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Abstract

Cybersecurity risk analysis is crucial for organizations to assess, identify, and prioritize
possible threats to their systems and assets. Organizations seek to assess the potential costs
of risks in order to determine how to invest in mitigating those risks. Risk analysts rely on
qualitative methods to analyze risks. However, qualitative approaches do not produce a
complete idea of the loss. The current methods lack efficacy in enabling analysts to make
informed decisions. It is crucial to support analysts in their decision-making process by
offering means to quantify risks. For this reason, recent studies introduced quantitative risk
analysis (QRA) methods to assist organizations in determining risk mitigation strategies
and resource allocation. Organizations must use QRA methods to identify and prioritize
risks rather than relying on qualitative methods. However, risk analysts tend to prefer
quantitative methods since they do not require precise probability estimations.

This thesis proposes a spreadsheet-based QRA method based on verbal likelihoods. Our
approach relies on tables constructed by experts that map linguistic likelihood to proba-
bility ranges. Using linguistic terms to estimate risk’s probability of occurrence will help
experts apply quantitative estimation. We eliminate the need to assign exact probabilities
by providing a tool that accepts natural language words as input. In modern approaches,
Monte Carlo simulation is an important step in QRA to estimate the total loss for risks.
For each risk’s probability, we will estimate a continuous distribution to use in the simula-
tion. Users will define their own linguistic terms to use them in the risk estimation process.
The key benefit of our tool lies in its adaptability across various industries, empowering
risk analysts to apply it according to their distinct needs. The tool grants analysts the
flexibility to define estimation terms, enhancing precision in their analyses. Finally, we
conducted experiments with real examples to validate our approach’s accuracy, statistical
significance and reliability. We compared our results with those obtained from other meth-
ods in the literature. Also, we conducted tests to measure our model’s performance and
robustness. Our study demonstrates the effectiveness of our approach and its potential to
apply it in real-world applications.
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1.1 Introduction

In an era of evolving technology gradually integrating into our lives, the demand for safe
and secure systems has become a critical aspect that organizations should consider. Safety-
critical systems within sectors like transportation, medical, automotive, infrastructure, etc.,
have a profound impact on human lives should they malfunction or face compromise. For
this reason, it is vital to analyze and understand cybersecurity risks to plan, specify, and
implement risk mitigation actions in a system.

Recent studies introduced risk assessment techniques to identify and analyze cyberse-
curity risks [12,13]. Quantitative and qualitative risk analysis are two ways to classify risk
assessment techniques [21]. Qualitative risk analysis is a subjective method to identify
and prioritize based on their likelihood and impact. This method heavily relies on expert
judgments and qualitative data to categorize risks using ordinal scales. Although quali-
tative analysis is a simple and relatively fast approach to analyzing cybersecurity risks, it
does not provide the precise insights essential for decision-making. The textbook ”How
To Measure Anything in Cybersecurity Risk” (HTMA) [13] discussed problems with using
qualitative risk analysis methods and how it results in an inaccurate and misleading risk
analysis.

On the other hand, quantitative risk analysis is an objective method that leverages
numerical data to quantify risks based on probability and impact. This method uses quan-
tifiable and statistical data to construct mathematical models for precise risk assessment.
Quantitative methods provide quantifiable estimation for well-informed decision-making.
In HTMA [13], the authors introduced examples of quantitative methods that provide
insights for more robust decision-making.

Although many methods exist to quantify safety risks, several significant organizations
rely primarily on qualitative assessment methods despite the problems associated with
these methods. Prior work pointed out significant problems with using ordinal scales [6,17];
moreover, qualitative evaluation is always subjective, and it does not give an idea of the
actual loss associated with the risks. Given these problems with qualitative methods, it
is crucial to adopt quantitative analysis methods to have a solid foundation for decision-
making.

One significant advantage of using quantitative methods is that they can express the
impact of cybersecurity in monetary terms, which is important in many applications. For
example, embedded systems are price sensitive as they are designed for particular roles in
various products. The cost of embedded devices is crucial in the total price of products
because they are often manufactured in large quantities (e.g., automobiles or communi-
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cation devices). Increasing the cost per unit by just a tiny fraction will primarily affect
the total manufacturing cost. Consequently, system designers should carefully analyze
the cost/security trade-off to guarantee that the product matches the requirements and is
cost-effective. One example of a company mass-producing products is Texas Instruments.
Designers must carefully consider the cost of the manufactured microcontroller [14]. A
0.01$ change per unit to implement a security measure will enormously affect the overall
cost of the tens of billions of chips produced each year. Relying on qualitative methods
will prevent the company from knowing the amount of money it will lose if cybersecurity
risks happen. Using a quantitative approach will enable the systems designers to make
informed decisions on trade-offs between cost and security.

This work contributes the following to the state-of-the-art:

1. A quantification model that uses linguistic likelihoods to estimate loss for individual
security threats.

2. A method for merging different results on words of estimative probability and thus
support for continuous integration of new findings.

3. A comparative case study for quantitative assessment of risks for current and future
work.

The remainder of the paper is structured as follows: Section 1.2 introduces the problem
statement. Section 1.4 describes our approach. Section 2.1 explains the implementation
details for our approach. Section 2.2 demonstrates a case study to verify our model. Sec-
tion 3.1 shows tests that we ran to measure the performance and robustness of our model.
Section 4.2 shows our approach’s related work and possible future work. In section 4.1, we
discuss how to design good tables for our model. Finally, Section 4.3 concludes our paper.
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1.2 Problem Statement

The following problem statement defines the expected cost of loss for a system given a set
of risks, where each risk has an associated impact cost and verbal likelihood:

Problem 1: Given a set of risks R = {r1, r2, . . . , rn}, a set of associated costs C =
{c1, c2, . . . , cm} with c = ⟨min cost,max cost⟩, and a set of associated verbal likelihoods
L = {l1, l2, . . . , lo} with l as a member of a standardized dictionary (e.g., the Words of
Esimative Probability introduced in Section 1.4), compute the expected cost for a loss Υ.

Let R be a set of n risks, where each risk ri has an associated impact cost cj and verbal
likelihood lk. The functions RC : R → C and RL : R → L define the mapping from risk
to cost and risk to likelihood, respectively.

The expected loss υ : R×C ×L→ R is a function that computes the anticipated cost
for risks happening. The total expected loss Υ : 2R× 2C × 2L → R is a function computed
as

Υ =
∑
ri∈R

υ(ri, RC(ri), RL(ri))

As an example, consider a vehicle with the following three risks R = {Data breach,
Airbag failure, Vehicle leak}. The verbal likelihood L := {certain, certain, improbable}
and impact cost C for each risk are {$500 000, $2 000 000, $10 000} respectively. The ex-
pected loss υ for each risk would be {$500 000, $2 000 000, $0}. Therefore, the total cost Υ
for the vehicle is $2 500 000.

The challenge with the problem statement is to compute υ, specifically converting verbal
likelihoods into quantitative statements. The risk r has an associated cost RC(r) and an
associated verbal likelihood RL(r). The verbal likelihood is traditionally not quantifiable.
Once we quantify the verbal likelihood Q : L → R with a co-domain of 0 ≤ Q ≤ 1,
then solving υ simply becomes υ(r) = RC(r) · RL(r) [1] or in more recent literature a
Monte-Carlo simulation with υ(r) = MC(RC(r), RL(r)) [5, 22].
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1.3 Preliminary Knowledge

1.3.1 Kernel Density Estimation

Kernel Density Estimation (KDE) [28] is a non-parametric method that estimates a Prob-
ability Density Function (PDF) for a dataset from an unknown distribution. KDE utilizes
a window function (kernel) to make inferences about the underlying population of the data
sample.

KDE is widely used in research to provide a method of visualizing data from unknown
distributions. The estimation depends on the window function to smoothen the data and
estimate the PDF. KDE is optimally used with complex and unstructured data samples.
The method highly adapts to the data’s characteristics and properties, making it beneficial
in data analysis and visualization. This tool [10] provides a good visualization of how KDE
works from specific data points.

The following equation shows how KDE is evaluated:

F (x) = 1
nh

∑n
i=1K

(
x−xi

h

)
Where:

• K is the window function that smoothens the data; most likely, it is a symmetric
function like Gaussian Kernel.

• n is the number of samples in the dataset

• xi is a given data point from the dataset.

• h is the smoothing parameter, also called bandwidth, which controls the smoothens
of the estimated distribution.

We will use KDE in our approach to estimating the underlying distribution for the sample
that we collected. Using this method, we can visualize the PDF for the estimated likelihood
of risks.

1.3.2 Monte Carlo Simulation

John von Neumann and Stanislaw Ulam introduced Monte Carlo Simulation (MCS) in
the 1940s [2]. Since the method has an uncertain aspect, they named it after a famous
gambling location in Monaco because of its similarities to roulette games.
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MCS [2] is a probabilistic model that depends on uncertainty to predict outcomes for
specific events. The model makes its prediction by running a lot of scenarios that consider
multiple factors that might affect the outcome. Each scenario may have a different out-
come depending on the model’s randomness element in this specific scenario. For example,
the distance a plane will fly between two countries is constant. A probabilistic model can
consider multiple factors that can affect the flight’s light, such as air resistance, mechan-
ical issues, etc. The model randomly evaluates the effect of each factor in each scenario
to determine the outcome. After running all scenarios, results are visualized and analyzed
statistically to determine the analysis output. The model determines the randomness ele-
ment for all factors based on pre-defined inputs. For example, users can define a probability
distribution for each factor in the simulation, so the model can randomly sample from this
distribution in each simulation iteration.

Risk analysts commonly use MCS in various fields to analyze hundreds of risk factors
that might affect their use case. For example, in analyzing cybersecurity risks, risk analysts
use MCS to simulate the risks and predict the outcome in case they occur. The main goal
is to predict the outcome of these risks and how to protect against them.

Various tools and programming languages, such as R, Python, Matlab, and Excel, apply
MCS. Excel is one of the most used tools because it is simple to use and doesn’t require any
programming knowledge. Several Excel plug-ins are available to make using MCS easier.

We will use MCS to predict the outcome of a certain number of risks in a particular
system. We used Excel’s Visual Basic to develop our tool to convert it into an Excel
plug-in.

1.3.3 Two-Sample Kolmogorov-Smirnov Test

The Two-Sample Kolmogorov-Smirnov Test (KST) is a statistical method that compares
two datasets. In data analysis, it is crucial to determine whether two samples originated
from the same distribution. This test provides a robust method to assess the similarity
between two datasets without relying on distributional assumptions.

The test starts by defining the null hypothesis that both datasets come from the same
distribution with no significant difference. Consequently, the alternate hypothesis will be
that both datasets are not from the same underlying distribution. The outcome of the
test is a parameter called p, which determines whether we should accept or reject the null
hypothesis. After obtaining the p-value, we compare it with a certain significant level α. If
the p-value is smaller than α, we should reject the null hypothesis and conclude that both
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datasets are significantly different. On the other hand, if it is greater than α, we conclude
that there is no significant difference between both datasets.

KST is specifically applicable when standard parametric tests cannot be used because
of the absence of the underlying distribution’s properties. The test is highly adaptable and
can be applied to data of various types and sizes. We will use KST in our method to verify
our model’s output.

1.3.4 Words Of Estimative Probability

Words Of Estimative Probability (WEP) are words used by experts to show the likelihood
of possible future events when performing risk analysis. WEP is an important tool in
intelligence analysis and risk assessment. Different governmental agencies, intelligence
agencies, and military organizations widely use WEP. Although the early efforts from
Sherman Kent to unify the use of WEP [16], entities have not standardized their use
of WEP among themselves. Several agencies started standardizing their use of WEP
like the National Intelligence Council (NIC) [23], Center for Internet Security (CIS) [11],
Government Of Canada [8, 9], Intergovernmental Panel on Climate Change (IPCC) [15],
etc.

Despite the efforts to unify the use of WEP, experts can still interpret it differently.
For example, a study shows that doctors can analyze likelihood dissimilarly [24]. Scott
Barclay et al. [3] conducted an experiment with NATO officers, asking twenty-three officers
to assign probabilities for certain estimative words. Although the officers were familiar
with Sherman Kent mapping [16], they estimated most of the terms differently, showing
that miscommunication in assessing words is inevitable, even among analysts. Individual
mistakes in the estimation process make WEP tables suffer from inaccurate mappings,
which proves the importance of standardizing the use of WEP within organizations. The
Canadian Government outlined the specific terms used by risk analysts to estimate the
probability of cybersecurity risks within the electricity sector [8]. Standardizing the use of
WEP across an organization will prevent miscommunication among risk analysts, ensuring
precise estimation and analysis of system risks. This, in turn, facilitates informed decision-
making.
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1.4 Our Approach

As illustrated in Section 1.2, the main challenge in our approach is to compute the risk’s
probability of occurrence using verbal likelihood. The process of estimating the risks’
probability is often complex, time-consuming, and has a lot of inaccuracies. Estimating
the probability of a specific risk directly is not practical in many cases. As a result, risk
analysts heavily rely on qualitative methods utilizing verbal likelihood or ordinal scales.
Our solution proposes a method to execute a quantitative risk analysis while still using
verbal likelihood in estimating risk. This method will help risk estimators use much easier
linguistic words in the estimation process while getting the output of a quantitative risk
analysis.

Figure 1.1 shows an overview of the workflow to execute the quantitative analysis. The
dotted box in the figure represents the function Q, which maps the verbal likelihood of a
particular risk to a probability value that we can use during MCS. The outcome of the
quantitative analysis is the expected cost Υ for the system that risk analysts use for further
statistical analysis before decision-making.

Sample

Q

Verbal Liklelhood

Probability Expected Cost

Loss

MCS

1

a

3

2

b c

Figure 1.1: Workflow overview

The function Q uses WEP to map verbal likelihood statements to quantitative proba-
bilities.

We use the workflow in figure 1.1 to derive Υ, using Q, for a given set of risks, costs,
and verbal likelihood statements. The workflow shows the steps to calculate the expected
cost for one risk; it has three main steps. In the first step, we take the user inputs for each
risk: verbal likelihood and the loss. The second step is to execute the function Q to map
the verbal likelihood to a probability value. The function Q has three main steps:

(a) Each WEP table maps a verbal likelihood to a probability range, so we use the
user-inputted likelihood to sample N probability ranges from multiple WEP tables.
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(b) We estimate a continuous distribution that describes the density of the sample’s
values.

(c) We use the estimated distribution to estimate a numeric probability for the risk.

Our approach to making the function Q more robust is to develop sound and complete
methods for merging multiple WEP tables into a robust interpretation Qr. We join tables
by sampling N probability ranges randomly to create a sample population from all tables
based on a specific likelihood. Taking samples from different sources will make Qr robust
against individual mistakes in WEP mappings.

The output of the function Qr is the estimated probability for the risk. The third step
involves utilizing the output from Qr along with the loss provided by the user to conduct
a MCS and determine the anticipated cost associated with the risk. To calculate the total
loss for the system, we execute the workflow for all the user-defined risks. Section 2.1
provides the implementation details for the workflow in Figure 1.1.
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Chapter 2

Implementation Details
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2.1 Details

This section proposes a spreadsheet-based model for quantitative risk analysis. We explain
our model, show the steps to perform the analysis, and illustrate how a user can use the
model.

2.1.1 Collecting WEP tables

Our approach merges multiple likelihood mappings to make the quantification function Q
robust against mistakes. Experts from renowned organizations constructed each mapping
based on the application where the WEP is used. Mappings can depend on the geographical
location, application, or even more factors that affect the experts’ judgment for construct-
ing the mapping. As mentioned before, we collect our mappings from different resources
to include as much diversity as possible in our model. After collecting the tables, we store
and use them during the analysis.

Most qualitative risk analysis methods give the user a particular scale to follow during
the estimation process. Following a specific scale requires analysts to abide by certain rules,
which might cause inaccurate estimations. Risk estimation tools should allow analysts to
freely adjust the scales based on their application, which will help in a more accurate
estimation process and more concise decision-making.

Our model allows the analysts to freely add or remove WEP tables to the model based
on their needs. Analysts can construct their own WEP mapping that matches their ap-
plication. Users will also have the choice to include other tables from different resources,
making our model exceptionally customizable and flexible.

Generally, the more tables we have, the more our quantification function Q will be
robust against mistakes.

2.1.2 Taking User Inputs

The first step in figure 1.1 is taking user inputs. Users must identify the risks and their
associated impact’s cost and verbal likelihood. We represent the impact as a 90% Confi-
dence Interval (CI), a range with 90% certainty that actual loss will fail within this range.
Our approach takes the likelihood of risk occurrence in terms of WEP. We assume that
experts will fill the likelihood and impact of each risk.

11



2.1.3 Collecting Samples

The second step in our approach is to execute the function Qr. Firstly, the function collects
samples for each risk from the tables we collected. Algorithm 1 shows the sample collection
for each risk.

Algorithm 1: Sample Across WEP Tables

Input: Likelihood of the selected risk (l), number of samples (N)
Output: Random value sampled from WEP ranges

1 R← empty array
2 for i← 0 to N − 1 do
3 t← randomly select WEP table containing l;
4 (x, y)← probability range from t considering l;
5 Append (x, y) to R;
6 i← i+ 1;

7 end
8 S ← empty array
9 for j ← 0 to N − 1 do

10 (xj, yj)← Rj;
11 n← generate a random number between xj and yj;
12 Append n to S;

13 end
14 return array S;

Each sample contains N probabilities. Our approach uses the sample to estimate
a continuous distribution for each risk. The algorithm uses a uniform random number
generator in all random picks.

The algorithm is sound, complete, and always terminates, but is not repeatable. Assum-
ing a correct implementation of random selection, the algorithm is sound as it continually
selects a value within the likelihood range in the WEP tables. The algorithm is complete
as it samples from a range of values. All loops have a strictly monotonically increasing loop
counter with a defined bound; thus, every loop and the algorithm will always terminate.
Finally, the algorithm is non-repeatable because every execution can select different tables
and ranges randomly.

12



2.1.4 Estimating a Continuous Distribution

KDE estimates a random variable’s PDF by deducing a population’s characteristics from
sample data. The second step in the function Qr is applying KDE on the sample we
collected to estimate a PDF for each risk. After that, we convert the PDF to a Cumu-
lative Density Function (CDF) that we use for sampling during MCS. The final step in
the function Qr is to generate a probability for each risk. We estimate the probability
by randomly sampling from the CDF. Subsection 2.1.6 will further clarify the sampling
process. Figure 2.2 & Figure 2.3 show our model’s CDF and PDF output.

The bandwidth is a crucial aspect of KDE. It determines the spread and the smooth-
ness of the kernel function used to estimate the PDF. The kernel function evaluates the
contribution of each data point to the PDF at any given point. By adjusting the band-
width, a user can change the size of the area around each data point, which affects the
PDF estimation. It is vital to choose the bandwidth carefully, as it might significantly
impact the results of the quantitative analysis.

Figure 2.1 shows the effect of applying KDE with different bandwidth values. If the
bandwidth is too small, the estimated PDF will capture more noise in the data. On the
other hand, if the bandwidth is too large, the estimated PDF will be over-smoothed and
fail to capture the patterns in the sample. When using high bandwidth (10), the curve
is over-smoothed. When using low bandwidth (0.1), the curve is too noisy and captures
a lot of irrelevant patterns. We used 1.5 bandwidth to estimate the curve in Figure 2.3,
resulting in a balanced PDF capturing some patterns without over-smoothing or adding
noise to the distribution.

We use the estimated distribution for sampling during MCS. Sampling from a noisy
distribution will result in inaccurate statistical estimates because of the random fluctua-
tions around the actual value. Moreover, sampling from an over-smoothed distribution will
also cause unreliable estimates because of the missing details and features of the actual
underlying distribution. We conclude that it is essential to carefully choose the bandwidth
values to represent the original data accurately.

2.1.5 Representative Values

Representative values, like mean, standard deviation, median, or mode, are used to give
different perspectives on a particular distribution. Frequently, no one value corresponds
to the standard value of a continuous PDF. Instead, the distribution’s mean, median,
standard deviation and mode are utilized to give distinct viewpoints on the distribution.
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Decision makers use the distribution’s representative values to further analyze the risks and
understand the risks’ distributions. Our tool will provide each PDF’s mean, mode, median,
and standard deviation. Risk analysts can use these values to analyze the probability of
occurrence for each risk, which will undoubtedly aid in decision-making.

2.1.6 Monte Carlo Simulation

Following modern approaches, like HTMA [13], we use the output from Q in MCS to
identify potential risks and uncertainties. MCS is used to predict the outcome of uncertain
events based on past data. The simulation uses the probability distribution as an input,
then simulates the possible scenarios and identifies the estimated loss for each iteration.

In the third and last step in the workflow, our approach executes MCS using the open-
source Excel add-in, XLRisk [26]. We use the add-in’s control ribbon to define the inputs,
the number of iterations, and the output for the simulation. In our case, the inputs will be
the probability value and expected loss for each risk, and the output will be the total loss
for all risks. In each iteration, our model chooses a random probability pu by sampling from
a uniform distribution function, using the RiskUniform(min,max) function in XLRisk
where min = 0 and max = 1. Then, it samples another probability pc from the risk’s CDF,
using the RiskCumul(minvalue,maxvalue,XV alues, Y V alues) function in XLRisk. Our
tool extracts the RiskCumul function’s parameters from the CDF we computed during
step two of the analysis. When comparing both probabilities, if pc > pu, our model will
decide that the simulated event will occur and consider it in the total cost.

Our approach calculates the expected cost for the simulated event by sampling from
a LogNormal distribution with a mean and variance evaluated using the lower and upper
bound entered by the user. HTMA [13] illustrates this approach. We use theRiskLogNormal
(mean, stdev) function from XLRisk to calculate the cost. We use the 90% CI that the
user provides to calculate the mean and standard deviation and pass them to the function.

XLRisk handles the sampling for all the functions we use in the MCS using the Latin
Hypercube sampling method. Finally, after completing the simulation, XLRisk provides
comprehensive simulation statistics and graphical output. Figure 2.4 shows a sample of the
graphs produced. The curve shows a cumulative distribution of total loss values and their
corresponding percentile. For example, suppose the 25th percentile is 378 813, which means
that 25% of the total loss values are below this number. In that case, the y-axis value at
25% in figure 2.4 will be 378 813. Risk analysts can use simulation results to analyze the
expected loss for the system and decide any mitigation actions required.
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2.1.7 Loss Exceedance Curve (LEC)

A Loss Exceedance Curve (LEC) is a graphical representation of the distribution of losses
that an organization could incur due to a specific risk event. The LEC shows the probability
of losses being greater than or equal to a particular amount on the x-axis across different
probability levels on the y-axis in all the loss scenarios.

After obtaining the MCS results, we construct the LEC from the loss evaluated in
each scenario. Any given point on the curve shows the percentage of all loss values from
all scenarios that exceeds the corresponding x-axis value. For example, suppose the LEC
indicates a 10% probability of a loss exceeding $1 million. In that case, the y-axis value
is 10% when the x-axis value is $1 million, representing the percentage of all possible loss
values that exceed $1 million.

LEC is a powerful plot for visualizing risk and facilitating risk management decisions,
making it a valuable component of risk analysis and management processes.

2.1.8 Configuration parameters

The user is able to configure the following parameters for the model:

1. Number of MCS iterations

2. Number of Samples N

3. Bandwidth

4. Steps on the X-axis for the PDF

5. Enabling or Disabling Optimization (discussed in Section 3.2)
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2.2 Case Study

This section introduces two case studies with which we compared our model. Firstly, we
chose Santini et al. [27] work because it is based on the exact cost calculation method we
are using and introduced in HTMA [13]. Secondly, we use the quantitative risk analysis
example in HTMA [13] since our cost calculation method is based on this work. In both
studies, we adjusted the inputs to fit our model and then compared our model’s results with
the other work. We focused on comparing the LEC to validate our model because both
studies showed it in their results. Both studies aim to evaluate our model’s performance,
validate its output, and identify possible areas of improvement.

2.2.1 Case study 1

In [27], Santini et al. proposed a quantitative method to estimate the loss for organizations.
The authors’ approach is based on empirical data collected from various sources. First, their
approach uses specific threats and their corresponding likelihood from [19], Table 2.1 shows
the threats that the authors considered and their corresponding probability of occurrence.
We extracted Table 2.1 from Santini’s work.

After knowing the likelihood of the threats, the authors chose three organizations for
their case study. They customized the likelihood for each one by collecting answers from
stakeholders and analyzing the implemented controls in each organization. Following this,
they aggregated the obtained results with empirical data measuring control effectiveness
against threats. This aggregation helped calculate a vector t, subsequently utilized to
customize the organization’s likelihood assessment. Finally, the authors determined the
90% CI based on the organization’s operating sector and size.

To compare Santini’s results with ours, we had to make some adjustments so the inputs
could fit our model, as we are using linguistic likelihoods. Firstly, we calculated each
organization’s customized threats’ likelihood using the vector t from Table 4 in Santini et
al.’s work and the values from table 2.1. We used the equation [27]:

pi = (xpi)
2/3 (2.1)

to calculate the customized likelihoods, where x = max{1 − ti, 0.06} and pi is the
ith threat’s probability in Table 2.1. Table 2.2 shows the customized likelihood for each
organization, namely O1, O2, and O3. Secondly, we mapped the values in Table 2.2 to
linguistic likelihood by fitting them into a range. For example, the probability 0.62 falls in
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the range 0.55–0.80, which maps to likely likelihood in most of the WEP tables. Table 2.3
shows the mapped linguistic likelihoods.

After obtaining the linguistic likelihoods and the 90% CI for impact, we ran our model
to quantify the loss using the following parameters:

1. Number of WEP tables = 6

2. Number of Samples N = 300

3. MCS iterations = 5000

4. KDE bandwidth = 1.5

5. Steps on the X-axis = 50

Figure 2.6 shows the LECs for all organizations. We compared our LECs with the ones
in Figure 1 in [27]. Upon visual inspection, we realized the following key points between
each organization’s curves:

1. All curves have the same starting point on the y-axis.

2. All curves have the same trend and shape.

3. Our O3’s LEC captured some fluctuation that appeared on the curve for O3 appears
in [27]

4. All curves have different endpoints on the x-axis. However, we identified that our
curves show the correct end value. The loss for a given organization cannot be greater
than the sum of the upper bounds in the 90% CI for each threat. For example, when
we calculated all the upper bounds for all threats for O1, the value was 1 898 530.
Our LEC shows that the loss did not exceed 1 798 777, which is very close to the
maximum value. On the other hand, the loss for O1 in Santini’s work exceeded
2 000 000. Therefore, we identify that our results are more accurate and match the
90% CI that we input into the model.

Unfortunately, we could not compare the results with a method other than visual
inspection due to the absence of the detailed curve’s values in Santini’s work. If we had
more data, we could have used a statistical method like the Two-Sample Kolmogorov-
Smirnov Test to prove there is no significant difference between curves.
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Table 2.1: Threats with their correspondent likelihoods used in [27]

ID Threat Likelihood

1 Malware 0.98
2 Web-based attacks 0.67
3 Denial of services 0.53
4 Malicious insiders 0.40
5 Phishing and social eng. 0.69
6 Malicious code 0.58
7 Stolen devices 0.43
8 Ransomware 0.27
9 Botnets 0.63

0%

20%

40%

60%

80%

100%

0 400000 800000 1200000 1600000 2000000

P
ro

b
ab

ili
ty

 o
f 

E
xc

ee
d

in
g

 L
o

ss
 

Loss Exceeded [$]

O1 O2 O3

Figure 2.6: LEC output from case study 1

2.2.2 Case Study 2

In HTMA [13], the authors provided an example for their quantitative analysis method.
They showed three risks in the analysis, {DataBreach, Malware, LostLaptops}, each with
a probability of loss over 1 year {40%, 15%, 35%} respectively. Moreover, they defined
the 90% CI for each risk as lower and upper bounds and used MCS to estimate the total
expected loss.

To fit the inputs in our model, we replaced the probability in the example with linguis-
tic likelihoods using the WEP tables we collected. Table 2.4 shows each threat with its
corresponding probability and linguistic likelihood. We used the exact 90% CI of impact
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Table 2.2: Customized likelihoods for threats for each organization used in the case
study [27]

Threat ID O1 O2 O3

1 0.62 0.53 0.28
2 0.64 0.27 0.28
3 0.33 0.27 0.10
4 0.50 0.41 0.26
5 0.67 0.20 0.17
6 0.62 0.40 0.28
7 0.51 0.48 0.32
8 0.20 0.17 0.08
9 0.15 0.19 0.23

given in the example.

After determining the inputs, we ran our model to quantify the loss using the following
configuration:

1. Number of MCS iterations = 5000

2. Number of Samples N = 300

3. Bandwidth = 0.1

We ran our model and plotted the LEC to compare it with HTMA’s results. Fig. 2.7
shows the LEC from our model and HTMA example. We deduce that the results are
almost identical to the original example from HTMA as both have the same starting
position (67%) and trend. Some fluctuations in the HTMA curve are not found in the
curve from our method, but both curves exactly match in most regions.

Besides the LECs, we compared the mean for total loss in all MCS iterations. As
expected, the difference between HTMA’s mean and the non-approximated method is
negligible; $1 930 925 and $1 992 508 respectively. The approximated method’s mean is
higher ($2 156 253), which matches the pattern from the LECs. Finally, we used KST to
verify the results statistically. We compared the values for the LEC from our model and
HTMA to prove that both curves don’t have any significant differences. The test yielded a
p-value more significant than our predetermined significance level (alpha = 0.05), indicating
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Table 2.3: Linguistic likelihoods for threats for each organization used in the case study

Threat ID O1 O2 O3

1 likely even chance unlikely
2 likely unlikely unlikely
3 unlikely unlikely highly unlikely
4 even chance even chance unlikely
5 likely unlikely highly unlikely
6 likely even chance unlikely
7 even chance even chance unlikely
8 highly unlikely highly unlikely highly unlikely
9 highly unlikely unlikely unlikely

a lack of evidence to support the hypothesis that the two approaches produce statistically
different results. We conclude that our results are reliable and similar to the one evaluated
in HTMA.

The main difference between our method and HTMA’s is the probability pc. In our
method, we sample pc in each iteration in the MCS from either the CDF in the non-
approximated method or the N samples in the approximated method. However, HTMA’s
method uses the same probability pc in all iterations. Sampling different probabilities in
each iteration introduces diversity in the model and makes it robust against using individual
mistakes in estimating probabilities.

Table 2.4: Linguistic likelihoods for threats used in HTMA case study

Threat Name Probability Linguistic Likelihood

Data Breach 40% even chance
Malware 15% highly unlikely

Lost Laptops 35% unlikely
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Chapter 3

Experiments
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3.1 Experiments

This section introduces the Performance and Robustness tests we executed on our mode.
We demonstrate the tests’ results and show our deductions from analyzing the tests’ output.

3.1.1 Performance Testing

To evaluate the performance of the proposed model, we conducted a series of experiments
that measured the execution time of our model. We recognized two factors that affect the
overall execution time of the model: the number of samples N and the number of risks
R. To run the experiments, we incrementally increased both factors and measured the
execution time of the model at each step, then plotted the results to analyze the system’s
performance. We describe each experiment separately. We conducted the experiments on
a Dell XPS 15 9510 laptop with an Intel Core i7-11800H clocked at 2.3 GHz, 64 GB of
DDR4 RAM, and a 1536 GB solid-state drive. The machine runs Windows 11 and NVIDIA
GeForce RTX 3050 with 4 GB of GDDR6 memory.

Number of Samples N

We tested the system’s performance when incrementing the samples collected from WEP
tables, as illustrated in Algorithm 1. First, we define the following constants in the system
during all trials:

1. Number of WEP tables = 5

2. Number of Risks = 5

Furthermore, we ran our model using the following values of N : {1, 2, 4, 8, 16, 32, 64,
128, 256, 512, 1024, 2048, 4096, 8192}. At each value, we noted the execution time of
the model, then plotted the number of samples N Vs—execution time. Fig. 3.1 shows the
results of the experiment.

As expected, the execution time for the model increases as the number of samples N
increases. The relation is almost linear, as Fig. 3.1 shows. During the experiment, we
found the number of samples N is bounded by the maximum number of columns in Excel,
where N should not exceed the number of available columns.
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Number of Risks R

We executed the same experiment to evaluate the effect of incrementing the number of
risks in the system. First, we define the following constants in the system during all trials:

1. Number of WEP tables = 5

2. Number of Samples = 500

We ran our model using the following values of R: {1,2,4,8,16,32,64,128,256}. At each
value, we noted the execution time of the model, then plotted the number of risks R
Vs—execution time. Fig. 3.2 shows the results of the experiment.

From the plot, we deduce that the execution time increases as the number of risks R
increases. The graph shows increasing the risks from 128 to 256 significantly affected the
execution time; the gradient increased.

Finally, we highlight that the number of WEP tables used for sampling does not affect
the performance of our model. During sampling, our model samples from a random table
from the available tables; moreover, regardless of the number of tables, there is no extra
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overhead in choosing a random table. Therefore, we conclude that our model’s performance
is impacted only by the number of risks R and the number of samples N .
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Figure 3.2: Number of risks (R) Vs Execution time in seconds

3.1.2 Robustness Testing

This testing aims to evaluate our model’s resilience to mistakes. We consider two mistakes
in our tests: inaccurate likelihood estimation for specific risks and bad WEP mappings
within a table. The main idea of the tests is to measure how our model will recover from
mistakes as we use more WEP tables for sampling; for this reason, we had to generate
2048 WEP tables randomly.

We used a Python script to generate the tables randomly, where all tables have a
randomly generated range for each likelihood. The ranges vary significantly for each table
to include more diversity in our tables, which corresponds to more use cases. Table 3.2
shows an example of two randomWEPmappings. In the Certainly likelihood in bothWEP
mappings, mapping 1 has a range of 0.75 − 1, while mapping 2 has a range of 0.92 − 1.
Both ranges suggest different applications to which these mappings can be applied; for
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example, mapping 1 can be estimated for safety-critical applications because it has low
fault tolerance while mapping 2 can be estimated for applications resilient to failures.

Moreover, we run our model with all correct parameters and then use the results as
ground truth for the tests. More specifically, we use the loss mean and standard deviation
for all simulated scenarios to compare the ground truth and the test values by calculating
the absolute difference. We use the following equation to calculate the difference:

|meantrial −meantruth| (3.1)

The same equation is applied to the standard deviation.

Finally, we discuss our model’s robustness against these two mistakes and analyze the
results to show our conclusions.

Likelihood Estimation Mistake

In this experiment, we intentionally mapped a specific risk rA to a wrong estimative word.
We aim to measure the effect of the wrong likelihood as we increase the number of tables
used in the analysis. Initially, the correct estimation for risk rA is EvenChance; however,
during our experiments, we changed it to HighlyLikely in all our trials. We incrementally
increased the number of tables in each test; we used the following values for the number of
tables: {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}. In all trials, we initialized the model
with 5 risks, the number of iterations in MCS to 1500 and the number of samples N =
2500. Then, we changed the mapping of risk rA to the wrong likelihood in each trial.

Furthermore, we repeated the same experiment using two different types of WEP tables;
Type 1: tables with only two words (Certainly,NoChance) and Type 2: tables with
seven words (Certainly, HighlyLikely, Likely, EvenChance, Unlikely, HighlyUnlikely,
NoChance). The main idea is to observe how a mistake in estimating r′As likelihood
propagates with different types of tables.

Table 3.1 shows the result of the experiment. The results show the ratio of the deviation
to the ground truth value, which we calculate using the following equation:

|meantrial −meantruth|
meantruth

(3.2)

We deduce that the calculated ratio is the same regardless of the number of tables the
model used. This means a mistake in estimating likelihoods will undoubtedly affect the
analysis results. Upon comparing the results for each type, we find that the ratios for type
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1 are much higher than type 2, which suggests that the deviation is more elevated in type
1 because the difference to ground truth ratio is high.

We conclude that our model could be more robust against inaccurate likelihood esti-
mation regardless of the number of tables used. Moreover, we deduce that using WEP
tables with more likelihood mappings makes the model less prone to likelihood estimation
mistakes.

Table 3.1: Mean results for likelihood estimation mistake test

Number of tables Type 1 tables Type 2 tables

1 0.75 0.19
2 0.59 0.16
4 0.53 0.15
8 0.46 0.21
16 0.30 0.20
32 0.31 0.18
64 0.35 0.19
128 0.38 0.18
256 0.37 0.20
512 0.36 0.20
1024 0.34 0.19
2048 0.35 0.19

Table 3.2: Randomly generated WEP mappings

Likelihood Mapping 1 Mapping 2

Certainly 0.75− 1 0.92− 1
Highly Likely 0.60− 0.75 0.80− 0.92

Likely 0.52− 0.60 0.65− 0.80
Even Chance 0.27− 0.52 0.34− 0.65

Unlikely 0.12− 0.27 0.11− 0.34
Highly Unlikely 0.02− 0.12 0.03− 0.11
No Chance 0− 0.02 0− 0.03
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WEP Mappings Mistake

In this experiment, we inserted a bad table in the group of WEP tables that we used
during sampling. Table 3.3 shows an example of a bad WEP mapping. The problem with
this mapping is that Certainly likelihood has an extensive range (0.13− 1) and does not
provide a clear indication of the level of confidence; furthermore, the rest of the mappings
have a very narrow range of (0− 0.13), which makes us lose the real benefit behind WEP,
and make it hard to differentiate between estimative words. Inaccurate mappings lead
to misinterpretations, inaccurate estimations, misunderstandings, and incorrect decision-
making. Thus, it is crucial to carefully design WEP mappings to ensure effective use during
risk analysis.

Moving on with the experiment, we incrementally increased the tables in our trials; we
used the following values for the number of tables: {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}.
In all trials, we initialized the model with 5 risks, the number of iterations in MCS to 1500
and the number of samples N = 2500. Then, we inserted Table 3.3 to the tables used in
each trial. Our goal is to measure the effect of the bad table as we increase the number of
tables used in the analysis.

Fig. 3.3 shows the mean and standard deviation difference between each trial and the
ground truth. The overall trend of the graphs shows that the difference decreases when
the number of tables increases. Initially, the difference was more than 100 000 because our
model only used the bad table during sampling, which gave inaccurate results. However,
the effect of the bad table dramatically decreased when we added just one more table to the
model before gradually diminishing until reaching its minimum difference at 2048 tables.

We deduce that our model is robust against inaccurate WEP mappings. As more tables
are added to the model, the effect of wrong mappings will decline.

Table 3.3: Bad WEP mappings

Likelihood Mapping

Certainly 0.13− 1
Highly Likely 0.11− 0.13

Likely 0.09− 0.11
Even Chance 0.07− 0.09

Unlikely 0.05− 0.07
Highly Unlikely 0.02− 0.05
No Chance 0− 0.02
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3.2 Approximation Technique

This section will introduce an approximation technique to our approach to improve our
tool’s performance. We approximate the function Q by resampling the N samples we
collected from the WEP tables. The primary motivation is to provide a method for an
initial assessment with approximated values for the risks without running the entire model
and computing all the formulas, which will significantly save the computation time for the
model. This technique will help risk analysts get preliminary results in a shorter execution
time. In this section, we will explain the method, validate the results and show the speedup
in execution time for using this technique.

3.2.1 Technique overview

In Section 2.1, we explained that we sample the probability pc from the CDF to compare
it with the random probability pu during MCS. In this technique, instead of sampling from
the CDF, we will uniformly pick the probability pc from the N samples we collected from
the tables and then compare it with pu to complete the MCS. Figure 3.4 shows the workflow
using the approximated method. The significant difference between Figures 1.1 and 3.4 is
part C in step 2; we completely discarded the KDE calculations in the optimized approach.
Although the difference between both figures is only one step, it will dramatically speed
up the execution time because of the high computation cost of KDE.

Using the approximation technique, we will completely discard all the formulas used
during the KDE and generate the PDF, significantly decreasing the computational cost and
improving our model’s performance. Since it is an approximation technique, we expect to
obtain slightly different results and LECs. However, we will prove that both curves have
no statistically significant difference. We will also show the performance gain from using
this method.

3.2.2 Validating the results

We used the case study from HTMA [13] to validate the results. We will evaluate our results
using both the approximated and non-approximated methods and plot them along with
the actual results from the case study on the same graph. Figure 3.5 shows the diagram
containing three curves: optimized, non-optimized, and results from HTMA. Upon visual
inspection, we deduced that the three curves have the same trend and pattern. The
curve for HTMA’s results has some fluctuations that are not visible in the other two
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curves; however, these fluctuations are insignificant, and the curve matches the different
two curves in most regions. The curves for the optimized and non-optimized methods are
almost identical and follow the same pattern; however, the optimized curve has slightly
different values, which we expect because of the approximation technique that we used to
evaluate the results.

3.2.3 Evaluating speedup

One of the benefits of having the approximation method is to improve the model’s per-
formance. As we illustrated, the approximation technique will discard the KDE in our
original method, significantly reducing our model’s computational cost. Leveraging the
speedup that the approximation technique introduces, users can obtain reliable results for
initial analysis without running the entire model in a much faster execution time. We eval-
uated the speedup by dividing the execution time (e) for both methods using the following
equation:

eapproximated/enon−approximated (3.3)

We will showcase the speedup gained from using the approximation method in our model.

In section 3.1, we evaluated our model’s performance for the number of samples (N)
and the number of risks (R) in the system. We repeated the experiments using the ap-
proximation technique to evaluate the speedup. We ran all experiments using the same
parameters in section 3.1. Figures 3.7 and 3.6 show the model’s execution time using the
approximated and non-approximated methods for different values of R and N . We will
discuss each one separately.
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Figure 3.7 shows the performance gain for using the approximation technique for differ-
ent values of N . The graph shows that the value of e using the approximation technique is
faster than the standard method. Initially, the value of e was close between both methods;
however, as we increased the number of samples N , the approximated method’s execution
time was faster. We calculated the speedup at each value of N and evaluated the average
for all values. The average speedup was 1.2.

Moreover, Figure 3.6 shows the performance gain for using the approximation technique
for different values of R. The curve indicates that the value of e for the approximated
method is faster than the normal one. We calculated the speedup for each value of R and
then evaluated the average for all values. The average speedup was 2.2.

3.2.4 Statistical Signficant

We compared the outcomes obtained from the approximated and non-approximated ap-
proaches to verify our approach further. To rigorously assess the similarity or dissimilarity
of these results, we employed the KST. This statistical test, which evaluates the maximum
absolute difference between the cumulative distribution functions of two datasets, provides
a robust means of determining whether the results from these approaches significantly
differ.

We used the evaluated values to plot the LEC for the HTMA case study in section 2.2.
We ran the experiment using both approaches and used the values from the LEC for
the test. The test yielded a p-value more significant than our predetermined significance
level (alpha = 0.05), indicating a lack of evidence to support the hypothesis that the two
approaches produce statistically different results. In other words, our investigation’s results
suggest no significant difference between the outcomes generated by the two methods.
This finding provides valuable insights into the reliability and comparability of the two
approaches under consideration, supporting the notion that they produce consistent results
within the context of our study.

3.2.5 Limitations

Implementing the approximation technique introduced some limitations on the model be-
cause of the Excel limitation. The main difference in the approximation technique is that
we are sampling from a set of numbers instead of directly sampling from a CDF. The
function RiskDUniform in XLRISK [26], which samples uniformly from a list of num-
bers, requires to pass the entire array to it. Excel has a memory limitation on the size
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Figure 3.5: HTMA case study with approximation technique

of the array that is passed to the function; therefore, the number of N samples should
not exceed 500. The current design uses Excel to demonstrate the lightweight approach
and that a standard analysis tool such as Excel can support it. It is unclear why Excel
crashes with more than 500 samples, and it might be a bug in Excel or the XLRisk plugin.
Regardless, when implementing the analysis with a language such as R with distributed
compute backends such as future, there is virtually no limit to the number of samples to
be sampled from. Implementing the model as a dedicated application will undoubtedly
remove the constraint of supporting 500 samples in the approximated technique at most.
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Figure 3.6: performance of increasing risks using the approximated method
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4.1 What Makes a Good WEP Table?

Due to their crucial involvement in decision-making, WEP tables should provide a clear
and accurate representation of the likelihood of different events that reflect the judgement
of experts. For this reason, it is essential to involve experts in designing WEP tables to
accurately estimate the correct mapping that matches the application under consideration.
Therefore, using good WEP tables during risk analysis is vital for better loss estimation,
but what makes a good WEP table?

Our definition of a good WEP table is based on our results and findings in this study.
We identified the key elements necessary for a WEP table to enhance the accuracy and
reliability of risk analysis.

In Section 3.1, we introduced two experiments to measure our model’s robustness.
During the wrong likelihood estimation test, we found that having more entries in WEP
tables will make our model less prone to likelihood estimation mistakes. Therefore, we
deduce that having more likelihood mappings in WEP tables will help solve the inaccurate
estimation problem during risk analysis.

Originally, intelligence analysts developed WEP tables because it solves the problem
of inaccurate estimation for real numbers. Experts created WEP tables to provide a
more nuanced definition of uncertainty to avoid misunderstanding and miscommunications
during risk analysis. Therefore, the main idea of WEP tables is to abstract a range of
probabilities into one estimative word for more informed decisions.

Based on our findings, we deduce that having more likelihood in a WEP table will
make the analysis robust against mistakes. Considering the facts mentioned above, it’s
crucial to note that improperly designing a table with a lot of estimative words can result
in a significant loss. This loss undermines the primary benefit of using WEP tables, which
is to prevent miscommunication during risk analysis. Therefore, it is good to have more
likelihood mappings, but an expert should carefully design it to ensure that the table
follows best practices for creating WEP tables.

39



4.2 Future Work

This section provides an overview of the existing literature and research efforts that con-
tribute to developing more quantitative analysis methods. Also, we compare our model
with existing works and discuss future work to improve our model.

RISKEE [18] is a quantitive risk analysis method that is based on FAIR method [12],
attack trees, and Diamond model [7]. The RISKEE method constructs a graph that
contains different attack events, where each node in the graph represents an event. The
method uses forward and backward propagation algorithms to evaluate the impact cost
for the risks. A significant limitation of this approach is that it has a high computational
cost when increasing the number of nodes in the graph, which makes it infeasible to be
applied to large systems. Compared to RISKEE, our model is more scalable and has a
lower computational cost, making it suitable for more applications.

Other probabilistic methods have been introduced, like MAGIC [4], which is a method
that evaluates the probability of occurrence of cybersecurity risk. MAGIC is a probabilis-
tic model that computes the likelihood of occurrence based on the organization’s posture,
like awareness of the employees, maturity and complexity, etc. The model is designed to
consider all aspects of an organization that might affect cybersecurity incidents. After
evaluating the likelihoods, MAGIC uses its outputs with the model in HTMA [13], or
FAIR [12] to compute the cost for the loss and complete the quantitative analysis. Com-
pared to MAGIC, our model is more generic and does not depend on the organization’s
properties, so cybersecurity experts can use our model for risk estimation and decision-
making regardless of the organization’s posture or background.

Despite the promising results of our study, there are several areas for future research
and improvements. Firstly, our model heavily depends on the WEP tables collected and
their assigned ranges. In future work, we plan to find a way to collect WEP tables based
on geographical locations, as expert estimations for WEP tables highly depend on the
environment that they are experiencing.

Another area of improvement is to design the model to be more customizable and
add more configuration options for better usability. Furthermore, we aim to integrate our
model with the method in [27] so we can have the feature to customize our model for each
organization. Also, we aim to improve the performance of our model to handle more risks
and reduce the overall execution time.

Lastly, we aim to implement the model with other languages, such as R, and make it
compatible with different risk analysis methods, like the FAIR model [12]; this will help
make our approach more diverse and suitable for all applications.
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4.3 Conclusion

In this thesis, we introduced a spreadsheet-based approach for quantifying cybersecurity
risks. We leveraged linguistic likelihoods and WEP tables to establish a way to convert
verbal statements into quantitative values. Our cost calculation method is based on the
approach in HTMA [13]. Furthermore, we used the open-source Excel add-in [26] to do
MCS and estimate the loss for cybersecurity risks. Also, we compared our approach with
existing methods [13, 27] by analyzing the LECs. Moreover, we conducted experiments
to measure the performance and robustness of our model. We concluded that our model
is robust against inaccurate WEP mappings but not robust against inaccurate likelihood
estimation. Finally, we introduced another approximated technique which reduces com-
putational cost and time to help risk analysts obtain faster preliminary results without
running the full model. The proposed method is expected to provide organizations with
a reliable tool for quantifying cybersecurity to help in decision-making and choosing risk
mitigation actions.
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