
Adaptive Human-Chatbot Interactions:
Contextual Factors, Variability Design

and Levels of Automation

by

Glaucia Melo dos Santos

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Glaucia Melo dos Santos 2023

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Hausi A. Müller
Professor, Dept. of Computer Science, University of Victoria

Supervisor(s): Paulo Alencar
Adjunct Professor, Dept. of Computer Science
University of Waterloo

Daniel M. Berry
Professor, Dept. of Computer Science, University of Waterloo

Donald D. Cowan
Distinguished Professor Emeritus, Dept. of Computer Science
University of Waterloo

Internal Member(s): Edith Law
Associate Professor, Dept. of Computer Science
University of Waterloo

Meiyappan Nagappan
Associate Professor, Dept. of Computer Science
University of Waterloo

Internal-External Member: Ladan Tahvildari
Professor, Dept. of Electrical and Computer Engineering
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.”

iii

Statement of Contributions

In this thesis, the main content is derived from a fusion of previously published pa-
pers. Several segments have been modified and repurposed from the list of publications
as follows:

• Chapter 4 draws on a workshop paper. This paper is co-authored by my supervi-
sors Alencar and Cowan and me. I developed the experimental methodology and
the design of the literature review. I also carried out the execution of the literature
review. Prof. Alencar provided feedback and comments throughout this process.
Profs. Alencar and Cowan assisted also with the writing of the paper.

– G. Melo, P. Alencar, D. Cowan, “Context-Augmented Software Development
in Traditional and Big Data Projects: Literature Review and Preliminary Frame-
work”, 2019 IEEE International Conference on Big Data (Big Data), 2019, pp.
3449-3457.

• Chapter 5 draws on a workshop paper where Edith Law and I collaborated on the
design of the user study. Law, as the PI of the study, undertook the procedures
of the user study ethics application and partially funded the study. I designed the
study with the support of Law. I executed the study, collecting and analyzing data.
Alencar provided feedback and comments throughout this process, also having
partially funded the study. Alencar and Cowan assisted also with the writing of
the paper. Parts of this chapter were drawn from an ICSE Doctoral Symposium
publication and another publication at the BotSE, an ICSE Co-located workshop,
as follows:

– G. Melo, E. Law, P. Alencar, D. Cowan, “Understanding User Understand-
ing: What do Developers Expect from a Cognitive Assistant?”, 2020 IEEE
International Conference on Big Data (Big Data), Atlanta, GA, USA, 2020, pp.
3165-3172.

– G. Melo, “Designing Adaptive Developer-Chatbot Interactions: Context In-
tegration, Experimental Studies and Levels of Automation” 2023 IEEE/ACM
45th International Conference on Software Engineering: Companion Proceed-
ings (ICSE ’23). IEEE Press, Melbourne, Australia, pp. 235–239.

– G. Melo, L.F. Lins, P. Alencar, D. Cowan, “Supporting Conversational Agent-
Based Software Development” Proceedings of the 5th International Work-
shop on Bots in Software Engineering (BotSE), Melbourne, Australia, 2023
pp. 9-13.

iv

• Chapter 6 draws on publications co-authored by Nascimento, Alencar, Cowan
and me. I designed the study and planned the literature review. Nascimento as-
sisted with the design of feature models and the execution of the literature review.
Alencar provided feedback and comments throughout this process. Alencar and
Cowan assisted with reviewing the writing of the paper. Parts of Chapter 6 draw
also on the ICSE Doctoral Symposium publication mentioned above.

– G. Melo, N. Nascimento, P. Alencar, D. Cowan, “Understanding Levels of Au-
tomation in Human-Machine Collaboration”, 2022 IEEE International Con-
ference on Big Data (Big Data), 2022, pp. 3952-3958.

– G. Melo, N. Nascimento, P. Alencar, D. Cowan, “Identifying Factors that Im-
pact Levels of Automation in Autonomous Systems”, in IEEE Access, 2023,
vol. 11, pp. 56437-56452.

• Section 6.5 draws from a workshop paper, co-authored Nascimento, Alencar, Cowan
and me. Alencar, Nascimento and I worked together on conceptualizing the pa-
per, and Dr. Nascimento contributed the example. I designed the framework
proposed in this paper, based on conceptual discussions. Alencar provided feed-
back and comments throughout this process. Alencar and Cowan assisted with
the writing of the paper.

– G. Melo, N. Nascimento, P. Alencar, D. Cowan, “Variability-Aware Architec-
ture for Human-Chatbot Interactions: Taming Levels of Automation”, in 1st
International Workshop on Artificial Intelligence for Autonomous Comput-
ing Systems. Co-located with 4th IEEE International Conference on Auto-
nomic Computing and Self-Organizing Systems, 2023.

• Appendix E of this thesis draws on an ICSE New Idea and Emerging Results Track
paper. This paper is co-authored by Alencar, Cowan me. Alencar and I developed
the idea of the framework together. Alencar and Cowan assisted with the writing
of the paper.

– G. Melo, P. Alencar, D. Cowan, “A Cognitive and Machine Learning-Based
Software Development Paradigm Supported by Context.”, 2021 IEEE/ACM
43rd International Conference on Software Engineering: New Ideas and Emerg-
ing Results (ICSE-NIER), 2021, pp. 11-15.

v

Abstract

The landscape of software development is undergoing a significant transformation
characterized by various factors. A notable shift is the surging demand for software de-
velopers, driven by industries’ increasing reliance on software solutions to support their
operations. This increased demand is accompanied by an escalation in the complexity of
software development projects. In this dynamic environment, modern software systems
interact with numerous external systems, interfaces, data sources, and work practices.
This complexity requires developers to navigate a complex environment while creating
software.

Adding to this landscape is the emergence of AI-based conversational systems, a
transformative trend that is shaping software development processes. These systems,
powered by artificial intelligence and natural language processing, enable human-like
interactions through chatbots and virtual assistants. Software developers are increas-
ingly turning to AI-powered chatbots to support their work. These chatbots play di-
verse roles, ranging from technical query resolution or load testing to providing project
management insights and automating routine tasks. By harnessing the capabilities of
these AI-driven tools, developers can potentially enhance productivity, access pertinent
information swiftly, and optimize their workflows.

However, amid these developments, many challenges arise due to the intricate web
of contextual factors that influence software development processes, especially when
chatbots come into play. These contextual factors act as distinct pieces of a puzzle,
each altering how software development functions in the presence of chatbots. Unfortu-
nately, the existing research landscape has a limited understanding of these contextual
intricacies, resulting in insufficient design methods to adequately support developers
using chatbots. Moreover, addressing the customization of automation levels in these
interactions remains unexplored.

With the growing complexity of software development, coupled with the emergence
of advanced, AI-based conversational systems, the integration of chatbots to support
developers in their work has become prominent. There is a pressing need to address
the challenges in human-chatbot interactions, particularly in leveraging conversational
agents’ advances to tailor interactions to developers’ specific contexts and desired levels
of automation. This research explores the design of context-based adaptive interactions
between software developers and chatbots. By understanding and integrating the con-
textual factors that influence software development with chatbots, we aim to gain novel
insights into developers’ expectations regarding these interactions and the levels of au-
tomation involved and advance the design of human-chatbot adaptive applications.

vi

First, I perform a user study to investigate the requirements of conversational agents
in software development. I uncovered a vast list of desired requirements and insights
from participants, including that they are interested in working with such tools, in vari-
ous parts of the development lifecycle such as managing their tasks and version control.
One of the insights of this study was that contrary to the authors’ beliefs, not all devel-
opers were interested in automating all possible tasks. This insight led me to the next
part of this thesis, which was the investigation of the factors that influence how much
automation is desired in systems.

I then perform a literature review focused on studies about taxonomies of levels of
automation. I aimed to uncover from these studies, the factors that influence systems
switching from one level of automation to a different level. I identified these factors
and composed a list of 61 factors, which we divided into five categories, system, task,
human, environment, and quality. I propose feature model designs to represent these
factors and their relationships and instantiate this model with use cases.

This research provides a roadmap for the design of adaptive chatbot interactions that
align with developers’ specific needs and workflows. Empirical studies are conducted
to gain insights from developers’ experiences and expectations, ultimately driving the
design of context-aware chatbot interactions. Additionally, by examining the influence
of varying levels of automation on these interactions, I sought to identify factors that
shape the variability of automation levels, bridging the gap between human-system
interactions and autonomous systems.

vii

Acknowledgements

Many things had to work precisely right so I could come from being born in a poor
city in a 3rd world country to becoming a doctor at a world-renowned university in
Canada. Therefore, I have to start by thanking the unknown forces of this universe that
made all these precise movements on my behalf.

I owe immense thanks to my supervisor, Prof. Paulo Alencar, whose support and
guidance have been instrumental in shaping me as a researcher and an individual. Prof.
Alencar’s kindness, respect, and unwavering motivation have been a source of strength
during both triumphs and challenges. Working with such a brilliant and amiable men-
tor has been a privilege, and I can only hope for more opportunities to collaborate in
the future. I am deeply honoured and grateful to have worked with Donald Cowan and
Daniel Berry as my co-supervisors. Don, your exceptional guidance has been invalu-
able, and I cannot express enough gratitude for having collaborated with you. Dan, I
am incredibly thankful for your constant support and availability, despite your promi-
nence in the field. The privilege of being supervised by all of you is truly amazing.

I extend my gratitude to my committee members for their exceptional contributions.
Their support and guidance in shaping the scope of my work, and their insightful feed-
back during both the comprehensive exam and the defence, have been invaluable. The
detailed and constructive feedback provided not only enriched the quality of my re-
search but also fostered engaging and enjoyable discussions during the defence. I am
truly grateful for your dedication, and I look back on our collaborative efforts with im-
mense appreciation.

There are so many more people to give thanks to, as they were key to this accom-
plishment, this is another challenging section to write. I thank you all so much. Some
of these people I’m happy to mention specifically.

Toacy Oliveira for having paved the opportunity and supporting my research since
the very beginning, and for all the support I received when first arriving in Canada,
thank you so, so much. I also thank Walter Magioli, who made this all a possibility in
the first place. I am grateful to have had you as a boss and mentor.

To Damien Masson and Nils Lukas, my good friends since literally day one of our
Ph.D., thank you for your support, fruitful conversations, and friendship. Your pres-
ence has been essential throughout the last five years, making me a better researcher
and person. I am extremely proud of the path you built in these last 5 years we’ve
known each other and I am so glad to have had the opportunity to meet you. I am also
thankful for the collaboration with my dear friends and co-authors Ulisses Telemaco,

viii

Luis Fernando Lins, and Nathalia Nascimento, whose brilliance and friendship have
made this journey way more enjoyable and fruitful.

An army of strong and supportive women has made this journey not only easier
but possible. I am immensely grateful for their assistance in various aspects of my life,
and therefore also considering this very challenging last 5 years. My mom, Fatima, has
been my constant pillar of strength, always encouraging me to persevere and explore
the unknown with the perfect mix of grace, positivity and toughness. My sister Gisele,
with her unparalleled wisdom and determination, has been a constant inspiration. The
way you live your life and make your choices has inspired me so much. I am so proud
of you and I learn so much from you. Being raised by these women could not have
resulted in anything else for me other than big accomplishments such as this one. I
deeply honour your contributions to my life. To my other sisters from other parents:
Thaisa Melo, Paola Fernandes, Viviane Caldas, and Karla Cogo, your selfless support
and willingness to help me have been immense, in ways that all others have lacked.
Thank you for being who you are, and having truly supported me in crucial moments
of this journey.

Some people not only brought in their own help to support me but also the most
amazing families I could ever wish to meet in Canada. For the Oliveira family, who
supported me when I had just moved to Canada in so many great ways, for Sarah and
Sangram for making me feel so loved and welcome, for all the guidance and refuge.
The McGill family, you all have welcomed me since day one as part of your family, I
appreciate you all so much and will be forever grateful for that. During the times when
my own idea of family was shaken by both the geographical distance and the passing
of my father, you were the pillar that helped me remember I still had close support, love
and strings attached to this world. I am immensely grateful to you all.

To my partner, Seth, thank you for supporting me throughout this journey. Your love
and encouragement have been key. When I think back, there were many key moments
where your laid-back personality, great sense of humour and kindness, to me and oth-
ers, made a truly positive difference, and I will never forget how consistently you were
by my side throughout these very challenging past few years. Thank you so much for
still being by my side and for being with me through it all.

I would also like to express my deepest gratitude to my mental health support team,
Emanuele Blasioli and Clarissa Guelves, for their professional help and guidance in
maintaining my mental well-being during this very demanding period. Thank you so
much.

To the friends I made in Waterloo, my local extended family, you hold a special place

ix

in my heart, and I also want to give special thanks to you. To my dear friends Renato,
John and the powerhouse women I am honoured to call friends: Cristina Herrera &
Tavares, Elena, Ella, Karina, Luana, and Maria, thank you for your relentless support
and presence in my life, especially in the very hard last three years. I appreciate and
love you so much.

Lastly, I want to give thanks to my dad, who showed me that the world is vast,
fascinating, and worth exploring. All this was a prospect in the first place because of
the way you have raised me surrounded by encyclopedias, magazines about science,
trips to museums, and your unremitting love for and excitement about seeking and
consuming knowledge. I have you and only you to thank for that. Wherever you are, I
love you.

x

Dedication

This thesis is dedicated to my dad.

xi

Table of Contents

Examining Committee Membership ii

Author’s Declaration iii

Statement of Contributions iv

Abstract vi

Acknowledgements viii

Dedication xi

List of Figures xvii

List of Tables xix

List of Abbreviations xx

1 Introduction 1

1.1 Challenges . 2

1.2 Research Questions . 3

1.3 Research Method Design . 4

1.4 Problem Statement . 7

xii

1.5 Research Contributions . 7

1.5.1 Published Research . 8

1.6 Thesis Overview . 11

2 Background 12

2.1 Context in Software Engineering . 13

2.2 Chatbots to Support Software Development 14

2.2.1 Collaboration and Communication Chatbots: 19

2.2.2 The Current Landscape of Platforms and Frameworks to Develop
Chatbot Applications . 20

2.3 Automation and Autonomy of Software Systems 23

2.4 Variability Modelling . 25

3 Related Work 27

3.1 Context-Aware Software Development Systems 27

3.2 Conversational Agents in Software Development 29

3.3 Autonomous and Adaptive Systems & Levels of Automation 30

3.3.1 Levels of Automation . 31

3.4 Variability in Software Systems . 32

4 Preliminary Study: Understanding Context in Software Engineering 34

4.1 Overview and Motivation . 35

4.1.1 Objectives . 36

4.1.2 Literature Review and Preliminary Framework Proposal 37

4.2 Literature Review . 38

4.2.1 Planning Phase . 38

4.2.2 Execution Phase . 41

4.2.3 Analysis Phase . 45

4.2.4 Snowballing Search . 48

xiii

4.3 Discussion . 50

4.4 Threats to Validity . 52

4.5 Conclusion . 53

5 User Studies to Inform the Design of Human-Chatbot Interactions 55

5.1 Introduction . 55

5.2 Pilot Study . 60

5.2.1 Procedure Setup . 61

5.2.2 Scenario . 62

5.2.3 Participants . 63

5.2.4 Study Results . 63

5.2.5 Discussion . 68

5.3 Main Study Design . 69

5.3.1 Prototype Design . 70

5.3.2 Participants . 72

5.3.3 Procedure Setup . 73

5.4 Study Results . 75

5.4.1 Questionnaire Data Analysis . 75

5.4.2 Semantic Analysis of Questions . 78

5.4.3 Interview Analysis . 79

5.4.4 Design Opportunities - From Questionnaire 80

5.4.5 Design Opportunities - From Questions 82

5.4.6 Design Opportunities - From Interviews 84

5.4.7 Demographics and Post-Survey Correlations 85

5.5 Discussion . 88

5.6 Threats to Validity . 92

5.7 Conclusion . 93

xiv

6 Variability Design and Levels of Automation in Human-Chatbot Interactions 96

6.1 Overview . 96

6.2 Research Methodology . 98

6.2.1 Applying Search Method . 99

6.2.2 Identifying LOA Factors . 100

6.2.3 Refining LOA Factors . 101

6.2.4 Representing LOA Factors Variability 101

6.2.5 Instantiating and Demonstrating Variabilities 101

6.2.6 Methodology Highlights and Challenges 101

6.3 Identifying LOA Factors . 102

6.3.1 Identifying Factors . 103

6.3.2 Identifying How Factors Impact LOAs 106

6.4 Refining LOA Factors . 107

6.4.1 Capturing Factors as Features . 107

6.4.2 Capturing Constraints . 109

6.5 Variability-Aware Human-Chatbot Interactions: Taming Levels of Au-
tomation . 111

6.5.1 Variability-Aware Feature-Oriented Design 112

6.6 Representing LOA Factors Variability . 115

6.6.1 Instantiating and Demonstrating Variabilities 118

6.6.2 Scenario A: Automated Vehicles . 118

6.6.3 Scenario B: Customer Service Chatbots 121

6.6.4 Scenario C: Stock Trading Chatbot 124

6.7 Discussion . 129

6.8 Threats to Validity . 131

6.9 Conclusion . 132

7 Conclusion 134

xv

References 136

APPENDICES 156

A Systematic Literature Review in Contexts 156

A.1 Software Engineering Contexts Table . 156

B Adaptive Context-Augmented Framework 159

B.1 Adaptive Contextual Framework for Software Development 159

B.1.1 Context Model Example . 160

B.1.2 Illustrative Example . 160

C Rasa Files - DevBot 163

C.1 General Configuration . 163

C.2 Data Files Configurations . 164

C.2.1 Greetings.txt . 164

C.2.2 nlu.md . 165

C.2.3 stories.md . 171

D User Study Forms and Resources 179

D.1 Recruitment Email . 179

D.2 Recruitment Text on Facebook and other Social Media 180

D.3 Information Letter and Consent Form . 181

D.4 Appreciation Material . 184

E On the Integration of Context into Software Development: Challenges and
Opportunities 186

E.1 Motivation . 186

E.2 Motivating Example . 187

E.3 The Expected Future . 190

E.4 Making this Future Possible . 191

E.5 Conclusion . 194

xvi

List of Figures

1.1 Overview of the Research Design. 5

2.1 Conceptual Representation of a Context-Aware Chatbot in Software De-
velopment. 15

2.2 Example of Levels of Automation in Autonomous Vehicles [140]. 24

5.1 User studies methodology. 58

5.2 Chat with the prototype DevBot. 59

5.3 Rasa Architecture. https://rasa.com/docs/rasa/arch-overview 71

6.1 Level of Automation (LOA) Study Approach Overview. 99

6.2 Variability-Aware Feature-Oriented Design for Enhancing Human-Chatbot
Interactions. 113

6.3 LOA Variability Model in Autonomous Systems: An Adaptable Feature
Diagram. 116

6.4 Scenario A: LOA Variability Model in Autonomous Vehicles. 119

6.5 Scenario B: LOA Variability Model in Customer Services Chatbots. 122

6.6 Scenario C: LOA Variability Model in Chatbot for Stock Trading. 125

6.7 An illustration of deploying the application for novice users. 128

B.1 Proposed high-level adaptive context-augmented framework for software
development projects. 160

B.2 Context Model. 161

xvii

https://rasa.com/docs/rasa/arch-overview

B.3 Extended Context Model. 162

C.1 domain.yml file in Rasa, for DevBot prototype (1). 176

C.2 domain.yml file in Rasa, for DevBot prototype (2). 177

C.3 config.yml file in Rasa, for DevBot prototype. 178

E.1 Illustrative chatbot interaction. [Figure 2.1]. 188

E.2 Example of Workflow with High and Low-Level Tasks. 189

E.3 Prototype of a conversational channel connecting developer, context and
process. 191

xviii

List of Tables

2.1 Examples of Context Factors in Software Development. 13

4.1 Research (sub)Questions in the Literature Review. 38

4.2 Summary of Findings from the Literature Review. Full table available in
Appendix. 39

4.3 Search string creation process with Population Intervention Comparison
Outcome (PICO) [127]. 41

4.4 Articles selected for consideration after full read. 44

4.5 Articles retrieved from Snowballing Search Literature Review. 49

5.1 Answers that Wizard-of-Oz was prepared to respond, according to the
context of the question asked. 64

5.2 Mapping of expected interactions for each participant. 65

5.3 Word Frequency in Participants’ Questions, using KH Coder. 66

5.4 Word Frequency in Participants’ Interactions, using KH Coder. 79

5.5 Gender x Automation Preference. 88

5.6 Sentiment Count of the User Study. 89

6.1 (a)Levels of Automation Factors and Authors Citing Each Factor. 104

6.2 (b)Levels of Automation Factors and Authors Citing Each Factor. 105

A.1 RQs Table Summary - RQ1.1 to RQ1.4 . 157

A.2 RQs Table Summary - RQ1.5 to RQ1.9 . 158

xix

List of Abbreviations

AI Artificial Intelligence 1, 2, 6, 8, 12, 16, 18, 20–23, 25–27, 30, 99, 112, 113, 116, 125, 131,
132, 135, 136

CA Conversational Agent 57, 58, 71–73, 78, 90, 95

FODA Feature-Oriented Domain Analysis 116, 117

GQM Goal-Question-Metric 39

HCI Human-Computer Interaction 30

LOA Level of Automation 2, 3, 6–8, 24, 32, 33, 98–104, 107, 108, 110–134

LR Literature Review 35, 37–41, 44, 46, 49, 51–54, 102, 107, 132

NLP Natural Language Processing 19, 20, 23, 80

NLU Natural Language Understanding 19, 21, 22, 71, 72

PICO Population Intervention Comparison Outcome 41, 42

SD Software Development 18, 167, 168, 174

SE Software Engineering 30, 57, 58, 78

SPL Software Product Lines 33, 34

UAV Uncrewed Aerial Vehicles 31

WOZ Wizard-of-Oz 62

xx

Chapter 1

Introduction

The landscape of software development is experiencing a significant transformation,
driven by a convergence of multiple factors. One of the most prominent shifts is the
growing demand for software developers [19]. As businesses and industries increas-
ingly rely on software solutions to streamline operations [169], enhance customer expe-
riences, and stay competitive, the need for skilled software professionals has skyrock-
eted. This surge in demand is accompanied by a corresponding rise in the complexity of
software development projects. Modern software systems are intricate ecosystems that
interact with numerous external systems, interfaces, data sources, and work practices
[110, 158]. Developers must navigate this intricate web of dependencies, ensuring that
their software functions seamlessly within this multifaceted environment [85].

Moreover, software development involves a multitude of tasks [110]. From coding
and testing to debugging and deployment, developers must juggle various responsibili-
ties throughout the software development lifecycle. Each task requires careful attention
and expertise to ensure the final product meets quality and functionality standards.
Adding to this complexity is the dynamic nature of software development [116]. Con-
text changes frequently, often in response to shifting project requirements, technological
advancements, or feedback from stakeholders. Developers must be agile and adaptive,
ready to pivot their strategies and approaches to accommodate these alterations.

Amid this evolving landscape, there has been a notable emergence of Artificial Intel-
ligence (AI)-based conversational systems. These sophisticated systems leverage arti-
ficial intelligence and natural language processing to facilitate human-like interactions
through chatbots and virtual assistants. Their potential applications span a wide range
of industries and use cases. Software developers are increasingly turning to these AI-

1

powered chatbots to support their work [1, 129]. These chatbots can assist developers in
various ways, from answering technical queries (ChatGPT) and performing load tests
[126] to offering project management insights and automating routine tasks [20]. By
leveraging these AI-driven tools, developers can enhance their productivity, access rel-
evant information more efficiently, and streamline their workflows.

1.1 Challenges

The complexity within software development becomes amplified due to diverse contex-
tual factors influencing software development processes when chatbots are involved.
These contextual factors act like various pieces of a puzzle, and these pieces can alter
how software development functions when chatbots are in play. Moreover, there is lim-
ited research to understand the design methods to support developers using chatbots
to perform their tasks and how to cope with customized LOAs in their human-chatbot
interactions. There is limited published data on the methods to integrate context into
developer-chatbot interactions [153, 123], and the notion of customized levels of au-
tomation in these interactions is yet to be comprehensively addressed [52, 131, 160]. It
is important that chatbot users are supported, including with customization, to increase
user satisfaction and avoid frustration[29], to address the increasing interest of soft-
ware developers in creating and integrating chatbots into websites [2] and to uncover
prominent features for chatbot tools, such as providing satisfactory responses is a key
to success in the adoption of chatbots [132].

Assisting software developers in their context-based interaction with chatbots then
becomes essential. In particular, understanding the context surrounding software de-
velopment using chatbots and integrating this context into design models can lead to
a novel understanding of what software developers expect concerning these human-
chatbot interactions and their LOA. Any taxonomy of LOAs is a framework that can
be used to describe the degrees to which a system is automated, each typically ranging
from fully manual to fully automated, and thus, the corresponding degrees to which
the system requires complementary manual action.

In response to these challenges, this research aims to investigate the design of context-
based adaptive interactions between software developers and chatbots and foster so-
lutions and knowledge to support software developers at work. By adopting a multi-
faceted approach that draws insights from context-aware systems, conversational agents,
variability approaches, and autonomous systems, this thesis aspires to understand the
design of chatbot interactions between software developers and chatbots.

2

It is crucial to examine the impact of highly dynamic context in software develop-
ment and consider the influence of developers’ perspectives on designing context-based
chatbot tools. Additionally, it is vital to consider the effect of varying LOAs on the de-
sign of these tools. Designing context-based chatbot tools that adequately support de-
velopers remains an area that requires further exploration. This thesis aims to bridge
the gap in designing effective adaptive developer-chatbot interactions that seamlessly
integrate context and consider varying LOAs. By enhancing the design of context-based
chatbots, we seek to provide better support for software development and foster knowl-
edge to advance these tools.

1.2 Research Questions

To achieve these goals, I focus on three primary research questions:

RQ1: What types of contexts have been identified by researchers in software de-
velopment projects? Understanding the contextual factors that influence software de-
velopment is the first crucial step for designing context-aware chatbots. I explore the
various types of context identified by researchers in software development projects, en-
abling us to create adaptive chatbot interactions that align with developers’ specific
needs and workflows.

RQ2: How well can a chatbot support a software developer when executing a
software development task? To address the limited research on design methods for
context-based chatbot support and the absence of information from users (developers)
to inform chatbot features, I conduct empirical user studies. These studies extract valu-
able insights and requirements from developers’ experiences and expectations, guiding
us in the design of context-aware chatbot interactions.

RQ3: Which factors impact the variability of levels of automation in autonomous
systems? To understand better how to handle customized LOAs in human-chatbot in-
teractions, I investigate factors that influence LOAs during these interactions. Analyz-
ing the integration of context into software development and studying the adaptive
interactions between developers and chatbots will shed light on effectively systemizing
context in software engineering, allowing the proposal of model designs and fulfilling
developers’ expectations regarding context-based chatbot interactions and their LOA.

By addressing these research questions, we anticipate that our findings will con-
tribute to the advancement of adaptive developer-chatbot interactions, fostering a new

3

era of context-aware and personalized support for software development. Specific con-
tributions are detailed next.

1.3 Research Method Design

In this thesis, we use multiple empirical methods to answer the three research ques-
tions. More specifically, I follow a mixed-methods approach with a sequential explana-
tory strategy, combining literature reviews, and a chatbot prototype design with semi-
structured interviews conducted with software developers, qualitative survey analysis,
and other experimental studies. The research design comprises three phases and several
complementary studies, as presented in Figure 1.1.

Preliminary Study: Identifying Contexts in Software Engineering. This phase con-
sists of studies conducted during the definition of this thesis’ scope and helped define
my research motivation. This phase is described in Chapter 4 of this thesis. In this
preliminary study (Study 1), I conducted a Literature Review to uncover the identi-
fied contexts in software engineering, and how research has suggested the manage-
ment (capture, use) of these contexts. Directed by RQ1, I extracted information from
papers in the literature and uncovered various definitions for context. The findings re-
veal diverse types of context classifications, encompassing project tasks, static software
structure, dynamic system execution, historical artifact changes, developer activity, and
team and organization activity. The proposed contexts in the literature serve distinct
objectives, such as supplying developers with code artifacts, offering dynamic execu-
tion insights, accessing historical data, understanding developer work processes, and
considering broader activities across value streams. Some papers touch upon the us-
age of context in different software development phases, like task allocation planning,
bug-focused phases, and coding stages. Certain studies conducted evaluations of their
context-aware tools, yielding varying levels of success. Some limitations and gaps were
identified, such as the scarcity of tools for historical artifacts, potential duplicate bug
reports from code clones, and relatively unexplored team and organization activity con-
texts. The benefits of context encompass heightened developer productivity, optimized
task allocation, and enhanced interaction styles. However, the disadvantages were not
explicitly outlined. Context instances are extracted to offer recommendations for task
resolution, bug database queries, and artifact editing based on context history. Interest-
ingly, none of the reviewed papers mention the use of model specification techniques
or abstractions in their proposed contexts.

4

Figure 1.1: Overview of the Research Design.

5

After this first study, I wondered how to integrate context into development, as it
was clear from the literature review the benefits of integrating contextual information
into software development. With the emergence of AI and the use of such tools, and
other benefits, I investigated the integration of context into development through con-
versational agents. I focused on uncovering the requirements and design of chatbots for
software development, which led us to Phase I.

Phase I: Requirements for Chatbots in Software Development. To further under-
stand the interaction characteristics of software developers with chatbots, I conducted a
pilot study, followed by a mixed-methods study, in which participants interacted with a
chatbot prototype and asked this prototype some questions. This phase is described in
Chapter 5 of this thesis. I aimed to capture these questions and interview participants,
to grasp requirements and design opportunities for chatbots in software development. I
found that participants showed an interest in using chatbots to aid them in tasks related
to task and repository management, reflecting a real demand for such support. How-
ever, preferences between guidance and automation showed variations among users,
challenging the assumption that automation would be universally favored. This dis-
crepancy suggests the need for in-depth investigations into the factors influencing users’
automation preferences. Moreover, the study highlighted the desire for chatbots to pos-
sess a deeper contextual understanding, with participants expressing the need for these
virtual assistants to be more personalized and capable of providing context-driven rec-
ommendations. Furthermore, participants with less experience indicated the chatbot’s
perceived helpfulness was lower, underlining the importance of tailoring chatbot re-
sponses to the user’s skill level.

Phase II: Factors that Impact Levels of Automation. This phase comprises two stud-
ies to identify the factors that influence LOAs in systems, aiming at answering RQ3.
This phase is described in Chapter 6 of this thesis. After phase I, where study partici-
pants pointed out distinct opinions on the use of automation, I decided to investigate
what factors influence how much automation humans expect from systems. In this
comprehensive study, the focus was on identifying and categorizing the factors that in-
fluence the selection of different LOAs in autonomous systems. A systematic literature
review was conducted to uncover these factors, and they were then categorized into five
main groups: Quality, Task, Agent/System, Human, and Environmental factors. Fur-
thermore, the research delved into how these factors could be effectively captured and
embedded into autonomous systems to enhance their adaptability and functionality,
through modelling these factors as feature models (features and constraints).

In summary, this research provides contributions to the design of adaptive systems.
Systematically categorizing and demonstrating the impact of influential factors, equips

6

engineers with the tools to create more versatile and effective autonomous systems,
paving the way for enhanced performance and adaptability in various operational sce-
narios.

1.4 Problem Statement

In this thesis, I tackle the problem of integrating contextual software development infor-
mation into development through context-based chatbots. Specifically by understand-
ing what this context is, what software developers expect concerning context-based
chatbot interactions, and the LOA desired. This way, I increase the body of knowl-
edge on context-based chatbot approaches to support software development and foster
the understanding of the design of context-based adaptive chatbots so that these tools,
once built, can provide optimal support to software developers.

1.5 Research Contributions

A summary of the contributions of this thesis is described next. The contributions of
this thesis can be categorized into three parts: methodological, which includes system-
atic literature reviews on context for software engineering and LOAs; theoretical, which
includes formal techniques that advance methodological contributions; and empirical,
which includes the understanding of human-chatbot interactions, preferences of LOAs,
along with associated datasets.

• Preliminary literature review revealing contextual factors in software engineering

• Context model design

• Within-subjects user study with publicly available data and experimental evalua-
tion

• Systematic literature review revealing factors that influence LOAs, categorization
of these factors, and the results of the analysis of the relationships between these
identified factors and LOAs

• Context-based chatbot prototype design

7

• Adaptive design model that demonstrates the variability of the factors and LOA
using feature models and constraints

• Use cases demonstrating the applicability of the LOA variability feature design
models in three different domains

The contributions of this thesis align with the evolving landscape of General AI
(Gen-AI) and major industry players such as Microsoft Bot, Amazon Lex, and IBM
Watson. As the industry witnesses a surge in AI-based conversational systems, this
thesis contributes by addressing the pressing challenges in human-chatbot interactions.
It aims to integrate advancements in conversational agents with the complexities of
software development, fostering adaptive interactions tailored to developers’ specific
contexts and desired LOAs. Through an exploration of contextual factors influencing
software development, this research aspires to offer valuable insights into developers’
expectations and, in turn, propel the design of adaptive applications for human-chatbot
interactions in the dynamic landscape of Gen-AI.

Based on the above contributions, this thesis makes the following thesis statement.

With the growing complexity of software development, coupled with the emergence of ad-
vanced AI-based conversational systems, the integration of chatbots to support developers in
their work has become prominent. There is a pressing need to address the challenges in human-
chatbot interactions, particularly in leveraging conversational agents’ advancements to tailor
interactions to developers’ specific contexts and desired LOAs. This research explores the design
of context-based adaptive interactions between software developers and chatbots. By understand-
ing and integrating the contextual factors that influence software development with chatbots, we
aspire to gain novel insights into developers’ expectations regarding these interactions and the
LOAs involved and advance the design of human chatbot adaptive applications.

1.5.1 Published Research

Throughout the Ph.D. program, I have actively contributed to the scholarly commu-
nity by publishing multiple papers directly aligned with the thesis topic. Our princi-
pal findings have been disseminated through many venues, including IEEE Big Data
in 2019 and 2020, BotSE (ICSE) 2023, Doctoral Symposium (ICSE) 2023, IEEE Access
Journal, and NIER (ICSE) 2023. In the following list, you will find a consolidated list
of references encompassing both the research originating from this Ph.D. program and
publications spanning the entire duration of the program.

8

• Related to Thesis:

– G. Melo, N. Nascimento, P. Alencar, D. Cowan, “Variability-Aware Archi-
tecture for Human-Chatbot Interactions: Taming Levels of Automation”, to
appear in 4th IEEE International Conference on Autonomic Computing and
Self-Organizing Systems (AI4AS Workshop), 2023.

– G. Melo, N. Nascimento, P. Alencar, D. Cowan, “Identifying Factors that Im-
pact Levels of Automation in Autonomous Systems”, IEEE Access, vol. 11,
2023, pp. 56437-56452.

– G. Melo, ”Designing Adaptive Developer-Chatbot Interactions: Context Inte-
gration, Experimental Studies, and Levels of Automation”, 2023 IEEE/ACM
45th International Conference on Software Engineering: Companion Proceed-
ings (ICSE), 2023, pp. 235-239.

– G. Melo, L. F. Lins, P. Alencar, D. Cowan, ”Supporting Contextual Conver-
sational Agent-Based Software Development”, 2023 IEEE/ACM 5th Interna-
tional Workshop on Bots in Software Engineering (BotSE, ICSE), 2023, pp.
9-13.

– G. Melo, N. Nascimento, P. Alencar, D. Cowan, ”Understanding Levels of Au-
tomation in Human-Machine Collaboration”, 2022 IEEE International Con-
ference on Big Data (Big Data), Osaka, Japan, 2022, pp. 3952-3958.

– G. Melo, P. Alencar, D. Cowan, ”A Cognitive and Machine Learning-Based
Software Development Paradigm Supported by Context”, 2021 IEEE/ ACM
43rd International Conference on Software Engineering: New Ideas and Emerg-
ing Results (NIER, ICSE), 2021, pp. 11-15.

– G. Melo, E. Law, P. Alencar, D. Cowan, ”Understanding User Understanding:
What do Developers Expect from a Cognitive Assistant?”, 2020 IEEE Interna-
tional Conference on Big Data (Big Data), 2020, pp. 3165-3172.

– G. Melo, P. Alencar, D. Cowan, ”Context-Augmented Software Development
in Traditional and Big Data Projects: Literature Review and Preliminary Frame-
work”, 2019 IEEE International Conference on Big Data (Big Data), 2019, pp.
3449-3457.

• Others:

– U. Telemaco, T. Oliveira, R. Pillat, P. Alencar, D. Cowan, G. Melo, ”Scaffold-
ing Process-Aware Information Systems with the AKIP Platform”, in Web

9

Information Systems and Technologies. WEBIST 2022. Lecture Notes in Busi-
ness Information Processing, Springer, vol 494.

– D. Paulino, A. Correia, D. Guimaraes, R. Chaves, G. Melo, D. Schneider, J.
Barroso and H. Paredes, ”Stigmergy in Crowdsourcing and Task Fingerprint-
ing: Study on Behavioral Traces of Weather Experts in Interaction Logs,” 2023
26th International Conference on Computer Supported Cooperative Work in
Design (CSCWD), 2023, pp. 1293-1299.

– U. Telemaco, T. Oliveira, R. Pillat, P. Alencar, D. Cowan, G. Melo, “AKIP
Process Automation Platform: A Framework for the Development of Process-
aware Web Applications” in Proceedings of the 18th International Conference
on Web Information Systems & Technologies, WEBIST, 2022, pp. 64–74.

– L.F. Lins, G. Melo, T. Oliveira, P. Alencar, D. Cowan, “PACAs: Process-
Aware Conversational Agents” in BPM 2021: International Workshops, Lec-
ture Notes in Business Information Processing, 436 LNBIP, 2021, Revised Se-
lected Papers 2022, pp. 312-318.

– R. Vital, G. Melo, T. Oliveira, F. Abreu, “Towards understanding quality-
related characteristics in Knowledge-Intensive Processes - A Systematic Lit-
erature Review” in Quality of Information and Communications Technology:
14th International Conference, QUATIC 2021, pp. 197-207.

– G. Melo, T. Oliveira, P. Alencar, D. Cowan, “Knowledge reuse in software
projects: Retrieving software development Q&A posts based on project task
similarity”. PLOS ONE 15(12): e0243852.

– R. Cohen, A. Parmentier, G. Melo, G.Sahu, et. al., 2020 “Digital Literacy for
Secondary School Students: Using Computer Technology to Educate about
Credibility of Content Online”. In Creative Education Journal, Vol. 11, 674-
692.

– G. Melo, T. Oliveira, P. Alencar, D. Cowan, “Retrieving Curated Stack Over-
flow Posts from Project Task Similarities” in 31st International Conference on
Software Engineering and Knowledge Engineering, SEKE 2019, pp. 415–418.

– R. Vital, G. Melo, T. Oliveira, P. Alencar, D. Cowan, “AgileCritPath: Identify-
ing Critical Tasks in Agile Environments” in 31st International Conference on
Software Engineering and Knowledge Engineering, SEKE 2019, pp. 20–25.

10

1.6 Thesis Overview

This section provides a summary of the chapters in the thesis.

Chapter 2 provides an overview of the literature in the context of software engineer-
ing, chatbots to support software development, autonomous systems, and variability
modelling. These are the pillars that support the theory in which I ground this thesis.

Chapter 3 adds a related work analysis, where I explore works in the overarching
areas of context-aware software development systems, conversational agents to support
software developers, levels of automation and variability in software systems.

Chapter 4 delves into the critical aspect of contexts in software engineering. Build-
ing upon a previously published workshop paper [102], this chapter contains the pre-
liminary work that investigates the various contextual factors that influence software
development projects. By understanding the different types of contexts that develop-
ers encounter, I can design chatbot interactions that adapt to specific project contexts,
facilitating developers’ decision-making processes.

Chapter 5 delves into the perspectives and requirements of software developers con-
cerning conversational agents. Drawing from published conference papers [103, 101,
104], this chapter presents the design and results of the empirical study that extracted
valuable insights from developers’ experiences and expectations regarding chatbot in-
teractions. By gaining a deeper understanding of developers’ needs, I can refine the
design of chatbot interactions to support better their tasks and workflows.

Chapter 6 explores the intricate interplay between levels of automation and human-
chatbot interactions in autonomous systems. Drawing from a published journal paper
[106] and two workshop papers [105, 107], this chapter investigates the factors that in-
fluence the variability of automation levels during interactions between developers and
chatbots. By understanding how developers perceive and adapt to varying degrees of
automation, I can tailor chatbot interactions to complement human decision-making
and creativity effectively.

Chapter 7 presents the culmination of our research journey. Here, I synthesize the
key findings from each chapter and provide a cohesive conclusion. Additionally, I high-
light the implications of our research and discuss future research directions to further
advance the field of adaptive developer-chatbot interactions. By identifying areas for
future exploration, I aim to inspire continued progress and innovation in this dynamic
domain.

11

Chapter 2

Background

This thesis is founded upon a synthesis of key concepts from the fields of software en-
gineering and development. In this chapter, I provide a comprehensive overview of the
fundamental background encompassing the concepts central to this thesis. Specifically, I
delve into (1) the significance of context in software engineering, (2) the role of chatbots
in supporting software development, (3) the dynamic interplay between automation
and autonomy in software systems, and (4) software product lines. These foundational
pillars serve as the bedrock upon which the subsequent chapters of this thesis are con-
structed, facilitating a deeper exploration and analysis of the research topic.

Here is how these pillars are linked to my thesis. I explain (1) why context matters
in software engineering, (2) how chatbots are useful in helping with software work, (3)
the relationship between automation and autonomy in software, and (4) software prod-
uct lines. These basics create a strong base for what I explore in the following chapters.
I show that understanding the context in software engineering (1) helps us see how
software development and context are connected. Saying that chatbots are important
for supporting software development (2) fits with the wider trend of using advanced
AI chat systems. Looking at how automation and autonomy interact in software (3)
gives a detailed view of the challenges in human-chatbot interactions and making ex-
periences fit specific contexts. Talking about software product lines (4) brings in a way
of thinking and designing for variability and changing needs in software development.
These pillars are the main ideas that support my research in investigating applications
for how humans and chatbots work together, dealing with the challenges as software
development gets more complicated and we see more AI-based chat systems.

12

2.1 Context in Software Engineering

Software development is a complex and knowledge-intensive effort that involves vari-
ous contexts and technologies [110]. In the field of software engineering, context refers
to the information and data that surround and influence a specific software system or
application [116]. These contextual factors can include user input, system configuration,
and other data that the software relies on to function correctly. Additionally, context
encompasses the current state of the system, the current user, and any other relevant
information that affects the software’s operation. Some examples of context in software
engineering and their description are presented in Table 2.1.

Table 2.1: Examples of Context Factors in Software Development.
Context Factor Description
User Input Data or commands provided by the user
System Configuration Settings and configurations of the software system
Current State The state of the software system at a specific point in time
User Profile Information about the user, such as their role or preferences
Development Environment Tools, libraries, and frameworks used in development
Task Context Information specific to the current task being performed
Collaboration Context Contextual factors related to team collaboration
Tacit Knowledge Unspoken, experiential, and context-specific expertise

Understanding and managing context is crucial in software engineering as it signif-
icantly influences the behavior and functionality of a software system [8, 118, 116, 172].
The context affects how the software processes input, generates output and interacts
with other systems and users, including developers. By considering and leveraging
context effectively, software developers can build reliable, efficient, and user-friendly
software solutions.

Software development is a human-centred task, influenced by diverse practices shaped
by individual expertise, personal interests, gender, stress management, and other user-
related contexts [170, 137, 88, 69, 150]. Each developer’s technique when executing tasks
is heavily influenced by these various traits and the specific work environment in which
they operate.

Extensive research has been conducted to address the context of software develop-
ment [77, 63, 67, 110]. The significance of treating context as a first-class construct in
software development has been highlighted [116], as it can lead to significant changes
in how developers approach their work.

13

Despite the substantial amount of research, the context in software development is
often not explicitly captured or presented as a comprehensive framework that broadly
supports the situations faced by software developers [116]. Consequently, the ability to
reuse this rich context across software development projects is severely limited. Fur-
thermore, this context can be implicit and reside solely in the developers’ minds (tacit
knowledge) or be dispersed throughout extensive documentation [43]. As developers
work on software projects, they must maintain mental models of various tasks and in-
formation [85]. However, context can easily be lost or forgotten in the absence of explicit
mechanisms to capture and preserve it. Without historical context, developers may not
be adequately supported by their current environment and struggle to make informed
decisions [38].

To address these challenges, one potential approach is to leverage chatbots in soft-
ware development, enabling developers to communicate with a system designed to
support them during the development process. By engaging in conversations, develop-
ers can interact with a chatbot that is aware of the context. This context-aware chatbot
should be capable of understanding and capturing the various contexts relevant to soft-
ware development, such as the developer’s repository, projects, and commands. By
incorporating context into the chatbot’s functionality, developers can receive tailored
assistance and guidance throughout their software development endeavors. A concep-
tual representation of this chatbot is presented in Figure 2.1.

The proposal to use chatbots as a means of supporting software development aligns
with the need to address context explicitly and facilitate its effective utilization. By cap-
turing and utilizing context within a chatbot framework, developers can benefit from a
system that supports them in leveraging contextual information to enhance their pro-
ductivity and decision-making. This motivation drives the continuation of research in
this area, as described in the subsequent sections.

2.2 Chatbots to Support Software Development

Software development is a complex and demanding field that requires developers to
spend considerable time on routine activities, which can detract from addressing more
challenging problems. To alleviate this issue, researchers have explored the integration
of context-aware intelligent assistants, such as chatbots, to support software develop-
ment teams. By leveraging chatbots, developers can offload repetitive tasks, streamline
communication, and enhance collaboration within their teams. Chatbots in software de-
velopment serve a wide range of activities, from automating tedious chores to bridging

14

Figure 2.1: Conceptual Representation of a Context-Aware Chatbot in Software Devel-
opment.

knowledge and communication gaps within software teams [162]. For instance, these
chatbots can assist in automating code formatting, generating documentation, manag-
ing software builds, and conducting code reviews, among other tasks. This automation
not only saves time but also reduces the likelihood of human error, thereby improving
code quality.

Additionally, chatbots have been deployed in specific contexts to address different
challenges in software development. One area of focus has been on detecting code con-
flicts when multiple developers work on the same codebase simultaneously. By analyz-
ing code changes in real-time, these chatbots can identify potential conflicts and notify
the relevant developers to resolve them collaboratively [128]. In open-source projects,

15

chatbots have been used to recommend the right person to contact based on their exper-
tise and prior contributions. These chatbots leverage data from version control systems
and issue trackers to assist developers in finding the most suitable person to seek guid-
ance or collaborate with on specific tasks [28].

The integration of chatbots in software development has seen substantial adoption
in open-source projects, with approximately 26% of projects on GitHub utilizing soft-
ware bots for various activities [179]. One late example is Microsoft Copilot1 is an AI-
powered code completion tool developed by OpenAI in collaboration with GitHub. It is
integrated into the Visual Studio Code (VS Code) editor and assists developers by pro-
viding intelligent code suggestions and autocompletion as they write code. Microsoft
Copilot is built on OpenAI’s Codex, which is a powerful language model capable of un-
derstanding and generating code snippets in multiple programming languages. Copilot
aims to boost developers’ productivity by offering contextual code suggestions, helping
with repetitive tasks, and speeding up the coding process. However, despite the increas-
ing prevalence of chatbots, there remains a gap in research that explores developers’
perspectives on context-based chatbots within real-world scenarios [11]. Understand-
ing software developers’ perceptions of using chatbots in their workflow is crucial for
improving the design and implementation of such tools. This entails empirical explo-
ration of the benefits and challenges posed by context-aware chatbots, and the identi-
fication of design opportunities to enhance their effectiveness in supporting software
development teams [11, 1].

To address this research gap, several studies have sought to evaluate the impact of
chatbots in software development settings. One such study by Assavakamhaenghan
and colleagues [11] conducted a qualitative analysis by interviewing software develop-
ers who had experience using context-based chatbots. The study found that developers
appreciated the automation of routine tasks by chatbots, as it allowed them to concen-
trate on more critical aspects of their work. However, some developers expressed con-
cerns about chatbots misunderstanding context or providing inaccurate suggestions,
which could lead to potential issues in the codebase. In another study, Abdellatif and
Smith [1] surveyed to gauge the perceptions of software developers regarding the use
of chatbots in their development workflow. The survey results revealed that develop-
ers found chatbots to be valuable for managing repetitive tasks and enhancing team
collaboration. Developers also highlighted the need for better integration of chatbots
with existing development tools and emphasized the importance of customizable bot
behavior to align with different team preferences and project requirements.

1https://copilot.microsoft.com/

16

https://copilot.microsoft.com/

Matthies et al. [99] discuss the potential of chatbots in the field of software devel-
opment, particularly in supporting analyses and measurements of teams’ project data.
They emphasize that recent advancements in natural language processing and data
analysis enable software bots to act as virtual team members, offering additional in-
sights and automation to support teamwork. The focus is on using chatbots to analyze
software project artifacts, such as commits in version control systems, to gain valuable
information about team collaboration and work patterns. This data analysis is partic-
ularly relevant for agile retrospective meetings, where teams discuss process improve-
ments. By employing chatbots as a user interface, developers can conveniently interact
with the outcomes of retrospectives and use associated measurements to track improve-
ment actions over development iterations.

Okanović et al. [126] discuss the limited use and questionable effectiveness of load
testing in assessing load-related quality properties of software systems. To address this,
the authors propose using chatbots to provide suitable support for load testing. They
introduce ”PerformoBot,” a chatbot designed to guide developers through the process
of configuring and running load tests. Using natural language conversation, Perfor-
moBot helps developers specify load test parameters, which it then automatically exe-
cutes using a state-of-the-art load testing tool. After the execution, PerformoBot gener-
ates a report with relevant information. The authors conducted a user study involving
47 participants to assess PerformoBot’s acceptance and effectiveness. They found that
participants, especially those with less expertise in performance engineering, viewed
PerformoBot positively.

More recently, Farrah et al. [53] discuss the growing use of chatbots for educational
purposes, particularly in social coding platforms, where automated agents support soft-
ware developers with tasks like code reviews. Challenges like steep learning curves and
privacy concerns hinder their adoption in software engineering education. To address
this gap, the authors developed an online learning application that simulates code re-
view features using chatbot identities for instructors to interact with students. They
conducted a controlled in-class experiment to examine the impact of explaining con-
tent via chatbot identities on students’ perceived usability of the lesson, engagement
with the code review process, and learning gains. While the quantitative analysis did
not yield significant differences, qualitative results suggest that students expect explicit
feedback and could benefit from automated replies provided by interactive chatbots.
The authors propose further exploration of this research area in future work. For ref-
erence, ”bot” is a general term for automated software, ”chatbot” specifically focuses
on conversation (voice or text), ”automated agent” is a broader term for any automated
system, and ”context-aware chatbot” emphasizes the ability to understand and use con-

17

text in conversations. The usage and distinctions between these terms can vary, and the
field of conversational agents continues to evolve with advancements in artificial intel-
ligence and natural language processing.

The manual process of eliciting and classifying requirements can be time-consuming
and error-prone, especially when dealing with many requirements. To address this,
Surana et al. [141] propose an innovative approach to automate Requirements Elicita-
tion and Classification using an intelligent conversational chatbot. Leveraging Machine
Learning and Artificial Intelligence, the chatbot engages in Natural Language conver-
sations with stakeholders to elicit formal system requirements. Subsequently, it classi-
fies the elicited requirements into Functional and Non-functional system requirements,
streamlining the process and improving efficiency.

Based on these studies findings and other related research, designers and develop-
ers can make informed decisions while developing and implementing context-aware
chatbots for software development. By addressing developers’ concerns and providing
customizable options, these chatbots can become valuable assets in modern software
development teams, contributing to increased productivity, code quality, and team col-
laboration.

Chatbots have shown great promise in supporting software development teams by
automating tasks, improving collaboration, and enhancing code quality. Through em-
pirical evaluation and understanding of developers’ perspectives, these chatbots can
be designed and optimized to cater to the specific needs of development projects. The
successful implementation of chatbots in various software development scenarios un-
derscores the potential for these AI-powered tools to play a crucial role in the future
of software engineering. Continued research and innovation in this field will further
unlock the benefits of chatbots for developers and contribute to more efficient and suc-
cessful software development processes.

With the research framework in place, providing valuable insights into the landscape
of chatbots in software development, it is now time to shift our focus to the industry and
practice. Having laid the foundation for understanding research efforts for chatbots in
Software Development (SD), we can now delve into how chatbots are being utilized
in real-world scenarios and the practical implications they bring to the software devel-
opment process. By exploring their adoption, impact, and success stories in various
industries, we can gain a deeper understanding of the tangible benefits that chatbots
offer to developers and organizations alike.

Chatbots for software development have revolutionized the way developers interact
with tools and streamline their workflows. The current landscape of chatbots developed

18

specifically to support the process of software development includes a range of voice
and text-based applications. These chatbots leverage Natural Language Understanding
(NLU) and Natural Language Processing (NLP) capabilities to enable developers to in-
teract with them through voice or text, enhancing productivity and collaboration. This
section provides an overview of the current landscape of chatbots developed to support
the process of software development in voice and text-based interactions.

Voice-Based Chatbots: Voice-based chatbots in software development aim to pro-
vide developers with hands-free and voice-activated interactions to access information,
perform tasks, and receive real-time assistance. These chatbots utilize speech recogni-
tion and synthesis technologies to understand and respond to developers’ voice com-
mands and queries. Examples of voice-based chatbots in software development include:

• Microsoft’s CodeTalk: CodeTalk2 is a voice assistant for software development
integrated with Visual Studio. It enables developers to perform coding tasks, such
as navigating code, debugging, and running tests, through voice commands.

• Amazon Lex: Lex3 provides voice-based chatbot capabilities for software devel-
opment. Developers can use voice commands to interact with Lex and perform
actions like triggering builds, deploying applications, or retrieving information
from development platforms.

Text-Based Chatbots: Text-based chatbots are widely employed in software de-
velopment to provide real-time support, automate tasks, and facilitate collaboration
through text-based conversations. These chatbots can be accessed through messaging
platforms, integrated development environments (IDEs), or standalone applications.
Examples of text-based chatbots in software development include:

• Microsoft Copilot: Copilot, developed by GitHub in collaboration with OpenAI,
offers text-based code completion and suggestions. It assists developers by pro-
viding intelligent code snippets and suggestions as they type, accelerating the cod-
ing process.

2.2.1 Collaboration and Communication Chatbots:

Collaboration and communication chatbots focus on improving team interactions, fa-
cilitating knowledge sharing, and streamlining communication within development

2https://www.microsoft.com/en-us/research/project/codetalk/
3https://aws.amazon.com/lex/

19

teams. These chatbots typically integrate with messaging platforms and support both
voice and text-based interactions. Examples of existing collaboration and communica-
tion chatbots in software development include:

• Slackbot: Slackbot4 is an assistant within the Slack messaging platform that en-
ables developers to perform various tasks, such as scheduling reminders, manag-
ing notifications, and accessing information.

• Pull Reminders: Pull Reminders is a Slack-based chatbot that helps developers
manage code reviews and collaboration. It sends reminders about pending pull
requests and facilitates smoother communication within development teams.

The current landscape of chatbots developed to support the process of software de-
velopment encompasses both voice and text-based applications. These chatbots aim
to enhance productivity, automate tasks, improve collaboration, and provide real-time
support to developers. The integration of voice-based chatbots allows for hands-free
and efficient interactions, while text-based chatbots offer flexibility and accessibility
across multiple platforms. As AI and NLP technologies advance, we can expect further
innovations and advancements in chatbots tailored specifically to support software de-
velopment, ultimately improving the efficiency and effectiveness of development work-
flows.

2.2.2 The Current Landscape of Platforms and Frameworks to De-
velop Chatbot Applications

The development of chatbot applications has witnessed significant growth and innova-
tion over the past few years. As the demand for AI-powered conversational interfaces
increases across various industries, numerous platforms and frameworks have emerged
to simplify the creation and deployment of chatbots. This section provides an overview
of the current landscape of platforms and frameworks used to develop chatbot applica-
tions.

Chatbot Development Platforms: Several chatbot development platforms offer com-
prehensive tools and services that facilitate the entire chatbot development lifecycle,
from design and training to deployment and maintenance. These platforms cater to
both text-based and voice-based chatbot applications and often support integration

4slack.com

20

with popular messaging platforms, voice assistants, and websites. Some of the lead-
ing chatbot development platforms include:

• Dialogflow (2016): Powered by Google Cloud, Dialogflow5 provides a NLU en-
gine that allows developers to build AI-driven conversational interfaces for vari-
ous platforms like Google Assistant, Facebook Messenger, and more.

• Microsoft Bot Framework (2016): Microsoft’s Bot Framework6 enables developers
to create intelligent bots for Microsoft Teams, Skype, and other channels. It sup-
ports multiple programming languages and provides built-in NLU capabilities.

• Amazon Lex (2016): Part of Amazon Web Services (AWS), Lex7 is a service for
building conversational interfaces for applications using voice and text. It is the
technology behind Amazon’s Alexa.

• IBM Watson Assistant (2010): IBM Watson Assistant8 offers a robust platform for
developing AI chatbots that can be deployed across multiple channels, including
web, mobile apps, and messaging platforms.

Open-Source Chatbot Frameworks: Open-source chatbot frameworks provide de-
velopers with the freedom to customize and extend their chatbot applications. These
frameworks typically come with pre-built components, machine learning libraries, and
APIs to accelerate the development process. Some prominent open-source chatbot frame-
works include:

• Rasa (2016): Rasa9 is an open-source conversational AI platform that offers tools
for natural language processing and dialogue management. It empowers devel-
opers to create sophisticated and context-aware chatbots.

• Botpress (2017): Botpress10 is an open-source chatbot development framework
that focuses on scalability and customizability. It offers a visual flow editor, built-
in NLU, and integrations with various messaging platforms.

5https://cloud.google.com/dialogflow
6https://www.botframework.com/
7https://aws.amazon.com/lex/
8https://www.ibm.com/products/watson-assistant
9https://rasa.com/

10https://botpress.com/

21

• ChatterBot (2014): ChatterBot11 is a Python-based library for building chatbots
that can engage in conversation with users. It uses a machine learning algorithm
to generate responses based on training data.

Cloud-Based AI Services: Cloud service providers offer AI services that include
chatbot functionalities as part of their offerings. These services leverage the providers’
advanced AI technologies and infrastructure, allowing developers to integrate chatbots
seamlessly into their applications. Examples of cloud-based AI services for chatbot de-
velopment include:

• Google Cloud AI (2008): Google Cloud AI12 provides a wide range of AI services,
including Dialogflow for creating chatbots, as well as Cloud Natural Language
and Cloud Translation for language processing and translation tasks.

• Azure Cognitive Services (2016): Microsoft’s Azure Cognitive Services13 include
Language Understanding (LUIS) for NLU tasks and QnA Maker for building question-
and-answer-style chatbots.

• AWS AI Services (2006): Amazon Web Services14 offers AI services like Amazon
Lex for building chatbots, Amazon Polly for text-to-speech synthesis, and Amazon
Comprehend for language understanding.

Chatbot-Building Tools for Non-Developers: In addition to platforms and frame-
works targeted at developers, there are also chatbot-building tools designed for non-
technical users. These tools employ visual interfaces and no-code, low-code approaches,
enabling business users to create simple chatbots without extensive coding knowledge.
Examples of such tools include:

• Chatfuel (2015): Chatfuel15 is a popular no-code chatbot platform that allows users
to build Facebook Messenger chatbots without writing any code.

• ManyChat (2015): ManyChat16 is another no-code chatbot platform designed specif-
ically for creating chatbots on Facebook Messenger.

11https://chatterbot.readthedocs.io/
12https://cloud.google.com/products/ai
13https://azure.microsoft.com/en-us/products/ai-services?activetab=pivot:azureopenaiservicetab
14https://aws.amazon.com/machine-learning/ai-services/
15https://chatfuel.com/
16https://manychat.com/

22

• Landbot (2017): Landbot17 is a chatbot-building tool that supports text-based and
visually engaging chatbots, with drag-and-drop functionality for easy customiza-
tion.

The current landscape (including GPT-3 and GPT-4) of platforms and frameworks
for chatbot development offers developers and businesses a wide array of options to
create sophisticated and intelligent conversational interfaces. Depending on the specific
use case, development expertise, and budget considerations, stakeholders can choose
the most suitable platform or framework to build chatbot applications that enhance user
experiences and streamline interactions across various channels. As the field of AI and
NLP continues to advance, we can expect further innovations in chatbot development
tools and services, making it even more accessible for businesses of all sizes to leverage
the power of conversational AI.

2.3 Automation and Autonomy of Software Systems

The rise of machines and artificial intelligence (AI) has revolutionized various indus-
tries, leading to increased automation of tasks that were once solely performed by hu-
mans [59, 112]. Numerous fields, such as manufacturing, data entry, bookkeeping, ad-
ministrative tasks, and customer service, have witnessed a significant shift toward com-
puterization. For instance, in manufacturing, robots now handle tasks like welding,
painting, and packaging on assembly lines, enhancing productivity and precision.

The benefits of automation are evident, as it improves productivity, ensures consis-
tent quality, reduces errors, and streamlines processes [165]. AI advancements have
further accelerated this trend, allowing machines to take over human responsibilities
across various domains. However, the question of whether complete automation is al-
ways advantageous remains a subject of debate [57].

In this context, it is essential to distinguish between automation and autonomy in
software systems. Automation refers to the process of automating specific tasks or
functions, where machines execute predefined actions based on predefined rules and
algorithms. On the other hand, autonomy refers to the capability of software systems
to operate independently, making decisions without direct human intervention.

To strike a balance between human involvement and machine automation, many re-
searchers propose the concept of ”levels of automation” (LOA) [165, 50]. This approach

17https://landbot.io/

23

Figure 2.2: Example of Levels of Automation in Autonomous Vehicles [140].

suggests that different tasks or jobs can be assigned distinct levels of automation based
on their complexity, criticality, and the required human-machine collaboration. Figure
2.2 shows the levels of automation in autonomous vehicles.

For example, in autonomous vehicles, certain driving tasks can be automated (e.g.,
lane keeping, adaptive cruise control) while still requiring human supervision and in-
tervention for more complex situations (e.g., unexpected obstacles or adverse weather
conditions). This approach aims to leverage the strengths of both humans and machines
to achieve optimal performance and safety.

Consider, for instance, a situation where performance deteriorates at a higher level
of automation due to various factors. In such cases, it is crucial to have mechanisms
in place for re-evaluating the system’s operating LOA and ideally modifying it. This
adaptive approach allows for a potential transition to a lower automation level and/or
a transfer of control to the human operator until the issue is resolved. Conversely, cir-
cumstances might arise where high human workload or inadequate human responses
prompt the system to elevate its automation level, reducing its reliance on human inter-
vention. The application of adaptive automation can potentially alleviate human perfor-
mance costs associated with high-level decision automation, such as imbalanced mental
workload, reduced situational awareness, complacency, and skill degradation. Tradi-
tionally, the allocation of functions between humans and computers has been rooted in
stereotypical characteristics of their capabilities, yielding limited success [165].

In the realm of software development, the concept of autonomy and adaptive allo-

24

cation of tasks becomes increasingly relevant. With the rapid advancements in AI and
machine learning, software systems can exhibit a certain level of autonomy, such as au-
tomatically optimizing code or making decisions in response to user inputs. However,
ensuring effective collaboration between humans and autonomous systems in software
development remains a challenge [52, 131, 160].

Research in manufacturing and human-robot interaction has shed some light on the
factors that influence effective collaboration between humans and autonomous systems
[177]. However, there is a need for further investigation into adaptive task allocation
and decision-making in different levels of automation in the context of software devel-
opment.

To address these challenges, developing intelligent conversational agents or chat-
bots can play a crucial role. These chatbots can act as intermediaries between humans
and autonomous software systems, facilitating communication and understanding be-
tween the two. For instance, in software testing, chatbots can elicit requirements from
developers, automatically generate test cases, and provide test results, while still al-
lowing developers to intervene and make critical decisions when needed. To illustrate
this concept, consider an AI-driven chatbot called ”TestBot” integrated into a software
development team. TestBot autonomously generates test cases based on the software
requirements but consults with developers through natural language conversations be-
fore executing critical tests that require human judgment. This symbiotic collaboration
ensures that the testing process benefits from automation while leveraging human ex-
pertise to handle complex scenarios effectively.

In conclusion, the distinction between automation and autonomy is crucial in mod-
ern software development. By adopting a ”levels of automation” approach and lever-
aging intelligent chatbots, we can reach a balance between human and machine ca-
pabilities, optimizing the efficiency and effectiveness of software systems. Future re-
search in this area should focus on enhancing the collaboration between humans and
autonomous systems to harness the full potential of automation while maintaining hu-
man oversight and intervention when necessary.

2.4 Variability Modelling

Software development is a field inherently characterized by its variability, wherein so-
lutions are crafted to accommodate diverse and evolving requirements [36, 62]. Vari-
ability is the ability of software systems or artifacts to be adjusted for different contexts

25

[166, 61]. The significance of variability in software development is further accentuated
when considering the context of human-chatbot interactions. In this landscape, the abil-
ity to customize interactions and adapt to the unique demands of developers becomes
paramount [32].

Variability modelling, a well-established concept in software engineering, offers a
promising avenue for addressing the intricacies of human-chatbot interactions. It pro-
vides a structured approach to capturing and managing diverse features and require-
ments within a software system [35]. These models enable software engineers to create
flexible and customizable solutions that can be tailored to specific user needs, ensuring
that the software can adapt to changing circumstances [35, 36]. When applied to the
realm of AI-driven chatbot interactions, variability modelling can empower develop-
ers with tools and methodologies to create chatbot systems that are not only efficient
but also highly adaptable. Such adaptability is particularly crucial when considering
the evolving nature of chatbot technologies and the ever-changing requirements of de-
velopers. Research in this domain has shown that embracing variability modelling in
software engineering can lead to significant benefits. It allows for the systematic repre-
sentation of different interaction scenarios and user preferences, enabling the develop-
ment of chatbot systems that can seamlessly switch between various modes of interac-
tion. Moreover, variability models facilitate the rapid development of chatbot features
by reusing existing components, reducing development time and effort [35].

As the field of AI-driven chatbots continues to advance, variability modelling offers
a structured and efficient approach to designing and implementing interactions that
are responsive to the individual needs of users. By embracing variability modelling
in this context, we can harness its potential to create chatbot systems that are not only
intelligent but also highly adaptable, catering to the unique requirements of software
developers as users of these tools.

In conclusion, this chapter serves as the foundational background in this thesis, syn-
thesizing key concepts from software engineering. The significance of context in soft-
ware engineering, the role of chatbots in supporting software development, the dy-
namic interplay between automation in software systems, and the concept of software
product lines are integral pillars of this research. These pillars are linked to the thesis’s
overarching goals: understanding the interconnectedness of software development and
context, recognizing the importance of advanced AI chatbots, exploring the challenges
in human-chatbot interactions within the context of LOAs, and embracing a design-
thinking approach to address evolving needs in software development. As the chapters
progress, these foundational concepts will be further dissected and applied to shed light
on human-chatbot collaboration in the evolving landscape of software development.

26

Chapter 3

Related Work

Several related areas play pivotal roles in shaping the future of developer-chatbot inter-
actions. Context-aware systems form a crucial foundation, as they enable software to
adapt and respond to situational cues, enhancing the user experience. Conversational
agents, empowered by natural language processing advancements, offer the potential to
bridge the gap between developers and automated assistance. Variability approaches,
essential in managing the diverse tasks and challenges developers face, provide valu-
able insights into tailoring solutions to specific contexts.

Moreover, the realm of autonomous systems, marked by systems that can operate
without (or with minimal) human intervention, offers a tantalizing glimpse into the fu-
ture of software development support. However, the adoption of such systems needs
to be grounded in a deep understanding of the levels of automation (LOAs) appropri-
ate for different contexts. The implications of employing LOAs within human-chatbot
interactions are critical to providing seamless and effective developer support.

In this Chapter, we introduce the related works of the major topics discussed in
this thesis, namely (1) context-aware systems, (2) conversational agents, (3) variability
approaches, and (4) autonomous systems and levels of automation.

3.1 Context-Aware Software Development Systems

The significance of context in software development cannot be understated, as it greatly
influences the approach and decisions made by software developers while performing

27

their tasks. Researchers have extensively explored the concept of context in software
engineering, aiming to understand its implications and harness its potential benefits.

One area of research in this domain focuses on leveraging context in software en-
gineering to recommend the most suitable developer for specific tasks. Lin et al. [92]
delved into this aspect, examining how context-aware techniques can be employed to
assign appropriate developers to particular project tasks. By considering the individual
expertise, experience, and availability of developers within the context of the software
project, this approach aims to enhance productivity and task allocation efficiency.

Another line of research has explored context-aware systems for online documenta-
tion to aid developers in fixing software bugs. Ashok et al. [10] conducted studies to
develop systems that intelligently recommend relevant documentation to programmers
when they encounter bug-related challenges. Such context-aware documentation rec-
ommendations aim to streamline the debugging process, reducing development time
and enhancing software quality.

Additionally, researchers have investigated context-awareness for software artifacts.
Cubranic and Murphy [181] proposed an innovative approach called Hipikat, which
suggests related artifacts that should be accessed or edited when developers interact
with a particular software artifact. This context-aware recommendation system aims
to facilitate code comprehension, collaboration, and maintenance, thus improving soft-
ware development productivity.

The integration of context in software development has the potential to revolution-
ize the way developers work, as observed by Murphy et al. [116] and Murphy [119].
It can lead to a more efficient and informed decision-making process, fostering better
collaboration and code quality. However, despite its recognized benefits, context aware-
ness in software development is still not fully supported [20, 116, 110]. The very recent
integration of advanced technologies, such as Microsoft Copilot, holds the potential
to significantly enhance context awareness. Challenges and gaps remain in providing
comprehensive context support during various software development tasks.

Understanding and using context in software engineering can significantly impact
the efficiency, productivity, and quality of software development processes. Research
efforts in this area have explored context-aware developer task assignments, documen-
tation recommendations, and artifact interactions, showcasing the potential of context-
aware approaches to transform software development practices. Nevertheless, further
advancements are needed to embrace context awareness in software development and
bridge the existing gaps to create a more contextually intelligent and adaptive develop-
ment environment.

28

3.2 Conversational Agents in Software Development

Conversational agents (or chatbots), a subset of AI technology, have significantly trans-
formed the way humans interact with systems. Their application in software develop-
ment scenarios introduces unique challenges and opportunities. Through an in-depth
analysis of conversational agents’ role in supporting developers, this thesis seeks to es-
tablish requirements for optimizing their design and implementation.

Conversational agents (CAs) are software tools that interact with people while cap-
turing information, interpreting and responding in natural language, like conversing
with another human being, [100]. Researchers argue Human-Computer Interaction
(HCI) may transition from graphic to conversational interfaces with chatbots [58] with
68% of participants of a study [21] reporting that a key goal of this form of interaction
is a likely increase in productivity. Embedding context into workflows and providing
development information to workers was investigated by Bradley et al. [20], to lever-
age versioning information to developers and other software development workflows
through a voice-activated agent. Other research uses chatbots to detect code conflicts
[128] and provide expert recommendations [28]. Chatbots are interesting to investigate,
as these tools enable software developers to engage in development operations without
needing technical knowledge [87]. Other studies have identified other benefits of using
chatbots in Software Engineering (SE), such as the benefit novice developers can acquire
[126]. In conclusion, researchers have been interested in studying chatbots due to the
many benefits this tool can bring to software development. One evidence of this interest
is the increasing number of publications and workshops in the area. Scopus database
reported seven publications with the keywords chatbots or ”conversational agent” and
”software engineering” in 2019, and this number doubled in 2022.

Several papers have reported the experience of software developers being supported
by chatbots. The work of Okanović and colleagues [126] presents PerformoBot, a chat-
bot that supports developers when performing load testing. This research has inves-
tigated how developers interact and perceive PerformoBot, showing that novice users
especially could benefit from the use of the proposed tool, as well as some aggregated
educational effects promoted by the tool.

The work of Liu et al. [94] presents an in-depth analysis of the interaction and user
experience of developers and bots, as reported in the paper “... these bots may have
consequences on the user experience of existing and prospective project contributors.”
They introduce a mental model to facilitate the understanding of the human-bot inter-
action, as well as suggest seven principles for bot developers, which can be used as

29

guidelines to evaluate the user experience of bots and their interaction with developers.
Such an emerging topic in software engineering has sparked the interest of researchers
and there are now workshops in major conferences in the field targeting bots in software
engineering. One example is BotSE [botse.org], which presents the behavioral science
concept of choice architecture and the impacts of human decisions [22]. Another ex-
ample presented in this workshop addresses the importance of the integration of bots
with humans in software development workflows [168]. Given chatbots have been ex-
plored as tools to support software developers in their work, we also propose to use
these communication tools to recommend their workflow to developers, given a spe-
cific context. We believe this tool leverages the contribution of the human-in-the-loop,
having the developers as users. Additionally, the advances in chatbot development
and research have shown that there is potential to use chatbots with their natural lan-
guage processing techniques to lower the learning curve to use the tool. Other than the
demonstrated advantages and advances in the related work, the possibility of having a
semi-ubiquitous tool in the development IDE, sending developers reminders, engaging
with simple or complex issues, collecting information and also providing information
to developers, appears promising.

Chatbots have already been explored as tools to support software developers in their
work. Our work supports the idea that conversational agents can be used to provide
contextual-relevant information to software developers, given the massive amount of
context developers must deal with daily. We then investigate, from software developers,
the requirements desired in conversational agents through user studies.

3.3 Autonomous and Adaptive Systems & Levels of Au-
tomation

In the past few years, the development of autonomous systems has increased, with
an increasing focus on integrating automation within these systems. For example, in
Uncrewed Aerial Vehicless (UAVs), researchers have explored various methods to au-
tomate the control of these vehicles [33]. These methods include using deep learning
to detect and avoid obstacles for uncrewed vehicles [12], using reinforcement learning
to optimize autonomous driving agents [80] and developing specific software stacks to
support the advancement of self-driving cars [138]. Moreover, Lorenz et al. [95] have
investigated how variations influence trust in an autonomous system in system speed,
accuracy, and uncertainty. This study demonstrated that humans are likelier to miss

30

system errors when highly trusting the system. The level of self-correction with which
an automated system produces responses can also impact human trust, according to the
authors.

On adaptive systems, increasing the awareness of feedback loops and monitoring are
vital for creating adjustment systems in systems that need to deal with changing needs
in a flexible way [164]. Depending on the system’s adaptation goal (namely optimiza-
tion, recovery, repairing, configuration and others), these systems will have different
properties [174]. Previous research has delved into the assessment of adaptive software
systems. Researchers have introduced a framework rooted in control theory, focusing
on the evaluation of stability and robustness as fundamental properties of adaptive sys-
tems [109]. These properties were dissected in relation to programming paradigms,
architectural styles, modelling paradigms, and software engineering principles. Salehie
and Tahvildari [148] conducted a comprehensive survey of various projects dealing with
software system adaptation, addressing concerns regarding the ’how,’ ’what,’ ’when,’
and ’where’ of adaptation. They also introduced a hierarchical perspective exploring
their connection with software quality factors. Our research suggests a system adapta-
tion determined by a combination of factors influencing LOA.

3.3.1 Levels of Automation

Levels of automation (LOA) have been widely used to describe the degree to which
a system is automated, ranging from fully manual to fully autonomous. Several tax-
onomies have been proposed to categorize different levels of automation, such as the
ones from Parasuraman and Sheridan [131] and Riley et al. [144]. In recent years, re-
searchers have extended these taxonomies to specific domains. The work of Machado
et al. [97] focuses on the heavy-duty mobile machinery industry and presents a two-
dimensional 6x6 matrix. The work of Kugele et al. [83] presents a four-level taxonomy
that provides a foundation for describing future systems, including robotic and drone
taxi systems.

Within levels of automation, there is the potential for the level and nature of au-
tomation to remain flexible and capable of real-time adjustment during the operation
of a system. This concept denoted as adaptive automation, entails the dynamic modi-
fication of autonomy levels during system operation, as highlighted by studies such as
Moray et al. [115], Parasuraman et al. [130] and Scerbo [152]. This adaptive automation
paradigm aligns with the concept of dynamic task or allocation, where the distribution
of tasks between human and machine agents is not predetermined but rather adaptable,

31

responsive, and context-sensitive.

Adaptive automation stands in contrast to the ”automate as much as possible” phi-
losophy, as elaborated in Fereidunian et al. [56]. Hence, an effective automation solution
should possess the capability to adjust dynamically the LOA in response to peripheral
changes. A multitude of research has delved into investigating human performance in
the context of adaptive automation, often through simulations involving domains such
as flight, air traffic control, driving tasks, and process control [115, 70, 130, 152].

Our research investigates the factors that induce changes in automation levels within
autonomous or semi-autonomous systems. Instead of concentrating solely on a specific
use case or domain, our objective is to compile a comprehensive list of these factors.
This compilation serves the purpose of facilitating a deeper understanding of the design
elements within autonomous systems.

3.4 Variability in Software Systems

Research has mainly looked at variability in Software Product Liness (SPLs), but vari-
ability is a big part of most software systems, not only related to SPL [60]. Many differ-
ent types of software systems are made with variability in mind. For example, systems
that can change themselves, platforms that can be customized, or systems that put ser-
vices together in different ways while they are running. There are situations where
differences need to be managed. This can include setting up systems, changing parts of
a system to make it fit better, choosing different features, or changing how a software
service works while it is running. Since these differences are everywhere, software mak-
ers need to understand them well. They also need good ways to deal with them, like
methods and tools that help them understand, manage, and figure out what to do about
differences. This is especially important when many different people are involved, like
the people who use the software and want it to work in different ways, the people who
write the code and need to know where the differences are, or the people who test the
software and need to check all the different possibilities [61]. To this end, Galster et
al. [61] have examined research on variability in software systems, proposing a vast
literature review. They concluded that software quality attributes have not received
much attention in the context of variability and that research designs on variability are
vaguely described.

Another review was conducted by Chen et al. [30], this time focusing on the vari-
ability management in software product lines. They observed that a significant portion

32

of the existing work revolves around variability concerning features, assets, or deci-
sions. Chen and Babar [31] have also evaluated variability management approaches in
software product lines. Also rooted in the SPL domain, Kontogogos and Avgeriou [82]
conducted a review of variability in service-based systems. Their study identified ap-
proaches that incorporate integrated variability modelling, which introduces new rep-
resentations of variability specifically for service-based systems. Similarly, Kazhami-
akin et al. [74] conducted an informal review that explored adaptation in service-based
systems.

Furthermore, Alves et al. [7] examined variability in the realm of requirements engi-
neering for software product lines. Their study aimed to identify requirements artifacts
addressed by contemporary product line approaches, the related requirements engi-
neering activities, and the strategies for product line adoption they employ. In contrast,
our study takes a broader perspective that encompasses variability beyond the scope of
product lines and requirements engineering. In essence, our study seeks to contribute
to the understanding and design of context-based chatbots, that can adapt to these con-
texts, while similarly to the related work, we use SPL to represent and model part of
our proposed design in Chapter 6.

This chapter explores various domains crucial to the evolution of developer-chatbot
interactions. It begins by highlighting the importance of context-aware systems in soft-
ware development, emphasizing their potential to enhance user experience by adapting
to situational cues. The discussion extends to conversational agents, powered by nat-
ural language processing, and their role in bridging the gap between developers and
automated assistance. Variability approaches, crucial for managing diverse tasks, and
the realm of autonomous systems, operating with minimal human intervention, are also
discussed.

33

Chapter 4

Preliminary Study: Understanding
Context in Software Engineering

”The consideration of context as a first-class construct opens up new oppor-
tunities to take a substantial step forward in providing tools for developers
that enable the developer to use their cognitive abilities to attack the prob-
lems only a human can address.” – Gail Murphy [116]

Before investigating solutions and ways to enhance software development with con-
text, there is a need to understand context in software engineering, how it has been used,
what researchers have called it, and other characteristics. We propose a Literature Re-
view (LR) in contexts in software engineering to answer such questions. This chapter1

presents the first step of our approach, i.e., to understand the context in software engi-
neering. It includes the details of the planning and execution of the LR, as well as the
observed results.

Our objective in this preliminary study is to enhance the current state-of-the-art by
incorporating the latest insights into contexts within software engineering. In doing
so, we have compiled a comprehensive repository of contextual information. Through
this study, we have recognized the multifaceted nature of context within software en-
gineering and its impact on the daily tasks of software developers. This discovery has
ignited our research efforts and deepened our commitment to addressing the challenge
of managing this context to provide valuable support for software development. As
an extension of our ongoing efforts, beyond the examination conducted in this chapter,

1This chapter is reprinted in modified form from [102].

34

we have taken a moment to reflect and introduce a paradigm in the realm of software
development, considering context, chatbots and machine learning. This paradigm is
presented in Appendix E.

4.1 Overview and Motivation

Software development is a multifaceted and knowledge-intensive endeavor [43] [110].
It involves various technologies, and the documentation for these technologies is scat-
tered across multiple sources, including tutorials, Stack Overflow, GitHub, project wikis,
and API tutorials. Moreover, being a human-centred task [170][137], software develop-
ment is influenced by diverse practices, driven by each developer’s expertise, personal
interests, gender [88] [69], stress management approaches [150], and many other factors.
These individual characteristics and the context in which developers operate heavily in-
fluence their approach to performing tasks. Recognizing the significance of this context
in software development, researchers have emphasized the need to treat it as a first-class
construct [116], as it can lead to transformative changes in developers’ work processes.

The information generated or handled by software developers is vast, and the prob-
lem domains they work in are highly diverse. Moreover, the software development
context is presented in various formats, such as code repositories like GitHub for code
and issue tracking, natural language communication through code comments, GitHub
comments, emails, meeting reports, and other media. Despite the growing recognition
of the importance of software development context, there is still a lack of comprehensive
models explicitly capturing this variable context in a unified adaptive software develop-
ment framework capable of providing context-driven recommendations to developers
throughout the project lifecycle.

Context holds a central and indispensable role in empirical software engineering,
distinguishing it as a unique discipline. It permeates software practice, playing a crucial
part in shaping and influencing software development processes and outcomes [48].

Defining context involves understanding its etymological origins in the Latin term
contextus, which denotes weaving together or forming connections [146]. Various philo-
sophical and practical perspectives offer different insights into context, but in software
engineering, the predominant approach has been to treat context as a set of variables
[48]. Context can be perceived as an integral part of an environment that can be sensed
and considered [147]. Context has also been assumed with a more specific and focused
definition: it refers to the information encompassing the system under development, as

35

well as the environment and process in which the system is being created [116]. This
definition underscores the importance of understanding the software’s broader context,
including the dynamic factors, the development environment, and the human processes
involved.

Given the mutable nature of various contextual aspects, such as the domain, process,
technologies, and people, it becomes evident that software systems that can adapt and
respond to these changes have a considerable advantage over those that are ill-prepared
for contextual variations [121]. Embracing context-aware methods in software engineer-
ing enables systems to accommodate and leverage these changing scenarios, thereby
improving the effectiveness and relevance of the developed software.

In summary, context stands as a fundamental concept in empirical software engi-
neering, profoundly influencing software practices and research. Its definition may
vary, but in the context of software development, it involves understanding the inter-
play between the system, the environment, and the development process. Acknowl-
edging and incorporating context awareness in software engineering can lead to more
flexible, adaptive, and robust systems capable of addressing the complexities posed by
the dynamic and diverse contexts in which they operate.

4.1.1 Objectives

Our primary objective is to understand the context of software development projects,
and where and how it has been used and managed. By having access to relevant contex-
tual information, developers can focus on creative tasks rather than being preoccupied
with executing procedural tasks or searching for specific information. Furthermore,
considering the variability of context formats is essential. Relevant contextual infor-
mation may include the next artifact to edit or read, an API tutorial, a code snippet,
or insights from other developers. To establish a foundation for this research, we pro-
pose conducting a LR in the context of software development. Based on the findings,
we also present a preliminary context-augmented framework for software development
projects (in Appendix B).

To achieve the goal of managing context in software development projects through
an adaptive context framework, we outline the following steps:

1. Identify the Context: We conduct a comprehensive LR of context in software de-
velopment to explore the types of contexts researchers have identified in this do-
main. Presented in this introductory Chapter.

36

2. Model the Context: Propose a context model based on the information gathered
from the LR. Presented in Appendix B.

3. Preliminary Framework: Develop a preliminary framework capable of capturing
software development context and dynamically adapting to contextual changes.
Presented in Appendix B.

In this study, we aim to identify the types of software development contexts through
an LR to lay the groundwork for our research. We structure our investigation of the
research question as follows: RQ1: What types of context have been identified by re-
searchers in software development projects? This research question branches into nine
sub-questions, as detailed in Section 4.2. The gathered information from the LR is or-
ganized and presented in Tables A.1 and A.2. Table 4.1 presents the nine sub-questions
that supported the LR. These nine questions relate specifically to the main RQ1 in this
thesis, and are sub-questions of this main RQ1 broader question. Table 4.2 presents
the summary of the findings of each question. The complete table with the findings is
presented in the Appendix, in Table 2.1.

4.1.2 Literature Review and Preliminary Framework Proposal

The LR plays a crucial role in understanding the different facets of the software devel-
opment context. By exploring existing research on context in software development
projects, we can identify the various contextual factors that influence developers’ ac-
tions, decisions, and interactions. The preliminary framework we propose in Appendix
B is a step furthering this investigation, aiming at representing the knowledge acquired
from the LR into a context-aware adaptive system that empowers developers with rel-
evant contextual information and recommendations. The framework is designed to
adapt dynamically to changes in the development context, providing a more efficient
and supportive environment for developers throughout the software development life-
cycle.

By systematically exploring the research questions and summarizing the findings,
we gain valuable insights into the existing knowledge of the software development con-
text. These insights will serve as the building blocks for our research presented in this
thesis, paving the way for further research and the development of adaptive systems
to support software developers in their challenging and dynamic work environments.
Adapting to contextual changes will enable developers to focus on creative problem-
solving and improve their overall productivity and efficiency during the software de-
velopment process. Ultimately, our research goal is to contribute to the advancement of

37

Table 4.1: Research (sub)Questions in the Literature Review.
RQ1.1: What are the types or classifications of context?
RQ1.2: Is there a model specification technique used?
RQ1.3: What are the goals or purposes of context?
RQ1.4: On what step or phase of the software development does the context focus?
RQ1.5: Are there any evaluations performed?
RQ1.6: Are there identified limitations or gaps when using context?
RQ1.7: What are the advantages or disadvantages of this context?
RQ1.8: How are the context instances mined?
RQ1.9: Are there any proposed abstractions?

software development practices by harnessing the power of context-aware systems to
empower developers and promote seamless collaboration within software development
projects.

4.2 Literature Review

We present the LR that attempts to identify articles that depict contextual information
in software development projects. The research method for the LR is divided into two
steps. First, we performed a search using a search string, presented in Section 4.2.1,
and then we performed the execution of the review, presented in Section 4.2.2. We per-
formed a backwards snowballing approach [71] within the retrieved papers, presented
in Section 4.2.4. Last, we perform the analysis of the retrieved articles, described in
section 4.2.3. This section ends with a discussion of the findings of the LR.

4.2.1 Planning Phase

Literature Reviews are a standard method of obtaining evidence on a particular sub-
ject and provide categorized results that have been published in a specific research area
[133] [14]. The LR reported in this chapter was conducted to assess the state-of-the-art
of current articles that propose research in contextual information for software devel-
opment, to understand better the use and variability of diverse contexts in software
engineering.

38

Table 4.2: Summary of Findings from the Literature Review. Full table available in
Appendix.

Research Question Summary of Findings

RQ1.1 Contextual factors include task context, software structure,
team, person, file version, etc.

RQ1.2 Interactions with IDEs, RSEE systems development, etc.

RQ1.3 IDE provide code artifact, task allocations, project memory
from artifacts, etc.

RQ1.4 Planning, when a bug occurs, coding, etc.
RQ1.5 Improvements comparing to baseline, useful results, etc.
RQ1.6 Duplicate bug reports, few tools available to practitioners, etc.

RQ1.7 Provides meaningful information x Missing evaluations on
performance of developers, etc.

RQ1.8 Recommends who shouldresolve a task, etc.

RQ1.9 Contextual factors abstracted to represent artifacts, tasks
abstracted into high-level tasks, etc.

The protocol suggested by Petersen et al. [133] uses the Goal-Question-Metric (GQM)
approach [167] to define a goal for a LR. According to the GQM approach, the goal of
this LR is to:

analyze software development

with the purpose of developing a characterization

regarding software developers’ context

from the point of view of researchers

in the context of software projects

Emerging from the defined objective, the research question this LR aims to answer
is RQ1: What types of context have been identified by researchers in software develop-
ment projects?

This question aims to determine the state of practice and lay the foundations for this
research. Specifically, we pursue the following characteristics of software development
context in the literature as outlined by the following research questions:

39

RQ1.1: What are the types or classifications of context? Are there any types or classifica-
tions of the context subject of the article retrieved from the literature?

RQ1.2: Is there a model specification technique used? Are there model specifications for
the proposed context, for example, an ontology, a model extension, or other types of
models of context?

RQ1.3: What are the goals or purposes of context? In this research question, we aim to
retrieve the purpose or the goals of the context subject of the retrieved article.

RQ1.4: On what step or phase of the software development does the context focus? In tradi-
tional software development, there are different development phases, such as analysis
(requirements), coding, testing, and deploying. If a paper identifies the phase where the
context can be applied, we want to capture this information and make it explicit.

RQ1.5: Are there any evaluations performed? With this specific research question, we
are exploring if any evaluation was performed on the proposed context or the context’s
purpose.

RQ1.6: Are there identified limitations or gaps when using context? With this question,
we wish to investigate if there are any identified limitations provided within the context
proposal or utilization, we also aim to make this information explicit in this LR.

RQ1.7: What are the advantages or disadvantages of this context? We want to explore the
pros and cons of the context retrieved from the literature.

RQ1.8: How are the context instances mined? With this research question, we are look-
ing for the uses of the context and if they were mined to retrieve other processed infor-
mation such as a recommendation.

RQ1.9: Are there any proposed abstractions? With this research question, we are look-
ing for abstractions of the proposed context within the article retrieved from the litera-
ture.

To create the search string, we have used the PICO (Population, Intervention, Comparison,
Outcome) strategy, proposed by Pai et al. [127]. The PICO definition is presented in Ta-
ble 4.3.

Having defined PICO, the search string for each database is

(Programmer OR (software AND (developer OR tester)) OR (”software development project”
OR ”software development environment”)
AND (Context OR ”event based” OR ”self adapt” OR skill OR ”team size” OR ”organizational
structure” OR ”organizational structure” OR situational OR ”application type” OR ”type of

40

ht!

Table 4.3: Search string creation process with PICO [127].
(P)opulation: Software developer in software development
Keywords: (Programmer OR (software AND (developer
OR tester)) OR (”software development
project” OR ”software development
environment”)
(I)ntervention Control: Context
Keywords: (context OR ”event based” OR ”self adapt”)
(C)omparison: None
(O)utcome Measure: Methodology
Keywords: tool* OR system* OR recommend*

application”)
AND (tool* OR system* OR recommend*).

In terms of article selection, inclusion and exclusion criteria were proposed. These
criteria consider the articles:

• Written in English

• Within a Software Engineering scope

• Involving software development

• That discusses or involves software development projects

• Presenting studies of context in software development

• That is NOT about IoT (Internet of Things) or hardware

4.2.2 Execution Phase

The initial set of articles was retrieved from the ACM Digital Library on August 9th,
2019. The execution phase returned 135 articles. After reading the title and abstract
(two researchers), 18 articles were selected for full reading, according to inclusion and
exclusion criteria definitions. The complete list of selected articles is presented next.
The list shows the year of publication, authors and publication title.

41

1. Keith Marzullo, Douglas Wiebe. ”Jasmine: A software system modelling facility.”
ACM SIGPLAN Notices, 22(1):121–130, 1987. [98]

2. Bowen Alpern, Alan Carle, Barry Rosen, Peter Sweeney, Kenneth Zadeck. ”Graph
attribution as a specification paradigm.” ACM SIGPlan Notices, 24(2):121–129, 1988.
[6]

3. Allen Goldberg. ”Reusing software developments.” ACM SIGSOFT Software Engi-
neering Notes, 15(6):107–119, 1990. [64]

4. Paul L Baker. ”Ada as a preprocessor language.” ACM SIGAda Ada Letters, 10(1):83–91,
1990. [13]

5. Davor ČubraniĆ, Gail C. Murphy, Janice Singer, Kellogg S. Booth. ”Learning from
project history: A case study for software development.” In Proceedings of the 2004
ACM Conference on Computer Supported Cooperative Work, CSCW ’04, pages 82–91,
2004. ACM. [171]

6. Vesna Mikulovic, Michael Heiss. ”How do I Know What I Have To Do?” The Role
of the Inquiry Culture in Requirements Communication for Distributed Software
Development Projects. In Proceedings of the 28th International Conference on Software
Engineering, pages 921–925, 2006. [113]

7. Vincent Rosener, Denis Avrilionis. ”Elements for the definition of a model of soft-
ware engineering.” In Proceedings of the 2006 International Workshop on Global Inte-
grated Model Management, pages 29–34, 2006. [145]

8. Kleber Rocha de Oliveira, Mauro de Mesquita Spinola. ”Porei: Patterns-Oriented
Requirements Elicitation Integrated - Proposal of a Metamodel Patterns-Oriented
for Integration of the Requirement Elicitation Process.” In Proceedings of the 2007
Euro American Conference on Telematics and Information Systems, pages 1–8, 2007.
[39]

9. B. Ashok, Joseph Joy, Hongkang Liang, Sriram K. Rajamani, Gopal Srinivasa,
Vipindeep Vangala. ”Debugadvisor: A recommender system for debugging.”
In Proceedings of the 7th Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on The Foundations of Software Engineering,
ESEC/FSE ’09, pages 373–382, 2009. [10]

42

10. Marcelo Cataldo, James D Herbsleb. ”End-to-end features as meta-entities for en-
abling coordination in geographically distributed software development.” In 2009
ICSE Workshop on Software Development Governance, pages 21–26, 2009. [27]

11. Hossein Tajalli, Nenad Medvidovic. ”A reference architecture for integrated de-
velopment and run-time environments.” In 2012 Second International Workshop on
Developing Tools as Plug-Ins (TOPI), pages 19–24. IEEE, 2012. [163]

12. Nicolas Devos, Christophe Ponsard, Jean-Christophe Deprez, Renaud Bauvin, Bene-
dicte Moriau, Guy Anckaerts. ”Efficient reuse of domain-specific test knowledge:
An industrial case in the smart card domain.” In 2012 34th International Conference
on Software Engineering (ICSE), pages 1123–1132. IEEE, 2012. [42]

13. Juliana Saraiva. ”A roadmap for software maintainability measurement.” In 2013
35th International Conference on Software Engineering (ICSE), pages 1453–1455. IEEE,
2013. [149]

14. Jun Lin. ”Context-aware Task Allocation for Distributed Agile Team.” In Proceed-
ings of the 28th IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE’13, pages 758–761, 2013. [92]

15. Patrick Wagstrom, Subhajit Datta. ”Does latitude hurt while longitude kills? geo-
graphical and temporal separation in a large-scale software development project.”
In Proceedings of the 36th International Conference on Software Engineering, pages
199–210, 2014. [175]

16. Gail C. Murphy. ”Getting to flow in software development.” In Proceedings of the
2014 ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, Onward! 2014, pages 269–281, 2014. [117]

17. A. M. Lima, R. Q. Reis, C. A. L. Reis. ”Empirical evidence of factors influencing
project context in distributed software projects.” In 2015 IEEE/ACM 2nd Interna-
tional Workshop on Context for Software Development, pages 6–7, 2015. [90]

18. Gail Murphy. ”Beyond integrated development environments: adding context to
software development.” In Proceedings of the 41st International Conference on Soft-
ware Engineering, pages 73–76. IEEE Press, 2019. [116]

After fully reading the 18 articles, the five articles that had content that satisfied the
defined research questions and inclusion and exclusion criteria are presented in Table
4.4. The analysis of the LR is presented in the next section.

43

Ta
bl

e
4.

4:
A

rt
ic

le
s

se
le

ct
ed

fo
r

co
ns

id
er

at
io

n
af

te
r

fu
ll

re
ad

.

ID
Pu

bl
ic

at
io

n
Ye

ar
A

ut
ho

rs
Ti

tl
e

A
1

20
19

M
ur

ph
y,

G
ai

lC
.[

11
6]

Be
yo

nd
In

te
gr

at
ed

D
ev

el
op

m
en

tE
nv

ir
on

m
en

ts
:A

dd
in

g
C

on
te

xt
to

So
ft

w
ar

e
D

ev
el

op
m

en
t

A
2

20
14

M
ur

ph
y,

G
ai

lC
.[

11
7]

G
et

ti
ng

to
Fl

ow
in

So
ft

w
ar

e
D

ev
el

op
m

en
t

A
3

20
13

Li
n,

Ju
n

[9
2]

C
on

te
xt

-a
w

ar
e

Ta
sk

A
llo

ca
ti

on
fo

r
D

is
tr

ib
ut

ed
A

gi
le

Te
am

A
4

20
09

A
sh

ok
,B

.;
Jo

y,
Jo

se
ph

;
Li

an
g,

H
on

gk
an

g;
R

aj
am

an
i,

Sr
ir

am
K

.;
Sr

in
iv

as
a,

G
op

al
;V

an
ga

la
,V

ip
in

de
ep

[1
0]

D
eb

ug
A

dv
is

or
:A

R
ec

om
m

en
de

r
Sy

st
em

fo
r

D
eb

ug
gi

ng

A
5

20
04

Č
ub

ra
ni

Ć
,D

av
or

;M
ur

ph
y,

G
ai

lC
.;

Si
ng

er
,J

an
ic

e;
Bo

ot
h,

K
el

lo
gg

S.
[1

71
]

Le
ar

ni
ng

fr
om

Pr
oj

ec
tH

is
to

ry
:A

C
as

e
St

ud
y

fo
r

So
ft

w
ar

e
D

ev
el

op
m

en
t

44

4.2.3 Analysis Phase

In this section, we present the findings of the articles retrieved by the LR using the
search string. Each of the nine sub-research questions is discussed. We also present the
results in a condensed table of contexts, which we included in Appendix A.

RQ1.1: What are the types or classifications of the context?

Regarding the first research question, the types or classifications of context vary. Pa-
pers A2, A3 and A5 explicitly mention project task context. These articles define task
context as the information around a project task or the relationships in an information
space that are relevant to a software developer as they work on a particular task. A1
mentions context in a more broad and integrative perspective, by listing the following
existing contexts: static software structure, dynamic system execution, historical artifact
changes, developer activity, and team and organization activity. The historical artifact
changes proposed by A1 can also relate to the context suggested by A5, in a way that
both articles mention the provenance of information. A4 proposes context around the
error scenario, meaning that the context proposed is natural language text, textual ren-
dering of core dumps or the debugger output of errors that might occur when develop-
ing software.

RQ1.2: Is there a model specification technique used?

For RQ1.2, none of the papers mention whether there are model specification tech-
niques used for the proposed contexts.

RQ1.3: What are the goals or purposes of context?

Regarding RQ1.3, the objectives of the contexts are clarified. For article A1, each
proposed context has a specific goal. The context type is listed below, followed by its
purpose.

• Static software structure: IDEs provide static source code artifacts as context to
tools hosted in the environment.

• Dynamic system execution: Context in the form of dynamic execution information
about a system under development.

• Historical artifact changes: Tools that access historical information about a sys-
tem’s static artifacts.

45

• Developer activity: Context about how humans work to produce the system, and
not necessarily what was generated during the system’s production. An example
is Mylyn’s degree of interest [116].

• Team and organization activity: Treating the activities across a value stream as
context.

Paper A2 states that the use of task context can approximate task context by either
capturing developers’ interactions or using data from repositories. The context is then
used to determine if the information captured or used is relevant to new tasks that will
be performed.

Paper A3 applies task-related information to produce task allocation recommen-
dations. Paper A4 employs error texts to create a query which could be kilobytes of
structured and unstructured data containing all contextual data for the issue being de-
bugged. This query allows users to search through all available software repositories
such as version control, bug database and logs of debugger sessions. Finally, paper A5
explains that storing context information (Person, Message, Document, Change Task
and File version) can be used to create a project memory from the artifacts and commu-
nications created during a software development project’s history. Using this context
information can facilitate knowledge transfer from experienced to novice developers.

RQ1.4: On what step or phase of the software development does the context focus?

Regarding RQ1.4, Papers A3, A4 and A5 mention where the context should be used
during software development. A3 explains that its proposed approach should be used
during the planning when tasks are being allocated to software developers. A4 states
that their proposed context focuses on the occurrence of bugs and A5 explains their
proposed context can be manipulated during coding or when bugs occur.

RQ1.5: Are there any evaluations performed?

Regarding evaluation, the subject of RQ1.5, papers A1 and A2 do not present per-
formed evaluation. A3 mentions that a tool was built and evaluated, presenting better
results than the tool being used as a comparison. A4 explains the performance evalu-
ations returned useful results (bug resolutions) for 75% of the cases tried. Finally, A5
performed a qualitative evaluation regarding the effective use of history information
by newcomers within the developed tool that implements the contexts. Results, when
tasks are considered complex, are very prominent as:

”The examples of previous changes provided by Hipikat were helpful to
newcomers working on the two change tasks. The recommendations were

46

used as pointers to snippets of code that could be reused in the new tasks
and as indicators of starting points from which to explore and understand
the system. Without such help, it is hard for a newcomer to a project even to
know where to begin” [171].

RQ1.6: Are there identified limitations or gaps when using context?

Regarding gaps found, answering RQ1.6, paper A1 mentions that for the historical
artifact changes context type, many research tools have been proposed that use histori-
cal information, but few tools are available to practicing developers. A4 mentions that
duplicate bug reports can occur because of code clones, which can hamper evaluation
results. The other articles do not mention gaps.

RQ1.7: What are the advantages or disadvantages of this context?

Regarding RQ1.7, paper A1 mentions as advantages of the historical artifact changes
in the fact that task contexts enable developers to be more productive by making it easy
to recall the source code associated with a given task and by allowing other tools, such
as content assist, to order information based on work performed as part of the task. As
for the team and organization activity context, the author of the same article explains
that this context enables the correlation of downstream effects with upstream choices
and would open new opportunities for feedback to be provided to developers as devel-
opment is undertaken. As a disadvantage of this type of context, it is mentioned that
this context is still unexplored. A2 mentions as an advantage the fact that a task con-
text can be used to support an interaction style with the increased flow that reduces the
information shown to a software developer and enables parts of different information
spaces to be related automatically. A3 mentions as an advantage the fact that the tool
built to work based on context helps to alleviate a common problem, that is, that tasks
were allocated more often to experienced developers, while the less experienced devel-
opers received fewer tasks to perform. The other papers do not mention the advantages
or disadvantages.

RQ1.8: How are the context instances mined?

Regarding RQ1.8, paper A3 presents instances as recommendations of who should
resolve a task through a tool. A4 suggests as instances the recommendations of in-
formation from bug databases considering queries of contextual information about an
issue. Finally, A5 describes as instances of the recommendation of artifacts that should
be edited according to the captured context history.

47

RQ1.9: Are there any abstractions?

For RQ1.9, no papers mention abstractions. A summary of these findings is pre-
sented in Tables A.1 and A.2.

4.2.4 Snowballing Search

For the area of software engineering context, the term ”context” is broad and there are
variations in the nomenclature in the literature. Therefore, to mitigate this problem, we
also implemented snowballing [71] search from the five papers analyzed in the LR. We
retrieved seven more papers to analyze according to our defined research questions.

48

Ta
bl

e
4.

5:
A

rt
ic

le
s

re
tr

ie
ve

d
fr

om
Sn

ow
ba

lli
ng

Se
ar

ch
Li

te
ra

tu
re

R
ev

ie
w

.
ID

Ye
ar

A
ut

ho
rs

Ti
tl

e
SB

A
1

20
17

M
.G

as
pa

ri
c,

G
.C

.M
ur

ph
y,

an
d

F.
R

ic
ci

[6
3]

A
co

nt
ex

tm
od

el
fo

r
ID

E-
ba

se
d

re
co

m
m

en
da

ti
on

sy
st

em
s

SB
A

2
20

18
N

.C
.B

ra
dl

ey
,T

.F
ri

tz
,a

nd
R

.H
ol

m
es

[2
0]

C
on

te
xt

-a
w

ar
e

C
on

ve
rs

at
io

na
lD

ev
el

op
er

A
ss

is
ta

nt
s

SB
A

3
20

03
D

.Č
ub

ra
ni

ć
an

d
G

.C
.M

ur
ph

y
[1

81
]

H
ip

ik
at

:R
ec

om
m

en
di

ng
Pe

rt
in

en
tS

of
tw

ar
e

D
ev

el
op

m
en

tA
rt

if
ac

ts

SB
A

4
20

14
L.

Po
nz

an
el

li,
G

.B
av

ot
a,

M
.D

.P
en

ta
,

R
.O

liv
et

o,
an

d
M

.L
an

za
[1

36
]

Pr
om

pt
er

:A
Se

lf
-C

on
fid

en
tR

ec
om

m
en

de
r

Sy
st

em

SB
A

5
20

07
F.

W
.W

ar
r

an
d

M
.P

.R
ob

ill
ar

d
[1

78
]

Su
ad

e:
To

po
lo

gy
-B

as
ed

Se
ar

ch
es

fo
r

So
ft

w
ar

e
In

ve
st

ig
at

io
n

SB
A

6
20

05
R

.H
ol

m
es

an
d

G
.C

.M
ur

ph
y

[6
7]

U
si

ng
St

ru
ct

ur
al

C
on

te
xt

to
R

ec
om

m
en

d
So

ur
ce

C
od

e
Ex

am
pl

es
SB

A
7

20
06

M
.K

er
st

en
an

d
G

.C
.M

ur
ph

y
[7

7]
U

si
ng

Ta
sk

C
on

te
xt

to
Im

pr
ov

e
Pr

og
ra

m
m

er
Pr

od
uc

ti
vi

ty

49

The papers retrieved from the LR were used as a seed for the snowballing literature
study. From the seed papers, we performed a backward snowballing search step [71], in
that we looked at all their references, going backward in the citation graph. We stopped
the process with the first set of collected papers. After we selected the papers, we also
collected information regarding the research questions from these papers.

For the backward snowballing (reference search), 87 papers were extracted from the
references from the five seed papers. After deleting the duplicates, 81 papers were left.
The title and abstract of each paper were read by two researchers, who were looking
for papers according to the objectives set in section 4.2.1. After the title and abstract
exclusion, 14 papers were selected for a full reading. Duplicate publications about the
same solution in different proceedings or transactions were excluded. After fully read-
ing the articles, 7 papers were selected for analysis, according to the same inclusion and
exclusion criteria used during the Search String Search step. These papers are presented
in Table 4.5. These papers were fully read, and relevant information about each of them
was included in the Appendices Chapter A, in Table A.1 and Table A.2. These articles
are identified by the ID ”SBAx” in these tables.

4.3 Discussion

In this research, we explore the context within the domain of software engineering.
Our journey begins with this preliminary study, aiming to lay the foundation for an
enhanced understanding of this critical yet multifaceted element. We align ourselves
with the sentiments expressed by Prof. Gail Murphy in emphasizing context as a pivotal
construct, one that holds the potential to empower developers to tackle uniquely human
challenges in software development.

Our primary motivation is rooted in the recognition of the intricate nature of soft-
ware development. This knowledge-intensive endeavor involves a diverse array of
technologies and relies on many information sources, from tutorials to online forums
[43]. Furthermore, the human-centric aspect of software development, influenced by in-
dividual characteristics, personal interests, and a range of external factors, underscores
the immense impact of context on developers’ work methods. Therefore, understand-
ing and effectively managing this context can prompt transformative changes in how
developers approach their tasks.

Software development context encompasses a vast expanse of information, span-
ning various formats and sources, including code repositories, natural language com-

50

munication, and many tools and artifacts. Despite its acknowledged importance, there
remains a gap in developing comprehensive models that capture this dynamic context
and utilize it to provide context-driven recommendations to developers throughout the
project lifecycle. Context, in this context (no pun intended), extends beyond a mere set
of variables; it embodies the very essence of the development environment, the dynamic
elements at play, and the human processes involved.

By embracing context-aware methodologies, software engineering can stride towards
adaptability, enabling systems to respond to changing scenarios flexibly. This adaptabil-
ity not only enhances the effectiveness and relevance of software but also equips it to
navigate the complexities posed by the ever-evolving and diverse contexts. In essence,
our research recognizes context as an intrinsic and influential aspect of empirical soft-
ware engineering, one that permeates software practices and research, and which brings
complexities to developing software. Our study sets the stage for a more context-aware
and adaptable software development landscape.

The findings from our LR revealed a diverse landscape of context types, ranging
from project task context to static software structure and historical artifact changes. No-
tably, these contexts served specific purposes, such as improving developer productiv-
ity or aiding in task allocation. However, we observed that there was a notable absence
of discussions on model specification techniques for context. Moreover, our analysis
shed light on the phases of software development where context could be applied ef-
fectively, such as during task allocation or bug resolution. Some papers in our review
conducted evaluations, which generally yielded positive outcomes, while others high-
lighted limitations, like the scarcity of tools for certain context types.

In our LR, the first round of articles returned by the search had articles from 1977
to 2019. However, the selected articles ranged from 2003 to 2019. The majority of the
articles use context as the information around project tasks and the information about
the tasks. One article also considers the information from errors raised during software
development as contexts. All the instances of the contexts mentioned were aimed at
recommending information to software developers. The advantages and disadvantages
identified in the papers analyzed were very specific to each proposal. We could also
note that the contexts of the articles analyzed are within different steps of the software
development cycle, although using the same information (e.g., project task context),
from which it can be inferred that a platform can be built for more than one step of the
software development exploring multiple purposes of the same context information.
Running a search using the same string on the Scopus database, there are 2547 papers
listed between 2019 and November 2023. This demonstrates how much interest the
topic has gained in the research community, and that updating this LR is a great open

51

research opportunity.

This research also resulted in a proposed adaptive context-augmented framework
for software development. This proposal (presented in Appendix B), addresses a fun-
damental need within the software development landscape: the ability to adapt to the
dynamic and multifaceted nature of context. This framework’s premise, rooted in the
recognition of context as mutable, aligns with the findings from the LR, which high-
lighted the diverse dimensions of context, including environment, people, domain, and
technology. Indeed, software systems that can respond to these contextual variations
hold a distinct advantage, as they can better cater to the unique demands of each project,
and address the complexity of dealing with the multitude of contexts in SD. The frame-
work’s modules - the software development project, a reconfigurable context model,
and an adaptive engine - form a promising foundation for context-aware software de-
velopment. By providing a flexible context model, the framework acknowledges the
varying context types identified in the LR. This adaptability is crucial, as it enables the
model to evolve in response to different project contexts, from MVP-focused to mature
software projects. The extended Context Model, as illustrated in the Appendix, serves
as a practical example of how the framework can effectively capture and integrate con-
textual attributes, including project identification, team expertise, technology stack, and
more. This proposed framework has the potential to enhance software development
practices by empowering developers with context-specific knowledge and recommen-
dations. It represents a forward-looking approach that recognizes the intricate interplay
between context and software development, aligning with the evolving demands of the
field. However, it is essential to consider the challenges of implementation, such as data
collection and model adaptation, as well as the need for ongoing refinement to ensure
the framework’s effectiveness in real-world development scenarios.

4.4 Threats to Validity

We present a candid analysis of the LR, describing the threats to the validity. The fol-
lowing potential threats should be considered:

Publication Bias: The LR may be influenced by publication bias as it only includes
articles published up to 2019. More recent articles on the topic might have been pub-
lished after this date, and their exclusion could limit the comprehensiveness of the re-
view. This section of this thesis reports the LR that started the Ph.D. work in 2019.

Selection and Sampling Bias: The choice to focus on articles that use context for

52

recommending information to software developers might overlook studies that explore
the context for other purposes or in different contexts within software engineering.

Limited Scope: The LR primarily focuses on context as information around project
tasks and the tasks themselves, which could neglect other valuable aspects of context
within software development, potentially leading to a narrow perspective.

Potential Overlooked Studies: Despite the comprehensive analysis of the selected
articles, there remains a possibility that some relevant studies discussing contexts in
software engineering were inadvertently overlooked during the search and selection
process. Conducting a more exhaustive search and ensuring unbiased selection criteria
can help provide a more comprehensive understanding of the topic.

4.5 Conclusion

The purpose of the current study is to determine how the software development context
is presented in the literature. We also propose a preliminary context model that can
serve as a foundation to support the identified context and its possible variations. These
are the first steps to a solution that explicitly considers software development context
to provide in-depth contextual knowledge to software projects throughout a project life
cycle. Prior studies have noted the importance of the presence or absence of context
information, and how it can influence recommendations during software development
[108]. The proposed framework should then be able to be adapted to the contextual
factors that are available and provide recommendations accordingly.

We presented the LR performed to understand contexts in software engineering,
how they are used, in which phase of the software development life cycle, and other
characteristics. Understanding context is relevant to our thesis, as we aim to study
ways to integrate this context into software development. Thus, developers can receive
support from this context, and be more aware of their dynamic environment, aiding
their cognitive load and the complexity of developing software in our current scenario.
Moreover, knowing these contexts can help us to implement tools that consider this
information to support the abilities of software developers when working.

Results show that various types or classifications of context exist, including project
task context, static software structure, dynamic system execution, historical artifact
changes, developer activity, and team and organization activity. The contexts proposed
in the papers found in the literature search serve specific goals, such as providing devel-
opers with static source code artifacts, offering dynamic execution information, access-

53

ing historical information about static artifacts, understanding how developers work,
and treating activities across a value stream as context. The use of context in software
development phases is mentioned in some papers. For instance, it is recommended for
planning task allocation, focusing on the occurrence of bugs, or being manipulated dur-
ing coding or when bugs occur. Some papers conducted evaluations of their proposed
context-aware tools or models, with varying degrees of success and effectiveness. A
few papers identified limitations or gaps, such as the limited availability of tools for
historical artifact changes, the potential for duplicate bug reports due to code clones,
and the relatively unexplored nature of team and organization activity context. Advan-
tages of context include improved developer productivity, better allocation of tasks to
developers, and enhanced support for specific interaction styles. Disadvantages are not
explicitly mentioned in the reviewed papers. Context instances are mined as recom-
mendations for task resolution, information retrieval from bug databases, and artifact
editing recommendations based on captured context history. None of the papers men-
tion the use of model specification techniques for the proposed contexts, as well as none
mention abstractions in the context they propose.

These findings provide insights into the diverse nature and potential applications of
context in software development, as well as the challenges and advantages associated
with its use. Further research and development in this area could help address the iden-
tified limitations and gaps, ultimately enhancing software development processes. We
discuss our considerations for providing this support to developers through a conver-
sational agent in Appendix E, where we propose a reflection on the open questions to
realize a paradigm where developers receive contextual support during development
through recommendations and using a conversational agent as the main tool in this ap-
proach. From this reflection, we started to consider conversational agents as the aid to
assist developers with context, which led us to our next set of studies that compose this
thesis and that are presented in the next Chapter.

54

Chapter 5

User Studies to Inform the Design of
Human-Chatbot Interactions

”We encounter the deep questions of design when we recognize that in designing tools
we are designing ways of being.” – Terry Winograd and Fernando Flores

5.1 Introduction

Developing software is a challenging task. For example, developers tipically work on
multiple projects, comply with company processes, demonstrate technical knowledge
and soft skills, attend meetings, and train newcomers. In this very dynamic and rich
environment [20, 110], proposing solutions to support software development has been a
topic of increasing interest both in research and industry, as developers often search and
require more knowledge than they have at their immediate disposal [89]. Moreover, as
companies become more technology-centric1, facilitating the job of software developers
is becoming a major issue.

Many different efforts to support software developers in their work have been in-
vestigated, ranging from adopting new processes and complex tools to complying with
domain-specific processes. Approaches have been proposed to support developers in
multiple ways, including finding artifacts [151], aiding software maintenance [154] and
automating tasks [91]. One of the big challenges developers face is remembering the

1https://www.wsj.com/articles/every-company-is-now-a-tech-company-1543901207

55

https://www.wsj.com/articles/every-company-is-now-a-tech-company-1543901207

details of what is to be done, and dealing with the many context changes developers
endure daily [110]. Solutions to support developers in some of the tasks they must ex-
ecute are thought to be beneficial. A developer does not need to rely only on memory
or page through large volumes of documentation, thus aiding the software develop-
ment process and potentially resulting in more productivity. The automation of many
of these tasks has been pursued, although this often leads to other challenges [20]. For
example, it is hard to determine what is to be executed when given a certain process
context. Moreover, developers would still have to remember the existence and opera-
tion of specific scripts to automate their tasks.

In SE, some activities are hard to automate fully, such as selecting the best code to
reuse from the many threads on Stack Overflow, managing exactly which files to commit
while creating a version of the system and commenting on branches. Research shows
that having the human-in-the-loop can be beneficial in software engineering [108] when
curating external documentation to support software development. When considering
all these automation challenges, text-based Conversational Agents (CAs) or chatbots are
one tool that could mitigate some of these challenges. The conversation with the chatbot
happens using natural language, thus excluding the need to learn how to execute com-
mands. Chatbots can be seamlessly integrated into IDEs and customized and integrated
with existing tools while keeping histories of conversations and interactions if neces-
sary. Chatbots have already been used as the chosen tools to support software develop-
ers in different scenarios, with reported case studies [126, 1, 20]. However, a tool that
captures the current context (artifacts, team members, project information) and guides
developers in the development process has not yet been proposed. Given the com-
plexities of developing such a tool, and the considerations highlighted in our reflection
represented in Appendix E, we proposed a set of studies with software developers, aim-
ing at investigating: (1) The extent to which developers are willing to use a chatbot to
support the execution of their tasks, (2) extract requirements from software developers
for such tools, and (3) support the design of CAs to assist software development. This
investigation provides insights into the perceptions of how developers would be inter-
ested in receiving contextual support, and for what within what context. Moreover, this
research informs the system design of context-aware conversational tools for software
developers, as well as supports the tailoring of systems to developers’ preferences.

We conducted a set of exploratory studies to understand the preferences and require-
ments of software developers when being supported in their work by a text-based CA.
Our purpose is to investigate the developer-chatbot interaction in terms of developer
preferences and gather requirements to inform the development of such tools. Note
that we are not evaluating tools or their features; instead, we are assessing and aim-

56

ing to capture the interaction aspects and developers’ preferences when using a text-
based chatbot. We performed the investigation in two parts. In the first part, we used
a Wizard-of-Oz methodology, with 5 participants in a classroom environment (Section
5.2). We gathered user study data and perceptions of the participants into the study
design. Then, in the second part, we incorporated relevant feedback on the study de-
sign and designed a complementary study, this time with 29 participants, all software
developers, and used a chatbot prototype. An overview of the study methodology de-
sign is presented in Figure 5.1. This figure contributes to the comprehension of this
set of studies. In Step 1 (Section 5.2), we start by conducting a pilot study using the
Wizard-of-Oz methodology with the support of a scenario. In Step 2, we delineate the
data collection and analysis procedures. Moving on to Step 3, we integrate the feedback
gathered during the pilot study into the main study’s design (Section 5.3), concurrently
developing a chatbot prototype for deployment in this investigation. In Step 4, data
is gathered through interviews, questionnaires, and participants’ interactions with the
chatbot. Finally, in Step 5, we analyze the study’s outcomes using both quantitative and
qualitative analyses.

After running the pilot study and getting feedback from participants, we performed
exploratory user investigation using a developed and deployed chatbot prototype –
DevBot (see Figure 5.2).

By interacting with DevBot, developers had the experience of interacting with a real
tool and reporting their experience through questionnaires and interviews. Spoiler alert:
results indicate developers are interested in having chatbot tools to support the many
aspects of the software development pipeline, managing their tasks and supporting
version control.

Our specific goals with this study are to:

• Collect and reflect on the perceptions and experiences of software developers con-
cerning interacting with chatbots to support their work during software develop-
ment

• Report the perceived opportunities and challenges described by developers of us-
ing chatbots

• Gather requirements for the development of CAs in SE

• Identify the potential areas for enhancement and improvement of chatbots as a
possible tool to connect the software developer to any other environment in a

57

Figure 5.1: User studies methodology.

58

Figure 5.2: Chat with the prototype DevBot.

natural way, i.e., without the need to learn how to run scripts or search for docu-
mentation

• Provide a qualitative study design addressing chatbots as a way to support devel-
opers in their work

• Present a discussion of the study results, highlighting the potential methods to
improve the user experience of developers during software development

This set of studies does not evaluate the tool DevBot itself. Rather, it uses this pro-
totype to gather requirements and participants’ views on this type of tool (chatbots) for
work and to provide insights on how developers ask work-related questions of chat-
bots. This study methodology:

• Describes the design and results of a user study that aims at collecting informa-
tion from the experience of developers with chatbots that support them during
software development

59

• Describes the design and deployment of a chatbot prototype

• Identifies the areas that need to be addressed during chatbot design and imple-
mentation to support software developers (requirements for chatbots to support
software development)

• Reports the perceptions of developers about their experience with interacting with
a chatbot for software development

• Analyzes the questions developers asked the chatbot and draws conclusions on
how developers interact with such tools

• Discusses the perception of developers on the controllability of their work in terms
of levels of automation (automated execution vs. manual execution)

• And proposes a conceptual design model based on the reports provided by par-
ticipants in the study

Next, we describe the studies’ methodology designs and results in detail.

5.2 Pilot Study

The goal of our experiment is to understand how software developers would use a chat-
bot to facilitate daily software engineering tasks and processes. For that, we aim to pro-
vide a chatbot interface to developers and use an example scenario of what developers
might perform in one day and the related questions. Based on this scenario, developers
would ask questions to the chatbot. We would then capture and analyze the questions
developers asked the chatbot (utterances) and interview the participants. In effect, our
goal is to investigate how are developers willing to use chatbots at work and for what
types of tasks. We intend to determine if there is one part of the scenario participants
ask more or fewer questions about (interest) and the types of words and questions used
(vocabulary). We begin by experimenting with five graduate students as participants
and the Wizard-of-Oz methodology. First, we give participants a scenario of a day in
the life of a software developer. The scenario aims at delimiting the scope of questions
that could be asked. Then, we ask participants to write questions regarding any step of
this scenario to the chatbot. Next, we present details of the study design.

60

5.2.1 Procedure Setup

In this study, we use a mixed-method approach, combining Wizard-of-Oz (WOZ) [65,
75] and a structured questionnaire. We decided to perform the pilot study using WOZ
to verify user engagement and understanding of the study before investing time in de-
veloping a more complex study. This pilot is organized in three different steps.

Step 1: Participants fill out a questionnaire (Google Forms) to collect demographic
data (current degree, program, length of experience with software development, knowl-
edge regarding software repositories such as Git and Jira), and were informed that they
would be reading a scenario and asking any questions they could think of to the chat-
bot. When they click ”Next” in Google Forms, they see the scenario text. The scenario
can be read at this moment or at any point while interacting with the chatbot.

Step 2: We use Slack as our interface for the WOZ study. After understanding the
scenario, participants were supposed to start writing their questions on Slack, to the
user called DevBot. As this was a WOZ study, DevBot was the author of this thesis, an-
swering participants according to the preconfigured answers in Table 5.12. When partic-
ipants ask the chatbot to execute tasks repetitively, the chatbot responds with ”Done.”
and utters the answer configured in ”No answer”, to stimulate the participant to move
forward with other questions.

Step 3: After interacting for about 10 minutes with the DevBot slack bot, participants
were presented with a new questionnaire. This new questionnaire aims to gather par-
ticipants’ opinions regarding their experience with the chatbot. Some questions about
participants’ experiences with the Chatbot followed a Likert scale, while others were
open-ended questions. Below is the list of questions asked after the interaction with the
chatbot, and their reasoning.

• Do you think that the chatbot was helpful for the questions you asked? (0 =
Helped zero tasks to 5 = Helped in all tasks): We aim to investigate the percep-
tion of participants regarding the usefulness of the questions asked during the
study.

• Do you think the chatbot was useful for the presented scenario? (0 = Not useful
to 5 = Very useful): We aim to investigate the perception of participants regarding
the usefulness of the simple answers planned to be answered during the study.

2”What can the bot do” answer was presented either when the participant asked explicitly what the
bot could do, or after the third time the bot had to fallback.

61

• Speed of answer perception? (0= Very slow to 5 = Very fast): We aim to investigate
how the users perceive the speed of response of the bot.

• What other steps do you think this chatbot could cover? (Open question): We aim
to investigate the participant’s suggestions of topics that can be covered by such
chatbots.

• What did you like about the chatbot? (Open question): We aim to investigate the
positive aspects of the chatbot interaction with the participants.

• What can be improved in the chatbot? (Open question): We aim to gather con-
structive criticism from participants.

• Do you think this solution adds value? Why / why not? (Open question): We
aim to investigate if participants think the idea of having software development
supported by a smart chatbot is interesting and worthwhile.

• Do you have any general comments? (Open question): We aim to investigate
if participants have other general comments regarding the interaction with the
chatbot.

None of the participants should know which questions the bot is trained to answer,
to guarantee they use their vocabulary when interacting with the bot. However, during
the study, participants asked what the bot could do, or when they asked many questions
the bot did not know how to answer (questions out of the scope of the scenario), they
were given a list of possibilities based on the current scope of the scenario.

5.2.2 Scenario

Once demographic data collection was completed, participants were presented with
a scenario. This scenario describes a typical day in the life of a software developer.
This scenario was inspired by the study of Meyer et al. [111], and validated by two
experienced software developers. The goal of having this scenario is so that participants
have an idea of the scope of the questions they are supposed to ask. They could also ask
questions that were out of the scope of the scenario, and although the chatbot was not
ready to answer these, we also analyzed and computed the topics that arose that were
not covered by the scenario. The scenario is presented next.

62

Scenario: You arrive at your office at 8 a.m., sit on your chair and open the task manager
to check what tasks are assigned to you. You look for the one task with the highest priority and
read the text of the task. You understand what you are supposed to do for this task. You have
a stand-up meeting and redefine task priority. You go to the cafeteria and grab a coffee. You’re
back to your desk and open Eclipse. You sync your local code repository to get the newest version
of code for that specific task. You look for the artifacts that you might have to edit to complete
this task. You ask your colleague what he thinks about the task and the artifacts you decided to
edit. You start coding the test case for that new implementation and then edit the .java class that
is supposed to receive the edits. You get another coffee. You save your edits, commit your code
and create a pull request, inserting a comment in the pull request. It’s 4 pm. You update the task
assigned to you to status Done and with the time you invested in solving the task. You leave the
office.

After reading and understanding the given scenario, participants were invited to in-
teract with the chatbot. The chatbot operator (Wizard-of-Oz) was prepared to answer a
few questions related to the scenario and handle greetings and exceptions. When par-
ticipants asked questions related to certain topics in the scenario, the chatbot operator
would answer according to the answers presented in Table 5.1.

5.2.3 Participants

For the pilot study, the participants recruited were students from the Human-Computer
Interaction and Conversational Agents Winter 2020 course (David R. Cheriton School
of Computer Science, University of Waterloo). Five Computer Science students partici-
pated, four master’s students and one undergraduate. In their experience with software
development, only one participant reported having less than one year of experience,
as three participants have between one and five years, and one participant had more
than five years of experience. Participants reported either some knowledge of software
repositories (60%) or good knowledge (40%).

5.2.4 Study Results

After being presented with the scenario and completing the first part of the question-
naire (demographics), participants were supposed to interact with the chatbot. The an-
swers were provided according to keywords (Table 5.1) in the participants’ questions,
and if no expected keyword was present, a default response (Sorry, I can’t help you with

63

Table 5.1: Answers that Wizard-of-Oz was prepared to respond, according to the context
of the question asked.
Greetings
Greet Hey! What do you need to know regarding your scenario today?
Goodbye Bye!!
Scenario
Artifacts You need to edit class client.java and class diagram OrderMain.
Commit OK, I am committing your code to your repository.
Tasks Tasks 27405, 67933 and 13003 are open and assigned to you.
Priority The task with the highest priority assigned to you is Task 13003.
Pull Request Please, create a pull request to a branch identified with your task ID.

Code Push Please, download or clone your repository to your local machine.
Keep it synchronized.

Sync You should synchronize your repo. Click on the sync repo
button on your version control page.

Tool You have to open Eclipse or VSCode and synchronize your code.
After, assign a test task to the test team.

Exceptions
No answer Did that help you? What else can I help you with?

What can the bot do
I can help you discover which tasks are assigned to you,
their priorities, how to do a pull request and you can ask me
to commit your code.

Not on the list Sorry, I can’t help you with that. Is there anything else I can help with?

64

that. Is there anything else I can help with?) was presented. Participants asked an aver-
age of 15 questions. Based on the analysis of the questions, we highlight the following
interactions from each participant in Table 5.2. The ”x” in the table represents that this
participant, in particular, has asked questions regarding what the experiment was ready
to answer. The table also shows that all participants asked unexpected questions.

Table 5.2: Mapping of expected interactions for each participant.
Expected Intention P1 P2 P3 P4 P5
Greet x x x x x
Goodbye x x x x x
Artifacts x x x x
Commit x x x x
Priority x x x x x
Pull Request x x x
Code Push
Sync x x
Tasks x x x x x
Tool x x
Others/fallback x x x x x
What can the bot do x x x

We have also extracted entities through semantic analysis of participants’ questions
using the KH Coder Tool, filtering out stop words3. We extracted the word frequency
of the questions, and the results of the top 10 words are presented in Table 5.3. We
have also analyzed the question in clusters, using the Jaccard Distance. The Jaccard
Distance is a measure of dissimilarity or distance between two sets. It is used to quantify
the dissimilarity between two sets by measuring the proportion of elements that are
different between them. In the context of clustering or similarity analysis, it’s often used
to determine how similar or dissimilar two sets are based on their elements. The Jaccard
Distance is calculated using the formula: Jaccard Distance = (Number of Elements in
Both Sets) / (Total Number of Unique Elements in Both Sets). The clusters created relate
to the questions of task (18 documents), pull request (9 documents), code (9 documents),
greeting (3 documents) and others (40 documents). Nine documents were not included
in any cluster.

Word frequency and Jaccard distance are two distinct measures that can be used to

3https://gist.github.com/sebleier/554280

65

https://gist.github.com/sebleier/554280

Table 5.3: Word Frequency in Participants’ Questions, using KH Coder.
Word Frequency Word Frequency
task 20 need 7
pull 9 artifact 5
request 9 code 5
DevBot 8 commit 5
help 8 create 5

find clusters of words, and when used together, they can offer a more comprehensive
approach to identifying meaningful word groups. They complement each other be-
cause word frequency refers to how often a specific word appears in a text or dataset. It
provides information about the relative importance or prominence of words within the
context of the dataset. By analyzing word frequency, you can identify common words
that are frequently used and may carry essential semantic meaning or contextual rele-
vance. This approach is particularly useful for identifying frequently occurring words
that might indicate thematic focus or topics within the data. Jaccard distance measures
the dissimilarity between sets based on the proportion of differing elements. In the
context of text analysis, sets can represent word occurrences within documents. When
applied to text, the Jaccard distance can help identify how similar or dissimilar docu-
ments are in terms of their word content. It is effective for capturing the overlap or
shared vocabulary between documents. When used together, word frequency and Jac-
card distance can provide a more nuanced and comprehensive understanding of word
clusters.

In summary, on the one hand, word frequency helps identify words that occur fre-
quently, which might be common across documents or specific to certain subsets. These
frequently occurring words can serve as anchor words that contribute to clustering. On
the other hand, the Jaccard distance, when applied to sets of words within documents,
can capture the similarity of word usage between documents. This can help detect con-
textual relevance and identify documents that share similar themes or content.

After interacting with the chatbot, participants were asked a few questions regarding
their experience. Most participants reported having helpful answers to the questions
they asked (4 out of 5), and useful tools to answer questions related to the scenario (4
out of 5).

Participants have offered valuable insights into enhancing the functionality of the
chatbot. They have emphasized the importance of incorporating best practices for cod-
ing, which involves giving developers detailed explanations of each task and providing

66

step-by-step guidance on how to perform them. This approach empowers developers
to execute tasks themselves, fostering their growth and understanding.

Participants have also highlighted the potential of the chatbot to aid developers in
various ways. This includes suggesting similar tasks to a given one, locating experts for
specific tasks, and facilitating the comparison of file versions across multiple historical
commits. Furthermore, participants have emphasized the significance of context aware-
ness for the chatbot. According to participants, being able to comprehend the current
repository and utilize pull request comment templates can enhance the chatbot’s ef-
fectiveness. This context-sensitive approach ensures that the chatbot’s interactions are
tailored to the specific project, increasing its value and usability.

Positive Feedback on the Chatbot: Participants praised the chatbot for its ability
to provide clarity about its usage. It was highlighted that the chatbot was particularly
beneficial for scheduling and day planning, as mentioned by one participant: ”helpful
in terms of finding my schedule and how my day looks like so I can plan ahead”. Another
participant expressed that DevBot holds promise as a valuable resource for those less
familiar with software development workflows.

Suggestions for Improvement: Participants offered several suggestions for enhanc-
ing the chatbot’s capabilities, including:

• Handling a broader range of questions

• Introducing its purpose clearly at the outset

• Enabling code analysis and debugging

• Providing coding best practices

• Incorporating more specific details about the developer’s ongoing work

• Suggesting similar tasks

• Integrating webpages for crowd-sourced knowledge support

• Enhancing its ability to provide alternative steps or suggestions when unable to
assist

Notably, one participant provided an insightful suggestion: ”The leading prompts were
helpful but it would have been better if the DevBot could lead with the tasks it can complete and
how a user can interact with it. Perhaps it could have different modes depending on what git

67

tools, and IDEs a user is working with (i.e., Eclipse, VScode, vim XD) that could give specific
advice for each type of software. A user could select the level of help they require, ie. if a user is
brand new, maybe they’d prefer lots of prompts and extra resources for reading about how version
control works etc. for an advanced user, maybe they’d prefer just the tasks and a reminder of the
workflow...”

Perceived Value and General Comments: Regarding the chatbot’s value, the major-
ity of participants acknowledged its worth and stated that solutions like DevBot could
significantly benefit software developers. Some participants envisioned integrating the
chatbot as a personal assistant within software development workflows, along with
suggesting the incorporation of a more distinct personality to the chatbot’s interactions.

5.2.5 Discussion

The results of the study provide valuable insights into participants’ perceptions and
interactions with the chatbot, shedding light on several key points. The discussions on
these findings reveal significant implications for chatbot design, user expectations, and
the potential to enhance developer productivity.

One noticeable trend in the participant interactions was the predominant focus on
tasks and development steps rather than task execution. This observation underscores
that developers are more interested in receiving guidance and information about tasks
rather than seeking a chatbot that performs tasks on their behalf. This discrepancy be-
tween the expectations of chatbot designers and users emphasizes the need for chatbot
functionality that aligns with developers’ actual requirements and preferences.

Contextual understanding emerged as a prominent theme from participants’ feed-
back. Many participants expressed interest in the chatbot having context awareness,
including knowledge about repository details, branches, and commit message patterns.
This finding suggests that the inclusion of contextual information could greatly enhance
the chatbot’s utility and personalization. The concept of incorporating context discov-
ery and recommendation mechanisms based on interaction history emerges as a poten-
tial avenue for future chatbot development.

A noteworthy discovery pertains to the lower engagement score provided by a less
experienced developer (P1) in terms of finding the chatbot helpful for their questions.
This potentially indicates that the chatbot may need to provide more detailed explana-
tions to cater to less experienced users. Conversely, participants with more than one
year of experience generally found the chatbot to be helpful, underscoring the potential
for this tool to benefit developers with varying levels of expertise.

68

The varying nature of the participants’ questions is also intriguing. Participants
who posed questions about the tool itself, rather than pull requests, might suggest a
relative lack of experience with version control repositories and software development
processes. The study’s data also highlights that participants interacted with the chatbot
efficiently, with an average of 15 questions asked in around 10.8 minutes of active chat
time. This insight offers valuable information for designing chatbot interfaces that ac-
commodate quick and productive interactions. Moreover, the interactions participants
had with the chatbot also included greetings at the start and end of the conversation.
Additionally, it is interesting to note that one participant identified the experiment as
a Wizard-of-Oz scenario, suggesting that a chatbot prototype specifically for the goal
of this study should be designed to handle interactions seamlessly and that users may
not always recognize the underlying experimental setup, but some users might. There-
fore, an experiment with a more realistic design could be advantageous to avoid bias.
Furthermore, the high frequency of questions related to pull requests, a common as-
pect of software development among the more experienced developers, indicates that
developers are more concerned with tasks directly linked to collaborative development.

In summary, the study’s outcomes underscore the importance of aligning chatbot
functionality with users’ actual needs and preferences. Incorporating contextual aware-
ness, enhancing explanations for less experienced users, and focusing on tasks relevant
to collaborative development appear to be pivotal considerations for designing effec-
tive and beneficial chatbots for software development support. Having these results at
hand, and incorporating the feedback received from participants, we decided to expand
this pilot study.

5.3 Main Study Design

Following the pilot study, and having incorporated the feedback gathered in the pilot,
we worked on expanding the investigation. To capture and understand the character-
istics of the interaction of software developers with chatbots, we created a prototype
to support the user study. We aim to provide a simple chatbot interface to developers
and use a scenario (the same scenario used in the pilot study) to support the scope of
the study. Then, developers would ask the chatbot any questions that they would see
fit for the chatbot prototype, and we interviewed participants to collect information on
their experience. We would then analyze these questions, as well as the questionnaire
answers and the interviews. In effect, we want to investigate five topics, namely (1) if
developers are given a chatbot are they willing to use it to support their daily work?;

69

(2) what types of tasks should this chatbot support?; (3) what types of questions should
chatbots be able to answer?; (4) are there unexpected questions/requests that were not
anticipated?; and finally (5) the overall opinion of the developers regarding the use of a
chatbot.

We conducted this experiment with 29 software developers. We provided partic-
ipants with the scenario, which comprised a description of what a common day in
the life of a software developer is. Then, we asked participants to write questions
regarding any step of this scenario to Devbot (chatbot prototype), or any other ques-
tion the developer could think of. Here, we intend to determine if there is one part
of the scenario participants ask more or fewer questions about (interest), the types of
words and questions used (vocabulary), and if there are any other areas of interest,
not necessarily portrayed in the scenario. Moreover, the experiment also aims to iden-
tify the perception of developers when a chatbot knows the context in which they are
working. Since this study involves human participants, it has been reviewed and re-
ceived ethics clearance through the University of Waterloo Research Ethics Committee
(ORE#42126). Each of the resources used in the study (call for participation, information
letter and feedback form) is in Appendix D. The Google Forms used can be accessed in
https://forms.gle/GsscMeWzub8zWqVi8. The prototype implementation details can be
found in Appendix C.

5.3.1 Prototype Design

To gain insights into the preferences of software developers, we developed a CA proto-
type named DevBot. In its initial stage, DevBot is designed to interact with developers
through one-on-one text-based chats, responding to inquiries related to software devel-
opment. The structure of these interactions is outlined in the aforementioned scenario
(Section 5.2.2), and the questions the chatbot is ready to answer (the utterances it recog-
nizes) were also configured based on the question structure we have in the pilot study.
These questions are demonstrated in Table 5.1.

Our implementation of DevBot is built upon the open-source Rasa chatbot platform
(Rasa.com). Rasa offers a platform for users to create and deploy chatbots tailored to
specific tasks. Rasa presents an architecture that is designed for scalability and adapt-
ability. Refer to Figure 5.3 for an overarching view of the Rasa architecture. The archi-
tecture is centred around two primary elements: NLU and dialogue management. The
NLU component takes charge of tasks like classifying intentions, extracting entities, and
retrieving appropriate responses. This is depicted as the NLU Pipeline, as it employs an

70

https://forms.gle/GsscMeWzub8zWqVi8

Figure 5.3: Rasa Architecture. https://rasa.com/docs/rasa/arch-overview

NLU model generated by the trained pipeline to process user inputs.

On the other hand, the dialogue management component plays a pivotal role in
determining the subsequent action within a conversation, based on the ongoing con-
text. This functionality is illustrated as Dialogue Policies in the diagram, signifying its
role in steering the conversation flow. We opted to use Rasa for several reasons. First,
its open-source nature fosters a community, coupled with comprehensive online docu-
mentation. Second, it seamlessly integrates with popular platforms such as Facebook,
Telegram, and Slack. This choice aligns with our goal of deploying the chatbot on a
familiar platform to users, ensuring a smooth and natural experience. This way, users
can access the chatbot through platforms they already commonly use.

Our design centers around utilizing Rasa to govern the CA’s functions, such as ques-
tion recognition and response generation. We deployed DevBot on Facebook (developers.
facebook.com), requiring participants to access the chatbot through Facebook Messen-
ger. Rasa allows the seamless deployment of the same chatbot in different messengers,
such as Whatsapp, Telegram, Slack and others. This deployment was facilitated by
running the chatbot on a server and leveraging the RASA webhook to manage conver-
sation processing on the server, thereby delivering responses through the Facebook app.

71

https://rasa.com/docs/rasa/arch-overview
developers.facebook.com
developers.facebook.com

A screenshot of a real conversation is available in Figure 5.2.

Participants initiated the interaction by visiting facebook.com/agentdevbot and click-
ing ”Send Message.” This action triggered the Facebook messenger callback, which was
redirected to the deployed chatbot server address. To expose the local server to the
internet, we used ngrok4, an API that allows us to expose to the internet any service
deployed in a local host. The complete set of DevBot files can be accessed in this repos-
itory github.com/glauciams/devbot, and the files are also appended to this thesis, in
Appendix C.

5.3.2 Participants

Participants were recruited through university graduate student mailing lists, social me-
dia posts and participant databases. The interested participants would be screened ac-
cording to the participation requirements such as “be a software developer for over one
year” and would receive a remuneration of CAD 15 after the completion of their par-
ticipation. We collected the following demographic information from the participants:

1. Gender

2. Age

3. Highest degree or level of school completed

4. Experience with software development (in years)

5. Knowledge regarding software repositories (Git/Jira)

6. Have you interacted with CAs before and which ones?

7. How interested are you in CAs?

We recruited participants with an open call, using social media and email to the
graduate students mailing list of the University of Waterloo. 31 participants responded
to our call, but only 29 participants could be part of the study. The two participants were
excluded as they did not have enough software development experience as specified in
the study design (at least 1 year). We stopped recruiting participants once our research
had reached a level of saturation, i.e., no new information was being added.

4ngrok.com

72

facebook.com/agentdevbot
github.com/glauciams/devbot
ngrok.com

Demographic data was collected from all participants while maintaining anonymity.
Out of the 29 software developers interviewed, 26 reported previous interactions with
text-based or voice-based chatbots. Only one participant lacked familiarity with task
management tools like Jira or Trello. The interview pool included 4 self-declared fe-
males and 25 males, aged between 22 and 41 years. Zoom was the platform used for all
interviews conducted between September 2020 and February 2021. Participants were
enlisted through an open call distributed via email and social media, and they were
chosen based on possessing a minimum of 1-year experience in software development
within the industry.

5.3.3 Procedure Setup

As participants connected in the Zoom call, they were presented with the demographics
form. After filling out the demographics, they were presented with the scenario, which
consists of ”a day in the life of a software developer”. This was the same scenario used
in the pilot study. To aid in reading this thesis, we are presenting the scenario again.

Scenario: You arrive at your office at 8 a.m., sit on your chair and open the task manager
to check what tasks are assigned to you. You look for the one task with the highest priority and
read the text of the task. You understand what you are supposed to do for this task. You have
a stand-up meeting and redefine task priority. You go to the cafeteria and grab a coffee. You’re
back to your desk and open Eclipse. You sync your local code repository to get the newest version
of code for that specific task. You look for the artifacts that you might have to edit to complete
this task. You ask your colleague what he thinks about the task and the artifacts you decided to
edit. You start coding the test case for that new implementation and then edit the .java class that
is supposed to receive the edits. You get another coffee. You save your edits, commit your code
and create a pull request, inserting a comment in the pull request. It’s 4 pm. You update the task
assigned to you to status Done and with the time you invested in solving the task. You leave the
office.

After reading the scenario, participants were directed to the prototype DevBot, de-
ployed on the Facebook Messenger platform. Participants were instructed to interact
with the participants for about 10 minutes, or for as long as they had questions to ask.
We ask each participant the following question: ”What questions would you like to ask
DevBot, that would help you go about your day?”

Then, after interacting for about 10 minutes (or for as long as they could think of
questions), they were presented with a post-study questionnaire, which comprised of
questions to gather participants’ opinions on the interaction. The questions about the

73

participant’s experience with the chatbot prototype follow a Likert scale from one to
five or are open-ended questions. Likert scales ranged from 1-5, where 1 meant ”Not at
all” and 5 ”Very Much”.

1. How much did you like interacting with DevBot?, Likert scale and open text field
to explain the answer.

2. How much would you be interested in using DevBot in your company?, Likert
scale and open text field to explain the answer.

3. Do you think that chatbot was helpful for the questions you asked?, Likert scale.

4. In general, did the bot answer what you were expecting?, Likert scale.

5. Do you think the chatbot was useful for the presented scenario?, Likert scale.

6. What was your perception of the time DevBot took to answer your questions?,
Likert scale.

7. What other steps not covered in the scenario do you think the chatbot could be
useful for?, Open text field.

8. What did you like about the chatbot?, Open text field.

9. What can be improved in the chatbot? Is there anything you would change about
DevBot?, Open text field.

10. Do you think this solution adds value to software development? Why / Why not?,
Open text field.

11. Do you have any general comments?, Open text field

Finally, when participants completed the questionnaire, we conducted a semi-structured
interview where we again asked about their experience with DevBot. The question
asked of all participants was: ”Tell me how your interaction was, and what did you
think about DevBot”. Extra clarifying questions could arise depending on participants’
answers. This last part aimed to capture opinions and takeaways from participants that
they might not have written in the questionnaire. We asked participants to turn off
their cameras while recording the interviews on Zoom and kept the audio file only, also
deleting the video file as an extra step to guarantee the participants’ privacy.

74

None of the participants should know which questions the bot is trained to answer,
to guarantee they use their vocabulary when interacting with the bot. However, during
the study, if participants asked what the bot could do, or when they were asked many
questions the bot did not know how to answer, DevBot was ready to answer with a list
of possibilities based on the current scenario. Every participant was presented with the
same scenario. The next section describes the study results.

5.4 Study Results

Participants asked a total of 619 questions (or issued commands) to DevBot, with an
average of 21.3 questions per participant. Each interaction averaged 12 minutes, and
the total time for interaction was 5:56 hours. We collected all questions and transcribed
the interviews using Whisper https://openai.com/blog/whisper/. Whisper is a pre-
trained model for automatic speech recognition (ASR) and speech translation. Trained
on 680k hours of labelled data, Whisper models demonstrate a strong ability to gener-
alize to many datasets and domains without the need for fine-tuning.

5.4.1 Questionnaire Data Analysis

In this Section, we present the results extracted from the analysis of the data of the post-
study questionnaire.

Experience interacting with DevBot: Most of the respondents claimed they felt neu-
tral (Likert scale = 3) when asked about how much they liked interacting with DevBot.
Only 4 participants (out of 29) claimed to have enjoyed interacting with the tool (Lik-
ert scale = 4). In the questionnaire, participants questioned the ability of the chatbot
to reply to the questions they had asked, as P1 mentioned ”The Devbot was quick in re-
sponding but was not able to help me with correct answers to the questions that I had. Had
it been able to answer my questions, it would have been more fun.” . Participants claimed
DevBot was not helpful for some of the specific questions asked, and pointed out that
understanding the purpose of the chatbot would result in a more valuable experience
overall. One participant mentioned ”If it can have better intelligence, I’m definitely inter-
ested in using it”. Another participant claimed ”.. I did like the ability for the chatbot to
improve the usability of some repetitive tasks mainly: pushing code, committing code, creating
branches, pulling/updating code, and creating PRs.”.

75

https://openai.com/blog/whisper/

Willingness to use DevBot while at work: When asked about how interested partic-
ipants were in using DevBot for work, the answers were mixed. 11 participants selected
options 4 or 5 on the Likert scale, while all others selected options 1 to 3. As one par-
ticipant points out ”... it would be very nice to use, given a bit more access to task details”.
Another participant expressed the need to improve the capabilities of the prototype.
They mentioned ”I think a tool like this would be super helpful in training and onboarding
newer developers. I can see it being useful in reminding developers what the software process is
like in a company, and it could answer fairly generic questions like branching strategy. For more
experienced developers, I guess it could be used as a faster alternative to going on JIRA/their task
managing site themselves to look at their tasks.”

Interest to have contextual information incorporated into DevBot: Participants
have recognized the importance that using such tools could provide contextual answers
once integrated with task management tools and with an enabled history of conversa-
tions. ”It would also be helpful to have contextual answers, e.g. ’Start task X’, and then when
I’m finished I could say ’Set task completed’, instead of having to remind the right task. Or even
ask it to remind me of the current task I’m working on after context switching, like coming back
from a meeting or lunch.”

Identified design opportunities: To analyze this topic, we have listed all possible
identified design opportunities that were mentioned by the participants and organized
them into keywords. Then, we grouped similar keywords into more general groups
and summarized the occurrences. For this question, developers expressed an interest
in having a chatbot that can support and leverage git functions (10), and manage their
tasks (9) and their schedule (9).

Participants suggested that process-related information would be of most interest to
implement in a chatbot. This information is connecting with teammates, and managing
their tasks and their schedule. More specific development information should also be
part of such solutions, such as auto-complete commands, integration with tools such as
git, and supporting and leveraging git functions. One participant mentioned: ”I think
the chatbot could be used as a developer’s help tool since it clearly seemed to understand what
my questions were. For example, if I had issues with merge conflicts or started my IDE, it could
respond with common causes or more resources.”

Participants have also pointed out they want to see the capabilities of the chatbot
tool beforehand, and they differ in their opinions regarding how much controllability
in terms of the level of automation the chatbot should have, and provide suggestions for
how features that allow automated executions through the chatbot should run. Other
topics mentioned are features already available in tools such as RASA or require mini-

76

mal configurations, such as keeping conversation history, improving answers, provid-
ing positive answers when a topic’s solution is unknown and, as mentioned, informing
users of the chatbot’s capabilities at the beginning of the interaction. Other suggestions
require implementation efforts, such as managing tasks, and knowing the environment,
such as where the code goes after commits or which test environments are used. Par-
ticipants also pointed out it is not always desirable to have tools and bots execute tasks
on their behalf. Because of the number of comments we received regarding this aspect
of controllability, we clarified this issue in the interview after analyzing the study’s pre-
liminary results with 8 participants. From this point on, we asked participants their
opinions on controllability in the semi-structured interview.

Positive feedback: Many participants mentioned the fast response of the chatbot as
a characteristic of the solution they liked (15 occurrences). Participants have mentioned
being interested in having features already inherent to text-based chatbot applications,
such as asking many questions about one item that was already mentioned (chatbot
understanding the history of the conversation) and the speed of answers. Others men-
tioned being interested in features that would need to be implemented, such as integra-
tion with task portals and calendar management tools.

Participants suggested a mix of features they liked that would need to be imple-
mented and features that are already built-in to chatbot solutions such as RASA, which
would have minimal complexity in their implementation. Built-in features such as the
ability to formulate questions freely and provide fast responses are already inherent to
textual CA solutions. Other ideas such as managing schedules, automating repetitive
tasks, and giving task details should be implemented and leveraged by the solution’s
model training and integration abilities. One participant mentioned, ”The whole idea of
having an assistant to help developers manage their tasks has great potential.”

Requirements for development of chatbots in SE: Most participants pointed out
that the solution adds value and added comments to their answers, some providing
examples of where a chatbot like DevBot would help them, others providing require-
ments that would allow them to use such tools. The topics that arose are summarized
and presented next.

• Needs to be extremely well done, otherwise frustrating

• Great way to teach beginners

• Great to integrate fragmented information/tools in SE

• Good to add structure to work, i.e., breaking down tasks

77

• Great to manage tasks, as ”Jira can get really boring and complicated to navigate”

• Great if it does the repetitive tasks that programmers have to do

• Great to serve as a team database/communication partner, instead of asking col-
leagues questions

• Has to be ”smart”

• Has to work for the proposed purpose

• Can also have voice commands

• Use in low-level tasks such as ”communicating, managing meetings, fetching to-do
lists”

• Helps to save time when not at work and work-related subjects arise

One participant has mentioned ”I think it does if the bot can answer some questions., I
think it is a great way to teach a junior/beginner developer good practices. I remember as a junior
developer joining a new team having tons of questions because I really wanted to do things the
right way. But I could not ask my colleagues over and over.”

When asked if they had any general comments, participants mentioned that the
chatbot is a good idea, but it would need improvements to be efficient. One of the par-
ticipants mentioned that a voice-controlled chatbot might also be interesting to investi-
gate. Another participant mentioned that knowing what the chatbot can do in advance
would be advantageous.

5.4.2 Semantic Analysis of Questions

In this Section, we perform an analysis of the questions that participants asked DevBot.
We extracted entities through semantic analysis (KH Coder tool) of participants’ inter-
actions. We have loaded stopwords from https://gist.github.com/sebleier/554280.
For the word frequency of the questions asked by the participants, the results of the top
10 words are presented in Table 5.4.

We analyzed the question in clusters, using Jaccard distance and selecting five clus-
ters. The clusters created relate to the questions of task (24 documents), pull request
/ merge / branch (17 documents), code (14 documents), classes/java (14 documents),

78

https://gist.github.com/sebleier/554280

Table 5.4: Word Frequency in Participants’ Interactions, using KH Coder.
Word Frequency Word Frequency
task 46 pull (noun) 12
request 18 need 11
code 17 pull (verb) 8
create 15 git 7
branch 12 priority 7

greeting (3 documents) and others (50 documents). Thirteen documents were not in-
cluded in any cluster. To analyze the questions participants asked Devbot, we captured
the word frequency, which organized the questions into clusters. Before transforming
the documents into clusters or running the analysis, we use NLP techniques such as
removing stop words that carry little meaning, such as ”on” or ”at” of every set of ques-
tions. Then, we ran an algorithm to collect the frequency of words. We hypothesize that
the words with higher frequency can be the most interesting subjects to developers.

5.4.3 Interview Analysis

During the semi-structured interview sessions, we collected valuable insights regard-
ing participants’ interactions with DevBot, their expectations, and new suggestions.
These inputs were consistent with the feedback previously gathered from the question-
naire. The interviews were transcribed, and participants’ remarks were categorized and
grouped into several key themes. The following sections outline the main topics of in-
terest, listed in descending order of occurrence:

Software Development Environment Awareness: Participants expressed interest in
a tool that could provide insights into their development environment. They indicated
a desire for information such as which specific artifact to modify based on a given task
or identifying the last person who made changes to a file. Additionally, participants
mentioned that knowing colleagues’ statuses (e.g., in a meeting or out of the office) and
access to documentation used by the team for specific tasks would be highly beneficial.

Process Awareness: Process awareness emerged as another prominent theme. Par-
ticipants expressed a need for guidance on tasks like branch naming, task status man-
agement, and accessing task-related information directly through the chatbot. They
appreciated the idea of streamlining these processes without navigating external task
portals and dealing with filters.

79

Chatbot Capabilities: A recurring topic was participants’ desire to understand the
capabilities of the chatbot before utilizing it. This underscores the importance of clarify-
ing the chatbot’s functionalities upfront, a sentiment aligned with participants’ survey
responses.

Controllability: Participants presented varying opinions regarding the level of con-
trol they preferred over the chatbot’s actions versus the automation of tasks. From the
interview transcripts, it was apparent that while some participants were open to the
chatbot executing automated actions, others preferred its role to remain informative
and guiding, rather than running scripts automatically. Among the participants who
expressed their views on controllability, 9 out of 27 participants favored automation,
while 18 out of 27 preferred guidance or automation limited to non-disruptive tasks
such as status updates.

Chatbot Built-In Features: Participants indicated a desire for features inherent to
chatbot tools. For instance, they expressed interest in features like conversation history
tracking. For example, if a task is mentioned and later the participant refers to ”closing
the task,” the chatbot would recognize the context and the specific task being referred
to, enhancing the conversation’s continuity.

5.4.4 Design Opportunities - From Questionnaire

Based on the answers provided in the questionnaire, the additional steps where respon-
dents believe the chatbot could be useful are as follows:

1. Task Description and Task Portal: Participants mentioned that the chatbot could
describe tasks or open the task portal when asked for task details.

2. Code Review and Suggestions: Participants suggested that the chatbot could act
as a second set of eyes for code review or provide suggestions before pushing to
the repository.

3. Task Management and Prioritization: Participants expressed a need for the chatbot
to provide information about tasks on their task manager, including background
information to help them think about solutions or present tasks during standup
meetings. They also mentioned commands to change schedules, remove tasks,
and prioritize tasks based on priority.

80

4. Meeting and Appointment Scheduling: Participants mentioned that the chatbot
could help schedule meetings, make appointments, and provide reminders for
meetings and standups.

5. Developer Support: Participants highlighted the chatbot’s potential to assist with
developer-related tasks such as resolving merge conflicts, providing information
on IDE-related issues, and notifying about comments and events related to merge
requests.

6. Accessing External Tools and Information: Some participants suggested that the
chatbot could integrate with tools like Jira or Trello to provide task updates or
status reports. They also mentioned the chatbot’s ability to search for software
development terms, provide documentation about commands, and auto-complete
commands.

7. Notifications and Aggregation: Participants mentioned the chatbot’s potential to
aggregate notifications from various sources such as design documents, code re-
views, and comments in tracking tools.

8. Reminders and Planning: Participants mentioned that the chatbot could remind
them of meetings, and deadlines, and provide news updates, software updates,
and printing/scanning functionalities.

9. Task and Project Management: Participants suggested that the chatbot could help
create tasks, projects, features, tickets, test cases, and provide centralized access to
related documents and stakeholders.

10. PR (Pull Request) Management: The chatbot could provide information about PR
reviews, comments, and status.

11. Repository and File Navigation: Participants mentioned that the chatbot could
help locate repositories or specific files related to features or bugs.

12. Automating Software Development Processes: The chatbot could automate vari-
ous aspects of the software development process, such as running tests, dealing
with merge conflicts, creating new repositories or cloud instances, and checking
server statuses in production.

13. Calendar and Meeting Management: Participants suggested that the chatbot could
handle calendar management, schedule meetings, remind about meetings, and
provide information about participants’ availability.

81

14. Collaborative Communication and Information Sharing: Participants mentioned
that the chatbot could update them about their coworkers’ problems, provide
search history or implemented solutions, and facilitate communication with col-
leagues.

15. Integration with External Tools and Data: Participants mentioned the chatbot’s
potential to integrate with external tools, know general data, and complete tasks
based on that integration.

These responses highlight the diverse range of tasks and functionalities that users be-
lieve the chatbot could assist with, covering areas such as task management, code-
related support, meeting scheduling, information retrieval, notifications, and collabo-
ration.

5.4.5 Design Opportunities - From Questions

Based on the provided list of questions that participants asked Devbot, we analyzed
the most prominent themes of questions asked, obtaining further insights and design
opportunities. Here are some potential categories and design opportunities for chatbots
in the context of software development:

1. Task Management:

• Participants frequently asked about their assigned tasks, priorities, deadlines,
and task details.

• Design opportunity: A chatbot can provide users with real-time information
about their tasks, including task names, descriptions, deadlines, priorities,
and associated artifacts. It can also allow users to update task status, redefine
priorities, and perform actions like marking tasks as complete or creating
pull requests. An integration with project management or issue management
tools is needed.

2. Source Code and Version Control:

• Participants had questions related to code repositories, branches, commits,
pull requests, and merges.

82

• Design opportunity: A chatbot can assist users with tasks like pulling code,
pushing code, creating branches, making commits, creating pull requests,
merging branches, and resolving merge conflicts. It can also provide infor-
mation about the status of code builds and deployments. To develop this,
the implementation of integration with version control tools such as git is
needed.

3. Issue Tracking and Bug Fixes:

• Participants inquired DevBot about issues, tickets, and bug fixes associated
with specific tasks.

• Design opportunity: A chatbot can help users find associated issues or tickets
in platforms like GitHub or Jira. It can also provide information about the
status of bug fixes, approvals from QA, and whether a build was successful.

4. IDE and Development Environment:

• Participants sought assistance with development environments, IDEs, de-
bugging, and specific programming languages like Java.

• Design opportunity: A chatbot can guide IDE-related tasks, such as open-
ing IDEs like Eclipse, helping with debugging code, suggesting solutions for
common programming issues, providing syntax examples, and answering
language-specific questions.

5. Meeting and Schedule Management:

• Participants asked about stand-up meetings, schedules, and meeting atten-
dees.

• Design opportunity: A chatbot can provide users with information about
their schedules, upcoming meetings, attendees, agendas, and meeting loca-
tions. It can also help schedule new meetings, notify participants, and set
reminders.

6. Documentation and Artifacts:

• Participants requested information about documentation, requirements, class
diagrams, and artifacts related to their tasks.

• Design opportunity: A chatbot can assist users in finding relevant documen-
tation, requirements, diagrams, and other artifacts associated with their tasks.
It can provide links or access to these resources for easy reference.

83

7. General Assistance and Miscellaneous:

• Participants had various general questions, such as asking for help with cod-
ing, asking about the weather, checking the time, requesting assistance with
specific programming languages or concepts, and verifying information.

• Design opportunity: A chatbot can serve as a general assistant, providing
help, answering questions about programming languages, explaining con-
cepts, offering command-line examples, and performing basic tasks like check-
ing the time.

These categories and design opportunities can help guide the development of chat-
bots for software development, focusing on addressing the specific needs and work-
flows of developers, streamlining their tasks, and providing quick access to relevant
information and resources.

5.4.6 Design Opportunities - From Interviews

Based on what participants described in the interview, the following features are desired
in a chatbot.

1. Participants interested in a chatbot that guides tasks and provides control:

(a) Participant 2: Appreciated quick responses, prefers chatbot that guides rather
than automates tasks, likes to be in control.

(b) Participant 21: Positive experience, interested in a chatbot that automates
tasks and provides guidance, desires control over assigned tasks.

(c) Participant 22: Positive experience, prefers granular control over code com-
mits, comfortable with automated commits if clear representation is provided.

2. Participants struggling with chatbot usability and understanding:

(a) Participant 3: Had difficulty using the chatbot, confused about communica-
tion, prefers direct communication with task assigners.

(b) Participant 4: Found it challenging to get helpful responses, uncertain about
keywords/commands, prefers chatbot that helps with specific tasks.

(c) Participant 23: Frustrated with limited capabilities and understanding of the
chatbot, desires more guidance, prefers automation with safety nets.

84

3. Participants providing general suggestions for improvement:

(a) Participant 5: Recommends training the algorithm, suggests saving task IDs
and conversation context, desires automation for specific tasks.

(b) Participant 19: Highlights areas for improvement, suggests handling missed
tasks, understanding terminology, ontological understanding, providing task
guidance, office environment integration, and task priority management.

4. Participants expressing positive feedback and interest in chatbot:

(a) Participant 10: Finds the chatbot useful, desires automation and voice input,
and suggests integration with other systems.

(b) Participant 12: Finds the idea of a chatbot appealing and timesaving, inter-
ested in intelligence, desires guidance and automation, and asks about voice
input.

(c) Participant 14: Interested in a comprehensive question-answering chatbot,
prefers assistant role, desires information retrieval and code-related actions.

5.4.7 Demographics and Post-Survey Correlations

We investigated possible correlations of demographic data (age, experience) with the
opinions of participants in the study. The Pearson correlation coefficient [134] ranges
from -1 to 1, where -1 indicates a perfect negative correlation, 1 indicates a perfect posi-
tive correlation, and 0 indicates no correlation.

Correlation Calculation: The correlation coefficient is a statistical measure used to
quantify the strength and direction of the linear relationship between two variables. It
indicates how closely the data points of these variables cluster around a linear trend.
The correlation coefficient typically ranges between -1 and 1.

The formula to calculate the correlation coefficient (often denoted as ”r”) between
two variables, let’s call them X and Y, is as follows:

r =
n(∑ XY)− (∑ X)(∑ Y)√

[n ∑ X2 − (∑ X)2][n ∑ Y2 − (∑ Y)2]

where:

85

• n is the number of data points

• ∑ represents the summation symbol

• X represents the values of the first variable

• Y represents the values of the second variable

• XY represents the product of the corresponding values of X and Y

• ∑ X2 represents the sum of the squares of the values of X

• ∑ Y2 represents the sum of the squares of the values of Y

The correlation coefficient value r provides information about the relationship between
the two variables:

• r = 1: Perfect positive correlation, meaning that as one variable increases, the
other variable also increases linearly.

• r = −1: Perfect negative correlation, indicating that as one variable increases, the
other variable decreases linearly.

• r ≈ 0: Little to no linear correlation between the variables.

The absolute value of r also indicates the strength of the correlation. Closer to 1
(positive or negative) implies a stronger linear relationship, while closer to 0 indicates a
weaker or no linear relationship. It is important to note that the correlation coefficient
measures only linear relationships. It might not capture complex relationships, outliers,
or nonlinear patterns between variables. Additionally, correlation does not imply cau-
sation; a strong correlation does not necessarily mean one variable causes the other to
change.

Age x Likes DevBot: To determine the correlation between age and the likeness
of interacting with DevBot, we can calculate the correlation coefficient using the study
data. The correlation coefficient measures the strength and direction of the linear rela-
tionship between two variables. When comparing age and how much participants liked
to interact with Devbot, we found a correlation coefficient of -0.022. Based on this coef-
ficient, there is a very weak negative correlation (-0.022) between age and the likeness
of interacting with DevBot. In fact, one might argue that the correlation is so weak we
cannot claim there is a correlation at all.

86

A negative correlation means that as age increases, there is a tendency for liking
DevBot to decrease slightly. However, the correlation coefficient of -0.022 indicates that
this relationship is not very strong.

However, the correlation is close to zero, indicating that there is no substantial rela-
tionship between age and the likability of the chatbot. Other factors not considered in
this analysis may have a stronger influence on the likability ratings.

Years of Experience x Likes DevBot: Based on the calculated correlation coefficient,
there is a weak negative correlation (-0.138) between years of experience in software
development and the likeness of interacting with DevBot. However, the correlation
is close to zero, indicating that there is no substantial relationship between years of
experience and the likability of the chatbot. Other factors not considered in this analysis
may have a stronger influence on the likability ratings.

Age x Automation Preference: Based on the provided data and the correlation
analysis, the correlation coefficient between automation preference and age is approxi-
mately -0.15. This value suggests a weak negative correlation between the two variables.

A negative correlation means that as age increases, there is a tendency for the pref-
erence for automation to decrease slightly. However, the correlation coefficient of -0.15
indicates that this relationship is not very strong.

It is important to note that correlation does not imply causation, and this analysis is
based on a limited set of data. Therefore, it is crucial to interpret the results with cau-
tion. Other factors beyond age may also influence the preference for automation, and
additional data or a more comprehensive study would be required for a more accurate
analysis.

Gender x Automation Preference: Based on the given data, we cannot determine
the correlation between automation preference and gender. Further analysis with an ap-
propriate statistical method using a more extensive dataset would be required to assess
any potential relationship between the two variables. The cross-tabulation of gender x
automation preference is presented in Table 5.5. There are only 28 responses in the table
because we were unable to gather the preferences of one of the participants. Yes in the
table means (prefers automation), No means prefers guidance and Mix means prefers a
mix between automation and guidance.

Experience x Automation Preference: When analyzing the correlation between years
of experience and automation preference, results also show a preference for a mix be-
tween automation and guidance, in all three experience ranges. We collected ranges
of experience of ≥ 1year ≤ 5years(juniors),≥ 5years ≤ 10years(mid − level), and ≥
10years, seniors.

87

Table 5.5: Gender x Automation Preference.
Male Female

Yes 3 1
No 5 2
Mix 14 3

The three categories (juniors, mid-levels and seniors) prefer a mix between automa-
tion and guidance. Of juniors, 46% prefer a mix of automation, while 34% prefer no
automation and only guidance. Of mid-levels, 50% prefer a mix, while 33% prefer au-
tomation. Of seniors, 100% of them responded they prefer a mix of full automation and
guidance.

Sentiment Analysis: In mixed-methods research, which combines both qualitative
and quantitative approaches, conducting sentiment analysis on interview results can
provide valuable insights and enhance the overall depth of understanding. Sentiment
analysis involves the automated process of determining the sentiment or emotional tone
expressed in a piece of text, whether it’s positive, negative, or neutral. By incorporat-
ing sentiment analysis, researchers can gain a deeper understanding of the emotional
responses, attitudes, and perceptions of participants. This adds a layer of richness to
the analysis beyond just extracting themes and patterns. Moreover, adding sentiment
analysis to qualitative data analysis aids in interpretation. It helps researchers identify
the tone and sentiment of participants’ statements, making it easier to distinguish be-
tween strongly positive, mildly positive, neutral, mildly negative, and strongly negative
sentiments. This nuanced interpretation contributes to a deeper understanding of par-
ticipants’ viewpoints. To analyze sentiment, we used the GPT-3.5 model. This model
is not specifically dedicated to sentiment analysis like some specialized sentiment anal-
ysis models, such as the VADER (Valence Aware Dictionary and sEntiment Reasoner)
model, or BERT (Bidirectional Encoder Representations from Transformers). However,
it can still perform sentiment analysis by analyzing the overall tone and context of the
text.

According to this model, the overall sentiment analysis is presented in Table 5.6.

5.5 Discussion

Next, we discuss some of the key implications raised when analyzing the reported re-
sults and the experience of the user study.

88

Table 5.6: Sentiment Count of the User Study.
Sentiment Count
Positive 10
Negative 3
Neutral 15

Topics of Interest. Our results indicate that most of the questions asked by partic-
ipants were about tasks and repository management. Of course, those were the two
main topics in the scenario. However, it still shows developers are interested in receiv-
ing such support, accessing information from their tasks, or pushing code through CAs,
mostly for task management.

Guidance or Automation? There are varying opinions regarding preferences be-
tween guidance and automation. This contradicts a hypothesis we had that automation
would be an almost unanimous preference. Further investigations on what influences
the automation preferences of users must be undertaken.

Need for more context. Respondents have also indicated that adding more context
to the chatbot would be desired. For example, the chatbot should know the repository
address, branch or patterns expected to commit messages. However, having a simple
chatbot with a few expected questions and giving participants a simple scenario was
also indicated as being helpful by most of the participants. Based on feedback from par-
ticipants, adding context to the chatbot could immensely improve the chatbot’s capabil-
ities, as it would be personalized. The chatbot could also incorporate the discovery of
context or recommendations based on the history of interactions. With ChatGPT, many
of the features that participants claimed to desire in this study have been covered, how-
ever, adding context is not one of them. Further discussion and investigations on how
to add context to LLMs must be undertaken.

Need for domain-specific knowledge. On a similar spectrum, results also indicate
that the least experienced developers account for a low score when asked if the chat-
bot was helpful for the questions asked. This can indicate that the chatbot has to be
prepared to give more details about the process to less experienced users. Most expe-
rienced participants, who have more than five years of experience, indicated that the
chatbot was more helpful.

Chatbot acceptance. A rather surprising result was that some participants asked
questions beyond the scenario presented, which can indicate a real interest in using the
chatbot in further contexts as well, not only to the ones limited to the presented scenario.

89

Some examples include:

• More general questions such as ”What’s the best language to develop Machine
learning models?

• Meeting Schedules and Agendas: Where is my next meeting? or What is the
agenda for the meeting today or When is the stand-up meeting?

• Code Debugging and Assistance: Can you help me in debugging code in Eclipse?

• Others:

– Are we using Github or Gitlabs? or When is lunch?

– Are there any updates on the Github repo while I was gone?

– Can you send me the doc string for function np.argmax()?

– Are there any updates from the test team?

– Please print this document. [File attached]

– Can you send a copy of my current edit to team X?

Chatbot understanding. One negative result reported is related to how the chatbot
understands the questions. Because only around 7 intentions were mapped to answers,
when the developers asked questions that the chatbot did not understand but were
still related to the scenario, some disappointment was reported. Although the purpose
of the study was not to evaluate the tool, therefore our prototype was very limited in
that sense, having a chatbot that could understand several other intents might have
generated a more positive reaction from the developers after the chatbot interaction.

Scenario. Presenting participants of a mixed-methods user study with a scenario
can have both advantages and disadvantages. Here’s an overview of these points:

• Advantages:

– Contextual Understanding: A scenario provides participants with a clear
context and background for the study. This helps them understand the pur-
pose, scope, and objectives of the research more effectively.

– Engagement: Scenarios can make the study more engaging by presenting
a relatable situation. Participants can connect better with the study and its
goals, which might increase their involvement and motivation.

90

– Realism: By presenting a scenario, you create a realistic setting that partici-
pants can relate to. This can lead to more authentic responses and insights, as
participants engage with the scenario as they would in a real-world context.

– Consistency: When all participants start with the same scenario, it ensures
a consistent starting point for the study. This reduces variability in partici-
pants’ initial understanding and sets the stage for more meaningful compar-
isons.

– Guided Exploration: Scenarios guide participants toward specific topics or
aspects of interest. This helps ensure that all participants explore the same
core concepts, making the study’s findings more focused and relevant.

• Disadvantages:

– Bias and Stereotyping: Scenarios could unintentionally introduce bias or stereo-
typing, influencing participants’ perceptions or responses. Careful crafting of
scenarios is needed to avoid any unintended implications. We have crafted
the scenario with software developers and with the support of relevant liter-
ature [111].

– Limited Flexibility: Some participants might feel constrained by the scenario
and may not be able to express their genuine thoughts that fall outside its
scope.

– Artificiality: Depending on the complexity of the scenario, or the experience
of participants, they might feel that the scenario is artificial or detached from
their real experiences. This could affect the authenticity of their responses.

– Misinterpretation: There is a risk that participants might misunderstand the
scenario or its intent. This can lead to participants providing irrelevant or
inaccurate responses that don’t align with the study’s goals.

– Limited Generalization: While scenarios provide a focused context, the find-
ings might not be as generalizable to broader contexts, as participants are
responding to a specific situation.

Potential follow-up studies. We believe that these preliminary results, although
promising, still require further development. Additional work is required to involve
a larger population of software developers and to mitigate potential generalization bi-
ases. Further investigation should examine the specific support that such a tool should
provide to developers, and how to integrate a chatbot with a context model that un-
derstands the software development workflow. In addition, further qualitative and

91

quantitative studies will be needed to demonstrate the quality of a chatbot’s recom-
mendations.

We believe that understanding the interaction of developers with the systems as
chatbot users is key to improving developers’ experience and advancing software engi-
neering practices, providing the needed timely support for developers. Nonetheless, it
seems that even having a chatbot that is limited in terms of what it can do and how it
can help, participants were keen on the idea of using a chatbot. These empirical findings
are aligned with the discussions presented in [161]. It is worth mentioning this analysis
was executed in 2021, an era before ChatGPT was available to the public.

5.6 Threats to Validity

This section addresses potential threats to the validity of the user study conducted to
investigate software developers’ interactions with the DevBot chatbot prototype.

• Construct Validity:

– Scenario Realism: The study scenario, depicting a typical day in the life of a
software developer, may not fully represent the diversity of tasks and situa-
tions developers encounter. This could affect the realism of participants’ in-
teractions with the chatbot. To mitigate this, we have validated the scenario
with three experienced software developers, and we also got inspiration from
Meyer et al. [111].

– Question Prompting: Participants were asked to generate questions for the
chatbot. The framing of this request may have influenced the types of ques-
tions asked, potentially leading to biased or limited question sets.

– Question Clarity: The clarity of participants’ questions may vary, potentially
affecting the quality of interactions and the chatbot’s ability to provide rele-
vant responses.

• Internal Validity:

– Limited Interaction Time: Participants were allotted a fixed interaction time
of approximately 10 minutes with the chatbot. This constraint might not fully
capture the potential benefits or limitations of the chatbot over extended peri-
ods of use. Most participants, though, indicated they had run out of questions

92

to ask after around 10 minutes of interaction with the chatbot. Anyone who
could think of more questions was encouraged to continue to ask.

– Prior Chatbot Experience: Participants had varying degrees of experience
with chatbots. This prior experience might have influenced their expecta-
tions and assessments of the chatbot’s performance.

• External Validity:

– Participant Pool: The study recruited participants primarily from university
graduate student mailing lists, potentially limiting the generalizability of the
findings to a broader population of software developers. The study involved
29 participants, which may not fully capture the diversity of software devel-
opers in terms of experience, expertise, and preferences.

– Platform Dependency: The study deployed the chatbot on the Facebook Mes-
senger platform. This choice of platform might not represent all the platforms
and tools developers use in their daily work. However, it is possible to deploy
the same Rasa chatbot using other platforms, such as Whatsapp, Telegram,
Slack, Twilio, Google Hangouts, Cisco Webex, and others.

• Conclusion Validity:

– Questionnaire Subjectivity: The Likert scale questions in the post-study ques-
tionnaire and open-ended responses are subject to participants’ subjectivity
and potential bias in their evaluations.

– Interviewer Bias: The semi-structured interviews were conducted by the study
organizers, introducing the possibility of interviewer bias in the interpreta-
tion of participants’ responses.

5.7 Conclusion

We have a user study that explores the preferences of software developers when inter-
acting with a chatbot. Developers usually work with various tools in a very dynamic
situation, and promoting ways to support them is critical for the quality of their work.
As well, a chatbot could improve productivity, lessen training time and make implicit
preferences explicit through capture processes. We collected many design opportunities

93

for chatbots in the software engineering domain. Our results also demonstrate devel-
opers are willing to work with such tools and have found this solution to be interesting
while providing ideas for the future on how chatbots could behave and connect.

In this user study, we delved into the interaction of software developers with chat-
bots, unearthing intriguing insights that have significant implications for the realm of
human-machine interaction in software development. The study revealed that the ma-
jority of questions posed by participants gravitated towards tasks and repository man-
agement, aligning with the primary themes of the provided scenario. This highlights
developers’ inherent interest in receiving support in these areas through CAs, especially
in the realm of task management. The use of a scenario in the study offered advantages
such as contextual understanding, engagement, and guided exploration. However, it
also introduced potential biases, limited flexibility, and artificiality, warranting careful
scenario design and consideration of its impact.

A notable divergence emerged regarding preferences between guidance and au-
tomation. Contrary to initial expectations, automation did not uniformly triumph as
the preferred approach. This finding underscores the need for deeper investigations
into the factors influencing users’ automation preferences. Participants expressed a de-
sire for chatbots to possess deeper contextual awareness, including repository details
and interaction history. The potential for personalized interactions and context-driven
recommendations emerged as a key avenue for improvement. The incorporation of
context discovery mechanisms and historical interaction analysis is suggested for en-
hancing chatbot capabilities.

The study exposed that less experienced developers perceived the chatbot as less
helpful, indicating a need for tailored support for novice users. Experienced partic-
ipants, with over five years of experience, found the chatbot more beneficial. This
finding underscores the importance of catering chatbot responses to the user’s exper-
tise level. Intriguingly, participants ventured beyond the scenario’s boundaries, posing
questions that extended beyond its scope. This suggests a genuine interest in using
chatbots in broader contexts, beyond the confines of the presented scenario. This di-
verse range of additional queries demonstrates the potential versatility of chatbot ap-
plications in the developer’s toolkit.

Participants expressed disappointment when the chatbot failed to comprehend ques-
tions that were related to the scenario but fell outside the predefined intents. The study’s
limited scope in this regard highlighted the importance of chatbots having a more com-
prehensive understanding of user queries to elicit a more positive user response.

These preliminary findings set the stage for future research endeavors. Further in-

94

vestigations should involve a larger and more diverse population of software devel-
opers to mitigate potential biases. Researchers must delve into the specific support
mechanisms chatbots should offer to developers, incorporating context models to en-
hance workflow understanding. Qualitative and quantitative studies should assess the
quality of chatbot recommendations.

In conclusion, this study serves as a foundational exploration of developers’ interac-
tions with chatbots. It underscores the significance of understanding developer needs
and preferences to enhance their experiences and software engineering practices. The
era of ChatGPT and advanced language models has allowed the prospects for enriched
human-machine collaboration in software development to appear promising, warrant-
ing continued research in this domain.

Next, intrigued by the fact that not all developers wish to automate all of their tasks,
we conducted an investigation into the factors that influence automation levels in sys-
tems.

95

Chapter 6

Variability Design and Levels of
Automation in Human-Chatbot
Interactions

”The recent phenomenal advances in the foundational areas of cognitive computing sys-
tems are poised to usher in even more sophisticated systems that will rival and perhaps
even surpass human performance.” – Gudivada VN, et al.

6.1 Overview

Quality, productivity, accuracy, precision, and other metrics are usually improved when
machines perform tasks previously assigned to humans [165]. What is the best choice
to execute a specific task, a human or a machine? Many debate the advantages and
disadvantages of fully automating tasks as opposed to keeping humans involved [57].
However, rather than automation being an all-or-nothing proposition, many levels of
automation can be used, ranging from entirely manual to fully autonomous [165, 54].

So-called autonomous systems such as self-driving automobiles or trucks, autopi-
lots on airplanes, robots, machine tools, chatbots and ‘smart’ buildings still need hu-
man intervention under various conditions such as sudden changes in traffic, weather
conditions, environment, or materials. Thus, these so-called autonomous systems need
to operate independently to achieve the highest degree of automation possible while

96

they need to be designed to accept human intervention when necessary or appropri-
ate. Although autonomous systems use machine learning, which recognizes long-term
patterns, sometimes such systems must recognize short-term situations, a task at which
humans are particularly competent. We are interested to understand the principles that
should be used to design such systems. Also, we want to understand if we can de-
velop a software engineering discipline that addresses autonomous system design. In
this study, we identify factors that are common to autonomous systems and should be
considered when developing a software design approach.

Few methods or resources are available to support the flexible and scalable assign-
ment of tasks between humans and machines within autonomous systems [124, 4]. The
relationship and responsibility for distributing tasks between humans and machines
within autonomous systems are not clearly defined, and the LOA is far from uniform
across various contexts. Thus, modelling techniques that can systematically support
task distribution across a wide range of automation levels are needed.

There are inherent challenges in developing and researching the automation vari-
ability levels of these systems. When developing autonomous systems, the computa-
tional complexity and memory footprint of algorithms play a crucial role in the design
and implementation of such, as these systems must be developed with computation
times that satisfy real-time responses [156].

Moreover, these systems differ by quality standards, such as in the application or
the agent responsible for automating the task. These applications can also change if the
perspective or feedback of the person interacting with the agent differs and depends
on human resources and the system’s ability. To design systems properly that support
different LOAs, developers must be provided with a clear understanding of the relevant
factors that influence LOAs and with design criteria for addressing them [49].

We address this gap by identifying, refining, and representing the factors that can
influence a LOA decision. We also introduce an approach to capture the factors that in-
fluence LOAs in autonomous systems. The approach presents several changes inherent
in developing these autonomous systems, including those related to systems and hu-
mans. This approach aims at answering the following research question: RQ3: Which
factors affect the variance of levels of automation in autonomous systems?

As specific contributions, this study:

• Presents an approach to identify the factors that influence LOAs

• Provides a list and categorization of the factors that influence LOAs

97

• Refines the identified factors by demonstrating how systems can capture these
factors

• Introduces a representation of the variability of the factors and their relationships
with LOAs in a feature diagram

• Demonstrates the feature diagram and approach with illustrative examples

6.2 Research Methodology

We conducted a systematic literature review (SLR) to answer the research question
posed in the Introduction. In this section, we describe the methodology used to select
the papers from where we should extract the factors that influence LOAs. To answer the
proposed research question and investigate which factors impact the LOA variability
in systems that support human-machine interactions, we have followed the approach
illustrated in Figure 6.1. This figure shows how we present and organize the contribu-
tions and results of our work, in sequence. Therefore, the remainder of this chapter is
organized as follows. First, we describe the Literature Search that we used to identify
the factors that influence LOAs. Then, we list and categorize these factors and the in-
teractions among them. Following, we refine the identified factors, by using examples
from the literature to portray the factors as features and constraints, which will be a
seed for the next step, the Feature Model creation. Lastly, we demonstrate the feature
model in three scenarios.

This study aims to identify the factors that influence LOAs. Moreover, we repre-
sent the variability of the factors and their relationships with LOAs in a feature model
[86, 122] and illustrate these variable factors with examples in different domains. The
advantages of identifying the factors that govern human and autonomous systems in-
teractions are manifold. Intelligent automation is one of the current emerging technolo-
gies. The ultimate purpose is to build autonomous systems that can handle edge cases
and achieve the highest degree of automation possible. Building systems that consider
human interaction and how this interaction impacts the system’s behaviour leads to
better system designs in terms of accuracy. As humans are better at spotting patterns
in small data sets, combining human and artificial intelligence could provide highly ac-
curate systems. Rule-based automation can sometimes be more precise than AI-based
intelligent automation, while AI models are only partially correct. After all, no matter
how perfectly you design a fully automated system with all possible outcomes, the real-
ity is frequently complicated. Human-free end-to-end process automation is attractive

98

Figure 6.1: LOA Study Approach Overview.

because it is significantly easier to implement than systems that require human input.
Our work mitigates these issues and difficulties by bringing to light factors, a model and
illustrative examples to support the design and implementation of autonomous systems
interacting with humans. The approach to supporting the design of autonomous sys-
tems is described next.

6.2.1 Applying Search Method

To identify the relevant studies, we searched several databases using keywords related
to LOAs and factors influencing automation. We also manually searched the reference
lists of relevant articles to identify additional studies. Our inclusion criteria were stud-
ies investigating factors influencing automation levels in systems supporting human-
machine interactions. We excluded studies that did not meet our inclusion criteria, were
not written in English, or were published before 2000 (including only papers published
within the last 23 years). Two researchers participated in the selection of the included
articles.

We started the research by examining secondary studies summarizing taxonomies
for levels or degrees of automation in autonomous systems published since 2000 [165,
157]. Secondary studies synthesize or analyze published research. Secondary studies

99

can help researchers identify the most relevant and high-quality primary studies on a
particular topic. They can also help them identify gaps or inconsistencies in the existing
literature [81]. These studies are recent, and they follow systematic review protocols
and report extensive results. Together they provide an important baseline for the topic.
From these secondary studies, we performed backward and forward snowballing (one
level in each secondary study paper). This step aims to identify proposed LOAs and the
factors (contexts, characteristics) that influence the LOAs in these studies.

As exclusion criteria [81], we excluded papers not written in English and those that
do not have information on factors that affect automation levels. All other articles were
considered.

6.2.2 Identifying LOA Factors

In Section 6.3, for each LOA factor identified, we kept a record of the information in a
spreadsheet. If the same information was found in another paper, we recorded the cita-
tion with the already listed factor. Each citation provides a scientific basis for the factors
we identified. We then categorize each factor into more abstract concepts. For example,
if the factors were Role and Cognitive Ability, these factors would be abstracted into
”Human” factors. If the factors were maintainability and reliability, these factors would
be categorized into ”Quality” (Non-Functional Requirements) factors.

Two researchers reviewed over 150 papers and extracted and categorized the fac-
tors together. We used the inter-rater reliability measure with Cohen’s kappa statistical
coefficient to measure the degree of agreement between the two researchers (judges) cat-
egorizing the identified factors [84]. The two researchers almost always agreed when
categorizing the factors (k between 0.81 – 1.00). This research methodology aims to
contribute to the state-of-the-art by illustrating the factors impacting automation levels
and representing these factors and their relationships with LOAs. The ultimate goal of
our work is to support the design and implementation of autonomous systems interact-
ing with humans. To achieve this, we will provide models, refinements, use cases and
discussions on our findings. By highlighting the factors influencing LOAs and their
variability, we aim to improve the effectiveness and usefulness of autonomous systems
and ultimately facilitate their widespread adoption.

100

6.2.3 Refining LOA Factors

Next, in Section 6.4, we organize these factors, categorize them into a table and provide
examples of how these factors may be implemented in systems.

6.2.4 Representing LOA Factors Variability

Before discussing the representation of the factors, we propose a representation of this
systematic approach in Section 6.5. Then, in Section 6.6, we represent the factors and
the relationship between the identified factors and LOAs using a feature diagram.

6.2.5 Instantiating and Demonstrating Variabilities

Last, in subsections 6.6.2, 6.6.3 and 6.6.4, we present the instantiations of the features
and constraints in three distinct scenarios. Three authors met after the last iteration to
review the instantiated feature models, our final contribution to this study.

6.2.6 Methodology Highlights and Challenges

Assessing the research methodology proposed in our work, we list our method’s high-
lights (strengths) and challenges (weaknesses).

Strengths:

• The methodology is clearly outlined and easy to follow, making it easier for other
researchers and the software engineering community to replicate or build upon
the study.

• The research question and objectives are explicitly stated, which helps to maintain
focus throughout the study.

• A LR conducted by two authors, providing a rigorous and comprehensive ap-
proach to selecting relevant papers and extracting data from them.

• The researchers used online collaboration tools to control their versions of files
and control file edits, enhancing the findings’ reliability and validity.

101

• The use of inter-rater reliability measures to ensure consistency in categorizing the
identified factors adds to the robustness of the study.

• The researchers clearly state the significance of their work and how it contributes
to the field, which helps to justify the research and its outcomes.

Weaknesses:

• The study only includes papers published in English and after 2000, which may
limit the generalizability of the findings. However, we do include a comprehen-
sive review of the related works and background.

• The exclusion of non-English papers and those published before 2000 may have
resulted in the omission of relevant studies or factors influencing LOAs.

• The use of backward and forward snowballing may have also limited the review’s
scope and missed important papers or factors that were not cited in the selected
articles.

• The methodology does not clearly justify categorizing the identified factors into
more abstract concepts, which may lead to potential biases or subjectivity in the
analysis. We mitigated this by having two researchers categorize the factors and
using Cohen’s kappa statistical measure.

The following section presents the identified LOA factors based on the approach just
described.

6.3 Identifying LOA Factors

In this section, answering the RQ proposed in this study, we present the factors that
influence LOAs. We categorize these factors and present each of the categories in a sub-
section. The result of our analysis and categorization is presented in Table 6.1. This
table illustrates the factors that influence the autonomy level decision, as identified in
the literature. This table has four columns related to the factors identified in the litera-
ture review and one column related to the authors that cite each factor in the literature.
Working across the table, each factor, if applicable, is further divided into subfactors. In
other words, the factor information in the column to the right is related to the last row of
the cell on the left. Then, we describe the classification of the factors, provide examples,
and discuss how factors can influence LOAs.

102

6.3.1 Identifying Factors

Based on the literature review and after categorizing the factors, the result is five main
factors that can influence the decision to adopt a specific LOA: Quality, Agent (System),
Human, Task and Environment. These factors are assembled and categorized in Table
6.1, and their descriptions are provided next.

Quality Sheridan and Verplank [155], Khuat et al. [78], Proud et al. [139], and Beer et
al. [15] identified quality criteria in systems that support some sort of autonomy. These
authors describe factors such as Trust, Reliability, Fairness, Transparency and Accessi-
bility. For instance, a system should provide a higher LOA in the tasks that this system
is expected to carry out if this system is reliable (success in testing). These authors also
mention Explainability, Understandability, Maintainability, Usability, Safety, Ethics, Le-
gal compliance, and System Adaptability of the system as quality factors that influence
LOA.

Task. There are factors specifically related to the task’s characteristics that influence
a system’s LOA. For example, the result of the task (failure/success) and quality factors
specific to the task, such as Performance, Complexity, Risk and Accessibility [49, 50, 155,
144, 33]. Other factors related to the task, such as Workload [173, 4], Frequency of a task
[49] and Interaction Type [124] also influence LOAs.

Agent. One central factor affecting automation levels in autonomous systems is
the Communication [155, 40, 33] between the human and the system. In the context
of teams, a human (team member) can interact with the automated system as a team
member or in the form of supervisory control [40]. Another identified factor is the cost
of this system, namely the equipment’s operating cost and the implementation cost of
the agent [5, 139]. Other factors we have identified are related to the capabilities of this
system, including Reactiveness, Situation Awareness, Decision Capability and Feed-
back capabilities [33, 24, 120, 49, 51, 124]. Other capabilities of the agent influence the
desired LOA. For example, the Transparency of the agent regarding its procedures and
goals [157, 15], or how the agent acquires and analyzes information [131]. Ability is
explicitly also mentioned as one factor, as well as the Authority of the agent executing
work autonomously [57].

Human. Many factors related to the person interacting with the system can influence
the decision of LOAs. Authors refer to the age of the person interacting with a system
[173], the recognition of the time to acquire control or the time to give up the control
[125], the person’s cognitive ability [125, 173] and other factors. Many authors point to
factors related to how humans interacting with the system perceive the system [144, 15],

103

Table 6.1: (a)Levels of Automation Factors and Authors Citing Each Factor.
Factors Authors
Quality

Trust [139][15]
Reliability [155][78]
Fairness [78]
Transparency [78]
Accessibility [78]
Explainability [78]
Understandability [78]
Maintainability [78]
Usability [78]
Safety [78]
Ethic [78]
Law Compliance [78]
Adaptability [78]

Task
Result [157][142][4]
Quality [157][142][4]

Performance [49][50]
Complexity [155][144][33]
Risk [144]

Workload [173][4]
Frequency [49]
Interaction Type [124]

Agent
Cost [5][139]
Communication (verbal) [155][40] [33]
Capability

Reactive [33][24][120]
Situation Awareness [49][51][120]
Decision Capability [51][124][120][131]
Feedback [155]
Recovery Ability [125][24][120]
Team Cooperation (push/pull) [40]
Context (domain) [24][124][4]
Adaptability [157][120][15]
Systematic process [120]
Safety [142]
Transparency [157][15]
Intelligence [15]
Information Acquisition and Analysis [131]
Action implementation [131]
Architecture [26]
Ability [57]
Authority [57]

104

Table 6.2: (b)Levels of Automation Factors and Authors Citing Each Factor.
Factors Authors
Human

Age [173]
Control timing [125]
Cognitive Ability [125][173][26]
Situation Awareness [50][114][33][55] [24][15][73][78]
Performance [40] [173][73]
Role [114]
Workload [155][49][144][15][73]
System Acceptance [49][15]
Knowledge [173][26]
Skill [144][26][24][173]
Attention Demand [124][78]
Engagement [24]
Social Skills [15]
Perception

System
Reliability (trust) [144][15][78]

Task
Workload (heavy/light) [50][96][24]

Self
Tension (tense/calm) [96][24][173]
Fatigue (tired/rested) [96][24][173]
Confidence (high/low) [96][24][173]

Environment [157]
Variability [47][173][157]

Unchanging/Highly Dynamic [47]
Competing tasks [78]
Demands [78]

105

the task the system is supposed to execute [50, 96, 24] and the humans themselves [96,
24, 173].

Environment. Our research shows that the environment can also impact a system’s
LOA. Authors discuss this variability in terms of the environment as either dynamic or
static [47, 157]. Khuat et al. [78] also describe factors such as the Competing tasks or
Demands of the environment as aspects that influence the LOA of systems.

We have answered the Research Question proposed in this study by identifying in
the literature the factors that impact the LOA of systems that interact with humans.
Next, we explain how these factors can influence LOA.

6.3.2 Identifying How Factors Impact LOAs

To demonstrate the relationship between the identified factors and a LOA, we have also
extracted from the same papers in the LR how a combination of factors can influence a
LOA. It should be highlighted that the factors and their relationships with LOAs are in-
tended to be ”reasonable” hypotheses to examine the possibilities for a formal treatment
of qualitative factors.

Riley et al. [144] give strong examples of the relationship between one or many
factors and LOA. They claim that if there is an error with the system, humans are less
likely to trust the system, and the LOA tends to have high levels of human control. As
humans trust the system (high reliability, high trust), LOAs can be more autonomous.
According to their hypothesis, these authors then claim that ”trust takes longer to be
rebuilt than to be destroyed” and that humans tend not to change their opinion even as
their experience with the system increases.

High system reliability = more automation
Low system trust = more manual work

Proud et al. [139] discuss the autonomous system/agent cost. They claim that in-
creased autonomy levels throughout the design phase are expensive (high cost) and
time-consuming. However, if properly implemented, they raise operational safety and
effectiveness, which could lower total system lifespan costs. It is essential for designers
of autonomous systems to then weigh the advantages of effectiveness and operational
safety of autonomous systems over their cost.

High cost to design system = more automation = cost mitigated over system lifespan

106

Factors such as trust and costs (or design tradeoffs) are still abstract. To systemize
LOA, factors such as reliability, perceived risk, and many others should become more
concrete so that system specifications can capture them. Next, we provide a refined
view of the factors we have identified. We present the factors as features a system can
capture and describe how these features can influence LOA once captured.

6.4 Refining LOA Factors

Many of the factors identified in the literature are abstract. In other words, capturing
these factors through a system or a feature is not straightforward. For example, the
factor of ”reliability.” How can we capture the reliability of a system? However, our goal
is to allow an autonomous system capable of identifying these factors to assign a LOA to
that task. Therefore, this section shows how to relate abstract factors to concrete ones.
In other words, factors that can be captured by a system or features that can be used
to build systems. We will refine the meaning of these factors as stated by the authors
and illustrate the factors with examples. We extract one factor from each category to
show how to transform an abstract factor into a concrete one that can be used in a
system capture. We are calling these concrete factors the ”Features” and the interaction
between the features we call ”Constraints.” Features and constraints are described next.

6.4.1 Capturing Factors as Features

This research program extracts factors that influence LOAs. To apply these factors sys-
tematically, we discuss in this section how to convert these factors into features or con-
crete factors. The features, their meaning, quotes from the papers where those features
were extracted, and an example of the use of the feature are demonstrated in detail
in the following sections. We present one or more features from each factor category
(Quality, Task, Agent, Human and Environment).

Quality Transparency [78]. Meaning: the system can show the reasoning behind
its results. Quote from paper [78]: ”The reluctance by people to use results they can-
not understand or explain can be frustrating for simple business applications, but it is
completely warranted in high-stakes contexts, including medical diagnosis, financial
investment and criminal justice. To do otherwise could be disastrous.”

Explanation: Can the system show the reasoning behind its code/algorithms? If yes:
the system is transparent. If not: the system is not transparent.

107

Task Frequency [49]. Meaning: how many times a task is executed. Quote from the
paper [49]: “In addition to reducing workload, expert systems can further augment the
user by providing new capabilities never possessed before. Bearing this in mind and
armed with an understanding of the user’s needs, the actual selection of expert sys-
tem applications can proceed with additional inputs in task frequency, task criticality,
technological capabilities, and user acceptance.”

Explanation: Depending on how often one task is executed (frequency), this task can
be a suitable candidate for full or more automation, if the frequency is high.

Agent Adaptability [157]. Meaning: Capacity of the system to adapt and improve its
performance in a particular environment without human intervention. Quote from the
paper [157]: ”Adaptability is usually considered crucial for technical autonomy. Being
autonomous requires learning and adapting behavior to a changing environment. A
machine of this kind can process information, expanding the knowledge implemented
by programmers and changing how the system responds. This allows the system to
adapt and improve its performance within an environment without human interven-
tion. Thus, adaptable systems can alter their behavior, making them more unpredictable
and independent of human operators. Adaptability, therefore, shapes technical auton-
omy.”

Explanation: Is the system adaptable? If yes, provide more autonomy. If not, allow for
manual/human intervention.

Human Workload [155, 49, 144, 15, 73]. Meaning: the amount of work a human
must perform in interacting with the system. The workload can be measured by the
number of hours of each task that is currently performed by a person. We can then clas-
sify the result as high, medium, or low workload. Quote from the paper [144]: ”Other
characteristics of the operator that are of interest are his perceptions of risk and own
workload, his skill level, his performance level (decision accuracy), and his level of self-
confidence.”

Explanation: One person has a workload of 36 hours (high), while another has a work-
load of 4 hours (low). Higher workloads could demand higher automation to expedite
work.

Environment Variability [47]. Meaning: Variability refers to how the environment
changes with time and ranges from unchanging (low variability or highly predictable)
to highly dynamic (high variability or unpredictable). Quote from the paper [47]: ”This

108

dimension determines whether automation is applicable: automated systems cannot
function well in dynamic environments, but humans can.”

Explanation: If the environment is highly predictable, full automation is preferred.
Where the environment is highly unpredictable, less automation and more human in-
volvement are preferred.

6.4.2 Capturing Constraints

As we depict the known factors and their relationship with LOAs, we also consider
how different factors (two or more factors combined) can affect LOAs. To investigate
the effects of the combination of factors, we turn to the analysis of taxonomy proposed
by Simmler et al. [157]. This taxonomy does not offer a level for ”manual execution” as
it is only intended to classify human-machine collaboration. The taxonomy proposed
by Simmler et al. includes the following levels:

• Level 1: Offers decisions. The technical component suggests options, and the hu-
man decides

• Level 2: Executes with human approval. Technical component acts after human
approves

• Level 3: Executes if no human vetoes. Technical component acts unless human
vetoes

• Level 4: Executes and then informs. Technical component acts independently, and
human is informed about the actions carried out

• Level 5: Executes fully automated. Technical component carries out actions inde-
pendently without informing human

In this taxonomy, if the first and lowest level of autonomy (Level 1 - Offers Decisions)
is selected, the agent must have the capability of making recommendations and receiv-
ing feedback. In addition, transparency, traceability and predictability are requirements
for system quality. The last and highest LOA (Level 5 - Executes fully automatically)
can be selected if the system has nontransparent and undetermined quality features.
Data gathering, interaction with other agents, and adaptability are some of the agent’s

109

capability features that must exist to meet the requirements of level 5. The authors con-
sider the ability to learn through machine learning algorithms and connecting to the
Internet as optional features for this level. The following constraints are examples that
we captured from these rules and that we should consider if Simmler’s taxonomy is
selected.

In Level 1, according to the authors, a given input should always lead to a spec-
ified output. There should be complete transparency in how the system reaches that
output. The system is fully traceable and predictable, with no ability to learn. For
example, calculators work on this level. Therefore, we can say that with the highest
transparency and highest predictability, an automation level is set to 1. In the follow-
ing representations the symbols ⇒, ∧, ∨ and ¬ mean implication (if...then), conjunction
(and), disjunction (or) and negation (not) logical connectives, respectively.

High Transparency ∧ High Traceability ∧ High Predictability ⇒ Level 1

If a system is not transparent, this means not every step is predefined and traceable.
The system holds back information and moves from the input to the output, altering
its manners and impacting the observer’s perception. However, the output can still be
determined. An example is a system that weighs many parameters before deciding.
Therefore, the authors define this combination of factors as leading to level 2 automa-
tion.

Low Transparency ∧ Medium Traceability ∧ Medium Predictability ⇒ Level 2

A system classified at level 5 is not transparent. An input might not lead to the
same output every time, and the human cannot access how the system has reached
that specific output. Systems based on machine learning algorithms and connected to
data sources on the internet are examples of such systems. These systems have very
low transparency and predictability while having high interaction with multiple data
sources and high adaptability.

Low Transparency ∧ Low Predictability ∧ High Integration ∧ High Adaptability ⇒
Level 5

Next, we describe the systematic representation of this design, the representation of
the identified factors and how LOAs can vary according to these factors.

110

6.5 Variability-Aware Human-Chatbot Interactions: Tam-
ing Levels of Automation

Autonomous systems are an integral part of the technological landscape, playing a
pivotal role in shaping human-computer interactions. Just as chatbots have become
increasingly prevalent across various domains, autonomous systems are evolving to
provide intelligent and automated solutions in fields ranging from self-driving cars to
smart home devices. The rise of these AI-driven systems underscores the growing im-
portance of technology’s ability to operate independently and make decisions without
constant human intervention. In parallel with the advancements in chatbot technol-
ogy, autonomous systems are also expected to adapt and cater to the diverse needs
and preferences of users, making the design and development of adaptable and user-
centric AI systems a shared imperative. Consequently, enhancing the interactions be-
tween humans and both chatbots and autonomous systems alike is vital in ensuring that
these technologies meet user expectations and deliver a satisfactory user experience.
Chatbots have become increasingly prevalent in various domains, providing automated
conversational interfaces to assist users in accomplishing tasks, obtaining information,
or engaging in interactive conversations [159]. In recent years, chatbots have gained
significant popularity as a means of human-computer interaction. These AI-powered
conversational agents offer a wide range of applications, from customer support to per-
sonal assistants [66]. However, the success of chatbots heavily relies on their ability
to adapt and cater to the diverse needs and preferences of users [32, 103]. Therefore,
there is a growing need to address designs that can handle the variability inherent in
human-chatbot interactions. Enhancing human-chatbot interactions is a critical aspect
of designing and developing chatbot systems that meet user expectations and deliver a
satisfactory user experience [32].

For instance, some users may prefer a high LOA, where the chatbot takes initiative
and performs tasks autonomously, while others may prefer a lower LOA, with the chat-
bot providing options and requiring user input for decision-making [103]. Therefore,
when designing such tools, we must be aware not only that users might have different
preferences, but also of the factors that influence the variations in those preferences.
To address this challenge, we propose a feature-oriented design for enhancing human-
chatbot interactions. This design leverages variability-aware feature-oriented design
methods, enabling the systematic identification, capture, and representation of features
that influence the LOA in chatbot systems. By considering various factors that influence
LOAs and the systems requirements, this design allows for the design and configura-
tion of chatbot systems with different LOAs, tailored to specific user requirements and

111

contexts.

We present a feature-oriented design, outlining the steps involved in its application
and instantiation. Continuing our work on capturing contextual factors that influence
LOA, we now present a design to enable the systematic identification of these factors
that influence LOA in systems.

Within this representation, we address the challenges of human-chatbot interactions
within autonomous computing systems. The increasing complexity and dynamics of
these interactions must consider the contextual factors of these interactions, such as
individual preferences, environmental conditions, and system quality attributes. Our
proposal of a variability-aware feature-oriented design accommodates the dynamic and
varying requirements of autonomous computing systems, with a specific emphasis on
chatbots. This approach is crucial for enabling chatbots to provide personalized and
contextually appropriate instances, thus contributing to the overall efficiency and effec-
tiveness of autonomous AI and ML-powered systems. We delve into the integration of
design techniques to enhance systems’ adaptability and decision-making.

The design and development of chatbot systems that effectively interact with hu-
mans require the consideration of various factors. In this section, we propose a feature-
oriented design aimed at enhancing human-chatbot interactions. This design focuses on
variability-aware feature-oriented design methods, which enable the systematic iden-
tification, capture, and representation of features that influence the LOAs in chatbot
systems.

6.5.1 Variability-Aware Feature-Oriented Design

Variability-aware feature-oriented design methods provide a structured approach to
handle the complex dependencies and relationships among features in a system. These
methods allow for the identification and modelling of the variability within the system,
enabling the development of flexible and adaptable designs. In the context of human-
chatbot interactions, these methods are particularly valuable as they support the design
of chatbot systems with varying degrees of automation, tailored to specific user require-
ments and contexts.

The process using variability-aware feature-oriented design involves the following
steps, in Figure 6.2:

1. Identifying LOA Requirements: The first step is to identify the requirements of
the chatbot system that will influence the LOA. This involves understanding user

112

Figure 6.2: Variability-Aware Feature-Oriented Design for Enhancing Human-Chatbot
Interactions.

preferences or contexts that can influence the extent of automation that will be
desired. By considering factors such as the user’s context, task complexity, and
system quality, the requirements can be defined concerning the desired LOA.

2. LOA Contextual Factors: In this step, we establish the LOA factors that will be
used (i.e., captured and used to define the LOA) by one instance. These factors
can be categorized into different dimensions, such as quality, task, agent, human,
and environment. Examples of factors include safety, usability, workload, com-
munication capabilities, user skill, and environmental variability. By capturing
these factors as features, their impact on the LOA can be systematically analyzed
and modelled. For reference, the factors identified in Chapter 6 can be used.

3. LOA Feature Diagram: Having identified the factors that will influence the LOA,
you can then design a ”master” feature model, considering the constraints and
dependencies among factors. This involves understanding how the absence or
presence of certain features can influence the LOA. For example, the availability
of real-time insights to agents may increase the LOA, while the need for user ap-
proval may decrease it. By representing these dependencies in a feature model,
the design space for chatbot systems with different LOA can be explored.

4. Application Requirements: The application requirements can play a role and add
to your LOA Feature Diagram some factors to consider that were not considered

113

before. Moreover, they can generate more constraints or dependencies between
factors, as well as influence how you build your User Interface and Service Inte-
grations.

5. Feature Diagram Instance: To illustrate the effectiveness of the feature-oriented
design, it is important to instantiate and demonstrate the variabilities within the
system. This demonstrates the application of the LOA Feature Diagram in a spe-
cific domain. By instantiating the LOA factors model in specific contexts, such as
automated vehicles or customer service chatbots, the complexity of the interac-
tion between features can be demonstrated. This step helps clarify the purpose
and rationale of the model and provides insights into the design decisions.

6. Evaluation/Feedback: The design process is an iterative one, involving continu-
ous refinement and improvement based on feedback and evaluation. By gather-
ing feedback from users, designers, and stakeholders, the design can be refined
to meet better the requirements and expectations. Iterative refinement ensures
that the chatbot system evolves to provide optimal human-chatbot interactions
and adaptability to changing needs. Depending on the evaluation or feedback re-
ceived, new additions can be made to both the application and LOA requirements.

The feature-oriented design for enhancing human-chatbot interactions, as illustrated
in Figure 6.2, consists of the following main components:

1. User Interface (UI): This component represents the interface through which users
interact with the chatbot. It includes features related to natural language under-
standing, speech recognition, and dialogue management. The UI component pro-
vides the necessary capabilities for understanding user intents, extracting relevant
information, and managing the dialogue flow.

2. Service Integration (SI): The SI component represents the integration of the chat-
bot with external services, such as calendars, databases, or appointment manage-
ment systems. It includes features related to data retrieval, data processing, and
service coordination. The SI component ensures that the chatbot can access and
update the necessary information and consider its context accurately.

3. Level of Automation Autonomic Controller (LOAAC): This component acts as
the decision-making entity that determines the appropriate LOA based on the
identified LOA Contextual Factors and other components. As part of the design,
there is a process that needs to happen, for chatbots to integrate the LOAs. The

114

LOA controller component considers contextual factors such as human factors
(age, cognitive ability), task (complexity), and system capabilities (decision and
feedback capabilities), system requirements and has a feedback look to determine
and adapt to the appropriate LOA for each interaction. While UI and SI may not
change if you switch domains, the LOAAC is the only step that is instantiated for
each solution.

By combining and configuring different feature combinations within these compo-
nents, varying LOAs can be achieved in the chatbot. For example, in an appointment-
scheduling chatbot, a high LOA may involve the chatbot autonomously suggesting
available time slots based on user preferences and confirming the appointment without
user intervention. On the other hand, a lower LOA may involve the chatbot present-
ing available options to the user for manual selection and confirmation. The feature-
oriented design provides a flexible and adaptable framework for designing chatbot sys-
tems that cater to different user requirements, contexts, and LOAs. By capturing the
variabilities as features and modelling their constraints, the design enables the system-
atic exploration and configuration of chatbot systems with enhanced human-chatbot
interactions.

From this systematic process, we now conclude our research by presenting the de-
sign representations of the LOA factors variability, and we also present three instances
of this representation in specific scenarios, using feature models.

6.6 Representing LOA Factors Variability

The first step to achieving variability in a system is understanding and representing
variability in its application domain. Given the diversity of current intelligent systems,
our goal is to propose a flexible solution that may be used for several situations rather
than one unique problem. Our approach incorporates Feature-Oriented Domain Anal-
ysis (FODA) [135] to represent the system variability using a feature model (FM). FMs
are primarily used in domain engineering to represent common and variable charac-
teristics to maximize the reuse of software features or components [176]. This tree-like
notation (FODA) is typically used in software variability management to provide a vi-
sual hierarchy of features [86, 122], and has also been used to compare the design space
of technologies such as model transformations [37], conversational AI systems [9], and
asset management in Machine Learning [68].

115

Our study adds to the body of knowledge by providing a feature-model-based de-
piction of the factors affecting the degree of automation in autonomous systems. This
paradigm can be used to develop autonomous systems that interact with people. Our
goal is to represent and model the variability of factors that influence LOAs and how
the interaction of these factors influences LOAs. Although other notations to represent
variability exist, such as the Cardinality-based Feature Model (CBFM) or Common Vari-
ability Language (CVL), the original FODA’s notation can effectively express common-
ality and variability. FODA notation represents a feature, mandatory, optional, AND,
XOR, and constraints [176]. As a result of this factor mapping, we propose a model
diagram represented in Figure 6.3.

Mandatory - Represented in all systems

Legend:

System Application

Level of
Automation

(LOA)
Agent Human TaskEnvironment Quality

Alternative - Must select only one

Or - Must have at least one

Optional

Taxonomy 1 Taxonomy 2

CapabilityCommunication

Reactive Awareness Feedback

Age
Workload

Skill

Perception

System

Task

Self

Variability

Dynamic

Demands

Result Quality

Performance Complexity

Workload

Safety

Ethic

Level 3 -
Executes fully
automated

Level 1 -
Offers
Decisions

Level 2- Executes
with human
approval

Trust

Figure 6.3: LOA Variability Model in Autonomous Systems: An Adaptable Feature Di-
agram.

The factors that were identified in our literature review are shown in this diagram.
For the sake of simplicity, not every identified factor is presented in the diagram. We il-
lustrate the primary factors: Agent, Task, Human, Environment and Quality. We added
the representation of the LOA taxonomy, which is also affected by the variability of
LOAs. The LOA and the primary factors are mandatory features, making them re-
quired to design adaptive automation systems. As shown in Figure 6.3, our feature

116

diagram specifies some rules that must be respected independently of the application
and the taxonomy, such as 1) for every task, it is necessary to specify at least one quality
criterion; 2) every agent must have at least one capability, such as reactivity and aware-
ness; and 3) every human must have a role in the system. In this approach, researchers
can use our model regardless of the LOAs taxonomy. Additional rules to control the
relationship between the factors will be dynamically loaded based on the selected tax-
onomy.

Feature diagrams can have constraints associated with them. In our case, we can
use at least three types of constraints. The first type of constraint is like the ones we
have shown in the previous section. This type of constraint represents how the features
(or factors) can impact the LOA and can be represented in general as expressions of the
form:

Σ ⇒ Level X

where Σ is an expression involving one or more features. An example of the constraints
represented in the previous section is:

High Transparency ∧ High Traceability ∧ High Predictability ⇒ Level 1

The second type of constraint represents how the LOA can impact the agent behav-
ior, that is, given an LOA, specific agent capabilities can be provided. This constraint
can be represented in general by:

Level X ⇒ Θ

where Θ is an expression involving one or more features. An example of this type of
constraint is:

Level 3 ⇒ Detect warning signs ∧ Inform warning signs

The third type of constraint represents how some features can impact other features
and can be represented by:

Σ ⇒ Θ

where Σ and Θ are each expressions involving one or more features.

117

6.6.1 Instantiating and Demonstrating Variabilities

This section presents examples of the proposed LOA factors model’s instantiation in
three domains. The purpose of instantiation is to clarify the model’s purpose and ratio-
nale and the complexity of the interaction between factors. The first example presents
a scenario in the development of automated vehicles, the second is an example of cus-
tomer service chatbots, and the third is an instantiation of a stock trading chatbot.

6.6.2 Scenario A: Automated Vehicles

In the development of Autonomous Vehicles (AV), vehicles can execute a broad range of
tasks without human intervention or partial intervention, such as controlling the car’s
speed and switching lanes [143]. There has yet to be a consensus about the complete
autonomy of these vehicles, as some researchers have proposed strategies for control-
ling their LOA according to their location (e.g., highway, commercial street, residen-
tial street), application concerns (e.g., safety, security, improvement in fuel economy);
or even to the driving style (e.g., aggressive, normal, calm). Recent research has in-
vestigated enhancing the control and decision-making capabilities of autonomous or
semi-autonomous vehicles, enabling them to navigate their trajectories efficiently while
avoiding obstacles [16, 46, 34].

Ribeiro et al. [143] present a literature review about the requirements involved in
the development of AVs, identifying different types of autonomous vehicles with vary-
ing levels of autonomy. Based on this literature review, we identified and classified the
factors that can make AVs assume different degrees of autonomy. Further, we represent
these factors as features, making it possible to investigate and model their dependen-
cies.

• Quality

– Safety: Because of the auditing and certification process, there are a set of
safety-related ISO standards usually addressed by AVs, such as ISO 26262,
which handles possible hazards caused by the malfunctioning behavior of
electrical or electronic systems.

– Security: protection against cyber-attacks which can expose personal infor-
mation on other connected devices.

118

Mandatory - Represented in all systems

Legend:

Automated Vehicle

Level of
Automation

(LOA)

Agent Human TaskEnvironment Quality

Alternative - Must select only one

Or - Must have at least one

Optional

Taxonomy 1

Capability

Communication

Control
velocity Lane

Changing
Decision

Detect
warning

signs

Age WorkloadSkill Perception
Variability Demands

Quality

Risk Performance

Workload

Safety Security

Level 3 -
Executes fully
automated

Level 1 -
Offers
Decisions

Level 2- Executes
with human
approval

Law
Compliance

ISO 26262
Compliance

Cyber
Attack

Protection
System

Transparency

Canada's
driving
laws

England's
driving
laws

Log

Low High

100 Km

1 Km

Travel
time

Fuel
economy

Velocity

Low High

Highway

Residential
area

13 hours

5 hours

Fatigue
level

Low High

DistanceTime

1h 10
min

Driving
experience

10 years

1 month

Inform
warning

signs

Figure 6.4: Scenario A: LOA Variability Model in Autonomous Vehicles.

– Usability: functions that facilitate the interaction of the user with automated
functions, autonomous taxis, or family vehicles (for children, the elderly, or
people with disabilities).

– Accessibility: A car that can be operated independently, even by those who
cannot drive a conventional vehicle.

– Law Compliance: complying with federal and state laws in a specific region.

– Transparency: the system requires transparency in the process owing to the
possibility of an accident or similar situation that needs verification.

– Trust: Society and government that create and monitor regulations, as well
as the driver or passenger, must be able to trust a vehicle.

– Environmental impact: the driving style can impact vehicle emissions and
energy consumption.

• Task

– Quality:

* Risk: driving has some eminent risks that vary according to the environ-
ment (e.g., the risks involved in a residential area differ from the risks on
the highway; in some regions, the risks vary with the weather).

119

* Performance: the performance of the task may be measured based on a
reduction in travel time, traffic deaths, or exhaust emissions, or an im-
provement in fuel economy.

– Workload: the driving activity may be associated with some workers, such as
taxi and truck drivers. Thus, the task’s workload may vary according to the
distance and local information, such as local traffic or weather.

• Agent

– Communication: some AVs have heads-up displays to show information to
the driver. Vehicles should be able to communicate with other vehicles.

– Safety: protection against faults at the system level, including hardware and
software.

– Capability: AVs may have many behaviors, such as controlling the car’s ve-
locity, lane change warnings, and obstacle avoidance.

• Human

– Skill: time of driving experience measured through the driving license years.

– Workload: The hours a driver can drive in a day vary according to local laws.
In Canada, for example, a driver can only drive up to 13 hours daily.

– Perception (Reliability): Fatigue level.

• Environment

– Variability: The environment has dynamic properties related to mobile ob-
jects, such as pedestrians and other cars, and static properties related to roads,
traffic signs, and weather [3]. Therefore, the vehicle needs to be aware of its
environment.

– Demands: Federal and state laws demand different safety requirements, and
the weather, road type, and warning signs demand different driving behav-
ior. For example, highways demand high speed, while residential areas re-
quire low speed. However, even on a highway, a crossing sign warns drivers
to slow down and be prepared to stop.

After identifying the factors impacting a vehicle’s levels of autonomy, we present a
feature model in Figure 6.4 to explore designing AVs with different LOAs. Based on

120

this figure, we show below some examples of how these factors can impact the LOA
and how the LOA can impact the agent behavior:

Residential area ⇒ Level 1 (Offers Decisions)

Highway ∧ Low risk ⇒ Level 3 (Fully Automated)

Highway ∧ High risk ⇒ Level 2 (Executes with Human Approval)

Highway ∧ High risk ∧ High fatigue ⇒ Level 1 (Offers Decisions)

Level 1 ⇒ Detect warning signs ∧ Inform warning signs

Level 3 ⇒ Control speed ∧ Decide about lane changing

Based on these dependencies, we can consider vehicles that can assume more than
one degree of autonomy, selecting the most appropriate level for each situation. For
example, a car controls the velocity on highways but returns control to the driver when
it approaches residential areas. In such an example, for residential areas, the vehicle will
have a lower LOA, making the driver responsible for the speed control. At this lower
level, the car cannot control its speed, but it can provide information about warning
signs, such as school crossing and speed limit warning signs.

6.6.3 Scenario B: Customer Service Chatbots

Chatbots can significantly support business operations. For example, in interactions
with customers, 24/7 availability and machine learning capabilities can provide cus-
tomers with automatically generated personalized responses based on their needs and
hopefully resolve issues faster [44]. Customer service chatbots can replace FAQs, pro-
vide extensive information about a product, schedule appointments automatically and
perform many other useful functions. Chatbots can set up and change customer ap-
pointments for all business types, from healthcare organizations to home maintenance
companies. Chatbots are connected to the company’s calendar and can educate cus-
tomers about personnel availability and available timeslots, enabling them to make ap-

121

Mandatory - Represented in all systems

Legend:

Scheduling
Appointment Chatbot

Level of
Automation

(LOA)

Agent Human
TaskEnvironment Quality

Alternative - Must select only one

Or - Must have at least one

Optional

Taxonomy 1 CapabilityCommunication

Reactive:
Book

selected
time

Age Perception Variability Quality

Complexity

SafetyTrust

Level 3 -
Executes fully
automated

Level 1 -
Offers
Decisions

Level 2- Executes
with human
approval

Law
Compliance

Usability

Low

Static

Skill

Low High
Text

Graphical
User

Interface

Low High

Easy

Blockchain

Criptography

Accessibility

Screen
readers

Voice
recognition

Screen
magnifier

Voice

Decision:
Select a
time slot

Information
Acquisition:

Receive
schedule
options

Feedback:
Provide
free time

slots

Figure 6.5: Scenario B: LOA Variability Model in Customer Services Chatbots.

pointments without contacting humans at “front desks.” According to a 2019 survey[41],
customer service chatbots must be equipped with the following:

• Ability to provide personalized responses to each customer regardless of whether
it is a FAQ.

• Understand the customer’s context.

• Provide real-time insights to agents to resolve inquiries quickly.

• Understand the value of the customer and their history of transactions/interactions
with the company.

• Identify actions based on customer responses.

• Lead users through an automated dialogue to clarify the intent.

Considering a scheduling appointment chatbot as our second use case and automat-
ically booking an appointment as the fully autonomous response of these systems, the
following factors would influence the LOA of such systems:

• Quality

122

– Trust: Users must trust the systems, however not as much as health care sys-
tem patients.

– Ethics and Law Compliance: No law compliance is needed to book appoint-
ments, however, patient data should be secure in case the system is schedul-
ing medical appointments, for example.

– Usability: Interfaces must be comprehensive and easy to use, as this system
will be used by non-technical users.

– Safety: Safety of the system is important; however, it does not need to be the
reason for high investments.

• Task

– Complexity: This system does not deal with complex tasks.

• Agent

– Communication: text- or voice-based chatbots.

– Safety: standard data protection suffices.

– Capability: to understand the client’s schedule request.

– Domain: no domain-specific requirement to book appointments.

• Human

– Age: the system might need adaptation for the elderly, accessibility.

– Skill: Users do not need technical skills to interact with this system.

– Perception (Reliability): Users must rely on the system.

• Environment

– Variability: The system does not need to be aware of environmental changes
and, therefore, can potentially be static.

We mapped these factors as features in Figure 6.5. Handling different feature com-
binations, we can explore some relations between the LOA and the behavior of the
scheduling appointment chatbots, as follows:

Level 1 ⇒ Provide free time slots to the user ∧ Book the selected time.

123

Level 2 ⇒ Select a time slot for the user ∧ Book a time slot after the user’s approval.

Level 3 ⇒ Select a time slot ∧ Book a time slot for the user.

In the same way, we can also explore some of the characteristics that the system must
have to accomplish the different LOAs:

Feedback (provide free time slots) ∧ Book selected time ∧ Graphical User Interface ⇒
Level 1

Decision (Select a time slot) ∧ Receive user’s approval ∧ Graphical User Interface ⇒
Level 2

Decision (Select a time slot) ∧ Book selected time ∧ Trust (High) ⇒ Level 3

As shown, if the system operates at levels one or two, the interaction between the
agent and the human is higher, so the system must provide a graphical user interface
to meet the mandatory requirement of easy usability. In the case of having a chatbot
operating at the highest level, a robust interface is unnecessary (e.g., a command line
interface), as the chatbot can make decisions and select the best time for the user au-
tonomously. On the other hand, the level of trust in the system needs to be higher.

6.6.4 Scenario C: Stock Trading Chatbot

This example serves as another tangible demonstration of the proposed integration of
the proposed feature model into a specific domain, showcasing its practical applica-
bility. Chatbots are gaining ground in the financial industry, aiding in various sectors
such as banking, insurance, and stock trading [72][180]. Mastercard’s AI Assist, Bank of
America’s Erica, and KB’s Liiv TalkTalk are some examples, of performing tasks from
balance inquiries and transaction management to insurance assessments and stock con-
sultations. Zhang et al. [180] introduce a trader chatbot that can not only manage the
user’s portfolio but also employ natural language to engage in negotiations with exter-
nal traders.

However, the interaction of chatbots and humans faces obstacles. User acceptance,
heavily influenced by age, is critical, with millennials favouring digital interactions and

124

older users leaning toward human interfaces [72]. Addressing security concerns is es-
sential given the sensitivity of financial data, making it harder to develop advanced
chatbots that can do more than just provide guidance. Moreover, compliance with local
regulations is crucial, underlining the need for adaptable chatbot designs. Therefore,
developing a chatbot solution that can be customized according to different factors -
user acceptance, age demographics, cybersecurity requirements, and regulatory stipu-
lations - is critical for successful implementation in the financial industry.

We base the identified factors in this example on the feature model of LOA factors
proposed this chapter, as presented in Figure 6.3.

This illustrative example centers on a stock trading chatbot. Not only does it provide
traditional services such as financial recommendations, historic data, and stock coun-
selling, as suggested by Jang et al. [72], but it also includes advanced features similar
to Zhang et al. [180]. These features include proactive portfolio management, trader
negotiations, and market predictions.

Mandatory - Represented in all systems

Legend:

Stock Trading System

Level of
Automation

(LOA)

Agent Human TaskEnvironment Quality

Alternative - Must select only one

Or - Must have at least one

Optional

Taxonomy 1
CapabilityCommunication

Reactive:
Execute a
sell order

Decision:
select a
stock to

buy

Information
Acquisiton:
get stock
quotes,

up-to-date
news

Age WorkloadSkill Perception Variability Demands Quality

Risk Performance

Security

Level 3 -
Executes fully
automated

Level 1 -
Offers
Decisions

Level 2- Executes
with human
approval

Cyber
Attack

Protection
System

Transparency

Log

LowHigh Profits

Laws and
Regulations

Volatile
market

Global
economic

6 hours 20 min

Investment
experience

10 years 1 month

Usability

Graphical
User

Interface

Easy

Government

Central
Bank

Global
Authorities

Day
Trading

Long
Term

Investment
profile

Feedback:
provide a

day
operation
analysis

Forecast:
predict
stock
prices

Millenial Risk
Tolerance

Low

Medium High

Figure 6.6: Scenario C: LOA Variability Model in Chatbot for Stock Trading.

To develop this stock trading chatbot, we first need to define the system’s require-
ments, examine the contextual factors in this domain application that can impact the
LOA, and understand the interrelationships among these factors as follows:

• Application Requirements: In extending this step for our financial chatbot, we’ve
taken into account the insights from the works of Jang et al. [72], which offers an

125

array of chatbot solutions for financial services, and Zhang et al. [180], provid-
ing a more sophisticated approach. These studies give us crucial considerations
for designing the LOA feature diagram. In addition to LOA, the application re-
quirements also influence the development of the User Interface and Service Inte-
gration components. For instance, the need for a user-friendly, intuitive interface
would guide the UI design, while service requirements such as integrating fore-
cast algorithms and real-time news services would shape the Service Integration
component.

• LOA Requirements: To establish the required automation level for stock trading,
we consider factors like various trading scenarios, user profiles, and interaction
objectives (e.g., stock advice or portfolio management). User investment knowl-
edge, market analysis complexity, and platform quality also contribute to shaping
the desired LOA.

• LOA Contextual factors: In determining the LOA for stock trading chatbots, we
examine various contextual factors. These span dimensions such as quality (trust-
worthiness, usability), task (data processing load), agent (communication abil-
ities), human (user’s financial expertise), and environment (market volatility).
Converting these factors into features allows us to assess their impact on the LOA
methodically.

• LOA Feature Diagram: To adapt the feature-oriented design approach (Figure
6.3) for systems with LOA variability, we created a feature diagram specifically
for the stock trading application, as shown in Figure 6.6. For instance, the chat-
bot’s capabilities could vary from simply executing a user-requested sell order to
predicting future stock prices. The users can also have variable characteristics, dif-
fering in their age, trading experience, and dedication (like professional traders).
Furthermore, we need to take into account environmental factors, such as market
volatility, global economics, and various laws and regulations. Once these factors
are identified, we can delve into their interdependencies. This involves under-
standing how the inclusion or exclusion of certain features can affect the LOA.
For example, a novice user may prefer less automation, when interacting with a
system that requires user approval for order execution. Conversely, a more experi-
enced user with limited time might benefit from a chatbot capable of autonomous
decision-making and task execution, which provides a summary of activities at
the day’s end.

After these three steps, we can proceed with the design of the application, expanding

126

the three components of the feature-oriented design:

• User Interface (UI): A refined UI enables the chatbot to understand financial jar-
gon and manage complex dialogues. Depending on the chatbot’s automation
level, the interface adjusts accordingly, simpler for a more autonomous chatbot
and more intuitive for a chatbot requiring human approval.

• Service Integration (SI): This component connects with financial databases, trad-
ing platforms, and news feeds, enabling the chatbot to retrieve and process real-
time data. It also manages internal services like trade execution within the user’s
portfolio.

• Level of Automation Autonomic Controller (LOAAC): This component adjusts
the chatbot’s automation level considering user factors and task complexity, from
basic tasks for beginners to advanced portfolio management for experienced users.

In creating the LOAAC, we consider the five key factors described in [106]:

• Quality: The bot needs to be reliable, accurate, and trustworthy, capable of pro-
viding clear advice. It must also be adaptable to different user profiles and legal
requirements related to stock trading.

• Task: Tasks in stock trading vary from simple tasks like showing current stock
prices, to complex ones such as suggesting portfolio adjustments based on market
changes. The complexity, frequency, and risk associated with these tasks would
influence the level of autonomy the chatbot should have. For instance, more com-
plex and riskier tasks might require a lower LOA to allow user validation.

• Agent (System): The chatbot needs strong communication skills. Its ability to
react to different market situations, provide relevant feedback, and make informed
decisions based on current data influences the LOA.

• Human: The user’s age, cognitive ability, and perception of the bot will determine
its automation level. For instance, younger users well-versed in technology might
prefer a high LOA, while older users might require more control. Moreover, the
user’s trust in the system and their risk tolerance also influence the LOA.

• Environment: The chatbot must be adaptable to sudden market changes and
be able to handle competing tasks simultaneously, such as monitoring multiple
stocks and providing updates to different users.

127

Financial data provider

Forecast Services

Bank API

Trading Platform

Regulatory and
Compliance Database

Cripto Exchanges

Services

LOA Instance

MENU

Figure 6.7: An illustration of deploying the application for novice users.

Figure 6.7 illustrates a Level 2 Autonomy system operating with human approval,
catering to less experienced users with low-risk tolerance. In this configuration, the
chatbot is not authorized to trade stocks independently but is limited to executing users’
orders. The user interface is thoughtfully adapted to align with this autonomy level, of-
fering options that correspond to the chatbot’s capabilities. In the depicted scenario
(Figure 6.7), the service’s availability can be programmable in the chatbot’s backend,
and the instances will be generated according to the combination of factors and LOA.
In other words, the chatbot instance generated will depend on the agent, human, en-
vironment, tasks and system quality factors. For instance, users with less experience
in trading may have a more automated platform that simplifies the stock purchasing

128

process, while more seasoned traders would be granted access to an instance of the ap-
plication that allows them to issue stock purchases manually. This adaptive approach
aims to optimize the user experience and aligns with the objectives of the autonomy
level variability system, striving to strike a balance between human and autonomous
functionalities.

6.7 Discussion

To date, studies that outline factors that affect automation-level decisions are scarce.
However, scholars have attempted to identify various levels of automated taxonomies,
each having a particular function. These definitions can extract the factors that authors
use to determine the LOA at which the system and its specific tasks should operate.
These taxonomies often cover a spectrum spanning from fully manual to completely
autonomous.

Regarding the identified factors, quality factors are mentioned, as well as system and
task factors. For the system, quality is usually acquired with testing and process veri-
fication. Task quality factors are different in that they are related to the performance of
the execution of a task or the task’s complexity. Situation awareness is also related either
to a task or a system. While a person can be ”situationally aware” through knowledge,
experience, and human sensory and decision-making abilities, a system can be ”situ-
ationally aware” through sensors and contextual information. Likewise, according to
Villani et al. [173], demographics including age, are essential factors since they allow,
for instance, customizations specifically targeting elderly or inexperienced system op-
erators, supporting them to achieve tasks they would otherwise be unable to perform.

These findings support understanding the factors determining whether tasks should
be more or less automated and to what extent. Therefore, it is conceivable to assume
that systems that anticipate various LOAs might also be built to recognize the variables
that impact the amount of automation and adapt as necessary. For example, an au-
tonomous car has categories for how aggressive the driving might be. This determines,
for instance, how distant another car must be for the autonomous car to merge into a
lane. The more aggressive the driving mode is, the shorter the distance between the
autonomous car and the other car when merging lanes. Although the action to merge
lanes is autonomous, the user (driver) must manually set the aggressive mode category.
Suppose we were to analyze the factors that could influence the driving mode, such as
weather, total driving distance, drivers’ agendas (how fast they need to get somewhere),

129

who is driving the car or even the landscape of the road. In that case, the driving mode
could be set automatically without manual input for most of these factors.

The interaction between humans and autonomous systems is a multifaceted domain
with complex considerations. One consideration is the importance of metrics, such as
precision and recall in Natural Language processing tools. In the context of autonomous
systems, precision equates to how well a system can accurately perform a task, while
recall relates to when the system was efficient, doing the right thing when it should have
done it right. According to the perspectives of Berry et al. [17], sometimes, it is more
efficient to have a less intelligent tool handle a specific part of a task, rather than a highly
intelligent tool failing to perform the entire task. This perspective suggests that the
quality of an autonomous system plays a pivotal role in determining the LOA required.
Still considering precision and recall, however this time mentioning a human factor as
attentiveness, the work of DiMatteo et al. [45] introduces the critical element of human
attentiveness in partially autonomous vehicles (AVs). The authors claim that as the LOA
increases, humans tend to become less attentive. This implies that the human factor,
including factors like fatigue, can substantially impact the appropriate LOA. Balancing
false positives and false negatives in detecting inattention becomes crucial. Here, the
system quality and human factors interplay as the system needs to adapt to the human’s
attention state. Achieving the right balance is essential to optimize system performance
while ensuring human safety and efficiency.

The development of a software engineering discipline that addresses autonomous
system design and identifies factors that influence the variance of LOAs in autonomous
systems could potentially significantly impact the field of autonomous systems and ar-
tificial intelligence research. This could lead to more efficient and effective design and
development of autonomous systems’ software and better understanding and manage-
ment of the relationship between humans and machines in such systems. The findings
suggest that a software engineering approach that considers the factors determining the
appropriate LOA for a task can be beneficial. Such an approach would allow for the de-
velopment of systems anticipating various LOAs and recognizing the variables that im-
pact the amount of automation required. This approach can lead to the development of
autonomous systems that can adapt to changing conditions and user preferences, thus
increasing their effectiveness and efficiency. The work of Berry et al. [18] delves into the
domain of AI and how requirements for AI can be established. This work emphasizes
the importance of defining measures, acceptable values, and the AI’s context to create
a comprehensive requirements specification (RS). In the context of human-autonomous
system interaction, understanding the context and defining appropriate measures are
essential in deciding the LOA that aligns with human capabilities and expectations.

130

In AI, our proposed approach can lead to the development of AI systems that can
learn from experience and adapt to changing conditions. By considering the factors
that influence the appropriate LOA for a task, AI systems can be designed to be more
flexible and adaptable. Additionally, this approach can lead to the development of AI
systems that can be designed to operate at different LOAs depending on the context,
thus increasing their usability and applicability.

6.8 Threats to Validity

In this section, we address potential threats to the validity of the research methodology
employed in the systematic literature review (SLR) to identify factors influencing LOAs
in systems that support human-machine interactions.

• Construct Validity:

– Scope of Inclusion Criteria: The inclusion criteria focused on studies pub-
lished in English after the year 2000. This scope might exclude relevant stud-
ies or factors from earlier research or non-English literature.

– Categorization Bias: The categorization of factors into abstract concepts could
introduce bias or subjectivity. The lack of a clear justification for this catego-
rization may lead to potential misunderstandings or misinterpretations.

• Internal Validity:

– Literature Sampling: The LR primarily relies on backward and forward snow-
balling and online databases for literature sampling. This approach may not
capture all relevant studies, leading to potential omissions of important fac-
tors.

– Inter-Rater Reliability: While the study reports high agreement between the
two researchers categorizing the identified factors, potential subjectivity in
categorization could introduce biases or inconsistencies.

• External Validity:

– Generalizability: The focus on papers published after 2000 and in English
may limit the generalizability of findings to a broader range of factors and
studies that existed before this time frame or in other languages.

131

6.9 Conclusion

In this study, we aimed to answer the following research question: Which factors affect
the variance of LOAs in autonomous systems? We performed a systematic literature
review to identify the factors related to varying LOAs. We describe the methodology of
the approach and list all the identified factors in a table, linked with their correspond-
ing source article(s). We then provide a categorization of the identified factors that affect
LOAs in systems. We categorize these factors into five main categories: Quality, Task,
Agent (System), Human and Environment factors. To continue the work, we refine these
factors by demonstrating how systems can capture and embed them in their operation.
We also introduce a representation of these factors and their variability, demonstrating
the relationship of factors with specific LOAs. Lastly, we demonstrate how these fac-
tors can be applied to three different scenarios with illustrative examples. Prior studies
have recognized the value of research into the definition of the taxonomies of LOAs.
This research complements taxonomy research, by investigating the factors that affect
the choice of one LOA over another, contributing to the development of adaptive au-
tonomous systems independently of the LOA taxonomy being used.

The present results are significant in at least two major respects. First, it highlights
the existence of these factors, categorizes them and presents how a combination of dif-
ferent factors can influence how intelligent autonomous systems work. We also demon-
strate how systems can capture factors and systemically implement such factors. Finally,
we achieve system adaptability and characterization by identifying and representing
these factors as feature models.

Our work also raises questions for future research. One of these questions concerns
the challenges of implementing these factors in autonomous systems. How can these
factors be implemented in autonomous systems while still ensuring that the systems
remain safe and reliable? Another important area of research is validating the proposed
approach by implementing real-world autonomous systems and testing them under
various conditions. Future work can explore using the proposed model to assess the au-
tomation of problems in specific fields, such as software engineering and other domains.
We also aim to implement this model, investigate its contribution to different applica-
tion scenarios in conversational agent architectures, and investigate which taxonomies
are ideal for conversational agent solutions. Keeping a history of the factors that impact
specific tasks can also be used to measure the performance of the task and evaluate the
selection of the LOA. Additionally, such models could potentially contribute to proving
the decisions made.

132

In conclusion, this study contributes to the development of adaptive autonomous
systems by identifying and categorizing the factors that affect the choice of one LOA
over another. By using the identified factors and their variability, software engineers
can design autonomous systems that can operate more effectively in various conditions.
The results of this study have practical implications for the development of autonomous
systems and provide a foundation for future research in this field.

133

Chapter 7

Conclusion

The combination of heightened demand for software developers, the growing complex-
ity of software development projects, the dynamic nature of the field, and the collabora-
tive aspect of team-based development are all key factors shaping the way developers
work. Additionally, the introduction of AI-based conversational systems, in the form of
chatbots and virtual assistants, represents a promising avenue for developers to navi-
gate this evolving landscape more effectively and efficiently.

In this thesis, we embarked on a research journey to investigate the design of context-
based adaptive interactions between software developers and chatbots, with a particu-
lar focus on understanding developers’ expectations and the desired levels of automa-
tion. This exploration was driven by the increasing complexity of software develop-
ment and the emergence of advanced AI-based conversational systems, which hold the
potential to transform how developers work. We aimed to bridge the gap between de-
velopers’ needs and the capabilities of chatbots, ultimately seeking to provide optimal
support for software development processes.

We made contributions to both the theoretical and practical aspects of context-based
chatbot interactions. We conduct literature reviews to identify contextual factors in soft-
ware engineering (RQ1) and factors influencing LOAs in autonomous systems (RQ3).
We categorized these factors and analyzed their relationships, shedding light on how
they impact LOAs.

Our empirical studies provided insights into developers’ perspectives and require-
ments when interacting with chatbots (RQ2). Through a set of user studies, we extracted
essential information on how chatbots can best support developers in their tasks. We
discovered that developers are interested in chatbot support for tasks such as task and

134

repository management, but their preferences for guidance or automation vary. Addi-
tionally, we found that context plays a crucial role in enhancing chatbot interactions, as
developers desire a deeper contextual understanding of these virtual assistants. Fur-
thermore, we explored the relationships between developers’ automation preferences
and their experience levels, highlighting the importance of tailoring chatbot responses
to individual skill levels.

In our thesis statement, we claim that the integration of chatbots to support devel-
opers in their work has become prominent and that there is a pressing need to address
the challenges in human-chatbot interactions, which has been addressed throughout
this research. We have explored the complexities of context-based chatbot interactions,
gaining a deeper understanding of the contextual factors that influence software devel-
opment and the impact of automation on human-system interactions. By conducting
systematic literature reviews, and user studies, we have contributed to the develop-
ment of effective solutions and knowledge that optimally support software developers.

Looking ahead, there are several avenues for future research in this domain. Further
investigations can explore the integration of context into developer-chatbot interactions
in more depth, considering specific support mechanisms that chatbots should offer to
developers. Additionally, the quality of chatbot recommendations and their impact on
task performance can be assessed through qualitative and quantitative studies. As ad-
vanced language models like ChatGPT become increasingly prevalent, the possibilities
for enriching human-machine collaboration in software development hold promise and
should remain a focus of continued investigation. An interesting study can also evaluate
the quality of software with the same requirements being developed with the support
of a chatbot, and without. Of course, many avenues to implement chatbots for software
developers with the requirements presented in this thesis are also open.

In conclusion, our research has paved the way for more context-aware and person-
alized support for software development, harnessing the power of chatbots and AI ad-
vancements to address complexities in the software development process. As the soft-
ware development landscape continues to evolve, our findings and contributions can
be considered, guiding the development of adaptive developer-chatbot interactions in
the years to come.

135

References

[1] Ahmad Abdellatif, Khaled Badran, Diego Elias Costa, and Emad Shihab. A com-
parison of natural language understanding platforms for chatbots in software en-
gineering. IEEE Transactions on Software Engineering, 48(8):3087–3102, 2022.

[2] Ahmad Abdellatif, Diego Costa, Khaled Badran, Rabe Abdalkareem, and Emad
Shihab. Challenges in chatbot development: A study of stack overflow posts.
In Proceedings of the 17th International Conference on Mining Software Repositories,
MSR ’20, page 174–185, New York, NY, USA, 2020. Association for Computing
Machinery.

[3] Raja Ben Abdessalem, Annibale Panichella, Shiva Nejati, Lionel C Briand, and
Thomas Stifter. Testing autonomous cars for feature interaction failures using
many-objective search. In 2018 33rd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pages 143–154. IEEE, 2018.

[4] S. Ahmadi-Karvigh, A. Ghahramani, B. Becerik-Gerber, and L. Soibelman. One
size does not fit all: Understanding user preferences for building automation sys-
tems. Energy and Buildings, 145:163–173, 2017. cited By 30.

[5] H. Ait Malek, A. Etienne, A. Siadat, and T. Allavena. A literature review on the
level of automation and new approach proposal. IFIP Advances in Information and
Communication Technology, 591 IFIP:408–417, 2020. cited By 0.

[6] Bowen Alpern, Alan Carle, Barry Rosen, Peter Sweeney, and Kenneth Zadeck.
Graph attribution as a specification paradigm. ACM SIGPlan Notices, 24(2):121–
129, 1988.

[7] Vander Alves, Nan Niu, Carina Alves, and George Valença. Requirements engi-
neering for software product lines: A systematic literature review. Information and
Software Technology, 52(8):806–820, 2010.

136

[8] Bruno Antunes, Francisco Correia, and Paulo Gomes. Context capture in software
development. arXiv prmisc arXiv:1101.4101, 2011.

[9] Johan Aronsson, Philip Lu, Daniel Strüber, and Thorsten Berger. A maturity as-
sessment framework for conversational ai development platforms. In Proceedings
of the 36th Annual ACM Symposium on Applied Computing, pages 1736–1745, 2021.

[10] B. Ashok, Joseph Joy, Hongkang Liang, Sriram K. Rajamani, Gopal Srinivasa,
and Vipindeep Vangala. Debugadvisor: A recommender system for debugging.
In Proceedings of the 7th Joint Meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on The Foundations of Software Engineering,
ESEC/FSE ’09, pages 373–382, New York, NY, USA, 2009. ACM.

[11] Noppadol Assavakamhaenghan, Raula Gaikovina Kula, and Kenichi Matsumoto.
Interactive chatbots for software engineering: A case study of code reviewer
recommendation. In 2021 IEEE/ACIS 22nd International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing
(SNPD), pages 262–266, 2021.

[12] Samira Badrloo, Masood Varshosaz, Saied Pirasteh, and Jonathan Li. Image-based
obstacle detection methods for the safe navigation of unmanned vehicles: A re-
view. Remote Sensing, 14(15):3824, 2022.

[13] Paul L Baker. Ada as a preprocessor language. ACM SIGAda Ada Letters, 10(1):83–
91, 1990.

[14] José L. Barros-Justo, Fabiane B. V. Benitti, and Ania L. Cravero-Leal. Software pat-
terns and requirements engineering activities in real-world settings: A systematic
mapping study, 2018. ID: 271914.

[15] Jenay M Beer, Arthur D Fisk, and Wendy A Rogers. Toward a framework for levels
of robot autonomy in human-robot interaction. Journal of human-robot interaction,
3(2):74, 2014.

[16] Cinzia Bernardeschi, Pierpaolo Dini, Andrea Domenici, Ayoub Mouhagir, Maur-
izio Palmieri, Sergio Saponara, Tanguy Sassolas, and Lilia Zaourar. Co-simulation
of a model predictive control system for automotive applications. In Software Engi-
neering and Formal Methods. SEFM 2021 Collocated Workshops: CIFMA, CoSim-CPS,
OpenCERT, ASYDE, Virtual Event, December 6–10, 2021, pages 204–220. Springer,
2022.

137

[17] Daniel Berry, Ricardo Gacitua, Pete Sawyer, and Sri Fatimah Tjong. The case for
dumb requirements engineering tools. In Requirements Engineering: Foundation for
Software Quality: 18th International Working Conference, REFSQ 2012, Essen, Ger-
many, March 19-22, 2012. Proceedings 18, pages 211–217. Springer, 2012.

[18] Daniel M Berry. Requirements engineering for artificial intelligence: What is a
requirements specification for an artificial intelligence? In International Working
Conference on Requirements Engineering: Foundation for Software Quality, pages 19–
25. Springer, 2022.

[19] U.S. BLS. Bureau of labor statistics, u.s. department of labor, occupational out-
look handbook: Software developers, quality assurance analysts, and testers. Ac-
cessed: 2022-11-06.

[20] Nick Bradley, Thomas Fritz, and Reid Holmes. Context-aware conversational de-
veloper assistants. In 2018 IEEE/ACM 40th International Conference on Software En-
gineering (ICSE), pages 993–1003, 2018.

[21] Petter Bae Brandtzaeg and Asbjørn Følstad. Why people use chatbots. In Ioan-
nis Kompatsiaris, Jonathan Cave, Anna Satsiou, Georg Carle, Antonella Passani,
Efstratios Kontopoulos, Sotiris Diplaris, and Donald McMillan, editors, Internet
Science, page 377–392. Springer International Publishing, 2017.

[22] Chris Brown and Chris Parnin. Sorry to bother you again: Developer recom-
mendation choice architectures for designing effective bots. In Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering Workshops, pages
56–60, 2020.

[23] Liang Cai, Haoye Wang, Bowen Xu, Qiao Huang, Xin Xia, David Lo, and Zhen-
chang Xing. Answerbot: an answer summary generation tool based on stack
overflow. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
pages 1134–1138, 2019.

[24] G. Calhoun. Adaptable (not adaptive) automation: Forefront of hu-
man–automation teaming. Human Factors, 64(2):269–277, 2022.

[25] Antonio Carzaniga, Alfonso Fuggetta, Richard S Hall, Dennis Heimbigner, André
Van Der Hoek, and Alexander L Wolf. A characterization framework for software
deployment technologies. Technical report, Colorado State Univ Fort Collins Dept
of Computer Science, 1998.

138

[26] Cristiano Castelfranchi and Rino Falcone. Founding autonomy: The dialectics be-
tween (social) environment and agent’s architecture and powers. In International
Workshop on Computational Autonomy, pages 40–54. Springer, 2003.

[27] Marcelo Cataldo and James D Herbsleb. End-to-end features as meta-entities for
enabling coordination in geographically distributed software development. In
2009 ICSE Workshop on Software Development Governance, pages 21–26. IEEE, 2009.

[28] Jhonny Cerezo, Juraj Kubelka, Romain Robbes, and Alexandre Bergel. Building
an expert recommender chatbot. In 2019 IEEE/ACM 1st International Workshop on
Bots in Software Engineering (BotSE), pages 59–63. IEEE, 2019.

[29] Ana Paula Chaves and Marco Aurelio Gerosa. How should my chatbot interact? a
survey on social characteristics in human–chatbot interaction design. International
Journal of Human–Computer Interaction, 37(8):729–758, 2021.

[30] Lianping Chen, Muhammad Ali Babar, and Nour Ali. Variability management in
software product lines: a systematic review. In Proceedings of the 13th International
Software Product Line Conference, pages 81–90. Citeseer, 2009.

[31] Lianping Chen and Muhammad Ali Babar. A systematic review of evaluation
of variability management approaches in software product lines. Information and
Software Technology, 53(4):344–362, 2011.

[32] Leon Ciechanowski, Aleksandra Przegalinska, Mikolaj Magnuski, and Peter
Gloor. In the shades of the uncanny valley: An experimental study of human–
chatbot interaction. Future Generation Computer Systems, 92:539–548, 2019.

[33] Bruce T Clough. Metrics, schmetrics! how the heck do you determine a uav’s
autonomy anyway. Technical report, Air Force Research Lab Wright-Patterson
AFB OH, 2002.

[34] Francesco Cosimi, Pierpaolo Dini, Sandro Giannetti, Matteo Petrelli, and Sergio
Saponara. Analysis and design of a non-linear mpc algorithm for vehicle tra-
jectory tracking and obstacle avoidance. In Applications in Electronics Pervading
Industry, Environment and Society: ApplePies, 2020, pages 229–234. Springer, 2021.

[35] Krzysztof Czarnecki. Overview of generative software development. In Interna-
tional workshop on unconventional programming paradigms, pages 326–341. Springer,
2004.

139

[36] Krzysztof Czarnecki. Variability in software: State of the art and future directions.
In International Conference on Fundamental Approaches to Software Engineering, pages
1–5. Springer, 2013.

[37] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model transfor-
mation approaches. IBM Systems Journal, 45(3):621–645, 2006.

[38] Leandro Ferreira D’Avila, Jorge Luis Victória Barbosa, and Kleinner Silva Farias
de Oliveira. Sw-context: a model to improve developers’ situational awareness.
IET Software, 14(5):535–543, 2020.

[39] Kleber Rocha de Oliveira and Mauro de Mesquita Spı́nola. Porei: patterns-
oriented requirements elicitation integrated–proposal of a metamodel patterns-
oriented for integration of the requirement elicitation process. In Proceedings of
the 2007 Euro American conference on Telematics and Information Systems, pages 1–8,
2007.

[40] Mustafa Demir, Nathan J McNeese, and Nancy J Cooke. Team situation awareness
within the context of human-autonomy teaming. Cognitive Systems Research, 46:3–
12, 2017.

[41] Statista Research Department. Current chatbot ability in customer service in the
united states, canada and u.k. in 2019. https://www.statista.com/statistics/
1015841/customer-service-chatbot-ability-us-canada-uk/. Published:
2019-07-06.

[42] Nicolas Devos, Christophe Ponsard, Jean-Christophe Deprez, Renaud Bauvin,
Benedicte Moriau, and Guy Anckaerts. Efficient reuse of domain-specific test
knowledge: An industrial case in the smart card domain. In 2012 34th Interna-
tional Conference on Software Engineering (ICSE), pages 1123–1132. IEEE, 2012.

[43] C. Di Ciccio, A. Marrella, and A. Russo. Knowledge-intensive processes: Charac-
teristics, requirements and analysis of contemporary approaches. Journal on Data
Semantics, 4(1):29–57, 2015.

[44] Cem Dilmegani. Top 9 customer service chatbot use cases and examples. https:
//research.aimultiple.com/customer-service-chatbot/. Accessed: 2022-12-
19.

140

https://www.statista.com/statistics/1015841/customer-service-chatbot-ability-us-canada-uk/
https://www.statista.com/statistics/1015841/customer-service-chatbot-ability-us-canada-uk/
https://research.aimultiple.com/customer-service-chatbot/
https://research.aimultiple.com/customer-service-chatbot/

[45] Johnathan DiMatteo, Daniel M Berry, and Krzysztof Czarnecki. Requirements for
monitoring inattention of the responsible human in an autonomous vehicle: The
recall and precision tradeoff. In REFSQ Workshops, 2020.

[46] Pierpaolo Dini and Sergio Saponara. Processor-in-the-loop validation of a gra-
dient descent-based model predictive control for assisted driving and obstacles
avoidance applications. IEEE Access, 10:67958–67975, 2022.

[47] John V Draper. Teleoperators for advanced manufacturing: Applications and hu-
man factors challenges. International Journal of Human Factors in Manufacturing,
5(1):53–85, 1995.

[48] Tore Dybå, Dag I.K. Sjøberg, and Daniela S. Cruzes. What works for whom,
where, when, and why? on the role of context in empirical software engineer-
ing. In Proceedings of the ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM ’12, page 19–28, New York, NY, USA, 2012.
Association for Computing Machinery.

[49] Mica R Endsley. The application of human factors to the development of expert
systems for advanced cockpits. In Proceedings of the Human Factors Society Annual
Meeting, volume 31, pages 1388–1392. SAGE Publications Sage CA: Los Angeles,
CA, 1987.

[50] Mica R Endsley and David B Kaber. Level of automation effects on perfor-
mance, situation awareness and workload in a dynamic control task. Ergonomics,
42(3):462–492, 1999.

[51] Mica R. Endsley and Esin O. Kiris. The out-of-the-loop performance problem and
level of control in automation. Human Factors, 37(2):381–394, 1995.

[52] M.R. Engsley, E. Onal, and D.B. Kaber. The impact of intermediate levels of au-
tomation on situation awareness and performance in dynamic control systems.
In Proceedings of the 1997 IEEE Sixth Conference on Human Factors and Power Plants,
1997. ’Global Perspectives of Human Factors in Power Generation’, pages 7/7–712,
1997.

[53] Juan Carlos Farah, Basile Spaenlehauer, Vandit Sharma, Marı́a Jesús Rodrı́guez-
Triana, Sandy Ingram, and Denis Gillet. Impersonating chatbots in a code review
exercise to teach software engineering best practices. In 2022 IEEE Global Engi-
neering Education Conference (EDUCON), pages 1634–1642, 2022.

141

[54] Åsa Fasth. Quantifying Levels of Automation to Enable Competitive Assembly Systems.
Chalmers Tekniska Hogskola (Sweden), 2012.

[55] Afreza Fereidunian, Caro Lucas, Hamid Lesani, Matti Lehtonen, and Mikael
Nordman. Challenges in implementation of human-automation interaction mod-
els. In 2007 Mediterranean Conference on Control and Automation, pages 1–6. IEEE,
2007.

[56] Alireza Fereidunian, Matti Lehtonen, Hamid Lesani, Caro Lucas, and Mikael
Nordman. Adaptive autonomy: Smart cooperative cybernetic systems for more
humane automation solutions. In 2007 IEEE International Conference on Systems,
Man and Cybernetics, pages 202–207, 2007.

[57] Frank Flemisch, Matthias Heesen, Tobias Hesse, Johann Kelsch, Anna Schieben,
and Johannes Beller. Towards a dynamic balance between humans and automa-
tion: authority, ability, responsibility and control in shared and cooperative con-
trol situations. Cognition, Technology and Work, 14(1):3–18, 2012.

[58] Asbjørn Følstad and Petter Bae Brandtzæg. Chatbots and the new world of hci.
interactions, 24(4):38–42, 2017.

[59] Martin Ford. Rise of the Robots: Technology and the Threat of a Jobless Future. Basic
Books, 2015.

[60] Matthias Galster, Paris Avgeriou, Danny Weyns, and Tomi Männistö. Variability
in software architecture: current practice and challenges. ACM SIGSOFT Software
Engineering Notes, 36(5):30–32, 2011.

[61] Matthias Galster, Danny Weyns, Dan Tofan, Bartosz Michalik, and Paris Avgeriou.
Variability in software systems—a systematic literature review. IEEE Transactions
on Software Engineering, 40(3):282–306, 2013.

[62] Matthias Galster, Uwe Zdun, Danny Weyns, Rick Rabiser, Bo Zhang, Michael
Goedicke, and Gilles Perrouin. Variability and complexity in software design:
Towards a research agenda. ACM SIGSOFT Software Engineering Notes, 41(6):27–
30, 2017.

[63] Marko Gasparic, Gail C. Murphy, and Francesco Ricci. A context model for ide-
based recommendation systems. Journal of Systems and Software, 128:200–219, Jun
2017.

142

[64] Allen Goldberg. Reusing software developments. ACM SIGSOFT Software Engi-
neering Notes, 15(6):107–119, 1990.

[65] John D. Gould, John Conti, and Todd Hovanyecz. Composing letters with a sim-
ulated listening typewriter. Commun. ACM, 26(4):295–308, April 1983.

[66] Deep Learning Bible H. Traditional NLP hangeul. Dialogue and conversational
agents. https://wikidocs.net/191160, Unknown. Accessed 03. Jul 2023.

[67] Reid Holmes and Gail C. Murphy. Using structural context to recommend source
code examples. In Proceedings of the 27th International Conference on Software Engi-
neering, ICSE ’05, page 117–125. ACM, 2005. event-place: St. Louis, MO, USA.

[68] Samuel Idowu, Daniel Strüber, and Thorsten Berger. Asset management in ma-
chine learning: a survey. In 2021 IEEE/ACM 43rd International Conference on Soft-
ware Engineering: Software Engineering in Practice (ICSE-SEIP), pages 51–60. IEEE,
2021.

[69] Nasif Imtiaz, Justin Middleton, Joymallya Chakraborty, Neill Robson, Gina Bai,
and Emerson Murphy-Hill. Investigating the effects of gender bias on github. In
Proceedings of the 41st International Conference on Software Engineering, pages 700–
711. IEEE Press, 2019.

[70] Toshiyuki Inagaki. Situation-adaptive degree of automation for system safety. In
Proceedings of 1993 2nd IEEE International Workshop on Robot and Human Communi-
cation, pages 231–236. IEEE, 1993.

[71] Samireh Jalali and Claes Wohlin. Systematic literature studies: database searches
vs. backward snowballing. In Proceedings of the 2012 ACM-IEEE international sym-
posium on empirical software engineering and measurement, pages 29–38. IEEE, 2012.

[72] Moonkyoung Jang, Yoonhyuk Jung, and Seongcheol Kim. Investigating man-
agers’ understanding of chatbots in the korean financial industry. Computers in
Human Behavior, 120:106747, 2021.

[73] David B Kaber. Issues in human–automation interaction modeling: Presumptive
aspects of frameworks of types and levels of automation. Journal of Cognitive En-
gineering and Decision Making, 12(1):7–24, 2018.

[74] Raman Kazhamiakin, Salima Benbernou, Luciano Baresi, Pierluigi Plebani, Maike
Uhlig, and Olivier Barais. Adaptation of service-based systems. Service Research

143

https://wikidocs.net/191160

Challenges and Solutions for the Future Internet: S-Cube–Towards Engineering, Man-
aging and Adapting Service-Based Systems, pages 117–156, 2010.

[75] J. F. Kelley. An iterative design methodology for user-friendly natural language
office information applications. ACM Trans. Inf. Syst., 2(1):26–41, jan 1984.

[76] Mik Kersten and Gail C. Murphy. Mylar: a degree-of-interest model for ides. In
Proceedings of the 4th international conference on Aspect-oriented software development,
pages 159–168. ACM, 2005.

[77] Mik Kersten and Gail C. Murphy. Using task context to improve programmer
productivity. In Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, SIGSOFT ’06/FSE-14, page 1–11. ACM, 2006.

[78] Thanh Tung Khuat, David Jacob Kedziora, and Bogdan Gabrys. The roles and
modes of human interactions with automated machine learning systems. arXiv
prmisc arXiv:2205.04139, 2022.

[79] Alison Kidd. The marks are on the knowledge worker. In Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 186–191, 1994.

[80] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sal-
lab, Senthil Yogamani, and Patrick Pérez. Deep reinforcement learning for au-
tonomous driving: A survey. IEEE Transactions on Intelligent Transportation Sys-
tems, 23(6):4909–4926, 2021.

[81] Barbara Kitchenham and Stuart Charters. Guidelines for performing systematic
literature reviews in software engineering. Technical Report EBSE 2007-001, 2007.

[82] A Kontogogos and P Avgeriou. Towards modelling variability-intensive soa sys-
tems. University of Groningen, The Netherlands, Technical Report, 2009.

[83] Stefan Kugele, Ana Petrovska, and Ilias Gerostathopoulos. Towards a Taxonomy of
Autonomous Systems. Springer International Publishing, Cham, 2021.

[84] JR Landis, GG Koch biometrics, and undefined 1977. The measurement of ob-
server agreement for categorical data. JSTOR, 1977.

[85] Thomas D. LaToza, Gina Venolia, and Robert DeLine. Maintaining mental mod-
els: A study of developer work habits. In Proceedings of the 28th International Con-
ference on Software Engineering, ICSE ’06, page 492–501, New York, NY, USA, 2006.
Association for Computing Machinery.

144

[86] Paul J Layzell and Pericles Loucopoulos. A rule-based approach to the construc-
tion and evolution of business information systems. In 1988 Conference on Software
Maintenance, pages 258–264. IEEE Computer Society, 1988.

[87] Carlene Lebeuf, Margaret-Anne Storey, and Alexey Zagalsky. Software bots. IEEE
Software, 35(1):18–23, 2017.

[88] Amanda Lee and Jeffrey C Carver. Floss participants’ perceptions about gender
and inclusiveness: a survey. In Proceedings of the 41st International Conference on
Software Engineering, pages 677–687. IEEE Press, 2019.

[89] Hongwei Li, Zhenchang Xing, Xin Peng, and Wenyun Zhao. What help do devel-
opers seek, when and how? In 2013 20th Working Conference on Reverse Engineering
(WCRE), pages 142–151, 2013.

[90] A. M. Lima, R. Q. Reis, and C. A. L. Reis. Empirical evidence of factors influ-
encing project context in distributed software projects. In 2015 IEEE/ACM 2nd
International Workshop on Context for Software Development, pages 6–7, 2015.

[91] Chun-Ting Lin, Shang-Pin Ma, and Yu-Wen Huang. Msabot: A chatbot frame-
work for assisting in the development and operation of microservice-based sys-
tems. In Proceedings of the IEEE/ACM 42nd International Conference on Software En-
gineering Workshops, ICSEW’20, page 36–40, 2020.

[92] Jun Lin. Context-aware task allocation for distributed agile team. In Proceedings
of the 28th IEEE/ACM International Conference on Automated Software Engineering,
ASE’13, pages 758–761, Piscataway, NJ, USA, 2013. IEEE Press.

[93] Luis Fernando Lins, Glaucia Melo, Toacy Oliveira, Paulo Alencar, and Donald
Cowan. Pacas: process-aware conversational agents. In International Conference on
Business Process Management, pages 312–318. Springer, 2021.

[94] Dongyu Liu, Micah J. Smith, and Kalyan Veeramachaneni. Understanding user-
bot interactions for small-scale automation in open-source development. In Ex-
tended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems,
page 1–8, New York, NY, USA, 2020.

[95] Martin Lochner and Daniel Smilek. The uncertain advisor: trust, accuracy, and
self-correction in an automated decision support system. Cognitive Processing,
24(1):95–106, 2023.

145

[96] Bernd Lorenz, Francesco Di Nocera, Stefan Röttger, and Raja Parasuraman. The
effects of level of automation on the out-of-the-loop unfamiliarity in a complex
dynamic fault-management task during simulated spaceflight operations. In Pro-
ceedings of the human factors and ergonomics society annual meeting, volume 45, pages
44–48. SAGE Publications Sage CA: Los Angeles, CA, 2001.

[97] T. Machado, A. Ahonen, and R. Ghabcheloo. Towards a standard taxonomy
for levels of automation in heavyduty mobile machinery. In Proceedings of
ASME/BATH 2021 Symposium on Fluid Power and Motion Control, FPMC 2021, 2021.

[98] Keith Marzullo and Douglas Wiebe. Jasmine: A software system modelling facil-
ity. ACM SIGPLAN Notices, 22(1):121–130, 1987.

[99] Christoph Matthies, Franziska Dobrigkeit, and Guenter Hesse. An additional set
of (automated) eyes: Chatbots for agile retrospectives. In 2019 IEEE/ACM 1st
International Workshop on Bots in Software Engineering (BotSE), pages 34–37, 2019.

[100] Michael F McTear. The rise of the conversational interface: A new kid on the
block? In International Workshop on Future and Emerging Trends in Language Tech-
nology, pages 38–49. Springer, 2016.

[101] Glaucia Melo. Designing adaptive developer-chatbot interactions: Context in-
tegration, experimental studies, and levels of automation. In 2023 IEEE/ACM
45th International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), pages 235–239, 2023.

[102] Glaucia Melo, Paulo Alencar, and Don Cowan. Context-augmented software de-
velopment in traditional and big data projects: Literature review and preliminary
framework. In 2019 IEEE International Conference on Big Data (Big Data), pages
3449–3457. IEEE, 2019.

[103] Glaucia Melo, Edith Law, Paulo Alencar, and Donald Cowan. Understanding user
understanding: What do developers expect from a cognitive assistant? In 2020
IEEE International Conference on Big Data (Big Data), pages 3165–3172, 2020.

[104] Glaucia Melo, Luis Fernando Lins, Paulo Alencar, and Donald Cowan. Sup-
porting contextual conversational agent-based software development. In 2023
IEEE/ACM 5th International Workshop on Bots in Software Engineering (BotSE), pages
9–13, 2023.

146

[105] Glaucia Melo, Nathalia Nascimento, Paulo Alencar, and Donald Cowan. Under-
standing levels of automation in human-machine collaboration. In 2022 IEEE In-
ternational Conference on Big Data (Big Data), pages 3952–3958, 2022.

[106] Glaucia Melo, Nathalia Nascimento, Paulo Alencar, and Donald Cowan. Identify-
ing factors that impact levels of automation in autonomous systems. IEEE Access,
11:56437–56452, 2023.

[107] Glaucia Melo, Nathalia Nascimento, Paulo Alencar, and Donald Cowan.
Variability-aware architecture for human-chatbot interactions: Taming levels of
automation. In Proceedings of the 1st International Workshop on Artificial Intelligence
for Autonomous Computing Systems (AI4AS 2023), co-located with ACSOS 2023, 2023.
To appear.

[108] Glaucia Melo, Toacy Oliveira, Paulo Alencar, and Don Cowan. Retrieving curated
stack overflow posts from project task similarities. In International Conference on
Software Engineering Knowledge Engineering, pages 415–418, 2019.

[109] Alex C. Meng. On evaluating self-adaptive software. In Paul Robertson, Howie
Shrobe, and Robert Laddaga, editors, Self-Adaptive Software, pages 65–74, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[110] A. N. Meyer, L. E. Barton, G. C. Murphy, T. Zimmermann, and T. Fritz. The work
life of developers: Activities, switches and perceived productivity. IEEE Transac-
tions on Software Engineering, 43(12):1178–1193, 2017.

[111] André N. Meyer, Earl T. Barr, Christian Bird, and Thomas Zimmermann. Today
was a good day: The daily life of software developers. IEEE Transactions on Soft-
ware Engineering, 47(5):863–880, 2021.

[112] Mia Mikic and Joy Malala. The impact of artificial intelligence on the future of
work. In The Home in the Digital Age, pages 143–159. 2021.

[113] Vesna Mikulovic and Michael Heiss. ”how do i know what i have to do?” the role
of the inquiry culture in requirements communication for distributed software
development projects”. In Proceedings of the 28th international conference on Software
engineering, pages 921–925, 2006.

[114] P. Milgram, A. Rastogi, and J.J. Grodski. Telerobotic control using augmented
reality. In Proceedings 4th IEEE International Workshop on Robot and Human Commu-
nication, pages 21–29, 1995.

147

[115] Neville Moray, Toshiyuki Inagaki, and Makoto Itoh. Adaptive automation, trust,
and self-confidence in fault management of time-critical tasks. Journal of experi-
mental psychology: Applied, 6(1):44, 2000.

[116] Gail Murphy. Beyond integrated development environments: adding context to
software development. In Proceedings of the 41st International Conference on Software
Engineering, pages 73–76. IEEE Press, 2019.

[117] Gail C. Murphy. Getting to flow in software development. In Proceedings of the
2014 ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, Onward! 2014, pages 269–281, New York, NY, USA,
2014. ACM.

[118] Gail C Murphy. The need for context in software engineering (ieee cs harlan mills
award keynote). In 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 5–5, 2018.

[119] Gail C. Murphy. The need for context in software engineering (ieee cs harlan
mills award keynote). In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, page 5, New York, NY, USA, 2018.
Association for Computing Machinery.

[120] M. Müller, T. Müller, B. Ashtari Talkhestani, P. Marks, N. Jazdi, and M. Weyrich.
Industrielle autonome systeme: ein Überblick über definitionen, merkmale und
fähigkeiten. At-Automatisierungstechnik, 69(1):3–13, 2021. cited By 4.

[121] Nathalia Nascimento, Paulo Alencar, Carlos Lucena, and Donald Cowan. An iot
analytics embodied agent model based on context-aware machine learning. In
2018 IEEE International Conference on Big Data (Big Data), pages 5170–5175. IEEE,
2018.

[122] Damir Nesic, Jacob Krueger, Stefan Stanciulescu, and Thorsten Berger. Principles
of feature modeling. In ESEC/SIGSOFT FSE, pages 62–73, 2019.

[123] Quynh N Nguyen and Anna Sidorova. Understanding user interactions with a
chatbot: A self-determination theory approach. 24th Americas Conference on Infor-
mation Systems – Emergent Research Forum, 2018.

[124] F. Novakazi, M. Johansson, H. Strömberg, and M. Karlsson. Levels of what? in-
vestigating drivers’ understanding of different levels of automation in vehicles.

148

Journal of Cognitive Engineering and Decision Making, 15(2-3):116–132, 2021. cited
By 1.

[125] M. Nylin, J. Johansson Westberg, and J. Lundberg. Reduced autonomy workspace
(raw)—an interaction design approach for human-automation cooperation. Cog-
nition, Technology and Work, 24(2):261–273, 2022.

[126] Dušan Okanović, Samuel Beck, Lasse Merz, Christoph Zorn, Leonel Merino,
André van Hoorn, and Fabian Beck. Can a chatbot support software engineers
with load testing? approach and experiences. In Proceedings of the ACM/SPEC
International Conference on Performance Engineering, ICPE ’20, page 120–129, New
York, NY, USA, 2020. Association for Computing Machinery.

[127] M. Pai, M. McCulloch, J. D. Gorman, N. Pai, W. Enanoria, G. Kennedy, P. Tharyan,
and Jr J. Colford. Systematic reviews and meta-analyses: an illustrated, step-by-
step guide. The National medical journal of India, 17(2):86–95, 2004. pmid:15141602.

[128] Elahe Paikari, JaeEun Choi, SeonKyu Kim, Sooyoung Baek, MyeongSoo Kim, Se-
ungEon Lee, ChaeYeon Han, YoungJae Kim, KaHye Ahn, Chan Cheong, et al. A
chatbot for conflict detection and resolution. In 2019 IEEE/ACM 1st International
Workshop on Bots in Software Engineering (BotSE), pages 29–33. IEEE, 2019.

[129] Elahe Paikari and André Van Der Hoek. A framework for understanding chatbots
and their future. In Proceedings of the 11th international workshop on cooperative and
human aspects of software engineering, pages 13–16, 2018.

[130] Raja Parasuraman, Michael Barnes, Keryl Cosenzo, and Sandeep Mulgund.
Adaptive automation for human-robot teaming in future command and control
systems. The International C2 Journal, 1(2):43–68, 2007.

[131] Raja Parasuraman, Thomas B Sheridan, and Christopher D Wickens. A model
for types and levels of human interaction with automation. IEEE Transactions on
systems, man, and cybernetics-Part A: Systems and Humans, 30(3):286–297, 2000.

[132] Zhenhui Peng and Xiaojuan Ma. A survey on construction and enhancement
methods in service chatbots design. CCF Transactions on Pervasive Computing and
Interaction, 1:204–223, 2019.

[133] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines for conduct-
ing systematic mapping studies in software engineering: An update. Information
and Software Technology, 64:1–18, 2015.

149

[134] Lesley M. Pickard, Barbara A. Kitchenham, and Peter W. Jones. Combining
empirical results in software engineering. Information and Software Technology,
40(14):811–821, 1998.

[135] Klaus Pohl, Günter Böckle, and Frank Van Der Linden. Software product line engi-
neering, volume 10. Springer, 2005.

[136] L. Ponzanelli, G. Bavota, M. D. Penta, R. Oliveto, and M. Lanza. Prompter: A self-
confident recommender system. In 2014 IEEE International Conference on Software
Maintenance and Evolution, page 577–580, Sep 2014.

[137] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. Mining stackoverflow to turn the ide into a self-confident pro-
gramming prompter. In Proceedings of the 11th working conference on mining software
repositories, pages 102–111, 2014.

[138] Abhisek Omkar Prasad, Pradumn Mishra, Urja Jain, Anish Pandey, Anushka
Sinha, Anil Singh Yadav, Rajan Kumar, Abhishek Sharma, Gaurav Kumar, Kar-
rar Hazim Salem, et al. Design and development of software stack of an au-
tonomous vehicle using robot operating system. Robotics and Autonomous Systems,
161:104340, 2023.

[139] Ryan W Proud, Jeremy J Hart, and Richard B Mrozinski. Methods for determining
the level of autonomy to design into a human spaceflight vehicle: a function spe-
cific approach. Technical report, National Aeronautics and Space Administration
Houston TX Lyndon B Johnson . . . , 2003.

[140] PTOLEMUS. What are the six levels of vehicle automation? https://www.

ptolemus.com/what-are-the-six-levels-of-vehicle-automation/. Accessed:
[Insert Access Date].

[141] Chetan Surana Rajender Kumar Surana, Shriya, Dipesh B. Gupta, and Sahana P.
Shankar. Intelligent chatbot for requirements elicitation and classification. In 2019
4th International Conference on Recent Trends on Electronics, Information, Communica-
tion and Technology (RTEICT), pages 866–870, 2019.

[142] M.A. Ramos, C.A. Thieme, and X. Yang. Human-system concurrent task anal-
ysis: An application to autonomous remotely operated vehicle operations. 30th
European Safety and Reliability Conference, ESREL 2020 and 15th Probabilistic Safety
Assessment and Management Conference, PSAM 2020, pages 629–636, 2020.

150

https://www.ptolemus.com/what-are-the-six-levels-of-vehicle-automation/
https://www.ptolemus.com/what-are-the-six-levels-of-vehicle-automation/

[143] Quelita ADS Ribeiro, Moniky Ribeiro, and Jaelson Castro. Requirements engi-
neering for autonomous vehicles: a systematic literature review. In Proceedings of
the 37th ACM/SIGAPP Symposium on Applied Computing, pages 1299–1308, 2022.

[144] Victor Riley. A general model of mixed-initiative human-machine systems. In
Proceedings of the Human Factors Society Annual Meeting, volume 33, pages 124–
128. Sage Publications Sage CA: Los Angeles, CA, 1989.

[145] Vincent Rosener and Denis Avrilionis. Elements for the definition of a model of
software engineering. In Proceedings of the 2006 International workshop on Global
Integrated Model Management, pages 29–34, 2006.

[146] Denise M Rousseau and Yitzhak Fried. Location, location, location: Contextual-
izing organizational research. Journal of organizational behavior, pages 1–13, 2001.

[147] Daniel Salber, Anind K Dey, and Gregory D Abowd. The context toolkit: Aiding
the development of context-enabled applications. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 434–441, 1999.

[148] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and
research challenges. ACM Trans. Auton. Adapt. Syst., 4(2), may 2009.

[149] Juliana Saraiva. A roadmap for software maintainability measurement. In 2013
35th International Conference on Software Engineering (ICSE), pages 1453–1455. IEEE,
2013.

[150] Farhana Sarker, Bogdan Vasilescu, Kelly Blincoe, and Vladimir Filkov. Socio-
technical work-rate increase associates with changes in work patterns in online
projects. In Proceedings of the 41st International Conference on Software Engineering,
pages 936–947. IEEE Press, 2019.

[151] Nicholas Sawadsky and Gail C. Murphy. Fishtail: From task context to source
code examples. In Proceedings of the 1st Workshop on Developing Tools as Plug-Ins,
TOPI ’11, page 48–51, New York, NY, USA, 2011. Association for Computing Ma-
chinery.

[152] Mark W Scerbo. Theoretical perspectives on adaptive automation. In Automation
and human performance, pages 37–63. CRC Press, 2018.

[153] Moch Akbar Selamat and Nila Armelia Windasari. Chatbot for smes: Integrating
customer and business owner perspectives. Technology in Society, 66:101685, 2021.

151

[154] A. Sharma and M.A.M. Capretz. Application maintenance using software agents.
In Proceedings First IEEE International Workshop on Source Code Analysis and Manip-
ulation, pages 55–64, 2001.

[155] Thomas B Sheridan and William L Verplank. Human and computer control of
undersea teleoperators. Technical report, Massachusetts Inst of Tech Cambridge
Man-Machine Systems Lab, 1978.

[156] Joseph Sifakis and David Harel. Trustworthy autonomous system development.
ACM Transactions on Embedded Computing Systems, 22(3):1–24, 2023.

[157] M. Simmler and R. Frischknecht. A taxonomy of human–machine collaboration:
capturing automation and technical autonomy. AI and Society, 36(1):239–250, 2021.
cited By 4.

[158] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. An
examination of software engineering work practices. In CASCON First Decade
High Impact Papers, CASCON ’10, page 174–188, USA, 2010. IBM Corp.

[159] Kamal Souali, Othmane Rahmaoui, Mohammed Ouzzif, and Ismail El Haddioui.
Recommending moodle resources using chatbots. In 2019 15th International Con-
ference on Signal-Image Technology & Internet-Based Systems (SITIS), pages 677–680.
IEEE, 2019.

[160] Natalie B Steinhauser, Davin Pavlas, and Peter A Hancock. Design principles for
adaptive automation and aiding. Ergonomics in Design, 17(2):6–10, 2009.

[161] Margaret-Anne Storey, Alexander Serebrenik, Carolyn Penstein Rosé, Thomas
Zimmermann, and James D. Herbsleb. BOTse: Bots in Software Engineering
(Dagstuhl Seminar 19471). Dagstuhl Reports, 9(11):84–96, 2020.

[162] Margaret-Anne Storey and Alexey Zagalsky. Disrupting developer productivity
one bot at a time. In Proceedings of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pages 928–931, 2016.

[163] Hossein Tajalli and Nenad Medvidović. A reference architecture for integrated
development and run-time environments. In 2012 Second International Workshop
on Developing Tools as Plug-Ins (TOPI), pages 19–24. IEEE, 2012.

152

[164] Gabriel Tamura, Norha M. Villegas, Hausi A. Muller, Laurence Duchien, and Li-
onel Seinturier. Improving context-awareness in self-adaptation using the dynam-
ico reference model. In 2013 8th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), pages 153–162, 2013.

[165] Marialena Vagia, Aksel A. Transeth, and Sigurd A. Fjerdingen. A literature review
on the levels of automation during the years. what are the different taxonomies
that have been proposed? Applied Ergonomics, 53:190–202, 2016.

[166] Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. On the notion of variability
in software product lines. In Proceedings Working IEEE/IFIP Conference on Software
Architecture, pages 45–54. IEEE, 2001.

[167] R. Van Solingen, V. Basili, G. Caldiera, and H. D. Rombach. Goal question metric
(gqm) approach. Encyclopedia of software engineering, 2002.

[168] R. van Tonder and C. Le Goues. Towards s/engineer/bot: Principles for pro-
gram repair bots. In 2019 IEEE/ACM 1st International Workshop on Bots in Software
Engineering (BotSE), pages 43–47, 2019.

[169] Jay van Zyl. Class of solution dilemma: selecting business relevant software solu-
tions. In IEMC’03 Proceedings. Managing Technologically Driven Organizations: The
Human Side of Innovation and Change, pages 41–45. IEEE, 2003.

[170] S. Vasanthapriyan, J. Tian, and J. Xiang. A survey on knowledge management in
software engineering. In Software Quality, Reliability and Security-Companion (QRS-
C), 2015 IEEE International Conference on, pages 237–244. IEEE, 2015.

[171] Davor ČubraniĆ, Gail C. Murphy, Janice Singer, and Kellogg S. Booth. Learning
from project history: A case study for software development. In Proceedings of the
2004 ACM Conference on Computer Supported Cooperative Work, CSCW ’04, pages
82–91, New York, NY, USA, 2004. ACM.

[172] Jéssyka Vilela, Jaelson Castro, and João Pimentel. A systematic process for ob-
taining the behavior of context-sensitive systems. Journal of Software Engineering
Research and Development, 4:1–57, 2016.

[173] V. Villani, L. Sabattini, P. Baranska, E. Callegati, J.N. Czerniak, A. Debbache,
M. Fahimipirehgalin, A. Gallasch, F. Loch, R. Maida, A. Mertens, Z. Mock-
allo, F. Monica, V. Nitsch, E. Talas, E. Toschi, B. Vogel-Heuser, J. Willems,

153

D. Zolnierczyk-Zreda, and C. Fantuzzi. The inclusive system: A general frame-
work for adaptive industrial automation. IEEE Transactions on Automation Science
and Engineering, 18(4):1969–1982, 2021. cited By 3.

[174] Norha M. Villegas, Hausi A. Müller, Gabriel Tamura, Laurence Duchien, and
Rubby Casallas. A framework for evaluating quality-driven self-adaptive soft-
ware systems. In Proceedings of the 6th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems, SEAMS ’11, page 80–89, New York,
NY, USA, 2011. Association for Computing Machinery.

[175] Patrick Wagstrom and Subhajit Datta. Does latitude hurt while longitude kills?
geographical and temporal separation in a large scale software development
project. In Proceedings of the 36th International Conference on Software Engineering,
pages 199–210, 2014.

[176] Eko K Budiardjo Wahyudianto and Elviawaty M Zamzami. Feature modeling
and variability modeling syntactic notation comparison and mapping. Journal of
Computer and Communications, 2:101–108, 2014.

[177] Lihui Wang, Sichao Liu, Hongyi Liu, and Xi Vincent Wang. Overview of human-
robot collaboration in manufacturing. In Proceedings of 5th International Confer-
ence on the Industry 4.0 Model for Advanced Manufacturing: AMP 2020, pages 15–58.
Springer, 2020.

[178] Frederic Weigand Warr and Martin P. Robillard. Suade: Topology-based searches
for software investigation. In Proceedings of the 29th International Conference on
Software Engineering, ICSE ’07, page 780–783. IEEE Computer Society, 2007.

[179] Mairieli Wessel, Bruno Mendes de Souza, Igor Steinmacher, Igor S. Wiese, Ivanil-
ton Polato, Ana Paula Chaves, and Marco A. Gerosa. The power of bots: Charac-
terizing and understanding bots in oss projects. Proceedings of the ACM on Human-
Computer Interaction, 2(CSCW), November 2018.

[180] James Y Zhang, Zhi Li, Hao Fang, Jun Wu, Zhongnan Shen, Jing Zheng, Wei
Chu, Weiping Duan, and Peng Xu. China’s first natural language-based ai chatbot
trader. In Companion Proceedings of the ACM Web Conference 2023, pages 1253–1256,
2023.

[181] Davor Čubranić and Gail C. Murphy. Hipikat: Recommending pertinent software
development artifacts. In Proceedings of the 25th International Conference on Software

154

Engineering, ICSE ’03, page 408–418. IEEE Computer Society, 2003. event-place:
Portland, Oregon.

155

APPENDICES

Appendix A

Systematic Literature Review in
Contexts

A.1 Software Engineering Contexts Table

156

Ta
bl

e
A

.1
:R

Q
s

Ta
bl

e
Su

m
m

ar
y

-R
Q

1.
1

to
R

Q
1.

4
ID

R
Q

1.
1

R
Q

1.
2

R
Q

1.
3

R
Q

1.
4

A
1

St
at

ic
so

ft
w

ar
e

st
ru

ct
ur

e
ID

Es
pr

ov
id

e
st

at
ic

so
ur

ce
co

de
ar

ti
fa

ct
s

as
co

nt
ex

tt
o

to
ol

s
ho

st
ed

in
th

e
en

vi
ro

nm
en

t

D
yn

am
ic

sy
st

em
ex

ec
ut

io
n

C
on

te
xt

in
th

e
fo

rm
of

dy
na

m
ic

ex
ec

ut
io

n
in

fo
rm

at
io

n
ab

ou
ta

sy
st

em
un

de
r

de
ve

lo
pm

en
t.

H
is

to
ri

ca
la

rt
if

ac
tc

ha
ng

es
To

ol
s

th
at

ac
ce

ss
hi

st
or

ic
al

in
fo

rm
at

io
na

bo
ut

a
sy

st
em

’s
st

at
ic

ar
ti

fa
ct

s.

D
ev

el
op

er
ac

ti
vi

ty
C

on
te

xt
ab

ou
th

ow
hu

m
an

s
w

or
k

to
pr

od
uc

e
th

e
sy

st
em

,
an

d
no

tn
ec

es
sa

ri
ly

w
ha

tw
as

ge
ne

ra
te

d
du

ri
ng

th
e

sy
st

em
’s

pr
od

uc
ti

on
.E

x.
:M

yl
yn

’s
de

gr
ee

of
in

te
re

st
.

Te
am

an
d

or
ga

ni
za

ti
on

ac
ti

vi
ty

Tr
ea

ti
ng

th
e

ac
ti

vi
ti

es
ac

ro
ss

a
va

lu
e

st
re

am
as

co
nt

ex
t.

A
2

Ta
sk

C
on

te
xt

:p
ie

ce
s

an
d

re
la

ti
on

sh
ip

s
in

an
in

fo
rm

at
io

n
sp

ac
e

(e
.g

.,
ar

ti
fa

ct
s)

th
at

ar
e

re
le

va
nt

to
a

so
ft

w
ar

e
de

ve
lo

pe
r

as
th

ey
w

or
k

on
a

pa
rt

ic
ul

ar
ta

sk

A
pp

ro
xi

m
at

e
ta

sk
co

nt
ex

tb
y

ei
th

er
ca

pt
ur

in
g

de
ve

lo
pe

rs
’

in
te

ra
ct

io
ns

or
us

in
g

da
ta

fr
om

re
po

si
to

ri
es

to
de

te
rm

in
e

if
th

e
in

fo
rm

at
io

n
ca

pt
ur

ed
or

us
ed

is
re

le
va

nt
to

ne
w

ta
sk

s
th

at
w

ill
be

pe
rf

or
m

ed
.

A
3

A
pp

ro
ac

h
us

es
cu

rr
en

tt
as

k
re

la
te

d
in

fo
rm

at
io

n
ge

ne
ra

te
d

du
ri

ng
sp

ri
nt

as
se

ss
m

en
tp

ha
se

(o
r

in
sp

ri
nt

pl
an

ni
ng

m
ee

ti
ng

),
ta

sk
co

m
pl

et
io

n
in

fo
rm

at
io

n
ge

ne
ra

te
d

du
ri

ng
pr

ev
io

us
sp

ri
nt

re
vi

ew
ph

as
e/

m
ee

ti
ng

,a
nd

ch
ar

ac
te

ri
st

ic
s

of
te

am
m

em
be

rs
.

Pr
od

uc
e

ta
sk

al
lo

ca
ti

on
s

re
co

m
m

en
da

ti
on

s.
Pl

an
ni

ng
(t

as
k

al
lo

ca
ti

on
)

A
4

N
at

ur
al

la
ng

ua
ge

te
xt

,t
ex

tu
al

re
nd

er
in

g
of

co
re

du
m

ps
,d

eb
ug

ge
r

ou
tp

ut
et

c.

H
av

e
fa

tq
ue

ry
,a

qu
er

y
w

hi
ch

co
ul

d
be

ki
lo

by
te

s
of

st
ru

ct
ur

ed
an

d
un

st
ru

ct
ur

ed
da

ta
co

nt
ai

ni
ng

al
lc

on
te

xt
ua

l
in

fo
rm

at
io

n
fo

r
th

e
is

su
e

be
in

g
de

bu
gg

ed
.A

llo
w

s
us

er
s

to
se

ar
ch

th
ro

ug
h

al
la

va
ila

bl
e

so
ft

w
ar

e
re

po
si

to
ri

es
(v

er
si

on
co

nt
ro

l,
bu

g
da

ta
ba

se
,l

og
s

of
de

bu
gg

er
se

ss
io

ns
,e

tc
).

W
he

n
bu

g
oc

cu
rs

A
5

Pe
rs

on
,M

es
sa

ge
,D

oc
um

en
t,

C
ha

ng
e

Ta
sk

an
d

Fi
le

ve
rs

io
n.

C
re

at
e

a
pr

oj
ec

tm
em

or
y

fr
om

th
e

ar
ti

fa
ct

s
an

d
co

m
m

un
ic

at
io

ns
cr

ea
te

d
du

ri
ng

a
so

ft
w

ar
e

de
ve

lo
pm

en
tp

ro
je

ct
’s

hi
st

or
y

to
fa

ci
lit

at
e

kn
ow

le
dg

e
tr

an
sf

er
fr

om
ex

pe
ri

en
ce

d
de

ve
lo

pe
rs

to
no

vi
ce

.

C
od

in
g

or
w

he
n

bu
g

oc
cu

rs
.

SB
A

1
13

ID
E

co
nt

ex
ts

.T
he

au
th

or
s

lis
te

ac
h

an
d

ch
ar

ac
te

ri
ze

in
to

th
e

fo
llo

w
in

g
ca

te
go

ri
es

:
w

ho
,w

ha
t,

w
he

n
an

d
w

he
re

.

Ye
s.

C
on

te
xt

ua
l

fa
ct

or
s

of
in

te
ra

ct
io

ns
of

de
ve

lo
pe

rs
w

it
h

ID
Es

Su
pp

or
td

ev
el

op
m

en
ti

n
an

ID
E

an
d

su
pp

or
tc

on
te

xt
-a

w
ar

e
R

SS
E

sy
st

em
s

de
ve

lo
pm

en
t.

M
os

tl
y

co
di

ng
an

d
te

st
in

g,
w

hi
ch

ar
e

do
ne

in
an

ID
E

su
ch

as
Ec

lip
se

.

SB
A

2

12
el

em
en

ts
ar

e
m

od
el

ed
.T

he
y

ar
e

re
la

te
d

to
th

e
cu

rr
en

tfi
le

,l
oc

al
re

po
si

to
ry

,r
em

ot
e

re
po

si
to

ry
an

d
ot

he
r

se
rv

ic
es

su
ch

as
te

st
an

d
as

si
gn

a
re

vi
ew

er
to

th
e

co
de

.

Ye
s.

T
he

co
nt

ex
ts

ar
e

m
od

el
ed

so
th

e
co

nv
er

sa
ti

on
al

as
si

st
an

t
ca

n
us

e
th

e
m

od
el

to
re

tr
ie

ve
th

e
re

sp
on

se
s.

R
ed

uc
in

g
lo

w
-l

ev
el

co
m

m
an

ds
th

at
de

ve
lo

pe
rs

ne
ed

to
pe

rf
or

m
,

fr
ee

in
g

th
em

to
fo

cu
s

on
th

ei
r

hi
gh

-l
ev

el
ta

sk
s

th
ro

ug
h

vo
ic

e
co

m
m

an
ds

.
C

od
in

g
an

d
as

si
gn

in
g

te
st

.

SB
A

3
A

lr
ea

dy
m

ap
pe

d
du

ri
ng

fir
st

st
ep

of
th

e
LR

in
pa

pe
r

Le
ar

ni
ng

fr
om

pr
oj

ec
th

is
to

ry
.

SB
A

4
C

od
e

R
et

ri
ev

e
St

ac
k

O
ve

rfl
ow

Po
st

s
ac

co
rd

in
g

to
co

de
ty

pe
d

in
ID

E
C

od
in

g
an

d
as

si
gn

in
g

te
st

.

SB
A

5
M

et
ho

ds
or

fie
ld

s
du

ri
ng

pr
og

ra
m

m
in

g
th

at
us

er
s

sp
ec

if
y

as
re

le
va

nt
(o

ft
en

re
su

lt
of

a
te

xt
se

ar
ch

)

H
el

p
de

ve
lo

pe
rs

qu
ic

kl
y

fin
d

re
le

va
nt

el
em

en
ts

an
d

un
de

rs
ta

nd
th

ei
r

re
la

ti
on

sh
ip

s
w

it
h

th
e

ot
he

r
el

em
en

ts
th

at
im

pl
em

en
tt

he
fe

at
ur

e
of

in
te

re
st

C
od

in
g

SB
A

6
C

od
e,

M
et

ho
ds

an
d

Fi
el

d
D

ec
la

ra
ti

on
Su

pp
or

td
ev

el
op

er
s

to
lo

ca
te

re
le

va
nt

co
de

to
th

e
cu

rr
en

tc
od

e
be

in
g

w
ri

tt
en

C
od

in
g

SB
A

7
It

er
ac

ti
on

ev
en

ts
hi

st
or

y
of

a
ta

sk
Ta

sk
co

nt
ex

tm
od

el
pr

op
os

ed
.

Th
e

pr
op

os
ed

m
od

el
re

du
ce

s
in

fo
rm

at
io

n
ov

er
lo

ad
an

d
fo

cu
se

s
on

a
pr

og
ra

m
m

er
’s

w
or

k
by

fil
te

ri
ng

an
d

ra
nk

in
g

th
e

in
fo

rm
at

io
n

pr
es

en
te

d
by

th
e

de
ve

lo
pm

en
te

nv
ir

on
m

en
t

C
od

in
g

157

Ta
bl

e
A

.2
:R

Q
s

Ta
bl

e
Su

m
m

ar
y

-R
Q

1.
5

to
R

Q
1.

9
ID

R
Q

1.
5

R
Q

1.
6

R
Q

1.
7

R
Q

1.
8

R
Q

1.
9

A
1

A
lt

ho
ug

h
m

an
y

re
se

ar
ch

to
ol

s
ha

ve
be

en
pr

op
os

ed
th

at
us

e
hi

st
or

ic
al

in
fo

rm
at

io
n,

fe
w

to
ol

s
ar

e
av

ai
la

bl
e

to
pr

ac
ti

ci
ng

de
ve

lo
pe

rs
.

A
dv

:T
as

k
co

nt
ex

ts
en

ab
le

de
ve

lo
pe

rs
to

be
m

or
e

pr
od

uc
ti

ve
by

m
ak

in
g

it
ea

sy
to

re
ca

ll
th

e
so

ur
ce

co
de

as
so

ci
at

ed
w

it
h

a
gi

ve
n

ta
sk

an
d

by
en

ab
lin

g
ot

he
r

to
ol

s,
su

ch
as

co
nt

en
t

as
si

st
,t

o
or

de
r

in
fo

rm
at

io
n

ba
se

d
on

w
or

k
pe

rf
or

m
ed

as
pa

rt
of

th
e

ta
sk

.

A
dv

:E
na

bl
es

co
rr

el
at

io
n

of
do

w
ns

tr
ea

m
ef

fe
ct

s
w

it
h

up
st

re
am

ch
oi

ce
s

an
d

w
ou

ld
op

en
ne

w
op

po
rt

un
it

ie
s

fo
r

fe
ed

ba
ck

to
be

pr
ov

id
ed

to
de

ve
lo

pe
rs

.D
is

ad
.:

St
ill

un
ex

pl
or

ed
.

A
2

A
dv

:I
nc

re
as

ed
flo

w
re

du
ce

s
in

fo
rm

at
io

n
sh

ow
n

to
de

ve
lo

pe
rs

an
d

en
ab

le
s

di
ff

er
en

t
in

fo
rm

at
io

n
to

be
re

la
te

d
au

to
m

at
ic

al
ly

.

A
3

To
ol

pr
es

en
te

d
be

tt
er

re
su

lt
s

th
an

ba
se

lin
e.

Th
e

to
ol

al
so

ba
la

nc
es

a
co

m
m

on
pr

ob
le

m
of

th
e

in
cr

ea
se

d
nu

m
be

r
of

ta
sk

s
al

lo
ca

te
d

to
ex

pe
ri

en
ce

d
us

er
s,

w
hi

le
ot

he
rs

w
er

e
id

le
.

R
ec

om
m

en
da

ti
on

of
w

ho
sh

ou
ld

re
so

lv
e

a
ta

sk
th

ro
ug

h
a

to
ol

.

A
4

O
ne

of
th

e
pe

rf
or

m
ed

ev
al

ua
ti

on
s

re
tu

rn
ed

us
ef

ul
re

su
lt

s
(b

ug
s

re
so

lu
ti

on
s)

fo
r

75
%

of
th

e
ca

se
s

tr
ie

d.

D
up

lic
at

e
bu

g
re

po
rt

s
be

ca
us

e
of

co
de

cl
on

es
,

w
hi

ch
ca

n
ha

m
pe

r
ev

al
ua

ti
on

re
su

lt
s.

R
ec

om
m

en
da

ti
on

s
of

in
fo

rm
at

io
n

fr
om

bu
g

da
ta

ba
se

s
co

ns
id

er
in

g
qu

er
y

of
co

nt
ex

tu
al

in
fo

rm
at

io
n

of
is

su
e.

A
5

Q
ua

lit
at

iv
e

ev
al

ua
ti

on
re

ga
rd

in
g

ef
fe

ct
iv

e
us

e
of

hi
st

or
y

in
fo

rm
at

io
n

by
ne

w
co

m
er

s
w

it
hi

n
de

ve
lo

pe
d

to
ol

th
at

im
pl

em
en

ts
th

e
co

nt
ex

ts
.

R
ec

om
m

en
da

ti
on

of
ar

ti
fa

ct
s

th
at

sh
ou

ld
be

ed
it

ed
ac

co
rd

in
g

to
th

e
pr

oj
ec

th
is

to
ry

ca
pt

ur
ed

.

SB
A

1
Ex

ec
ut

in
g

ID
E

co
m

m
an

ds
an

d
ve

ri
fic

at
io

n
if

co
nt

ex
tu

al
fa

ct
or

s
of

th
e

pr
op

os
ed

m
od

el
co

rr
el

at
e

w
it

h
co

m
m

an
ds

in
th

e
ID

E.

C
on

ce
rn

ed
w

it
h

th
e

pr
iv

ac
y

of
de

ve
lo

pe
rs

,
th

e
w

or
k

is
lim

it
ed

to
ID

E
co

m
m

an
ds

.

A
dv

an
ta

ge
s:

Th
e

co
nt

ex
tm

od
el

ed
pr

ov
id

e
m

ea
ni

ng
fu

li
nf

or
m

at
io

n
re

ga
rd

in
g

th
e

in
te

ra
ct

io
ns

w
it

h
th

e
ID

E
w

hi
le

de
ve

lo
pi

ng
.

D
is

ad
:t

he
re

ar
e

no
ev

al
ua

ti
on

s
co

ns
id

er
in

g
if

th
e

pe
rf

or
m

an
ce

of
th

e
de

ve
lo

pe
rs

im
pr

ov
ed

,f
or

ex
am

pl
e.

D
ur

in
g

ev
al

ua
ti

on
,t

he
m

od
el

w
as

po
pu

la
te

d
w

it
h

in
fo

rm
at

io
n,

so
st

at
is

ti
ca

la
na

ly
si

s
w

as
po

ss
ib

le
.

Th
er

e
ar

e
co

nt
ex

tu
al

fa
ct

or
s

ab
st

ra
ct

ed
to

re
pr

es
en

ta
n

ar
ti

fa
ct

.

SB
A

2
In

te
vi

ew
an

d
ex

pe
ri

m
en

tm
ix

ed
.

A
dv

:A
llo

w
s

re
du

ce
d

co
nt

ex
ts

w
it

ch
es

th
ro

ug
h

na
tu

ra
ll

an
gu

ag
e.

Th
e

sp
ee

ch
is

ab
st

ra
ct

ed
in

to
th

e
se

to
fc

on
te

xt
s

ex
pe

ct
ed

by
th

e
to

ol
.

SB
A

3

SB
A

4
Ev

al
ua

te
d

ra
nk

in
g

of
St

ac
k

O
ve

rfl
ow

po
st

s
an

d
th

e
us

ef
ul

ne
ss

of
th

e
to

ol
pr

op
os

ed
.

A
dv

.:
Su

pp
or

ts
pr

ov
is

io
n

of
flo

w
to

so
ft

w
ar

e
de

ve
lo

pm
en

ta
s

de
ve

lo
pe

rs
do

no
tn

ee
d

to
le

av
e

th
e

ID
E

to
se

ar
ch

fo
r

su
pp

or
tw

he
n

co
di

ng
.

SB
A

5
Su

gg
es

ti
on

s
ca

n
ta

ke
lo

ng
in

ca
se

of
m

od
ifi

ed
co

de

U
se

rs
ar

e
ab

le
to

se
tt

ag
s

(c
on

ce
rn

s)
w

hi
ch

th
e

pr
op

os
ed

al
go

ri
th

m
al

so
us

es
w

he
n

tr
yi

ng
to

fin
d

th
e

re
la

te
d

co
nt

ex
ts

SB
A

6
Q

ua
lit

at
iv

e
ev

al
ua

ti
on

on
th

e
us

ef
ul

ne
ss

of
th

e
re

co
m

m
en

da
ti

on
s.

R
es

ul
ts

sh
ow

re
co

m
m

en
da

ti
on

s
w

er
e

he
lp

fu
l.

SB
A

7

Q
ua

nt
it

at
iv

e
an

d
qu

al
it

at
iv

e
fie

ld
st

ud
y

w
it

h
pa

rt
ic

ip
an

ts
.B

ot
h

pr
od

uc
ed

ev
id

en
ce

th
at

th
e

us
e

of
ta

sk
co

nt
ex

tc
an

m
ak

e
pr

og
ra

m
m

er
s

m
or

e
pr

od
uc

ti
ve

.

Pr
og

ra
m

m
er

s
ta

sk
s

ar
e

ab
st

ra
ct

ed
in

to
hi

gh
-l

ev
el

ta
sk

s.

158

Appendix B

Adaptive Context-Augmented
Framework

B.1 Adaptive Contextual Framework for Software Devel-
opment

Because of the variability of context observed in the literature review (environment,
people, domain), we propose a framework to capture the software development con-
text, monitor the possible variabilities and recommend specific knowledge and poten-
tial next steps to developers.

Context can be defined as something that is part of an environment and can be
sensed. A more specific definition applied to software engineering proposed by Mur-
phy [116] is that it ”is the information about the system under development and the
environment and process in which the system is being developed.” A system that can
respond to these possible mutable scenarios such as domain, process, technologies in-
volved and people appears to be better than methods that are not prepared for these
contextual changes [121].

We propose a framework based on the observed context variability. The following
modules are proposed: (i) the software development project where the context model
will be applied; (ii) a baseline of a reconfigurable context model; and (iii) an engine that
adapts machine learning models to the context model and provides recommendations
to software developers. A high-level framework representation is shown in Figure B.1.

159

Figure B.1: Proposed high-level adaptive context-augmented framework for software
development projects.

An example of a possible context model, according to the information retrieved in
the literature review is presented next.

B.1.1 Context Model Example

This Context Model proposed as part of the Adaptive Context-Augmented Framework
in Figure B.1 is based on the context types (RQ1) identified in the Literature Review
(Section 4.2). We do not claim this model is final, rather we use the model as a basis
to understand some of the possible contextual variabilities and as a guide to produce
practical examples. The Context Model is presented in Figure B.2.

An illustrative example of how this model can be used and integrated with the pro-
posed framework is presented next.

B.1.2 Illustrative Example

Gabi is a software developer who has been programming in Java for nine years. She
has been recently working on Project X, a new project for the company. When there
is a new project, Gabi needs to create a minimal viable product (MVP) to show her
clients. She deploys the software locally, using a container tool such as Docker and
manually uploads the project to a web server. She also reboots the server manually after
each deployment, so changes are effective. This way is faster, and she does not have to
configure a job or a server to generate a deployment automatically, which would cause
the clients to wait much longer for the MVP.

160

Figure B.2: Context Model.

In Project Y, a mature and huge project in the company, when a version of the soft-
ware has to go to production, all Gabi does is commit the code from the local to the
shared code repository. Then, the scheduled automated job in a Jenkins server will take
care of the other steps, which are checking out the code, building the project, uploading
the package on the server and rebooting the server.

In theory, the steps are the same, but because the projects are different, Gabi’s work
is different, which means that in the second case, the context model should be expecting
Project information or project phase information (e.g., MVP or production phase), which
defines how the deployment will be done. If Gabi, who has been working on Project Y
for years, forgets she needs to deploy Project X manually, this can be a problem, as she
will not be able to see the changes of the new deployment. In this case, the context model
should be adapted to recognize and store the project identification context (including
the phase/maturity of the project), and should evolve as shown in Figure B.3. This
figure also shows several other contextual project attributes, including team expertise,
hardware and software technologies, IDE tools, as well as location and timezone, that
could potentially influence Gabi’s work.

161

Figure B.3: Extended Context Model.

162

Appendix C

Rasa Files - DevBot

C.1 General Configuration

There are a few configuration files. Here is a description of such files.

• credentials.yml: This file contains the credentials for the voice & chat platforms
which your bot is using. In this file, you will configure the access token that the
platform where you are deploying the chatbot will use.

• domain.yml: The domain defines the universe in which your assistant operates. It
specifies the intents, entities, slots, responses, forms, and actions your bot should
know about. It also defines a configuration for conversation sessions. The do-
main.yml we used for DevBot is presented in Figures C.1 and C.2.

• config.yml: The configuration file defines the components and policies that your
model will use to make predictions based on user input. The config.yml for De-
vBot is presented in Figure C.3.

Next, are the files related to the language and conversation of the chatbot prototype.

163

C.2 Data Files Configurations

C.2.1 Greetings.txt

Greetings:

goodbye:

- text: Bye!!

greet:

- text: Hey! What do you need to know regarding your scenario today?

Scenario responses:

artifact:

- text: You need to edit class client.java and class diagram OrderMain.

commit:

- text: OK, I am committing your code to your repo.

priority:

- text: The task with the highest priority assigned to you is Task 13003.

pullrequest:

- text: Please, create a pull request to a branch identified with your task ID.

push:

- text: Please, create a pull request to a branch identified with your task ID.

sync:

- text: You should synchronize your repo. I bet you know how.

Click on the sync repo button on your version control page.

tasks:

- text: Tasks 27405, 67933 and 13003 are open and assigned to you.

tool:

- text: You have to open Eclipse and synchronize your code. After, assign your a test task to the test team.

did_that_help:

- text: Did that help you?

What else can I help you with?

default_fallback:

- text: Sorry, I can’t help you with that. Is there anything else I can help with?

164

C.2.2 nlu.md

The goal of NLU (Natural Language Understanding) is to extract structured informa-
tion from user messages. NLU training data consists of example user utterances cate-
gorized by intent. To make it easier to use your intents, give them names that relate to
what the user wants to accomplish with that intent, keep them in lowercase, and avoid
spaces and special characters. As conversations happen, new intents will be dynami-
cally added to this file.

intent:Greet

• hey

• hello

• hi

• good morning

• good evening

• hey there

• Hi

intent:Goodbye

• bye

• goodbye

• see you around

• see you later

• That’s all for today. bye!

intent:Artifact

• What is the name of the .java class that I’m supposed to be editing?

• What are artifacts

165

• How do I edit class client.java?

• How many artifacts do I have to change to accomplish the first task?

• Give me the artifacts’ names in a list

• Gonna start editing the .java file now, help me bring it up?

• Which artifacts do I need to edit?

• which part of client.java needs to be edited?

intent:Commit

• How do I commit my code

• Devbot, could you commit my code please?

• Just help me commit my tests and changes if the integration tests pass?

• please commit my code

• could you please commit my edits to my repository?

intent:Tasks

• What does my overall day look like today?

• How do I update the status to Done? Is this in the Jira?

• How do I update status to Done.

• What is task 27405

• Where is task 27405 located in the program management tool.

• How does my schedule look like today?

• Okay. Are there any similar tasks like 13003?

• Is there a deadline to the task?

• Is there a person I can go to for this task who can help me of I have doubts ?

166

• Also, what are my most important tasks now?

• Update my task list

• what tasks do I need to complete?

• ok which task ID should I work on?

• what are my open tasks?

• what do I have to do today?

• what are my tasks?

intent:Priority

• What is the priority of the tasks

• What is the second highest priority task

• The lowest priority task

• What are the priorities of my tasks?

• Which is of my higher priority ?

• which task has higher priority?

• what is the task with highest priority?

• what i have to do first

intent:Pull

• how to do I make a pull request

• How do I make a pull request?

• Ok, create a PR with the usual feature template

• Need that comment into the PR

167

• Is there a pull request template or procedure that I should follow for the repo I
AM: pushing to?

• who should I ping to look at my pull request?

• ok create a pull request for me

• can you make a pull request now?

• create a pull request to a branch identified with my task ID.

• create a pull request

• please create a pull request

• thank you. can you create a PR?

intent:Push

• push code

intent:Sync

• What’s the command for syncing my repo?

• and sync it

intent:Tool

• What is the difference between the Eclipse editor and Visual Studio?

• DevBot, what is the difference between Git and Jira?

• What are the technologies needed for that task?

intent:Follow-up

• Did that help you? What else can I help you with?

168

intent:Bot Service

• DevBot, what can you help me with?

• What can you do?

• How can you help me?

intent:Exception

• When can I merge my code with master?

• Do you know where the coffee machine is?

• What is Git?

• Hey DevBot, can you fetch the newest code?

• Can you help me record what my colleague just said? She said the second artifact
is probably not needed for an update

• What tests do you think we need for this task?

• Can you start a new file for the tests?

• Please name it with the usual format

• Actually, can you fill the file in with the test function templates as well?

• Gonna code the tests in now, just help me fix the usual typos and whatnot

• Looks like I got most of them, DevBot is there any test cases I left out?

• Actually, it looks like I haven’t logged into Github, wanna help me do that too?

• Insert the comment: ”Task 27405 completed referring to bug https://github.

com/Repo/issues/13”

• remove 27405

• Actually, assign it to Done, not remove it, my bad

• Nice, that was helpful, put there too that I used about 3 hours for the task

169

https://github.com/Repo/issues/13
https://github.com/Repo/issues/13

• Awesome, looks like we are good, get some rest and hang out with your chatbot
friends, we’ll talk again tomorrow

• What testing framework is expected?

• Are there any CLAs that need to be signed to make the pull request?

• Which repository is that task associated with?

• but which repo is it?

• ok. please clone the repo.

• can you please set task 13003 to status Done?

• best way to talk to my boss about getting a raise?

170

C.2.3 stories.md

Stories serve as a form of training data to educate your assistant’s dialogue manage-
ment model. By employing stories, you can train models capable of extrapolating to
unfamiliar conversation trajectories. A story is a representation of a conversation be-
tween a user and an AI assistant, converted into a specific format where user inputs are
expressed as intents (and entities when necessary), while the assistant’s responses and
actions are expressed as action names.

Happy Path

• greet

– utter greet

• mood great

– utter happy

Sad Path 1

• greet

– utter greet

• mood unhappy

– utter cheer up

– utter did that help

• affirm

– utter happy

171

Sad Path 2

• greet

– utter greet

• mood unhappy

– utter cheer up
– utter did that help

• deny

– utter goodbye

Say Goodbye

• goodbye

– utter goodbye

Bot Challenge

• bot challenge

– utter iamabot

Artifact

• artifact

– utter artifact

Tasks

• tasks

– utter tasks

Commit

• commit

– utter commit

172

Priority

• priority

– utter priority

Pull

• pull

– utter pull

Push

• push

– utter push

Sync

• sync

– utter sync

Tool

• tool

– utter tool

Follow-up

• followup

– utter followup

173

Bot Service

• botservice

– utter botservice

Exception

• exception

– utter exception

Interactive Story 1

• greet

– utter greet

• tasks

– utter tasks

New Story

• tasks

• tasks

• priority

• exception

• pull

174

Interactive Story 2

• greet

– utter greet

• priority

– utter priority

• pull

– utter pull

• commit

– utter commit

• exception

– utter exception

• goodbye

– utter goodbye

– action restart

175

Figure C.1: domain.yml file in Rasa, for DevBot prototype (1).

176

Figure C.2: domain.yml file in Rasa, for DevBot prototype (2).

177

Figure C.3: config.yml file in Rasa, for DevBot prototype.

178

Appendix D

User Study Forms and Resources

D.1 Recruitment Email

Study Group: Controlled Experiment with Software Developers
Recruitment Method: This will be sent out through Snowball Sampling.

Title: Participants Needed ($15 to talk to chatbot)

Dear All,

We are looking for participants for a study called “Exploring Conversational Agents
in Software Development”. The purpose of this study is to explore how software devel-
opers interact with chatbots.

This study is part of an ongoing research project at the University of Waterloo. If you
decide to participate, the study will take 1 hour. The entire study is done online. You
will use your own computer or mobile phone to speak to a chatbot on Telegram. You
will be given a scenario (text - one paragraph) of a day as a software developer and you
will ask the chatbot questions that help you go about your day as a software developer,
described in the scenario.

You will need internet access and a browser to access our software. Participation
does not require downloading anything on your computer. The interactions with the
software on the computer screen for this session will be video recorded. The study will
be conducted fully online using secured video conferencing tools (e.g., Zoom, Skype,
Teams). Unique meeting links will be generated and provided before the study. You will
need your personal laptop/desktop for completing the study. You will not be required

179

to share your video. However, you will have to share your computer screen while you
are using our software. We will not take any personal identifying information from you.
Your interactions with the system and feedback will be kept completely anonymous.

The study is open to anyone who has at least 1-year experience developing software.

A remuneration of $15.00 CAD will be provided for participating in this study.

The study will be done online. Once you agree to participate, the researcher will
send you the demographics collection form and the chatbot URL. Once you have in-
teracted with the chatbot, participants are supposed to answer a questionnaire. The
remuneration will be e-transferred after the completion of the study.

To participate or enquire about this study, please contact: Glaucia Melo gmelo@

uwaterloo.ca.

This study has been reviewed and received ethics clearance through a University of
Waterloo Research Ethics Committee.

D.2 Recruitment Text on Facebook and other Social Me-
dia

Greetings All,

We are looking for participants for a study called “Exploring Conversational Agents
in Software Development”.

The purpose of this study is to explore how software developers interact with chat-
bots. The study is open to anyone who has at least 1-year experience developing soft-
ware.

A remuneration of $15.00 CAD will be provided for participating in this study.

To participate or enquire about this study, please contact: Glaucia Melo gmelo@

uwaterloo.ca for further details regarding the study.

This study has been reviewed and received ethics clearance through a University of
Waterloo Research Ethics Committee.

180

gmelo@uwaterloo.ca
gmelo@uwaterloo.ca
gmelo@uwaterloo.ca
gmelo@uwaterloo.ca

D.3 Information Letter and Consent Form

Title of Project: Exploring Conversational Agents in Software Development. This study
is conducted by Dr. Edith Law and Glaucia Melo at the Cheriton School of Computer
Science at the University of Waterloo, Canada. The objective of this exploratory study
is to understand how a chatbot can facilitate software developers’ tasks, learn how soft-
ware developers interact with chatbots and how having a chatbot can impact software
development.

Study details: If you decide to participate, you will be interacting with a chatbot
called DevBot, which is created to help you during your day as a software developer.
At the beginning of the session, you will be asked to complete a pre-study question-
naire about your demographics (e.g., gender, age, educational background) and months
of experience with software development. Then, you will receive a scenario, detailing
what would be your workday as a developer. After understanding the scenario, your
interaction with DevBot beings, where you will be asking DevBot questions that would
support the tasks of your day (scenario). This interaction should last at least 10 minutes.
At the end of the session, you will complete a post-study survey about their experience
with DevBot, and will be interviewed about your perception of the chatbot, and differ-
ent kinds of factors that motivate you to interact with the robot.

In this interview and survey, you will also be asked to describe your general feeling
and level of motivation, your perception of the DevBot, and your experience interacting
with the chatbot. The entire study is done online, using Google Forms, Skype or Zoom
and the DevBot chatbot on Telegram.

The study lasts approximately one hour and must be done in one sitting, i.e., without
stopping, including the final interview. When the experiment is over, you will be paid
based on what is explained in the Remuneration section.

Remuneration: By completing the experiment, you will be paid $15.00 CAD sent by
e-transfer. If you do not complete the experiment, you will be paid based on the portion
of the experiment completed. Specifically, you will be paid $1 for completing the pre-
study survey, $12 for 10 minutes of continuous interaction with the chatbot (pro-rated
based on time spent, if ending early), and $2 for completing the post-study survey and
interview.

Inclusion/Exclusion Criteria: We seek participants who have at least 1 year of expe-
rience with software development in the industry (full-time employee, part-time, co-op
or internship).

181

Withdrawal: Participation in this study is voluntary. You may decline to answer
any questions in the questionnaire at any time you want, and you can withdraw your
participation in the study at any time by emailing the researchers. You cannot withdraw
from the study after results have been submitted for publication.

Benefits: There is no direct benefit to participants from this study.

Risks: There are no known or anticipated risks from participation in this study.

Videotaping, Audiotaping and Screen Capture: If you are participating in this study,
we will record your interaction with the chatbot and video-record your post-survey
interview, your opinions may be transcribed/coded in real-time or at a later time. You
may decline to participate in the video, audio and screen capture recording at any time.
Your face will not be captured, only the video of your screen sharing and audio.

Confidentiality: It is important for you to know that any information that you pro-
vide will be confidential. All of the data will be summarized and no individual could
be identified from these summarized results. The data, with no personal identifiers, col-
lected from this study will be maintained on a password-protected computer database
in a restricted access area of the university and external servers. Paper forms will be
stored in a locked cabinet at Davis Center, University of Waterloo. The data will be
electronically archived after completion of the study and maintained for 8 years and
then erased. The data collected for this study will be kept at the University of Water-
loo. Only researchers and external collaborators associated with the study will have
access to the data. The data will not be shared publicly. Your name and contact infor-
mation (e.g., email, Skype ID) will be stored separately from your survey data, used for
remuneration purposes only, and will be deleted immediately after you completed the
experiment.

This study will use the Google Drive platform to collect data, which is an externally
hosted cloud-based service. A link to their privacy policy is available here (https://
support.google.com/drive/answer/2450387?hl=en). Please note that there is a small
risk with any platform such as this of data that is collected on external servers falling
outside the control of the research team. If you are concerned about this, we would be
happy to make alternative arrangements for you to participate, perhaps via telephone.
Please talk to the researcher if you have any concerns.

You will be completing the study by an online survey operated by Zoom or Skype.
When information is transmitted or stored on the internet privacy cannot be guaran-
teed. There is always a risk your responses may be intercepted by a third party (e.g.,
government agencies, hackers). We temporarily collect your user ID to avoid duplicate

182

https://support.google.com/drive/answer/2450387?hl=en
https://support.google.com/drive/answer/2450387?hl=en

responses in the dataset but will not collect information that could identify you person-
ally.

When information is transmitted over internet privacy cannot be guaranteed. There
is always a risk that your responses may be intercepted by a third party (e.g., govern-
ment agencies, hackers). University of Waterloo practices are to turn off functions that
collect machine identifiers such as IP addresses. The host of the system collecting the
data, such as Google Form, may collect this information without our knowledge and
make this accessible to us. We will not use or save this information without your con-
sent.

This study has been reviewed and received ethics clearance through a University
of Waterloo Research Ethics Committee (ORE#42126). If you have questions for the
Committee, contact the Chief Ethics Officer, Office of Research Ethics, at 1-519-888-4567
ext. 36005 or ore-ceo@ Uwaterloo.ca.

Questions: Should you have any questions about the study, please contact Glaucia
Melo (gmelo@uwaterloo.ca) or Edith Law (edith.law@uwaterloo.ca). Further, if you
would like to receive a copy of the results of this study, please contact either investigator.

Consent for Participation
By agreeing to participate in the study you are not waiving your legal rights or releasing
the investigator(s) or involved institution(s) from their legal and professional responsi-
bilities. With your permission, voice recordings and screenshots of your interaction with
the chatbot from your participation may be used for transcription or analysis purposes.
In these: Your name will not be used, but your face may be seen and your voice may be
heard Your face and other identifying details will be cropped, blurred or removed and
your name will not be used

By signing below, I consent to my participation in this study designed to help under-
stand the interaction modes of user experience of software developers with chatbots. I
have read the letter of information and understand the risks and benefits of participa-
tion. I also understand that:

• My identity will be kept confidential.

• If participating in groups, my interaction will be recorded.

• I am free to withdraw from the experiment at any time before, during or after,
without reason or consequence.

183

• I have been told the purpose of the experiment and am free to ask questions at any
time.

• I may take any complaints or concerns I may have to the primary experimenter,
Dr. Edith Law.

I have read the above statement and freely consent to participate in this research.

oo I want to participate

oo I do not want to participant

Participant’s Name:

Date:

D.4 Appreciation Material

University of Waterloo, David R. Cheriton School of Computer Science September, 2020

Project Title: Exploring Conversational Agents in Software Development

Principal Investigators: Dr. Edith Law and Glaucia Melo

We appreciate your participation in our study and thank you for spending the time
helping us with our research!

In this activity, you interacted with a conversational agent by asking questions to the
chatbot according to the scenario presented. What we wanted to find out is how you
would ask questions to the chatbot, what would be your vocabulary, what part of the
development would be most interesting to have the support and how much you liked
the interaction and support provided.

We collected a lot of useful information from your interactions with the chatbot.
Please know that we will protect all this information, so your personal information and
identity will not be revealed to anyone. As a reminder, if you decide to withdraw from
the study, you can have your data destroyed by contacting us before November 1, 2020.
This deadline exists since we will be submitting papers for publication based on this
data and it is not possible to remove participants’ data once this has occurred.

If you have any questions, or are simply curious about what we found out from this
study, please feel free to contact Edith Law by email (edithl.law@uwaterloo.ca) or by

184

phone (1-519-888-4567, ext. 35751) or Glaucia Melo by email (gmelo@uwaterloo.ca) or
phone (1-519-888-4567, ext. 33991).

We really appreciate your participation and hope that this has been an interesting
experience for you.

This study has been reviewed and received ethics clearance through a University
of Waterloo Research Ethics Committee [ORE#42146]. If you have questions for the
Committee contact the Office of Research Ethics, at 1-519-888-4567 ext. 36005 or ore-
ceo@uwaterloo.ca.

185

Appendix E

On the Integration of Context into
Software Development: Challenges and
Opportunities

E.1 Motivation

Software development (SD) requires comprehensive support in terms of information
and guidance based on the context during task execution [20, 116, 110]. As a pro-
cess dependent on knowledge workers [79], SD lacks supportive methods based on
conversational-guided agents that account for cognitive tasks such as paying attention,
remembering, and maintaining mental maps of the software processes. Current prac-
tices of developing software also lack techniques that make use of historical implicit or
tacit data to infer new knowledge about the project tasks and navigation aspects of the
process. While similar tools and solutions provide comparable assistance [77, 76, 171]
based on software information, none have considered software process information,
and an artificial intelligence and machine learning component. Therefore, we argue
that novel approaches should take advantage of the synergy among emerging methods
in context-aware software processes, cognitive assistance such as chatbots and systems
based on machine learning (ML).

Given these challenges, we provoke a discussion by asking: How can software de-
velopment be advanced by introducing a new paradigm to realize human-machine
software development cooperation based on context, cognitive assistance and machine
learning?

186

SD has already been supported with automated tools [181, 136], and with automat-
ically generated code, commit, and built chatbots [23, 20]. In the future, developers’
knowledge and ubiquitous context will be integrated into the development environ-
ment, complementing the current state-of-the-art with very effective, timely and sup-
portive relevant information for developers.

This proposed discussion intends to stimulate thinking about the creation of tools
and procedures that can advance software development as it relates to software devel-
opers and, on a larger scope, companies. There is a direct connection to work being done
by large software companies working at the forefront of research and practice involving
novel (semi-)automated methods to support the development of software applications
while improving software developers’ efficiency and productivity. Shaping software
development is critical as software systems have become the backbone of much of to-
day’s technology and society’s functions. Working remotely has become a new real-
ity. Consequently, approaches and tools that help to facilitate software development
have become even more essential. Working with software development and its intrinsic
implicit context is essential; therefore, we argue there is still the need to improve the
machine-developer interaction, instead of purely automating software processes. We
discuss the future of this proposed paradigm more in section E.4.

E.2 Motivating Example

It is known that deployment is a challenging task during software development [25],
and so, we have presented an example of how changes in the steps that are executed
during deployment vary in different contexts. You can refer to this scenario in section
B.1.2.

Now, imagine Gabi - the object of the example - is interacting with a chatbot and does
not remember exactly how to deploy a new project, since she is not always working on
new projects. Or even, if Gabi has deployed Project X, and the changes cannot be seen
in the application, because she forgot to reboot the server. In Figure E.1, we present an
example of a conversation between Gabi and the chatbot during deployment. To reach
the desired level of support, the chatbot should know her context, which includes the
server address and folder of the development environment, and, based on the history of
tasks previously executed in that context, the chatbot should be able to learn and sug-
gest the task sequence that Gabi needs to follow and provide the information required
to execute the tasks.

187

Figure E.1: Illustrative chatbot interaction. [Figure 2.1].

A representation of this scenario and different possible contexts are shown in Fig-
ure E.2. The bold information and in italics represent the context that can vary in this
example, and therefore, influence the workflow.

This figure does not represent several other contextual attributes, including team
expertise, hardware and software technologies, IDE tools, as well as location and time

188

Figure E.2: Example of Workflow with High and Low-Level Tasks.

zone. These other attributes could also influence Gabi’s workflow.

The idea is to provide a chatbot that recognizes the developer’s current context, hav-
ing a database containing the history of interactions and workflow, and can suggest the
steps the developer should follow. The workflow and context should be embedded in
the conversational agent’s understanding, and tracked by the chatbot. The following
conversation, for example, could occur between Gabi and the chatbot.
Chatbot: Hi!
Gabi: Hi, I need to deploy project x in development environment.
Chatbot: Sure. You should manually copy the files to server 10.1.1.1, into folder /usr/
system/folder1. Use your username gabidev to access the server.
Gabi: Alright, I copied the files. What is next?
Chatbot: You should reboot the server using this command: pseudo-reboot-n. The pass-
word is 1234567890.

189

/usr/system/folder1
/usr/system/folder1

Gabi: What’s next?
Chatbot: You are all done! Please check the application using the following link local-
host:8000/mvp.

Knowing all these different contexts are available and could be communicated to
developers using a chatbot, we then executed a study to understand the preferences
of software developers when using chatbots to support their work. The next section
presents the study, followed by the results.

E.3 The Expected Future

In this discussion, we envision a new paradigm for chatbot use that knows the software
development context and relies on machine learning techniques to support developers
when executing their tasks. The purpose of the approach is, therefore, to capture the
tacit or implicit context and feed it back in a useful way such as by making informed
suggestions to developers. Processes based on machine learning and communicated
through a chatbot should lower the cognitive load of developers, provide context-aware
and real-time support for task execution, and guide developers through the develop-
ment steps such as deployment. Figure E.3 illustrates the envisioned architecture of the
solution.

This novel paradigm can potentially transform the way software development is
currently undertaken by allowing developers to receive valuable information and guid-
ance in real-time while they are developing their projects. In contrast with the way
developers interact with existing IDEs, the proposed paradigm proactively provides
developers with the information and guidance they need, where, when and how they
need it. As a consequence, developers will be supported in their interactions, produc-
tivity, and decision-making.

We anticipate this approach to be deployed in many different software development
scenarios, with tools and procedures that explore the reuse of information on software
development, providing support and automation to recurrent tasks. Hence, developers
can focus on the creative aspects, use of programming languages, data structures, other
product-related concerns, and user-focused solutions. The proposed paradigm is one
step further towards bringing more knowledge to developers, both experienced and
novice, during specific software development activities. This paradigm builds upon
our previous work on reusing relevant information to support developers in executing
their tasks [108] and the relevance of context in software development projects [102].

190

Figure E.3: Prototype of a conversational channel connecting developer, context and
process.

E.4 Making this Future Possible

To realize a human-machine software collaboration paradigm based on context, cogni-
tive support, and machine learning, requires performing the following research activi-
ties.

Research on Software Development Context. We believe it is essential to under-
stand and capture context for software tasks so that adaptive context relevant to soft-
ware development can be leveraged. Being able to handle this context would allow

191

developers to focus on creative tasks rather than on how to execute a specific proce-
dural task or wonder what should be done next to uncover specific information. The
volume of information to be handled, as well as the speed at which such information
will arrive, is often massive and rapid. Moreover, the variability of context formats is
also an aspect to be considered. Examples of relevant contextual information are the
next artifact to be edited or read, an API tutorial, a code snippet, or knowledge from an-
other developer. We strongly believe that the nature of capturing the different contexts
and presenting the tasks related to that context is already a significant contribution to
the field.

Relevant questions include: How can we deepen the use of context to guide developers
in real-time? Which context should be leveraged to guide developers in their tasks?
How can we better capture and reuse context information in software development?
How can massive contextual information be stored so that it can be accessed and used
to generate knowledge for software developers?

Environment-Developer Interaction. This approach is within the scope of provid-
ing means for developers to interact with a system that is supposed to support them
during development. This support is through a conversation where a chatbot supported
by a context model should be aware of the developer’s set of tasks. This means the chat-
bot should know both the workflow (process execution and project characteristics) and
the contextual information of the project, as well as be prepared to capture informa-
tion from developers and other resources providing answers. Bradley and colleagues
[20] have considered a context model for supporting conversational developer assis-
tants that use the context elements needed to support workflow involving a distributed
version control system. In contrast, the focus of our approach is on guiding develop-
ers in the steps they must perform throughout the development project, considering
different contextual information and how they impact the work in a software project.
Automation of tasks could eventually happen as we understand the process and the in-
fluence of contextual and cognitive utterances and differences. The goal is to automate
contextual communication so that developers do not have to rely on their memories,
or mental maps or search huge sets of documentation. The chatbot would act upon a
context model and would have embedded machine learning and history information to
provide results to the developers. The solution is also intended to be non-invasive, re-
lying on the implementation of techniques such as aggregated data or anonymization.
Concerning the feasibility of implementation, our ongoing work on process-aware con-
versational agents has demonstrated that it is possible to integrate a basic context model
into a chatbot tool such as Rasa. We have also implemented a preliminary integration of

192

the chatbot with a workflow machine called Camunda, allowing the chatbot to receive
process execution information [93].

Relevant questions include: How can we establish a communication channel between
developers and their environment? How can a chatbot be effective in supporting
developers? In which ways are developers willing to accept this new technol-
ogy?

Knowledge-Intensive Process Guidance. Knowledge workers such as software de-
velopers rely on their minds and creativity to implement software solutions. Providing
smart solutions when building software is expected, so developers must worry about
following patterns, and processes and adjusting to project needs. This information is
usually implicit or tacit and in developers’ memories. Automated task guidance or
task navigation support should improve developers’ ability to work more efficiently.
This system would count on intelligence from machine learning and project history to
recognize the context in which developers are working and suggest the next steps, ac-
cording to their context. Development tasks are knowledge-guided, and capturing the
context is essential. Providing feedback to developers with information should be part
of the solution. Once the context is captured and understood, developers have a way
to take advantage of this context through the chatbot. A method for process navigation
based on machine learning should be provided. The method may include training a
machine-learning model by at least processing training data (context and process) with
the machine-learning model. The training data may include records of the executed
process with the current context at the time of execution. Correlations between context
and the executed process shall be done so inferences of the next steps can be provided
to developers.

Relevant questions include: How to leverage process information to guide develop-
ers in what they must do? What types of suggestions related to the software process
can improve SD? How can developers take advantage of process guidance? How can
chatbot inferences be integrated with ML inferences to produce rich feedback for devel-
opers? How could we maximize the guidance of developers through process and context
exploration?

Experimental studies. Qualitative and quantitative studies to demonstrate the feasi-
bility of the proposed approaches as well as the implementation in software companies.
Application areas of interest for the studies include deployment, testing, version control
and managing issues or tasks.

193

Relevant questions include: How can we verify the acceptance of a new cognitive
assistance-based way of development by software developers? In which types of inter-
actions would developers be most interested? How can we have confidence this idea
will do what developers want?

E.5 Conclusion

We discuss a novel paradigm to improve the work of software developers, by providing
contextual information about the tasks they are performing through cognitive and in-
telligent support. It employs capturing the implicit or tacit context and feeding it back
in a useful way through suggestions to developers in real-time as they are executing the
software project. The novelty of the paradigm arises from the approaches and tools used
to capture and inform the developers’ context on the fly, considering different contexts.
The findings will be of interest since their use should have several advantages includ-
ing less time to develop software, less effort to share knowledge among team members,
enhanced collaboration, application of collective wisdom, knowledge transfer from ex-
perts to novices and many other useful contributions. As broader implications of the
results, we believe that the impact of the proposed research will contribute to facilitat-
ing the development of new avenues in software research as well as support improved
ways to develop software, a critical area that is in high demand and has enormous
future growth potential. This is the first research program where the combination of
three different pillars (context, chatbots and machine learning for process navigation)
has been exploited to predict appropriate information during software development.

194

	Examining Committee Membership
	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Challenges
	Research Questions
	Research Method Design
	Problem Statement
	Research Contributions
	Published Research

	Thesis Overview

	Background
	Context in Software Engineering
	Chatbots to Support Software Development
	Collaboration and Communication Chatbots:
	The Current Landscape of Platforms and Frameworks to Develop Chatbot Applications

	Automation and Autonomy of Software Systems
	Variability Modelling

	Related Work
	Context-Aware Software Development Systems
	Conversational Agents in Software Development
	Autonomous and Adaptive Systems & Levels of Automation
	Levels of Automation

	Variability in Software Systems

	Preliminary Study: Understanding Context in Software Engineering
	Overview and Motivation
	Objectives
	Literature Review and Preliminary Framework Proposal

	Literature Review
	Planning Phase
	Execution Phase
	Analysis Phase
	Snowballing Search

	Discussion
	Threats to Validity
	Conclusion

	User Studies to Inform the Design of Human-Chatbot Interactions
	Introduction
	Pilot Study
	Procedure Setup
	Scenario
	Participants
	Study Results
	Discussion

	Main Study Design
	Prototype Design
	Participants
	Procedure Setup

	Study Results
	Questionnaire Data Analysis
	Semantic Analysis of Questions
	Interview Analysis
	Design Opportunities - From Questionnaire
	Design Opportunities - From Questions
	Design Opportunities - From Interviews
	Demographics and Post-Survey Correlations

	Discussion
	Threats to Validity
	Conclusion

	Variability Design and Levels of Automation in Human-Chatbot Interactions
	Overview
	Research Methodology
	Applying Search Method
	Identifying LOA Factors
	Refining LOA Factors
	Representing LOA Factors Variability
	Instantiating and Demonstrating Variabilities
	Methodology Highlights and Challenges

	Identifying LOA Factors
	Identifying Factors
	Identifying How Factors Impact LOAs

	Refining LOA Factors
	Capturing Factors as Features
	Capturing Constraints

	Variability-Aware Human-Chatbot Interactions: Taming Levels of Automation
	Variability-Aware Feature-Oriented Design

	Representing LOA Factors Variability
	Instantiating and Demonstrating Variabilities
	Scenario A: Automated Vehicles
	Scenario B: Customer Service Chatbots
	Scenario C: Stock Trading Chatbot

	Discussion
	Threats to Validity
	Conclusion

	Conclusion
	References
	APPENDICES
	Systematic Literature Review in Contexts
	Software Engineering Contexts Table

	Adaptive Context-Augmented Framework
	Adaptive Contextual Framework for Software Development
	Context Model Example
	Illustrative Example

	Rasa Files - DevBot
	General Configuration
	Data Files Configurations
	Greetings.txt
	nlu.md
	stories.md

	User Study Forms and Resources
	Recruitment Email
	Recruitment Text on Facebook and other Social Media
	Information Letter and Consent Form
	Appreciation Material

	On the Integration of Context into Software Development: Challenges and Opportunities
	Motivation
	Motivating Example
	The Expected Future
	Making this Future Possible
	Conclusion

