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Abstract

Mapping sea ice in polar regions is crucial for research and operational applications,
such as environmental modeling and ship navigation. Synthetic aperture radar (SAR)
offers a dependable and efficient means of monitoring sea ice under various weather con-
ditions and operational scenarios. Presently, national ice services, such as the Canadian
Ice Service (CIS), rely on experienced ice analysts to manually interpret SAR imagery
and generate ice charts. Although these charts have been in use for decades, they possess
several shortcomings. Manual interpretation necessitates significant expert resources and
introduces human bias, and the charts only provide a region-based approximation of ice
conditions. Consequently, automated sea-ice classification systems are highly desirable,
aiming to accurately label each pixel in SAR imagery with the corresponding sea-ice type.

Addressing the challenges in sea ice classification, such as intra- and inter-class variance,
has proven difficult for single-model-based systems due to the limited spatial and contextual
information captured. This thesis introduces sea ice classification methods comprising two
primary stages: unsupervised segmentation to generate homogeneous regions, and labeling
to assign each homogeneous region an appropriate label.

Two innovative methods that directly combine segmentation and labeling for automated
sea ice classification are presented. Firstly, a convolutional neural network (CNN) based
approach, inspired by the rapid advancements in deep-learning architectures, is developed
to differentiate between sea ice and open water. A regional pooling layer is introduced
to harness the spatial features learned through labeling and the contextual information
extracted via segmentation. Since CNN models necessitate extensive labeled samples,
which are scarce for various ice types, a random-forest-based method trained on limited
labeled samples is formulated. Texture features are initially extracted from each pixel
and then combined with an energy function to assign pixel-level labels of sea ice types to
homogeneous regions.

Acknowledging the limitations of direct integration, including the need for extensive
labeled training samples and the inherent issue of CNN’s limited receptive field, a semi-
supervised graph convolutional network (GCN) based method is proposed for operational
sea ice classification. A CNN is initially employed to extract features from each node
generated by segmentation, followed by the construction of a graph based on the feature
vector and the statistical relation between nodes. Lastly, a GCN is designed to propagate
local spatial and contextual information to the global level, facilitating the classification
of unlabeled nodes in the graph. As a semi-supervised method, the proposed network
requires labeled samples from the processing scene as initiating nodes. In comparison to
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fully-supervised methods, the GCN-based approach substantially reduces misclassifications
of sea ice types due to the absence of prior knowledge.

The classification outcomes reveal that the proposed methods demonstrate promis-
ing performance in their respective categories and surpass other state-of-the-art sea-ice
classification methods in terms of both numerical accuracy and visual interpretation. Fur-
thermore, the GCN-based method incorporates human supervision to enhance the quality
of the produced sea-ice maps, which exhibit high consistency with ice charts released by
ice analysts.
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Chapter 1

Introduction

1.1 Background

1.1.1 Sea ice in SAR imagery

Mapping sea ice in polar regions is crucial not only for a range of research applications,
such as oceanography and global climate modeling but also for operational tasks, such
as ship navigation. Over the past decades, synthetic aperture radar (SAR) imagery has
emerged as the primary data source for sea ice monitoring. As an active microwave remote
sensing platform, SAR possesses the unique ability to acquire imagery of targets under any
weather conditions, both day and night. The backscattering received by the SAR sensor is
largely dependent on the target’s electromagnetic properties and surface roughness, both
of which significantly distinguish different types of sea ice, inferring its thickness.

The World Meteorological Organisation (WMO) has established a sea ice nomenclature
that categorizes sea ice according to several criteria, such as forms of ice, stage of melting,
sea ice movement, and sea ice stage of development [1]. Like many related studies, this
research will focus on classifying sea ice based on the stage of development. Sea ice’s stage
of development is usually defined by the thickness of ice formed in less than one year. For
any ice that survives through the melting season, the stage of development is described
based on survival time. Table 1.1 lists the sea ice stages of development and corresponding
thickness, symbols, and color codes. The five main stages can be further subdivided into
ten stages. For instance, young ice (10-30 cm) can be subdivided into grey ice (10-15 cm)
and grey-white ice (15-30 cm) based on thickness. Any first-year ice that survives through
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October 1st becomes old ice. Beyond this stage, the ice is categorized based on the number
of survival years, regardless of the thickness.

Table 1.1: Sea-ice stages of development defined by WMO [1], along with corresponding
thickness and symbol.

Stage of development Thickness Symbol
New Ice - 1
Nilas <10 cm 2
Young ice 10-30 cm 3

Grey ice 10-15 cm 4
Grey-white ice 15-30 cm 5

First-year ice 30-200 cm 6
Thin first-year ice 30-70 cm 7
Medium first-year ice 70-120 cm 1•

Thick first-year ice >120 cm 4•

Old ice - 7•

Residual ice - 6•

Second-year ice - 8•

Multi-year ice - 9•

The central objective of sea ice mapping using SAR imagery is to delineate the ge-
ographic distribution of water and various ice types across vast regions. Presently, the
Canadian Ice Service (CIS) interprets between 110 (mid-March) and 290 (early Septem-
ber) SAR images daily to generate sea ice maps, also known as ice charts. Analysts at CIS
first segment the entire SAR scene into smaller polygons delineated by distinct boundaries.
Each region, which may contain one or multiple ice types, is denoted by the ”egg code,”
which includes the stage of development and other properties as defined by the WMO. An
example ice chart is illustrated in Figure 1.1.

Despite their wide usage for several decades, these ice charts have inherent limitations.
First, egg codes are denoted for large regions, thereby not identifying ice types at pixel
resolution [3]. Second, the generation of polygons is subjective, meaning results can be
influenced by human bias, and some variation between analysts may exist. Third, the
number of SAR scenes requiring processing is expected to increase over time. Back in
2002, CIS analysts processed around ten scenes daily [4]. Nowadays, with data influx from
RADARSAT Constellation Mission (RCM) and Sentinel-1 [5], CIS is interpreting between
110 (mid-March) to 290 (early September) SAR images every day. Therefore, manual

2



Figure 1.1: An example of regional ice chart of Davis Strait produced by the Canadian
Ice Services based on RADARSAT Constellation Mission (RCM) and Sentinel-1 images
captured on 03 July 2022. Source: [2]

.
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procedures may fall short of future needs.

As a result, there is a pressing need for an automated, computer-based sea ice map-
ping method. An effective operational automated method should possess the following
characteristics:

• The ability to generate ice maps that are consistent with expert interpretation.

• The ability to classify different ice types as required for operational use on full-scene
SAR imagery.

• The ability to segment boundaries that match the natural ice and water boundaries.

• The ability to be invariant to SAR sensor artifacts such as banding noise and incidence
angle variation.

1.1.2 Challenges

Automated, particularly machine-learning-based, sea ice classification systems hold great
promise for national sea ice services, yet their development is fraught with challenges. Typ-
ically, the foundation for a classification system rests on modeling the unique distributions
of diverse sea ice types, subsequently delineating them within a feature space. A critical
determinant of the classification system’s performance hinges on the intra-class and inter-
class variability of sea ice types. Ideally, a robust machine learning model benefits from low
intra-class variability and high inter-class variability, conditions conducive to precise classi-
fication results. However, the existence of factors that result in high intra-class variability
and low inter-class variability poses significant challenges to accurate sea-ice classification.

Environmental impact

Environmental effects on SAR imagery pose a significant challenge in sea ice classification.
A range of environmental factors, such as elevated temperatures leading to the formation
of melt ponds on sea ice or strong winds generating waves, can substantially modify the
backscatter characteristics. Moreover, the temporal variability of SAR imagery, often
a consequence of rapidly changing environmental conditions, can lead to an imbalanced
class distribution within the dataset. This dynamic evolution of sea ice conditions can
impede the generalizability of the machine learning model, as the model may be trained
on conditions that quickly become outdated or rare.
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Sensor limitations

In contrast to hyperspectral images that typically comprise over a hundred bands, SAR
images used for sea ice monitoring are usually dual-polarized, thereby curtailing the range
of available “frequency features”, specifically polarization features. Speckle noise, a charac-
teristic of SAR imagery, engenders high-frequency variations in pixel intensity, thus further
complicating the classification process. Additionally, the spatial resolution of SAR images
used for sea ice monitoring is typically in the order of 100 meters. At this resolution, a
single pixel could contain multiple types of sea ice, thereby posing a challenge in assigning
a definitive class label to these mixed pixels. These mixed-pixel scenarios are most likely
to occur at the boundaries between different sea ice types and water. Misclassification of
boundary pixels carries higher implications compared to non-boundary pixels, as boundary
information is crucial for operational sea ice mapping. Finally, the incidence angle effect
can significantly distort the backscatter characteristics of sea ice, adding another layer of
complexity to the classification task. Different sea ice types, such as young ice and first-
year ice, exhibit unique backscatter characteristics, which can, however, vary depending on
the incidence angle. This means the same type of ice can appear differently, and different
types of ice can appear similar in SAR images captured at varying incidence angles.

Machine learning method Limitations

Despite their promise, the employment of machine learning methods, such as convolu-
tional neural networks (CNNs), brings along their own set of challenges. CNNs typically
undertake classifications at the pixel level within a rectangular-shaped receptive field. Nev-
ertheless, given the extensive coverage of sea ice, the receptive field may be too confined
to effectively capture spatial features critical for accurate classification. Furthermore, the
irregular contours of sea ice formations do not neatly fit within the rectangular receptive
fields commonly used in CNNs, potentially leading to misclassification. The scarcity of
labeled data presents another considerable challenge, as the limited data might be insuf-
ficient to train a machine learning model capable of generalizing effectively across diverse
sea ice conditions and types.

1.2 Thesis Objectives

The common pipeline for developing sea ice classification methods typically encompasses
three stages: data preprocessing, feature extraction, and classifier training. The latter two
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stages have accumulated significant attention within the research community over the past
decade and are the focal points of investigation in this thesis.

Most machine learning methods conventionally rely on spatial features extracted using
rectangular filters for feature extraction. Nevertheless, this approach does not consistently
yield effective results in the classification of sea ice in SAR images. The quality of spatial
features is highly dependent on the dimensions of the rectangular filter. A filter that is
too small may fail to capture adequate spatial information, while an excessively large filter
could encompass multiple sea ice types, introducing noise and ambiguity. Additionally,
factors such as speckle noise and variations in incidence angles can compromise the integrity
of spatial features, leading to classification inaccuracies.

On the other hand, semantic segmentation algorithms have demonstrated proficiency
in extracting contextual information that is robust to noise and adept at distinguishing
features with differing characteristics. However, the types of spatial and contextual features
that should be learned, as well as the methods for combining these features, have not been
thoroughly investigated, revealing gaps in the research that require further exploration.

Therefore, the primary objective of this thesis is to develop frameworks that inherently
integrate spatial and contextual features for the classification of sea ice in SAR images.
More specifically, these infrastructures should be capable of generating sea ice maps with
pixel-level accuracy and well-defined ice boundaries, leveraging dual-polarization data and
a constrained volume of training samples. Crucially, the classification accuracy of the pro-
posed frameworks must be insensitive to temporal changes and incidence angle variations
to ensure the reliability of results under varying conditions. The systems should offer
functionality that is either fully automated or semi-automated, contingent upon the task
at hand—whether it is to distinguish sea ice from open water or to differentiate among
various sea ice types.

Moreover, the intended system will be designed to meet the operational requirements
of national sea ice services, a benchmark that current models have yet to achieve. In
line with this, it will strive to enhance the efficiency and scalability of sea ice mapping
operations, ensuring that it can handle an increasing volume of SAR images expected in
the future. Furthermore, a special emphasis will be placed on enhancing the system’s
capability to handle mixed pixels and accurately classify boundary pixels, which often
present a significant challenge in sea ice classification.

Ultimately, the thesis seeks to contribute to the broader scientific understanding and
practical operational capacity of sea ice classification, with potential ramifications for global
climate modeling, oceanography studies, and ship navigation.
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1.3 Thesis Structure

The structure of this thesis unfolds over several chapters, each presenting an innovative sea-
ice classification technique for dual-pol SAR imagery. These methods have demonstrated
encouraging classification results, both qualitatively and quantitatively. Chapters 2, 3,
and 4 are grounded in submitted or published manuscripts; thus, there might be some
redundancy in the introductory and background sections of these chapters.

Chapter 2 presents IRGS-RF, an automated method for mapping various types of sea
ice in RADARSAT-2 imagery by integrating spatial context and textural features. In
contrast to the method elucidated in Chapter 2, IRGS-RF does not employ deep learning
models due to the scarcity of training data for different sea-ice types. Instead, it proposes
an energy function to integrate IRGS and Random Forest (RF).

Chapter 3 introduces IceNet, a robust and automatic approach to distinguishing sea
ice from open water in dual-pol SAR imagery. A regional pooling layer is deployed to
combine the unsupervised Iterative Region Growing using Semantics (IRGS) segmentation
and supervised pixel-wise Residual Network (ResNet) labeling, both of which are state-of-
the-art methods in remote sensing. This study marks the first application of a CNN in
conjunction with unsupervised segmentation for sea ice-water classification.

Chapter 4 introduces IceGCN, an interactive sea ice classification method for SAR
imagery based on a GCN. This innovative approach necessitates human interpretation
as prior knowledge to ensure an accurate representation of sea ice types. Differing from
the previously mentioned methods, IceGCN accounts for both intra-superpixel and inter-
superpixel relations when merging segmentation with labeling.

Chapter 5 provides a summary of the research conducted and contributions made to
SAR sea ice classification and discusses potential future work.

The sea-ice classification results included in this thesis adhere to the color code specified
by the World Meteorological Organization for different stages of development [6] and are
best viewed in color. For ease of reference, the highest numerical accuracies in result tables
are highlighted in bold typeface.
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Chapter 2

Sea Ice Mapping by Integrating
Spatial Contexture with Textural
Features

Mapping different types of sea ice that form, grow, and melt in polar oceans is essential
for shipping navigation, climate change modeling, and local community safety. Currently,
ice charts are manually generated by analysts at the Canadian Ice Service (CIS) based
on dual-polarized RADARSAT-2/RADARSAT Constellation Mission (RCM) imagery on
a daily basis. Inspired by the demand for a computer-based mapping system, we have
developed an automatic sea ice classification method that integrates spatial contexture
(unsupervised segmentation) with textural features (supervised pixel-level labeling). First,
the full-scene image is oversegmented, and the segments are merged into homogeneous
regions across the entire scene. Second, pixel-based classifiers (support vector machine,
random forest) are compared for their ability to label the generated homogeneous regions.
Finally, the segmentation and labeling are combined using a proposed energy function. The
proposed method was tested on 18 dual-polarization RADARSAT-2 scenes acquired over
the Beaufort Sea. This dataset contains water, young ice, first-year ice, and multi-year ice
covering melt, summer, and freeze-up seasons. The proposed method obtains an average
classification accuracy of 86.33% based on the leave-one-out validation. The experimental
results show that the proposed method achieves promising classification results in both
quantity and quality measurements compared to benchmark methods. The robustness
against incidence angle variance indicates that the proposed method is well-qualified for
operational sea ice mapping.
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2.1 Introduction

The interpretation of ice types and analysis of their properties in polar ocean regions have
several crucial applications, including ship navigation, global climate monitoring, and an-
imal migration forecasting [7, 8]. For consideration of expense, efficiency, accuracy, and
timing requirements, remote sensing has been chosen as an appropriate method for sea ice
monitoring. Satellite-based synthetic aperture radar (SAR) is the imaging system of choice
for this application since it is not affected by cloud cover and, since it is self-illuminated,
can be used equivalently under daytime or nighttime conditions. The Canadian Ice Ser-
vice (CIS) actively performs ice mapping generation and interpretation daily. Skilled ice
analysts process SAR images to generate ice charts that have defined geographical regions,
known as ”polygons”, with an assigned ”egg code” to each polygon defined by the World
Meteorological Organisation (WMO) [1]. The egg code contains numerical codes that
define ice concentration by stage of development and floe size [9].

These ice charts have been used for decades but have limitations. First, egg codes are
defined for large regions, so ice types are not identified at pixel resolution [3]. Second, poly-
gons are generated subjectively. The results are affected by human bias, and there would
be some variation between analysts. Third, the number of SAR scenes to be processed
is expected to increase with time. CIS analysts used to process around ten scenes daily
back to 2002 [4]. Nowadays, with the data provided by RADARSAT Constellation Mission
(RCM) [5] and Sentinel-1, CIS interprets 110 (mid-March ) to 290 (early September ) SAR
images every day. Manual interpretation of SAR imagery becomes very challenging due to
the higher throughput required. Hence, manual procedures are potentially insufficient for
future needs.

Therefore, an automated computer-based sea ice mapping method is desirable. A suit-
able operational automated method should have the following characteristics.

• The ability to generate ice maps that are consistent with expert interpretation.

• The ability to classify different ice types as required for operational use on full-scene
SAR imagery.

• The ability to segment boundaries that match the natural ice and water boundaries.

• The ability to be invariant to SAR sensor artifacts such as banding noise and incidence
angle variation.
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However, mapping sea ice in SAR imagery is very challenging. First, different types of
ice show very similar appearances in SAR imagery, especially when they are in contiguous
development stages, such as young ice and first-year ice. Second, the ground truth is mini-
mal. Supervised machine learning models rely on accurate pixel-level labels to achieve fair
classification accuracy. However, ice charts released by primary national ice services only
provide coarse labels for regions rather than pixels. Therefore, some studies prefer using
samples selected from high-confidence regions for training and testing. Moreover, speckle
noise and incidence angle variation can generate poor classification results. Boundaries
between water and different types of ice, which are essential in sea ice maps, can be de-
graded. Although many studies [10, 11] report high numerical classification accuracy, The
classification maps lack natural boundary information and suffer from speckle noise and
inter-scan banding effect [12].

To address these challenges, we have developed and tested an automatic sea ice mapping
method. The following summarizes the main contributions of this research.

1) We propose a novel sea ice classification method by integrating segmentation with
pixel-based labeling. The method not only adopts texture features for classification
but also preserves critical boundaries between water and different ice types. Unlike
most existing methods that only focus on improving numerical classification accuracy,
the proposed methods also aim to enhance the quality of classification maps.

2) To determine which classifier is more suitable for ice mapping, the performance of
using support vector machine (SVM) and random forest (RF) in sea ice classification
is compared. The results demonstrate that RF achieves better overall accuracy com-
pared to SVM. Since previous research has not sufficiently compared the performance
of the popular RF and SVM classifiers for sea ice classification, this benchmark would
benefit other researchers in choosing the suitable classifier for their sea ice monitoring
tasks.

3) To evaluate the robustness of the proposed method, we compared its performances
using SAR images with and without applying incidence angle correction. The exper-
iment results indicate that the proposed IRGS-RF is more robust to incidence angle
variance than pixel-wise RF.

4) The methods are validated on a full-scene dataset covering the whole year, including
melting, summer, and freezing seasons. The samples for validation are randomly
selected across the full scene without any preferred regions. The experimental results
demonstrate that the proposed method achieves accurate classification with well-
preserved boundaries.
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To the best of our knowledge, this is the first work that combines unsupervised segmen-
tation with supervised labeling for open water as well as multiple ice types and validates
it on a dataset that covers a whole year period. The rest of the paper is structured as
follows. Section 2.2 provides a review of studies being done in sea ice classification. The
dataset used in this paper is introduced in Section 2.3. Section 2.4 illuminates the steps of
the proposed method. Section 2.5 presents the experimental results and analysis. Section
2.6 is the conclusion and future work.

2.2 Background

Significant research has been published in the last decades to explore automated sea-ice
mapping systems based on SAR data. Early studies focused on modeling statistical distri-
bution for ice types and water using backscattering intensity. Scheuchl et al. [13] explored
the potential of using cross-polarization SAR imagery to monitor sea ice. The higher infor-
mation content from dual-polarization data showed the capability to develop an automated
sea ice classification system. Ward et al. [14] modeled the characteristics of ice and water
using a mixture distribution. However, several studies concluded that only using backscat-
ter intensity is insufficient in distinguishing different ice types [15, 16]. Therefore, many
researchers turned to polarimetric SAR data since it holds more information separating
different ice categories. Gill and Yackel [17] exploited the polarimetric parameters derived
by decomposition algorithms with the maximum likelihood classifier to categorize different
types of first-year ice. By extracting matrix invariant-based features from fully polarimet-
ric ALOS-2 (L-band), Radarsat-2 (C-band), and TerraSAR-X (X-band) data, Singha et al.
[18] separated water from sea ice with 100% accuracy.

Research has shown the potential of using quad-polarization SAR data for success-
ful scene classification [17, 19, 18]. Nevertheless, the quad-polarization scene is not used
operationally because of its narrow swaths. In contrast, dual-polarization data has been
demonstrated to be a reliable source for sea ice-water classification when combined with
textural features and machine learning methods. Many features have been explored for sea
ice classification, e.g., Shannon entropy [20], local binary patterns [21], and cross-correlation
between different polarizations [22]. A popular method for texture feature extraction from
SAR sea ice images is the gray-level co-occurrence matrix (GLCM) [23]. Clausi [24] an-
alyzed the relation between grey-level quantization and classification accuracy using the
GLCM features. The study suggested that using contrast, entropy, and correlation with a
quantization level of 64 is sufficient for classifying sea ice. Liu et al. [25] extracted GLCM
features for segmentation and implemented an SVM to discriminate ice from water. Su et
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al. [26] combined surface temperature and GLCM features from the Moderate Resolution
Imaging Spectroradiometer (MODIS) images to train an SVM model for ice-water classi-
fication. Tan [27] proposed a semi-automated ice mapping method and obtained a good
identification for water.

Besides investigating different features, several studies have explored sea-ice classifica-
tion using SAR imagery obtained at different working frequencies. Mahmud et al. [28]
collected SAR data acquired from ALOS PALSAR (L-band ), RADARSAT-2 (C-band),
and QuikSCAT (Ku-band) to classify landfast first-year and multi-year ice in the Arc-
tic. The results indicated that the L-band performed better for first-year ice, whereas the
C-band is robust enough to distinguish multi-year ice. Given the longer wavelength, the
L-band can detect the ice underneath melting ponds and wet snow in the melting season
because of the enhanced penetration capability [29]. C-band is a better choice to monitor
ice in the cold and dry winter since it provides details of surface roughness with higher
resolution [30, 31].

To distinguish ice types, many classification models have been used, including the
Bayesian classifier [32, 33], SVM [34], decision trees [35], and random forest [36, 37]. With
the rapid development of graphics processing units (GPU) in the past decade, deep learning
has been applied to remote sensing [38]. Ressel et al. [39] extracted GLCM-based textural
features from TerraSAR-X imagery and fed them to a neural network, and classified three
different ice types. Song et al. [40] combined a residual convolutional neural network
(CNN) with long short-term memory (LSTM) units to learn spatial and temporal features
of sea ice. Khaleghian et al. [10] compared the performance of several popular deep learning
architectures for sea ice classification using Sentinel-1 data.

The studies mentioned above did achieve reasonable results. However, none of them has
been deployed for operational sea ice classification for the following reasons. First, deep
learning models usually perform inference on image patches rather than whole images. The
patch size constrains the receptive field. A small patch size might provide insufficient char-
acteristics for classification, while a large window size might contain different ice types and
contaminate the information extracted. Thus, classification maps produced by pixel-wise
deep learning models are usually contaminated by noise [41, 42]. Moreover, boundaries
between ice and water can be smudged because of the inhomogeneity of the patch [43].
Similarly, GLCM features, since they depend on fixed-sized windows, also generate seg-
mentation errors at class boundaries [44]. The defective classification result caused by
this drawback is demonstrated and discussed in Section 2.5. Second, supervised machine
learning methods require many reliable pixel-level labeled samples for training and test-
ing. Since leading national agencies, such as CIS, the Norwegian Ice Service (NIS), and
the Russian Arctic and Antarctic Research Institute (AARI), do not provide pixel-level
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ice charts, applying deep learning methods for operational use is not feasible at this time.
When applying traditional machine learning methods with limited labeled samples has
led to only training and validating on particular regions or sample points rather than full
scenes [45, 46, 47].

As only using textural features with pixel-wise classifiers usually leads to poor-labeled
sea ice classification maps [48], some researchers tried to refine the pixel-wise results to
more visually appealing ice maps. Ochilov et al. [49] built a Markov random field (MRF)
with maximum a priori (MAP) estimation for ice-water classification. Zhu et al. [45]
first classified sea ice into five categories based on SVM. Then, a conditional random field
(CRF) was applied to the original result as post-processing. Leigh et al. [50] combined
textural and contextual features by modeling a CRF using a pixel-based classifier for ice-
water classification. Collectively, these studies affirm that the integration of contextual
information substantively improves the performance of sea ice classification.

Inspired by the research outlined above and the process employed by CIS to produce
ice charts, this study seeks to establish a methodology that melds textural with contextual
information for the discrimination of various sea ice types. Specifically, we will investigate
which textural and contextual features should be learned and how these can be effectively
integrated.

One of the challenges in sea ice mapping is addressing the effects of the SAR incidence
angle [51]. Several studies [52, 53] have explored the potential of utilizing the SAR incidence
angle as a feature to enhance classification accuracy. In this work, our primary goal is not to
tackle the incidence angle effect directly through normalization or correction techniques.
Nonetheless, it is worth noting that the region-based segmentation approach employed
here proves effective in alleviating its adverse impacts [50]. Additionally, the texture-based
features utilized in our study demonstrate resilience against variations in the incidence
angle [54]. A more comprehensive discussion is provided in Section 2.4.

2.3 Dataset Used in the Study

2.3.1 Overview

This study is dedicated to developing sea-ice classification methods for mapping sea ice
on pixel level in the Arctic region, currently under the purview of CIS’s daily monitoring
activities. Consequently, the selection of the dataset becomes a critical aspect in evaluating
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the performance of the proposed method and its comparison to other methods published
in the literature.

With the burgeoning interest in sea ice monitoring, numerous research groups have
taken the initiative to construct labeled sea ice datasets, subsequently making them pub-
licly accessible to foster community-driven progress. Song et al. [55] constructed SI-
STSAR-7, a labeled sea ice dataset encompassing 80 dual-polarization scenes captured
by Sentinel-1. The authors proceeded to validate the reliability and effectiveness of this
dataset by employing various models such as ConvLSTM [56], CNN [57], and SVM [58].
Wang and Li [59] introduced a U-Net based methodology to distinguish sea ice from open
water, training and evaluating their model on a dataset comprising over 8,000 patches
extracted from 251 Sentinel-1 dual-polarization scenes. In 2020, a collaborative endeavor
between the Technical University of Denmark (DTU), the Danish Meteorological Institute
(DMI), and the Nansen Environmental and Remote Sensing Center (NERSC) resulted in
the release of the AI4Arctic/ASIP (ASID) sea ice dataset [60]. This dataset incorporates
461 Sentinel-1 HH and HV scenes spanning across the Greenland coast, accompanied by
the respective ice charts. In late 2022, The Norwegian Computing Center, DMI, DTU,
Polar View, NERSC, and the European Space Agency (ESA) jointly hosted a competition
for sea ice mapping using a variant of the AI4Arctic dataset, called AI4Arctic sea ice chal-
lenge dataset [61]. The competition witnessed participation from over 100 teams, and the
team from the University of Waterloo won the first prize.

Despite the datasets mentioned above being utilized in different research groups, they
present certain limitations that pose challenges to their applicability in this study. First,
this study aims to discriminate different sea ice types, not just distinguish open water
from sea ice. Nevertheless, certain datasets [59] were specifically crafted for sea ice extent
analysis, providing binary labels that offer only ice-water level information, thus proving
inadequate for classifying different sea ice types. Second, the majority of the available
datasets hinge on sea ice charts to generate labeled data for both training and testing pur-
poses. However, ice charts typically only provide sea ice information at the polygon level,
not at the pixel level. Consequently, these datasets employ varying sampling strategies
to generate pixel-level labels from ice charts. For instance, SI-STSAR-7 solely considers
polygons with a total ice concentration of 90% or more, where the dominant ice type also
constitutes 90% or more. All pixels within a qualified polygon are assigned the same class.
Given the dataset’s predilection for samples from polygons with high confidence–an ice
concentration exceeding 90%, it is unsuitable for evaluating the reliability and robustness
of sea ice classification methods. Moreover, SI-STSAR-7 lacks scenes from melting sea-
sons, which present a stark contrast to freeze-up seasons and pose additional challenges for
operational tasks.
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Figure 2.1: Location of the 18 SAR scenes used for evaluation in the Beaufort Sea.

Conversely, the AI4Arctic/ASIP scenes are distributed across a period spanning from
March 14, 2018, to May 25, 2019, encompassing both freeze-up and melting seasons. How-
ever, ASID lacks explicit pixel-level labels. Relying on manually drawn ice charts, all pixels
within a single polygon are assigned the same label, indicative of the dominant sea ice type.
This absence of precise pixel-level labels hampers the generation of high-resolution sea ice
maps using ASID.

2.3.2 Study Area and Satellite Data

Reflecting upon the discussion above, this study opts not to utilize any of the open-access
datasets. Instead, we construct a new dataset, employing raw data previously utilized by
Leigh et al. [50] for sea ice-water discrimination. This dataset, acquired in 2010, cov-
ers overlapping regions over the Beaufort Sea, falling under the monitoring jurisdiction
of CIS. The geographical footprints of the dataset are depicted in Figure 2.1. The ini-
tial dataset comprises 20 scenes captured by the C-band RADARSAT-2 SAR satellite in
a dual-polarized (HH and HV) ScanSAR wide beam mode. Due to the absence of de-
tailed ice charts, a subset of 18 scenes is selected for the purpose of discriminating between
sea ice types in this study. Table 2.1 enumerates the capture dates for each scene. The
dataset boasts a nominal pixel spacing of 50 by 50 m, with image dimensions approxi-
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mately measuring 11,000 by 10,000 pixels, representing the largest range size attainable by
RADARSAT-2. Each scene covers 500 km in both the azimuth and range dimensions. The
incidence angle spans from 20°to 50°, encompassing both ascending and descending orbits.
The data acquisition period includes both melting and freeze-up seasons, identified as the
most challenging periods of the year. It is important to note that sea ice conditions from
January through March tend to be more stable and are of lesser importance for operational
purposes, in addition to posing fewer challenges for scene classification. Hence, the dataset
deliberately excludes this period.

Table 2.1: Dataset used in this study. The date of capture, satellite orbit: descending
(D)/ascending (A), and incidence angle (IA) range are included .

Scene ID Date of capture Orbit IA (°)
20100418 20100418 16:33:15 D 19.72 to 49.46
20100426 20100426 04:04:39 A 19.55 to 49.44
20100510 20100510 03:56:20 A 19.58 to 49.44
20100524 20100524 03:47:56 A 19.61 to 49.46
20100623 20100623 04:12:55 A 19.63 to 49.45
20100629 20100629 16:33:26 D 19.71 to 49.43
20100721 20100721 17:32:08 D 19.64 to 49.47
20100730 20100730 16:29:08 D 19.61 to 49.46
20100807 20100807 17:36:10 D 19.77 to 49.47
20100816 20100816 16:33:29 D 19.74 to 49.45
20100907 20100907 03:56:14 A 19.59 to 49.44
20100909 20100909 16:33:21 D 19.63 to 49.48
20101003 20101003 16:33:24 D 19.59 to 49.46
20101021 20101021 04:13:25 A 19.50 to 49.43
20101027 20101027 02:57:26 A 19.58 to 49.43
20101114 20101114 04:13:04 A 19.57 to 49.43
20101206 20101206 01:51:39 A 19.59 to 49.39
20101214 20101214 02:57:25 A 19.58 to 49.45

Figure 2.2 shows an example scene from the dataset, captured on April 26, 2010. Figures
2.2(a) and 2.2(b) display the HH and HV scenes, respectively, with histogram stretching
applied for visual enhancement. This particular scene is characterized by its complexity,
showcasing different types of ice, including both first-year and multi-year ice.
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(a) (b)

(c) (d)

Figure 2.2: Example scene captured on April 26, 2010 (Scene ID: 20100426 040439). (a)
HH polarization. (b) HV polarization. (c) Reference ice chart. (d) 500 sample points
selected for training and testing (Yellow: first-year ice. Red: multi-year ice).
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2.3.3 Sea Ice Charts

The ice chart, released by CIS in Canada, stands as the most authoritative data source for
sea ice information. This chart is crafted by analysts through a two-step process. Initially,
regions characterized by a similar concentration and a predominant ice type are grouped
together to form a polygon. Following this, the polygon is annotated with a metric that
encapsulates both the overall ice concentration and the specific sea ice conditions.

CIS releases sea ice charts on a daily or weekly basis. Therefore, temporal discrepancies
may arise between the sea-ice conditions depicted in the scene and the corresponding ice
charts. Furthermore, the ice charts themselves are of coarse resolution. To acquire more
accurate and detailed ice charts that align with the SAR scenes in our dataset, a former
sea ice analyst from CIS volunteered his expertise, contributing to the production of the
sea ice charts utilized in this study.

In this study, we focus on classifying four distinct sea ice types (stage of development),
as defined by WMO [62], open water (OW), young ice (YI), first-year ice (FYI), and multi-
year ice (MYI). Figure 2.2(c) illustrates the sea ice chart corresponding to the SAR scenes
depicted in Figures 2.2(a) and 2.2(b). The annotations on each polygon provide details
on the total ice concentration, the various types of sea ice present, and their respective
proportions of the total concentration. Depending on the diversity of sea ice types within
a polygon, the annotation could comprise two or three components, separated by commas.
The first component is a digit ranging from 0 to 9, increasing in increments of 1, repre-
senting the total ice concentration. Here, ’0’ symbolizes 0% concentration (open water),
and ’9’ stands for 90% concentration, while ’9+’ denotes concentrations exceeding 90%
(virtually no open water). The subsequent components, where the third one is optional,
specify the types of sea ice and their proportions in the total concentration. The

For instance, an annotation such as ’9+, 1my 9fy’ on a central polygon indicates a
sea ice concentration surpassing 90%, with a composition of 10% multi-year ice and 90%
first-year ice. Another example, ’9+, fy’, conveys a concentration above 90%, exclusively
comprising first-year ice.

2.3.4 Pre-processing

Upon acquisition from MDA Ltd, the original SAR data is georeferenced and stored in
GeoTIFF format, encapsulating the digital numbers represented in intensity for image
pixels. The dataset also includes output scaling lookup tables (LUTs) for sigma-nought,
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beta-nought, and gamma. The digital numbers in SAR images are calibrated to sigma-
nought using the LUT in this study.

The original SAR image sizes in the dataset are originally of a substantial size, approx-
imately 10,000 × 10,000 pixels. Previous studies have demonstrated that classification
results derived from downsized images still meet the requirements for the operational sea
ice maps, as long as the downsampling window size remains relatively small, specifically
less than 10 × 10 [59, 63, 64]. In light of this, we chose to downsample our SAR images
using a 4 × 4 averaging window. While we have not applied any filters specifically to
address speckle noise, this downsampling process inherently aids in mitigating its impact
on the SAR images.

2.3.5 Training and Testing Samples

The development of machine-learning-based classification methods for SAR images cru-
cially depends on the availability of ample training data, accurately labeled down to the
pixel level. In this study, where the goal is to create pixel-level sea ice maps, it becomes
crucial that both the training and testing samples possess precise labels. To generate a
dataset that meets these criteria, we randomly selected 500 sample pixels across the en-
tirety of each scene, deliberately avoiding land areas and ensuring no bias towards any
particular region. We maintained the assumption that each pixel in our dataset represents
a single type of sea ice, leading us to exclude pixels located on the boundaries between
different sea ice types from our selection process. The corresponding ice chart served as the
reference for labeling these sample pixels. Figure 2.2(d) provides a visual representation
of a scene annotated with labeled sample points. Based on the ice chart, this particular
scene contains both first-year and multi-year ice, with the 500 labeled samples highlighted
in yellow (FYI) and red (MYI).

To conduct an exhaustive assessment of both the performance and the robustness of
the proposed method, we employ the leave-one-out (LOO) cross-validation strategy for the
training and testing phases. In this approach, each test scene is evaluated separately, with
the training dataset comprising all 8,500 labeled samples drawn from the other 17 scenes
in the collection. Subsequently, the method is tested on a set of 500 samples originating
from the test scene itself. This evaluation strategy ensures a comprehensive understanding
of the method’s capabilities and its consistency across different scenes.
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2.4 Methodology

Based on the extensive literature review presented in Section 2.2, it is evident that super-
vised classification methods predominantly focus on learning textural features, resulting in
reasonably accurate pixel-level results. Nonetheless, these methods exhibit susceptibility
to noise and variations in incidence angle. On the other hand, segmentation algorithms
excel at extracting contextual information and efficiently dividing SAR images into ho-
mogeneous regions that align closely with natural boundaries. Despite their strengths,
these segmentation algorithms fall short when it comes to accurately assigning labels to
homogeneous regions.

Several studies have delved into the integration of textural and contextual features to
enhance sea ice classification. However, there remains a substantial gap in understanding
how to effectively extract these two types of information and, more crucially, the method-
ologies for their successful integration during the classification process. Addressing this
gap, this study endeavors to establish a comprehensive infrastructure designed to synergis-
tically combine both textural and contextual information, aiming to significantly improve
the accuracy and reliability of sea ice classification in SAR images.

2.4.1 Problem Formulation

Let Y denote the SAR image that consists of N pixels, i.e., Y = {yi|i = 1, 2, ..., N} and
L is the associated label map L = {li|i = 1, 2, ..., N} that consists of a total of K classes
of different ice types, where l = {1, 2, ..., K}. Sea ice mapping from SAR image aims to
estimate L given Y .

Algorithmically, first, Y is segmented into a total of T homogeneous regions Y =
{R1, R2, ..., RT}, where Rr consists of nr pixels:

Rr = {yri |i = 1, 2, ..., nr} (2.1)

To estimate the label of Rr, denoted by lRr , the label of each pixel, i.e., {lyi|i =
1, 2, ..., nr}, in Rr is estimated. Then, {lyi} is used to derive the label of the region lRr via
the proposed energy function.

The proposed classification system consists of two main components shown in Figure
2.3. The system uses HH and HV polarized images of the scene, a pre-trained pixel-
wise classifier, and an optional landmask file as inputs. The left block in the flowchart
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Figure 2.3: Flowchart of the proposed ice mapping system. Inputs are HH/HV images,
landmask (optional), and a trained classifier (SVM or RF). The left block calculates con-
textual information by unsupervised segmentation, while the textural feature is extracted
in the right block. Then, these features are combined using the proposed energy function
to generate the final classification map.
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is the Iterative Region Growing with Semantics (IRGS) segmentation [65] to generate
Y = {R1, R2, ..., RT}, and the right block is the pixel-wise labeling to determine lyi . Details
are described in the following subsections.

2.4.2 Unsupervised Segmentation

Numerous methodologies have been developed for image segmentation. Compared with
alternative segmentation algorithms, such as SLIC [66], watershed [67], GraphCut [68],
MRF [69], the IRGS algorithm is specifically tailored for SAR images. It incorporates
edge strength with a spatial context model to segment images using an iterative region-
growing strategy. Previous studies have affirmed that the segmentation results carried out
by IRGS are robust to speckle noise and variations in incidence angle [65, 70, 71, 72, 73].
Consequently, IRGS has been selected to extract contextual information for sea ice analysis
in this study.

Operational SAR imagery used for sea ice mapping at CIS has large extents. The
gradual change of incidence angle from near range to far range leads to a corresponding
change in within-class backscatter. Therefore, a two-step segmentation strategy called
’glocal’, shown in Figure 2.3, was introduced to suppress the incidence angle effect [50].
First, the whole scene is segmented into sub-regions called ’autopolygons’ [74] using a
modified watershed algorithm [75]. Only the HV scene is used in this step, which is shown
in Figure 2.4(a), because it is less sensitive to both incidence angle variation and surface
roughness caused by winds [76].

Within each autopolygon, an IRGS segmentation is performed using the HH and HV
polarized images. This step is presented in 2.4(b). Each region in an autopolygon results
from oversegmention and is regarded as a node in a region adjacency graph (RAG). Since
each node is homogeneous and only contains water or one ice type, an arbitrary label is
assigned to each region for further processing. This is the local step of the unsupervised
segmentation. The effects of speckle noise and incidence angle are restrained by processing
each autopolygon individually.

The second step is called ’global’. Once the oversegmented result is available, a gluing
step is operated across the whole image. The edge strength and statistical information from
HH and HV polarization are considered during this merging step. The final segmentation
result contains six classes with arbitrary labels. This method is called ’glocal’ as it combines
local oversegmention and global merging.

The structure of IRGS segmentation is elucidated in [70]. Each autopolygon is seg-
mented into four clusters, and the clusters are merged into six classes in the global step.
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(a) (b) (c)

Figure 2.4: IRGS segmentation results for April 26, 2010 (scene ID 20100426). (a) Au-
topolygons generated by the modified watershed algorithm. (b) Local oversegmentation
result. (c) Glocal results.

The following parameters are applied to the segmentation for all the scenes in the dataset.
β1 and β2 used for estimating multilevel logistic model (MLL) are 3 and 0.4, respectively.
The number of iterations is set to 100 to achieve an over-segmented result. According
to previous experiment results, the values of β1 and β2 have little impact on the final
over-segmentation results when the iteration reaches 100.

2.4.3 Supervised labeling

Features

The GLCM features serve as statistical tools for analyzing an image’s texture, proving to
be highly effective in various applications, including SAR image classification and, more
specifically, sea ice classification. Sea ice, with its rich texture information, makes GLCM
features particularly relevant for these applications. In this study, we harness the potential
of GLCM features to construct an automated sea ice classification system. The specific
GLCM features [77] used are defined as follows:

• ASM: Angular second moment
N−1∑
i=0

N−1∑
j=0

P 2
ij (2.2)
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• CON: contrast
N−1∑
i=0

N−1∑
j=0

Pij (i− j)2 (2.3)

• DIS: dissimilarity
N−1∑
i=0

N−1∑
j=0

Pij |i− j| (2.4)

• ENT: entropy

−
N−1∑
i=0

N−1∑
j=0

Pij logPij (2.5)

• HOM: homogeneity
N−1∑
i=0

N−1∑
j=0

Pij

1 + (i− j)2
(2.6)

• INV: inverse moment
N−1∑
i=0

N−1∑
j=0

Pij

1 + (i− j)
(2.7)

• MU: mean

µ =
N−1∑
i=0

i
N−1∑
j=0

Pij (2.8)

• STD: standard deviation

σ =

√√√√N−1∑
i=0

(i− µ)2
N−1∑
j=0

Pij (2.9)

• COR: correlation
N−1∑
i=0

N−1∑
j=0

(i− µ) (j − µ)Pij

σ2
(2.10)

where Pij represents the probability of co-occurrence of the gray levels i and j in a N
by N GLCM. N denotes the number of distinct gray levels in the image, while µ and σ2

represent the mean and the variance of the GLCM, respectively. The angle is fixed at 0°
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The choice of window and step size of GLCM features can impact the performance of
sea ice classification. The window size determines the perceptive area for textural feature
extraction. For instance, a small window usually works for distinguishing open water since
the calm water surface has less texture in contrast to different types of sea ice. Small
window sizes also work better to detect textural features from within leads and floes, while
the complex repeating patents caused by fissures and cracks in different ice types require
larger window sizes to capture. The spatial distance of GLCM features determines the
scale of repeating patterns. For example, first-year ice has more dense repeating patterns
compared with multi-year ice. The chosen window and step sizes of GLCM features are
listed in Table 2.2. In addition to the 162 GLCM features, we add individual pixel intensity,
local average, and maximum pixel intensities in 5 X 5 and 25 X 25 windows. All the features
are extracted from HH and HV polarized scenes, resulting in a set of 172 features [50].

Table 2.2: GLCM parameters used in the study.

Window size (pixels) Spatial distance (pixels)
5 by 5 1
11 by 11 1
25 by 25 1
25 by 25 5
51 by 51 5
51 by 51 10
51 by 51 20
101 by 101 10
101 by 101 20

In order to minimize computation time and to minimize the ’curse of dimensionality’
[78, 79], a feature search was performed to reduce the number of features. Recursive feature
elimination with cross validation [80] is applied to select the best feature combination in this
study. The feature with the least importance is discarded in each iteration. The process
is repeated until the best feature combination is found. Since the dataset used in this
work consists of 18 scenes, the feature search is deployed with a cross-validation strategy.
The feature search executes 18 times. In each loop, a feature importance estimator is
trained on the 17 scenes and tested on the remaining scenes to determine the importance
of each feature. This procedure was carried out 18 times, and each scene was enrolled in
both training and test sets. This cross-validation strategy is called leave-one-out (LOO).
After the LOO is performed, the feature importances from each iteration are summed up to
calculate the final feature ranking. After running the feature search, the 30 most important
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Table 2.3: List of selected 30 features using RFE and cross-validated scheme.

# Polarization Feature Type Window size Step size

1 HH Pixel Intensity N/A N/A
2 HV Pixel Intensity N/A N/A
3 HV GLCM MU 11 by 11 1
4 HH GLCM COR 25 by 25 1
5 HH GLCM MU 25 by 25 1
6 HV GLCM MU 25 by 25 1
7 HH GLCM MU 25 by 25 5
8 HV GLCM MU 25 by 25 5
9 HH GLCM MU 51 by 51 5
10 HV GLCM ASM 51 by 51 5
11 HV GLCM HOM 51 by 51 5
12 HV GLCM MU 51 by 51 5
13 HH GLCM MU 51 by 51 10
14 HV GLCM ASM 51 by 51 10
15 HV GLCM MU 51 by 51 10
16 HH GLCM MU 51 by 51 20
17 HV GLCM ASM 51 by 51 20
18 HH GLCM DIS 101 by 101 10
19 HH GLCM INV 101 by 101 10
20 HH GLCM MU 101 by 101 10
21 HV GLCM ASM 101 by 101 10
22 HV GLCM HOM 101 by 101 10
23 HV GLCM INV 101 by 101 10
24 HV GLCM MU 101 by 101 10
25 HH GLCM CON 101 by 101 20
26 HH GLCM MU 101 by 101 20
27 HV GLCM ASM 101 by 101 20
28 HV GLCM HOM 101 by 101 20
29 HV GLCM INV 101 by 101 20
30 HV Pixel Average 25 by 25 N/A

features are selected. The result is listed in Table 2.3.

Selecting an appropriate classifier is paramount for the success of a classification task.
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In their comprehensive comparison of various classification techniques using RADARSAT-
1 imagery, Xu et al. [81] demonstrated that tree-based classifiers and SVM outperformed
others, such as artificial neural networks, generalized additive models, and penalized linear
discriminant analysis. SVM, in particular, is renowned for its proficiency in managing high-
dimensional data, which is a common characteristic of SAR images. This trait becomes
even more pertinent when incorporating GLCM features, as is the case in this study.

Simultaneously, RF emerges as another compelling choice due to its versatility in han-
dling high-dimensional spaces and its robustness against overfitting. This robustness is
particularly beneficial given the LOO cross-validation strategy employed in our evalua-
tion process. Consequently, both RF and SVM have been selected as the classification
methods for this study, with the anticipation that they will contribute significantly to the
effectiveness and accuracy of the sea ice classification task.

Support vector machine (SVM)

A support vector machine is a supervised learning model employed for classification and
regression. In SVM, the objective is to find a hyperplane in a high-dimensional space that
distinctly separates different classes. However, the decision boundary is determined by
only a subset of the training samples, known as support vectors, which are the data points
closest to the hyperplane and crucial for defining the margin. These support vectors are
essential as they are the most challenging to classify, providing a robust and generalized
decision boundary. The training process of SVM is to minimize the following loss function.[

1

n

n∑
i=1

max
(
0, 1− yi

(
wTxi − b

))]
+ λ ∥w∥2 (2.11)

where w is the weight vector, b is the bias, yi ∈ −1, 1 are the class labels, and λ is a
regularization parameter. Note that SVM is inherently a binary classifier. Therefore, for
multi-class problems like distinguishing different sea ice types, a one-vs-rest or one-vs-
one strategy would be necessary. This study applied the one-vs-rest strategy with label
yi ∈ {1, 2, 3, 4} assigned to YI, FYI, MYI, and OW, respectively.

The standard SVM assumes linear separability in the data. However, many real-world
problems present non-linear patterns. To tackle this, kernel SVMs use kernel functions,
such as polynomial, radial basis function (RBF), and sigmoid, to implicitly map the input
data to a higher-dimensional space where a linear separator might exist. In this work, we
utilized RBF kernel defined as:

27



K
(
ti, t

)
= exp

(
−γ

∣∣ti − t
∣∣2) (2.12)

where γ is a parameter that determines the scale of the Gaussian function, and ti and t are
input samples. The RBF kernel effectively transforms the data into a higher-dimensional
space, making it possible to find a linear separator. Due to the sparse nature of SVMs,
where the decision boundary is defined by a subset of the training samples (support vec-
tors), they require less memory and computational power, mitigating the risk of overfitting.
Furthermore, SVMs are versatile and adaptable to various classification tasks with different
kernel functions [82].

Random Forest

RF [83] is an ensemble learning model for classification and regression. It is an aggregation
of diversified decision trees bound by a bootstrap aggregating (bagging) strategy. The
key idea of RF is random–both samples and features are selected to train the decision
trees and their nodes. Each decision tree is trained by a subset of the whole dataset
using bootstrap sampling, and the node of the tree is grown from a random feature of the
input data. This learning method averages the learned weights for all the features and
helps to prevent overfitting problems. The bagging method makes the classifier tolerate
the noise appearing in the dataset, which is crucial for our research since SAR images are
contaminated by speckle noise. The aggregation of decision trees can be trained by parallel
computing and reduce the training and testing time [84]. In contrast to SVM, RF does
not require feature searching since features are randomly selected, and the importance is
assigned to each feature using GINI index [85]. The hyper-parameters of RF are determined
by utilizing cross-validation-based grid searching. The search range for the number of trees
is ∈ {25 → 500 | step = 10}, max depth is ∈ {2 → 20 | step = 2}, and minimum samples
per leaf is ∈ {1 → 10 | step = 1}. The best combination of hyper-parameters determined
by grid search is: the number of trees=200, max depth=12, and minimum samples per
leaf=2. In order to evaluate the performance of SVM and RF using the same feature set,
RF is trained on the selected features in this paper.

In this study, SVM and RF are deployed as pixel-wise classifiers for the following
reasons. First, both models have been applied for remote sensing tasks, and the results are
promising, according to previous studies. Second, SVM and RF have their own techniques
to suppress overfitting and increase robustness. Finally, the runtime for predicting each
scene is less than 30 minutes, which is acceptable for operational use.
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2.4.4 Combination of segmentation and labeling

By performing the unsupervised segmentation algorithm, Y = {R1, R2, ..., RT} is deter-
mined. Each Rr in Y is homogeneous and is assigned an arbitrary label. For the results
carried out by pixel-wise classifiers, SVM and RF, each pixel is labeled as an ice type or
water. The flow chart of the proposed automatic sea ice mapping system is illustrated in
Figure 2.3. The system ingests the HH and HV polarized images of the scene, a pre-trained
pixel-wise classifier, and an optional landmask file to neglect the land and image boundary.
The pixel-wise classifier, which is SVM or RF in this paper, is trained using the selected 30
features. Inspired by the mechanism of RF, an energy function E(k) is proposed to obtain
lRr using {lyi |i = 1, 2, ..., nr}.

E(k) =
1

nr

nr∑
i=1

K∑
k=1

w(k, lyi) (2.13)

w(k, lyi) =

{
0 lyi = k
1 lyi ̸= k

(2.14)

lRr = arg min (E(k)) (2.15)

where nr is the number of pixels in the homogeneous region Rr. w is the weight function
and k ∈ {1, 2, ..., K} is the class label. When combining the unsupervised segmentation
with supervised labeling, all the pixels in the same region share the same label, which is
determined as the dominant class according to the pixel-wise classification result, with all
pixels within it.

2.5 Experiments and Analysis

As highlighted in Section 2.4, the proposed infrastructure is designed to be compatible with
any pixel-wise classifier, making both SVM and RF suitable for integration. Consequently,
two combined models–IRGS-SVM and IRGS-RF–have been implemented and tested to
assess the performance and reliability of our proposed framework. Additionally, SVM and
RF were selected as benchmark methods to provide a basis for comparison, helping to
elucidate the enhancements facilitated by our infrastructure. This section presents and
discusses both numerical and visual results obtained from these experiments.
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Previous literature [55, 86, 64] has established certain expectations regarding the per-
formance of pixel-wise classifiers like SVM and RF. Typically, these classifiers achieve
satisfactory numerical accuracy; however, the resulting sea ice maps are marred by noise-
like classification errors, primarily due to a lack of contextual information. In contrast,
while the numerical classification accuracies of IRGS-SVM and IRGS-RF are anticipated
to be slightly higher, substantial improvements are expected to manifest in the produced
sea ice maps. These enhancements include a dramatic reduction in classification errors and
preservation of natural boundaries between different sea ice types.

To evaluate the robustness and generalization capabilities of the proposed methods, a
Leave-One-Out (LOO) cross-validation strategy has been employed. Under this scheme,
each scene is classified using a model trained on the remaining 17 scenes in the dataset, with
this process iterated 17 times to ensure complete separation of training and test samples.
Based on a set of 500 reference pixels per scene, the overall accuracy results are tabulated
in Table 2.4. The pixel-based SVM and RF classifiers yielded average overall accuracies
of 81.13% and 83.84%, respectively. Both classifiers encountered difficulties when applied
to scenes from the freeze-up season, particularly evident in the results from November
14, 2010. In this challenging scene, SVM and RF achieved accuracies of just 60.50% and
65.40%, respectively. Conversely, the least challenging scene, recorded on September 7,
2010, featured exclusively open water, significantly simplifying the classification task.

After integrating with the segmentation results based on the proposed framework, the
IRGS-SVM and IRGS-RF achieved average overall accuracies of 84.07% and 86.33%, with
improvements of 2.94% and 2.49% compared with pixel-wise SVM and RF, respectively.
The confusion matrices of SVM, IRGS-SVM, RF, and IRGS-RF are shown in Table 2.5,
2.6, 2.7, and 2.8, respectively. All four classifiers distinguish water from ice with accuracies
over 94%. Even with the interference caused by wind and waves, the features are sufficient
to describe their characteristics. However, SVM and RF struggle to separate young ice
from other classes. A possible reason for the misclassified young ice may lie in a similar
backscattering to first-year ice. 34.45% of young ice is categorized as first-year ice by
RF. Young ice only appears in five scenes in the dataset, covering from late October
through December. The limited labeled samples may cause poor performance in classifying
young ice. Although pixel-based classifiers do not achieve satisfactory results, the proposed
IRGS-SVM and IRGS-RF are able to boost the classification accuracy and present visually
appealing sea ice maps.

Several studies have suggested that applying corrections for incidence angle variations
can lead to improvements in classification accuracy for synthetic aperture radar (SAR) im-
agery [29, 52]. This relationship is demonstrated by the previously established correlation
between backscatter coefficients and incidence angle [31, 34]. In our study, we leverage
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Table 2.4: Classification result for all 18 scenes.

Scene ID SVM RF IRGS-SVM IRGS-RF
20100418 80.30% 87.60% 83.20% 86.10%
20100426 83.40% 88.00% 86.40% 88.10%
20100510 85.40% 87.30% 85.90% 88.00%
20100524 75.60% 79.00% 85.10% 86.30%
20100623 88.10% 90.80% 90.20% 90.20%
20100629 70.20% 71.70% 82.40% 84.10%
20100721 87.40% 87.40% 85.60% 85.50%
20100730 78.70% 73.70% 75.20% 78.10%
20100807 91.90% 93.30% 94.70% 95.30%
20100816 86.20% 86.80% 85.00% 85.00%
20100907 98.50% 100.00% 100.00% 100.00%
20100909 98.20% 98.80% 98.00% 98.00%
20101003 77.70% 77.20% 77.80% 77.70%
20101021 89.40% 90.80% 92.60% 95.60%
20101027 65.10% 72.20% 73.00% 76.90%
20101114 60.50% 68.80% 65.40% 75.60%
20101206 74.90% 83.00% 81.40% 86.60%
20101214 69.80% 72.70% 71.80% 76.90%
Overall 81.13% 83.84% 84.07% 86.33%

these insights to estimate incidence angle dependencies for each sea ice type. Given that
the incidence angle in our dataset varies from 20°to 50°, we opted to normalize the sigma-
nought values using a reference incidence angle of 35°.

To assess the impact of incidence angle correction on classification accuracy, we con-
ducted experiments using RF and IRGS-RF, which demonstrated superior performance
compared to their counterparts. These experiments were performed on HH/HV scenes
to investigate whether the incidence angle correction contributes to better classification
results. The comparison of classification accuracies, both before and after the application
of incidence angle correction, is presented in Table 2.9.

The results indicate a 0.66% improvement in overall accuracy for the RF classifier on the
normalized dataset. However, it is crucial to note that a decline in accuracy was observed
in several scenes. This discrepancy could potentially be attributed to the weakening of
texture patterns for specific GLCM features in the near range, a phenomenon consistent
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Figure 2.5: The distribution of GLCM features for different sea ice types and open water
in box-and-whisker plots. (a) ASM. (b) CON. (c) COR. (d) HOM. (e) INV. (f) MU. All
the GLCM features are calculated using a size of 51 with a stride of 20.
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Table 2.5: Classification confusion matrix of SVM.

YI FYI MYI OW
YI 44.86% 40.50% 4.29% 10.35%
FYI 5.16% 85.27% 4.12% 5.46%
MYI 16.56% 5.46% 70.25% 7.73%
OW 0.50% 4.72% 0.02% 94.76%

Table 2.6: Classification confusion matrix of RF.

YI FYI MYI OW
YI 57.52% 34.45% 5.17% 2.86%
FYI 3.97% 87.68% 2.61% 5.74%
MYI 13.47% 13.28% 72.07% 1.18%
OW 1.18% 4.60% 0.06% 94.16%

Table 2.7: Classification confusion matrix of IRGS-SVM for all 18 scenes.

YI FYI MYI OW
YI 58.747% 29.17% 0.48% 11.62%
FYI 3.06% 91.16% 1.53% 4.25%
MYI 13.58% 2.46% 77.30% 6.65%
OW 0.49% 4.98% 0.00% 94.53%

Table 2.8: Classification confusion matrix of IRGS-RF for all 18 scenes.

YI FYI MYI OW
YI 70.77% 22.74% 3.21% 3.28%
FYI 2.56% 91.92% 1.79% 3.74%
MYI 8.20% 10.03% 78.85% 2.92%
OW 0.67% 4.84% 0.03% 94.46%

with findings reported in previous studies [54, 87, 88]. On the other hand, the IRGS-
RF classifier demonstrated robustness to variations in incidence angle, with negligible
improvements in classification accuracy across all scenes after introducing the incidence
angle correction. The global strategy employed by IRGS effectively mitigates the effects
of incidence angle variation, while the integration mechanism minimizes pixel-level errors
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Table 2.9: Classification results before and after incidence angle (IA) correction for RF
and IRGS-RF.

Scene ID
RF IRGS-RF

Before IA
correction

After IA
correction

Difference
Before IA
correction

After IA
correction

Difference

20100418 87.60% 86.20% -1.40% 86.10% 85.70% -0.40%
20100426 88.00% 86.40% -1.60% 88.10% 88.21% 0.00%
20100510 87.30% 88.30% 1.00% 88.00% 88.00% 0.60%
20100524 79.00% 77.40% -1.60% 86.30% 86.30% 0.00%
20100623 90.80% 91.30% 0.50% 90.20% 90.18% 0.20%
20100629 71.70% 74.10% 2.40% 84.10% 84.27% 0.60%
20100721 87.40% 88.40% 1.00% 85.50% 85.34% 0.40%
20100730 73.70% 75.70% 2.00% 78.10% 78.23% 0.20%
20100807 93.30% 95.50% 2.20% 95.30% 95.28% 0.00%
20100816 86.80% 88.60% 1.80% 85.00% 84.91% -0.60%
20100907 100.00% 99.80% -0.20% 100.00% 100.00% 0.00%
20100909 98.80% 99.40% 0.60% 98.00% 97.68% 0.00%
20101003 77.20% 80.00% 2.80% 77.70% 77.70% 0.00%
20101021 90.80% 91.80% 1.00% 95.60% 95.72% 0.20%
20101027 72.20% 72.60% 0.40% 76.90% 76.90% 0.00%
20101114 68.80% 67.60% -1.20% 75.60% 75.95% -1.00%
20101206 83.00% 82.20% -0.80% 86.60% 87.24% -0.60%
20101214 72.70% 75.70% 3.00% 76.90% 76.90% 2.00%
Total 83.84% 84.50% 0.66% 86.33% 86.36% 0.09%

that might arise from outliers in the RF results. The classification results underscore the
effectiveness of the proposed infrastructure in handling the complexities associated with
the SAR image classification of sea ice.

The classification results indicate that GLCM features are qualified to distinguish dif-
ferent sea ice types and water when incorporated with a suitable classifier. Since SVM
and RF employ different strategies to solve linearly separable problems, the separability of
different sea ice types and the effectiveness of features that contributed to the classification
results are worth investigating. Figure 2.5 shows the distributions of GLCM features for
different sea ice types and open water. Open water can be efficiently separated from sea
ice by some GLCM features, such as ASM and HOM. The distributions of COR for sea
ice are highly correlated and are not feasible to discriminate sea ice types when utilized
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Young ice First-year ice Multi-year ice Open water

Figure 2.6: Classification results of April 26, 2010 (scene ID 20100426). (a) HH polar-
ization. (b) HV polarization. (c) Ice chart. (d) IRGS segmentation result. (e) SVM
pixel-based classification result with an accuracy of 83.40%. (f) RF pixel-based classi-
fication result with an accuracy of 88.00%. (g) IRGS-SVM classification result with an
accuracy of 86.40%. (h) IRGS-RF classification result with an accuracy of 88.10%. Ac-
cording to the ice chart, there should not be YI in this scene. False YI is reduced by
combining IRGS results. The final result is more reasonable.

solely. The distributions of HOM and INV are very similar, indicating information redun-
dancy when using HOM and INV with the same parameters. In agreement with previous
research, the results demonstrate that most GLCM features can contribute to the partial
separation of open water and different sea ice types.

The classification results for the April 26, 2010 scene, which was previously shown in
Figure 2.2 to demonstrate all steps of the proposed method, are shown in Figure 2.6. SVM
has been demonstrated as an effective method to classify ice and water, but it does not
generate a reasonable ice map in this scene. There are several issues that should be consid-
ered when applying pixel-based classifiers. First, the selection of crucial hyperparameters
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is essential. SVM requires tuned C and gamma, while the number of trees is the only key
hyperparameter for RF. More hyperparameters require more computation for grid search
and may cause overfitting. Second, SVM uses a kernel function to improve the separability
of the features, and the speckle noise in the dataset is more likely to be augmented in the
higher dimension. In contrast, the voting and bagging scheme in RF makes it less sensitive
to speckle. Figure 2.6(e) displays noticeable noise-like errors across the whole scene. Unlike
SVM, RF achieves more consistent classification results. According to visual interpretation
and ice chart, there is no young ice in this scene. However, both SVM and RF misclassified
first-year and multi-year ice in the middle right of the scene as young ice. On a pixel-wise
classification level, RF obtains better accuracy compared to SVM. After being combined
with the IRGS segmentation result, the noise-like errors are suppressed, and the boundaries
are well preserved for both IRGS-SVM and IRGS-RF. Despite that, the improvement of
IRGS-RF is negligible in numerical accuracy, because this is validated only on 500 sample
points in each scene. The classified image using IRGS-RF is the most visually satisfying
among the four methods. IRGS-RF also improves the misclassified young ice in the other
three scenes. IRGS-RF also improves the misclassified young ice area.

An in-depth examination of a small region comprised of diverse sea ice types aids in
gaining an improved understanding of the performance of various classification methods
under complex sea ice conditions. Figure 2.7 presents a region of interest in Scene 20100426.
In this scene, only FYI and MYI are present, as revealed by HH, HV polarized images,
and ice chart data. These sea ice types are intertwined, rendering the region particularly
challenging for sea ice classification due to its inherent complexity. FYI regions appearing at
the bottom of the image exhibit a markedly different texture pattern from those appearing
among MYI, amplifying the challenge of distinguishing them from MYI. Additionally, the
disorderly and unsystematic intermingling of FYI and MYI in the image further complicates
the classification task to determine boundaries between these two types of ice.

The pixel-wise methods, SVM and RF, encounter difficulties in accurately classifying
MYI. However, RF shows a moderately better performance. SVM misidentifies the ma-
jority of MYI as YI, and the resulting ring-like artifacts around each ice region distort
the natural boundaries. Moreover, the area on the right side of the image is misclassified
as OW, indicating SVM’s limitations in distinguishing water from ice using the extracted
GLCM features.

The incorporation of segmentation results, through IRGS-SVM, manages to restore
most ice boundaries and improve the accuracy of the misclassified MYI in the image.
However, the overall classification performance remains suboptimal due to the initial poor
results produced by SVM. Contrastingly, even though RF also delivers subpar pixel-level
results, IRGS-RF demonstrates proficiency in correcting most of the misclassified areas and
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Figure 2.7: Classification results of a region of interest of April 26, 2010 (scene ID
20100426). (a) HH polarization. (b) HV polarization. (c) SVM pixel-based classifica-
tion result. (d) RF pixel-based classification result. (e) IRGS-SVM classification result.
(f) IRGS-RF classification result with.

re-establishing the natural boundaries among different sea ice types. These findings suggest
that the integration with segmentation can refine classification accuracy and restore sea
ice boundaries when pixel-level labels provided by SVM or RF are accurate.

However, the proposed method does not substantially improve the accuracy of initial
pixel-level results if they are poor. In such instances, only sea ice boundaries can be
restored. This highlights the criticality of obtaining accurate initial pixel-level labels for
the successful application of our methodology.

Mapping sea ice during the summer melting season is usually tricky. The melting
reduces the surface roughness of ice and degrades the texture captured by backscatter.
The melting ponds presented onsite also change the electromagnetic characteristics of the
ice beneath. An example scene obtained on August 07, 2010, is depicted in Figure 2.8. It
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Figure 2.8: Classification results of August 7, 2010 (scene ID 20100807). (a) HH polar-
ization. (b) HV polarization. (c) Ice chart. (d) IRGS segmentation result. (e) SVM
pixel-based classification result with an accuracy of 91.90%. (f) RF pixel-based classi-
fication result with an accuracy of 93.30%. (g) IRGS-SVM classification result with an
accuracy of 94.70%. (h) IRGS-RF classification result with an accuracy of 95.30%.

is a complex scene that contains first-year ice, multi-year ice, and open water. All four
models distinguish the open water in the lower part of the scene. Although water around
the image boundary is misclassified as first-year ice by pixel-wised SVM and RF, these
errors are effectively mitigated by the combined models, IRGS-SVM and IRGS-RF. The
upper part is more challenging since the surface roughness of sea ice is reduced by melting.
Different types of ice show a very similar texture to open water in this scene, leading
to confusion when discriminating between open water and sea ice types. Therefore, the
presence of first-year ice is overstated by SVM and RF. The proposed IRGS-RF is robust
to these first-year ice errors and achieves a higher classification accuracy of 95.30%. Most
multi-year ice floes in the upper right corner are also preserved in the results.

The scene of September 07, 2010 (Figure 2.9) is the least challenging scene in the
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Figure 2.9: Classification results of September 07, 2010 (scene ID 20100907). (a) HH
polarization. (b) HV polarization. (c) Ice chart. (d) IRGS segmentation result. (e)
SVM pixel-based classification result with an accuracy of 98.50%. (f) RF pixel-based
classification result with an accuracy of 100.00%. (g) IRGS-SVM classification result with
an accuracy of 100.00%. (h) IRGS-RF classification result with an accuracy of 100.00%.

dataset. The scene is acquired at the end of summer and is only covered by water. The
texture appears in the right of the scene, and dark areas in the bottom left corner are caused
by strong wind roughening. Both SVM and RF misclassified some in-land and near-land
areas. Since pixels near land and boundary are discarded for numerical validation, RF still
achieves 100% accuracy on the test pixels. After combining with segmentation, all these
misclassified pixels are eliminated. The nearly perfect sea ice maps obtained by IRGS-SVM
and IRGS-RF are presented in Figure 2.9(g) and 2.9(h).

The classification result of October 21, 2010 is displayed in Figure 2.10. The grey ice
appearing in the top left corner has a much lower backscattering level than other grey ice
displayed in the scene. Another challenge presented is the noticeable banding artifacts in
the middle of the HV scene. The dataset is collected under ScanSAR wide beam mode,
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Figure 2.10: Classification results of October 21, 2010 (scene ID 20101021). (a) HH po-
larization. (b) HV polarization. (c) Ice chart. (d) IRGS segmentation result. (e) SVM
pixel-based classification result with an accuracy of 89.40%. (f) RF pixel-based classi-
fication result with an accuracy of 90.80%. (g) IRGS-SVM classification result with an
accuracy of 92.60%. (h) IRGS-RF classification result with an accuracy of 95.60%.

and adjoining multiple scan beams cause these vertical bands. Since HV polarization has a
much lower signal-to-noise ratio, the banding artifacts are quite common in the HV scene.
SVM and IRGS-SVM do not get affected by banding artifacts. However, there is no first-
year ice in this scene, and SVM and IRGS-SVM misclassify young ice as first-year ice. RF
obtains much better results than SVM. Although the banding artifacts greatly impact the
pixel-wise RF result, the combination with segmentation almost resolves this issue, leaving
only a small error on the IRGS-RF result.

Figure 2.11 (November 14, 2010) represents the most challenging scene with different
ice types and water. The proposed IRGS+RF achieves the lowest accuracy of 75.60% of all
18 scenes. First, the incidence angle effect is significant in the scene. The backscattering
signature is inconsistent across the whole image–the left of the scene is brighter than the
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Figure 2.11: Classification results of November 14, 2010 (scene ID 20101114). (a) HH
polarization. (b) Ice chart. (c) Ice chart. (d) IRGS segmentation result. (e) SVM pixel-
based classification result with an accuracy of 60.50%. (f) RF pixel-based classification
result with an accuracy of 68.80%. (g) IRGS-SVM classification result with an accuracy
of 65.40%. (h) IRGS-RF classification result with an accuracy of 75.60%.

right side. Second, given the 200 m X 200 m pixel size, a single pixel may contain several
types of ice and water. The pixel-wise classifiers struggle to distinguish these mixed pixels.
Third, there are numerous leads presented among sea ice in this scene. These leads may
have generated misleading texture features that confused the classifiers. Although the
pixel-wise results are unsatisfying, the combined methods suppress these phenomena and
achieve higher classification accuracy and natural boundaries between different ice types
and water.

The experiments are run on a computer with the following configuration: Intel Core
i5-6600K, 16-GB RAM, and Windows 10 operating system. The average execution time to
generate a sea ice map based on a RADARSAT-2 scene is less than 25 min. Specifically,
it takes 3 min to oversegment the scene into homogeneous regions. The GLCM feature
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extraction, as the most time-consuming part of the workflow, takes around 15 min. SVM
takes 5 min for pixel-wise labeling, while random forest only takes 20 seconds credited to
parallel computing. The proposed system is qualified to deploy on business computers with
average configurations and classify sea ice in a scene within half an hour.

2.6 Summary

An automatic sea ice classification infrastructure using RADARSAT-2 SAR imagery is
proposed in this article. To the authors’ best knowledge, this is the first study combin-
ing segmentation with pixel-wise labeling, using an energy function, to classify different
sea-ice types. The unsupervised IRGS segmentation algorithm extracts spatial contex-
tual information in the SAR scene to divide the whole image into homogeneous regions,
while the pixel-wise classifier exploits backscatter intensities and textural features to la-
bel each region. Two benchmark pixel-wise classifiers, SVM and RF, and two proposed
models, IRGS-SVM and IRGS-RF, were trained and tested on a dataset to find the best
combination for building the system.

To better evaluate the proposed models, a dataset consisting of 18 RADARSAT-2
scenes of the Beaufort Sea is used to evaluate the proposed models. The dataset includes
scenes from melting, summer, and freezing seasons. The LOO strategy is applied for cross-
validation to avoid using samples from the same scene for both training and testing. The
results show that the proposed models achieve an overall accuracy of 86.33% on the dataset
and are robust to melting season, which is the most challenging period of the year.

When only applying pixel-wise classifiers, RF obtains an overall accuracy of 84.07%
compared to 81.13% by SVM. Comparing the visual results, the sea ice maps generated by
RF contain fewer noise-like errors than SVM. In general, RF outperforms SVM on most
of the scenes in the dataset, indicating that RF is a more reliable choice when dealing
with sea-ice classification based on texture features. After combining IRGS segmentation
results with the pixel-level labels, the classification accuracies of IRGS-SVM and IRGS-RF
are both improved. IRGS-RF achieves the best performance with an 86.33% success rate
for distinguishing ice types and water.

Additionally, we have conducted experiments on a normalized dataset to assess the
robustness of the proposed method to variations in incidence angle. The classification
accuracies of the RF classifier showed improvement for the majority of scenes when the
SAR imagery was normalized to an incidence angle of 35°. Nevertheless, the IRGS-RF
demonstrated remarkable stability, yielding almost identical overall accuracies on both the
normalized and unnormalized datasets.
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This consistency in performance can be attributed to the effectiveness of the unsuper-
vised segmentation in capturing contextual information from each homogeneous region,
subsequently mitigating the classification errors in the RF results. It is worth noting that
such robustness is crucial, especially when dealing with dual-pol SAR data, as it ensures
the reliability and accuracy of the classification results despite variations in incidence an-
gle. The results indicate that the proposed method, with its inherent ability to handle
incidence angle variation, stands as a robust solution for sea ice classification in dual-pol
SAR imagery.

The novel sea ice classification approach presented in this work not only delivers promis-
ing results in terms of accuracy but also generates visually appealing ice maps. It success-
fully preserves the natural boundaries between water and various types of ice while refining
pixel-level inaccuracies. The resultant sea ice maps exhibit a high level of consistency with
the ice charts provided by CIS, making them valuable references for sea ice interpretation
within operational contexts at ice services. These outcomes support the assertion that the
proposed methods effectively merge both textural and contextual features, significantly
enhancing the precision of sea ice classification.

In future endeavors, the proposed model will undergo rigorous testing on datasets that
exhibit diverse temporal and textural characteristics, utilizing transfer learning to optimize
its performance. Additionally, the impact of applying noise floor correction will be ana-
lyzed to refine the model’s accuracy further. Most crucially, while the current approach
integrates contextual and textural features within individual regions derived from segmen-
tation results, it does not account for the global context in SAR images. Future research
will thus be directed towards developing a new methodology capable of incorporating this
global context into the sea ice classification process, with the aim of achieving even more
accurate and reliable results.
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Chapter 3

Sea ice–water Classification of
RADARSAT-2 Imagery Based on
Residual Convolutional Neural
Network with Regional Pooling

Sea ice mapping plays an integral role in ship navigation and meteorological modeling
in the polar regions. Numerous published studies in sea ice classification using synthetic
aperture radar (SAR) have reported high classification rates. However, many of these focus
on numerical results based on sample points and ignore the quality of the inferred sea ice
maps. We have designed and implemented a novel SAR sea ice classification algorithm
where the spatial context, obtained by the unsupervised IRGS segmentation algorithm, is
integrated with texture features extracted by a residual convolutional neural network and,
using regional pooling, classifies ice and water. This algorithm is trained and tested on
a published dataset and cross-validated using a leave-one-out (LOO) strategy, obtaining
an overall accuracy of 99.67% and outperforming several existing algorithms. In addition,
visual results show that this new method produces sea ice maps with natural ice–water
boundaries and fewer ice and water errors.

3.1 Introduction

Sea ice covers about 12% of the oceans on Earth [89]. In high latitude and polar regions,
sea ice reduces the heat exchange between the sea and the atmosphere, regulating the
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global climate [8]. As the global temperature has been rising in the past decades, sea
ice thickness has reduced dramatically [90]. Melting ice poses a significant impact on the
ecosystem and meteorology in the Arctic region. Meanwhile, exploring shipping routes and
marine resources becomes attractive in the summer season [91]; therefore, monitoring sea
ice distribution and how it changes in the life span is essential.

Synthetic aperture radar (SAR) [92] is a reliable method to monitor sea ice because
SAR imagery can be acquired day and night under any type of weather condition. Pop-
ular satellites deployed for analyzing sea ice are the Sentinel-1 mission (operated by the
European Space Agency) and the RADARSAT system (RADARSAT-2 and RADARSAT
Constellation Mission (RCM), operated by the Canadian Space Agency). Ice agencies from
different nations, e.g., the Canadian Ice Service (CIS), the National Ice Agency, and the
Norwegian Ice Service, process SAR data and produce ice charts manually. With the ex-
panding data volume received from recently launched SAR satellites [93, 94], the demand
for automated sea ice classification systems is growing.

A typical sea ice classification system usually consists of two parts. First, handcrafted
features are extracted from each pixel. Second, an appropriate classifier is trained on the
feature set and predicts each pixel’s label in the scene. For the first step, originally only
backscattering intensities were used to distinguish sea ice and water [16]; however, the
non-stationarity caused by weather conditions (e.g., wind speed and melting ponds on ice
surface [95, 96, 97]) and satellite’s infrastructure (e.g., incidence angle effect [98, 99, 31] and
speckle noise [100, 101, 102]), make it not possible to solely use backscatter for operational
sea ice classification tasks. Meanwhile, studies [18, 103, 104] reported high classification
accuracy by utilizing polarimetric features. Gill and Yackel [17] extracted polarimetric pa-
rameters from quad-polarized RADARSAT-2 imagery using different decomposition meth-
ods. K-means and maximum likelihood classifiers were adopted to discriminate different
types of first-year ice. Although quad-polarized SAR imagery shows enormous potential in
classifying sea ice, the narrow swath, which is on the order of 50 km, does not have sufficient
coverage for operational sea ice monitoring that utilizes swaths in the range 400–500 km.
Dabboor et al. [47] trained a random forest (RF) classifier using 23 simulated compact po-
larimetric (CP) features extracted from quad-polarimetric (QP) data to classify first-year
and multi-year ice. Ghanbari et al. [105] also used simulated CP features derived from
QP data to classify different ice types. Even though the classification accuracy achieved
by CP features is lower than that of QP features, the wider swath ( 350 km for RCM) of
CP data makes it a better data source for operational sea ice monitoring.

Since major national sea ice agencies favor imagery with large area coverage for op-
erational use, dual-polarization imagery with a 500 km swath has become the main data
source for sea ice mapping in the past decade [72]. In addition to backscatter intensities,
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textural features extracted using the gray level co-occurrence matrix (GLCM) [106] can
be used to enhance the feature description for sea ice discrimination [23, 107]. Clausi [24]
explored the classification performance using different GLCM measurements. The study
showed that the classification accuracy was not always rising with the increasing grey lev-
els of quantization. Li et al. [108] proposed an unsupervised method to classify ice and
water. The HV scene was segmented into homogeneous regions using a modified watershed
algorithm. Then, the Otsu threshold was applied to distinguish the homogeneous regions,
which were chosen as training samples. A support vector machine was trained on GLCM
features and tested on 728 Sentinel-1 extra-wide images. Lyu et al. [109] extracted GLCM
features and trained a random forest to separate sea ice from water in RCM data.

Deep learning has recently been introduced to remote sensing because of its phenomenal
achievement in the computer vision domain. The classification results that use features
learned by deep learning models are usually comparable, sometimes superior to those using
traditional engineered features [110]. The convolutional neural network (CNN), a particular
deep learning structure, has been widely adopted in sea ice classification recently [111, 112,
41, 113, 40]. Ren et al. [114] proposed a two-step deep learning model named (DAU-Net)
to discriminate between sea ice and open water. A residual neural network (ResNet)
was deployed to extract features from input SAR imagery. Then, a fully connected U-
Net integrated with a dual-attention mechanism ingested the learned featured map and
produced an ice–water classification result. The model was trained on 15 dual-polarized
scenes and tested on the other three. The DAU-Net improved the intersection over union
(IoU) compared with the original U-Net. Junhwa et al. [115] used long- and short-term
memory (LSTM) to capture temporal relation between SAR images. A deep learning
model consisting of encoders, LSTMs, and decoders was developed to predict sea ice. The
model used a novel perceptual loss function and accurately predicted sea ice concentration.

However, most deep-learning-based studies compare their methods with benchmark
deep-learning models or traditional classifiers with the input of backscattering intensity.
The advantages of using the learned feature (deep learning) compared with engineered
features (e.g., GLCM) have not been sufficiently investigated. Moreover, boundaries be-
tween sea ice and water, which are well presented in ice charts, are usually corroded in
the classification results [105]. Since pixel-level ground truth is scarce, the performance of
the sea ice classification method is generally trained and evaluated based on sample points
rather than the whole scene. Many studies prefer to select samples from regions with high
concentrations and no boundaries to ensure the quality and quantity of the training data.
The classifiers can not learn the characteristics of the ice–water boundary based on limited
samples. Furthermore, both CNN- and GLCM-based methods extract features using slid-
ing windows, and in each window, all pixels inside contribute to describing the features of
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the center pixel. Figure 3.1 depicts an extreme case for learning window-based features. It
is a 9-by-9 image path used to extract the feature of the center pixel “X”. “A”, “B”, “C”,
and “D” represent the other four classes. Although the path is designed to learn features
of pixel “X”, it extracts the features derived from its neighbor, class “A”, “B”, “C”, and
“D”, rather than itself. The features derived from mixed classes confuse the classifier and
lead to classification errors [44].

Figure 3.1: Example of an image patch for feature extraction. “X” is the center pixel that
needs to be extracted features. “A”, “B”, “C”, and “D” are four different classes.

Considering the challenges associated with applying deep learning models directly to
SAR imagery for sea ice classification, this study aims to explore efficient methods for
learning spatial features specific to sea ice in SAR images, and how to integrate these spa-
tial features with contextual information gleaned from semantic segmentation algorithms.
However, due to the scarcity of labeled data for different types of sea ice, this research
will primarily concentrate on differentiating sea ice from open water. Residual neural net-
works, which have demonstrated considerable success in remote sensing applications, are
employed to capture the spatial characteristics of sea ice and water. Concurrently, Iterative
Region Growing with Semantics (IRGS) [70]–a semantic segmentation algorithm particu-
larly crafted for remote sensing data—is deployed to delineate the ice–water boundary by
extracting contextual features. These two components are synthesized through an innova-
tive region-pooling layer designed to enhance the classification of sea ice in SAR imagery.
The following are the main contributions of this work.

1. We propose a novel end-to-end sea ice–water classification system based on a deep
learning model using SAR imagery. One of the major attractions of the proposed sys-
tem is that it can generate a pixel-level classification result while the fine boundaries
between ice and water are well preserved.
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Figure 3.2: Location of the Beaufort Sea. Footprints of the 21 RADARSAT-2 scenes used
in this work are shown in yellow.

2. We conduct a comprehensive set of experiments to compare the effectiveness of en-
gineered features versus model-learned features in the classification of sea ice and
open water. The findings reveal that model-learned features surpass their engineered
counterparts, obviating the need for human expertise in feature engineering.

3. We explore the classification capability of a deep learning model with different input
and patch sizes. The results obtained by the deep learning model with different
hyper-parameters provide a baseline reference for future work.

4. We extensively evaluate the performance of the proposed model and compare it with
two benchmark methods and two reference methods. The results show that our
model outperforms these methods of comparison both numerically and visually.

3.2 Data

3.2.1 The RADARSAT-2 ScanSAR Wide Mode Dataset

The dataset used in this paper to train and validate the proposed method contains 21
scenes at different locations over the Beaufort Sea in 2010. The Beaufort Sea can be
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Table 3.1: List of SAR scenes used in this work.

Scene ID
SAR Acquisition
Date (M/D/Y)

Acquisition Time
UTC (hh:mm:ss)

Ascending (A)/
Descending (D)

Incidence Angle
Near Range (°)

Incidence Angle
Far Range (°)

20100418 163315 18 April 2010 16:33:16 Descending 19.72 49.46

20100426 040439 16 April 2010 04:04:39 Ascending 19.55 49.44

20100510 035620 10 May 2010 03:56:20 Ascending 19.58 49.44

20100524 034756 24 May 2010 03:47:56 Ascending 19.61 49.46

20100605 163323 5 June 2010 16:33:23 Descending 19.77 49.46

20100623 041255 23 June 2010 04:12:55 Ascending 19.63 49.45

20100629 163326 29 June 2010 16:33:26 Descending 19.71 49.43

20100712 031834 12 July 2010 03:18:34 Ascending 19.61 49.39

20100721 173208 21 July 2010 17:32:08 Descending 19.64 49.47

20100730 162908 30 July 2010 16:29:08 Descending 19.61 49.46

20100807 173610 7 August 2010 17:36:10 Descending 19.77 49.47

20100816 163329 16 August 2010 16:33:29 Descending 19.74 49.45

20100907 035614 7 September 2010 03:56:14 Ascending 19.59 49.44

20100909 163321 9 September 2010 16:33:21 Descending 19.63 49.48

20101003 163324 3 October 2010 16:33:24 Descending 19.59 49.46

20101021 041325 21 October 2010 04:13:25 Ascending 19.50 49.43

20101027 025726 27 October 2010 02:57:26 Ascending 19.58 49.43

20101114 041304 14 November 2010 04:13:04 Ascending 19.57 49.43

20101120 163324 20 November 2010 16:33:24 Descending 19.70 49.44

20101206 015139 6 December 2010 01:51:39 Ascending 19.59 49.39

20101214 025725 14 December 2010 02:57:25 Ascending 19.58 49.45

considered as a marginal sea of the Arctic Ocean located north of Canada and Alaska.
Figure 3.2 shows the geographical distribution of the dataset. Each scene was captured
under ScanSAR wide beam mode and consisted of HH and HV polarizations from both
ascending and descending satellite passes. Table 3.1 lists the scene ID, acquisition time,
ascending or descending orbit, and incidence angle range of the scenes in the dataset. The
average image size is around 10,500 by 10,000 pixels with a spatial resolution of 50 by
50 m. The nominal swath width is 500 km in both range and azimuth direction, and
the incidence angle varies from 19.50 to 49.48 degrees. The 21 scenes were acquired from
April through December under various ice–water conditions. Canadian Ice Service (CIS)
acquired these images for manual interpretation and generating ice charts in 2010. This is
the same dataset used by Leigh et al. [50] and Jiang et al. [116].
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An example scene of the dataset, which was taken on 24 May 2010, is shown in
Figure 3.3. This scene contains first-year ice, multi-year ice, water, and land. Both HH
and HV are displayed, and HV is less sensitive to the incidence angle effect compared with
HH. The first-year ice presented at the top of the scene appears visually different than that
at the bottom. The water shows decreasing backscattering in the horizontal direction in
the scene. There is another open water area that appears at the bottom right corner.

(a) (b)

(c) (d)

Figure 3.3: An example scene in the dataset. The scene was acquired on 24 May 2020. (a)
HH polarization. (b) HV polarization. (c) Ice chart. (d) Sample points on poly-lines used
for training and testing. ice: yellow, water: blue.
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3.2.2 Data Pre-Processing

The pre-processing of the dataset used in this study includes radiometric calibration, down-
sampling, and normalization. The first step is a fundamental processing to convert raw
digital numbers (DN) to actual backscatter received by the sensor, ensuring the backscatter
in SAR images captured from different time and locations are consistent and comparable,
which is crucial for classification tasks in remote sensing. Down-sampling helps to reduce
the data volume and improve the runtime of classification algorithms, while normalization
is required by machine learning methods to facilitate

The product package supplied by MDA Ltd. comes inclusive of lookup tables (LUTs) to
facilitate straightforward transformation from raw DN to backscatter coefficients including
sigma-nought (σ0), beta-nought (β0), and gamma (γ). For this study, we engaged the offset
and gain values specified in the sigma-nought LUT to convert the raw data into σ0. The
conversion process adheres to the formula as defined in[117], which is elucidated below.

σ0 = 10log
(
a2

(
d2 − a1n(r)

)
+ a3

)
(3.1)

where d is the pixel intensity with a range from 0 to 255. a1, a2, and a3 are noise scaling,
linear conversion, and offset, respectively. n(r) is the noise as a function of range r. Sigma
nought is the calibrated backscatter coefficient and expressed decibels (dBs). Unlike passive
sensors, images acquired by SAR sensors are usually contaminated by a multiplicative noise
called speckle noise. Speckle noise is caused by the infrastructure of the SAR platform and
interferes with the backscatter captured in SAR imagery [118]. Many studies use filters,
e.g., the Lee filter, to remove speckle noise; however, applying the Lee filter does degrade
the ice–water boundary information, which is crucial for sea ice–water classification. Hence,
no speckle noise filter is utilized in this study.

Each image is approximately 10,500 by 10,000 pixels with a nominal pixel spacing of
50 × 50 m. A 4-by-4 average pooling is applied to the images in the dataset to reduce
computational cost and runtime. The downsampled image size is around 2600 by 2500.
The new 200 m pixel size is still adequate for producing sea ice classification maps with
far more details than the ice charts interpreted by human experts [50].

Compared with HH, HV imagery usually has a much lower signal-to-noise ratio. Since
the output of each layer in a deep learning model depends on the input value, the gradient
descent trends to update some weights much faster than others if the scales of input
channels vary; therefore, normalizing input features to a similar scale helps accelerate
learning speed and produce faster convergence. For training and testing the proposed deep
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learning model, the backscattering intensities of all input scenes are normalized to the
range of 0 to 1 using the corresponding minimum and maximum [40].

3.2.3 Dataset for Training and Validation

Pixel-level ground truth is important for training supervised models; however, one of the
biggest challenges in sea ice classification is the lack of reliable labeled samples. The most
common reference data source is the ice chart released by CIS. Figure 3.3(c) shows an ice
chart over the Beaufort Sea from 24 May 2010. There are two steps involved in producing
sea ice charts. First, the trained operators break down the scene into defined regions called
‘polygons’. Then, each polygon is interpreted based on the ice concentration and visually
recognized sea ice types. For example, the text “9+, 1my, 9fy” on the polygon indicates
that the overall ice concentration in this polygon is more than 90%, with 10% multi-year
ice and 90% first-year ice for ice coverage.

To guarantee the integrity and reliability of the training data, we engaged the expertise
of a former ice analyst from CIS to create detailed ice charts for our dataset. Given
the nature of ResNet, which requires an extensive amount of labeled data to learn and
distinguish between sea ice and open water accurately, we made our best efforts to generate
labeled pixel samples using the aforementioned ice charts as reference.

The initial step involved densely drawing polylines within homogeneous regions. Pixels
situated on the yellow polylines were designated as ice samples, whereas pixels on the blue
polylines were classified as water samples. We ensured that polylines spanned across the
entire image, deliberately avoiding regions close to ice–water boundaries to prevent the
inclusion of pixels with ambiguous labels in the labeled dataset.

It is important to note that the sample pixels forming the polylines exhibit a high
degree of correlation, a factor that could potentially lead to overfitting. To mitigate this
risk, we decided to sample only 20% of the pixels along the polylines sparsely, instead of
utilizing every pixel, for the construction of the labeled dataset. This approach not only
proved to be efficient but also helped in reducing spatial correlation, thereby enhancing
the generalizability of the classification model. A comprehensive summary of the labeled
samples is presented in Table 3.2. In scenarios where a scene is dominated by a single class,
the sample count for the other classes is recorded as zero.

Although using a dataset that contains hundreds of scenes to evaluate the method’s
performance is attractive, some studies [108, 52] only employ a small portion of the dataset
for numerical testing due to the lack of detailed ground truth. Moreover, the results in
the article published by Zhang et al. [48] indicate that the classification accuracy follows
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Table 3.2: Number of labeled samples used in this study.

Scene ID # of Water # of Ice

20100418 163315 0 38,323

20100426 040439 0 49,484

20100510 035620 3,071 54,899

20100524 034756 9,307 50,780

20100605 163323 1,388 52,588

20100623 041255 21,569 42,362

20100629 163326 6,564 26,190

20100712 031834 5,072 24,702

20100721 173208 10,002 12,638

20100730 162908 9,919 8,551

20100807 173610 9,092 2,680

20100816 163329 12,866 10,689

20100907 035614 24,201 0

20100909 163321 23,094 1,598

20101003 163324 18,605 8,414

20101021 041325 25,138 8,554

20101027 025726 13,230 14,334

20101114 041304 8,219 13,597

20101120 163324 0 47,944

20101206 015139 0 47,850

20101214 025725 0 40,658

Total 201,338 556,837

a similar distribution for consecutive years. Since our dataset covers a whole year of sea
ice life span, it is sufficient to assess the proposed method [119].
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The prevalent evaluation criterion in most studies on sea ice classification is classifi-
cation accuracy. A customary practice involves using the same scene for both training
and testing, or employing a shuffle method to partition the training dataset into distinct
sections for training, validation, and testing. While this approach tends to inflate the clas-
sification accuracy, due to the shared characteristics of data within the same scene, it also
frequently results in reduced accuracy in operational tasks. This is largely attributable to
the variability in the backscattering of sea ice and water across different scenes.

In order to ensure the robustness and generalizability of IceNet, we propose an evalua-
tion scheme based on leave-one-out cross-validation [120]. The composition of our dataset,
encompassing 21 separate scenes, offers a unique opportunity to structure the evaluation
procedure in a way that maximizes the usefulness of our data. Initially, the process in-
volves partitioning the original samples into 21 subsets. Each subset exclusively comprises
samples from a single scene. For every iteration, one subset is retained as the test data
for model evaluation. The remaining 20 subsets form the training and validation data,
maintaining a training/validation split ratio of 0.7. IceNet is then trained and validated
on these 20 images and evaluated on the left-out image. This process is repeated such that
each image in the dataset is used once as the test data. This process helps to avoid overfit-
ting, ensures that every sample contributes to the evaluation of the model, and provides a
comprehensive assessment of IceNet’s performance. Finally, the overall performance metric
is calculated by averaging the results across all 21 iterations. This approach allows us to
obtain a more realistic, reliable, and generalizable measure of IceNet’s performance.

3.3 Method

The architecture of the proposed sea ice classification model consists of two main parts: the
iterative region growing with semantics (IRGS) segmentation and residual CNN labeling.
Figure 3.4 shows the framework of the model, which is named as IceNet. The input
HH and HV images are first processed for radiometric calibration and down-sampling.
Then, the contextual information is extracted by IRGS using the pre-processed images,
while the spatial features are learned by residual CNN. Finally, the contextual and spatial
information are combined based on a novel regional pooling layer.

3.3.1 Unsupervised Model for Segmentation

Markov Random Fields (MRFs) and Conditional Random Fields (CRFs) have gained pop-
ularity in image segmentation due to their capability to model contextual information
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Figure 3.4: Flow diagram of the proposed IceNet for sea ice classification.

within images effectively. The IRGS algorithm, grounded in MRF principles, has been
developed to offer a robust segmentation method tailored for remote sensing imagery. In
this research, we have applied IRGS, integrating it with a ’glocal’ strategy [50], aiming to
learn contextual information that helps to preserve the boundaries between ice and water.
Figure 3.5 elucidates the fundamental steps involved in the IRGS process.

The initial phase of the process involves segmenting the scene into smaller regions,
referred to as autopolygons. Given that a lower signal-to-noise ratio characterizes HV
polarization and demonstrates reduced sensitivity to variations in incidence angle compared
to HH polarization, we opted to utilize solely the HV polarization in the generation of
autopolygons. This decision was motivated by the intention to minimize distortion caused
by incidence angle variation on the statistics of the backscatter coefficient.

The process commences with the division of the scene into a 12-by-12 grid net, wherein
the center pixel within each grid serves as a seed. Subsequently, a watershed algorithm is
applied to the HV polarization, guided by these seeds. The autopolygons yielded from this
watershed process are depicted in Figure 3.5(a). Following this, the IRGS segmentation is
executed on each autopolygon, with both HH and HV scenes serving as input.

Within the IRGS pipeline, a modified watershed algorithm is employed to oversegment
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each autopolygon. This oversegmentation then serves as the basis for constructing a Region
Adjacent Graph (RAG). The design of the RAG aims to minimize the following energy
function:

E =
∑
i∈R

VG(xi) +
∑
⟨i,j⟩ξ

VE(xi, xj) (3.2)

Here, VG() represents the unary potential, while VE() signifies the pairwise potential in
the MRF models. Within the context of IRGS, VG() corresponds to Gaussian statistics
for regions derived from oversegmentation, and VE() accounts for edge strength between
cliques ξ (connected regions). Figure 3.5(b) showcases the result of this segmentation
step. The limited size of the autopolygons ensures a constrained incidence angle variation,
facilitating improved extraction of contextual information.

Post application of IRGS to all individual autopolygons, a new RAG is formulated over
the entire HH and HV scenes. The objective here is to minimize the energy function on a
global scale, culminating in producing the final segmentation results, as illustrated in Fig-
ure 3.5(c). This strategy, whereby the energy function is minimized locally (within each
autopolygon) prior to a global minimization (across the entire scene), has been termed ’glo-
cal’. Such an approach ensures that accurate local contextual information is first extracted,
subsequently contributing to the formation of a coherent global context.

(a) (b) (c)

Figure 3.5: Steps of IRGS using the glocal strategy for the scene from 24 May 2010 (scene
ID 20100524 034756). (a) Autopolygons overlays on the HH scene. (b) Local segmentation
result. (c) Glocal segmentation result.
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3.3.2 Deep Learning Model for Labeling

A typical CNN consists of the input layer, hidden layer(s), and output layer [121]. The
output of each layer is the input of the next layer for both forward and backward propa-
gation. Unlike conventional artificial neural networks, CNN has multiple types of hidden
layers, including convolutional (ConV) layers, activation layers, pooling layers, and fully
connected (FC) layers. The convolutional layers extract features from the input using
multiple kernels of different sizes. Then, the learned features pass through activation and
pooling layers for non-linearization and compression. The fully connected layer maps all
learned high-level features to sample space before the final classification.

However, as the network’s depth goes deeper, the propagation of gradients through
numerous layers during backpropagation can lead to challenges in training stability and
convergence. When the gradients of the loss are very large, it can result in excessively large
updates to the weights, destabilizing the network. This issue is known as the exploding
gradient problem. Conversely, when the gradients are very small, they can diminish as
they are backpropagated through the network, approaching zero. This results in minimal
updates to the weights, causing dead neurons and preventing convergence to a global opti-
mum. This issue is referred to as the vanishing gradient problem. To address these issues
and enhance the training of deep networks, ResNet (Residual Networks) was introduced,
incorporating residual blocks that allow for the learning of identity mappings and alleviate
the degradation problem [122]. Residual blocks help in maintaining a stable gradient flow
through the network, mitigating the risks of both exploding and vanishing gradients.

Figure 3.6 delineates the architecture of the residual Residual CNN employed in this
research, comprising eight layers. Notably, all convolutional layers in the model adhere
to uniform hyper-parameters: a kernel size of 3 × 3 and a total of 128 kernels. Given
that the original SAR images undergo preprocessing via 4 × 4 average pooling to bolster
computational efficiency, a stride size of 1 is chosen. This choice serves to attenuate the
issue of mixed pixels and simultaneously augment the spatial resolution of the feature
maps.

Subsequent to each convolution operation, Batch Normalization (BN) [123] is applied at
every layer to normalize the output, thereby enhancing training efficiency. The activation
function selected for IceNet is a variant of the Rectified Linear Unit (ReLU) [124], known
as the Leaky Rectified Linear Unit (Leaky ReLU) [125]. Leaky ReLU diverges from the
popular ReLU by allowing small negative values when the input is less than zero. This
characteristic circumvents the ”dying ReLU” issue, which manifests when a large gradient
flows through the neurons, causing ReLU to invariably output zero, making a recovery from
this state improbable. The leaky ReLU in IceNet is configured with a hyperparameter,
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FC

Softmax
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(b)

Figure 3.6: Architecture of the labeling module in IceNet. (a) A residual block. (b) CNN
architecture.
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α = 0.2, as per the empirical results presented in the study [125].

Three residual blocks follow the initial convolutional layer. As the main characteristic
of residual CNN models, the identity mapping added by shortcuts in the residual block is
depicted in Figure 3.6(a). Let x and y represent the input and output of the block. The
residual block is defined as follows:

Fi(x) = Wix+ bi

y = F2(F1(x)) +Wsx
(3.3)

where Fi(x) Wix and bi are the convolution operation, learned weights and bias of ith
layer. The block has two convolutional layers, and each layer has 128 kernels with the size
of 3×3. The block requires the channel number of input x to be equal to that of F2(F1(x)),
so they can pass the additive layer and send it to the activation function. If the dimensions
are not the same, a 1 convolutional layer with the weight of Ws is added on the shortcut
to change the dimension of x. The weights of each layer are initialized using the method
proposed by He et al. [126]. Adam optimizer [127] is adopted for updating weights. The
learning rate, the weight decay, and betas are set as 0.0001, 0, and [0.9, 0.999], respectively.

We select the cross-entropy cost function for the loss function for the model, which is
described as follows:

loss = −
M∑
c

qclog(pc) (3.4)

where M is the number of the classes, qc is the expected output, pc is the predict output
of a softmax layer. Since this study focuses on classifying sea ice and open water, the loss
function can be simplified into (3.5):

loss = −[qclog(pc) + (1− qc)log(1− pc)] (3.5)

3.3.3 Regional Pooling Layer

When comparing the segmentation results with the corresponding CNN classification re-
sults, they deliver distinct outcomes. While the boundaries between ice and water are
well-preserved in the former, the latter yields pixel-level labels. Leveraging the IRGS
segmentation technique ensures that each region in the result image is treated as a ho-
mogeneous unit containing only a single class. Yet, the unsupervised nature of IRGS
segmentation means these regions are only assigned with arbitrary classes.
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To assign labels to these homogeneous regions based on CNN results, we propose in-
corporating a regional pooling layer. The first step involves defining the energy functions,
Ew and Ei, of the homogeneous region, assuming that either water or ice is assigned to it,
as follows:

Ew = −
∑
a∈Rw

log(paw)−
∑
b∈Ri

log(1− pbi) (3.6)

Ei = −
∑
a∈Ri

log(pai )−
∑
b∈Rw

log(1− pbw) (3.7)

Here, Rw and Ri denote the sets of pixels with hard labels of water and ice, respectively, as
determined by the residual CNN in the region R–a homogeneous region in the segmentation
result. a and b represent the elements in sets Rw and Ri, while pw and pi represent the
probability values of being water or ice, respectively.

Ew and Ei are designed to use information content from information theory [128] to
depict the energy of the region to which the label of water or ice is assigned. Ew represents
how much energy the region would have if a water label is assigned to it, while Ei represents
how much energy the region would have if an ice label is assigned to it. Thus, the labeling
process is simplified to the determination of which label gives lower energy.

The energy terms Ew and Ei are designed to utilize the concept of information content
from information theory[128], to characterize the energy of a region corresponding to water
or ice labels, respectively. Specifically, Ew quantifies the energy of a region presuming a
’water’ classification, whereas Ei quantifies the energy assuming an ’ice’ classification.
Thus, the labeling process is reduced to a comparison of energies, selecting the label that
minimizes the energy for the region in question.

Subsequently, an energy term Eiw is computed to determine the correct label for R:

Eiw = Ei − Ew

=
∑
a∈Rw

log(paw) +
∑
b∈Ri

log(1− pbi)−
∑
a∈Ri

log(pai )−
∑
b∈Rw

log(1− pbw)

=
∑
c∈R

log(pcw)−
∑
c∈R

log(pci)

=
∑
c∈R

log(
pcw
pci

)

(3.8)

Where c ∈ R = (Rw ∪Ri)
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This energy function is incorporated into a regional pooling layer. The label of R,
represented as Y , is determined by Eiw. If Eiw < 0, Y = ice, otherwise Y = water, and
every pixel in the region is then assigned the label Y . This process allows for an intricate
integration of segmentation and classification results, thereby potentially enhancing the
accuracy of sea ice classification in SAR images.

The introduction of the regional pooling layer draws intuitive inspiration from the
pooling mechanisms prevalent in deep learning, as well as the processes used by CIS for
producing sea ice charts. The segmentation output, generated through the application of
IRGS, ensures that each region, or superpixel, is homogeneous in character. Subsequently,
the labeling process, carried out by the residual CNN and regional pooling, parallels the
method by which ice analysts annotate polygons on ice charts. A notable distinction,
however, is that each superpixel requires labeling with only one class, a simplification
made possible by its inherent homogeneity.

3.3.4 Comparative Methods

To further evaluate the performance of the proposed model for distinguishing sea ice and
open water, we employ two benchmark methods widely used in machine learning studies
and two referenced methods specially designed for sea ice classification from published
papers for comparison. The two benchmark methods are residual CNN, which is also an
essential component of IceNet, and random forest.

Referenced method 1: Leigh et al. [50] designed and implemented the SVM-IRGS for
sea ice–water classification. SVM-IRGS is based on an MRF and adopts pixel labels pre-
dicted by SVM to modify the unary potential. A cross-validated feature selection is applied
to the original feature set that includes GLCM features, backscattering intensities, and lo-
cal averages and maximums to reduce over-fitting and improve computational efficiency.
The 28 selected features are applied to train the SVM.

Referenced method 2: Hoekstra et al. [129] proposed the IRGS-RF model for distin-
guishing lake ice and water in SAR imagery. The model first oversegments the scene into
homogeneous regions. Then, an RF classifier is used to assign labels to each region. The
RF is trained using 162 GLCM features and ten backscattering features. This model is
very similar to the method proposed in Chapter 2.

Recent studies have focused on distinguishing sea ice from open water, with many
adopting deep learning frameworks. For instance, a dual-attention U-net model, referred
to as DAU-Net, has shown promise in separating sea ice from open water due to its ability
to capture semantic information within image blocks [114]. DAU-Net is anticipated to
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perform comparably to IceNet in terms of quantitative measures. However, the input block
size for DAU-Net is fixed at 256 , which constrains the receptive field to a narrow scope.
Consequently, this may result in misclassifications along the borders of image blocks when
assembling the full scene. Additionally, Ma et al. [130] enhanced classification accuracy
by integrating a CNN with CRF, yet this approach models the CRF over the entire scene,
rendering it sensitive to variations in the incidence angle. This sensitivity could lead
to noise-like misclassifications throughout the generated sea ice maps. Owing to these
limitations, DAU-Net and the CNN-CRF model are not selected for comparative analysis
in this study.

3.4 Results and Discussion

In order to evaluate the performance of IceNet presented in this study, we compared IceNet
with RF, residual CNN, SVM-IRGS, and IRGS-R. The experiments were assessed with
accuracy for each scene in the dataset. The accuracy is defined as follows.

accuracy =
TP + FN

N
× 100% (3.9)

where TP and FN are the numbers of true-positive and false-negative samples, and N is
the total number of samples. The overall accuracy for each method is calculated using all
samples in the dataset.

The experiments were run on a computer with the following configuration: INTEL
Core i5-6600K CPU, 32-GB RAM, NVIDIA GeForce GTX 1080 GPU, and Windows 10
operating system. The average training time is 4–5 hours under such configuration. It
takes 15 minutes to produce a sea ice map for each SAR scene, which is 2–3 min for
segmenting SAR imagery, 10 for predicting pixel-level labels using residual CNN, and 2–3
min for regional pooling and producing the final sea ice map.

3.4.1 Classification Accuracy

residual CNN is selected as a benchmark method in this article, and IceNet also relies on
the spatial information learned by residual CNN; therefore, optimizing the residual CNN
model is essential. We investigate different setups for the residual CNN to achieve the best
classification accuracy. Overall accuracy is achieved based on the LOO approach, while
other accuracies without specific indication are obtained using the whole dataset.
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The backscattering observed in SAR imagery is predominantly influenced by the dielec-
tric properties and surface roughness of sea ice/water, as well as the underlying backscatter-
ing mechanisms. While HH polarization tends to offer richer information for distinguishing
between sea ice types compared to HV polarization, HV polarization images typically ex-
hibit lower intensity values. This results in reduced absolute variations in the statistical
properties of HV polarization, attributable to the multiplicative nature of speckle noise, as
opposed to HH polarization. This characteristic of HV polarization enhances its capability
to differentiate various sea ice types [52]. In light of this, we exploit how polarization
mechanisms impact the performance of deep learning models.

To this end, we have leveraged different combinations of polarized images as inputs for
the residual CNN model. Specifically, image patches extracted from HH, HV, and combined
HH/HV polarizations have been utilized to assess the classifier’s performance. Table 3.3
presents the validation accuracy achieved using an image patch size of 25× 25 pixels. The
results demonstrate that the HV polarization scene outperforms the HH polarization scene
in terms of classification accuracy when a single polarized image is employed as input.
Notably, the combination of HH and HV polarizations for image patches culminates in
the highest overall accuracy, recorded at 98.65%. In light of these findings, subsequent
experiments will incorporate both HH and HV scenes as inputs for the residual CNN and
IceNet models.

Table 3.3: Overall accuracy of residual CNN using different polarization combinations,
HH, HV, and HH/HV. The patch size is 25× 25.

Input Channel HH HV HH/HV

Validation Accuracy 93.82% 95.93% 98.65%

After the architecture of residual CNN has been decided, the receptive field of the
model is determined by the input patch size. A Large patch size can capture more spatial
information that contributes to feature maps than a small one, but it may contain mixed
ice types and water that confuse the classifier. We consider using different patch sizes of
5× 5, 13× 13, 25× 25, 39× 39, and 51× 51 pixels to evaluate the performance of residual
CNN. Figure 3.7 shows the validation accuracy using different patch sizes. In general,
the accuracy increases with a larger patch size; however, the benefit of using the patch
size of 51 × 51 is limited. First, a 51 × 51 patch covers an area of 10,200 by 10,200 m.
Such extensive coverage may capture both sea ice and water that would be expected to
cause classification errors at the boundaries between different ice types and open water.
Moreover, a large patch size requires more computation to process. For example, the 39×39
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patch only improves the accuracy by 0.42% compared with the 25×25 patch with doubled
running time; therefore, after balancing the trade-off between patch size and classification
performance, the smaller patches (5 × 5, 13 × 13, and 25 × 25) are selected for further
comparison.

Figure 3.7: Validation accuracy using patch size of 5 × 5, 13 × 13, 25 × 25, 39 × 39, and
51× 51.

The proposed IceNet and comparative methods can be sorted into two categories: single
model and combined model. residual CNN and RF are pixel-wise classifiers that belong to
the single-model category. In contrast, IceNet, SVM-IRGS, and IRGS-RF are constructed
by using both segmentation and labeling and are defined as combined models. Table 3.4
shows classification accuracy for each scene and overall accuracy using the aforementioned
methods. The highest classification accuracy obtained for each scene is highlighted. If
several methods achieve the same highest accuracy, no one will be highlighted for this
scene. In the single-model category, RF demonstrates a remarkable performance, achieving
an overall classification accuracy of 96.19%. This result notably surpasses that of the
residual CNN when a small patch size of 5×5 is utilized. Nevertheless, as the patch size is
incrementally increased, there is a shift in performance. The classification performance of
the residual CNN begins to exceed that of RF. This enhancement in performance can be
attributed to the expansion of the receptive field, which allows the residual CNN to capture
and integrate information from a larger spatial context, thereby significantly improving its
classification accuracy.

For more complex models, the classification accuracy of SVM-IRGS and IRGS-RF
achieved are consistent with the experimental results reported in the original studies [50,
129]. IceNet improves the overall accuracy by 1.86%, 0.39%, and 0.02% compared with
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residual CNN using patch size of 5 × 5, 13 × 13, and 25 × 25. Though the improvement
accomplished by IceNet is not impressive in terms of overall accuracy, the classification
results predicted by IceNet are the runner-up for classification accuracy consistency among
all methods in this study. Figure 3.8 shows the box and whisker plot of the distribution of
classification accuracy obtained by these models for all 21 scenes. The boxes in the plot
represent the interquartile range, which is the range between the first quartile and the third
quartile. Residual CNN (5 × 5 patch), RF IceNet (5 × 5 patch), SVM-IRGS, and IRGS-
RF struggle with several challenging scenes, while IceNet achieves the best classification
accuracy with minimum variance.

Figure 3.8: The distribution of classification accuracy achieved by IceNet and comparative
methods for all 21 scenes shown in the box plot. Outliers are represented by dots, and “X”
is the mean value. Several outliers in residual CNN (5×5), RF IceNet (5×5), SVM-IRGS,
and IRGS-RF are ignored for the layout of the plot.

3.4.2 Ice–Water Maps

Although the differences in numerical accuracy between IceNet and the comparative meth-
ods are marginal, the robust performance of the proposed method could not be entirely
depicted using the numerical result, which is computed based on limited, high-confidence
samples. To complement the classification accuracies (based on a small set of samples), it
is prudent to assess the results on the entire scene visually.

The scene results acquired on 3 October 2010, displayed in Figure 3.9, deliver a visual
example of full scene classification that could be deployed for operational use. The HV
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.9: Classification results of 3 October 2010. Water (blue), ice (yellow), and land
mask (black). (a) HH polarization. (b) Ice chart. (c) SVM-IRGS: 96.65%. (d) residual
CNN with the patch size 5: 92.87%. (e) Residual CNN with the patch size 13: 99.10%. (f)
Residual CNN with the patch size 25: 99.63%. (g) IceNet with the patch size 5: 99.96%.
(h) IceNet with the patch size 13: 100.00%. (i) IceNet with the patch size 25: 100.00%.
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(g) (h) (i)

Figure 3.10: Classification results of 14 December 2010. Water (blue), ice (yellow), land
mask (black). (a) HH polarization. (b) Ice chart. (c) SVM-IRGS: 100.00%. (d) Residual
CNN with the patch size 5: 95.63%. (e) Residual CNN with the patch size 13: 99.07%. (f)
Residual CNN with the patch size 25: 99.77%. (g) IceNet with the patch size 5: 100.00%.
(h) IceNet with the patch size 13: 100.00%. (i) IceNet with the patch size 25: 100.00%.
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image is contaminated by noticeable inter-scan banding, a common artifact presented in
SAR imagery captured under ScanSAR mode [12]. Due to the scanning mechanism, the
antenna of the SAR system transmits and receives multiple beams to obtain a wide swath
under ScanSAR mode; however, the backscattering of these beams is different near the
borders between scans due to temporal variants of the antenna pattern. These variants
appear on the SAR imagery as inter-scan banding artifacts and cause the inconsistency
of backscattering across the whole scene. Figure 3.9(d) to 3.9(f) illustrate that all three
residual CNNs have reduced classification accuracy derived from the inter-scan banding
artifact. The residual CNNs are confused by the artifacts and misclassified sea ice as
open water. With increasing patch size, the negative impact associated with the banding
artifact is visually reduced. SVM-IRGS overcomes this problem by combining segmentation
with labeling; however, there are still some water errors presented around the ice–water
boundary.

The improvement achieved by IceNet is significant. Classification errors associated
with the banding artifact are mitigated, and the ice–water boundaries retain the naturally
occurring details. Since a 5× 5 patch cannot capture sufficient spatial extent, many water
classification errors appear in the top-middle of the scene (Figure 3.9(d)). IceNet corrects
these water errors by introducing contextual information learned from IRGS segmentation.
The water errors presented in the results of SVM-IRGS are also refined in those of IceNet.
The highest classification accuracy for this scene is 100.00% achieved by IceNet using
13× 13 and 25× 25 patch.

An example from the ice freeze-up season acquired on 14 December 2020 is shown in
Figure 3.10, where only ice and land appear in the scene. Although different ice types,
young (grey and grey-white) ice, first-year ice, and multi-year, are presented, this is the
least challenging scene in the dataset. Since the scene was captured in December, the
ice condition was not stable, and ridges and fissures appeared across the whole scene.
Residual CNNs fail to classify the leads containing newly formed sea ice among multi-year
ice because the new ice formations have a similar texture to water, and their backscatter is
lower compared to the surrounding ice. Residual CNN with a patch size of 5×5 obtains the
lowest accuracy due to the limited spatial extent. As the patch increases, the classification
errors are rectified; however, there are still water errors residual in the ice map produced
by residual CNN with a patch size of 25 × 25. On the contrary, the proposed IceNet
eliminates all water errors successfully using patch sizes of 13 × 13 and 25 × 25. Similar
classification results are also obtained in some other scenes, e.g., scene ID 20101120 163324,
20101206 015139.

Classifying sea ice during the melt seasons is usually the most challenging time in the
life span of sea ice. Figure 3.11 depicts the classification results of the scene acquired
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on 30 July 2020. Since the patch size of 25 × 25 achieves the best results in both visual
interpretation and overall accuracy, only residual CNN and IceNet using the patch size
of 25 × 25 are presented in the figure. Both sea ice and open water show significantly
inconsistent appearances across the whole scene, posing challenges to classification with
high accuracy. The texture of sea ice in the scene is degraded by melting and looks
similar to open water; therefore, the multi-year ice presented in the upper left corner is
misclassified as open water by IRGS-RF. Again, The IceNet is robust to these intra- and
inter-class variances and achieves the highest classification accuracy of 100%.

Boundary preservation is also critical for ice–water classification. Figure 3.12 displays a
region of interest extracted from Figure 3.11, and the boundaries between sea ice and open
water are highlighted in red. Although residual CNN with a patch size of 5 × 5 detects
the outlines of big ice floes, numerous water errors appear inside these floes, and noise-like
ice errors are also present in open water. As the patch size increases, these classification
errors are mitigated, but the boundaries between small ice floes and water are ignored by
residual CNN. In contrast, the proposed IceNet shows consistent performance in detecting
ice–water boundaries through different patch sizes.

Classifying sea ice during the melt seasons is usually the most challenging time in the
life span of sea ice. Figure 3.11 depicts the classification results of the scene acquired
on 30 July 2020. Since the patch size of 25 × 25 achieves the best results in both visual
interpretation and overall accuracy, only residual CNN and IceNet using the patch size
of 25 × 25 are presented in the figure. Both sea ice and open water show significantly
inconsistent appearances across the whole scene, posing challenges to classification with
high accuracy. The texture of sea ice in the scene is degraded by melting and looks
similar to open water; therefore, the multi-year ice presented in the upper left corner is
misclassified as open water by IRGS-RF. Again, The IceNet is robust to these intra- and
inter-class variances and achieves the highest classification accuracy of 100%.

Boundary preservation is also critical for ice–water classification. Figure 3.12 displays a
region of interest extracted from Figure 3.11, and the boundaries between sea ice and open
water are highlighted in red. Although residual CNN with a patch size of 5 × 5 detects
the outlines of big ice floes, numerous water errors appear inside these floes, and noise-like
ice errors are also present in open water. As the patch size increases, these classification
errors are mitigated, but the boundaries between small ice floes and water are ignored by
residual CNN. In contrast, the proposed IceNet shows consistent performance in detecting
ice–water boundaries through different patch sizes.

In general, although ice errors caused by the banding artifact and water errors caused
by the complex backscattering are observed in the sea ice maps produced by residual

70



(a) (b) (c)

(d) (e) (f)

Figure 3.11: Classification results of 30 July 2010 (scene ID 20100730 162908. Testing).
Water (blue), ice (yellow), land mask (black). (a) HH polarization. (b) Ice chart. (c)
SVM-IRGS: 93.05%. (d) IRGS-RF: 73.34%. (e) Residual CNN with the patch size 25:
99.58%. (f) IceNet with the patch size 25: 100.00% .

CNNs, the overall accuracy still outperforms the methods for comparison. The proposed
IceNet achieves the highest classification accuracy of 99.67%. Even though the numerical
improvement is neglectable, the contribution of IceNet can be demonstrated in generating
sea ice maps: the ice–water boundary is refined, and the ice and water errors are corrected.

3.5 Summary

The robust and automatic IceNet classification method is proposed in this paper to classify
sea ice and open water. A regional pooling layer is applied to combine the unsupervised
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(a) (b) (c)

(d) (e) (f)

Figure 3.12: Highlighted ice–water boundary of 30 July 2010 (scene ID 20100730 162908).
(a) Residual CNN with the patch size 5. (b) Residual CNN with the patch size 13. (c)
Residual CNN with the patch size 25. (d) IceNet with the patch size 5. (e) IceNet with
the patch size 13. (f) IceNet with the patch size 25.

IRGS segmentation and supervised pixel-wise residual CNN labeling, both of which are
state-of-the-art methods in remote sensing. The performance of the IceNet is evaluated on
21 RADARSAT-2 scenes of the Beaufort Sea from 2010 with two benchmark methods and
two referenced methods for comparison.

For single-model classifiers, the residual CNN with a patch size of 25×25 demonstrates
superior performance, achieving an overall accuracy of 99.65%. These results suggest that,
given ample labeled data, deep learning models generally surpass traditional RF classifiers.
This finding also underscores the proficiency of spatial features learned by the residual
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CNN in differentiating between sea ice and open water, as opposed to the handcrafted
GLCM textural features, which necessitate expert knowledge for feature design. The self-
taught feature learning by the residual CNN exhibits robustness in complex scenes, with
its classification accuracy outstripping that of combined-model approaches such as SVM-
IRGS and IRGS-RF. Capitalizing on the residual CNN’s formidable performance, IceNet
further elevates the overall accuracy to 99.67% with a 25× 25 patch, thereby affirming the
significance of integrating contextual information to enhance classification precision.

Since the numerical accuracy is calculated using limited labeled samples and could not
fully demonstrate the performance of the proposed method, the sea ice maps generated by
IceNet are also assessed by visual analysis. According to visual inspection, the noise-like
ice errors caused by inter-scan banding are suppressed, and the ice–water boundaries are
refined with natural details. The water errors in residual CNN’s results are also amelio-
rated.

In spite of the robust performance achieved by the proposed IceNet, some limitations
exist. First, the IceNet is only tested for ice–water classification due to limited labels of sea
ice types. It will be evaluated to distinguish different sea ice types in future work. Second,
only local relation is considered for regional pooling. The global relation between regions
should be taken into account for better classification performance.
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Chapter 4

An Interactive Sea Ice Classification
Method for SAR Imagery Based on
Convolutional Neural Network and
Graph Convolutional Network

Monitoring sea ice in the Arctic region is crucial for polar maritime activities. The Cana-
dian Ice Service (CIS) wants to augment its manual interpretation with machine-learning-
based approaches due to the increasing data volume received from newly-launched syn-
thetic aperture radar (SAR) satellites. However, fully supervised machine learning models
require large training datasets, which are usually limited in the sea ice classification field.
To address this issue, a semi-supervised interactive system to classify sea ice in dual-pol
RADARSAT-2 imagery using limited training samples is proposed in this chapter. First,
the SAR image is oversegmented into homogeneous regions. Then, a graph is constructed
based on the segmentation results, and the feature set of each node is extracted by a con-
volutional neural network. Finally, a graph convolutional network (GCN) is employed to
classify the whole graph using limited labeled nodes automatically. The proposed method
has been evaluated on a published dataset. Compared with referenced algorithms, this
new method outperformed in both qualitative and quantitative aspects.
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4.1 Introduction

Arctic sea ice plays a vital role in the global climate and local ecosystems. It reflects
the incoming solar radiation away and prevents energy exchange between oceans and the
atmosphere to cool the polar region. Local communities and marine mammals rely on
sea ice for hunting, traveling, and other daily activities [131]. Due to global warming,
the sea ice extent has declined rapidly, with a rate of 13% per decade [8]. The 15 lowest
sea ice extent yearly minimums on record have all occurred in the past 15 years [132,
133]. Nevertheless, with less ice covering the Arctic Ocean, shipping routes that were once
inaccessible or dangerous have become more viable, bringing remarkable economic benefits
for ocean transportation [134]. The safety of Arctic shipping requires accurate monitoring
of sea ice as well. Therefore, the continuous mapping of sea ice extent and how it changes
over time has become a crucial research topic.

Among data collected from different space-borne remote sensors, synthetic aperture
radar (SAR) imagery has been demonstrated to be reliable for sea ice remote sensing [135,
136]. As an active radar, SAR offers moderate spatial resolution and expansive coverage
regardless of polar darkness and weather conditions. To date, national ice agencies, such
as the Canadian Ice Service (CIS), the US National Ice Center (NIC), and the Greenland
Ice Service affiliated with the Danish Meteorological Institute (DMI), rely mainly on SAR
data to provide information on ice conditions to users in the form of ice charts. A manually
drawn ice chart usually covers the ice concentration, stage of development, and form of ice
for the matched SAR image. Data collected from sources (e.g., passive microwave data,
environmental reanalysis data, and in-situ observations) are also used as references for
producing ice charts. Although the quality of ice charts is well controlled by ice analysts,
the labeling process is labor-intensive and time-consuming, and thus, the number of ice
charts that can be produced from SAR images on a given day is limited [137]. Therefore,
to produce more ice maps that cover a larger area with higher temporal resolution, it is
desirable to have a process in place that can either fully or partially automate the analysis
of SAR sea ice imagery [113].

As one of the most important tasks for sea ice mapping, sea ice classification consists
of two steps: ice cover detection and ice typing [138]. Although numerous studies for
automatic/semi-automatic sea ice cover detection (i.e., ice-water classification) have been
presented with high reported classification rates, distinguishing different ice types is a more
challenging step. One of the main challenges is the overlap of backscattering signatures of
different sea ice types. For example, at the C-band, the HH-polarized microwave backscat-
ter coefficient increases from grey to grey-white ice and then decreases as the ice grows
[139]. This indicates that using only backscatter intensity is not sufficient to discrimi-
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nate sea ice types. Moreover, the statistical non-stationarity introduced by the change in
backscatter intensity as a function of the incidence angle causes backscatter variation of
any particular sea ice type across the SAR scene [98]. During freeze-up and melt periods,
classification becomes increasingly difficult due to wet snow lowering radar penetration
depth, snow metamorphism, and increased ice dynamics [140].

To develop an automatic/partially automatic and robust sea ice classification system
that overcomes the aforementioned challenges, researchers have been applying machine
learning methods with features extracted from SAR imagery. Polarimetric and textural
features derived from the gray-level co-occurrence matrix (GLCM) [24] have been used
with classifiers such as Bayesian classifier [52], decision tree [35], support vector machine
(SVM) [34, 7], conditional random field (CRF) [45, 141, 142, 48], and Markov random field
(MRF) [49]. In recent years, deep learning has become popular in remote sensing from SAR
imagery. Among different data-driven deep learning models, convolutional neural networks
(CNNs) are widely adopted for sea ice classification [41, 111, 102, 10, 143, 40, 144] and sea
ice concentration estimation [63, 145, 137, 146, 147]. The ability to learn robust features
automatically from a large volume of training data makes the CNN-based model a more
preferable choice for sea ice classification compared with traditional machine learning.

However, so far, none of the CNN-based methods for sea ice classification have been
applied for operational sea ice mapping. One reason is that their classification is conducted
on a pixel-wise level, which is inconsistent with the ‘polygon’-based format of operational
ice charts. Specifically, the ice analyst manually demarcates the full SAR scene into appro-
priate spatial regions called polygons. Then, the analyst interprets each polygon, assigning
codes to define ice concentration and stages of development according to the sea ice nomen-
clature defined by the World Meteorological Organisation (WMO) [1]. Another reason is
that due to a lack of sufficient ground-truth pixel-based samples, those CNN-based meth-
ods are trained using limited SAR samples. Whether they can produce reliable predictions
over the data collected from different times and locations is uncertain. In contrast, an ice
chart is required for review by multiple experts before being distributed to the public, and
an amended or corrected version will be released if necessary [6], which further ensures its
reliability.

In contrast to the pixel-level automatic classification that specifies which pixel belongs
to which class without quality control, it is worthwhile to pursue a method that provides
regional-level (i.e., polygon-based) labels that specify which type of ice is contained in a
region. With polygon-based information from ice charts, the region labels are more robust
to identification errors and easier to acquire [148]. Besides, to tackle the issue of limited
training data, semi-supervised learning has been introduced [149]. Various publications
demonstrate that semi-supervised methods, including self-training [150], semi-supervised

76



SVM [151], shared subspace learning [152], and graph-based neural networks [153, 154],
achieve robust performance when dealing with limited labeled training data. Li et al. [142]
presented an ice-water classification method called ST-IRGS, which integrates semantic
segmentation, global merging, and self-training. The algorithm outperformed the Gaussian
maximum likelihood classier and Gauss-Markov random field on a dual-pol RADARSAT-2
dataset with scarce training samples. Khaleghian et al. [11] reported a teacher-student-
based semi-supervised deep learning method to discriminate sea ice types. The proposed
method learned sea ice characteristics from limited labeled samples and massive unlabeled
samples.

Graph-based neural networks, especially graph convolutional networks (GCNs) [155],
stand out from the rest of the semi-supervised methods for classification in remote sens-
ing imagery. Specifically, pixel-based methods cannot capture the inherent geometry and
distinct structure in the remote sensing data space. The vertices and edges in a graph nat-
urally represent the topological relationships in the remote sensing imagery, and GCNs can
extract non-Euclidean features from each vertex. Moreover, the graph structure in a GCN
allows for significant computational cost reduction compared with pixel-based methods.
Zhang et al. [156] developed a GCN-based model named SPGCN for hyperspectral image
classification. A spatial pooling layer was introduced to the model to reduce the patch size
and graph size after each convolutional layer. The model’s performance was evaluated on
three hyperspectral datasets, and the results illustrated that SPGCN achieved competitive
accuracy compared with CNN-based models with less runtime. Wang et al. [157] applied
broad learning as a fully connected layer to GCN and used an intra-class divergence ma-
trix and an inter-class divergence matrix to train it. The proposed model considered both
the inter-class and intra-class spacing of sample features and improved the classification
accuracy for hyperspectral images compared with that of a classic GCN.

While the methodologies presented in Chapters 2 and 3 yield encouraging results in
sea ice classification, they are subject to certain limitations. Firstly, the integration of
spatial and contextual features is somewhat akin to a post-processing step. The labeling
mechanisms within these methods depend solely on the segmentation outcomes, restricting
the potential synergistic interplay between spatial and contextual information that could
enhance classification accuracy. Secondly, the scope of contextual features in these ap-
proaches is confined to local regions, leaving the influence of global contextual information
on classification performance unexplored.

To address these challenges and establish a more effective framework for sea ice clas-
sification, this thesis introduces an interactive sea ice classification method that discerns
between water and three types of ice. This method, termed IceGCN, integrates a CNN
with a GCN. Unlike conventional handcrafted features, such as those based on GLCM, the
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CNN-derived features elevate classification precision while accelerating the feature extrac-
tion process. Furthermore, the IRGS unsupervised segmentation algorithm is employed
to retain the delineation of boundaries between different ice types. In addition, the GCN
component of IceGCN is designed to learn contextual features adeptly on a global scale,
surpassing the regional limitations of previous methods. Employing a semi-supervised
GCN allows for the fusion of spatial and contextual features, generating accurate sea ice
classification maps with a constrained number of labeled samples, thus aligning with op-
erational needs. The efficacy of the proposed IceGCN approach is rigorously assessed in
comparison to established benchmarks using a dual-polarization RADARSAT-2 dataset.

Therefore, to address these challenges and provide a more robust and efficient pipeline
for sea ice monitoring, we propose an interactive sea ice classification method to iden-
tify water and three ice types. The method integrates a CNN into a GCN and is named
IceGCN. Compared with traditional handcrafted features, e.g., GLCM features, apply-
ing the features extracted by CNN improves the classification accuracy and reduces the
processing time of feature extraction. Moreover, boundaries between ice and different ice
types are preserved by introducing the Iterative Region Growing with Semantics (IRGS)
unsupervised segmentation algorithm. Unlike the supervised models used in other studies,
a semi-supervised GCN is employed to combine the spatial context features and produce
reliable sea ice classification maps using limited labeled samples for operational purposes.
The performance of the proposed method is evaluated and compared with benchmark
methods on a dual-pol RADARSAT-2 dataset.

Following Section 4.1, Section 4.2 describes the SAR dataset used in this research and
presents the proposed sea ice classification system in detail. The experimental results are
discussed in Section 4.3. In the end, the conclusion is summarized in Section 4.4.

4.2 Methodology

In this section, we present a semi-supervised method that seamlessly combines local spatial
characteristics extracted through CNN with global spatial features derived from GCN for
the purpose of classifying sea ice. The workflow of our proposed method, named IceGCN,
is illustrated in Figure 4.1. First, the input HH/HV scenes are oversegmented into small
homogeneous regions (superpixels) by employing the IRGS algorithm [70]. Subsequently,
a graph can be constructed upon these superpixels, wherein the weights between adjacent
superpixels are determined by edge strength. Following this step, a pre-trained CNN
extracts pixel-level features that are then aggregated by pooling to generate an array
of feature vectors, each representing the essence of an individual superpixel. Later, two
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Figure 4.1: Workflow diagram of the proposed IceGCN.
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graph convolutional layers are deployed to learn the spatial and contextual relationships
between superpixels, utilizing a limited amount of labeled data. Finally, a softmax layer is
introduced to ingest outputs of the graph convolutional layers and assign the sea-ice label
for each superpixel. Unlike the two-stage frameworks previously posited in this thesis,
which distinctly segment and then label the SAR imagery, IceGCN innovatively merges
segmentation, and labeling into a singular, cohesive stage.

4.2.1 Superpixel Generation

SAR imagery that is commonly utilized for sea ice monitoring often covers broad spatial
expanses, with pixel dimensions reaching up to 10,000 by 10,000. Building a graph on
such an enormous number of pixels becomes impractical. Thus, we divide the SAR im-
agery into smaller regions known as superpixels, composed of pixels sharing highly similar
characteristics. By constructing a graph on these superpixels, we significantly decrease the
required memory space and computational power. The IRGS method, a Markov random
field (MRF)-based algorithm specifically designed to provide reliable segmentation in SAR
imagery, is utilized to generate superpixels in this study. The segmentation is performed
by minimizing an energy function that blends the Gaussian mixture distribution and edge
strength. The energy function is defined as follows [70]:

E =
∑
i∈R

υG(xi) +
∑
⟨i,j⟩ξ

υE(xi, xj) (4.1)

where υG(·) depicts the Gaussian statistics for pixels x inside regions R generated by the
initial watershed segmentation, and υE(·) accounts for edge strength between adjacent
regions ξ (connected regions).

The original IRGS is applied to the whole SAR scene. However, with the spatial size
increases, the incidence angle varies considerably across the SAR scene, causing statistical
non-stationarities for each class. Luckily, these non-stationarities only pose issues at larger
scales. This characteristic inspires processing SAR images on smaller scales to mitigate
incidence angle variation-related challenges. Therefore, a segmentation strategy called
‘glocal’ [50], which combines local details and global statistics, is combined with original
IRGS and applied to SAR scenes to generate superpixels.

First, the entire scene is divided into smaller regions, called autopolygons [50], using a
modified watershed algorithm [70] with seeds from a 12×12 grid. Then, IRGS is applied
to each autopolygon individually to produce an oversegmentation, which is the local step
of the glocal. Lastly, the global step glues the oversegmentation regions across the full
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scene, creating larger regions. Such a glocal strategy can provide robust segmentation and
divide the full scene into homogeneous regions, called superpixels, with high homogeneity
and compactness. Consequently, each superpixel is regarded as a homogeneous entity,
representing a node in the graph.

Given a dual-pol SAR image X = {x1, x2, · · · , xN} ⊂ R2×N , where xi = {xi,HH , xi,HV }
denotes the HH and HV polarizations for pixels in terms of intensity, while N is number
of pixels in the SAR image. IRGS segmentation algorithm divided SAR image X into a
superpixel set S = {s1, s2, · · · , sM}, where sm = {x1

m, x
2
m, · · · , xnm

m } (m = 1, 2, · · · ,M) is
the mth superpixel. nm represents the number of pixels in the superpixel sm, and M is the
number of superpixels.

In summary, introducing superpixels reduces the computational cost and the processing
time of sea ice classification. It also preserves the local structure between homogeneous
regions, as the adjacent superpixels with similar features are likely to have the same ice
type. Furthermore, the process of generating superpixels and assigning labels to them
mirrors the pipeline of creating ice charts: dividing the SAR scene into polygons and
determining the ice concentration and stage of development within them.

4.2.2 CNN-based feature extractor

Upon generating superpixels through the glocal-based IRGS, feature vectors for each su-
perpixel are extracted. Applying the CNN model for feature extraction in the proposed
IceGCN is ideal due to its capacity for learning high-level spatial relationships via hierar-
chical convolutional layers. Generally, a CNN’s performance and depth exhibit a positive
correlation. However, as the number of layers increases, minor gradient changes may
amplify during backpropagation, resulting in exploding and vanishing gradients. Various
alternative models, such as the renowned ResNet [122], have been proposed to address
performance degradation in classic CNNs.

ResNet introduces the residual block and identity mapping to tackle the performance
degradation issues found in traditional CNNs with deeper architectures. To extract ade-
quate high-level features characterizing the sea ice stage of development for each pixel in
the SAR image, the depth of the CNN-based feature extractor must be substantial. There
are two main residual blocks, basic block and bottleneck. The bottleneck block is chosen
to construct the feature extractor backbone because the bottleneck has fewer trainable
parameters and demands less computational power [122]. Figure 4.2 illustrates the feature
extraction module’s architecture and the bottleneck block’s structure, as utilized in this
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Figure 4.2: Architecture of feature extraction module in IceGCN.
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study. This architecture bears similarity to previous research [116], which underwent eval-
uation for ice-water classification. Owing to the intricate nature of differentiating different
sea ice types, the number of output channels of each residual block is quadrupled compared
to input channels, enhancing the model’s complexity. The loss function for this model is
the cross-entropy cost function, which is defined as follows

loss = − 1

n

∑
n

y ln ŷ + (1− y) ln(1− ŷ) (4.2)

where n is the number of samples in a batch, while y and ŷ denote the true and predicted
labels, respectively. It’s crucial to emphasize that, before integrating with IceGCN, the
CNN-based feature extraction module needs to be pre-trained on a distinct dataset.

4.2.3 Graph Construction

Given the generated superpixels and the corresponding feature vectors, the specific steps
for constructing the graph are described in this subsection.

Unlike images, which are exhibited in the form of a rectangular lattice in the Euclidean
plane, graphs usually have irregular shapes and consist of a set of nodes and connecting
edges. Let G = (V,E) represent an undirected graph, where V is a group of vertices
(nodes), and E is a set of edges connecting them. A symmetric sparse matrix A ∈ RM×M

called the adjacency matrix (similarity matrix) is used to describe edges between nodes.
If any two nodes, vi and vj, are connected by an edge E(vi, vj) directly, vi and vj are
considered to be adjacent. Ai,j represents the weight of E(vi, vj) between vertices vi and
vj. The most commonly used definitions of Ai,j are connectivity and distance. However,
neither of these can sufficiently address the relationship between the adjacent vertices.
Therefore, a similarity function sim(i, j) is proposed to measure the weight between vi and
vj. Ai,j in this study is defined as follows,

Ai,j =

{
sim(i, j) , if vi and vj are adjacent

0 , otherwise
(4.3)

where vi and vj ∈ V , and M is the number of nodes in the graph. sim(i, j) is a function
that evaluates the similarity between vi and vj. Because the Gaussian distribution is often
used to model the distribution of backscatter intensity of sea ice in SAR imagery, relative
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entropy [158] is selected as the function for sim(i, j), which is defined as follows:

sim(i, j) = exp

[∑
xi∈vi
xj∈vj

(
P (xi) log

P (xi)

P (xj)
+

P (xj) log
P (xj)

P (xi)

)
/2

] (4.4)

where P (xi) and P (xy) are the probability distributions of vertices vi and vj. Since we
assume the backscatter intensity of different sea ice types in the linear scale obey Gaussian
distributions in IRGS segmentation, Equation 4.4 can be rewritten as

sim(i, j) = exp

[(
log(

σj

σi

) +
σ2
i + (µi − µj)

2

2σ2
j

− 1

2
+

log(
σi

σj

) +
σ2
j + (µj − µi)

2

2σ2
i

− 1

2

)
/2

]

= exp

(
σ2
i + (µi − µj)

2

4σ2
j

+
σ2
j + (µj − µi)

2

4σ2
i

− 1

2

)
(4.5)

where µi, σi, µj, and σj are means and variances of vi and vj, respectively.

4.2.4 Graph Convolutional Network

GCNs are inherently suited for processing graph-structured data, which renders them an
ideal candidate for application to segmentation results that typically manifest in irregular
shapes. Beyond their adaptability to non-Euclidean data, GCNs possess the capacity to
learn spatial features and contextual relationships simultaneously. The convolutional oper-
ations within GCNs are designed to incorporate the features of adjacent nodes, effectively
capturing both spatial patterns and contextual information among superpixels. These ca-
pabilities facilitate a comprehensive understanding of the underlying structure within the
segmentation results. Therefore, GCN is chosen as the backbone of the proposed method
for sea ice classification.

After constructing the graph and calculating the feature vectors of vertices, the unla-
beled vertices are classified using the label information propagated from the limited labeled
ones. A graph convolutional network [155] is applied for label propagation in this study.
The computation inside a basic graph convolutional layer is given by:
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Xl+1 = act(LXlWl) (4.6)

where Xl and Xl+1 are the input and output of the l-th layer, respectively. Wl denotes
the learnable weight matrix of l-th layer. act(·) represents the activation function, which
is the rectified linear unit (ReLU) in the proposed model. L represents the combinatorial
Laplacian matrix, which is defined as

L = D−A (4.7)

Here, D is the diagonal degree matrix of A where Di,i =
∑

j Ai,j. The introduction of
D adds features of the node itself to the computation when summing up feature vectors
of adjacent nodes. However, the combinatorial Laplacian matrix is usually unnormalized,
and therefore the impact of nodes with more neighbors will be amplified when multiplying
L with all the feature vectors of adjacent nodes. Hence, Â, a variant of A, also known as
the symmetric normalized Laplacian matrix, is introduced to replace L

Â = D̃− 1
2 ÃD̃− 1

2 (4.8)

where Ã = A + IM is the adjacency matrix A with added self-looping. IM is the identity
matrix, and D̃ denotes the degree matrix of Ã. Therefore, (4.6) can be rewritten as:

Xl+1 = act(ÃXlWl) (4.9)

Let feature set F = {f1, f2, · · · , fM} ⊂ RK×M represent the extracted features of the
superpixel set S, where K = 512 is the number of feature extracted. The feature vector fm
for mth superpixel is defined as the aggregation of the feature vectors of every pixel inside
using averaging pooling. The definition of f is elaborated as follow:

fm =
1

nm

nm∑
i=1

xi
m (4.10)

In summary, the GCN incorporated in the IceGCN consists of two graph convolutional
layers and a softmax layer. Assume the output of GCN, a vector of sea ice stage of
development for superpixels S, is y, the architecture of GCN can be formulated as follows:

y = softmax(ÂReLu(ÂFW0)W1). (4.11)
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4.3 Experiments and Analysis

In this section, the RADARSAT-2 dual-pol dataset used in this study is delineated, along
with the training and testing strategies. The performance of the proposed method is then
evaluated and compared with benchmark methods.

4.3.1 Data Overview

The dataset used in this study consists of 18 dual-polarized WideScan RADARSAT-2
scenes, which is the same dataset used in a previous study [116]. Table 4.1 shows the
scene ID, acquisition date and time, and the orbit of the 18 scenes. Within each scene, the
incidence angle ranges from 19°: to 49°. Initially presented in sigma-nought format on a
linear scale, the data was subsequently normalized to fit within the [0,1] range, conforming
to the input requirements of the CNN model. The size of the original images is around
10000 by 10000 pixels. To enhance computational efficiency, 4×4 block averaging reduces
image sizes. Post-downsampling, the nominal pixel spacing is 200 m, which still contains
much more details than human-created ice charts.

Upon the generation of superpixels, as delineated in Section 4.2.1, a random subset was
chosen to serve as training and testing samples. These samples were subsequently labeled
in accordance with the ice chart classifications provided by an analyst from the Canadian
Ice Service (CIS). For the purposes of this study, sea ice has been categorized into four
distinct types: multi-year ice (MYI), first-year ice (FYI), young ice (YI), and open water
(OW).

4.3.2 Sea Ice Appearance in the dataset

The appearance of sea ice in SAR imagery depends on many factors, including environmen-
tal conditions, SAR imaging parameters, and the characteristics of the sea ice itself [159].
Figure 4.3 shows patch samples of different ice types in HH and HV polarized scenes of
the dataset used in this study. Since the SAR sensor transmits horizontal linear microwave
and receives both horizontal and vertical returns, the co-polarization (HH) backscatter
typically is higher (brighter in the scene) than that of cross-polarization (HV) [160].

OW presents as relatively dark in both polarizations and even more so in the HV
images. This darker appearance is attributed to the sea’s reflective nature, which tends to
scatter most of the microwave signals away from the SAR antenna. Conversely, YI exhibits
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Table 4.1: List of SAR scenes used in this work.

Dataset SceneID
SAR Acquisition
Date (M/D/Y)

Acquisition Time
UTC (hh:mm:ss)

Ascending (A)/
Descending (D)

Dataset-1

20100623 041255 06/23/2010 04:12:55 A
20100629 163326 06/29/2010 16:33:26 D
20100721 173208 07/21/2010 17:32:08 D
20100730 162908 07/30/2010 16:29:08 D
20100807 173610 08/07/2010 17:36:10 D
20100816 163329 08/16/2010 16:33:29 D
20100907 035614 09/07/2010 03:56:14 A
20100909 163321 09/09/2010 16:33:21 D
20101003 163324 10/03/2010 16:33:24 D
20101021 041325 10/21/2010 04:13:25 A
20101114 041304 11/14/2010 04:13:04 A
20101206 015139 12/06/2010 01:51:39 A
20101214 025725 12/14/2010 02:57:25 A

Dataset-2

20100418 163315 04/18/2010 16:33:16 D
20100426 040439 04/26/2010 04:04:39 A
20100510 035620 05/10/2010 03:56:20 A
20100524 034756 05/24/2010 03:47:56 A
20101027 025726 10/27/2010 02:57:26 A

more complex surface structures compared to other types of sea ice. This complexity arises
from dynamic processes such as collisions and fracturing, which are driven by the forces
of ocean currents and wind. As shown in Figure 4.3(c) and 4.3(d), there can be numerous
fissures and ridges presented in a sample of YI. Fissures and ridges are still noticeable for
first-year ice, and ice floes start to appear in the scene. Compared with other sea ice types,
MYI is recognizable in both polarized scenes, particularly in HV images. As sea ice ages,
it naturally drains brine to decrease its salinity. Such a change allows the C-band SAR
signal to penetrate the ice and generate volume scattering that characterizes the older ice.

In addition, influences such as temperature and humidity changes may create melt
ponds that obscure ice completely. The presence of wet snow can significantly alter the
microwave penetration depth, thereby changing the characteristic backscatter of the ice.
Wind over open water increases its roughness and backscatter characteristics [161]. Lower
temperature contributes to higher backscatter, while the presence of wet snow caused by
higher temperature usually reduces it [159].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: Different stages of development of sea ice in patches cropped from HH an HV
polarized scenes in the same location. Open water in HH (a) and HV (b). Yong ice in HH
(c) and HV (d). First-year ice in HH (e) and HV (f). Multi-year ice in HH (g) and HV
(h).

4.3.3 Experimental Setup

Experiments are conducted on a workstation with an Intel(R) Core(TM) i9-9920X CPU
@ 3.50GHz × 24 threads, 128 GB RAM, and three GeForce GTX 2080Ti GPUs with
12 GB of memory. All the deep learning models are implemented using PyTorch, and the
IRGS segmentation algorithm is delivered by the MAp-Guided Ice Classification (MAGIC)
system [74].

Since the feature extraction module in IceGCN requires a separate dataset for pre-
training, we split the 18-scene dataset into two subsets, Dataset-1 and Dataset-2, to avoid
using samples from the same scene for training the feature extraction module and evaluating
the proposed IceGCN. The feature extraction module is trained, validated, and tested
on Dataset-1, which consists of 13 scenes. Dataset-2 is comprised of the remaining five
scenes and is utilized for evaluating the IceGCN and comparison methods. The number of
superpixels for training and testing of Dataset-2 is provided in Table 4.2.

As delineated in Section 4.3.1, the generation of training and testing samples is con-
ducted at the superpixel level. Following the creation of superpixels for each SAR scene,
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a scheme is implemented to select them randomly. These selected superpixels are then
annotated in alignment with the associated sea ice charts. It is important to recognize
that these ice charts serve merely as an approximate guide to the distribution of sea ice
within a given scene. Consequently, expert judgment was also employed during the labeling
process to enhance the accuracy of the training and testing samples. This approach, while
informed, does acknowledge the potential for discrepancies between the labeled superpixels
and the information presented in the sea ice charts, particularly in regions proximate to
boundaries where the delineation is more prone to ambiguity.

Due to the nature of semi-supervised models, when evaluating a scene, C, IceGCN is
trained using samples from Dataset-2, while its feature extraction module undergoes pre-
training on Dataset-1. Subsequently, the model is evaluated using testing samples from
C. Considering that benchmark methods are fully supervised, they are initially trained on
Dataset-1 and then fine-tuned with training samples from Dataset-2, ensuring a just and
equitable training strategy for all methods examined in the experiments.

Table 4.2: Number of superpixels for training and testing in Dataset-2.

Scene ID Ice type # of train # of test

20100418
FYI 118 234
MYI 204 395

20100426
FYI 243 517
MYI 64 513

20100510
OW 27 49
FYI 68 151
MYI 208 452

20100524
OW 34 68
FYI 110 213
MYI 135 259

20101027
OW 96 157
YI 172 293
MYI 5 11

The performance of random forest (RF), ResNet, IRGS-RF, and IRGS-ResNet in sea ice
classification was explored in Chapters 2 and 3. However, their efficacy when trained with
a limited number of labeled samples has not yet been assessed. Consequently, these models
are designated as baselines for comparative analysis in the current study. Despite the fact
that RF and ResNet rely on features extracted from limited receptive fields and may not
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Table 4.3: GLCM parameters used to train the RF model in the study.

Receptive field (pixels) Step size (pixels)
5× 5 1
11× 11 1
25× 25 1
25× 25 5
51× 51 5
51× 51 10
51× 51 20
101× 101 10
101× 101 20

capture contextual information on larger scales, their widespread use in the classification
of remote sensing images warrants their inclusion in this comparative study.

Several studies have endeavored to amalgamate spatial features with contextual infor-
mation to differentiate between sea ice and water [141, 142, 48]. Nevertheless, research
focusing on the discrimination of various sea ice types employing this combined approach
remains scarce. Zhu et al. [45] proposed a novel method that harnesses a conditional ran-
dom field (CRF) applied to the classification outputs obtained from an SVM. This method
did result in enhanced classification accuracy in comparison to SVM alone and other sim-
ilar models. It was particularly effective in restoring details along sea ice boundaries and
refining some of the SVM’s classification inaccuracies. However, the application of CRF
across an entire SAR scene means that the SVM-CRF approach is susceptible to the dis-
tortive effects of speckle noise and variations in the incidence angle. These susceptibilities
can induce new classification errors, especially at the near and far ranges of SAR scenes.
Due to these limitations, the overall efficacy of SVM-CRF is anticipated to be comparable
to that of IRGS-RF. Consequently, SVM-CRF has not been included in the set of models
selected for the comparative experiments in this research.

Although RF and ResNet offer certain advantages, it is anticipated that IRGS-RF
and IRGS-ResNet will outperform them, achieving higher accuracy both qualitatively and
quantitatively. However, the contextual features learned by IRGS-RF and IRGS-ResNet
are restricted to local vicinities. This limitation could potentially compromise their per-
formance in SAR scenes characterized by complex ice conditions. In contrast, the GCN
module within IceGCN possesses the inherent capability to incorporate contextual infor-
mation on a global scale through feature propagation among superpixels. This attribute
theoretically positions IceGCN to deliver superior classification results when compared to
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the aforementioned models.

The ResNet model shares the same architecture as the feature extraction module in
IceGCN, except a softmax layer is added to ResNet for predicting. To train the RF-based
model, GLCM features are extracted, which consist of angular second moment, contrast,
correlation, dissimilarity, entropy, homogeneity, inverse moment, mean, and standard devi-
ation with the relative angle at 0°, and the receptive field and step sizes listed in Table 4.3.
The hyperparameters of RF are set as follows using a cross-validation-based grid search
[116]: the number of trees=250, max depth=10, and minimum samples per leaf=2.

4.3.4 Experimental Results

The experimental results are presented in two ways. First, the classification accuracy of
RF, IRGS-RF[116], ResNet, IRGS-ResNet[162], and IceGCN is computed based on the
correctly classified sample pixel count, providing a quantitative performance evaluation
of the proposed methods against benchmark methods. Second, a visual analysis of the
classification maps generated by RF, IRGS-RF, ResNet, IRGS-ResNet, and IceGCN offers
insights into the qualitative performance of IceGCN and the comparative methods for
real-world operational applications.

The quantitative results obtained by RF, IRGS-RF, ResNet, IRGS-ResNet, and IceGCN
are reported in terms of classification accuracy in Table 4.4, where the highest accuracies
among all methods for each scene are highlighted in bold for each row. In general, the
proposed IceGCN achieves the best classification performance with an average/overall ac-
curacy of 95.54%, where the accuracies of each scene are 91.20%, 97.52%, 96.39%, 95.61%,
and 95.77%, respectively. Unsurprisingly, the performance of IceGCN is generally supe-
rior to that of the comparison methods because both local and global spatial information
is utilized for classification. IceGCN outperforms other methods in all scenes in the test
dataset (Dataset-2), demonstrating the robustness of the proposed method.

Comparing the two benchmark methods shows that the ResNet outperforms RF in
three out of four scenes. In detail, RF acquires an overall accuracy of 80.00%, where the
accuracies of each scene are 68.35%, 87.08%, 82.46%, 83.57%, and 72.44%, respectively.
Although RF delivers relatively good results in distinguishing FYI and OW, it misclassifies
MYI to FYI in most scenes, especially the scene captured on April 18, 2010. In contrast,
ResNet achieves an overall accuracy of 84.56% without a significant performance drop in
any sea ice type. The classification accuracies of each scene are 83.30%, 82.62%, 87.42%,
85.94%, and 86.12%, respectively. The quantitative results indicate that ResNet is a better
method when only considering pixel-wise classifiers for operational sea ice monitoring. For
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Table 4.4: Classification accuracy of RF, IRGS-RF, ResNet, IRGS-ResNet, and IceGCN.

Scene ID Category RF IRGS-RF ResNet IRGS-ResNet IceGCN

20100418
FYI 95.32% 95.83% 79.37 79.32% 85.24%
MYI 52.37% 57.62% 84.26% 85.65% 94.73%

Overall 68.35% 71.83% 83.30% 83.04% 91.20%

20100426
FYI 80.27% 81.47% 75.81% 76.76% 98.31%
MYI 93.94% 93.35% 89.48% 90.38% 96.72%

Overall 87.08% 87.39% 82.62% 83.54% 97.52%

20100510

OW 96.16% 96.30% 94.85% 95.69% 96.74%
FYI 94.68% 95.05% 80.91% 83.70% 98.66%
MYI 76.89% 80.25% 88.79% 87.61% 95.59%

Overall 82.46% 84.88% 87.42% 88.31% 96.39%

20100524

OW 96.58% 98.97% 92.65% 92.40% 95.31%
FYI 92.46% 94.48% 80.72% 86.41% 99.24%
MYI 72.84% 76.54% 88.47% 87.96% 92.77%

Overall 83.57% 86.44% 85.94% 87.90% 95.61%

20100027

OW 90.75% 94.58% 93.98% 95.03% 94.93%
YI 63.83% 70.64% 81.97% 90.52% 97.37%
MYI 40.46% 34.04% 84.33% 75.78% 65.15%

Overall 72.44% 77.92% 86.12% 91.70% 95.77%
Overall accuracy 80.00% 82.47% 84.56% 86.09% 95.54%

two-stage models, IRGS-ResNet achieves better classification performance than IRGS-RF,
with an overall accuracy of 86.09%.

Since quantitative classification rates are calculated using limited labeled data, visu-
ally inspecting classification maps provides an intuitive basis for performance evaluation.
Classification results of the scene acquired on April 18, 2010 are presented in Figure 4.4.
Because RF and ResNet do not have any prior knowledge about the testing scene, they
treat each scene equally. RF and ResNet misclassify some regions into YI, which does not
appear in this scene. In contrast, IceGCN does not suffer from this problem owing to the
prior knowledge introduced by the limited labeled sample of the scene, i.e., human interac-
tions. Figure 4.4(d) demonstrates that significant misclassifications of MYI are presented
in the classification maps produced by RF, especially in the upper part of the scene.

Although IRGS-RF enhances the quality of the sea ice map in Figure 4.4(e) by properly
classifying regions near sea ice boundaries and suppressing misclassification of YI, the
classification maps produced by RF-based models have the worst visual quality. This

92



(a) (b) (c) (d)

(e) (f) (g) (h)

Young ice First-year ice Multi-year ice Open water

Figure 4.4: Classification results for the scene obtained on April 18, 2010 (scene ID:
20100418). (a) HH polarization (b) HV polarization (c) Ice chart (d) RF (e) IRGS-RF
(f) ResNet (g) IRGS-ResNet (h) IceGCN.

reveals that the RF with handcrafted features is inadequate for discriminating sea ice types
in complex scenes. The classification map of ResNet in Figure 4.4(f) is improved compared
with that of RF. However, large-scale salt-and-pepper-like classification errors appear over
the whole image, which is caused by the fact that ResNet does not capture contextual
information of the center pixel. After integrating with segmentation results, IRGS-ResNet
eliminates most salt-and-pepper classification noise in Figure 4.4(g). However, the FYI
formed from frozen leads among MYI is missing since it is not preserved in the results of
ResNet. Compared with other methods, the proposed IceGCN removes salt-and-pepper
classification noise while preserving the edges and boundaries between different sea ice
types that are accurately labeled.

Figure 4.5 shows the results of the scene collected on May 24, 2010. The misclassifica-
tions of YI arise again in the classification maps of RF and ResNet. The salt-and-pepper
classification noise is severe in the result of ResNet, though the outlines of major sea ice
regions are mostly preserved. These similar classification errors are also present in the
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Young ice First-year ice Multi-year ice Open water

Figure 4.5: Classification results for the scene obtained on May 24, 2010 (scene ID:
20100524). (a) HH polarization (b) HV polarization (c) Ice chart (d) RF (e) IRGS-RF
(f) ResNet (g) IRGS-ResNet (h) IceGCN.

classification map of IRGS-ResNet since the proposed method’s infrastructure is based on
ResNet. Fortunately, the superpixels generated by IRGS suppress the salt-and-pepper clas-
sification noise and contribute to a smoother, more appealing result than that of ResNet.
The result of RF containing much less noise-like misclassification is attributed to the multi-
scale spatial context information captured in the GLCM features.

Figure 4.6 presents another instance underscoring IceGCN’s superiority. Captured
during the freeze-up season on October 27, 2010, this scene exhibits considerable incidence
angle variation. Notably, water, more susceptible to incidence angle variation than sea
ice, appears markedly brighter at lower incidence angles (left side of the scene) compared
to higher incidence angles (right side of the scene). The ice-covered area features fissures,
ridges, and freezing-up leads, complicating the differentiation of YI and FYI for benchmark
methods. RF faces challenges in distinguishing YI, misclassifying nearly half of it as FYI,
although IRGS-RF slightly mitigates misclassification. ResNet and IRGS-ResNet more
effectively classify YI but falter in predicting MYI due to the sparse presence of MYI in
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Young ice First-year ice Multi-year ice Open water

Figure 4.6: Classification results for the scene obtained on October 27, 2010 (scene ID:
20101027). (a) HH polarization (b) HV polarization (c) Ice chart (d) RF (e) IRGS-RF (f)
ResNet (g) IRGS-ResNet (h) IceGCN.

the scene and the similar backscatter characteristics of MYI and YI. In contrast, IceGCN
attains significantly higher accuracy in classifying YI, owing to human interaction that
eliminates FYI from training data. Nonetheless, the limited MYI samples—five for training
and eleven for testing—result in a suboptimal classification accuracy of 65.15% for MYI.
Despite this, IceGCN still surpasses the benchmark methods by a substantial margin in
overall accuracy.

The performance of IceGCN is also assessed using various training sample quantities.
Training samples per class are randomly chosen, ranging from 20% to 100% of available
samples, in increments of 20%. Figure 4.7 illustrates the classification accuracies. A marked
enhancement in classification accuracy is discernible as the training sample ratio advances
from 20% to 60%. Beyond the 60% threshold, the increasing trend plateaus—except for
MYI in scene 20101027, where an extremely limited number of samples exist. These
findings demonstrate that IceGCN can produce remarkable classification outcomes even
when constrained by a limited pool of labeled samples.
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(a). Scene: 20100418 (b). Scene: 20100426

(c). Scene: 20100510 (d). Scene: 20100524

(e). Scene: 20101027

Figure 4.7: Classification accuracy of IceGCN on Dataset-2 with different training sample
ratios.
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4.4 Summary

The IRGS segmentation-generated superpixels maintain homogeneity, preserving edges and
boundaries among various sea ice types. Additionally, GCN propagates feature informa-
tion from labeled nodes, classifying unlabeled nodes in the graph. Consequently, a graph-
based method, IceGCN, is demonstrated to improve the sea ice classification accuracy
using RADARSAT-2 duel-pol scenes. IceGCN consists of three primary components: su-
perpixel generation, feature extraction, and graph convolution. The experimental results
demonstrate that the proposed method outperforms the other comparison methods in both
quantitative and qualitative assessments.

Due to the semi-supervised nature of IceGCN, human involvement is necessary to supply
initial training samples for each SAR image. This process constrains the distribution of
sea ice within the scene and minimizes the misclassification of non-existent sea ice types.
This characteristic is similar to the procedure used by human experts to generate sea ice
charts. Experimental findings indicate that classification maps created by IceGCN are more
natural, precise, and potentially better suited for operational use than those generated by
benchmark methods. Furthermore, IceGCN demands only a limited number of training
samples to predict a SAR scene. Typically, the labeling process takes an ice expert under
five minutes, resulting in a substantial time reduction compared to the prevailing human-
centric pipeline.

In future work, more ablation studies can be conducted to investigate the contributions
of the components in IceGCN. Potential investigations may involve testing different super-
pixel generation and feature extraction algorithms. Moreover, IceGCN currently focuses
on local relations for adjacency matrix construction, so exploring the integration of local
and global information for graph construction may prove insightful.
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Chapter 5

Conclusion and Future work

5.1 Summary of Contributions and Results

The primary objectives of this thesis are to design and develop innovative machine learning
frameworks, with a special emphasis on sea ice classification for operational applications,
utilizing SAR imagery. In light of identified research gaps from existing studies, the in-
tegration of spatial and contextual features emerges as a promising avenue to fulfill these
objectives. Hence, this thesis endeavors to unravel methods for the extraction and utiliza-
tion of spatial and contextual features in SAR imagery to enhance sea ice classification.

Drawing inspiration from the methodologies employed by the Canadian Ice Service in
generating ice charts, our approach to modeling sea ice classification parallels their oper-
ational pipeline. This methodology incorporates an initial unsupervised segmentation to
delineate homogeneous regions, which are subsequently labeled using advanced learning
algorithms. Owing to the proven efficacy of the IRGS segmentation algorithm, this the-
sis predominantly focuses on the development of labeling techniques and their seamless
integration with the segmentation process.

Despite the popularity of deep-learning-based models in the remote sensing domain and
their validated performance, the substantial demand for extensive labeled samples hampers
their application in distinguishing diverse sea ice types at the pixel level. Consequently,
a classification method that depends on spatial features extracted by human-engineered
metrics, denoted as IRGS-RF, is introduced in Chapter 2. This method employs a random
forest classifier to provide initial pixel labels, while IRGS captures contextual information
within the SAR scene. An energy minimization framework is then devised to refine the
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initial results by combining outcomes from both IRGS and RF. The robustness of this
strategy is corroborated through its application to datasets exhibiting significant temporal
variations, including melting seasons and shifts in incidence angle in dual-polarization SAR
data.

In contrast to the intricate task of classifying different sea ice types, obtaining label
samples for the differentiation of sea ice from open water is comparatively straightforward.
Thus, Chapter 3 proposes a convolutional neural network based approach, termed IceNet,
which proficiently discriminates between sea ice and open water. The integration of a
regional pooling layer allows for the exploitation of spatial features discerned through
labeling, alongside the contextual information obtained from segmentation. Evaluations
conducted on a dataset comprising 21 RADARSAT-2 scenes of the Beaufort Sea from
2010 demonstrate the superior accuracy of IceNet over both benchmark and referenced
methodologies. Notably, IceNet ensures high precision while preserving the integrity of
ice-water boundaries and minimizing misclassifications.

Although the IRGS-RF and IceNet models exhibit notable efficacy and reliability, the
contextual features they leverage are heavily contingent on the performance of the IRGS
segmentation, which is confined to localized regions as opposed to the entire scene. Fur-
thermore, the scarcity of datasets with adequate labeled samples continues to preclude the
use of fully-supervised deep learning models for sea ice classification. Addressing these
constraints and the integration challenge, Chapter 4 introduces a semi-supervised graph
convolutional network based model, IceGCN. This novel method synergizes local spatial
features captured via CNN with global spatial and contextual features learned through
GCN, achieving enhanced sea ice classification performance. Significantly, IceGCN has
proven to enhance classification accuracy, both quantitatively and qualitatively, even with
a limited quantity of training samples.

In summation, the salient contributions of this thesis are as follows:

• Substantial improvement in sea ice classification accuracy from both qualitative and
quantitative standpoints.

• Creation of sea ice maps with pixel-level precision and clearly demarcated boundaries
between water and various sea ice types.

• First attempt to inherently integrate unsupervised segmentation and deep-learning
labeling for distinguishing sea ice in full-scene SAR imagery.

• Implementation of a GCN-based model that facilitates human-interactive operational
sea ice monitoring.
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• An exhaustive evaluation of the numerical accuracy, quality of the generated maps,
and computational efficiency of the proposed methodologies through a leave-one-out
cross-validation strategy.

5.2 Future Work

Although we have validated the performance of our proposed methods across a range of
seasons in the Beaufort Sea, comprehensive validation demands more extensive datasets
collected from various locations and across different years. Future studies can extend to
testing the methods with data acquired from new locations and assessing their generaliz-
ability. Additionally, we can explore the potential of using circularly polarized (CP) SAR
data from RCM, as this data type has shown promising potential for improving sea ice
classification compared to dual-polarized data [105].

Additionally, comprehensive ablation studies could be performed to assess the individ-
ual contributions of various components within the IceGCN model. These investigations
might include testing different superpixel generation algorithms, feature extraction tech-
niques, and exploring the fusion of local and global information for constructing more
efficient adjacency matrices.
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