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Abstract 

Seasonal snow plays an important role in Earth’s systems and for hydrological 

applications one of the most important properties is the quantity of liquid water stored in the 

snowpack, referred to as snow water equivalent (SWE). SWE is related to the depth and density 

of a snowpack, so accurate estimates of both those properties are necessary to estimate SWE. 

However, the current understanding of snow density is limited to sparsely distributed in situ 

samples, which is especially limiting in an environment with restricted access like the Canadian 

tundra. Models can be used to estimate snow density in lieu of in situ sampling and there are a 

variety of such models available. However, it was determined that none of the available snow 

density models were entirely suitable for an environment like the Canadian tundra, each for their 

own reasons.  

A new remote sensing algorithm was proposed to estimate snow density from satellite 

based passive microwave observations and operational automatic weather station (AWS) 

networks. In this research, an experiment was designed to evaluate the potential for the remote 

sensing algorithm to monitor snow density in the Canadian Tundra. AWS data were used 

parametrize a two-layer snowpack model (representing a depth hoar layer underlying a wind 

slab) and 3D gradient descent machine learning was used to isolate the volume scattering 

contributions of each layer density independently. New components were added to the machine 

learning cost function to incorporate prior knowledge and constrain the model’s behaviour. The 

model was trained at the AWS site in Eureka, Nunavut and was then applied to AWS sites 

distributed across the Canadian tundra. Model performance was quite consistent at high arctic 

sites but began to degrade across the subarctic with increased distance from the training site, 

suggesting the need for more robust model training and forcing in the future. Estimation skill 

consistently improved over the course of algorithm runs and snow density estimates were often 

close to the ±10% uncertainty range of the in situ samples by the end of the season – showing 

good promise for estimating snow density at peak SWE accumulation, which could be useful for 

applications where total water storage in the snowpack is of concern.  
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Chapter 1  

Introduction 

1.1 Introduction 

Snow covers most northern landscapes during winter months and as such plays a role in 

many of Earth’s systems. The presence of snow, and its properties, is of concern for a number of 

natural and anthropogenic applications. Snow affects land-atmosphere interactions in the energy 

cycle through albedo enhancement and thermal insulation (Cohen & Rind, 1991). Snow is a 

highly reflective surface so changes to its extent and properties can affect the local energy budget 

and in turn the response of hydrological systems (Malmros et al., 2018). Snow also has 

significant ecological implications for flora and fauna (Jones, 1999). Many species in northern 

landscapes rely on the presence of snow in their habits (Boelman et al., 2019) and changes in 

snow properties in a changing climate could threaten sensitive ecosystems (Sullender et al., 

2023). Snow is also a critical water resource because most winter precipitation held in a frozen 

state within the snowpack, and has massive financial implications for anthropogenic activities in 

industries like agriculture and tourism that rely on presence and amount of snow (Sturm et al., 

2017). Furthermore, snow cover has become a key indicator of climate change, by the World 

Meteorological Organization, as the extent of snow-covered areas will almost certainly decrease 

under a warming climate (Fox-Kemper et al. 2021). Thus, it has become increasingly important 

to characterize seasonal snow to understand how it has changed in recent history and how it may 

continue to do so in the future. These themes become even more pressing in the arctic 
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environment where temperatures are increasing at an alarming rate due to arctic amplification 

(Serreze & Barry, 2011).   

Seasonal snow contributes significantly to water storage resources across most of the 

Northern Hemisphere. Accordingly, large efforts are applied to monitoring seasonal snow 

conditions for estimating future water availability, and in an historic context for climate analyses. 

The National Snow and Ice Data Center, at the University of Colorado, defines seasonal snow as 

“snow that accumulates during one season, [or] snow that lasts for only one season”; the latter 

definition is more applicable in this regard as most snow in the Northern Hemisphere does not 

last over the summer (save for that found on ice sheets and glaciers). From a hydrological 

perspective, one of the most import factors about seasonal snow is the quantity of water stored in 

the snowpack, referred to as snow water equivalent (SWE). The water stored in the snowpack is 

released back into the environment through snowmelt and impacts the water supply for the 

coming season. Snowmelt is a predominant surface water supply for nearly all the Northern 

Hemisphere above 45° N and the warming global climate threatens a large portion of the global 

population who rely on it for their livelihood (Barnett et al., 2005). Thus, accurate estimates of 

SWE are of concern for applications involving water storage/availability, such as, hydroelectric 

power generation, agricultural irrigation, and flood/drought forecasting. Specifically, those 

applications rely on accurate spatiotemporal estimates of SWE (Farmer et al., 2009), which can 

prove difficult to produce due to a lack of data at the necessary scales. The total amount of water 

stored in a seasonal snowpack can be estimated by calculating SWE at the time of peak 

accumulation (i.e. April 1st), to provide context on water resource availability (Bohr & Aguado, 

2001). 
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SWE stored in a snowpack can be quantified by its depth multiplied by bulk density (i.e. 

average vertical density profile), so accurate estimates of both those properties are required to 

make informed decisions about water resources from seasonal snow. An issue arises when one 

considers the potential sources for snow depth and density data available to estimate SWE; there 

exist a variety of methods to directly measure snow depth, but snow density is not directly 

measurable so it must be estimated (Kinar & Pomeroy, 2015). Instead, a standard volume of 

snow can be collected and weighed to estimate snow density – a process typically limited to in 

situ manual observations. The process of manually weighing snow samples can be very 

laboursome and takes considerably longer than measuring snow depth. As a result, the total 

recorded snow measurements are heavily skewed towards snow depth, and far fewer snow 

density data are available (Sturm et al., 2010), and so too are many SWE analyses (e.g. 

Pulliainen et al., 2020). Because of these factors, the current understanding of the variability in 

snow density is limited to sparsely distributed in situ samples. Consequently, many studies 

regarding the estimation of SWE have focused on snow depth because of the lack of information 

available about snow density.  

One avenue for estimating SWE on large scales is through satellite based passive 

microwave remote sensing. Passive microwave observations exhibit many qualities that offer a 

unique perspective for monitoring SWE; however, more research is required to realize its full 

capabilities (Saberi et al., 2020). The prevalence of snow depth over snow density carries over to 

passive microwave remote sensing of SWE. To date, essentially all passive microwave 

algorithms concerning snow mass estimate snow depth, and, in turn, convert to SWE with 

ancillary snow density data which were not considered in the passive microwave retrieval (e.g. 

Foster et al., 1997; Luojus et al., 2021; Tedesco & Jeyaratnam, 2016; Xu et al., 2010). 
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Conversely, estimates of snow density have only been retrieved with passive microwave remote 

sensing in two ways. Lemmetyinen et al. (2016) used a tower-based L-band (1-2 GHz) 

radiometer to estimate snow density at the ground-snow interface (i.e. bottom ~10cm of snow) 

through a refraction-based model. This refraction-based approach was developed for use in 

parameterizing the effects of overlying snow in soil moisture retrievals (see Houtz et al., 2019; 

Naderpour et al., 2017; Schwank & Naderpour, 2018). Oppositely, Champollion et al. (2019) 

estimated the near surface snow density (top ~3 cm) in Antarctica by using the 37 GHz 

polarization ratio, for surface mass balance modelling of ice sheets. Importantly, neither 

approach concerns bulk snow density which is required for estimating SWE. So, it appears there 

is a gap in the current understanding of passive microwave remote sensing of snow around 

density. 

This research proposes a novel method to monitor snow density using passive microwave 

remote sensing. The effective grain size optimization procedure from the European Space 

Agency’s GlobSnow algorithm (described in Takala et al., 2011) was modified to estimate snow 

density rather than grain size. This approach leverages automatic weather station networks to 

parameterize a microwave snowpack model so that it can be applied in remote areas using 

existing infrastructure. In this way, the algorithm has the potential to produce large scale 

estimates of snow density in areas which were not previously observable. Should the algorithm 

prove effective, the estimates of snow density could be useful for a range of applications whereas 

effective grainsize is only relevant for microwave modelling. In general, density estimates from 

this approach could improve SWE estimates by providing data that were not previously 

available. In that way, the snow density estimates from independent observations (i.e. passive 

microwave) could provide better context on total SWE accumulation to provide better 
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information for hydrological monitoring applications. On the other hand, there are some very 

specific uses for snow density estimates on their own. For example, snow density estimates from 

this approach could be used in caribou herd monitoring in the Canadian Arctic, where those data 

are typically limited. There is a critical snow density threshold (~350 kg/m3) which impedes 

foraging and leads to population declines and improved estimates of density could aid in caribou 

conservation efforts (Martineau et al., 2022). 

1.2 Goals and Objectives 

The goal of this research is to demonstrate a sensitivity to bulk snow density in satellite 

based passive microwave observations. Should passive microwave remote sensing prove useful 

for monitoring snow density, estimates from this approach could provide some understanding of 

the temporal and spatial variability in snow density at scales not previously observable. To that 

end, this work presents a novel method to observe bulk snow density, so two objectives are set: 

1. Determine if local changes in bulk snow density (i.e. at the site level) can be monitored 

by satellite based passive microwave remote sensing. 

2. Produce synoptic estimates of bulk snow density at scales that were not previously 

observable.  

1.3 Thesis Structure 

This thesis is structured as follows. Chapter 2 provides a background review on passive 

microwave remote sensing of SWE. That review concerns the mechanics of satellite based 

passive microwave retrievals of snow characteristics and specifics for the study area (i.e. the 

tundra biome). Chapter 3 is written in the style of a manuscript. It describes the rationale, 

methodology, and results of the experiment testing the effectiveness of passive microwave 
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remote sensing for monitoring snow density, structured as a standalone paper – “Tundra Snow 

Density Estimates from Satellite Passive Microwave Remote Sensing and Automatic Weather 

Station Measurements” – to be submitted to an appropriate journal after the defence of this 

thesis.  Chapter 4 concludes with a summary of the research findings, with a brief discussion of 

the broader implications and potential future research on this topic. 
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Chapter 2   

Background 

2.1 Passive Microwave Remote Sensing 

Satellite based remote sensing systems present an interesting opportunity to monitor 

snowpack properties, compared to the limited scope of in situ sampling. In situ samples can 

provide very detailed information about snow properties but traditional manual methods are 

difficult to scale over space or time. Conversely, sensors onboard satellites offer a far greater 

potential for data acquisition in terms of their spatial coverage and continuous observation 

routines. However, the amount of detail in those satellite data are limited to the spatial resolution 

of the sensor and the repeat frequency of the orbit. There are a variety of sensor types that can be 

used to monitor snow characteristics from space, but large-scale estimates of SWE are usual 

retrieved from spaceborne passive microwave radiometers. A microwave radiometer measures 

energy emitted by an object as brightness temperature (Tb) – a function of the physical 

temperature and emissivity of the target – in kelvin. In this context, passive refers to the source 

of radiation being naturally emitted by the target, rather than an active sensor which emits pulses 

of radiation. As such, passive microwave remote sensing of snow properties concerns measuring 

radiation emitted by the Earth that interacts with snow present on its surface effecting observed 

Tb.  
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2.1.1 Microwave Snow Principles 

A number of the characteristics of satellite based passive microwave remote sensing 

make it aptly suit for providing large-scale estimates of SWE. First, microwaves are mostly 

uninhibited by Earth’s atmosphere, allowing for passive microwave observations under almost 

all-weather conditions. This quality is frequency dependent where lower frequency microwave 

channels have a nearly transparent atmospheric window, but higher frequency observations can 

interact more with the atmosphere attenuating observed Tb (Pulliainen et al., 1993). This quality 

is very appealing for cyrospheric research because of winter cloud cover, which can prevail over 

northern latitudes and restrict the effective use of other forms of remote sensing of land surface 

processes. Nor are passive microwave retrievals limited by prolonged periods of polar darkness, 

as are other passive sensors such as visible-infrared radiometers. Second, spaceborne passive 

microwave radiometers benefit from near-total, daily coverage of the Northern Hemisphere, with 

increasing observation frequency at higher latitudes. However, that wide spatial coverage comes 

at a cost and microwave radiometers are limited to coarse spatial resolutions because of the 

relative low energy radiation emitted by the Earth. For example, passive microwave observations 

are not well suited for SWE retrievals in mountainous areas because of uncertainties associated 

with the complex terrain variations (and corresponding variations in SWE) within the relatively 

large observation footprint (Smith & Bookhagen, 2016). Third, the relatively long wavelengths 

of microwave radiation can penetrate through a snowpack. Most other sensor types are limited to 

surface interactions with the snowpack, so they are only suitable for discerning snow height (e.g. 

LiDAR; Deems et al., 2013). On the other hand, penetration by microwaves through the 

snowpack allows for inferences to be made about its internal composition, thus, permitting SWE 

retrievals. Finally, the spaceborne passive microwave data record extends back ~45 years in time, 
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allowing for analyses of relative long-term trends in Northern Hemisphere SWE (e.g. Gan et al., 

2013; Goodison & Walker, 1993; Pulliainen et al., 2020). 

During early passive microwave experiments, focused on sea ice, unexpected differences 

in Tb over snow covered scenes were observed, and the presence of snow and its composition 

were proposed to explain the differences in observed emissivity (Gloersen et al., 1974; Rango et 

al., 1979). Subsequently, a great effort was put into understanding the contributions of different 

snow properties in observed microwave signatures (e.g. Chang et al., 1979; Mätzler et al., 1982; 

Hofer & Mätzler, 1980). Chang et al. (1987) identified the Tb difference (ΔTb) relationship 

between a high frequency scattering channel (i.e. 37 GHz), sensitive to the accumulation of 

SWE, and a low frequency background channel (i.e. 19 GHz), mostly unimpeded by the 

snowpack, to account for the effects of microwave volume scattering within the snowpack. Other 

approaches using different combinations of microwave channels have been proposed since (e.g. 

polarized brightness temperature ratio; Goodison & Walker, 1995), but the ΔTb method has 

become the basis for most current SWE retrievals. In the ΔTb approach, Tb of the scattering 

channel is attenuated by microwave interactions within the snowpack, while the background 

channel is mostly unaffected by the snowpack so to provide context on the underlying 

conditions. Thus, it can be inferred that increases in ΔTb are the result of SWE accumulation and 

uncertainties associated with other factors are reduced by comparing the relative, rather than 

absolute, Tb values. It is important to effectively parameterize snowpack properties affecting 

microwave interactions to make use of the ΔTb approach for estimating SWE. 

2.1.2 Microwave Emission Modelling 

Microwave radiation, emitted by the Earth’s land surface, will interact with the overlying 

snowpack to different extents depending on its various physical properties. At higher frequencies 
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(i.e. 37 GHz), the primary interaction between microwave radiation and a dry snowpack is 

through volume scattering (Chang et al., 1982). Beyond total SWE accumulation, the volume 

scattering response in a dry snowpack is largely governed by differences in snowpack 

microstructure and stratigraphy (i.e. snow grain geometry and layering, respectively) (Hall, 

1987; Markus et al., 2006). As a result, snowpacks with the same accumulation of SWE but 

different physical properties can produce different microwave signatures. Therefore, prior 

knowledge of snow conditions in the observed scene, and how they may affect observed Tb, is 

essential to isolate the scattering contribution of SWE sperate from other physical properties. 

An understanding of the physical interactions between microwave radiation and various 

media present in the observation scene allows for those process to be simplified and represented 

through physically based models. Physically based models attempt to simulate known processes 

within a system, as opposed to empirical models that are deduced from observations. Physically 

based microwave modelling concerns the use of radiative transfer models (RTMs) to simulate 

microwave interactions with media. The relevant snow properties need be quantified for use in 

the RTM and are prescribed as parameters to the model to produce synthetic microwave 

emissions. The synthetic microwave signature from the RTM can then be compared to satellite 

observations to draw inferences about snow conditions on the ground. In this way, the RTM can 

be used to retrieve snowpack properties through inverse modelling. In an inverse modelling 

approach, all the relevant parameters are prescribed to the RTM except for the variable of interest 

and an optimization procedure applied on that variable to minimize the difference between 

synthetic and observed microwave emissions. The solution that best simulates passive 

microwave observations is the most likely representation of conditions on the ground. 
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Given the challenges in parameterizing physically based RTMs, increasingly machine 

learning approaches have been employed to retrieve snow characteristics, either in combination 

with or in lieu of physically based modelling. Machine learning models do not require the same 

level of prior knowledge as physical based models because of their ability to identify non-linear 

relationships in data, allowing for a simpler parametrization process (Yuan et al., 2020). In a very 

general way, machine learning iteratively applies mathematical models to a set of training data 

while changing a set of input parameters – called hyperparameters – to identify the best solution 

to a complex system. Unlike standard model parameters, hyperparameters are intrinsic to the 

machine learning implementation and cannot necessarily be conceptualized. For this reason, 

machine learning models are typically seen as black boxes and it can be difficult to explain why 

certain decisions are made by the model. There have been some successes in pure machine 

learning implementations of passive microwave SWE retrievals but more interesting are the 

machine learning approaches that are complemented with physical knowledge (e.g. King et al., 

2020; Xue et al., 2018; Yang et al., 2021). These synergistic approaches present an opportunity to 

exploit the emerging benefits of machine learning while making informed decisions by retaining 

physically based knowledge of geophysical systems in the model. 

2.1.3 Snow Electromagnetic Properties 

It is important to understand the effects of the relevant snow properties on passive microwave 

observations to properly utilize the RTM. In the next chapter, the Dense Media Radiative 

Transfer model for multi-layered snowpacks (DMRT-ML; (Picard et al., 2013)) is used to 

simulate microwave emissions. As such, the relevant snowpack parameters in DMRT-ML are 

discussed for their contributions to synthetic microwave signatures produced from the RTM. 
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Snow Depth 

Snow depth – the most ubiquitously measured snow property – significantly impacts 

microwave interaction within the snowpack. The depth of a snowpack is analogous to the 

number of grains in the energy’s path (Kelly, 2009), where deeper snow conditions increase the 

possible number of interactions with individual snow grains and exhibit greater volume 

scattering. On one hand, shallow, dry snow is essentially transparent to microwave radiation and, 

in turn, a minimum of 5-10 cm of is generally required to detect snow with spaceborne 

microwave observations (Hall et al., 2002). Conversely, there is also a maximum retrievable 

snow depth from passive microwave observations because less radiation from the underlying 

surface will be transmitted through the snowpack as it deepens and exhibits a greater volume 

scattering response. The positive correlation between ΔTb and SWE holds up to a threshold 

(generally considered to be ~150mm) when the contributions of emissions originating with the 

snowpack overtake those of the underlying surface, and the ΔTb-SWE relationship inverts 

(Saberi et al., 2020). This effect is called saturation and can occur at snow depths of 50-100 cm 

for the 37 GHz channel depending on other properties of the snowpack (Kelly et al., 2003).   

Effective Grain Size 

The composition of snow microstructure is typically represented with the Stick Hard 

Spheres model in DMRT-ML (Lowe & Picard, 2015), where the size of snow grains (i.e. grain 

radius) is expressed as the effective grain size. Microwave interactions increase with effective 

grain size, allowing for more efficiency volume scattering by a snowpack with larger grains. 

Effective snow grain size has a large influence on the observed Tb of a snowpack, and inversion 

models can provide very different outputs based on the parameterization of grain size (Chang et 

al., 1982; Pulliainen, 2006). This presents an issue when parameterizing an RTM because snow 
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grain size estimates are limited to in situ sampling methods (Molotch et al., 2016) and are not 

available at the scales required for use in these models. Furthermore, effective grain size is a 

modelling term and is not the same as the optical grain size one might estimate in the field 

through visual examination (if such measurements are available). For this reason, grain size can 

be treated as a tuning parameter in the RTM – as in the GlobSnow method (Takala et al., 2011), 

where grain size is optimized given the snow depth measured at a weather station (and a set of 

static parameters). Alternatively, empirical relationships can be used to estimate relative changes 

in grain size and simulate how its contribution to scattering might change over the winter season 

(e.g. Kelly et al., 2003, 2019). 

In DMRT-ML there is a second parameter associated with grain size called stickiness. 

Stickiness is an arbitrary, unitless, unmeasurable parameter which describes the likelihood of 

individual grains accumulating into clusters. Those grain clusters appear larger to microwaves 

than individual grains and increase the scattering efficiency of the snowpack (Picard et al., 2013). 

Similar to effective grain size, the stickiness parameter can be treated as a calibration parameter 

(e.g. Larue et al., 2018b). Alternatively, a non-sticky microstructure model can be implemented 

in DMRT-ML to negate the effect of stickiness because of the arbitrary nature of its 

parameterization. 

Snow Density 

Snow density has a somewhat counterintuitive effect in DMRT-ML. One might expect 

greater volume scattering within a snowpack with increasing density (as with increasing SWE) 

but instead it is the opposite for fractional volume of <50% (i.e. bulk density ~450 kg/m3). In 

Dense Media theory, sparsely distributed grains act more like individual scatters than those 

packed closer together in a dense media (Picard et al., 2013), so a sparser snowpack will exhibit 
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more volume scattering than a denser one. An analogy for the volume scattering effect of snow 

density can be made with fiberglass insulation – which provides the best insulative properties 

when packed loosely in a cavity and loses insulative efficiency when more insulation is densely 

packed in the same space. The behaviour is reversed for snow densities above 50% volume 

fraction and volume scattering increases with density beyond that threshold, because of how the 

snow microstructure is represented in DMRT (representation switches from spheres-of-ice-in-air 

to spheres-of-air-in-ice above 50% volume fraction; Picard et al., 2013) . However, the density of 

seasonal snow is typically below 50% volume fraction (Sturm et al., 2010), so the effects of 

snow density above that threshold can largely be ignored in the model.  

The given description of density parameter is for a non-sticky DMRT-ML implementation 

(as used in Chapter 3), and the stickiness parameter change the effect of snow density on volume 

scattering (Picard et al., 2013). 

Snow Temperature 

Snow temperature is different from the aforementioned parameters in DMRT-ML because 

it does not significantly impact microwave volume scattering. Instead, snow temperature is 

considered in the RTM to estimate emissions originating in the snowpack. This source of 

emission from the snowpack is important when considering higher microwave frequencies (i.e. 

37 GHz) in deeper snow due to the effects of saturation. Under those conditions, the 

contributions from snowpack emission surpass that of volume scattering and Tb begins to 

increase with SWE accumulation (Saberi et al., 2017; Sturm et al., 1993).  Therefore, the snow 

temperature parameter is important for accurately estimating the different sources of microwave 

emissions to isolate the volume scattering signal from the snowpack.  
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2.2 State of Knowledge of Tundra Snow 

In the arctic region, the tundra biome is characterized by its very cold temperatures, short 

vegetation/lack of trees, and low precipitation (Terasmae & Reeves, 2017). Strong arctic winds 

redistribute most snow that is deposited in tundra, removing much of the snow from open areas 

(Pomeroy et al., 1997). Vegetation plays a large role in the spatial distribution of SWE over the 

tundra by trapping snow and preventing the redistribution of snow by wind (Sturm et al., 2001). 

As a result, the open tundra environment (with limited vegetation) is typical covered with a 

veneer of relatively shallow snow, with most of the deposited snow blown away to be caught in 

large drifts caused by features on the landscape (Benson & Sturm, 1993). That veneer snow 

(hereafter referred to simply as tundra snow) has a characteristic profile of, at least, one dense 

wind-packed slab layer overlying a lower-density depth hoar layer. On the other hand, drifts can 

be many times deeper than in the open tundra, and considerably denser; with the potential to hold 

the majority of SWE deposited on the landscape despite their relatively small areal extent (Marsh 

& Pomeroy, 1996). Ultimately, in some ways the composition of tundra snow is quite predictable 

owing to the in situ environmental controls. 

2.2.1 Temporal Evolution of Tundra Snow Density 

The typical evolution of tundra bulk snow density over time is described by Sturm & 

Holmgren (1998), and is as follows. New snow at the beginning of the season is very light when 

first deposited and is quickly mechanically compacted by tundra winds. The rate of initial 

compaction is dictated by local wind patterns and the characteristic strong winds over the open 

tundra result in relative high snow densities early in the season (compared to other biomes). 

Then, the snow gradually densifies over the course of the season as it undergoes metamorphosis. 

In summary, tundra snow is quite dense at the beginning of the season (initial compacted by the 
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wind) and should exhibit conservative fluctuations in bulk density over the remainder of the 

winter season. 

Snow deposited in the tundra takes time to develop into the characteristic two-layer 

snowpack of depth hoar underlying wind slab. The top layer of snow is quickly compacted by 

the mechanical force of wind moving across the snow surface (Colbeck, 1982), forming a 

densely packed wind slab layer on the top of the snowpack soon after its initial deposition 

(Benson & Sturm, 1993). Whereas the lower depth hoar layer is the result of strong temperature 

gradients within the snowpack due to low arctic air temperatures and the insulative properties of 

snow (Colbeck, 1982). That temperature gradient produces a convective current which transports 

mass (in the form of water vapour) from lower to upper snow layers (Sturm & Benson, 1997). 

The stratigraphy of the snowpack can be complicated by melt-refreeze events where liquid water 

(originating in the top layers of the snowpack) will percolate down and accumulate at the 

boundary between distinct snow layers and form ice crust at those interfaces (Marsh & Woo, 

1984). Additionally, the stratigraphy is further complicated as new snow is deposited on top of 

the existing snowpack resulting more complex layering with snow at various stages of 

metamorphism. Thus, the general composition of tundra snow is quite predictable, but can vary 

through local weather patterns. 

2.2.2 Spatial Variability of Tundra Snow Density 

As mentioned before, the current understanding of snow density is limited to in situ 

sampling. This is especially restrictive with regard to studying the spatial variability of snow 

density because of the heterogenous distribution of sampling locations; even more so in the 

tundra environment where SWE sampling location are especially sparse in northern Canada 

(Brown et al., 2019). Woo & Marsh (1978) studied snow storage of small basins in the high 



   

 

17 

 

arctic and found snow depth to much more variable than density across different terrain types 

(e.g. hilltops, slopes, valleys, etc.), concluding those local variations in density are only relevant 

in very small basins. In the absence of more information, the spatial variability of snow density is 

believed to be quite conservative on larger scales (at least much more so than snow depth; 

Fassnacht et al., 2010; López-Moreno et al., 2013; Sexstone & Fassnacht, 2014). This 

assumption of the relative conservativeness of snow density causes it to be generalized over large 

geographic areas (typically represented as the mean value of available density samples).  

More recent efforts have attempted to characterize the spatial variability of tundra snow 

properties (one of which being density) through extensive field campaigns. Derksen et al. (2009) 

were the first to coordinate large-scale sampling efforts across the Canadian subarctic tundra 

(over a transect spanning Northwest Territories to Nunavut) to analyse the spatial distribution of 

tundra snow at a scale not previously explored. The study was subsequently expanded to include 

samples from Ellesmere Island, Nunavut (near Eureka) in the Canadian High Arctic (Derksen et 

al., 2014). Derksen et al. (2014) found snow density to be evenly distributed in the high arctic 

and normally distributed in the subarctic; additionally, snow density in the high arctic displayed 

more spatial variability than in the subarctic tundra/taiga. Hannula et al. (2016) found 

comparable spatial distributions of snow density in a similar field campaign in the Finnish 

Arctic.  

The results of recent field campaigns (i.e. Derksen et al., 2014; Hannula et al., 2016) 

seem to challenge the suggestion that spatially uniform snow density estimates are sufficient for 

estimating SWE (Derksen et al., 2005a). Specifically, an average value may not be well suited 

for a high arctic setting where snow density is not normally distributed, so the mean would not 

be representative. This argument can be taken a step further in passive microwave context 
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because those same studies found the majority of tundra SWE to be stored in the wind slab layer, 

but the slab layer provides a negligible contribution to microwave volume scattering (Sturm et 

al., 1993). Thus, differences in wind slab density (and in turn SWE) would not be captured by 

passive microwave models concerning volume scattering. So, it can be posited that better snow 

density estimates in the tundra environment could improve SWE estimates from passive 

microwave observations. 

2.2.3 Tundra Snow in a Passive Microwave Context 

In a remote setting, such as the Canadian tundra, passive microwave remote sensing 

provides the opportunity to monitor snow in areas unsuitable for in situ sampling. Such an 

application of remote sensing benefits from detailed records of the composition of tundra snow 

that allow for increased confidence in geophysical modelling. Understanding the effects of snow 

conditions is essential for interpreting passive microwave observations in the tundra. Hence, a 

significant effort has gone into incorporating the understanding of the tundra landscape into 

passive microwave SWE models (e.g. Derksen et al., 2006, 2010; Derksen et al. 2005b; Meloche 

et al., 2022; Rees et al., 2010; Vargel et al., 2020).  

Passive microwave observations of tundra snow typically display large ΔTb that cannot 

be explained by snow depth alone. Tundra snow is typical shallow, in comparison with other 

biomes, yet exhibits a strong volume scattering response typical of a much deeper snowpack. 

This unexcepted microwave signature can be attributed to the presence of depth hoar which 

greatly increases volume scattering within the snow (Hall, 1987; Sturm et al., 1993). The 

characteristics of depth hoar snow (i.e. large, cup-shaped, sparsely packed grains) contribute to a 

very strong microwave interaction and stronger attenuation of the scattering channel due to 

increased volume scattering. More recent work has reinforced the need for a two-layer snowpack 
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for microwave modelling and has focused on how to characterize tundra snow for use in such 

models (Saberi et al., 2017, 2021). It is now considered that a two-layer snowpack model is 

desirable to adequately represent the composition of tundra snow in a passive microwave SWE 

retrieval context. 

2.3 Incorporating Snow Density into Microwave Models 

2.3.1 Snow Density in Current Microwave Modelling 

There is a lot that is still unknown about snow density in microwave modelling. 

Typically, snow density estimates are only available from sparsely distributed in situ samples, so 

there is little known about the spatial variability of snow density. This is especially true in the 

tundra environment where access for in situ sampling is restricted, so fewer snow density 

samples are available there compared to other biomes. Hence, the general composition of tundra 

snow is well documented, but less is known about variability across the domain. This knowledge 

gap about snow density introduces considerable uncertainties in generating spatial distributed 

density estimates, at the scales necessary for microwave modelling, causing most density 

estimates to be spatially uniform. 

Snow density has generally been overlooked by passive microwave remote sensing 

models because of a lack of spatial information to parameterize retrievals. Early models assumed 

a spatially and temporally constant snow density as a compromise for computational efficiency 

(e.g. 300 kg/m3 in the original Chang algorithm; Chang et al., 1987), and many current 

algorithms still hold that assumption (e.g. 240 kg/m3 in GlobSnow V3.0; Luojus et al., 2021). 

The use of a constant snow density in microwave retrievals contributes to overestimation of 

SWE in the early season and underestimation later on (Luojus et al., 2021). Post-processing of 

passive microwave SWE estimates (retrieved with a constant density) with dynamic density 
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estimates can help to reduce that systematic bias (Venäläinen et al., 2021). However, post-

processing of SWE estimates only impacts the final SD to SWE conversion and errors from 

assuming a constant snow density in the microwave retrieval process would still exist (Mortimer 

et al., 2022). 

Kelly et al.’s. (2003) prototype AMSR-E algorithm was one of the first to introduce 

dynamic snow density estimates into the passive microwave retrieval process, albeit with a very 

simple densification model. The successive AMSR-2 SWE algorithm (Kelly et al., 2019) went a 

step further by incorporating snow density estimates from Sturm et al. (2010) to introduce 

distributed estimates of snow density into the SWE retrieval process. Those two algorithms were 

the only such identified to explicitly consider the effect of snow density in the passive 

microwave retrieval process (excluding regional analyses like Larue et al., 2018a).  Recently, 

there has been a focus on introducing dynamic snow density estimates into passive microwave 

SWE algorithms, specifically the European Space Agency’s Snow Climate Change Initiative 

(Mortimer et al., 2022; Venäläinen et al., 2021). However, as identified in section 2.2.4, the 

available sources for snow density estimates are limited and the most reliable estimates rely on in 

situ sampling which is not feasible for very large scales of analysis.  

2.3.2 Available Snow Density Models 

There are limited options to consider for distributed snow density estimates at the scales 

necessary for passive microwave remote sensing. One of the most prevalent ways to estimate 

snow density is through physical snowpack models. Those snowpack models are forced with the 

reanalysis of meteorological data to estimate changes in the physical properties of the snowpack 

once it is deposited. These snowpack models can be included in large land surface models as 

sub-models (e.g. ERA5 (Hersbach et al., 2020) and MERRA-2 (Gelaro et al., 2017)) or as 
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standalone comprehensive models (e.g. Crocus (Brun et al., 1992) and SNOWPACK (Bartelt & 

Lehning, 2002). Such reanalysis models have been shown to provide decent estimates of SWE 

on large scales (Mortimer et al., 2020).  However, these models rely on very detailed 

meteorological data, and uncertainties in model outputs can be introduced through the errors 

associated with forcing data (Raleigh et al., 2015) or from different forcing datasets (Raleigh et 

al., 2016). Additionally, the physical processes considered in the available snowpack models (i.e. 

Crocus and SNOWPACK) are limited to heat and mass fluxes which do not properly simulate the 

expected tundra snow density profile by inverting positions of the wind slab and depth hoar 

layers (Domine et al., 2019).  

Alternatively, Sturm et al. (2010) offers an empirical model which is one of the most 

straightforward methods for estimating spatially distributed snow density. That model estimates 

snow density without the need for detailed meteorology or ancillary data. Instead, temporally and 

spatially distributed estimates of snow density are regressed from day of the year (DOY), snow 

depth, and location (i.e. snow class; Sturm et al., 1995),. Snow density estimates from Sturm et 

al. (2010) are quite conservative in the Arctic and do not vary much over the area. The model 

does provide suitable temporal trends for the tundra snow class, by considering the day of year, 

but the spatial detail in the tundra is limited. The snow depth parameter not as significant to the 

snow density estimates, due to the relatively shallow snow found in the tundra, resulting in 

largely uniform estimates over most of the tundra environment. Even more conservative are the 

snow density estimates for the taiga snow class in Sturm et al. (2010), with a spatially and 

temporally static value of 217 kg/m3 (regardless of DOY or snow depth).  

Quite recently, Wang et al. (2023) developed a machine learning model to estimate snow 

density in China. That model is based on a geographically and temporally weighted neural 
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network (GTWNN) that is forced by meteorological data, topographic characteristics, and 

satellite snow products (snow albedo, snow depth, and snow cover extent). The GTWNN model 

was found to perform well compared to other regression models (e.g. multiple linear regression, 

geographically weighted regression, etc.) and ERA-5 snow density estimates. However, the 

GTWNN model included 20 input variables, all with weak influence on snow density, so it is 

difficult to explain why the model performs as it does. This is compounded because neural 

networks are typically regarded as black boxes, especially with so many dimensions (20), so it is 

very difficult to conceptualize how decisions are made. The described influence of the snow 

cover duration variable specifically stood out as odd because it was found to be negatively 

correlated with snow density in the GTWNN model. That seems counterintuitive because snow 

is expected to densify over time (Sturm et al., 2010). Additionally, the snow conditions in China 

(at least those described by Wang et al. (2023)) appear to be quite unique, consisting of both 

seasonal and ephemeral snow, characterized by very low observed snow densities (seemingly 

much lower than those found elsewhere). For these reasons, it appears the GTWNN model could 

prove useful for estimating snow density in those very specific conditions but needs further 

refinement before it can be applied more broadly. 

So, it appears none of the described snow density models would be entirely well suited to 

the Canadian Arctic, each with their own shortcomings. Instead, this research proposes a novel 

method for estimating bulk snow density from satellite based passive microwave remotes sensing 

and operational AWS networks. The new algorithm would benefit from independent data (i.e. 

passive microwave observation) which are known to be related to snow density. Ideally, those 

independent observations should provide more specific information on the state of the snow 

density in the scene, compared to more general approaches in some of the existing methods. The 
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next chapter describes an experiment to test the potential for the proposed methodology to 

estimate bulk snow density in a tundra environment and compares its skill to the applicable 

methods used to estimate snow density for passive microwave SWE retrievals.  



   

 

24 

 

Chapter 3   

Tundra Snow Density Estimates from 

Satellite Passive Microwave Remote Sensing 

and Automatic Weather Station 

Measurements 

Abstract 

Current methods for estimating bulk snow density are largely limited to in situ sampling 

and are difficult to scale spatially or temporally. Therefore, density is difficult to incorporate into 

snow water equivalent models and is typically generalized for model forcings. This research 

proposes a novel method to estimate bulk snow density using satellite based passive microwave 

observations and automatic weather stations (AWS) measurements. AWS measurements are used 

to parameterize a two-layer snowpack model (composed of a lower depth hoar layer and an 

upper a slab layer) to force a 3D gradient descent machine learning model that prescribes 

independent density estimates for each snow layer. Prior knowledge of the tundra environment 

was used to inform the machine learning model and constrain the algorithm’s progression 

through the season. Climatology data are used to introduce a dynamic inertia force into the 

machine learning model to constrain fluctuations in density estimates. Similarly, a logical rule 

was established to prevent physically unlikely combinations of layer densities despite the 

simulated microwave response. The Canadian tundra was chosen to prototype this algorithm – 

validation and testing results are encouraging and demonstrate a sensitivity to bulk snow density 

in passive microwave observations. This method could provide synoptic estimates of bulk snow 

density across very large domains, to provide information at scales that were not previously 

observable. Future work will attempt to improve the algorithm and expand the scope of the 

analysis to other sites and biomes. 
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3.1 Introduction 

Monitoring snow water equivalent (SWE) is important for sustainable water 

management. The SWE of a snowpack is a function of its depth and bulk density (i.e. average 

vertical density profile). Therefore, accurate quantification of both these phenomena is critical to 

make informed decisions regarding the management of SWE resources. Snow depth can be 

represented as a distance and there exist a number of methods to directly measure it (Kinar & 

Pomeroy, 2015). On the other hand, snow density must be estimated because there is a lack of 

instrumentation to measure it in an operational context. Traditionally, a standard volume of snow 

is collected and weighed to estimate snow density. That manual process can be very laboursome 

and difficult to increase the number of samples either spatially or temporally. As a result, current 

snow density estimates are limited to sparsely distributed in situ measurements which are used to 

predict spatially distributed density. Such efforts lead to uncertainties regarding the spatial 

representativeness of snow density in remote places where measurements were not collected.  

Uncertainties in snow density estimates can lead to issues in quantifying spatiotemporal 

distribution in SWE (Luojus et al., 2021; Venäläinen et al., 2021). Therefore, improved snow 

density estimates could improve overall SWE quantification, and reduce uncertainties in 

estimating seasonal water storage within the snowpack. Additionally, there are applications 

where snow density has direct implications and estimates from this approach could be of use; for 

example, snow density is an important factor for caribou herd monitoring because snow that is 

too densely packed prevents foraging for food (Martineau et al., 2022). So, it would appear there 

is no shortage of uses for snow density data, but rather a lack of sources for those data. 
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3.2 Background 

Earth observing passive microwave remote sensing is concerned with measuring 

naturally emitted radiation from the Earth in the microwave spectrum, to retrieve characteristics 

about the target. The microwave radiation measured by the radiometer is a function of a 

medium’s physical temperature and its emissivity, expressed as brightness temperature (Tb) in 

kelvin. Understanding of the processes that govern the observed microwave signature enables 

inferences to be made about the conditions present in the scene. Early on, relationships were 

identified between microwave Tb and the presence of snow cover and its physical properties 

(Hofer & Mätzler, 1980; Rango et al., 1979). Thus, snow properties can be monitored remotely 

by observing Tb of a snow-covered scene, given adequate prior knowledge of processes effecting 

microwave interactions. 

Understanding the interactions between microwave radiation and various media allows 

those processes to be generalized into mathematical representations within physically based 

models. Radiative Transfer Models (RTMs) attempt to represent the microwave interactions 

within a scene and produce synthetic microwave emissions that the radiometer might observe 

(e.g. Dense Media Radiative Transfer Multi-Layered model (DMRT-ML); Picard et al., 2013). 

The synthetic microwave emissions produced by the RTM are compared with the satellite 

observations to infer conditions on the ground. Historically, passive microwave models have 

used a frequency difference approach (ΔTb) by subtracting the Tb of a channel sensitive to snow 

volume scattering from a lower-frequency, background channel sensitive to underlying 

conditions to estimate SWE/snow depth (Chang et al., 1987). The relevant snowpack properties 

need to be parameterized for use in the RTM and the variable of interest can be optimized to 

minimize the difference between synthetic and observed ΔTb. Those snowpack parameters are 
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not necessarily straightforward to assign to the model and can lead to uncertainties in model 

outputs. 

In general, the influence of snow density on passive microwave observations has been 

overlooked in large-scale SWE estimation models (Venäläinen et al., 2021). There is a lack of 

snow density observations at the necessary scales to constrain density parameterization, 

primarily because of the difficult in acquiring spatially distributed in situ observations. As a 

result, snow depth has been the focus of most analyses regarding SWE. In some cases, snow 

density is kept as a spatially and temporally constant across the domain (GlobSnow v3.0; Luojus 

et al., 2021) or conservative estimates are taken from empirical models of snow density evolution 

over time (Kelly et al., 2003). However, these simplified representations of snow density may 

not adequately represent variability across the domain at the scales in question – i.e. across the 

entire Canadian tundra. 

This study proposes a novel method to observe snow density on large scales by 

leveraging existing observation networks. The optimization procedure at points of measured 

snow depth (at weather stations) from the GlobSnow approach (Pulliainen, 2006; Takala et al., 

2011) was adapted to produce estimates of snow density, rather than effective grain size. 

Retrieving snow density at those points could produce data useful for a number of hydrological, 

thermodynamic, or ecological applications, whereas effective grain size is only relevant with 

respect to RTMs. Beyond informing snow density parameterization for independent SWE 

retrievals, these estimates could provide information about variation in snow density at scales not 

previously observed. 
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3.3 Study Area 

Eight study sites were identified in the Canadian tundra, and are mapped in in Figure 3.1. 

These stations are further categorized into high arctic and subarctic according to latitude 

following the study by Derksen et al. (2014).  Basic characteristics of air temperature, snow 

depth, and density data are included for each site in Table 3.1. The tundra biome was chosen to 

develop a prototype snow density retrieval algorithm for the following reasons that tend to 

simplify the retrieval process. 

First, the relatively simple landscape of the tundra environment mitigates many of the 

sources of uncertainty inherent to passive microwave retrievals of snow properties in other 

biomes or landscapes. For example, the effects of complex terrain such as that found in alpine 

landscapes (Tong et al., 2010), and attenuation effects from forest cover (Li et al., 2020) is 

minimized in this region because of the flat, sparsely vegetated environment (Woo, 1998). 

However, the Canadian Arctic is vast, and the landscape can vary, and there are some exceptions 

to the aforementioned characteristics. Three sites (Alert, Eureka, and Resolute) were situated 

within the Arctic Cordillera ecozone but it was determined that differences in topography were 

minimal within the satellite observation footprints. Additionally, the Inuvik site is situated on the 

border of the tundra and taiga ecozones and is characterized by a more varied landscape 

(including forested areas) which increased the uncertainties in the passive microwave retrievals 

at that site. 
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Table 3.1  – Basic characteristics for each automatic weather station (AWS) site in the study area. Temperature (C) 

and snow depth (cm) from AWS measurements and density statistics from in situ reference dataset (CanSWE). 

Number of density samples in parathesis indicates number of samples included in performance analysis. High arctic 

sites are those above 70 N, and subarctic are those below, to match the classification by Derksen et al. (2014). 

  

Class Site 
Avg. 

Temp 

Avg. 

SD 

Density 

Samples 

Avg. 

Density 

Std. 

Density 

Min/Max 

Density 

H
ig

h
 

A
rc

ti
c
 Alert -15.5 31.5 139 (66) 362 51.1 188/451 

Eureka -17.4 15.2 117 (89) 331 54.0 143/436 

Resolute -14.4 15.3 116 (105) 383 81.1 217/690 

S
u

b
a

rc
ti

c
 

Cambridge Bay -13.2 24.6 288 (235) 330 54.6 180/560 

Coral Harbour -9.6 21.9 120 (109) 400 52.8 283/598 

Iqaluit -7.9 14.8 81 (43) 323 54.8 184/469 

Baker Lake -9.8 11.1 108 (60) 260 63.5 127/371 

Inuvik -7.4 57.1 93 (84) 188 43.2 69/285 

Figure 3.1 – Locations of AWS sites, distributed across the Canadian tundra (black line), used to force 

algorithm to estimate bulk snow density. 

[ecozones shapefile] Government of Canada (n.d.). National Soil Database Ecological Framework for 

Canada, Retrieved from https://sis.agr.gc.ca/cansis/nsdb/ecostrat/gis_data.html 

[base map] “Light Grey Canvas Background”, sources: Esri, DeLorme, HERE, MapmyIndia 
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Second, the composition of Tundra snow is well documented (e.g. Benson & Sturm, 

1993) allowing for informed decisions to be made regarding its parameterization for modelling 

purposes. This prior information was critical to isolate microwave volume scattering contribution 

of snow density because its effect is relatively low compared to the other characteristics (i.e. 

snow depth, grain radius, and layering). 

Third, the tundra environment is aptly suited for remote sensing observations due to the 

practical limitations of in situ sampling there. This presented a compelling rationale to test this 

approach due to large gaps in existing SWE sampling networks in Northern Canada (Brown et 

al., 2019). In the future, density estimates from this approach could be used to monitor snow 

conditions in remote areas where it is unfeasible to manually sample snow. 

3.4 Data 

3.4.1 Model Forcing Data 

The main forcing data for the algorithm were satellite based passive microwave 

observations to produce estimates of bulk snow density. Passive microwave radiometry data 

were acquired from the Advanced Microwave Scanning Radiometer Earth Observing System 

(AMSR-E) Level-2A (L2A) product, onboard the Aqua satellite (Ashcroft & Wentz, 2013). 

AMSR-E L2A provides twice-daily observations on a global scale, with increasing observation 

frequency at high latitudes, on a 25 km Equal-Area Scalable Earth (EASE) Grid. AMSR-E 

observations for each station were acquired from the EASE grid cell that contained the 

coordinates of the AWS site. Nighttime observations (~1:30 am local time at the equator) from 

the descending orbit track were used for the analysis, so the snowpack was most likely to be in a 

cold and dry state to facilitate microwave retrievals (wet conditions are unsuitable for the ΔTb 

approach; Chang et al., 1987). The 18.7 (19) and 36.5 (37) GHz vertical channels are used in the 



   

 

31 

 

ΔTb calculation to retrieve snow density. Additionally, a number of other bands were used for the 

detection of snow as described by Grody & Basist (1996). 

The algorithm also used weather station measurements for forcing, acquired from the 

Environment and Climate Change Canada automatic weather station (AWS) network 

(Environment and Climate Change Canada & ClimateData.ca, n.d.). The AWS data were used to 

parameterize the electromagnetic snowpack model, where daily measurements of snow depth 

and air temperature provided prior knowledge of the snow conditions in scene. The AWS data 

were the limiting input factor in this approach, for a couple reasons. The AWS network is very 

sparsely distributed in Canada and is biased towards southern, more populated, areas limiting the 

number of sites this algorithm can be applied. Additionally, data availability is not always 

consistent at AWS sites because sensor problems and outages are an ongoing issue when 

maintenance schedules are restricted (as is this case for some northern sites).  

3.4.2 Reference In situ Dataset 

Reference measurements are necessary to evaluate the algorithm estimates of snow 

density. The ECCC Canadian Historical Snow Water Equivalent (CanSWE; Vionnet et al., 2021) 

dataset was used to provide the in situ snow density data. The CanSWE dataset includes a 

considerable number of sampling locations collocated with AWS sites which enabled a 

straightforward comparison of estimated and measured bulk snow density. The in situ CanSWE 

density data were collected with ESC-30 SWE Tube samples taken over standard 10-point snow 

courses and aggregated into a single estimate of snow depth and density. The locations specified 

in the CanSWE dataset for in situ measurements were the coordinates of the closest AWS. Thus, 

it is unclear where the in situ measurements were taken relative to the AWS. No additional 
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metadata about sampling procedure or site descriptions were available about the individual sites 

in the CanSWE dataset.  

3.5 Methods 

3.5.1 Snowpack Electromagnetic Model 

The physically based modelling approach required the snowpack to be parameterized, 

and the relevant snowpack characteristics needed to be quantified. The DMRT-ML model, 

implemented with the Snow Microwave Radiative Transfer Model (SMRT) Python library 

(Picard et al., 2018), was adopted for use in this study. A two-layer snowpack model was 

configured to account for the presence of depth hoar underneath a slab layer to best represent the 

microwave signature of Tundra snow (Hall, 1987; Saberi et al., 2021). The composition of depth 

hoar (i.e. large, loosely packed grains) permits a relatively stronger interaction with microwave 

radiation, than the slab snow layer, and increased scattering efficiency of the snowpack. Thus, it 

is important to consider the presence of depth hoar because tundra snow will exhibit the 

microwave signature of a much deeper snowpack if this is not accounted for. 

The two-layer snowpack model representation was parameterized by AWS station 

observations. The snow depth forcing variable was prescribed directly from the AWS 

observations, divided into the relative depths of the two layers. A fixed 1:2 ratio of depth hoar to 

slab layer depth (Saberi et al., 2017) is applied to the AWS measurement, with a maximum 10 

cm of depth hoar allowed. The minimum daily air temperature from the AWS was used as a 

surrogate for snow temperature and was prescribed directly to each layer. Additionally, the 

temperature of the underlying substrate was set 5C higher than the minimum air temperature to 

account for the insulative properties of snow.  
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The microstructure model in DMRT-ML required estimates of the effective radius of the 

grains in the snowpack which are not acquired by operational AWS measurements. Therefore, a 

modified version of the grain size model from Kelly et al. (2003) was used to prescribe effective 

grain radius but with two notable distinctions. First, due to the high latitudes and cold 

temperatures of the study area, kinetic snow grain growth was assumed to dominate and the 

effects of equilibrium grain growth were ignored. The Sturm & Benson (1997) kinetic grain 

growth model was applied to estimate increases in snow grain size based on the number of days 

since deposition. Second, different grain growth trajectories were considered because of the two-

layer nature of the snowpack model. The parameters for the “upper” and “lower” snow layers 

from Sturm & Benson (1997) were applied to the wind slab and depth hoar snow layers, 

respectively. The radii range for each of the layers in the grain growth model were scaled to 

reflect the effective grain radius in DMRT.  

3.5.2 Machine Learning Application 

 The two-layer snowpack model presented an issue when prescribing independent density 

estimates for each layer, so machine learning was employed to simplify this issue. A three-

dimensional (3D) gradient descent model was designed to isolate the influence of the distinct 

layers in the synthetic microwave emissions (an overview of gradient descent machine learning 

is provided in Aggarwal, 2020)). The gradient descent model (hereafter the model) estimates the 

cost associate with a given parameter combination (i.e. snow density profiles) as define by the 

cost function. This cost function is used to evaluate possible parameter combinations and is 

ultimately the only metric the model has to determine which of those combinations is most 

likely. At any given point, the model estimates the cost associated with the current combination 

of snow layer densities and, also, estimates the instantaneous rate of change in cost with respect 
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to the density of each snow layer. Then, the model identifies the next density estimate for each 

snow layer according to their respective change in cost and a prescribed learning rate (i.e. step 

size). The model calculates the cost associate with the new parameter combination and repeats 

the process as cost continues to decrease, until an exit condition is met and the process stops. The 

parameter combination with the lowest associated cost is the most likely representation of the 

scene when the observations were acquired.  

Fundamentally, a machine learning model has no information available outside that upon 

which it is explicitly programme – to minimize outputs from the cost function. As such, any 

aspect of the scenario the model should consider must be included in the cost function to allow 

for evaluation against other possible solutions. The most basic cost metric (J) for this passive 

microwave remote sensing model is: 

 𝐽(𝜌𝑠𝑙𝑎𝑏 , 𝜌ℎ𝑜𝑎𝑟) = 𝛥𝑇𝑏𝑠𝑖𝑚(𝜌𝑠𝑙𝑎𝑏 , 𝜌ℎ𝑜𝑎𝑟) − 𝛥𝑇𝑏𝑜𝑏𝑠  (3.1) 

representing the difference between the observed microwave signature (𝛥𝑇𝑏𝑜𝑏𝑠) and the 

simulated signature (𝛥𝑇𝑏𝑠𝑖𝑚) given the prescribed wind slab (𝜌𝑠𝑙𝑎𝑏) and depth hoar layer 

densities (𝜌ℎ𝑜𝑎𝑟) where: 

 ∆𝑇𝑏 =  𝑇𝑏19,𝑉 −  𝑇𝑏37,𝑉 [𝑘]   (3.2) 

As a result, the cost associated for a given snow density estimate would be limited to the physical 

processes considered in the RTMs (i.e. volume scattering). This presented an issue in the two-

layer snowpack model because different layer density combinations can produce the same 

synthetic emissions, resulting in a system with no global minima. 

This equifinality issue in practice meant that the machine learning model was confronted 

by seemingly equally valid layer density combinations producing the same microwave signature. 
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Consequently, the algorithm’s progression can be thrown off by the solution jumping between 

local minima. Further, the model’s progression in day-to-day density estimates can vary in 

response to perturbations of the system from variations in forcing data that cause the solution to 

shift between local minima. Therefore, without any constraints the model can find solutions 

across an unfeasibly vast range of density combinations, corresponding to unrealistic day-to-day 

fluctuations in snow density. Intuitively, day-to-day changes in snow density should be mostly 

conservative (especially in the tundra environment; Sturm & Holmgren, 1998) and those 

fluctuations (on the order of hundreds of kilograms per day) experienced in the model would not 

represent reality. Thus, the potential snow density estimates at a given iteration of the algorithm 

run should be related to the estimate from the previous iteration (i.e. previous day).  

3.5.3 Climatological Inertia Constraint 

The climatological snow density record at the training site (Eureka) was examined to 

better constrain the model’s evolution of snow density estimates over the course of a season. 

That is, the degree of change that should be allowed between subsequent algorithm estimates of 

bulk snow density and how it may change over time. Estimates of daily change in bulk density 

were calculated given the difference between subsequent in situ CanSWE measurements divided 

by the number of days between them. The CanSWE record for Eureka extends back into the 

1960’s, however, only observations from 2003-21 were considered due to a discontinuity in the 

data between 2000-03. Coincidently, the period from 2003 onwards aligns with the  

AMSR-E/AMSR-2 data record, beginning with the launch of the Aqua satellite in 2002.  

The estimated values of daily change in snow density were then aggregated into two-

week groups according to day-of-the-year (see Figure 3.2) and relationships were identified 

between successive in situ density measurements so the parameter space for the model to search 
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could be greatly reduced. The climatological mean change demonstrated increasing snow density 

at the beginning of the season, trending towards no change by the end of the season (black points 

in Figure 3.2). Similarly, the spread in the distributions of aggregated daily density change were 

found to narrow over the course of the season (green points in Figure 3.2). With these 

relationships identified between density measurements the range of possible solutions in the 

model can be limited to those which are climatological valid.  

  

Figure 3.2 – Aggregated estimates of daily bulk density from in situ reference dataset (CanSWE) at the Eureka  

training site, plotted based on the day of year (“1” is January 1st). The black line is fitted through the distributions’ 

mean values (shown as black points), representing the expected climatological change. The green lines are fitted 

through plus or minus three standard deviations from the expected value (shown as green points), representing the 

maximum allowed climatological change. 
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A dynamic, control test was developed to constrain density estimates based on the 

relationships observed between successive bulk density measurements in the reference dataset. 

The control test was taken from manufacturing quality control, where an output is deemed 

acceptable if it is within a prescribed tolerance; typically, within three standard deviations of the 

expected value (Manuele & Goffman, 1945). In this case, changes in bulk snow density should 

relatively conservative, so there should be minimal change between day-to-day estimates from 

the algorithm. If the scope of change in day-to-day snow density was known then the potential 

layer density combinations could be constrained by tolerances defined by the previous estimate 

of snow density. Therefore, linear relationships were fitted to the means and standard deviations 

of the binned distributions (see Figure 3.2), to define the tolerances for the control test. The 

relationships are related to the day of year (DOY), allowing them to be calculated at any iteration 

of the model with: 

 𝜇(𝐷𝑂𝑌) = −0.0061 ∗ 𝐷𝑂𝑌 + 0.816 [
𝑘𝑔

𝑚3∙𝑑𝑎𝑦
]  (3.3) 

 𝜎(𝐷𝑂𝑌) =  −0.017 ∗ 𝐷𝑂𝑌 + 4.57  [
𝑘𝑔

𝑚3∙𝑑𝑎𝑦
]  (3.4) 

The mean change in daily snow density, from equation 3.3, introduced gradually increasing snow 

density estimates at the beginning of the season, trending toward zero to limit change later in the 

season (black line in Figure 3.2). Similarly, the range in estimated daily change in bulk density, 

from equation 3.4, also decreases over the course of the season (green lines in Figure 3.2); larger 

values allowed estimates to deviate more from climatology so to find the appropriate parameter 

space to converge with observed Tb, decreasing over time to restrict change in snow density later 

in the season. 
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3.5.4 Gradient Descent Model 

Prior knowledge of the scene was incorporated into the model’s cost function to constrain 

potential snow layer density combinations and improve algorithm performance. Such 

information provides context relevant to the scene so the model can more efficiently evaluated 

possible layer density combinations. There are strong environmental controls present in the 

tundra that contribute to a characteristic two layer snowpack composition. With an understanding 

of the processes in the tundra environment that affect snow properties, potential snowpack 

parameterizations can be discounted as they are unlikely to be representative of conditions on the 

ground. To that end, two components, I and B, were added to the cost function (f) of the model, 

such that: 

 𝑓(𝜌𝑠𝑙𝑎𝑏 , 𝜌ℎ𝑜𝑎𝑟) = 𝜔1 ∙ 𝐽2 + 𝜔2 ∙ 𝐼2 + 𝜔3 ∙ 𝐵2 (3.5) 

where the microwave modelling component (J), first introduced in equation 3.1, was modified 

and supplemented by inertia (I) and balancing (B) forces. The J, I, and B components are: 

 𝐽(𝜌𝑠𝑙𝑎𝑏 , 𝜌ℎ𝑜𝑎𝑟) =
𝛥𝑇𝑏𝑠𝑖𝑚(𝜌𝑠𝑙𝑎𝑏,𝜌ℎ𝑜𝑎𝑟)− 𝛥𝑇𝑏𝑜𝑏𝑠

𝜎𝑜𝑏𝑠
 (3.6) 

 𝐼(𝜌𝑠𝑙𝑎𝑏 , 𝜌ℎ𝑜𝑎𝑟) =
𝛥𝜌(𝜌𝑠𝑙𝑎𝑏,𝜌ℎ𝑜𝑎𝑟)− 𝜇𝛥𝜌

𝜎𝛥𝜌
 (3.7) 

 𝐵(𝜌𝑠𝑙𝑎𝑏 , 𝜌ℎ𝑜𝑎𝑟) = {
0,                            𝑖𝑓 𝜌ℎ𝑜𝑎𝑟 < 𝜌𝑠𝑙𝑎𝑏
𝑆𝐷

𝛭
 ∙(𝜌ℎ𝑜𝑎𝑟 −𝜌𝑠𝑙𝑎𝑏),   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

  (3.8) 

where each component was assigned a weight hyperparameter (𝜔𝑛) to adjust their relative 

importance (such that 𝜔1 + 𝜔2 + 𝜔3 = 1). The modelling error (Δ𝑇𝑏𝑠𝑖𝑚(𝜌𝑠𝑙𝑎𝑏 , 𝜌ℎ𝑜𝑎𝑟) −

 𝛥𝑇𝑏𝑜𝑏𝑠), in equation 3.6, was standardized by dividing by the potential observation error (𝜎𝑜𝑏𝑠) 

to match the function of 𝜎𝛥𝜌, in equation 3.7. In this case, 𝜎𝑜𝑏𝑠 was assigned a constant value 
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related to the uncertainty range of the AMSR-E instrument (± 0.6 K) and 𝜎∆𝐵𝐷 is the standard 

deviation in the control test, from equation 3.4. Now, J and I have the same units (i.e. standard 

deviations units) and are able to act relative to one another. In this way, J and I can work 

harmoniously to optimize synthetic microwave emissions to match observations, while 

remaining within the climatological scope of allowed change.  

The climatological inertia force, from equation 3.7, was designed to limit fluctuations in 

algorithm estimates. This was not a true inertia force that limits any change but is relative to the 

previous algorithm’s estimate of bulk snow density (ρ; weighted average of 𝜌ℎ𝑜𝑎𝑟 and 𝜌𝑠𝑙𝑎𝑏). 

Cost increases with the difference between the change in bulk density since the previous daily 

estimate (Δρ) and the expected climatological change (𝜇𝛥𝜌, from equation 3.3). Algorithm 

estimates were allowed to diverge up until a boundary defined by the standard deviation from the 

control test (𝜎𝛥𝜌, from equation 3.4) which the estimate cannot cross on that iteration. Daily 

fluctuations in snow density estimates were ultimately confined to the range which is 

climatologically probable to ensure the model did not navigate an unrealistic distance through 

the parameter space on a single day.  

Alternatively, the balancing component, from equation 3.8, is piecewise and only 

contributes when the system is deemed to be out of balance – when the depth hoar layer density 

(𝜌ℎ𝑜𝑎𝑟) is higher than the slab layer density (𝜌𝑠𝑙𝑎𝑏). The microwave scattering signal of the 

snowpack is dominate by the depth hoar layer and, as such, fluctuations in observed ΔTb are not 

reflected as strongly in the wind slab layer. Thus, changes in Tb observations can cause the 

simulated depth hoar layer to become denser than the wind slab layer, a situation which is 

unlikely in the tundra. So, a logical rule was included in the cost function to avoid unlike snow 

density profiles by incurring a cost in those situations. This simple rule proved enough to keep 
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the algorithm in balance and provide realistic density estimates over the course of a season. 

Additionally, the balancing component was designed without hard boundaries to allow the 

snowpack to diverge to pseudo one-layer model when appropriate.  

Now with the introduction of I and B to the cost function, the parameter space, and the 

number of potential layer density combinations, for the model to consider was greatly reduced. 

This was achieved by introducing penalties and boundaries within the parameter space, defined 

by the I and B components. Figure 3.3 provides a simplified representation of the restricted 

parameter space (without the J component) at the beginning of the season for a starting point 

(grey point in Figure 3.3) with equal density values for two snow layers.  

The cost associated with I (shades of blue in Figure 3.3) increases as the current estimate 

diverges from the set of layer density combinations (dashed line in Figure 3.3) that equal the 

expected change in bulk density. The new estimate is allowed to diverge from the expected value 

up until it reaches the boundary defined by the climatological control test, which it cannot cross. 

If only the bulk density was considered, the boundary formed a long band that spanned across 

large sections of parameter space, because many layer density combinations result in the same 

bulk density. So, the standard deviation from the control test was applied directly to each layer to 

restrict the model to a specific portion of the parameter space (in the absence of detailed 

information on stratigraphy). This reduced the band of potential density combinations in the 

parameter space to a zone with boundaries in the shape of a parallelogram (black lines in Figure 

3.3). That boundary was originally set at three standard deviations, with the intention of 

considering nearly all possible climatic scenarios, but through algorithm development it was 

found that that boundary was too large and afford the model too much latitude. With the 

boundaries set at three standard deviations the algorithm estimates were more sporadic and less 
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consistent. Instead, the boundary was reduced to one standard deviation which produced more 

conservative changes in bulk density and, in turn, more consistent algorithm outputs.  

  

Figure 3.3 - Visual representation of the restricted parameter space by the climatological inertia (I) and 

balancing (B) components. The grey point indicates the starting point of layer densities for the given 

iteration, the dashed line is the set of layer density combinations that equal the expected climatological 

change, and the solid lines are the boundaries of the maximum allowed change in bulk density. The 

relative costs associated with the I and B components are shown in shades of blue and red, respectively 

(darker shades represent higher costs).  

Note there is overlap of red and blue which has an additive effect on cost. Additionally, the J component 

is not shown, to simplify the representation, but would be superimposed on the shown parameter space. 
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The parameter space to search is further restricted by the B component which introduced 

an additional penalty when wind slab density is lower than depth hoar density (shown in shades 

of red in Figure 3.3), essentially disregarding those potential parameter combinations. The point 

where the balancing force took effect was set as the maximum density estimate for the depth 

hoar layer during the model’s progression on that date so far, to act like a constant when 

estimating the rate of change in cost with respect to each layer density. In this way, decreasing 

the estimated depth hoar density would not be reduce the cost associated with the system being 

out of balance and instead the wind slab must become denser to alleviate the increased cost. The 

balancing force was implemented in this way because the volume scattering signal is largely 

dictated by the depth hoar layer, while the wind slab layer has a much lower effect and should 

not restrict changes in the depth hoar layer. 

Beyond independent learning rates for each snow layer and the component weights in the 

cost function, only one other hyperparameter was included in the gradient descent model. That 

hyperparameter was designed to represent the likelihood of two distinct layers in the snowpack 

to dictate the relative strength of the balancing force. The formation of a depth hoar layer 

requires sufficient snow accumulation to insulate the underlying substrate and create the 

necessary temperature gradient for kinetic grain growth to occur (Colbeck, 1982). Thus, the 

strength of the balancing force was the ratio of measured snow depth at the AWS (SD) and that 

of a mature tundra snowpack (M) deep enough for depth hoar to exist. M was designated as a 

hyperparameter, to be determined by the model, in the absence of detailed information regarding 

stratigraphy at the training site (CanSWE is limited to bulk snow density). In the future, more 

detailed training data could be used to refine the balancing force. 
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3.5.5 Snow Density Retrieval at AWS Sites 

Forcing data were required to parameterize the snowpack to be ingestible into the RTM 

and perform a passive microwave retrieval of snow density. The snow density retrieval process 

(shown in Figure 3.4) was inspired by the effective grain size optimization procedure in 

GlobSnow (Pulliainen, 2006; Takala et al., 2011). In this approach, points of measured snow 

depth from the AWS are used to provide prior knowledge of the scene to constrain passive 

microwave retrievals. Retrieving snow density at those points could produce data useful for a 

number of applications, compared to effective grain size which is only relevant with respect to 

RTMs. Therefore, the existing AWS network in northern Canada can be exploited to estimate 

snow density across the tundra. 

With the relevant AWS measurements prescribed to the model, the layer density 

parameters were adjusted to minimize the difference between the synthetic and observed ΔTb. 

Two conditions must be met before the passive microwave data were considered when 

estimating snow density. First, snow had to have been detected in the satellite observation 

Figure 3.4 – Data flow diagram of snow density retrieval at AWS, from the AMSR-E observations (ΔTb) and AWS 

measurements (snow depth and air temperature) forcing data . 
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footprint using Grody & Basist (1996). Second, the AWS must have reported at least five 

centimetres of snow on the ground before satellite observations were considered because of the 

transparent nature of shallow snow to microwave radiation (Hall et al., 2002). If those conditions 

were not met the J term (equation 3.6) in the cost function was set to zero and the other 

components kept the system in check.  

The algorithm was designed to include a very strong temporal element and is not 

intended to produce instantaneous estimates. Instead, the algorithm should be applied over the 

entire winter season to provide the most consistent estimates of bulk density. Unlike snow depth, 

snow density does not have a fixed starting value (i.e. snow density of zero kg/m3 does not exist) 

and an estimate for the initial value was required to start the algorithm. Initial values were 

established for each site based on geographic location, with higher initial densities assigned to 

more northernly sites (Sturm & Holmgren, 1998). The two snow layers were initiated with equal 

densities, then the evolution of the snow density profile was dictated by the forcing data. The 

final estimate of bulk density for each day was calculated based on the densities of each snow 

layer and their respective depths (i.e. weighted average). This procedure required consistent 

forcing data throughout the season to produce robust results because of the strong link between 

successive snow density estimates in the algorithm. Further, in some situations the algorithm 

may require some time to equilibrate and evolve to the appropriate parameter space to replicate 

observed Tbs. Therefore, relatively high temporal sampling of the forcing data is key to 

successful algorithm execution while temporal gaps in input data lead to plateaus in density 

estimates. 



   

 

45 

 

3.5.6 Outlier Screening 

Selected outliers in the reference density dataset were removed before analysing the 

algorithm outputs because they did not fit with the expected densification trajectory. In some 

cases, very low snow densities (<100 kg/m3) or very high snow densities (>500 kg/m3) were 

observed early in the season. It is unclear why these values were observed but they are not 

reflective of the expected seasonal trend in snow density. Only observations after November 1st 

were considered thereby removing the influence of early season variability from the analysis. In 

other cases, there were sporadic observations that did not fit temporally with the seasonal profile. 

The Generalized Extreme Studentized Deviate (GESD) test (Rosner, 1983) was used to 

identify temporal outliers in model performance and remove those anomalous observations from 

the dataset during the analysis. GESD is an iterative test that identifies observations that deviate 

more from the modelled output than the other observations. At each iteration, the density 

estimate with the largest deviation from its reference measurement is tested and deemed a 

significant outlier from the remaining observations, or not. Then, the observation in question is 

removed and the process repeated until the maximum number of allowed outliers is reached. The 

significance level of the GESD test was set to p=0.05 and a maximum of two outliers were 

allowed during each algorithm run because of the relatively low number of observations 

available for each season. 18 of the 828 observations (2.18%) were identified as outliers and 

exclude from the analysis. Importantly, GESD is not limited to outliers that correspond with poor 

model performance and will remove any observations (good or bad) that significantly differ from 

the rest.  
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3.5.7 Training, Validation, and Testing 

Before the model could provide suitable estimates of snow density it had to be trained. In 

this context, training refers to identifying the optimal hyperparameter combination for the 

gradient descent model, where a loss metric was used to compare the outputs from various 

combinations. Loss is analogous to the quality of the machine learning output (or rather the lack 

of quality) and different hyperparameter combinations are tried until the loss is minimized. In 

this case, the algorithm’s loss metric is related to the difference between snow density estimates 

and the corresponding value in the reference dataset. Nash-Sutcliffe Efficiency (NSE) was 

chosen as the loss function because of its use in hydrological modelling (Nash & Sutcliffe, 1970) 

– values between zero and one indicate model estimates are closer to observations than they are 

to the observed mean; negative values indicate a constant mean estimate would perform better 

than the model.  

The Eureka AWS was chosen to train the model because of the high-quality data 

available for the site. The Eureka site was chosen primarily because of Saberi et al. (2017), 

allowing for increased confidence in the parameterization of the snowpack (specifically the ratio 

of layer depths). One season of data from Eureka (2006-07) was used to training the model 

because it exhibited the expected gradual densification described by Sturm & Holmgren (1998) 

(ignoring one early season outlier). The training run was initiated with the first density 

observation of the 2006-07 season to ensure the algorithm started in a suitable parameter space 

(as opposed to all other algorithm runs where initial densities were prescribed based on site 

location). Training of the machine learning model was done with an interactive grid search of 

hyperparameter combinations to maximize NSE. 
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The optimal hyperparameter combination identified in training was then applied to the 

remain data. The remaining seven seasons were used to validate the algorithm configuration on 

similar, but different, data. Other AWS sites in the tundra, collocated with CanSWE sampling 

locations, were chosen to test the algorithm. Seven such AWS sites were identified over eight 

winter seasons of the AMSR-E data record. Although sparse, these sites are spread across a wide 

range of the Canadian tundra and provide a good representation of the conditions expected across 

this domain. It should be noted, the algorithm was trained on the data from a single site over one 

season (Eureka 2006-07) and, as such, represents a very low training sample size compared to 

most machine learning implementations (in this case: 2% training, 12% validation, and 86% 

testing). 

3.6 Results 

3.6.1 Performance Metrics and Evaluation  

In the interest of clarity, standards are defined in this section to evaluate the algorithm’s 

skill in estimating bulk snow density. They follow along from the previous subsection that 

defined the training – validation – testing sequence. 

Before the analysis started, the input data were evaluated and deemed adequate, or not, 

for model forcing. Several of the AWS sites experienced data availability outages through the 

study period that disrupted the algorithm. Some of these outages were temporary and did not 

affect model performance, much, but others were prolonged enough to impede the model’s 

ability to predict the temporal evolution of the snowpack. Input data were deemed adequate if 

AWS data were available for the majority of the winter season at a site without prolonged 

outages. After screening of the forcing data, 53 of the 64 datasets (eight sites over eight winter 

seasons) were deemed adequate and used to produce snow density estimates. 



   

 

48 

 

Once the input data were screened, algorithm outputs were assessed against the in situ 

reference dataset of snow density samples. A ten percent density range was applied to the 

reference dataset because of uncertainties inherent to manual snow density sampling (Conger & 

McClung, 2009; López-Moreno et al., 2020). An estimate of bulk snow density was deemed 

accurate if it was within the uncertainty range of the corresponding in situ measurement. 

Further, a series of density estimates was deemed robust if they were consistently within the 

±10% uncertainty range over the span of multiple measurements.  

Beyond the given qualitative definitions, statistical measures were used to quantify the 

algorithm’s performance in estimating snow density, including mean absolute percentage error 

(MAPE), root mean square error (RMSE), and bias. NSE was also reported to quantify the 

algorithm’s temporal performance in estimating snow density. However, there are criticisms as to 

the representativeness of NSE when performing inter-site or inter-season comparisons (Gupta et 

al., 2009), and NSE values are not necessarily comparable when considering multiple season or 

sites. So, an alternative metric to describe temporal algorithm performance is also reported – 

Kling Gupta Efficiency (KGE) – representing a standardized metric (with the similar 

connotations as NSE) to enable straightforward comparisons between algorithm runs for various 

sites or seasons.  

In addition to the in situ reference dataset, Sturm et al.’s (2010) statistical snow density 

model is used as a baseline for the performance evaluation because of ease of application and 

applicability to passive microwave modelling (Kelly et al., 2019). Snow density is estimated by 

Sturm et al. (2010) with: 

 𝜌 = (𝜌𝑚𝑎𝑥 − 𝜌0)[1 − 𝑒𝑥𝑝(−𝑘1 ∙ 𝑆𝐷 −  𝑘2 ∙ 𝐷𝑂𝑌)] + 𝜌0 [
𝑘𝑔

𝑚3] (3.9) 
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where bulk snow density (ρ) is related to snow depth (SD) and day-of-year (DOY), and the other 

parameters vary with snow class. For the tundra snow class, 𝜌0 and 𝜌𝑚𝑎𝑥 represent the minimum 

and maximum density values (242.5 and 363.0 kg/m3, respectively) and 𝑘1and 𝑘2 are 

densification parameters for SD and DOY (0.0029 and 0.0049, respectively). When the statistical 

model (equation 3.9) is applied to the dataset it achieves MAPE, RMSE, bias, NSE, and KGE of 

25.1%, 98.8 kg/m3, -59.2 kg/m3, -0.520, and -0.041, respectively.  

Thresholds were established to determine the quality of the algorithm’s snow density 

estimates, relative to existing methods. MAPE was the primary measure for absolute accuracy of 

algorithm runs and two thresholds were set accordingly – 10% and 25%, with respect to the 

±10% uncertainty range of the in situ measurements and performance of the statistical model. 

Similarly, KGE was the primary measure for temporal accuracy and two thresholds were set 

accordingly – 0.00 and -0.414, with respect to the performance of the statistical model and that 

of a static mean estimate of snow density (-0.414 is the equivalent threshold for KGE as 0 is for 

NSE).  

3.6.2 Training Results 

Through training, the algorithm was able to very accurately replicate the observed 

changes in snow density over the 2006-07 Eureka winter season. The minimum loss achieved 

through training was an NSE of 0.388 (KGE of 0.728), corresponding to MAPE, RMSE, and 

bias of 5.7%, 20.5 kg/m3, and -5.7 kg/m3, respectively (see Table 3.2). A visual summary of that 

best training algorithm run is provided in Figure 3.5. Figure 3.5a shows the algorithm density 

estimates relative it the in situ measurements, where estimates were very robust with only one 

outside the ±10% uncertainty range of the samples on March 1st (with one outlier measurement 

on November 15 removed by the GESD test). The AWS forcing data, shown in Figure 3.5b&c, 
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experienced gradual increases in snow depth to a maximum of 16 cm and consistent sub-zero 

temperatures during the study period. Figure 3.5d shows the microwave modelling error between 

observed and synthetic emissions, which was close to zero for the majority of the training period. 

Thus, it appears that under ideal conditions this algorithm has the potential to produce very 

similar estimates of snow density to in situ sampling. 

Figure 3.5 – Algorithm training results for Eureka 2006-07. a) shows bulk snow density estimates from the 

algorithm (black line) and CanSWE density samples (black points, with ±10% error bars). CanSWE 

samples marked with ‘X’s were removed from the analysis – red indicates the first observation used to 

initiate the algorithm run and black identified as an outlier by the GESD test. b) shows snow depth 

measured at the AWS (purple line) and CanSWE snow depth measurements (black squares). c) shows 

minimum daily air temperature at the AWS. d) shows the microwave modelling error (𝛥𝑇𝑏𝑠𝑖𝑚 − 𝛥𝑇𝑏𝑜𝑏𝑠). 
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Table 3.2 – Statistical summaries of algorithm performance (relative to the CanSWE refernce dataset) at the Eureka 

site, training data from the 2006-07 winter season and validation data are from 2003-06 and 2007-11. 

Stage MAPE (%) RMSE (kg/m3) Bias (kg/m3) NSE KGE 

Training 

2006-07 

5.7 20.5 -5.7 0.388 0.728 

Validation 

(remaining years) 

15.5 70.1 -46.6 -1.411 0.161 

 

3.6.3 Validation Results 

Of the seven remaining winter seasons for Eureka all provided adequate input data to 

produce meaningful results, but for one season (2008-09) where the algorithm was hindered by 

intermittent snow cover. In general, the validation algorithm runs at Eureka achieved much lower 

absolute and temporal accuracies than in training (see Table 3.2). Algorithm performance varied 

over the validation seasons at Eureka, with MAPE ranging from 9 - 22% and KGE from  

-0.156 - 0.614 (more detail on individual runs is included in Table 3.4). The algorithm typically 

underestimated snow density early in the season at Eureka, but performance consistently 

improved over the course of each season. The algorithm was able to accurately estimate bulk 

snow density at peak SWE accumulations across all seasons at Eureka, despite early season 

performance. In all validation algorithm runs the algorithm estimates converged close to the in 

situ density samples later in the season. MAPE at peak SWE accumulation was 10.9% – just 

outside the ±10% uncertainty range assigned to in situ measurements – demonstrating a good 

potential for estimating end of season SWE conditions. All validation algorithm runs, but one 

(2003-04), surpassed the two benchmarks set by the Sturm et al. model (MAPE < 25% and KGE 

> 0; see table 3.4). 
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3.6.4 Testing Results  

Table 3.3 – Statistical summaries of algorithm performance (relative to the CanSWE refernce dataset) for sites in the 

testing dataset. 

* Eureka is inluded to provide context for the testing results – these data are composed of the training and validation 

stages. 

** Agglomerated data for all testing sites (i.e. all sites except Eureka). 

In testing, the algorithm demonstrated slightly lower absolute accuracy at sites distributed 

across the tundra, compared to Eureka, but significantly higher temporal accuracy (see Table 

3.3). Absolute accuracies for individual sites were similar to validation with MAPE and RMSE 

marginally higher than those for Eureka, except for the Iqaluit and Inuvik sites which displayed 

considerably worse performance (see Table 3.3). Alternatively, most testing sites scored higher 

KGE values than Eureka. Like in the validation stage, algorithm performance consistently 

improved over the course of the season and MAPE at peak SWE accumulation was reduced to 

14.5% (from 17.7% for the whole season). In some cases, the algorithm was able to produce very 

robust estimates of bulk snow density where estimates were very similar to in situ measurements 

(e.g. Figure 3.6a-c). In other cases, the algorithm estimates displayed a negative bias early in the 

season but converged measurements later in the season (e.g. Figure 3.6d-f). And in a few cases, 

Site MAPE (%) RMSE (kg/m3) Bias (kg/m3) NSE KGE 

Eureka* 14.2 65.6 -46.6 -1.077 0.186 

Alert 15.3 66.9 -43.7 -0.728 0.168 

Resolute 15.7 78.1 1.4 -0.13 0.042 

Cambridge Bay 16.8 71.9 -32.3 -0.911 0.362 

Coral Harbour 15.1 76.8 -54.8 -1.438 0.189 

Iqaluit 19.7 82.8 -52.6 -1.196 0.296 

Baker Lake 16.7 52.7 -28.3 0.029 0.557 

Inuvik 27.3 60.8 39.2 -1.163 0.419 

All Testing Sites** 
17.7 71.3 -24.2 0.272 0.603 
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the algorithm estimates were completely different from the in situ densities samples (e.g. Figure 

3.6g-i). there was insufficient space to describe all algorithm runs in detail, so summaries for 

each algorithm run were included in Appendix A.  

Figure 3.6 - Examples of algorithm outputs: top row (a-c) – good results, middle row (d-f) – intermediate results, 

and bottom row (g-i) – poor results. For each algorithm output, the plot shows bulk snow density estimates from the 

algorithm (black line) and the CanSWE density samples (black points, with ±10% error bars). CanSWE samples 

marked with ‘X’s were removed from the analysis – red indicates observations removed prior to Nov 1 and black 

identified as an outlier by the GESD test. 
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3.7 Discussion 

A matrix of algorithm runs was created to evaluate estimation skill relative to the absolute 

and temporal accuracy thresholds established in section 3.5.1. The absolute accuracy of 

algorithm runs was more consistent at the northern sites and degraded for more southern sites 

(see Table 3.4). That was to be expected because the algorithm was trained at one of the most 

northernly sites (i.e. Eureka). Alternatively, temporal accuracy was much more consistent over 

the entire study area, with most algorithm runs scoring positive KGE values (see Table 3.4). 

Evidently, the algorithm performed better under certain conditions than others. The following 

subsection discusses emergent patterns in algorithm performance. 

Table 3.4 – Absolute and temporal accuracies for every algorithm run, arranged in a matrix with rows ordered by 

descending site latitudes (horizontal black line separates high and sub arctic site designations) and columns ordered 

in chronological order. The training run (Eureka 2006-2007) is marked with dark borders to differentiate it from 

other algorithm runs.  

The cells are colour coded with respect to the performance metrics outlined in subsection 3.5.1: 

 Absolute accuracy thresholds (MAPE) – Green = <10%, Yellow = >10% and <25%, Red = >25% 

 Temporal accuracy thresholds (KGE) – Green = >0, Yellow = <0 and > -0.414, %, Red = < -0.414 

 Absolute Accuracy (MAPE [%]) Temporal Accuracy (KGE) 

Site 2003-04 2004-05 2005-06 2006-07 2007-08 2008-09 2009-10 2010-11 2003-04 2004-05 2005-06 2006-07 2007-08 2008-09 2009-10 2010-11 

Alert   17.0 20.1 7.2  9.9 19.7   -0.030 -0.223 0.413  0.250 0.201 

Eureka 20.9 21.5 13.7 5.7 14.7  12.6 9.2 -0.156 0.163 0.083 0.728 0.445  0.315 0.614 

Resolute 10.8 17.4 16.9 19.0 10.9 13.9 12.0 23.8 0.313 -0.020 0.136 -0.036 -0.068 0.646 0.497 -0.051 

Cambridge 

Bay 
27.5 17.3 16.1 9.4 13.5 18.3 15.1 16.6 0.404 0.243 0.431 0.742 0.315 -0.100 0.168 -0.071 

Coral 

Harbour 
26.2 11.6 13.2 13.4 12.8 14.5 13.2 15.4 0.042 0.575 0.153 0.082 -0.396 0.138 0.368 0.216 

Iqaluit  26.3   11.9  16.5 20.7  0.160   -0.009  0.061 0.402 

Baker Lake    9.2 17.1 15.1 17.9 25.0    0.373 0.112 -0.006 -0.968 0.241 

Inuvik 28.5 18.1 16.2 48.5 27.7 21.4 68.3 7.2 0.067 0.626 0.323 0.427 0.084 0.399 -0.236 0.780 
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3.7.1 High Arctic vs Subarctic Sites 

The tundra is vast domain, with a varied landscape, and can be better segregated into 

“high arctic” and “subarctic” sub classes to better characterize different snow conditions 

(Derksen et al., 2014). Sites above 70N were classified as high arctic and others as subarctic 

(designations are provided in Table 3.1). Algorithm performance for the three high arctic sites 

(Alert, Eureka, and Resolute) was quite similar, with marginally lower estimation skill than 

Eureka at the other two sites. On the other hand, results in the subarctic where were mixed. 

Absolute accuracy was consistently lower at the subarctic sites, but temporal accuracy was 

higher. By and large, sites in the high arctic displayed better absolute estimation accuracy than 

those in the subarctic, and the opposite in terms of temporal accuracy (see Table. 3.5).  

Table 3.5 Algorithm performance for “high arctic” and “subarctic” classes (relative to the CanSWE refernce 

density dataset). 

Subclass MAPE (%) RMSE (kg/m3) Bias (kg/m3) NSE KGE 

High Arctic 15.6 72.8 -25.5 -0.343 0.312 

Subarctic 18.3 70.4 -26.8 0.287 0.605 

These discrepancies in algorithm performance between the high and subarctic sites could 

imply that a more comprehensive classification scheme should be used in the future, rather than a 

single algorithm configuration for the entire tundra biome. On the one hand, absolute accuracy 

was rather consistent in the high arctic (see Table 3.4), suggesting the algorithm was sensitive 

those snow conditions while not overly fit to the Eureka site. On the other hand, the subarctic 

sites scored lower absolute accuracies, indicating the algorithm configuration may have been less 

representative of those areas. The snow conditions experienced in the subarctic were more 

varied, and some sites had conditions similar to those in the high arctic class while other were 
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distinctly different. The in situ snow density samples for Baker Lake and Inuvik were much 

lower than for other sites in the subarctic (and average snow depth for Inuvik was much higher 

than any other, see Table 3.1), potentially warranting a sperate classification. Results for most 

subarctic sites were comparable to those in the high arctic but Inuvik stood out with very poor 

absolute accuracy. The algorithm displayed starkly different behaviour at the Inuvik site where it 

over estimated snow density, compared to underestimating density at all other sites (except for 

Resolute which had a near neutral bias, see table 3.3). As a result, MAPE values for the Inuvik 

site were disproportionately high because of the relatively low reference values (Makridakis, 

1993). Thus, it seems the study area could be more carefully divided for future analyses, to 

account for differing snow conditions, and representative sites should be selected to training the 

algorithm for each of subclasses.  

3.7.2 In situ vs. Estimated Densification Trajectories 

In most cases, the algorithm underestimated snow density early in the season and 

estimates converged with the in situ density samples later in the season. This behaviour is 

apparent at most sites (see Figure 3.7) and is demonstrate distinctly at the Cambridge Bay site 

(see Figure 3.7d). On reason for the tendency of early season underestimation can be explained 

by how the algorithm runs were initiated. Anecdotally, through development the algorithm 

displayed somewhat monotonic behaviour, where density estimates were more likely to increase 

than decrease. By initiating the algorithm at a lower density it would be more likely to find the 

appropriate parameter space by increasing to match in situ samples (whereas estimates would 

plateau if initiated too densely, i.e. above in situ samples). So, initial density values for each site 

were set conservatively low so to ensure the modelled snowpack would evolve. This approach 

for initiating the algorithm came at the cost of lower absolute accuracy through underestimation 
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earlier in the season. However, estimation skill improved quite consistently over the course of 

the algorithm runs, with 25 of 53 estimates within the ±10% uncertainty range of the in situ 

measurements by the time of peak SWE accumulation.  

Figure 3.7 - Residuals between algorithm estimates and in situ CanSWE samples, for all algorithm 

runs, based on day of year. 
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The algorithm’s ability to capture the expected densification trend varied with relation to 

the spatial extent of the analysis. Temporal accuracy for the testing dataset was comparable to 

training, whereas, testing KGE (0.603) was many times higher that of validation (0.161). This 

result is counterintuitive because the algorithm was trained on data from Eureka, so one would 

expect better performance for the validation data from the same site. However, the temporal 

performance metrics are related to the degree of variability in the observed data – a constant 

estimate will fit better to data with lower intrinsic variability than those with a degree higher 

variability in the observed values. For example, the in situ snow density samples from the 2009-

10 season at Inuvik had lowest variability in the reference data (σ = 8.32 kg/m3) and, by far, the 

lowest NSE of any algorithm runs (-172.4). This suggests that algorithm performance, relative to 

existing methods, would be significantly better when applied on a tundra-wide scale where more 

variability is expected (i.e. compared to the mean density across the domain), but not necessarily 

for a single site with less intrinsic variability (i.e. compared to the mean density from one site). 

Such was not only true for Eureka and every site scored lower individual KGE than the dataset 

as a whole. 

3.7.3 Model Forcing 

There were some algorithm runs which did not accurately estimate snow density, and it 

was not clear why. Algorithm performance did not appear to be strongly dictated by the AWS 

forcing data (snow depth and air temperature) and those like the training data did not guarantee 

accurate estimates of snow density. Specifically, it appears that the snow load did not control the 

densification trajectories at sites, nor was an indicator of algorithm performance (provided there 

was sufficient snow accumulation to permit microwave retrievals). However, the need for quality 

AWS forcing data should not be dismissed and they should be representative of the scene to 
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isolate the volume scattering contribution of snow density. Instead, other meteorological factors 

(e.g. wind speed; Sturm & Holmgren, 1998) would likely be more important for estimating 

tundra snow conditions. 

From algorithm estimates, it was apparent that a minimum snow depth was required to 

estimate snow density using satellite passive microwave remote sensing. The algorithm was 

configured to consider satellite observations after five centimetres of snow was reported at the 

AWS, but the microwave modelling component of the cost function (J) was negligible at that 

level of accumulation and did not affect algorithm estimates of snow density. The inertia force (I) 

kept density estimates constant at the initial value until sufficient snow had accumulated to 

exhibit volume scattering and permit microwave retrievals. The algorithm consistently responded 

to a volume scattering signal in the passive microwave observations once ten centimetres of 

snow was reported at the AWS and the modelled snowpack would begin to evolve (i.e. change 

density) from that point. This minimum threshold for the retrieval of snow characteristics from 

passive microwave remote sensing will inform future development of this algorithm. Wind 

conditions may prove especially useful for estimating densification while the snowpack is still 

transparent to microwaves before that minimum snow depth threshold (i.e. identify the density 

value to initiate passive microwave retrievals). A more detailed analysis of meteorological 

conditions, and site characteristics, in the tundra is required to identify what drives variability in 

snow density at the passive microwave scale and how to properly force the algorithm in the 

future. 

3.8 Conclusion 

This research has demonstrated a sensitivity to changes in bulk snow density observed by 

satellite based passive microwave observations and operational AWS measurements, to provide a 
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novel approach for monitoring snow density in remote areas. The algorithm was applied across a 

very large domain with minimal training, owing to the incorporation of prior knowledge into the 

machine learning model to constrain the evolution of snow density estimates over time. 

Algorithm performance was quite good across the study area, although not entirely consistent 

with decreasing absolute accuracies at southern sites. 

The algorithm showed especially good promise for estimating snow density at peak SWE 

accumulation, with nearly 50% of density estimates [at peak accumulation] within the 

uncertainty of the in situ samples. Therefore, snow density estimates from this approach could be 

useful for applications where the total amount of water storage within the snowpack is the 

primary concern. However, it was clear that more comprehensive algorithm forcing and training 

routine should be considered in the future, for algorithm performance to be more consistent 

across time and space.  

Future work will build upon this prototype algorithm to improve snow density estimates 

from passive microwave remote sensing. The next logical step would attempt to produce 

spatially continuous snow density estimates from the distributed site level snow density 

estimates. That raises the question on how to best transition from spatially distributed density 

estimates to spatial continuous estimates and how to validate such a product. In a very 

straightforward way, the conversion could be accomplished through interpolation (like in 

Venäläinen et al., 2021). Alternatively, the approach could be modified to take in continuous 

meteorological forcing data, which could be interpolated from the AWS measurements or from 

climate models, to facilitate passive microwave retrievals of snow density across the entire study 

area.  
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Chapter 4  

Conclusions and Future Work 

This research demonstrated satellite based passive microwave remote sensing can be used 

to estimate bulk snow density and monitor changes over the course a season. The algorithm 

demonstrated good skill in estimating snow density across the study area with very minimal 

training, but estimation accuracy was not consistent across the domain. The spatial patterns 

identified in algorithm performance across the tundra suggest characteristics (either site or 

snowpack related) differed significantly between sites, potentially warranting different model 

configurations for distinct areas. Despite those issues, the algorithm consistently produced better 

estimates of snow density compared to the typical methods. Ultimately, this research provided a 

novel method for monitoring snow density in remote areas, which after further refinement might 

provide high quality snow density estimates in areas that were not previously observable. 

With respect to the first goal, from section 1.2, the algorithm showed some sensitivity to 

local fluctuations in bulk snow density and produced accurate and robust estimates of snow 

density during some periods. In general, algorithm estimates did not reflect early season 

variability in the in situ dataset but performance improved later in the season. Two factors can 

explain why the algorithm could not replicate those early observations (assuming they were 

representative of the conditions on the ground). First, the early-season snow density fluctuations, 

not captured by algorithm estimates, typically occurred while the snowpack was relatively 

shallow (i.e. <10 cm). Therefore, the snowpack was likely transparent to microwaves and the 
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satellite observations could not provide any reference on the snow conditions. Second, once the 

snowpack had sufficiently matured to for volume scattering to dominate, the strong temporal 

design of the algorithm required time for the modelled snowpack to evolve to the correct 

parameter space. That is, the climatological inertia force slowed down the algorithm’s 

progression, as intended, but was possibly too strong in this implementation and prevented the 

modelled snowpack from evolving in a timely manner. When these factors are considered 

together, it seems this approach could be suitable for estimating the bulk snow density of a 

mature snowpack, specifically at the time of peak SWE accumulation. In this way, this approach 

could be well suited to hydrological applications where the total water storage in the snowpack is 

of primary concern. 

The second goal of this thesis, from section 1.2, was not explicitly tested but the 

algorithm demonstrated promising behaviour for estimating snow density at sites across the 

tundra. While this research did not attempt to convert the distributed density estimates into 

continuous fields (e.g. interpolate between sites; as described in Venäläinen et al., 2021), it did 

provide a new method for distributed snow density estimates that future research can build upon. 

Moving forward there may be an alternative to interpolating the snow density estimates from 

each AWS. Instead, the snow depth forcing data could be interpolated, similar to the GlobSnow 

snow depth interpolation approach (Takala et al., 2011), to provide spatially continuous forcing 

data for the passive microwave retrieval process. In this way, snow density could be estimated 

for each passive microwave grid cell, individually, rather than directly at the AWS points. This 

modified approach could potentially provide greater spatial detail in algorithm estimates, than an 

interpolated product, by making use of the full extent of passive microwave observations (at 

greater computational expense). 
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 There is potentially a more significant outcome from this research, beyond estimating 

bulk snow density from passive microwave observations. That is, the very complex system in 

this algorithm (i.e. the 3D gradient descent model) was sufficiently constrained with the 

introduction of simple, logical rules. Those rules introduced physical knowledge into the 

retrieval process and made the algorithm behaviour consistent enough to be applied across a 

large domain with a very limited training sample. In this case, the rules were implemented in a 

fashion specific to gradient descent machine learning, but the principles could be applied to other 

models. Specifically, the concepts behind the climatological inertia force could be applied to 

other SD/SWE algorithms so to increase algorithm efficiency by limiting the model parameter 

space to search, while simultaneously preventing fluctuations in estimates. 
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Appendix A 

Appendix A contains summaries for all algorithm runs that could not be included in the 

text body for lack of space. The algorithm was applied at eight AWS sites over the course of 

eight winter seasons, for a total of 64 algorithm runs. On the following pages, summaries for 

algorithm runs are arranged in alphabetical order by site name, and the eight algorithm runs for 

each site span two pages in chronological order. Each summary includes algorithm estimates of 

snow density, model forcing data, and the microwave modelling error; each summary is 

structured as follows. The title describes the site name, stage of analysis (i.e. training, validation, 

or testing), and the winter season, in that order. Immediately underneath the title, the first plot 

shows the algorithm bulk snow density estimates (black line) and the corresponding in situ 

CanSWE density samples (black points, with ±10% uncertainty bars). CanSWE density samples 

marked with ‘X’s were removed from the analysis – red indicates samples prior to November 1st 

and black identified as an outlier by the GESD test. Also shown in the first plot are qualitative 

checks performed by the algorithm prior to the microwave retrieval process which were not 

passed and are represented as shaded regions (dark grey indicates missing satellite data, light 

grey indicates no volume scattering [i.e. cannot perform a retrieval], blue indicates snow not 

detected by Grody and Basit (1996) in the observation scene). The second plot shows the AWS 

snow depth measurements (purple line) used for model forcing and the in situ CanSWE depth 

samples (black squares) for reference. The third plot shows the air temperature measured at the 

AWS used for model forcing. The fourth plot shows the microwave modelling error (i.e. the 

difference between simulated and observed ΔTb). 
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Alert Results cont’d 
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Baker Lake Results, cont’d 
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