty, Rahul Krishna, Yangruibo Ding, and Baishakhi Ray. Deep learn-
ing based vulnerability detection: Are we there yet. IEEE Transactions on Software
Engineering, 2021.

39

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[10] Zeinab El-Rewini, Zhuo Zhang, and Yousra Aafer. Poirot: Probabilistically recom-
mending protections for the android framework. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, pages 937–950,
2022.

[11] Anam Fatima, Ritesh Maurya, Malay Kishore Dutta, Radim Burget, and Jan Masek.
Android malware detection using genetic algorithm based optimized feature selection
and machine learning. In 2019 42nd International conference on telecommunications
and signal processing (TSP), pages 220–223. IEEE, 2019.

[12] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Codebert: A pre-trained model
for programming and natural languages. arXiv preprint arXiv:2002.08155, 2020.

[13] Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Phung.
Vulrepair: a t5-based automated software vulnerability repair. In Proceedings of the
30th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 935–947, 2022.

[14] Shannon K Gallagher, William E Klieber, David Svoboda, and CARNEGIE-MELLON
UNIV PITTSBURGH PA. Llvm intermediate representation for code weakness iden-
tification. 2022.

[15] M Gopinath and Sibi Chakkaravarthy Sethuraman. A comprehensive survey on deep
learning based malware detection techniques. Computer Science Review, 47:100529,
2023.

[16] Sigmund Albert Gorski, Benjamin Andow, Adwait Nadkarni, Sunil Manandhar,
William Enck, Eric Bodden, and Alexandre Bartel. Acminer: Extraction and analysis
of authorization checks in android’s middleware. In Proceedings of the Ninth ACM
Conference on Data and Application Security and Privacy, pages 25–36, 2019.

[17] Sigmund Albert Gorski III, Seaver Thorn, William Enck, and Haining Chen. {FReD}:
Identifying file {Re-Delegation} in android system services. In 31st USENIX Security
Symposium (USENIX Security 22), pages 1525–1542, 2022.

40

[18] Justin M Johnson and Taghi M Khoshgoftaar. Survey on deep learning with class
imbalance. Journal of Big Data, 6(1):1–54, 2019.

[19] Soolin Kim, Jusop Choi, Muhammad Ejaz Ahmed, Surya Nepal, and Hyoungshick
Kim. Vuldebert: A vulnerability detection system using bert. In 2022 IEEE Interna-
tional Symposium on Software Reliability Engineering Workshops (ISSREW), pages
69–74. IEEE, 2022.

[20] Yongjun Lee, Hyun Kwon, Sang-Hoon Choi, Seung-Ho Lim, Sung Hoon Baek, and
Ki-Woong Park. Instruction2vec: Efficient preprocessor of assembly code to detect
software weakness with cnn. Applied Sciences, 9(19):4086, 2019.

[21] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, and Zhaoxuan Chen. Sy-
sevr: A framework for using deep learning to detect software vulnerabilities. IEEE
Transactions on Dependable and Secure Computing, 19(4):2244–2258, 2021.

[22] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng,
and Yuyi Zhong. Vuldeepecker: A deep learning-based system for vulnerability detec-
tion. arXiv preprint arXiv:1801.01681, 2018.

[23] Hongliang Liang, Yuxing Yang, Lu Sun, and Lin Jiang. Jsac: A novel framework
to detect malicious javascript via cnns over ast and cfg. In 2019 International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2019.

[24] Guanjun Lin, Sheng Wen, Qing-Long Han, Jun Zhang, and Yang Xiang. Software
vulnerability detection using deep neural networks: a survey. Proceedings of the IEEE,
108(10):1825–1848, 2020.

[25] Huan Mei, Guanjun Lin, Da Fang, and Jun Zhang. Detecting vulnerabilities in iot
software: New hybrid model and comprehensive data analysis. Journal of Information
Security and Applications, 74:103467, 2023.

[26] Dhruv Rathi and Rajni Jindal. Droidmark: A tool for android malware detection
using taint analysis and bayesian network. arXiv preprint arXiv:1805.06620, 2018.

[27] Yuru Shao, Qi Alfred Chen, Zhuoqing Morley Mao, Jason Ott, and Zhiyun Qian.
Kratos: Discovering inconsistent security policy enforcement in the android frame-
work. In NDSS, 2016.

[28] Connor Shorten, Taghi M Khoshgoftaar, and Borko Furht. Text data augmentation
for deep learning. Journal of big Data, 8:1–34, 2021.

41

[29] Tim Sonnekalb, Bernd Gruner, Clemens-Alexander Brust, and Patrick Mäder. Gener-
alizability of code clone detection on codebert. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering, pages 1–3, 2022.

[30] Chandra Thapa, Seung Ick Jang, Muhammad Ejaz Ahmed, Seyit Camtepe, Josef
Pieprzyk, and Surya Nepal. Transformer-based language models for software vulner-
ability detection. In Proceedings of the 38th Annual Computer Security Applications
Conference, pages 481–496, 2022.

[31] R Vinayakumar, Mamoun Alazab, KP Soman, Prabaharan Poornachandran, and Sita-
lakshmi Venkatraman. Robust intelligent malware detection using deep learning. IEEE
access, 7:46717–46738, 2019.

[32] Cody Watson, Nathan Cooper, David Nader Palacio, Kevin Moran, and Denys Poshy-
vanyk. A systematic literature review on the use of deep learning in software engineer-
ing research. ACM Transactions on Software Engineering and Methodology (TOSEM),
31(2):1–58, 2022.

[33] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? Advances in neural information processing systems,
27, 2014.

[34] Hao Zhou, Haoyu Wang, Xiapu Luo, Ting Chen, Yajin Zhou, and Ting Wang. Uncov-
ering cross-context inconsistent access control enforcement in android. In The 2022
Network and Distributed System Security Symposium (NDSS’22), 2022.

[35] Xin Zhou, DongGyun Han, and David Lo. Assessing generalizability of codebert. In
2021 IEEE International Conference on Software Maintenance and Evolution (IC-
SME), pages 425–436. IEEE, 2021.

[36] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign:
Effective vulnerability identification by learning comprehensive program semantics
via graph neural networks. Advances in neural information processing systems, 32,
2019.

[37] Noah Ziems and Shaoen Wu. Security vulnerability detection using deep learning nat-
ural language processing. In IEEE INFOCOM 2021-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pages 1–6. IEEE, 2021.

42

	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Background & Motivation
	Convergence-based Inconsistency Detection
	Limitations of Convergence Analysis

	Probabilistic Inconsistency Detection
	Limitations of Probabilistic Analysis

	Our Proposed Solution

	Priming for Deep Learning
	How to construct meaningful features to reflect access control enforcement in Android APIs?
	Why Finetuning CodeBert?
	What is the access control label/recommendation granularity?

	Approach
	Phase-1: Data collection and Pre-Processing
	Phase-2: Feature Selection
	Phase-3: Feature Reduction
	Phase-4: IR Decompilation
	Phase-5: Label Extraction

	Model Evaluation and Experiments
	Experimental Setup
	Training Samples Collection
	Training samples vs. testing samples
	Evaluation Metrics

	RQ1: Baseline and Combined Model Performance
	RQ2: Impact of Various Design Decisions on Model Performance
	RQ3: Runtime and Memory Overhead
	RQ4: Detecting Access Control Inconsistencies
	RQ5: Comparison to Poirot

	Discussions
	Threats to Validity
	Reliance on AOSP
	We Assume that Combining Two Unprotected Paths Retains Unprotected Status

	Limitations
	False Positives due to internal and implicit access checks
	Inability to evaluate our model on vendor customized ROMs

	Related Work
	Deep Learning for Software Engineering
	Inconsistency Analysis

	Conclusion
	References

