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Abstract

The applications for projectors have increased dramatically since their origins in cinema.
These include augmented reality, information displays, 3D scanning, and even archiving
and surgical intervention. One common thread between all of these applications is the nec-
essary step of projector calibration. Projector calibration can be a challenging task, and
requires significant effort and preparation to ensure accuracy and fidelity. This is especially
true in large scale, multi-projector installations used for projection mapping. Generally,
the cameras for projector-camera systems are calibrated off-site, and then used in-field un-
der the assumption that the intrinsics have remained constant. However, the assumption
of off-site calibration imposes several hard restrictions. Among these, is that the intrinsics
remain invariant between the off-site calibration process and the projector calibration site.
This assumption is easily invalidated upon physical impact, or changing of lenses. To ad-
dress this, camera self-calibration has been proposed for the projector calibration problem.
However, current proposed methods suffer from degenerate conditions that are easily en-
countered in practical projector calibration setups, resulting in undesirable variability and
a distinct lack of robustness. In particular, the condition of near-intersecting optical axes
of the camera positions used to capture the scene resulted in high variability and significant
error in the recovered camera focal lengths. As such, a more robust method was required.
To address this issue, an alternative camera self-calibration method is proposed. In this
thesis we demonstrate our method of projector calibration with unknown and uncalibrated
cameras via autocalibration using the Dual Absolute Quadric (DAQ). This method results
in a significantly more robust projector calibration process, especially in the presence of
correspondence noise when compared with previous methods. We use the DAQ method
to calibrate the cameras using projector-generated correspondences, by upgrading an ini-
tial projective calibration to metric, and subsequently calibrating the projector using the
recovered metric structure of the scene. Our experiments provide strong evidence of the
brittle behaviour of existing methods of projector self-calibration by evaluating them in
near-degenerate conditions using both synthetic and real data. Further, they also show that
the DAQ can be used successfully to calibrate a projector-camera system and reconstruct
the surface used for projection mapping robustly, where previous methods fail.
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Chapter 1

Introduction

This thesis deals with projector calibration, namely, the calibration of projector-camera
systems for use in projection mapping. Projector and camera calibration can take two
forms, photometric (calibration of color) and geometric (calibration of lens parameters).
The purpose of these calibrations is to take visual content, meant to be displayed on a
particular surface, and render the content in the domain of each projector so that it is
displayed as intended by the artist. This can be as simple as aligning two projectors in a
movie theater on a single screen or to increase the brightness of the video.

Projection surfaces may be flat, as in a cinema screen, or they may be curved for a more
immersive experience. Alternatively, projection surfaces need not be screens at all; visual
content can be projected on buildings or even on statues, depending on the desired effect.
All these applications require correct geometric and photometric projector calibration for
correctly rendered content. The calibration process ensures that the content rendered for
each projector is warped to provide the appearance of originating from a single projector.

Here, we address the problem of geometric projector calibration. In particular, we tackle
the problem of geometric projector calibration without priors or calibration artifacts, using
a single uncalibrated camera as a sensor.

1.1 Contribution

The major contribution of this thesis is a novel, global approach to projector self-calibration
that is robust in the presence of correspondence noise. It provides a reliable and flexible
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solution to the significant costs and complexity associated with current projector self-
calibration methods.

1.2 Motivation

Beyond their use in displaying movies on the silver screen, projectors serve as a means of
turning essentially any surface into a display, without being limited by size. This has made
them an excellent instrument in Augmented and Virtual Reality applications (AR/VR),
and has garnered significant research interest over the last several decades[32, 31, 25, 11].
They have also been used extensively to build 3D scanning systems[17, 3, 15, 41] for a
diverse set of applications, such as archiving[26] and guided surgical intervention[10]. All
of these domains rely upon accurate projector calibration, which also has been the subject
of extensive academic attention[29, 31, 40, 18, 15].

Projector calibration in an industrial setting has a variety of associated challenges that
include technical, economical, and ergonomical. The ability to support a significant variety
of system configurations, such as number of projectors, size and scale of scene, and pro-
jection surface geometry, is imperative. These installations can have significant associated
costs, such as the number of cameras required to support the calibration process (which
naturally scales with the number of projectors), or the availability of operators needed to
perform these calibration tasks. As a result, the requirement to support a large variety of
projector-camera system configurations, using technically sophisticated calibration meth-
ods, enabled with sufficiently ergonomical means that operators may perform in reasonable
time, while being robust and cost-effective, is a difficult feat to achieve.

The work in this thesis aims to alleviate the complexity and lack of robustness of projec-
tor calibration without priors. The setup required for even a single projector is significant
in terms of resources, both time and equipment. Notably, the cameras used in such pro-
jector calibration tasks require their own calibration, most commonly performed prior to
the projector installation, using a calibration artifact[42]. This constrains the projector
calibration process, as the recovered camera parameters must stay constant between the
initial camera calibration and the subsequent projector calibration, which is not guaran-
teed. It further limits the operator in the projector calibration process; machine vision
cameras often use a lens with a fixed focal length, which, if not suitable to the scene, may
need to be changed. These factors support the adoption of camera self-calibration meth-
ods for these applications[5, 38, 27, 13]. However, current methods suffer from degenerate
conditions that are encountered with regularity, thus preventing consistent and accurate
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results, which is examined in great detail within this thesis. As such, a robust and efficient
method for projector self-calibration is of great interest to both academia and industry.

1.3 Objectives

The primary objective of this research was to devise a robust method for projector self-
calibration that eliminates the need for prior calibration of cameras using a calibration
artifact, thus decreasing material costs, setup time, and flexibility. Instead, only the cor-
respondences available in the scene are used to simultaneously recover the calibration
parameters of both camera and projector as well as the scene structure.

The secondary objective is to explore the capabilities and limitations of the proposed
method alongside previous projector self-calibration methods, examining the relative ro-
bustness and tolerance to noise. This research aims not only to advance the understanding
of projector calibration methods but also to provide a practical method that can be easily
implemented in real-world applications.

1.4 Thesis Outline

This thesis is organized as follows.

• Chapter 2: Background. This chapter introduces the notation and concepts used
throughout the thesis. The established techniques and methodologies relevant to
camera and projector calibration are discussed, providing a foundation for the rest
of the thesis.

• Chapter 3: Problem Formulation. This chapter presents the challenges underlying
the primary objective of this thesis. It also outlines the experimental approaches
designed to address these challenges and to test the proposed method.

• Chapter 4: Synthetic Data Evaluation. In this chapter, we evaluate the proposed
method with synthetic data to understand its behaviour under controlled conditions.

• Chapter 5: Projector Autocalibration. This chapter applies the proposed method to
real-world projector calibration problems using real data. The setup, methodology,
and results of the experiments are presented and discussed.
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• Chapter 6: Conclusion. This final chapter summarizes the main findings, outlines
the contributions of the research, and discusses potential directions for future work.
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Chapter 2

Background

2.1 The Camera Model

The camera model [12, 21, 35] is the fundamental expression that underpins the entire
calibration pipeline: It represents the forward model[21], mapping a view of some scene
in the world to an image. Knowing the internal parameters of this forward model permits
not just the localization of the camera within the world but also the localization of any
detectable point in the real world.

A camera model is simply a projection that transfers points from R3 to R2. Models
can be split into two broad categories[27]: perspective preserving, and non-perspective
preserving (i.e., cameras at infinity). Perspective-preserving camera models map well to
physical cameras (e.g., smartphones, single-lens reflex, mirrorless, etc.) where the size of
an object in the image is directly related to its distance from the camera. Non-perspective
preserving cameras are used often in video games or design software, such as in an isometric
view. The generalized equation for a camera model is given by

x = PX (2.1)

where X is the homogeneous coordinate of a point in R3, x is the corresponding homoge-
neous coordinate in R2 in the camera image plane, such that

x = [x, y, w]> = w[u, v, 1]> (2.2)

and P is a 3×4 projection matrix. Note that while the forward model has a unique solution,
in the absence of additional constraints, the inverse model has infinitely many solutions,
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due to the dimensionality reduction of X 7→ x. For our purposes, we will discuss only
perspective-preserving cameras, namely, the pinhole, generalized pinhole, and projective
camera models.

In the metric or Euclidean form of the camera matrix, based on the pinhole camera
model, the camera matrix P is a function of the camera pose given by a 3 × 3 rotation
matrix R, the 3 × 1 camera center C̃, and a set of internal camera parameters stored in
an upper triangular matrix K:

P = K
[
R | −RC̃

]
(2.3)

The general form of the internal camera parameters K, also referred to as the camera
intrinsics, is given by

Kgeneral pinhole =

fx s cx
fy cy

1

 (2.4)

where fx and fy represent the focal length in the x and y directions, the skew measure s
represents the deviation from orthogonality of the image basis vectors, and the principal
point (cx, cy) represents the intersection of the central axis of the camera lens with the
image plane. With modern, commercial off-the-shelf cameras, we may generally assume
square pixels, zero-skew, and an image-centered principal point. In contrast, cx = w

2
and

cy = h
w

is not a safe assumption for projector calibration, since the projector principal
point values are often manipulated to adjust the display, as this is significantly easier than
physically moving an often large and cumbersome projector.

2.1.1 The Pinhole Camera Model

The pinhole camera model is the simplest of the camera models, with unit aspect ratio, no
skew and the image origin aligned with its principal axis:

Kpinhole =

f f
1

 (2.5)

The generalized pinhole camera model expands on this, allowing for varying aspect ratio
between x and y axes, and image coordinates with the origin at the top-left corner of the
image:

For the purposes of our calibration problem, we can simplify Equation (2.4) by making
several assumptions. We assume that these cameras are standard, commercially available
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Figure 2.1: A point visible in a single camera view is constrained to a line in R3. If that
point is visible in another view, the intersection of the two rays constrain it to a set of
coordinates X. Any triangulated point between two views is coplanar with both the camera
centers and the epipoles of the stereo configuration. Figure copied from [27].

cameras with a fixed focal length. We can assume that the pixels are square, i.e. fx = fy
and with no skew, s = 0. We may also assume that the principal point lies approximately
in the center of the image, such that cx = w

2
and cy = h

2
where w, h represent the camera

resolution. Applying a transformation to set the image center to the origin of the image
coordinate frame, leaves us with only a single parameter to estimate, f . We can reduce
the general model of Equation (2.5).

2.2 Geometry of the Image Pair

A pair of cameras observing the same scene is the simplest configuration with which struc-
ture and motion can be estimated. To estimate the location X ∈ R3 of an image point, at
least one other view of that same image point is required. A single camera view constrains
a detected feature to a single ray originating from the camera center out to infinity. A
second camera reduces the solution space to a smaller volume of uncertainty, since the the
rays generally will not intersect perfectly (see Figure 2.2). Hence the reconstruction of any
point remains probabilistic, and is greatly improved by an increase in the camera baseline
for the two-view configuration. Note that a pixel is essentially a frustum in R3. Assuming
a constant baseline, as viewing angles of the two cameras become increasingly parallel, the
uncertainty volume of the reconstructed point grows, as shown in Figure Figure 2.2.
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Figure 2.2: The uncertainty volume in two-view geometry. Note that as the distance of the
correspondence relative to the stereo baseline increases, the volume of uncertainty - shown
in grey - increases dramatically. This tends to produce anistropic errors in triangulation
of points in R3, with errors significantly higher in the z axis of the stereo camera pair.

2.2.1 The Fundamental Matrix

In the two-view configuration with cameras C and C ′, the fundamental matrix relates two
image views by satisfying the following equation:

x>Fx′ = 0 (2.6)

where x and x′ are homogeneous image coordinate vectors in the first and second view,
respectively. The forward model of F for two known camera views is:

F =
(
K′−1

)>
R[t]×

(
K−1

)
(2.7)

where K and K′ are the intrinsic matrices of the first and second views, respectively, R is
the rotation matrix that transforms C to C ′, and [t]× is the translation from C to C ′ in
skew-symmetric form. Hence, given known intrinsics for both cameras, the relative pose
can be trivially estimated. 1

2.3 Camera Matrix Estimation

We have a set of n points for the structure of our observed scene X = {X}, where X =
[X, Y, Z, 1]>. There are corresponding homogeneous image coordinates U = {x}, where

1The product of R[t×] is also known as the Essential Matrix [12].
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x = [x, y, w]> = w[u, v, 1]>. The points are captured by an unknown camera C with
projection matrix PC , where

PC =

p1 p2 p3 p4
p5 p6 p7 p8
p9 p10 p11 p12

 (2.8)

The mapping of X 7→ x follows the forward model of Equation (2.1). We may use the
Direct Linear Transform (DLT) algorithm [12] to produce a set linear equations of the
form Az = 0, such that

A =

(
0 wiXi viXi

wiXi 0 uiXi

)
2n×12

(2.9)

where z is a 12× 1 vector reordering of the elements of PC :

z = [p1 p2 . . . p12]
> (2.10)

The linear system is solved by identifying the nullspace of A [12].

A camera matrix has 12 elements and 11 degrees of freedom (the one degree lost because
of scale ambiguity). Each set of R2 → R3 correspondences gives two equations, hence
we need five complete X 7→ x correspondences, and either the x or y coordinate of a
sixth to fully constrain the system. In practical applications of structured-light with � 6
such correspondences, leading to an overdefined A, we solve for PC by taking the unit
eigenvector corresponding to the smallest eigenvalue of A>A.

2.4 Structured Light

Multiple view geometry, for any number of cameras, requires correspondences to be de-
tected between each image. Classical Structure-from-Motion methods detect these corre-
spondences using passive features, with descriptors such as HOG (Histogram of Oriented
Gradients)[8], SIFT (Scale-Invariant Feature Transform)[20], ORB (Oriented FAST and
Rotated BRIEF)[30] or AKAZE (Accelerated KAZE)[2]. For active-stereo configurations
such as projector-camera systems, the features are created using the projector, which dis-
plays spatially- or temporally-encoded Structured Light (SL)[33][32][9].

There are various options for generating correspondences through SL patterns, each
with their respective trade-offs. Traditional projector calibration, particularly for pixel-
dense 3D reconstruction uses multi-frame SL patterns. Multi-frame patterns like Gray
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Code binary patterns (shown in Figure 2.3) can be used to encode unique addresses for
each projector pixel, thus producing a densely reconstructed surface. This is preferable for
surfaces where smoothness and continuity cannot be assumed.

In cases where assumptions of smoothness and surface continuity can be made, the SL
patterns used can be sparse; either multi-frame blobs or spatially encoded patterns (see
Figure 2.5 and Figure 2.6. Such configurations can be leveraged to improve the speed and
quality of the calibration and reconstruction. For example, one can reduce the solution
space from all R3 to geometric primitives, such as a plane, partial cylinder, or dome.
The sparseness is not a limiting factor for projection mapping, as points between explicit
correspondences can be interpolated, allowing for a smooth warping of the projector image
to the display.

2.4.1 Multi-frame Structured Light

Multi-frame — or temporally-encoded — SL produces a pixel-dense point cloud, but does
so at a cost: the image acquisition takes time. The number of required frames is defined
by the minimum number of bits needed to uniquely encode every projector pixel, given by:⌈

log2(hP )
⌉

+
⌈

log2(wP )
⌉

(2.11)

where wP and hP are the width and height of the projector in pixels, respectively. More-
over, any cameras used must remain fixed, increasing the price, network traffic, memory
requirements, compute and setup times for any such systems.

There is an additional cost that may be incurred as a function of the scene surface
properties. Multi-frame binary patterns can be susceptible to signal duplication that can
arise from non-lambertian surfaces.

An example of projected Gray Code patterns can be seen in Figure 2.4. Note the
ambiguity along the vertical axis; each image axis requires a set of Gray Code frames, as
indicated by Equation (2.11). In order to decode each feature descriptor in Gray Code
binary patterns, each camera pixel is evaluated along the temporal axis t, such that the
binary signal created by the multi-frame SL acts as a feature. Often the projector resolution
will be exceeded by the camera resolution, and the one-to-many projector-to-camera pixel
mapping requires a centroid calculation. See Figure 2.3 for the patterns along a single axis.

Upon complete capture from each camera position of all necessary structured light
frames, the correspondences are then extracted using the algorithm defined in Algorithm 1.
The algorithm assumes that the resolution of the camera used in capturing of structured
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Figure 2.3: 6 Bit Gray Code Patterns

light frames is greater than that of the projector emitting those frames. Therefore, each
SL feature in the projector domain should map to multiple camera pixels, hence the need
for the centroid of each SL feature correspondence in the camera domain.

2.4.2 Single-Shot Structured Light

An alternative to temporally encoded SL is single-shot, or spatially-encoded SL[32]. In
such patterns the feature descriptors are defined spatially and must be detected. An
example of this can be seen in Figure 2.6, which shows a set of 6 binary tags marking
the vocabulary, and a 3 × 3 unique address block that defines the correspondence. The
tradeoff is self-evident: a faster image acquisition process and a time-independent signal at
the cost of structure density. These SL patterns are particularly well suited for applications
involving a single moving camera, for which the constraints of multi-frame patterns would
be prohibitive.

2.5 Geometric Strata

When performing a camera calibration before scene reconstruction or camera localization,
the results will lie within Euclidean space and, by definition, will map to the scene geometry
by an SE(3) transform consisting of a rotation R and translation t.

The structure generated from ≥ 2 camera views lies in one of a set of geometric strata.
These strata define the constraints that apply to the transformation of the structure relative
to its real-world counterpart. All such general linear transformations are defined as a 4×4
matrix, denoted by 0T1 for a transform from inertial frame 0→ 1.

Structure and motion obtained from a multi-view configuration will generally occupy
one of the following geometric strata: projective, affine, metric, or euclidean[27]. The
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Figure 2.4: 6 bit vertical Gray Code frames.

Figure 2.5: Tag-based, spatially encoded structured light pattern. Tag vocabulary (left)
and example address block (right). Image taken from [9]
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Algorithm 1 Gray Code Structured Light Correspondence Gather

Require: Set of SL frames Fi = {f1, f2, ..., fn} for each camera
Ensure: Correspondence table V containing correspondence matches between cameras

and projector for each structured light feature
1: Concatenate all structured light frames in projector domain along dimension 3 to pro-

duce a 3D matrix Sp
2: for each pixel p in the Sp do
3: Read the binary code bp along the temporal axis of p
4: Store this binary code as the key in a lookup map M mapped to the projector domain

coordinates
5: end for
6: for each set of SL frames Fi captured by camera Ci do
7: Apply a binary threshold v to all frames (0 < v < 1)
8: Concatenate all frames into a 3D matrix Si
9: for each pixel p in the camera-view stack Si do

10: Read the binary code bp along the temporal axis of Si
11: Determine correspondence cp of the binary code bp to the projector domain using

M
12: Append cp to an intermediate list of correspondences C ′ for binary address bp
13: end for
14: for each correspondence feature bp mapped in V ′ do
15: Calculate the centroid g of all coordinates mapped to bp in V ′

16: Add g to list of correspondences V for feature bp in camera Ci
17: end for
18: end for
19: return correspondences V
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Figure 2.6: Example of tag-based SL. Image taken from [9]

least constrained of these strata, the projective stratum, can be estimated for any multi-
view geometry configuration with no prior knowledge of camera(s) or scene[28, 38]. The
calibration process is described in detail in Section 2.6. The transform from projective to
euclidean space has the following form:

Hprojective =


p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44

 (2.12)

which has 15 degrees of freedom as it is valid up scale. The desired calibration result
is an upgrade to the metric stratum, which maps to the real-world scene by a similarity
transform MTW with 7 DoF:

Hmetric =


σr11 σr12 σr13 t1
σr21 σr22 σr23 t2
σr31 σr32 σr33 t3

0 0 0 1

 (2.13)

In many cases, particularly in SL-based reconstructions, any cameras used are calibrated
in advance (generally using Zhang’s method), producing a Euclidean structure where the
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transformation WTE is in the SE(3) Lie group. These inertial frames are therefore related
by a rotation R and translation t:

Heuclidean =


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

 (2.14)

Figure 2.7: Geometric strata examples, from left to right: projective, affine, metric.

Performing the camera calibration using a calibration artifact such as a checkerboard
pattern (see Figure 2.8) produces a reconstruction scaled correctly to the real-world scene
being scanned. Hence the relationship in Equation (2.14) has only 6 degrees of freedom,
for rotation (euler angles φ, θ, ψ) and translation (position x, y, z).

2.6 Projective Calibration

Deriving the projection matrix from Equation (2.1) is difficult due to the ambiguity implicit
in the multiplication of the forward model. Take any nonsingular 4×4 matrix H. Starting
with the forward model, both the calibration matrix P and structure X can be transformed
by H while preserving the same image point coordinates x:

x = PX

= PHH−1X

= (PH)(H−1X)

= P̂X̂

(2.15)
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Since Equation (2.15) is true for any nonsingular H (since HH−1 = I), we are left with
an infinite solution space when lacking additional constraints necessary to solve for H. In
order to recover the metric calibration parameters, we initialize our calibration in projective
space (with some arbitrary nonsingular H applied) and upgrade to metric by localizing the
plane at infinity Π∞ and thus recovering H.

2.6.1 Incremental Approach

The projective calibration method developed in [27] is an incremental approach to projec-
tive structure and motion that begins with a stereo image pair. To begin the projective
calibration from a sequence of images, an image pair must be selected from which to initial-
ize the reconstruction. This initial stereo pair is selected by jointly maximizing two criteria:
feature richness and pose difference. Note that these criteria are necessarily inversely cor-
related, as greater pose difference implies dissimilar views and therefore fewer matching
features, and vice versa. The author of [27] proposes maximizing the product of the number
of feature matches with the distance measure δ to be described in Equation (2.20).

It should be noted that the uncertainty volume of a reconstructed point X ∈ R3 is
directly related to the relative angle between the two views. Unfortunately, in a projective
reconstruction the relative pose is unknown. However, we can still optimize for the greatest
pose difference through a proxy measure. The method proposed by [27] is to use the
reprojection error following a planar-homography H transformation for each pair of views
as the distance measure. The homography is defined by

Hij = [e]×F + ea>min, Hij : Ci 7→ Cj (2.16)

such that the homography H provides an approximation of X′:

HXi
k ≈ Xj

k (2.17)

In equation Equation (2.16), e is the the homogeneous coordinates of the epipole showing
the camera center of Cj in the image plane of Ci, and [e]× is the skew symmetric form of
the epipole, and F is the Fundamental Matrix that satisfies the criterion

Xi>FXj = 0 (2.18)

The value of amin is then found on the basis of the following minimization:

aijmin = argamin
∑
i

∥∥∥([e]×F + ea>)Xi
k −Xj

k

∥∥∥ (2.19)
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Here Xi
k,X

j
k are the kth point in image i and j. This homography is then used to define

a pose-difference measure between two views:

δij = median
({
δk
}ij)

, δijk =
∥∥∥HXi

k −Xj
k

∥∥∥ (2.20)

With the initial stereo-pair selected, arbitrary projection matrices can be assigned. The
initialization for these projection matrices is

P1 =
[
I3×3 03×1

]
P2 =

[
[e12]×F12 + e12a

> σe12

] (2.21)

In general, the projection matrix of the camera used as the frame of reference is aligned
with the global coordinate system. The reconstruction is performed using the n-view
triangulation method used in [24].

With the reconstruction initialized, it can be extended by traversing the scene graph
and solving for the camera matrix of each view using the Direct Linear Transform algorithm
outlined in Section 2.3, and triangulating other remaining points again using the method
in [24]. This process is repeated until all camera matrices have been estimated and all
points with ≥ 2 views have been triangulated.

2.6.2 Factorization Approach

The method of projective calibration used by [37] is a two-step reconstruction process. The
preqequisite to this approach is a complete scene graph2. This method builds a complete
observation matrix of correspondences W that can be factorized into projective structure
Xj and motion and Pi:

W =

 λ11x11 λ12x12 . . . λ1nx1n
...

...
λm1xm1 λm2xm2 . . . λmnxmn

 =


P̂1

P̂2
...

P̂m

(X̂1 X̂2 . . . X̂n

)
(2.22)

If the observations in W are free of noise, then nothing further need be done. However,
considering that the correspondences will have some associated noise, the observation ma-
trix needs to be normalized column-wise and along ”triplets-of-rows”[36]. The first step

2A graph where cameras are represented as nodes, and the edges indicate the presence of shared
correspondences
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is described [36, 22], is to recover the projective depths λip of each correspondence point.
These are estimated according to

λip =
(eic × uip) · (Ficucp)

||eic × uip||2
λcp (2.23)

where eic represents the epipole, Fic the Fundamental Matrix, and λcp = 1 for all known
points up.

The second step, following the projective depth estimation, is the filling of missing
elements for unknown depths. In cases where depth cannot be estimated directly due to
occlusions, the missing points may be estimated. The interested reader may find more
information on this in [37, 36, 22].

2.7 Camera Autocalibration

The recovery of the internal parameters of a camera is generally performed through Zhang’s
method[42], using a calibration artifact with known 3D structure, such as a checker-
board(see Figure 2.8). This method allows for high accuracy estimation of camera pa-
rameters in Euclidean space, as the dimensions of the checkerboard are known prior to
calibration. The simplicity of this approach has made this calibration method arguiably
the most ubiquitous camera calibration method.

The process of recovering camera parameters in the absence of such a calibration artifact
is known as autocalibration[5, 38, 27, 13], or self-calibration. There are ways to avoid the
standard camera calibration approach, and circumstances in which that may be desirable,
such as with a zoom lens, or any application that requires the use of unknown cameras.
While standard camera calibration involves the use of a calibration artifact with known
geometry in order to apply constraints and recover the Euclidean calibration parameters of
the camera, with autocalibration these constraints are derived by other means. We employ
a set of theoretical geometric entities that remain invariant under rigid motion. These
geometric entities are the plane at infinity Π∞ and the absolute conic ω∗∞[28], as well as
their derivatives, the image of the absolute conic and its dual[14], and the absolute quadric
and its dual[38].

In the process of self-calibration, the initial reconstruction can only occur in projective
space. The forward model of image projection, as shown in Section 2.1 has an implicit
ambiguity discussed in see Equation (2.15). This ambiguity prevents us from solving for
the metric calibration directly, the solution begins with a projective calibration. Once the
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Figure 2.8: Example of a standard checkerboard used for camera calibration using Zhang’s
method.

projective reconstruction is complete across the entire scene graph, we may constrain the
ambiguity to affine or metric by special means.

2.7.1 The Bougnoux Equations

The Bougnoux equations[5] provide an elegant and computationally inexpensive method
for the extraction of focal lengths for a stereo camera pair, assuming fairly good principal
point estimates for both cameras. The equations are given by:

f 2
1 = −p

>
2 [e2]×ĨF>p1p

>
1 Fp2

p2[e2]×ĨFĨF>p2

f 2
2 = −p

>
1 [e1]×ĨF>p2p

>
2 Fp1

p1[e1]×ĨFĨF>p1

(2.24)

where pi is the principal point and [ei] the epipole in skew-symmetric form of camera i,
and Ĩ is the matrix diag(1, 1, 0). Given this form, it is an appealing approach for partial
autocalibration as most commercially available cameras have an approximately image-
centered principal point. However it was pointed out in [23] that this method suffers from
a degeneracy when the camera optical axes intersect. While perfect intersection of optical
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Figure 2.9: The plane at infinity in projective (left) and affine (right) spaces. Figure copied
from [27]

axes is inherently only possible in synthetic data, near-intersection is quite common and
is of interest for these applications. The behaviour of the Bougnoux equations in such
near-intersection cases is investigated in greater detail in Chapter 4 of this thesis.

2.7.2 The Plane at Infinity

The plane at infinity Π∞ is a theoretic geometric entity that remains invariant under all
rigid affine transforms (and consequently under metric and Euclidean transforms), but may
be moved under projective transformations[28]. Its canonical position in affine, metric and
Euclidean spaces is [0, 0, 0, 1]>. Further, the geometric interpretation of Π∞ asserts that
the parallel lines of any geometric primitives intersect only at Π∞. This property of Π∞
explains its movement away from its canonical position under projective transformations;
see Figure 2.9.

Since Π∞ only varies under projective transformations, identifying the position of Π∞
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in projective space is equivalent to performing an affine calibration. The transformation
of Π∞ to its canonical position can be applied to upgrade the camera matrices PP

i . This
approach is an incremental upgrade, first solving the non-linear problem of locating the
plane at infinity, followed by a metric upgrade.

2.7.3 The Absolute Conic

The absolute conic Ω∞ and its image, ω∞ are elements related to the Π∞. The ω∞ is the
intersection of Ω∞ with Π∞, which is invariant under rigid motion and arbitrary rotation[].
The camera intrinsics are encoded in ω∞ according to

ω ∼ K−>K−1 (2.25)

and its dual, ω∗∞ is given by ω ∼ KK>. Hence solving for the Dual Image of the Absolute
Conic (DIAC) ω∗∞ is equivalent to a metric calibration.

2.7.4 The Dual Absolute Quadric

The Dual Absolute Quadric (DAQ) Ω∗∞ is quadric surface whose null vector is the plane
at infinity Π∞:3

Π∞
>Ω∗∞Π∞ = 0 (2.26)

Ω∗∞ is a degenerate, symmetric 4 × 4 matrix of rank 3 that encodes for metric structure
and is invariant under Euclidean transformation. In Euclidean space, it takes the following
form:

Ω∗∞euc =

(
I3×3 0
0 0

)
(2.27)

Note that the canonical position of Π∞ in metric space is at [0, 0, 0, 1]>, which satisfies
Equation (2.26). In a warped geometric space, such as the projective space occupied by
a projective reconstruction as described in Section 2.6, the Ω∗∞ will map to its metric
invariant form by a 4 × 4 linear transform H (see Equation (2.15)). This transformation
is split into two matrices B and c [37]:

H =
[
B4×3 c4×1

]
(2.28)

3For a more in-depth treatment of the DAQ, see [38]
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This transform will apply to all the P across all of the views, assuming constant intrinsics,
upgrading them to metric space:

ω∗ ∼ KK> ∼ PQ∗∞P> (2.29)

In the following section we discuss the use of Equation (2.29) to establish a set of linear
constraints to easily estimate Ω∗∞.

2.8 Camera Calibration using the Dual Absolute Quadric

The structure and motion is initialized via the Factorization method in Equation (2.22).
This approach makes use of all the available data, and tends to have better statistical
behaviour than the incremental approach, which is subject to the quality of the initial
stereo pair.

The expression in Equation (2.29) provides the relationship between the absolute conic
via the dual of its image, ω∗∞ (and through it the camera intrinsics K), and the DAQ. To
simplify the set of linear equations derived from ω∗∞ to solve for Ω∗∞, we modify the former
by asserting some general prior knowledge about the camera used to capture the image
sequence, such as unit aspect ratio (fx = fy), zero skew, and an image-centered principal
point:

cx =
width

2
cy =

height

2
s = 0 (2.30)

We shift correspondences so that the image center falls at (0, 0). Hence, we are left with a
diagonal, symmetric matrix ω∗∞

ω∗ = KKᵀ =

f 2 0 0
0 f 2 0
0 0 1

 (2.31)

We can use the simplified form of Equation (2.31) to build a set of linear constraints that
can be solved using linear least-squares:

P
(1)
i Ω∗∞P

(1)ᵀ
i = P

(2)
i Ω∗∞P

(2)ᵀ
i

P
(1)
i Ω∗∞P

(2)ᵀ
i = 0

P
(1)
i Ω∗∞P

(3)ᵀ
i = 0

P
(2)
i Ω∗∞P

(3)ᵀ
i = 0

(2.32)
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This closed-form solution can be used as an initialization for subsequent refinement proce-
dures, either through additional constraints [7] or by means of bundle adjustment such as
in [37]. The constraints established in Equation (2.32) require at least three independent
image views4 via the camera matrices Pi. With an estimate for Ω∗∞, we can calculate the
transform to upgrade the projective calibration to a metric one. From Equation (2.15) we
take P̂i = PiH where P̂i is the projective camera matrix at index i. Let us split P̂ into
M4×3 and T4×1, coupled with Equation (2.28) such that:[

M T
]

= P
[
B c

]
(2.33)

Here Ω∗∞ = BBᵀ, where B can be attained using rank-3 factorization. For Ti =
[
T ix T iy T iz

]
we have

T ix = P i
xc

T iy = P i
yc

T iz = P i
zc

(2.34)

resulting in the following relationships to the image correspondences5:

T ix
T iz

=

∑n
j=1w

i
ju
i
j∑n

j=1 u
i
j

and
T iy
T iz

=

∑n
j=1w

i
jv
i
j∑n

j=1 u
i
j

(2.35)

These produce two equations per camera view from which to solve for c. We now have the
necessary transform H to upgrade the projective calibration to metric space according to
Equation (2.15).

2.9 Bundle Adjustment

Bundle Adjustment[1, 16, 19, 39] refers to a class of non-linear optimization problems that
jointly refine the structure and motion of an image sequence with some number of opti-
cal devices, using reprojection error as the primary penalty in the loss function. Modern
syntheses leverage the sparsity inherent of these optimization problems to improve per-
formance, as the process can be computationally and memory intensive, particularly at
large scales. The naive Levenberg-Marquardt algorithm has a computational complexity
of O((m3+mn) where m represents the number of cameras, n the number of 3D points[12],

4Since Ω∗∞ is a rank-deficient symmetric matrix parameterized by 10 unknowns
5The derivation for this has been skipped for brevity, the full extent of which can be found in [37]
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which can be reduced to O(m) by exploiting the sparsity in primary and secondary ma-
trix structures, and other techniques discussed in [1, 6, 16]. This approach is statistically
optimal, provided that the noise function of detected correspondences are Gaussian dis-
tributed.

The naive optimization approach uses a loss function derived from the forward model
Equation (2.1) similar to the following[39]

argP̂min
∑
i

∑
j

ρj

(∣∣∣∣P̂iX̂j − xj
∣∣∣∣2) (2.36)

where the camera motion P is adjusted (either in metric space via R and t or directly
through projective bundle adjustment) and all structure points Xj are triangulated from
these new camera positions, from which the reprojection error can be calculated.
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Chapter 3

Problem Formulation

In this chapter, our aim is to formalize the problem and scope of projector autocalibra-
tion. We begin by defining the key components and variables involved in the calibration
process, followed by an elaboration of the challenges and assumptions. Finally, we present
the mathematical formulation of the problem and discuss the desired outcomes of the
autocalibration process.

The task of projector calibration has many components and configurations and can
become complex with respect to setup time, hardware, and computational resources. The
possible configurations include single or multi-projector systems, photometric or geomet-
ric calibration, machine vision or mobile phone cameras, single or multiple cameras, and
cameras with fixed or varying intrinsics, among others. The object of this thesis is to de-
termine a practical autocalibration algorithm for projector systems. As a result, the scope
of the experiments will be limited to the following: the geometric calibration of a single
projector using a single uncalibrated camera with fixed intrinsics, to be calibrated without
a checkerboard or calibration artifact and without any priors.

The system will consist of a projector, a camera, and a scene including a piece-wise flat,
discontinuous surface. The projector emits structured light patterns onto the scene, which
are then captured by the camera from various positions. The parameters that configure
this scene are given by

• KP ,RP , tP : the projector’s intrinsic and extrinsic parameters.

• KC ,RC , tC : the camera’s intrinsic and extrinsic parameters.

• I: the set of captured images of the structured light patterns.
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where the raw image data in I is decoded to produce the set of all correspondences U from
which the structure X along with projector and camera parameters are computed.

3.1 Challenges and Assumptions

The process of projector calibration faces several technical and practical challenges. Some
of the main challenges include:

• Degenerate configurations: Certain camera motions, such as purely rotational
motion, or planar scenes leading to ambiguities in the solution space.

• Surface properties: Non-lambertian surface reflection resulting in signal duplica-
tion and occlusion via over-blooming.

• Computational and memory cost: Large structure-from-motion type problems
are very computationally intensive.

In order to develop a practical autocalibration algorithm for projector systems, we make
the following assumptions:

• General Camera Properties: We assume that the camera used in these experi-
ments has a unit aspect ratio, zero skew and an image-centered principal point.

• Constant Camera Properties: We further assume that for all images in the
gathered sequence, the camera and projector internal parameters remain constant.

Note that we make no assumption regarding the projection surface (e.g. properties such
as smoothness and surface continuity) that would otherwise compress the solution space.

Key Challenges

The key challenges posed by the projector autocalibration problem are broken down here.
We discuss the pitfalls of degenerate camera motions resulting in ambiguities in the solution
space, the high computational cost for high correspondence counts and number of views,
and the non-lambertian surface properties which affects correspondence noise through sig-
nal duplication as well as blooming and occlusion. These challenges are discussed along
with ways to mitigate these effects on the autocalibration process.
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(a) (b)

Figure 3.1: Examples of degenerate camera motions. These motion sequences, among
others, are degenerate in that they do not produce sufficient constraints to recover metric
calibration parameters. For a more thorough treatment on these, see [27].

Degenerate Configurations

The process of autocalibration relies on rigidity constraints to infer the necessary transfor-
mation to upgrade projective structure and motion to a metric one. As such, the camera
views and the correspondences used in this process must be independent and provide suf-
ficient constraints. Degenerate camera motions such as pure translational motion, purely
rotational motion, rotation about the optical axis or perfectly orbital motion incur ambi-
guities that necessarily inhibit good calibration results.

Surface Properties

The surface properties of a scene to be used for projection mapping have an outsized
impact on the quality of the resulting calibration. The ideal scenario for any projector
calibration and scene reconstruction problem would be that all surfaces within the scene
exhibit Lambertian reflectance. A perfectly diffuse reflection of the structured light used
for correspondence generation would eliminate signal duplication and result in even lighting
and a moderate contrast range. The lack of lambertian surfaces in a scene can result in a
series of challenges:
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• Signal duplication. This can result in non-gaussian noise in the detected point
correspondences. This impacts the performance of the refinement process by Bundle
Adjustment, as BA is optimal only under conditions of Gaussian noise.

• Specular reflections. These can create bright spots, making it difficult to find a
single optimal exposure setting for correspondence gather. Poor exposure settings
(exposure time and gain values) can exacerbate blooming, which can occlude critical
correspondence features and make thresholding for image binarization more difficult.
Solving this via high-dynamic range (HDR) significantly diminishes camera mobility,
as multiple frames are required for an individual HDR image.

Computational and Memory Complexity

The dimensionality of calibration and structure-from-motion problems increases both with
the number of views and the number of correspondences. The iterative nature of these types
of algorithms make them quite susceptible to computational and memory complexity. The
upper bound on the number of correspondences per camera view is the total number of
correspondences encoded in the structured light.

Considering a projector with a resolution of M × N pixels, the maximum number of
correspondences encoded in Grey Code structured light is equal to the total number of
pixels in the projector’s image plane, which can be represented as:

Cmax = M ×N. (3.1)

As the number of camera views, denoted by V , increases, the overall complexity of the
problem grows. The total number of correspondences, Ctotal, across all camera views can
be written as:

Ctotal = V × Cmax. (3.2)

To quantify this, let us consider the number of edges, E, in the graph as a function of
the number of camera views and correspondences. In the worst-case scenario, with fully
connected graph, the number of edges can be represented as:

E =
V × (V − 1)

2
+ V × Cmax, (3.3)

where Cmax denotes the maximum number of correspondences per camera view. This equa-
tion indicates that the number of edges increases quadratically with the number of camera
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views, resulting in a substantial growth in computational complexity. This increase in
complexity results in a larger optimization problem that must be solved iteratively, fur-
ther exacerbating the computational and memory demands. This has resulted in a strong
research interest in the direction of efficient optimization problems that leverage sparsity
in SfM problems[16, 19], hierarchical approaches through divide-and-conquer methods[4]
and sparse graph representations to reduce graph connectivity[34].

3.2 Experiment 1: The Dual Absolute Quadric and

Bougnoux Synthetic Data Evaluations

To effectively assess the relative performance between the DAQ and Bougnoux-based meth-
ods of autocalibration, it is helpful to test these methods using synthetic data. In experi-
ments with real hardware, some variables are difficult to control and it can be impractical
to parameterize an experiment along these axes, especially when ground truth is difficult
to attain. These evaluations are discussed and analyzed in Chapter 4.

Bougnoux: Optical Axis Proximity

Recall that the work in [23] discovered that the Bougnoux equations are degenerate in
the case of intersecting optical axes. In practice, this perfect intersection is impossible
to achieve, yet close proximity of these axes for two cameras observing the same scene
is rather expected. The behaviour near these degenerate points is therefore important to
understand, as it impacts the viability of methods based on these equations through its
impact on robustness.

Take a two camera configuration, a static camera C and another camera C ′ to pivot
about its pitch axis by θ. The experiment is parameterized by the angle θi and corre-
spondence noise standard deviation σj. For each stereo pair, the Bougnoux equations are
used to estimate each camera’s focal length. The experimental configuration can be seen
in Figure 3.2. Each iteration will take the following form:

1. Generate a synthetic scene with known ground truth geometry and camera parame-
ters.

2. Introduce positional noise by perturbing the ground truth extrinsic camera parame-
ters with zero-mean Gaussian noise.
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Figure 3.2: Superposition of all camera poses used in Experiment 1 for the Bougnoux
evaluation (with principal rays shown). The left camera is kept fixed, while the right camera
has a variable pitch. The synthetic data tests are performed in two-view configurations
that include the fixed camera on the left combined with one of the views on the right to
parameterize the experiment by minimum distance between principal rays.

3. Solve for the camera focal lengths using the Bougnoux equations.

The above experiment results in 1680 unique combinations of σuv and θi, each of which is
evaluated 40× to produce a reasonable statistical view of performance.

DAQ: Degenerate Motion Sequences

The degenerate motion sequences (partially illustrated in Figure 3.1 are difficult to achieve
by accident. They require a physical setup such as a turntable or a linear camera slider.
However, just as in the Bougnoux equations, understanding the behaviour near the de-
generate points is eminently desirable in order to develop a robust set of heuristics for
projector autocalibration via these methods.

In the DAQ evaluation, we generate a series of virtual scenes with varying levels of
correspondence noise, denoted by σcorr, positional noise, σpos and rotational noise, σrot.
The rotational noise function is represented as perturbations in Euler angles. . The
experiments involve the following steps:

1. Generate a synthetic scene with known ground truth geometry and camera parame-
ters.
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2. Introduce correspondence noise by perturbing the ground truth correspondences with
zero-mean Gaussian noise.

3. Introduce positional noise by perturbing the ground truth extrinsic camera param-
eters with zero-mean Gaussian noise. The perturbations are applied independently
to the translational and rotational components.

4. Perform DAQ autocalibration on the synthetic data.

By systematically varying the levels of correspondence noise and positional noise in the
synthetic data, we can analyze the robustness and accuracy of the DAQ autocalibration
method for different levels of noise. The results of these experiments can then be used
to guide the development of heuristics and improvements to the method, ensuring its
robustness and reliability in real-world projector autocalibration scenarios.

DAQ: Minimally Constrained Sequences

The degenerate motion sequences described so far are difficult to achieve without planning.
To simulate a more realistic projector calibration configuration, a randomly generated
set of camera poses about a point cloud is used and tested under minimally constrained
conditions.

For each iteration of this test, three images are used for autocalibration, with increasing
levels of correspondence noise.

• Generate a synthetic scene with known ground truth geometry and camera parame-
ters

• Generate a set of random camera poses about the pointcloud with a common focus
point for all cameras

• For all possible combinations of three views in the set of camera poses, project the
pointcloud to the image plane and apply noise to correspondences

• Perform autocalibration using the DAQ and evaluate against ground truth values
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Hypothesis and Expected Outcomes

For the Bougnoux equations, the expectation for this experiment is a poor convergence
— even for low values of correspondence noise — near the degenerate configuration that
converges on the correct answer as the distance to that configuration increases.

The DAQ method is expected to be more robust to noise, without being impacted by
principal ray proximity. It is also expected to behave similarly to the Bougnoux equations
in near-degenerate configurations with a similar convergence as the positional noise is
increased.

3.3 Experiment 2: Projector Autocalibration via the

Dual Absolute Quadric

In this experiment, the DAQ autocalibration method is tested under practical conditions.
Drawing upon the insights taken from the synthetic data experiment detailed in Section 3.2,
we seek to interpret the findings of this real-world experiment in a comparable context.
This experiment is discussed in detail in Chapter 5.

Problem Definition

The crux of this experiment is to undertake the task of autocalibrating a single projector us-
ing the DAQ method, under conditions of unknown correspondence noise, non-lambertian
surface properties and a densely-connected scene graph. The efficacy of this method will
be evaluated by comparing the resulting intrinsic parameter estimates.

This experiment aims to establish the DAQ as an accurate and robust autocalibration
method when presented with the practical challenges of projector calibration. While this
experiment is limited to a single projector-camera pair, the resource complexity is still
significant given the pixel-dense correspondences and multiple camera views processed.

In addition to the DAQ, we will also test the GDPCA method[?] of projector autocali-
bration, juxtaposing its performance with the DAQ against the aforementioned challenges.
Since GDPCA uses the Bougnoux equations for initialization, it is expected that the per-
formance between these methods will mirror the results of Section 3.2.
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DAQ Projector Autocalibration

The dataset for this experiment is gathered using a single camera and projector setup. By
strategically repositioning the camera, a total of 8 views are captured. This dataset then
undergoes processing using the DAQ autocalibration method. We have made a conscious
effort to avoid purely translational camera poses to steer clear of degenerate configurations.

To draw a comparative analysis, the dataset is also processed using GDPCA[?] for each
projector-camera stereo pair. The estimated intrinsic parameters derived from this method
will be compared against the results obtained from the DAQ.

Hypothesis and Expected Outcomes

It is hypothesized that the DAQ method will demonstrate good convergence in intrinsic
parameter estimation across variable camera view counts. In contrast, the GDPCA method
is expected to show a significant lack of convergence across all projector-camera pairs.
Through this comparison, we aim to demonstrate the relative strengths and weaknesses of
these two methods for the task of projector autocalibration.
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Chapter 4

Synthetic Data Evaluation

4.1 Motivation

The motivation to conduct a synthetic data experiment for projector autocalibration, com-
paring both the DAQ and Bougnoux methods, primarily stems from the need for a con-
trolled environment to understand the performance and limitations of these approaches.
Synthetic data provide precision and the ability to manipulate individual parameters, al-
lowing us to isolate specific factors of interest, such as noise levels and degenerate camera
motions, among others. Moreover, synthetic data serve as a crucial reference point, pro-
viding a ground truth against which the performance of the autocalibration methods can
be evaluated. By leveraging synthetic data, we can meticulously design scenarios that
test these methods under varying conditions for robustness and accuracy, thus revealing
their strengths and weaknesses in a controlled, reproducible manner. The insights taken
from such an experiment can guide the development of robust heuristics, as well as the
fine-tuning of these methods for real-world, practical applications.
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4.2 Methodology

4.2.1 Bougnoux: Experimental Setup and Parameterization

Recall from Section 2.7.1 the Bougnoux equations for autocalibration are given by:

f 2
1 = −p

>
2 [e2]×ĨF>p1p

>
1 Fp2

p2[e2]×ĨFĨF>p2

f 2
2 = −p

>
1 [e1]×ĨF>p2p

>
2 Fp1

p1[e1]×ĨFĨF>p1

(4.1)

The above equations may, for some combinations of principal points and fundamental ma-
trix estimates, return complex numbers or fail to produce a the correct estimate. This
has been seen in applications of the GDPCA method [?]. Further, it is expected to show
degenerate behaviour in cases where the optical axes of the camera views are intersecting
[23]. While perfect intersection is not practically achievable, it is important to understand
the behaviour of these equations under conditions of near-intersection. In order to better
understand this scenario, we evaluate this with synthetic data using a set of 3D coordinates
from which to establish ground truth correspondences. Any arbitrary set of 3D correspon-
dences may be used; for the purposes of this experiment 10,000 points were sampled from
a 3D model similar to that shown in Figure 4.3.

Consider a synthetic two camera setup, as depicted in Figure 4.1, parameterized as
follows: the minimum distance between the optical axes (on an interval of [0, 0.2) in 21
equal increments) and zero-mean noise applied to the ground truth point correspondences
x to produce estimates x̂ such that x̂ ∼ N (0, σX). Each combination of parameters will
be evaluated 40 times to provide a reasonable sample.

4.2.2 DAQ: Experimental Setup and Parameterization

The DAQ is evaluated in two parts. First, the near-degenerate behaviour of the DAQ is
evaluated for one of the critical motion sequences shown in Figure 3.1. Second, it is then
evaluated under conditions of minimal constraints and in geometric configurations where
the Bougnoux equations fail.
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Figure 4.1: Diagram of a synthetic two-view setup for the evaluation of the Bougnoux
equations

Degenerate Motion Sequences

The DAQ is evaluated similarly to the Bougnoux equations in the previous section. The
near-degenerate behaviour is tested by generating a set of synthetic camera poses in a
known degenerate motion sequence, applying noise along multiple parameters and assessing
the calibration results against ground truth as a function of the applied parameter noise.
The experiment is parameterized by Gaussian noise in the following variables: σuv for
the 2D correspondences x, σC the camera position tc in R3, and σγ for the Euler angles
representing the camera orientation.

• Generate a set T of camera positions tc, where T is of size m. These camera positions
are placed at regular intervals on a circle of radius r, centered about a pointcloud X ,
similar to Figure 3.1b.

• Apply noise to all tc in T with a distribution of N (0, σC)

• Determine camera orientation R by aligning the camera z axis with the centroid of
X and aligning the camera image plane x-axis with the XY plane in R3.

• Apply a rotation by randomly sampling Euler angles distributed according to φ, θ, ψ ∼
N (0, σγ).

• Project points of X onto each camera image plane, producing a set of image points
U for each camera

• Apply a Gaussian noise function to all x ∈ U such that x ∼ N (0, σuv)
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The above procedure is parameterized on σC , σγ, σuv, such that:

σC ∈ {0, 0.05r, 0.1r, 0.2r}
σγ ∈ {0, 0.1, 0.2, 0.4}
σuv ∈ {0, 1, 2, 4}

(4.2)

where each combination of σ values in Equation (4.2) is tested for five (5) iterations,
resulting in

Three View Autocalibration

To provide a more explicit contrast between the relative advantages and disadvantages
of the discussed autocalibration methods, the DAQ is tested under conditions that are
degenerate for the Bougnoux equations. In the previous experiment, the random Gaussian
noise applied to position and orientation does not distinguish the DAQ from the Bougnoux
equations. However, the DAQ is robust under conditions where the Bougnoux equations
are not, which will be shown by the results of this experiment.

In this experiment, the DAQ method is tested using a set of m randomly generated
camera poses viewing a common point in R3, such that all optical axes intersect. From that
set, all combinations of three-view configurations are tested to determine the robustness of
the DAQ with the minimum possible constraints. The set of camera poses C is generated
as follows:

• Generate a set C of camera positions C, where C is of size m. The elements C are
sampled randomly from a sphere of radius r where the sphere center coincides with
the mean of all points X in the pointcloud.

• Apply a noise function to C such that C ∼ N (0, σC)

• Determine rotation for camera orientation by aligning the camera z axis with the
centroid of X and aligning the camera image plane x-axis with the XY plane in R3.

• To preempt ambiguity through linearly dependent images and correspondences, apply
noise to each camera’s rotation θ about its own optical axis, such that θ ∼ N (0, σθ)

This produces a set of transforms T for each camera where each transform is represented
by Ti ∈ SE(3). The synthetic cameras with poses from T are then used to produce
correspondences by mapping the points of the pointcloud X to each camera’s image plane.
These are the correspondences that are then used to perform autocalibration with the
DAQ.
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(a) σC = 0, σγ = 0.0 (b) σC = 0.05, σγ = 0.1 (c) σC = 0.1r, σγ = 0.2

Figure 4.2: Examples of increasing positional and rotational variation for near-degenerate
motion sequence test of DAQ.

Figure 4.3: Setup for DAQ three-view test. Every combination of three cameras are tested
for autocalibration using the DAQ (n = 7). In this example, cameras shown in red are
selected for DAQ autocalibration. Note that for all these configurations, all camera optical
axes intersect. The aim of this is to show the stability of the minimally-constrained problem
(i.e., with three views).
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Figure 4.4: Results of Bougnoux equation evaluation for the camera focal length f . In
all cases, the correct value is 1.0. At x = 0.0 we have the degenerate configuration of
intersecting optical axes. In general, the focal length error spread increases with noise
σ and with smaller baseline x. The minimum distance is normalized against the camera
baseline (shown in Figure 4.1 as 1.0).

4.3 Experimental Results

The results of the tests evaluating the Bougnoux degeneracy are shown in Figure 4.4;
the x-axis indicates the normalized minimum distance between the optical axes of the
two cameras. It becomes obvious that with low levels of correspondence noise, the focal
length estimates approach the ground truth value with increasing distance between the
optical axes. However, as σuv increases, this convergence deteriorates dramatically. This
is the core attribute that makes the Bougnoux equations inherently unsuitable for robust
autocalibration in [?, 40].

The results of the DAQ tests shown in Figure 4.5 and Figure 4.6 show a similar, albeit
more promising pattern. Note that in Figure 4.6, even with σuv = 4.0 the estimated focal
lengths are within 5% of the ground truth value. The results in Figure 4.5 indicate that
varied poses, particularly rotational variance, is a significant contributor to the robustness
of the DAQ.

The results of Section 4.2.2 provide a more direct comparison between the DAQ and
Bougnoux methods, which can be seen in Figure 4.7. Note that the DAQ focal length
estimates are for perfectly intersecting optical axes, while the Bougnoux equations are
given for near-intersection, to better reflect real-world scenarios. It is expected, based on
this data, that the DAQ will show significantly more robust estimates in the results of
Chapter 5.
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Figure 4.5: Results of DAQ focal length estimates for σuv = 4 by pose variation. Note
the stronger correlation between rotational variation and improved focal length estimates.
The results are normalized such that the ground truth value is f = 1.

Figure 4.6: Focal length estimation results using the DAQ with maximum tested pose
variation (σX = 0.2 and σθ = 0.4)
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Figure 4.7: Comparison of DAQ and Bougnoux focal length estimate distribution evaluated
with synthetic data.

The DAQ method appears preferable for sequences where motion can be random-
ized without sacrificing image sensor real-estate. Near-degenerate behaviour is similar to
Bougnoux equations, however degenerate configurations are significantly more difficult to
achieve. In particular, DAQ is not subject to poor calibration results at- or near-principal
ray intersection. Overall the DAQ is better suited to the projector-autocalibration problem
space.
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Chapter 5

Projector Autocalibration

5.1 Motivation

The motivation of this chapter is to effectively evaluate the DAQ as a robust means of
autocalibration for projector-camera systems. It will include all the challenges listed in
Section 3.1.

5.2 Methodology

The DAQ autocalibration method described in Section 2.8 is evaluated using a single
projector-camera pair, to restrict the problem space. Several assumptions will be made
regarding these devices, namely that the focal lengths fx and fy are equal, as well as an
image-centered principal point (for the camera only). These assumptions will be used
to develop the set of linear equations used to estimate the DAQ Ω∗∞ that encodes the
transformation upgrading the projective reconstruction to a metric one. To that end,
we will capture correspondences from several viewpoints that include sufficient pose and
angular variation to sufficiently constrain this set of equations. In addition, we test the
GPDCA method of [?] on the same dataset to show the relative robustness of the DAQ.

5.2.1 Correspondence Gather

The set of correspondences U is built using Gray Code structured light (depicted in ??)
by placing the camera at a position with a view of the scene and capturing all 21 SL
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frames. This gather process is repeated for a total of 8 camera poses. Once all SL frames
are captured, each collection is decoded and mapped to the projector space. Algorithm 1
produces a correspondence table that provides the coordinates of each detected feature in
each view, from which the projective calibration can be obtained as described in Section 2.6.

5.2.2 Projector Calibration

To begin the projector calibration process, the single observing camera is calibrated first
following the DAQ calibration procedure in Section 2.8, using standard assumptions of
fx = fy, s = 0, u = width

2
and v = height

2
. The calibration is performed using correspon-

dences from all camera views to build a linear system of equations using the constraints
described in Equation (2.32). From this, Ω∗∞ is estimated through linear least squares
using singular value decomposition (SVD) and subsequently used to determine the linear
transform matrix H (see Equation (2.28)). The transform matrix H upgrades the ini-
tial projective calibration to a metric one, from which the desired projector calibration
parameters can be derived.

Recall the computational and memory complexity challenges discussed in Section 3.1.
The dense correspondences generated by the Gray Code Structured Light result in a total
correspondence count with an upper bound Cmax, equal to the total projector resolution.
The auto-calibration algorithm using the DAQ first proposed in [37] has a memory com-
plexity on the order of O(n2), where n is the total number of unique points in R3. In the
worst case, this results in a memory footprint of 5.3 × 1012k, where k is some constant1.
That being said, all available correspondences are not required to solve for Ω∗∞. In this case,
the correspondences are sub-sampled at a constant interval (5% of total correspondences)
to reduce the memory and computational requirements.

Having solved for the transform H to upgrade projective structure X̂ and motion P̂
to metric space, we can now map correspondences in the projector domain to points in
the acquired metric structure. The forward model in Equation (2.1) can be estimated via
the direct linear transform (DLT) algorithm[12]. The inverse problem takes the form of
Az = 0, where

A =

(
0 wiXi yiXi

wiXi 0 xiXi

)
2n×12

(5.1)

and z is a 12-element vector representing the camera projection matrix Pprojector. From
Equation (5.1) we have 2 equations per R3 → R2 mapping, and as such we need a minimum

1This constant is a function of several factors, including the hardware on which the algorithm is exe-
cuted.
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of 6 points to fully constrain the estimate. Naturally, given the pixel-level density of Gray
Coded SL we used in this method, A is significantly over-constrained, and we can sub-
sample point correspondences to reduce computational time and memory footprint. Once
A is defined, we can estimate the null space z by eigendecomposition of AᵀA, which yields
Pprojector.

5.3 Experimental Results

Setup and Data Collection

We evaluate the performance of our proposed method for the camera using the results
of Zhang’s method [42] as a ground-truth for comparison. Ground-truth values for the
projector calibration parameters were not recoverable by some external means, and hence
the projector calibration parameters derived from the proposed method are compared to
those recovered using Zhang’s method camera calibration parameters. We also evaluate
the GDPCA method in [?] as a reference for existing projector autocalibration methods.
The experimental results are summarized in Figure 5.2. Since the GDPCA method is only
designed to calibrate a single projector-camera pair, the evaluation is undertaken by testing
it on every combination of projector-camera pairs afforded by our dataset.

The setup follows the example in Figure 5.1, and the equipment used in this experiment
consisted of the following items, shown in Figure 5.3(a):

• One 1920x1200 Christie Digital Systems projector

• One 5MP FLIR GigE machine vision camera equipped with a 5mm lens

• One 3D printed model2

The performance of the proposed method is evaluated for the camera using the results
of Zhang’s method [42] as a ground-truth for comparison. The projector and camera are set
up to view the Wolf Head model, and correspondences are captured using 21 binary Gray
Code frames (11 horizontal, 10 vertical). The camera is repositioned and correspondences
gathered for a total of 8 unique views. It is expected that multiple camera pixels in each
camera view will map to the same feature in the projector domain, therefore we group
all correspondences mapping to the same projector pixel and take the centroid of the
coordinates in the camera domain.

2The model is the same as the one seen in Figure 4.3
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Figure 5.1: A mock up of the experimental setup including an arbitrary scene, a projector,
and camera. The camera is moved about to capture the projected structured light from
several views.

Results Analysis

The DAQ calibration results for the camera and projector can be seen in Table 5.1. Using
Zhang’s method results as a baseline, the DAQ shows promising results for the camera pa-
rameters, indicated by the < 5% error for both fx and fy. While the projector calibration
estimates show even better performance, there is a significant disparity in the coordinates
of the principal point (u, v). Specifically, the v coordinate of the projector principal point
having an almost 25% discrepancy is cause for further investigation. However, the cali-
bration results are none-the-less quite promising, and could be refined3 to produce results
on-par with pre-calibrated cameras.

When comparing the autocalibration methods, the results produced by GDPCA in Fig-
ure 5.2 show the same lack of robustness as seen in the initial evaluation of the Bougnoux
method in Figure 4.4.4 In comparison, autocalibration using the DAQ shows significantly
better robustness against correspondence noise, even under minimally constrained config-

3Potential methods to refine the autocalibration results include the relaxed optimization method pro-
posed in [7], that enforces the symmetry and positive-semidefiniteness of Ω∗∞

4Note that the method in [40] uses the same underlying autocalibration method as GDPCA to build
structure and motion incrementally, and therefore subject to the same degenerate configurations.
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Table 5.1: Results for the proposed autocalibration method. Results for Zhang’s method
are included for reference. The error indicated is the relative difference between the pro-
posed method and the parameters recovered using Zhang’s method.

Source Method fx fy u v

Zhang 2,410.43 2,410.71 1,232.00 1,045.56
Camera Proposed 2,307.30 2,303.20 1,261.30 1,041.50

Error % -4.28% -4.46% 2.38% -0.39%

Zhang 2,410.20 2,420.00 949.35 886.45
Projector Proposed 2,410.80 2,410.00 945.91 667.37

Error % -0.02% 0.41% 0.36% 24.71%

Figure 5.2: Distribution of focal length estimates of GDPCA versus the proposed method.
The results for GDPCA evaluate all projector-camera pairs in the real dataset.
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urations (i.e., three views). The structure and motion recovered via the DAQ can be seen
in Figure 5.3. Note in particular that the camera positions shown in Figure 5.3 can be split
into two sets of co-planar poses. This is a particularly positive piece of qualitative feedback,
as the camera was moved about on a tripod at two different fixed heights, matching the
recovered motion. For further qualitative review, the reconstructed pointcloud is shown in
Figure 5.4.

(a) Experimental setup. (b) Estimated structure and motion.

Figure 5.3: The experimental setup (left) and the derived structure and motion (right). The
experimental setup includes the following: (1) 3D model, (2) machine vision camera, (3)
Christie projector. The large camera shown in the derived results represents the recovered
projector pose; smaller cameras show the 8 estimated camera poses used to recover all
intrinsic and extrinsic parameters.
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Figure 5.4: Colorized point cloud of the recovered structure. Color scale is based on depth.
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Chapter 6

Conclusion

6.1 Summary of Findings

The synthetic data experiments of Chapter 4 corroborate the findings of the practical ex-
periments of Chapter 5. Both methods have inherent degenerate behaviours that impact
their reliability, however those of the Bougnoux method are much more likely to be en-
countered in practical settings for projector autocalibration. There are greater obstacles
to encountering the degenerate configurations of the DAQ, as the motion sequences shown
in Figure 3.1 require significant setup to achieve and can easily be avoided in projector
calibration settings.

The findings showed promising results with less than a 5% discrepancy in camera pa-
rameters compared to a baseline established by Zhang’s method. However, the projector
calibration showed a significant difference in the coordinates of the principal point, with
a discrepancy of almost 25% for the vertical coordinate. Despite these issues, the overall
results of the study were encouraging, suggesting that with further refinement (such as op-
timizing Ω∗∞ for symmetry, rank deficiency, and positive-definiteness) this autocalibration
method could yield results comparable to an approach using precalibrated cameras.

6.2 Contributions and Impact

The application and study of the DAQ autocalibration method extended to projector
calibration is the core contribution of this research. The DAQ autocalibration method
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provides a global autocalibration method using an unknown camera that is robust in the
presence of correspondence noise, distinguishing it from existing methods. Additionally,
probable camera poses for projector calibation have little overlap with Ω∗∞ degenerate
motion sequences and can be easily avoided. Mitigating the lack of robustness currently
found in similar methods simplifies projector calibration and enables an easier and more
reliable autocalibration process.

6.3 Limitations and Future Work

Despite the promising calibration results of this study, some limitations remain. The
principal point coordinates of the estimated projector calibration parameters deviated sig-
nificantly from those produced by the Zhang calibration parameters. Additionally, the
current DAQ method does not estimate the lens distortion parameters. Furthermore, the
bundle adjustment refinement procedure as currently formulated is not optimal for the
non-Gaussian noise distribution of the detected point correspondences of structured light.

There are several promising directions for future work in this area of research. Reduc-
ing the resource requirements by applying sparse graph representations[16, 19], divide-and-
conquer methods[4] and sparse graph representations[34] would enable the auto-calibration
of larger projector-camera systems by extending the single camera gather to greater view
counts without reaching hardware memory limits and impractically long computation
times.

The method could be further improved by reducing the correspondence gathering time
by leveraging single-shot structured light patterns. This would enable a mobile camera for
correspondence collection, which would significantly improve the flexibility and speed of
the calibration process.

Finally, incorporating additional non-linear optimization to enforce rank-deficiency in
Ω∗∞ could improve the estimation of intrinsic parameters such as the method described in
[7]. This approach could yield significant improvements and address current limitations
such as the significant projector principal point error noted earlier.
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