
Development of a Scalable Machining
Feature Recognition System

by

Michael Lenover

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Mechanical and Mechatronics Engineering

Waterloo, Ontario, Canada, 2023

© Michael Lenover 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this thesis, various pre-processing and training techniques were applied to improve
the performance of a model trained with an existing machining feature recognition approach
by Yeo et al. [35] using a smaller dataset that more effectively mimics the complexity of
CAD models used in industry.

A GUI tool was developed to tag faces in CADmodels with the corresponding machining
features which would be necessary to resolve those faces. Using the encoding algorithm
outlined by Yeo et al. [35], a tool was developed to generate feature vectors from tagged
CAD models. Two CAD datasets were compiled. First, a dataset of generic CAD models
was filtered from a larger dataset compiled by Koch et al. [12], selecting those models which
could be manufactured using a 3-axis CNC machine. Second, a dataset of real-world CAD
files used in CNC manufacturing was compiled from models contributed by individuals
from the Unviersity of Waterloo, Hurco Inc. and Perfecto Inc.

Using the first dataset, three potential improvements to the feature recognition algo-
rithm developed by Yeo et al. were explored: the incorporation of dropout to improve model
stability and accuracy, the incorporation of ID3 tree pre-classification to reduce training
time by reducing the size of the deep learning dataset without impacting classification
accuracy, and the incorporation of crossover data generation to improve classification ac-
curacy by reducing overfitting due to insufficient training data. It was determined that
incorporating dropout improved the stability of the model and improved 5-fold cross val-
idation accuracy. Further, it was determined that incorporating a 2-deep ID3 decision
tree pre-classification marginally improved classification performance and was effective in
reducing the size of deep learning training dataset. Crossover data generation did not
improve model performance, and so was rejected. Using the model trained on the generic
CAD dataset, and incorporating 10% dropout and a 2-deep ID3 tree, models from the
real-world dataset were classified. This classifier was effective in classifying some simple
features, but had poor accuracy overall. To improve this accuracy, an incremental learning
technique was applied. The generic model was re-trained using samples from the real-world
dataset, which improved the classification accuracy of the system.

iii

Acknowledgements

I would like to thank William Melek, who provided the guidance necessary to develop
my knowledge of machine learning.

iv

Dedication

This is dedicated to my mother, Cheryl Lenover.

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Figures viii

List of Tables xi

1 Introduction 1

2 Background 4

2.1 Existing Research . 4

2.1.1 Hint-Based Methods . 4

2.1.2 Graph-Based Methods . 5

2.1.3 Volume-Based Methods . 5

2.1.4 Cell-Based Methods . 6

2.1.5 Machine Learning Methods . 6

2.2 Machine Learning . 7

2.3 Computer Aided Design . 11

2.4 Summary of Work . 12

vi

3 Model Creation 13

3.1 Dataset Creation . 14

3.2 Tagging Machining Features . 17

3.3 Data Collection . 19

3.4 Feature Encoding . 20

4 An Exploration of Model Improvements 24

5 Observations 31

5.1 Part 1: Evaluation of Dropout . 31

5.2 Part 2: Evaluation of ID3 Tree Pre-classification and Crossover Data Gen-
eration . 36

5.3 Part 3: Evaluation of Transfer Learning . 39

5.4 Part 4: Evaluation of Incremental Learning 40

6 Conclusions 43

References 45

APPENDICES 49

A Results of Model Training 50

A.1 Results from Part 1: Evaluation of Dropout 50

A.2 Results from Part 2: Evaluation of ID3 Tree Pre-classification and Crossover
Data Generation . 60

A.3 Results from Part 3: Evaluation of Transfer Learning 76

vii

List of Figures

3.1 A typical CNC workflow . 14

3.2 The machining feature tagging user interface 19

3.3 Machining feature description . 20

3.4 Machining feature class encodings . 21

3.5 Feature vector element encodings . 23

4.1 Deep learning network architecture . 27

4.2 Consolidated machining features . 28

4.3 Outline of tests to be conducted . 29

5.1 Results of training for a typical fold . 33

5.2 Results of training for a challenging fold 35

5.3 Results of model trained on full ABC training dataset with 10% dropout
and 2-deep ID3 tree . 38

5.4 Accuracy of model trained on samples from ABC dataset, evaluated against
real-world data . 40

5.5 Confusion matrix of model trained on samples from ABC dataset, evaluated
against real-world data . 40

5.6 Accuracy of transfer learning model after re-training with clusters of 20
machining features . 42

5.7 Loss during re-training of transfer learning model 42

5.8 Confusion matrix of model evaluated against real-world data after re-training 42

viii

A.1 Validation accuracy during training without dropout 51

A.2 Cross entropy training loss during training without dropout 52

A.3 Confusion matrix results after training without dropout 53

A.4 Validation accuracy during training with 10% dropout 54

A.5 Cross entropy training loss during training with 10% dropout 55

A.6 Confusion matrix results after training without dropout 56

A.7 Validation accuracy during training with 20% dropout 57

A.8 Cross entropy training loss during training with 20% dropout 58

A.9 Confusion matrix results after training without dropout 59

A.10 Validation accuracy during training with pre-classification using a 1-deep
ID3 tree . 61

A.11 Cross entropy loss during training with pre-classification using a 1-deep ID3
tree . 62

A.12 Confusion matrix results after training with pre-classification using a 1-deep
ID3 tree . 63

A.13 Validation accuracy during training with pre-classification using a 2-deep
ID3 tree . 64

A.14 Cross entropy loss during training with pre-classification using a 2-deep ID3
tree . 65

A.15 Confusion matrix results after training with pre-classification using a 2-deep
ID3 tree . 66

A.16 Validation accuracy during training on dataset augmented with crossover . 67

A.17 Cross entropy loss during training on dataset augmented with crossover . . 68

A.18 Confusion matrix results after training on dataset augmented with crossover 69

A.19 Validation accuracy during training on dataset augmented with crossover
and with pre-classification using a 1-deep ID3 tree 70

A.20 Cross entropy loss during training on dataset augmented with crossover and
with pre-classification using a 1-deep ID3 tree 71

A.21 Confusion matrix results after training on dataset augmented with crossover
and with pre-classification using a 1-deep ID3 tree 72

ix

A.22 Validation accuracy during training on dataset augmented with crossover
and with pre-classification using a 2-deep ID3 tree 73

A.23 Cross entropy loss during training on dataset augmented with crossover and
with pre-classification using a 2-deep ID3 tree 74

A.24 Confusion matrix results after training on dataset augmented with crossover
and with pre-classification using a 2-deep ID3 tree 75

A.25 Training loss of model trained on ABC dataset 77

x

List of Tables

5.1 Summary of validation accuracy for models trained with different amounts
of dropout . 34

5.2 Summary of validation accuracy and number of deep neural network training
samples for models trained with ID3 tree pre-classification and crossover
data generation . 36

xi

Chapter 1

Introduction

To increase manufacturing efficiency, it is often necessary to automate parts of the man-
ufacturing process. CNC, or computer numerical control, has been in development since
the 1950s as a method of automatically executing movements of a robotic system. In the
domain of manufacturing, CNC control has been used to automate subtractive machining
processes such as lathing or milling. Often shortened to CNC machines, this equipment
can automatically move a cutting tool into stock to remove material in such a way as to
produce a desired part, in much the same way as a human operator might do.

To manufacture a part, the user must provide a CNC machine a set of instructions for
what movements the machine must make. This set of movements is called a toolpath. In a
typical industry workflow, a technician or operator would begin by importing a computer
aided design (CAD) model into a toolpath planning program. Next, they would make
decisions based on their own experience, the machine tools available to them, the required
manufacturing speed, the specified part tolerances, and a variety of other factors to deter-
mine the best approach for manufacturing a particular aspect of the part. For example,
a cylindrical hole can be manufactured by plunging a drill bit into a block of stock, or by
plunging an end mill, or by performing a pocketing operation using a tool with a diameter
smaller than the hole. Until recently, making these decisions about which approach to take
(often dozens of times for a single part) was the responsibility of an experienced human
operator.

Relying on a human operator has several limitations. CNC machines remain useful
for producing thousands of identical parts, as the labour cost of generating the toolpath
can be amortized over the many times that toolpath is executed. However, for one-off
or low-volume production runs, the cost to generate the toolpath represents a significant

1

portion of the final manufacturing cost. This cost has the effect of making CNC technology
inaccessible to many smaller businesses.

Relying on a human technician to plan the toolpath also limits the volume of orders
a single manufacturing company can accept. The domain of machine planning focuses on
analysing parts to be manufactured, estimating the manufacturing time of those parts,
and distributing those parts among the available machines. Estimating the manufacturing
time of a part (and by extension, estimating the manufacturing cost) requires many of the
same decisions involved in toolpath planning to be made. By reducing the work required
from a human operator, more manufacturing orders can be processed, and the reach of a
single manufacturing company can be increased.

There has been a large body of research in the domain of toolpath planning automation
over the past four decades. This research falls into one of two broad categories. First,
curve planning, focuses on automating the path generation algorithms that determine how
a machine tool traces out a pocket or surface based on the geometry defined by a designer
[1] [30]. Typically, curve planning algorithms do not make assumptions about how the
operator wants a part machined; what type of tool is being used, what the dimensions of
the tool are, or whether to make multiple passes are often left to the operator to decide or
change based on their judgement.

Secondly, and more recently, research into machining feature recognition has been con-
ducted. To select a curve planning algorithm, it is useful to identify the high-level machin-
ing features required to manufacture a part. Given knowledge that a set of faces require a
pocketing operation to construct, there are empirical and mechanistic models [28] that can
make decisions about tool type, tool shape and depth of cut automatically. If machining
features can be identified automatically, curve generation algorithms can be implemented
with fewer human decisions, reducing manufacturing costs for small- and medium-sized
manufacturing companies.

Recently, a model was developed by Yeo et al. [36] that leveraged machine learning
to automatically identify machining features in a dataset of synthetically generated CAD
files. Yeo et al. identified attributes of a CAD file that could be used to uniquely identify
machining features from a list of machining features they selected. These attributes were
used to generate a feature vector: a list of integers encoding relevant information from
the CAD file. These feature vectors were tagged with a corresponding machining features
using an automated process. After several thousand features vectors were encoded and
tagged with their respective machining feature, they were used to train a machine learning
system to identify machining features in parts which that system had not seen before. Once
trained, a CAD model could be encoded using the scheme developed by Yeo et al., and

2

provided as an input to a machine learning model, which could identify which machining
features, if any, could likely be found at a particular location of a given CAD file.

The approach proposed by Yeo et al. was successful at identifying machining features
in synthetic CAD files with an accuracy of 93%. This is an impressive result, and indicated
machining features can be accurately identified using a machine learning-based approach.
However, the research conducted by Yeo et al. was limited to training and testing on a single
synthetically generated dataset. This dataset was created by defining the geometry of each
machining feature based on a fixed set of dimensions, bounding the minimum and maximum
value of each of these dimensions, and randomly selecting values for each dimension. These
features were then intersected with a solid volume to represent the stock material for a
hypothetical part, with multiple features potentially self-intersecting. This approach was
successful in creating a large number of complex machining features for which to train
on, but was limited based what set of features could be described using this algorithm.
Any representation of a hypothetical machining feature that cannot be generated by the
specified algorithm will never be included in the training data, and consequently never
learned by the model. Furthermore, different 3D modelling applications may resolve the
same geometric information in different ways, which may lead to different encodings of
particular machining feature which were not included in the training dataset. Finally,
the distribution of machining features varies considerably between different manufacturing
industries, which are not reflected in the tests presented by Yeo et al.

To develop a system that is more useful for small- and medium-sized manufacturing
businesses, an extension to the work developed by Yeo et al. is presented. To achieve such
an improvement, a model was developed and validated using training data extracted from
an existing dataset of generic human-created CAD files, to avoid the concerns outlined
above which arise from training on a synthetically generated training dataset. The ma-
chine learning model was based on the approach developed by Yeo et al. The learning
algorithm was augmented with a variety of data pre-processing and canonical machine
learning techniques, to improve the classification of features. Next, to estimate the clas-
sification performance of the system in a real-world environment, a dataset of real-world
CAD files was collected and tagged using the same feature encoding approach. The model
trained on the generic dataset was used to classify features from the real-world dataset. To
improve the classification accuracy of real-world machining features, a re-training approach
was developed that could be easily integrated with a hypothetical machinist workflow. In
this way, a scalable machining feature recognition system that can identify machining
features in real-world CAD files of machined parts was developed.

3

Chapter 2

Background

2.1 Existing Research

The domain of machining feature recognition has been widely researched from several
different perspectives for over four decades. Some of the earliest work into machining
feature recognition was detailed by Kuprianou [14]. Since then, several approaches have
been investigated that refine existing techniques to improve the quality of classification,
apply new techniques to offer greater flexibility, and present domain-specific applications
of feature recognition techniques. The following section presents a selection of relevant
machining feature recognition research, culminating with an analysis of the work this thesis
will build upon.

2.1.1 Hint-Based Methods

One of the most conceptually straightforward approaches to machining feature recognition
relies on using rules to parse information from a CAD model to define the machining fea-
tures most likely to be used in manufacturing a section of a part. Some of the earliest
research in this domain relied on data extracted from the part geometry exclusively [3].
At the same time, other research presented an approach that fused data from multiple
sources; part geometry, in conjunction with tolerancing information and machining call-
outs such as threading indicators, were used to identify features [32]. As research into this
space evolved, it became clear that one of the main drawbacks of hint-based approaches
lay in their simplicity. Early approaches presented too many possible solutions for which

4

machining features comprise a part and were computationally expensive [5]. Furthermore,
a common element of most hint-based feature recognition methods up to this point was the
evaluation of most likely or most similar features based on the provided hint. Approach-
ing the machining feature recognition problem in this way simplifies the decision-making
process, but can lead to incorrect estimates in cases where the machining feature is not
clear. Instead, the method presented by Han and Requicha [5] focused on the discovery
of a satisficing solution, rather than an optimal one. Even as these issues were addressed,
hint-based approaches remained limited by how feature interactions were handled [33].
These concerns were addressed in part in that publication, but other approaches address
these issues more effectively.

2.1.2 Graph-Based Methods

Graph-based methods, much like hint-based methods, rely on extracting geometry infor-
mation from CAD files to produce localized estimates of machining features. In contrast to
hint-based methods, these approaches draw from the domain of graph theory, and model
features as a set of faces (nodes) connected by edges. Early research into these approaches
began with work by Joshi [8], and remain an area of ongoing research [17] [18]. The
success of these methods reinforces the effectiveness of approaches that rely on geometry
information in distinguishing machining features.

2.1.3 Volume-Based Methods

Virtually all hint-based methods rely on a human designer to determine what information
must be extracted from a model, and how that information is relevant in determining what
machining feature or features most likely comprises a portion of a 3D model. Volume-
based methods, in contrast, allow for the decomposition of models into their constituent
machining features based purely on the geometry of those machining features.

One of the earliest implementations of a volume-based method was introduced by Tang
and Woo, where they present an approach they dubbed “Alternating Sum of Volumes”
or ASV [29]. Unfortunately, a major drawback of this algorithm was its tendency to not
converge. This non-convergence was addressed by Kim [11], which was further refined
by Waco [34], in which an algorithm was presented that provides a hierarchy of preferred
machining features that can be re-arranged based on feedback from the machining sequence
planner. The integration of feature recognition and machine planning systems allows for

5

greater control over what features are selected, to minimize machining time and to select
for only those features that the available tools and machines are able to manufacture.

2.1.4 Cell-Based Methods

Cell-based methods aim to decompose a model into constituent features using the part
geometry alone. In contrast to other methods, however, cell-based methods involve seg-
menting the part into regular volumes (cells) before recombining them to construct different
machining features. Early work in this field was published by Sakurai [25] and Shah [26].
New developments in this field have been seen as recently as 2015 with work from Kim [9].

Cell-based methods are successful at handling complex feature-feature interaction, in
contrast to many of the approaches previously discussed [27]. However, as they retrieve in-
formation from the volume envelope of the part, geometric features (such as planar surfaces
vs. curved surfaces, or cylindrical features vs. prismatic features) can be misinterpreted.

2.1.5 Machine Learning Methods

Machine learning is a popular classification technique in a variety of domains that has
become increasingly popular in recent years. Early investigations into the application
of machine learning to the machining feature recognition problem began with work by
Prabhakar and Henderson in 1992 [23]. Their paper presents an approach that encodes
information extracted from the B-Rep model as a matrix of feature vectors, with each face
in a part encoded as a single vector. The elements within a feature vector are selected
to best distinguish between different machining features, and represent information such
as what type of face is being analyzed (planar, cylindrical, etc.), number of adjacent edge
loops, and edge convexity. This approach of encoding geometry information into a fixed-
length vector allows these vectors to be treated as training samples in a feed-forward neural
network. More information about neural networks is presented in the next section.

Recently Yeo et al. presented a culmination of many years of research into the neural
network-based machining feature recognition domain [36]. Their paper presents a proposal
for an end-to-end pipeline that can extract relevant information from a CAD file and present
an estimate of the machining features contained in the part. This work draws heavily from
their previous publication [35], that outlines what information is best to encode in the
data vector to distinguish between different machining features most effectively. In total,
they used 2236 data samples to train, test and validate the network, which was able to
distinguish between 17 different machining features. My thesis will aim to extend Yeo

6

et al.’s work to improve its classification effectiveness using a variety of machine learning
techniques, which will be introduced below.

2.2 Machine Learning

Machine learning has been a popular domain of research in recent years, with innovations
such as GPT-4 [22] and generative AI [24] achieving mainstream press coverage and driv-
ing renewed interest in the technology. However, research into machine learning has been
ongoing for over 70 years, with the underlying mathematical concepts having been devel-
oped even earlier. The following section presents a brief summary of machine learning
concepts relevant to the research discussed in the remainder of this thesis. The majority
of the concepts presented in this section are based on information contained in a textbook
authored by Fieguth [4].

At its core, the goal of machine learning is to identify patterns in a set of data to
automatically make decisions. In some cases, the pattern recognition can take the form
of segmenting the data based on their similarity into groups called classes. This approach
is known as unsupervised learning, and there are a variety of approaches that have been
developed to achieve this goal. In other cases, a designer may wish to specify associations
between classes and data points. For example, a researcher may wish to develop a system
that learns to identify tumours in CT scan images. To achieve this, they could collect a
dataset of different CT scan images, with labels indicating which of them include a tumour.
Then, by analyzing this dataset, a machine learning model would be able to automatically
identify what characteristics of an image indicate a tumour, and (ideally) be able to identify
if a new image contains a tumour. This approach is known as supervised learning.

One of the earliest approaches to supervised learning draws inspiration from the human
brain itself. Neural networks describe an approach that uses many simplified models of
neurons arranged in a network to learn about a system. There are several different config-
urations of neural networks, but one of the simplest approaches is known as a feed-forward
neural network. During training, information encoded as a vector of values is passed into
an input layer of neurons, which signal to subsequent neurons based on the magnitude
of the inputs. These signals propagate through the network, though multiple layers of
neurons, into one or more output neurons. Each time a signal is passed from one neuron
to another the signal is scaled by a connection weight, which can be initialized with some
scheme or randomized at the start of training. The output from the network is compared
to the tag associated with that training sample, and an error value is computed. The sign
and magnitude of the error indicate in which direction and by how much the connection

7

weights should be modified. The errors are then passed through the network backwards,
scaled by the existing network weights, until adjustments to every weight are calculated.
This scheme is repeated for each sample in the training data set, referred to as an epoch.
To train a network to classify a system, it is often necessary to iterate over the same data
set multiple times, for hundreds or thousands of epochs. In Chapter 4, several feed forward
networks are developed to classify machining features. Each of these networks are trained
for 1000 epochs.

When constructing a machine learning system, it is necessary to take care when format-
ting the training data so that the data best fits the problem domain and learning technique.
In the example proposed earlier, where a system is being designed to identify if a tumor
is present in an image, the training images would be tagged with a single binary value
(indicating whether the image contains a tumor or lacks a tumor). This value would be
compared to the value from a single neuron in the output layer to produce the backpropa-
gated error signal. For a classification problem, such as selecting which of a set of common
objects (plants, animals, humans, cars, etc.) are in an image, a vector of binary values
associated with each possible object can be tagged to each image, with each element in the
vector indicating the presence or absence of a particular object. In the case where only one
class can be present at a time (such as in the case of many implementations of machining
feature recognition systems) a 1-of-n encoding scheme is used. A 1-of-n encoding scheme
takes the structure of a binary label vector, in much the same way as the previous example,
but where only exactly one element in the vector is labelled as 1. The machine learning
model constructed by Yeo et al., and consequently the model implemented in Chapter 4,
is trained using a 1-of-n class encoding scheme.

Once an encoding scheme has been selected, several approaches can be used to augment
the data so that the data better represents the problem domain and can be used to train
an effective classifier. If multiple samples are present in the dataset that are identical, the
resulting model can place a greater emphasis on correctly identifying those samples, at
the expense of distinguishing between subtle differences between similar classes. Instead,
researchers often remove duplicate samples from their dataset. Before training on either
dataset collected in Section 3.4, duplicate samples were removed. Similarly, techniques
have been proposed that pull from the domain of genetics to recombine samples of the
same classes into new generations of artificial data, based on the distribution of values in
the parent training samples [31]. This approach is known as crossover. An extension to
the work developed by Yeo et al. is proposed in Chapter 4 that incorporates crossover to
generate new training data.

To determine when to stop training a model, and to verify that the system is effective,
it is necessary to evaluate its performance. A näıve approach for evaluating a supervised

8

learning model might involve training it on a set of data for some number of epochs,
calculating the expected class for each sample in the training set, and determining what
fraction of the training samples it could correctly identify. Unfortunately, evaluating the
accuracy of a model using the same data that was used to train that model has the potential
to obfuscate a system that has been overtrained.

Overtraining is a description of a machine learning model which, instead of learning the
underlying properties of a given domain (for example, the characteristic color or shape of a
tumor in an image), learns some properties present in the dataset that are not generalizable
(for example, a note from a doctor or a watermark present on all images that contain a
tumor). Overtraining can come about for many reasons, from class imbalance (where a few
classes of data disproportionately represent the full training set) to a dataset that lacks
sufficient diversity proportional to the complexity of the domain to a dataset that is too
small. There are two common ways to combat overtraining.

First, when calculating the output for a training sample, an algorithm can randomly
select some internal neurons to output no signal, typically with a likelihood of around 5
percent. In this way, simple strategies that rely on the activation of only a handful of
neurons (and as a result, represent a model with little complexity) are not as successful.
This approach is known as dropout and was developed by Hinton [6]. Second, instead
of evaluating the performance of a model based on its ability to classify the data it was
trained on, researchers typically split data into three groupings: a training set, a validation
set, and a test set. The training set is used to train the model, in a manner as discussed
before. The validation set is used to make changes to the model (such as changing the
rate at which the neuron weights are updated each iteration, and the network structure)
to improve its performance. Once a model is trained, the test set is used to evaluate its
classification performance. The tests conducted in Section 5.1 and Section 5.2 incorporate
training, test and validation datasets in this way to avoid overtraining.

Typically, the accepted approach for developing a deep learning classifiers involves
training a system on a training data set multiple times, varying some aspect of the system
that is to be evaluated. During training, the accuracy of the system is quantified by using
the model to classify samples in the validation set, and comparing the model outputs
to the ground truth labels associated with the validation training data. Then, once an
optimal system has been developed, a final estimate of the system’s accuracy is developed
by classifying samples in the test data set, and calculating the proportion of samples which
are classified correctly. This approach works well for large datasets which well represent
the feature space of the classification problem. However, when there exists a risk that small
changes in the composition of the dataset may significantly impact the validation accuracy,
a more robust testing approach may be selected. K-fold cross validation is an approach that

9

involves involves training and validating the same dataset multiple times, and averaging
multiple validation accuracy values to produce a better estimate of the model performace.
In order to collect multiple validation accuracy values, the test and validation datasets are
combined into a single training dataset, This single training dataset is split into (typically
around 3-5) folds, groups of training samples with an equal or approximately equal number
of samples. A model is trained using data from all but one of the folds, and the held-out
fold is used to calculate the validation accuracy of the trial as before. This process is
repeated, holding out a different fold each time. These validation accuracy estimates are
then averaged to produce a cross validation accuracy of the model. The tests conducted
in Section 5.1 and Section 5.2 also incorporate K-fold cross validation, to more effectively
estimate the classification performance of each model.

An alternative approach for implementing a supervised learning system is a decision
tree. Unlike neural networks, decision trees are simpler to implement, do not require many
training iterations, and once constructed can be easily interpreted by a human. However,
as a consequence of their simplicity decision trees are often not as effective in learning
subtle differences between classes. Despite this, decision trees can be useful in scenarios
where the complexity of a neural network is not required. Another extension to the work by
Yeo et al. is proposed in Chapter 4 that incorporates a decision tree to classify machining
features.

Entropy is a measure of disorder within a system; a dataset with higher entropy has a
larger variety of classes that are evenly distributed, whereas a system with lower entropy
has fewer classes with one or two classes representing most of the samples. A decision tree
can be implemented by first calculating the entropy of the entire dataset based on equation
2.1.

Entropy(D) = −
K∑
k=1

P (Ck) log2(P (Ck)) (2.1)

In this equation, D represents some dataset with K classes, where each class represents a
fraction of the total dataset equal to P (Ck). Starting with the first variable in the data
vector, the dataset is segmented into subsets for each possible value of that variable, where
each dataset contains only samples where the chosen variable takes a single value. Next,
the entropy of each subset is calculated using the same equation as before. Finally, by
summing the entropy of each subset, scaled by the fraction of the total dataset that subset
represents, a representation of the total information contributed by that variable can be
calculated. This process is repeated for each variable. The variable that contributes to the
greatest reduction in entropy is selected as the first node, with a number of branches equal

10

to the number of values that variable can take. For each branch, a new decision node is
created using the process described above, considering only that branches respective subset
of the data. This process is repeated until the entropy of each branch is 0 (i.e., contains
only samples from a single class).

Other machine learning techniques refined in the last few of years have focused on de-
veloping new approaches to improve the accuracy of existing models. Incremental learning
and transfer learning are concepts that have been embraced by machine learning researchers
as ways to integrate learning models into real-world classification problems without a ro-
bust existing dataset. Transfer learning describes a process by which a model is trained on
a set of data collected under a specific set of conditions and evaluated based on its perfor-
mance in a wider variety of new conditions [2]. This property has benefits for a machining
feature recognition system, since computer aided design (CAD) files used for training are
often proprietary and difficult to obtain in large quantity. The ability of a machining fea-
ture recognition model to transfer learning between different machining feature datasets
is evaluated in Section 5.3. When a transfer learning system is insufficient to effectively
distinguish between classes in a specific domain, additional incremental learning can also
be applied [20]. Incremental learning refers to training an existing model (which can be
the model trained on data collected under a specific set of conditions, as described above)
using domain-specific training data, to augment the classifier for that specific scenario. A
proposed method of incrementally learning machining features is explored in Section 5.4.

2.3 Computer Aided Design

To extract information from a CAD model to inform a feature recognition system it is
necessary to understand how 3D models are stored. Much of the early work into 3D file
representations, which went on to inform the design of modern parametric modelers, was
collected and published by Mäntylä [21]. Early attempts at 3D modellers stored models
as a list of Boolean operations of volume primitives (prisms, cylinders, etc.). This concept
of constructive solid geometry or CSG representation is used in volume-based machining
feature recognition approaches. Unfortunately, this approach presents a challenge if a user
would like to change a single feature or dimension in a part that is not fully represented
by one of the volume primitives. Instead, a more general representation was developed.

Boundary representation or B-Rep models describe a type of 3D model that store the
surfaces bounding the solid volume to represent the geometric information. Geometry
information is typically encoded as a list of vertices, connected by edges, which themselves
bound the faces of a part. Faces are associated with loops of edges, which bound the

11

face on all sides. Many machining feature recognition systems traverse the B-Rep model
representation directly, although many modellers offer higher-level interfaces as well.

Boundary representations of CAD files are useful for storing geometry information, but
modern parametric modellers offer many other features that cannot be stored in the B-
Rep model. Machining callouts, tolerancing and other manufacturing information require
a higher-level file standard to be stored. The STEP file format was developed by the
International Organization for Standardization as a generic ASCII file format that can
encode geometry information, as well as a number of relevant design and manufacturing
information [7]. Since their introduction, STEP files have become a de-facto standard for
CAD file exchange.

Machining feature recognition systems must interface with existing file standards in or-
der to be useful. Early work with machining feature recognition, especially several volume-
based methods, mirror the CSG representation that was common for models of the time.
However, most current methods in development within the last decade operate on data ex-
tracted from a B-Rep model encoded in a STEP or similar parametric file format. Certain
methods, such as hint-based approaches, may incorporate the additional manufacturing
information encoded in the STEP file format. However, since the quality of this data
can vary dramatically for different parametric modellers and depending on the modelling
approach selected by the designer, most authors of feature recognition techniques opt to
design their systems to operate without that extra manufacturing information.

2.4 Summary of Work

This thesis aims to extend the work by Yeo et al. [35] to develop a machine learning-based
machining feature recognition system that can operate on B-Rep models of machined
parts encoded in a STEP file format. In extending this existing work, I hope to improve
the training time and/or accuracy of the system, to develop a technique that is scalable
in a variety of manufacturing domains. To investigate the scalability of the system, an
exploration of the ability of the classification system to transfer learning between datasets,
as well as the rate at which the system can learn when adapting to a new sample domain
will also be conducted.

12

Chapter 3

Model Creation

A typical CNC workflow involves many steps, with varying amounts of human involvement
and automation. Figure 3.1 describes the steps typically required to take a part from
conceptual design through manufacturing using a CNC machine. To begin, a part is
designed based on the criteria and constraints of the design problem. Some work has been
completed in the field of automated design [19], but much of the design work completed in
industry is still completed by humans. Next, a machine operator or other skilled technician
uses the geometry information or other manufacturing requirements defined by the designer
to make informed decisions about the machining operations required to make the part.
Many years of work have been conducted to develop techniques to automate this process,
but much of this work has yet to see widespread adoption in industry. Next, typically
using a computer aided manufacturing (CAM) program, the operator decides how best to
implement those machining operations. Decisions such as the number of roughing/finishing
passes, what tools to use, what curve or curves the tool should follow, how deep/how fast
the tool should plunge into the material, and whether the selected configuration will lead
to part gouging must all be considered. This process is known as toolpath planning
and is already significantly automated; there exist accurate empirical and physical models
[28] that automated software systems can use to create accurate, if conservative toolpaths.
Once the toolpath is created, an available CNC machine is selected using a process known
as machining sequence planning. Once this is complete, stock is loaded into the
machine. There exist technologies to automate these processes (such as those developed
by the company Probot Systems), but these technologies become valuable only for large
volume production runs, since it takes a small amount of time to load a single piece of
stock. Once ready, the machining cycle starts. This process of executing the movements
encoded in the previous steps is fully automated in virtually all cases and is the defining

13

Figure 3.1: A typical CNC workflow

feature of a CNC machine. Finally, the system must be monitored until the part is
completed, in case any unforeseen problems arise. There is a wealth of research in the
machine monitoring domain [13], but more work must be completed before automated
machine monitoring becomes common in industry.

As compared to other steps in a typical CNC workflow, there exists a great divide
between the typical level of automation for solutions to the machining operation selection
problem and the most common solutions used to accomplish this task in industry. To bridge
the gap between existing machining feature recognition research and industry needs, this
thesis will investigate the effectiveness of an existing machining feature recognition when
classifying data collected in the real world. This work will begin with collecting two
datasets: a dataset of generic CAD files which will be used to train a generic machining
feature classifier, and a dataset of CAD files collected from real-world machine shops.
These datasets will be tagged and encoded using an approach developed by Yeo et al. [35]
to create dataset of feature vectors which can be used to train a deep learning system.

3.1 Dataset Creation

One of the challenges encountered by Yeo et al. [36] is a challenge faced by many researchers
developing deep neural networks. In most cases, it is difficult to determine if a dataset size
is sufficient to train and validate a learning approach. Yeo et al. note that, “It is not easy to

14

prove that the data for training is sufficient”. To address the issue of data sufficiency, Yeo
et al. used an automated data generation technique to generate as much training data as
possible, to maximize the likelihood that the dataset is fully representative of all possible
CAD files and their constituent machining features. This approach involved generating
part parameters (feature type, location, size, etc.) algorithmically, using those parameters
to automatically generate 3D models in a parametric CAD program, and tagging those 3D
models using their feature descriptor approach. Generating the data automatically has the
benefit of being able to generate a dramatically large number of parts (in Yeo et al.’s case,
170 000 unique CAD files), but poses a challenge when attempting to transfer the learned
features to real-world CAD models.

Designers of machine learning systems must make decisions about the structure and
composition of the dataset those learning systems are trained with. In the case of Yeo
et al.’s machining feature recognition system, the researchers made decisions about the
distribution of features, the frequency and quality of feature-feature interactions, and the
pipeline of modelling software packages and CAD file interchange formats used during
the creation of the dataset. This last aspect is of particular importance and can pose
a challenge when attempting to develop a generalized model. A volumetrically identical
part can be encoded in many ways; a feature as simple as a hole can be represented as
a single cylindrical surface, or as two cylindrical surfaces, or as a non-uniform rational
b-spline (NURBS) surface, or as a circle lofted along a line, or as a line rotated around
a circle, or with many other representations of arbitrary surfaces. The resulting encoding
scheme changes based on the parametric modelling operations used to create the hole, the
parametric modelling program, and the filetype the 3D model is saved under. The specific
choices made during the generation of a synthetic CAD file dataset influence the structure
of the feature encodings, which in turn limit the generalization of the machining feature
identification system. A system trained on synthetic data will, by the nature of the dataset
it is trained upon, be most effective at identifying synthetic data generated in the same
manner as the dataset. To identify machining features in real-world CAD files, a system
must be trained on files used in the real world.

To create a real-world CAD dataset, the most straightforward approach would be to
collect data directly from a wide variety of manufacturing companies. This approach poses
multiple challenges. Companies, especially those that specialize in low-volume, short lead
time manufacturing, are often unable to dedicate time to manually sort and collect CAD
files if they do not already have a method of doing so automatically. Furthermore, since the
part designs are typically the intellectual property of the customer, care must be taken to
receive permission to use the files as part of a dataset, or else risk exposing the manufacturer
or researcher to legal liability. Because of both of these factors, an exploration of existing

15

online CAD model databases was conducted to prepare an initial dataset.

Multiple CAD model research datasets were explored. Lee et al. collected data from
existing datasets, as well as generated new data, and published their dataset along with
their methodology [15]. Unfortunately, this dataset was unacceptable for this use case,
since the models the dataset contained often included self-intersecting faces or unenclosed
volumes where the faces did not meet correctly. Since many of the encoding methods to
be used in this work rely on face-face adjacency, the data yielded by encoding these parts
would not allow the network to generalize. Another dataset that was explored is called
the “Mechanical Components Benchmark” [10]. This dataset was designed specifically
for training systems to identify different properties of machined parts. Unfortunately,
the parts contained in this dataset were encoded as volumes enclosed by a triangulated
surface. Consequently, information about non-planar face types (cylindrical, toroidal, etc.)
would be lost. Further, a single “base face” as defined by Yeo et al. are often subdivided
into many small triangular faces in the Mechanical Components Benchmark, which would
make extracting face-face adjacency information impossible. For both of these reasons,
this dataset was rejected as well.

Other online CAD model repositories were explored, as an alternative to a formal
research dataset. GrabCAD is a company that offers a variety of software products for the
manufacturing industry. One of these products, GrabCAD Community, is an online CAD
model sharing platform. Thingverse is a similar online database, specifically targeting the
hobbyist 3D printing community. Thangs is yet another database that serves a similar
role. All of these platforms contain parts that could be downloaded to create a dataset.
Unfortunately, many of the same issues found in the research datasets can also be found
in these online CAD model repositories. Since these platforms are designed for the 3D-
printing community, many files are encoded as triangulated surfaces. Further, since these
platforms are primarily targeted at hobbyists, the intellectual property (IP) rightsholders
of the CAD files are often not specified or incorrectly labelled. For both of these reasons,
hobbyist CAD model repositories were rejected.

Several companies provide CAD files of physical parts they offer in those company’s
digital catalogues. A notable example of a company that offers CAD files in this way is
McMaster Carr. Unfortunately, McMaster Carr retains ownership of the IP rights of the
CAD files and restricts their usage, which poses the same problem as many of the other
datasets that were explored. TraceParts offers a similar service (hosting CAD files of phys-
ical parts available for purchase) for a variety of third party companies, including ABB
Robotics, Fanuc and Rockwell Automation. Although TraceParts does not provide any IP
rights of the CAD files to the user, they have partnered with research organizations in the
past [16] to offer their dataset. Unfortunately, since many of the models provided on Tra-

16

ceParts are part of larger assemblies, including many parts which are cast or manufactured
using techniques other than machining, the time required to parse and sanitize the data
would exceed the scope of this work. The ABC Dataset (“A Big CAD Model Dataset”)
is a collection of 3D models from the online CAD platform OnShape which were collected
and published by Koch et al. [12]. The models contained in this dataset are published
in a variety of formats including .step, which encode the necessary parametric geometry
information for extracting machining features. Although the IP rights of the CAD files
are not provided to researchers, the dataset can be used for machine learning applications,
provided the files are not published. For both of these reasons, this dataset was selected.
CAD files from the ABC Dataset were downloaded, of which 600 were incorporated into
an initial generic dataset.

The ABC Dataset offers CAD files in chunks of 10000 models, in either specific file for-
mats or encoded in every available file format. Since this work will focus on the extraction
of information from parametric models, the .step file models were downloaded. Using the
method outlined in the ABC Dataset documentation, the first (0000) chunk of .step files
was downloaded.

3.2 Tagging Machining Features

Yeo et al. outlined a method for extracting information about machining features based
on information extracted from a “base face” and the faces surrounding that base face. To
construct a dataset of information formatted in a similar manner, a system was constructed
that allows a user to assign a particular machining feature to that feature’s respective base
face in a CAD model. Once tagged, these CAD files can be used in a subsequent encoding
step to generate the feature vectors for training the model.

The files contained in the ABC dataset were originally used in a wide variety of applica-
tions and intended to be manufactured using a wide variety of manufacturing techniques.
Many of the design features contained in these parts are characteristic of other manufactur-
ing processes, such as gussets on parts that would likely be cast, threads that would likely
be rolled or cut, or volumes with fine details that can only be resolved using an additive
manufacturing process. As a result, the tagging system would also include the ability to
reject files that are unsuitable for training.

To load the CAD files, the modelling program Solidworks was used. This software was
selected due the author’s familiarity with the tool, as well the robust API tools that are
made available to developers looking to extend the program’s functionality. The Solidworks

17

API can be accessed through a number of methods, including the built-in Visual Basic for
Application (VBA) scripting system, using a standalone Visual C# .NET application, or
using the windows Component Object Model (COM) interface. The latter COM interface
was selected, for its broad compatibility with a variety of programming languages that
support the Windows COM protocol. The frontend interface was written in Python, again
due to the author’s familiarity with the language. To communicate between the frontend
application and the Solidworks modeler, the Python library pywin32 was selected for its
ability to send and receive COM commands.

The Python library tkinter was used to create the frontend interface. For each machin-
ing feature defined by Yeo et al., a color was selected using the library distinctipy. This
color served both as the background of that feature’s respective button in the tkinter UI,
as well as the color of the tagged face for that machining feature.

To tag a set of CAD files with machining features, the user follows the following pro-
cess. When the data tagging script is run, the interface prompts the user for a directory
that contains the CAD files to be tagged. Once the user specifies a directory, the pro-
gram searches each subdirectory iteratively until a .step or native Solidworks file is found.
When one is found, the file is opened in Solidworks, and the user is presented with the
GUI in Figure 3.2. At this point, the user can interact with the model freely using the
Solidworks interface and remove any unnecessary volumes that do not contain any useful
machining feature information. Once the user identifies a machining feature, they first
select the appropriate button in the tkinter GUI, then select the respective base face for
that machining feature in the Solidworks model. When a face is selected in the model, the
color of that face will be set using the Solidworks API based on the color defined for that
feature. If multiple faces are selected consecutively, the most recently selected machining
feature will be used to define the face color. If a mistake is made, or the user wishes to
explicitly define a face to as a “Non Feature”, the user can select the Non Feature button
and click on the appropriate face in the model. This will reset the color of the face to the
default grey used by Solidworks. When all machining features are selected in a part, the
user can select the Next Model button if they would like to continue tagging files (which
loads the next file found in the directory), or the Close button to save the current model
and exit the program. In either case, the current model is saved as a Solidworks (.sldprt)
file, with any face color changes the user made. If a model contains no useful machining
feature data, the user can instead select the Reject button, which will delete the file from
the directory and automatically load the next file.

18

Figure 3.2: The machining feature tagging user interface

3.3 Data Collection

CAD files from the ABC dataset were tagged using the interface described in the previous
section. Initially, assistance was solicited from volunteer participants with limited knowl-
edge of machining. To inform the volunteer’s machining feature selection, Figure 3.3 from
Yeo et al. was provided, which defines a generic base face for each possible machining fea-
ture. Volunteers tagged 7 CAD files from the ABC dataset. To expand the training data,
the author reviewed 567 CAD files from the ABC dataset and selected 70 CAD files that
included CNC machining features. These files were tagged and encoded, which expanded
the number of machining feature samples in the training dataset to 860.

In addition, 77 files were collected from machine shops at the University of Waterloo,
Hurco Inc. and Perfecto Manufacturing Inc. The author tagged these files using the data
tagging procedure outlined above. Using this procedure, a dataset containing 998 real-
world machining features was produced. This dataset of machining features extracted
from real-world parts remained separate from the 860 features collected from the ABC
dataset. In total, 1858 machining features were included in both datasets used in this
research.

19

Figure 3.3: The machining feature description provided to volunteers for data tagging.
Figure by Yeo et al. [36]

3.4 Feature Encoding

Once a dataset of CAD files tagged with their respective machining features was created,
an encoding program was developed to extract relevant information from the parametric
models based on the approach outlined by Yeo et al. The program flow of the encoding
system that was created is described next.

When the encoding script is run, the user is prompted to select a directory that contains
the tagged CAD files. The system iterates through that directory and all subdirectories and
generates a list of CAD files to be encoded. Once all the CAD files have been located, the
first file is opened in Solidworks. Using the Solidworks API, the system traverses the B-Rep
model face-by-face. Each face color is compared to the color associated with each machining
feature, as defined in the previous section. If the color matches a known machining feature,
information about that face’s geometry and the adjacent faces is collected. In total, a 61-
length feature vector is created. Information about the encoding scheme is recorded in
Figure 3.5. Each machining feature is assigned a unique integer value, which are defined
in Figure 3.4. For a more detailed description of the encoding of each of these elements,
see Yeo et al. [35]. The machining feature class, along with the 61-element feature vector,
is saved to a .csv file. This process is repeated until all faces of the CAD file are checked
and encoded, and then repeated for each CAD file in the directory.

20

Figure 3.4: Machining feature class encodings, a) as defined by Yeo et al. and b) after
consolidation

21

Two elements in the feature vector, width of target face for edge-machining and width of
target face for face-machining, were included by Yeo et al. to discriminate between features
which are wide enough to machine using a facing operation, those wide enough to machine
by simply tracing the edge of the base face, and those which were too narrow to fit a tool.
Unfortunately, the ABC dataset contained files with inconsistent scales and dimensional
units, making the information encoded by these target face width descriptors have limited
value. Nevertheless, both width threshold feature vector elements were included in the
encoding program to determine if they had any value in detecting features. The threshold
for both face width feature vector elements were designed by Yeo et al. to be determined
by evaluating the size of available tools. However, since there exists no specific machine
for which this system will be designed, values of 2 cm for edge-machining and 5 cm for
face-machining were selected as reasonable approximations of real-world values.

At this stage, there exists a list of feature vectors labelled with corresponding machining
feature classes. Next, a model is developed to automatically associate these classes with
the encoded feature vectors.

22

Figure 3.5: Feature vector element encodings, as defined by Yeo et al. [35]

23

Chapter 4

An Exploration of Model
Improvements

It is expected that the performance of a system trained and tested on real-world CAD files
will be less effective at distinguishing between different machining features than a similar
system trained and tested on a heavily curated synthetic dataset. A curated dataset can
contain examples of machining features in equal number, to eliminate the negative impacts
of class imbalance when training a machine learning system. A real-world machining
feature dataset, in contrast, will contain more examples of machining features that occur
more frequently in machined parts. Real world datasets often includes fillets, chamfers,
and holes more frequently than specific pocketing or slotting operations. When a deep
learning system is trained on an unequal quantity of samples from different classes, there
is a risk that instead of generalizing, the system will simply select the most common class
(since that estimate is likely to be correct, by the nature of the dataset distribution).

Even if the distribution of machining features in the real-world dataset could be con-
trolled, other concerns with class imbalance must still be addressed. Certain machining
features such as holes, when encoded, are represented by a small set of unique feature
vectors. In contrast, other features such as slots or pockets have much more variance, and
so are represented by a greater number of unique feature vectors. When duplicate samples
are removed prior to training (as is best practice, to maximize the likelihood the system
can generalize), the machining features with more variance will have fewer duplicate sam-
ples, and so will end up over-represented in the final dataset. To address concerns about
unequal distribution of machining features in the CAD file dataset, as well as the resulting
imbalance resulting from removing duplicate entries, data pre-processing techniques may
be necessary to improve the quality of the dataset. Two techniques are proposed.

24

Decision trees are a classical pattern recognition technique used in addition to machine
learning for distinguishing between classes. A large class imbalance in the unmodified
dataset may contribute to overtraining, especially when one or two classes represent a
large fraction of the total dataset. The author hypothesizes that a deep learning system
would perform better and be able to identify less common classes if a decision tree is used
to identify the most common machining features first. By taking this approach, classes
with lower variance features and significantly greater representation in the dataset can be
identified with a simpler recognition system, leaving the more computationally expensive
deep learning system to distinguish between the remaining classes.

Another technique used in machine learning that can be applied to this problem of class
imbalance is a genetic algorithm. Genetic algorithms are not typically used to identify
patterns directly, but instead are used to optimize existing systems. However, one step in
the genetic algorithm procedure, crossover, can be modified to augment the imbalanced
dataset.

In genetic algorithms, crossover is used to randomly recombine parent individuals in
a population to create children samples with properties of each parent. In the context of
reducing class imbalance, crossover will be used to generate synthetic training data using
the existing training data for each class, until all classes have an equal number of training
samples. Since the complexity of the generated data will be proportional to the complexity
of the existing ground-truth data for each class, this method will not be as effective in
addressing issues with class imbalance once duplicate samples are removed. However, the
author hypothesizes this approach will be successful in mitigating the problems arising
from the underlying feature imbalance in the CAD file dataset. As such, crossover data
generation will also be implemented, and its impact on classification accuracy evaluated.

To implement crossover, the distribution of each feature vector element is evaluated
independently for each class. For example, within the set of samples labelled as fillet,
most base faces are likely cylindrical, with the remaining faces recorded to be toroidal. To
generate a new training example for the fillet class, a new feature vector is created, and
a value for the base face vector element is selected randomly based on the distribution of
existing data. In this case, this element will most likely be selected to be cylindrical (5),
but it may also be populated as toroidal (8). Elements 5-15, 16-26, 27-37, 38-48 and 49-59
as described in Figure 3.5 represent the proportion of each type of face (planar, toroidal,
conical, etc.) with some property, and therefore only make sense when considered together.
These sections of the feature vector are considered to be five distinct “superelements” for
the purposes of data generation. Data generation was implemented by concatenating each
run of ten elements into a single 10 digit integer, evaluating the distribution of those
integers within a specific class, generating a new “superelement”, separating the integer

25

back into individual elements, and appending those elements to the feature vector.

The pre-processing data pipeline is constructed as follows. First, an ID3 decision tree is
trained on the available training data. The decision tree classifies features up to a certain
depth, which is specified in the test plan. Next, crossover data generation is applied to
each feature class except for the class with the greatest number of samples. The data
generation approach discussed previously is applied until the number of training elements
in each class is equal. Next, duplicate samples in each class are removed. Finally, the
remaining training samples are used to train a deep learning classifier.

A fully connected feed-forward neural network was constructed, which is illustrated
in Figure 4.1. The network parameters are selected to match the conditions outlined by
Yeo et al. In particular, the number of nodes in each layer are selected to match the
number of nodes determined by Yeo et al. to yield the greatest classification accuracy. A
61-deep input layer is connected to 5 hidden layers, which are connected to an output layer.
The output layer encodes the class estimates with one-hot encoding. Each hidden layer
has a ReLU activation function. The output layer weights are determined by a Softmax
activation function, to estimate the probability of each potential classes given the encoded
input. The standard Adam optimizer algorithm was used to update the model weights.

Some changes were also made to the network hyperparameters outlined by Yeo et al.
To minimize the likelihood of overtraining, the training batch size was reduced from 8
to 1. The system was trained with 0% dropout, as originally selected by Yeo et al., and
compared with models trained with 10% and 20% dropout, to determine if dropout can
be effective in reducing overtraining. Some machining features (such as tapered holes)
had limited representation in the training dataset generated from CAD files in the ABC
dataset, and as such would be inadequately classified by the learning system. To evalu-
ate the relative performance of several potential model improvements, the 17 machining
features proposed by Yeo et al. were consolidated into 5 generic machining features. The
consolidated machining features used in the remainder of this research are presented in
Figure 4.2. To accommodate this change in the number of classes, the output layer depth
of the machine learning network was reduced from 17 to 5.

In all models presented in the remainder of this thesis, a learning rate of 1 · 10−4 was
selected.

The research plan is outlined in Figure 4.3. In Part 1, the effect of incorporating dropout
on classification performance was evaluated by comparing a system trained with 0%, 10%
and 20% dropout. In Part 2, the effect of incorporating crossover data generation and
ID3 tree classification on deep learning network classification accuracy was evaluated. For
models trained in Part 1 and Part 2, only training data created by tagging files in the ABC

26

Figure 4.1: Deep learning network architecture

27

Figure 4.2: Consolidated machining features and their corresponding machining features
as defined by Yeo et al.

28

Figure 4.3: Outline of tests to be conducted

dataset was used. Additionally, in both cases, 20% of the dataset was randomly selected
and held out for testing. The remaining 80% of the dataset was randomly segmented
into 5 folds. For each test in Part 1 and Part 2, a system is trained using data from 4
of the 5 folds, incorporating the specified hyperparameters and pre-processing techniques
for that test. Once the system is trained, the held out data from the remaining fold is
used to validate the performance of the system. The accuracy of the system, in terms of
the proportion of classes identified correctly in the held out validation fold, is recorded.
This procedure is repeated 5 times, holding out a different fold for validation each time,
and training on the remaining 4. The average of the 5 accuracy values is computed to
determine a cross validation accuracy for that test.

To evaluate the effectiveness of dropout, a deep learning network with the parameters
outlined above and without any pre-processing steps was trained on data from the ABC
dataset, with 20% test data held out. Three tests were conducted, one using a network
trained with 10% dropout on all hidden layers, one with 20% dropout, and one using a
network without any dropout. The model was trained for 1000 epochs, which was selected
to strike a balance between training enough to begin witnessing diminishing returns for
validation accuracy, while minimizing the time to train each model. Both tests were
evaluated with 5-fold cross validation, and the average accuracy for each was recorded.

29

The tests in Section 5.1 show that incorporating dropout improved the classification
performance of the model. Consequently, 10% dropout was incorporated into all remaining
models in this research. Next, the effectiveness of incorporating an ID3 decision tree pre-
processing step and/or crossover data generation was determined. Once again, 5-fold cross
validation was used to estimate the accuracy of each model trained on each combination
pre-processing steps. Each model was once again trained for 1000 epochs. The most
effective model was used to classify the 10% held out test data, to determine an unbiased
estimate of the classifier’s performance.

Next, in Part 3, the real-world data classification accuracy of a model trained on CAD
files from the ABC dataset is evaluated. First, a model is created using the most effective
combination of pre-processing steps and trained on files from the ABC dataset. Testing
and validation sets are no longer separated from the ABC dataset, since that dataset will
no longer be used to estimate system performance. Instead, the system is trained on all
tagged files from the ABC dataset for 1000 epochs. The trained system is used to classify
998 samples, collected from tagging real-world CAD files.

Finally, in Part 4, the effect of retraining the model from Part 2 on real-world data is
evaluated. First, as in Part 2, a model is created using the pre-processing steps determined
in Part 1 and trained with training samples from the ABC dataset. Next, 2698 samples
collected from tagging real-world CAD files are split into training and testing datasets
with a ratio of 80:20. The training dataset is further segmented into clusters of 20 training
samples. This number was selected to approximate 1 CAD file’s worth of “training data”;
i.e. a single CAD file used in the real world contains about 20 machining features, which
could be used to retrain a machining feature recognition system. The pretrained network
is further trained on this data, in groups of 20 data points, for 20 epochs each. After each
group of data points, the accuracy of the classifier is evaluated against the test dataset,
comprised of held-out training samples collected from real world data.

30

Chapter 5

Observations

Several experiments were conducted to evaluate the effectiveness of proposed extensions
to the machining feature recognition model developed by Yeo et al. Machining feature
recognition models were trained on data collected from a generic CAD file dataset. These
models were augmented with canonical machine learning techniques and pre-processing
steps in an attempt to improve classification accuracy and model consistency. Next, once
the most effective model improvements were identified, the ability to transfer knowledge
of machining features collected from a dataset of generic CAD files to a dataset of ma-
chining features collected from real-world CAD files was evaluated. Finally, to improve
cross-domain classification accuracy, an exploration of a proposed re-training approach
was conducted.

5.1 Part 1: Evaluation of Dropout

A model was trained on ABC dataset samples with 0%, 10% and 20% dropout. For each
likelihood of dropout, 5-fold cross validation was used to estimate the model performance.
A confusion matrix was constructed using the corresponding validation data for each fold
at the end of 1000 epochs to compare the estimated and corresponding ground truth class
for each sample. The validation accuracy and total cross entropy loss was calculated at the
end of each epoch, and recorded. The validation accuracy and cross entropy loss during
training for each fold, as well as the validation data confusion matrix after 1000 epochs of
training for each fold and likelihood of dropout are included in Appendix A. A few of the
figures included in the appendix are reproduced in this section for discussion. The final

31

validation accuracy for each fold, as well as the average validation accuracy for every fold,
is reported for models trained with each configuration of dropout in Table 5.1.

The validation accuracy across folds for a single test condition, and to a lesser extent
across every test condition, exhibit the same general behaviour. This is also true of the cross
entropy training loss, although the behaviour is opposite that of the validation accuracy. At
the beginning of training, before the model can effectively distinguish between machining
features, the model accuracy is low, indicating that a minority of validation samples were
identified correctly. Consequently, the loss function returns a high loss value for each
training sample, since the expected behaviour of the system is significantly different than
the measured outputs. After iterating over the training samples for several hundred epochs,
the model performance improves. In every test scenario, the validation accuracy increased
and the cross entropy loss decreased as the model was trained. As an example of the
typical results during training of single fold, see Figure 5.1. For the first 200-300 epochs,
model accuracy increased dramatically, as shown in Figure 5.1a. For the same 200-300
epochs, cross entropy loss fell, as shown in Figure 5.1b. For the remainder of training,
model improvement slowed. After 1000 epochs, the model performance was visualized
with a confusion matrix. Once again, the trends observed in the confusion matrix figures
are similar across folds for a single test condition, and to a lesser extent across every test
condition. A typical confusion matrix produced after training is shown in Figure 5.1c. In
about 80-90% of cases, the predicted label in the validation fold matched the ground-truth
value for that sample. This is demonstrated by a prominent clustering of samples along the
diagonal of the confusion matrix figures from the top left of the figure to the bottom right.
Samples along this diagonal represent instances where a feature in the validation fold was
identified correctly. Although there were many similarities across training instances, there
were a few notable differences across different test conditions and folds.

Based on the data collected from the above tests, it was determined that incorporating
10% dropout in each hidden layer improved validation accuracy for a model trained on
samples from the ABC dataset by 0.87% on average, as compared to a model trained
without dropout. A model trained without dropout classified data from the held-out
validation fold correctly 85.90% of the time, which improved to 86.77% when trained with
10% dropout. Increasing dropout to 20% resulted in a decrease in validation accuracy, with
an average correct classification rate of 85.61%. The difference in average classification
accuracy for different amounts of dropout, when considered alone, is small enough to
be considered negligible. However, another qualitative observation also motivated the
inclusion of dropout in future deep learning machining feature recognition systems.

Certain folds, particularly Fold 1 and Fold 4, appear to contain a few features which
were challenging for the network to identify. Although the cross entropy loss seen in Figure

32

(a) Validation accuracy during training
for a typical fold. Fold 2, trained with
10% dropout.

(b) Training loss for a typical fold. Fold
2, trained with 10% dropout.

(c) Confusion matrix for a typical fold after training. Fold 2, trained
with 10% dropout.

Figure 5.1: Results of training for a typical fold

33

Table 5.1: Summary of validation accuracy for models trained with different amounts of
dropout

5-Fold Cross Validation Accuracy After 1000 Epochs
Dropout 0% 10% 20%
Fold 1: 87.68% 85.51% 86.96%
Fold 2: 84.06% 85.51% 85.51%
Fold 3: 84.78% 91.30% 87.68%
Fold 4: 86.13% 82.48% 81.75%
Fold 5: 86.86% 89.05% 86.12%
Average: 85.90 % 86.77% 85.61%

5.2c remained relatively constant after 300 epochs, the corresponding validation accuracy
seen in Figure 5.2a was extremely unstable at the same time during training. This is in
contrast to the validation accuracy observed during training of a typical fold, such as is in
Figure 5.1a, which is much more stable. After 300 epochs, the validation accuracy for Fold
1 and Fold 4 varied from approximately 75% to 88%, without stabilizing. This indicates
that the model likely struggled to generalize some subset of features within the respective
validation datasets, and is classifying them based on an incomplete understanding of the
features. Since these features are not well understood, small changes to network weights
have unexpected impacts on the classification of those features, which can be seen in the
instability of the validation accuracy during training. This characteristic is undesirable;
the classification accuracy of a model should improve or remain stable when trained with
additional data. It can be seen in Figure 5.2b that as compared to a model trained
without dropout, incorporating dropout significantly increased the classification stability
of the model. Although the models trained with dropout still contain some instability,
based on qualitative observations the frequency and magnitude of variation has decreased.

By reducing the variation of the validation accuracy, one can have more confidence
that an unknown feature will be identified correctly more consistently. A model with
a large amount of validation accuracy instability indicates the model may have issues
generalizing classification of certain classes. For this reason, as well as for the slightly
improved classification accuracy, 10% dropout was incorporated into subsequent models
presented in this research.

34

(a) Validation accuracy during training
for a challenging fold. Fold 1, trained
without dropout.

(b) Validation accuracy during training
for a challenging fold. Fold 1, trained
with 10% dropout.

(c) Training loss for a challenging fold.
Fold 1, trained without dropout.

(d) Training loss for a challenging fold.
Fold 1, trained with 10% dropout.

Figure 5.2: Results of training for a challenging fold

35

5.2 Part 2: Evaluation of ID3 Tree Pre-classification

and Crossover Data Generation

ID3 tree pre-classification and crossover data generation were used to augment models
trained on data tagged from the ABC dataset. The respective validation accuracy for each
model was compared. Each model incorporated 10% dropout, as this was deemed most
effective in Section 5.1. Six models were trained, with every combination of the following
techniques: no ID3 tree, 1-deep ID3 tree and 2-deep ID3 tree pre-classification; and with
and without crossover data generation. The validation accuracy during training, cross-
entropy loss and final confusion matrix for each fold and each test is report in Appendix
A.2.

As before, 5-fold cross validation was used to create an unbiased estimation of the vali-
dation accuracy of the models trained with each combination of techniques. The accuracy
of the model in classifying samples in the held-out validation fold for each test, along with
the number of samples used to train the deep neural network stage is reported in Table 5.2

Table 5.2: Summary of validation accuracy and number of deep neural network training
samples for models trained with ID3 tree pre-classification and crossover data generation

5-Fold Cross Validation Accuracy After 1000 Epochs
ID3 Tree Depth None 1 2 None 1 2
Crossover? N N N Y Y Y
Fold 1 Accuracy: 85.51% 82.61% 85.51% 88.41% 84.06% 85.51%
Fold 2 Accuracy: 85.51% 83.33% 82.61% 81.88% 86.96% 80.43%
Fold 3 Accuracy: 91.30% 86.96% 88.41% 89.86% 87.68% 89.13%
Fold 4 Accuracy: 82.48% 86.86% 88.32% 86.13% 87.59% 86.86%
Fold 5 Accuracy: 89.05% 89.05% 89.05% 87.59% 86.12% 90.51%
Avg. Accuracy: 86.77% 85.76% 86.78% 86.77% 86.48% 86.49%
Fold 1 # Samples: 207 155 102 389 231 143
Fold 2 # Samples: 206 150 86 361 205 131
Fold 3 # Samples: 207 141 89 413 207 176
Fold 4 # Samples: 201 149 103 383 209 178
Fold 5 # Samples: 212 149 96 417 227 142
Avg. # Samples: 206.6 148.8 95.2 392.6 215.8 154

It can be seen that incorporating a 2-deep ID3 tree pre-classification step improved
average classification accuracy by a negligible amount, increasing from 86.77% validation

36

accuracy without any data augmentation to 86.68% validation accuracy with a 2-deep ID3
tree. Incorporating crossover data generation did not improve validation accuracy.

Although ID3 tree pre-classification did not significantly improve the rate of feature
classification, it also did not significantly reduce classification accuracy. Moreover, by
incorporating ID3 tree pre-classifcation, the amount of data required to train a neural
network with a given classification accuracy was significantly reduced as compared to
an equivalent model without pre-classification. By incorporating a 2-deep ID3 tree pre-
classification step, the average number of training samples for the deep neural network step
was reduced from 206.6 after duplicate removal to only 95.2, without loss of classification
accuracy. The number of training samples required to train a neural network is reduced by
selecting for common features without significant complexity and identifying them using
an ID3 tree. The training samples associated with those features are then omitted from
the deep neural network training dataset. By reducing the number of training samples
necessary to achieve a given classification accuracy, the time required to train the model
is reduced, since fewer features must be analysed for each epoch.

Crossover data generation increased the number of samples used to train the deep
neural network without improving the classification accuracy. By increasing the number of
samples used to train the deep neural network, the time to train the model was increased
without any benefit. The selected approach of recombining feature vector elements based
on the distribution of those elements in the training data associated with a single feature
was ineffective in improving the generalization of the system. Although crossover data
generation may be effective for other classification problems, the increased noise associated
with generating synthetic data outweighed any classification accuracy benefit associated
with increasing the size of the training dataset.

Once the most effective combination of model improvements was selected, a single
model was trained using all training samples collected from the ABC dataset (i.e. training
data from all 5 folds). The results of this training or presented in Figure 5.3. This model
was evaluated against a dataset of held-out test data, which represented the remaining
20% of samples collected from the ABC dataset. This model, which was trained for 1000
epochs with 10% dropout and a 2-deep ID3 tree pre-classification step, was able to classify
the held-out test data correctly 94% of the time.

37

(a) Validation accuracy during training (b) Cross entropy loss during training

(c) Confusion matrix after training for 1000 epochs

Figure 5.3: Results of model trained on full ABC training dataset with 10% dropout and
2-deep ID3 tree

38

5.3 Part 3: Evaluation of Transfer Learning

It was demonstrated by Yeo et al. that their model was effective at identifying features,
even without the proposed improvements developed in the previous sections. However,
Yeo et al. used the same algorithm to generate synthetic training data to train their model
as they used to generate the test data that was used to evaluate their model performance.
As a consequence, the ability of the system to adapt to new dataset domains, including
different model encoding schemes or feature distributions, was left unexplored. This section
seeks to evaluate the ability of a machining feature recongition model to transfer learning
between dataset domains. To accomplish this, a model was trained on all features encoded
from ABC dataset models (i.e. a combination of the former training and test datasets in
Part 5.2). This model was trained using the techniques which were deemed most effective
in Part 5.1 and Part 5.2: 10% dropout and a 2-deep ID3 tree pre-classification step. After
training for 1000 epochs, the model was evaluated against 998 features encoded from real-
world machined parts. The accuracy improvement of the model in identifying parts in
this real-world dataset during training is presented in Figure 5.4. The training loss of the
model, as calculated by training with ABC dataset models, is presented in Appendix A.3.
A confusion matrix of the model classification performance after 1000 epochs is presented
in Figure 5.5.

It can be seen in Figure 5.4 that the classification accuracy of the transfer learning
model improved for approximately 200 epochs, and then plateaued. For the remaining
800 epochs of training, the model performance was unstable, falling to as low as 56%
accuracy and rising to as much at 66% accuracy. After 1000 epochs, the model achieved
a transfer learning classification accuracy of 63.19%. From Figure 5.5, it can also be seen
that no individual machining feature was identified correctly more than 70% of the time,
indicating this model would not be effective as general-purpose machining feature classifier,
even for simple features such as holes. This low classification performance is likely due in
part to the limited training dataset that was available, resulting in a model with limited
ability to generalize features. However, the test dataset may also simply contain a different
distribution of features, with a slightly different set of valid encodings for each feature.
Thus, the model may be able to be improved by retraining the general model trained on
data from the ABC dataset using features from the real-world dataset. This is explored
next.

39

Figure 5.4: Accuracy of model trained
on samples from ABC dataset, evaluated
against real-world data Figure 5.5: Confusion matrix of model

trained on samples from ABC dataset,
evaluated against real-world data

5.4 Part 4: Evaluation of Incremental Learning

To improve the performance of the model, an incremental learning approach was developed.
The real-world dataset was segmented into datasets of training and test data with a ratio of
80:20. The training dataset was further segmented into clusters of 20 machining features.
This number was selected as it approximates the number of machining features that are
contained in a single CAD file. The base model trained on the machining features extracted
from the ABC dataset was retrained, 20 features at a time, for 20 epochs each. This
retraining was completed in the same manner as the initial training method, with 10%
dropout. The training loss calculated against each cluster of training samples is reported
in Figure 5.7. At the end of each training cluster, the test data was used to calculate the
classification accuracy of the model. That test data accuracy, and how it improved during
training, is reported in Figure 5.6. After training against 39 clusters of 20 data points, the
model performance was characterized and reported in a confusion matrix in Figure 5.8.

The model loss does not follow a smooth asymptotic decline, at not least to the same
degree as was observed during initial training (Figure A.25). The model loss does not
decline smoothly since every 20 epochs, a new set of samples are used for training. As

40

a result, any information from the previous set of samples that the system learned that
could not generalize caused a brief increase in error. This increase in error caused the
model to improve the model’s classification performance, which caused the error to reduce.
The spikes in error every 20 epochs reduced in magnitude somewhat after 100 epochs of
training, but continued to occur as the system encountered unfamiliar features. At the
same time, the test data accuracy generally trended upwards, increasing from below 66%
classification accuracy without any retraining to 77.39% after training against 39 clusters
of data points.

The corresponding confusion matrix generated by evaluating the test data after training
was equally positive. Holes, which were previously regularly confused with the non-feature
class, are consistently identified correctly. After retraining, 89% of hole predictions were
correct, with only a single true hole predicted as another class. This level of accuracy
is approaching a threshold where an automatic feature recognition system could provide
value to a human operator.

It is promising to see such a notable increase in model performance by retraining on less
than 800 machining features. Given access to more real-world training data, it is reasonable
to expect real-world classification accuracy to approach that of a system trained and tested
on entirely synthetic feature data.

41

Figure 5.6: Accuracy of transfer learning
model after re-training with clusters of
20 machining features

Figure 5.7: Loss during re-training of
transfer learning model

Figure 5.8: Confusion matrix of model
evaluated against real-world data after
re-training

42

Chapter 6

Conclusions

Amachining feature recognition system was developed in this thesis by extending a machine
learning approach originally developed by Yeo et al. The extensions proposed in this work
were effective at improving the consistency and scalability of the classifier developed by
Yeo et al. More work needs to be done to continue improving the classification accuracy
of machining feature recognition systems.

Three extensions to the system developed by Yeo et al. were evaluated in this work:
the incorporation of dropout, the introduction of an ID3 tree pre-classification step, and
the inclusion of additional training data using crossover data generation. Dropout was de-
termined to improve the consistency of feature classification. Yeo et al. determined there
was no benefit of incorporating dropout when training their model on synthetically gener-
ated machining feature data. In contrast, this work found evidence that the consistency
of classification accuracy during training improved when 10% dropout was incorporated in
models trained on real-world data. In addition, incorporating an ID3 tree pre-classification
step before training a machine learning classifier was effective at reducing model training
time, without reducing classification accuracy. Crossover data generation was deemed to
not have any significant benefits for model classification accuracy or scalability, and so was
rejected.

The augmented feature recognition model was trained on generic CAD files, and used to
classify machining features from real-world CAD files. Without any additional training, the
augmented classifier was unable to identify machining features consistently. The classifier
was re-trained using machining features collected from real-world CAD files. The re-trained
classifier was significantly more effective at identifying machining features.

Re-training existing machining feature recognition models has significant future po-

43

tential. A simple machining feature recognition model can be developed using a limited
dataset of machining features, and re-trained based on the actions of a machinist selecting
features in a CAM program. Collecting data in this way has several benefits. First, the
concerns associated with training a model on CAD files with intellectual property pro-
tections can be mitigated by re-training the feature recognition system locally. Second,
re-training can be done on-the-fly, without interrupting the work of a machinist. Finally,
re-training can be used to tailor a feature recognition model to a specific workflow or
industry, incorporating automatic feature detection into an existing workflow only when
the historical classification accuracy for a particular machining feature reaches a threshold
determined by the user.

Several areas must still be explored before the feature recognition system developed in
this thesis can be incorporated into an industrial CNC machine workflow. The ID3 tree
pre-classification step is presently calculated once when training on generic CAD files, and
is not updated during re-training. An exploration of possible methods for incrementally
training the ID3 tree may be valuable to improve the classification accuracy of the re-
trained system. More training data must also be collected in order to identify the point
of diminishing returns for classification accuracy. Once classification accuracy can no
longer improve by incorporating additional re-training data, other techniques (such as re-
training the ID3 tree) may become necessary. To collect more training data, a system
that integrates incremental training with CAM software should be developed. Integrating
incremental training in a CAM software package, as proposed earlier in this chapter, will
have the effect of significantly increasing the ease of collecting training data, and serve as
a proof of concept demonstration of the proposed incremental learning technique.

All code discussed in this thesis can be accessed at https://github.com/mlenover/
machining-feature-recognition.

44

https://github.com/mlenover/machining-feature-recognition
https://github.com/mlenover/machining-feature-recognition

References

[1] Mahadevan Balasubramaniam. Automatic 5-axis NC toolpath generation.

[2] Stevo Bozinovski. Reminder of the First Paper on Transfer Learning in Neural Net-
works, 1976. Informatica, 44, September 2020.

[3] Iain A. Donaldson and Jonathan R. Corney. Rule-based feature recognition for
2·5D machined components. International Journal of Computer Integrated Man-
ufacturing, 6(1-2):51–64, January 1993. Publisher: Taylor & Francis eprint:
https://doi.org/10.1080/09511929308944555.

[4] Paul Fieguth. An Introduction to Pattern Recognition and Machine Learning. Springer
International Publishing, Cham, 2022.

[5] Jung Hyun Han and Aristides AG Requicha. Integration of feature based design and
feature recognition. Computer-Aided Design, 29(5):393–403, May 1997.

[6] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R.
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature
detectors, July 2012. arXiv:1207.0580 [cs].

[7] International Organization for Standardization. STEP-file, April 2016.

[8] S. Joshi and T. C. Chang. Graph-based heuristics for recognition of machined features
from a 3D solid model. Computer-Aided Design, 20(2):58–66, March 1988.

[9] Byung Chul Kim and Duhwan Mun. Enhanced volume decomposition minimizing
overlapping volumes for the recognition of design features. Journal of Mechanical
Science and Technology, 29(12):5289–5298, December 2015.

45

[10] Sangpil Kim, Hyung-gun Chi, Xiao Hu, Qixing Huang, and Karthik Ramani. A Large-
Scale Annotated Mechanical Components Benchmark for Classification and Retrieval
Tasks with Deep Neural Networks. In Andrea Vedaldi, Horst Bischof, Thomas Brox,
and Jan-Michael Frahm, editors, Computer Vision – ECCV 2020, Lecture Notes in
Computer Science, pages 175–191, Cham, 2020. Springer International Publishing.

[11] Y. S. Kim. Recognition of form features using convex decomposition. Computer-Aided
Design, 24(9):461–476, September 1992.

[12] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov,
Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. ABC: A Big CAD
Model Dataset For Geometric Deep Learning, April 2019. arXiv:1812.06216 [cs].

[13] Mustafa Kuntoğlu, Emin Salur, Munish Kumar Gupta, Murat Sarıkaya, and Danil Yu.
Pimenov. A state-of-the-art review on sensors and signal processing systems in me-
chanical machining processes. The International Journal of Advanced Manufacturing
Technology, 116(9):2711–2735, October 2021.

[14] L. K. Kyprianou. Shape classification in computer-aided design. Ph.D., University of
Cambridge, 1980. Accepted: 1980.

[15] Hyunoh Lee, Jinwon Lee, Hyungki Kim, and Duhwan Mun. Dataset and method for
deep learning-based reconstruction of 3D CAD models containing machining features
for mechanical parts. Journal of Computational Design and Engineering, 9(1):114–
127, February 2022.

[16] Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, Li Yi, and Leonidas Guibas. Su-
pervised Fitting of Geometric Primitives to 3D Point Clouds. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2647–2655,
June 2019. arXiv:1811.08988 [cs].

[17] Jiachen Liang, Shusheng Zhang, Bo Huang, Yajun Zhang, and Rui Huang. NC pro-
cess analysis–based intersecting machining feature recognition and reuse approach.
The International Journal of Advanced Manufacturing Technology, 123(7):2393–2413,
December 2022.

[18] Xu Liu, Yingguang Li, Tianchi Deng, Pengcheng Wang, Kai Lu, Jiarui Chen, and
Dingye Yang. A supervised community detection method for automatic machining
region construction in structural parts NC machining. Journal of Manufacturing Sys-
tems, 62:367–376, January 2022.

46

[19] Xinjiani Long, Haitao Li, Yuefeng Du, Enrong Mao, and Jianjian Tai. A knowledge-
based automated design system for mechanical products based on a general knowledge
framework. Expert Systems with Applications, 178:114960, September 2021.

[20] Yong Luo, Liancheng Yin, Wenchao Bai, and Keming Mao. An Appraisal of Incre-
mental Learning Methods. Entropy, 22(11):1190, October 2020.

[21] Martti Mäntylä. An Introduction to Solid Modeling. Computer Science Press, 1988.
Google-Books-ID: N7BEPgAACAAJ.

[22] OpenAI. GPT-4 Technical Report, March 2023.

[23] S. Prabhakar and M. R. Henderson. Automatic form-feature recognition using neural-
network-based techniques on boundary representations of solid models. Computer-
Aided Design, 24(7):381–393, July 1992.

[24] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford,
Mark Chen, and Ilya Sutskever. Zero-Shot Text-to-Image Generation, February 2021.

[25] Hiroshi Sakurai and Chia-Wei Chin. CHAPTER 4 - Definition and Recognition of
Volume Features for Process Planning. In Jami J. Shah, Martti Mäntylä, and Dana S.
Nau, editors, Manufacturing Research and Technology, volume 20 of Advances in Fea-
ture Based Manufacturing, pages 65–80. Elsevier, January 1994.

[26] Jami J. Shah, Yan Shen, and Arvind Shirur. CHAPTER 7 - Determination Of Ma-
chining Volumes From Extensible Sets Of Design Features. In Jami J. Shah, Martti
Mäntylä, and Dana S. Nau, editors, Manufacturing Research and Technology, vol-
ume 20 of Advances in Feature Based Manufacturing, pages 129–157. Elsevier, January
1994.

[27] Yang Shi, Zhang Yicha, Kaishu Xia, and Ramy Harik. A Critical Review of Fea-
ture Recognition Techniques. Computer-Aided Design and Applications, 17:861–899,
January 2020.

[28] David A. Stephenson and John S. Agapiou. Metal Cutting Theory and Practice. CRC
Press, April 2016. Google-Books-ID: 77n1CwAAQBAJ.

[29] K. Tang and T. Woo. Algorithmic aspects of alternating sum of volumes. Part 1: Data
structure and difference operation. Computer-Aided Design, 23(5):357–366, June 1991.

47

[30] Tadele Belay Tuli and Andrea Cesarini. Automated Unsupervised 3D Tool-Path Gen-
eration Using Stacked 2D Image Processing Technique. Journal of Manufacturing and
Materials Processing, 3(4):84, October 2019.

[31] H. Vafaie and K. De Jong. Genetic algorithms as a tool for restructuring feature space
representations. In Proceedings of 7th IEEE International Conference on Tools with
Artificial Intelligence, pages 8–11, November 1995. ISSN: 1082-3409.

[32] J.H. Vandenbrande and A.A.G. Requicha. Spatial reasoning for the automatic recog-
nition of machinable features in solid models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15(12):1269–1285, December 1993. Conference Name: IEEE
Transactions on Pattern Analysis and Machine Intelligence.

[33] A. K. Verma and Sunil Rajotia. A hint-based machining feature recognition system
for 2.5D parts. International Journal of Production Research, 46(6):1515–1537, March
2008.

[34] Douglas L. Waco and Yong Se Kim. Geometric reasoning for machining features using
convex decomposition. Computer-Aided Design, 26(6):477–489, June 1994.

[35] Changmo Yeo, Sanguk Cheon, and Duhwan Mun. Manufacturability evaluation of
parts using descriptor-based machining feature recognition. International Journal of
Computer Integrated Manufacturing, 34(11):1196–1222, November 2021.

[36] Changmo Yeo, Byung Chul Kim, Sanguk Cheon, Jinwon Lee, and Duhwan Mun. Ma-
chining feature recognition based on deep neural networks to support tight integration
with 3D CAD systems. Scientific Reports, 11(1):22147, November 2021.

48

APPENDICES

49

Appendix A

Results of Model Training

A.1 Results from Part 1: Evaluation of Dropout

The validation accuracy during training for each fold with 0% dropout is recorded in
Figure A.1 The corresponding validation accuracy for 10% and 20% dropout are recorded
in Figure A.4 and A.7, respectively. The loss for each fold trained with 0% dropout is
recorded in Figure A.2. The corresponding loss for 10% and 20% dropout are recorded in
Figure A.5 and A.8, respectively. The confusion matrix outlining the performance of each
model trained with 0%, 10% and 20% dropout are recorded in Figures A.3, A.6 and A.9
respectively.

50

(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure A.1: Validation accuracy during training without dropout

51

(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure A.2: Cross entropy training loss during training without dropout

52

(a) Fold 1 (b) Fold 2 (c) Fold 3

(d) Fold 4 (e) Fold 5

Figure A.3: Confusion matrix results after training without dropout

53

(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure A.4: Validation accuracy during training with 10% dropout

54

(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure A.5: Cross entropy training loss during training with 10% dropout

55

(a) Fold 1 (b) Fold 2 (c) Fold 3

(d) Fold 4 (e) Fold 5

Figure A.6: Confusion matrix results after training without dropout

56

(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure A.7: Validation accuracy during training with 20% dropout

57

(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure A.8: Cross entropy training loss during training with 20% dropout

58

(a) Fold 1 (b) Fold 2 (c) Fold 3

(d) Fold 4 (e) Fold 5

Figure A.9: Confusion matrix results after training without dropout

59

A.2 Results from Part 2: Evaluation of ID3 Tree Pre-

classification and Crossover Data Generation

The validation accuracy during training for each fold with a 1-deep ID-3 tree preclassifi-
cation step and without crossover data generation, 2-deep ID-3 tree and without crossover
data generation, no ID-3 tree pre-classification and with crossover data generation, a 1-deep
ID-3 tree and crossover data generation, and a 2-deep ID-3 tree and crossover generation
are recorded in Figures A.10, A.13, A.16, A.19 and A.22, respectively. The cross-entropy
training loss for each fold for the same set of tests are recorded in Figures A.11, A.14,
A.17, A.20 and A.23, respectively. The confusion matrix outlining the performance of each
model trained on each fold of data for the same set of tests are recorded in Figures A.12,
A.15, A.18, A.21 and A.24, respectively.

60

(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure A.10: Validation accuracy during training with pre-classification using a 1-deep ID3
tree

61

(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure A.11: Cross entropy loss during training with pre-classification using a 1-deep ID3
tree

62

(a) Fold 1 (b) Fold 2 (c) Fold 3

(d) Fold 4 (e) Fold 5

Figure A.12: Confusion matrix results after training with pre-classification using a 1-deep
ID3 tree

63

(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure A.13: Validation accuracy during training with pre-classification using a 2-deep ID3
tree

64

(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure A.14: Cross entropy loss during training with pre-classification using a 2-deep ID3
tree

65

(a) Fold 1 (b) Fold 2 (c) Fold 3

(d) Fold 4 (e) Fold 5

Figure A.15: Confusion matrix results after training with pre-classification using a 2-deep
ID3 tree

66

(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure A.16: Validation accuracy during training on dataset augmented with crossover

67

(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure A.17: Cross entropy loss during training on dataset augmented with crossover

68

(a) Fold 1 (b) Fold 2 (c) Fold 3

(d) Fold 4 (e) Fold 5

Figure A.18: Confusion matrix results after training on dataset augmented with crossover

69

(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure A.19: Validation accuracy during training on dataset augmented with crossover and
with pre-classification using a 1-deep ID3 tree

70

(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure A.20: Cross entropy loss during training on dataset augmented with crossover and
with pre-classification using a 1-deep ID3 tree

71

(a) Fold 1 (b) Fold 2 (c) Fold 3

(d) Fold 4 (e) Fold 5

Figure A.21: Confusion matrix results after training on dataset augmented with crossover
and with pre-classification using a 1-deep ID3 tree

72

(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure A.22: Validation accuracy during training on dataset augmented with crossover and
with pre-classification using a 2-deep ID3 tree

73

(a) Fold 1 (b) Fold 2

(c) Fold 3 (d) Fold 4

(e) Fold 5

Figure A.23: Cross entropy loss during training on dataset augmented with crossover and
with pre-classification using a 2-deep ID3 tree

74

(a) Fold 1 (b) Fold 2 (c) Fold 3

(d) Fold 4 (e) Fold 5

Figure A.24: Confusion matrix results after training on dataset augmented with crossover
and with pre-classification using a 2-deep ID3 tree

75

A.3 Results from Part 3: Evaluation of Transfer Learn-

ing

The cross-entropy training loss of the model trained using 10% dropout and a 1-deep ID-3
tree on all machining feature training samples collected from CAD files in the ABC dataset
is reported in Figure A.25.

76

Figure A.25: Training loss of model trained on ABC dataset

77

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Background
	Existing Research
	Hint-Based Methods
	Graph-Based Methods
	Volume-Based Methods
	Cell-Based Methods
	Machine Learning Methods

	Machine Learning
	Computer Aided Design
	Summary of Work

	Model Creation
	Dataset Creation
	Tagging Machining Features
	Data Collection
	Feature Encoding

	An Exploration of Model Improvements
	Observations
	Part 1: Evaluation of Dropout
	Part 2: Evaluation of ID3 Tree Pre-classification and Crossover Data Generation
	Part 3: Evaluation of Transfer Learning
	Part 4: Evaluation of Incremental Learning

	Conclusions
	References
	APPENDICES
	Results of Model Training
	Results from Part 1: Evaluation of Dropout
	Results from Part 2: Evaluation of ID3 Tree Pre-classification and Crossover Data Generation
	Results from Part 3: Evaluation of Transfer Learning

