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Abstract

Global, annual mean surface temperature continues to rise in the wake of the Paris

Agreement goal of limiting warming to 2◦C and pursing efforts to limit warming to less than

1.5◦C. Research paradigms have arisen to analyze projections of future warming, as well as

understanding the drivers of anthropogenic climate change since the preindustrial era. One

such paradigm is the characterization of anthropogenic emissions of greenhouse gases as

an external radiative forcing on the climate system, as well as feedbacks from the climate

response to forcing that augment the rate in which the Earth system reestablishes energy

balance. As surface temperatures rise, solar geoengineering has been proposed as a means

to deliberately alter Earth’s energy balance and achieve Paris Agreement goals through

reducing the amount of incoming shortwave radiation from reaching the surface. Through

the lens of the conventional forcing-feedback framework, solar geoengineering is challenging

to frame due to the purposeful introduction of an external forcing in order to suppress

surface warming, and therefore feedback. Furthermore, the potential for multiple external

forcings via solar geoengineering to produce feedbacks from an energetic perspective, even

in the absence of surface warming, is poorly understood. This thesis attempts to adapt the

forcing-feedback paradigm to define potential radiative feedbacks on the climate system as

a result of solar geoengineering through three studies.

First, we perform an analyses of radiative forcing and feedback between two versions

of the Canadian Earth System Model (CanESM) to understand what is physically driving

differences in surface warming. We find little difference in radiative forcing from increased

CO2 between the two model versions. More positive radiative feedbacks produce a larger

amount of warming in CanESM5, primarily from a reduction boundary layer clouds across

the equatorial Pacific that reduced the Earth’s albedo to a greater extent. This analysis
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was essential to understand how radiative feedbacks, specifically from clouds, can impact

the rate surface warming.

Next, we analyzed radiative forcing from both increased CO2 and a reduced solar

constant using the Community Earth System Model (CESM). We find that the magnitude

of solar forcing required to offset the positive radiative forcing from quadrupling CO2 is

sensitive to radiative adjustments from both forcings. Radiative adjustments, which are

climate responses from an external forcing in the absence of surface warming that impact

Earth’s energy balance, as a result of reductions in cloud fraction had a dampening effect

on the reduction of the solar constant. This work informed how solar constant tuning,

which we used as a proxy for more realistic representations of solar geoengineering, can

produce changes in cloud fraction that impact planetary albedo and therefore the amount

solar forcing required to achieve energy balance.

Finally, we extend the work of the first two studies by defining and investigating po-

tential geoengineering radiative feedbacks in a transient solar geoengineering experiment

using CESM. We reduce the solar constant over time in an idealized geoengineering experi-

ment that maintains near-zero global mean surface warming in the wake of increasing CO2

and find a decreasing trend in optically thick tropical clouds. Reductions in cloud fraction

reduced planetary albedo, which further decreased the amount of solar forcing needed to

achieve the same net energy reduction at the surface, thus producing a positive radiative

feedback loop in absence of global mean surface warming. This work highlights the need

to understand potential feedbacks from realizable methods of solar geoengineering such as

stratosphere aerosol injections.

Keywords: geoengineering, climate sensitivity, energy budget, cloud feedbacks, radia-

tive forcing, earth system model
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Chapter 1

Introduction

1.1 Radiative Forcing & Feedback

The global climate is a system of energy flows. The Earth receives radiant energy from the

sun in the form of ultraviolet radiation and primarily emits energy back to space in the

form in infrared radiation. Over long timescales, the climate system relaxes toward these

two energy flows balancing each other, pushing the system to be in an equilibrium state

where the net radiative flux at Earth’s top of atmosphere (TOA) is close to zero. Earth’s

annual mean atmosphere energy budget is shown in Figure 1.1. The atmosphere acts as an

intermediary to the flux of radiation in both the shortwave (SW) and the longwave (LW)

wavelengths, where SW is categorized into radiation between 0.1 and 4 microns and LW

categorized as > 4 microns. The Earth’s variable surface topography, clouds, and gaseous

absorbers (e.g., carbon dioxide (CO2), H2O) in the atmosphere all interact with radiation

in some form to augment the flows of radiant energy either through reflection, absorption

and remission, or latent and sensible heat fluxes (Kiehl and Trenberth, 1997).
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As noted in Figure 1.1, the atmosphere is more transparent to SW radiation reaching

the surface than LW radiation escaping to space. The Earth’s atmosphere is more opaque

in the LW, meaning that less radiation is fully transmitted from the surface to space due

to the presence of gaseous absorbers and clouds, which fully absorb and re-emit radiation

along specific wavelengths in the LW. For example, the 15 µm wavelength band is fully

opaque, where 100% of radiation is absorbed in Earth’s atmosphere due to the presence of

CO2 (Hartmann, 2015). In contrast, the 8-14 µm band, or “atmospheric window”, is nearly

completely transparent to LW radiation in the atmosphere (see Figure 1.1). The vertical

distribution of temperature also impacts the total flux of thermal infrared radiation as

well where outgoing longwave radiation (OLR) approximately scales to the fourth power

of temperature.

In the SW, transmittance of radiation from the sun to the Earth’s surface is impacted by

both absorption and scattering in the atmosphere. The optical depth of the atmosphere

is defined as the proportion by which it reduces an incident beam of solar radiation by

both the combination of extinction due to absorption and scattering. Clouds and gaseous

absorbers (e.g., water vapour) both contribute to the atmosphere’s optical depth (see

“absorbed atmosphere” and “reflected” in the yellow lines in Figure 1.1).

Changes to the flows of radiant energy in the climate system by the introduction of

an external agent is defined as radiative forcing (RF) (Ramanswamy et al., 1991). The

principle RF example is anthropogenic emissions of well mixed greenhouse gases (GHG)

such as CO2, methane (CH4), and nitrous oxide (N2O). Global emissions of GHG, measured

in tonnes of CO2 equivalent, reached 55±5.2Gt in 2022 (Forster et al., 2023). In terms of

radiation, the effective radiative forcing (ERF) from all anthropogenic sources aggregated

over 1750-2022 was 2.91 W m-2 (±0.72 W m-2, 5-95% confidence interval).
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Figure 1.1: Schematic showing Earth’s annual mean atmosphere global energy budget. Yellow
arrows denote shortwave radiation, red arrows denote longwave radiation, and the green arrow
denotes latent and sensible heat flux from thermals and evapotranspiration. This figure was
adapted as shown here by Forster et al. (2021) and originally produced in Kiehl and Trenberth
(1997).

Effective radiative forcing is defined as the total RF from an external agent, which

is comprised of both an instantaneous component and a radiative adjustment (Sherwood

et al., 2015; Hansen et al., 2005). The instantaneous component of the RF is the direct

radiative flux change as a result of changes in atmospheric composition (Figure 1.2a). In the

case of an increase in CO2 concentration, the instantaneous component, or instantaneous

radiative forcing (IRF), is the increase in downwelling LW flux towards the surface as a

result of absorption and remission from CO2. Observational evidence of the IRF from all
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historical forcing agents show that the radiative impact from increasing GHG emissions

has increased in the twenty-first century, where Kramer et al. (2021) estimated the total

historical IRF from 2003 to 2018 increased by 0.53± 0.11 W m-2. This result was not only

driven by increased GHG emissions, but also from a reduction in aerosol emissions as well.

Figure 1.2: Conceptual diagram comparing the atmosphere and surface response to perturbation
for a) the instantaneous radiative forcing (IRF), b) the effective radiative forcing (ERF), and c)
the full system response (atmosphere+surface). This figure has been adapted from Figure 2 in
Hansen et al. (2005).

Studying Earth’s radiation budget through analysis of RF has significantly advanced

our understanding of both anthropogenic climate change and the climate system as a whole

(Wetherald and Manabe, 1975; Hansen et al., 1997, 2005; Zhang and Huang, 2014). The

taxonomy of RF has evolved to reflect our scientific understanding as well. As noted

in the previous paragraph, the IRF is only one component of the total ERF. Radiative

adjustments, which are defined as the radiative flux from the total atmosphere response

after a forcing agent has been introduced (Figure 1.2b), are a key source of study as

well (Chung and Soden, 2015; Sherwood et al., 2015). Radiative adjustments occur from

changes in state variables that perturb atmosphere infrared opacity or planetary albedo.

Changes in clouds, air temperature, water vapour, and surface albedo all result in either
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more or less radiation escaping to space, which alters Earth’s TOA energy budget.

Earth system models (ESMs) are particularly useful for studying the RF of specific

climate forcers such as aerosols, GHGs, or land use change. With the ability to constrain

model components (e.g., the ocean), one can isolate specific responses from ESMs. By

definition, the ERF term excludes the surface response, which practically manifests in

academic study by fixing the ocean sea surface temperatures (SSTs) and sea ice variables

(Pincus et al., 2016). The atmosphere responds comparatively fast in relation to the

ocean, which has led to radiative adjustments being defined as “rapid” adjustments as

well (Gregory et al., 2004). Therefore, the ocean’s response to forcing, which is on longer

timescales of years to decades to centuries, is defined as a feedback (Hansen et al., 1984;

Cess et al., 1990). Where there is no feedback (e.g. in a fixed-SST experiment design with

ESMs), net TOA flux ̸=0 as the Earth’s blackbody response (also known as the Planck

response) is constrained and OLR from the surface cannot increase without changes in

temperature (Figure 1.1, see “radiation emitted by surface”, and Figure 1.2a & b).

When the surface is not constrained and is allowed to respond to external forcing,

changes in SSTs impact other variables such as clouds, air temperature, and surface albedo

that further perturb Earth’s energy budget, which then feed back onto the surface (Figure

1.3). This forcing-feedback framework is a classic method of study with both ESMs and

other, simpler climate models that has been rigorously analyzed in climate science and

continues to inform our understanding of climate change today. For modelling global mean

surface temperature, the relationship between forcing and feedback is expressed linearly,

where the change in net TOA radiative flux from forcing is balanced over time by changes

in temperature (Gregory et al., 2004).
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Figure 1.3: Conceptual diagram showing forcing (left) and feedback (right) through their impact
on planetary albedo and atmosphere infrared opacity. This figure has been adapted from Figure
1 in Sherwood et al. (2015).

The forcing-feedback framework has been used extensively to quantify uncertainty with

respect to climate sensitivity in ESMs. Climate sensitivity, or the amount of warming the

Earth would exhibit as a response to a positive ERF, is easily quantified using the linear

framework. The most commonly used metric is warming as a response to an instantaneous

doubling of atmosphere CO2 concentration– effective climate sensitivity (ECS) Charney

et al. (1979). The term “effective” in ECS as it is defined here is a deliberate reference to

the modelled linear relationship between radiative forcing and warming, where ESMs are

forced with an abrupt doubling or quadrupling of CO2 and then global, annual mean surface

warming when the system reaches equilibrium is estimated by linear regression Andrews

et al. (2012). Given this is an extrapolation, it is not representative of warming once an

ESM reaches true equilibrium Knutti et al. (2017). Furthermore, this simplified approach

does not encompass all feedbacks and assesses warming on relatively shorter timescales

(centuries). Earth system sensitivity (ESS) is intended to be a more holistic term as it

accounts for feedbacks on longer timescales such as changes in vegetation, permafrost, ice
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sheets, and atmospheric chemistry (Knutti and Rugenstein, 2015). However, the feedbacks

incorporated into the definition of ESS span millennia that many ESMs do not explicitly

resolve. Therefore, effective climate sensitivity, while a simplification, is still a useful

emergent property of ESMs that gives insight into both forcing and feedback as they have

been discussed thus far.

1.2 Geoengineering

Geoengineering is defined as deliberate manipulation of Earth’s energy budget via an-

thropogenic means. The term is broad in scope and meant to capture a wide array of

proposed methods to modify radiant energy fluxes (Figure 1.4). Sometimes referred to as

emergency climate intervention, the concept of purposeful human intervention of Earth’s

energy budget is not a new one, as albedo modification and various other concepts have

been suggested over the past 50 years (Caldeira and Bala, 2017). However, in the wake of

the 2016 Paris Agreement goals of limiting global, annual mean surface temperature rise

to <2◦C and pursuing efforts to limit warming to < 1.5◦C, geoengineering as a potential

means to offset the positive ERF from increasing GHG emissions has received more atten-

tion from academia (this thesis being no exception). Geoengineering can be separated into

two categories— solar radiation modification (SRM) and carbon dioxide removal (CDR).

CDR techniques encompass both technological means to remove CO2 from the atmosphere

such as direct air capture, as well as enhancement of natural carbon sinks such as refor-

estation and Biochar (Figure 1.4). In contrast, SRM techniques aim to reduce the amount

of direct SW radiation incident on the Earth from reaching the surface. There are some

other proposed geoengineering techniques that attempt to manipulate LW radiative flux

in the atmosphere such as modifying cirrus cloud opacity, which is neither CDR nor SRM
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(Mitchell and Finnegan, 2009).

Figure 1.4: Conceptual diagram showing an overview of potential geoengineering strategies.
Filled in black arrows indicate shortwave radiation, white arrow heads indicate enhancing natural
flows of carbon, dotted arrows indicate sources of cloud condensation nuclei (Lenton and Vaughan,
2009).

Two proposed SRM techniques that adapt on naturally occurring processes in Earth’s

climate are stratosphere aerosol geoengineering (SAG) and marine cloud brightening (MCB)

(Latham et al., 2012; Rasch et al., 2008). MCB is an iteration on the naturally occurring

process of water droplets near the planetary boundary layer (PBL) nucleating on sufficiently

small enough aerosol particles to form cloud droplets, thus increasing the optical depth of

stratocumulous clouds (Latham, 1990). MCB would seed these clouds with aerosols to

produce more CCN of an effective radius, which would increase optical depth and there-
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fore planetary albedo. SAG’s naturally occurring analogue is volcanic eruptions. The

1991 Mount Pinatubo eruption ejected approximately 20 Mt SO2 into the stratosphere,

which produced a transient negative ERF and offset a portion of warming from greenhouse

gas emissions (Stenchikov et al., 1998). SAG would involve injections of SO2 into the

stratosphere to mimic this effect, albeit with specific targets and objectives in mind.

Of all proposed geoengineering techniques, research into the effectiveness, impacts,

cost, and technical implementation of SAG has progressed the most over the past decade

(Kravitz and MacMartin, 2020). Modeling studies using ESMs with SAG experiment

designs have provided some confidence in its effectiveness to avoid more severe impacts of

climate change with sophisticated injection techniques (Tilmes et al., 2018; Kravitz et al.,

2017). However, there is also some level of confidence in the trade offs associated with SAG,

such as stratosphere ozone reduction (Tilmes et al., 2009). There is substantial uncertainty

as well given both the lack of a historical precedent, field research, and inherent knowledge

gaps and large uncertainty in our understanding of the climate system. Of particular

importance is the uncertainty in the efficiency of SAG from an energy budget perspective,

where geoengineering effiency (GE) is defined as the ERF, in W m-2, per some unit of

geoengineering (e.g., per Tg injection of SO2). Outside of the physical impacts, SAG also

presents a challenge in international governance as well due to its relatively inexpensive

cost compared to projected changes to GDP as a result of climate change, coupled with

its global scope (McLaren and Corry, 2021).

Some of the trade offs with SAG and SRM more generally can be characterized sim-

ply by virtue that any adverse impacts from increased atmosphere CO2 concentration is

not addressed, such as ocean acidification (Robock, 2008). From a governance perspective

alone, deployment of SRM could catalyze emissions intensive activities as the perceived

risk would be reduced. Furthermore, if any implementation of SAG is not strategic in its
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deployment to try and reduce the disparity of impacts, some developing regions may be

disproportionately impacted from either first order (e.g., air quality from aerosol depo-

sition), or second order (e.g., impacts on regional climate regimes). Reliance is another

note of caution for any implementation of geoengineering, where increased SAG alongside

GHG emissions would necessitate persistent and larger injections in order to prevent a fast

“termination” effect on Earth’s climate (Jones et al., 2013). Notably, this risk assumes a

chronic increase in net GHG emissions throughout the deployment of some form of SRM.

From a geopolitical perspective, SRM could be used as a tool for targeted adverse regional

climate impacts should the implementation measures become more sophisticated. Lastly,

there may also be direct impacts on natural vegetation or agriculture from reduced SW

radiation reaching the surface (Robock, 2008). However, some research has speculated

that more diffusive radiation reaching the surface, coupled with the CO2 fertilization effect

on plants and its positive impact on net primary productivity, could offset this (Glienke

et al., 2015). Vegetation impacts from SRM and CDR are still highly uncertain and model

dependent.
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Figure 1.5: Median projected surface temperature (left) and precipitation changes (right) by
the end of century for a climate with geoengineering (“with geo”, subplot b) and without geo-
engineering under RCP8.5 (“no geo”, subplot a and c). In this scenario, SRM is used to meet
Paris Agreement targets by 2100. The “with geo” simulation output here is produced from an
emulator trained on an ensemble of models participating in GeoMIP(MacMartin et al., 2018).

ESMs have been a cornerstone of solar geoengineering research with their ability to

simulate a wide variety of experiment designs. Figure 1.51 illustrates the potential for

1This figure was extracted as is from its source publication. The precipitation colour bar unit is
incorrectly labelled as ◦C here, where it should be %
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modelling techniques to simulate target-based hypothetical scenarios where a mix of CDR

and SRM are deployed to meet Paris Agreement targets. The changes plotted in Figure

1.5 show similar spatial patterns of surface temperature (i.e. polar amplification) and

hydrological cycle changes as a “no geo” simulation, but smaller in magnitude and satisfying

the Paris Agreement 1.5◦C target. Here, SRM was simulated using an ensemble of ESMs

directly modifying the amount of incident SW radiation on Earth’s atmosphere as proxy

for SAG. These “solar dimming” style experiments are useful as an accessible experiment

design for ESMs of varying complexity, as experiment designs with SAG need to consider

aerosol-cloud interactions, stratospheric chemistry, and prognostic treatment of aerosols

(Visioni et al., 2021a). Where more ESMs are able to run solar dimming experiments, a

larger ensemble size provides a more robust assessment of structural uncertainty embedded

within ESMs.

Model inter-comparison projects have been essential for both catalyzing solar geoengi-

neering research and providing a means to assess geoengineering impacts through inter-

model uncertainty. The Geoengineering Model Inter-comparison Project (GeoMIP) is a

standard set of experiments designed for modeling groups to run in order to facilitate

inter-model comparison of various proposed geoengineering solutions (Kravitz et al., 2011b,

2015). Designs ranged from simple, such as the G1 experiment where solar dimming offset

a prescribed increase in CO2 (Figure 1.6a), to more realistic, such as the G6sulfur experi-

ment (Figure 1.6b) where injections of SO2 are prescribed to bring the ERF from Shared

Socioeconomic Pathway (SSP) tier 1 high forcing scenario down to that of a medium

emissions SSP scenario. While the G6sulfur experiment was related to policy relevant

experiments, the G1 experiment and G6Solar experiment are useful to understand geo-

engineering efficiency from an energy budget perspective— particularly in the context of

radiative adjustments. Radiative adjustments and their impact on the global energy bud-
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get, as well as their potential to impact geoengineering efficiency through changes in clouds,

temperature, water vapour, or surface albedo, are still poorly understood.

Figure 1.6: Three ESM geoengineering experiment designs from GeoMIP6. This figure has been
adapted from Figures 1 and 2 in (Kravitz et al., 2015)

1.3 Research Goals

The overarching purpose of this thesis is to demonstrate how the conventional forcing-

feedback paradigm for analyzing feedbacks in the climate system using ESMs could be

adapted to quantify potential radiative feedbacks for geoengineering experiments. These

feedbacks, henceforth referred as geoengineering feedbacks, could advance our understand-

ing of forcing efficacy for geoengineering techniques given their focus on TOA radiative bal-

ance, which has a first-order impact on surface temperature response. While the third and

final manuscript is primarily focused on addressing the overarching purpose, the chronol-

ogy of all three manuscripts build on top of one another with the methods, results, and
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conclusions that culminate in the final manuscript.

The research goals of this thesis are as follows:

1. Use conventional methods and climate model experiment design to understand how

radiative forcing and individual radiative feedbacks contribute to differences in cli-

mate sensitivity and surface warming between ESMs.

2. Understand the physical drivers of surface radiative feedbacks and how they impact

planetary albedo and atmosphere infrared optical opacity, and therefore energy bal-

ance.

3. Leverage the use of fixed-SST experiment design to quantify and differentiate ra-

diative adjustments from surface radiative feedbacks and how they influence TOA

energy balance, and therefore forcing efficacy. Extend the analysis of adjustments to

assess solar forcing efficacy as a proxy for geoengineering.

4. Develop a method for quantifying geoengineering radiative feedbacks in transient

dual-forcing experiments, where CO2 is incrementally increased and the solar con-

stant is decreased. Use this methodology to understand how geoengineering efficiency

may evolve over time as a result of changes in planetary albedo.

Goals 1 & 2 are addressed in Chapter 2, goal 3 in Chapter 3, and goal 4 in Chapter 4.

These goals are revisited in Chapter 5 as part of concluding remarks.

1.4 Chapter Structure

This thesis is comprised of three manuscript chapters and two supporting chapters. Chapter

1 and 5 are the supporting introductory and conclusion chapters, respectively. Chapters
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2, 3, and 4 are the main body of thesis and contain three manuscripts that were published

or submitted to be published in academic journals. The manuscript chapters follow in the

chronological order that each manuscript was submitted for publication. Each manuscript

chapter is a self contained study and has been reformatted for this thesis document as

written for their respective journal. All references have been aggregated across the five

chapters into the references section. While each manuscript stands alone, the results and

conclusions drawn in the order that they are presented are a direct through-line to the

research goals of this thesis as outlined in the previous section.

Chapter 2, the first manuscript, is an analysis of radiative forcing and feedback between

two versions of the Canadian Earth System Model (CanESM) using idealized forcing exper-

iments. With respect to CanESM, this manuscript was an attribution study to understand

what was driving a large increase in ECS from CanESM2 to CanESM5. For this the-

sis, Chapter 2 is an analysis of CO2 forcing and surface temperature radiative feedbacks

in a warming climate. The supporting information document published alongside this

manuscript has been reformatted as Appendix A

Chapter 3 shifts the focus onto radiative forcing rather than feedback. Using the

fixed-SST experiment design with the Community Earth System Model, this manuscript

decomposes the IRF and radiative adjustments for idealized CO2 and solar forcings in

order to understand how rapid adjustments from solar constant tuning contribute to its

total ERF. Through the lens of geoengineering, this manuscript explores how the total

troposphere adjustment in idealized solar dimming experiments is driven by both CO2 and

solar forcing, which has implications for trying to model geoengineering in terms of energy

balance. The supporting information document published alongside this manuscript has

been reformatted as Appendix B.

Chapter 4 combines the thematic focus of the previous two manuscripts to assess geo-
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engineering feedbacks in transient solar dimming experiments. In contrast to the fixed-SST

configuration of CESM used for Chapter 3, this study uses the full coupled configuration

of CESM with an active ocean to simulate an idealized solar dimming experiment where

the solar constant parameter in CESM is dynamically adjusted every year to suppress

global mean surface warming in response to increasing CO2. This experiment is used to

quantify a new type of radiative feedback specifically for geoengineering experiments that

have multiple external forcings, as well as a spatially heterogeneous surface temperature

response. The version of this chapter submitted for publication has an appendix, which

has been reformatted here as Appendix C. Lastly, Chapter 5 discusses some limitations

of the methods used across all three manuscripts, as well as avenues for possible future

research.
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Chapter 2

Cloud Feedbacks from CanESM2 to

CanESM5.0 and their Influence on

Climate Sensitivity

2.1 Overview

The newest iteration of the Canadian Earth System Model (CanESM5.0.3) has an Effective

Climate Sensitivity of 5.65 kelvin, which is a 54% increase relative to the model’s previous

version (CanESM2 - 3.67 K), and the highest sensitivity of all current models participating

in the sixth phase of the coupled model inter-comparison project (CMIP6). Here, we

explore the underlying causes behind CanESM5’s increased ECS via comparison of forcing

and feedbacks between CanESM2 and CanESM5. We find only modest differences in

radiative forcing as a response to CO2 between model versions. We find small increases

in the surface albedo and longwave cloud feedback, as well as a substantial increase in
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the SW cloud feedback in CanESM5. Through the use of cloud area fraction output

and cloud radiative kernels, we find that more positive low and non-low shortwave cloud

feedbacks— particularly with regards to low clouds across the equatorial Pacific, as well

as sub/extratropical free troposphere cloud optical depth— are the dominant contributors

to CanESM5’s increased climate sensitivity. Additional simulations with prescribed sea

surface temperatures reveal that the spatial pattern of surface temperature change exerts

controls on the magnitude and spatial distribution of low cloud fraction response, but

does not fully explain the increased ECS in CanESM5. The results from CanESM5 are

consistent with increased ECS in several other CMIP6 models, which has been primarily

attributed to changes in shortwave cloud feedbacks.

2.2 Introduction

ECS, defined as the global, annual mean surface warming the Earth would exhibit as a

response to a doubling of CO2, is a frequently cited emergent property from simplified

climate models (Charney et al., 1979), as well as modern Earth system models (Andrews

et al., 2012; Vial et al., 2013). The first estimates of ECS from two Earth system mod-

els ranged from 2.0 - 3.5 K (Charney et al., 1979). In the latest phase of the Coupled

Model Inter-comparison Project (CMIP6), the range of ECS from participating models

has widened (1.8 - 5.5 K), with the mean shifting towards higher values than the previous

phase of CMIP (3.2 to 3.7 K from CMIP5 to CMIP6) (Flynn and Mauritsen, 2020; Zelinka

et al., 2020). Inter-model spread of ECS is primarily attributed to radiative feedbacks on

the climate system- specifically with regards to cloud feedbacks, which are the primary

source of spread across models (Caldwell et al., 2016; Vial et al., 2013; Dufresne and Bony,

2008).
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Understanding cloud feedback uncertainty and its influence on the ECS of ESMs has

been an imperative of researchers in recent decades- particularly with regards to properties

such as cloud optical depth, which determine the amount of reflected SW radiation and

thus help cool the planet (Vial et al., 2013; Tan et al., 2016; Zelinka et al., 2020; Bjordal

et al., 2020). SW cloud feedbacks can be separated based on latitude; middle latitude

SW cloud feedbacks are mostly negative from the optical thickening of clouds due to phase

transition towards liquid in ice/mixed phase clouds (Goosse et al., 2018; Senior and Ingram,

1989). In high latitudes, sea ice loss exposes the ocean surface and increases surface tur-

bulent fluxes, and therefore humidity, which increases low level cloudiness (Goosse et al.,

2018). In low latitudes, the SW cloud feedback is robustly positive in both ESMs and

large eddy simulations (LES), owing to a reduction in the fraction and thickness of marine

shallow cumulus and stratocumulus clouds near the PBL (Bretherton and Blossey, 2014;

Bretherton et al., 2013; Ceppi et al., 2017). The physical mechanisms behind SW low cloud

feedbacks are tied to multiple thermodynamic, radiative, and dynamical processes- termed

cloud controlling factor (CCF) (Klein et al., 2017). Specifically, mechanisms favoring an

increase in low cloud fraction in baseline climatology regimes include stronger PBL tem-

perature inversions (Wood and Bretherton, 2006; Klein and Hartmann, 1993; Bretherton

et al., 2013), colder sea surface temperatures (SST) (Bretherton and Blossey, 2014), less

subsidence (Blossey et al., 2013), and increased free troposphere humidity (Van der Dussen

et al., 2015).

While the sensitivity of marine low cloud cover (LCC) to specific factors varies sig-

nificantly from model to model, differing sensitivities to SSTs have been identified as a

explanatory factor for spread across ESMs (Qu et al., 2014). This link suggests the spa-

tial pattern of surface warming has important implications for low cloud responses (Rose

et al., 2014; Zhou et al., 2015), and therefore the SW cloud feedback and climate sensitivity
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(Andrews and Webb, 2018).

Here, we investigate the causes of increased climate sensitivity in the newest version of

the Canadian Earth System Model (CanESM), which is the highest of all models currently

participating in CMIP6 (Flynn and Mauritsen, 2020). We examine CanESM5’s high ECS

particularly in relation to the previous model version that was contributed to CMIP5

(CanESM2). With a particular focus on decomposed cloud feedbacks, we quantify the

differences in both forcing and feedback between CanESM2 and CanESM5 in order to

establish a physical link for the shift in ECS. Lastly, we examine the spatial pattern of

warming in CanESM5 and its influence of both global mean and local cloud feedbacks as

a potential explanatory variable for CanESM5’s high ECS.

2.3 Methods

2.3.1 Models

We compare two versions of CanESM in this study. CanESM2, the second generation earth

system model from the Canadian Centre for Climate Modeling and Analysis (CCCma), con-

sists of their fourth generation atmosphere model (CanAM4), land surface model (CLASS),

terrestrial carbon model (CTEM), CSM ocean model from the National Centre for Atmo-

sphere Research (NCAR), and ocean carbon model (CMOC) (von Salzen et al., 2013; Arora

et al., 2009; Zahariev et al., 2008; Arora et al., 2011; Gent et al., 1998). CanESM5 (Swart

et al., 2019), is the newest generation of the Canadian Earth System Model, uses an up-

dated version of CLASS (version 2.7 to 3.6.2) (Verseghy, 2000), CanNEMO for the ocean

model, which is based on NEMO3.4.1 (Madec, 2012), and Louvain-la-Neuve sea ice model

(LIM2) (Fichefet and Maqueda, 1997; Bouillon et al., 2009).
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The fifth generation atmospheric model (CanAM5) has the same horizontal resolution

as CanAM4 while increasing the vertical layers from 35 to 49 with majority of the ad-

ditional layers added to the upper troposphere and lower stratosphere. While there are

a number of improvements to radiative transfer, aerosol, and surface parameterization,

changes to cloud parameterizations are discussed briefly given their direct potential con-

nection to cloud feedbacks. Ice cloud parameterizations in CanAM5 largely remain as in

CanAM4 (von Salzen et al., 2013) with the exception of adjustments to uncertain param-

eters. For liquid clouds, the primary change is autoconversion of cloud liquid to rain in

CanAM5, which now uses the parameterization of Wood (2005) instead of the parameter-

ization of Khairoutdinov and Kogan (2000) which was used in CanAM4. The change in

autoconversion parameterization includes the second indirect aerosol effect— a process not

considered in CanAM4 (von Salzen et al., 2013).

2.3.2 Forcing-Feedback Analysis

We consider energy balance at Earth’s TOA using the following equation:

N = F + λ∆Ts (2.1)

Where N is net radiation imbalance (in Wm-2), F is the ERF due to that of an external

agent (e.g. CO2, in Wm-2), ∆Ts is the global, annual mean surface air temperature re-

sponse (in Kelvin), and λ is the net Climate Feedback Parameter (in Wm-2K-1). Equation

2.1 assumes a linear relationship between radiation imbalance and surface temperature re-

sponse (i.e. a constant λ). Under this assumption, an earth system model with a stronger

(more negative) λ term will reestablish energy balance with a smaller surface temperature

response than a weak λ term. We calculate the net feedback parameter using pre-industrial
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control and abrupt-4xCO2 experiments for each version of CanESM. For CanESM2, we use

150 years of pre-industrial control and abrupt 4xCO2 coupled model output submitted to

the Earth System Grid Federation under run 1, initialization 1, and physics 1 (r1i1p1)

(Taylor et al., 2012). For CanESM5, we use the same experiments submitted for the core

CMIP6 experiment deck under run 1, initialization 1, physics 2, forcing 1 (r1i1f1p2) (Eyring

et al., 2016).

The surface temperature response after the system has reached equilibrium (N = 0

Wm-2) is defined as the Equilibrium Climate Sensitivity, which is typically measured un-

der a 2xCO2 ERF (ECS = −F/λ). We use the term “Effective” above, as opposed to

“Equilibrium” Climate Sensitivity, given the linear assumptions in Equation 2.1, where

Equilibrium Climate Sensitivity is representative of warming once the system as reached

true equilibrium and does not require any form of statistical extrapolation (Knutti et al.,

2017). The extent that the linear approximation accurately represents both forcing and

feedback varies from model to model, where some models exhibit a more linear response

to CO2 than others (Andrews et al., 2012). A time varying net feedback parameter has

been- at least partially- attributable to differences in model timescale and magnitude of

“rapid adjustments” in the climate system, where quick tropospheric climate response to

CO2 modifies TOA energy balance (Smith et al., 2018; Forster et al., 2013; Sherwood et al.,

2015).

We consider the influence of rapid adjustments by diagnosing the ERF using two distinct

methods. First, we use an ordinary least squares linear regression between TOA radiation

imbalance (N) and surface temperature response (∆Ts) in abrupt 4xCO2 experiments,

where the extrapolated y-intercept of the regression line equals 2x the ERF (ERFg, Gregory

et al. (2004)). Second, we use 30 year fixed sea surface temperature experiments (piClim-

control and piClim-4xCO2) submitted to the Radiative Forcing Model Inter-comparison
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Project (RFMIP) (Pincus et al., 2016). The ERF is calculated as the TOA radiation

delta in 30 year annual mean fixed sea surface temperature experiments (ERFh), where

one experiment uses pre-industrial control CO2 and the other uses abrupt 4xCO2 (Hansen

et al., 2005; Pincus et al., 2016). Under the ERFh definition, both tropospheric and

stratospheric rapid adjustments from clouds, air temperature, water vapour, and surface

albedo are included along with CO2.

Using the Gregory regression method, we obtain the net feedback parameter as the slope

of the regression line. Furthermore, we quantify the ECS for an abrupt 2xCO2 forcing as

the extrapolated x-intercept of the regression line divided by two. We consider the net

feedback parameter as the linear sum of individual radiative feedbacks within the climate

system:

λ = λp + λlr + λwv + λa + λc +Re (2.2)

Where the net feedback parameter is made up of contributions from the Planck (λp), lapse

rate (λlr), water vapour (λwv), surface albedo (λa), and cloud (λc) feedbacks. A residual

term is also included (Re) in order to account for nonlinearities. We use a combination

of the radiative kernel and Gregory regression methods to diagnose individual radiative

feedbacks (Block and Mauritsen, 2013; Soden and Held, 2006). Specifically, we use six

sets of radiative kernels to calculate TOA fluxes for temperature, water vapour, and sur-

face albedo responses (Soden et al., 2008; Block and Mauritsen, 2013; Shell et al., 2008;

Pendergrass et al., 2018; Huang et al., 2017; Smith, 2018). Then, each flux is linearly re-

gressed against global, annual mean surface air temperature response for 150 years, where

the slope of the regression line is considered the feedback value (in Wm-2K-1). We use the

clear sky linearity test to validate the accuracy of each radiative kernel (Shell et al., 2008),

where the sum of all clear sky feedbacks is compared against the net clear sky climate feed-

back parameter as estimated using the Gregory regression technique with clear sky TOA
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flux. Three radiative kernels passed the clear sky linearity test (relative errors of less than

10%) (Figure A.1), which are used to calculate an ensemble kernel mean for all feedbacks.

The three sets of kernels that passed the clear sky linearity test are derived from: the

Geophysical Fluid Dynamics Laboratory (GFDL) ESM (Soden et al., 2008), the Hadley

Centre Global Environment Model (HadGEM) (Smith, 2018), and from a combination of

the ERA-interim reanalysis data set and the Rapid Radiative Transfer Model (RRTM)

(Huang et al., 2017).

2.3.3 Cloud Feedbacks

Cloud feedbacks cannot be calculated via the standard radiative kernel method due to

nonlinearities associated with cloud vertical overlap (Soden et al., 2008). We estimate cloud

feedbacks using two methods- the adjusted cloud radiative effect (CRE) and cloud radiative

kernel method. The CRE response is defined as the difference between clear and total sky

radiative fluxes. We adjust the CRE for the effects of environmental masking from other

feedbacks using clear sky radiative kernels (Soden et al., 2004). The CRE ’adjustment’

using clear sky radiative kernels takes into account differences in temperature and water

vapour between a clear and cloudy atmosphere to isolate the radiative perturbation from

clouds. We also account for the masking effect of CO2 forcing by using a globally uniform

proportionality constant of 1.16 between clear and total sky CO2 forcing (Chung and Soden,

2015). After adjusting the CRE, the cloud flux response is regressed similarly to noncloud

feedbacks, where the slope of the regression line equals the cloud feedback. This method

is performed twice to yield a value for both the SW and LW cloud feedbacks.

We use cloud radiative kernels and cloud area fraction output from the International

Satellite Cloud Climatology Project (ISCCP), produced from the Cloud Object Simulator
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Package (COSP) (Bodas-Salcedo et al., 2011) in CanESM2 and CanESM5, to diagnose

cloud feedbacks for different cloud top pressures and optical depths (Zelinka et al., 2012a).

Specifically, we calculate a cloud area fraction response, relative to a pre-industrial control

climatology, for every year, grid point, optical depth, and cloud top pressure bin for each

year in the abrupt 4xCO2 simulation. Then, cloud radiative kernels are applied to the cloud

area fraction response to derive TOA flux perturbations. Similar to noncloud feedbacks,

each point is then linearly regressed against global, annual mean surface air temperature

response over 150 years, where the slope of the regression line is equal to the feedback

value.

In this study, we consider low clouds as having their tops ≥ 680 hPa and non-low clouds

with tops ≤ 680 hPa. A key limitation of COSP output is the potential obscuring of low

clouds via shift in the distribution of high cloud fraction (Zelinka et al., 2018). We account

for the obscuring of low clouds via normalizing low cloud fraction by upper level clear-sky

fraction as in Scott et al. (2020). Using this method, non-obscured low cloud responses are

weighted by the area fraction not covered by high clouds.

To further separate cloud feedbacks into contributions from cloud altitude, optical

depth, and amount components, we utilize the refined decomposition technique as in

Zelinka et al. (2016). Using this method, cloud kernels are decomposed into individual

components for cloud amount, optical depth, altitude, and residuals, while cloud area frac-

tion anomalies are resolved into contributions from altitude/optical depth shifts and total

amount separately. For a full mathematical breakdown of this decomposition, see Ap-

pendix B in Zelinka et al. (2013) and the supplemental information document from Zelinka

et al. (2016).

For CanESM2, only 40 years of cloud area fraction data (years 1-20 & 120-140) were

available in the abrupt-4xCO2 simulation. To test the impact of sample size on our results,
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we subsample the output from the CanESM5 abrupt-4xCO2 simulation for the same time

periods as are available from CanESM2 (years 1-20 & 120-140) and find highly similar

results to those obtained from the full 150 years (Figure A.2). Furthermore, we find very

similar results for LW and SW cloud feedback components from CanESM2 and CanESM5

computed using the radiative kernel method and the adjusted-CRE method (Figure A.3).

This provides confidence that both methods are accurately capturing the pattern and

magnitude of cloud feedbacks in these models.

2.4 Results

2.4.1 Effective Climate Sensitivity & Radiative Forcing

We begin by quantifying net feedback, forcing, and ECS for CanESM2 and CanESM5

(Figure 2.1a). Relative to CanESM2, CanESM5 has a weaker net feedback parameter (-

0.64 Wm-2K-1) and higher ECS (5.65 K), meaning that ECS has increased by 54% between

CanESM version 2 and 5. For comparison, we also show the model range of ECS for both

CMIP5 and 6 using horizontal lines below the x-axis in Figure 2.1a, illustrating the high

ECS in CanESM5 relative to all other CMIP6 models (Flynn and Mauritsen, 2020). Both

versions of CanESM exhibit a strong linear relationship between surface air temperature

and net TOA flux (correlation coefficients are 0.92 and 0.95 for CanESM2 and CanESM5,

respectively). For some ESMs, the influence of a time-varying climate feedback parameter,

which could be roughly separated into a “fast response” period in the first few decades

and a weaker (less negative) feedback over the latter century, had a significant influence

on model’s ECS values calculated via the Gregory technique (Andrews et al., 2015). Here,

the strong linearity for both versions of CanESM suggests any lack of robustness in the
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Gregory technique is not a primary cause of the ECS increase in CanESM5.

We now turn to the different components of the forcing-feedback framework to elucidate

any changes in either forcing, or feedback, and their influence on ECS. We compare the

ERF for CanESM2 and CanESM5 via two methods. The ERFg is determined by the

y-intercept of the Gregory regression plots (filled in circles on the y-axis in Figure 2.1a).

The ERFg is 7.21 and 7.54 Wm-2 for CanESM2 and 5, respectively. For comparison, we

also show the ERFh as estimated using fixed-SST simulations submitted to RFMIP (open

squares). The ERFh is 7.34 for CanESM2 and 7.60 Wm-2 for CanESM5. Both methods

produce very similar estimates of ERF— within ± 5%— which strongly suggests that the

change in ECS between CanESM2 and 5 is not explained by a change in radiative forcing.

However, it is worth noting that we do not investigate the role of the land surface response

in the fixed-SST experiments and its impact on the ERF. Given only the SSTs are fixed,

some of the warming over land is aliased into the ERFh values for both CanESM2 and

CanESM5. Still, the results here show that, even if there is a substantial difference in

land surface warming between model versions in the RFMIP experiments, the ERF is still

largely unchanged from CanESM2 to CanESM5. We next decompose the net feedback

parameter for both models to elucidate the any potential differences in the strength of

radiative feedbacks.

2.4.2 Radiative Feedbacks

Planck, lapse rate, water vapour, surface albedo, and cloud TOA feedbacks are shown in

Figure 2.1b. Planck and lapse rate plus water vapour feedbacks are roughly equal between

CanESM2 and CanESM5. The surface albedo feedback is more positive in CanESM5,

showing an increase of 0.05 Wm-2K-1 over CanESM2, which is primarily due sea ice loss
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over the Arctic (Swart et al., 2019), as well as a consistently more positive snow albedo

feedback over polar land surfaces (not shown).

Lastly, cloud feedbacks increase in CanESM5— primarily in the SW; the result is a

more positive net cloud feedback (+0.34 Wm-2K-1 relative to CanESM2). The net feed-

back (sum of all individual feedbacks) is also shown in Figure 2.1b to demonstrate the

strong agreement the sum of kernel derived net feedback parameter (filled circles) and the

net feedback parameter obtained from the Gregory regression technique (filled triangles).

Strong agreement between both methods indicate that kernel ensemble mean is accurately

capturing the extent of net TOA flux perturbation as outputted directly from the models.
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Figure 2.1: a) Net TOA radiation plotted against global, annual mean surface air temperature
change in abrupt-4xCO2 simulations for CanESM2 (blue) and CanESM5 (red). Standard 150
year Gregory regressions using net top-of-atmosphere radiative flux (adjusted by a preindustrial
150 year annual mean control climate) are conducted, where the x-axis intercept of the regression
line divided by two is defined as the ECS, and the y-axis intercept is defined as the ERF. For
comparison, the ERF, as calculated using fixed SST AMIP style runs, is shown for both versions
of CanESM via the open squares along the y-axis. Bars below the x-axis denote the model range
x2 for ECS for both CMIP5 & CMIP6 (Flynn and Mauritsen, 2020). b) Global, annual mean
top of atmosphere radiative feedbacks calculated using radiative kernels (in Wm-2K-1). From left
to right, feedbacks are listed as Planck+2 (a value of 2 was added for display purposes to better
illustrate differences in the other feedbacks), lapse rate plus water vapour, surface albedo, cloud,
and net feedback. For comparison, we also show the net climate feedback value obtained using
the standard Gregory regression approach (filled triangles), as well as the CMIP6 model range
(Zelinka et al., 2020)

We find our results in line with literature assessing causes behind similar increases in

ECS observed by many modelling centres participating in CMIP5 and CMIP6 (Flynn and

Mauritsen, 2020; Zelinka et al., 2020; Gettelman et al., 2019; Andrews et al., 2019; Golaz

et al., 2019). The LW cloud feedback is positive for both versions of CanESM— increasing

by 0.06 Wm-2K-1 from CanESM2 to 5 (Figure 2.1b). CanESM2 exhibits a negative SW

cloud feedback (-0.21 Wm-2K-1), while in CanESM5 the SW cloud feedback has become
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weakly positive (0.06 Wm-2K-1), indicating an absolute difference of 0.27 Wm-2K-1 (Figure

2.1b).

We quantify each individual feedback and forcing change (in terms of ECS increase) in

Table 2.1. While the SW cloud feedback exhibits the largest difference between CanESM2

and CanESM5, both the surface albedo feedback and the LW cloud feedback offer non-

negligible contributions to CanESM5’s high ECS. The SW cloud feedback is the cause of

at least half of the ECS increase from CanESM2 to CanESM5 (1.08 K), followed by the

LW cloud and surface albedo feedbacks, respectively. Notably, There is a 3% error between

the kernel ensemble-derived and model ECS values (Figure A.1). As a result, we do not

consider the small contributions from the Planck, and lapse rate + water vapour changes

as they are close to these error bounds (Table 2.1). Furthermore, despite the strong linear

relationship between net TOA radiation and global, annual mean surface air temperature

response for both version of CanESM (Figure 2.1a), the regression derived ERF model

difference is opposite sign of the ERF difference calculated from fixed-SST experiments

(Figure 2.1a).

Given the importance of the cloud feedback in explaining the change in ECS from

CanESM2 to 5, we devote the rest of this article to investigating the causes of this change

by further decomposing both the SW and LW cloud feedbacks into their altitude, optical

depth, and amount components. Although the change in net LW cloud feedback is small,

we will demonstrate in the following section that this is due to compensating differences

in individual components.
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Table 2.1: Contributions of each component in the forcing-feedback framework to CanESM5’s
increased ECS (in kelvin). Individual contributions from feedbacks were calculated by substi-
tuting in feedback values from CanESM5 into CanESM2 and recalculating ECS, then taking
the difference between CanESM5’s ECS and the recalculated ECS. Relative contributions in
parenthesis are defined as the percentage of each value of the difference between CanESM5 and
CanESM2s ECS (1.98 K). This process was repeated for all individual feedbacks, as well as the
ERF.

.

ERF Planck LR + WV Surface

Albedo

LW Cloud SW Cloud

-0.08 0.04 0.08 0.34 0.39 1.08

(-4.59 %) (1.96 %) (3.85 %) (17.30 %) (19.8 %) (54.38 %)

Decomposition

The SW cloud feedback arises due to changes in cloud amount and/or optical properties.

Cloud optical thickness is dependent on water path and cloud droplet size distribution

(Slingo, 1989). The phase composition of clouds (liquid, ice, or mixed) is linked strongly to

their optical thickness due to liquid droplets and ice crystals having different characteristic

size distributions, where clouds composed of predominantly smaller liquid droplets tend

to be more reflective (Pruppacher and Klett, 1980). As a result, regions where cloud

composition consists entirely of liquid droplets, or are mixed phase, tend to exhibit higher

albedo. In terms of feedbacks, cloud phase and amount changes have been identified as an

explanatory factor to ECS spread in ESMs (Tan et al., 2016; Zelinka et al., 2016). Thus,

we now decompose the cloud feedbacks using cloud radiative kernels and ISCCP simulator

output for each version of CanESM following the methods described in Zelinka et al.

(2012a,b) to investigate individual cloud feedback processes. We apply the decomposition
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separately to low and non-low clouds.

In Figure 2.2, we decompose LW and SW cloud feedbacks into contributions from

changes in cloud optical depth, cloud altitude, and cloud amount. The LW total cloud

feedback is dominated by contributions from non-low clouds (Figure 2.2a), with small

negative contributions from low clouds (Figure 2.2b). Changes in cloud optical depth or

amount have little radiative influence for low clouds given low cloud top temperatures are

close to that of the surface, resulting in similar outgoing longwave radiation (i.e. little

greenhouse effect). Furthermore, particularly for CanESM2, the strong non-low LW feed-

back is largely offset by a negative SW feedback of comparable magnitude. For CanESM2,

contributions to the LW feedback are comparable for optical depth and amount feedbacks—

with largest contribution coming from altitude. The altitude feedback arises from cloud

temperature dependent emission properties, and therefore operates predominantly in the

longwave for non-low clouds. Tropical free troposphere clouds rise and maintain cooler

cloud top temperatures relative to the surface, thereby becoming more efficient at trap-

ping outgoing longwave radiation (Zelinka and Hartmann, 2010; Gettelman and Sherwood,

2016). For CanESM5, the net non-low LW feedback is approximately equal to CanESM2,

albeit with a different decomposition makeup. Specifically, CanESM5 has a more positive

LW altitude and optical depth feedback. However, these increases are offset by a weaker

cloud amount feedback. For low clouds, the LW feedbacks are all small in magnitude. The

residuals (yellow) are similarly small in both models (Figure 2.2), indicating that nonlinear

processes are less important for understanding the changes between models.
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Figure 2.2: Global, annual mean decomposed cloud feedbacks for CanESM2 & CanESM5.
Feedbacks are partitioned into both LW and SW contributions from cloud amount (blue), cloud
altitude (red), optical depth (green), and residual (orange) terms, for non-low (panel a) and low
clouds (panel b). Low cloud feedbacks are also separated via non-obscured and obscuration terms
in black bars in panel b. For contributions smaller than 0.01 Wm-2K-1, text values were omitted
for the sake of clarity.

In the SW, both models exhibit strong negative feedbacks for non-low clouds and strong

positive feedbacks for low clouds (Figure 2.2). The negative non-low cloud shortwave feed-

back is driven by an increase in cloud amount and optical depth with warming. This result

is consistent with both modelling and theoretical understanding of non-low cloud responses

to warming. Specifically, an increasing number of liquid droplets relative to ice crystals

gives rise to more mixed phase clouds, as well as increases the proportion of liquid to ice

in existing mixed phase clouds, resulting in an higher optical depth (Senior and Ingram,

1989), and a positive relationship between mid latitude cloud liquid water content and

the slope of the moist adiabat as the troposphere warms (i.e. a function of temperature)

(Betts, 1987). For low clouds, the SW is dominated by a strong positive amount feedback
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(decrease in cloudiness), with a small negative contribution from optical depth feedback

(increase in cloud optical depth) (Figure 2.2b). For CanESM5, SW feedbacks differ from

CanESM2 considerably for both non-low and low clouds. For non-low clouds, CanESM5’s

optical depth feedback is weaker (less negative) than CanESM2 (+0.06 Wm-2K-1) (Figure

2.2a). While the SW non-low cloud amount feedback is also weaker in CanESM5, the

difference is offset in the LW. For low clouds, the SW amount feedback exhibits the largest

difference between the two model versions (+0.14 Wm-2K-1). The change in SW cloud

feedback strength and sign between CanESM2 and CanESM5 is related to multiple feed-

back mechanisms operating at different cloud heights. The largest contributor is the SW

low cloud amount feedback, which is more positive in CanESM5. Changes in optical depth

feedbacks are mainly important for non-low clouds, and are less negative in CanESM5.

The large difference in SW low cloud feedback strength between CanESM2 and CanESM5

raises the possibility that a portion of what the COSP interprets as a low cloud response

is actually the result of changes in the spatial distribution of non-low cloud fraction under

climate change; a phenomenon known as ’obscuration’ (Zelinka et al., 2018). Separating

for obscuration does not also separate out the amount and optical depth feedbacks. There-

fore, we consider the SW unobscured low cloud feedback as combination of changes in

proportional cloud amount and optical depth. The black bars in Figure 2.2b indicate the

both CanESM2 and CanESM5 have a non-negligible obscuration term. However, given

that the extent of obscuration is similar between both versions of CanESM (see hatched

bars in Figure 2.2b), it does not appear to be a major contributor to increased feedback

strength in CanESM5 relative to CanESM2.
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Spatial Distribution

Low cloud amount feedbacks are considered a robust positive feedback mechanism diag-

nosed from both observational and modelling studies, albeit with substantial inter-model

spread in terms of strength (Eitzen et al., 2011; Clement et al., 2009; Zelinka et al., 2016).

The low cloud amount feedback is closely tied to the distribution of marine stratiform

cloud regimes persisting in the sub/tropics over ocean eastern boundary current regions

(Klein et al., 2017). The non-low cloud optical depth feedback has been shown to have rich-

and sometimes offsetting- spatial structure, owing to mostly negative feedback mid/high

latitudes and a rich zonal structure at low latitudes (Zelinka et al., 2012b, 2016). As such,

we now examine the spatial distribution of both the SW low cloud amount and non-low

cloud optical depth feedbacks (Figure 2.3).
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Figure 2.3: Annual mean SW non-low cloud optical depth (left) and SW low cloud amount
(right) feedbacks for CanESM2 (panels a & b) and CanESM5 (panels c & d). Panels e & f show
the difference between CanESM5 & CanESM2 for each respective feedback. Values in square
brackets next to each subplot title denote the global mean value for each respective map. Note
the difference in colour bar scales for top and bottom/middle panels.

Figure 2.3 shows annual mean SW non-low cloud optical depth and low cloud amount

feedbacks for CanESM2 and CanESM5. The SW non-low cloud optical depth feedback

is negative in CanESM2 & 5 (Figure 2.3a and c), with minima over the western tropical
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Pacific Ocean. For the SW low cloud amount feedback, both models are strongest over

subtropical/tropical Eastern Ocean basins and across the equatorial Pacific (Figure 2.3b

and d). Notably, these regions have persistent low, stratiform cloud regimes, which are

closely tied to strong temperature inversions that cap the PBL (Klein and Hartmann,

1993).

For CanESM5, increases in SW non-low cloud optical depth feedback are exhibited

throughout the subtropical Pacific and tropical Eastern Pacific Ocean (Figure 2.3e). While

there is strong positive feedback over the Eastern Indian Ocean and negative feedback over

the Western Pacific Ocean, it is offset by a similar strength and opposing sign in the LW

(not shown), and so it does not exert a major influence on the global mean net cloud

feedback (LW+SW). For SW low cloud amount feedback, CanESM5 exhibits an increase

over CanESM2 in every region of persistent low cloud cover regimes, as well as across the

eastern equatorial Pacific and the western ocean basin off the Brazilian coast, relating to

the simulation of substantially reduced LCC under a warming climate (Figure 2.3f).

Multiple lines of evidence from modelling studies have linked the sensitivity of LCC

over the oceans to local changes in SST (Zhou et al., 2017; Andrews and Webb, 2018).

Furthermore, the evolving spatial pattern of surface warming from interannual to centennial

time scales is associated with differences between interannual and long term cloud feedback

strength (Zhou et al., 2015). The underlying physical mechanisms linking local sea surface

warming to reduced LCC are: 1) increased surface latent heat flux dries and deepens the

boundary layer via increased buoyancy-driven turbulence and resultant downward mixing

from free troposphere air (Qu et al., 2015; Rieck et al., 2012), and 2) increased surface

specific humidity promotes further moisture contrast between the boundary layer and the

free troposphere such that when air is mixed downward it is relatively drier (Van der

Dussen et al., 2015; Qu et al., 2015). We use a proxy term, SST#, as a measure of
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distribution of surface warming in the tropics (Figure 2.4) (Fueglistaler, 2019). Specifically,

SST# is calculated as difference between the warmest 30% of tropical SSTs (i.e. the Indo-

Pacific) and the tropical average, and therefore provides quantitative information about

zonal asymmetries in the tropical SST pattern and how they evolve over time.

Figure 2.4: a) Pre-industrial Control mean (150 years) tropical SSTs for CanESM2. b) Pre-
industrial Control mean (150 years) tropical SSTs for CanESM5, expressed as a difference relative
to CanESM2. c) Annual mean time series of SST# for both CanESM2 and CanESM5 for abrupt-
4xCO2 experiments.

The Pre-industrial control tropical SST pattern for CanESM2 is shown in Figure 2.4a,

and exhibits a familiar zonally-asymmetric pattern with the warmest SSTs in the Indo-

Pacific, and cooler waters in the east Pacific and southeastern regions of each ocean basin.

Relative to CanESM2, CanESM5’s control SSTs are substantially cooler— up to 3 K—
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over the eastern tropical Pacific (Figure 2.4b). Colder SSTs are also prevalent in the

northern Pacific, off of the western Australian coast, and the northern tropical Atlantic

ocean (Figure 2.4b). There is little difference between the SSTs in the Indo-Pacific, which

has important implications for SST#. Figure 2.4c shows a time series of SST# for abrupt-

4xCO2 experiments. Given SST# represents the difference between the warmest waters in

tropics relative to the average, a higher value indicates greater asymmetry between warmer

and cooler regions of tropical SST. The relatively colder waters in CanESM5’s control

climatology results in a larger SST# term, which is also illustrated at the beginning of

the abrupt-4xCO2 timeseries (Figure 2.4c). The difference between the models decreases

as the climate warms in response to CO2. The higher SST# term at the beginning of

the simulation in CanESM5 suggests a stronger SW CRE in the pre-industrial control

(Fueglistaler, 2019). The strong positive SW cloud feedback in CanESM5, particularly

from low clouds, warms the eastern Pacific (and other cooler areas) at a faster rate than

CanESM2 (Figure 2.3f), which gradually decreases the difference in SST# over the course

of the abrupt-4xCO2 simulation (Figure 2.4c). While the distribution of surface warming

in the tropics is known to be important for low clouds (Andrews and Webb, 2018), we also

briefly analyse another important controlling factor: estimated inversion strength (EIS)

(Figure 2.5).
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Figure 2.5: a) Annual mean control climatology (150 year mean) tropical EIS for CanESM2.
b) Annual mean control climatology (150 year mean) tropical EIS for CanESM5, expressed as a
difference relative to CanESM2. c) Tropical EIS response (years 130-150 mean) for CanESM2.
d) Tropical EIS response (years 130-150 mean) for CanESM5, expressed as a difference relative
to CanESM2’s response. For EIS responses, each grid box value is normalized by the global mean
surface air temperature response (also years 130-150 mean relative to the control period). for
Hatching represents areas where the SW low cloud feedback is more positive in CanESM5.

Figure 2.5 shows EIS for both the control climatology and response abrupt-4xCO2 simu-

lations, and is calculated using air temperatures at the surface and 700hPa as in Wood and

Bretherton (2006). Regions with a strong positive EIS are indicative of a boundary layer

that is decoupled from the free troposphere, with strong subsidence and cooler SSTs, and

therefore more low cloud fraction. Conversely, a strong negative EIS is indicative of a weak

inversion and a surface that is coupled tightly to the free troposhere (i.e. unstable vertical

temperature profile), and is therefore inefficient at trapping moisture within the boundary

layer. In the CanESM2 control period, EIS is strongly positive across all eastern ocean

basins and the eastern equatorial Pacific (Figure 2.5a). In CanESM5, control EIS mirrors

the corresponding SST pattern (Figure 2.5b, 2.4b). In the response period, EIS increases
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throughout most of the tropics for both models (Figure 2.5c & d). CanESM5 exhibits

a stronger increase in EIS throughout most of the tropics relative to CanESM2. Given

that EIS and low cloud fraction are strongly positively correlated (Wood and Brether-

ton, 2006), a stronger response (as seen in CanESM5) would promote more cloud fraction

if it were the only cloud controlling factor. However, we find no clear relationship be-

tween regions of more positive SW low cloud feedback and increased inversion strength

response (Figure 2.5d). Inferring causal changes in cloud feedbacks between models from

EIS alone is difficult given its correlation with SSTs (Scott et al., 2020) (see Figure 2.4b

and Figure 2.5b). We now turn towards prescribed SST experiments from Cloud Feedback

Model Inter-comparison Project (CFMIP) to further investigate the role of SST warming

distribution as a cloud controlling factor.

2.4.3 Prescribed SST Experiments

To investigate the spatial pattern of surface warming and its influence on SW cloud feed-

backs, we present results from an additional experiment from the CFMIP Tier 2 experiment

deck— amip-piForcing (Webb et al., 2017). The amip-piForcing experiment forces the at-

mosphere model with the reconstructed historical SSTs and sea ice boundary conditions

from 1870 to 2014 (Hurrell et al., 2008). An important distinction from the base amip

experiment is the anthropogenic and natural atmospheric forcings are held fixed to their

pre-industrial control levels in amip-piForcing, which allows for a more direct comparison

to abrupt-4xCO2 experiments, as it removes the influence of non-SST mediated cloud re-

sponses. Thus, using amip-piForcing, we can isolate the contribution to changes in cloud

feedbacks that arises due to changes in the atmosphere model (CanAM4 to CanAM5) in-

dependent of the change to the ocean model (NCAR CSM to CanNEMO). We show global
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mean low cloud feedbacks and SST# time series for both amip-piForcing and abrupt-4xCO2

CanESM5 experiments in Figure 2.6.

Figure 2.6: a) Global, annual mean decomposed cloud feedbacks for CanESM5’s amip-piForcing
and abrupt-4xCO2 experiments. Feedbacks are partitioned into both LW and SW contributions
from cloud amount (blue), cloud altitude (red), optical depth (green), and residual (orange)
terms. Feedbacks are also separated via non-obscured and obscuration terms in black bars. For
contributions smaller than 0.01 Wm-2K-1, text values were omitted for the sake of clarity. b)
Annual mean time series of SST# for both CanESM5 experiments.

For low clouds, the SW feedback is stronger (+0.21 Wm-2K-1) in the abrupt-4xCO2

experiment than amip-piForcing— largely due to the cloud amount feedback, but with a

smaller contribution from the optical depth feedback (Figure 2.6a). This result is con-

sistent with theoretical understanding relating warmer local SSTs to reduced boundary

layer marine cloud cover as outlined in the previous section, which is further empha-

sized by the geographic distribution of warming in the amip-piForcing experiment (Figure

2.6b). In amip-piForcing, the eastern Pacific warms only by a small amount relative to

the abrupt-4xCO2 experiment (Figure A.4), which is exemplified by the SST# time series.
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Furthermore, the SST# trend is opposite in amip-piForcing, illustrating the warming in

the Indo-Pacific warm pool over the historical record (Figure A.4), which is not present in

coupled model abrupt-4xCO2 experiments (Andrews et al., 2018).

We summarize feedback results from all experiments considered in this study in Table

2.2. The Planck response is nearly identical for all three experiments. The combined lapse

rate and water vapour feedback is similar in abrupt-4xCO2 experiments for both models,

but noticeably more negative in the amip-piForcing experiment. The combined result is a

product of the more negative lapse rate feedback, which arises due to the relatively stronger

warming in the Indo-Pacific warm pool (Andrews et al., 2018) from the reconstructed SST

dataset used as forcing (Hurrell et al., 2008). Surface temperatures in the deeply convective

warm pool increase Earth’s emission temperature via enhanced latent heat release, which

stabilizes the vertical temperature profile and warms the upper troposphere. Outgoing

longwave radiation increases and produces a strong radiative cooling effect. The surface

albedo feedback is stronger in the CanESM5 for coupled model experiments, but reduced in

amip-piForcing relative to CanESM5’s abrupt-4xCO2 experiment, which is likely a result

of the constrained sea ice boundary conditions present. The longwave cloud feedback

is similar across all three experiments/models, and the SW cloud feedback has strongly

increased in CanESM5 for coupled experiments, but is reduced to a similar magnitude to

CanESM2 abrupt-4xCO2 in the amip-piForcing experiment. The net feedback result for

the amip-piForcing experiment is strongly negative in CanESM5 relative to abrupt-4xCO2,

which is due to the combined effect of a reduced surface albedo, SW cloud, and lapse rate

feedbacks.
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Table 2.2: Summary of radiative feedbacks, calculated using a combined radiative ker-
nel/regression method (adjusted-CRE in the case of the cloud feedbacks listed here) for both
model version abrupt 4xCO2 experiments, as well as CanESM5’s amip-piForcing experiment. All
feedbacks are in units of Wm-2K-1. Feedbacks from the amip-piForcing run were calculated using
the 1980-2010 period as a baseline

.

Model Planck LR +

WV

Surface

Albedo

LW

Cloud

SW

Cloud

Net

CanESM2

(4xCO2)

-3.29 1.26 0.44 0.73 -0.21 -1.03

CanESM5

(4xCO2)

-3.30 1.29 0.49 0.79 0.06 -0.66

CanESM5

(piForc-

ing)

-3.31 0.96 0.45 0.76 -0.21 -1.35

2.5 Discussion & Conclusions

In this study, we have analysed both forcing and feedback in idealized experiments with in-

stantaneous quadrupling of atmospheric CO2 (abrupt-4xCO2) using two versions of CanESM

to elucidate the underlying cause behind CanESM5’s increased ECS (5.65 K). Using radia-

tive kernels and output from RFMIP, we find only modest differences in both forcing and

non-cloud feedbacks, with a small contribution from a slight increase in the surface albedo

feedback. The largest difference in feedback strength between CanESM2 to CanESM5 is

from the cloud feedback, particularly in the SW. Further breakdown of the cloud feedback

into its individual components (optical depth, altitude, and amount) at distinct cloud top
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heights (<680 hPa for non-low, ≥680 hPa for low) revealed that the SW low cloud amount

and non-low cloud optical depth feedbacks are the dominant contributor to CanESM5’s

increased ECS (+0.14 and 0.06 Wm-2K-1, respectively) in abrupt 4x-CO2 simulations.

Analysis of the spatial pattern for each feedback showed the largest model differences in

SW low cloud amount feedback over subtropical eastern ocean basins and across the equa-

torial Pacific ocean, and in SW non-low optical depth feedback over the subtropical and

extratropical Pacific ocean.

We analysed the spatial pattern of surface warming and its influence on the SW low

cloud feedback using the CFMIP tier 2 amip-piForcing experiment in CanESM5, which

exhibited significantly reduced SW cloud feedback due to the lack of local warming in

regions with persistent low cloud cover— in agreement with studies linking warmer (colder)

SSTs to decreased (increased) LCC (Qu et al., 2014; Bretherton and Blossey, 2014; Brient

and Schneider, 2016). We found a similar strength in LW cloud feedback from both abrupt-

4xCO2 and amip-piForcing experiments, and a reduced lapse rate feedback in the amip-

piForcing experiment due to the relatively stronger surface warming in the Indo-Pacific

warm pool. While lacking an analogous amip-piForcing experiment for CanESM2, the

results presented here agree with similar experiments conducted using other ESMs (i.e.

more negative lapse rate and SW cloud feedback) that have been studied with respect to

pattern effects of warming (Andrews et al., 2018). Furthermore, the SW cloud feedback

strength in the CanESM2-abrupt-4xCO2 is equal to that of the CanESM5 amip-piForcing

experiment despite a different pattern effect of warming (Figure 2.4a & Figure 2.6b). The

amip-piForcing results presented here confirm the well documented relationship between

local SSTs as a controlling factor for low clouds. This result suggests that both the pattern

of warming itself, and the sensitivity of low cloud fraction to this pattern plays a key role

in CanESM5’s higher ECS. Disentangling the role of the ocean model replacement (The
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National Centre for Atmospheric Research CSM ocean model for CanESM2 (Gent et al.,

1998) to CanNEMO for CanESM5 (Swart et al., 2019)) and the developmental changes to

cloud microphysics in CanAM5 (e.g. the new autoconversion scheme and aerosol indirect

effect) is a subject for future work. As a first step, an equivalent series of experiments as

analyzed in this study could be ran with an intermediary development version of CanESM5

that couples CanAM5 to CanESM2’s ocean model to isolate the role of CanNEMO. One

could also study the role of ocean heat transport differences between the two model versions

as well using a slab ocean version of CanESM5 with specified heat fluxes into the deep

ocean. The role of ocean heat transport, and it how differs in CanNEMO, may be important

for local changes in SSTs and thus cloud fraction (Singh et al., 2022).

Our results add further evidence the recent trend of several ESMs participating in

CMIP6 exhibiting higher ECS than their CMIP5 counterpart— predominantly due to

changes in SW cloud feedback strength and/or aerosol-cloud interactions (Gettelman et al.,

2019; Andrews et al., 2019; Bodas-Salcedo et al., 2019). However, it is worth noting

that several modelling centres report increased ECS sourced from distinct developments in

newer versions of their respective model (e.g. addition of a mixed-phase cloud scheme and

improved aerosol-cloud interactions, as well as the higher horizontal ocean model resolution

its influence on SSTs in cold upwelling regions, in HadGEM3 (Bodas-Salcedo et al., 2019;

Mulcahy et al., 2018; Andrews et al., 2019).

Finally, we emphasize that the results presented in this study do not seek to comment

on the plausibility of climate sensitivity from either version of CanESM. Recently, there has

been an expansion of work relating constraints on climate sensitivity through the use of the

satellite and paleoclimate observational records (Sherwood et al., 2020). Furthermore, there

are limitations of interpreting the validity of climate sensitivity results (as calculated here)

due to uncertainties associated with statistical methods (e.g. assuming a time-invariant
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climate sensitivity parameter via the regression approach) (Gregory et al., 2004). However,

we reiterate the scope of this study: establishing a causal link for the increased climate

sensitivity from CanESM2 to CanESM5 under long term, idealized climate change.
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Chapter 3

On the Linearity of External Forcing

Response in Solar Geoengineering

Experiments

3.1 Overview

As an idealized proxy for solar geoengineering, the GeoMIP G1 experiment forces Earth

System Models with prescribed reductions in solar radiation to balance increases in atmo-

spheric CO2. One key source of uncertainty is the magnitude of solar constant reduction

required to offset a CO2 quadrupling. Here, we employ single-forcing simulations with

CESM to decompose the distinct radiative adjustments associated with solar and CO2

forcing in the G1 experiment. We find that radiative adjustments to both single forcings

have a net positive effect on top of atmosphere energy balance such that they both increase

the net G1 forcing. Stratospheric temperature and shortwave cloud adjustments are the
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main sources of positive adjustment in both Solar and 4xCO2 simulations. We also show

that net radiative adjustment in G1 cannot be represented linearly with CO2 and solar

forcing adjustments, which is primarily traced to reductions in boundary layer clouds.

3.2 Introduction

Solar radiation modification, or solar geoengineering, refers to the deliberate modification

of sunlight incident upon the earth as a means of countering anthropogenic climate change.

While early studies used simple models to explore the role of solar radiation as an external

forcing on the climate system (Wetherald and Manabe, 1975; Hansen et al., 1997), solar

geoengineering as a potential mitigating strategy against greenhouse gas induced warming

is a theoretical but nascent field of research (Crutzen, 2006; Wigley, 2006; Robock, 2008).

Coordinated efforts to research geoengineering using Earth System Models (ESMs) began

with the GeoMIP(Kravitz et al., 2011b, 2013,b, 2015). Initially, core GeoMIP experiment

design consisted of idealized experiments where the solar constant was adjusted within a

given ESM to offset either instantaneous or time-evolving increases in CO2. Solar geo-

engineering designs have since expanded beyond simple tuning (Latham, 1990; Alterskjær

et al., 2012; Niemeier et al., 2013; Kravitz et al., 2013b; Keith et al., 2016); however, ideal-

ized experiments using direct solar constant tuning have persisted in GeoMIP due to their

insights into geoengineered climates and ease of implementation.

From both a modeling and implementation standpoint, one element of uncertainty in

idealized geoengineering experiments is the amount of solar constant reduction required to

offset a given increase in CO2. In the GeoMIP G1 experiment, where the solar constant is

reduced to balance an abrupt quadrupling of CO2, the inter-model spread in the required

varies between 3.5-5% (Kravitz et al., 2013, 2021). For modeling groups, determining the
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necessary reduction is typically achieved using a brute-force approach, where a heuris-

tic equation is used to provide an initial guess for the globally averaged solar constant

reduction:

ERF4xCO2 =
∆S0πr

2

4πr2
(1− α), (3.1)

where ERF4xCO2 is the Effective Radiative Forcing (ERF) from a quadrupling of CO2, r is

the radius of the Earth, α is the planetary albedo, and ∆S0 is the solar constant reduction.

The solar constant is then tuned iteratively to achieve approximate top of atmosphere

(TOA) energy balance closure (Kravitz et al., 2011a). The iterative approach is the result

of Equation 3.1 chronically under-predicting the reduction in the solar constant needed to

close the energy budget (Russotto and Ackerman, 2018), which we will eventually argue is

the result of Equation 3.1 only considering radiative adjustments from one (CO2) of the

two forcings in the G1 experiment. The ERF4xCO2 is calculated using the reference Abrupt

4xCO2 experiment from the CMIP core deck.

The inter-model spread of the solar constant offset in G1 has been primarily attributed

to rapid adjustments in the climate system as a response to both CO2 increases and so-

lar constant reductions (Russotto and Ackerman, 2018). Rapid responses in temperature,

moisture, and clouds induce radiative perturbations alongside the direct IRF of a given

forcing factor (e.g. CO2,, aerosols, solar). which taken together determine the ERF (Sher-

wood et al., 2015).

Despite previous studies exploring rapid adjustments as a response to external agents,

their role in idealized geoengineering scenarios— which involve multiple forcings on the

climate system— remains unclear. Here, we decompose the rapid adjustments from both

CO2 and solar forcing in the G1 experiment using a series of single forcing experiments
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with the Community Earth System Model (CESM). We show that the required offset is

not easily predicted using the heuristic equation from GeoMIP because rapid adjustments

as a response to negative solar forcing have a net positive radiative effect. Furthermore,

we find that adjustments from CO2 and solar forcing do not add linearly due to enhanced

boundary layer cloud reduction in our G1 simulation.

3.3 Methods

3.3.1 Community Earth System Model

We employ CESM version 1.2.2 in its atmosphere & land only (or“F”) component set (Hur-

rell et al., 2013). Specifically, the component set employed here consists of the Community

Atmosphere Model 4 (CAM4) with 26 vertical levels and 4◦ x 5◦ horizontal resolution, the

Community Land Model 4 (CLM4), and prescribed pre-industrial ocean and sea ice clima-

tologies. We use CAM4 with a 4◦ x 5◦ horizontal resolution given our analysis is focused

on global and zonal mean quantities, as well as for its computational efficiency. CAM4 is

configured with the Cloud Object Simulator Package (COSP, Bodas-Salcedo et al. (2011))

enabled, which includes cloud diagnostics consistent with the International Satellite Cloud

Climatology Project (ISCCP) (Klein and Jakob, 1999; Schiffer and Rossow, 1983). The

ISCCP diagnostics include cloud fraction as a function of cloud top pressure (CTP) and

optical depth (τ), which can be used with cloud radiative kernels to calculate the radiative

perturbation associated with cloud responses at various heights and optical thicknesses

(Zelinka et al., 2012a).

All experiments follow the Radiative Forcing Model Inter-Comparison Project (RFMIP)

protocol (Pincus et al., 2016). Simulations are run for 30 years using a repeating annual
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cycle of pre-industrial sea ice and sea surface climatologies as boundary conditions. All

experiments with external forcings are compared to a control simulation where CO2 and

the solar constant are kept at their default pre-industrial values (Table 3.1). Following

RFMIP methodology allows for direct calculation of the ERF for each experiment. This

offers a distinct advantage relative to the so-called “Gregory” method, which relies on using

linear regression on coupled model output in order to extrapolate the ERF (Gregory et al.,

2004), and is therefore subject to drawbacks of assuming linearity in the climate response

to changes global mean surface temperature (Knutti et al., 2017).

We follow the GeoMIP G1 protocol to estimate the necessary solar constant reduction

needed to offset quadrupled CO2 (Kravitz et al., 2011a) (i.e. using Equation 3.1). To

quantify ERF4xCO2 , we run an abrupt-4xCO2 experiment (herein referred to as 4xCO2)

and take the difference between 30 year global mean net top of atmosphere radiation

relative to a pre-industrial control experiment (Hansen et al., 2005). Planetary albedo

(α) is calculated as the 30 year global mean ratio of reflected to down welling shortwave

radiation at the TOA. This gives α=0.34 for 4xCO2, and then we rearrange and solve for

∆S0. We use the same prescribed value of ∆S0 for solar forcing only (SOLAR) and G1

experiments, where in G1 an abrupt quadrupling of CO2 and solar constant reduction are

applied at the same time. We run two sets of SOLAR and G1 experiments— one where

∆S0 is calculated as per Equation 3.1, and another where ∆S0 is tuned through successive

simulations to ensure global mean energy balance in G1. These experiments are referred

to as the equation and balance runs, respectively (e.g. G1e, and G1b) (Table 3.1).
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Experiment CO2 (ppm) S0 (W m-2) Note

Control 284.7 1360.89 Baseline

4xCO2 1138.8 1360.89 single forcing

SOLARe 284.7 1317.19 single forcing

SOLARb 284.7 1311.00 single forcing

G1e 1138.8 1317.19 combined forcings

G1b 1138.8 1311.00 combined forcings

Table 3.1: Experiments performed for this study. Subscripts e and b refer to equation and
balance simulations, respectively.

3.3.2 Radiative Adjustments

We decompose the ERF in each experiment using the following equation:

ERF = IRF +
n∑
x

∂R

∂x
dx (3.2)

where ERF is the Effective Radiative Forcing for a given climate forcing (4xCO2, SO-

LAR), IRF is the Instantaneous Radiative Forcing, and the summation term is the sum

of all radiative adjustments from responses in surface albedo, temperature, water vapor,

and clouds (Smith et al., 2018; Chung and Soden, 2015; Zhang and Huang, 2014). We

clarify our use of the term “adjustments”, as opposed to “feedbacks” to be consistent with

RFMIP experiment design where all SSTs and sea ice are prescribed. The partial term

(∂R
∂x
) represents the radiative sensitivities of a given state variable (x), and dx represents

the climate response in x due to the external forcing of SOLAR, 4xCO2, and G1 relative

to the Control simulation. Since G1 targets global mean TOA energy balance, the ERFS0
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should be equal to the right hand side (RHS) of Equation 3.2. However, since rapid ad-

justments for SOLAR experiments cannot be known a priori, any residual from Equation

3.1 is a result of SOLAR or combined forcing rapid adjustments.

We quantify the ERF directly from model output as the difference of 30 year, annual

mean net TOA radiation in forcing experiments relative to the Control experiment. Each

non-cloud radiative adjustment is quantified using radiative kernels (Shell et al., 2008).

We use the radiative kernels from Shell et al. (2008) specifically as they were computed us-

ing radiative transfer code (Community Atmosphere Radiative Transfer Model (CAMRT)

Collins et al. (2004)) most similar as to the version of CESM used for this study. All ra-

diative kernels are horizontally interpolated to 4◦ x 5◦ horizontal resolution and all climate

responses are vertically interpolated to match the 17 pressure levels of the kernels (where

applicable). We quantify cloud adjustments using the COSP output from CESM and cloud

radiative kernels designed for use with ESMs (Zelinka et al., 2012a, 2013, 2016). Using the

cloud kernel method, cloud radiative adjustments can be decomposed into contributions

from both boundary layer (≥ 680 hPa) and free troposphere (< 680 hPa) clouds in both

the longwave and shortwave1. Lastly, we quantify the IRF as the residual of the ERF and

all radiative adjustments via rearranging the terms in Equation 3.2. Under this framework

where all radiative adjustments and the ERF are explicitly quantified, we assume that

any error due to nonlinearities in the energy budget decomposition (Equation 3.1) is small

enough to consider negligible.

1See Zelinka et al. (2016) supplementary information for more methodological details
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3.4 Results

3.4.1 Energy Budget Residual in G1

We begin by showing the TOA energy budget response (i.e. the ERF) for each experiment

in our study. The global mean ERF for 4xCO2 is 7.21 W m-2 (Figure 3.1a). Using this

value, Equation 3.1 predicts a ∆S0 of 43.70 W m-2 to offset the ERF4xCO2 . However, the

ERF for SOLARe is -6.46 W m-2, indicating that the ∆S0 is insufficient to fully balance

ERF4xCO2 , and this is confirmed by the residual ERF of 0.93 W m-2 in the G1e experiment.

While this residual is relatively small in the context of the global planetary energy budget,

GeoMIP protocol requires ESMs to be within 0.1 W m-2 of energy balance (Kravitz et al.,

2011b). That Equation 3.1 produces a positive residual in ERF (i.e. it underestimates ∆S0

required to balance 4xCO2 forcing) is well-documented (Russotto and Ackerman, 2018),

but to our knowledge has not been adequately explained by previous studies. In contrast,

the ERF for G1b is 0.09 W m-2, indicating the effectiveness of manually tuning ∆S0.
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Figure 3.1: a) Global mean ERF values for SOLAR (equation and balance), 4xCO2, and G1
(equation and balance) experiments. For comparison, we also plot the sum of SOLAR and
4xCO2 experiments as well. Error bars denote ± 2 standard error using all 30 years for each
experiment. b) The corresponding Zonal mean ERF. c) Zonal mean residual ERF between G1
and 4xCO2+SOLAR (equation and balance) experiments. For subplots b and c, the shaded
regions are calculated as in subplot a.

The remainder of this section presents the physical evidence for why this imbalance in

ERF exists. The first piece of evidence comes from the meridional structure of ERF in

response to 4xCO2 and SOLAR forcing. For 4xCO2, ERF peaks in the tropics and decreases

toward the poles (Figure 3.1b), in line with previous studies linking its meridional structure

to the Planck response of warmer emission temperatures (Zhang and Huang, 2014). The

SOLAR ERF is strongest (more negative) over the tropics and weakest (more positive)

near the poles, which arises from the tropics receiving the largest fraction of insolation

globally and thus the largest fractional decrease as a result of ∆S0. In G1e the ERF is near

zero throughout the tropics, whereas in G1b it is slightly negative. From the extratropics

to the poles, both G1 experiments are have a positive residual ERF (Figure 3.1b).
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Given that ERF takes into account all radiative adjustments from temperature, surface

albedo, water vapour, and clouds, it is insufficient as a stand alone metric to assess linearity

between single versus combined forcing experiments. For both SOLAR and the 4xCO2

experiments specifically, differences in both sign and magnitude of radiative adjustments

have been linked to residual positive forcing in GeoMIP G1 experiments (Russotto and

Ackerman, 2018). To understand what drives the nonlinearity in the response, we now

present the decomposition of ERF into the IRF and its individual radiative adjustments.

Figure 3.2: Global, annual mean non-zero radiative adjustments for a) 4xCO2, SOLAR, and
G1 experiments. Both equation and balance experiments are also presented for SOLAR and G1.
b) Residual between the G1 experiment and the combined 4xCO2+SOLAR experiment output.
From left to right, adjustments are listed as stratosphere temperature (Ts), lapse rate T(l), Planck
(Tp), troposphere water vapour (WVt) shortwave boundary layer cloud (Csw-bl), shortwave free
troposphere cloud (Csw-ft). A table with all adjustments can be found in the supplementary
information document (Table S1). c) Corresponding Global mean IRF. We also show the IRF
for 4xCO2 as calculated in Zhang and Huang (2014) for comparison. The IRF for Error bars for
all three subplots are calculated as in Figure 3.1.
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In terms of magnitude, the biggest contributions to both G1 experiments are from ad-

justments that are positive in both 4xCO2 and SOLAR (Figure 3.2a). On a per adjustment

basis, both equation and balance experiments are of similar sign and magnitude. The net

radiative adjustment for G1e and G1b is 3.10 W m-2 and 3.37 W m-2, respectively. In both

cases, this is explained primarily by positive adjustments from stratospheric temperature

and both boundary layer and free troposphere clouds in the SW, and partially offset by a

negative Planck adjustment (Figure 3.2a). The net G1 adjustment illustrates the impor-

tance of including rapid responses here with respect to achieving energy balance, as the

G1e ERF is only slightly positive (0.93 W m-2, Figure 3.1a) and would thus be substan-

tially more negative without rapid adjustments. By construction, the Planck adjustment

is entirely explained by land surface air temperature changes because SSTs and sea ice

boundary conditions remain fixed. The land surface warms in G1 and 4xCO2, and cools

in both SOLAR experiments (Figure S1). The stratospheric temperature adjustment is

positive due to radiative cooling in both single forcing experiments, a result that has been

consistently observed across modelling studies (Wang and Huang, 2020; Chung and Soden,

2015; Hansen et al., 2005; Manabe and Wetherald, 1975). The SW cloud adjustments are

partitioned into boundary layer and free troposphere components, both of which are posi-

tive for 4xCO2 and SOLAR experiments, indicating widespread reduction in cloud amount

and/or optical depth throughout the troposphere. Conversely, LW cloud adjustments are

near zero across all experiments and both cloud top distinctions. The contrast between

longwave and shortwave cloud adjustments is linked to the fixed SSTs in all experiments,

where SW heating from cloud fraction reduction is primarily linked to fast responses after

a forcing agent has been introduced, while LW heating is mostly surface temperature me-

diated (Zelinka et al., 2013). Given our experiments hold SSTs fixed, the longwave effect

of cloud adjustments is near zero (Table S1).
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Positive adjustments in both 4xCO2 and SOLAR experiments highlight why Equation

3.1 often under predicts the ∆S0 offset to balance increased CO2. Adjustments positively

affect the IRF for 4xCO2 and SOLAR experiments, but not in equal amounts. Equation

3.1 only considers adjustments from CO2, not adjustments for the solar constant reduction

or potential non-linear interactions between the combined forcings. This result is also

supported by the global mean IRF for both 4xCO2 and SOLARe. In G1e, the negative

instantaneous forcing (-2.17 W m-2) is the result of all adjustments from 4xCO2 (+1.47

Wm-2, Figure 3.2a) being factored into Equation 3.1, which necessitates a greater reduction

in the solar constant and thus a more negative SOLARe instantaneous radiative forcing

(Figure 3.2c).

3.4.2 Non-linear Responses to Combined Forcings

Finally, we quantify radiative adjustments associated with non-linear responses to 4xCO2

and both SOLAR experiments. Computing the sum of the responses of SOLAR and

4xCO2 provides a useful baseline to quantify non-linearities against their respective G1

experiment. Any residual in the energy budget is, by construction, a product of feedbacks

in the climate response that cause radiative adjustments and further perturb the energy

budget in G1. We refer to any difference between G1x and 4xCO2+SOLARx with prime

notation. The global mean ERF
′
e and ERF

′

b are 0.19 W m-2 and 0.29 W m-2, respectively

(Figure 3.1a).

In general, G1 residuals are small, but positive, for most rapid adjustments (Figure

3.2b). C
′

sw−bl is the largest for both G1e (0.22 W m-2) and G1b (0.26 W m-2). The only

negative residual is for C
′

sw−ft in G1e, which is not statistically different than zero for G1b.

Both the inter-annual uncertainty, and the discrepancy between equation and balance
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experiments are largest for the C
′

sw−ft, reiterating that clouds contribute a major part of

the signal, but also a considerable proportion of the noise. The net G1
′
e adjustment is 0.43

W m-2, or 13.8% of the net G1e adjustment. For G1
′

b, the net adjustment is 0.58 W m-2,

or 17.1% of the total G1b adjustment.

For G1e and G1b, total cloud radiative adjustments are dominated by 4xCO2, with

responses from SOLAR primarily limited to boundary layer clouds (Figure 3.2a). We

further break down the cloud fraction response by showing the ISCCP simulator output

for both G1e and G1b in Figure 3.3. The ISCCP simulator provides cloud fraction on seven

CTP and τ bins for every gridbox, where each CTP-τ bin corresponds to cloud fraction

at a given height and optical thickness. In line with their radiative adjustments, both

G1e and G1b have statistically significant reductions optically thick clouds throughout the

troposphere, with the largest reductions in CTP bins ¡680 hPa (Figure 3.3a and b). Cloud

fraction increases near the tropical tropopause (Figure S4); however, given these increases

are confined to optically thin bins (Figure 3.3a), the global mean LW adjustment is near

zero (Table S1). There is a potential compensatory effect as well due to free troposphere

cloud fraction being defined here as below 680 hPa. Any potential decrease in upwelling

OLR from tropical cirrus cloud response would be offset by the decreases in cloud fraction

in the 680-310 hPa CTP bins.
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Figure 3.3: a & b) Global, annual mean ISCCP simulator cloud fraction response (in %)
for G1e and G1b, respectively. As with all other figures, responses are calculated as 30 year
means. The y and x-axes represent seven cloud top pressure pressure (hPa) and optical depth (τ ,
dimensionless) bins with labels at bin edges. τ -CTP bins without hatching represent statistically
significant differences between the G1 simulations and the Control simulation, calculated using
all 60 available simulation years with a two tailed Student’s t-test (p ¡ 0.05). c). Zonal mean
boundary layer cloud fraction response (in %) binned into four different latitude bands for G1e,
G1b, 4xCO2+SOLARe, and 4xCO2+SOLARb experiments. Error bars represent ± 2 standard
error of the mean. d) As in c), but for free troposphere cloud fraction,

For both G1 experiments, boundary layer cloud fraction decreases across all latitude

bands except the Arctic (Figure 3.3c). G1b exhibits the largest decrease over G1e predom-

inantly in the southern hemisphere. For free troposphere clouds, reductions in optically

thick clouds are confined to 60S-60N (Figure 3.3b and d). Over the Antarctic, both G1e

and G1b experiments show an increase in cloud fraction near the tropopause and a decrease
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of near the surface. This is tied to the Antarctic vertical temperature profile response. In

G1 experiments, the boundary layer and surface warm but the upper troposphere cools

(Figure S2d and b). The cooling upper troposphere has a destabilizing effect on the bound-

ary layer below, enhancing upward mixing and reducing cloud fraction (Salvi et al., 2021).

The result is likely compounded by a limitation of ISCCP simulator output, where its

top down perspective can miss changes in low cloud fraction due to overlying obscuration

(Zelinka et al., 2018). Since Antarctic free troposphere cloud increases in G1, the ISCCP

simulator may show a decrease in boundary layer cloud fraction solely due to changes in the

overlying amount or spatial distribution. The temperature profile response itself is linked

to the combined cooling and heating profiles of both a negative solar and positive CO2

forcing (Henry and Merlis, 2020). In both G1e and G1b, the increased LW absorption from

CO2 produces pronounced warming in the boundary layer, whereas reduced solar forcing

produces vertically homogeneous cooling (Figure S2b and c). Notably, the Arctic cloud

fraction response differs from the Antarctic by a relatively smaller increase in boundary

layer cloud fraction and little change in the free troposphere, albeit with substantial in-

terannual uncertainty (Figure 3.3d). The mid to upper troposphere warms in the Arctic,

which may offset the destabilizing effect of near surface warming.

The magnitude and sign of cloud adjustments to external forcings is a large source of

uncertainty across ESMs (Smith et al., 2020a). While these results are from a single model,

they qualitatively agree with results assessing multi-model ensemble cloud adjustments as

a response to increased CO2 (Kamae and Watanabe, 2012). Our results also show that

the free troposphere cloud response in G1 is dominated by the CO2 forcing as opposed to

solar forcing (Figure 3.2a).
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3.5 Discussion and Conclusions

In this study, we have decomposed the top of atmosphere energy budget in a series of

fixed-SST, single and multi-forcing experiments using CESM to clarify the role of rapid

adjustments in an idealized geoengineering scenario. The total rapid adjustment increases

the IRF for both 4xCO2 and SOLAR forcing experiments. In the context of the G1 ex-

periment with 4xCO2 and SOLAR forcing combined, this reduces the impact of the solar

constant offset, which necessitates a stronger reduction than predicted by Equation 3.1. A

decomposition of radiative adjustments in G1 reveals a non-linear effect that accounts for

13%-17% of the total adjustment, amplifying the SW cloud adjustment through further re-

ductions in boundary layer clouds. This result can be attributed to three distinct physical

drivers. As LW heating caused by the CO2 IRF dries the lower free troposphere, rela-

tively drier air is mixed downward from aloft to decrease optically thick boundary layer

clouds (Figure S3) (Kamae and Watanabe, 2012). This effect is slightly dampened by

free troposphere warming, which acts to increase lower tropospheric stability (Salvi et al.,

2021). However, if a negative solar forcing is applied in conjunction with CO2 forcing, the

free troposphere exhibits less warming and the compensatory stabilizing effect is removed,

which amplifies boundary layer cloud reduction. Decomposing the low cloud response in

G1 experiments into contributions from cloud controlling factors may offer further insight

(Scott et al., 2020; Klein et al., 2017; Qu et al., 2015), but such work is beyond the scope

of this study.

From a modeling perspective, our results illustrate the difficulty in achieving energy

budget closure at the top of atmosphere for G1 via a trial and error approach. While rapid

adjustments in SOLARe and SOLARb are qualitatively similar in this study, they vary

as a function of the initial offset. If one were to run a solar forcing only experiment to
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quantify the net radiative adjustment as done here, which could then be factored back into

Equation 3.1, it would not consider the relationship between the magnitude of adjustments

relative to the solar constant offset. Moreover, our results presented here are from a single

ESM, and the magnitude of solar forcing rapid adjustments likely varies from model to

model (Smith et al., 2018).

An intuitive next step would be to assess the role of rapid adjustments in more ap-

plicable geoengineering scenarios using stratospheric aerosol injections to offset multiple

external forcings (e.g. the G6 sulfur scenario). Solar dimming experiments do not wholly

capture modeled responses from aerosol injections, particularly with regards to atmospheric

chemistry and dynamics (Visioni et al., 2021a). Results from GeoMIP6 transient scenarios

show that fully coupled ESMs exhibit similar globally averaged surface responses regard-

less of whether or not external forcings are applied smoothly or as a once per decade step

function (Visioni et al., 2021b). Nevertheless, decomposing rapid adjustments to individual

forcings in transient geoengineering scenarios could reveal regional climate responses and

underlying non-linear physical drivers as shown here.

Complications for modeling centres notwithstanding, these results exemplify the need

for further research on rapid adjustments in geoengineering scenarios, particularly for ones

with real world applicability as it will be an integral component in quantifying both geoengi-

neering effectiveness (in terms of energy budget or surface temperature based objectives)

and near term impacts (in terms of rapid climate response).
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Chapter 4

Declining Geoengineering Efficacy

Caused by Cloud Feedbacks in

Transient Solar Dimming

Experiments

4.1 Overview

Solar geoengineering with injections of aerosols into the stratosphere has emerged as a

research area of focus with the potential to cool the planet. However, the amount of

solar geoengineering required to achieve a given level of cooling, and how this relationship

evolves in response to increasing greenhouse gas emissions, remains unclear. Here, we

explore the evolution of solar geoengineering efficacy over time under an idealized forcing

framework. Using Earth System Model simulations that dynamically adjust the amount
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of insolation to offset global mean warming from increasing CO2, we find that decreases in

global planetary albedo diminish the efficacy of a solar geoengineering proxy of dimming

the sun. Physically, the decrease in albedo is primarily driven by reductions in optically

thick tropical cloud fraction in the boundary layer and mid troposphere, which are driven

by a drying and destabilization of the mid to lower troposphere. These results reaffirm the

need to understand the troposphere response, particularly from clouds, in realizable solar

geoengineering experiments and their potential to feed back onto planetary albedo, thus

impacting the solar geoengineering effectiveness.

4.2 Introduction

The current best estimate of observed historical global mean surface warming relative to the

preindustrial era is 1.0-1.25◦ C (2022-2013 average) (IPCC, 2023). As temperatures con-

tinue to increase in the wake of Paris Agreement goals of limiting global warming to 1.5◦ C

and 2.0◦ C, research into emergency climate intervention strategies, or geoengineering, has

grown over the past two decades (Crutzen, 2006; Wigley, 2006; Keith and MacMartin,

2015; Robock, 2008). SAG has been studied more intensively than other proposed geo-

engineering methods as volcanic eruptions have provided as useful analogue to illustrate

the cooling effect at the surface of sulphate aerosols in the stratosphere (Stenchikov et al.,

1998), and research surrounding its implementation (Davidson et al., 2012), cost per year

(Smith and Wagner, 2018), achievable targets from use (Kravitz et al., 2017), adverse im-

pacts (Robock, 2008), and governance (McLaren and Corry, 2021) have progressed over

the past decade. However, despite the rapid evolution of geoengineering research, out-

standing questions remain on SAG effectiveness, unaccounted climate impacts, and what

international governance would look like (Kravitz and MacMartin, 2020).
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Coordinated efforts to compare ESM simulations of geoengineering, such as the Geo-

engineering Model Inter-comparison Project (GeoMIP), have enabled multi-model com-

parisons of several experiment designs that range from idealized solar constant tuning

simulations to Shared Socioeconomic Pathways (SSP) simulations with SAG to dampen

surface warming (Kravitz et al., 2011b, 2013). However, the complexity of SAG experiment

designs from GeoMIP has partially contributed to the smaller number of ensemble members

for GeoMIP experiments relative to other MIPs. For example, 6 ESMs participated in the

G6sulfur experiment with the target of reducing surface warming from SSP5-8.5 down to

the medium forcing SSP2-4.5 experiment (Kravitz et al., 2015). Of these 6 models, Visioni

et al. (2021b) found an inter-model spread of 29±9-Tg of SO2 per year between 2081-2100

needed to meet G6sulfur specifications, where some models with prognostic treatment of

stratospheric aerosols injected SO2 near the equator and others scaled aerosol optical depth

(AOD). The inter-model spread of SAG in the G6sulfur experiment is representative of geo-

engineering efficiency (GE), or the radiative forcing (in W m-2) per injected Tg of SO2. In

the stratosphere alone, inter-model spread of SAG efficiency is physically driven by differ-

ences in model treatment of dynamics, chemistry, and aerosol microphysics (Visioni et al.,

2021a). Therefore, simplified experiment designs where the solar constant is tuned within

ESMs (e.g., the G6solar experiment) provide a valuable proxy for SAG to explore geoengi-

neering efficacy from the perspective of surface and troposphere response while controlling

for differences in model treatment of aerosols. Solar tuning experiments were included in

all iterations of GeoMIP (Kravitz et al., 2011b, 2015). Outside of geoengineering model

inter-comparison efforts, the efficacy of solar forcing has been explored relative to that

of CO2 to further understand the roles of various forcing agents on the climate system

(Hansen et al., 2005; Kaur et al., 2023; Wetherald and Manabe, 1975; Modak et al., 2016).

The use of a forcing-feedback framework has become conventional to separate the Ef-
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fective Radiative Forcing (ERF) from a particular forcing agent from surface radiative

feedbacks (Gregory et al., 2004; Andrews et al., 2012). The ERF is defined as the sum

of both the instantaneous forcing (IRF) from introducing a forcing agent (e.g., dimming

the solar constant by 4%) as well as the “radiative adjustments” of the climate after the

forcing agent is introduced but prior to the relatively slower surface response (Sherwood

et al., 2015). From the perspective of geoengineering, understanding the physical drivers

of differences between solar and CO2 forcing efficacy informs the effectiveness of proposed

strategies (Russotto and Ackerman, 2018; Smith et al., 2018; Virgin and Fletcher, 2022).

In particular, the use of transient simulations where solar and CO2 forcing efficacy evolve

over time could inform the source of inter-model spread in more realizable geoengineering

experiment designs like SAG.

Here, we investigate the evolution of geoengineering efficacy over time in an idealized

experiment framework. Specifically, we explore the physical drivers behind changes in

planetary albedo in transient solar dimming experiments, and how such drivers potentially

feed back onto the global Top of Atmosphere (TOA) energy budget, thus impacting the

efficacy of reducing the solar constant over time against increasing concentrations of CO2.

Finally, we discuss the limitations of this approach and whether or not this form of analyses

can be extrapolated to experiment designs with SAG as opposed to solar constant tuning.

4.3 Methods

4.3.1 Community Earth System Model

We use version 1.2.2 of the Community Earth System Model (CESM) for all experiments

in this study (Hurrell et al., 2013). All experiments use the Community Atmosphere Model
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version 4 (CAM4) with an eulerian dynamical core at T31 horizontal resolution (3.75◦ lat-

itude/longitude gridboxes) with 26 vertical levels (Gent et al., 2011). CAM4 is built with

the Cloud Object Simulator Project (COSP) enabled to produce extra cloud diagnostics

from the International Satellite Cloud Climatology Project (ISCPP) simulator (Bodas-

Salcedo et al., 2011; Klein and Jakob, 1999; Schiffer and Rossow, 1983). We use CAM4 at

this resolution for its computational efficiency, and note that a similar configuration has

been used successfully to study global climate responses to perturbed cloud and aerosol

microphysics (Fletcher et al., 2018, 2022). Furthermore, given that we tune the solar con-

stant as a proxy for geoengineering and that our analysis primarily focuses on the surface

and troposphere response, stratospheric chemistry and prognostic aerosol treatment are

not essential for this work. However, we acknowledge that the use of an older model con-

figuration means that caution must be used when attempting to generalize these results to

newer ESMs. The remainder of the component set consists of the Community Land Model

version 4 (CLM4) with biogeochemical cycling active (Lawrence et al., 2011), the Parallel

Ocean Program 2 (POP2) for coupled simulations at 3◦ horizontal resolution (Smith et al.,

2010), the Community Ice CodE Model (CICE) model (Hunke and Lipscomb, 2008), the

River Transport Model (RTM), and stub components for the land ice and ocean wave

models.

4.3.2 Experiment Design

First, we run a coupled, 100 year pre-industrial control experiment (CTL) which all sub-

sequent experiments are branched from (Table 4.1). To quantify the ERF and radiative

adjustments for large changes in CO2 and the solar constant (S0), we follow the Radia-

tive Forcing Model Inter-comparison Project (RFMIP) protocol (Pincus et al., 2016). We
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extract the monthly mean sea surface temperatures (SST) and sea ice forcing files from

year 100 of CTL, which are used as repeating climatologies for all subsequent atmosphere

and land only experiments. To quantify a baseline for perturbed experiments, we run

a 30 year fixed SST and sea ice control experiment (CTLf) using the year 100 CTL sea

ice and SST’s repeating annually. Perturbed CO2 (4xCO2(f)) and solar constant (SOLf)

experiments use the same SST and sea ice forcing files as CTLf in order to isolate the

atmosphere response to each forcing. 4xCO2(f) quadruples CO2 concentration and SOLf

reduces the solar constant by 4%.

Using a single year as opposed to a climatological mean to create SST and sea ice

forcing files means that the boundary forcing represents one particular realization of inter-

annual variability from the CTL experiment. However, we tested the impact on the results

of using a multi year climatology to create forcing files and the primary conclusions were

unchanged. Furthermore, we stress that the SSTs and sea ice are identical between the

baseline and perturbed experiments. The decision to use year 100 was to ensure consistency

with the coupled experiments and to constrain the PI controller in the first year of the

GEO experiment. Since the controller uses annual means to calculate the temperature

error each year, specifying a climatological temperature as the target would produce a

synthetic “error” in the first year of GEO through the eyes of the controller even though the

warming signal from increases in CO2 would likely not have arisen. This is, admittedly, a

choice we made to reduce the drawbacks of using a controller that responds to interannual

variability. Specifically, the GEO experiment targets the global, year 100 annual mean

surface air temperature of the CTL experiment by adjusting the solar constant each year

using a control system (See Subsection 4.3.3).
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Experiment CO2 (ppm) S0 (W m-2) Length (years) Note

CTL 284.7 1360.89 100 coupled equilibra-

tion run

SI 284.7 ±1% ampli-

tude sin wave

140 branched from

CTL, system iden-

tification run for

controller

1%CO2 +1%CO2 yr−1

(linear)

1360.89 140 branched from

CTL

GEO +1%CO2 yr−1

(linear)

time varying 140 branched from

CTL, S0 dictated

by controller

CTLf 284.7 1360.89 30 fixed year 100 re-

peating CTL SST’s

and sea ice

4xCO2(f) 1138.8 1360.89 30 CTLf sea ice &

SST’s

SOLf 284.7 1306.45 30 CTLf sea ice &

SST’s

Table 4.1: Experiments performed for this study. Note that experiments with a subscript “f”
denote experiments with fixed SSTs and sea ice derived from year 100 of the CTL experiment.

We run two coupled experiments with time varying forcings that both branch off of

year 100 of CTL and run for 140 years. In “1%CO2”, concentration increases each year by

1% of the pre-industrial CO2 concentration to a terminal value of 686.19 parts per million
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(ppm) by the end of the experiment. GEO uses the same CO2 forcing as 1%CO2, but uses

a proportional-integral (PI) controller to dynamically adjust the solar constant every year

to suppress changes in global mean surface air temperature. We use a 1%CO2 forcing in

GEO as it is time varying and therefore more analogous to a real world emissions pathway.

Lastly, in order to quantify the gain parameters for the PI controller, we run a 140 year

System identification (SI) experiment forced by a time varying S0 sinusoid. The detailed

methodology of the SI experiment and PI controller implementation is expanded in the

following section.

4.3.3 Control System Design

We use a PI controller to manage the solar constant as a proxy for geoengineering in the

GEO experiment (Kravitz et al., 2016):

∆ S0(t) = −kpTe(t)− ki

t∑
n=0

Te(n) (4.1)

Where ∆ S0 is the change in the solar constant (in percent), kp is the proportional

gain term (in % K−1), Te is the temperature error relative to the target baseline, ki is

the integral gain term (in % K−1 year−1) and the final RHS side term is the integrated

temperature error since the beginning of the run. Equation 4.1 is shown in discrete time

here given the controller readjusts the solar constant at the end of each year.

As illustrated by Virgin and Fletcher (2022), the magnitude of radiative adjustments

as a response to both CO2 and solar forcing directly influence TOA energy balance and

thus the efficacy of any prescribed reduction in S0 designed to suppress a GHG-forced tem-

perature response. For idealized, instantaneous (step function) CO2 forcing, it is possible
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to quantify radiative adjustments first and factor them into the required solar constant

offset calculation, which is the suggested approach for GeoMIP G1 experiments (Kravitz

et al., 2011a,b). However, this is impractical and subject to large uncertainty because the

total radiative adjustment contribution to the ERF of a prescribed solar forcing varies as a

function of the forcing itself (Virgin and Fletcher, 2022). This problem is also present for

coupled simulations with time varying CO2 forcing, where any prescribed reduction in S0

would need to consider radiative adjustments as a response both the ∆S0 and +1% CO2

for a given year, as well as the current climate state (e.g., lapse rate, cloud fraction distri-

bution) that would impact the instantaneous radiative forcing (IRF) efficacy.

To mitigate against this problem, we configure the coupled simulation to target a spe-

cific surface air temperature as opposed to TOA energy balance using a PI controller

(Kravitz et al., 2016; Tilmes et al., 2018; Kravitz et al., 2014). We follow the detailed

methodology in Kravitz et al. (2016) to optimize the controller performance in GEO.

Specifically, we target a global, annual mean surface air temperature of 284.63 K, which is

the year 100 value at the end of the CTL simulation. At the end of each year, we calculate

the global, annual mean surface air temperature error relative to the target, as well as

the integrated error since the experiment start (n = 0). Then, Equation 4.1 is used to

calculate ∆S0, which is a percentage change in the solar constant relative to the CAM4

default value of 1360.89 W m-2.

The choice of ki and kp vary from system to system. In our use case of simulating

idealized geoengineering using CESM, picking gain values that accurately represent the

system requires understanding both the magnitude and timescale of the model surface

temperature response to a perturbation in S0. As shown in MacMartin et al. (2014),

system identification (SI) simulations are used to quantify the magnitude and timescale

of the response at various frequencies. The SI experiment S0 and surface air temperature
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response for CESM 1.2.2 is shown in Figure 4.1. We use a S0 forcing sinusoid with an

amplitude of ±1% and a period of 16 years, corresponding to an angular frequency of

approximately 0.39 radians year-1.

Figure 4.1: a) Solar constant time series used in the SI experiment for proportional-integral
controller parameter calculation. The sinusoid has an amplitude of 1% and a period 16 years. b)
The global, annual mean surface air temperature response from CESM in the SI experiment and
the corresponding sinusoidal fit.

Figure 4.1b shows that the surface air temperature response is also a sinusoid, indicating

the relationship between surface temperature and a unit perturbation in S0 is sufficiently

linear at this frequency. In practice, the linearity of this relationship will also depend on

interannual variability, the frequency of the forcing, and underlying basic state. Since the
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controller only considers the portion of the output that is linearly related to the input, this

represents an important limitation of the approach. However, as we will show later, the

controller is effective at suppressing the surface temperature response without amplifying

natural variability despite such limitations.

Following Kravitz et al. (2016), we quantify the magnitude of the response using the S0

forcing and a sinusoidal fit of the surface air temperature response. The magnitude of the

system response (M) at 0.39 radians year-1 is calculated as the ratio of amplitudes between

the input and output. The timescale of the response is quantified by the phase lag of the

system response (Φ), which is the difference in phase between the output and the input

(Table 4.2). Φ quantifies the effect of time lag between the input signal (solar constant

change here) and the output response (surface temperature change) at this particular

frequency, where climate models with greater phase lag have a longer detection window

after a forcing has been applied. Both the input and output in the SI simulation are

sinusoidal (Figure 4.1), so we can quantify the detection window by taking the difference

between each curve’s phase. In practice with model ensembles, the inter-model spread in

phase lag would be the result of the timescale and magnitude of radiative adjustments as

a response to the input signal.

Lastly, we also quantify the effect of time lag as well (Φt). Since the controller uses

annual means, the information used at the end of each year is on average half a year old.

Furthermore, since the controller will hold S0 constant for a full year before updating again,

another half year of lag is introduced. At 0.39 radians year-1, Φt=22.50◦.
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variable value

M 0.37 K %-1

Φ 25.57◦

Φt 22.50◦

ki 1.02 % K-1 year-1

kp 0.85 % K-1

Table 4.2: Summary metrics for the SI experiment from CESM 1.2.2. Note that, when calcu-
lating gain values, the sign of phase-related metrics are flipped by convention since the output
lags behind the input.

M , Φ, and Φt collectively describe the key features of the system at the chosen frequency,

which can be used to optimize ki and kp values. Lastly, we use a phase margin of 60◦ when

calculating gain values, where the phase margin is the difference between the total phase

lag of the system (Φt+Φ) plus the controller and -180◦. The phase margin represents a

buffer zone between the total phase lag of the system plus the controller and the point of

system instability. Therefore, it is useful to select a higher phase margin to account for the

SI experiment failing to accurately characterize the behaviour of the system at the chosen

frequency. For more information on control system design for geoengineering with ESMs

and a step by step methodology for optimizing gain values using system identification runs,

see Kravitz et al. (2016).

Alongside effectively managing the surface air temperature response, the advantage of

using the PI controller as opposed to manually adjusting the solar constant is that the

reduction in S0 becomes an emergent property of the model. Treating the time varying S0

as an emergent property– analogous to the surface temperature response in +1%CO2 yr
−1

or abrupt 4xCO2 experiments– allows one to quantify geoengineering feedbacks as an energy

budget perturbation per unit of geoengineering (in our case, a 1% change in S0). We expand
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on this in the following subsection.

4.3.4 Radiative Adjustments & Feedbacks

As in Virgin and Fletcher (2022), we quantify radiative adjustments in fixed SST and sea

ice experiments using a linear framework for the TOA energy budget:

ERF = IRF + Anet, (4.2)

where Anet =
N∑
i=1

∂R

∂xi

dxi (4.3)

The ERF is decomposed into the IRF and the total radiative adjustment (Anet). The total

radiative adjustment is the sum of adjustments from fast responses in surface albedo, tem-

perature, water vapour, and clouds (Chung and Soden, 2015; Smith et al., 2018). Radiative

kernels ( ∂R
∂xi

) are applied to state variable responses (dxi) to calculate each adjustment (in

W m-2). For 4xCO2(f) and SOLf, all state variable responses are calculated as the 30 year

mean difference relative to CTLf. For surface albedo, temperature, and water vapour, we

use radiative kernels calculated using CAM3 (Shell et al., 2008), which used the CAM Ra-

diative Transfer model (CAMRT) that is also used in the CAM4 configuration used for our

experiments. For clouds, we use cloud radiative kernels designed for use with COSP output

from ESMs (Appendix A, Zelinka et al. (2012a,b)). Using the cloud kernel method, we

decompose both the shortwave (SW) and longwave (LW) cloud adjustments into contribu-

tions from the boundary layer (>680 hPa) and free troposphere (≤ 680 hpa). More detail

on using cloud radiative kernels to decompose cloud feedbacks can be found in Zelinka

et al. (2016). Finally, the ERF is calculated as the 30 year mean TOA net radiation delta

relative to CTLf.
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The conventional linear forcing-feedback framework uses global, annual mean surface

warming as the independent variable, which would produce zero feedbacks by construction

for GEO and any geoengineering experiment design that targeted global mean surface air

temperature. Therefore, we introduce a new methodology for the GEO experiment to

quantify the relationship between time varying adjustments as a response to combined

transient greenhouse gas and geoengineering forcings.

The theoretical basis centers on the definition of a geoengineering feedback parameter,

which is directly analogous to the classic radiative feedback parameter (Hansen et al.,

1997):

λg =
dR

dg
, (4.4)

where dR is the unit change in the TOA energy budget (in W m-2) and dg is the unit change

in geoengineering. In the case of the GEO experiment, the unit change of geoengineering

is a percentage reduction in S0. The geoengineering feedback can be linearly decomposed

similar to surface temperature mediated feedbacks:

dR

dg
=

N∑
i=1

∂R

∂xi

∂xi

∂g
, (4.5)

where, as in Equation 4.3, ∂R
∂xi

represents the radiative sensitivities for a given state variable

(xi), and ∂xi

∂g
represents the state variable response per unit change of geoengineering.

Therefore, geoengineering feedbacks here are quantified in units of W m-2 %-1. In practice,

we quantify the radiative adjustment associated with each state variable for each year of

the GEO experiment relative to 30 year control climatology (years 70-100 of CTL) using

radiative kernels. Then, each radiative adjustment time series is linearly regressed against

∆S0 as calculated by the controller using all 140 years. Note that the sign convention

of all geoengineering feedbacks presented in this paper has been flipped to equate the
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decrease of S0 to an increase in geoengineering. Since ∆S0 is used as a proxy for a family

of SRM techniques such as SAG, geoengineering feedbacks can physically be thought of

as state variable responses initiated by SRM that cause additional changes to planetary

albedo that either amplify (positive feedback) or damp (negative feedback) the initial SRM.

Thus, the practical impact of geoengineering feedbacks is to change the efficacy of the SRM

technique being applied, resulting in either more or less geoengineering being required to

meet a particular temperature target than was originally estimated in the absence of such

feedbacks.

4.4 Results

4.4.1 Radiative Forcing & Adjustments

First, we present results from the fixed SST experiments from to quantify the radiative

forcing and adjustments associated with the CO2 and Solar forcings applied separately and

in the absence of surface temperature-mediated feedbacks. The global, annual mean ERF

is -8.17 W m-2 in SOLf, which more than compensates for the global mean ERF associated

with quadrupling CO2 (7.53 W m-2). Previous work has explored the difference in efficacy

between the two forcings here (Modak et al., 2016; Russotto and Ackerman, 2018), which

has been linked to radiative adjustments. Quantifying the ERF and radiative adjustments

for 4xCO2(f) and SOLf, as well as exploring the physical drivers of each adjustment, provide

a useful point for comparison against the GEO experiment which has both a positive CO2

and a negative solar forcing (Table 4.1). By deconstructing the ERF in terms of the TOA

energy budget for 4xCO2(f) and SOLf, we expect these results to provide insight into the

drivers of geoengineering feedbacks in the coupled GEO experiment.
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Figure 4.2: Effective Radiative Forcing (ERF) maps for the 4xCO2(f) and SOLf experiments.
Calculation follows RFMIP protocol, where each map is the 30 year annual mean response of each
experiment relative to CTLf. Hatching represents gridboxes that are not statistically significant
(p>0.05), where significance is calculated using a two tailed independent t-test using all 60 years.
The global mean ERF values are shown in brackets next to each subplot title.

The prescribed forcing in 4xCO2(f) is a spatially homogeneous increase in CO2 concen-

tration, but the the ERF peaks in the tropics and is weaker towards the poles (Figure

4.2a). This is primarily driven by the instantaneous forcing (IRF) prior to any radiative

adjustments, where increased CO2 produces a more optically opaque atmosphere, effec-

tively shifting the emission layer upward (Zhang and Huang, 2014; Huang et al., 2017).

Where the lapse rate is the steepest, the net forcing is larger as the emission temperature

there is colder (Huang et al., 2016).
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The meridional of SOLf ERF is primarily driven by heterogeneous spatial distribution

of downwelling shortwave radiation produced by reducing the solar constant (Figure 4.2b),

where a 4% reduction scales the climatological distribution of insolation. Radiative ad-

justments from local changes in temperature, water vapour, and clouds contribute to the

ERF at the gridbox level. For particularly the Arctic in SOLf, the net TOA radiation is

not statistically different from CTLf at the 95% confidence level, where the ERF is near

zero (Figure 4.2b, see hatching).

The ERF spatial distribution for both experiments in Figure 4.2 is also influenced by

experiment design given the land surface is not constrained. We show the surface air

temperature response in Figure 4.3. The surface response is spatially consistent for both

experiments, where the northern hemisphere warms in 4xCO2(f) and cools in SOLf.
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Figure 4.3: As in Figure 4.2, but for surface air temperature response relative to CTLf.

Furthermore, despite the fixed sea ice fraction, Arctic amplification (AA) is present in

both experiments as well consistent with the sign of both forcings. That is, peak cooling

in the Arctic in SOLf and peak warming in the Arctic for 4xCO2(f). This result supports

previous studies that show increased atmospheric poleward energy transport under CO2

forcing (Huang et al., 2017) and its influence on meridional surface warming profiles (Rose

et al., 2014).

To quantify what is driving the overall ERF, we break down global, annual mean ra-

diative adjustments for 4xCO2(f) and SOLf in Figure 4.4. The net adjustment is positive

for both experiments, where the stratosphere temperature, troposphere temperature, and
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shortwave cloud adjustments are the largest contributors. Surface albedo, LW cloud, water

vapour, and troposphere temperature are of opposite sign and similar magnitude between

each experiment, whereas stratospheric temperature and SW cloud adjustments are pos-

itive for both experiments. As a result, the net adjustment is 1.07 W m-2 for SOLf and

2.17 W m-2 for 4xCO2(f), indicating that radiative adjustments amplify the positive CO2

IRF and damp the negative solar forcing. The standard error for all individual adjust-

ments, as well as the net adjustment, in both experiments is less than 10% of the total,

demonstrating the robustness in these responses. These results are qualitatively consistent

with our previous work that showed the dampening effect of radiative adjustments on solar

dimming efficacy (Virgin and Fletcher, 2022).

Our understanding of all non-cloud radiative adjustments is fairly straightforward.

Stratospheric cooling is present in both experiments and results in a positive radiative

adjustment (Wetherald and Manabe, 1975; Manabe and Wetherald, 1975). The tropo-

spheric temperature adjustment is tied to the surface response in both experiments. The

lapse rate contribution to the tropospheric adjustment is near zero in 4xCO2(f), illustrating

that the Planck response from northern hemisphere warming over land contributes the

most to the total temperature adjustment (Figure 4.3a). In contrast, the positive tropo-

sphere temperature adjustment in SOLf is roughly equal between lapse rate and Planck

adjustments. The Planck adjustment is caused by land surface cooling over all land sur-

faces (Figure 4.3b). In low latitudes, the moist adiabatic adjustment preferentially cools

the upper troposphere relative to the surface, which decreases emitting temperature and

causes a positive lapse rate adjustment. The land surface response dominates in the global

mean for both experiments, which produces a positive temperature adjustment for SOLf

and a negative adjustment for 4xCO2(f).
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Figure 4.4: Global, annual mean radiative adjustments in W m-2 for the 4xCO2(f) and SOLf

experiments. Each value is calculated using the 30 year mean climate response relative to a
pre-industrial control simulation. Uncertainty is defined as plus/minus 1 standard error of the
mean using all 30 years of the response. From left to right, adjustments are listed as surface
albedo (Aa), stratospheric temperature (AT−s), Planck (AP ), lapse rate (Alr) , troposphere +
stratosphere water vapour (Awv), longwave cloud (Ac−lw), shortwave cloud (Ac−sw), and net
(Anet).

The largest and most important difference between SOLf and 4xCO2(f) arises through

cloud radiative adjustments, which is explored in further detail in Figure 4.5. Figures 4.5a

and b show the global, annual mean cloud fraction response as a function of optical depth

and cloud top pressure (CTP). In both experiments, the fraction of optically thin clouds in

the upper troposphere and lower stratosphere cloud fraction increases in the lowest optical

depth bins. However, these cloud changes contribute little to the net cloud adjustment

because the radiative sensitivity for the bottom two optical depth bins is low throughout

the atmosphere column (Figure C.1, Zelinka et al. (2012a)). In SOLf, the weakly positive

total LW cloud adjustment is also due to slight increases of optically thick clouds in mid

troposphere (560-310 hPa, which are more sensitive to changes in cloud fraction in terms

of radiation (Figures 4.5b, C.1).
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Figure 4.5: a) & b) Global, annual mean ISCCP cloud fraction response (in percent) for the
4xCO2(f) and SOLf experiments, respectively. The ISCCP fraction is plotted on optical depth (x)
and cloud top pressure (y) axes. Responses are defined as the 30 year climatology delta relative
to the control case. Hatching represents statistically insignificant grid boxes calculated using a
student’s two tailed independent t-test with all 60 years of available data. c) & d) Global, annual
mean air temperature and relative humidity responses for both 4xCO2(f) and SOLf experiments.

The SW cloud adjustment is 2.18 W m-2 in 4xCO2(f), which is driven by decreases in

the optically thickest clouds throughout the troposphere below 310hPa (Figure 4.5a). The

SOLf total SW cloud adjustment is 0.11 W m-2, consistent with previous work showing

that cloud radiative adjustments for idealized geoengineering forcings are positive for the
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CO2 component of the forcing (Virgin and Fletcher, 2022; Russotto and Ackerman, 2018).

While there are small decreases in clouds for the largest optical depth bins, their radiative

contribution to the total adjustment is offset by increases for all other optical depths

throughout the mid troposphere.

The physical causes of these changes in cloud fraction and altitude are related to the

details of each experiment’s configuration. The global mean vertical temperature and

relative humidity responses for both experiments are shown in Figure 4.5c and d. For

4xCO2(f), the bottom heavy warming profile dominates, which has a destabilizing effect

on the troposphere alongside preferentially drying the boundary layer (Salvi et al., 2021).

Physically, lower troposphere drying comes from the combination of fixed SSTs with small

increases in surface air temperature, which decreases upward latent heat flux from the

surface (Kamae and Watanabe, 2013). The result is reductions in optically thick clouds

and a positive radiative adjustment in the global mean (Figures 4.4,4.5a). In SOLf, the

troposphere cools throughout the column, which reflects the different radiative forcing

structure between CO2 versus solar forcing. CO2 forcing makes the atmosphere more

optically opaque, while solar forcing primarily changes surface radiative flux and therefore

impacts LW radiation throughout the atmosphere (Henry and Merlis, 2020).

4.4.2 Geoengineering Feedbacks

With a physical basis for explaining radiative adjustments as a response to CO2 and solar

forcing in the fixed SST experiments, we now explore the coupled GEO experiment through

geoengineering feedbacks and their impact on the PI controller’s ability to meet the target

global, annual mean surface temperature.

The PI controller performs well in terms of dynamically maintaining the global, annual
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mean surface air temperature close to target to counteract the CO2 forcing in the GEO

experiment (Figure 4.6a). Residual year-to-year variability in surface air temperature is an

expected feature of the temperature time series given the lag of the controller in adjusting

S0, in the present of internal variability on a wide spectrum of timescales. This result agrees

with previous studies showing that control system design is effective at both characterizing

the frequency response of ESMs to forcing (Figure 4.1) and simulating geoengineering

to meet specified climate objectives (Kravitz et al., 2014, 2016; MacMartin et al., 2014;

MacMynowski et al., 2011).

In GEO, The PI controller reduced S0 by 36.86 W m-2 (0.97%) by the end of the

simulation (Figure 4.6b). We also show global, annual mean planetary albedo on the

secondary x-axis in Figure 4.6b, which decreased by 0.54% by the end of GEO.
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Figure 4.6: a) Global, annual mean surface air temperature for the 1%CO2 (red) and GEO
experiments (blue). b) S0 for the GEO experiment calculated by the controller (purple line). The
orange line is the S0 assuming planetary albedo remains fixed to the year 0 value (0.355) for the
full length of the simulation. Planetary TOA albedo is shown on the secondary y-axis (green
line).

This result implies that the efficacy of a unit change in S0 gradually diminished over

time as a larger proportion of downwelling SW radiation was reaching the surface. This

is illustrated by the orange line in Figure 4.6b, which is the implied S0 for GEO assuming

planetary albedo remained fixed at its year 0 value (0.355) for all 140 years. In terms of

insolation, this is expressed as an extra 6.89 W m-2 reduction by the end of the simulation.

The reduction in albedo contrasted against the effectiveness of the PI controller illustrates
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the advantage of using control system design for geoengineering given its ability to account

for changes in state variables in a non-linear fashion “on the fly”, which would have been

more difficult to account for via manual tuning. Furthermore, it also implies that radiative

adjustments make a non-negligible contribution to the TOA energy budget in GEO and

therefore the surface temperature response. We show the spatial distribution of the surface

air temperature response in Figure 4.7.

Figure 4.7: Annual mean surface air temperature response for years 120-140 relative to the
CTL experiment climatology for a) the 1%CO2 experiment and b) the GEO experiment. The
global mean is included as the values in square brackets next to each title.

Figure 4.7a shows the familiar pattern of warming associated with greenhouse gas forc-

ing experiments that includes greater warming over land than ocean and amplified warming
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at higher latitudes, particularly in regions of high preindustrial sea ice concentration. De-

spite the PI controller effectively suppressing global mean surface warming induced by CO2

forcing, there are clear examples where the regional warming from CO2 is under-corrected,

and others where it is over-corrected. Widespread low latitude cooling is offset by high

latitude warming, which is consistent with other models running the G1 GeoMIP experi-

ment (Kravitz et al., 2013). While the North Atlantic cools in GEO here, the magnitude

and sign of this response is uncertain across models for G1. Contrasting the GEO surface

temperature response against 1%CO2 surface warming by the end of both experiments

exemplifies the impact of solar dimming. That is, the combined effect of CO2 forcing and

surface temperature mediated feedbacks contributing to the spatial structure of surface

warming in 1%CO2– particularly with respect to polar amplification (Figure 4.7a). In or-

der to better understand the evolution of geoengineering efficiency in the GEO experiment,

we decompose the geoengineering feedback parameter in Figure 4.8.

Figure 4.8: Global, annual mean geoengineering feedbacks for the GEO experiment. From
right to left, feedbacks are listed as surface albedo (λa), stratosphere temperature (λT−s), Planck
(λP ), lapse rate (λlr), troposphere water vapour (λwv), longwave cloud (λc−lw), shortwave cloud
(λc−sw), and net (λg). The error bars denote the regression slope 95% confidence interval for
each feedback. Note that the sign of these feedbacks have been flipped to illustrate the energy
budget response against a reduction in the solar constant as a proxy for geoengineering.
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The net geoengineering feedback (λg) is made up of contributions from surface albedo,

temperature, water vapour, and cloud feedbacks. Temperature feedbacks are separated into

a stratosphere and troposphere component, and the latter is comprised of Planck and lapse

rate feedbacks. Recall that the sign of the denominator in the regression has been flipped

to represent decreases in S0 as an increase in geoengineering (Section 24.3.4). The net

geoengineering feedback (λg) is 1.13 W m-2%-1, which represents the net energy tendency

at the TOA per percent reduction in S0. The two largest positive contributors to λg are

the SW cloud and stratosphere temperature feedbacks. The surface albedo and LW cloud

are feedbacks are near zero. The near zero surface albedo feedback is consistent with other

idealized geoengineering simulations that show minimal changes in sea ice extent despite

residual polar warming (Kravitz et al., 2013). Finally, the lapse rate (+0.25 W m-2%-1)

and water vapour (-0.27 W m-2%-1) feedbacks sum to near zero when combined.

Physically, the stratosphere temperature feedback is consistent with the fixed SST ex-

periments in Section 3.1 where the stratosphere cooled in both SOLf and abrupt-4xCO2(f).

As the controller reduces S0, the stratosphere continues to cool due to the combined pos-

itive CO2 and negative solar forcing. In terms of TOA energy balance, this adjustment

drives increased outgoing LW flux to space that, when combined with a decreasing S0, pro-

duces a positive feedback loop. The weakly positive Plank feedback in GEO results from

cooling in the tropics and subtropics (Figure 4.7b), and the positive lapse rate feedback

indicates preferentially enhanced cooling in the upper troposphere relative to the surface

in the tropics. As a feedback loop, the continued reduction in S0 further enhances upper

troposphere preferential cooling relative to the boundary layer and surface. The water

vapour feedback is intrinsically linked to the vertical structure of the temperature response

because the water vapour kernel assumes a constant relative humidity (Soden et al., 2008).

As the troposphere cools, specific humidity decreases and the greenhouse effect from water
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vapour is diminished.

The geoengineering SW cloud feedback is distinct given its first order impact on plane-

tary albedo and that it is the largest contributor to the net positive geoengineering feedback

(0.67 W m-2%-1). As shown in Figure 4.4, although both 4xCO2(f) and SOLf have a positive

SW cloud adjustment, it is an order of magnitude stronger in response to CO2 forcing than

negative solar forcing. This result brings a limitation of this approach into focus, which

is the implied physical linkage by defining geoengineering feedbacks per percent reduction

in S0. In GEO, the 1%CO2 forcing and evolving SSTs both are likely contributing to the

changes in cloud fraction over time. While we do not attempt to attribute changes in

cloud fraction from CO2 forcing, solar forcing, and and surface response, we focus on the

SW cloud feedback spatial distribution and physical drivers in the next section to better

understand the relationship between tuning S0 against a positive CO2 forcing and changes

to clouds.
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4.4.3 Cloud Response

Figure 4.9: Annual mean geoengineering shortwave cloud feedbacks separated into boundary
layer (>680 hPa, a and b) and free troposphere (≥ 680 hPa, c and d) contributions for the
GEO experiment. Feedbacks were calculated for each grid box by regressing the shortwave cloud
radiative adjustment times series (relative to years 70-100 of CTL) against the ∆S0 calculated
by the PI controller. Global mean values are shown next to each subplot title. As in Figure 4.8,
the sign has been flipped as a proxy for geoengineering.

Figure 4.9 shows the annual mean SW cloud geoengineering feedback decomposed into

boundary layer and free troposphere components. About two-thirds of the global mean

total cloud feedback comes from changes to clouds in the free troposphere (≤ 680 hPa),

and one-third from changes to clouds in the boundary layer (> 680 hPa). The boundary
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layer feedback is generally positive from mid to lower latitudes (Figure 4.9a). Regional

maxima over the Amazon and over mid latitude forested regions may be attributable

to the physiological effect on plants from CO2 forcing, where reduced evapotranspiration

causes reductions in boundary layer cloud fraction (Doutriaux-Boucher et al., 2009). There

are regions of negative feedback in the tropics off the African coast and the Eastern Pacific

cold tongue, which indicates an increase in low cloud fraction over these regions. The free

troposphere feedback also increases toward lower latitudes, with a band of strong positive

feedback across the equatorial Eastern Pacific, Atlantic, and Indian oceans. The local

maxima are found in regions with reductions in cloud fraction, which could potentially

obfuscate the boundary layer feedback result due to the ISCCP’s top down perspective

(Zelinka et al., 2018). To better understand the temporal evolution of the strong positive

SW cloud geoengineering feedback in the tropics over the oceans, we now analyze the

evolution of the three cloud controlling factors over the course of the GEO experiment.
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Figure 4.10: The tropical mean (30N-30S) free troposphere SW cloud radiative adjustment,
calculated using cloud kernels, in GEO plotted against a) tropical mean bulk tropospheric stability
(see Appendix B), b) tropical mean 700 hPa relative humidity, and c) tropical mean SSTs. Each
marker is a year in all 140 years of GEO relative to the CTL experiment climatology. Note that
the x axis has been flipped for all three plots to illustrate the decreasing trend in each variable
over time in GEO.

Focusing on the tropics, we plot the evolution of the free troposphere SW cloud radiative

adjustment in GEO against bulk tropospheric stability (BTS), 700 hPa relative humidity,

and SSTs in Figure 4.10. BTS is defined as θ200−850 − θ850−1000, where θ200−850 is the mean

potential temperature from 200 to 850 hPa and θ850−1000 is mean potential temperature

from 850-1000 hPa (Salvi et al., 2021). All three factors exhibit a decreasing trend in
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GEO over time; the tropical surface cools, the boundary layer dries, and free troposphere

destabilizes. The negative BTS trend also informs our understanding of the positive lapse

rate geoengineering feedback. Near the surface, the rate of cooling is small relative to

the upper troposphere (Figure 4.7b). All three factors have negative relationships with

SW free troposphere cloud radiative flux, which is physically consistent with the trend of

decreasing free troposphere cloud fraction.

Despite the ocean being allowed to respond in GEO, these results are physically consis-

tent with the combined global mean vertical profiles of temperature and relative humidity

in 4xCO2(f) and SOLf (Figure 4.5c and d). The reduced S0 over time in GEO enhances

the vertically isothermal cooling, which is partially offset by the bottom heavy warming

profile of increasing CO2. In terms of explaining the SW cloud geoengineering feedback,

the reduction in BTS decreases optically thick cloud fraction, which produces a positive

radiative feedback. The effect is most pronounced in the tropics because of the meridional

forcing structure from reducing S0, where there is proportionally less downwelling SW ra-

diation at the TOA in the topics relative to the poles (Figure 4.2b). The evolution of

relative humidity is also conducive to reductions in cloud fraction as the boundary layer

dries from CO2 forcing (Figure 4.10b, Kamae and Watanabe (2012)).

4.5 Discussion & Conclusions

In this study, we have explored the role of radiative feedback loops in an idealized geoengi-

neering simulation where the solar constant was dynamically adjusted to offset the global

mean warming from a 1 percent per year increase in CO2. We define a new type of ra-

diative feedback diagnostic specifically for geoengineering experiments that quantifies the

radiative perturbation per unit of geoengineering– in this case a percentage reduction in S0.

96



We find that geoengineering feedbacks are physically consistent with radiative adjustments

as a response to positive CO2 and negative solar forcing that are of the same sign (Figure

4.4). Specifically, the strongest positive feedbacks are associated with reductions in mid-

troposphere optically thick clouds over tropical oceans and stratospheric cooling (Figure

4.8). Stratospheric cooling has positive LW contribution and reductions in optically thick

clouds have a negative SW contribution to TOA energy balance. The result is a reduction

in the efficacy of S0 in terms of its ability to suppress warming, which is illustrated by the

PI controller dynamically accounting for the decreasing trend in planetary albedo in GEO

by strengthening the reduction in S0 over time (Figure 4.6).

Despite the advantage of this new approach in quantifying why geoengineering efficacy

changes over time, geoengineering feedbacks suffer from several limitations that make them

more difficult to interpret than traditional surface temperature mediated feedbacks. Per-

haps most important is defining the feedback as per unit of geoengineering in the presence

of both a time varying positive CO2 forcing and surface response. As they are defined in

Equation 4.3, radiative adjustments per unit of geoengineering (∂xi

∂g
) include state variable

responses from CO2 forcing and the secondary impact of local changes in surface temper-

ature. While the spatial distribution of surface temperature can be controlled for (e.g.,

preserving the equator to pole temperature gradient alongside the global mean surface tem-

perature), local changes in surface temperature in regions of deep convection can propagate

throughout the atmospheric column and impact cloud fraction. Furthermore, the definition

of a geoengineering feedback presupposes that any representation of geoengineering– either

reductions in S0 or gridbox injections of SO2– is introduced to offset a positive greenhouse

gas forcing. From a modelling standpoint, using the PI controller to interpret ∆S0 as an

emergent property of the model also requires a temperature response, where the surface

warming is also influenced by the radiative adjustments from increasing CO2 each year.
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The strength of surface temperature mediated feedbacks differ when forced with solar

versus CO2 forcing (Kaur et al., 2023). Geoengineering feedbacks contrast from surface

temperature feedbacks even further given they are a direct response to forcing type. The

magnitude of the SW cloud geoengineering feedback is partially the result of negative

solar forcing ERF peaking in the tropics (Figure 4.2b), which is unique to this type of

geoengineering proxy. This is particularly important for any kind of stratospheric temper-

ature feedback given that simulations of geoengineering with gridbox SO2 injections heat

the tropical lower stratosphere (Tilmes et al., 2009; Richter et al., 2018). SW cloud geo-

engineering feedbacks should be of particular focus given the inter-model spread of cloud

adjustments from solar and CO2 forcing (Modak et al., 2016; Schmidt et al., 2012; Smith

et al., 2018). Quantifying the inter-model spread of cloud geoengineering feedbacks with a

similar methodology as shown here would have significant implications for any realizable

geoengineering scenario (e.g., aerosol injections in the G6sulfur scenario), as previous stud-

ies assessing cloud fraction response to volcanic eruptions or SAG in fixed SST experiments

have shown reductions in tropical anvil clouds from increased upper troposphere stratifi-

cation (Saint-Lu et al., 2022; Boucher et al., 2017). Notably, these studies contrast against

the results that show mid troposphere reductions in cloud fraction here, which supports

the notion that, in more respects than just changes in cloud fraction, solar constant tuning

is not a suitable analogue for SAG for the purposes of impact assessment (Visioni et al.,

2021a). Nevertheless, ESM surface temperature mediated cloud feedbacks that are biased

high against expert synthesis are the main source of spread in Equilibrium Climate Sensi-

tivity (ECS) in CMIP6 (Zelinka et al., 2022). Therefore, understanding how such biases

would impact geoengineering efficacy over time is integral to constraining the expected

climate response if a SAG scheme were to be implemented in nature. Future studies could

use similar methods here to assess the thermodynamic response of the troposphere from
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SAG deployed using control system design.
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Chapter 5

Conclusions

5.1 Summary

As of 2023, the best estimate of the Earth’s remaining budget to limit global, annual mean

surface temperature rise to less than 1.5◦C is 250 Gigatonnes of CO2 equivalent (50% likeli-

hood), which is a decrease of 37.5% relative to the IPCCWorking Group I Sixth Assessment

Report on Climate Change published in 2019 (Forster et al., 2023). Geoengineering re-

search continues to gain traction as more consideration is given to potential emergency

climate intervention measures to help achieve the goals set forth in the Paris Agreement.

Should any form of geoengineering be implemented, it is essential to understand how the

efficacy of geoengineering radiative forcing will evolve over time. This thesis strove to

bridge the methodological gap between surface temperature mediated radiative feedbacks

and potential geoengineering feedbacks and how they may impact forcing efficacy. Here,

we revisit the research goals from Section 1.3 in the context of the three manuscripts

comprising Chapters 2, 3, and 4.
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Research Goal 1

Use conventional methods and climate model experiment design to understand how radiative

forcing and individual radiative feedbacks contribute to differences in climate sensitivity and

surface warming between ESMs.

The manuscript comprising Chapter 2 explored how changes in radiative feedback and

forcing impact the increase in ECS from CanESM2 to CanESM5.0.3. ECS rose by 54%

in CanESM5 to 5.65 K, which is the largest ECS in the CMIP6 ensemble (Zelinka et al.,

2020) and sits outside the 5-95% confidence interval for the observation-based constrained

ECS range of 2.3-4.7 K (Sherwood et al., 2020). We used a range of experiment designs

from the CMIP deck to quantify the role of forcing and feedback individually. Using fixed-

SST experiments from RFMIP to quantify the ERF from an abrupt quadrupling of CO2,

we found a difference of only 0.08 W m-2 in the ERF between the two model versions

(Table 2.1). Using coupled, abrupt-4xCO2 experiments, we found that the net radiative

feedback parameter was more positive for CanESM5.0.3, which was the result of more

positive surface Albedo, LW cloud, and SW cloud radiative feedbacks, with the SW cloud

feedback responsible for over half of the ECS increase (Figure 2.1). When decomposed

by altitude, optical depth, and analyzed spatially, we found that the SW cloud feedback

increase was primarily driven by reductions in PBL cloud fraction amount over Eastern

equatorial and sub-tropical ocean basins (Figure 2.3).

Research Goal 2

Understand the physical drivers of surface radiative feedbacks and how they impact plane-

tary albedo and atmosphere infrared optical opacity, and therefore energy balance.
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In Chapter 2, we further explored how regional changes in surface warming and EIS

drive reductions in PBL cloud fraction in CanESM5.0.3, which resulted in stronger SW

cloud feedbacks and therefore climate sensitivity. We found that CanESM5.0.3 had rela-

tively cooler pre-industrial control state local SSTs and larger EIS in Eastern tropical and

sub-tropical ocean basins than CanESM2, where both CCFs were conducive to increased

cloud fraction (Figure 2.4b & 2.5a). In experiments where CO2 was quadrupled, the larger

decrease in PBL cloud fraction over time resulted in enhanced surface warming in the

Eastern Pacific (Figure 2.5c), which is representative of the pattern effect frequently seen

in warming experiments from ESMs (Stevens et al., 2016). We confirmed this result using

the amip-PiForcing experiment, which forces CanESM5.0.3 using the historical pattern of

warming, resulting in a more negative SW PBL cloud feedback due to constrained surface

warming in regions with large stratocumulous cloud decks (Figure 2.6).

In addition to offering an exhaustive analysis of the evolution of ECS between two ver-

sion of CanESM, Chapter 2 explores the impact of local changes in SSTs and their impact

on radiative feedbacks. Previous work has shown spatial evolution of surface warming in

both historical and idealized forcing experiments (e.g., 4xCO2) is important for under-

standing the evolution of globally averaged lapse rate and cloud feedbacks (Andrews and

Webb, 2018). This pattern effect of warming extends directly into Chapter 4 as well given

the spatially heterogenous surface response in the GEO experiment.

Research Goal 3

Leverage the use of fixed-SST experiment design to quantify and differentiate radiative

adjustments from surface radiative feedbacks and how they influence TOA energy balance,

and therefore forcing efficacy. Extend the analysis of adjustments to assess solar forcing
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efficacy as a proxy for geoengineering.

Chapter 3 shifts focus from feedback to forcing. Here, we use CESM and fixed-SST

experiment design to quantify radiative adjustments and their impact on forcing efficacy

for both a positive CO2 and negative solar forcing. We find that radiative adjustments as

a response to 4xCO2 are a net positive contribution to the IRF such that they increase the

ERF (Figure 3.2a)— a result consistent across many ESMs (Smith et al., 2018). We also

find that the net adjustment to negative solar forcing is positive, which has a dampening

impact on the efficacy of tuning the solar constant to offset the ERF from increasing CO2.

The largest contribution to the net adjustment in the G1 experiment came from a positive

SW cloud adjustment, which was driven by a reduction in optically thick cloud fraction

throughout the PBL and the mid-troposphere (Figure 3.3). This manuscript also briefly

explores the potential for non-linear radiative adjustments as a result of both CO2 and

solar forcing being applied concurrently. We found that the troposphere temperature,

water vapour, and SW PBL cloud adjustment are more positive when both forcings are

applied together (Figure 3.3b), implying that a portion of the total radiative adjustment in

the G1 experiment comes from the troposphere responding non-linearly to both forcings.

Chapter 3 stops short of assessing the physical drivers behind changes in cloud fraction

in the G1 fixed-SST experiment. However, this is explored further in the following chapter.

Research Goal 4

Develop a method for quantifying geoengineering radiative feedbacks in transient dual-

forcing experiments, where CO2 is incrementally increased and the solar constant is de-

creased. Use this methodology to understand how geoengineering efficiency may evolve over

time as a result of changes in planetary albedo.
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With the groundwork for understanding how both external perturbations (i.e. forcing)

and surface response (i.e. feedback) impact the global energy budget from Chapter 3,

Chapter 4 iterates on these experiments to quantify radiative adjustments in a coupled

solar dimming experiment. Using a PI controller to effectively manage the amount of

downwelling SW radiation in response to increasing CO2, we were able to maintain near

zero global, annual mean warming over the course of the 140 year GEO experiment (Figure

4.6a). We found that planetary albedo was reduced by 0.54% by the end of the GEO

experiment (Figure 4.6b), implying that the efficacy of solar dimming was being reduced

over time. To further explore the reduction in efficacy, we define geoengineering feedbacks

by regressing radiative adjustments in the GEO experiment against the reduction in S0

and find that the largest positive feedbacks are stratosphere temperature and SW cloud

(Figure 4.8). This result is consistent with the sign radiative adjustments in fixed-SST

experiments in both Chapter 3 (SOLAR, Figure 3.2) and Chapter 4 (SOLf, Figure 4.4).

Finally, we conduct a deeper analysis on the SW cloud geoengineering feedback and found

that it was the result of reductions in optically thick cloud fraction in the mid to lower

troposphere over tropical ocean basins (Figure 4.9) The SSTs cooled, the lower troposphere

dried, and bulk tropospheric stability decreased— all contributing to the positive feedback

(Figure 4.10).

5.2 Limitations

Various experimental and methodological limitations for each manuscript were discussed

within their respective chapters. Here, we focus on some limitations persisting across

all three manuscripts. We also address a more subjective approach to what defines a

geoengineering feedback, which was only briefly addressed at the end of Chapter 4.
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Linearity Assumption for the Global Energy Budget

All three manuscripts use a linear framework for the TOA energy budget (Equations 2.1,

3.2, 4.2, 4.3). This assumption can be categorized in two ways,

1. The climate feedback parameter or geoengineering feedback parameter (λ in Equation

2.1 or λg in Equation 4.4, respectively) is constant in time.

2. All feedbacks or adjustments are independent and sum to the total climate feedback

parameter or total radiative adjustment.

The linearity of the climate feedback parameter with respect to time depends on how it

is defined (Knutti et al., 2017). The linear framework used in Chapter 2 is useful for assess-

ing feedback from state variables that were considered, but does not account for feedbacks

from the evolution in permafrost, vegetation, ice sheets or atmosphere chemical composi-

tion (Knutti and Rugenstein, 2015). Furthermore, linearity is also model-dependent, where

many ESMs exhibit a relaxation of the net climate feedback over time (less negative) in

idealized warming experiments (Andrews et al., 2012). This inter-model spread has been

linked to model physics, but also the timescale and spatial pattern of surface warming

(Andrews and Webb, 2018; Dong et al., 2020).

The linearity of the climate feedback parameter (or net radiative adjustment in the

context of forcing only) can also be studied with respect to independence. In idealized

warming experiments where feedbacks are studied on global scales, second order effects

are typically neglected as their contribution is small (Boer and Yu, 2003; Klocke et al.,

2013). However, non-linear interactions between some feedbacks, primarily interactions

between non-cloud and cloud feedbacks, may be too large to neglect at local and/or shorter

timescales (Zhu et al., 2019).
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Radiative Kernels

There is more than one way to calculate radiative feedbacks (Wetherald and Manabe,

1988; Soden and Held, 2006; Zhu et al., 2019). Radiative kernels are used in all three

manuscripts to calculate either adjustments or feedbacks. None of the kernels used in

this thesis were derived from either CanESM2, CanESM5, or CESM1.2 with CAM4. In

practice, the spread in radiative sensitivity across kernels is the result of differences in

base state, vertical resolution, and the radiative transfer model used in their computation

(Soden et al., 2008; Smith et al., 2018). Of these three factors, base state is the largest

source of uncertainty, where warmer base states used in a kernel’s computation produce

larger temperature radiative sensitivities (Jonko et al., 2012, 2013). This result is somewhat

intuitive given OLR scales to the fourth power of temperature. Kernel vertical resolution

impacts stratosphere temperature radiative sensitivity. In all three manuscripts here, model

output was interpolated down to the 17 standard CMIP5 pressure levels, with only 4 levels

between 10 and 250 hPa (Taylor et al., 2012). Smith et al. (2020b) showed that, for kernels

with higher resolution in the stratosphere, the temperature adjustment was more positive

as less information was lost during the interpolation. This could be a potential explanation

for why the clear-sky linearity test with CanESM failed using kernels from the ECHAM6

atmosphere model (Figure A.1), where the temperature kernel was interpolated from 47

down to 17 pressure levels (Block and Mauritsen, 2013).

For the work presented in the latter two manuscript chapters with experiments from

CESM, differences in base state between the kernel and all experiments potentially overes-

timated the strength of temperature feedbacks or adjustments as all experiments started

from a pre-industrial control state, whereas the kernels from CAM3 were derived from a

base state closer to present day (Shell et al., 2008).
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ISCCP Simulator Output

The cloud fraction variable from ISCCP simulator output is used in all three manuscript

chapters in this thesis. As discussed in Chapter 2, ISCCP simulator output suffers from

potential biases due to its top-down perspective, where high altitude clouds can mask the

distribution of cloud fraction underneath (Zelinka et al., 2018; Scott et al., 2020). Therefore,

when partitioning cloud feedbacks into discrete sections of the atmosphere column, some

low cloud feedbacks can be aliased into the high cloud component solely due to changes

in overlying clouds. In Chapter 2, we account for this via weighting low cloud fraction

by upper level cloud-free grid-boxes (i.e. grid-boxes with cloud fraction in the lowest bins

but with no cloud overhead receive of weight of 1). The same process was not carried

out in Chapter’s 3 and 4. Therefore, some of the low cloud radiative adjustments may be

aliased into the non-low cloud component. This represents a discrepancy across the three

manuscripts, but does not materially change the result of the total SW cloud adjustment

or geoengineering feedback of any experiment conducted with CESM in the latter two

manuscripts.

Geoengineering Feedback Terms & Definitions

It may seem straightforward to consider the CO2 increase in GEO as an external forcing,

while including the S0 decrease as part of the geoengineering feedback given it is treated

as an emergent property of the PI controller. This contrasts with how each of these

components were defined in Chapter 3, where tuning S0 was a manual process for the

G1b and SOLARb experiments. For the GEO experiment, the PI controller gain values

are optimized using the SI experiment that quantifies the magnitude and timescale of the

surface response to changes in S0 (Figure 4.1). This step in the methods is what allows the
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time series produced by the controller to be defined as an emergent property of the model.

If the same experiment design and SI experiment were carried out under a multi-model

ensemble, the range of gain values would reflect model uncertainty and would manifest

as inter-model spread of the decreasing S0 trend. However, it is also worth noting that

the SI experiment and controller gain optimization does not require accurate and precise

characterization of the system frequency response, as Kravitz et al. (2016) showed using

two separate ESMs.

In terms of individual feedbacks, the SW cloud geoengineering feedback is the strongest

in the GEO experiment (Figure 4.8). However, the fixed-SST experiments showed that the

SW cloud adjustment from a 4x increase in CO2 is significantly stronger than the adjust-

ment from 4% decrease in S0 (Figure 4.4). Therefore, in GEO where CO2 concentration

is increasing at 1% per year, the majority of the geoengineering feedback may be driven

by CO2 instead. Given that CO2 is prescribed, this does not physically constitute a feed-

back. In Chapter 3, we also showed that some adjustment may be driven by non-linear

responses to combined forcings, which may also be important for driving the positive net

geoengineering feedback in the GEO experiment. This would be a subject for future work.

5.3 Future Research

As a direct followup to Chapter 4, future work could partition the three components driving

the troposphere response in the GEO experiment— CO2, changes in the S0 , and local

changes in surface temperature. As discussed in the previous section, the line begins to

blur on what is defined as a forcing versus a feedback in coupled, transient geoengineering

simulations. Therefore, it may be more useful to define all three components as drivers of

the troposphere response in further discussions and/or work. Three experiments with each

108



driver applied separately would give insight into whether or not the cloud response in GEO

is the linear sum of the three drivers. Practically, this would involve running three 140 year,

atmosphere only experiments using the same configuration of CESM outlined in Chapter

4, Section 4.3.1: One with a 1% per year increase in CO2, one with the S0 time series

extracted from the PI controller, and one with the SST and sea ice data extracted from

GEO (analogous to the amip-piForcing experiment design from the CFMIP6 experiment

deck and analyzed in Chapter 2).

For all experiments in Chapter’s 3 and 4, we used CESM1.2.2 with CAM4. Given

the focus on cloud radiative adjustments, surface temperature radiative feedbacks, and

geoengineering feedbacks throughout this thesis, future work should consider bringing the

methods used in Chapter 4 to new model versions with improved cloud microphysical

parameterizations for aerosol-cloud interactions, as well as newer turbulence schemes such

as the Cloud Layers Unified By Binormals (CLUBB) scheme in CAM6 (Danabasoglu et al.,

2020). Models with interactive chemistry (e.g. WACCM6) are integral for realistic SAG

experiment designs, but may also be important for solar dimming experiments as well. For

example, stratospheric cooling in both the SOLAR experiment from Chapter 3 and the

SOLf experiment in Chapter 4 is driven by a reduction in SW radiation interacting with

ozone, which heats the stratosphere (Forster and Shine, 1997).

Specific focus should be placed on models with large sensitivity to CO2 and solar forcing

as opposed to radiative feedback to assess inter-model spread in efficacy. For example,

Russotto and Ackerman (2018) used the G1 ensemble from GeoMIP to assess inter-model

spread in radiative adjustments and inferred that the majority of models had positive

adjustments from solar forcing but with non-negligible spread. Furthermore, Smith et al.

(2018) found that the cloud adjustment to a 5x increase in sulphate emissions had the

largest uncertainty range relative to non-cloud adjustments across the models considered
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in their ensemble.

More generally, the road forward for future work should take advantage of the meth-

ods used to quantify geoengineering feedbacks with SAG experiment designs. It could be

argued that the PI controller approach to geoengineering experiment design limits the ap-

plicability of such methods to other models and existing datasets (Kravitz et al., 2017). For

example, models contributing to GeoMIP6 took different approaches to either use aerosol

emissions when possible or to scale AOD if they lack prognostic aerosol treatment (Vi-

sioni et al., 2021b). Even for the G6Solar experiment, some models decreased downwelling

SW radiation once per decade as opposed to annually. This makes applying the methods

used in Chapter 4 to quantify geoengineering feedbacks on existing datasets challenging

given that S0 is defined here as an emergent model property, whereas it could be consid-

ered a parameter to be manually, iteratively tuned as in the G1b experiment in Chapter

3. For available geoengineering experiment output, such as Geoengineering Large Ensem-

ble (GLENS), that make use of the control system design with SAG, extrapolating the

approach used here may be challenging given the increase in experiment design complex-

ity with multiple temperature targets (Tilmes et al., 2018). Nevertheless, future research

should prioritize increasing our understanding of geoengineering forcing efficacy from an

energy budget point of view. Even if it is not through the definition of geoengineering

feedbacks as defined here, other techniques used in this thesis such as the cloud radiative

kernel technique, can be applied to GeoMIP model output where ISCCP simulator output

is available to assess cloud radiative adjustments across the different modelling approaches

taken in both the G6Solar and G6Sulfur scenarios.

110



Chapter 6

Copyright Statement

The material from Chapter 2 is contained within Virgin et al. (2021):

Virgin, J. G., C. G. Fletcher, J. N. Cole, K. von Salzen, and T. Mitovski, 2021: Cloud

feedbacks from CanESM2 to CanESM5.0 and Their Influence on Climate Sensitivity. Geo-

scientific Model Development, 14 (9), 5355–5372

This work is distributed under the Creative Commons Attribution 4.0 License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited. The material from Chapter 3 is contained within Virgin

and Fletcher (2022):

Virgin, J., and C. Fletcher, 2022: On the Linearity of External Forcing Response in So-

lar Geoengineering Experiments. Geophysical Research Letters, 49 (15), e2022GL100200

This article is protected by copyright from JohnWiley and Sons, Inc.. A one time, personal,

non-exclusive, non-sub licensable (on a stand-alone basis), non-transferable, worldwide,

limited license, to reuse the content from this article in this doctoral thesis was obtained
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on July 12th, 2023 (License number: 5586450771598). The material from Chapter 4 is

contained within a manuscript currently in review:

Virgin, J., and C. Fletcher, 2023: Declining Geoengineering Efficacy Caused by Cloud

Feedbacks in Transient Solar Dimming Experiments. Manuscript currently in review at

Journal of Climate.

This work has been submitted to the Journal of Climate. Copyright in this work may be

transferred without further notice.

Note that the versions included in this paper differ slightly to satisfy minor revisions

as recommended by the thesis examination committee. However, there were no changes to

any of the results.
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Figure A.1: Clear sky linearity test for 6 sets of radiative kernels considered in this study
(CAM3, CAM5, ECHAM6, HadGEM2, and ERA kernels) tested using each version of CanESM.
Y-axis error is defined as the absolute difference between the Gregory regression derived net
clear sky climate feedback parameter, and radiative kernel derived net clear sky climate feedback
parameter.
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Figure A.2: Cloud long- and shortwave flux plotted against global, annual mean surface temper-
ature change in abrupt-4xCO2 simulations for CanESM2 (blue) and CanESM5 (red), calculated
using the cloud radiative kernel method. Standard 150 year Gregory regressions are conducted,
where the slope of the regression line equals the cloud feedback (in Wm-2K-1). Panels a & b show
regressions using all available years of data for each model version, whereas panels c & d show
subsampled data for CanESM5 (years 1-20 & 120-140).
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Figure A.3: Comparison of annual mean net cloud feedbacks for CanESM2 (panels a & c)
and CanESM5 (panels b &d), calculated using the adjusted-CRE method and the cloud kernel
method. Global mean values are shown in square brackets next to each subplot title. CanESM2
Pearson’s r = 0.72 (p < 0.01); CanESM5 Pearson’s r = 0.86 (p < 0.01).

133



Figure A.4: Tropical SST response for the a) CanESM2 abrupt 4xCO2 simulation, b) CanESM5
abrupt 4xCO2 simulation, and c) CanESM5 amip-piForcing simulation. Responses are defined as
the difference between 20 year means taken from the beginning and end of each simulation. All
grid box values are divided by the global mean response for each respective simulation, which is
shown in square brackets in each subplot title.
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Adjustment 4xCO2 SOLARe SOLARb G1e G1b
a 0±0 0±0 0±0 0±0 0±0
Ts 1.25±0.01 0.19±0 0.21±0 1.44±0.01 1.47±0.01
Tl -0.40±0.02 0.41±0.02 0.43±0.02 0.06±0.02 0.15±0.02
Tp -1.54±0.02 0.62±0.03 0.76±0.03 -0.82±0.02 -0.76±0.02
Qs 0.01±0 -0.01±0 -0.01±0 0±0 0±0
Qt 0.34±0.02 -0.58±0.02 -0.64±0.02 -0.12±0.02 -0.16±0.02
Csw−bl 0.64±0.05 0.38±0.04 0.39±0.04 1.24±0.04 1.29±0.04
Csw−ft 1.25±0.05 0.13±0.05 0.08±0.05 1.25±0.04 1.35±0.05
Clw−bl -0.07±0.01 -0.03±0 -0.04±0 -0.13±0.01 -0.14±0.01
Clw−ft -0.01±0.03 0.11±0.03 0.15±0.03 0.18±0.02 0.17±0.03
Net 1.47±0.07 1.20±0.07 1.32±0.07 3.10±0.06 3.37±0.06

Table B.1: Global, annual mean radiative adjustments for all experiments in this study. From
top to bottom, adjustments are listed as surface albedo (a), stratosphere temperature (Ts), lapse
rate (Tl), Planck (Tp), stratosphere water vapour (Qs), troposphere water vapour (Qt), shortwave
boundary layer cloud (Csw−bl), shortwave free troposphere cloud (Csw−ft), longwave boundary
layer cloud (Clw−bl), longwave free troposphere cloud (Clw−ft). All values are 30 year means ±
1 standard error of mean.
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Figure B.1: 30 year annual mean surface temperature responses for all experiments in this
study. Experiments are listed as subplot titles and values in square brackets are global means.
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Figure B.2: 30 year annual, zonal mean air temperature responses for all experiments in this
study. Experiments are listed as subplot titles.
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Figure B.3: 30 year annual mean ISCCP cloud fraction response (in %) from the 800-680 hPa
CTP bin summed across all optical depths.
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Figure B.4: 30 year annual mean ISCCP cloud fraction response (in %) from the 180-50 hPa
CTP bin summed across all optical depths.
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Figure C.1: a) & b) Global, annual mean ISCCP cloud radiative kernels (in W m-2%-1) from
Zelinka et al. (2012a). The kernels are plotted on optical depth (x) and cloud top pressure (y)
axes. The SW kernel was mapped to the long term climatology of the CTL experiment clear sky
surface albedo before taking the global mean.
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