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Abstract

Given a graph G = (V,E), finding simpler estimates of G with possibly fewer edges
or vertices while capturing some of its specific properties has been used in order to design
efficient algorithms. The concept of estimating a graph with a simpler graph is known
as graph sparsification. Spanning trees are an important family of graph sparsifiers that
maintain connectivity of graphs, and have been utilized in many applications. However,
spanning trees are a wide family, and for some applications one might need the spanning
tree to have specific properties. Combinatorially thin trees are a type of spanning trees
that show up in applications such as Asymmetric Travelling Salesman Problem (ATSP). A
spanning tree T of G is combinatorially thin if there is no cut U ⊂ V such that T contains
all the edges in δ(U), and the thinness parameter αG(T ) measures the maximum fraction
of edges in E(T ) ∩ δ(U) compared to δ(U) over all cuts U ⊂ V .

Intuitively, combinatorial thinness measures how much edge-connectivity we lose while
removing the spanning tree T from G. It is easy to verify that if G has connectivity k,
then 1

k
lower bounds αG. On the other hand, Goddyn conjectured that αG can also be

upper bounded as a function of connectivity αG = f( 1
k
). This conjecture which is known

as thin tree conjecture, was proved for the special case of graphs with bounded genus by
Oveis-Gharan and Saberi, in 2011. However, the general case is still open. In the first part
of this thesis, we study some of the known connections between edge-connectivity and αG

and investigate the result of Oveis-Gharan and Saberi for the special case of planar graphs.

For a general graph G and spanning tree T , even verifying the combinatorial thinness
αG(T ) of T is an NP-hard problem. A natural more efficiently computable relaxation of
combinatorial thinness is the notion of spectral thinness. For a graph G and a spanning
tree T in G the spectral thinness θG(T ) is the smallest value of θ such that θLG − LT

is a positive semidefinite matrix where LG and LT are Laplacian matrices of G and T .
Additionally, we define θG to be the minimum value of θG(T ) over all spanning trees T of
G. Similar to combinatorial thinness and connectivity, θG(T ) can be lower bounded by the
maximum effective resistance of edges in T . It was also proven by Harvey and Olver in
2014 that the maximum effective resistance of edges in G asymptotically upper bounds θG.
However, finding a mathematical characterization of θG(T ), even for structured graphs, is
still a challenge. In the second part of this thesis, we will give general lower bound and
upper bound certificates for θG(T ) and utilize these certificates for circulant matrices to
estimate spectral thinness of graphs such as complete graphs, complete bipartite graphs,
and prism graphs.
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Chapter 1

Introduction

Given a connected graph G = (V,E), a sparse subgraph of G is a graph with (possibly)
substantially fewer edges or vertices than G, while preserving some of the main properties
of G. Graph sparsification is the notion of approximating a given graph G by a graph
with fewer edges or vertices. The goal of graph sparsification is to find a simpler graph
Gs which preserves certain properties of the original graph G such as connectivity, cut-
weights, and diameter. We aim to use Gs as an input of certain algorithms without
imposing considerable error compared to the solution on the original graph G, while saving
computational time and storage.

An important family of sparse graphs are spanning trees, which maintain connectivity
of G, while only having |V |−1 edges. Spanning tree sparsification has been very useful for
approximating fundamental problems such as Travelling Salesman Problem(TSP), Shortest
Path, and minimum-cost weighted perfect matching. However, spanning trees are a wide
family of graphs, and in many applications, we need to specify the spanning trees so that
they have additional structures and properties. For instance, a specific family of spanning
trees called thin-trees have been very useful in understanding important problems such as
Asymmetric Travelling Salesman Problem (ATSP) and No-where Zero k-flow.

More specifically, a spanning tree T of G is combinatorially α−thin if for every proper
cut-set S ⊂ E of G at most α fraction of the cut-edges S are in T , and our goal is to find
combinatorial thin-trees with small thinness parameter α. One of the main challenges with
this goal is that computing the thinness parameter of a given tree in a general setting is
an NP -hard problem. Therefore, we may instead consider a relaxation of combinatorial
thinness, called spectral thinness. We call a tree T a θ−spectral thin tree of G, if for all
x ∈ RV the inequality θx⊤LGx ≥ x⊤LTx holds, where LG and LT are the Laplacian
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matrices of graphs G and T , respectively.

In the following sections, we first cover basic definitions and preliminaries for this
thesis.1 Next, we define cambinatorial and spectral thin-trees more rigorously. Finally, we
show two major applications of thin spanning trees in the literature.

1.1 Basic Definitions and Notations

In this thesis, we use notions and notations commonly used in Graph Theory and Spectral
Graph Theory literature as well as Convex Optimization and Linear programming. To
have a consistent understanding of the basic notions, we will provide a concise definition
of them in what follows.

We use the standard notation of denoting set of real numbers, integers, and natural
numbers with R, Z, and N. Additionally, we will use R+ and R++ to denote the set of
non-negative and positive real numbers, respectively. We may use [n] to denote the set
{1, . . . , n}. For n,m ∈ N, Rm×n and Rn denote the set of matrices with real enteries that
have size m× n and n× n. Similarly, Sn denotes the set of symmetric matrices in Rn. For
M ∈ Rm×n, Null(M) and Rank(M) denote the dimension of null space and rank of M ,
respectively.

Graph theory

We will denote an undirected simple graph with G = (V,E) where V is the set of vertices
and E ⊆

(
V
2

)
is the edge-set. Therefore, each edge e ∈ E is denoted by e = {u, v}, where

u, v ∈ V. We denote the vertex-set size with |V | and edge-set size with |E|.

For a vertex v ∈ V, we use degG(v) to be the number of edges with v as their endpoint,
and define the neighbour set of v, denoted by NG(v) ⊂ V to the set of vertices u ∈ V such
that {u, v} ∈ E. Moreover, maximum degree of a graph G, denoted by ∆(G), is equal to
maxv∈V degG(v).

Note that whenever the graph is obvious from the context, we may use deg(v), ∆ and
N(v) instead of degG(v), ∆(G) and NG(v).

1The reader may skip preliminaries section if they have basic knowledge of graph theory and spectral
graph theory.
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Cuts and cut-sets For a proper subset U ⊂ V, we use δG(U) ⊂ E to denote the set
of edges in E with exactly one endpoint in U. Whenever the graph is obvious from the
context, we may use δ(U) instead of δG(U).

Moreover, we use E[U ] to denote the set of edges in E with both endpoints in U. Given
subsets U1, U2 ∈ V we use E[U1, U2] to show the subset of edges with exactly one endpoint
in U1 and one endpoint in U2.

A cut U ⊂ V in G (also denoted by (U, V \ U)) is a partition of vertices of G into
two disjoint sets. We call U and V \ U the shores of the cut S. Moreover, a cut-set of a
cut U ⊂ V refers to the subset of edges δG(U) ⊆ E. Finally, a bond S ⊂ E is a minimal
cut-set.

Weighted graphs An edge weight for a graph G = (V,E) is a function w : E → R that
assigns a weight w(e) to each edge e ∈ E. We might also use vector notation w ∈ RE to
denote an edge weight function. For a subset S ⊂ E we define the total weight of S as
w(S) :=

∑
e∈S w(e). Moreover, graph G is k−edge connected with respect to weight w, if

and only if for all cuts U ⊂ V we have,

w(δG(U)) ≥ k.

Edge deletion and contraction For a graph G = (V,E) and edge e = {i, j} ∈ E we
define the edge deletion, denoted by G \ e, to be the graph obtained by removing the edge
e from edge-set E. Similarly, for a subset S ⊂ E of edges we define G \ S.

We can also define the edge contraction, denoted by G/e := (V/e,E/e) to be the
multigraph obtained by contracting endpoints of e to a single vertex‌ uv where

V/e := (V \ {u, v}) ∪ {uv}

E/e :=
(
E \

(
δ(u) ∪ δ(v)

))
∪
(
{{uv, w} : w ∈ N(u)} ∪ {{uv, w} : w ∈ N(v)}

)
.

Multi-graphs Unlike a simple graph, in a multi-graph G = (V,E) the edge-set is a
multi-set. I.e., we might have multiple edges e1, . . . , ek ∈ E with end-points u, v ∈ V . For
each pair of vertices u, v ∈ V we define the edge multiplicity set M(u, v) to be the multiset
of all edges e ∈ E with u and v as their endpoint. The edge multiplicity number of a pair
of vertices u, v ∈ V is defined by µ(u, v) := |M(u, v)|.

3



Directed graphs We denote directed graphs with G = (V,A), where A ⊂ V × V is the
set of directed edges of G. In the directed graphs, we denote a ∈ A by an ordered pair of
vertices (u, v) ∈ V ×V. For a proper subset U ⊂ V , we will use δ+G(U) = {(a, b) ∈ E : b /∈ U}
and δ−G(U) = {(a, b) ∈ E : a /∈ U} to denote the set of out-going and in-going edges of U .

Subgraphs Given a graph G = (V,E) and a subgraph H = (U,E(H)), where U ⊆ V, if
the subgraph is on a strict subset of vertices i.e., U ̸= V, we denote the vertex set of H by
V (H). Moreover, we always denote the edge set of subgraph H by E(H).

Remark 1.1. In the rest of this thesis, we might use the term thin trees in order to refer
to thin spanning trees.

1.2 Combinatorial Thinness

Definition 1.1. Given a connected graph G = (V,E), edge weight function w : E→R+,
and α ∈ (0, 1], we call a subgraph H = (V,E(H)) combinatorially α−thin subgraph of G
with respect to w, if for all proper subsets S ⊂ V the following inequality holds:

|E(H) ∩ δ(S)| ≤ α|w(δ(S))|,

i.e. H is a combinatorially α−thin subgraph, if it contains at most α−fraction of weighted
edges of each cut-set of G.

Moreover, given a subgraph H, combinatorial thinness of H, denoted by αG,w(H), is
the smallest α ∈ [0, 1] such that H is combinatorially α−thin subgraph of G with respect
to w, i.e.,

αG,w(H) := min{α : H is α− thin subgraph of G w.r.t weights w}.

Finally, we call a subgraph T = (V,E(T )) of G a combinatorially α−thin spanning tree
of G, if it is a spanning tree and a combinatorially α−thin subgraph of G.

Definition 1.2. Given a connected graph G = (V,E) and edge weight function w :
E→R+, combinatorial thinness of G, denoted by αG,w ∈ (0, 1], corresponds to the smallest
combinatorial thinness of its spanning trees, i.e.,

αG,w := min{αG,w(T ) : T is a spanning tree of G}.

4



Remark 1.2. Given a connected graph G = (V,E), where every edge e ∈ E has weight
equal to one (w(e) = 1), every spanning tree is a 1-thin tree of G, as for every cut S ⊊ V
we have

|E(T ) ∩ δG(S)| ≤ |δG(S)| = 1× w(δG(S)).

.

Remark 1.3. Given a graph G = (V,E) with weight function w : E→R+, we state that
a spanning tree T of G is combinatorially thin, if αG,w(T ) < 1. We also state that graph
G is combinatorially thin if αG,w < 1.

Remark 1.4. In the rest of this thesis, whenever a weight function is not specified we
assume that in the given graph all edges have weight equal to one. We may also use the
notation αG and αG(T ) instead of αG,1 and αG,1(T ), respectively.

Example 1.1. αK4 =
3
4
.

Proof. There are two non-isomorphic spanning trees for K4 :

either (1) a star spanning tree S, or (2) a path tree P of length 3. Moreover, K4 is
a symmetric graph with its group of isomorphism equal to the group of all permutations
on n elements, Sn. Thus, any spanning tree T of Kn isomorphic to S or P has thinness
parameter equal to αKn(S) or αKn(P ), respectively. Finally, as shown in Figure (1.1), we
have:

αK4 = min{αK4(S), αK4(P )} = min{1, 3
4
} = 3

4
.

Note that if a graph G has connectivity k, then there exists a cut-set that has at most
weight k. Since every spanning tree has at least one edge from every cut-set, we obtain
the following.

Lemma 1.1. Suppose G is a given graph with connectivity k. Then,

αG,w ≥
1

k
.

On the other hand, we intuitively expect that whenever the connectivity of graphs
increases their spanning trees will have smaller thinness parameters. Goddyn in [17] con-
jectured the following statement, which has been named as thin tree conjecture.

5



α(T2) = 3
4

αG = min
(
1, 3

4

)
= 3

4

v1

v2 v3

v4 v1

v2 v3

v4 v1

v2 v3

v4 v1

v2 v3

v4

v1

v2 v3

v4

Figure 1.1: Combinatorial thinness of K4: Each spanning tree is denoted by wavy edges. The
orange curves represent the cuts and green edges are in the edges in each cuts.

Conjecture 1.1. There exists a function f : (0, 1]→Z+ such that for α ∈ (0, 1] every
f(α)−edge connected graph has a combinatorially α−thin spanning tree.

The thin tree conjecture has been proved for some families of structured graphs. For
instance, Oveis Gharan and Saberi [16] proved that highly connected graphs with bounded
genus have combinatorially thin spanning trees. However, we do not currently have any
proof for the thin tree conjecture in the general setting.

In 2010, Asadpour et al. [3] suggested a stronger conjecture which is known as strong
thin tree conjecture. The conjecture was proposed in a different setting, which can be
translated into the following.

Conjecture 1.2. There exists a constant C ∈ R+ such that every k−edge connected graph
G has a combinatorially C

k
−thin spanning tree.

Finding efficient algorithms to obtain thin-spanning trees is also of our interest, as
one of the main applications of thin trees is to utilize them in algorithms to solve other
problems. Even though we can verify that a spanning tree is combinatorially thin for
specific families of structured graphs, the general case is not believed to be an easy problem.
In fact, verifying combinatorial α−thinness for an arbitrary given spanning tree T is a NP-
Complete problem. Therefore, introducing a relaxation of combinatorial thinness notion
that is verifiable in polynomial time seems to be a natural next step.
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1.3 Spectral Thinness

A more generalized and stronger notion of thinness is spectral thinness, which is defined
by converting the information of graphs into the space of symmetric positive semidefinite
matrices and specifically using the Laplacian matrices of graphs. We recall the definition
of Laplacian matrices for a graph G = (V,E) over edge weight functions w : E→R+.

Definition 1.3. (Laplacain) Given a graph G = (V,E) on n vertices, the Laplacian of G,
denoted by LG : RE→ SV , takes a vector of edge weights w ∈ RE as an input and returns
the following symmetric matrix. For all i, j ∈ V the ij-th entry of LG(w) is defined as

(LG(w))ij :=


∑

{i,ℓ}∈E wiℓ if i = j

−wij if i ̸= j and {i, j} ∈ E

0 otherwise.

(1.1)

Moreover, we can also rewrite Laplacian of G as a mapping between RE and space of
symmetric matrices SV ,

LG(w) =
∑

{i,j}∈E

wij(ei − ej)(ei − ej)
⊤, (1.2)

where ei are vectors of the standard basis for RV .

Definition 1.4. (Positive semidefinitness) A symmetric matrix X ∈ Sn is positive semidef-
inite if for all v ∈ Rn,

v⊤Xv ≥ 0, (1.3)

and we denote a positive semidefinite (PSD) matrix X by X ⪰ 0.

Now, given a connected graphG = (V,E), a weight function w : E→R+ and a spanning
tree T , the spectral thinness of T with respect to G and w, denoted by θG,w(T ), is defined
as follows.

Definition 1.5. (Spectral thinness) Let G = (V,E) be a weighted graph with the weight
function w : E→R+, and let LG(w) denote the Laplacian matrix of G. Then, a simple
subgraph H = (V,E(H)) is θ−spectrally thin if the following holds,

LH(1)≼ θ.LG(w). (1.4)

7



We define the spectral thinness of H with respect to G and w, denoted by θG,w(H), as the
smallest value θ ∈ (0, 1] satisfying the above inequality.

Moreover, we define spectral thinness of G = (V,E) as the minimum spectral thinness
over all spanning trees of G; i.e.,

θG,w := min{θG,w(T ) : T is a spanning tree of G.}

Proposition 1.1. Given a simple graph G = (V,E) and w ∈ RE
+, if T = (V,E(T )) is a

θ(T )− spectrally thin tree of G, then combinatorial thinness of T is upper bounded by θ,
i.e.,

αG,w(T ) ≤ θG,w(T ).

Proof. Note that by definition of PSD matrices for all vectors x ∈ RV we have

x⊤(θG,w(T )LG(w)− LT (1))x ≥ 0.

Therefore, the definition of spectral thinness directly implies that for any proper subsets
U ⊂ V the following holds:

u⊤
(
θG,w(T )LG(w)− LT (1)

)
u ≥ 0, (1.5)

where u ∈ {0, 1}V is the indicator vector of set U ⊂ V defined as below.

ui =

{
1 i ∈ U,

0 otherwise.

By rewriting the Laplacian matrix as in (1.2), we can compute the LHS of (1.5) as

u⊤
(
θG,w(T )LG(w)− LT (1)

)
u = θG,w(T )

( ∑
{i,j}∈E(G)

wij(ui − uj)
2
)
−

∑
{i,j}∈E(T )

(ui − uj)
2

= θG,w(T )
( ∑

{i,j}∈δG(U)

wij(ui − uj)
2
)
−

∑
{i,j}∈δT (U)

(ui − uj)
2

= θG,w(T )w(δG(U))− |δT (U)|.

Therefore, we conclude that

θG,w(T )w(δG(U))− |δG(U) ∩ E(T )| ≥ 0.
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Since for all U ⊂ V the inequality holds, it implies that the graph is combinatorially
θG,w(T )−thin as well. Hence, we have αG,w(T ) ≤ θG,w(T ).

1.4 Applications

Thin tree conjecture has some nice implications in the literature. For example, if the thin
tree conjecture holds, it implies weak Nowhere Zero 3-Flow conjectured by Jaeger [23].
Another important implication is that if the strong thin tree conjecture holds, we have an
O(1)− approximation algorithm for the Asymmetric Travelling Salesman Problem (ATSP),
suggested by Asadpour et al. in [3].

It is worth mentioning that the constant approximation of ATSP problem was proven
by direct methods in 2017 by Svensson et al. [36]. Moreover, Lovász et al. [26] showed that
Jaeger’s weak 3-Flow conjecture holds for all 6−edge connected graphs without using thin
trees. Although confirming these implications does not give any information on whether
thin tree conjecture holds, these confirmations may be considered a positive sign that the
conjecture might hold.

In this section, we will briefly discuss applications of thin-spanning trees in solving
ATSP and Nowhere Zero 3-Flow. We mainly focus on showing the deep relation between
combinatorially thin trees and how utilizing thin spanning trees help solving some classical
problems which had remained open for a long time.

1.4.1 ATSP and Thin Trees

This section is dedicated to the paper of Asadpour et al. [3] on log(n)/ log log(n)-
approximation of the Asymmetric Travelling Salesman problem. For the symmetric version
of traveling salesman problem there is the well-known Christofides algorithm, which gives
a 1.5−approximation factor for metric TSP. The general idea is to initially find a minimum
cost spanning tree, augment the spanning tree into an Eulerian subgraph by finding an
optimal matching of odd degree vertices of the tree, and finally, find a Hamiltonian cycle
by short-cutting the Eulerian walk.

It was only recently that Karlin et al. in [24] showed that a slightly better approxima-
tion for TSP is possible. For ATSP problem, the authors in [3] presented an approximation
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algorithm similar to the Christofides algorithm. However, the specific choice of the under-
lying spanning tree, guarantees that the cost of the Eulerian augmentation of the spanning
tree cannot be larger than the order of the thinness parameter.

Before we delve deeper into this discussion, we will provide the definition of thinness
introduced in [3], and its relation to the strong thin-tree conjecture.

Definition 1.6. Let G = (V,E) be an undirected connected graph. The spanning tree
polytope of G, denoted by SP (G) is defined as convex-hull of all spanning trees in G; i.e.,

SP (G) := Conv

{
xT ∈ {0, 1}E : T is a spanning tree in G

}
, (1.6)

where xT ∈ {0, 1}E is the incidence vector of spanning tree T.

Proposition 1.2. Let G = (V,E) be an undirected connected graph. Then, we can rewrite
the spanning tree polytope SP (G) as follows

SP (G) =


x(E) = n− 1

x ∈ RE : x(E[U ]) ≤ |U | − 1 ∀ U ⊂ V

x ≥ 0

 . (1.7)

In [3], the authors gave an algorithm to obtain an α−thin spanning tree with α of
order log n log log n. Moreover, they used this algorithm to solve the Asymmetric Traveling
Salesman Problem.

LP relaxation and ATSP problem

In the Asymmetric Traveling Salesman Problem, we have a complete directed graph G =
(V,A) on n vertices V with cost function c ∈ RA

+ which assigns a cost c(u,v) for every
ordered pair of vertices u, v ∈ V . We also assume that the cost function satisfies the
triangle inequality. Our goal is to find the minimum cost tour where each vertex is visited
exactly once, or equivalently a minimum cost directed Hamiltonian cycle.

We will use a = (u, v) as a directed edge a ∈ A from u ∈ V to v ∈ V .

In order to find an optimal solution for ATSP problem, first we consider the Held-Karp
LP relaxation of ATSP (see [21]) on the directed graph G over the vertex set V :
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minimize
∑
a∈A

caxa

subject to x(δ+G(U))≥ 1, ∀ ∅ ̸= U ⊊ V
x(δ+G(v)) = x(δ−G(v)) = 1, ∀v ∈ V
xa ≥ 0, ∀a ∈ A.

(1.8)

Remark 1.5. Given a feasible solution x∗ for (1.8), for all subsets U ⊂ V, we have,

x∗(δ+G(U)) = x∗(δ−G(U)).

It is important to observe that every directed Hamiltonian cycle in G, which can also
be viewed as a circulation, corresponds to an integral feasible point for (1.8). Conversely,
every integral point in the feasible region of (1.8) corresponds to a Hamiltonian cycle.
However, the optimal solution to Held-Karp relaxation, x∗ ∈ RA

+, is not necessarily an
integral solution. However, OPTHK = c(x∗) =

∑
a∈A

cax
∗
a is a lower bound to the ATSP

problem. Asadpour et al. in [3] gave an algorithm to approximate an integral solution for
Held-Karp LP 1.8 by utilizing thin spanning trees.

To get an integral solution to ATSP, we can use a rounding method by considering the
underlying subgraph driven by the support of x∗, and use it in the process of outputting a
Hamiltonian cycle.

Let x∗ be an optimal solution to the Held-Karp relaxation (1.8). We firstly, define the
set of undirected edges in the support of x̄ as,

Ē := {{u, v} ∈ E : x∗
uv > 0 or x∗

vu > 0},

and define graph Ḡ = (V, Ē) be the undirected graph with cost function c̄ : Ē→R+, such
that

c̄({u, v}) := min
{
c(a) : a ∈ supp(x∗) ∩ {(u, v), (v, u)}

}
.

Since graph G has asymmetric costs, x∗ is possibly asymmetric as well. To make it
symmetric, we define the following vector x̄ ∈ RĒ.

x̄uv := (
n− 1

n
)(x∗

uv + x∗
vu) ∀ {u, v} ∈ Ē. (1.9)

Claim 1.1. The vector x̄ ∈ RĒ defined in (1.9) is in the relative interior of the spanning
tree polytope of graph Ḡ.
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Proof. See Appendix A.

Next, Asadpour et al. in [3] introduced an algorithm that in the undirected graph
Ḡ finds an O( logn

log logn
)-combinatorially thin spanning tree with respect to edge weights x̄,

namely T = (V,E(T )), such that the cost of the spanning tree c̄(T ) :=
∑

e∈E(T ) c̄e satisfies

c̄(T ) ≤ 2OPTHK . (1.10)

By utilizing the combinatorially thin tree T in the undirected graph Ḡ, they suggested
a method to direct the given tree into a subgraph T = (V,E(T )) in original directed graph
G such that

c(T ) ≤ c̄(T ). (1.11)

For each edge {u, v} ∈ E(T ) we put one of the arcs (u, v) ∈ A or (v, u) ∈ A in E(T ); i.e.,
if c(u, v) < c(v, u), the edge {u, v} ∈ E(T̄ ) corresponds to arc (u, v) ∈ E(T ). In the case
of equality, we select one of these arcs arbitrarily.

For the rest of the discussion we aim to show that T can be extended to an Eulerian
tour, and then by short-cutting we can obtain a directed Hamiltonian cycle which gives a
good approximation of the minimum cost directed Hamiltonian cycle in G.

O( log(n)
loglog(n)

) Approximation Algorithm for ATSP

Lemma 1.2. Given the graph Ḡ = (V, Ē) and vector x̄ as defined eirlier, let T be the
αḠ,x̄(T̄ )-combinatorially thin tree obtained in [3], where αḠ,x̄(T̄ ) = O( logn

log logn
) and

c̄(T ) ≤ 2OPTHK .

Then, for the directed tree T = (V,E(T )) obtained from T as described earlier, there exists
an integer circulation f in G such that,

i. f contains all edges of T ; i.e., f(a) ≥ 1 for a ∈ E(T );

ii. the total circulation flow f(A) =
∑

a∈A f(a) is upper bounded by

f(A) ≤ c(T ) + 2αḠ,x̄(T̄ )OPTHK (1.12)

≤ (2 + 2αḠ,x̄(T̄ ))OPTHK . (1.13)
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In order to prove this lemma, we need to use Hoffman Circulation Theorem, which we
state in the following. To find the proof see [11].

Theorem 1.1. (Hoffman’s circulation[11]) Given a directed graph G = (V,A), ℓ ∈
RA

+, u ∈ (R+ ∪{∞})A, such that ℓ ≤ u, there is a circulation f with ℓ ≤ f ≤ u if
and only if every U ⊂ V and Ū = V \ U satisfy

u(δ+(U)) ≥ ℓ(δ+(Ū)) = ℓ(δ−(U).

Moreover, if ℓ, u are integral, then there also exists an integral circulation for G.

Given the above theorem, we now proceed to prove Lemma 1.2:

proof of Lemma 1.2. We define capacities ℓ, u as follows,

ℓ(i, j) :=

{
1, if (i, j) ∈ E(T )

0, otherwise.

Also,

u(i, j) :=

{
1 + 2αḠ,x̄x

∗(ij), if (i, j) ∈ E(T )

2αḠ,x̄, otherwise.

We claim that the defined ℓ, u satisfy the Hoffman’s circulation theorem, or equivalently,
for every proper subset U ⊂ V the inequality u(δ+(Ū)) ≥ ℓ(δ+(U)) holds:

ℓ(δ+(U)) = ℓ(δ+(U) ∩ E(T )) + ℓ(δ+(U) \ E(T ))

= |δ+(U) ∩ E(T )| (by definition of ℓ)

≤ |δḠ(U) ∩ E(T̄ )| (Ḡ, T̄ are underlying graph of G, T )

≤ αḠ,x̄x̄(δḠ(U)) (by thinness condition)

= αḠ,x̄(
n− 1

n
)(x∗(δ+(U)) + x∗(δ−(U))) (by definition of x̄)

= 2αḠ,x̄(
n− 1

n
)x∗(δ−(U)) (by Remark 1.5)

≤ 2αḠ,x̄x
∗(δ−(U))

≤ u(δ−(U)) = u(δ+(Ū)) (by definition of u).
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Note that with the above inequality holding, by Theorem 1.1, we have a circulation f
in the directed graph G where the total cost of f is at most

c(f) :=
∑
a∈A

c(a)f(a) ≤
∑
a∈A

c(a)u(a).

However, note that this circulation is not necessarily integral as u is not an integral
function. To overcome this problem, we consider the following LP.

minimize
∑
a∈A

c(a)f(a)

subject to AGf = 0,
ℓ(a) ≤ f(a), ∀a ∈ A

(P1)

where AG is the adjacency matrix of original graph G. It is well known that if ℓ(·) is
integral then (P1) has an integral optimal solution f ∗ (see Corollary 12.2 in [34]). Also,
note that f is a feasible solution for (P1) as well. Thus, we have

c(f ∗) ≤ c(f)

≤
∑
a∈A

c(a)u(a)

=
∑

a∈E(T )

c(a) + 2αḠ,x̄

∑
a∈A

c(x∗(a))

= c(T ) + 2αḠ,x̄(T̄ )OPTHK

≤ (2 + 2αḠ,x̄(T̄ ))OPTHK .

1.4.2 Nowhere Zero 3-Flow and Thin Trees

Definition 1.7. Let G = (V,A) be a directed graph and X be an Abelian group. A flow
assignment function f : A→X is a function that assigns values from group X to arcs of
graph. Moreover, for a vertex v ∈ V, we define the flow boundary of v with respect to f to
be

∆v :=
∑

e∈δ+(v)

f(e)−
∑

e∈δ−(v)

f(e),
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where the summation is with respect to the group X.

In our discussion, a flow assignment for a given graph G = (V,A) is valid if the flow
boundary of each vertex v ∈ V is equal to zero. Let X∗ = X \ {0} be the set of nonzero
elements of the group X. We define flow assignment f : A→X∗ a nowhere zero X−flow
if we have flow boundary of all vertices v ∈ V to be equal to zero, i.e. ∆v = 0. If graph
G = (V,E) is undirected, then G has a nowhere zero X−flow if the graph has a nowhere
zero X−flow for some fixed orientation of edges in E.

Definition 1.8. Let G = (V,E) be an undirected graph. Then, a flow assignment f :
E→{1, . . . , k− 1} is a nowhere zero k− flow if there exists an edge orientation of G such
that the flow boundary of all vertices is equal to zero, with respect to sum in Z.

Tutte [39, 40] showed a strong connection between nowhere zero k−flow and Zk−flow.
Theorem 1.2. Let G = (V,E) be an undirected graph. Then, G has a nowhere zero
Zk−flow if and only if G has nowhere zero k-flow.

An important implication of the above theorem is that if a graph G has k−flow, then
it has k′−flow for all k′ ∈ N such that k′ ≥ k.
Finding the relation between edge connectivity and the existence of smallest values k ∈
N such that nowhere zero k−flow exists is one of the most interesting questions in the
literature. One of the main open questions was specifically how much connectivity is
needed for nowhere zero 3−flows to exist. Tutte conjectured in [39, 40] the following.

Conjecture 1.3. (Tutte’s 3−flow conjecture) Every 4−edge connected graph has a nowhere
zero 3−flow.

This conjecture which is also known as Tutte’s 3−flow conjecture remained open for
decades and is open to this day. A weakened version of Tutte’s conjecture was proposed
by Jaeger [23], which is known as weak 3−flow conjecture.

Conjecture 1.4. (weak 3−flow conjecture) There exists a constant k such that every
k−edge connected graph has a nowhere zero 3−flow.

Thomassen [37] proved weak 3−flow conjecture by showing every 8-edge connected
graph has 3−flow. Later Lovász et al. [26] improved the connectivity by proving every
6-edge connected graphs has a nowhere zero 3−flow. Although weak 3−flow conjecture has
been proven affirmatively, it is important for our discussion to see its relation to thin tree
conjecture. We will briefly discuss that if graph G has a thin spanning tree T with small
thinness αG(T ) ≤ 1

3
, then it also has a nowhere zero 3−flow (the idea is from Goeman’s

talk [19].)
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Definition 1.9. (O-join) Given a graph G = (V,E) and a set O ⊆ V, where |O| is even,
an O-join of G is a subset of edges J ⊆ E such that the odd degree vertices of subgraph
H = (V, J) are exactly the vertices in O.

Theorem 1.3. Let a simple graph G = (V,E) be given. Suppose G is combinatorially thin
with αG ≤ 1

3
, and let thin spanning tree T = (V,E(T )) have αG = αG(T ). Then, we claim

that G has a nowhere-zero 3-flow.

Proof. Let H = (V,E(H)) be a subgraph of G, where E(H) = E \E(T ). Suppose OH ⊆ V
is the set of odd vertices in H.

Then, it is possible to find an OH-join J ⊆ E(T ) in G. Let G0 = (V,E0), be the graph
which is defined by

E0 = E(H) ∪ J,

and let E1 = E(T ) \ J. Since all vertices of G0 have even degrees, it has an Eulerian tour.

Now, in the original graph G, let A0 be the directed version of edges E0 ⊆ E clockwise
in the order of the given Eulerian tour. Also, we will direct edges of E1 arbitrarily into
edges graph A1.

Let G⃗ = (V,A) be the directed version of G. We define the capacity functions u, ℓ :
A→{1, 2} as follows,

ℓ(a) = 1 ∀a ∈ A,

u(a) =

{
2, if a ∈ A0

1, if a ∈ A1.

Next, we will show that by Hoffman’s circulation theorem (Theorem 1.1) the suggested

capacity functions ensure that G⃗ has an integral circulation, and since the circulation has
only flow 1 or 2 on the arcs, it is indeed a nowhere zero 3-flow.

To show that an integral circulation exists, we need to show that for all U ⊂ V, we have

u(δ+(U)) ≥ ℓ(δ−(U)).

Note that set of edges inA0 form an Eulerian walk. Fix any U ⊂ V, and let t := |A0∩δ+(U)|.
Then,

|A0 ∩ δ+(U)| = |A0 ∩ δ−(U)| = t. (1.14)
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Therefore, we have

|A0 ∩ (δ+(U) ∪ δ−(U))| = 2t

Further, we know that E1 ⊂ E(T ), and therefore,

|E1 ∩ δG(U)|
|δG(U)|

=
|A1 ∩ (δ−(U) ∪ δ+(U))|

|A0 ∩ (δ−(U) ∪ δ+(U))|+ |A1 ∩ (δ−(U) ∪ δ+(U))|

=
|A1 ∩ (δ−(U) ∪ δ+(U))|

2t+ |A1 ∩ (δ−(U) ∪ δ+(U))|
.

Since |E1∩δG(U)|
|δG(U)| ≤ αG(T ) ≤ 1

3
we get,

|A1 ∩ (δ−(U) ∪ δ+(U))| ≤ t.

Thus, we can upper bound ℓ(δ−(U)) as

ℓ(δ−(U)) = |A0 ∩ δ−(U)|+ |A1 ∩ δ−(U)|
= t+ |A1 ∩ δ−(U)|
≤ 2t.

On the other hand, since U(a) = 2 for all a ∈ A0, it also follows that

u(δ+(U)) = 2|A0 ∩ δ+(U)|+ |A1 ∩ δ+(U)|
= 2t+ |A1 ∩ δ+(U)|
≥ ℓ(δ−(U)).

Thus, Hoffman’s condition holds and G has a nowhere-zero 3-flow.

1.5 Thesis Outline

In Chapter 2, we show combinatorial lower bounds and upper bounds for existence of
combinatorial thin trees in specific families of structured graph. More precisely, we first
show that in the graphs without two edge disjoint spanning trees, combinatorially thin trees
do not exists. Moreover, by using a technique of [29], we present families of graphs that
have two edge disjoint spanning trees but do not have any combinatorially thin spanning
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trees. Then, we will investigate a special case of result by Oveis-Gharan and Saberi [16] on
finding combinatorially thin trees in highly connected graphs with bounded genus. We will
slightly extend their algorithm to work on weighted planar graphs, provide a fairly different
approach on showing the correctness, and getting a slight improvement in the thinness
parameter. Finally, we will describe an equivalent algorithm and show its equivalence to
the primal algorithm.

In Chapter 3, we will focus on spectral properties of graphs and their relation to thin
spanning trees. We start by showing a slightly better upper bound on the combinatorial
thinness of some families of distance regular graphs by utilising spectral and expansion
properties of graphs. Next, we will begin our discussion on spectrally thin spanning trees
by presenting general methods to lower bound and upper bound spectral thinness. Finally,
we investigate the spectral thinness of some families of structured graphs. More specifically,
we will focus on circulant graphs and exploit their symmetries to obtain bounds on the
spectral thinness.
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Chapter 2

Combinatorially Thin Trees in
Structured Graphs

If thin tree conjecture (Conjecture 1.1) holds, it suggests that having a highly connected
graph G = (V,E), we can prove the existence of a combinatorially thin tree T in G, only
by using information on the edge connectivity of the graph G. Although this is a strong
hope which has not been proven yet, there are relevant studied questions in the literature,
some of which are still open.

Some interesting questions were suggested by Goemans [19] are as follows.

1. How small the connectivity of the graph can be while having a combinatorially thin
spanning tree?

2. Can we find counterexamples to show specific families of graphs that do not have
combinatorial thin trees?

3. Is there any family of graphs that we can prove the thin tree conjecture for?

To address these questions, we will provide some interesting existing results in this
chapter. Firstly, by elementary reasoning, we will show that families of graphs without
edge-disjoint spanning trees do not have combinatorially thin trees. Next, we will show
results in [29] that suggest a family of planar graphs G in which all graphs Gn ∈ G have
two edge-disjoint spanning trees, but they do not have a combinatorially α−thin tree for
α ≤ 1− ϵ, where ϵ is a small constant. In fact, Merker and Postle in [29] showed that there
exists a family of 4−regular and 4−edge connected planar graphs, denoted by MP such
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that for any α < 1 there exists a graph G ∈MP with αG > α. Using Merker and Postle’s
ideas, we will introduce some other families of 4−regular graphs with same property.

Next, we will present a result by Oveis Gharan and Saberi [16] which gives an algorithm
to find a combinatorially thin tree in highly connected graphs with bounded genus. We
provide a slightly different and more careful analysis for the case of planar graphs. In
particular, we only provide their result for planar graphs, but for these graphs we will
work with a more general setting, which allows arbitrary edge weights.

2.1 Graphs Without Edge-Disjoint Spanning Trees

Firstly, we show that the family of graphs without two edge-disjoint spanning trees are not
combinatorially thin.

Theorem 2.1. Let G = (V,E) be a connected graph without two edge-disjoint spanning
trees. Then, G is not combinatorially-thin.

Proof. For the sake of contradiction, suppose G = (V,E) has a combinatorially thin tree
T with thinness parameter αG(T ) < 1. Therefore, for each cut δG(U) ⊂ E we have at
least one edge e ∈ δG(U) is not an edge of tree T. As a result, the graph G \ T is a
connected graph, and contains a spanning tree T ′ none of its edges are in E(T ). Since T ′

is a spanning tree in G as well, T and T ′ are two edge-disjoint spanning trees of G, which
is a contradiction.

2.2 Families of 4−Edge Connected Graphs Without

Combinatorially Thin Trees

We proceed to the next step, and we present existing results on the combinatorial thinness
of some graphs that have two edge-disjoint spanning trees. Merker and Postle [29] intro-
duced a family of 4−edge connected planar graphs,MP , where for each α < 1 there exists
a graph G in the family with no combinatorially α−thin spanning tree.f It is worth noting
that as a corollary of the Nash-Williams theorem, every 4−edge-connected graph has two
edge-disjoint spanning trees as well.

Theorem 2.2. (Nash-Williams [31]) A given graph G = (V,E) has k edge-disjoint span-
ning trees if and only if for every partitioning P = {V1, . . . , Vp} of G, partitioning graph
G/P = (P,EP ) obtained from P has the following property:
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|EP | ≥ k(p− 1). (2.1)

Proof. See Theorem 1 in [31].

Theorem 2.3. For every α < 1, there exists a graph G = (V,E) with two edge-disjoint
spanning trees such that G does not have any α−thin tree.

The goal in this section is to prove the given theorem. In order to present the proof
of Theorem 2.3, as described in [29] in detail, we first present some tools and facts which
were used in the proof explicitly.

2.2.1 Preliminaries

Tools and Facts on 4−Regular 4−edge Connected Graphs

Lemma 2.1. Let G = (V,E) be a 4-regular graph on n vertices, and let T0 = (V,E(T0))
and T1 = (V,E(T1)) be two edge-disjoint spanning trees of G. Then,

|E \ (E(T0) ∪ E(T1))| = 2.

Proof. Since G is a 4-regular graph, we have dG(v) = 4, for all v ∈ V . Thus, the number
of edges in G is equal to

|E| = 1

2

∑
v∈V

dG(v) = 2|V |.

Moreover, since T0 and T1 are edge-disjoint spanning trees, the total number of edges in
the union of T0 and T1 is equal to |E(T0) ∪ E(T1)| = 2(|V | − 1). Thus, the number of
remaining edges in the graph, if we remove edges of T0 and T1, is equal to

|E| − |E(T0) ∪ E(T1)| = 2|V | − 2(|V | − 1) = 2.

Lemma 2.2. Let G = (V,E) be a connected graph with maximum degree D ∈ N, and let
T = (V,E(T )) be an arbitrary spanning tree of G.Then, there exists an edge f ∈ E(T ) and
a partitioning [V1, V2] of V such that {f} = δT (V1) and

min{|V1|, |V2|} ≥
|V | − 1

D
. (2.2)
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Proof. See Appendix A.

Corollary 2.1. Given a spanning tree T = (V,E(T )) of a 4-regular graph G = (V,E),
there exists an edge e ∈ E(T ) such that both connected components of T \ e have size at

least |V |−1
4

.

Intersection of cuts and paths

Lemma 2.3. Let G = (V,E) be a simple graph and let A ⊂ V be an s− t cut for vertices
s, t ∈ V with s ∈ A. Then,

i. δG(A) contains at least one edge of any s− t path P .

|δ(A) ∩ E(P )| ≥ 1.

ii. δG(A) contains at least two edge of any cycle C containing s, t.

|δ(A) ∩ E(C)| ≥ 2.

Proof. (i.) Let P be a path with the sequence of vertices s = v1, . . . , vℓ = t. We have
v1 ∈ A and vℓ /∈ A; therefore, there exists an index j ∈ {1, . . . , ℓ− 1} such that vj ∈ A and
vj+1 /∈ A. Then,

{vj, vj+1} ∈ δ(A) ∩ E(P ).

(ii.) This part is a direct result of (i.) as every cycle containing s and t has two edge-disjoint
s− t paths in G.

2.2.2 4−Edge-Connected Planar Family of Graphs

Definition 2.1. (Cartesian product) Given two graphs G1 = (V1, E1) and G2 = (V2, E2),
the Cartesian Product of G1 and G2, denoted by G1 □ G2, is the graph with vertex set
V (G1□G2) := V1×V2 and edge set E(G1□G2). The edges of Cartesian product are of form
{{x1, y1}, {x2, y2}} ∈ E(G1□G2), where either x1 = x2 and {y1, y2} ∈ E2 or y1 = y2 and
{x1, x2} ∈ E1.
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For a given k ∈ N, the Cartesian product of cycle C4k and path P4k is a planar graph,
but it is neither 4-regular nor 4−edge connected. In order to make it 4−edge connected
and 4-regular, the authors in [29] suggested adding k side vertices to each side of the grid
with degree 3 vertices and connecting each side vertex to 4 distinct vertices with degree
three. We define MP4k := (V,E) to be the Merker-Postle suggested graph when the length
and the height of its grid are equal to 4k. Finally, lets denote the family of MP4k by

MP := {MP4k : k ∈ N}.

Figure 2.1 shows the MP8 graph.

Figure 2.1: Graph MP8 with 68 vertices

Lemma 2.4. Let MP4k := (V,E), be a graph in MP . Then, any subset A ⊂ V with
k2 ≤ |A| ≤ |V | − k2 has at least k edges in the boundary δMP4k

(A).

We will postpone the proof of Lemma 2.4 to the end of this section. Instead, we first
show that the family ofMP graphs’ combinatorial thinness cannot be bounded from above
by any α ∈ (0, 1).

Theorem 2.4. For any given value α ∈ (0, 1), there exists a graph MP4k ∈MP for some
k depending on α with two edge-disjoint spanning trees such that MP4k does not have any
combinatorially α−thin tree.
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Proof. Let k > 3
1−α

and let MP4k = (V,E) ∈MP be as described, and suppose MP4k has
a combinatorially α−thin tree T0 = (V,E(T0)). Then, MP4k \E(T0) is still connected and
has another spanning tree T1. By Lemma 2.2, there exists an edge f ∈ E(T1) such that

{f} = δT1(S) for a cut S ⊂ V with min{|S|, |V \ S|} ≥ |V |−1
4

. Note that

|V | − 1

4
=

16k2 + 2k − 1

4
≥ k2.

Therefore, by Lemma 2.4, we have that the number of edges in δMP4k
(S) is at least k.

Moreover, we have

|δMP4k
(S) ∩ E(T1)| = |{f}| = 1.

Finally, by Lemma 2.1, we know that |E \ (E(T0) ∪ E(T1))| = 2. Thus,

|E(T0) ∩ E(S, S̄)| ≥ |E(S, S̄)| − 3,

and αMP4k
(T0) is lower bounded by,

αMP4k
(T0) ≥

|E(T0) ∩ E(S, S̄)|
|E(S, S̄)|

(2.3)

≥ 1− 3

|E(S, S̄)|
(2.4)

≥ 1− 3

k
. (2.5)

Therefore, αMP4k
(T0) > α for k > 3

1−α
.

Now, we will present the proof of Lemma 2.4.

Proof. (Lemma 2.4) Let A ⊂ V satisfy the given condition, and suppose δ(A) < k.

We define the set of right vertices R ⊂ V to be the set of side vertices that are in right
side of MPk,

R = {ri : i ∈ [k]},

the left vertices L ⊂ V as
L = {ℓi : i ∈ [k]},
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and Grid vertices G ⊂ V to be the set of vertices on the 4k × 4k grid, where vij is the
vertex in the row i and column j.

G = {vij : i, j ∈ [4k]}.

Note that V = R ∪ L ∪ G. We call a column j ∈ [4k] a full column if for all i ∈ [4k] the
vertices vij are in A, an empty column if no vertex vij ∈ A, and an alternating column if
there exists i and i′ such that vij ∈ A and vi′j /∈ A.

Moreover, we define a row i ∈ [4k] to be a full row if the vertices

{vij : j ∈ [4k]} ∪ {r⌈ i
4
⌉, ℓ⌈ i

4
⌉} ⊂ A,

an empty row if
{vij : j ∈ [4k]} ∪ {r⌈ i

4
⌉, ℓ⌈ i

4
⌉} ⊂ V \ A,

and otherwise, an alternating row.

Note that if the column j ∈ [4k] is alternating then there are vertices vij ∈ A, vi′j /∈ A
for i, i′ ∈ [4k]. Since every column is a cycle, by Lemma 2.3 (ii.) there are least two edges
of column j that are in δ(A). Similarly, by Lemma 2.3 (i.) if the row i ∈ [4k] is alternating
then at least on edge of row i is in δ(A). As a result, we immediately get that we have at
most ⌈k

2
⌉ − 1 many alternating columns, and at most k − 1 alternating rows.

Therefore, at least 3k + 1 rows and ⌊7k
2
⌋ + 1 columns must be either empty or full.

However, the following conditions must holds.

1. The rows (columns) which are not alternating rows (columns) must be either all empty
or all full, since otherwise, all columns(rows) will be alternating. In other words, there
are no indices i, i′ ∈ [4k], such that row (column) i is full and row (column) i′ is empty.

2. There cannot be an empty (full) row i and a full (empty) column j in MP4k at the same
time, since vertex vij is either in A or not.

Therefore, the columns and rows that are not alternating are either all full or all empty.
Suppose all the remaining rows and columns are full. Define

Fr := {vij : i, j ∈ [4k] & i is a full row} ∪ {r⌈ i
4
⌉ : i ∈ [4k] & i is a full row}

∪ {ℓ⌈ i
4
⌉ : i ∈ [4k] & i is a full row},

25



and

Fc := {vij : i, j ∈ [4k] & j is a full column}.

Also, let

T := Fr ∩ Fc.

By our definition of full rows and columns, we have that Fr ∪ Fc ⊂ A. As mentioned
earlier the number full rows and columns is at least 3k + 1 and ⌊7k

2
⌋ + 1, respectively.

Moreover, at least 2
⌈
3k+1
4

⌉
of the side vertices also in A. Thus, the total number of

vertices in A is at least,

|A| ≥ (|Fr|+ |Fc| − |T |)

=

(
4k(3k + 1) + 2

⌈3k + 1

4

⌉)
+

(
4k(
⌊7k
2

⌋
+ 1)

)
−

(
(
⌊7k
2

⌋
+ 1)(3k + 1)

)

≥

(
4k(3k + 1) + 2

⌈3k + 1

4

⌉)
+ 4k(

7k

2
+

1

2
)−

(
(
7k

2
+ 1)× (3k + 1)

)
= 15.5k2 + 2

⌈3k + 1

4

⌉
− k

2
− 1

> 15k2 + 2k

= |V | − k2,

which contradicts our assumption that |A| ≤ |V | − k2.
The case that all non-alternating rows and columns are empty gives a contradiction with
the same method as well.

2.2.3 C4k □ C4k

Another family of 4-regular graphs with similar properties is the family of graphs obtained
from the Cartesian Product of cycles of size 4k, denoted by G4k = C4k□C4k, for k ∈ N.
Figure 2.2 shows an instance of C8□C8 graph.
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We denote this family of graphs by

C := {G4k : k ∈ N}.

These graphs share all the properties ofMP , except they are not planar graphs. However,
this is not much of a barrier as we do not use planar properties in the analysis.

Figure 2.2: Graph C8 □ C8

Lemma 2.5. Suppose G4k = (V,E) is given for k ∈ N, and let A ⊂ V such that k2 ≤
|A| ≤ |V | − k2, then we have δG(A) ≥ 2k.
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Proof. For the sake of contradiction, suppose A ⊂ V and k2 ≤ |A| ≤ |V | − k2, but we
have δG(A) < 2k. Let the set vij for i, j ∈ [4k] be the set of vertices of G4k where vij is
the vertex in the row i and column j. Similar to the MP4k graphs, we call the row i a full
row if for all j ∈ [4k] the vertices vij are in A, an empty row if no vertex vij ∈ A, and an
alternating row if there exists j and j′ such that vij ∈ A and vij′ /∈ A. Full, empty and
alternating columns are defined similarly.

Notice that if the column j ∈ [4k] is alternating then there are vertices vij ∈ A, vi′j /∈ A
for i, i′ ∈ [4k]. Since every column is a cycle, by Lemma 2.3 (ii.) there are two edges of
column j ‌that are in δ(A). Similarly, if the row i ∈ [4k] is alternating then there are at
least two edges of row i are in δ(A). From this we immediately get that we have at least
3k + 1 rows and columns that are either full or empty.

By same argument as in Lemma 2.4, all of these 3k+1 rows and columns are either all
full or all empty. Without loss of generality, we may assume that all the remaining rows
are full rows, and the other case can be argued similarly.

By the same argument, we will have 3k + 1 columns that are all full or empty. Since
we cannot have a full row and an empty column, all the remaining 3k + 1 columns should
also be full. Let

Fr := {vij : i, j ∈ [4k] i is full row}
Fc := {vij : i, j ∈ [4k] j is full column}

and also let
T = Fr ∩ Fc.

Since Fr ∪ Fc ⊂ A, we have

|A| ≥ |Fr|+ |Fc| − |T |
= (3k + 1)× 4k + 4k × (3k + 1)− (3k + 1)× (3k + 1)

= 24k2 + 8k − 9k2 − 6k − 1

= 15k2 + 2k − 1

> 15k2,

which is a contradiction since we assumed |A| ≤ |V | − k2 = 15k2. A similar argument
holds for the case with all the remaining rows and columns being empty.

Theorem 2.5. For any given value α < 1, there exists a graph G4k ∈ C with two edge-
disjoint spanning trees such that G4k does not have any α−thin tree.
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Proof. Similar to the proof of Theorem 2.4, but utilizing Lemma 2.5.

2.2.4 Random 4−Regular Graphs

Suppose G(n, k) be the set of all k−regular graphs on n vertices, we aim to show that for a
random 4−regular graph G on n vertices uniformly selected from G(n, 4) the combinatorial
thinness αG→ 1 as n→∞, with high probability which means the probability tends to one
as n ← ∞. To have a uniform distribution over all simple 4−regular graphs, we must
specify a process to generate a uniformly random graph. We cannot use the classic Erdós-
Renyi family of random graphs Gn,p, where the edges are selected independently at random,
as we cannot guarantee a uniform distribution over all 4−regular graph by selecting edges
independently. However, Bollobás in [7] provided a process of obtaining a uniformly random
k−regular graph from G(n, k), by another model called configuration model.(Also, see [14]
for more detailed explanation.)

Selecting random graph G from G(n, k), we will proceed to show that each cut of the
graph has a relatively large number of edges. Then, we will use the previously discussed
techniques to show that combinatorial thinness of a random 4−regular graph cannot be
bounded by any constant α ∈ (0, 1).

To show that each cut of a given graph has large number of edges, we need to introduce
a way to compare number of edges in the cut set with the size of the cut itself.

Definition 2.2. Given a graph G = (V,E), we define edge expansion of a proper subset
U ⊂ V as

Φ(U) :=
δG(U)

|U |
,

and edge expansion of graph G to be

Φ(G) := min
U :|U |≤n

2

Φ(U).

We call a G = (V,E) an ϵ−expander, if its edge expansion is at least ϵ; i.e, Φ(G) ≥ ϵ.

Suppose G(n, k) be the set of all k−regular graphs on n vertices, a random element
G ∈ G(n, k) has a property A with high probability if the probability that A(G) = 1 goes
to 1 as n→∞.

Bollobás [7] proved the following theorem in 1988.
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Theorem 2.6. Let G = (V,E) is a random k-regular graph on n vertices
selected from G(n, k). Suppose k ≥ 3 and 0 < µ < 1 be such that

2
4
k < (1− µ)1−µ(1 + µ)1+µ. (2.6)

Then, with high probability the edge expansion Φ(G) is at least (1−µ)k
2

.

Proof. See Theorem 1 in [7].

Corollary 2.2. For a random 4−regular graph G = (V,E) on n vertices, to satisfy (2.6)
we must have µ ≥ 0.779. Therefore, with high probability G has edge expansion of at least
0.44.

Theorem 2.7. Suppose G = (V,E) is a random 4−regular graph on n vertices chosen
uniformly from G(n, 4). Then, we claim that with high probability αG→ 1 as n→∞.

Proof. Given a random graph G ∈ G(n, 4), with high probability, G is an ϵ−expander,
where by Corollary 2.2, ϵ ≥ 0.44. Suppose T1 is a combinatorially thin tree of G. Since
G\T is still connected, it contains another spanning tree T . By Corollary 2.1, there exists
an edge e ∈ E(T ) with {e} = δT (V1) for V1 ⊂ V such that V1 and V2 = V \ V1 have size
at least n

5
. Suppose |V1| ≤ n

2
and consider the corresponding cut δG(V1) ⊂ E. For this cut,

we have

|δG(V1)| ≥ ϵ.|V1| ≥
ϵ.n

5
.

The spanning tree T has only one edge in δG(V1). Also, by Lemma 2.1, there are at most
2 edges in δG(V1) that are not in one of the spanning trees T1 or T. Thus, we have

|δG(V1) ∩ E(T1)| ≥ |δG(V1)| − 3,
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which indicates that

αG(T1) ≥
|δG(V1)| − 3

|δG(V1)|

= 1− 3

|δG(V1)|

≥ 1− 3
ϵ.n
5

= 1− 15

ϵ.n
.

Therefore, as n→∞, a.e. αG also goes to 1.

2.3 Thin Trees and Planar Graphs

In the previous section, we presented some families of graphs with small edge connectivity
that do not have combinatorially thin trees. Specifically, the result of [29] gave us an
explicit construction for a family of 4-edge connected planar graphs where the combinatorial
thinness parameter converges to one.

In this section, we show that combinatorially thin trees can be found in planar graphs
if we allow higher edge connectivity, which is a special case of [16]. In the result of Oveis-
Gharan and Saberi [16] they give an algorithm that finds combinatorially thin trees on
graphs with bounded genus. We will describe the special case of their algorithm for highly
connected planar graphs for planar graphs with weights. Note that a simple planar graph
has connectivity at most 5. Therefore, to allow higher edge connectivity, we will work with
a multi-graph G = (V,E) where we may have many edges e1, . . . , es ∈ E between two
endpoints u, v ∈ V .

Formally, the special case of the algorithm in [16] for planar graphs takes a non-weighted
planar multi-graph G = (V,E) with edge-connectivity k as an input and returns a thin
tree with thinness 10

k
. In this section, we will provide a more careful analysis of this algo-

rithm to generalize the thinness parameter of 10
k
for k-connected weighted planar graphs.

Additionally, this analysis gives us a slightly better upper bound of 1
⌈ k
10

⌉+ϵ
for graphs with

integral weights where ϵ > 0 is a positive number depending on |V (G)|.

Note that the algorithm in [16] uses the dual graph of a planar graph to find a spanning
set of edges that are combinatorially thin. Using the tools we develop in the following

31



sections, we will also provide an algorithm that does not use the dual graph explicitly and
prove its equivalence to the algorithm of Oveis-Gharan and Saberi [16].

To get a better understanding of the algorithm, we first present basic definitions of
planar graphs and their planar dual as well as their properties and the relation between
them using Chapter 10 of the textbook [8]. Next, we will try to give an interpretation
of thin trees of a planar graph G = (V,E) in their planar dual G∗ = (V ∗, E∗). Having
this interpretation, we will define a notion of threads which is used in [16] to find a subset
F ∗ ⊂ E∗ in G∗ that corresponds to a thin spanning tree F ⊂ E in G. Additionally, we
will interpret back threads in the dual graph G∗ to a notion of hanks in the original graph
G. Finally, we use these interpretations to present a pair of primal and dual algorithms in
the weighted setting and prove their correctness.

2.3.1 Preliminaries

Planar graphs

Planar graphs1 are the family of graphs that can be drawn in the plane in a way that edges
intersect only at the endpoints. We call any such embedding of G into the two-dimensional
plane a planar embedding of G. It is important to note that if a graph G = (V,E) is planar,
its planar embedding is not unique. However, any planar embedding G̃ of G provides a
graph isomorphic to G. To understand the family of planar graphs, we need to understand
at least some basics on the topology of the plane and planar embedding of graphs.

Note that in a planar embedding G, in order to draw any edge e = {u, v} between its
endpoints we use curves. A curve C is an image of a continuous function ϕ : [0, 1] → R2.
We call a curve C closed if ϕ(0) = ϕ(1) and simple if it does not intersect itself unless at its
endpoints; i.e., ϕ(a) ̸= ϕ(b) for 0 < a < b < 1. Finally, a subset S ⊂ R2 is arcwise-connected
if for any two points x, y ∈ S there exists a curve between x and y that lies entirely in
S. As the planar embedding of graphs has a set of simple curves which are connected at
the endpoints, planar embedding of graphs separate the plane into arcwise-connected open
sets, which are referred to as faces of plane graph. This observation is the result of one of
the most fundamental theorems in topology, which we state without proof in the following.

Theorem 2.8. (The Jordan Curve Theorem)
Any simple closed curve C ∈ R2 partitions R2 \C into two disjoint arcwise-connected open
sets.

1For more information on planar graphs and their properties view [8] Chapter 10.
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One implication of Jordan Curve Theorem is that given a simple closed curve C any
curve C̃ connecting a point inside C to a point outside C intersects C at least once. This
observation is useful in order to define the notion of dual of a planar graph G.

Planar dual

An embedded planar graph G separates the plane into one unbounded outer face and many
bounded arcwise connected faces (see Figure 2.3). The set of faces of planar graph G is
denoted by F (G). A given face f ∈ F (G) is incident to a set of vertices and edges. The
set of incident edges to a face f are called boundary of f and is denoted by ∂(f).

Definition 2.3. (Planar dual)
Let G = (V,E) be a given embedded planar graph. We define the planar dual multigraph
of G, denoted by G∗ = (V ∗, E∗), as follows.

• For every face f ∈ F (G), there is a corresponding vertex f ∗ ∈ V ∗, which gives a
bijection V ∗ ≃ F (G).

• For every edge e = {u, v} ∈ E, which is incident to faces f, g ∈ F (G), there is a
unique corresponding edge e∗ = {f ∗, g∗} is E∗ which gives a bijection E ≃ E∗ (see
Figure 2.3).

Definition 2.4. (dual of weight function) Let G = (V,E) be an embedded planar graph
with a weight function w : E→R+ and let G∗ = (V ∗, E∗) be its planar dual. We define
the dual weight function w∗ : E∗→R+ such that w∗(e∗) := w(e) for every e ∈ E.

Definition 2.5. Two embedded planar graphs G1 = (V1, E1) and G2 = (V2, E2) have
same embedding if we both the pair G1, G2 and G∗

1, G
∗
2 are isomorphic. I.e., there exists a

bijection ϕ that maps (V1, E1, F (G1)) to (V2, E2, F (G2)) such that for every pair of vertices
u, v and faces f, g the following holds.

• An edge e ∈ E1 has endpoints u, v ∈ V1 if and only if the edge ϕ(e) has endpoints
ϕ(u), ϕ(v) ∈ V2.

• Edge e ∈ E1 has faces f, g ∈ F (G1) if and only if the edge ϕ(e) has faces ϕ(f), ϕ(g) ∈
F (G2).
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Figure 2.3: Planar Graph (G,w) and its Dual (G∗, w∗).

Notation

In the rest of this chapter, whenever we use (G,w) we are assuming that the planar
embedded graph G = (V,E) with weight function w : E→R+ and edge connectivity k
is given. Moreover, we denote dual planar of G by G∗ = (V ∗, E∗). Finally, we may write
(G∗, w∗) to refer to the planar dual G∗ with dual weight function w∗ : E∗→R+. For planar
graphs G1 and G2, we denote isomorphism by G1 ≃ G2 and having a same embedding by
G1 ≡ G2.

Properties of planar graphs and their dual

Next, we will state some of the useful properties of planar graphs and their duals without
proof. (To read more about planar graphs see for instance [8] Chapter 10.)

Proposition 2.1. Given a planar graph (G,w) and its dual (G∗, w∗) the following state-
ments hold:

i. The planar dual of G∗ is equal to planar graph G; i.e., (G∗)∗ ≡ G.

ii. The planar dual graph G∗ is connected.

iii. For all vertices f ∗ ∈ V ∗ we have degG∗(f ∗) = |∂(f)|.
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iv. Let e ∈ E be an arbitrary edge that is not a cut edge. Then, we have

(G \ e)∗ ≡ G∗/e∗.

v. Let e ∈ E be an arbitrary edge that is not a loop. Then we have

(G/e)∗ ≡ G∗ \ e∗.

vi. Any cut edge e ∈ E, corresponds to a loop e∗ ∈ E∗, and any loop in G corresponds to
a cut edge in G∗.

vii. S ⊂ E is a bond in G if and only if its corresponding edges S∗ := {e∗ : e ∈ S} ⊂ E∗

is a cycle in G∗.

viii. Total number of incident edges of faces is equal to 2|E|; i.e.∑
f∈F (G)

|∂(f)| = 2|E|.

ix. (Euler’s Formula) The following equation holds

|V (G)|+ |F (G)| − |E(G)| = 2. (2.7)

x. For a subset of edges F ⊂ E with corresponding dual edges F ∗ = {e∗ : e ∈ F}, we have

w(F ) = w∗(F ∗).

2.3.2 Combinatorially Thin Trees from the Viewpoint of the
Dual Graph

Let G = (V,E) be an embedded planar graph with weight function w : E→R+ and let
G∗ = (V ∗, E∗) be the planar dual of G with dual weight function w∗ : E∗→R+. A natural
question is to ask what does a thin subgraph F ⊂ E of G mean in the dual graph G∗ and
vice versa. Note that the subgraph F is α-combinatorially thin if and only if it has at most
α fraction of edge weights in each cut-set δG(U) ⊂ E, for all cuts U ⊂ V ; i.e.,

|δG(U) ∩ F |
w(δG(U))

≤ α.
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Therefore, to understand a thin subgraph F of G from the view point of the dual graph
G∗, we first need to understand the meaning of cut-sets δG(U) ⊂ E in the dual graph G∗.

The following lemma show that cut-sets in G are analogous to cycles in G∗ (see Fig-
ure 2.4). This is a folklore result in planar graphs. ( See Theorem 10.16 and Corollary
10.17 in Chapter 10 [8].)

Lemma 2.6. Let a planar graph G be given. Then, S ⊆ E of G is a cut-set of G if and
only if the dual edges S∗ ⊆ E∗ are union of edge-disjoint cycles in G∗.
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Cut-set C = δ({v3, v4, v6}) in G Edge disjoint cycles C∗
1 and C∗

2 in G∗

Figure 2.4: Bonds in G correspond to cycles in G∗. Moreover, cut-sets in G correspond to union
of edge disjoint cycles in G∗.
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A direct consequence of the Lemma 2.6 is the following interpretation of thin spanning
subgraphs in the planar dual G∗ (see Figure 2.5).

Proposition 2.2. Let (G,w) and (G∗, w∗) be given, and let F ⊆ E be a subset of edges of
G and F ∗ := {e∗ : e ∈ F} ⊆ E∗ be the corresponding edges in G∗. Then,

i. (V, F ) is a α-combinatorially thin subgraph of G if and only if for every cycle C∗ ⊆ E∗

we have,

|C∗ ∩ F ∗|
w∗(C∗)

≤ α. (2.8)

ii. (V, F ) is a spanning subgraph of G if and only if for every cycle C∗ ⊆ E∗, C∗∩F ∗ ̸= ∅.

|T∩C|
w(C)

≤ 1
3

Cut-set C Cycle C∗

|T ∗∩C∗|
w∗(C∗)

≤ 1
3

Tree T Edges T ∗

Figure 2.5: The fraction of the edges of a tree T in cut-set C∗ equals the fraction of the edges of
T ∗ in the cycle C∗.
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(Proof of 2.2). By Lemma 2.6, the cut space in a planar graph G corresponds to the cycle
space of its planar dual G∗. Using this fact, we prove (i.) as follows. (ii.) can be proven
similarly. Suppose the subset F ⊂ E is given. Then, (V, F ) is a combinatorially thin tree
of G with thinness parameter α if and only if for all cut-sets S = δ(U) ⊂ E we have

|F ∩ S|
w(S)

≤ α. (2.9)

Now, by Lemma 2.6, a subset S ⊂ E is a cut-set inG if and only if we have S∗ =
⋃ℓ

i=1C
∗
i

where C∗
i ’s are edge-disjoint cycles in G∗. Since C∗

i ’s are edge-disjoint, we can write

|F ∩ S|
w(S)

=
|F ∗ ∩ S∗|
w(S)

=
|(
⋃ℓ

i=1 C
∗
i ) ∩ F ∗|

w(
⋃ℓ

i=1C
∗
i )

=

∑ℓ
i=1 |C∗

i ∩ F ∗|∑ℓ
i=1 w(C

∗
i )

.

Therefore, (V, F ) is α− combinatorially thin if and only if for every ℓ ∈ N and set of edge
disjoint cycles C∗

1 , . . . , C
∗
ℓ we have

α ≥
∑ℓ

i=1 |C∗
i ∩ F ∗|∑ℓ

i=1 w
∗(C∗

i )
. (2.10)

Note that this is equivalent to saying that for every cycle C∗ in G∗ we have

α ≥ |C
∗ ∩ F ∗|

w∗(C∗)
. (2.11)

More specifically, if (2.10) holds then (2.11) also holds as C∗ can be considered is a single
cycle itself. Conversely, if (2.11) holds for every cycle C∗ in G∗ we have∑ℓ

i=1 |C∗
i ∩ F ∗|∑ℓ

i=1w
∗(C∗

i )
≤
∑ℓ

i=1(α.w
∗(C∗

i ))∑ℓ
i=1 w

∗(C∗
i )

= α,
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and (2.10) also holds for every set of edge-disjoint cycles C∗
1 , . . . , C

∗
ℓ .

As a result of this proposition, instead of finding a α-thin spanning tree F ⊂ E, we can
find a subset F ∗ ⊂ E∗ where for every cycle C∗ ⊂ E∗, 0 < |F ∗∩C∗| ≤ αw∗(C∗). To obtain
such subset F ∗ ⊂ E∗ of edges, Oveis-Gharan and Saberi [16] use a notion of threads that
allows us to upper bound the fraction of edges chosen from each cycle C∗.

2.3.3 Threads in the Dual Graph G∗

Definition 2.6. (thread) Let (G,w) be given. A thread T is defined as one of the following.

• Path thread: a vertex induced path T = v1e1v2e2 . . . en−1vn of G, where the inner
vertices have degree two and the endpoints v1 and vn have degree at least three in G.

• Cycle thread: a vertex induced cycle T = v1e1v2e2 . . . vnenv1 of G, where degG(v1) ≥ 2
and all other vertices have degree equal to two. (Figure 2.6 shows an example of
threads.)

We define the weight of a thread T to be equal to its total edge weights

w(T ) :=
∑

e∈E(T )

w(e).

Finally, we define the median edge em(T ) ∈ E(T ) to be the first edge ej for j ∈ [n] such
that

j∑
i=1

w(ei) ≥
w(T )

2
.

Remark 2.1. It is easy to see that we also have

|E(T )|∑
i=m(T )

w(ei) ≥
w(T )

2
.
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em(T )e1 en−1

v1 v2 vnvm(T ) vm(T )+1 vn−1

w(T )
T

v1

v2

vn

vm(T )

vm(T )+1

em(T )

e1

en

a. A path thread T

a. A cycle thread T

Figure 2.6: The black edges in the figure depict edges in the thread, the red edges are in G, and
the dotted red edges are possibly in G.

Definition 2.7. (thread removal) Let (G,w) be given, and let T be a thread in G with
median edge em(T ) ∈ E(T ). We define thread removal operation which removes thread T
from G as follows.

G− T : =
(
G \ em(T )

)
/
(
E(T ) \ {em(T )}

)
.

In other words, we first remove the median edge em(T ) of T from G to obtain G \ em(T ).
Then, we contract all of the remaining edges in E(T ) \ {em(T )} that are now cut edges in
G \ em(T ). Equivalently, if T is a path thread, we remove all vertices of degree two, and if
T is a cycle thread we remove all vertices except the first vertex of T .

Moreover, we define the corresponding weight function in a natural way as

w′(e) = w(e) ∀e ∈ E(G− T ).

Remark 2.2. With abuse of notation, we may use the same notation w to denote the new
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C∗

T1

T2T3

T4

Figure 2.7: The thread T1, . . . , T4 completely lie in cycle C∗.

obtained weight function w′.

Intuitively, finding large threads in each cycle C∗ might be a good way of choosing
edges from each cycle. Specifically, the following proposition shows that by adding a
middle edge of a thread T to F ∗, we can discard all of the remaining edges of T as every
cycle intersecting T will have an edge in F ∗.

Proposition 2.3. Let (G,w) be given, and let T be a thread in G. Suppose C is a cycle
in G. If C and T have at least one edge in common, the thread T lies entirely in C; i.e.,
E(T ) ⊆ E(C).

Proof. Suppose T and C have at least one common edge. Let cycle C = v1e1v2e2 . . . vnenv1.

If T is a cycle thread, we have T = C. Otherwise let p = viei . . . vj be the mutual
path between C and T. Then, T will have two vertices vi, vj of degree at least three, which
cannot happen in the internal vertices of a thread. Therefore, T must entirely be in cycle
C.

The above proposition ensures that if our algorithm chooses em(T ), at least w(T ) fraction
of edges from cycle C∗ can be discarded for the future steps. To make the simple idea of
choosing large threads work, we also need to understand the objects that remain in G∗

after removing a thread T from a cycle C∗ in G∗. This is vital, as the other threads of
G∗−T , might have intersection with the remaining edges of cycle C∗ in G∗−T . Therefore,
we have to also bound the fraction of edges that we may choose from such objects which
we formalize as knotted threads in the following (see Figure 2.10).
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Definition 2.8. (knotted thread) Let (G,w) be given. A knotted thread in G is a path
K = v1e1v2 . . . en−1vn, where vi ∈ V has degree degG(vi) ≥ 2 and v1, . . . , vn are distinct.
We denote the edges and vertices of a knotted thread as E(K) ⊂ E and V (K) ⊂ V . A
vertex vi ∈ V (K) is a knot in K if degG(vi) ≥ 3 (see Figure 2.8). Finally, the weight of a
knotted thread K is denoted by

w(K) :=
∑

e∈E(K)

w(e).

e1 e2 en−1
. . .

e1 e2 en−1
. . .

e1 e2 en−1
. . .

e1 e2 en−1
. . .

e1 e2 en−1
. . .

e1 e2 en−1
. . .

e1 e2 en−1
. . .

Figure 2.8: Different variants of knotted threads. Black edges are in the knotted thread and red
edges are other possible edges in the graph.
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− =

Cycle C∗ Thread T Knotted thread K

T

K

Figure 2.9: Removing a thread T from a cycle C∗ gives a knotted thread K.

Remark 2.3. A path thread T ⊂ E with corresponding vertices V (T ) = {v1, · · · , vn} is a
knotted thread with knot vertices only at its endpoints v1, vn.

We can know formalize our observation that whatever remains from C∗ in G∗ − T is a
knotted thread (see Figure 2.9).

Proposition 2.4. Let (G,w) be given. Suppose C is a cycle in G and thread T is a path
thread that lies entirely in C. Then, there exists a knotted thread K of G − T such that
E(K) = C \ E(T ).

Proof. Let C = v1e1v2e2 . . . vnenv1 and T = viei . . . ej−1vj. Then, to show

K = vjej . . . vnenv1e1 . . . ei−1vi

is a knotted thread in G− T , we only need to show

degG−T (vi) ≥ 2 and degG−T (vj) ≥ 2.

Note that both inequalities holds as if degG−T (vi) = 1, we have degG(vi) = 2. This means
vi cannot be endpoint of a thread T as both endpoints of a path thread have degree at
least three.

In the following proposition, we will show that removing T from G∗ reduces knotted
threads to smaller knotted threads. We also show that if the median edge of a thread T is
inside a knotted thread K, then many edges of K are discarded in G∗−T . As a result, by
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removing the median edge of a thread T and removing the remaining edges we ensure that
not many remaining edges of each cycle (which become knotted threads and even smaller
knotted threads) are chosen in each step (see Figure 2.10).

Proposition 2.5. Let (G,w) be given, and let T be a thread in G with median edge
em(T ) ∈ E(T ). Also, let K = v1e1 . . . en−1vn be a knotted thread in G. Then, the following
statements hold.

i. If K is a subgraph of T , then E(K) \ E(T ) is an empty set.

ii. If T is a subgraph of K, there exists subgraphs K1, K2 of G − T such that E(K1) ∪
E(K2) = E(K) \ E(T ) and K1, K2 are either knotted threads or single vertices in
G− T .

iii. If neither K is a subgraph of T nor T is a subgraph of K, there exists a subgraph K1 of
G−T such that E(K1) = E(K)\E(T ) and K1 is a knotted thread in G−T . Moreover,
if em(T ) ∈ E(K), then

w(K ∩ T ) ≥ w(T )

2
.
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G K T G − T

i. K is a subgraph of T : E(T ) \ E(K) = ∅

G K T G − T

ii. T is a subgraph of K: E(K1) ∪ E(K2) = E(K) \ E(T )

K1

K2

G K T G − T

iii. T and K are not subgraphs of each other: E(K1) = E(K) \ E(T )

K1

em(T )w(T )
2

≤

em(T ) ∈ E(K) ⇒ w(E(K) ∩ E(T )) ≥ w(T )
2

Figure 2.10: Consequences of removing a thread T from graph G on a knotted thread K.
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Proof. We prove each item as follows.

i. Trivially true, since E(K) ⊂ E(T ).

ii. Suppose T is a subgraph of K, since both T and K are paths in G, there exist indices
i, j ∈ [n], where T = viei . . . ej−1vj. Now, we define K1 and K2 as follows:

K1 =

{
v1e1 . . . ei−1vi, if i > 1

v1, otherwise

K2 =

{
vjej . . . vn, if j < n

vj, otherwise.

Note that

E(K1) ∪ E(K2) = {e1, . . . , ei−1, ej, . . . , en}
= {e1, . . . , en} \ {ei, . . . , ej−1}
= E(K) \ E(T ).

It only remains to show that K1 and K2 are either knotted threads or single vertices
in G− T . If i = 1 then K1 is a single vertex. So suppose i > 1. Since K is a knotted
thread we have degG(v1) ≥ 2. Also, since T = vi . . . vj is a thread we have degG(vi) ≥ 3,
where one of the edges is inside E(T ). As a result both v1 and vi have degree at least
two in the graph G−T as all edges ei, . . . , ej−1 and vertices vi+1, . . . , vj−1 are removed
in G − T . Therefore, K1 is a knotted thread. Similarly, K2 is either an single vertex
or a knotted thread in GT .

iii. Suppose neither K is a subgraph of T nor T is a subgraph of K. If T and K are
disjoint, then we can define K1 = K which is also a subgraph of G − T . So, suppose
T and K have at least one common edge.

Since T is not fully in K but it has intersection with K, if an edge ei ∈ E(T )∩E(K),
either P = v1e1 . . . vieivi+1 or P = viei . . . en−1vn is fully part of the thread T . This
implies that at least one of the vertices v1 or vn have degree two in G, and either
e1 ∈ E(T ) or en ∈ E(T ) or both.

a. If {e1, en} ⊂ E(T ), both endpoints of thread T lie in V (K). Let vi, vj ∈ V (K) (where
i < j) be the knots in K which are endpoints of thread T. Then, E(K) \ E(T ) =
{ei, . . . ej−1}, and the path

K1 = viei . . . ej−1vj
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is a knotted thread in G− T, as degG−T (vi) ≥ 2 and degG−T (vi) ≥ 2. Moreover, if
em(T ) ∈ E(K), then either em(T ) ∈ {e1 . . . ei−1} or em(T ) ∈ {ej . . . en}. Without loss
of generality, suppose the first case happens, then

w(T ∩K) ≥
i−1∑

ℓ=m(T )

w(eℓ) ≥
w(T )

2
,

where the last inequality holds by our choice of median edge.

b. In the former case, without loss of generality, suppose e1 ∈ E(T ), and let vi be
the knot vertex in K which is the endpoint of T (i < n since K is not fully in T ).
Similarly, the path

K1 = viei . . . en−1vn,

is a knotted thread in G− T with

E(K1) = E(K) \ E(T ).

Similar to the previous case, if em(T ) ∈ E(K), then

w(T ∩K) ≥ w(T )

2
.

As previously mentioned, to find a thin spanning tree in a planar graph G our main
goal is to specify a subset of edges F ∗ ⊂ E∗ in the dual graph G∗, such that it only contains
an α−fraction of edges in each cycle C∗ ⊂ E∗. Also, we saw that finding long threads in G∗

and selecting the median edge from each thread into F ∗ seems to be a good idea. However,
we still do not know if such long threads exist.

To understand this process in the original graph G, we define a new notion of hanks
and their removals in G. We establish their correspondence to threads and thread removal
in G∗. Then, we show that in planar graphs with high edge connectivity k, hanks of size k

5

exist. Moreover, we will see that removing a hank can only increase the edge connectivity
of a graph.
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v1

u2

u1

v2

Figure 2.11: Blue edges and red edges both are parallel edges between u1, v1 and u2, v2. However,
only blue edges are strictly parallel.

2.3.4 Hanks in Primal Graph G

Definition 2.9. (strictly parallel edges) Let G = (V,E) be an embedded planar graph.
We call two edges e1, e2 ∈ E parallel edges if they share the same endpoints u, v ∈ V .
Moreover, we say e1, e2 are strictly parallel if they are parallel and share an adjacent face
f ∈ F (G) that forms a digon; i.e., ∂(f) = {e1, e2} (see Figure 2.11).

Definition 2.10. (hank) Let (G,w) be given, and let e1, . . . , en ∈ E be a maximal set of
distinct edges with distinct endpoints {u, v} ⊂ V, where every consequent edges ej, ej+1

form a face fj ∈ F (G) that is a digon; i.e., ej, ej+1 are strictly parallel. Suppose, f0, fn ∈
F (G) be the other adjacent faces of e1 and en, respectively. Then, we define f0e1f1e2 · · · enfn
to be a hank in G (see Figure 2.12). We denote the endpoints of a Hank H by V (H) and
its edges with E(H). We denote the weight of hank H with

w(H) =
n∑

i=1

w(ei).

Moreover, let m(H) ∈ [n] be the smallest index j such that,

j∑
i=1

w(ei) ≥
w(H)

2
.

Then, em(H) is the median edge of H.
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H

e1

f0 f1 f2 fn = f0fn−1

em(H)e2
en

Figure 2.12: A hank H in G.

Remark 2.4. In graph G, a single edge e ∈ E can be interpreted as a hank H = feg,
where f, g ∈ F (G) are the incident faces of e.

Definition 2.11. (hank removal) Let (G,w) be given, and let H be a hank of G with
edge set E(H) and endpoints V (H) = {u, v}. We define the operation of hank removal as
follows.

G−H : = (G/em(H)) \ (E(H) \ {em(H)}).

In other words, in the operation, we first contract the median edge em(H) = {u, v} in G to
obtain the graph G/em(H). Next, we remove all of the remaining edges in E(H) that are
now loops in G/em(H).

Moreover, we define the corresponding weight function in a natural way where

w′({x, y}) :=


w({u, y}), if x = uv and {u, y} ∈ E

w({v, y}), if x = uv and {v, y} ∈ E

w({x, y}), if x, y ̸= uv

w({u, v}), if x = y = uv.

Remark 2.5. With abuse of notation, we may use the same notation w to denote the new
obtained weight function w′.

The following lemma will be a crucial to prove existence of large hanks in graphs with
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high edge connectivity.

Lemma 2.7. Let G = (V,E) be an embedded planar graph. Suppose G does not have any
pair of strictly parallel edges. Then, G has a vertex v ∈ V of degree at most five.

Proof. Suppose graph G does not have strictly parallel edges, then for each face f ∈ F (G),
we have |∂(f)| ≥ 3. Moreover, by Proposition 2.1 (viii.) we have

2|E| =
∑

f∈F (G)

|∂(f)|.

Suppose all vertices in G have degree at least six, Then, we the followings hold,

2|E| =
∑

f∈F (G)

|∂(f)| ≥ 3|F (G)|

2|E| =
∑
v∈V

deg(v) ≥ 6|V |.

Now, by considering Euler’s formula we get

|E|+ 2 = |F (G)|+ |V |

≤ 2

3
|E|+ 2

6
|E|

= |E|,

which is a contradiction. Therefore, at least one vertex v ∈ V must have deg(v) ≤ 5.

Proposition 2.6. Let (G,w) be given with edge connectivity k. Then, G always has a hank
H of size at least w(H) ≥ k

5
. Moreover, if w is integral, then we have w(H) ≥ ⌈k

5
⌉.

Proof. Let G̃ = (V, Ẽ) and w̃ be the planar graph which we get by replacing each set of
strictly parallel edges in G by a single edge of equal weight until no pair of strictly parallel
edges remain. Then, by Lemma 2.7, since G̃ does not contain any set of strictly parallel
edges, it has a vertex v ∈ V of degree at most 5, i.e., degG̃(v) ≤ 5.

Additionally, note that since G is a k edge connected graph, we have

w(δG̃(v)) = w(δG(v)) ≥ k.

Since in the underlying graph G̃ vertex v is incident to at most 5 edges, there is an edge
e ∈ δG̃(v) which corresponds to a hank of size at least k

5
. Note that this edge e is a set of
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strictly parallel edges F ⊂ E which is replaced by e or is a single edge e ∈ E with w(e) ≥ k
5
.

In both scenarios G has a hank of weight at least k
5
. In the case that w is integral, we can

find a hank of weight at least ⌈k
5
⌉.

Lemma 2.8. Let (G,w) be given with edge connectivity k, and let H be a hank in G. Then,
G−H has edge connectivity at least k.

Proof. Let U ⊂ V be an arbitrary cut in G − H with cut set S = δ(U). Since, S is also
a cut set of G and G has connectivity at least k, we have w(S) ≥ k. This proves that
connectivity of G−H is at least k as well.

2.3.5 Duality between Hanks of G and Threads of G∗

Lemma 2.9. Let (G,w) be given. Let f0, . . . , fn ∈ F (G) and e1, . . . , en ∈ E be faces and
edges in G. Then,

H = f0e1 . . . enfn

is a hank in G if and only if
H∗ = f ∗

0 e
∗
1 . . . e

∗
nf

∗
n

is a thread in G∗ where em(H∗) is not a cut-edge of G∗. Moreover, we have (em(H))
∗ =

em(H
∗) and w(H) = w∗(H∗) (see Figure 2.13).
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H

e1

f0 f1 f2 fn = f0fn−1

em(H)e2
en

H

e1

f0 f1 f2 fnfn−1

em(H)e2
en

H∗

H∗

em(H∗)

em(H∗)

Figure 2.13: A hank H in G corresponds to a thread T = H∗ in G∗.

Proof. We prove each direction seperately as follows.

(left to right) SupposeH = f0e1f1e2 · · · enfn is a hank inG. Note that by the properties
of planar dual graphG∗, the vertices f ∗

i , f
∗
i+1 ∈ V ∗ are connected by the edge e∗i = {f ∗

i , f
∗
i+1}

in G∗. Additionally, since f1, . . . , fn−1 are digons in G with ∂(fi) = {ei, ei+1}, the corre-
sponding vertices f ∗

1 , . . . , f
∗
n−1 in G∗ have degree two and δG∗(f ∗

i ) = {e∗i , e∗i+1}. We consider
the following two cases:

a. If f0 = fn, then H∗ = f ∗
0 e

∗
1f

∗
1 e

∗
2 · · · e∗nf ∗

n will be a cycle in G∗ where degG∗(vi) = 2 for
1 < i < n. As a result, H∗ is a cycle thread in G∗.
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b. If f0 ̸= fn, then H∗ = f ∗
0 e

∗
1f

∗
1 e

∗
2 · · · e∗nf ∗

n will be a path in G∗ where degG∗(vi) = 2 for
1 < i < n. Additionally, the end vertices f ∗

0 , f
∗
n have degree at least three, as otherwise

f0, fn also would form a digon face by parallel edges, and therefore, the hank H would
not be the maximal set of parallel edges.

Additionally, all the hank edges ei have different endpoints {u, v} = V (H) and are not
loops in G. As a result, none of the edges e∗i in G∗ are cut-edges.

(right to left) Suppose H∗ = f ∗
0 e

∗
1f

∗
1 e

∗
2 · · · e∗nf ∗

n is a thread in G∗, where em(H∗) is not a
cut edge in G∗. Since for every 1 < i < n we have degG∗(f ∗

i ) = 2 with δG∗(f ∗
i ) = {e∗i , e∗i+1},

the corresponding faces fi form a digon with ∂(fi) = {ei, ei+1}. As a result, ei, ei+1 must
be strictly parallel edges in G that have same set of end-points {u, v} ⊂ V . Additionally,
none of ei’s can be a loop in G as em(H∗) is not a cut-edge, and its two adjacent faces are
distinct in G∗. Again we consider the following two cases:

a. If H∗ is a cycle thread, then f ∗
0 = f ∗

n and H is a set of strictly parallel edges between
{u, v}, and therefore, is a hank in G.

b. If f ∗
0 ̸= f ∗

n, then H∗ is a path thread and we have

|∂G(f0)| = degG∗(f ∗
0 ) ≥ 3,

|∂G(f0)| = degG∗(f ∗
0 ) ≥ 3.

Therefore, f0, fn are not digons and the set of strictly parallel edges e1, . . . , en between
{u, v} cannot be extended.

Finally, to see why (em(H))
∗ = em(H

∗) note that for every j ∈ [n] we have

j∑
i=1

w(ei) =

j∑
i=1

w∗(e∗i ).

From Proposition 2.6 and Lemma 2.9, we directly obtain the following corollary,

Corollary 2.3. Let (G,w) be given. Then, G∗ has a thread of size at least k
5
, where k is

the edge connectivity of G. Moreover, if the weight function w is integer (w(e) ∈ N), then
G∗ has a thread of size at least ⌈k

5
⌉.
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Lemma 2.10. Let (G,w) be given. If H is a hank of G, then the graph obtained by
removing the thread H∗ from the dual planar G∗ has similar embedding to dual of the
graph obtained by removing the corresponding hank H from G (see Figure 2.14). I.e.,

(G−H)∗ ≡ G∗ −H∗.

Proof. Let H be a given hank with edge set E(H) = {e1, . . . , em(H), . . . , en} ⊂ E. The
corresponding edges in thread H∗ are

E(H∗) = E(H)∗ = {e∗1, . . . , e∗m(H), . . . , e
∗
n} ⊂ E∗,

where by Lemma 2.9 em(H∗) = e∗m(H) is the median edges in H∗.

Note that by definition of hank removal we have

G−H = (G/em(H)) \ (E(H) \ {em(H)})
= (G/em(H)) \ {e1, . . . em(H)−1, em(H)+1, . . . en}.

The edges in E(H) \ {em(H)} are loops in (G/em(H)), by Proposition 2.1 (iv. and v.) we
have

(G−H)∗ = (G/em(H))
∗/{e∗1, . . . e∗m(H)−1, e

∗
m(H)+1, . . . e

∗
n}

= (G∗ \ e∗m(H))/{e∗1, . . . e∗m(H)−1, e
∗
m(H)+1, . . . e

∗
n}

= (G∗ \ em(H∗))/(E(H∗) \ {em(H∗)})
= G∗ −H∗,

where the second equality holds since em(H) is not a loop in G.

2.3.6 Finding Thin Spanning Trees in a Planar Multi-graph with
High Edge Connectivity

Previously, we showed an alternative way of finding a α-thin subset of edges F ⊂ E of a
planar graph G = (V,E). Specifically, we can find subset of edges F ∗ ⊂ E∗ in the planar
dual graph G∗ = (V ∗, E∗) such that for every cycle C∗, F ∗ intersects at most αw∗(C∗)
many edges of C∗. Later, we defined threads and motivated why it would be a good idea
to choose median edges of threads for this task. Finally, we proved existence of large threads
using their corresponding dual objects, hanks. Now, we will adjust the algorithm in [16]
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and show two equivalent algorithms one of which runs on the original graph G = (V,E)
and the other on the planar dual G∗ = (V ∗, E∗). Finally, we prove the equivalence as well
as the correctness of both algorithms using the tools developed in the previous sections.

Algorithm 1: Finding thin trees in Planar Graphs with high edge connectivity

Input: planar multi-graph G = (V,E)
weight function w : E→R+

Output: subset F ⊂ E

Input: planar dual G∗ = (V ∗, E∗)
dual weight function w∗ : E∗→R+

Output: subset F ∗ ⊂ E∗

1 Function A(G) :
2 while G has a non-loop edge do
3 H ← largest hank in G;

4 em(H) ← median edge of H;

5 remove hank H to obtain,
6 G← G−H
7 return A(G) ∪ {em}
8 end

1 Function A∗(G∗) :
2 while G∗ has a non-cut edge do
3 H∗ ← largest thread in G∗ with no

cut-edge e ∈ E(H∗);
4 em(H∗) ← median edge of H∗;

5 remove thread H∗ to obtain,
6 G∗ ← G∗ −H∗

7 return A∗(G∗) ∪ {em(H∗)}
8 end

In the following we first prove that the output A(G) of the primal algorithm is a
spanning tree. Next, we will prove that the primal and dual algorithms are equivalent and
therefore, (A(G))∗ ≡ A(G∗), and the set of edges (A(G∗))∗ ⊂ E is a spanning tree of G
as well. We will dedicate the remaining part of this chapter to prove that the outputted
spanning tree of both algorithms is 10

k
-combinatorially thin, where k is the edge connectivity

of G.

Correctness of A

Proposition 2.7. Let (G,w) be given. Then, the output of algorithm A(G) is a spanning
tree of G.

Proof. Let F = A(G) be the set of edges algorithm outputs. By induction on the size of
V , we will show that the algorithm returns F ⊂ E with |F | = |V |−1. For the base case, if
G has only two vertices the algorithm will return an edge F = {e} ∈ E which is spanning
and of size |F | = 1.

Now, suppose we run the algorithm for G with |V | = k. we choose an edge e = {u, v} ∈
E and contract it to obtain the graph G′ = (V ′, E ′) = G/e where uv is the corresponding
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vertex obtain by contraction of e. By I.H., the algorithm A(G′) outputs a spanning subset
F ′ ⊂ E ′ of G′, with |F ′| = k − 2. Now, by the algorithm A we have F = F ′ ∪ {e} and
|F | = k − 1.

Moreover, since F ′ is a spanning subset of G/e, for every pair of vertices x, y ∈ V ′,
there exists a path P ′ from x to y. Now, if P does not have vertex uv then it is contained
in G as well. Otherwise, we can break P ′ into two parts as

P ′ = xe1 . . . eiuvei+1 . . . y

Now, either ei is adjacent to u or v in G. Without loss of generality, suppose the former is
true. Then, we define the path P as

P = xe1 . . . eiuevei+1 . . . y

where all of the edges are in F = F ′ ∪ {e}.

Equivalence of A and A∗

Proposition 2.8. Let (G,w) be given. For every execution of A(G), there exists a corre-
sponding execution of A∗(G∗) such that A(G) = (A∗(G∗))∗ and vice versa.

Proof. Again, we will prove the statement by induction on |V |. For the base case, if
|V | = 1, both algorithms output an empty set A(G) = ∅ = (A∗(G∗))∗. Now, suppose we
run the algorithm for graph G = (V,E), where |V | = k.

Let H be the chosen hank of maximum size in graph G with median edge em(H) when
running A(G). By Lemma 2.9, H∗ is a thread of same size in G∗ with median edge

em(H∗) = (em(H))
∗.

By Lemma 2.9 H∗ is also a maximum size thread in G∗ without a cut-edge, and the
algorithm A∗(G∗) can choose H∗. Furthermore, by Lemma 2.10, we have

(G−H)∗ ≡ (G∗ −H∗)

Now, by I.H., there exists an execution of A∗(G∗ −H∗) where

A∗(G∗ −H∗) = A∗((G−H)∗) = (A(G−H))∗.
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Therefore, we have

(A(G))∗ = (A(G−H) ∪ {em(H)})∗

= (A(G−H))∗ ∪ {(em(H))
∗}

= A∗(G∗ −H∗) ∪ {em(H∗)}
= A∗(G∗).

The other direction can be done similarly.

Corollary 2.4. Let (G,w) be given and let F ∗ = A∗(G∗). Then, the corresponding set
F := (F ∗)∗ in G is a spanning tree of G.

Upper bounding the thinness of A(G) = (A∗(G∗))∗.

Proposition 2.9. Let (G,w) with connectivity k be given and suppose w(e) ≥ 1 for all
e ∈ E. Then, for every knotted thread K∗ in G∗ we have

w∗(K∗) ≥
(
|E(K∗) ∩ A∗(G∗)| − 1

)
d+ 1

where 2d := k
5
is a lower bound on the size of threads we pick in each iteration of the

algorithm. Moreover, if w : E→N,

d := ⌈
⌈k
5
⌉

2
⌉.

Proof. Let F ∗ = A∗(G∗) be the output of the algorithm and K∗ be a knotted thread in
G∗. We will prove the theorem by induction on a = |F ∗| which is the number of threads
removed from G∗ in the total execution of A∗(G∗).

• Base case: suppose the number of removed threads is a = |F ∗| = 1. Therefore,

t := |F ∗ ∩ E(K∗)| ≤ |F ∗| ≤ 1.

Therefore, either t = 0 or t = 1. Note that in both cases,

w(E(K∗)) ≥ 1 ≥ (t− 1)d+ 1,

since by our assumption w(e) ≥ 1 for all e ∈ E∗.
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• Induction step: suppose a > 1 threads are removed during the execution of A∗(G∗).
Let T be the first thread removed in A∗(G∗) and G∗

1 = G∗−T be the graph obtained
by removing T from G∗. Also, let t = |F ∗ ∩ E(K∗)| be given. One of the following
three possibilities can happen:

1. K∗ is a subgraph of T

2. T is a subgraph of K∗

3. Neither K∗ is a subgraph of T and nor T is a subgraph of K∗.

Using Proposition 2.5, we prove that the inequality holds in each case as follows.

1. K∗ is a subgraph of T : Therefore, E(K∗)\E(T ) = ∅, and we must have t ≤ 1 as
after removing T no edges from K∗ remain to be chosen in A∗(G∗−T ). Similar
to above, we have

w(E(K∗)) ≥ 1 ≥ (t− 1)d+ 1.

2. T is a subgraph of K∗. Then, by Proposition 2.5, there exist subgraphs K1, K2

in G∗ − T such that

E(K1) ∪ E(K2) = E(K∗) \ E(T ),

where K1 and K2 are either knotted threads in G∗ − T or are single vertices.

Suppose in running of A∗(G∗ − T ) we have,

r = |E(K1) ∩ A∗(G∗ − T )| s = |E(K2) ∩ A∗(G∗ − T )|.

Since T is a subgraph of K∗, we have em(T ) ∈ F ∗. Therefore, we must have
r + s = t− 1. If K1 and K2 are both knotted threads in G∗ − T , then by I.H.,
we have

w(E(K∗)) = w(E(K∗) ∩ E(T )) + w((E(K∗) \ E(T ))

≥ w(T ) + w(E(K1)) + w(E(K2))

≥ w(T ) + (r − 1)d+ 1 + (s− 1)d+ 1

≥ (t− 1)d+ 1,

where the last inequality holds since at each step of the algorithm, size of chosen
threads are lower bounded by w(T ) ≥ 2d = k

5
. Cases where either K1 or K2 is

a single vertex can be proven similarly.
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3. Neither K∗ is a subgraph of T and nor T is a subgraph of K∗. Then, by
Proposition 2.5, there exists a subgraph K1 in G∗ − T such that

E(K1) = E(K∗) \ E(T ),

where K1 is either knotted threads in G∗ − T . If em(T ) /∈ E(K∗), then all the
edges choosen from K∗ are in K1. Therefore,

t = |E(K∗) ∩ F ∗| = |E(K1) ∩ A∗(G∗ − T )|

and by induction step we have

w(E(K∗)) = w(E(K∗) \ E(T )) + w(E(K∗) ∩ E(T ))

≥ w(E(K1))

≥ (|E(K∗) ∩ F ∗| − 1) + 1

= (t− 1)d+ 1.

If em(T ) ∈ E(K∗), then |E(K1) ∩ F ∗| = t− 1 and by Proposition 2.5 we have

w(E(K∗) ∩ E(T )) ≥ w(T )

2
.

Therefore,

w(E(K∗)) = w(E(K∗) \ E(T )) + w(E(K∗) ∩ E(T ))

≥ w(E(K1)) +
w(T )

2

≥ (t− 2)d+ 1 +
w(T )

2
≥ (t− 1)d+ 1,

where the last inequality holds since at each step of the algorithm size of chosen
threads are lower bounded by w(T ) ≥ 2d = k

5
.

Theorem 2.9. Let (G,w) with connectivity k be given. Then, for every cycle C∗ in G∗

we have

w(C∗) ≥ (|C∗ ∩ A∗(G∗)|)d+ 1
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where 2d := k
5
is a lower bound on size of threads we pick in each iteration of the algorithm.

Moreover, if w : E→N, then

d := ⌈
⌈k
5
⌉

2
⌉.

Proof. Let F = A∗(G∗) be the output of the algorithm and C∗ be a cycle in G∗. Again,
we prove the statement by induction on a = |F | the number of threads removed during
the execution of A∗(G∗).

• Base case: if a = 1, then

t := |C∗ ∩ F ∗| ≤ |F ∗| ≤ 1.

But we know w(C∗) ≥ d + 1 as the girth of G∗ is equal to k, the connectivity of G.
This is because as by Proposition 2.6 the bonds in G correspond to cycles in G∗ and
vice versa. Therefore,

w(C∗) ≥ k ≥ k

10
+ 1.

Now, suppose a ≥ 2 threads are removed during execution of A∗(G∗). Let T be the
first thread removed in A∗(G∗), and let t = |C∗ ∩ F ∗| be given. We consider the
following two cases:

1. T is disjoint from C∗: in this case, C∗ is also a subgraph of G∗−T . As a result,
no edges of C∗ are chosen in the first step and

t = |C∗ ∩ F ∗| = |C∗ ∩ A∗(G∗ − T )|.

Now, by induction hypothesis on G∗ − T we have,

w(C∗) ≥ td+ 1.

2. Otherwise, T and C∗ have at least one common edge. By Proposition 2.3, T lies
entirely in C∗. If T is a cycle thread, C∗ \ E(T ) is an empty set and no other
edges will be chosen from C∗ in the future steps. As a result, t ≤ 1 and we
obtain the inequality as above.

If T is a path thread, we have

w(C∗ ∩ E(T )) = w(T ) ≥ 2d.
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suppose T = viei . . . ej−1vj, where 1 ≤ i < j ≤ n. Then, by Proposition 2.4

K∗ = vjejvj+1ej+1 . . . vnenv1 . . . ei−1vi

is a knotted thread in G− T , and

E(K∗) = C∗ \ E(T ).

Moreover, all other edges chosen from C∗ must be in K∗ and

|E(K∗) ∩ A∗(G∗ − T )| = t− 1.

Thus, by Proposition 2.9, we have

w(E(K∗)) ≥ (t− 2)d+ 1.

Finally, we have

w(C∗) = w(C∗ ∩ E(T )) + w(C∗ \ E(T ))

≥ w(T ) + w(K∗)

≥ 2d+ (t− 2)d+ 1

≥ td+ 1.

Corollary 2.5. The Algorithm 1 outputs an 1
d+ϵ

-combinatorially thin spanning tree T of

G, where ϵ ≥ 1
w(E)

, and 2d := k
5
is a lower bound on the size of threads we pick in each

iteration of the algorithm. Moreover, if w : E→N, then

d := ⌈
⌈k
5
⌉

2
⌉.
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Chapter 3

Spectrally Thin Trees in Structured
Graphs

Even though there exist an algorithm to find combinatorially thin trees in graphs with
bounded genus, designing efficient algorithms to find combinatorially thin trees in general
still seems to be a hard problem. Nevertheless, there are families of graphs which we
can prove the existence of combinatorially thin spanning trees in them by using spectral
properties of graphs.

Further, as we discussed in Chapter 1, spectral thinness is a more general notion than
combinatorial thinness. In fact, spectral thinness upper bounds combinatorial thinness
of a given graph, and if a subgraph is spectrally thin, then it is combinatorially thin as
well. Moreover, for a given graph G = (V,E) answering whether a spanning tree T is
θ−spectrally thin is computationally checkable in polynomial time by confirming whether
θLG − LT ⪰ 0 or not. Although deciding if a specific spanning tree of a given graph is
spectrally thin is computationally easy, characterizing spectrally thin graphs in general is
not fully understood to this day.

As we mainly focus on the spectral properties of graphs, in this chapter we first state
some necessary background information on positive semidefinite matrices as well as prop-
erties of Laplacian matrices1.

Next, we will provide a general upper bound certificate which we can potentially use to
prove existence of combinatorially thin trees in certain families of regular graphs. Although
the given upper bound is not applicable to all families of graphs, similar to Mousavi in

1The reader may skip preliminaries section if they have basic knowledge of spectral graph theory.
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[30], we will use it to slightly improve the combinatorial thinness upper bounds for Johnson
Graphs, Crown Graphs, and Hamming graphs.

Then, we will switch our discussion into spectrally thin spanning trees. Given a graph
G = (V,E) and spanning tree T in G, we first discuss some certificates that prove upper
and lower bounds on spectral thinness θG(T ). Finally, we utilize these certificates in order
to find spectral thinness of some simple families of graphs, such as complete graphs Kn,
complete bipartite graphs Kn,n, and Prism graphs.

3.1 Preliminaries

3.1.1 Linear Algebra and Matrix Theory

For a pair of natural numbers n,m ∈ N, we use Rn×m and Sn to denote vector spaces of
n×m matrices and n× n symmetric matrices with real entries.

Definition 3.1. (Adjoint) Let V andW be two vector spaces equipped with inner products
⟨·, ·⟩V and ⟨·, ·⟩W . We define the adjoint of a linear map T : V →W as the unique function
T ∗ : W →V satisfying,

⟨T (v), w⟩W = ⟨v, T ∗(w)⟩V (3.1)

for all v ∈ V and w ∈ W.

For symmetric matrices X, Y ∈ Sn with X, we define the Frobenius inner product
⟨X, Y ⟩ =

∑
i,j∈[n] XijYij. We define linear operations Diag : Rn → Sn and diag : Sn → Rn

such that for all x ∈ Rn and X ∈ Sn we have,

(Diag(x))ij =

{
xi i = j

0 otherwise;
(diag(X))i = Xii.

Remark 3.1. Note that linear transformations Diag(.) and diag(.) are adjoint of each
other under the Frobenius inner product in Sn and the standard inner product in Rn.

Proof. To show Diag∗ = diag we need to prove that for all Y ∈ Sn and x ∈ Rn we have

⟨Diag(x), Y ⟩ = ⟨x, diag(Y )⟩. (3.2)
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Note that

⟨Diag(x), Y ⟩ =
∑
i,j∈[n]

Diag(x)ijYij

=
∑
i∈[n]

Diag(x)iiYii ( since Diag(x)ij = 0 for i ̸= j)

=
∑
i∈[n]

xi × diag(Y )i

= ⟨x, diag(Y )⟩.

Hence, we have Diag∗ = diag.

Definition 3.2. (Pseudo-Inverse) Let X ∈ Rn×m be a matrix. A matrix X† ∈ Rm×n is
called the pseudo-inverse of X if it satisfies all of the following properties:

i. XX†X = X,

ii. X†XX† = X†,

iii. (XX†)⊤ = XX†,

iv. (X†X)⊤ = X†X.

Remark 3.2. Let X ∈ Rn×m be an arbitrary given matrix. Pseudo-inverse of X always
exists and is unique. (See Theorem 1 in [32].)

Spectral decomposition and symmetric matrices

Proposition 3.1. (Spectral theorem) Let X ∈ Sn be a symmetric matrix. Then, X has
real eigenvalues λ1 ≥ · · · ≥ λn. Moreover, X has a set of orthonormal eigenvectors vi ∈ Rn

such that Xvi = λivi. Additionally, we can write the spectral decomposition of X as,

X =
n∑

i=1

λiviv
⊤
i .

Equivalently, we have
X = V DV ⊤,

where D is a diagonal matrix with diagonal entries equal to λ1, . . . , λn and V is a n × n
matrix where the i-th column of V equals vi.
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Proof. (For proof see for instance Chapter 7 and specifically Theorem 7.29 in [5].)

Theorem 3.1. (Reyleigh Quotient) Let X ∈ Sn be a symmetric matrix, with real eigen-
values λ1 ≥ · · · ≥ λn and corresponding eigenvectors v1, . . . , vn. For i ∈ [n] we can
charecterize the i-th largest eigenvalue λi as

λi = max
v⊥v1,...,vi−1,v ̸=0

v⊤Xv

v⊤v

= min
v⊥vi+1,...,vn,v ̸=0

v⊤Xv

v⊤v
.

Additionally, the corresponding eigenvector vi is a maximizer of the Rayleigh quotient v⊤Xv
v⊤v

in the above.

Proof. By spectral theorem we can write,

X =
n∑

j=1

λjvjv
⊤
j .

Therefore, for a vector v orthogonal to the set of vectors {v1, . . . , vi−1}, where v ̸= 0, the

Rayleigh quotient v⊤Xv
v⊤v

can be computed as

v⊤Xv

v⊤v
=

∑n
j=1 λjv

⊤vjv
⊤
j v

v⊤v

=

∑n
j=i λjv

⊤viv
⊤
i v

v⊤v

=
n∑

j=i

λj
⟨v, vi⟩2

||v||2

≤ λi

n∑
j=i

⟨v, vi⟩2

||v||2

≤ λi.

On the other hand, if we choose v = vi, we have

v⊤Xv

v⊤v
= λi.
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The other characterization can be proved in a similar fashion.

Trace and determinant For a square matrix X ∈ Rn×n, we denote its trace and deter-
minant as Tr(X) and det(X), respectively. In the following, we state some of the important
properties of trace and determinant without proof. (To read the proofs and related mate-
rials, see Chapter 8 section D and Chapter 9 section C in [5] for instance.)

Proposition 3.2. Let X, Y ∈ Sn be symmetric matrices with real eigenvalues λ1 ≥ · · · ≥
λn and µ1 ≥ · · · ≥ µn, respectively, and let c ∈ R be a constant. Then,

• Tr(X) =
∑n

i=1 λi,

• det(X) =
∏n

i=1 λi,

• Tr(XY ) = Tr(Y X),

• det(XY ) = det(X) det(Y ),

• det(cX) = cn det(X),

• Tr(cX) = cTr(X).

Positive semidefinite and definite matrices

Definition 3.3. (Positive semidefiniteness) A symmetric matrix X ∈ Sn is called a positive
semidefinite matrix if for all v ∈ Rn,

v⊤Xv ≥ 0.

We denote a symmetric positive semidefinite (PSD) matrix X by X ⪰ 0. Moreover, X
is positive definite if for all v ∈ Rn \{0}, we have v⊤Xv > 0. Similarly, we denote a
symmetric positive definite (PD) X by X ≻ 0. Additionally, We denote the set of all
symmetric positive semidefinite and symmetric positive definite matrices by Sn

+ and Sn
++,

respectively.

Remark 3.3. For symmetric matrices X, Y ∈ Sn, we use X ⪰ Y to denote X − Y ⪰ 0.

In the following, we will state a set of equivalent conditions for a symmetric matrix
X ∈ Sn to be PSD without proof. (To see the proof you may also see Chapter 7 section
(C) and Theorem 7.38 in [5] or Chapter 1 in [38].)
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Proposition 3.3. For a symmetric matrix X ∈ Sn, the following statements are equivalent.

i. X is positive semidefinite.

ii. There exists a matrix B ∈ Rn×n such that X = BB⊤.

iii. All eigenvalues λi of X are non-negative; i.e., λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

iv. For all nonempty subsets J ⊆ [n], the determinant of the principal submatrix XJ is
non-negative; i.e. det(XJ) ≥ 0.

v. X can be decomposed as the following summation

X =
n∑

i=1

µiviv
⊤
i ,

where vi ∈ Rn and µi ≥ 0 for all i ∈ [n].

Proposition 3.4. Let X ∈ Sn
+ be a positive semidefinite matrix with spectral decomposi-

tion,

X =
i∑

j=1

λiviv
⊤
i ,

where
λ1 ≥ λi > λi+1 = · · · = λn = 0

are its eigenvalues with corresponding orthonormal eigenvectors,

v1, . . . , vn.

Then,

i. X has a symmetric positive semidefinite square root X
1
2 , where X

1
2X

1
2 = X, and we

have

X
1
2 =

i∑
j=1

√
λiviv

⊤
i .

ii. the pseudo-inverse X† is equal to,

X† =
i∑

j=1

1

λj

vjv
⊤
j ,
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and therefore, X† is also positive semidefinite.

Lemma 3.1. (Schur Complement) Let X ∈ Sn be a symmetric matrix and let A ∈
Sn
++, B ∈ Sn. Then, we have

X :=

[
A U⊤

U B

]
⪰ 0 ⇐⇒ B − UA−1U⊤ ⪰ 0. (3.3)

Proof. For proof, see Lemma 1.22 in [38].

3.1.2 Spectral Graph Theory Tools and Facts

Recall the definition of Laplacian matrices (Definition 1.3). Given a graph G = (V,E) and
weight w ∈ RE

+, we may also consider Laplacian of G as a mapping from RE to the space
of symmetric matrices SV defined as

LG(w) =
∑

{i,j}∈E

wij(ei − ej)(ei − ej)
⊤, (3.4)

where ei are vectors of the standard basis for RV . We state some of the key properties of
Laplacian matrices in the following without proof.

Proposition 3.5. Given a graph G = (V,E) , the following properties hold for the Lapla-
cian LG : RE→SV .

i. For every edge-weights w ∈ RE and vector v ∈ RV ,

v⊤LG(w)v =
∑

{i,j}∈E

w{i,j}(vi − vj)
2.

Therefore, if w ∈ RE
+, then LG(w) is a positive semidefinite matrix, and for every pair

w, u ∈ RE such that w ≥ u, we have LG(w) ⪰ LG(u).

ii. The adjoint of LG denoted by L∗
G : SV →RE is given by

[L∗
G(X)]{i,j} = Xii +Xjj − 2Xij = Tr

[
(ei − ej)(ei − ej)

⊤X
]
,

for every edge {i, j} ∈ E.

69



iii. For every symmetric positive semidefinite matrix X ∈ SV
+, the vector L∗

G(X) ∈ RE is
a non-negative vector; therefore, for every pair X, Y ∈ SV such that X ⪯ Y, we have
L∗

G(X) ≤ L∗
G(Y ).

Laplacian matrix LG(w) has some information on the combinatorial properties of graph
G, where we state some of these properties in the following.

Proposition 3.6. Let G = (V,E) be a graph with weight function w ∈ RE. Then,

i. The vector of all ones 1 ∈ RE is in the null-space of LG(w). As a result,

Rank(LG(w)) ≤ |V | − 1.

ii. The graph G on the support of the weight function w is connected if and only if

Rank(LG(w)) = |V | − 1.

I.e., LG(w) has eigenvalues λ1 ≥ · · · ≥ λn−1 > λn = 0.

iii. Suppose w ∈ RE
+, and let H = (V,E(H)) be a subgraph of G. Then for the correspond-

ing weight function

ŵ(e) := w(e) ∀e ∈ E(H)

we have
LG(w) ⪰ LH(ŵ).

Specifically,
LG(1) ⪰ LH(1).

We can also define the adjacency matrix of a graph G = (V,E) as a linear map AG

that takes an edge weight w ∈ RE to a symmetric matrix in SV ; i.e.,

AG : RE → SV

(AG(w))i,j =

{
w({i, j}), {i, j} ∈ E

0, otherwise.

Another way of viewing the Laplacian matrix LG(w) is through the adjacency matrix
AG(w). More specifically, let DG : RE → SV map edge weights w ∈ RE to a diagonal
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matrix of degrees, where

(DG(w))ii = degG,w(i) =
∑

j:{i,j}∈E

w({i, j}).

Then, we have the following.

LG(w) = DG(w)−AG(w). (3.5)

From this observation, we can immediately obtain the following result.

Proposition 3.7. Let G = (V,E) be a k-regular graph where λ1 ≥ · · · ≥ λn are eigenvalues
of LG(1) and α1 ≥ · · · ≥ αn are eigenvalues of AG(1). Then,

λi = k − αn−i+1.

Similar to the Laplacian matrix, the adjacency matrix AG has some information on the
combinatorial properties of graph G.

Proposition 3.8. Let G be a given graph where α1 ≥ · · · ≥ αn are the eigenvalues of
AG(1). Then, G is bipartite if and only if for all i ∈ [n] we have,

αi = −αn−i+1, ∀ i ∈ [n].

3.1.3 Notation

Whenever we intend to refer to an eigenvalue of a matrix X (Laplacian of a graph G)
corresponding to an eigenvector v, we use λX(v) (λG(v)). We also denote the i-th largest
eigenvalue of a matrix X (Laplacian of a graph G) as λi(X) (λi(G)).

Finally, in the following sections, we denote the Laplacian (adjacency matrix) of a graph
G = (V,E) with edge weights 1 ∈ RE by LG := LG(1) (AG := AG(1)). Throughout the
chapter, we refer the vertices of graph G with indices such as i and j.

3.2 Combinatorial Thinness Upper Bound via Spec-

tral Properties

One approach to prove that certain families of graphs are combinatorially thin is to show an
upper bound on their thinness parameters. In this section, given a simple k−regular graph
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G = (V,E) and a spanning tree T = (V,E(T )), we will state a general certificate of upper
bound that uses the spectral properties of the underlying graph G. More specifically, we
will use the second smallest eigenvalue of LG as well as the maximum degree of spanning
tree T.

Having this result, we obtain a slightly improved version of combinatorial lower bounds
in [30] by using the fact that Johnson, Hamming, and Crown graphs are Hamiltonian.

General upper bound for αG We will present a result which is also used by Mousavi
[30] as a certificate of upper bound on the combinatorial thinness of regular graphs.

Graph G Degree k λ|V |−1(G) Upper Bounds in [30] Improved Upper Bounds

J(n, k) k(n− k) n αG ≤ 6
n−6

αG ≤ 4
n

Crown(n) n− 1 n− 2 αG ≤ 6
n−2

αG ≤ 4
n−2

H(q, n) q(n− 1) n αG ≤ 6
n

αG ≤ 4
n

Table 3.1: Upper bounds obtained for families of regular graph using Proposition 3.9 and corre-
sponding upper bounds in [30].

Proposition 3.9. Let G = (V,E) be a k−regular connected graph and T = (V,E(T )) be
a spanning tree in G with maximum degree equal to d. Let λ1 ≥ · · · ≥ λ|V |−1 > λ|V | = 0 be
the eigenvalues of LG. Then, we have αG(T ) ≤ 2d

λ|V |−1
.

To prove this proposition we will use a special case of Cheeger’s Inequality that holds
for k−regular graphs. Recall Definition 2.2 where we introduced notion of edge expansion
of G, Φ(G), which is the smallest ratio between any cut set δG(S) and its corresponding

cut shore S ⊂ V with |S| ≤ |V |
2
.

Theorem 3.2. Suppose G = (V,E) is a k−regular graph, and let λn−1 be the second
smallest eigenvalue of LG(1). Then, we have

λn−1

2
≤ Φ(G). (3.6)

Proof. See Appendix A
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Proof of Proposition 3.9. To show that αG(T ) ≤ 2d
λn−1

, we must show that for each cut set

δG(U) where U ⊂ V and |U | ≤ |V |
2

we have

|δG(U) ∩ T | ≤ (
2d

λn−1

)|δG(U)|.

Since ∆(T ) = d, we have
|δ(U) ∩ T | ≤ d|U |.

Thus,

|δG(U) ∩ T |
|δG(U)|

≤ d|U |
|δG(U)|

≤ d

Φ(G)
(Since Φ(G) ≤ |δG(U)|

|U |
)

≤ 2d

λn−1

(By Cheeger’s inequality).

Therefore, αG(T ) ≤ 2d
λn−1

.

Next, we will utilize Proposition 3.9 to upper bound the combinatorial thinness of some
families of regular graphs.

3.2.1 Johnson Graphs

Definition 3.4. (Johnson Graphs) Johnson Graph J(n, k) = (V,E) is defined as the graph
where its vertices are k−subsets S ⊂ [n], i.e.,

V :=
{
S ⊂ [n] : |S| = k

}
.

There is an edge between two vertices S, S ′ ⊂ [n] of J(n, k) if their intersection has size
k − 1 (see Figure 3.1).

E :=
{
{S, S ′} : S, S ′ ∈ V and |S ∩ S ′| = k − 1

}
.

It is easy to see that Johnson graph J(n, k) is a k(n− k)−regular graph, and J(n, k) is
isomorphic to J(n, n− k), as subsets of size k and n− k are complements of each other.
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{1, 2}

{1, 3}

{1, 4}

{2, 3}

{2, 4}

{3, 4}

Figure 3.1: Johnson graph J(4, 2)

In order to use Proposition 3.9 and improve the bounds given in [30], we intend to find
a spanning tree T with smaller maximum degree. Note that as any spanning tree has a
vertex of degree at least two, having ∆T = 2 is the best choice for a spanning tree, which
means T is a Hamiltonian path. Therefore, we need to investigate whether Johnson graphs
have Hamiltonian paths.

In 2012, Alspach [1] proved the following result on Johnson graphs.

Theorem 3.3. For all n ∈ N and k ≤ n, Johnson Graph J(n, k) = (V,E) is Hamiltonian-
connected; i.e., there exists a Hamiltonian path between each pair of distinct vertices
Si, Sj ∈ V.

Next, to further improve results in [30], we obtain the explicit value of λn−1 in terms
of k and n instead of estimating a lower bound on it.

Brouwer et.al. in [10] gave an explicit formula for eigenvalues of adjacency matrix of
Johnson graphs (see Theorem 9.2). Note that since Johnson graphs are regular, we can
easily find the eigenvalues of their Laplacian matrix as well.

Theorem 3.4. Let J(n, k) be a Johnson graph with 2 ≤ k ≤ n− 2. The graph J(n, k) has
diameter equal to d = min(n − k, k), and its adjacency matrix AJ(n,k) has at most d + 1
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distinct eigenvalues. The set of the distinct eigenvalues τj and their multiplicity mj, for
0 ≤ j ≤ d, is given by

τj+1 = (k − j)(n− k − j)− j = j2 − (n+ 1)j + nk − k2

and

mj+1 =

(
n

j

)
−
(

n

j − 1

)
j ∈ {1, . . . , d},

and m1 = 1.

Corollary 3.1. Since d ≤ n
2
, the function τj+1 is a decreasing function in terms of j, and

multiplicity of τ1 is equal to 1. Hence, the second largest eigenvalue of AJ(n,k) is equal to
τ2 = nk − k2 − n, and the second smallest eigenvalue of LJ(n,k) is equal to

λ|V |−1 = k(n− k)− τ2 = n.

By the given conditions in Proposition 3.9, since Johnson graph has a Hamiltonian
path tree P , where ∆(P ) = 2 we get:

αJ(n,k) ≤ αJ(n,k)(P ) ≤ 4

n
. (3.7)

Therefore, Johnson graphs J(n, k) are combinatorially thin, for all n ≥ 5.

3.2.2 Crown Graphs

Definition 3.5. (Crown graph) Crown(n) = (V,E) is a graph on a vertex set of size 2n,

V = {1, . . . , n, n+ 1, . . . , 2n}

and edge set
E = {{i, n+ j} : i, j ∈ [n] and i ̸= j}.

In other words, Crown(n) is isomorphic to a complete bipartite graph with one set of
perfect matching edges deleted (see Figure 3.2).

Lemma 3.1. For all n ∈ N, Crown(n) has at least one Hamiltonian path P .

Proof. We will explicitly show a Hamiltonian path of Crown(n) that passes through all
vertices.
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. . .

... . . .
...

1 2 nn− 1

n+ 1 n+ 2 2n2n− 1

. . .

. . .

Figure 3.2: Crown graph Crown(n)

First, suppose n = 2k + 1, consider the following sequence of vertices which each two
consequetive vertices are connected in Crown(n):

P = 1, n+ 2, 3, n+ 4, 5, . . . , 2n− 1, n, n+ 1, 2, n+ 3, . . . , n− 1, 2n.

Note that P is indeed a path as vertices {i, n + i + 1}, {i, n + i − 1}, and {n, n + 1}
are edges in Crown(n). Additionally, all vertices of Crown(2k + 1) are in the path and
therefore the path is spanning as well. Thus, P is a Hamiltonian path.
Similarly, for the case that n = 2k we have the following Hamiltonian path.

P = 1, n+ 2, 3, n+ 4, 5, . . . , n− 1, 2n, 2, n+ 3, . . . , 2n− 1, n, n+ 1.

Lemma 3.2. The second smallest eigenvalue of LCrown(n) is equal to λ2n−1(Crown(n)) =
n− 2.

To prove this lemma, we will utilize definition of Cartesian product of two graphs as
in Definition 2.1. Note that, Crown(n) is isomorphic to the graph Kn□K2, which is the
complement graph of Cartesian product of Kn and K2 (see Figure 3.2). The following
shows how to obtain eigenvalues of a Cartesian product of two graphs.
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Proposition 3.10. Suppose G1□G2 is Cartesian product of two graphs G1 = (V1, E1)
and G2 = (V2, E2). If v1 ∈ RV1 and v2 ∈ RV2 are eigenvectors of AG1 and AG2 with
corresponding eigenvalues a1 and a2, then v1 ⊗ v2 ∈ RV1⊗V2 is an eigenvector of AG1□G2

with eigenvalue a1 + a2.

Proof. See [18], Section 9.7.

Proof of Lemma 3.2. The adjacency matrix of the complement graph can be computed as

ACrown(n) = AKn□K2
= (J2n − I2n)−AKn□K2 ,

where J2n = 12n 1
⊤
2n is the all ones matrix in S2n. Moreover, as Crown(n) is a (n −

1)−regular graph, we have

Lcrown(n) = (n− 1)I2n −ACrown(n)

= nI2n − J2n +AKn□K2 .

It is easy to calculate the set of eigenvalues of A(Kn) as

λn(A(Kn)) = · · · = λ2(A(Kn)) = −1
λ1(A(Kn)) = n− 1.

Let

n = λ1(AKn□K2) ≥ n− 2 = λ2(AKn□K2) ≥ −2 = λ3(AKn□K2) = · · · = λ2n(AKn□K2).

be the eigenvalues of AKn□K2 with corresponding eigenvectors v1 = 1, . . . , v2n−1, v2n. Then,
the same set of eigenvectors are also eigenvectors of I2n and J2n with eigenvalues,

λ1(I2n) = · · · = λ2n(I2n) = 1

and

λ1(J2n) = 2n, λ2(J2n) = · · · = λ2n(J2n) = 0.
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Therefore, we can decompose the Laplacian matrix of Crown(n) as

Lcrown(n) = nI2n − J2n +AKn□K2

= n
2n∑
i=1

viv
⊤
i − (2n)11⊤+

2n∑
i=1

λi(AKn□K2)viv
⊤
i

= (−n+ λ1(AKn□K2))11
⊤+

(
n+ λ2(AKn□K2)

)
v2v

⊤
2 +

2n∑
i=3

(
n+ λi(AKn□K2)

)
viv

⊤
i

= 011⊤+(2n− 2)v2v
⊤
2 +

2n∑
i=3

(n− 2)viv
⊤
i .

Thus, we can calculate the second smallest eigenvalue of Lcrown(n) as

λ2n−1(Crown(n)) = n− 2.

Therefore, by utilizing Lemma 3.1 and Lemma 3.2 in Proposition 3.9, we obtain an
upper bound for combinatorial thinness of crown graph as follows.

αcrown(n) ≤
4

n− 2
. (3.8)

Thus, all Crown graphs Crown(n) with n ≥ 7 have a combinatorially thin spanning tree.

3.2.3 Hamming Graphs

Another family of regular graphs are Hamming graphs, denoted by H(q, n).

Definition 3.6. Hamming graph H(q, n) = (V,E) is the graph where each vertex v ∈ V
is a q−tuple v = (a1, . . . , an) ∈ {1, . . . , n}q. Two vertices vi = (a1, . . . , aq) and vj =
(b1, . . . , bq) are connected by an edge e = {vi, vj} ∈ E if there exists exactly one index ℓ
where aℓ ̸= bℓ.
In other words, H(q, n) is isomorphic to Cartesian product of q complete graphs Kn (see
Figure 3.3).

In Hamming graphH(q, n), each vertex vi = (a1, . . . , aq) is neighbour to exactly q(n−1)
other vertices; thus, Hamming graphs are q(n − 1)−regular graphs. Similar to Johnson
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H(q, n)

H(q, n)

H(q, n)

H(q, n)

H(q, n)

H(q, n)

1

2

3

. .
.

n− 1

n

Figure 3.3: Hamming graph H(q + 1, n) from H(q, n).
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graphs, we can use Theorem 9.2.1 of [10] to convert eigenvalues of the adjacency matrix
AH(q,n) to eigenvalues of Laplacian LH(q,n) and find the second smallest eigenvalue of LH(q,n)

as

λ|V |−1(H(q, n)) = n.

Therefore, if we show that H(q, n) has a Hamiltonian path P for all q, n ∈ N, we will
obtain an upper bound

αH(q,n) ≤
2.d

λ|V |−1

≤ 4

n
(3.9)

on the combinatorial thinness of H(q, n).

Lemma 3.3. Given n, q ∈ N with n ≥ 2, Hamming graph H(q, n) has a Hamiltonian path
P.

Proof. We will show that Hamming graphs are Hamiltonian, by induction on q ∈ N .

• Base: For q = 1, clearly H(1, n) ≃ Kn is Hamiltonian.

• Induction hypothesis: Suppose for H(q − 1, n) we have a Hamiltonian path Pq−1 =
v1, . . . vnq−1 .

• Induction step: We will show H(q, n) has also a Hamiltonian path. To do so, we will
define a new notation where for a vertex vi = (a1, . . . , aq−1) ∈ {1, . . . , n}q−1 we use
jvi := (j, a1, . . . , aq−1) for 1 ≤ j ≤ n. Now, for odd n = 2k + 1 we define

Pq := 1v1, . . . , 1vnq−1 , 2vnq−1 , . . . , 2v1, 3v1, . . . , 3vnq−1 , . . . . . . , nv1, . . . , nvnq−1 (3.10)

and for even n = 2k we define

Pq := 1v1, . . . , 1vnq−1 , 2vnq−1 , . . . , 2v1, 3v1, . . . , 3vnq−1 , . . . . . . , nvnq−1 , . . . , nv1. (3.11)

Note that by definition of Hamming graphs and (I.H), all vertices in the path are
connected in H(q, n). Therefore. Pq is indeed a path. Moreover, path Pq is spanning
and all vertices of H(q, n) appeared in Pq exactly once. Hence, Pq is a Hamiltonian
path in H(q, n).
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3.3 Spectral Thinness and Certificates of Bounds

Recall the notion of spectral thinness (Definition 1.5), where for a given graph G = (V,E)
with weights w ∈ RE

+, a subgraph H = (V, F ) is θ−spectrally thin subgraph, if

θLG(w)− LH ⪰ 0.

We also defined spectral thinness of a subgraph H, denoted by θG,w(H), to be smallest
θ ∈ [0, 1] that satisfies the above inequality.

In this section, we aim to present some mathematical certificates of bounds for spectral
thinness of subgraphs in a given graph, and we will discuss these certificates and techniques
for proving lower and upper bounds.

3.3.1 Lower Bounds

One way of finding such values of θl is by considering the notion of extended eigenvalues
and eigenvectors defined as follows.

Definition 3.7. Let A,B ∈ Sn be two real valued matrices. A real number θ is an extended
eigenvalue of (A,B) if there exists a vector v ∈ Rn such that

Av = θBv

Bv ̸= 0 .

Proposition 3.11. Let graph G = (V,E) be a connected graph and let w ∈ RE
+ be its

weight function. Suppose T is a spanning tree of G, and let θ be an extended eigenvalue of
(LT ,LG(w)). Then,

θ ≤ θG,w(T ).

Proof. Let v ∈ Rn be the corresponding vector for θ as in the above definition, and let
ε > 0 be an arbitrary small number. Then,

v⊤
(
(θ − ε)LG(w)− LT

)
v = v⊤

(
θLG(w)− LT

)
v +−εv⊤LGv

= −εv⊤LGv < 0,

where the last step is because LGv ̸= 0 and LG = UU⊤ is a PSD matrix.
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To relax the above proposition, we can consider an arbitrary value θl instead of an
extended eigenvalue. To do so, we need to show that the difference matrix θlLG(w)− LT

has a negative eigenvalue. Equivalently θl < θG,w if and only if there exists a vector v ∈ RV

such that

v⊤(θlLG(w)− LT )v < 0.

Note that in the above, we first choose a lower bound θl and then find a certificate v for
it. The issue with this method is that it does not obtain the best lower bound possible for
the certificate v. In fact, one needs to first guess a lower bound and then check whether
θlLG(w) − LT ⪰ 0 or not, and then, increase the value of θl. However, an equivalent
approach toward finding a lower bound is to fix a vector v ∈ (RV \{0}) ∩ span(1)⊥, and
then rule out all values θl ∈ (0, 1] such that

v⊤(θlLG(w)− LT )v < 0.

Remark 3.4. Note that this condition guarantees that

v⊤LTv > v⊤θlLGv

LGv ̸= 0.

In the following, we will discuss how to obtain the best lower bound corresponding to
a certificate vector v ∈ (RV \{0}) ∩ span(1)⊥.

Lower Bound via a certificate vector v ∈ (RV \{0}) ∩ span(1)⊥

Proposition 3.12. Let graph G = (V,E) be a connected graph and let w ∈ RE
+ be its

weight function such that w(e) ≥ 1 for all edges e ∈ E. Suppose T is a spanning tree of G,
then, for every v ∈ (RV \{0}) ∩ span(1)⊥ we have,

v⊤LTv

v⊤LG(w)v
≤ θG,w(T ).

Additionally, there exists an optimal vector v∗ ∈ (RV \{0})∩ span(1)⊥ achieving equality.
I.e.,

θG,w(T ) =
v∗⊤LTv

∗

v∗⊤LG(w)v∗
.
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Proof. Consider any fixed vector v ∈ RV , such that v ∈ (RV \{0}) ∩ span(1)⊥. Now, by
Proposition 3.6 (ii) we have v⊤LG(w)v > 0. Thus,

v⊤(θG,w(T )LG(w)− LT )v ≥ 0 ⇔ θG,w(T )v
⊤LG(w)v ≥ v⊤LTv

⇔ θG,w(T ) ≥
v⊤LTv

v⊤LG(w)v
.

Since the above inequality holds for every v ∈ (RV \{0}) ∩ span(1)⊥ we have

sup
v∈(RV \{0})∩ span(1)⊥ s.t. ∥v∥=1

v⊤LTv

v⊤LG(w)v
≤ θG,w(T ). (3.12)

Additionally, since

f(v) :=
v⊤LTv

v⊤LG(w)v
≤ θG,w(T ) ≤ 1

is bounded from above and is continuous on the nonempty and compact set {v : (RV \{0})∩
span(1)⊥ and ∥v∥ = 1}, the supremum is attained by a vector v∗.

To show that the lower bound (3.12) is tight observe that for all v ∈ (RV \{0}) ∩
span(1)⊥ we have

v⊤(f(v∗)LG(w)− LT )v ≥ 0⇔
f(v∗)v⊤LGv − v⊤LTv ≥ 0⇔

f(v∗) ≥ v⊤LTv

v⊤LGv
,

where the last inequality holds by the choice of v∗. Therefore, we also have f(v∗)LG(w)−
LT ⪰ 0 and f(v∗) ≥ θG,w(T ). Hence, the equality f(v∗) = θG,w(T ) holds as well.

Lower bound via Effective Resistance

Another approach to finding a lower bound for θG,w is through a notion of effective resis-
tance. We can view the graph G as an electrical circuit where each edge e = {i, j} ∈ E has
conductance w(e), or equivalently, resistance R(e) = 1

w(e)
. Informally, the resistance of an
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edge denotes how well a flow (for instance electrical current) can pass through that edge:

I((i, j)) =
Vi − Vj

R(e)
= (∆Ve)w(e), (Ohm’s law)

where I((i, j)) is the current passing from vertex i to vertex j and ∆Ve is the potential
difference between vertices i and j.

Note that if we put a potential difference between two endpoints i and j a current
flows from i to j through different paths in G. Then, Effective conductance WG,w(e) of
an edge e = {i, j} ∈ E is the maximum current that the circuit can flow when putting
a potential difference of one between two endpoints i and j, and the effective resistance
ReffG,w(e) =

1
WG,w(e)

measures the total resistance of the circuit when having endpoints i

and j.

One can formalize the effective resistance with Kirchhoff’s circuit laws to obtain an
equivalent definition of the below (for instance, see [13]).

Definition 3.8. Let G = (V,E) be a graph with the weight function w : E→RE
+, and let

{i, j} ∈ E. The Effective Resistance of edge e in graph G is defined as follows:

ReffG,w({i, j}) := (ei − ej)
⊤L†

G(w)(ei − ej),

where L†
G is the pseudo-inverse of LG. Moreover, we define the Effective Resistance of G

w.r.t. w to be
ReffG,w := max{ReffG,w({i, j}); for all {i, j} ∈ E}.

We can formalize effective resistance in an equivalent form as follows.

Proposition 3.13. Let G be a connected graph with weight function w : E→RE
+. Then,

ReffG,w({i, j}) = max
x⊥1

(xi − xj)
2∑

{k,l}∈E(xk − xl)2

= max
x⊥1

(xi − xj)
2

x⊤LG(w)x
.

Proof. By definition of effective resistance we have

ReffG,w({i, j}) = (ei − ej)
⊤L†

G(w)(ei − ej).
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By Proposition 3.2 recall that Tr(AB) = Tr(BA). Additionally, ReffG,w({i, j}) ∈ R.
Therefore, we have

ReffG,w({i, j}) = Tr
(
(ei − ej)

⊤L†
G(w)(ei − ej)

)
= Tr

(
L

†
2
G(w)(ei − ej)(ei − ej)

⊤L
†
2
G(w)

)
.

Note that Lij := (ei − ej)(ei − ej)
⊤ is a rank one matrix. Therefore, L

†
2
G(w)LijL

†
2
G(w) is a

rank one matrix as well, and it has exactly one nonzero eigenvalue λ1.

Additionally, recall that given a matrixX ∈ Sn we have Tr(X) =
∑n

i=1 λi(X).Therefore,
for a rank one PSD matrix X the trace is equal to its maximum eigenvalue λ1. Now, by
Theorem 3.1 we have

ReffG,w({i, j}) = λ1(L
†
2
G(w)LijL

†
2
G(w))

= max
y⊥1

y⊤(L
†
2
G(w)LijL

†
2
G(w))y

y⊤y

= max
x⊥1

x⊤Lijx

x⊤LGx
,

where the last equality holds since span(1) = Null(L
†
2
G(w)) and L

†
2
G(w) acts bijective on

the vector space Span(1)⊥. Finally, we can rewrite ReffG,w({i, j}) as

ReffG,w({i, j}) = max
x⊥1

x⊤Lijx

x⊤LGx

= max
x⊥1

(xi − xj)
2

x⊤LGx
.

From this equivalent definition, we obtain that the effective conductance WG,w(e) be-
tween two vertices i and j lower bounds the connectivity between vertices i and j. More-
over, we have the following.

Lemma 3.4. Suppose graph G = (V,E) with edge weight w ∈ RE
+ has connectivity k. Let
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H = (V,E(H)) be a spanning subgraph of G. Then,

max
e∈E(H)

ReffG,w(e) ≥
1

k
.

Proof. Let U ⊂ V be the cut that specifies the connectivity of G; i.e., w(δG(U)) = k. Let
u ∈ RV be the characteristic vector for U defined as

ui =

{
1 i ∈ U

0 otherwise.

Since H is spanning, there exists at least one edge e = {i, j} such that e ∈ E(H)∩δG(U) ̸=
∅. Now, we have

max
e∈E(H)

ReffG,w(e) ≥ ReffG,w({i, j})

= max
x

(xi − xj)
2

x⊤LGx

≥ (ui − uj)
2

u⊤LGu

≥ 1

w(δG(U))
≥ 1

k
.

Note that for a tree T combinatorial thinness is lower bounded by connectivity.

θG,w(T ) ≥ αG,w(T ) ≥
1

k
.

We will show that effective resistance obtains a better lower bound on θG,w(T ), as suggested
in [2] Lemma 1.4.

Proposition 3.14. Let G = (V,E) be a graph with the weight function w : E→RE
+ and

let T be a spanning tree of G. Then,

max
e∈E(T )

ReffG,w ≤ θG,w(T ). (3.13)
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Proof of Proposition 3.14. By Proposition 3.12, we can characterize θG,w(T ) as,

θG,w(T ) = max
x∈( span(1)⊥\{0})

x⊤LTx

x⊤LGx

≥ max
x∈( span(1)⊥\{0})

(xi − xj)
2

x⊤LG(w)x
.

Further, by Proposition 3.13 for every edge e = {i, j} ∈ E(T ) we can write

ReffG,w({i, j}) = max
x∈( span(1)⊥\{0})

(xi − xj)
2

x⊤LG(w)x
.

Combining these inequalities, we get

ReffG,w({i, j}) = max
x∈( span(1)⊥\{0})

(xi − xj)
2

x⊤LG(w)x

≤ max
x∈( span(1)⊥\{0})

x⊤LTx

x⊤LGx

= θG,w(T ).

Since the inequality holds for every edge {i, j} ∈ E(T ) we have

max
e∈E(T )

ReffG,w({i, j}) ≤ θG,w(T ).

The following proposition shows that spectral thinness of simple complete graph Kn is
lower bounded by

θKn ≥ ReffKn =
2

n
.

Proposition 3.15. Let Kn be the simple complete graph on n vertices such that n ≥ 3.
Then, for any edge e ∈ E(Kn), we have

ReffKn = ReffKn(e) =
2

n
.

Proof. For any two edges e = {i, j} and e′ = {i′, j′} in E(Kn), there exists an isomorphism
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that maps e to e′. Therefore,

max
e′∈E(Kn)

ReffKn(e
′) = ReffKn(e).

Additionally, by Proposition 3.13, we have

ReffKn({i, j}) = max
x∈ span(1)⊥,∥x∥=1

(xi − xj)
2∑

1≤ℓ<k≤n(xℓ − xk)2
.

Now, note that for x ∈ span(1)⊥ and ∥x∥ = 1 we can compute the denominator as

∑
1≤ℓ<k≤n

(xℓ − xk)
2 = (n− 1)

n∑
ℓ=1

x2
i − 2

∑
1≤ℓ<k≤n

xℓxk

= n
n∑

ℓ=1

x2
i −

∑
ℓ,k∈[n]

xℓxk.

= n
n∑

ℓ=1

x2
i −

∑
ℓ∈[n]

xℓ

(∑
k∈[n]

xk

)
= n,

where the last equality holds since x ⊥ 1 and ∥x∥ = 1. Thus,

ReffKn({i, j}) = max
x⊥1,∥x∥=1

(xi − xj)
2

n
=

2

n
,

where the last equality holds since (xi − xj)
2 is maximized if all other weights are zero,

x2
i + x2

j = 1, and xi = −xj =
√
2
2
.

3.3.2 Upper Bounds

Let G = (V,E) be a weighted simple graph with weight function w : E→RE
+ and let T

be a spanning tree for G. Then, to show that a value θu ∈ (0, 1] is an upper bound for
θG,w(T ), it suffices to show

θuLG(w)− LT ≽ 0.
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Equivalently, θu is an upper bound for θG,w(T ) if for all x ∈ RV

x⊤(θuLG(w)− LT )x ≥ 0.

Note that even though the above inequalities hold for the upper bound θu, we do not obtain
a generic certificate to verify these inequalities.

General certificates of positive semidefiniteness

By Proposition 3.3, another approach for obtaining positive semidefiniteness is to show
that there exists a matrix B ∈ Rn×n such that

θuLG(w)− LT = BB⊤.

Thus, to prove that θu is an upper bound, we can search for a certificate matrix
B ∈ Rn×n such that BB⊤ = θuLG − LT . One issue with such a general approach is
that the certificate matrix B ∈ Rn×n might have irrational entries. Therefore, finding
such a certificate could be challenging with or without software. Additionally, due to com-
putational errors, guessing, computing, and verifying the exact values of B may not be
easy.

On the other hand, we might be able to find simpler certificates if the original matrix
θuLG(w)− LT can be written as 1

k
X, where k ∈ N and X ∈ Sn

+ has rational entries. This
approach was utilized in [4].

UV -certificate for positive semidefiniteness

Definition 3.9. Let X ∈ Qn×n be a symmetric matrix. A pair of matrices U, V ∈ Zn×n

together with a positive integer k make a UV−certificate of X if the following holds.

i. There exist an integer k ∈ N such that k.X = U⊤U + V .

ii. The matrix V is diagonally dominant, i.e., for all i ∈ [n] we have

Vi,i ≥
∑

j∈[n]\{i}

|Vi,j|.

Proposition 3.16. Let X ∈ Qn×n be a symmetric matrix with rational entries. Then, if
X has a UV−certificate, then X is a positive semidefinite matrix.
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Proof. Let U, V be matrices in Zn×n that form a UV− certificate for X along with k ∈ N.
Since V is a diagonally dominant matrix, V is positive semidefinite. Therefore, U⊤U + V
is a positive semidefinite matrix as well. This proves that X = 1

k
(U⊤U + V ) is a positive

semidefinite matrix, as it is summation of two positive semidefinite matrices.

A UV−certificate allows us to obtain an PSD-certificate by searching in the space of
integer symmetric matrices.

Upper bound via Effective Resistance

Previously, we showed how to use effective resistance to lower bound the thinness of a
spanning tree T . It is worth mentioning that the effective resistance is also a measure that
can upper bound the spectral thinness parameter of graphs. In fact, Marcus, Spielman,
and Srivastava [27] proved Kadison-Singer Conjecture by proving Weaver’s equivalent con-
jecture [41]. As an application of this result Harvey and Olver in [20] (see Appendix C)
showed the following theorem.

Theorem 3.5. Let G = (V,E) be a connected graph with edge weight w ∈ RE
+. Then, we

have

θG,w ≤ O(ReffG,w). (3.14)

Figure 3.4 captures all the results regarding combinatorial and spectral thinness and
their relation to edge connectivity and effective resistance, respectively.
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1
k

maxe∈E(T ) ReffG,w(e)

O(ReffG,w)

θG,w = θG,w(T )

αG,w = αG,w(T
′)

O
(
1
k

)(3.4)

(1.1)

(3.4)
(1.1)

(1.2)

(3.5)

(3.14)

Figure 3.4: Each arrow shows that the higher endpoint is possibly larger than the lower one. More
specifically, black arrows show an overview of connections between connectivity, combinatorial
and spectral thinness, and effective resistance, and the red arrow demonstrates the strong thin-
tree conjecture.

3.4 Spectral Thinness and Hamiltonian Paths

As we saw before in Section 3.2, we were able to improve upper bounds given in [30] for
combinatorial thinness of some families of structured graphs by considering Hamiltonian
paths in them. Intuitively, this suggests that Hamiltonian paths, where they exists, might
be among good candidates for spectrally thin trees. The following proposition shows a
lower bound for the spectral thinness of non-Hamiltonian trees in a k-regular graph that
formalizes this intuition to an extend.

Proposition 3.17. Let G = (V,E) be a k-regular graph with unit weights, and let T be a
spanning tree of G that is not a Hamiltonian path. Then, spectral thinness of T in G is at
least θG(T ) ≥ 4

k+2
.

Proof. Let T be a spanning tree which is not a Hamiltonian path. Then, the maximum
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degree of T is at least three; i.e., ∆(T ) ≥ 3. Without loss of generality, we may assume
that |V | ≥ 5, since for a graph with less number of vertices 1 = αG(T ) ≤ θG(T ) ≤ 1. We
will prove the statement in three cases in the following.

i. Suppose ∆(T ) ≥ 4, and let vertex u1 ∈ V be the vertex having degT (u1) = ∆(T ).
Then, considering the cut δG(u1), we will get a combinatorial lower bound

αG(T ) ≥
∆(T )

k
≥ 4

k
.

Since combinatorial thinness lower bounds spectral thinness, we will also get

θG(T ) ≥
4

k
.

ii. Now, suppose ∆(T ) = 3, and the spanning tree T contains two adjacent vertices u1, u2

of degree three. By reordering the vertices in G, we assume that u1, u2 correspond
to the first two vertices {1, 2} in LG. Then, for θ ∈ (0, 1], the principal submatrix
corresponding to {1, 2} can be written as

B := (θLG − LT ){1,2} =

[
θk − 3 −θ + 1
θ + 1 θk − 3

]
.

Now, a necessary condition for θLG − LT ⪰ 0 is to have det(B) ≥ 0. Therefore, we
must have

det(B) ≥ 0⇐⇒ (θk − 3)2 − (−θ + 1)2 ≥ 0

⇐⇒ (θk − 3)2 ≥ (1− θ)2

⇐⇒ θk − 3 ≥ 1− θ

⇐⇒ θ ≥ 4

k + 1
.

iii. The remaining case is when each degree three vertex has only neighbours of degree one
or two. Suppose for vertex u1 ∈ V degree degT (u1) = 3. Then, all of its neighbours
NT (u1) = {u2, u3, u4} have degree at most two in T . Moreover, since T is connected,
at least one of the neighbours has degree two. Thus, we can assume

2 = degT (u2) ≥ degT (u3) ≥ degT (u4).

Also, we order the vertices ofG such that in the ordering vertices u1, . . . , u4 corresponds
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to first four rows of LG and LT . Next, let vector x ∈ RV be defined as

xi =


2
√
2, if i = 1,

−1, if 2 ≤ i ≤ 4,

0, otherwise.

We aim to find a lower bound on the value x⊤LT x
x⊤LGx

. For the numerator, note that by

our assumption degT (2) = 2; thus, there exists a vertex ℓ ∈ V such that {2, ℓ} ∈ E(T )
and ℓ /∈ {1, . . . 4}. Now, we can lower bound the numerator by

x⊤LTx =
∑

{i,j}∈E(T )

(xi − xj)
2

≥
4∑

j=2

(x1 − xj)
2 + (x2 − xℓ)

2

= 3(2
√
2 + 1)2 + 1

= 28 + 12
√
2.

Also, for the denominator, we have the upper bound

x⊤LGx =
∑

{i,j}∈E

(xi − xj)
2

=
∑

{1,j}∈E

(x1 − xj)
2 +

4∑
ℓ=2

( ∑
{ℓ,j}∈E

(xℓ − xj)
2
)

≤
(
3(2
√
2 + 1)2 + (k − 3)(2

√
2)2
)
+ 3(k − 1)

= 11k + 12
√
2.
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Now, by Proposition 3.12 we have

θG(T ) ≥
x⊤LTx

x⊤LGx

≥ 28 + 12
√
2

11k + 12
√
2

≥ 44.97

11k + 12
√
2

( since 12
√
2 ≥ 16.97)

≥ 44.97

11k + 22
( since 12

√
2 ≤ 22)

≥ 4

k + 2
.

Therefore, in general case, if spanning tree T is not a Hamiltonian path, then θG(T ) ≥
4

k+2
.

For the rest of this section, we will focus on spectral thinness of Hamiltonian graph
G = (V,E) with weight function w ∈ RE

+ and Hamiltonian path P of G. Suppose we want
to upper bound θG,w(P ) with θu. We need to show that,

θuLG(w)− LP ⪰ 0.

Our main tool for doing so is to exploit the symmetric properties of the matrix θLG(w)−LP

to simplify the positive semidefiniteness condition.

Note that for simple graphs such as G = Kn or G = Kn,n the Laplacian LG is a
highly symmetric matrix. However, even though the Hamiltonian path P has very simple
structure, it only has one isomorphism, and therefore, it does not have a lot of symmetry.
As a result, the difference θLG − LP does not capture all the symmetries available in G.
To overcome this issue, we will relax the Laplacian of P to the corresponding Hamiltonian
cycle C that contains P , if such a cycle exist. Then, we will aim to show

θuLG(w)− LC ⪰ 0,

which means θu is an upper bound for θG,w(C). Next, we argue that spectral thinness of
C upper bounds θG,w(P ).

Proposition 3.18. Let G = (V,E) with weight function w ∈ RE
+ be given. Suppose

P = (V,E(P )) is a Hamiltonian path in G and C = (V,E(C)) is a Hamiltonian cycle of
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G, where E(P ) ⊂ E(C). Then, we have

θG,w(P ) ≤ θG,w(C).

Proof. In order to show the inequality holds, it is sufficient to show

θG,w(C)LG(w)− LP ⪰ 0.

Note that since P is a subgraph of C, by Proposition 3.6, we have LC ⪰ LP . Thus, we get

θG,w(C)LG(w) ⪰ LC ⪰ LP .

Therefore,
θG,w(P ) ≤ θG,w(C)

holds.

Moreover, note that the Hamiltonian cycle C containing Hamiltonian path P only differ
in one edge. Therefore, one might expect that the corresponding parameters θG,w(C) and
θG,w(P ) to not differ much. The following proposition formalizes this observation for some
specific families of graphs such as Kn,n, where n = 2k is even, and Kn for all n ∈ N .

Proposition 3.19. Let G = (V,E) be a Hamiltonian graph with unit edge-weight where
all of its Hamiltonian paths have same spectral thinness. Suppose C is a Hamiltonian cycle
and P is a Hamiltonian path in G. Then, the following inequality holds;

θG(C) ≥ θG(P ) ≥ (
n− 1

n
)θG(C). (3.15)

Proof. Suppose the Hamiltonian cycle C has edge set E(C) = {e1, . . . , en}. Define the
Hamiltonian path P i := C \ ei. By assumption the spectral thinness of all Hamiltonian
paths are equal. Thus, for all i ∈ [n] we have

θG(P )LG − LP i ⪰ 0.
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By summing all the inequalities, we should still have a PSD matrix. Thus,

n∑
i=1

(θG(P )LG − LP i) ⪰ 0 ⇐⇒

(nθG(P ))LG −
n∑

i=1

LP i ⪰ 0 ⇐⇒

(nθG(P ))LG − (n− 1)LC ⪰ 0,

where the last equivalence holds since each cycle edge appears n − 1 times in
∑n

i=1 LP i .
Thus, (

(
n

n− 1
)θG(P )

)
LG − LC ⪰ 0

holds for Hamiltonian cycle C, and by the definition of θG(C) we must have

(
n

n− 1
)θG(P ) ≥ θG(C).

By rearranging the inequality, we get

θG(P ) ≥ (
n− 1

n
)θG(C).

On the other hand, by Proposition 3.18 and the assumption that all Hamiltonian paths in
G have the same spectral thinness,

θG(C) ≥ θG(P ).

As we previously mentioned, our aim is to exploit symmetries of the matrix θLG −LC

to relax the PSD condition θLG(w) − LC . Note that even if both Laplacian LG and LC

have a lot of symmetry, it does not guarantee that their difference also inherits all of these
symmetries. Therefore, we need an extra condition that assures symmetries of LG(w) and
LC coincide with each other.
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3.4.1 Circulant Matrices and Graphs

Definition 3.10. (Circulant matrix) A matrix X ∈ Rn×n is a circulant matrix if there
exists real numbers c0, . . . , cn−1 ∈ R such that,

X =


c0 c1 c2 . . . cn−1

cn−1 c0 c1 . . . cn−2

cn−2 cn−1 c0
. . .

...
...

...
. . . c0 c1

c1 . . . . . . cn−1 c0


For the above circulant matrix X, we call the vector c = [c0, . . . , cn−1] the essential row of
X.

Proposition 3.20. Let X ∈ Rn×n be a circulant matrix as in Definition 3.10 with essential
row x = [x0, . . . , xn]. Then, the following statements hold.

i. X has orthonormal basis of eigenvectors {vj : 0 ≤ j ≤ n− 1}, where

vj =
1√
n
[ω0.j

n , ω1.j
n , . . . , ω(n−1).j

n ]⊤, (3.16)

and ωn = e
2πι
n is the n-th root of unity where ι2 = −1.

ii. Moreover, for each eigenvector vj, the corresponding eigenvalue λX(vj) is computed as
follows:

λX(vj) :=
n−1∑
k=0

xkω
kj
n =

√
nxvj.

Proof. See [12], Chapter 3, Sections 3.1 and 3.2.

Proposition 3.21. Let X, Y ∈ Rn×n be circulant matrices as in Definition 3.10 with
essential rows x = [x0, . . . , xn] and y = [y0, . . . , yn]. Then, the following statements hold.

i. For every constant a ∈ R, the matrix aX is a Circulant matrix.

ii. The matrices X − Y and X + Y are circulant matrices with essential rows x− y and
x+ y, respectively.
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iii. The matrices X and Y commute; i.e., XY = Y X.

Proof. Part (i.) and (ii.) are trivially true. For the proof of (iii.) see [12], page 68.

Definition 3.11. A graph G = (V,E) with weight function w : E→R is a circulant graph
if there exists a relabelling on vertices V such that Laplacian matrix LG(w) with respect to
the given order is a circulant matrix. We also define essential row of G to be the essential
row of its circulant Laplacian LG(w).

Proposition 3.22. Let Cn = (V,E) be a cycle graph on n vertices with unit edge weights.
Then, Cn is a circulant graph with essential row c = [2,−1, 0, . . . , 0,−1]. Moreover, for all
j ∈ {0, . . . , n− 1}, the eigenvalue λCn(vj) of Cn is equal to

λCn(vj) = 4 sin2(
πj

n
).

Proof. First, note that if we order the vertices as appear in the cycle, i.e., {i, (i ± 1)
mod n} ∈ E(Cn), then the Laplacian is indeed circulant with essential vector equal to
c = [2,−1, 0, . . . , 0,−1]. In order to find the eigenvalue λCn(vj) we have

λCn(vj) =
n−1∑
k=0

ckω
kj
n

= 2ω0
n − ωj

n − ω(n−1)j
n

= 2− (ωj
n + ω−j

n ), ( since ωn
n = 1).

Now, recall the Euler’s formula,

eιx + e−ιx = 2 cos(x), (3.17)
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where ι =
√
−1. By utilizing the above equation, we can simplify λCn(vj) as

λCn(vj) = 2− (e(
2πι
n

)j + e−( 2πι
n

)j)

= 2− 2 cos

(
2πj

n

)
= 2
(
1− cos

(
2πj

n

))
= 4 sin2(

πj

n
),

where in the last step we used (1− cos(2x)) = 2 sin2(x).

3.4.2 Complete Graph Kn

Proposition 3.23. Let n > 3 be a natural number, and let Kn be the simple complete
graph on n vertices. Then, the Laplacian matrix LKn is a circulant matrix with essential
row c = [n− 1,−1, . . . ,−1] and eigenvalues

λKn(v0) = 0, λKn(v1) = · · · = λKn(vn−1) = n.

Proof. Since Kn is a complete graph with its group of isomorphism equal to Sn, all Lapla-
cian matrices of Kn are circulant with same essential row c = [n− 1,−1, . . . ,−1].

Similar to previous lemma, we calculate all eigenvalues λKn(vj) for j ∈ {0, . . . , n − 1}
as follows.

Firstly, suppose j = 0, then

λKn(v0) =
n−1∑
k=0

ckω
0
n =

n−1∑
k=0

ck = (n− 1) +
n−1∑
k=1

−1 = 0.

If 1 ≤ j ≤ n− 1, then we get

λKn(vj) =
n−1∑
k=0

ckω
kj
n = (n− 1)ω0

n −
n−1∑
k=1

ωkj
n = n−

n−1∑
ℓ=0

ωjℓ
n = n,
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where the last equality holds since

n−1∑
ℓ=0

ωjℓ
n =

ωnj
n − ω0

n

ωj
n

=
1− 1

ωj
n

= 0.

We can also improve the lower bound in Proposition 3.17 for the special case of (n−1)-
regular graph Kn.

Lemma 3.5. For n > 3 and any non-path tree T of Kn, the spectral thinness θKn(T ) is at
least 4

n
.

Proof. see Appendix A for the proof.

Theorem 3.6. Let n > 3 be a natural number, and let Kn be the simple complete graph
on n vertices. For every Hamiltonian path P of Kn, we have,

4(n− 1)

n2
≤ θKn(P ) ≤ 4

n
.

Additionally, P achieves the spectral thinness

θKn = θKn(P ).

Proof. Without loss of generality, let P be the path with ordered set of vertices (1, 2, . . . , n)
where edges {i, i + 1} ∈ E(P ) for i ≤ n − 1. Also, let C be the Hamiltonian cycle
containing P . Then, with the given vertex labeling, LKn and LC are circulant matrices.
By Proposition 3.21, for θ ∈ (0, 1] the difference Dθ = θLKn−LC is also a circulant matrix
with same set of eigenvectors {vj : 0 ≤ j ≤ n − 1}. Therefore, for 0 ≤ j ≤ n − 1 we can
compute

λθLKn−LC
(vj) = λθLKn

(vj)− λLC
(vj)

= θλLKn
(vj)− λLC

(vj).

Using Proposition 3.22 and Lemma 3.23 we obtain

λθLKn−LC
(vj) =

{
0, j = 0

θn− 4 sin2(πj
n
), otherwise.
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Therefore, for θ = 4
n
the difference θLKn − LC is a PSD matrix. Since any vertex permu-

tation is an isomorphism for Kn, the spectral thinness of all Hamiltonian paths of Kn are
equal. Therefore, we can use Proposition 3.19 to get

4(n− 1)

n2
≤ θKn(P ) ≤ 4

n
.

Now, by Lemma 3.5, for any tree T with ∆(T ) ≥ 3, we have θKn(T ) ≥ 4
n
. Therefore,

4(n− 1)

n2
≤ θKn = θKn(P ) ≤ 4

n
.

As a result of Theorem 3.6, θKn → 4
n
as n → ∞. As seen in the Figure 3.5, computa-

tional experiment suggests that the exact thinness of a Hamiltonian P in the graph Kn is
closer to the upper bound 4

n
.
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Figure 3.5: The black curve indicates the exact value of θKn(P ), and the red and blue curves
are the suggested lower and upper bounds in Proposition 3.6, respectively. The green line shows
that the effective resistance ReffKn = 2

n lower bounds θKn(P ) (by Proposition 3.15), and also
θKn(P ) = O(ReffKn).

3.4.3 Complete Bipartite Graph Kn,n

Proposition 3.24. Let Kn,n be the simple complete bipartite graph with 2n vertices and
bipartition A = {2t− 1 : t ∈ [n]}, B = {2t : t ∈ [n]}, where

E(Kn,n) =
{
{i, j} : i ∈ A, j ∈ B

}
.

Then, the Laplacian LKn,n is a circulant matrix with essential row

c = [n,−1, 0,−1, 0,−1, . . . , 0,−1]
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and eigenvalues

λKn,n(vj) :=


0, if j = 0

2n, if j = n

n, otherwise.

Proof. By the choice of the bipartition, every odd vertex 2t − 1 is connected to all of the
even vertices and every even vertex 2t is connected to all of the odd vertices for all t ∈ [n].
Therefore, the rows 2t− 1 and 2t of LKn,n can be computed as follows.

(LKn,n)2t−1,. =
[
0 −1 . . . 0 −1 n −1 0 . . . −1

]
,

(LKn,n)2t,. =
[
−1 0 . . . −1 0 −1 n −1 . . . 0

]
.

Therefore, LKn,n is circulant with first row

c =
[
n −1 . . . −1 0 −1 0 . . . −1

]
.

By Proposition 3.20, for 0 ≤ j ≤ n− 1 we can compute eigenvalues λLKn,n
(vj). Note that

we have ω2n = e
2πι
2n = e

πι
n . Thus, by replacing it in the formulas for j = 0 we get

λKn,n(v0) =
2n−1∑
ℓ=0

cℓe
0 =

2n−1∑
ℓ=0

cℓ = 0.

Also, if j = n we have

λKn,n(vn) =
2n−1∑
ℓ=0

cℓω
nℓ
2n

=
2n−1∑
ℓ=0

cℓe
ℓπι

= n−
n−1∑
ℓ=0

e(2ℓ+1)πι

= n− (eπι)1 − (eπι)3 − · · · − (eπι)2n−1

= 2n,

where the last equality holds since eπι = −1. Finally, for j /∈ {0, n}
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λKn,n(vj) =
2n−1∑
ℓ=0

cℓω
jℓ
2n

=
2n−1∑
ℓ=0

cℓe
πι
n
jℓ

= n−
n−1∑
ℓ=0

e
πι
n
j(2ℓ+1)

= n,

where the last step holds since by geometric series we have

n−1∑
ℓ=0

e
πι
n
j(2ℓ+1) = e

πι
n
j(

n−1∑
ℓ=0

e
2πι
n

ℓj)

= e
πι
n
j(

n−1∑
ℓ=0

(e
2πιj
n )ℓ)

= e
πι
n
j(

n−1∑
ℓ=0

(ωj
n)

ℓ)

= 0.

Theorem 3.7. Suppose Kn,n is the simple complete bipartite graph on 2n vertices, where
n ≥ 4 is an even number. Let P be a given Hamiltonian path of Kn,n. Then, we have

4

n
≈

4 cos2( π
2n
)

n
≥ θKn,n(P ) ≥

(4n− 2) cos2( π
2n
)

n2
≈ 4n− 2

n2
. (3.18)

Additionally, for large enough n,

4

n
≥ θKn,n ≥

4

n+ 2
.

Proof. Suppose Kn,n is labelled with bipartition

A = {2t− 1 : t ∈ [n]} and B = {2t : t ∈ [n]}.
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Then, LKn,n is a circulant matrix as suggested in Proposition 3.24.

Note that for every two Hamiltonian paths P1 and P2 of Kn,n there exists an isomor-
phism that maps i-th vertex of P1 to the i-th vertex of P2 by relabelling vertices of A and
B. Therefore, θKn,n(P1) = θKn,n(P2).

Now, let P be the path with ordered set of vertices (1, 2, . . . , 2n), where edges {i, i+1} ∈
E(P ) for i ≤ 2n − 1. Also, let C be the Hamiltonian cycle containing P . Then, with the
given vertex labeling, LC is a circulant matrix with essential row

c = [n,−1, 0,−1, 0,−1, . . . , 0,−1]

as defined in Proposition 3.22.

Also, by Proposition 3.21, for θ ∈ (0, 1], the matrix θLKn,n − LC is also a circulant
matrix with same set of eigenvectors. Thus, for 0 ≤ j ≤ n− 1, we can compute

λθLKn,n−LC
(vj) = λθLKn,n

(vj)− λLC
(vj)

= θλLKn,n
(vj)− λLC

(vj).

Using Proposition 3.22 and Lemma 3.23 we obtain

λθLKn,n−LC
(vj) =


0, if j = 0

θ(2n)− 4 sin2(π
2
), if j = n

θ(n)− 4 sin2(πj
2n
), otherwise

=


0, if j = 0

θ(2n)− 4, if j = n

θ(n)− 4 sin2(πj
2n
), otherwise.

Note that λθLKn,n−LC
is PSD if and only if all of its eigenvalues are non-negative.

First, we need θ ≥ 2
n
as otherwise (2n)θ − 4 < 0. For other values of j /∈ {0, n}, we have

θn− 4 sin2(
πj

2n
) ≥ 0 ⇐⇒ θ ≥

4 sin2(πj
2n
)

n
.

Therefore,

θKn,n(C) = max

{
2

n
,max

{4 sin2(πj
2n
)

n
: j /∈ {0, n}

}}
,

since this is the smallest value such that all eigenvalues of θLKn,n − LC are non-negative.
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Now,
4 sin2( πj

2n
)

n
has its maximum value whenever j = n+ 1 or j = n− 1, which is equal

to

4 sin2(π(n±1)
2n

)

n
=

4 sin2(π
2
± π

2n
)

n
=

4 cos2( π
2n
)

n
.

Thus, for n ≥ 4,

θKn,n(C) = max
{ 2
n
,
4 cos2( π

2n
)

n

}
=

4 cos2( π
2n
)

n
.

Since the spectral thinness of all Hamiltonian paths of Kn,n are equal, we can use Propo-
sition 3.19 to get

(4n− 2) cos2( π
2n
)

n2
≤ θKn,n(P ) ≤

4 cos2( π
2n
)

n
.

Finally, by Proposition 3.17, any non-path tree of Kn,n has spectral thinness at least
4

n+2
. Therefore, we will have

θKn,n ≥ min
{(4n− 2) cos2( π

2n
)

n2
,

4

n+ 2

}
,

which is equal to 4
n+2

for large enough n.

Therefore, we have

4

n+ 2
≤ θKn,n ≤ θKn,n(P ) ≤

4 cos2( π
2n
)

n
≤ 4

n
.

Similar to Kn, by Theorem 3.7 we obtain that θKn,n → 4
n
as n → ∞. As seen in the

Figure 3.6, computational experiment suggests that the exact thinness of path tree P in

the graph Kn,n matches the upper bound
4 cos2( π

2n
)

n
.
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Figure 3.6: The black dots indicates the exact value of θKn,n(P ) and the red and blue curves
are the suggested lower bound and upper bounds in Theorem 3.7. The green curve shows the
function 4

n .
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3.4.4 Prism Graph Πn

Prism graphs were used in the literature of Traveling Salesman Problem by Boyd and Pul-
leyblank [9] to show that the LP relaxation defined by the subtour elimination constraints
can have fractional extreme points with a complicated strucuture. Moreover, Harvey and
Olver [20] used prism graph with specific edge weights as an example of k−edge connected
graph with spectral thinness Ω(

√
n
k
). In this part, we aim to bound spectral thinness of

prism graphs Πn defined as follows.

Definition 3.12. Let n ∈ N be a natural number. We define the prism graph as

Πn = Cn□P2,

where Cn is the cycle of length n, P2 is the path of length 2, and □ denotes Cartesian
product of graphs (see Definition 2.1). In other words, we can define Πn = (V1 ∪ V2, E)
where V1 = {1, . . . , n} and V2 = {n+ 1, . . . , 2n} are the upper and lower vertices and

E = C1
n ∪Mn ∪ C2

n

is the edge-set where C1
n and C2

n are the upper and lower cycle edges andMn is the matching
edges between V1 and V2 (see Figure 3.7). I.e.,

C1
n = {{i, i+ 1 mod n} : i ∈ [n]}

Mn = {{i, i+ n} : i ∈ [n]}
C2

n = {{n+ i, n+ (i+ 1 mod n)} : i ∈ [n]}.

Remark 3.5. For the rest of this chapter, we will use C1
n, C

2
n, and Mn to denote the upper

cycle, lower cycle, and matching edges.

A simple analysis in the following proposition shows that the spectral thinness of un-
weighted prism graph is equal to one.

Proposition 3.25. Let Πn be the prism graph on 2n vertices. Then,

θΠn = 1.

Proof. Since Πn has 2n vertices and the degree of each vertex is equal to 3, we have

|E(Πn)| =
1

2

∑
i∈[2n]

3 =
6n

2
= 3n.
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1 3 nn− 1n− 22

n+ 3 2n− 1 2nn+ i

i+ 1i

n+ i+ 1n+ 1 n+ 2 2n− 2

Figure 3.7: Prism graph Πn. The blue vertices and edges denote the upper vertices {1, . . . , n}
and upper cycle edges C1

n. Similarly, the green vertices and edges denote the lower vertices
{n+ 1, . . . , 2n} and lower cyle edges C2

n. Red edges denote the matching edges Mn.

Next, we claim that Πn does not have two edge-disjoint spanning trees. To see this, note
that each spanning tree of Πn has 2n−1 edges. Therefore, for Πn to have two edge-disjoint
spanning trees we must have

|E(Πn)| ≥ 2(2n− 1) = 4n− 2 > |E(Πn)|,

which is a contradiction. Thus, by Proposition 2.1, we have

1 = αΠn ≤ θΠn ≤ 1.

Therefore, θΠn = 1.

By the previous proposition, we need to consider edge weight function w ∈ R2n
+ to

obtain spectrally thin trees in prism graphs Πn.

Weighted Prism Graph Πn(a, b)

We consider a specific weight function where the edges on the cycles C1
n and C2

n have
weight a and edges in the matching Mn have weight b (see Figure 3.8). We denote the
weighted prism graph by Πn(a, b), where the corresponding edge weight function is defined
as follows.

Definition 3.13. Let n ∈ N be a natural number, and let a, b ∈ R+. We define the
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weighted Prism graph Πn(a, b) to have edge weight function wa,b : E→R+ as

(wa,b){i,j} =


a, if 1 ≤ i, j ≤ n

a, if n+ 1 ≤ i, j ≤ 2n

b, if j = i+ n.

Remark 3.6. For the sake of conciseness, we denote the Laplacian of prism graph Πn(a, b)
by

La,b := LΠn(a,b)(wa,b).

Moreover, to denote the spectral thinness of Πn(a, b), we use

θa,b := θΠn,wa,b
.

aa

aaaa

a

aa

bbbbbb

Figure 3.8: Graph Πn with edge weight function wa,b.

A simple general upper bound and lower bound for the thinness parameter of Πn(a, b)
can be obtained as follows.

General upper bound for θa,b

Lemma 3.6. Let a, b ∈ R+ be real numbers, and let θa,b be the thinness parameter of
Πn(a, b). Then,

θa,b ≤ max(
1

a
,
1

b
).

Proof. Let θ ∈ (0, 1] and T be a spanning tree of G. Then, for any x ∈ R2n, we can
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compute z := x⊤(θLa,b − LT )x as

z = θ
∑

{i,j}∈C1
n∪C2

n

a(xi − xj)
2 + θ

∑
{i,j}∈Mn

b(xi − xj)
2 −

∑
{i,j}∈E(T )

(xi − xj)
2

≥ θmin{a, b}
( ∑

{i,j}∈E

(xi − xj)
2
)
−

∑
{i,j}∈E(T )

(xi − xj)
2.

Now, by replacing θ = max( 1
a
, 1
b
) we have θmin{a, b} ≥ 1. Thus, for all x ∈ R2n we get

x⊤(θLa,b − LT )x ≥
∑

{i,j}∈E(Πn)

(xi − xj)
2 −

∑
{i,j}∈E(T )

(xi − xj)
2

= x⊤LΠnx− x⊤LTx

≥ 0,

where the last inequality holds since T is a subgraph of unweighted Πn as well. Therefore,

θa,b ≤ max(
1

a
,
1

b
). (3.19)

From the above lemma, we can directly obtain the following corollary.

Corollary 3.2. For any positive real numbers εa, εb the weighted prism graph Πn(1+εa, 1+
εb) has a spectrally thin tree.

General lower bounds for θa,b

Definition 3.14. Let Πn be the prism graph on 2n vertices. We call two edges e1 =
{i, j} ∈ C1

n and e2 = {i′, j′} ∈ C2
n twin edges if and only if i′ = n + i and j′ = n + j (see

Figure 3.9).

The following lemma shows how to lower bound spectral thinness of a spanning tree
that contains twin edges.

Lemma 3.7. Let a, b ∈ R+ be real numbers and let T = (V,E(T )) be a spanning tree of
Πn(a, b) with thinness parameter θa,b(T ). Then, if E(T ) contains twin edges we have

n− 1

na
≤ θa,b(T ).
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1 3 nn− 1n− 22

n+ 3 2n− 1 2nn+ i

i+ 1i

n+ i+ 1n+ 1 n+ 2 2n− 2

Figure 3.9: The blue edges denote an example of twin edges in the prism graph Πn.

1 3 nn− 1n− 22 i+ 1ixi =

xn+i = 1 3 nn− 1n− 22 i+ 1i

1 1 1 1

n− 1

n− 1

1

1 1 1 1 1

0

Figure 3.10: Each vertex i is assigned with a value xi, and the value of (xi − xj) for each edge
{i, j} will be obtained as above.

Proof. Suppose e1 and e2 are the twin edges of T . Without loss of generality, we can relabel
the vertices such that e1 = {1, n}, e2 = {n+ 1, 2n} be the twin edges in the tree. Now, we
define the vector x ∈ R2n as follows (see Figure 3.10).

xi =

{
i, if i ≤ n

i− n, if i > n.

For θ ∈ (0, 1] and x, we can calculate z = x⊤(θLa,b − LT )x as
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z = θa
∑

{i,j}∈C1
n∪C1

n

(xi − xj)
2 + θb

∑
i,j∈Mn

(xi − xj)
2 −

∑
{i,j}∈E(T )

(xi − xj)
2

= θa
∑

{i,j}∈C1
n∪C1

n

(xi − xj)
2 −

∑
{i,j}∈E(T )

(xi − xj)
2

= 2θa(
n−1∑
i=1

(i+ 1− i)2 + (n− 1)2)−
∑

{i,j}∈E(T )

(xi − xj)
2

≤ 2θa((n− 1) + (n− 1)2)− 2(n− 1)2.

Note that to have θLa,b − LT ⪰ 0, we must have z ≥ 0. A necessary condition for z ≥ 0
can be obtained as

z ≥ 0⇒ 2θa((n− 1) + (n− 1)2) ≥ 2(n− 1)2.

Therefore, we get n−1
na
≤ θa,b(T ).

Lemma 3.8. Let a, b ∈ R+ be real numbers and let T be a spanning tree of Πn(a, b) with
thinness parameter θa,b(T ). Then, if T does not contain any twin edges we have

n− 1

nb
≤ θa,b(T ).

Proof. Suppose T is a spanning tree with no twin edges. Then,

E(T ) ∩ (C1
n ∪ C2

n) ≤ n,

and at least n−1 edges of T are from the matching edges Mn. Now, consider the incidence
vector x ∈ R2n defined as

xi =

{
1, if i ≤ n

0, if i > n.
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Then, for θ ∈ (0, 1], z := xT (θLGn,a,b
− LT )x is equal to

z = θa
∑

{i,j}∈C1
n∪C1

n

(xi − xj)
2 + θb

∑
{i,j}∈Mn

(xi − xj)
2 −

∑
{i,j}∈E(T )

(xi − xj)
2

= θb
∑

{i,j}∈Mn

(xi − xj)
2 −

∑
{i,j}∈E(T )∩M

(xi − xj)
2

= θbn−
∑

{i,j}∈E(T )∩M

(xi − xj)
2

≤ θbn− (n− 1).

For z ≥ 0 we must have

θbn− (n− 1) ≥ 0 ⇔ θ ≥ n− 1

nb
.

Hence,

n− 1

nb
≤ θa,b(T ).

Combining Lemma 3.6, Lemma 3.7, and Lemma 3.8, we directly get the following
proposition.

Proposition 3.26. Let a, b ∈ R+, and let θa,b be the thinness parameter of Πn(a, b). Then,

min{n− 1

na
,
n− 1

nb
} ≤ θa,b ≤ max(

1

a
,
1

b
).

Note that the gaps in the above lower bound and upper bound are small if a = b.
However, for the cases where a > b or a < b the bounds can be very loose. The following
lemma simplifies calculation of θa,b for the case a ̸= b.

Lemma 3.9. Let graph Πn(a, b) be defined as above. Then, we have θka,kb =
1
k
θa,b.

Proof. Let θ ∈ (0, 1]. By definition of Laplacian, the equality

Lka,kb =
1

k
La,b
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holds. Thus, we have

(θ)Lka,kb − LT ≽ 0 ⇐⇒ (kθ)La,b − LT ≽ 0.

Therefore,
θa,b
k

satisfies the inequality for Πn(ka, kb) and vice versa.

Thus, to study the spectral thinness of Πn(a, b), we may consider to study the spectral
thinness of Πn(a, 1), with a > 1 and Πn(1, b) with b > 1, as by Lemma 3.9 the spectral
thinness of Πn(a, b) is multiplication of one of the two normalized cases.

Note that even with the above simplification, the weighted graphs Πn(1, b) and Πn(a, 1)
are not circulant for any a, b > 1. However, in both cases, there is still a lot of symmetry
in the graphs that we can benefit from. In the following, we will use a mixture of ideas
from Section 3.3 and properties of circulant graphs to bound spectral thinness of Πn(a, 1)
and Πn(1, b) (see Table 3.2).

Πn(a, b) for even n and a, b > 1 Lower bound ≤ θa,b ≤ Upper bound

Πn(1, 1) 1 ≤ θ1,1 ≤ 1
Πn(a, 1)

1
1+2

√
a
≤ θa,1 ≤ 1

Πn(1, b)
1
2
− 1

n
≤ θ1,b ≤ 1

2
+ 3

2b+4

Table 3.2: Obtained bounds for prism graph Πn(a, b) where n is an even number and a, b > 1 are
real numbers.

3.4.5 Weighted Prism Graph Πn(a, 1) for a > 1

Harvey and Olver in [20] proved a lower bound on the spectral thinness of weighted prism
graphs (see Theorem 4.9 in [20]).

Theorem 3.8. For given n, k ∈ N where n is even and k ≥ n, there exists a
weighted graph with 2n vertices and edge connectivity k, such that it does not
have o(

√
n
k
)−spectrally thin spanning tree.
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Specifically, with our notation, they showed that θ k
2
, k
n
is lower bounded by

√
2
5
(
√
n
k
) where

n is an even number and k ≥ n.

While using the same idea, we will improve the result of Harvey and Olver [20] for
prism graph to obtain a lower bound on θa,1.

Theorem 3.9. Suppose Πn(a, 1) is a weighted prism graph where n is an even integer and
a > 1, and let θa,1 be the spectral thinness of Πn(a, 1). Then,

1

1 + 2
√
a
≤ θa,1.

Proof. Let T be any arbitrary spanning tree of Πn(a, 1) where a > 1. First, note that tree
T has at least one edge from the matching. Without loss of generality, we may assume
that a matching edge of T is the edge {n

2
, 3n

2
}, since by rotational relabeling of the vertices

we can guarantee the condition holds.

Let c = 1− ϵ, where

ϵ =
2

1 +
√
a
.

Note that since a > 1, we have 0 < ϵ < 1. Also, let the certificate of lower bound vector
x ∈ RV be defined as follows:

xi =

{
c|

n
2
−i|, if i ≤ n

−c|n2−(i−n)|, if i ≥ n.

We can compute x⊤LTx and x⊤La,bx as follows.

x⊤LTx =
∑

{i,j}∈E(T )

(xi − xj)
2 ≥ (xn

2
− x 3n

2
)2 = 4.

On the other hand, we have

x⊤La,1x = a
∑

{i,j}∈C1
n∪C2

n

(xi − xj)
2 +

∑
{i,j}∈Mn

(xi − xj)
2.
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We analyze each summation separately. Firstly, for the matching edges we have

SM :=
n∑

i=1

(xi − xn+i)
2

= 4
n∑

i=1

x2
i (since xi = −xn+i)

≤ 8
n∑

i=0

ci (since xn
2
−i = xn

2
+i)

< 8
∑
i≥0

ci (since 0 < c < 1)

<
8

1− c
. (by geometric series)

=
8

ϵ
= 4(1 +

√
a).

Similarly, for the cycle edges we get

SC := 2a
n−1∑
i=1

(xi − xi+1)
2 + a(xn − x1)

≤ 4a

n/2−1∑
i=0

(ci − ci+1)2 (since xi = −xn+i)

≤ 4a
∑
i≥0

(ci − ci+1)2 (since 0 < ci − ci+1 < 1)

= 4a(1− c)2
∑
i≥0

c2i

=
4a(1− c)2

1− c2
(by geometric series)

=
4a(1− c)

1 + c

=
4aϵ

2− ϵ

= 4
√
a.
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As a result, we have the following

x⊤LTx

x⊤La,bx
≥ 4

4 + 8
√
a
=

1

1 + 2
√
a
.

In order to compare this lower bound with the lower bound of Harvey and Olver [20]
for prism graph we use the fact given in Lemma 3.9. More specifically, for a > b the prism
graph Πn(a, b) has

θa,b =
1

b
θa

b
,1 ≥ (

1

b
)

1

1 + 2
√

a
b

=
1

b+ 2
√
ab

.

Therefore, for the choice of â = k
2
and b̂ = k

n
we have

θâ,b̂ ≥
1

k
n
+ 2
√

k
2
k
n

=

√
n

k√
n
+
√
2k

=

√
n

k( 1√
n
+
√
2)

≥
√
n

k( 1√
2
+
√
2)

=
3√
2

√
n

k
,

where the third inequality holds for n ≥ 2. Therefore, we obtain a better lower bound
compared to

√
2
5

√
n
k

in [20].

3.4.6 Weighted Prism Graph Πn(1, b) for b > 1

Proposition 3.27. Let n ∈ N be an even number, and let b > 1 be a real number. Then,
for the prism graph Πn(1, b), and any spanning tree T of Πn(1, b) the spectral thinness is
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at least

θ1,b(T ) ≥
1

2
− 1

2n
. (3.20)

Proof. By Lemma 3.7, any spanning tree T of Πn(1, b) that has twin edges will have spectral
thinness at least n−1

n
. Therefore, to lower bound θ1,b we only need to consider a tree that

has at least n− 1 matching edges in Mn.

We consider the general cases where |E(T ) ∩ Mn| = t, where t ∈ {n − 1, n}. If
|E(T )∩Mn| = t, then E(T ) has exactly 2n− t− 1 edges from the cycle edges C1

n and C2
n.

Let x ∈ R2n be defined as follows:

xi :=

{
1, if i is odd

0, if i is even.

1 1 0100 10xi =

1 1 0100 10xn+i =

1

1

0

0

Figure 3.11: Combinatorial cut for prism graph in Πn(1, b). The vertices in blue circles are on
one shore of the cut and other vertices are on the other shore of the cut.

Then, as shown in Figure 3.11, the edges in the cut, defined by x, are the cycle edges
C1

n ∪ C2
n, and we have:

x⊤L1,bx = 2n

x⊤LTx = 2n− t− 1.

119



Thus, we get

θ1,b(T ) ≥
x⊤LTx

x⊤L1,bx

≥ 2n− t− 1

2n

≥ n− 1

2n
( since t ∈ {n− 1, n})

=
1

2
− 1

2n
.

Thus, in general, we will have

θ1,b ≥ min{1
2
− 1

2n
,
n− 1

n
} = 1

2
− 1

2n
.

Upper bound on θ1,b

As shown in the proof of the previous proposition, to obtain a spectrally thin spanning
tree of Πn(1, b), we need to consider graphs that do not have twin edges.

In this section, we will assume that number of vertices in each cycle n is an even number
n = 2k. Before, we proceed further in this section, we will present a relabeling of Πn(1, b),
such that the corresponding matrix L1,b has interesting properties. Let, relabelled vertices
in graph be as

V1 = {2i− 1 : i ∈ [k]} ∪ {n+ 2i : i ∈ [k]}
V2 = {2i : i ∈ [k]} ∪ {n+ (2i− 1) : i ∈ [k]},

where V1 and V2 are the upper and lower cycle vertices with edge set of each cycle equal to

C1
n = {{n+ 2i, (2i± 1 mod 2n)} : i ∈ [k]}

C2
n = {2i, n+ (2i± 1 mod 2n)} : i ∈ [k − 1]}

Mn = {{i, n+ i} : i ∈ [n]}.

Note that with this relabeling (see Figure 3.12), vertices {1, . . . n} and {n + 1, . . . 2n}
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n+ 2i− 1

Πn

2i− 1

2i

2i+ 1n+ 2i

n+ 2i+ 1

n+ 2i+ 2

NΠn (2i)

NΠn(2i+ 1)

1

2 n

n− 1

n+ 1

n+ 2

2n− 1

2n

Figure 3.12: Relabelled vertices of prism graph.

form a bipartite graph. Also, the i-th vertex for i ≤ n is connected to vertices n + i with
edge weight b and vertices n+ i+ 1 and n+ i− 1 with weights 1.

Then, we can write the Laplacian La,b as a block matrix

La,b :=

[
(b+ 2)In A1

A⊤
1 (b+ 2)In

]
,

where A1 is a circulant matrix with essential row c1 = [−b,−1, 0, . . . , 0,−1].

Next, we will define an example a spanning tree with no twin edges, which is also a
Hamiltonian path in Πn(1, b).

Definition 3.15. Let n ∈ N be even, b > 1 be a real number, and Πn(1, b) be the prism
graph. We define the zigzag path of Πn(1, b) denoted by PZ to be the Hamiltonian path
that contains all of the matching edges in Mn. I.e., PZ

PZ = 1, n+ 1, 2, n+ 2, 3, n+ 3 . . . , n, 2n.

Note that by adding the edge e = {1, 2n} the zigzag path becomes a cycle which we
call the zigzag cycle and denote with CZ (see Figure 3.13). It is not hard to see that with
the relabelling mentioned in the above (see Figure 3.14) we have

LCZ
=

[
2In A2

A⊤
2 2In

]
,
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1

2

3

n

n− 1

n− 2n+ 1

n+ 2

n+ 3

2n− 2

2n− 1

2n

2i

2i+ 1
n+ 2i

n+ 2i+ 1

Figure 3.13: Hamiltonian cycle CZ in the prism graph Πn(1, b).

CZ

n+ 2i− 1

2i− 1

2i

2i+ 1n+ 2i

n+ 2i+ 1

NC(2i)

NC(2i+ 1)

Figure 3.14: The figure shows the corresponding vertices of the Zigzag cycle CZ in the new
labelling of vertices.

where A2 is a circulant matrix with essential row

c2 = [−1, 0, 0, . . . , 0,−1].

Now for a fixed θ ∈ (0, 1], We define Dθ := θLa,b − LCZ
to obtain

Dθ =

[
(θ(b+ 2)− 2)In θA1 − A2

θA⊤
1 − A⊤

2 (θ(b+ 2)− 2)In

]
,

where A = θA1 − A2 is also circulant (see Figure 3.14) with essential row

c = [1− bθ,−θ, 0, . . . , 0, 1− θ].
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To show that Dθ is a PSD matrix, we only need to confirm that the smallest eigenvalue
of Dθ, is non-negative. Notice that

Dθ =
(
θ(b+ 2)− 2

)
I2n +B, (3.21)

where

B =

[
0 A
A⊤ 0

]
.

To find the eigenvalues of Dθ, we will use the following lemma.

Lemma 3.10. For θ ∈ (0, 1], let B be the matrix defined as

B =

[
0 A
A⊤ 0

]
,

where A = θA1 − A2 is a circulant matrix with essential row

c = [1− bθ,−θ, 0, . . . , 0, 1− θ].

Then, the set of eigenvalues of B are exactly ±βj, for 0 ≤ j ≤ n− 1, where

βj :=

√
(bθ − 1)2

4θ(1− θ)
− 4θ(1− θ)

(
cos

2πj

n
− (bθ − 1)(2θ − 1)

4θ(1− θ)

)2
.

Additionally, if (bθ−1)(2θ−1)
4θ(1−θ)

≥ 1, then the maximum value β̂ := maxj βj equals to

β̂ = |θ(2b+ 2)− 2|.

We will postpone the proof of Lemma 3.10 to the end of this section, and utilize the
lemma to upper bound the thinness of cycle CZ .

Proposition 3.28. Let Πn(1, b) with b > 1 be the weighted prism graph on 2n vertices
such that n = 2k is an even number. Then, for the Hamiltonian cycle CZ in Πn(1, b) we
have

θa,b(CZ) ≤
1

2
+

3

2b+ 4
. (3.22)
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Proof of Proposition 3.28. Let prism graph Πn with the relabeling described earlier be
given (similar to Figure 3.13). Recall that as in (3.21), we have

Dθ =
(
θ(b+ 2)− 2

)
I2n +B.

Thus, we may assume θ(b + 2) − 2 ≥ 0 as otherwise Dθ has negative diagonal entries
and it is not PSD. Next, by Lemma 3.10, the set of unordered eigenvalues of Dθ can be
computed as

{θ(b+ 2)− 2± βj : 0 ≤ j ≤ n− 1}.

Thus, the minimum eigenvalue of Dθ is equal to

λ2n(Dθ) = θ(b+ 2)− 2− max
0≤j≤n−1

βj

= θ(b+ 2)− 2− β̂.

Additionally, if we have (bθ−1)(2θ−1)
4θ(1−θ)

≥ 1, then β̂ = |θ(b + 2) − 2| and the minimum
eigenvalue of Dθ is equal to

λ2n(Dθ) = θ(b+ 2)− 2− |θ(b+ 2)− 2|
= 0,

where the second equality holds since we assumed θ(b+ 2)− 2 ≥ 0. Therefore, a sufficient
condition for Dθ to be a positive semidefinite matrix is to have

(bθ − 1)(2θ − 1)

4θ(1− θ)
≥ 1 ⇐⇒ (2b+ 4)θ2 − (b+ 6)θ + 1 ≥ 0

⇐⇒ θ ≤ θ1 or θ ≥ θ2,

where θ1 < θ2 are the roots of the quadratic function

f(θ) = (2b+ 4)θ2 − (b+ 6)θ + 1.

We can now compute θ1, θ2 as

θ1 =
b+ 6−

√
b2 + 4b+ 20

4b+ 8
, θ2 =

b+ 6 +
√
b2 + 4b+ 20

4b+ 8
.
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To upper bound θ1 note that b2 + 4b+ 20 = (b+ 2)2 + 16. Therefore, we have

θ1 =
b+ 6−

√
(b+ 2)2 + 16

4b+ 8

≤
b+ 6−

√
(b+ 2)2

4b+ 8

=
4

4b+ 8

=
1

b+ 2
.

As a result, for any value θ ≤ θ1 we do not satisfy θ(b + 2) − 2 ≥ 0 and Dθ is not a PSD
matrix. On the other hand, note that

√
(b+ 2)2 + 16 ≥ b+ 4 as b ≥ 1. Therefore, we get

θ2 =
b+ 6 +

√
(b+ 2)2 + 16

4b+ 8

≤ b+ 6 + (b+ 4)

4b+ 8

=
1

2
+

3

2b+ 4
.

Therefore, for any value θ ≥ 1
2
+ 3

2b+4
both conditions

θ(b+ 2)− 2 ≥ 0

and
(bθ − 1)(2θ − 1)

4θ(1− θ)
≥ 1

are satisfied, and we have Dθ ⪰ 0. This proves that

θ1,b(CZ) ≤
1

2
+

3

2b+ 4
.

Thus, we can conclude that for even n ∈ N, the spectral thinness of the prism graph
Πn(1, b) can be bounded as follows:

Corollary 3.3. For even value n = 2k and b > 1, the spectral thinness of Πn(1, b) is
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bounded by

1

2
− 1

2n
≤ θ1,b ≤

1

2
+

3

2b+ 4
. (3.23)

Proof.

1

2
− 1

2n
≤ θ1,b ( by Proposition 3.27)

≤ θ1,b(PZ)

≤ θ1,b(CZ) ( by Proposition 3.18)

≤ 1

2
+

3

2b+ 4
. ( by Proposition 3.28)

Finally, we will finish this case, by proving Lemma 3.10.

Proof of Lemma 3.10. To compute eigenvalues of B we consider the square matrix B2,
where

B2 =

[
AA⊤ 0
0 A⊤A

]
.

Note that A⊤ is also a circulant matrix with essential row

c′ = [1− bθ, 1− θ, 0, . . . , 0,−θ].

Since circulant matrices commute (Proposition 3.21 (iii)), we have AA⊤ = A⊤A. Moreover,
since A,A⊤ are circulant, both share a same set of eigenvectors

vj =
1√
n
[ω0j

n , ω1j
n , . . . , ω(n−1)j

n ]⊤

126



with eigenvalues

λA(vj) :=
√
ncvj =

n−1∑
k=0

ckω
kj
n ,

λA⊤(vj) :=
√
nc′vj =

n−1∑
k=0

c′kω
kj
n .

Also, the vectors Vj =

[
vj
vj

]
and Uj =

[
vj
−vj

]
form a set of eigenvectors for B2 with

eigenvalues λB2(Vj) and λB2(Uj) is equal to

β2
j = λA(vj)λA⊤(vj).

Notice that if β2
j is an eigenvalue of B2, then either βj or −βj is an eigenvalue of B.

Additionally, since B is a bipartite matrix, by Proposition 3.8, βj is eigenvalue of B if and
only if −βj is an eigenvalue of B. Therefore, the set of eigenvalues of B is equal to:

{±βj : 0 ≤ j ≤ n− 1}.

By calculation, we have that

β2
j = λA(vj)λA⊤(vj)

=
(
(1− bθ)− θωj + (1− θ)ω(n−1)j

)
×
(
(1− bθ) + (1− θ)ωj − θω(n−1)j

)
= (1− bθ)2 + θ2 + (1− θ)2 − 2θ(1− θ) cos

4πj

n
+ 2(1− bθ)(1− 2θ) cos

2πj

n
.

Then, by simplifying the above formulation using cos 2x = 2 cos2 x− 1 we get,

β2
j = 2θ(1− θ) + (1− bθ)2 + θ2 + (1− θ)2 − 4θ(1− θ) cos2

2πj

n
+ 2(1− bθ)(1− 2θ) cos

2πj

n

= 1 + (1− bθ)2 − 4θ(1− θ)
(
cos

2πj

n
− (1− bθ)(1− 2θ)

4θ(1− θ)

)2
+

(1− bθ)2(1− 2θ)2

4θ(1− θ)

= 1 +
(bθ − 1)2

4θ(1− θ)
− 4θ(1− θ)

(
cos

2πj

n
− (bθ − 1)(2θ − 1)

4θ(1− θ)

)2
.
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Next, we will argue that if

(bθ − 1)(2θ − 1)

4θ(1− θ)
≥ 1 (3.24)

then we have
β̂ = |θ(2b+ 2)− 2|.

Note that since θ ∈ (0, 1), we have 4θ(1 − θ) ≥ 0. Then, to maximize βj, we equivalently
can minimize the value of (

cos
2πj

n
− (bθ − 1)(2θ − 1)

4θ(1− θ)

)2
.

Now, if (3.24) holds, then to minimize above, the best choice is set j = 0 so that cos 2πj
n

= 1.
Then, we get

β2
0 = 1 +

(bθ − 1)2

4θ(1− θ)
− 4θ(1− θ)

(
1− (bθ − 1)(2θ − 1)

4θ(1− θ)

)2
= 1 +

(bθ − 1)2

4θ(1− θ)

(
4θ(1− θ)

)
− (bθ − 1)2(2θ − 1)2

4θ(1− θ)
+ 2(bθ − 1)(2θ − 1)

= 1 +
(bθ − 1)2

4θ(1− θ)

[
1− (2θ − 1)2

]
− 4θ(1− θ) + 2(bθ − 1)(2θ − 1)

= 1 + (bθ − 1)2 − 4θ(1− θ) + 2(bθ − 1)(2θ − 1)

= 1 + (bθ − 1)
(
(bθ − 1) + (4θ − 2)

)
− 4θ(1− θ)

= (b2 + 4b+ 4)θ2 − (4θ + 8)θ + 4

= (b+ 2)2θ2 − 2(b+ 2)θ + 4

=
(
(b+ 2)θ − 2

)2
.

Therefore, we get
β̂ = |(b+ 2)θ − 2|.

The computational calculation showed that roughly speaking, the value of θ1,b(P2n) is
closer to the upper bound 1

2
+ 1

b
( see Figure 3.15).

128



Figure 3.15: a=1, n=100, enumerate on b. The black curve shows the experimental computational
of θ1,b, and the blue curve and the red line show the obtained upper and lower bounds for θ1,b.
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Chapter 4

Conclusion and Future Research

In this thesis, we discussed notions of combinatorially and spectrally thin trees which
are two related families of spanning trees with interesting properties and applications.
However, as we saw, existence of such spanning trees is still unknown for many families
of graphs, and there are many questions to investigate that could be an intermediate step
towards resolution of thin tree conjecture.

Edge disjoint spanning trees To begin with, we showed that graphs without two
spanning trees do not have combinatorially thin trees. Additionally, we also covered a
result of Merker and Postle [29], which shows families of 4-regular graphs with two edge-
disjoint spanning trees that do not have combinatorially thin trees. Regarding this result,
an interesting open question is that whether having three or higher number of edge-disjoint
spanning trees is enough for a graph to be combinatorially thin (see Goemans [19]).

Combinatorial thinness with respect to specific cuts Note that a combinatorially
α-thin tree has to have at most α fraction of each cut-set δ(U) ⊆ E in the graph G.
However, for some applications we might be able to relax this condition by requiring the
spanning tree to be only α-thin for specific cut-sets of the graph. In a recent work, Klien
and Olver [25] considered a laminar family of cuts L ⊆ 2V such that for any two cuts
U1, U2 ∈ L we have either U1 and U2 are disjoint or they are subset of each other; i.e.,
U1 ⊂ U2 or U2 ⊂ U1. In fact, they proved that given a k−edge connected graph and a
laminar family of cuts L ⊆ 2V , there exists a spanning tree which is O( 1

k
)−thin for the

cuts in L. This new result may also be considered as another piece of evidence toward
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correctness of strong thin tree conjecture. Therefore, another direction for research on thin
trees is to investigate the existence of thin trees with respect to specific cut families.

Combinatorial thinness for structured families of graphs As we mentioned in
Chapter 2, Oveis-Gharan and Saberi [16] proved existence of combinatorially thin tree in
families of graphs with bounded genus. Additionally, for planar graph G, we showed how
to translate their algorithm to an algorithm working on the original planar graph G. More
specifically, we used the fact that in k-connected planar graphs the underlying graph is
sparse, and one can maintain an ordering of edges throughout the algorithm while selecting
proper edges and contracting them.

An interesting approach to further understanding this result is to see exactly what
properties should be satisfied by G for this algorithm to work and whether we can extend
their result to other family of graphs with sprase underlying graph.

Relations between combinatorial and spectral thinness Even though calculating
αG(T ) is believed to be a hard problem for an arbitrary graph G and spanning tree T ,
computing θG(T ) is possible in polynomial time. Since spectrally thin trees are a subset
of combinatorially thin trees, we can obtain an upper bound on αG whenever spectral thin
trees exist.

Although strong thin tree conjecture suggests existence of combinatorially O( 1
k
)- thin

trees in k-connected graphs, Harvey and Olver [20], and later, Anari and Oveis-Gharan
[2] showed instances of k-connected (weighted) graphs without spectrally thin trees. More
specifically, one can construct k-connected (weighted) graphs with n vertices such that all
edges in a specific cut have effective resistance 1−O(k2/n). Therefore, if strong thin tree
conjecture is correct, we have family of graphs where the gap θG − αG becomes arbitrary
close to one. On the other hand, we know that θG = O(ReffG) [27, 20]. From this result,
we further know that in a k-connected edge-transitive graph G we have θG = O( 1

k
). As

a result, if strong thin tree conjecture holds, for families of k-connected edge-transitive
graphs we have θG/αG = O(1).

Nevertheless, the exact relations between αG, θG, k, and ReffG are still unknown.
Therefore, another direction of research in this area is to study the gaps such as θG − αG

and ratios such as θG/αG for different families of graphs which may be useful in further
understanding of the strong thin tree conjecture.

Hamiltonian paths As another observation in Chapter 3, we investigated Hamiltonian
paths as a good candidate for both spectrally and combinatorially thin trees. Hamiltonian
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graphs are not limited to the examples we covered and many families of distance regular
graphs have Hamiltonian properties. In fact, in 1969 Lovász conjectured that every con-
nected vertex-transitive graph has a Hamiltonian path, and in a recent work, Merino et al.
[28] proved this conjecture for the case of Kneser graphs. Investigating the difference and
similarities of spectral and combinatorial thinness of Hamiltonian paths, where they exist,
is an interesting research direction which might shed light on the relation of θG and αG is
some graphs.

Computation complexity of θG It is known that verifying the exact value of αG is a
NP-hard problem in the general setting. However, even though we know how to efficiently
compute θG(T ) for a specific tree T , we currently do not have a complete understanding
of the computational complexity of θG in the general setting. Finding polynomial time
algorithms to compute θG for arbitrary graphs or proving NP-hardness of this problem can
also be an interesting research direction.

Semidefinite programming Finally, we can consider the problem of finding spectral
thinness of a given graphG as an optimization problem and consider semidefinite relaxation
of it. In fact, θG,w is equal to the optimal value of the following optimization problem.

θG,w = min θ
subject to θ.LG(w) ⪰ LG(x),

x ∈ SP (G) ∩ {0, 1}E.
(P1)

Therefore, we can obtain a lower bound on θG by considering a semidefinite relaxation
of (P1) as

min θ
subject to θLG(w) ⪰ LG(x)

Ax ≥ b,
(SP1)

where A ∈ RV×E and b ∈ RE are the constraint identifiers of spanning tree polytope SP (G).
Note that well-posed semidefinite programming problems can be solved in polynomial time
to obtain an approximate optimal solution. Therefore, the above proposition gives a very
easy algorithmic way of obtaining a lower bound on spectral thinness θG,w. However, this
lower bound can be loose.

Example 4.1. For the complete graph Kn with weight function w = 1, the thinness
parameter θKn is lower bounded by 4(n−1)

n2 as described in Theorem 3.6. However, for
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x = 2
n
.1 ∈ RE, we have x ∈ SP (Kn). Moreover, if we consider the SDP (P1) relaxation

we get

θLKn(1) ⪰
2

n
LKn(1).

Therefore, (2/n, x) is a pair of feasible solution for the SDP relaxation. Thus, the optimal

value of (P1) θ̃ < 2
n
which has a considerable gap with 4(n−1)

n2 .

As another research direction one can investigate the spectral thinness problem by
finding better SDP relaxations which may lead to tighter lower bounds on θG.
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Appendix A

Missing Proofs

Proof of Claim 1.1

Proof. Firstly, note that since Ē corresponds to set of all arcs a ∈ A of G with non-zero
x∗
a, we have

x∗(A) =
∑

{u,v}∈Ē

(x∗
uv + x∗

vu)

=
∑

{u,v}∈Ē

(
n

n− 1
)x̄uv

= (
n

n− 1
)x̄(Ē)

Thus, we can show the first constraint in (1.7) holds as,

x̄(Ē) = (
n− 1

n
)x∗(A)

= (
n− 1

n
)
(∑

v∈V

(
∑

(v,u)∈A

x∗
vu)
)

= (
n− 1

n
)
(∑

v∈V

x∗(δ+G(v))
)

= (
n− 1

n
)|V | = n− 1,
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where the last equality holds since x∗ is feasible in (1.8).

Secondly, for each subset of vertices U ⊊ V let

x̄(Ē[U ]) =
∑

{u,v}∈Ē[U ]

x̄uv.

Then, we show x̄(Ē[U ]) < |U | − 1. By definition,∑
v∈U

x̄(δḠ(v)) = 2x̄(Ē[U ]) + x̄(δḠ(U))

= 2x̄(Ē[U ]) +
n− 1

n
(x∗(δ+G(U)) + x∗(δ−G(U)))

≥ 2x̄(Ē[U ]) + 2(
n− 1

n
),

where the last inequality holds since we have x∗(δ−G(U)) = x∗(δ+G(U)) ≥ 1.

On the other hand, we have∑
v∈U

x̄(δḠ(v)) =
∑
v∈U

n− 1

n
(x∗(δ+G(v)) + x∗(δ−G(v)))

=
∑
v∈U

2
n− 1

n

= 2
n− 1

n
|U |.

Combining both, we get that

x̄(Ē[U ]) ≤ n− 1

n
(|U | − 1) < |U | − 1. (A.1)

Since the last inequality is strict, x̄ is in the relative interior of SP(Ḡ).

Proof of Lemma 2.2

Proof. Let G = (V,E) be a graph with ∆(G) = D, and let T = (V,E(T )) be a spanning
tree in G. For each edge e = {u, v} ∈ E(T ), suppose We, Ue be the vertex sets of T \ e
two connected components. Define f(e) := ||We| − |Ue||, and let edge e∗ = {u, v} be the
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S1 S2 SrS3 . . .

w1 w2 w3 wr

u

v

u

v

W

U U

W

Figure A.1: The components U and W corresponding to cut-edge e = {u, v}.

edge that minimizes the value of function f . Without loss of generality, suppose Ue∗ be
the smaller size component, and suppose u ∈ Ue∗ .

Now, let {w1, . . . wr} be the neighbours of v in We∗ for some r ≤ D − 1. Moreover, for
each i ∈ [r] let Si ⊂ V be the vertex set of T \ {wi, v} connected component which is fully
contained in We∗ . Note that by our definition, we have

We∗ = {v} ∪ S1 ∪ . . . ∪ Sr.

Now we will prove two claims in the following.

Claim A.1. |Si| ≤ n
2
, for all i ∈ [r].

Proof. Without loss of generality, suppose we have |S1| > n
2
. Then, consider edge e =

{w1, v}, and note that

f(e) = ||S1| − |(We∗ \ S1) ∪ Ue∗||

= |S1| − (|Ue∗|+ |S2|+ . . . |Sr|+ 1) (since |S1| >
n

2
)

< |S1| − |Ue∗|
< |We∗| − |Ue∗ | (since S1 ⊊ We∗)

= f(e∗),

which is a contradiction since we assumed e∗ minimizes function f .

141



Claim A.2. |Sj| ≤ |Ue∗| for all j ∈ [r].

Proof. Without loss of generality, suppose |S1| > |Ue∗|, then consider edge e = {w1, v}.
Since by Claim A.1 we know that |S1| ≤ n

2
, we have

f(e) = ||S1| − |V \ S1||
= |V \ S1| − |S1|
= (|We∗| − |S1|+ |Ue∗|)− |S1|
= |We∗ |+ |Ue∗| − 2|S1|.

On the other hand, f(e∗) = |We∗ | − |Ue∗|. Therefore,

f(e)− f(e∗) = (|We∗|+ |Ue∗ | − 2|S1|)− (|We∗| − |Ue∗ |)
= 2|Ue∗| − 2|S1|
< 0.

Hence, f(e) < f(e∗) which is a contradiction.

Now, in order to show min{|Ue∗|, |We∗|} = |Ue∗| ≥ n
d+1

, note that we have

|We∗| =
r∑

i=1

|Si|+ 1,

and also,

|We∗ |+ |Ue∗| =
r∑

i=1

|Si|+ |Ue∗|+ 1 = n.

Since by Claim A we have|Si| ≤ |Ue∗|, the following inequalities holds:

n− 1 =
r∑

i=1

|Si|+ |Ue∗| ≤ (r + 1)|Ue∗| ≤ D|Ue∗|.

Therefore, we have |Ue∗| ≥ n−1
D

and both shores of T \ e∗ has vertex set of size at least
n

D+1
.
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Proof of Theorem 3.2

Proof. Note that λn = 0 with corresponding eigenvector vn = 1E. By Theorem 3.1, we
have

λn−1 = min
x⊥vn=1

x⊤LGx

x⊤x

= min
x⊥vn=1

∑
{i,j}∈E(xi − xj)

2∑
i x

2
i

.

Now, for an arbitrary but fixed cut U ⊂ V with |U | ≤ n
2
, define vector x ∈ Rn as

xi :=

{
1
|U | if vi ∈ U

− 1
|V |−|U | if vi /∈ U.

Notice that we have

⟨x,1⟩ =
n∑

i=1

xi = |U |.
1

|U |
− (|V | − |U |). 1

|V | − |U |
= 0.

Therefore, x⊥1 and we can show that

λn−1 ≤
x⊤LGx

x⊤x

=

∑
{i,j}∈E(xi − xj)

2∑
i x

2
i

=
|δ(U)|( 1

|U | +
1

|V |−|U |)
2

|U |( 1
|U |)

2 + (|V | − |U |).( 1
|V |−|U |)

2

= |δ(U)|( 1

|U |
+

1

|V | − |U |
)

=
|δ(U)|.|V |

|U |.(|V | − |U |)

=
|δ(U)|
|U |

× |V |
|V | − |U |

≤ 2Φ(U),
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where the last equality holds as |V | − |U | ≥ |V |
2
. Since the inequality holds for all U ⊂ V,

we have

λn−1

2
≤ Φ(G). (A.2)

Proof of Lemma 3.5

Proof. Note that if n < 4, then 4
n
> 1 is a trivial upper bound on the thinness of any tree

of Kn. Therefore, suppose n ≥ 5 and let T be a non-path tree of Kn. Therefore, T has a
vertex of degree at least three. Therefore, we only need to consider the following cases.

i. T has a vertex v1 of degree degT (v1) ≥ 4.

ii. T has two adjacent vertices v1, v2 of degree degT (v1) = degT (v2) = 3.

iii. For every vertex v1 of T with degree degT (v1) = 3, all of its neighbours v2, v3, v4 have
degree at most 2.

2 ≥ degT (v2) ≥ degT (v3) ≥ degT (v4).

The first two cases can be proven similar to proof of Proposotion 3.17.

For the third case, let N =
(
NT (v2)∪NT (v3)∪NT (v4)

)
\ v1 be the vertices at distance

two from v1 in the spanning tree T , which are connected to v2, . . . , v4. Without loss of
generality, let v1 = 1, v2 = 2, v3 = 3, v4 = 4 be the first vertices in the vertex labeling (see
Figure A.2). We define x ∈ RV to be

xi =


4, if i = 1

−2, if i = 2, 3, 4

1, if i ∈ N

0, otherwise.

Now, we claim that in each case, we have

θKn(T ) ≥
x⊤LTx

x⊤LKnx
≥ 4

n
.
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v1

v2 v3 v4

|N | ∈ {1, 2, 3}1

...

0

4

−2

N

0

Figure A.2: Spanning tree with no two adjacent degree three vertices and the corresponding
values of xi.

We first consider x⊤LTx. Note that since n > 5, at least one of the vertices in N has
to be connected to a vertex outside of {1, 2, 3, 4} ∪ N . Additionally, each vertex in N is
connected to exactly one of the vertices {2, 3, 4}. Therefore,

x⊤LTx =
∑

{i,j}∈E(T )

(xi − xj)
2

≥=
∑

j∈{2,3,4}

62 +
∑

{i,j}∈E(T ):i∈{2,3,4},j∈N

32 +
∑

{i,j}∈E(T ):i/∈{1,2,3,4},j∈N

1

≥ 109 + 9|N |.

To compute x⊤LKnx we proceed as follows. For vertex 1 we have,∑
1<j≤n

(x1 − xj)
2 =

∑
j∈{2,3,4}

62 +
∑
j∈N

32 +
∑

j /∈N∪{2,3,4}

42

= 108 + 9|N |+ (n− 1− (|N |+ 3))16

= 16n− 7|N |+ 44.
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Also, for the other edges {i, j} with i ∈ {2, 3, 4} and j > 1 we have,∑
i∈{2,3,4}

∑
i<j

(xi − xj)
2 =

∑
i∈{2,3,4}

∑
j∈N

32 +
∑

i∈{2,3,4}

∑
j /∈N∪{1,2,3,4}

4

= 3× 9× |N |+ 3× 4× (n− 1− (3 + |N |))
= 12n+ 15|N | − 48.

Finally, all the edges {i, j} with i ∈ N and j /∈ {1, 2, 3, 4} ∪N we have,∑
i∈N

∑
i<j

=
∑
i∈N

∑
j /∈{1,2,3,4}∪N

(xi − xj)
2

= |N |((n− 1)− 4− (|N | − 1))

= |N |n− |N | − |N |2.

Therefore,

x⊤LKnx =
∑

1≤i<j≤n

(xi − xk)
2

=
∑

1<j≤n

(x1 − xj)
2 +

∑
i∈{2,3,4}

∑
i<j

(xi − xj)
2 +

∑
i∈N

∑
j /∈{i<j

(xi − xj)
2

= (28 + |N |)n− (|N | − 2)2.

Therefore, we can lower bound the thinness parameter θKn(T ) with

θKn(T ) ≥
x⊤LTx

x⊤LGx

≥ 16n− 7|N |+ 44

(28 + |N |)n− (|N | − 2)2

≥


118

23n−1
, if |N | = 1

127
30n

, if |N | = 2
136

31n−3
, if |N | = 3.

≥ 4

n
.
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