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Abstract 

The modern automotive industry has witnessed a growing emphasis on adapting the driving 

experience to individual drivers. With the rising popularity of electrified vehicles, the implementation 

of regenerative braking systems, specifically lift-off regenerative braking, has become a focal point. 

However, research indicates that drivers often find the predefined deceleration response during lift-off 

regenerative braking to be undesirable. This thesis addresses this issue by developing an adaptive 

regenerative braking controller that learns driver preferences, thereby fulfilling the objective of 

enhancing the driving experience of lift-off regenerative braking systems by reducing driver fatigue 

through the minimization of pedal interventions. The research focuses on three critical aspects: 

accurate identification of driving conditions, acquisition of driver preferences for lift-off regenerative 

braking, and compatibility with real-time automotive hardware. By leveraging advanced techniques 

like HDBSCAN clustering, fuzzy logic inference, and online Q-learning, the research achieves 

accurate driving condition identification and adaptation to individual driver preferences in a control 

scheme that can be practically deployed in-vehicle. Real-world testing demonstrates the controller's 

80.9 % accuracy in identifying driving conditions as well as its successful learning of the driver's 

preferred deceleration to within 1.9 %. Subsequently, the adaptive regenerative braking controller 

results in a 23.2 % reduction in pedal interventions during deceleration compared to a baseline that is 

representative of an industry-standard implementation of lift-off regenerative braking. This outcome 

underscores the controller's potential to alleviate driver fatigue and enhance the overall driving 

experience. This research contributes to the advancement of electrified vehicle powertrain control, 

focusing on improving driver acceptance and satisfaction with regenerative braking systems. 
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Chapter 1 
Introduction 

1.1 Research Context 

As the automotive industry undergoes a profound transformation towards electrification, the 

integration of regenerative braking technology plays a pivotal role in redefining how drivers interact 

with their vehicles as well as the experience of driving as a whole. This section provides an 

exploration of the research context surrounding electrified vehicles and their utilization of 

regenerative braking systems before identifying the need for a regenerative braking control system 

that adapts to the driver’s preferences. This section examines the research context related to 

electrified vehicles and their use of regenerative braking systems. It then highlights the limitations of 

existing methods of implementing regenerative braking and justifies the need for a regenerative 

braking control system that can adjust according to the driver's preferences. 

1.1.1 Automotive Electrification 

The last few decades have witnessed a substantial rise in public consciousness regarding 

environmental and sustainability challenges. This heightened awareness, coupled with rising gas 

prices, has translated into a mounting pressure on automotive manufacturers to develop and produce 

vehicles that prioritize energy efficiency, reduce carbon emissions, and are wholly less dependent on 

fossil fuels.  Many automotive manufacturers are increasingly prioritizing electrification, a process 

that involves replacing fossil fuel-based technologies with electric ones, as their central strategy to 

lower emissions across their vehicle offerings [1].  

“Electrified vehicles” is an umbrella term used to define vehicles that make use of an electric 

propulsion system in their powertrain [2]. The main components that these systems are comprised of 

are a battery pack and an electric motor, and how these components are used in the powertrain varies 

depending on the vehicle’s level of electrification. Electrified vehicles include mild hybrid electric 

vehicles (MHEVs), full hybrid electric vehicles (FHEVs), and full electric vehicles (EVs). The main 

distinction between these types of propulsion systems is in their reliance (or lack thereof) on an 

internal combustion engine (ICE) to propel the vehicle; MHEVs rely on an ICE as their main source 

of propulsion, FHEVs are capable of driving exclusively on electric power for a limited range before 

switching to an ICE, and EVs exclusively use electric power without any reliance on an ICE. Figure 1 

summarizes the main differences between the configurations of electrified powertrains. 
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Figure 1. Diagram of vehicle electrification levels. Based on information contained in [3]. 

Electrified vehicles have rapidly grown in global market share in recent years due to a combination 

of factors such as shifting consumer preferences towards sustainability and efficiency, heightened 

regulatory demands from government bodies, and increased commitment and investment from the 

automotive industry [4]. A meta-analysis of automotive market trends performed out of Aachen 

University suggests that 54.3 % of all new vehicles will be electrified by 2030 [5]. The projected 

dominance of the automotive market by electrified vehicles has led to a surge in research efforts 

focused on their design [6], thereby advancing the development and maturity of electrified vehicle 

technologies. 

1.1.2 Regenerative Braking 

The rise of electrified vehicles in the consumer automobile market has prompted automotive 

manufacturers to explore novel driving features and energy optimization techniques in order to take 

advantage of the electric drive system’s intrinsic capabilities. One such capability is the 
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implementation of regenerative braking, which in contrast to ICE vehicles, allows for the recycling of 

kinetic energy that would otherwise be lost to mechanical braking devices during vehicle 

deceleration. Regenerative braking is achieved by using the resistive electromotive force of the 

electrified powertrain’s electric motor(s) to slow down the vehicle while also generating current to 

charge the high voltage battery [7]. 

Regenerative braking is typically integrated within the electrified vehicle’s conventional braking 

control strategy, whereby the brake pedal position is used to generate a braking torque request that is 

then split between regenerative and friction braking, respectively [8]. This combined use of the 

hydraulically-actuated friction brakes and the electromotive resistance of the motor to decelerate the 

vehicle is referred to as a hybrid braking system (HBS), which is illustrated in Figure 2.  

However, automotive manufacturers are increasingly developing methods for the driver to engage 

regenerative braking independently of the brake pedal, hereby referred to as decoupled regenerative 

braking. Common methods include engaging regenerative braking by lifting off the accelerator pedal 

(hereby referred to as lift-off regenerative braking) or by pressing on a wheel-mounted paddle. The 

motivation behind developing these methods is that they allow for an easier and less intensive driving 

experience by reducing the frequency at which the driver’s foot position must switch between the 

accelerator and brake pedals, thereby reducing driver fatigue and braking response time in emergency 

maneuvers [9][10]. 

 

Figure 2. Hybrid braking system diagram. Reprinted from [9]. © 2016 IEEE 
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The level of braking force applied using either method of decoupled regenerative braking is a 

design variable [11]. As illustrated in Figure 3, a common implementation of decoupled regenerative 

braking involves demanding some constant negative torque value (i.e., the design variable) as soon as 

the driver engages lift-off or wheel-mounted paddle regenerative braking at normal driving speeds 

(greater than 5 m/s in this case). Depending on the car model, this design variable is either completely 

non-configurable (e.g., Tesla [12]) or can be changed via the driver selecting between different 

strength levels (e.g., Kia [13], Mercedes [14]). For example, the 2023 Nissan LEAF offers drivers the 

ability to select between a “D mode”, which uses a low regenerative braking strength level to 

decelerate the vehicle at a similar rate to engine braking in an ICE vehicle, and a “B mode”, which 

decelerates the vehicle more aggressively on accelerator pedal lift-off [15]. In some vehicles, the 

regenerative braking strength may also be indirectly changed by means of selecting different drive 

modes that are set to different strength levels [13]. 

 

Figure 3. Example of lift-off regenerative braking torque as a function of vehicle velocity. 

Adapted from [16]. 

1.1.3 Drive Cycles 

Drive cycles, which are profiles of vehicle speed over time, are collected from real-world travel 

routes or constructed by stitching together micro-trips [17]. These drive cycles are developed in order 

to mimic certain driving scenarios or driver behaviours for the purpose of analysing vehicle 

performance (e.g., emissions) across varying conditions [18]. The speed-time profiles of the drive 

cycles are heavily dependent on the routes that are selected to characterize a certain driving scenario. 

The actual driving conditions present throughout these routes often change, and variations in road 
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classification, speed limits, and traffic flow are reflected in different segments of the speed-time 

profile of a drive cycle [19]. The end result is a drive cycle that broadly represents a typical driving 

scenario or route (e.g., city driving) but contains periods of driving conditions that differ from one 

another.  

The Urban Dynamometer Driving Schedule (UDDS) [20], which is used by the U.S. 

Environmental Protection Agency (EPA) to represent a city driving scenario, is a good example of a 

drive cycle with changing driving conditions. Figure 4 illustrates the speed-time profile of the UDDS, 

with periods of varying speed, acceleration, and stop frequency that are indicative of distinct driving 

conditions that change with time. 

 

Figure 4. Speed-time profile of UDDS drive cycle. Adapted from [20]. 

Drive cycles fall into two principal categories: transient and modal [21]. Transient drive cycles 

simulate the dynamic nature of real-world driving, encompassing phases of acceleration, deceleration, 

and idling. In contrast, modal drive cycles are comprised of segments of steady-state driving with 

constant velocity or acceleration. The practical distinction between the two types of drive cycles is 

that transient cycles are collected from real-world driving data whereas modal cycles are not [22]. 

This key difference becomes apparent when comparing the transient UDDS cycle with the modal 

Japanese 10-15 (J1015) cycle in Figure 4 and Figure 5, respectively. The constant accelerations, 

decelerations, and velocity plateaus in the modal cycle are in stark contrast to the high degree of 

variation and stochasticity in the transient cycle, which is more representative of real-world driving. 
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Figure 5. Speed-time profile of J1015 drive cycle. 

1.1.4 Driving Conditions 

Driving conditions are defined by a multitude of factors such as road classification, traffic congestion, 

weather, infrastructure, and topography [23]. Despite the breadth of these factors, driving conditions 

can largely be described by their road classification alone (e.g., urban, highway, etc.) [24][25][26]. 

They play a large role in dictating driver behaviour as well as the limits to which a vehicle can be 

driven, predominately impacting the vehicle’s velocity and acceleration throughout a drive cycle [25]. 

It is well established that vehicle deceleration rates, whether by driver preference or 

environmental necessity, vary depending on the driving condition [27][28]. For example, Szumska 

and Jurecki found that the maximum deceleration during urban, suburban, and highway road drive 

cycles performed in the real world was 3.2 m/s2, 3.0 m/s2, and 2.6 m/s2, respectively [29].  

This variance in deceleration rate depending on driving condition has a subsequent impact on the 

effectiveness of regenerative braking systems. For example, even though the 2023 Kia Niro EV has 

four regenerative braking levels that the driver can choose from, the regenerative braking strategy is 

designed such that vehicle will actually decelerate less at higher speeds when compared to lower 

speeds despite being set to the same level [30]. In a study that experimented with varying levels of 

regenerative braking strength in urban driving conditions, it was found that energy consumption 

would actually start increasing at stronger levels beyond a certain point due to the driver having to 

intervene and correct excessive decelerations [31]. These findings suggest that there is no “one size 

fits all” setting for regenerative braking strength that can be used in all driving conditions. 
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1.2 Problem Identification 

Decoupled regenerative braking systems implemented in electrified vehicles either use non-

configurable design variables or rely on the driver to manually select their deceleration preferences 

among a limited list of options in order to dictate the negative torque that is requested from the 

electric drive system during regenerative braking. This reliance on infrequent (or non-existent) driver 

selections in order to prompt changes in the regenerative braking control strategy can lead to 

mismatched design variables that are not appropriate for: 

• the driving environment in which the vehicle is operating 

• the driver’s deceleration preference. 

For example, while having aggressive decoupled regenerative braking may be beneficial for reducing 

driver fatigue in urban driving conditions with frequent stops and strong decelerations, it is in fact 

detrimental to the driving experience in high-speed driving environments where the vehicle may 

decelerate beyond what is intended by the driver (e.g., coasting) [32]. This problem also has an 

implication on the driver’s trust and acceptance of decoupled regenerative braking systems [33]. It 

follows that with lift-off regenerative braking systems (i.e., braking via releasing the accelerator 

pedal), a mismtached regenerative braking strength could lead to the driver having to manually adjust 

the pedals to counteract the undesirable deceleration rate. Having to frequently make these 

adjustments may be seen as an inconvenience for drivers. It would therefore be advantageous to the 

driving experience if the lift-off regenerative braking system of an electrified vehicle could learn a 

driver’s preferred rate of deceleration for a given condition. 

There exists a need for a sophisticated regenerative braking control scheme that can mitigate the 

occurrence of undesirable decelerations and promote a safer and more intuitive driving experience. 

This advanced system should possess the capability to not only reliably forecast the prevailing driving 

conditions with precision but also seamlessly adjust itself to harmonize with the driver's 

individualized preferences regarding regenerative braking strength. 

1.3 Research Objectives and Contribution 

Upon examination of the state of the art regarding decoupled regenerative braking systems, a 

noticeable practical challenge that has not yet been undertaken emerges: What novel approaches can 

be utilized to improve the driving experience of lift-off regenerative braking systems in electrified 
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vehicles? The research objective is thus to enhance the driving experience of lift-off regenerative 

braking systems by minimizing pedal usage during braking, thereby reducing driver fatigue and 

improving overall user comfort. 

The research presented in this thesis addresses this objective by proposing a lift-off regenerative 

braking control scheme that adapts to the driver’s preferences. In order to achieve this objective, the 

control scheme will need to:  

• accurately identify current driving conditions to automatically change regenerative braking 

strength to an appropriate setting 

• learn the driver’s preferred lift-off regenerative braking deceleration such that pedal usage is 

minimized 

• be compatible with automotive-standard embedded hardware running in real time. 

The proposed solution that addresses these practical challenges is an adaptive regenerative 

braking controller that leverages the following innovative strategies: 

• the novel application of the HDBSCAN clustering algorithm in order to identify distinct 

driving conditions in a comprehensive dataset of drive cycle intervals 

• the use of a fuzzy inference system to achieve accurate online identifications of driving 

conditions in real time 

• the novel application of the online Q-learning algorithm to find the optimal regenerative 

braking strength that minimizes an original cost function of pedal usage. 

The introduction of advanced techniques such as HDBSCAN clustering, fuzzy inference, and 

online Q-learning as part of a driver-optimized lift-off regenerative braking control scheme marks a 

substantial contribution to the advancement and maturation of electrified vehicle powertrain control 

technologies. 
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Chapter 2 
Literature Review 

The research endeavor presented in this thesis is aimed at the development of an adaptive control 

system that learns a driver’s prefered deceleration rate in different driving conditions. The ultimate 

objective of this control system is to minimize pedal usage during deceleration in an effort to improve 

the driving experience while using regenerative braking. This ambitious objective unfolds in two 

distinct domains: online driving condition identification and adaptive regenerative braking control. 

This section provides a comprehensive examination of previous research done in these two domains 

in order to highlight gaps in the literature. 

2.1 Online Driving Condition Identification 

Within the realm of online driving condition identification, the following areas of research are 

examined: Data Collection, Data Categorization, and Fuzzy Inference. 

2.1.1 Data Collection 

The development of an online identification scheme requires an understanding of the full range of 

possible driving conditions, which can be obtained by analysing vehicle data across a wide variety of 

realistic drive cycles. When it comes to selecting drive cycles for analysis, modal drive cycles are 

typically omitted from research that requires realistic driving data. Tong et al. explicitly omit modal 

cycles from their framework of drive cycle development as they do not characterize real driving 

behaviour [34]. Huzayyin et al. identify modal cycles and their unsuitability for representing the 

dynamics of driving on real-world routes as a primary motivation for their research into new drive 

cycle development [35]. In accordance with these findings, the research in this thesis will also omit 

modal drive cycles from its driving data collection process. 

Since drive cycles are often composed of segments of driving conditions that are not necessarily 

consistent with each other, it is essential that these drive cycles be divided into intervals that capture 

the characteristic driving conditions throughout the drive cycle with greater granularity. A common 

approach to segmenting vehicle data into intervals is to use vehicle stand-still phases to separate 

individual micro-trips (MTs) [36][37]. Förster et al. define MTs as a vehicle stand-still phase 

followed by a driving sequence until the next vehicle stand-still phase [38]. Since very short MTs 
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collected in stop-and-go conditions lack representativeness, in their research they merge adjacent 

MTs until a minimum duration is reached. This method is problematic since basing the intervals on 

stand-still phases means that valuable information regarding the number of stops during a driving 

sequence is lost (excluding the edge case where short MTs are merged). Alternatively, Hu et al. 

divide driving segments by time elapsed, using a fixed step size of 100 seconds [39]. While basing the 

driving intervals on time elapsed preserves information regarding the number of stops, this method 

can easily be skewed by long periods of stand-still phases. For example, segments 1, 4, and 5 of the 

New York City Cycle (NYCC) in Figure 6 will have metrics related to velocity and acceleration 

skewed towards zero due to their long periods of idle time. To avoid these drawbacks, this thesis 

proposes a method for segmenting drive cycles by distance traveled, thereby preserving information 

related to the number of stops within a segment while avoiding the limitation of having prolonged 

stop times skew the data. 

 

Figure 6. Division of NYCC into six driving segments by time-elapsed. Adapted from [37]. 

2.1.2 Data Categorization 

A common method of categorizing intervals of vehicle data is to differentiate them based on 

predefined value ranges. Value range determination through domain knowledge is a manual approach 

where experts or analysts leverage their expertise in the relevant field to establish predefined intervals 
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or cutoff points for data values. For example, Lee et al. categorize drive cycles based on whether the 

distance traveled is less than 9 miles, greater than 9 miles but less than 20 miles, or greater than 20 

miles [40]. In a similar approach, Shahidinenjad et al. categorize drive cycle MTs using manually-

selected value ranges that describe low, moderate, and high average speed and mild, moderate, and 

harsh acceleration [41]. Since value ranges are typically defined based on human judgement or 

domain knowledge, using this approach can introduce bias or overlook important data patterns if the 

value ranges lack granularity. Furthermore, driving conditions are often too complex to be inferred 

from individual vehicle data signals alone and are better characterized by the analysis of multiple 

interrelated signals whose direct relationships to the driving condition are not well defined [38]. 

Therefore, the value range method is limited in its ability to accurately capture the full spectrum of 

vehicle data that characterizes different driving conditions. It is thus desirable that the online driving 

condition identification scheme is capable of accurately finding relationships between collected data 

signals that may not be explicitly defined.  

The task of exploring hidden relationships in a complex dataset is well suited for unsupervised 

machine learning algorithms. The application of unsupervised clustering algorithms for the purpose of 

grouping data in complex datasets is well established in the literature [42]. Förster et al. applied 

unsupervised clustering to group drive cycle intervals into pre-defined classifications for the purpose 

of creating new drive cycles [38]. Hou et al. also used a clustering model to separate entire drive 

cycles into three representative groups that were pre-determined based on foreknowledge [43]. 

Likewise, Hu et al. decided to use a fixed number of clusters to identify different classes of driving 

conditions, selecting three clusters based on a qualitative assessment of the distribution of mean 

feature values in each class [39]. This represents one of the major limitations of these studies, in that 

they pre-define the number of clusters that represent the full range of characteristic driving conditions 

using foreknowledge or via a trial-and-error process of visually inspecting the clusters until there is 

enough distinction between them. These methods introduce a bias in the cluster identification process 

and negate one of the primary strengths of cluster analysis which is to aid in identifying unforeseen 

relationships in data (i.e., data exploration) [44]. To mitigate the influence of bias when determining 

the number of clusters that exist within the dataset, the work in this paper will follow a systematic 

approach using the Elbow Method [45]. 

The previously discussed research regarding the clustering of drive cycles employed some form of 

the K-means clustering algorithm, which is among the most popular clustering algorithms in use [46]. 
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The algorithm works by partitioning the dataset into clusters by minimizing the sum of squared 

distances between data points and their corresponding cluster centroids [47]. One of the limitations of 

the K-means algorithm is that since it partitions the entire dataset assuming spherical data clusters of 

similar shape and density, it performs poorly in many real-world datasets that contain regions of 

varying density, arbitrary cluster shapes, and noise [48]. The K-means algorithm assumes that there is 

no noise and that there are exactly K number of clusters in the data, where K is a hyper-parameter that 

is selected using foreknowledge of the dataset. This is especially problematic in the data exploration 

task of the drive cycle interval dataset since little is known about the underlying driving condition 

clusters within. It is therefore advantageous to instead consider a clustering method that makes fewer 

assumptions about the underlying distribution of data and is thus more suitable for real-world 

datasets.  

 

Figure 7. Comparison of clusters identified by HDBSCAN and K-means models fitted to a 

dataset [49] with irregularly-shaped clusters and noise. Clusters are distinguished by colour. 

As opposed to K-means, the Hierarchical Density-Based Spatial Clustering of Applications with 

Noise (HDBSCAN) algorithm uses a density-based approach to identify a cluster hierarchy within a 

dataset [50]. This allows HDBSCAN to identify clusters of irregular shapes and sizes while 

discarding noise. Figure 7 illustrates how HDBSCAN identifies more representative clusters in a 

dataset [49] with irregularly shaped clusters and noise when compared with K-means. Unlike K-

Means, HDBSCAN does not require any assumptions to be made about the number of clusters within 

a dataset. These qualities lend themselves well to the clustering of vehicle data collected across 

numerous drive cycles, since we cannot conclusively know how many driving conditions exist in the 
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data a priori. Furthermore, the collection of multiple telemetry signals results in a dataset of high-

dimensionality and an increased potential for noise, which the HDBSCAN algorithm is better suited 

to handle [48].  For these reasons, the research presented in this thesis will use the HDBSCAN 

algorithm to cluster drive cycle intervals. 

The HDBSCAN clustering algorithm has seen limited use in automotive applications. Previous 

works have applied its predecessor, DBSCAN, for data exploration related to driver behavior. Zhang 

et al. used DBSCAN on a dataset of vehicle trajectories to label drivers based on their driving style 

[51], while Wang et al. used it to find clusters of driving behavior based on recorded driving events 

(e.g., speeding, sudden braking, etc.) [52]. DBSCAN has also been used to identify idle conditions in 

a vehicle telemetry dataset collected during drive cycle simulations [53]. However, to the author’s 

knowledge, neither the HDBSCAN nor the DBSCAN algorithms have been used to identify the 

underlying driving conditions in a dataset of drive cycle intervals. Thus, this paper proposes a novel 

application of HDBSCAN. 

2.1.3 Online Identification 

Many of the previously discussed works are solely interested in offline clustering and system 

identification schemes. When it comes to online identification schemes, previous studies have mainly 

focused on identifying driver behavior rather than driving conditions [50][54]. Regarding driving 

condition identification, Hu et al. proposed a scheme that identified classes of driving conditions by 

calculating the Euclidian distance between the features of the most recently recorded data interval and 

the centroid of the class [39]. However, the distance associated with each feature was not weighted or 

otherwise scaled for unit variance, meaning that the class identification scheme in this study was 

dominated by the Euclidian distance of the feature with the largest units (i.e., velocity). Therein lies 

one of the main limitations of this method, in that outliers in the data due to noise or improper scaling 

can easily skew the distance measurement towards an erroneous identification. Another limitation of 

the Euclidian distance method for online identifications is that it is incapable of considering the joint 

influence of variables in multidimensional data (e.g., the interrelation between velocity, acceleration, 

etc. in a driving interval). Hou et al. proposed a driving condition identification scheme that used a 

Support Vector Machine (SVM) learning model to make online classifications of recently recorded 

vehicle data intervals in a simulation environment [43]. However, the demanding computational 

requirements of an SVM model as a result of needing to process a large number of support vectors 
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means that it is not well suited for embedded applications, such as in vehicle controller hardware [55]. 

For this research, an online identification method that can handle noisy, multidimensional data and is 

compatible with embedded vehicle controller hardware is required. 

Fuzzy logic is a powerful tool for dealing with complex systems where inputs and outputs are not 

always explicitly defined, and it is well suited for applications that require a more flexible and 

nuanced representation of uncertainty in data [56]. Since driving conditions are somewhat vague and 

are not explicitly defined by absolute numerical values, fuzzy logic is well suited for the process of 

identifying them by using rules and membership functions that determine a degree of belongingness 

to a certain condition. Fuzzy logic systems have been extensively researched in embedded automotive 

applications such as in anti-lock braking, adaptive automatic transmission, and engine control [57]. 

When it comes to making online identifications of driving conditions, Schüler et al. used existing 

experience to determine the membership functions for mean throttle velocity, mean throttle angle, 

longitudinal acceleration, and mean speed to identify traffic jam, city, road, and highway conditions 

[58]. Zhang et al. used fuzzy logic to classify driving patterns based on average speed and maximum 

speed, once again manually determining the value ranges of the membership functions based on prior 

experience [59]. While the use of prior knowledge to design a fuzzy logic system is necessary for 

designing meaningful rules, it nonetheless introduces an element of bias, especially when designing 

membership functions that are based on foreknowledge rather than data.  

 

Figure 8. Example of membership functions for three driving patterns used in a fuzzy logic 

system. Adapted from [59]. 

Take the membership functions used by Zhang et al. for example. The average speed membership 

functions for the fuzzy sets of low, medium, and high speed driving patterns are illustrated in  
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Figure 8. The “medium” average speed membership function is precisely centered on 20 km/h. 

However, since driving conditions are ambiguous, how can we know for certain that this is exactly 

the value that signifies “medium” driving conditions the best? This is where the advantages of data-

driven clustering come into play, whereby the membership functions can be made to be more 

representative by centering them on the cluster centroids. In order to preserve the incorporation of 

expert knowledge while also taking advantage of the pattern recognition capabilities of data-driven 

clustering, this research proposes a cluster-informed fuzzy inference system to achieve the online 

identifications of driving conditions. 

2.2 Adaptive Regenerative Braking Control 

The domain of adaptive regenerative braking control is divided into the following research topics: 

Driver Preferences, Regenerative Braking Control, and Adaptive Control. 

2.2.1 Driver Preferences 

The justification for this research into adaptive regenerative braking relies on the assumption that 

different drivers have different deceleration preferences. In a study of driving style preferences 

conducted in a high-fidelity simulator, 72 participants were subjected to different variations of lane 

change, acceleration, and deceleration maneuvers, respectively, and asked to select their preferred 

variation [60]. The deceleration maneuver ended up having the greatest overlap in preference score 

between competing variations, indicating that participants were split regarding which deceleration 

profile they preferred. In their research involving personalizing the acceleration and braking 

behaviour of a vehicle’s advanced driver assistance system (ADAS), Vadim and Ioannou collected 

vehicle data from 3 drivers doing test drives in an urban area and found that in contrast to the 

observed acceleration behaviours, there was no uniformity in the deceleration behaviours between the 

drivers [61]. These findings suggest that deceleration preferences between drivers differ significantly 

and that it is therefore advantageous to adapt the deceleration characteristics of the vehicle to an 

individual driver. 

Another important assumption that forms the basis of this research is that drivers’ preferred 

deceleration changes depending on the driving condition. In a study of the acceleration behaviour of 

24 participants driving on a route containing extra-urban roadways, arterial roads, and motorways, 

Bosetti et al. found that drivers were more likely to decelerate more aggressively on roads with high 
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curvatures (associated with urban conditions) when compared with low-curvature roads (associated 

with highway conditions) [62]. This is corroborated in Yavas et al.’s analysis of a real-world highway 

driving dataset, which found that drivers prefer coasting over braking while approaching slower 

vehicles [63]. Wortman and Fox discovered that when drivers approach signalized intersections, their 

deceleration pattern is mainly influenced by their initial approach speed [64]. This suggests that under 

different driving conditions and travel speeds, drivers would have distinct preferences for how 

quickly they prefer to decelerate. To elaborate further, Wallace et al. conducted a year-long study on 

the driving behavior of an older subject and observed that the rate of deceleration was significantly 

affected by the change in velocity during a deceleration event [65]. Figure 9 illustrates the relation 

between deceleration and velocity change using recorded data from nearly 25,000 braking events, 

showing deceleration rates increase as the velocity change increases until an asymptote is reached (at 

approximately -2 m/s2 in this case). When we consider this in the context of driving conditions, it 

logically makes sense that subtle adjustments to a vehicle’s speed on a highway would be done at a 

lower deceleration, whereas reacting to a moving obstacle (e.g., other vehicles, pedestrians) or 

approaching an intersection in an urban or arterial environment would require larger decelerations. 

 

Figure 9. Distribution of minimum acceleration against velocity change across all recorded 

deceleration events. Reprinted from [65]. © 2015 IEEE 

Other studies have shown that deceleration preferences are not dictated by the vehicle’s travel 

velocity alone. In his study of driver acceleration behaviours on Canadian roads, Yang found that the 

deceleration profiles with respect to speed differed depending on whether the road was a highway or 

urban road [66]. For example, at speeds greater than 90 km/h the mean deceleration rate on urban 
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roads was up to 173 % greater than those on highways at the same speed. In his review of previous 

research conducted on deceleration behaviours, Deligianni identified the following relevant factors as 

having significant effects on a driver’s preferred deceleration rate: traffic conditions, speed, time to 

collision, and headway [67]. These are all factors that are significantly influenced by driving 

conditions [68]. 

Regenerative braking presents a learning curve for drivers as they need to adjust their braking 

techniques and learn to anticipate its unique braking response for comfortable deceleration. In terms 

of the implementation of decoupled regenerative braking systems, drivers generally prefer systems 

triggered by the accelerator pedal (i.e., lift-off regenerative braking) as opposed to one triggered by 

the brakes [69]. When it comes to the strength of regenerative braking, studies seem to indicate that 

driver preferences are mixed. In their 1-year field study on driver interactions with regenerative 

braking systems, Cocron et al. found that while acceptance of the lift-off regenerative braking system 

was high, drivers found it more useful than satisfying [33]. Some drivers had difficulties adapting to 

the system, with some complaining that the deceleration rate was too strong, that it led to frequent 

early stops, and that it prevented the ability to coast. This is in contrast to another study in which test 

drivers reported less discomfort at higher rates of regenerative deceleration [70]. These studies reveal 

significant variation in driver preferences regarding regenerative braking strength. Therefore, it is 

evident that researching methods to enhance driver satisfaction while using the system is a valuable 

pursuit. 

2.2.2 Regenerative Braking Control 

Since lift-off regenerative braking is governed by the calculation of deceleration torque to request 

from the vehicle’s electric motor(s) (i.e., a single design variable), several studies have been 

conducted in order to optimize this torque request. The vast majority of these studies involve the 

development of control strategies the maximize the energy recuperated during braking. Kim et al. 

proposed a deceleration planning system for connected and automated vehicles (CAVs) in which an 

energy-optimized deceleration rate is calculated based on map-based geographic information and 

connectivity-based traffic signal information [71]. For the deceleration planning system to work, 

measurements of final speed, remaining braking distance, and remaining braking time are required. 

This limits the application of such a system to deceleration events that exclusively occur before 

vehicle-to-everything (V2X) communication-capable intersections where accurate geographic data is 
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also available. Furthermore, because the system attempts to maximize the energy recovered during 

deceleration, it ends up selecting the most aggressive deceleration in every case (see Figure 10), since 

that is what generates the most electric current for battery charging. In some cases, the deceleration 

rates selected by the system were as high as 10.08 m/s2, which is 152 % greater than the threshold at 

which drivers begin feeling significant discomfort (4 m/s2) [72][73]. This suggests that systems that 

are designed to exclusively optimize energy recuperation during deceleration are likely to worsen 

driver comfort and satisfaction. 

 

Figure 10. Optimal decelerations (black circles) selected from possible deceleration candidates 

(green asterisks) based on a set of deceleration profiles (colourful lines) for two different 

deceleration paths. Reprinted from [71].  

© 2021 IEEE 

In their study comparing regenerative braking strategies for decelerating to a complete stop, 

Chakraborty and Nandi designed a regenerative braking controller that optimized two objectives 

during a deceleration event: the maximization of recuperated energy and the minimization of the 

duration of deceleration [74]. In their study, they conducted a comparison between employing a 

constant negative torque request and employing a dynamic torque request during deceleration. This 

comparison was conducted while imposing different limits on the maximum allowable jerk, which 

refers to the rate of change of deceleration. As expected, having no constraints on the maximum 

allowable jerk resulted in the greatest energy recovered for both approaches. However, the jerk values 

sustained during these decelerations were as high as 18 m/s3, which is 350 % higher than the 4 m/s3 

threshold at which drivers begin to feel uncomfortable [72][73]. The tendency in the literature to 
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prioritize energy efficiency over driver comfort when designing regenerative braking controllers is 

evident in this oversight of the user experience. At the lowest studied jerk constraint of 7 m/s3 (which 

is still significantly greater than the threshold of discomfort), a constant deceleration rate resulted in 

greater energy recovered. Since there does not seem to be a benefit to complicating the control of 

regenerative braking with multiple stages of deceleration, the adaptive control scheme presented in 

this research will use a constant deceleration rate during lift-off regenerative braking. 

Dehkordi et al. developed an energy-optimized control scheme that would maximize the use of 

regenerative braking as opposed to hydraulic braking for a given velocity profile [75]. Similar to Kim 

et al.'s research, the effectiveness of this control scheme faces limitations because it relies on knowing 

the final steady-state velocity to determine the velocity profile. This approach is valuable for 

applications of ADAS on highways like adaptive cruise control (ACC), where velocity predictions are 

more reliable. However, in dynamic and unpredictable urban driving scenarios, estimating final 

steady-state velocities becomes considerably more challenging. A notable aspect of Dehkordi et al.'s 

work is that, despite primarily focusing on energy recovery optimization, they also incorporated user-

oriented control constraints. This demonstrates their commitment to considering driver satisfaction 

and comfort in their research. Instead of controlling braking torque, they employed acceleration as the 

control variable for their regenerative braking controller. This choice enabled them to set a control 

constraint directly, limiting unsafe and uncomfortable deceleration to 4 m/s², which aligns with the 

previously stated threshold of discomfort. Additionally, the selection of deceleration as the control 

variable makes their controller more modular and adaptable to a wide range of electrified vehicles 

since unlike torque, deceleration does not depend on vehicle-specific factors like curb mass and 

electric motor selection. As a result, the adaptive regenerative braking controller presented in this 

thesis will also use acceleration as its control variable. 

2.2.3 Adaptive Control 

Prior research has been conducted on automatically adapting various aspects of vehicle control to 

the detected driving conditions. This is often achieved by categorizing a recorded driving interval 

then choosing a suitable control parameter value that aligns with the identified driving condition. In 

their development of an adaptive energy management strategy for a FHEV, Lin and Li employ a real-

time system that identifies one of four driving conditions and selects the appropriate power 

distribution strategy accordingly [76]. These strategies are predetermined through offline optimization 
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conducted on a single representative drive cycle for each driving condition (urban, sub-arterial, 

arterial, and freeway). However, it is important to note that a significant limitation of this approach is 

that optimizing control parameters for a single drive cycle lacks generality and can result in an "over-

fitting" scenario, where the control parameters are well-suited for one specific drive cycle rather than 

being adaptable to multiple drive cycles or driving patterns with similar conditions. 

 Another approach to adaptive vehicle control is to categorize drivers based on their behavior and 

then choosing a suitable control parameter to match. Huang et al. classified drivers as “Aggressive”, 

“Ordinary” or “Cautious” in real time and used the classification to select among predefined values 

for maximum braking deceleration in an ACC system [77]. Their research concluded that this 

approach improved driver adaptability and comfort, suggesting that a similar adaptation of the 

deceleration rate in a regenerative braking system could yield promising results. 

In Kubaisi's research on developing an adaptive regenerative braking strategy, he employed driver 

behavior categories and driver intention estimation to determine an appropriate braking torque [78]. 

The strategy was designed to use driver behaviour classification for selecting the right braking torque 

from a predefined set of values, each associated with a specific driver intention (such as driving, 

cruising, or braking). However, this approach has limitations as it lacks personalization for individual 

drivers, relies on seemingly arbitrarily predetermined deceleration values for each driver behaviour-

intention combination, and does not clearly explain how driver intention affects the desired 

deceleration rate, especially since the relevant intention, normal braking, can be easily measured 

through pedal positions. One fundamental issue in Kubaisi's research is the choice of torque as a 

control variable instead of deceleration. Kubaisi attempted to relate torque and deceleration using a 

formula derived from empirical simulation data collected during deceleration events on a flat road 

surface. This approach overlooks the significant influence of road gradient on a vehicle's acceleration 

(e.g., a vehicle going uphill may decelerate even without applying braking torque). In contrast, this 

thesis will utilize deceleration as the primary control variable and leverage well-established 

automotive dynamic equations to determine the necessary braking torque. Additionally, the adaptive 

control scheme introduced in this work will learn from each individual driver's preferences and 

behaviour, ensuring a personalized approach to adaptive regenerative braking. 

In his research, Nelles developed an adaptive gear shift strategy for automatic transmissions that 

learns from the driver in order to individualize the system’s shift behaviour [79]. This was achieved 
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by analyzing recorded vehicle data through a fuzzy inference system, categorizing drivers as either 

"Eco" or "Sporty" to varying degrees. Notably, Nelles introduced the concept of driver interventions 

to guide the learning process; when a driver manually changed gears, it triggered an update of the 

weights associated with a fuzzy set. Building on this approach, the research presented in this thesis 

will incorporate a novel cost function that considers driver intervention during lift-off regenerative 

braking in order to guide the learning process. 

 

Figure 11. Adaptive vehicle trajectory control algorithms for different risk levels. Reprinted 

from [80]. © 2023 IEEE 

In a study by He et al., reinforcement learning was used to adapt a car-following trajectory control 

algorithm to different levels of perceived risk [80]. They employed the Deep Q-learning algorithm 

[81] to learn separate policies for controlling the speed of the vehicle during ACC operation, each 

tailored to a specific risk level. To guide the Q-learning agent’s learning process, they designed a 

reward function that penalized the agent based on a collision risk score, calculated in real-time based 

on factors such as relative velocity and following distance. This allowed the Q-learning agent to learn 

the appropriate car following trajectory for each risk level. During actual vehicle operation, their 

control system employed an adaptive switching strategy to select the appropriate trajectory control 

parameters based on the currently perceived risk level (refer to Figure 11). Notably, their adaptive 

algorithm significantly reduced jerk compared to human drivers, leading to improved driver comfort. 

In a similar approach to He et al.’s work, the work presented in this thesis will utilize Q-learning to 
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independently learn the optimal deceleration for various driving conditions. An adaptive switching 

strategy will be implemented to select and continuously update the optimal deceleration based on the 

detected driving conditions.  
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Chapter 3 
Methodology 

The following section will discuss the methodology that was used to develop and test the 

proposed adaptive regenerative braking control scheme. Firstly, the models that were used for 

simulation throughout development will be discussed. Following this, the methodology for designing 

the control scheme itself is subdivided into the distinct domains of online driving condition 

identification and adaptive regenerative braking control. Figure 12 illustrates a flowchart of the 

resulting adaptive regenerative braking control process. Finally, the simulation and experimental 

testing methodology will be discussed. 

 

Figure 12. System flowchart for adaptive regenerative braking control system. 

3.1 Modeling 

In order to collect data for clustering as well as to test the adaptive control scheme in simulation, a 

model of an electrified vehicle is created in a MATLAB/Simulink environment. This section will 

provide a high-level overview of the key components of the vehicle model that are relevant in the 

context of lift-off regenerative braking. Essentially, the model encompasses mathematical depictions 

of the vehicle's dynamics (referred to as the plant model) and control algorithms that govern the 
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vehicle's operations (referred to as the controller model). To maintain conciseness, modeling aspects 

that are not explicitly related to regenerative braking are omitted from this section. This includes tire 

modeling, friction brake modeling, and battery management, among others. 

3.1.1 Vehicle Body 

This research requires the simulation of drive cycles. Since drive cycles solely represent a vehicle’s 

longitudinal motion, the vehicle body only needs to be modeled with 1 degree of freedom in the 

longitudinal direction. The vehicle’s dynamics are thus described by a rigid vehicle body of constant 

mass undergoing longitudinal motion. The model includes the influence of both inertial and drag 

loads to ensure an accurate representation of the vehicle's behavior during deceleration.  

  

Figure 13. Free body diagram of longitudinal vehicle body model. Adapted from [81]. 

The vehicle body model consists of two parallel axles forming a flat plane, as illustrated in  

Figure 13. The equations of motion for the longitudinal vehicle model are as follows: 

𝐹!" + 𝐹!# − 𝐹$,! −𝑚	𝑔 sin 𝛾 = 𝑚𝑥̈ (1) 

where 𝐹!" and 𝐹!# represent the longitudinal forces on the wheels at the front and rear ground contact 

points, respectively, 𝐹$,! represents the longitudinal drag force, 𝑚 is the vehicle body mass, 𝑔 is 

gravitational acceleration, and 𝛾 is the angle of the road grade.  
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The normal forces acting on the front and rear axle wheels (assuming two wheels per axle) are 

given by the following equations: 

2𝐹&" + 2𝐹&# = 𝑚	𝑔 cos 𝛾 	 (2) 

𝐹&" =
−𝑀$,' + 𝑏6𝐹$,& +𝑚	𝑔 cos 𝛾7 − ℎ6𝐹$,! +𝑚	𝑔 sin 𝛾 +𝑚𝑥̈7

2(𝑎 + 𝑏)
(3) 

𝐹&# =
−𝑀$,' + 𝑎6𝐹$,& +𝑚	𝑔 cos 𝛾7 + ℎ6𝐹$,! +𝑚	𝑔 sin 𝛾 +𝑚𝑥̈7

2(𝑎 + 𝑏)
(4) 

where 𝐹&" and 𝐹&# are the normal forces acting on each front and rear wheel, respectively, 𝑀$,' is the 

moment due to drag about the vehicle body’s y-axis, 𝑎 and 𝑏 are the distance between the center of 

gravity and the front and rear axles, respectively, and ℎ is the height of the center of gravity above the 

axle plane. 

The drag forces acting on the vehicle body are solely comprised of aerodynamic drag. Assuming no 

wind speed, the drag forces and moments acting on the vehicle are given below: 

𝐹$,! =
1
2𝜌	𝐶$	𝐴(	𝑥̇

) (5) 

𝐹$,& =
1
2𝜌	𝐶*	𝐴(	𝑥̇

) (6) 

𝑀$,' =
1
2𝜌	𝐶+,	𝐴(	𝑥̇

)(𝑎 + 𝑏) (7) 

where 𝜌 is air density, 𝐶$ is the drag coefficient, 𝐶* is the lift coefficient, 𝐶+, is the pitching moment 

coefficient, and 𝐴( is the frontal area of the vehicle body.  

3.1.2 Powertrain 

The vehicle model features a fully electric rear-wheel-drive powertrain with a single electric motor. 

The electric motor dynamics are represented by a mapped model consisting of look-up tables of 

known motor parameters. The model receives a torque request from the torque controller as an input 

and uses tabulated loss data to determine the power loss associated with the requested torque at the 

current motor speed. These tabulated losses are given by a 2-dimensional look-up table relating 

efficiency to torque and speed, as illustrated in Figure 14. The current required to satisfy the torque 

request is then calculated as follows: 
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𝐼, =
𝑃-./ + 𝑃*011

𝑉234
=
𝜔,	𝑇, + (1 − 𝜂,)	𝜔,	𝑇,

𝑉234
(8) 

where 𝐼, is the current passing through the motor, 𝑉234 is the battery voltage, 𝜔, is the motor speed, 

𝑇, is the motor torque, and 𝜂, is the motor efficiency. Since this research is focused on regenerative 

braking, it is important to note that these dynamics are also valid for negative motor torque. 

 

Figure 14. Example of a 2D look-up table relating motor efficiency to torque and speed. 

Likewise, the battery model representing a lithium-ion battery pack is also parametrized by look-up 

tables created from manufacturer datasheets. This includes parameters such as open-circuit voltage, 

internal resistance, and number of cells. Battery voltage is calculated using the following equations: 

𝑉5 = 𝐸, − 𝐼234	𝑅674 (9) 

𝐼234 =
𝐼,
𝑁+

(10) 

𝑉234 = 𝑁1	𝑉5 (11) 

where 𝑉5 is the voltage per battery module, 𝐸, is the battery’s open-circuit voltage, 𝐼234 is the current 

per battery module, 𝑅674 is the internal resistance, 𝑁+ is the number of cells in parallel, 𝑁1 is the 

number of cells in series, and 𝑉234 is the battery pack voltage. 
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3.1.3 Torque Control 

The torque controller interprets the driver's commands to establish the torque request delivered to 

the electric motor. This request adheres to the limits set by the manufacturer for the motor, as 

determined by a torque-speed envelope that defines the maximum power output of the motor at 

varying speeds (refer to Figure 15). The driver’s commands are provided through the accelerator and 

brake pedals in order to request positive or negative torque to the electric motor, respectively. 

 
Figure 15. Generic torque-speed envelope for determining maximum motor power at a given 

speed. Reprinted from [82]. 

When the driver actuates the accelerator pedal, a linear pedal mapping is used to convert 

accelerator pedal position into a torque request. Torque is calculated by simply taking the accelerator 

pedal position and multiplying it by the maximum available motor torque at the current motor speed. 

To allow for coasting, pedal positions less than or equal to 1 % do not result in a torque request, as 

shown in the following equation: 

𝑇, = O 0, 𝐴𝑃𝑃 ≤ 1
	𝐴𝑃𝑃 ∗ 𝑇,3!, 𝐴𝑃𝑃 > 1 (12) 

where 𝐴𝑃𝑃 is the accelerator pedal position given as a percentage and 𝑇,3! is the maximum 

available motor torque. 

When the brake pedal is engaged, the torque controller computes a braking pressure request that 

corresponds to the position of the pedal. The braking pressure is calculated as follows: 

𝑃2-8 = 𝐵𝑃𝑃 ∗ 𝑃,3! (13) 

where 𝐵𝑃𝑃 is the brake pedal position given as a percentage and 𝑃,3! is the maximum line pressure 

of the hydraulic braking system. This braking pressure request is transferred to a braking controller, 
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which transforms it into a braking torque request, considering the characteristics of the disc brakes. 

The controller divides the overall braking torque request between the regenerative and friction brake 

systems. However, as this study is focused on decoupled regenerative braking (i.e., actuated 

independently of the brake pedal), the specifics of the braking controller fall outside the scope of this 

research. 

Lift-off regenerative braking engages when the driver releases the accelerator pedal (i.e., 𝐴𝑃𝑃 =

0). The resulting negative torque request is dictated by a control variable, which this study intends to 

adapt to the driver’s preferences. The control variable used in this research is desired deceleration, 

meaning that the necessary negative torque to achieve that desired deceleration is calculated every 

time the driver lifts off the accelerator pedal. This calculation is driven by the following vehicle 

longitudinal dynamics equations: 

𝐹5 − 𝐹# = 𝑚	𝑥̈$.1 (14) 

𝐹5 =
𝜂,	𝛽
𝑅 	𝑇, (15) 

𝐹# = 𝜇#	𝑚	𝑔 + 𝑚	𝑔 sin 𝛾 +
1
2𝜌	𝐶$	𝐴(	𝑥̇

)	 (16) 

where 𝑥̈$.1 is the desired acceleration, 𝛽 is the total gear ratio of the drivetrain, 𝑅 is the loaded radius 

of the wheels, and 𝜇# is the estimated rolling resistance coefficient. If we consider vehicle parameters 

such as mass, gear ratio, and wheel radius to be constant, then the required torque (𝑇,) to achieve the 

desired deceleration at any point in time can be calculated dynamically using the signals of vehicle 

speed (𝑥̇), road grade angle (𝛾) as measured by accelerometer, and motor efficiency 𝜂, as estimated 

by the manufacturer-provided look-up table. The torque controller follows this process to implement 

lift-off regenerative braking deceleration: 

1. Lift-off regenerative braking activates while 𝐴𝑃𝑃 = 0 and 𝑥̇ > 0. 

2. Deceleration torque is calculated based on desired deceleration and the measurable signals at 

the onset of lift-off regenerative braking. 

3. Deceleration torque request is saturated to within motor torque limits. 

4. The constant deceleration torque request is sent to the motor unit while lift-off regenerative 

braking is active. 
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3.1.4 Driver Model 

A driver model replicating human interactions with the accelerator and brake pedals is crucial for 

this study. With an accurate model, we can gain insight into how often a typical driver uses the pedals 

during a drive cycle. In the case of lift-off regenerative braking, the frequency and magnitude at 

which the driver model must interact with the pedals to match the reference velocity of a simulated 

drive cycle can be used to reveal any mismatches between the regenerative braking deceleration and 

the simulated driving pattern. 

The driver model implements a longitudinal speed-tracking controller. Based on the vehicle’s 

feedback velocity received from the vehicle body model, the driver model generates normalized 

acceleration or deceleration commands. These normalized commands are considered as pedal inputs, 

which are then sent to the torque and braking controllers, respectively. The speed-tracking controller 

implements an optimal preview method developed by MacAdam to mimic a human driver’s ability to 

look ahead and predict future maneuvers in order to follow a path [83]. The forthcoming discussion 

provides a brief overview of MacAdam's approach. 

The optimal preview control method utilizes linear vehicle dynamics to anticipate a future speed 

tracking error. The vehicle dynamics implemented by the driver model are outlined below: 

𝑥9 = 𝑣	 (17) 

𝑥̇9 =
𝐾+4
𝑚

− 𝑔 sin 𝛾 + 𝐹-𝑥9 (18) 

where 𝑣 is longitudinal velocity, 𝐾+4 is the estimated effective tractive force of the vehicle (a 

constant), and 𝐹- is the rolling resistance. 

The model operates on the premise of using the linear vehicle dynamics to predict an error signal at 

a specific point in the future based on a preview distance parameter. It then finds the acceleration and 

deceleration commands (i.e., pedal inputs) that minimizes this previewed error signal. Additionally, it 

simulates a human driver's response delay by incorporating a driver lag. The chosen values for both 

the driver lag and the preview distance are meant to reflect the driver's sensory and neuromuscular 

mechanisms (i.e., driver lag = 0.2 s, preview distance = 2 m). 
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3.2 Online Driving Condition Identifier Design 

In order to adapt the regenerative braking strength to the current environment, an online 

identification system that is compatible with automotive-grade embedded hardware applications must 

be developed. This section will discuss the process involved in data gathering, training the clustering 

model, and implementing the subsequent clusters in a real-time fuzzy inference system for the 

identification of driving conditions. 

3.2.1 Feature Selection 

Longitudinal driving conditions are defined by signals like longitudinal displacement, velocity, and 

acceleration. These signals, obtained from the vehicle's telemetry, can be utilized to extract additional 

features of the drive cycle, including the number of stops and various statistical parameters such as 

mean, maximum, and standard deviation of velocity and acceleration. These data points, when 

systematically collected and analyzed, are then used to find patterns of driving behaviour.  

Table 1. Features selected for logging from existing vehicle telemetry. 

Feature Unit 

Average velocity  km/h  

Average positive acceleration  g  

Average negative acceleration  g  

Standard deviation of velocity  km/h  

Standard deviation of positive acceleration  g  

Standard deviation of negative acceleration  g  

Maximum velocity  km/h  

Maximum positive acceleration  g  

Maximum negative acceleration  g  

Number of stops  count  
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Table 1 lists the features that are selected to be logged for the purpose of vehicle data clustering. 

These features have been selected due to being well established in the literature for adequately 

characterizing driving conditions. This includes the average and maximum values for velocity, 

positive acceleration, and negative acceleration [18][19], their standard deviation [19][40], and 

number of stops [40]. In this research, a stop is counted when vehicle speed is less than 8 km/h in 

order to capture rolling stops. The idea behind selecting a broad range of features is that it results in a 

greater probability of the characteristic driving conditions being more fully captured and described in 

the data [84]. 

3.2.2 Drive Cycle Interval Clustering 

To identify clusters of characteristic driving conditions, a dataset of drive cycle intervals and their 

feature vectors is required. The selected features are collected at specified intervals from a range of 

simulated drive cycles representing diverse driving conditions. Vehicle telemetry features are logged 

according to distance traveled in order to prevent distortion caused by idle times and to keep track of 

the number of stops throughout a drive cycle interval.  

Intervals are logged every 500 meters. This enables the collection of a large amount of driving 

data across multiple drive cycles, thus ensuring that the data is representative of a diverse range of 

driving conditions. Drive cycle interval data is collected from simulations of 22 transient drive cycles, 

as listed in Table 2. This data is acquired from simulations of a high-fidelity MATLAB/Simulink 

vehicle model performing each drive cycle. The final dataset consists of feature vectors representing 

over 2700 driving intervals collected from the simulated drive cycles. 

With the dataset collected, the next step is to discover the underlying clusters of drive cycle 

intervals that represent different driving conditions. The HDBSCAN algorithm is used in this data 

exploration task, and the resulting clusters are assessed in order to provide insight into whether the 

algorithm is suited for identifying meaningful clusters in vehicle data. Ultimately, the success of the 

data exploration task depends on the ability of the HDBSCAN to accurately group data points into 

distinct clusters. 

When performing a cluster analysis, a critical aspect to address is the identification of the most 

representative number of clusters within the dataset. While HDBSCAN does not directly require the 

specification of the cluster count as a predefined hyperparameter, its hyperparameters can be selected 

and tuned to essentially find any number of clusters. This means that an incorrectly tuned HDBSCAN 
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model might result in the identification of unsuitable clusters, including excessively large clusters 

lacking clear distinctions or excessively small clusters with little meaningful relevance. For this 

reason, having a well-informed estimate of the number of clusters in the dataset is essential to steer 

the algorithm toward discovering coherent and meaningful clusters, thereby preventing the formation 

of incoherent or irrelevant groupings. This is especially difficult in datasets where the optimal number 

of clusters is unknown and must instead be discovered.  

Table 2. Selected transient drive cycles for data collection. 

No. Drive Cycle No. Drive Cycle 
1 Braunschweig City Driving Cycle 12 New York City Cycle (NYCC-LD) 

2 California Unified Cycle (UC) 
LA92 Cycle 

13 NREL Class 3 Electric Vehicle 
Cycle 

3 City Suburban Heavy Vehicle 
Cycle (CSHVC) 

14 NREL Utility Truck Cycle 

4 Worldwide Harmonized Light 
Vehicles Test Cycle (WLTC) 
(WLTC)(WLTC) 

15 NREL Parcel Delivery Truck Cycle 
(Baltimore) 

 

5 EPA Urban Dynamometer Driving 
Schedule (UDDS) 

16 UDDS for Heavy-Duty Vehicles 
(UDDS-HD) 

6 EPA Highway Fuel Economy Test 
(HWFET) 

17 Speed Correction Driving Schedule 
(SC03) 

7 EPA Inspection and Maintenance 
(IM) 240 

18 Fleet DNA Local Delivery 
Representative 

 

8 EPA US06 Supplemental Federal 
Test Procedure Driving Schedule 

19 Fleet DNA Long-Haul 
Representative 

 

9 Manhattan Bus Cycle 20 Fleet DNA Regional-Haul 
Representative 

 

10 New York Bus Composite Cycle 
(NY Comp) 

21 Fleet DNA Transit Bus 
Representative 

 

11 New York Bus Cycle (NY Bus) 22 Orange County Transit Bus Cycle 
(US-OCTA) 

 

One such systematic method for determining the optimal number of clusters is the Elbow Method 

[45]. The Elbow Method is a technique that involves an iterative process of fitting a K-means model 

for varying values of K and calculating the sum of squared distances at each iteration. The sum of 

squared distances, also referred to as the “within-cluster sum of squares”, is given as: 
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𝑊𝐶𝑆𝑆 =[[\𝑥6 − 𝜇:\
)

6∈<!

=

:>9

(19) 

where 𝐾 is the number of clusters, 𝑥6 is the feature vector at data point i, and 𝜇: is the feature vector 

at the centroid of cluster 𝐶:. It quantifies the overall variability or dispersion of data points from their 

respective cluster centroids, offering insights into the compactness of clusters. A sum of squared 

distances that is too large suggests that the data points are widely scattered from their cluster 

centroids, potentially indicating that the clustering is not effectively capturing underlying patterns, 

whereas a sum of squared distances that is too small may imply overly compact clusters, possibly 

leading to overfitting and the creation of too many clusters. 

 

Figure 16. Elbow method plot for drive cycle interval dataset. A K value of 3 (circled) is 

identified as the elbow point for the sum of squared distances. 

As K increases at each iteration of performing the Elbow Method, the sum of squared distances 

typically decreases, indicating that the data points are closer to their cluster centroids. However, there 

is a point at which the reduction in this value starts to slow down, resulting in an "elbow" point in the 

plot. This elbow point represents the optimal number of clusters, as it signifies a balance between 



 

 34 

minimizing within-cluster variance and avoiding excessive fragmentation of the data into smaller, less 

meaningful clusters. From Figure 16, the "elbow" or minimal point at which the slope of the sum of 

squared distances stabilizes after an observable change in slope can be seen to be at K = 3 for the 

dataset of drive cycle intervals. This indicates that there are likely 3 underlying driving condition 

clusters within the dataset. 

Before training the HDBSCAN model on the drive cycle dataset, the data is first standardized. Data 

standardization is a preprocessing technique used to transform the values of numerical features in a 

dataset so that they have a common scale and are centered around a common reference point. 

Equation 20 shows how this is done by subtracting the mean value of the feature (𝜇) from each data 

point (𝑥6) and then dividing by the standard deviation (𝜎). The result is that all features have a mean 

of zero and a standard deviation of one, ensuring that they are comparable and preventing features 

with larger scales from unduly influencing the results of data analysis or modeling. Standardizing data 

before fitting a clustering model is crucial because it ensures that all features contribute equally to the 

clustering process, preventing variables with larger scales from dominating the results.  

𝑧 =
𝑥6 − 𝜇
𝜎

(20) 

After standardizing the data, an HDBSCAN model is tuned to fit to the dataset of drive cycle 

intervals. A grid search is performed to determine the optimal hyperparameter values for the model, 

constraining the selection of optimal hyperparameters to those that resulted in an identification of 3 

clusters. The hyperparameters that are included in this search are the minimum cluster size, which 

specifies the minimum number of data points required for a cluster to be formed, and the minimum 

samples, which determines how many data points must be present within a local neighborhood for it 

to be considered a core point. 

The optimal hyperparameters are determined by selecting the value combinations that resulted in 

the highest average silhouette score. The silhouette score is a widely employed metric for assessing 

how effectively data points align with their respective clusters, considering both the average distances 

within clusters (intra-cluster distance) and the average distances between clusters (inter-cluster 

distance) [85]. Silhouette score is given by: 

𝑆(𝑥6) =
𝑏(𝑥6) − 𝑎(𝑥6)

max6𝑎(𝑥6), 𝑏(𝑥6)7
(21) 
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where 𝑏(𝑥6) is the minimum average distance from 𝑥6 to data points in a different cluster (inter-

cluster distance) and 𝑎(𝑥6) is the average distance from 𝑥6 to other data points within the same cluster 

(intra-cluster distance). The silhouette scores of all data points are averaged in order to evaluate the 

quality of the model’s clusters.  

Following a grid search, the optimal hyperparameter values for fitting the HDBSCAN model to the 

drive cycle interval dataset are found to be a minimum cluster size of 30 and 28 minimum samples. 

To provide a point of comparison that can be used to assess HDBSCAN’s suitability in this data 

exploration task, a K-means model was also tuned and fitted to the drive cycle interval dataset. The 

resulting clusters are illustrated in Figure 17. 

 

Figure 17. Comparison of clusters identified by HDBSCAN and K-means models fitted to the 

drive cycle interval data set. A label of -1 indicates discarded noise. 

As expected, the K-means model partitions the entire data set into the specified number of clusters. 

In contrast, HDBSCAN identifies regions of high cluster density and identifies noise with a label of  

-1. Consequently, the HDBSCAN algorithm is highly selective in defining relevant data points for 

cluster determination, discarding numerous data points as noise. Upon visually assessing the clusters, 

it becomes evident that the cluster labeled as 1 in K-means lacks cohesiveness compared to the other 

clusters. This is illustrated by the distinct linear groupings, or “striations”, of data points within the 

cluster that do not seem to be distributed in relation to a single high-density centroid. In comparison, 
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the HDBSCAN algorithm identifies distinct striations as their own separate clusters. As a result, the 

HDBSCAN clusters are visually more cohesive and seem to represent distinct regions of the dataset. 

This visual assessment aligns with the mean silhouette score of all clustered data points (refer to 

Table 3), indicating that HDBSCAN clusters yield a score that is 38.9 % higher than that of the K-

means clusters. 

Table 3. Comparison of silhouette scores for HDBSCAN and K-means clusters. 

Model HDBSCAN K-means 

Mean Silhouette Score 0.70215 0.50555 

 

By comparing the cluster centroids identified by the HDBSCAN model, the underlying driving 

conditions that the clustering models seem to have identified can be inferred. Table 4 contains a high-

level summary of the feature values at the cluster centroids and the inferred driving conditions for 

each cluster label. The driving conditions represented by each cluster label are inferred based on 

existing road classifications (i.e., local road, arterial road, highway) [86]. From the feature values at 

the cluster centroids, it is clear that there is enough distinction between the clusters to meaningfully 

differentiate between real-world driving conditions. With that said, the accuracy of the clusters can 

only truly be evaluated following the simulation and real-world testing of the completed online 

identification scheme to see if the cluster centroids correspond to coherent driving condition 

identifications. 

Table 4. Inference of driving conditions from HDBSCAN cluster centroids. See Appendix A for 

all 10 feature values for each cluster centroid. 

Label Velocity Acceleration 
Number of 

Stops 

Inferred 

Driving 

Condition 

0 Highest Lowest Lowest Highway 

1 Low Moderate Moderate Arterial 

2 Lowest Highest Highest Local 
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3.2.3 Fuzzy Inference  

Fuzzy logic employs approximate reasoning, mimicking human decision-making with vague 

information. It allows for partial membership between sets of ambiguous boundaries (e.g., “tall”, 

“beautiful”, “high”). At its core, fuzzy logic introduces the concept of a "fuzzy set," where an element 

can belong to a set to a certain degree, rather than being strictly in or out of the set. The fuzzy 

inference system for online driving condition identification is designed such that it has 10 inputs (data 

features in Table 1), 3 outputs (inferred driving conditions in Table 4), and utilizes "Low," "Medium," 

and "High" as fuzzy sets to describe all 10 inputs. 

In the context of identifying real-time vehicle driving conditions, a fuzzy inference system is 

particularly advantageous. It enables the incorporation of expert knowledge and linguistic rules, 

making it suitable for interpreting driving conditions that do not have precise numerical definitions. A 

fuzzy inference system consists of several components, including a rule base and an inference engine 

that processes these rules.  

Table 5. Correlation of input features to driving conditions using linguistic terms. 

Driving condition  Local  Arterial  Highway  

Average velocity  Low        Medium  High  

Average positive acceleration  High  Medium  Low        

Average negative acceleration  High  Medium  Low        

Standard deviation of velocity  Medium  High  Low        

Standard deviation of positive acceleration  High  Medium  Low        

Standard deviation of negative acceleration  High  Medium  Low        

Maximum velocity  Low        Medium  High  

Maximum positive acceleration  High  Medium  Low        

Maximum negative acceleration  High  Medium  Low        

Number of stops  High  Medium  Low        
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The rule base is a database of linguistic rules. It contains a set of "if-then" rules that link the input 

variables to the output variables. The inference engine then interprets these rules and generates 

appropriate outputs based on the input data. To construct the rule base, the input features of driving 

data must be defined by linguistic terms for each possible driving condition. This involves analyzing 

the feature values located at the centroids of the identified driving condition clusters, and 

comprehending their relationships with values in other clusters, as outlined in Table 5. The fuzzy rule 

base, which forms the foundation for inferring driving conditions, is subsequently derived based on 

these observed correlations in the following manner: 

1. If avg. velocity is low OR max. velocity is low, THEN driving condition is local. 

2. If avg. velocity is medium OR max. velocity is medium, THEN driving condition is arterial. 

3. If avg. velocity is high OR max. velocity is high, THEN driving condition is highway. 

4. If avg. positive acceleration is high OR std. positive acceleration is high OR  
max. positive acceleration is high, THEN driving condition is local. 

5. If avg. positive acceleration is medium OR std. positive acceleration is medium OR  
max. positive acceleration is medium, THEN driving condition is arterial. 

6. If avg. positive acceleration is high OR std. positive acceleration is high OR  
max. positive acceleration is high, THEN driving condition is highway. 

7. If avg. negative acceleration is high OR std. negative acceleration is high OR  
max. negative acceleration is high, THEN driving condition is local. 

8. If avg. negative acceleration is medium OR std. negative acceleration is medium OR  
max. negative acceleration is medium, THEN driving condition is arterial. 

9. If avg. negative acceleration is high OR std. negative acceleration is high OR  
max. negative acceleration is high, THEN driving condition is highway. 

10. If std. velocity is medium OR number of stops is high, THEN driving condition is local. 

11. If std. velocity is high OR number of stops is medium, THEN driving condition is arterial. 

12. If std. velocity is low OR number of stops is low, THEN driving condition is highway. 

Membership functions are a key component of a fuzzy inference system, representing the degree to 

which an element belongs to a fuzzy set. These functions map the input values to a membership 

degree, providing a basis for decision-making within the fuzzy system. In practice, the design of these 

functions is guided either by expert knowledge, which offers insights into the data's behavior, or 

through arbitrary definition, which, in the absence of robust information, can introduce uncertainties 

and inaccuracies into the system. Ideally, membership functions should be informed by a combination 
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of domain expertise and empirical evidence to ensure they accurately represent the underlying 

relationships within the data, leading to more reliable and meaningful inferences.  

By designing the membership functions such that they are centered on the feature values of the 

HDBSCAN cluster centroids, this desired combination of expert knowledge and data-driven 

empirical evidence is achieved. The resulting membership functions are thus representative of real-

world driving conditions as identified by the clustering process, while still preserving important 

context that can only be provided by foreknowledge (e.g., typical speed limits). For example, the 

membership functions associated with average velocity illustrated in Figure 18a are centered on their 

cluster centroid values, while their boundaries are established through informed approximations and 

iterative fine-tuning. The membership functions for the outputs (i.e., driving conditions) illustrated in 

Figure 18b are centered around arbitrary values that will later serve as reference points for 

determining the most probable driving condition. 

  

Figure 18. Membership functions for (a) average velocity input and (b) driving condition 

output. 

The proposed fuzzy inference system follows the standard working principles of a Mamdani-type 

fuzzy logic system. The process used by the online identification scheme for identifying driving 

conditions in real-time is outlined below: 
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1. Fuzzification: 10 input features from the most recently logged 500-meter interval of vehicle 

data are converted into fuzzy linguistic variables using membership functions. Each input value 

is mapped to a numerical value representing its degree of membership in the relevant linguistic 

term (i.e., "Low," "Medium," "High"). Likewise, the driving condition outputs are mapped to 

arbitrary values which their membership functions are centered on. 

2. Rule Evaluation: Each rule from the fuzzy rule base is evaluated by calculating the sum of the 

degrees of membership of the inputs to the linguistic terms defined in the antecedent of the rule 

(i.e., the if part). 

3. Rule Aggregation: The degrees of membership to each driving condition from each rule are 

aggregated using the probabilistic-OR equation: 

𝑝𝑟𝑜𝑏𝑜𝑟(𝐴, 𝐵) = 𝐴 + 𝐵 − 𝐴 ∗ 𝐵 (22) 

4. Defuzzification: The aggregated fuzzy output is converted to a crisp numerical value by 

finding the maximum of the aggregated probability distribution (i.e., mean of maximum) and 

taking the associated value of the x-axis.  

5. Labelling: The distance between the defuzzified value and the arbitrary values that the 

respective output membership functions are centered on is calculated. The driving condition 

that is closest to the defuzzified value is selected as the active control label.  

3.3 Adaptive Regenerative Braking Controller Design 

In this section, the design of an adaptive regenerative braking controller that adjusts to an 

individual driver’s deceleration preferences is discussed. The development of this controller is broken 

down into steps regarding the establishment of an objective function that accurately represents driver 

preferences, the formulation of the underlying optimization problem, and the implementation of the 

Q-learning algorithm to effectively learn the ideal regenerative braking deceleration. 

3.3.1 Objective Function 

Because human preferences can be complex and challenging to quantify, this research requires the 

definition of a metric that can effectively represent them. This metric serves as the foundation for the 

subsequent development of an optimization problem. Previous studies that sought to assess driver 

acceptability and trust of ADAS features measured driver preferences by analyzing their interactions 
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with the accelerator and brake pedals when the automated driving systems were in operation [87][88]. 

Following a similar approach, driver deceleration preferences will be quantified by analyzing pedal 

interventions during deceleration events.  

Within the context of regenerative braking, deceleration events will be considered as moments 

where the vehicle slows down while the accelerator pedal is not pressed. This means that 

decelerations that occur while the driver is adjusting the accelerator pedal position or coasting will not 

be considered since they do not represent decelerations from lift-off regenerative braking. 

Deceleration events are identified when the following conditions are met: 

1. Vehicle velocity is greater than 1 km/h 

2. Vehicle acceleration is negative 

3. Accelerator pedal position is equal to 0 

If all of these conditions are met, data logging is initiated and the accelerator and brake pedal 

positions are recorded for the duration of the deceleration event. The logging ends when either of the 

following conditions are met: 

1. Change in vehicle velocity between 0.5 second time steps is greater or equal to 0 km/h 

2. Vehicle velocity is less than 1 km/h 

The logged deceleration event is discarded if it is less than 1 second long, since these events are likely 

in response to sudden braking conditions or otherwise sudden adjustments that are not representative 

of typical driving. Excluding such brief and anomalous occurrences ensures that the recorded data 

accurately reflects typical driving behavior and contributes to a more reliable analysis of vehicle 

performance under everyday conditions. Figure 19 illustrates how deceleration events are identified in 

real-time using the above conditions. 



 

 42 

 

Figure 19. Example of deceleration event detections. 

In order to optimize the regenerative braking deceleration to a driver’s preferences, an objective 

function based on pedal interventions must be defined. This research proposes a driver intervention 

score to serve as a metric for representing how well drivers are satisfied with the rate of deceleration. 

The driver intervention score is calculated at the end of every deceleration event using logged pedal 

position data according to Equation 23: 

𝐷𝑟𝑖𝑣𝑒𝑟	𝐼𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛	𝑆𝑐𝑜𝑟𝑒 = 𝑤3
𝑎*6,−l

1
𝑛3
∑ 𝑎6)6

𝑎*6,
+𝑤2

𝑏*6,−l
1
𝑛2
∑ 𝑏6

)
6

𝑏*6,
(23) 

where 𝑎 and 𝑏 respectively denote accelerator and brake pedal data, 𝑤 is a weighting factor to 

penalize one form of pedal intervention more than the other, 𝑎*6, and 𝑏*6, are predefined maximum 

limits for accelerator and brake interventions, respectively, and 𝑛 is the number of measurements. The 

root mean square of the pedal position data is subtracted from and divided by the maximum limit in 
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order to calculate a relative percentage, with a higher relative percentage denoting less driver 

interventions. The maximum limits represent the highest root mean square of pedal position data that 

can be expected across all deceleration events. These limits are determined through empirical 

observations of simulation data from the drive cycles in Table 2. The parameter values that are 

selected for the calculation of driver intervention score are listed in Table 6. 

Table 6. Selected parameter values for the calculation of driver intervention score. 

Parameter Value 

𝑤3 0.6 

𝑤2 0.4 

𝑎*6, 0.06 m/s2 

𝑏*6, 0.3 m/s2 

 

Due to the wide range of factors that can cause a decrease in speed (such as slight speed 

adjustments, coming to a complete stop, or avoiding obstacles), the measurement of the driver 

intervention score is subject to considerable randomness. This stochastic nature means that the 

assessment of driver intervention cannot always be precisely attributed to the regenerative braking 

setting, especially if the driver's actions are influenced by external conditions beyond their control.  

To address these fluctuations and ensure a more accurate representation, the driver intervention 

score is smoothed by calculating the average score based on 5 deceleration events. This process 

involves discarding the highest and lowest scores and then averaging the remaining 3. By doing so, 

the variability in the measurement of the driver intervention score is minimized, the impact of unusual 

occurrences is reduced, and the score becomes a more reliable reflection of the combined effects of 

the regenerative braking strength and the driving conditions. 

3.3.2 Optimization Problem 

Finding the ideal regenerative braking strength for an individual driver hinges on the ability to 

translate the driver's preferences into a tangible optimization challenge. Having defined the proposed 

average driver intervention score as an objective function to be maximized, the next step is to validate 
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whether driver interventions do in fact have any bearing on an underlying deceleration preference.  

This is done by examining the patterns of driver interventions under different driving conditions and 

varying deceleration intensities, seeing whether the driver intervention score reaches a maximum at 

the anticipated regenerative braking strength. 

For a given deceleration event, let us assume that there is an ideal deceleration rate that precisely 

corresponds to the driver's preferred trajectory for that particular situation. If the deceleration due to 

regenerative braking is equal to that ideal rate, then it follows that the driver will not have to intervene 

with the pedals at all. This means that the regenerative braking strength can be optimized to a driver’s 

preference by tuning the regenerative braking deceleration such that driver intervention score is 

maximized.  

In order to test this hypothesis through simulation, we execute a drive cycle that involves 

predefined deceleration events with known rates of deceleration. Recall that the driver model used in 

simulation attempts to match the reference speed of a drive cycle as closely as possible by actuating 

the pedals. This means that we would expect to see pedal interventions at a minimum when we set the 

regenerative braking deceleration to the known rate. This further suggests that an ideally matched 

regenerative braking strength should yield the smallest error between the reference speed specified by 

the drive cycle and the actual speed of the vehicle since the driver will need to make fewer 

adjustments to the vehicle’s speed during deceleration. 

A drive cycle solely comprising of decelerations at a rate of 0.6 m/s2 is designed. Using the 

MATLAB/Simulink model environment, multiple simulations are conducted where the lift-off 

regenerative braking deceleration is iteratively increased in increments of 0.02 m/s², ranging from 

0.26 m/s² to 2 m/s² for each iteration of the drive cycle simulation. At the conclusion of each iteration, 

the average driver intervention score and the average speed error throughout the drive cycle are 

recorded.  
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Figure 20. Results from iterating regenerative braking strength in a simulated drive cycle with 

known decelerations of 0.6 m/s2 showing the relation between (a) average driver intervention 

score and (b) average speed error. 

The results illustrated in Figure 20 indicate that the hypothesis holds true: aligning the lift-off 

regenerative braking strength with the desired deceleration rate of 0.6 m/s2 leads to a peak in the 

driver intervention score and a minimum in the speed error. The alignment of the peaks and valleys of 

the evaluation metrics suggests that the proposed driver intervention score truly reflects how closely 

the vehicle's response corresponds to the driver's intention. Consequently, this score can serve as a 

reliable indicator of the driver's preferences, even in real-world situations where a reference velocity 

may not be available. The findings of these simulations also reaffirms the notion that optimizing 

regenerative braking strength can effectively lessen driver fatigue, assuming the driver's preference 

for deceleration remains consistent across various deceleration instances under similar driving 

conditions. 

The subsequent phase in ensuring that the driver intervention score is suitable for optimization 

involves examining whether it is impacted by driving conditions. Drawing from the existing research, 

we would expect that different driving conditions would have independent objective functions 

relating regenerative braking deceleration to driver intervention score. To verify this, we apply the 

same method of incrementing regenerative braking strength across iterations of drive cycle 

simulations to both the WLTC and UDDS drive cycles. These specific drive cycles are chosen as they 
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encompass all three driving condition labels according to the online identification system. To ensure 

that there are enough deceleration events for each driving condition (bearing in mind that the score is 

computed as the pruned average of 5 events), each drive cycle is repeated 5 times for every iteration. 

 

Figure 21. Driver intervention objective functions across driving conditions in (a) UDDS and (b) 

WLTC drive cycles. 

As shown in Figure 21, it is evident that distinct driving conditions are linked with distinct 

objective functions, each corresponding to a unique optimal regenerative braking strength. For the 

UDDS drive cycle, the highest driver intervention scores were observed at 0.82 m/s², 0.66 m/s², and 

0.54 m/s² for local, arterial, and highway driving conditions, respectively. On the other hand, for the 

WLTC drive cycle, the peak scores were recorded at 0.78 m/s², 0.58 m/s², and 0.58 m/s² for local, 

arterial, and highway driving conditions, respectively. This is in line with the expectation that 

deceleration rates are higher in urban environments and that stronger regenerative braking should lead 

to fewer driver interventions in local conditions, but more interventions in highway conditions. 
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Figure 22. Real-world local drive cycle routes. 

So far we have confirmed that the driver intervention score reaches its highest point at a specific 

desired deceleration rate and varies depending on the driving conditions. To ensure that this score is 

an appropriate objective function, the final step is to investigate whether the same driver, when 

driving on different routes of the same driving condition, exhibits similar deceleration preferences 

throughout. If not, then a learning algorithm would never converge to an optimal regenerative braking 

strength since the desired decelerations would change with every new route. In accordance with this 

final validation step, two real-world local drive cycles on separate routes within the vicinity of the 

University of Waterloo campus (see Figure 22) are recorded with the same driver. The resulting speed 

profiles for the two drive cycles are illustrated in Figure 23. 
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Figure 23. Real-world local drive cycles collected on (a) Route A and (b) Route B. 

Following the same approach as before, the two real-world drive cycles are then simulated in the 

MATLAB/Simulink environment. As demonstrated in Figure 24, the driver intervention score reaches 

its highest point at 0.76 m/s2 on Route A and 1.18 m/s2 on Route B. Despite this disparity, it is 

important to note that the objective function for Route B is non-convex and has a local maximum at 

0.70 m/s2, which is only 8 % less than the global maximum of Route A’s objective function. The 

minor variation between the peaks indicates that although the absolute best deceleration rates may 

differ for individual drive cycles on different routes within the same condition, there exists a common 

local maximum representing the driver's general preferred deceleration rate for that condition. 

 

Figure 24. Driver intervention objective functions for real-world drive cycles on (a) local route 

A and (b) local route B. 
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Based on these findings, we can infer that the driver intervention score serves as an appropriate 

objective function for optimizing the regenerative braking deceleration rate. Peak scores coincide 

with anticipated regenerative braking decelerations when decelerations are known, diverse driving 

conditions exhibit distinct objective functions, and the same driver shows reasonably consistent 

deceleration preferences across different routes within the same condition. These attributes suggest 

that a learning algorithm, capable of navigating non-convex objective functions, can converge to the 

driver's general preferred deceleration rate for each specific driving condition. 

3.3.3 Q-Learning 

Having established that each driving condition requires a distinct objective function for optimizing 

condition-specific regenerative braking strength, the subsequent task is to create an online 

optimization scheme capable of identifying the optimal regenerative braking strength for each driving 

condition in real-time. Real-world driving is stochastic and dynamic, making outcomes of 

deceleration events unpredictable. As shown in Figure 25, the driver intervention score fluctuates 

significantly across deceleration events despite having the same lift-off regenerative braking 

deceleration, highlighting the challenge of traversing the objective function using a search algorithm. 

The algorithm for optimizing regenerative braking strength must therefore be able to handle noisy 

data and adapt to uncertain environments. 

 

Figure 25. Example of average driver intervention scores triggered after every 5 deceleration 

events. 



 

 50 

Reinforcement learning is well-suited for this online optimization tasks due to its ability to handle 

environments with unknown dynamics. Reinforcement learning algorithms — also referred to as 

“agents” — continuously learn from their environments in an iterative fashion. They learn to make 

optimal decisions through trial and error, updating their knowledge base established on accumulated 

feedback received from the environment. This makes these algorithms adaptable to changing 

conditions and capable of finding the best actions to take in real-time, which is essential for online 

optimization where the environment is dynamic. In this thesis' optimization problem, a reinforcement 

learning algorithm must update its regenerative braking deceleration selection based on driver 

intervention score feedback received every 5 deceleration events. 

One of the fundamental elements of reinforcement learning is the formulation of the problem as a 

Markov decision process (MDP). MDP is a control process for making decisions in situations where 

outcomes are uncertain, and its framework consists of a set of states, actions, and rewards. The 

process gets its name from the Markov property, which asserts that future states depend solely on the 

current state and the action taken. Consider a chess game, where the current state represents the 

positions of all pieces on the board, and the action taken is the move made by one of the players. In 

this context, the Markov property assumes that the future state of the game (the new board 

configuration) depends only on the current state (the current board) and the action (the player's 

move), without needing to consider all previous moves or game history.  

In order to enable the use of reinforcement learning in the regenerative braking optimization task, 

an MDP representing the problem at hand must be formulated. The MDP representing the 

regenerative braking optimization problem is formulated as follows: 

1. States: The possible set of states 𝑆 includes all regenerative braking deceleration targets 

between 0.2 m/s2 and 2 m/s2 in increments of 0.08 m/s2: 

𝑆 = {𝑥|𝑥 = 0.2 + 0.08𝑛, 𝑛 ∈ ℤ, 0.2 ≤ 𝑥 ≤ 2} (24) 

2. Actions: The possible set of actions 𝐴 includes taking a negative step in deceleration, 

staying at the current deceleration, and taking a positive step in deceleration: 

𝐴 = {−𝑠𝑡𝑒𝑝, 0, +𝑠𝑡𝑒𝑝} (25) 



 

 51 

3. Rewards: The reward function is based on the relative difference between the current 

driver intervention score and the best recorded score, followed by a series of conditional 

rules outlined in Figure 26. 

 

Figure 26. Pseudo-code representing the reward function of the formulated MDP. 

The Q-learning algorithm [89] is of particular interest for the regenerative braking optimization 

task. Unlike other reinforcement learning algorithms, Q-learning does not require a model of the 

underlying dynamics of the system, which is especially critical in this application since each driver 

will interact with the vehicle’s regenerative braking system differently. Additionally, Q-learning does 

not require extensive memory resources, making it a practical and efficient choice for embedded 

automotive applications. 

The Q-learning algorithm operates through an iterative process, aiming to learn the optimal action-

selection policy for a given MDP. It accomplishes this by continuously updating a look-up table 

(known as the Q-table) which contains the expected cumulative rewards (known as Q-values) 

associated with taking various actions at each state within the MDP. During the execution of the 

algorithm, an agent interacts with the environment, receiving state information and selecting actions 

to maximize its long-term reward. A flow chart of this process as it relates to the optimization of 

regenerative braking is illustrated in Figure 27. 
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Figure 27. Flowchart of Q-learning process. 

The Q-learning algorithm uses a temporal difference approach to update the Q-values in the table 

based on the received rewards and the Q-values of the next state. This update is driven by the 

Bellman equation: 

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼	𝑅(𝑠, 𝑎) + 𝛾max𝑄?(𝑠?, 𝑎) (8) 

where 𝑄(𝑠, 𝑎) is the current Q-value for that state-action pair, 𝛼 is the learning rate, 𝑅(𝑠, 𝑎) is the 

reward received for the current state-action pair, 𝛾 is the discount rate, and max𝑄?(𝑠?, 𝑎) is the 

maximum expected future reward for the next state as a result of the current action. The Bellman 

equation enables the algorithm to refine the estimates of the expected rewards for each action in each 

state. Through repeated interactions with the MDP, the Q-learning algorithm gradually hones the 

values in the Q-table, ultimately converging towards the optimal action-selection policy that 

maximizes the cumulative reward over time.  

As the agent continues to explore the MDP, it balances the exploration of new states and actions 

with the exploitation of the knowledge accumulated in the Q-table, enabling it to make informed 
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decisions while gradually improving its policy for maximizing long-term rewards. The Q-learning 

algorithm used in this research is designed such that exploration is high in the early stages of learning, 

meaning that the agent is more prone to selecting random actions. As learning progresses, the rate of 

exploration decays exponentially, causing the agent to be more prone to selecting the action with the 

highest Q-value. Likewise, the learning rate is also designed to decay exponentially, meaning that the 

Q-values will change less drastically as learning progresses. The full code showing the 

implementation of the Q-learning algorithm and its exponentially decaying learning parameters is 

included in Appendix B. 

Having designed a Q-learning algorithm to learn the optimal regenerative braking deceleration for 

an individual driver, the subsequent step involves evaluating its capability to navigate driver 

intervention objective functions and locate the peaks. The driver intervention objective functions for 

each driving condition obtained from the simulations of UDDS are used for this evaluation.  

 

Figure 28. Search paths of Q-learning agent on objective functions of (a) local, (b) arterial, and 

(c) highway driving conditions in UDDS. The dotted red line indicÍates the location of the true 

optimum, the opacity of the black circles represents how often a state is visited, and the red star 

indicates the final optimal state selected by the agent. 

Figure 28 illustrates the algorithm’s search trajectory over 100 iterations as the agent hones in on 

the perceived optimal state for each individual objective function. The agent is able to find the exact 

peak of the highway objective function, while its optimal states for the local and arterial objective 

functions are associated with an error of 4.9 % and 18.2 %, respectively. The large error associated 
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with the arterial driving condition is mostly due to the fact that the objective function contains a 

plateau rather than a distinct peak. As a result, this error can be deemed insignificant when we 

consider that the difference in driver intervention score between the true peak at 0.66 m/s2 and the 

selected optimum of 0.78 m/s2 is only 0.2 %. Another source of error is that the step size of 0.08 m/s2 

often does not allow the agent to land on the precise peak of the objective function. However, through 

experimentation with smaller step sizes, it was discovered that the agent's likelihood of getting 

trapped in local optima increased. Opting for a larger step size enables the agent to navigate through 

noisy, non-convex data, which is necessary for the real-world implementation of the algorithm. 

Keeping the step size at 0.08 m/s2 allows the agent to follow the overall trend path rather than getting 

stuck on individual fluctuations in the objective function, while also leading to acceptable accuracy. 

3.3.4 Control Process 

 The following is a summary of the overall control process for the adaptive regenerative braking 

controller: 

1. Three Q-learning agents for each respective driving condition are initialized. The initial 

regenerative braking deceleration rate for all driving conditions is selected as 0.5 m/s2. 

2. During vehicle operation, the controller receives a driving condition label from the online 

driving condition identifier at every 500-meter interval. 

3. The Q-learning agent for the active driving condition label receives a reward based on the 

driver intervention score for the past 5 deceleration events. 

4. The Q-learning agent selects an action to decrease, maintain, or increase the desired 

regenerative braking deceleration for the current driving condition. 

5. The desired regenerative braking deceleration is output to the vehicle’s torque controller. 

6. Steps 2-5 are repeated indefinitely, with the controller’s exploration and learning rates 

decaying exponentially at every 25 deceleration events. 

3.4 Simulation Methodology 

In this section, the methodology for evaluating the performance of the adaptive regenerative 

braking controller will be discussed. The online driving condition identifier is tested in isolation 

before the combined adaptive regenerative braking control system is tested as a whole. 
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3.4.1 Online Driving Condition Identifier 

The online driving condition identifier is implemented in the MATLAB/Simulink environment 

containing the target electrified vehicle model discussed in Section 3.1. The driving condition 

identifications based on HDBSCAN-informed fuzzy inference are compared with a simpler baseline 

scheme across drive cycle simulations. This baseline scheme uses only average velocity 

measurements and compares them with the corresponding HDBSCAN cluster centroids via Euclidian 

distance in order to make its online identifications. 

The drive cycles selected for simulation testing represent a comprehensive variety of driving 

conditions. Firstly, the ARTEMIS Urban, Road, and Motorway cycles [90] are selected since the 

drive cycles individually specify different driving conditions, so the expected “ground truth” of 

driving conditions is generally known from the names of the drive cycles themselves. These drive 

cycles contain different driving conditions that are experienced throughout three known driving 

scenarios, as specified in the drive cycle names. In fact, the ARTEMIS drive cycles are designed 

based on a total of 12 driving conditions derived from speed profiles, confirming that these drive 

cycles do in fact demonstrate transient driving conditions. Secondly, the WLTC drive cycle is 

selected since it clearly delineates between phases of different driving conditions throughout the 

cycle, making the determination of the ground truth straightforward.  

The identification schemes are evaluated based on their accuracy when compared to the ground 

truth driving conditions as well as their stability. The accuracy of each scheme’s predictions across 

the drive cycle segments is calculated based on distance traveled with the correct identification label. 

The stability of the predictions is determined based on how many transitions of the identification 

labels occur throughout the drive cycle. 

3.4.2 Adaptive Regenerative Braking Controller 

The combined online driving condition identification and adaptive regenerative braking control 

scheme is implemented into the torque controller of the vehicle model in the MATLAB/Simulink 

environment. Through this setup, simulations of UDDS and WLTC drive cycles are executed. These 

particular drive cycles are deliberately selected as they encompass all three driving conditions, 

facilitating a comprehensive evaluation of the proposed control scheme's effectiveness across diverse 

driving scenarios. 
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Throughout these simulated drive cycles, we record the regenerative braking deceleration rate 

determined by the Q-learning agent alongside the average driver intervention score for each 

respective driving condition. The performance of the adaptive regenerative braking controller is 

evaluated through both qualitative and quantitative analyses. Qualitatively, we examine the 

convergence of the deceleration rate, while quantitatively, we assess the change in the average driver 

intervention score throughout the drive cycle. Notably, a reduction in interventions implies enhanced 

driving comfort, making it a crucial indicator of the controller's effectiveness.  

3.5 Real-World Experiment Methodology 

As with the simulation methodology, the two components of the adaptive regenerative braking 

controller are tested individually through real-world experimentation. For experiments of both 

systems, the same controller used in simulation testing is refactored for real-time hardware. It is 

flashed onto a dSPACE MicroAutoBox II, which is an automotive-grade controller used in vehicle 

prototyping. The embedded hardware compatibility of the online driving condition identifier and the 

combined adaptive regenerative braking controller are assessed by the successful flashing and 

uninterrupted real-time performance of both systems. The controller is deployed on a FHEV designed 

by the University of Waterloo Alternative Fuels Team (UWAFT) as part of the EcoCAR Mobility 

Challenge. 

 

Figure 29. Electrified test vehicle designed by UWAFT used for real-world experiments. 
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3.5.1 Online Driving Condition Identifier 

The test vehicle is driven on a real-world drive cycle of known driving conditions based on road 

classifications as specified in the Ontario Road Network [91]. The route of this real-world drive cycle 

is designed to represent known transitions between “local road” and “arterial road” conditions. The 

drive cycle route is planned in the vicinity of the University of Waterloo campus. As illustrated in 

Figure 30, it begins with a driving segment on local roads, followed by a segment on arterial roads, 

and finally concluded with a return to local roads for the last segment of the drive cycle. This is meant 

to test the online identification scheme’s performance across real-world transitions in driving 

conditions. Note that the local driving segments occur on Route A (Figure 22).  

 
Figure 30. Driving route for online driving condition identifier experiment. 

Driving condition labels are collected from the embedded vehicle controller throughout the drive 

cycle. As with the simulations, the labels produced by the fuzzy inference system are evaluated 

against a baseline identification scheme driven by average velocity only. This evaluation is done by 
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comparing their accuracy (based on distance traveled with the correct label) and stability (based on 

the number of label transitions). 

3.5.2 Adaptive Regenerative Braking Controller 

The adaptive regenerative braking control scheme is tested by continuously driving the test vehicle 

with the same driver, while the Q-learning agent learns the driver's preferred rate of deceleration 

during lift-off regenerative braking. To manage the duration of the experiment, the vehicle is 

exclusively driven on a local road segment. This approach avoids impractical experiment durations 

that would arise if numerous deceleration events across all three driving conditions were necessary 

for the agent to converge to the desired deceleration rates for each driving condition. Furthermore, the 

reduced speeds in local driving conditions help mitigate the associated risks when testing an 

experimental controller in real-world environments. The local road segment used in this 

experimentation is Route A from the online driving condition identifier test. 

While the adaptive regenerative braking controller is engaged, the average driver intervention 

scores are documented over the entire drive cycle. The drive cycle is then repeated twice. Firstly, a 

constant regenerative braking deceleration of 0.5 m/s² is used as a conservative baseline, and 

secondly, a constant regenerative braking deceleration of 1.6 m/s² is employed as an aggressive 

baseline. The value of the conservative baseline is arbitrarily made equal to the starting point from 

which the Q-learning agent begins its search of the optimal deceleration rate, thereby representing 

what the deceleration would be if the same scheme were used with no Q-learning agent. Conversely, 

the aggressive baseline value is derived from the publicly available deceleration rate for lift-off 

regenerative braking in the BMW i3 [92], serving as a representative example of the deceleration 

rates commonly employed by manufacturers [78]. 

In a similar approach to the simulation testing, the regenerative braking deceleration rate and the 

average driver intervention score throughout the continuous repetitions of the local road segment are 

analyzed. The performance of the adaptive controller is assessed by examining the convergence of the 

Q-learning agent as well as the change in the average driver intervention score throughout the drive 

cycle. The average driver intervention scores are compared against those collected from the baseline 

deceleration rates. 
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Chapter 4  
Results and Discussion 

The present section provides an analysis of the results obtained from the evaluation of the online 

driving condition identifier and the adaptive regenerative braking control scheme, which are 

discussed in separate sub-sections. Initially, a comparison is drawn between the driving condition 

identifications based on the HDBSCAN-informed fuzzy inference and a simpler baseline scheme 

utilizing average velocity measurements. Subsequently, the evaluation extends to the implementation 

of the adaptive regenerative braking control scheme, which is compared with a baseline 

implementation that is representative of an industry-standard. The results span two testing phases for 

each sub-section: a simulation phase performed within the MATLAB/Simulink environment on 

various simulated drive cycles, and a real-world experimentation phase where the embedded 

hardware compatibility and real-time performance of the control scheme is assessed.  

4.1 Online Driving Condition Identifier 

The online driving condition identifier was evaluated across simulation and experimental tests. 

Across these tests, two variants of the online identification scheme were compared in order to 

highlight the advantages of the proposed identifier over a simpler method. These variants consisted of 

the HDBSCAN-informed fuzzy inference system (FIS) and the baseline system (B) driven by average 

velocity measurements only. 

4.1.1 Simulation Results 

The two variants of the online identification scheme were implemented into the same 

MATLAB/Simulink vehicle model used to collect the clustering data. The efficacy of the driving 

condition identifications, comparing HDBSCAN-informed fuzzy inference with a simplified baseline 

scheme, was examined across various drive cycle simulations across two test cases. For the first 

simulation test case, the performance of the online driving condition identifier was assessed on three 

drive cycles each representing a different driving condition. These drive cycles are the ARTEMIS 

Urban, Road, and Motorway cycles. For the second simulation test case, the identifier’s ability to 

transition between all driving conditions within a single drive cycle was evaluated. The drive cycle 

used for this test case was the WLTC. 
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4.1.1.1 Test Case 1: Drive cycles with single dominant driving condition 

All three ARTEMIS drive cycles were simulated, with the expectation being that the majority of 

identification labels would correspond with the nominal driving condition stated in the drive cycle 

name (i.e., Urban, Road, Motorway). As such, the main quality being evaluated in this test case is the 

stability of the predicted driving condition label throughout the drive cycles, with the assumption that 

good performance is characterized by a greater proportion of the predicted labels associated with the 

dominant driving condition label as well as fewer label transitions throughout the drive cycle. 

 

Figure 31. Online driving condition identifications across simulated ARTEMIS (a) Urban, (b) 

Road, and (c) Motorway drive cycles. 

The resulting online identifications are illustrated in Figure 31, where labels of 0, 1, and 2 denote 

local, arterial, and highway driving conditions, respectively. The identifications produced by the FIS 

demonstrated notable distinctions from those generated by the baseline variant across all three cycles, 

emphasizing the substantial impact of additional cluster features beyond average velocity on driving 

condition predictions. The HDBSCAN-based identifications exhibited reduced sensitivity to velocity 
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fluctuations, leading to delayed or entirely avoided label transitions. Consequently, a visual inspection 

of the identification trace over time indicates a more stable driving condition label signal for the FIS 

compared to the baseline system. This improved stability can be attributed to the augmented "inertia" 

resulting from the incorporation of all ten cluster features, thereby dampening the system's sensitivity 

to individual measurements. 

The quantitative results of the ARTEMIS drive cycle simulations are summarized in Table 7. When 

examining the frequency of label transitions throughout each drive cycle, it becomes evident that both 

the FIS and the baseline scheme generally identified a similar number of transitions. However, in the 

Urban cycle, the FIS identifies 2 fewer label transitions compared to those detected by the baseline 

scheme. If we consider each ARTEMIS drive cycle as predominantly indicative of a single driving 

condition, a decrease in transitions away from this dominant condition can be interpreted as an 

improvement in performance due to a more consistent driving condition label. This in turn can lead to 

a more predictable regenerative braking response, thereby contributing to a smoother overall driving 

experience. In this regard, the FIS outperforms the baseline scheme in local driving conditions. 

Table 7. Summary of online driving condition identifications across simulated ARTEMIS drive 

cycles. The dominant driving condition for each drive cycle is shaded in grey. 

ARTEMIS 

Drive Cycle 

Online ID Variant Label 

Transitions 

Proportion 

of Local 

Labels (%) 

Proportion 

of Arterial 

Labels (%) 

Proportion 

of Highway 

Labels (%) 

Urban 
Baseline 4 60.0 40.0 0.0 

Fuzzy Inference System 2 70.0 30.0 0.0 

Road 
Baseline 7 2.9 31.4 65.7 

Fuzzy Inference System 7 5.7 62.9 31.4 

Motorway 
Baseline 3 1.8 5.3 92.9 

Fuzzy Inference System 3 1.8 7.0 91.2 

 

Regarding the amount of time spent with the dominant driving condition label, if we designate the 

dominant driving conditions for the Urban, Road, and Motorway cycles as local, arterial, and 
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highway, respectively, then a more precise online identifier would be characterized by a higher 

proportion of driving condition labels corresponding to the dominant driving condition. Both schemes 

identified a similar proportion of driving conditions within the Urban and Motorway cycles, with the 

differences in dominant label proportion being the result of only one 500-meter interval of the drive 

cycle being labelled differently. However, the FIS performs significantly better than baseline in the 

identification of arterial driving conditions, identifying the dominant driving condition 62.9 % of the 

time when compared to the baseline’s 31.4 %. This doubling of dominant label identifications can 

once again be explained by the FIS’ reduced sensitivity to any one single cluster feature, leading to 

enhanced stability at the boundaries between driving conditions. This can be extrapolated to say that 

the HDBSCAN-informed FIS would produce driving condition labels that would result in more 

appropriate changes to the regenerative braking strength.  

Although the simulations of the ARTEMIS drive cycles offer a broad perspective on the stability of 

the online driving condition identifier, the proportion of the dominant driving condition label serves 

only as a general gauge of the identifier's accuracy. These simulations do not provide definitive 

insights into whether label transitions within each drive cycle were accurate or erroneous, as it 

remains unclear whether these drive cycles were intentionally designed to incorporate specific 

sections representing distinct driving conditions. The ARTEMIS drive cycles are each composed of 

transient driving conditions that are not immediately apparent beyond visual inspection of the drive 

cycle velocity traces. This is especially the case for drive cycles that transition across a range of 

velocities, such as ARTEMIS Road. In order to evaluate the accuracy of the predictions, the identifier 

needs to be tested on a drive cycle whose driving conditions are known a priori. 

4.1.1.2 Test Case 2: Drive cycle with all three driving conditions 

The WLTC drive cycle clearly delineates between phases of different driving conditions, making it 

possible to evaluate the accuracy of the online driving condition identifier. This was done by 

comparing the predicted driving condition labels with the ground truth throughout the drive cycle. 

The WLTC is composed of four speed phases as outlined in Table 8. While these speed phases do not 

directly line up with the three driving conditions identified through HDBSCAN clustering, we can 

infer the driving condition that represents each phase the best by comparing the characteristic 

parameters of each phase to the values of the cluster centroids. The “Low” phase is most similar to 
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the local driving condition, the “Medium” phase is most similar to the arterial driving condition, and 

both “High” and “Extra High” phases are most similar to the highway driving condition. 

Table 8. Characteristic features of each phase of WLTC [93]. 

Phase Duration 

(s) 

Time-

stamp (s) 

Stop 

Duration 

(s) 

Max. 

Velocity 

(km/h) 

Avg. 

Velocity 

(km/h) 

Min. 

Accel. 

(m/s2) 

Max. 

Accel. 

(m/s2) 

Low 589 0 156 56.5 25.7 -1.47 1.47 

Medium 433 589 48 76.6 44.5 -1.49 1.57 

High 455 1022 31 97.4 60.8 -1.49 1.58 

Extra High 323 1477 7 131.3 94.0 -1.21 1.03 

 

The online identifications throughout the simulated WLTC drive cycle are illustrated in Figure 32, 

while the corresponding quantitative results are outlined in Table 9. The FIS exhibited significant 

improvement compared to the baseline in identifying local and arterial driving conditions, achieving a 

16.5 % and 10.2 % increase in accuracy, respectively. The improvement in accuracy for these 

conditions confirms that incorporating all 10 cluster features into the inputs of the fuzzy inference 

system enhances the online identifier's ability to accurately differentiate between driving conditions. 

This conclusion stems logically from the notion that gathering a broader range of vehicle data 

increases the likelihood of fully capturing the characteristics of distinct driving conditions. Both 

variants of the online identifier performed identically in highway conditions, suggesting that vehicle 

velocity was the primary indicator of highway conditions in this particular drive cycle. 

Table 9. Summary of online driving condition identifications in simulated WLTC drive cycle. 

Online ID Variant Identification Accuracy (%) 

Local Arterial Highway Overall 

Baseline 50.6 79.7 77.4 69.2 

Fuzzy Inference System 67.1 89.9 77.4 78.1 
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When assessing accuracy across the entire drive cycle, the FIS demonstrated an overall accuracy of 

78.1%, surpassing the baseline variant's 69.2 % accuracy. This 8.9 % enhancement suggests that 

utilizing HDBSCAN clustering in the development of a data-driven fuzzy inference system would 

yield more dependable predictions of driving conditions, at least in simulation. However, although the 

correlation of driving conditions with different speed phases of the WLTC cycle facilitated a broad 

evaluation of the online identifier's accuracy, this mapping remains an estimation rather than an 

absolute determination of ground truth. For example, even though we associated the "Low" speed 

phase with local driving conditions, Figure 32 illustrates a brief period between 200 seconds and 350 

seconds of the drive cycle characterized by a temporary increase in speeds and reduced stops, 

potentially justifying its classification as an arterial driving condition. Nonetheless, as the entire phase 

is designated as indicative of local driving conditions, the assignment of arterial conditions by both 

versions of the online identifier is deemed to be inaccurate. 

 

Figure 32. Online driving condition identifications across simulated WLTC drive cycle. 

To achieve a more precise assessment of driving condition label accuracy, we must create a 

customized drive cycle with a more detailed classification of driving conditions. Conducting this 

customized drive cycle in real-world settings would enable us to explicitly determine the ground truth 

at every moment for a more precise calculation of accuracy. 
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4.1.2 Experimental Results 

 

Figure 33. Online driving condition identifications during real-world drive cycle while deployed 

on embedded hardware. 

The online driving condition identifier was successfully flashed onto the MicroAutoBox II 

embedded controller, thereby confirming its compatibility with real-time hardware applications. A 

real-world drive cycle representing local and arterial driving conditions was performed using the 

UWAFT test vehicle. The transitions between driving condition segments were logged, allowing for 

an establishment of a precise ground truth throughout the drive cycle. The characteristics of each 

drive cycle segment are listed in Table 10.   

Table 10. Characteristics of real-world drive cycle segments. 

Characteristic Local Segment 1 Arterial Segment 1 Local Segment 2 

Distance (m) 2387 2966 1237 

Duration (s) 352 325 238 

Timestamp (s) 0 352 677 
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The real-time driving condition identifications, recorded by the online identifier while both the FIS 

and baseline versions were operating concurrently, are depicted in Figure 33. The FIS identifications 

demonstrated superior stability compared to the baseline, notably excluding an incorrect shift to an 

arterial driving condition label at roughly 180 seconds, as observed in the baseline identifications. 

This supports the findings from the simulation testing, in which the FIS identifications also exhibited 

greater stability. Additionally, both versions of the identifier accurately recognized the actual 

transitions between local segment 1 and arterial segment 1, as well as between arterial segment 1 and 

local segment 2. This implies that the HDBSCAN-based online driving condition identifier is capable 

of effectively detecting driving condition changes, even in the presence of challenges often 

encountered during real-world testing, such as signal noise and time synchronization issues. This 

further supports the system’s compatibility with real-time applications. 

Table 11. Summary of online driving condition identifications in real-world drive cycle. 

Online ID Variant Identification Accuracy (%) 

Local Arterial Overall 

Baseline 68.9 79.2 74.1 

Fuzzy Inference System 82.6 79.2 80.9 

 

Comparison between logged driving condition labels and real-world ground truth, detailed in Table 

11, revealed that FIS identifications improved overall accuracy by 6.8 %. This improvement primarily 

stemmed from more accurate identifications of local driving conditions, with the FIS correctly 

identifying local conditions for 82.6 % of segments, compared to the baseline scheme's 68.9 %. The 

FIS's reduced sensitivity to velocity led to fewer erroneous label transitions, consistent with findings 

from simulation testing. Both online identifier variants performed identically during the arterial 

segment, with inaccuracy mainly due to label transition delays from the 500-meter sampling interval. 

The accurate identification of driving conditions and the reduction in misidentified transitions 

imply that using the proposed FIS-based online driving condition identifier with an adaptive 

regenerative braking controller would facilitate a more effective learning process compared to a 

simpler identification scheme like the baseline variant in this study. This is because incorrect driving 
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condition labels would result in the wrong Q-learning agent being activated, thereby causing the agent 

to learn a regenerative braking strength for the wrong driving condition. 

The experimental tests of the online driving condition identifier successfully met the research 

objectives of compatibility with automotive-standard embedded hardware and accurate driving 

condition identification through the innovative application of HDBSCAN clustering. To fulfill the 

remaining goals, the online driving condition identifier will be combined with an adaptive 

regenerative braking controller to determine a driver’s optimal regenerative braking strength 

according to the driving condition labels. 

4.2 Adaptive Regenerative Braking Controller 

The adaptive regenerative braking (ARB) controller was constructed by combining the online 

driving condition identifier with the Q-learning agent. The performance of the ARB controller was 

assessed through qualitative and quantitative analyses in simulation and real-world testing 

environments, following a similar methodology to what was done to evaluate the online driving 

condition identifier. The ARB control scheme was simulated by integrating it within an electrified 

vehicle torque controller that was first tested in MATLAB/Simulink before being flashed onto the 

embedded supervisory controller of a real-world electrified vehicle for experimental testing. The 

ARB controller was evaluated based on its ability to converge to a desired deceleration rate that 

resulted in fewer driver interventions. 

4.2.1 Simulation Results 

The ARB control scheme was first tested in a simulation of the UDDS drive cycle. The drive cycle 

was repeated until all three Q-learning agents associated with each driving condition converged to a 

deceleration rate. The convergence criterion was defined as the moment at which all three agents 

went a full two drive cycles without changing the desired lift-off regenerative braking deceleration. 

The search path of all three Q-learning agents throughout the repeated UDDS drive cycles is 

illustrated in Figure 34. The convergence criterion was met after 14 repetitions of the drive cycle, 

which corresponds to approximately 169 kilometers of driving. The convergence of the ARB scheme 

was mainly encumbered by the low frequency of deceleration events in highway driving conditions, 

thereby slowing down the learning process for that agent. The agent associated with local driving 

conditions was the first to initially stabilize its deceleration output, doing so within 36 kilometers of 
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driving. However, a subsequent exploration phase interrupted its convergence. The agent that 

converged the soonest was the one associated with arterial driving conditions, which converged after 

approximately 96 kilometers.     

 

Figure 34. Online learning of optimal regenerative braking deceleration rates during repeated 

UDDS drive cycles. 

Recall the driver intervention score objective functions associated with each driving condition of 

the UDDS drive cycle (Figure 21). We can assess the optimality of the Q-learning agent's converged 

deceleration values by comparing them with the known peaks of each objective function. Table 12 

presents a comparison between the regenerative deceleration rates selected by the agents during 

online learning and the true optimum determined from the peaks of the objective functions. All three 

agents converged to within one 0.08 m/s2 step of the optimal peaks, resulting in errors 0.0 %, 12.1 %, 

and 7.4 % for local, arterial, and highway driving conditions, respectively. This confirms that the 

ARB control scheme can effectively use online learning to locate the optimal deceleration rates 

within the search space with acceptable accuracy. 
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Table 12. Comparison of learned and true optimal regenerative braking decelerations identified 

in UDDS drive cycle. 

Driving Condition Regen. Deceleration (m/s2) 

Learned Optimum True Optimum 

Local 0.82 0.82 

Arterial 0.58 0.66 

Highway 0.50 0.54 

 

To verify whether the ARB control scheme achieves a reduction in driver interventions throughout 

the simulated UDDS cycles, a moving average of the driver intervention score for each driving 

condition was logged. The same number of drive cycles was then repeated using two baseline 

regenerative braking control schemes; one using a conservative constant regenerative braking 

deceleration of 0.5 m/s2 (CRB_0.5), and the other using an aggressive constant regenerative braking 

deceleration of 1.6 m/s2 (CRB_1.6), commonly used by manufacturers. 

 

Figure 35. Plots of average driver intervention score across UDDS drive cycles for (a) local, (b) 

arterial, and (c) highway driving conditions. 
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Figure 35 illustrates the average driver intervention plots for each of the three regenerative braking 

control schemes across all driving conditions. The ARB control scheme displayed the highest driver 

intervention scores compared to the two baselines in local and arterial driving conditions. The most 

notable improvement in driver intervention score was observed in local driving conditions, likely 

explained by the Q-learning agent's convergence to the exact peak of the objective function. In 

highway driving, both the ARB and CRB_0.5 schemes eventually converged to a nearly identical 

driver intervention score since the ARB controller eventually settled on the same 0.5 m/s2 

deceleration rate as the CRB_0.5 scheme. The sharp variations in driver intervention scores for the 

CRB_1.6 controller in highway conditions were attributed to the driver model's constant micro-

adjustments compensating for the aggressive lift-off deceleration. Although this behavior decreased 

over the drive cycle, it cannot be deemed representative of a human driver's pedal interactions. 

Across all driving conditions, the more aggressive lift-off regenerative braking deceleration led to 

the highest level of driver intervention (i.e., the lowest driver intervention score). This is attributed to 

the need for the driver model to keep correcting the deceleration overshoot caused by lift-off 

regenerative braking. This finding is in line with the literature review, which indicated that some 

drivers view common implementations of lift-off regenerative braking to be too strong. 

Table 13. Summary of results from ARB controller simulations. 

Drive 

Cycle 

Driving 

Condition 

Learned 

Optimum 

Decel. (m/s2) 

Decel. 

Error 

(%) 

Final ARB 

Intervention 

Score 

Final 

CRB_0.5 

Intervention 

Score 

Final 

CRB_1.6 

Intervention 

Score 

UDDS 

Local 0.82 0.0 0.827 0.801 0.755 

Arterial 0.58 12.1 0.793 0.787 0.753 

Highway 0.50 7.4 0.712 0.712 0.621 

WLTC 

Local 0.82 5.1 0.883 0.859 0.816 

Arterial 0.50 13.8 0.811 0.809 0.727 

Highway 0.50 13.8 0.715 0.708 0.630 
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This aforementioned simulation process was repeated for the WLTC drive cycle in order to 

corroborate the findings from the UDDS simulations. A summary of the results for both drive cycles 

simulations is included in Table 13. The Q-learning agents of the ARB controller converged to within 

one 0.08 m/s2 step across all driving conditions in both drive cycles. The ARB control scheme 

outperformed the constant regenerative braking baseline schemes in all but one drive cycle – driving 

condition pairs, the exception being the nearly identical scores from the highway conditions in the 

UDDS drive cycles. The most significant improvement over the industry-standard CRB_1.6 variant 

occurred in the highway driving conditions of UDDS, showing a 14.7% improvement in the driver 

intervention score. 

These results indicate that the ARB control scheme shows potential in achieving the goal of 

learning an optimal lift-off regenerative braking deceleration to minimize pedal usage, thereby 

improving the driving experience by reducing driver fatigue. The next phase of testing involves 

assessing the ARB controller's performance with a human driver performing a real-world drive cycle 

where no two deceleration events are identical. 

4.2.2 Experimental Results 

The complete ARB scheme integrated within the vehicle torque controller was flashed onto the 

supervisory controller of the UWAFT test vehicle. The same driver that was used to collect real-

world data throughout this research performed a drive cycle of local driving conditions where laps of 

Route A were completed until the convergence of the ARB output. As with the simulation testing, the 

convergence criterion was two complete laps of Route A with no changes to the regenerative braking 

deceleration. The desired deceleration as well as the driver intervention score calculated by the ARB 

controller at every five deceleration events was logged throughout the drive cycle. 

Table 14. Comparison of learned and true optimal regenerative braking decelerations identified 

in real-world local drive cycle. 

Regen. Deceleration (m/s2) 

Learned Optimum True Optimum (Estimated) 

0.74 0.73 
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The resulting performance of the ARB controller is illustrated in Figure 36. The desired 

regenerative braking deceleration converged to a value of 0.74 m/s2 after 10 laps of Route A, equating 

to approximately 25 kilometers of driving. Recall that the objective functions of driver intervention 

score for the test driver used in this study were collected on two real-world local drive cycles. As 

outline in Table 14, these objective functions had a global peak at 0.76 m/s2 and a local peak at 0.70 

m/s2, respectively. Taking the average of these two values yields an estimated global preference of 

lift-off regenerative braking deceleration of 0.73 m/s2. This represents only a 1.4 % error between the 

learned optimum and the estimated true optimum for the test driver’s preferred regenerative braking 

deceleration in local driving conditions. This suggests that despite driving on different routes across 

different individual drive cycles, the driver’s global preference for that driving condition can be 

accurately identified by the ARB controller.  

 

Figure 36. ARB performance throughout local real-world drive cycle. 

The ARB controller calculates the driver intervention score in step-wise changes after every five 

deceleration events. This paired with the fact that the scores often fluctuate between sets of 

deceleration events means that the raw data is difficult to interpret visually. To address this, the 

logged scores are postprocessed to showcase the moving average of the driver intervention scores 

over the entire drive cycle. Figure 36 demonstrates this clearly, displaying how the average 
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intervention score rises over time. This upward trend suggests that the ARB controller effectively 

learned the driver's preferred deceleration rate, resulting in a reduced frequency of driver intervention 

during deceleration events. 

To confirm the efficacy of the ARB controller in minimizing driver interventions as compared to 

baseline schemes employing constant deceleration rates, Route A was re-driven using the CRB_0.5 

and CRB_1.6 variants, respectively. Since these drive cycles did not have a convergence criterion, 

Route A was only lapped three times. Subsequently, the driver interventions from these drive cycles 

were compared with the final three laps of the ARB drive cycle. The mean driver intervention scores 

across the last three laps of the ARB, CRB_0.5, and CRB_1.6 drive cycles are tabulated in Table 15. 

Notably, the ARB controller exhibited a significant improvement to driver intervention score 

compared to all other variants of the regenerative braking controller, outperforming the CRB_0.5 and 

CRB_1.6 variants by 8.5 % and 23.2 %, respectively. This finding validates that as the ARB 

controller approaches convergence, it effectively minimizes driver interventions, unlike baseline 

schemes that use constant decelerations not tailored to the driver's preferences. 

Table 15. Mean driver intervention scores for final 3 laps of real-world local drive cycles using 

different regenerative braking control schemes. 

Regenerative Braking Control Scheme Mean Driver Intervention Score 

ARB 0.829 

CRB_0.5 0.764 

CRB_1.6 0.673 

 

The real-world experimentation with the proposed ARB controller indicates its successful 

adaptation to individual driver preferences, effectively reducing interventions with the accelerator and 

brake pedals during deceleration events. Compared to baseline schemes with constant regenerative 

braking rates, the ARB control shows potential for decreasing driver fatigue and enhancing the 

electrified vehicle driving experience. These findings affirm that the adaptive regenerative braking 

scheme fulfills the outlined research objectives. It's important to note that this experiment, involving a 

single test driver on a local route, isn't exhaustive. With that said, these promising results can be 

further reinforced through expanded studies with multiple subjects and diverse driving environments. 
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Chapter 5 
Conclusion 

The customization and adaptation of a vehicle’s driving experience specific to each driver has 

become an increasing focus in modern vehicles. With the growing popularity of electrified vehicles, 

drivers are frequently interacting with various implementations of regenerative braking systems, such 

as lift-off regenerative braking. Since studies have shown that drivers are frequently uncomfortable or 

otherwise unsatisfied with the vehicle’s predefined deceleration response during lift-off regenerative 

braking, this research sought to develop a regenerative braking control system that could learn and 

adapt to the driver’s deceleration preferences. The primary objective was to enhance the driving 

experience and alleviate driver fatigue by minimizing pedal usage during braking.  

To accomplish this objective, the research focused on three critical aspects: the accurate 

identification of current driving conditions for adaptive adjustments in regenerative braking strength, 

the acquisition of the driver's preferred lift-off regenerative braking deceleration to minimize pedal 

usage, and the compatibility of the proposed control scheme with real-time operations on standard 

automotive embedded hardware.  

The first of these aspects was addressed by applying sophisticated techniques such as the 

HDBSCAN clustering algorithm and fuzzy logic inference to develop an online driving condition 

identifier. The identification system used data from an HDBSCAN cluster analysis to inform the 

construction of a fuzzy logic system to accurately identify driving conditions in 500-meter intervals 

as the vehicle is driven. The second aspect was addressed by developing an adaptive regenerative 

braking controller that used reinforcement learning to acquire an accurate estimate of the driver’s 

preferred deceleration strength for a particular driving condition. This was done by applying the 

online Q-learning algorithm, whose learning was guided by a novel reward function based on the 

driver’s interventions with the pedals during deceleration events. The third aspect was addressed by 

combining the online driving condition identifier with the adaptive regenerative braking controller 

and integrating the combined control system into the embedded hardware of an electrified test vehicle 

and testing its performance. The testing performed in this research was done in a MATLAB/Simulink 

simulation phase followed by a real-world experimentation phase using the electrified test vehicle on 

public roads. 
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The research outcomes demonstrate the efficacy of the HDBSCAN-informed fuzzy inference 

system (FIS) employed by the online driving condition identifier. When compared with a baseline 

identification scheme based solely on measurements of average velocity, the proposed online driving 

condition identifier exhibited enhanced stability, as evidenced by reduced sensitivity to velocity 

fluctuations and minimized driving condition label transitions. The application of the FIS-based 

online driving condition identifier also led to a high identification accuracy of 80.9 % in real-world 

experimentation, Notably, this represents a 6.8 % increase over the baseline. These findings highlight 

the significance of utilizing a broad range of vehicle data to identify driving conditions, reducing the 

system's sensitivity to individual measurements and ensuring a stable driving condition signal. This 

stability is crucial for improving the driving experience, as fluctuations could lead to unpredictable 

and uncomfortable driving behavior due to changes in the selected lift-off regenerative braking 

strength. The successful implementation of the online driving condition identifier on automotive-

standard embedded hardware, coupled with its precise driving condition identification facilitated by 

the innovative application of the HDBSCAN clustering algorithm, has met the stipulated research 

objectives specific to the online driving condition identifier.  

The testing of the adaptive regenerative braking (ARB) controller yielded promising results, 

demonstrating the controller’s ability to converge to a driver’s preference for deceleration. Simulation 

testing across UDDS and WLTC drive cycles showcased the ARB controller's ability to effectively 

converge to stable regenerative braking deceleration rates for each driving condition and reduce the 

average driver intervention score, thereby suggesting an enhancement of driving comfort. Real-world 

experimentation on a local road segment further confirmed the controller's capability to adapt to 

individual driver preferences, with the ARB controller converging to within 1.4 % of an individual 

driver’s estimated deceleration preference for local driving conditions. In doing so, the ARB 

controller significantly outperformed baseline schemes using constant deceleration rates in the 

reduction of indicators of driver fatigue. Notably, the ARB controller demonstrates a substantial 23.2 

% reduction in driver interventions over a baseline scheme employing a constant deceleration rate 

which is representative of typical implementations used by manufacturers. This underscores the ARB 

controller’s potential to mitigate driver fatigue and improve the overall driving experience for 

electrified vehicles. These findings affirm the ARB control scheme's success in meeting the outlined 

research objectives. It highlights the scheme's ability to adapt to individual driver preferences, reduce 
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the frequency of driver interventions during deceleration events, and enhance overall driving comfort 

in a real-time automotive application on a vehicle’s embedded controller.  

By effectively achieving the outlined research objectives, this study has significantly propelled the 

advancement of electrified vehicle powertrain control. This research places a specific emphasis on 

increasing the acceptance and driver satisfaction of regenerative braking systems, an aspect often 

overshadowed in research in favor of efficiency optimization. The application of advanced 

methodologies such as the HDBSCAN clustering algorithm, fuzzy logic inference, and the online Q-

learning algorithm represents a significant contribution to the progress and refinement of 

contemporary electrified vehicle powertrain control technologies.  

5.1 Limitations 

While the research presents a promising proof of concept, it is not without its limitations. Given 

that the primary objective of this study was centered on the design of an advanced controller to 

enhance the driving experience in electrified vehicles, an apparent limitation pertains to a lack of test 

subjects and environments in order to investigate human interactions with the proposed ARB 

controller. While the study successfully demonstrates the technical feasibility and effectiveness of the 

ARB controller in simulation as well as in experiments with an individual test driver, the absence of a 

comprehensive human-centered study limits the extent to which the study's findings can be 

generalized to real-world practical driving. The author of this thesis thus acknowledges the need for 

further comprehensive studies involving multiple test subjects and diverse driving environments to 

solidify the effectiveness and applicability of the proposed ARB control scheme in practical 

scenarios. 

5.2 Future Work 

The successful development and validation of the ARB control system has laid a solid foundation 

for future research endeavors aimed at further enhancing the driving experience in electrified 

vehicles. Building upon the insights gained from this study, several areas for future research into 

driver-focused regenerative braking optimization emerge, such as comprehensive human-centered 

studies and integration with advanced driver-assistance systems (ADAS). 

As highlighted in the limitations, conducting human-centered studies involving a larger sample of 

test drivers and varied driving conditions would further evaluate the ARB controller’s ability to 
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reduce driver fatigue and improve the acceptance of lift-off regenerative braking systems. Further 

research should prioritize comprehensive investigations to assess driver interaction, satisfaction, and 

overall user experience with the ARB control scheme. This can include longitudinal studies whereby 

driver behaviour and user satisfaction are monitored over an extended period. 

Given the increasing prevalence of ADAS in modern vehicles, future research should explore how 

an adaptive regenerative braking control system might integrate with existing ADAS technologies. 

Exploring the interplay between these control systems would contribute to a holistic approach to 

vehicle control, aiming to enhance the overall driving experience through seamless coordination 

among various adaptive control systems. Such exploration can lead to valuable insights on how the 

collaboration between these systems can be leveraged to improve driving safety and comfort, 

ultimately contributing to the advancement of vehicle control technology 

In conclusion, by addressing these critical research areas in the future, the proposed ARB control 

system can be further refined and optimized to improve the driving experience. This effort will not 

only contribute to the maturation of regenerative braking control systems, but also to the advancement 

and widespread adoption of electrified vehicle technologies as a whole. 
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Appendix A: 
Feature Values of HDBSCAN Clusters 

Inferred 

Driving 

Condition 

Avg. 

Velocity 

(km/h) 

Avg. 

Pos. 

Accel. 

(m/s2) 

Avg. 

Neg. 

Accel. 

(m/s2) 

Std. 

Velocity 

(km/h) 

Std. 

Pos. 

Accel. 

(m/s2) 

Std. 

Neg. 

Accel. 

(m/s2) 

Max. 

Velocity 

(km/h) 

Max. 

Pos. 

Accel. 

(m/s2) 

Max. 

Neg. 

Accel. 

(m/s2) 

Num. 

Stops 

Local 23.797 0.031 0.029 13.401 0.041 0.044 43.998 0.142 0.165 2 

Arterial 31.406 0.026 0.026 14.218 0.037 0.040 48.135 0.135 0.148 1 

Highway 93.932 0.007 0.006 1.655 0.009 0.009 96.398 0.030 0.031 0 
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Appendix B: 
Q-Learning Algorithm Implementation

 

def qlearning(objective, iterations, n_episodes, step_size, label): 
    epsilon = 1 
    epsilon_decay = 0.3 
    min_epsilon = 0.1 
    gamma = 0.1 
    lr = 0.1 
    n_states = int((2-0.2)/min_step_size) 
    n_actions = 3 
    #Initialize Q-table 
    Q_table = np.zeros((n_states,n_actions)) 
    #Starting point 
    current_state = 0 
    current_regen = 0.2 
    next_state = 0 
    prev_state = 0 
    prev_score = 0 
    prev_action = 1 
    next_regen = 0.3 
    best_score = 0 
    best_state = 1 
    best_regen = 0.3 
    actions = ['NegStep', 'NoChange', 'PosStep'] 
    rewards_per_episode = list() 
     
    for e in range (n_episodes): 
        epsilon = round(max(min_epsilon, np.exp(-epsilon_decay*e)),2) 
        lr = 0.1*np.exp(-0.1*e) 
        total_episode_reward = 0 
 
        for i in range(iterations): 
            reward = 0 
            score = objective(current_regen,label)[0] 
            reward = (1-best_score/score) 
            if score > best_score: 
                best_score = score 
                best_state = current_state 
                best_regen = current_regen 
            if score >= prev_score: 
                reward = reward + 0.1 
            else: 
                reward = reward - 0.1 
            if current_state == best_state: 
                reward = reward + 0.1 
            elif abs(best_state - current_state) < abs(best_state - prev_state): 
                reward = reward + 0.1 
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            else: 
                reward = reward - 0.1 
                 
            Q_table[prev_state, prev_action] = (1-lr) * Q_table[prev_state, 
prev_action] + lr*(reward + gamma*np.max(Q_table[current_state,:])) 
             
            if np.random.uniform(0,1) < epsilon: 
                #Select random action 
                action = actions.index(random.choice(actions)) 
            else: 
                action = np.argmax(Q_table[current_state,:]) 
                 
            if action == 0: 
                next_state = current_state - 1 
                next_regen = round(current_regen - step_size,2) 
                if next_state < 0: 
                    action = 2 
            if action == 1: 
                next_state = current_state 
                next_regen = current_regen 
            if action == 2: 
                next_state = current_state + 1 
                next_regen = round(current_regen + step_size,2) 
             
            total_episode_reward = total_episode_reward + reward 
             
            prev_state = current_state 
            prev_regen = current_regen 
            prev_action = action 
            prev_score = score 
            current_state = next_state 
            current_regen = next_regen 
             
        rewards_per_episode.append(total_episode_reward) 
 
    return Q_table 
 


