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Abstract

Effectively adapting to a changing climate involves making appropriate operational deci-

sions based on long-term climate forecasts. This dissertation presents a comprehensive

framework that combines climate data, regression models, and robust optimization mod-

els to examine the decision-making process for adapting to climate change over long time

horizons. The research includes two projects: one focuses on studying land investment

decisions, and the other investigates the operations of electricity storage systems, both

considering the impacts of climate change.

Project 1: Climate change affects agricultural inputs, like temperature and precipi-

tation, and further affects the economic output of farmland. In this study, we focus on

formulating effective policies to aid various stakeholders, including investors and farmers,

in adapting to the climate-induced impacts on farmland investment in the Mississippi River

Basin (MRB) by using well-known climate models. Each climate model generates a unique

climate forecast, and based on these forecasts, we compute a range of farmland values

for the MRB. Utilizing these ranges, we apply a robust optimization model to study the

optimal investment policies under varying levels of conservatism, representing the extent

to which farmland assets are constrained to adopt worst-case values. We show that the

optimization model can be linearized and can scale to long time frames, about 50-plus

years, and sets of assets. The case study of investment in the MRB covers the years

2023-2090 and uses trajectories of land values determined for each climate scenario using a

regression model. Our empirical study shows that there is a disagreement between popular

climate forecasts that influence land investment and may affect the most profitable land
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investments.

Project 2: The effects of climate change on energy markets are diverse, encompassing

changes in demand patterns and supply dynamics, particularly concerning the increasing

penetration of renewable energy. These changes impact the dynamics of energy supply from

renewable sources, such as wind and solar, leading to increased intermittency. Battery

energy storage systems (BESSs) present a promising solution to effectively manage this

intermittency from renewable energy sources. However, their profitability and incentive to

participate in markets under climate change are susceptible to both the magnitude and

frequency of price variation. This project investigates the impact of climate change on a

BESS operating in a North American deregulated electricity market. We propose a robust

optimization model to determine the operating policy of a BESS over 80 years (from 2021

to 2100) under different climate projections. We reformulate the robust optimization model

to an equivalent linear program that allows us to numerically explore the operations of the

BESS over the time horizon. Our empirical study analyzes the optimal arbitrage operations

of the BESS in the Midcontinent Independent System Operator market in the United

States, using the proposed robust model and trajectories of electricity prices determined

for each climate scenario by a regression model. Additionally, we introduce a downscaling

method to adjust climate scenarios to the desired resolutions for predicting electricity

prices through the regression model. The results of the robust model reveal significant

variations in the operating incomes of the BESS across different geographical locations

and climate scenarios, highlighting the need for tailored strategies adapting to climate-

induced variations in energy markets.

The findings from both projects underscore the critical significance of considering a
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wide range of climate scenarios, encompassing detailed temporal and spatial data when

assessing climate adaptation decisions.

Note that I used ChatGPT to proofread my dissertation, primarily for grammar and

spelling checks. I do not use ChatGPT to generate content for the dissertation, as it is

prohibited by the University of Waterloo’s policy.
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Chapter 1

Thesis Introduction

Adapting to climate change involves making informed decision sequences over a long-term

horizon. This dissertation delves into these decision sequences for climate adaptation

through a framework comprising climate data, regression models, and robust optimiza-

tion. The following sections provide detailed introductions to climate adaptation and the

framework.

1.1 Climate Change Adaptation

Climate change, as defined by the IPCC, encompasses any alteration in climate patterns

over time, whether stemming from natural variability or resulting from human activities

(IPCC, 2007).

Multiple scientific assessments have outlined the varied and substantial effects of climate
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change on natural systems. Climate change can affect rainfall patterns, humidity, sea level,

irregular seasons, floods, droughts, and storms (Rajkhowa and Sarma, 2021).

These climate changes bring about various challenges and opportunities for human

society. On the challenging side, climate change has been linked to severe health issues

(Kotcher et al., 2021), significant economic losses (Brás et al., 2021), sea level rise (Gregory

et al., 2019), food and water insecurity (Fitton et al., 2019), social instability (Richards

et al., 2021), ecosystem loss (Turner et al., 2020), among other issues. Conversely, it may

also offer benefits in some respects. For example, lands near polar regions may experience

increased productivity due to global warming (Su et al., 2021). Therefore, it is crucial to

consider climate change in human operations and production to adapt to and exploit these

challenges and opportunities (Santos et al., 2020; Parmesan et al., 2022).

Climate change adaptation, according to the IPCC, is defined as “adjustment in nat-

ural or human systems in response to actual or expected climatic stimuli or their effects,

which moderates harm or exploits beneficial opportunities” (IPCC, 2007). Furthermore,

this adaptation should encompass actions over more than a 50-year time horizon, which is

necessary to account for many possible climate change effects, as noted in Hannah et al.

(2002).

Supported by a wealth of research evidence (Parmesan et al., 2022; Grafakos et al.,

2020), adapting to climate change is essential for a wide range of stakeholders, including

investors and government bodies. To illustrate the importance of climate adaptation, we

provide two examples: one in the context of land investment and the other in electricity

storage operations.
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In the field of land investment, changes in climate, such as fluctuations in precipitation

and temperature levels throughout the year, can either enhance or diminish land produc-

tivity (Su et al., 2021). Land investors need to carefully consider appropriate strategies

in their investment decisions under changing climate conditions to achieve favorable out-

comes. These strategies include making proper investment decisions about when and where

to buy and sell land given the investors’ limited resources.

In the realm of electricity storage, climate change affects the variability of electricity

supply, demand, and prices, presenting challenges for storage systems responsible for main-

taining the stability and reliability of the electricity market (Chandramowli and Felder,

2014). Operators of these systems need to develop appropriate operational strategies to

adapt to the effects of climate change on the electricity market. These strategies include

making proper decisions about when and how much to charge and discharge storage sys-

tems given operators’ limited resources.

The expense of climate change adaptation is substantial. The cost of adaptation bears

significant financial implications, with projected costs rising to an estimated $160–$340

billion by 2030 and $315–$565 billion by 2050, as reported by the United Nations (UN

Environmental Programme, 2022). Therefore, from a purely economic perspective, it is

important to approach adaptation strategies with optimal efficiency.

The pursuit of such optimization closely aligns with the established purpose of Oper-

ations Research (OR). Within this field, individuals employ mathematical models, often

referred to as optimization models, to systematically examine the optimal decisions or

operational procedures. This analytical approach seeks to either maximize or minimize
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specific objectives of interest while conscientiously considering the constraints imposed by

the available resources.

The development of an optimization model needs to incorporate input parameters re-

lated to climate data to support climate change adaptation. These parameters are a

function of climate, such as future prices derived from climate data. To obtain these pa-

rameters, we require climate data and the associated function. Given our specific interest

in future prices, we refer to this function as a prediction model.

We provide details regarding climate data and prediction models as follows:

• Climate data: Prominent climate models, known as General Circulation Models

(GCMs), offer climate projections for the next 80 years (Thrasher et al., 2022).

GCMs are mathematical and computational models of climate systems used to gen-

erate projections based on future concentrations of greenhouse gases (GHG) and

socio-economic characteristics (Kriegler et al., 2012). These climate projections can

assist stakeholders understand the potential evolution of climate.

• Prediction models : The models predict parameters of interest based on climate data

for OR models. The specific form of the prediction models depends on the area

of interest. However, one popular form is regression models, which are statistical

techniques that establish relationships between independent (also called explana-

tory) variables (e.g., climate variables) and dependent variables (e.g., prices in our

applications).

Adaptation to climate change is difficult because of the uncertainty in climate projec-
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tions. Successful adaptation relies on accurate climate change forecasts. Climate change

forecasts are based on GCMs and future emission scenarios, but these forecasts are subject

to uncertainties, including the internal variability of the climate system, response uncer-

tainties of GCMs, and radiative forcing uncertainties (Hawkins and Sutton, 2009; Lehner

et al., 2020). These uncertainties lead to an increase in the variance of climate change

forecasts over time (Lehner et al., 2020), making GCMs a difficult tool to use if wanting

accurate climate predictions.

Climate change adaptation should consider extreme climate scenarios that will become

more frequent in the future if no action is taken. This is of paramount importance because

the most significant threats to humans will manifest locally through changes in regional

extreme weather and climate events (Beniston et al., 2007). For instance, North America

has witnessed shifts in the occurrence and severity of extreme events, including floods,

droughts, windstorms, heatwaves, and wildfires, in recent years. In North America, only

extreme hydrological events, such as floods and droughts, have caused economic losses of

about $80 billion between 2010-2014 (Gao et al., 2019). Therefore, it is important for OR

models to formulate solutions designed for these extreme cases.

One promising approach to address the uncertainty of climate projections and extreme

climate events is to undertake climate change adaptation under the worst-case scenario.

The concept involves investigating optimal solutions that are effective across all scenarios

introduced by potential climate projections. The underlying rationale is that if a solution

proves successful in the worst-case scenario, it will still work in less severe scenarios. This

approach has gained attention in previous policy papers, such as those by Hallegatte (2009)

and Constantino and Weber (2021), as a promising strategy for long-term climate change
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adaptation. In our applications, we generate the worst-case scenario for the next 80 years

for each available climate projection.

The adaptation to the worst-case scenario aligns with the domain of robust optimiza-

tion, an important area of research in the OR field. Robust optimization is a mathematical

optimization methodology that represents uncertainty as a set and seeks to determine the

optimal policy based on the worst-case scenario, as determined by the characteristics of

the uncertainty set.

Furthermore, robust optimization exhibits favorable properties, which enhances its

model-solving capabilities. These capabilities make robust optimization tractable over

long-term horizons (≥ 50 years), as required to study climate change adaptation (Hannah

et al., 2002).

In this context, we integrate three components: climate data (derived from GCM pro-

jections), regression models, and robust optimization models to investigate climate change

adaptation in the context of worst-case scenarios induced by climate change. In the fol-

lowing sections, we provide more details about these three components.

1.2 Climate Projections

Climate projections provide important climate data for climate change adaptation. Pop-

ular climate models, also known as GCMs, are used world-wide to project future climate

variables, including temperature, precipitation, wind speed, and solar radiation. We rely

on GCM projections to understand climate change and predict future economic parameters
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of interest, e.g., prices in our applications.

GCMs partition the Earth’s surface into a three-dimensional grid of cells and compute

climate values for each cell. For instance, Figure 1.1 illustrates a grid division scheme com-

monly employed by GCMs. The size of these grid cells determines the model’s resolution,

with smaller cells offering greater resolution and detail but demanding more computing

resources. Detailed explanations regarding how GCMs derive climate values for individual

grid cells can be found in National Oceanic and Atmospheric Administration (2023).

Figure 1.1: A three-dimensional grid of cells used by GCMs (retrieved from National
Oceanic and Atmospheric Administration (2023))

GCMs are parameterized by social and emission scenarios, such as Representative Con-

centration Pathways (RCPs) (Pachauri et al., 2014; Adopted, IPCC, 2014) and Shared

Socio-economic Pathways (SSPs) (Riahi et al., 2017).

RCP describes pathways of GHG emissions and atmospheric concentrations leading

to different radiative forcing values (Van Vuuren et al., 2011). In contrast, SSP further

refine the RCP framework by incorporating the influence of societal choices on radiative

forcing, particularly toward the end of the century (Kriegler et al., 2012). In essence, SSP

represents an extended and more contemporary iteration of RCP.
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Within the RCP framework, two well-known scenarios are RCP4.5, signifying a mod-

erate emission scenario, and RCP8.5, indicative of a high emission scenario (Van Vuuren

et al., 2011). The numerical values 4.5 and 8.5 correspond to radiative forcing values in the

year 2100, reaching 4.5 W/m2 and 8.5 W/m2, respectively. Notably, RCP8.5 represents a

more intense warming scenario than RCP4.5.

Within the SSP framework, there are four popular SSPs: SSP1-2.6 (SSP126), SSP2-4.5

(SSP245), SSP3-7.0 (SSP370) and SSP5-8.5 (SSP585). The numerical values from 2.6 to

8.5 denote the (stratospheric-adjusted) radiative forcing in W/m2 anticipated by the end

of the 21st century (Tebaldi et al., 2020). The range from SSP126 to SSP585 spans a

sequence reflecting progressively warmer future scenarios.

For each RCP or SSP, a GCM can generate numerical values of climate variables for

each grid cell for the next 80 years or even up to 2300 (O’Neill et al., 2016; Taylor et al.,

2012). The types of generated climate variables may vary across different GCMs and may

include temperature, precipitation, wind speed, and more.

We use RCP in the land investment case because, at the time of studying this case, the

climate dataset based on SSP was incomplete. In contrast, we use SSP in our electricity

storage system case because, at the time of studying this case, the climate dataset based

on SSP was complete.

Multiple GCMs, parameterized by multiple social and emission scenarios, such as

RCP4.5 (a mild-emission scenario) and RCP8.5 (a high-emission scenario) (Adopted, IPCC,

2014), generate various climate projections. These climate projections have been collected

by the Coupled Model Intercomparison Project (CMIP) (Taylor et al., 2012), administered
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by the Intergovernmental Panel on Climate Change (IPCC). Note that there are several

CMIPs including the Coupled Model Intercomparison Project Phase 5 (CMIP5) (2010-

2014) (Taylor et al., 2012) and the most recent one, the Coupled Model Intercomparison

Project Phase 6 (CMIP) began in 2013 (Eyring et al., 2016). We refer to the combination

of GCMs and social and emission scenarios as climate scenarios. To gain a comprehensive

understanding of the entire spectrum of potential climate impacts on human systems and

to study adaptation in worst-case scenarios, we utilize a wide range of climate scenarios.

As the climate variables generated by GCMs may not possess the required temporal or

spatial resolution for specific research, some projects offer higher-resolution climate data

based on the climate projections from GCMs. These projects include the high-resolution

Localized Constructed Analogs (LOCA) CMIP5 Projections (Pierce et al., 2014) and

the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6)

(Thrasher et al., 2022). We have utilized these high-resolution projections to meet the de-

mands of our research. However, in our electricity storage system case, which necessitates

hourly resolutions, we further temporally downscale the data from these projects (e.g.,

NEX-GDDP-CMIP6).

1.3 Regression Models

Regression models serve as the bridge between climate data and robust optimization by

transforming climate values into the parameters required by robust optimization models.

The specific type of regression model employed depends on the research questions being

addressed. In this dissertation, we utilize linear regression models (Devore, 2011), the most
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popular type of regression model, to predict economic parameters, such as land prices and

electricity prices, for the next 70-80 years. We will provide the general form of linear

regression models here and details about our linear regression models in Chapters 2 and 3.

A linear regression model is a mathematical framework used to study the relationship

between output, also referred to as a dependent variable, and the independent variables

that influence the dependent variable. Let Y be the dependent variable, and Yi be the ith

(random) observation of Y , where i = 1, 2, ..., n and n is a positive integer. A linear regres-

sion model assumes that the mean value of Yi (i = 1, 2, ..., n) relies on a linear combination

of a set of m independent variables x1,i to xm,i, associated with a collection of regression

parameters βj (for j = 0, 1, 2, ...,m, where m is a positive number). Mathematically, the

linear regression model has the following form:

E[Yi] = β0 + β1x1,i + ... + βmxm,i (1.1)

, where E[·] denotes the mathematical expectation.

To account for randomness, Model (1.1) assumes that the dependent variable Y is

sampled from a specific family of probability distributions, which may include distributions

such as the normal, Poisson, or binomial distribution. The normal distribution assumption

for Y is a common choice. Even if Y often does not follow a normal distribution in

real-world cases, we can transform it to approximate a normal distribution to facilitate

statistical tests and estimation. For example, if Y follows a distribution with a long right

tail, also known as a right-skewed distribution, we can take the logarithm transform of Y ,

denoted as log(Y ), to make it closely approximate a normal distribution. Such a right-
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skewed distribution is often observed in land price data (Schlenker et al., 2006) because a

small part of land prices is much higher than the mean of land prices. Additionally, if the

volume of observation is large, such as a significant amount of historical land price data

in our case, the strict requirement of a normal assumption is not always necessary (Dunn

et al., 2018), as the distribution of the data after standardization may closely approximate

normality.

The method to solve linear regression models involves estimating the parameters β0, β1,

..., βm. Typically, the ordinary least squares (OLS) algorithm is applied to solve linear

regression models. Let n be the number of observations, and yi be the observed sample

(data) of Yi (for i = 1, 2, ..., n). The general form of OLS is expressed as follows:

min
β̂0,β̂1,...,β̂m

n∑
i=1

[yi − (β̂0 + β̂1x1,i + ... + β̂mxm,i)]
2 (1.2)

, where min denotes minimize, and β̂0, ..., β̂m are the estimators of parameters β0, ..., βm.

Model (1.2) offers analytical solutions and is solvable with readily available computer

software, such as R (R Core Team, 2020) and Python (Van Rossum and Drake, 2009).

The linear regression model assumes that the linear relationship between independent

variables and the dependent variable holds when predicting the dependent variable for

given independent variables (Dunn et al., 2018). For specific values of the independent

variables x1,k, ..., xm,k, where k is a positive integer, we can calculate the mean value E[Yk] =

β̂0 + β̂1x1,k + ... + β̂mx1,m.

In our case, we utilize historical climate data (as independent variables) and historical
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price data (as a dependent variable) to solve our linear regression models and obtain the

linear relationship between climate variables and prices. Following the previous assumption

that the linear relationship holds for predicting, we assume that the linear relationship

between climate variables and prices holds for the next 80 years. Climate projection data

can be used to predict future prices in the next 80 years using the linear relationship.

Due to observation errors, the estimation of the mean value E[Yk], where k is a positive

integer, by the OLS algorithm is subject to uncertainty. It is more appropriate to provide

a range prediction rather than a single point estimate for E[Yk] given the explanatory

variables x1,k, ..., xm,k (Dunn et al., 2018).

In the field of statistics, a confidence interval (Dunn et al., 2018) is a statistical tool that

computes a range of values from observations or sample data. These intervals are calculated

at specified confidence levels, providing a range within which we can reasonably expect the

true population parameter to lie with a certain level of confidence. The 95% confidence

level is the most common choice. The 95% confidence interval is constructed using sample

data in a manner that provides a high likelihood of containing the true mean, e.g., E[Yk]

in our case, with a probability of approximately 95% when this process is repeated across

numerous samples drawn from the same population.

With the given confidence level and values of the explanatory variables x1,k, ..., xm,k,

where k is a positive number, we can estimate the potential confidence interval of the

mean value E[Yk]. Detailed mathematical procedures for calculating confidence intervals

are well-established, and these intervals can be easily computed using computer software,

such as R and Python. For further information on solving, validating, and constructing
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confidence intervals for linear regression models, interested readers can refer to Dunn et al.

(2018).

Considering the inherent uncertainty of climate change, it becomes important to treat

the projected economic parameters that are influenced by climate as uncertain. Within

the framework of a regression model, we can naturally represent these projected economic

parameters as confidence intervals. These intervals then serve as inputs for robust op-

timization, enabling us to explore adaptation strategies within the context of worst-case

scenarios.

1.4 Robust Optimization

Robust optimization serves as the final, yet crucial, step within our research framework. It

is the process through which uncertain parameter inputs are mapped into optimal decisions

or operations designed to adapt to climate change. In the following paragraphs, we will

delve into the specifics of an optimization model and its robust counterpart (i.e., robust

optimization).

Let x represent a vector of decision variables, and u represent a vector of parameters

that influence the outcomes of our decisions, which may be subject to uncertainty. In

our case, u represents an uncertain price trajectory. We define h(·, ·) as the objective

function, without of loss generality, to be maximized, and gj(·, ·) as the function capturing

constraints that may be influenced by u, where j = 1, 2, ..., J and J is a positive integer.
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Then, we introduce the optimization model as follows:

(Nominal problem) maxx h(x,u) (1.3a)

s.t. gj(x,u) ≤ 0 ∀j = 1, ..., J (1.3b)

, where max represents maximize and s.t. denotes subject to.

The robust optimization framework aims to identify solutions that remain robust against

any possible realization of u within a defined uncertainty set U . This is achieved by solving

the following robust counterpart:

(Robust counterpart) maxx minu∈U h(x,u) (1.4a)

s.t. gj(x,u) ≤ 0 ∀u ∈ U ,∀j = 1, ..., J (1.4b)

Constraints (1.4b) serves the purpose of pinpointing implementable solutions, regardless

of the specific realization of u. The objective function (1.4a) is employed to identify

solutions that maximize the worst-case outcome of the objective function.

To solve Model (1.4), we need to define the uncertainty set U . There are three popular

ways to model uncertainty set U in order to make Model (1.4) tractable. First approach is

to represent Constraints (1.4b) as chance constraints (Shapiro et al., 2021). In this context,

let u be a random vector, and P(·) be a probability measure. Additionally, let τ denote

the acceptable probability level (also called a tolerant level), where τ ∈ [0, 1]. The general
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form of a chance constraint is as follows:

(Chance constraint) P(gj(x,u) ≤ 0) ≥ τ, j ∈ [1, 2, ..., J ] (1.5)

Chance constraints have been widely used in various contexts (Shapiro et al., 2021);

however, they may not align with our specific requirements in this case. The challenge

arises from the difficulty in determining the distribution of uncertain parameters in our

climate-related scenarios. GCMs are dependent, and this dependency is impossible to

determine (Hallegatte et al., 2012). We cannot model each projection trajectory from GCM

independently or ascertain their levels of dependency, which are required to calculate the

distribution.

The second approach involves using the distributionally robust optimization (DRO)

framework. In this method, u is still modeled as a random vector. However, instead of

modeling the uncertainty set U as a specific distribution, the framework considers it as

a family encompassing all potential distributions for u, denoted as D. The Constraints

(1.4b) must be satisfied under the worst distribution of u. The DRO counterpart for Model

(1.4) can be expressed as follows:

(DRO counterpart) maxx minF∈D Eu∼F [h(x,u)] (1.6a)

s.t. Eu∼F [gj(x,u)] ≤ 0 ∀F ∈ D,∀j = 1, ..., J (1.6b)

, where Eu∼F [·] denotes the expectation of u over distribution F (F ∈ D).

The DRO counterpart may encounter problem-solving issues. Often, the duality trans-
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formation is applied to solve the DRO model, but the dual problem of the DRO model

may not be convex and can be challenging to solve (Delage, 2021).

The third approach to represent the uncertain set U is as a box uncertainty set with

lower and upper bounds. Let vector u and vector ū be the lower and upper bounds of

u, respectively. Note that each entry of vector u (respectively ū) is smaller (respectively

bigger) than corresponding entry of u. We can express the box uncertainty set for U as

[u, ū]. Consequently, Model (1.4) can be reformulated as follows:

(Box-uncertainty-set counterpart) maxx minu∈[u,ū] h(x,u) (1.7a)

s.t. gj(x,u) ≤ 0 ∀u ∈ [u, ū],∀j = 1, ..., J (1.7b)

The box uncertainty set [u, ū] can be derived from the confidence intervals around

the predicted mean values that result from regression models. The mean values, such as a

mean price trajectory derived from the regression models, are dependent. This dependency

arises because the means rely on dependent climate trajectories, which are the inputs

to the regression models. Consequently, these dependent means generate corresponding

dependent (confidence) intervals.

In our formulation of these intervals, we assume that the realization of uncertainty,

such as price in our case, in one interval is independent of the price in other dependent

intervals. This assumption allows each component of the vector u to vary across the

intervals [u, ū]. Each component seeks values to minimize the objective function h(x,u),

effectively generating a worst-case scenario. As decision variables x seek values to maximize

the objective function against the worst-case scenario, Model (1.7) can generate adaptation
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decisions to address the scenario.

The robust model based on the box uncertainty set may exhibit linear equivalences that

simplify the solving process (Bertsimas and Sim, 2003). In both of our specific applica-

tions in land investment and electricity storage systems, Model (1.7) demonstrates linear

equivalences, rendering it tractable for long-term time horizon analyses. Therefore, we use

the box uncertainty set to model uncertainty parameters for our robust models.

1.5 Conclusion

In summary, this introductory chapter has presented the framework that combines climate

data, linear regression models, and robust models to study climate change adaptation. Fig-

ure 1.2 illustrates the framework’s key components and workflow. First, we use historical

data of interest, such as price data in our two applications, and historical weather data to

solve our regression model. Second, we temporally or spatially downscale climate projec-

tions to achieve the desired resolutions. Third, the downscaled data, along with economic

indicators, are input into the best-fitted regression model to predict future price interval

trajectories. Fourth, we define the objective functions and constraints for our robust model

according to a specific research question. Fifth, we solve the robust model, parameterized

by the interval trajectories, to generate valuable insights into climate change adaptation.

Our framework differs from similar work of Garcia-Gonzalo et al. (2016), who study

expected outcomes of forest harvest planning under climate change using a linear opti-

mization model and a forest growth model. Our framework aims to study climate change
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Figure 1.2: Framework and workflow of dissertation methodology

adaptation over worst-case scenarios. Our framework constructs both price prediction

models and robust models, with model settings that are entirely different from model set-

tings in Garcia-Gonzalo et al. (2016). We apply our framework to the domains of land

investment and electricity markets, which are distinct from the field of forest planning.

Additionally, we analyze how different climate scenarios influence optimal decisions, an

aspect not mentioned in Garcia-Gonzalo et al. (2016).

To demonstrate the success of the entire framework, we applied it to the study of climate

change adaptation in both land investment and electricity storage systems in Chapter 2

and Chapter 3, respectively.

18



Chapter 2

Robust Optimization for Sequential

Investment Problems: An

Application to Climate Adaptation in

the Mississippi River Basin

This chapter uses our framework and performs case studies assessing how an investor would

approach a long sequence of land investment decisions in the Mississippi River Basin (MRB)

using popular climate models.
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2.1 Introduction

Agriculture contributed about 4% of the global gross domestic product (GDP) in 2018 (The

World Bank, 2022) and 0.6% ($134.7 billion) of the U.S. GDP in 2020 (U.S. Department

of Agriculture, 2022). Combining with related industries, agriculture accounted for $1.055

trillion in 2020, i.e., 5% of the U.S. GDP (Moraes, 2022). The Mississippi River Basin

(MRB) accounted for more than 25% of the total U.S. agriculture GDP in 2020 (Moraes,

2022).

Agricultural production is dependent on climate. Over the last 60 years, climate change

has slowed global and U.S. agricultural productivity growth by 21% and 10-15%, respec-

tively (Ortiz-Bobea et al., 2021). The effects of climate change on agricultural output vary

by region and while overall the impact has been negative, there are many regions where

agricultural productivity has increased (Ortiz-Bobea et al., 2021).

Agricultural land value is heavily determined by its productivity (Mendelsohn et al.,

1994; Etwire et al., 2019), so, the land value is expected to change regionally as the climate

evolves. The agricultural industry’s ability to adapt to climate change will be affected by

its ability to predict land value to make efficient and profitable investments.

By changing the levels and distribution of precipitation and temperature over the year,

changes in climate may improve or deteriorate land productivity (Su et al., 2021; Ortiz-

Bobea et al., 2021; Zhang and Swaminathan, 2020). Climate forecasts (generated by from

GCMs), as a result, can be used to predict land productivity and, in turn, land value. In

aggregate and on a global level, GCMs predict an increase in global mean temperatures

and precipitation variation over the next 70 years (Collins et al., 2013; Adopted, IPCC,
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2014).

Climate change will impact land productivity and values and present opportunities and

challenges for all stakeholders in agriculture, including investors and producers, govern-

ments and policymakers, and the general public who consume the outputs (New frontiers,

2021; Atasu et al., 2020). The costs of climate change in this sector will depend both

on the magnitude of these changes and the degree to which investment can be efficiently

directed. This chapter focuses on agricultural land investment decisions that adapt to

climate change.

Adapting agricultural investment strategies to cope with climate change is difficult

for two main reasons. First, climate change projections are uncertain and their variance

increases over time (Hawkins and Sutton, 2009; Lehner et al., 2020). Secondly, there is

uncertainty about how land value will respond to particular changes in climate since it is

difficult to predict factors in the regional economy such as consumer tastes. Consequently,

what are the right farmland investment decisions to adapt to uncertain climate change

remains unclear, especially considering climate-change’s long timeline.

To study investment decisions under climate change, we need to deal with two main

problems. The first is to determine farmland value trajectories as a function of climate

change projections. The second is to determine investment decisions consistent with in-

vestor value and risk preferences over these land value trajectories. These methodological

contributions will allow for results linking climate forecasts to trajectories of investment

decisions. Understanding the variation of these decisions under different climate scenarios

will provide insights into the difficulty of adapting to climate change.
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Prior research in this vein has been done linking climate change to land values. In

such studies, farmland values are estimated in regression models as price ranges across

GCMs and RCPs (Mendelsohn et al., 1994; Deschênes and Greenstone, 2007; Van Passel

et al., 2017; Bareille and Chakir, 2023). A separate stream of literature examines land

acquisition under uncertain land valuations. They rely on stochastic optimization models

to investigate the land acquisition policies over at most 30-year horizons (Schnitkey et al.,

1989; Lohano and King, 2009; Spiegel et al., 2020). To the best of our knowledge, no

paper examines optimal land acquisition under the specific patterns of valuations and

uncertainties associated with climate change. No paper study farmland investment under

climate change over a long horizon (≥ 50 years), which as noted in Hannah et al. (2002)

is required to assess climate change impacts and adaptations.

As the distribution of climate and price uncertainty is very hard to characterize, stochas-

tic optimization approaches, which require a full characterization of the distribution, are

challenging to implement. These algorithms also are typically intractable over the required

very long trajectories (Shapiro et al., 2021). In our case, we employ a robust optimiza-

tion model to study adaptation and investment under worst scenarios over the required

horizons.

An important objection to robust optimization is that the resulting policies can be

overly pessimistic and often sacrifice too much optimality (Ning and You, 2019). So, we

adapt the methods of conservative robust optimization that allows fine tuning of the degree

of pessimism (or conservatism levels) while maintaining tractability (Bertsimas and Sim,

2003).
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Considering the issues in the study of farmland investment decisions and the merit of

robust optimization approach both under climate change, we propose a new robust land

investment model to investigate the decisions. We solve this model by converting it into

its linear equivalences, which can be quickly solved by standard optimization tools.

Using our proposed land investment model, we conduct an empirical study in the MRB

to determine general investment trends over time under climate change in two main steps.

First, we fit a regression model and use it to predict the uncertain future farmland value

trajectories given 64 climate scenarios (combinations of 32 GCMs and 2 RCPs). These

trajectories are reformulated to be the farmland price parameters for the land investment

model. Second, based on the price parameters, we solve our land investment model for the

64 climate scenarios. We study the resulting land investment policies in the MRB under

different climate scenarios.

The specific contributions of this chapter are as follows:

1. We develop an optimization model for determining periodic investment decisions

for uncertain assets over long horizons. Our model considers different conservatism

levels through a robust optimization framework. We prove that the model has linear

equivalences and show that it can be quickly solved by standard optimization tools.

2. We develop a regression model to predict land price changes based on long-term

climate forecasts. Using the data derived from this method, we perform a compu-

tational study of investment decisions in the MRB over a 68-year planning horizon

for a wide range of forecasted climate scenarios and conservatism levels. The main

results include:
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(a) Benchmark scenario (Section 2.5.2): Our benchmark scenario considers a in-

vestor using the land values based on the mean of all climate models. Under

this mean climate, investing in the northernmost area and holding land are the

optimal investment policies.

(b) Under different climate scenarios and conservatism levels (Section 2.5.2): We

find that the range of latitudes over which investment takes place decreases and

varies over climate scenarios and conservatism levels. For high conservatism

levels, under RCP4.5 (a mild-range emission scenario), most GCMs find prof-

itable investments, but there are substantial differences in investment patterns

depending on the GCM. Under RCP8.5 (a higher-range emission scenario), most

GCMs result in no investment.

This chapter is organized as follows. In Section 2.2, we review the literature relevant

to 1) the economic impacts of climate change on farmland values and 2) land investment

in the face of uncertainty. We then briefly describe our methodology in Section 2.3. In

Section 2.4, we introduce a land price prediction model and conduct numerical studies on

farmland price prediction in the MRB under climate change scenarios. In Section 2.5, we

conduct empirical studies on land investment decisions in the MRB under climate change

scenarios. Finally, Section 2.6 concludes this chapter.
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2.2 Literature Review

In this section, we discuss two interrelated streams of literature. First, we discuss studies of

the economic impacts of climate on land values. Second, we outline the literature studying

land investment in the face of uncertainty and position our contributions.

2.2.1 Economic Impacts of Climate Change on Farmland Values

Regression approaches dominate the literature studying the economic impacts of climate

change on land values (measured in prices). This approach is a hedonic model used to study

the statistical relationship between climate variables and farmland values (Mendelsohn

et al., 1994; Bareille and Chakir, 2023). Temperature, precipitation, and other exogenous

factors are chosen as explanatory variables for farmland values. The approach has a simple

structure and accounts for climate adaptations by farmers, while not needing to model

endogenous decision making when measuring the long-term impacts of climate change

(Bozzola et al., 2018; Bareille and Chakir, 2023). A range of papers has used this model to

study how climate change impacts farmland values in North America (Quaye et al., 2018;

Ortiz-Bobea, 2020), Europe (Van Passel et al., 2017; Bareille and Chakir, 2023), and other

regions (Chen et al., 2013; Nguyen and Scrimgeour, 2022).

Researchers have used the results of this model to calculate the marginal effects of

climate change on land value using forecasted changes in climate variables (Deschênes and

Greenstone, 2007; Van Passel et al., 2017; Ortiz-Bobea, 2020; Nguyen and Scrimgeour,

2022). These results are frequently used to estimate regional economic impacts of climate
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change.

Until recently most researchers have predicted the range of economic impacts across

only one or a small number of climate scenarios. As the number of influential climate

models has increased, it’s become important to study the variation in land values predicted

by different models. The recent paper by Bozzola et al. (2018) studies farmland values in

Italy over 16 climate scenarios to explore a broader set of possible climate pathways. Their

results imply that using a wide range of climate scenarios helps to understand the range

of climate impacts on land values. As a basis for our study of investment policies, we also

use a regression-based approach to establish land values and do so over all available 64

high-resolution climate projections (Bracken, 2016). These climate projections are based

on 32 popular GCMs and two RCPs used by the CMIP5 (Taylor et al., 2012). While

the regression-based approach is not the primary contribution of this chapter, we find

comparable results with Mendelsohn et al. (1994) (i.e., farmland values will grow in the

North of the MRB and decrease in the South under climate change). By studying land

investment over this large set of climate models, we find that, despite similar average

results, different climate models lead to quite different land investment decisions.

2.2.2 Land Investment in the Face of Uncertainty

Some literature studies optimal agricultural land investment under uncertainty. Schnitkey

et al. (1989) use stochastic programming to determine the optimal decision to purchase

or sell farmland for a central Illinois farm in which annual farmland values were linked

to stochastic farmland returns. Lohano and King (2009) propose a multi-period farmland
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investment portfolio model by considering risk levels in farmland and debt financing for

Southwestern Minnesota farms. Di Corato and Zormpas (2022) apply the real options

method to examine optimal execution of qualitative farming operations, encompassing ac-

tive and passive farming strategies, in southern Sweden, while we focus on the dynamics of

land acquisition, including quantitative buying and selling decisions. These three methods

are applied only to planning horizons of at most 30 years and are unlikely to extend to

the broader geographies and longer horizons required to study climate adaptation, while

our research considers climate change for a 68-year planning horizon and in the main part

of MRB area: Minnesota (MN), Wisconsin (WI), Iowa (IA), Illinois (IL), Missouri (MO),

Arkansas (AR), Mississippi (MS), Louisiana (LA), and small parts of other states (see the

left subfigure of Figure 2.5).

The relationship between climate and investment policy has also been discussed in

the political economy literature. While they do not provide a formal model, Fairbairn

et al. (2021) reason that climate uncertainty increases investment risk and impacts farm-

land investment. They discuss potential arbitrage opportunities which may result from

environmental/climate uncertainty.

Other related research is from the forest land management literature. This literature

does not consider land acquisition decisions. Rather, these papers consider when and where

to harvest lumber. Nonetheless, the research requires similar climate modeling and opti-

mization frameworks. Veliz et al. (2015) and Garcia-Gonzalo et al. (2016) use multistage

stochastic programming to analyze optimal harvest planning for the forest industry under

environmental and climate uncertainty. Veliz et al. (2015) study the planning of 17 forests

in 5 years over about 300 environment scenarios. Their mixed-integer programming model
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is difficult to extend to 50 years or longer planning horizon and larger forests because of the

high computation requirements of solving the model. Garcia-Gonzalo et al. (2016) study

the planning of 24 forest strata in 15 years over 32 climate scenarios by a linear stochastic

model which is equivalent to a robust optimization model. They show that for this deci-

sion problem, their proposed algorithm may be quickly solved. However, the solutions are

overly conservative. In our more complex investment problem, we similarly show that the

robust optimization scales well to long-term climate decision problems. In contrast to their

algorithm, we introduce the ability to adjust the level of conservatism in the solution. We

can explore the characteristics and profitability of land investment decisions for various

levels of conservatism.

2.3 Robust Optimization for Sequential Investment

In this section, we introduce a robust land investment model to study farmland investment

decisions under climate change. First, we propose a multistage stochastic programming

model of the investment problem. Second, we develop a robust version of this model. In

service of improving tractability, we show that the robust model has linear equivalences.

2.3.1 Stochastic Programming for Sequential Investment

We begin by constructing a multistage stochastic programming model for an investor to

determine farmland acquisition decisions over a long-term planning horizon. The model

studies annual buying and selling decisions for land in a set of counties where farmland

28



prices may vary idiosyncratically over the planning horizon. In each year, the investor has a

cash endowment, from land sales and external sources and may decide the number of acres

of land to buy and sell in each county. The investor can hold surplus cash after investment

for future periods. In addition, the investor needs to consider changes in land prices caused

by climate change and variation in their decisions. These price changes vary by county and

are uncertain due to the range of potential climate scenarios. The objective of the model

is to identify annual land acquisition and sale decisions that maximize expected profits in

the terminal period.

We now introduce the key components of our model: planning horizon, external income,

county set, price trajectories, decision variables, transaction costs, investor’s objective, and

constraints.

Planning horizon: We consider a planning horizon of T periods and denote the collec-

tion of each planning period as T = {1, 2, ..., T}. A farmland investor is at period t = 0

(current period), owns no farmland, and makes investment decisions starting at period

t = 1 and ending at period T − 1.

External income: For period t ∈ {1, 2, ..., T−1}, the investor gains external cash income

Bt.

County set: There are m − 1 counties over the focal region. We also denote risk-free

assets held by the investor as an artificial county m. These assets allow the investor to

transfer surplus cash between periods for future investment. Therefore, we denote the

set of counties in the target area as C = {1, 2...,m}. Each county c ∈ C \ {m}, where \

represents set difference and C \ {m} = {x ∈ C : x /∈ {m}}, has available acres of farmland
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equal to Ac which remains fixed over the planning horizon. The artificial county m which

is treated similarly to land assets has Am = M , where M is a large positive number, to

allow holding an arbitrary level of cash.

Price trajectories: We define a positive random vector P t = [Pt1, Pt2, ..., Ptm]⊤ (t ∈ T )

to model land price in each county at period t. Note that ⊤ represents the transpose of

the vector. Then, we can model the land price trajectory over the planning horizon in each

county as a random process P 1,P 2, ...,P T . For the county m representing cash holdings,

we set the price trajectory over the planning horizon T to reflect annual interest on cash

holdings at the inflation rate β (β > 0) so that Ptm = (1 + β)t−1 (∀t ∈ T ). For the

remaining counties c ∈ C \ {m}, the investor is allowed to realize the real land prices at

period t (∀t ∈ T ) at the beginning of that period, before making land buying and selling

decisions. Denote the realization of land prices at period t (t ∈ T ) in each county as

pt = [pt1, pt2, ..., ptm]⊤, where ptc is a positive real number and ptm = Ptm.

Decision variables: The investor can either buy or sell land in each county at the

beginning of each planning period before T . The decision variables in each period t (t ∈

T \ {T}) are bt = [bt1, bt2, ..., btm]⊤ and st = [st1, st2, ..., stm]⊤, which respectively represent

the acres of land bought and sold in each county. We set b0 = 0 and s0 = 0, where 0

is the m-dimensional zero column vector. The land held by the investor in each county

at the beginning of period t (t ∈ T ) is then
∑t−1

k=0(bk − sk). Finally, we assume that the

investor’s land acquisition decisions will not affect land prices in the target area and the

artificial county.

Transaction cost: There is a transaction cost associated with each buying or selling
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decision. We consider transaction costs for buying or selling decisions separately as a

percentage of the total value of land that is bought or sold. The transaction cost rate on

purchases of land and risk-free assets, i.e., the artificial county, are rlb (0 < rlb < 1) and rβb

(0 ≤ rβb < 1), respectively. The transaction cost rate on sales of land and risk-free assets

are rls (0 < rls < 1) and rβs (0 ≤ rβs < 1).

Investor’s objective: The investor’s objective is to maximize the expected value of land

and risk-free assets at the last period T .

Constraints: The constraints of this model ensure that purchases and sales do not

exceed available assets and resources. The constraints also indicate that the investor can

either buy or sell farmland. First, total available cash following sales in each period must

be sufficient to make all purchases in that period (cash flow constraints):
∑

c∈C\{m}[(1 +

rlb)ptcbtc − (1 − rls)ptcstc] + (1 + rβb )ptmbtm − (1 − rβs )ptmstm ≤ Bt (∀t ∈ T \ {T}). Second,

net ownership of farmland in each county and period must not exceed available acres:

0 ≤
∑t

k=1(bkc − skc) ≤ Ac (∀t ∈ T \ {T}, c ∈ C). Third, no land buying and selling can

happen in the same period and the same county (except the artificial county): btcstc = 0

(∀t ∈ T \ {T}, c ∈ C \ {m}). Fourth, the transaction in each county and period are

non-negative: btc, stc ≥ 0 (∀t ∈ T \ {T}, c ∈ C).

The multistage programming model, foundational for the robust optimization, can be

formulated as dynamic programming equations ((2.1a)-(2.1g)); these equations are called

Model (2.1). At the last period T , land price pT is observed, and the value of total owned
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land and risk-free assets is:

QT (
T−1∑
k=0

(bk − sk),pT ) :=
(T−1∑
k=0

(bk − sk)
)⊤

pT . (2.1a)

At period t = 1, 2, .., T − 1, the problems are:

Qt(
t−1∑
k=0

(bk − sk),pt) := maxbt,stEpt+1∼P t+1 [Qt+1(
t∑

k=0

(bk − sk),pt+1)] (2.1b)

s.t.
∑

c∈C\{m}

[(1 + rlb)ptcbtc − (1 − rls)ptcstc] + (1 + rβb )ptmbtm − (1 − rβs )ptmstm ≤ Bt

(2.1c)

0 ≤
t∑

k=1

(bkc − skc) ≤ Ac ∀c ∈ C (2.1d)

btcstc = 0 ∀c ∈ C \ {m} (2.1e)

btc, stc ≥ 0 ∀c ∈ C (2.1f)

The maximum expected value of land and risk free assets at period T can be expressed

as:

Ep1∼P 1 [Q1(0,p1)] (2.1g)

, where Ept∼P t [·] (t ∈ T ) denotes the expectation over P t. The optimal value Qt(
∑t−1

k=0(bk−

sk),pt) (∀t ∈ T \ {T}) depends on (bt − st) in period t and the distribution of farmland

prices P t+1.

The method of solving Model (2.1) is to calculate the value-to-go function Qt(
∑t−1

k=1(bk−
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sk),pt), recursively, going back in time (Shapiro et al., 2021). In the last step, we want to

find Ep1∼P 1 [Q1(0,p1)].

However, solving Model (2.1) is difficult for two reasons. First, when calculating

Ept∼P t [Qt(
∑t−1

k=0(bk − sk),pt)] (∀t ∈ T \ {T}), it is hard to obtain the accurate distri-

bution of P t. The distribution may be not trivial and not standard, which makes solving

the model difficult. Second, solving processes of Model (2.1) faces the curse of dimension-

ality (Shapiro et al., 2021). As Model (2.1) covers a large number of periods at the county

level, the computation complexity and requirements for the model instance will render it

infeasible for most machines. Therefore, we cannot directly and quickly solve the model.

To make Model (2.1) tractable, we then introduce a robust version of this model to

solve. There are two reasons why the robust version works in our case. First, the robust

version helps identify decisions that perform well across the range of uncertain future

climate scenarios (Bhave et al., 2016). By employing these decisions obtained from the

robust version, the investor can have confidence about the potential investment profit in

their decisions and understand a broader range of risks that they will face (Hallegatte et al.,

2012; Constantino and Weber, 2021). Second, the robust model has linear equivalences

that can be directly and quickly solved by using standard optimization tools.

2.3.2 Robust Optimization for Sequential Investment

We transform Model (2.1) into its robust version in three steps. First, we need to model

farmland price uncertainty. Second, based on the modeled uncertain prices, we propose a

robust version of Model (2.1). In addition, to avoid the overly conservative solutions of the
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robust model, we add a conservatism control to the robust model. Third, we transform the

robust model with conservatism control into its linear equivalences, which can be solved

directly and quickly.

Modeling farmland price uncertainty: Modeling uncertainty (or defining uncertainty

sets) plays a critical role in constructing a robust model (Ning and You, 2019; Chen et al.,

2023). By following Ben-Tal and Nemirovski (2000) and Bertsimas and Sim (2003), we

model uncertainty as intervals (or box uncertainty sets). Specifically, in our case, we

model each uncertain farmland price Ptc (t ∈ T , c ∈ C \ {m}) as a random variable that

is positive, bounded, symmetric, and independent, and its values are restricted within an

interval [p̄tc − p̂tc, p̄tc + p̂tc], where p̄tc is the nominal value of Ptc, p̂tc is the largest possible

deviation of Ptc from the nominal value, and p̄tc − p̂tc > 0.

Robust model: We formulate a robust investment model where the investor believes

that farmland prices will fall within the intervals described in the preceding paragraph

Modeling farmland price uncertainty. The investor is pessimistic and adversely selects

farmland prices depending on whether they are buying (high prices within the interval)

or selling (low prices within the interval) in each county. In the worst case, the farmland

price is p̄Tc − p̂Tc (∀c ∈ C \ {m}) in terminal period T when we account the value of all

owned lands. The investor’s objective can be expressed as:

max{btc,stc:t∈T \{T},c∈C}
∑

c∈C\{m}[(p̄Tc − p̂Tc)
∑T−1

t=1 (btc − stc)] + pTm

∑T−1
t=1 (btm − stm).

The investor also wants to keep non-negative cash flow in the worst case in each period

before period T . Then, for t ∈ T \ {T}, the cash flow constraints can be expressed as:
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∑
c∈C\{m}[(1+rlb)(p̄tc + p̂tc)btc− (1−rls)(p̄tc− p̂tc)stc]+(1+rβb )ptmbtm− (1−rβs )ptmstm ≤ Bt.

Under the pessimistic setting, Model (2.1) becomes a deterministic robust model and

can be written as follows:

max
{btc,stc:t∈T \{T},c∈C}

∑
c∈C\{m}

[(p̄Tc − p̂Tc)
T−1∑
t=1

(btc − stc)] + pTm

T−1∑
t=1

(btm − stm) (2.2a)

s.t.
∑

c∈C\{m}

[(1 + rlb)(p̄tc + p̂tc)btc − (1 − rls)(p̄tc − p̂tc)stc]+

(1 + rβb )ptmbtm − (1 − rβs )ptmstm ≤ Bt ∀t ∈ T \ {T} (2.2b)

0 ≤
k∑

t=1

(btc − stc) ≤ Ac ∀k ∈ T \ {T}, c ∈ C (2.2c)

btcstc = 0 ∀t ∈ T \ {T}, c ∈ C \ {m} (2.2d)

btc, stc ≥ 0 ∀t ∈ T \ {T}, c ∈ C (2.2e)

Note that a solution that satisfies a model’s constraints is called a feasible solution. When

maximizing, an optimal solution is a feasible solution that yields the largest objective

function value.

Robust model with conservatism control: Model (2.2) will produce (optimal) solu-

tions that are too conservative in the sense that we lose too much optimality for ensuring

robustness (Varas et al., 2014; Ning and You, 2019), because this model forces land prices

in all counties to adopt extreme values that adversely influence the solution. For instance,

we will see in the empirical investigation in Section 2.5.2, that the robust model can lead to

solutions where no land investment decisions are made throughout the planning horizon,
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i.e., btc = stc = 0 (∀t ∈ T \ {T}, c ∈ C \ {m}).

However, in reality, it is unlikely for land prices in all counties to simultaneously reach

their extreme values (Bertsimas and Sim, 2004). To produce a more realistic solution, a

solution should allow some counties to have more favorable prices. To do this in a principled

manner, we adapt the conservative robust optimization methods developed in Bertsimas

and Sim (2004) to the farmland acquisition problem. The model in Bertsimas and Sim

(2004) follows this intuition by allowing a limited set of prices to be more favorable for the

investor. The number and degree of such price improvements in each period are limited by

a parameter called the budget of uncertainty. The particular improvements are selected in

an adversarial manner in keeping with robust methods.

To accomplish our objective and allow the model to be adjusted to reflect different

levels of conservatism, we introduce per period budgets of uncertainty Γt (Γt ≥ 0,∀t ∈ T ),

as defined by Bertsimas and Sim (2003). By choosing the parameter Γt (t ∈ T ), decision

makers can assess the balance between robustness and the solution’s efficacy based on their

conservatism levels in each period (Varas et al., 2014). Specifically, we define the budgeted

uncertainty set for land prices (Bertsimas and Sim, 2004; Ning and You, 2019) as follows:

{(P 1,P 2, ...,P T )|Ptc = p̄tc + p̂tc · ztc,−1 ≤ ztc ≤ 1,
∑

c∈C\{m}

|ztc| ≤ Γt,∀t ∈ T , c ∈ C \ {m}}

(2.3)

, where Ptc is the c-th component of uncertain (price) vector P t, and ztc denotes the extent

and direction of price deviation. These constraints regulate the cumulative deviation of

land prices from their expected value within each year to be within the uncertainty budget.
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In the robust model with budgets of uncertainty, the objective function maximizes the

worst case while ensuring that the budget constraints are satisfied at the given budget of

uncertainty Γt (t ∈ T ). Moreover, we use ztc ∈ [0, 1] (∀t ∈ T , c ∈ C \ {m}) because for

each county and period the investor either buys or sells at different buy and sell prices.

Specifically, the investor buys at price p̄tc + p̂tcztc and sells at price p̄tc − p̂tcztc. The land

price is p̄Tc − p̂TczTc in terminal period T when we calculate the value of all owned lands.

Then, the objective function maximizing the worst case at the given budget of constraints

can be expressed as:

max
{btc,stc|∀t∈T \T,c∈C}

min
{zTc|c∈C\{m}}

{ ∑
c∈C\{m}

[(p̄Tc−zTcp̂Tc)
∑

t∈T \{T}

(btc−stc)]+pTm

∑
t∈T \{T}

(btm−stm)
}

For t ∈ T \ {T}, the cash flow constraints can be expressed as:

max
{ztc|c∈C\m}

{ ∑
c∈C\{m}

[(1 + rlb)(p̄tc + ztcp̂tc)btc − (1 − rls)(p̄tc − ztcp̂tc)stc]
}

+(1 + rβb )ptmbtm − (1 − rβs )ptmstm ≤ Bt

The robust counterpart of Model (2.1) with the budgets of uncertainty, denoted as Model
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(2.4), is as follows:

max
{btc,stc|∀t∈T \{T},c∈C}

min
{zTc|c∈C\{m}}

{ ∑
c∈C\{m}

[(p̄Tc − zTcp̂Tc)
∑

t∈T \{T}

(btc − stc)]

+ pTm

∑
t∈T \{T}

(btm − stm)
}

(2.4a)

s.t. max
{ztc|c∈C\m}

{ ∑
c∈C\{m}

[(1 + rlb)(p̄tc + ztcp̂tc)btc − (1 − rls)(p̄tc − ztcp̂tc)stc]
}

+ (1 + rβb )ptmbtm − (1 − rβs )ptmstm ≤ Bt ∀t ∈ T \ {T} (2.4b)

0 ≤
k∑

t=1

(btc − stc) ≤ Ac ∀c ∈ C, k ∈ T \ {T} (2.4c)

∑
c∈C\m

ztc ≤ Γt ∀t ∈ T (2.4d)

btcstc = 0 ∀t ∈ T \ {T}, c ∈ C \ {m} (2.4e)

btc, stc ≥ 0 ∀t ∈ T \ {T}, c ∈ C (2.4f)

0 ≤ ztc ≤ 1 ∀t ∈ T , c ∈ C \ {m} (2.4g)

Solving by linear transform: We solve Model (2.4) by deriving and then solving its

linear equivalence. Because Model (2.4) has max-min operator in its objective function

(2.4a), the maximal part in constraints (2.4b), and non-convex constraints (2.4e), it is

a non-convex optimization problem (Note that readers can find the definitions of convex

sets, convex functions, and convex optimization in Sections 2.1, 3.1, and 4.2, respectively,

of Boyd et al. (2004)). This means that solving Model (2.4) using standard optimization

tools, algorithms, or heuristics may result in getting stuck in a local optimum rather than
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finding the (global) optimal solution (Note that readers can find the definitions of local

optimum and global optimum in Section 4.1 of Walton (2022)). To obtain the optimal

solution, we transform Model (2.4) into its linear equivalence.

There are two main steps to do the linear transform. First, without considering con-

straints (2.4e), we show that Model (2.4) has an equivalent linear programming model. We

do this step because we can take advantage of strong duality (Bertsimas and Tsitsiklis,

1997) and the existing reference by Bertsimas and Sim (2003). Second, we show that the

derived linear programming model is equivalent to Model (2.4), i.e., constraints (2.4e) are

always satisfied with any optimal solution of the (derived) equivalent linear programming

model. Consequently, we can solve Model (2.4) by solving the linear programming model,

which can be quickly and directly solved.

First, without considering constraints (2.4e), we can rely on strong duality and Bert-

simas and Sim (2003) to find that Model (2.4) has a linear equivalence as stated in the

following theorem:

Theorem 1 Model (2.4) without constraints (2.4e) has an equivalent linear programming

formulation as follows:
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max
{btc,stc (∀t∈T \{T},c∈C);hT ,qTc (∀c∈C\{m})}

{ ∑
c∈C\{m}

p̄Tc

∑
t∈T \{T}

(btc − stc)

+ pTm

∑
t∈T \{T}

(btm − stm) − ΓThT −
∑

c∈C\{m}

qTc

}
(2.5a)

s.t.
∑

c∈C\{m}

[(1 + rlb)p̄tcbtc − (1 − rls)p̄tcstc] + (1 + rβb )ptmbtm − (1 − rβs )ptmstm

+ Γtht +
∑

c∈C\{m}

qtc ≤ Bt, ∀t ∈ T \ {T} (2.5b)

ht + qtc ≥ (1 + rlb)p̂tcbtc + (1 − rls)p̂tcstc, ∀t ∈ T \ {T}, c ∈ C \ {m} (2.5c)

hT + qTc ≥ p̂Tc

∑
t∈T \{T}

(btc − stc), ∀c ∈ C \ {m} (2.5d)

0 ≤
k∑

t=1

(btc − stc) ≤ Ac, ∀c ∈ C, k ∈ T \ {T} (2.5e)

btc, stc ≥ 0, ∀t ∈ T \ {T}, c ∈ C (2.5f)

qtc ≥ 0, ∀t ∈ T , c ∈ C \ {m} (2.5g)

ht ≥ 0, t ∈ T (2.5h)

We present the proof of Theorem 1 in Appendix A.2.

We explain the newly introduced notations and the objective function in Model (2.5).

For the new notations, ht and qtc (t ∈ T , c ∈ C \ {m}) are the dual variables of ztc. In

the objective function (2.5a), the first item
∑

c∈C\{m} p̄Tc

∑
t∈T \{T}(btc − stc) is the value of

owned lands in period T based on the nominal land prices p̄Tc (c ∈ C). The second item

pTm

∑
t∈T \{T}(btm−stm) is the value of risk-free assets in the artificial county m. The third

item −ΓThT −
∑

c∈C\m qTc represents the cost of dealing with worst-case price deviation in
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period T .

Second, we show that the linear Model (2.5) is equivalent to Model (2.4). To do this,

we need to prove that any optimal solution of Model (2.5) ensures constraints (2.4e). We

found that the optimal solution of Model (2.5) has the property in the following lemma:

Lemma 1 Let (b∗, s∗,h∗, q∗) be the optimal solution of Model (2.5), where b∗ = (b∗1, b
∗
2, ...

, b∗T−1) and s∗ = (s∗1, s
∗
2, ..., s

∗
T−1), at least one of b∗tc and s∗tc (∀t ∈ T \ {T}, c ∈ C \ {m}) is

0.

Further, if rβx + rβs > 0, i.e., the transaction cost of investing in risk-free assets exists,

at least one of b∗tm and s∗tm (∀t ∈ T \ {T}) is 0.

We present the proof of Lemma 1 in Appendix A.3.

Lemma 1 reflects no farmland buying and selling in the same period and in the same

county in the optimal solution of Model (2.4). In other words, buying and selling land at

the same county and in the same period leads to a reduction in profit, because 1) there

are transaction fees for either buying or selling, and 2) buying prices are not lower than

selling prices.

As the objective function (2.5a) maximizes its value, the optimal solution will only

choose to buy or sell (or neither buy nor sell) land at one county in a period. In this scenario,

the optimal solution of Model (2.5) automatically ensures constraints (2.4e). Consequently,

we can solve non-convex robust Model (2.4) by solving linear robust programming Model

(2.5).
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2.4 Study I: Farmland Value in the MRB under Cli-

mate Change Scenarios

In this section, we study farmland value in the MRB under different climate scenarios.

Specifically, we predict future farmland prices from 2023 to 2090 in counties whose centroid

centers are located between the longitudes of 94.5◦ W and 89.0◦ W and between the

longitudes of 29.4◦ N and 48.2◦ N. To facilitate understanding, we define the Northern

MRB as the area with latitude greater than 39.3◦ N, which is the middle of the latitude

range [29.4, 48.2]. The remaining region within the MRB is denoted as the Southern

MRB. The scenario-based case study comprises three key steps. First, we introduce a

regression model to link farmland values and climate change. Second, in order to fit the

regression model, we introduce the data sources and data prepossessing. The climate

scenarios forecast temperature and precipitation changes which vary by season and county.

Third, we fit the regression model, forecast farmland values, and present farmland value

results.

2.4.1 Regression Model

We rely on a regression approach to analyze the impacts of climate change on land val-

ues (Mendelsohn et al., 1994; Deschênes and Greenstone, 2007; Van Passel et al., 2017).

Specifically, we introduce a log-linear quadratic four-season regression model at the county

level to give the relation between seasonal temperature/precipitation and land values.

This model is reasonable for four reasons. First, farmland values, in the U.S. as in other
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countries, are highly skewed with a long right tail so that a logarithm model is prefer-

able (Schlenker et al., 2006). Second, the relationship between climate and land values

is non-linear and often assumed to be quadratic (Mendelsohn et al., 1994; Deschênes and

Greenstone, 2007; Fezzi and Bateman, 2015; Van Passel et al., 2017; Bozzola et al., 2018).

Third, a four-season model is appropriate for the U.S. because its climate allows different

crops to grow throughout the year (Massetti et al., 2016). Finally, we rely on the county

as a basic spatial level, because of the extensive county-level data available on farm inputs

and outputs, and its popularity in the literature (Mendelsohn et al., 1994; Deschênes and

Greenstone, 2007; Mendelsohn and Reinsborough, 2007; Quaye et al., 2018).

We do not include interaction terms of temperature and precipitation in the regression

model, as the model without these terms produces satisfactory fitting results and avoids

potential multicollinearity.

We introduce the settings and notations used in the regression model: seasonal tem-

perature and precipitation (independent variables), dummy variables, farmland values (de-

pendent variable), and coefficients.

Seasonal temperature and precipitation: We use standard meteorological seasons. We

set that March, April, and May are spring; June, July, and August are summer; September,

October, and November are fall; December, January, and February are winter. We index

the four seasons from spring to winter with i ∈ I = {1, 2, 3, 4}. Then, we denote the

seasonal temperature (value) at county c (c ∈ C \ {m}) in season i (i ∈ I) in year t as

T̃c,i,t. Similarly, we let the seasonal precipitation (value) be R̃c,i,t.

Dummy variables: In this study, we consider two types of dummy variables (also known
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as indicators) to capture yearly differences in the dependent variable and absorb unobserved

county-specific variances, respectively.

Let Y = {y1, y2, y3, ...} be a collection of the finite years utilized for fitting the regression

model, with |Y| representing the total number of years in this collection. We let Iy(t)

(y ∈ Y \ {Y1}, t ∈ Y) represent year indicators employed to capture yearly differences,

including those caused by technology changes, in the dependent variable. Iy(t) takes a

value of one if year t is equal to year y and zero otherwise. We exclude y1 from the set Y

because |Y| − 1 year indicators are sufficient to identify all |Y| years.

The notation Ic̄(c) (c̄ ∈ C \ {1,m}, c ∈ C \ {m}) represents fixed county indicators

used to absorb all unobserved county-specific variances arising from factors such as state

agriculture policies and subsidies or other unobserved characteristics. Ic̄(c) takes a value

of one when county c is the same as county c̄ and zero otherwise. Note that the county set

C = {1, 2, ...,m}, where county m is the artificial county employed to represent risk-free

assets. m − 2 (= |C \ {1,m}|) county indicators are sufficient to identify m − 1 (real)

counties in the MRB.

Farmland values: We let Vc,t (c ∈ C \ {m}) be the discounted farmland value (price)

($/acre) at county c in year t and lnVc,t be the logarithm of Vc,t.

Coefficients: We let βT̃ ,i and βR̃,i (i ∈ I) be the coefficients of T̃c,i,t and R̃c,i,t, respec-

tively. Similarly, we let γT̃ ,i and γR̃,i be the coefficients of squared seasonal temperature

T̃ 2
c,i,t and squared seasonal precipitation R̃2

c,i,t. Let βy (y ∈ Y \ {Y1}) be the coefficient of

Iy(t) and βc̄ (c̄ ∈ C \ {1,m}) be the coefficient of Ic̄(c).

In the regression model, we let a be a constant. µc,t (c ∈ C \ {m}) is a stochastic
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error term that is assumed not to be correlated with climate. Specifically, we propose the

regression model as follows:

lnVc,t = a +
4∑

i=1

(βT̃ ,iT̃c,i,t + γT̃ ,iT̃
2
c,i,t + βR̃,iR̃c,i,t + γR̃,iR̃

2
c,i,t) +

∑
y∈Y\{Y1}

βyIy(t)

+
∑

c̄∈C\{1,m}

βc̄Ic̄(c) + µc,t

(2.6)

Based on Model (2.6), we can estimate the percentage change in land values corre-

sponding to a minor change in seasonal temperature and precipitation. The percentage

change is called the marginal impact in percentage (Van Passel et al., 2017). We calculate

the marginal impacts in percentage of seasonal temperature, denoted as F (T̃c,i,t), by taking

the partial derivative of Vc,t at T̃c,i,t and dividing this value by Vc,t. Similarly, we can cal-

culate the marginal impacts in percentage of seasonal precipitation, denoted as F (R̃c,i,t).

Consequently, we have the following two equations (Van Passel et al., 2017):

F (T̃c,i,t) :=
∂Vc,t

∂T̃c,i,t

/Vc,t = βT̃ ,i + 2γT̃ ,iT̃c,i,t ∀c ∈ C \ {m}, i ∈ I, t ∈ T (2.7)

F (R̃c,i,t) :=
∂Vc,t

∂R̃c,i,t

/Vc,t = βR̃,i + 2γR̃,iR̃c,i,t ∀c ∈ C \ {m}, i ∈ I, t ∈ T (2.8)

These two equations will be used to understand the marginal impacts of seasonal temper-

atures and precipitations on farmland values under climate change in Section 2.4.3.
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2.4.2 Data Source and Data Prepossessing

To fit Model (2.6) and predict future farmland values, we collected the most proper and

detailed data available on historical farmland values, temperature, precipitation, future

climate scenarios. We also present the patterns of the forecasted climate data for each

season in the MRB.

Farmland data: The farmland value is the total asset value including agriculture land

and farm buildings. The farmland value data come from the United States Census of

Agriculture (USDA) and are available every five years, specifically in 1997, 2002, 2007,

2012, and 2017 (National Agricultural Statistics Service, United States Department of

Agriculture, 2017). The limitation of selecting data every fifth year is that we can only

observe price trends at each of these five-year intervals in the dataset, whereas we need the

trends at an annual level.

These data are observed at the finest county level, and the farmland value is measured

in $/acre. As some counties missed these data in some census years, we drop the counties

without complete data of all census years, i.e., 1997, 2002, 2007, 2012, and 2017, leaving

545 counties. All farmland values are converted into U.S. dollars in 2017 by multiplying

the sum of one and the cumulative inflation rate between 2017 and the targeted years.

Specifically, the cumulative inflation rates from 1997, 2002, 2007, and 2012 to 2017 are

0.527, 0.363, 0.182, and 0.068, respectively (CoinNews Media Group, 2022).

Histogram plots in Appendix A.1 reveal that the farmland data are highly right-skewed

with a long right tail, while the log-transformed farmland data are less skewed and more

symmetric. These patterns indicate a preference for a logarithmic regression model in our
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case.

The longitude and latitude of the centroids of the counties are obtained from the hous-

ingData R package (v0.3.0; Hafen (2016)). Farmland size data in each U.S. county is

derived from the United States Census Bureau (The United States Census Bureau, 2012).

Historical seasonal temperature and precipitation data: We rely on the county-level data

from the National Oceanic and Atmospheric Administration’s Climate Divisional Database

(nClimDiv) (Vose et al., 2014a) for the contiguous United States. These data are bias-

corrected and provide monthly average (surface air) temperature and monthly precipitation

values for each county, spanning from 1895 to the present (Vose et al., 2014b). We use

these data to develop the seasonal measures of average temperature (Fahrenheit) and total

precipitation (inch/month) for the farmland in each county (in the MRB) for the five census

years (i.e., 1997, 2002, 2007, 2012, and 2017), see Appendix A.4 for the details.

Projections for future seasonal temperature and precipitation: We generate these projec-

tions based on the high-resolution Localized Constructed Analogs (LOCA) CMIP5 Projec-

tions (Pierce et al., 2014). There are 64 LOCA climate projections (or climate scenarios)

generated by 32 climate models under RCP4.5 and RCP8.5, respectively. Each LOCA

climate projection provides the bias-corrected daily precipitation, maximum surface air

temperature, and minimum surface air temperature at about 6 km × 6 km kilometer grid

cells for the contiguous United States from 2006 to 2099 (or 2100). The data on those

climate projections are used to develop month-by-year measures of precipitation and aver-

age surface air temperature covering the farmlands in each county in the MRB during the

2023-2099 period. To obtain the monthly average surface air temperature projections, we
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compute the mean of the daily maximum surface air temperature and minimum surface

air temperature obtained from the LOCA dataset for each month. Similarly, to obtain the

monthly precipitation projections, we sum up the daily precipitation values obtained from

the LOCA dataset for each month.

To obtain county-level climate projections, we downscale the monthly average surface

air temperature and precipitation projections to match each county. We perform the

downscaling using the closest downscaling method, where for each county a grid location

that includes the county’s centroid center point is identified and the climate projections

for that location are used as the projections for that specific county. The raster R package

(version 3.6.14, Hijmans (2023)) is utilized for implementing this downscaling procedure.

We use these downscaled month-by-year data to develop the seasonal measures of av-

erage temperature and precipitation (inch/month) for the farmland in each county (in the

MRB) for the 2021-2090 period. Refer to Appendix A.4 for more details. The derived

seasonal data serve as inputs of Model (2.6) for forecasting future land prices,

Forecasted climate in the MRB: We use the obtained county-level seasonal temperature

and precipitation projections to present climate change in the MRB over the study horizon.

To avoid numerous figures, we use the average temperature and precipitation over all 32

GCMs to show climate change between 2023 and 2090 at county level. Figures 2.1 and 2.2

respectively present net differences in temperature and precipitation by county between

the years of 2023 and 2090. In Figure 2.1, the mean temperature in 2090 increases by

about 2 °C under RCP4.5 and by about 5 °C under RCP8.5 over all four seasons compared

to 2023. The figure also shows that temperature will increase slightly more in the North
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(a) RCP4.5 (b) RCP8.5

Figure 2.1: Seasonal temperature change between 2023 and 2090 in the MRB

of the MRB than in the South in all four seasons under both scenarios. In contrast to

temperature, changes in precipitation, shown in Figure 2.2, are more varied. The mean

precipitation in 2090 increases in the North over the Spring, Fall, and Winter under both

RCPs, while precipitation either increases or decreases in the remaining area compared to

2023. Unlike the other seasons, the figure shows that summer precipitation change varies

even at similar latitudes.

2.4.3 Farmland Value Results

Based on the data described in Section 2.4.2, we fit Model (2.6) and forecast farmland

values.

Fitting regression model: Utilizing the Farmland data and Historical Seasonal Tem-
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(a) RCP4.5 (b) RCP8.5

Figure 2.2: Seasonal precipitation change between 2023 and 2090 in the MRB

perature and Precipitation data in years Y = {1997, 2002, 2007, 2012, 2017}, we employed

the ordinary least square method (Dunn et al., 2018) via R Statistical Software (v3.6.3; R

Core Team (2020)) to fit Model (2.6) for the MRB case.

We present the results of the best-fitted Model 2.6 in the MRB case in Table 2.1. In this

table, the fall temperature, winter temperature, fall precipitation, and winter precipitation

are 95% statistically significant. Moreover, if the local fall temperature (respectively (resp.)

precipitation) rises, the farmland values in the MRB will continuously increase before

reaching their turning point, i.e., 59.8 °F or 15.4 °C (resp. 7.05 inch or 17.9 cm). Because

slightly warmer and wetter falls extend the growing season, farms produce greater yields

and increase their revenue (Liang et al., 2017). However, the rise of winter temperature

(resp. precipitation) will decrease farmland values before it reaches the turning point of

31.85 °C (resp. 14.7 cm). This decrease may occur because a warmer and wetter winter
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may encourage diseases and insect pests that reduce farmland yields and revenue (Deressa,

2007). Overall, the rise of temperature and precipitation in fall and winter have opposite

effects on farmland values in the MRB.

Further, we show that the marginal impacts of seasonal temperature and precipitation

on land values vary over the MRB. By Equations (2.7) and (2.8), we calculated the marginal

impact in percentage of land values for the mean climate scenario in 2023. In Figure 2.3, we

present the seasonal temperature and precipitation marginal impacts in percentage across

the MRB at the county level under RCP4.5. We do not need to show the marginal impacts

in percentage under RCP8.5 in 2023 as the climate is similar under these two RCPs in

2023. The marginal impacts in percentage under RCP4.5 and RCP8.5 in 2090 can be

found in Appendix A.7. In Figure 2.3, farmland values decrease with warmer spring and

winter temperatures across the MRB and decrease with warmer fall temperatures in the

South of the MRB. In the Northern MRB, farmland values increase with warmer summer

and fall temperatures. On the other hand, farmland values across the MRB decrease with

wetter springs, summers, and winters. However, farmland values across the MRB increase

with a wetter fall. Overall, examining all four seasons, warmer temperatures may benefit

farmland values in the Northern MRB, and more precipitation may harm farmland values

across the MRB.

Farmland value forecasts from climate data: To forecast future farmland values and

corresponding confidence intervals for each climate scenario and each county within the

MRB, we incorporated the Projections for Future Seasonal Temperature and Precipitation

data into the best-fitted Model (2.6). We assume that in future years, farmland in the MRB

would have the same annual conditions as in the year 2017, except for climate conditions.

51



Table 2.1: Summary of the best-fitted Model (2.6)

Independent variables Coeff. Std. Error P-value 95% CI

Spring temperature -0.1892 0.1216 0.12 [-0.4277, 0.0493]
Spring temperature squared 0.0007 0.0011 0.54 [-0.0015, 0.0028]
Spring precipitation -0.0876 0.0480 0.07 [-0.1817, 0.0066]
Spring precipitation squared 0.0059 0.0048 0.22 [-0.0036, 0.0154]
Summer temperature 0.4494 0.2388 0.06 [-0.019, 0.9178]
Summer temperature squared -0.0027 0.0016 0.09 [-0.0058, 0.0004]
Summer precipitation -0.0388 0.0305 0.20 [-0.0985, 0.0210]
Summer precipitation squared 0.0005 0.0027 0.86 [-0.0049, 0.0059]
Fall temperature 0.7041 0.1025 0.00∗ [0.5031, 0.9050]
Fall temperature squared -0.0059 0.0009 0.00∗ [-0.0077, -0.0041]
Fall precipitation 0.2857 0.0540 0.00∗ [0.1799, 0.3915]
Fall precipitation squared -0.0203 0.0069 0.00∗ [-0.0338, -0.0067]
Winter temperature -0.0843 0.0129 0.00∗ [-0.1097, -0.0589]
Winter temperature squared 0.0005 0.0002 0.03∗ [0.0000, 0.0009]
Winter precipitation -0.4261 0.0445 0.00∗ [-0.5133, -0.3389]
Winter precipitation squared 0.0368 0.0041 0.00∗ [0.0287, 0.0449]

Number of observations: 2725
Residual standard error: 0.1465 on 2160 degrees of freedom
Multiple R-squared: 0.923; Adjusted R-squared: 0.9029
F-statistic: 45.91 on 564 and 2160 DF, p-value: < 2.2e−16

∗: 95% statistical significance; Coeff.: coefficient; Std.: standard; CI: confidence interval

Mathematically, year indicators for the future are identical to the year indicator in 2017

when predicting farmland values, denoted by
∑

y∈Y\{1997} βyIy(t) = β2017 (∀t ∈ T ).

For convenience’s sake, we measure future farmland prices in 2023 USD. We use a 0.02

constant yearly inflation rate to discount future farmland values to 2023 USD because the

Federal Open Market Committee targets a 0.02 inflation rate as a long-term goal (Board

of Governors of the Federal Reserve System, 2021).
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(a) Temperature (Temp.) (b) Precipitation (Prep.)

Figure 2.3: Marginal impact in percentage of farmland values of mean climate in 2023
under RCP4.5

2.4.4 Discussion of Farmland Value Forecasts

Here we discuss how the specifics of a climate trajectory translate into differences in land

valuations. Table 2.1 shows the coefficients of the regression model used to predict farm-

land values from a particular climate forecast. These relationships are established from

historical data linking county-level seasonal climate values to prices and show that season

dramatically changes how temperature and precipitation impact the value of agricultural

land. In particular, Figure 2.3 shows that, for RCP4.5 and over the full horizon, the average

climate scenario forecasts warmer spring and winter temperatures harm farmland values

across the MRB, while warmer summer and fall temperatures benefit farmland values in

the Northern MRB. More precipitation in springs, summers, and winters harm farmland

values across the MRB, while wetter fall seasons benefit valuations. These seasonal and
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Figure 2.4: Relative farmland price changes between mean of 2081-2090 and mean of 2023-
2032

locational differences imply that caution needs to be applied when considering aggregat-

ing climate values whether the aggregation is annual, over a large geographic footprint,

or between climate models. Two climate forecasts may have similar average precipitation

and temperature while having very different land value trajectories because of differences

in how precipitation and temperature are distributed.
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2.5 Study II: Investment Decisions in the MRB under

Climate Change Scenarios

In this section, we conduct an empirical study employing linear robust Model (2.5) to

investigate land investment decisions made by a farmland investor in the MRB under

different climate scenarios. We set 2022 as period 0 (current period) for the investor. We

study the investor’s farmland investment from 2023 to 2090 in counties whose centroid

centers are located between the longitudes of 94.5◦ W and 89.0◦ W. The empirical study

consists of two key steps. First, we introduce the methodology for the empirical study of

land investment decisions. Second, we present the farmland investment outcomes for both

the benchmark case and the robust case.

2.5.1 Methodology for the Empirical Study of Investment Deci-

sions

The methodology for the empirical study of investment decisions has three steps. First,

based on the best-fitted regression model (2.6), we formulate farmland price uncertainty as

intervals for each climate scenario. These intervals give price parameters for solving Model

(2.5) under different climate scenarios. Second, we model the budgets of uncertainty for

Model (2.5). Third, for the same 68-year period, we solve Model (2.5) multiple times under

different scenarios to investigate farmland investment decisions made in the MRB case.

Modeling farmland value uncertainty: Based on the best-fitted Model (2.6), we model

future farmland price uncertainty as confidence interval trajectories with two steps. This
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modeling process involves generating confidence interval trajectories, offering lower and

upper bounds of the uncertain land prices for each county. Intuitively, these confidence

intervals represent the investors’ comprehension of the potential maximal variation, or

the worst-case scenario, in land prices for each county. Wider confidence intervals signify

greater land price fluctuations and the potential occurrence of extreme prices in each

county, while narrower intervals indicate reduced variations and smaller extreme prices.

First, for each climate scenario generated by the combination of GCMs and RCPs, we

predicted the mean of lnVt,c (∀c ∈ C \ {m}, t ∈ T ) and its corresponding α% confidence

interval (CIα), where α% is the confidence level (Devore, 2011), for each county and each

year. We denote the mean as lnV̄t,c and the range of the CIα as 2dt,c(α), where dt,c(α)

equals half of the range. Consequently, we can express the CIα for lnV̄t,c as [lnV̄t,c −

dt,c(α), lnV̄t,c + dt,c(α)]. In our case, we employ both 68% confidence intervals (CI68) and

95% confidence intervals (CI95). The CI95 permits a broader range of price variation

compared to the CI68.

Second, we transform the CIα for lnV̄t,c into the interval for Ptc. We let e be the

exponential constant, p̄tc = 1
2
(elnV̄t,c−dt,c(α) + elnV̄t,c+dt,c(α)), and p̂tc = p̄tc − elnV̄t,c−dt,c(α). We

model uncertain Ptc (∀c ∈ C \ {m} and t ∈ T ) as a random variable that is bounded,

symmetric, and independent, and its values are confined within [p̄tc − p̂tc, p̄tc + p̂tc] (=

[elnV̄t,c−dt,c(α), elnV̄t,c+dt,c(α)]).

Note that when Γt = 0 (∀t ∈ T ) the investor ignores price variance and uses mean

prices. In this case, we let p̄tc = V̄t,c and p̂tc = 0 (∀t ∈ T , c ∈ C \ {m}). In essence, the

investor assumes no uncertainty in pricing and considers only the mean values.
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Modeling budgets of uncertainty: In our case, we determine the budgets of uncertainty

for each year as percentages of the total number of counties: Γ1 = Γ2 = ... = ΓT =

Γ := λ(m − 1), where λ ∈ [0, 1], for two main reasons. First, this way allows constant

conservatism over time and does not rely on extra parameters. This allows our model

to be simpler and easier to solve. Second, this way also enables us to study the non-

conservative case (Γ = 0) and the most conservative case (Γ = m− 1). Setting Γ = 0 leads

to decision makers ignoring price variance and using only the value p̄tc (c ∈ C \ {m}). If

Γ = m− 1, decision makers are at their most pessimistic, considering the farmland prices

within the confidence interval which minimize the objective value. Note that we keep the

price deterministic at the artificial county m.

Solving the Robust model at Different Scenarios: We solve Model (2.5) multiple times

under different scenarios. These scenarios come from the combinations of climate scenarios,

confidence levels, and conservatism levels. We form the scenarios using a two step process,

after which, we solve the model under these scenarios.

First, we formed the combinations of 64 climate scenarios and two confidence levels to

generate price interval trajectories. We used 64 climate scenarios, which were generated

from 32 GCMs and 2 RCPs as documented in (Bracken, 2016). With two confidence

intervals, CI68 and CI95, we have 128 farmland price interval trajectories for each county

in the MRB from 2023 to 2090. We used these interval trajectories as the price parameters

of Model (2.5) when solving the model.

Besides the price parameters, we set the remaining (economic) parameters in Model

(2.5) as follows: inflation rate β = 0.02, external income Bt = 60, 000 (t ∈ T \ T ),
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transaction cost rate on buying land rlb = 0.01, transaction cost rate on selling land rls =

0.06, transaction cost rate on buying risk-free asserts rβb = 0, and transaction cost rate

on selling risk-free asserts rβs = 0.01. For more detailed information about these economic

parameters, please refer to Appendix A.5.

Second, we further formed the combinations of these 128 interval trajectories with differ-

ent conservatism levels. For conservatism levels, we chose 16 different levels: {0, 0.01(m−

1), 0.02(m − 1), 0.03(m − 1), 0.04(m − 1), 0.05(m − 1), 0.1(m − 1), 0.2(m − 1), ..., 0.9(m −

1), (m − 1)}. For notational simplicity, we used only decimals to express conservatism

levels, denoted as {0, 0.01, 0.02, ..., 0.05, 0.1, 0.2, ..., 0.9, 1}. Therefore, we need to solve the

model for 2048 (= 128 × 16) scenarios.

Finally, we conducted the solution process for the linear robust Model (2.5) encompass-

ing these 2048 scenarios, leading to 2048 optimal solutions. For each scenario, the model

has 110,292 variables and 220,583 constraints, and the detailed cardinality specifying the

numbers of variables and constraints can be found in Appendix A.6. The solving process

utilized CPLEX (20.1.0) and ran on a 24-core Linux machine with 128 GB of RAM. The

total time required to solve the 2048 scenarios was 40 hours, with an average of 70 seconds

needed to address each instance.

2.5.2 Farmland Investment Results

This section presents numerical results illustrating investment decisions in the MRB in

response to the 64 climate scenarios. The section is divided into two parts. As a benchmark,

the first part studies investment decisions in the MRB using the estimated mean farmland
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price. The second part studies robust investment decisions for the 64 climate scenarios.

Benchmark farmland investment decisions

In this part, we study optimal farmland investment decisions without price uncertainty

under climate change. Specifically, we investigate investment decisions under the average

climate scenario as a benchmark case for this research.

We averaged county-level temperature and precipitation projections equally over all 32

GCMs for RCP4.5 and RCP8.5. For each RCP, we input the average projections into the

regression model (2.6) to generate mean farmland price trajectories at the county level

from 2023 to 2090. Then, we input the trajectories into the robust land investment model

(2.5) (with Γt = 0, ∀t ∈ T ) to get the optimal land buying and selling decisions for each

RCP. These decisions tell investors to buy and sell farmland, in which counties, at which

period, and of how many acres in the MRB.

We present the geographical range of the optimal farmland investment decisions in the

MRB. In Figure 2.5, the right subfigure shows a map of the MRB. In the left and middle

subfigures, the x-axis represents years and the y-axis represents scaled latitudes. We use

blue (resp. violet) dots to represent the geographical latitudes of centroids of counties with

farmland buying (resp. selling) decisions. The latitudes are scaled by minus 29.43◦ N, which

is the minimal latitude of a county’s centroid in the MRB. We use black-dashed lines to

represent the upper bound (=18.8) and lower bound (=0.0) of these scaled latitudes. For

convenience purposes, we let the scaled latitudes of centroids of counties without farmland

buying and selling decisions, i.e., with no acquisition, be −1. In addition, we use red-
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Figure 2.5: The farmland investment latitude in the MRB under the average climate
scenario

dashed lines to represent this no-acquisition decision. The middle of the scaled latitude

range [0,18.8] is 9.4.

In Figure 2.5, generally, the scaled latitudes for buying under both RCPs are close

to 18.5 over the planning horizon, which always suggests investment in the northernmost

MRB (i.e., in MN). However, there are some exceptions in certain years under RCP4.5.

The scaled latitudes for buying equals about 17.2 in 2076-2077 and 13.2 in 2087-2088,

suggesting buying farmland in WI (according to the optimal investment decisions). On

the other hand, for selling, the scaled latitudes equal −1, indicating that the investor

retains their farmland investments under both RCPs. Overall, under both RCPs, buying

and holding farmland in the Northern MRB is the optimal investment decision based on

the mean temperature and precipitation of all 32 GCMs.
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Robust investment decisions for forecasted climate scenarios

We present robust farmland investment decisions under multiple scenarios from three per-

spectives: investor profitability for all scenarios and conservatism levels, examples of in-

vestment details for specific climate scenarios, and summarised investment strategies for

all scenarios and conservatism levels.

The optimal investment profits: Based on the optimal investment decisions, we in-

vestigated the relationship between the optimal investment profits (the optimal objective

values of Model (2.5)) and different climate and conservatism scenarios. For presentation

purposes, instead of showing these profits, we show the net profit margins (NPMs) that

have been calculated from these profits. Specifically, the NPM is calculated by (the opti-

mal objective value - cost)/cost, where the cost equals the discounted cumulative external

incomes during 2023-2089 (i.e.,
∑67

t=1
1

(1+β)t−1Bt). For comparison purposes, we measure

the optimal objective values, the cost, and NPMs, all in 2023 USD.

Figures 2.6a and 2.6b present Box-and-whisker plots for NPMs over different RCPs

and conservatism scenarios under CI68 and CI95, respectively. Each plot represents the

interquartile range of 32 NPMs from 32 GCMs in a box that has the 25th percentile,

median, and 75th percentile displayed within. Besides the box, the diamond-shaped points

above the whiskers are outliers: more precisely they are extreme values in the 32 NPMs. In

both figures, all the NPMs decrease and then converge as the conservatism level increases.

As the conservatism level passes 0.3, all the NPMs in both figures converge to a value that

varies among RCPs and CIs. In addition, in both figures, NPMs under RCP4.5 converge

to a bigger value than NPMs under RCP8.5 do. The medians of NPMs under RCP4.5
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(a) CI68 (b) CI95

Figure 2.6: The box-and-whisker plots for net profit marginals (NPMs)
Each boxplot displays the variation of the NVMs of 32 GCMs at a certain conservatism.

converge to 0.59 (for CI68) and 0.08 (for CI95), while the medians of NPMs under RCP8.5

converge to 0.19 (for CI68) and 0.01 (for CI95), respectively. The convergence makes sense

as a higher conservatism level makes the land price uncertainty range wider, then buying

at a high price and selling at a low price generate less money. In addition, the investors

can expect more profit under RCP4.5 than under RCP8.5, again due to larger decrease in

land prices under RCP8.5.

Investments for the HadGEM2-ES GCM: To understand the details of how investments

take place in a specific climate scenario, we examined the individual purchases and sales

actions in response to scenarios derived from the HadGEM2-ES GCM (Bellouin et al.,

2011). We chose this climate model because it is widely used to generate high-resolution

regional climate projections in North America (Mearns et al., 2017), and it contains the
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most complete climate processes among the HadGEM2 family (Bellouin et al., 2011).

Because land valuations tend to vary in the North-South axis, we focus on present-

ing the latitude of farmland buying decisions in the MRB during 2023-2089 under the

HadGEM2-ES. Figure 2.7 and Figure 2.8 provide visual representations of the scaled lat-

itudinal buying/selling decisions (represented by blue/violet dots) across various levels of

conservatism (0, 0.05, 0.4, and 1). In both figures, the x-axis represents years from 2023

to 2089, the y-axis represents the scaled latitude from 0 to 18.8, and the three subfigures

show the buying/selling latitudes at levels of conservatism: 0, 0.05, ≥0.4.

In Figure 2.7a, corresponding to condition RCP4.5 and CI68, both buying and selling

occur over the entire MRB area at conservatism levels 0 and 0.05. We note that when

conservatism level increases from 0 to 0.05, in periods where investments are made, they

are spread over a larger set of latitudes to reduce exposure to worst-case outcomes. At

conservatism levels greater than 0.4, acquisitions and sales occur exclusively in the Northern

MRB. This pattern indicates that investment decisions encompass the entire MRB at lower

conservatism levels but shift towards the Northern MRB as conservatism increases beyond

0.4. At the larger confidence interval for land price valuations, CI95, worst-case outcomes

are more severe. Under RCP4.5 and CI95, no investment occurs when conservatism levels

surpass 0.4 (Figure 2.7b).

Figure 2.8 shows investments for RCP8.5. The results are similar to the results for

RCP4.5 except that in all cases there is a reduction in the number of land acquisitions. We

observe that for CI68, at lower levels of conservatism there remain some opportunities over

the entire set of latitudes. At CI95, there are no profitable investments for even modest
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levels of conservatism.

(a) CI68

(b) CI95

Figure 2.7: Farmland investment latitude in the MRB based on the HadGEM2-ES GCM
under RCP4.5

Investment strategies for all climate scenarios: To understand how different climate

scenarios affect farmland investment, we studied the investments for all 32 GCMs under

both RCP4.5 and RCP8.5 at a range of conservatism levels.

Table 2.2 and 2.3 present the ranges of scaled buying latitudes in the 2080s under CI68

for RCP4.5 and RCP8.5, respectively. In these tables, the first column corresponds to

the GCM, the first row represents conservatism levels, and NI denotes the abbreviation
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(a) CI68

(b) CI95

Figure 2.8: Farmland investment latitude in the MRB based on the HadGEM2-ES GCM
under RCP8.5
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for no investment. In Table 2.2, as the conservatism level increases, the ranges shrink to

cover just the Northern MRB under nine of the 32 GCMs (e.g. CESM1-CAM5 (Neale

et al., 2010) and inmcm4 (Volodin et al., 2010)). However, under the remaining 23 GCMs,

the farmland investment portfolio suggests different investment strategies. 11 of the 23

GCMs suggest investment in the South, 10 of 23 GCMs suggest investment across the

North and South, and two of 23 GCMs suggest no investment. These patterns from the

32 GCMs show that the portfolio of investment decisions varies over GCMs. In addition,

the patterns are different from the previous conclusions for the mean climate scenario (the

benchmark case), which suggests always investing in the North. Similarly, in Table 2.3,

under RCP8.5, the portfolio of the investment decisions again varies among GCMs. eight

of the 32 GCMs lead to investing only in the North, while four GCMs lead to investing

only in the South. However, investors end up with no investment decision for 20 of the 32

GCMs as the conservatism level increases.

Similarly, Table 2.4 and 2.5 show the ranges of the scaled buying latitudes in the 2080s

under CI95. At high conservatism levels, under conditions RCP4.5 and CI95, three of the

32 GCMs suggest investing in the North, five GCMs suggest investing in the South, and

24 GCMs suggest no investment. Under RCP8.5 and CI95, 30 of the 32 GCMs suggest

no investment. When comparing CI68-based and CI95-based ranges of the scaled buying

latitudes, during the same period (the 2080s), fewer GCMs suggest investing in the MRB.

This phenomenon occurs because CI95 indicates higher price variances than CI68 and

increases the cost of dealing with worst-case price deviation.
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2.5.3 Discussion of Forecasted Farmland Investments

The empirical study reveals how granular details of temperature and precipitation tra-

jectories associated with different climate models may impact investment decisions in the

MRB. These results provide insights into how challenging to quantify disagreements be-

tween forecasts translate into different investment strategies.

The challenge associated with considering aggregated forecasts is evident when we com-

pare the investments associated with the benchmark model with the results from climate

forecasts associated with individual climate models. The benchmark uses average climate

values for each season/county. For both RCPs, the benchmark climate leads to farmland

values growing in the northernmost latitudes of the MRB but decreasing in other areas.

The investment strategies associated with the benchmark model are the expected: the

most profitable strategy is to invest at Northern latitudes. When investment strategies

associated with individual climate models are examined, the results are very different (see

Tables 2.2-2.5). At higher conservatism levels where less robust investment opportunities

are filtered out, investment latitudes are highly contingent on the forecast. For example,

at RCP4.5, CI68, and a conservatism level of 0.5, multiple forecasts lead to investment

specifically in Northern (e.g. CESM1-CAM5, CMCC-CMS), Southern (e.g. ACCESS1-

3, CCSM4) latitudes and over both Northern and Southern latitudes (e.g. GISS-E2-R,

MIROC-ESM-CHEM). Of note, for this case, only 28% of the climate scenarios find that

the benchmark strategy of investing at extreme Northern latitudes is robust. At RCP8.5,

differences in the climate scenarios also lead to a range of strategies. However, at this

higher emissions pathway, 63% of the scenarios do not have robust profitable investment
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opportunities (conservatism level of 0.5, CI68).

These results point to the need to consider individual climate forecasts independently

when planning or evaluating adaptation strategies. It is important that the granular details

of individual climate paths and the dynamics of the particular investment or decision

problem are considered when determining a strategy and evaluating which communities

are likely to enjoy economic benefits or detriments.

2.6 Conclusion

This chapter has two main sets of contributions: (1) The development of a scalable method-

ology for assessing investment decisions on a horizon and scale suitable for climate adap-

tation research. (2) The application of these methods to a case study of how a farmland

investor’s decisions are contingent on valuations formed from different climate forecasts.

The solution methods extend the work of Bertsimas and Sim (2003) and Bertsimas and

Sim (2004) on robust optimization with varied conservatism to a sequential investment

problem where holdings may be held indefinitely. We show that this problem can be

linearized and scales appropriate both in terms of the number of assets and the investment

horizons to be useful for the study of climate adaptation.

The empirical study uses these robust optimization methods to study investment in

over 500 counties in the Mississippi River Basin from 2023 to 2090. The study reveals

variations among climate scenarios that will impact the profitability and strategy of robust

investment decisions. Specifically, we determined the optimal robust investment decisions
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by applying the robust optimization methods developed for sequential investment decisions

to trajectories of land values implied by a family of climate models used by the IPCC,

considering both low and high emission pathways.

For the low emission pathway, RCP4.5, the benchmark climate scenario, determined by

averaging climate variables over the climate models, leads to investment consistent with

“conventional wisdom”: invest at Northern latitudes of the MRB. However, the investment

patterns associated with individual climate scenarios are highly varied. Depending on the

particular scenario, economic beneficiaries may be at many different locations over the

MRB.

At the higher emissions RCP8.5 pathway, investment associated with the benchmark

scenario remains profitable at Northern latitudes. However, for the individual climate

scenarios, the level of profitability decreases and there are few robust investment oppor-

tunities. This does not imply that the land is no longer productive, but rather that the

value of the land does not reliably increase over the investment horizon.

The primary takeaway from these findings reinforces the importance of considering

a range of granular climate scenarios with detailed seasonal and locational data when

evaluating climate adaptation decisions.
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Table 2.2: The range of scaled buying latitude under RCP4.5 and CI68 in the 2080s

GCM \ Conservatism 0 0.05 0.2 0.5 1
ACCESS1-0 [1.8, 18.5] [0.0, 18.8] NI NI NI
ACCESS1-3 [4.8, 16.0] [3.9, 18.8] [0.0, 18.8] [7.2, 8.4] [7.2, 8.4]
CCSM4 [1.3, 15.3] [0.0, 17.2] [0.0, 18.5] [0.8, 1.7] [0.8, 1.7]
CESM1-BGC [0.3, 18.5] [0.0, 18.8] [4.0, 18.5] [8.3, 18.5] [8.3, 18.5]
CESM1-CAM5 [9.3, 18.8] [9.2, 18.8] [0.0, 18.8] [12.3, 18.8] [12.3, 18.8]
CMCC-CMS [3.3, 18.5] [0.0, 18.8] [0.0, 18.8] [14.0, 14.9] [14.0, 14.9]
CNRM-CM5 [1.4, 18.5] [0.0, 18.8] [0.0, 17.5] 8.4 8.4
EC-EARTH [3.3, 18.8] [0.0, 18.8] [0.0, 18.8] [1.8, 2.2] [1.8, 2.2]
FGOALS-g2 [0.0, 18.8] [0.0, 18.8] [0.0, 18.8] [12.6, 14.2] [12.6, 14.2]
GFDL-CM3 [0.5, 18.1] [0.0, 18.8] [0.0, 14.3] [9.2, 9.6] [9.2, 9.6]
GFDL-ESM2G [0.8, 17.2] [0.0, 18.8] 1.3 1.3 1.3
GFDL-ESM2M [0.5, 18.5] [0.1, 18.8] [2.8, 18.8] [6.8, 12.6] [6.8, 12.6]
GISS-E2-H [0.0, 18.8] [0.3, 18.8] [0.0, 18.8] 3.8 3.8
GISS-E2-R [1.4, 18.8] [0.0, 18.8] [0.0, 18.8] [7.9, 15.2] [7.9, 15.2]
HadGEM2-AO [1.0, 14.9] [0.0, 18.8] [0.0, 18.8] [0.0, 18.8] [1.0, 1.9]
HadGEM2-CC [0.0, 18.5] [0.0, 18.8] NI NI NI
HadGEM2-ES [0.8, 18.8] [0.0, 18.8] 18.5 18.5 18.5
IPSL-CM5A-LR [0.1, 18.8] [0.0, 18.8] 6.5 6.5 6.5
IPSL-CM5A-MR [0.8, 18.8] [0.0, 18.8] [0.3, 18.8] 18.5 18.5
MIROC-ESM [8.1, 18.8] [0.0, 16.5] [0.5, 18.5] [7.2, 8.8] [7.2, 8.8]
MIROC-ESM-CHEM [0.5, 18.8] [0.0, 18.8] [0.0, 18.8] [0.0, 18.8] [7.9, 14.0]
MPI-ESM-LR [2.5, 18.2] [0.0, 18.8] [0.0, 18.8] [7.9, 14.0] [7.9, 14.0]
MPI-ESM-MR [0.0, 17.2] [0.0, 18.8] [0.0, 18.5] [0.1, 5.1] [0.1, 5.1]
MRI-CGCM3 [0.5, 18.8] [0.0, 18.8] [0.3, 18.8] [0.5, 14.0] [0.5, 14.0]
NorESM1-M [0.5, 18.5] [0.1, 18.8] [0.0, 18.8] [0.4, 18.5] [0.4, 18.5]
bcc-csm1-1 [1.4, 16.6] [0.0, 18.8] [1.1, 15.2] [11.0, 11.8] [11.0, 11.8]
bcc-csm1-1-m [0.0, 16.6] [0.0, 18.8] [0.0, 17.1] 0.3 0.3
inmcm4 [0.5, 18.8] [0.1, 18.8] [0.0, 18.8] 18.2 18.2
MIROC5 [2.4, 16.5] [0.1, 18.8] [0.0, 18.8] [11.6, 14.0] [11.6, 14.0]
CSIRO-Mk3-6-0 [3.7, 18.5] [0.3, 18.8] [0.0, 18.5] 16.0 16.0
CMCC-CM [0.3, 18.5] [0.1, 18.8] [0.0, 18.8] [2.4, 18.5] [2.4, 18.5]
CanESM2 [0.5, 18.8] [0.0, 18.8] [0.0, 18.8] [8.0, 12.6] [8.0, 12.6]

NI: no investment
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Table 2.3: The range of scaled buying latitude under RCP8.5 and CI68 in the 2080s

GCM \ Conservatism 0 0.05 0.2 0.5 1
ACCESS1-0 [4.9, 17.2] [0.0, 18.8] [0.0, 18.8] [0.0, 18.8] [12.6, 15.2]
ACCESS1-3 [0.8, 16.5] [2.8, 18.5] [0.0, 18.8] 14.0 14.0
CCSM4 [0.8, 18.5] [0.0, 18.8] NI NI NI
CESM1-BGC [6.5, 18.8] NI NI NI NI
CESM1-CAM5 [2.0, 18.5] [0.0, 18.2] [0.0, 18.8] NI NI
CMCC-CMS [9.6, 18.5] [1.0, 18.8] NI NI NI
CNRM-CM5 [2.6, 18.8] [0.0, 18.8] [0.0, 18.8] 8.0 8.0
EC-EARTH [0.7, 18.2] [0.0, 18.8] [0.0, 18.8] 18.5 18.5
FGOALS-g2 [2.2, 18.5] [0.0, 17.2] [0.0, 18.1] NI NI
GFDL-CM3 [0.3, 18.8] [0.0, 18.8] [0.0, 18.8] [0.0, 18.8] [12.6, 13.0]
GFDL-ESM2G [2.6, 18.8] [1.0, 17.2] 11.8 11.8 11.8
GFDL-ESM2M [1.8, 18.2] [5.4, 18.8] [7.2, 8.0] [7.2, 8.0] [7.2, 8.0]
GISS-E2-H [2.5, 18.5] [0.0, 18.8] [0.1, 18.8] NI NI
GISS-E2-R [4.1, 18.2] [0.0, 18.8] NI NI NI
HadGEM2-AO [1.0, 18.2] [0.0, 18.8] [0.0, 18.8] NI NI
HadGEM2-CC [3.3, 18.2] [1.6, 18.8] NI NI NI
HadGEM2-ES [4.8, 18.5] [0.0, 18.8] [0.0, 18.8] NI NI
IPSL-CM5A-LR [1.8, 18.5] [0.0, 18.8] [0.0, 18.8] 16.7 16.7
IPSL-CM5A-MR [4.2, 18.5] NI NI NI NI
MIROC-ESM [0.5, 16.5] [0.0, 18.8] NI NI NI
MIROC-ESM-CHEM [4.0, 18.8] [0.0, 18.8] [0.0, 18.8] [0.0, 18.8] 17.5
MPI-ESM-LR [1.9, 18.2] [0.0, 15.8] [0.0, 18.8] NI NI
MPI-ESM-MR [1.7, 18.5] [0.1, 18.8] [0.0, 18.8] NI NI
MRI-CGCM3 [2.8, 18.2] [0.1, 18.8] [0.0, 18.8] 5.4 5.4
NorESM1-M [6.6, 18.5] [0.3, 18.8] [0.1, 18.8] NI NI
bcc-csm1-1 [0.5, 16.6] [0.0, 18.8] [0.0, 18.8] NI NI
bcc-csm1-1-m [0.3, 18.8] [0.0, 18.2] [0.0, 18.8] 0.5 0.5
inmcm4 [0.5, 17.2] [0.4, 18.5] [0.0, 18.8] [12.3, 13.0] [12.3, 13.0]
MIROC5 [10.0, 18.5] [0.3, 18.8] NI NI NI
CSIRO-Mk3-6-0 [2.3, 11.3] [0.0, 18.8] [0.0, 18.8] [0.0, 18.8] NI
CMCC-CM [0.7, 18.2] [0.0, 18.8] NI NI NI
CanESM2 [5.2, 18.8] [0.9, 16.1] [0.0, 18.8] NI NI

NI: no investment
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Table 2.4: The range of scaled buying latitude under RCP4.5 and CI95 in the 2080s

GCM \ Conservatism 0 0.05 0.2 0.5 1
ACCESS1-0 [1.8, 18.5] [0.0, 18.8] [0.0, 18.8] NI NI
ACCESS1-3 [4.8, 16.0] [0.0, 18.8] [0.0, 18.8] NI NI
CCSM4 [1.3, 15.3] [0.0, 18.5] [0.0, 18.2] NI NI
CESM1-BGC [0.3, 18.5] [0.0, 18.8] [0.8, 18.8] 18.5 18.5
CESM1-CAM5 [9.3, 18.8] [7.8, 18.8] [10.4, 18.8] NI NI
CMCC-CMS [3.3, 18.5] [0.0, 18.8] [0.0, 18.8] NI NI
CNRM-CM5 [1.4, 18.5] [0.0, 18.8] [0.0, 18.8] 8.0 8.0
EC-EARTH [3.3, 18.8] [0.0, 18.5] [0.0, 13.0] NI NI
FGOALS-g2 [0.0, 18.8] [0.0, 18.8] [0.0, 18.8] 14.0 14.0
GFDL-CM3 [0.5, 18.1] [0.0, 14.6] [0.0, 16.0] [0.0, 16.0] 9.3
GFDL-ESM2G [0.8, 17.2] [0.0, 18.8] [0.5, 18.8] 1.3 1.3
GFDL-ESM2M [0.5, 18.5] [0.5, 18.8] [0.0, 18.8] [7.2, 7.3] [7.2, 7.3]
GISS-E2-H [0.0, 18.8] [0.0, 18.8] [0.0, 18.8] NI NI
GISS-E2-R [1.4, 18.8] [0.0, 18.8] [0.0, 18.8] NI NI
HadGEM2-AO [1.0, 14.9] [0.0, 18.8] [0.0, 18.8] NI NI
HadGEM2-CC [0.0, 18.5] [0.0, 18.8] NI NI NI
HadGEM2-ES [0.8, 18.8] [0.0, 18.8] NI NI NI
IPSL-CM5A-LR [0.1, 18.8] [0.3, 18.8] [0.0, 18.8] NI NI
IPSL-CM5A-MR [0.8, 18.8] [0.0, 18.8] [0.0, 18.5] NI NI
MIROC-ESM [8.1, 18.8] [0.4, 14.4] [0.7, 15.8] NI NI
MIROC-ESM-CHEM [0.5, 18.8] [0.0, 18.8] [0.0, 18.8] [0.0, 18.8] NI
MPI-ESM-LR [2.5, 18.2] [0.0, 18.8] [0.0, 18.8] NI NI
MPI-ESM-MR [0.0, 17.2] [0.0, 18.8] [0.0, 18.8] NI NI
MRI-CGCM3 [0.5, 18.8] [0.0, 18.8] [6.1, 15.6] NI NI
NorESM1-M [0.5, 18.5] [0.0, 18.8] [0.0, 18.8] NI NI
bcc-csm1-1 [1.4, 16.6] [1.2, 18.8] [1.2, 18.8] [11.8, 12.6] [11.8, 12.6]
bcc-csm1-1-m [0.0, 16.6] [0.0, 18.8] 0.3 0.3 0.3
inmcm4 [0.5, 18.8] [0.0, 18.8] [0.5, 17.2] NI NI
MIROC5 [2.4, 16.5] [0.0, 18.8] [0.0, 13.0] NI NI
CSIRO-Mk3-6-0 [3.7, 18.5] [0.3, 18.8] [0.8, 18.1] NI NI
CMCC-CM [0.3, 18.5] [0.0, 18.8] [0.0, 18.8] NI NI
CanESM2 [0.5, 18.8] [0.0, 18.8] [0.0, 18.8] NI NI

NI: no investment

72



Table 2.5: The range of scaled buying latitude under RCP8.5 and CI95 in the 2080s

GCM \ Conservatism 0 0.05 0.2 0.5 1
ACCESS1-0 [4.9, 17.2] [0.0, 18.8] [0.0, 18.8] [0.0, 18.8] NI
ACCESS1-3 [0.8, 16.5] [0.8, 18.5] NI NI NI
CCSM4 [0.8, 18.5] [0.0, 16.6] NI NI NI
CESM1-BGC [6.5, 18.8] [0.5, 16.6] NI NI NI
CESM1-CAM5 [2.0, 18.5] [0.0, 18.8] [0.0, 18.8] NI NI
CMCC-CMS [9.6, 18.5] [1.0, 18.2] NI NI NI
CNRM-CM5 [2.6, 18.8] [0.0, 18.8] [0.0, 17.5] [0.0, 17.5] NI
EC-EARTH [0.7, 18.2] [0.0, 18.8] [0.0, 18.8] NI NI
FGOALS-g2 [2.2, 18.5] [0.0, 17.2] NI NI NI
GFDL-CM3 [0.3, 18.8] [0.0, 18.8] NI NI NI
GFDL-ESM2G [2.6, 18.8] [0.0, 18.8] [0.0, 18.8] NI NI
GFDL-ESM2M [1.8, 18.2] [4.0, 18.8] [0.5, 18.8] 8.0 8.0
GISS-E2-H [2.5, 18.5] [1.0, 18.8] [0.0, 18.8] NI NI
GISS-E2-R [4.1, 18.2] [0.0, 17.2] NI NI NI
HadGEM2-AO [1.0, 18.2] [0.0, 18.8] [0.0, 18.8] NI NI
HadGEM2-CC [3.3, 18.2] [5.1, 18.8] NI NI NI
HadGEM2-ES [4.8, 18.5] NI NI NI NI
IPSL-CM5A-LR [1.8, 18.5] [0.0, 18.8] [0.0, 18.8] NI NI
IPSL-CM5A-MR [4.2, 18.5] [0.0, 18.8] NI NI NI
MIROC-ESM [0.5, 16.5] NI NI NI NI
MIROC-ESM-CHEM [4.0, 18.8] [0.0, 18.8] [0.0, 18.8] [0.0, 18.8] 14.0
MPI-ESM-LR [1.9, 18.2] [0.0, 16.1] [0.0, 18.8] NI NI
MPI-ESM-MR [1.7, 18.5] [0.0, 18.8] [0.0, 18.8] NI NI
MRI-CGCM3 [2.8, 18.2] [0.0, 18.8] [0.0, 18.5] NI NI
NorESM1-M [6.6, 18.5] [0.0, 18.8] [0.0, 18.8] NI NI
bcc-csm1-1 [0.5, 16.6] [0.0, 18.8] [0.0, 18.8] NI NI
bcc-csm1-1-m [0.3, 18.8] [0.0, 18.8] [0.0, 14.7] NI NI
inmcm4 [0.5, 17.2] [0.4, 18.5] [6.1, 17.2] NI NI
MIROC5 [10.0, 18.5] [0.3, 18.8] [0.0, 18.1] NI NI
CSIRO-Mk3-6-0 [2.3, 11.3] [0.0, 18.8] [0.0, 18.8] [0.0, 18.8] NI
CMCC-CM [0.7, 18.2] [0.0, 18.8] NI NI NI
CanESM2 [5.2, 18.8] [0.0, 15.5] NI NI NI

NI: no investment
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Chapter 3

Robust Optimization of Battery

Energy Storage System Arbitrage:

An Application to Climate

Adaptation in the MISO

This chapter investigates the operation of a battery energy storage system (BESS) in a

North American deregulated electricity market, adapting to climate change. We propose

a climate downscaling method to downscale climate variables to the desired resolution

for electricity price prediction. We introduce a robust optimization model to determine

the BESS’s operating strategy over an 80-year period (from 2021 to 2100) under various

climate projections. We conduct two empirical studies to investigate how climate change
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affects electricity prices and the optimal BESS operations in the context of arbitrage within

a U.S. deregulated electricity market.

3.1 Introduction

In 2022, the U.S. generates electricity for more than 4.3 trillion kilowatt-hours (kWh),

being the second largest electricity market in the world after China (Energy Information

Administration, 2023a). In 2021, the revenue of the electricity industry in the U.S. is about

424 billion USD (Statista, 2023).

Within the U.S., Midcontinent Independent System Operator (MISO) emerged as one

of the world’s major wholesale electricity markets, facilitating annual transactions valued

at $40 billion USD for a population of 45 million (MISO, 2023). MISO, which operates

across all or parts of 15 U.S. states (Alevin NRDCINC1, 2021), is the largest Independent

System Operator in the U.S. in terms of geographic coverage. This broad spatial pattern

is advantageous for studying the spatial impacts of climate change on electricity markets.

Renewable energy generates about 22% of all U.S. electricity, with 10.2% from wind

and 3.4% from solar (Energy Information Administration, 2023b). In the fourth quarter

of 2022, renewables constituted approximately 20% of MISO’s energy mix, with wind

contributing 14% (S&P Global, 2023).

Both the U.S. and MISO are positioned for substantial growth in renewable energy

adoption over the next two decades. The U.S. has set ambitious targets, aiming for wind

and solar energy to make up 60% to 80% of its electricity generation by 2035 (Office of En-
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ergy Efficiency and Renewable Energy , 2022). Similarly, MISO is planning for an energy

system with an 80% annual renewable energy penetration rate before 2043, with an em-

phasis on increasing wind and solar energy generation (Natural Resources Defense Council,

2023). However, the inherent variability and unpredictability of renewable energy sources,

such as solar and wind power, pose significant challenges in managing these intermittent

energy supplies, leading to potential instability in electricity markets (Chandramowli and

Felder, 2014).

Energy Storage Systems (ESSs) play a crucial role in effectively managing the inter-

mittency from renewable energy by shifting energy supply. ESSs function by accumulating

and storing surplus energy during periods of renewable energy abundance and subsequently

discharging this stored energy into the grid when demand necessitates it. These functional-

ities, complemented by ancillary services such as voltage stabilization and frequency regu-

lation, substantively enhance grid stability and efficiency of electricity energy management

(Kumar and Palanisamy, 2020; Rana et al., 2023).

ESSs have three primary categories: thermal energy storage systems, mechanical energy

storage systems, and battery energy storage systems (BESSs) (Koohi-Fayegh and Rosen,

2020).

1. Thermal energy storage systems store excess input energy as thermal energy in a

storage medium, like water, aquifer, and rock, and then release the stored energy to

generate electricity.

2. Mechanical energy storage systems, which include pumped hydro power and fly-

wheels, capture input energy in the form of gravitational potential or kinetic energy.
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3. BESSs, particularly lithium-ion batteries, store external energy as chemical energy,

offering a readily convertible source of electricity.

When compared to the other two storage system categories, BESSs offer distinct advan-

tages, including their ability to provide short-term control functions such as load leveling

(which reduces electricity demand fluctuations within seconds) and load following (adjust-

ing to electricity fluctuations throughout the day) (Poullikkas, 2013).

BESSs also have the benefit of engaging in minutely or hourly energy arbitrage for rev-

enue generation as they can effectively switch charge/discharge operations within less than

a minute (Cheng and Powell, 2016). This energy arbitrage is one of the main applications

of ESS (Peñaranda et al., 2021). The arbitrage entails the strategic accumulation of energy

during off-peak periods, with subsequent discharge and sale during peak energy demand

periods (Santos et al., 2023).

BESSs play a central role in renewable energy storage markets, with approximately

65% of time-shift projects for renewable energy utilizing BESSs (Rahman et al., 2020).

Additionally, the market for BESS is set for continuous growth, while BESS prices are

anticipated to decrease. For example, the lithium-ion battery market, a prominent subset

of BESSs, is projected to expand from $22 billion in 2019 to $116 billion in 2030, while

the price of lithium-ion battery packs dropped from 1,100 $/kWh in 2010 to 156 $/kWh

in 2019 (Hannan et al., 2021). Considering the critical role BESSs play in the current and

future renewable energy storage markets, this chapter primarily focuses on the operation

and implications of BESSs.

Climate change will have multiple impacts on energy markets, including BESSs, by
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changing demand and supply patterns. These implications include indirectly increasing

renewable penetration and changing the dynamics of the supply from renewable sources

(Gernaat et al., 2021), such as when and where it is windy or cloudy. Since electricity

demand and supply strongly influence electricity prices, particularly in deregulated elec-

tricity markets, like MSIO, climate change will substantially influence pricing dynamics

(Mulder and Scholtens, 2013). These implications on electricity demand, supply, and price

dynamics will affect the operations and revenues of energy markets, including those related

to BESS arbitrage and ancillary services (McConnell et al., 2015; MacDonald et al., 2012).

Stakeholders including BESS operators will need to adapt to climate change challenges.

However, adapting BESS operation strategies to climate change is challenging. These

strategies rely on electricity price predictions in the context of climate change. Neverthe-

less, there is currently a lack of a comprehensive understanding of the relationship between

electricity prices and climate variables. Predicting how electricity values will evolve over

time in response to climate change poses a substantial challenge. Consequently, making

appropriate BESS operational decisions to adapt to uncertain climate change remains a

difficult task, especially given the long timeline of climate change

This chapter aims to understand the role BESSs will play in deregulated North Ameri-

can electricity markets facing climate change scenarios. Specifically, under climate change,

what will be opportunity for BESSs to be profitable and how certain is the profit? To

make progress toward this broad question, we need to build a model of how the operations

of BESSs are likely to behave under climate change. We will study income-maximizing

arbitrage decisions of a BESS in the MISO electricity market under future climate change

scenarios. The study provides lower bounds for the income of the BESS since the BESS
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can generate additional income from other functions, such as ancillary services. We hope

this study will provide insights into incentives for investments and policies for BESSs’

development.

To study BESS operations under climate change, we need to address two main problems.

The first is to determine electricity prices as a function of climate change projections.

The second is to determine operational decisions over these electricity price trajectories.

These methodological contributions will facilitate the derivation of results linking climate

forecasts to operation decision trajectories. Understanding the variation in these decisions

under different GCMs and SSPs will provide insights into the challenges of adapting to

climate change.

Prior research in this vein has been done linking climate change to electricity prices.

In such studies, electricity prices are estimated in regression models as price ranges mostly

across a short time period (several days and months). Another area of research has exam-

ined BESS operations under uncertain electricity valuations using stochastic optimization

approaches to investigate BESS operation policies over several weeks or months (Cheng

and Powell, 2016; Zhou et al., 2019). However, stochastic optimization approaches are chal-

lenging to implement in characterizing the distributions of climate and price uncertainty,

which can be difficult to fully describe. Moreover, such algorithms are typically intractable

over the long trajectories required to study the impact of climate change (Shapiro et al.,

2021).

Given the challenges in studying BESS operations and the benefits of using robust

optimization under climate change, we introduce a new robust BESS operation model to
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examine operations under climate change. We show that the model has a linear equivalent

form, which can be efficiently solved using standard optimization techniques. With the

proposed model, we conduct empirical studies in MISO to investigate the optimal BESS

operations and operating incomes over an 80-year period under 108 potential climate sce-

narios.

To support our 80-year-long period study, we assume that the electricity system will

remain unchanged during this period. While increased renewable penetration can lead to

reductions in electricity prices for the current electricity mix, the variance in electricity

prices may still exhibit consistency with climate patterns, regardless of changes in the sys-

tem. This is because electricity supply, demand, and price variations are more significantly

influenced by climate variability than by changes in the magnitude of electricity prices (Hill

et al., 2021).

The specific contributions of this chapter are as follows:

1. We develop a robust model, with linear equivalences, for studying the BESS’s arbi-

trage operations under uncertainty.

2. We develop a regression model to predict electricity price changes based on long-term

climate forecasts. Using the data derived from this approach, we conduct a numerical

study of the operation decisions for a BESS in MISO over an 80-year planning horizon,

considering a wide range of forecasted climate scenarios and spatial areas. The main

findings include:

(a) Climate change may reduce electricity price variance but increase operating

incomes through arbitrage in Northern MISO.

80



(b) Under climate change scenarios, North-central MISO exhibits higher operating

incomes for BESS than Southern MISO.

This chapter is organized as follows. In Section 3.2, we review the literature related to

our research. We then briefly describe our methodology in Section 3.3. In Section 3.4, we

conduct an empirical study to predict electricity prices within MISO under climate change

scenarios. In Section 3.5, we do an empirical study on BESS operations in MISO under

climate change scenarios. Section 3.6 concludes this chapter.

3.2 Literature Review

There has been a strong interest within the academic community in predicting electricity

prices and modelling the operations of BESSs under climate change. We discuss some of

the most important relevant literature from two interrelated streams: 1) predictive models

in predicting electricity prices and 2) BESS operation models in the face of uncertainty.

3.2.1 Predictive models in predicting electricity prices

In our study, we employ a regression model for predicting electricity prices under the

influence of climate change. Although various methods exist for electricity price prediction,

including machine learning (ML) models (Fan et al., 2007; Yang et al., 2022; Tschora et al.,

2022), time series (TS) models (Yang et al., 2017), and regression models (Mulder and

Scholtens, 2013; Zhou et al., 2019), the choice of a regression model corresponds to our

specific research needs, as discussed below.
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ML models work by learning information directly from data without relying on a pre-

determined equation as a model. However, ML models commonly focus on point forecasts.

Ideally, electricity price prediction should include uncertainty estimates because price un-

certainty has the highest impact on market participants (Ziel and Steinert, 2018).

TS models represent dynamic systems tailored to fit sequential data, but a single TS

model may not perform well in predicting multi-periodic and non-stationary data, es-

pecially over long-term horizons. Electricity prices exhibit multiple periodicities (e.g.,

hourly, weekly, monthly, and yearly) and are highly dynamic, with sudden and unpre-

dictable changes, making them non-stationary (Weron, 2014). Researchers have explored

hybrid TS models that combine other approaches, such as ML models (Yang et al., 2017).

However, these hybrid models may be constrained by high computational complexity or

limited prediction horizons, typically spanning only several days or months (Yang et al.,

2017; González et al., 2017). In contrast, our research necessitates the prediction of elec-

tricity prices at hourly intervals over an 80-year horizon.

Regression models, a statistical technique, establish relationships between dependent

variables (e.g., climate variables) and independent variables (e.g., electricity prices). These

models offer a straightforward structure that facilitates the inclusion of multidimensional

climate inputs. They have been commonly used for linking climate variables to electricity

prices in European markets (Mulder and Scholtens, 2013) and U.S. electricity markets

(Zhou et al., 2019). Additionally, the uncertainty of electricity prices can be simulated

through the use of confidence intervals within the regression model.

Instead of modeling electricity supply and demand separately to generate electricity
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prices, we directly map climate variables to electricity prices. The rationale behind this

mapping is that both electricity demand and supply are influenced by climate variables.

Since electricity prices are determined by both supply and demand, they are essentially

affected by climate variables (Mulder and Scholtens, 2013).

3.2.2 BESS operation model in the face of uncertainty

Several studies have explored BESS operation models under various forms of uncertainty.

Cheng and Powell (2016) utilize a Markov Decision Process (MDP) approach to analyze the

optimal operation of a battery storage system for energy arbitrage and frequency regulation

in a electricity bus under electricity demand and price uncertainty. However, their model’s

complexity, driven by a large state space and planning periods, may not be suitable for

long-term hourly planning horizons, such as the 8,760 periods (i.e., the number of hours

in a year) considered in our study. Similarly, Zhou et al. (2019) apply an MDP model to

investigate operating policies for a storage system integrated with a wind farm, considering

uncertain wind speeds and electricity prices. Again, their models faced challenges due to

the expansive state space, particularly in the context of long-term planning. Liu et al.

(2022) study the optimal policy of energy storage and a wind plant under wind generation

uncertainty. While they focused on qualitative policy, our study provides quantitative

results on when and how much to charge/discharge power into/out of a BESS. Unlike

the three mentioned research approaches, our robust model offers linear equivalence and

scalability, making it well-suited for addressing long-term issues stemming from climate

change. Furthermore, our model considers the intricate impacts of electricity grids within
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an electricity market by incorporating climate variables for (all or part of) 15 U.S. states

within the MISO market, as shown in Figure 3.1.

Some studies have focused on deterministic models for assessing the size and operation

of energy storage systems. Peñaranda et al. (2021) adopt mixed-integer linear programming

(MILP) to study BESS’s optimal operation. Arbabzadeh et al. (2019) use a deterministic

linear model to study the optimal size and operation of an energy storage system. Nguyen

et al. (2017) utilize a deterministic model to study the maximal revenue of energy storage

system from participating in arbitrage and frequency regulation in MISO. In our study, we

use a robust model to account for electricity price uncertainty induced by climate change,

making it more effective in generating adaptive decisions under climate change. The robust

model also provides a lower bound on the viability of a BESS in the face of climate change.

Another stream of work centers on the profitability of energy storage systems. Although

Zafirakis et al. (2016) do not give the optimal operations of energy storage system, they

pointed out the financial value of arbitrage for energy storage. Additionally, Sioshansi

et al. (2009) highlight that the inherent value of energy storage can vary significantly with

the energy market structure. Our research complements this body of work by presenting

BESS operating incomes, which exhibit variations across climate scenarios and geographic

areas.
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3.3 Robust Optimization for Sequential Operations

In this section, we introduce a robust BESS model to study the optimal operation of a BESS

under climate change in two steps. First, we propose a multistage stochastic programming

model of the operation problem. Second, we develop a robust version of this model. In

service of improving tractability, we show that the robust model has linear equivalences

under certain conditions.

3.3.1 Stochastic Programming for BESS Operations

We study the operation model of BESS arbitrage by an operator at an MISO bus node. It’s

important to note that in the context of an electricity market, a bus represents a specific

location or node within the network where electrical power is generated, consumed, or

transmitted (Von Meier, 2006). The model studies hourly charge and discharge decisions

for the BESS in a bus where electricity prices vary idiosyncratically over the planning

horizon. Additionally, the operator needs to consider electricity price changes caused by

climate variables in their decisions. These price changes are uncertain because of the range

of climate scenarios. The objective of the model is to investigate hourly BESS charge

and discharge decisions that maximize the total discounted expected operating incomes

over the planning horizon. These operating incomes only consider the charging costs and

discharge incomes, without including other costs or incomes, such as those related to

ancillary services.

We introduce the model settings for the BESS in an MISO bus under climate change,
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including the planning horizon, BESS specifications, electricity prices, decision variables,

constraints, state variables, and the objective.

Planning horizon: The operator makes arbitrage decisions periodically over a finite

planning horizon T := {1, 2, ..., T}. Period t (t ∈ T ) is defined as the time interval

[t, t + 1). In this chapter, each period equals one hour. The operation decisions of the

BESS occur at the beginning of each period in T .

Battery energy storage system: We consider a BESS that provides only energy arbitrage

in each period t (t ∈ T ). We assume that the BESS has finite energy capacity and power

capacity. We also assume that the BESS is near the bus so that there is no transmission

loss between the BESS and the bus. In each hour, the operator decides to either charge or

discharge energy. If they decide to charge (respectively (resp.) discharge) energy, then the

BESS will be charged (resp. discharged) for one hour. For the BESS, we use the following

parameters:

• CS (MWh): Energy capacity of the BESS; CS > 0.

• CC , CD (MWh): Charging, discharging (energy) capacity in an hour (the amount of

energy that can be charged or discharged in an hour); CC , CD > 0

• ηC , ηD: Charging, discharging efficiency of the BESS; ηC , ηD ∈ (0, 1)

• δ: One-period risk-free discount rate; ρ ∈ (0, 1].

• xt (MWh): BESS storage level by the end of period t (t ∈ T ); xt > 0.

Despite the potential significance of the self-discharge rate of the BESS, we chose to

exclude it from our model based on several factors. Firstly, the self-discharge rate of
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lithium batteries, which are commonly used in BESS, is relatively low, typically ranging

from 2% to 5% per month (Liao et al., 2022). Our model takes into account the discharge

and charge frequency at an hourly resolution, during which the self-discharge amount is

minimal. Additionally, the self-discharge rate is influenced by environmental temperature

and storage level, rendering it a non-linear function (Liao et al., 2022). Accurately modeling

the self-discharge rate in this context poses significant challenges. Given the complexity

involved in modeling the self-discharge rate and the focus of our model on hourly short-term

charging and discharging frequencies, we exclude self-discharge in our model.

Moreover, our model does not incorporate battery deficiency, which refers to a decrease

in battery capacity over time. Instead, we assume that the battery capacity remains

constant throughout the planning horizon of the model. This decision is motivated by

our emphasis on the operating income aspect of the BESS, prioritizing financial gains

from charging and discharging operations over the costs associated with battery capacity

degradation over time.

Electricity prices : We define a random vector Pt to model spot energy market prices in

the bus at period t (t ∈ T ) in $/MWh. These prices remain stable for each period (hour).

Hourly-stable prices like these are common in deregulated electricity markets, such as the

day-ahead electricity market (ISO New England, 2023), and will be discussed in detail in

Section 3.4.1. We model the electricity prices over the planning horizon as a time series

{Pt}t∈T . These prices are not identically distributed, and their distributions depend on

the specific climate scenario. We let pt (t ∈ T ) be the observation of Pt at the beginning

of period t.
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Decision variables : At the beginning of each period t ∈ T , the operator observes the

storage level xt and electricity price pt and decides how much energy is charged to the BESS

or discharged from the BESS. At each period (hour) t (t ∈ T ), we denote the amount of

electrical energy (MWh) charged to the battery and discharged from the battery as qCt and

qDt , respectively, where qCt , qDt ≥ 0. We disable illegal wash trades of the BESS by setting

qCt q
D
t = 0. We assume that the operator is a price taker and their arbitrage decisions do not

affect electricity prices. At the end of each period t ∈ T , the BESS’s storage level becomes

xt+1 = xt + ηCqCt − qDt . The decision variables should satisfy energy capacity limitation,

charging capacity limitation, and discharging capacity limitation: 0 ≤ xt+ηCqCt −qDt ≤ CS,

0 ≤ qCt ≤ CC , and 0 ≤ qDt ≤ CD (∀t ∈ T ).

State variables : Let state St be (xt, pt), where xt is an element of its feasible set space

X , and pt is an element of its feasible set space P . The given initial state is S0 := (x0, p0).

The state space for each period is defined as S := X × P , where × denotes the Cartesian

product of the two sets.

Operating income function: We define an operating income function that maps (St, q
C
t

, qDt ) to an operating income. The operating income earned during period t ∈ T can be

expressed as:

R(St, q
C
t , q

D
t ) = pt(η

DqDt − qCt ) (3.1)

, where 0 ≤ xt + ηCqCt − qDt ≤ CS and qCt q
D
t = 0.

Operator’s objective: We let a feasible policy π be a sequence of decision rules (Aπ
t (St))t∈T

that outputs a feasible decision (qCt , q
D
t ) given the state St in period t. The operator’s goal

is to identify a feasible policy within the feasible policy space Π that maximizes the sum-
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mation of two factors: (1) the total discounted expected operating incomes and (2) the

expected value of remaining power at the end of period T :

Maxπ∈Π
∑
t∈T

δtEpt∼Pt [R(Sπ
t , A

π
t (Sπ

t ))|S0] + δTEpT∼PT
[pTS

π
T ] (3.2)

, where Ept∼Pt [·] (t ∈ T ) denotes the expectation over random price Pt. Note that the state

Sπ
t is dependent on the policy π and pt is one of the inputs of the state Sπ

t .

While Model (3.2) can be addressed through the Backward Algorithm (Shapiro et al.,

2021), solving this state-based stochastic programming for BESS poses significant chal-

lenges due to its high computational complexity and extensive state size, stemming from

accounting for the long-term effects of climate change. Furthermore, obtaining an accurate

distribution of Pt (t ∈ T ), which is related to the distribution of climate projections, during

the model-solving process is a non-trivial task. The distribution may be not trivial and

not standard, adding to the complexity of solving the model.

To enhance the tractability of Model (3.2), we introduce a robust variant of this model

for resolution. There are two primary reasons why the robust version is effective in our

case. Firstly, the robust version aids in identifying decisions that perform well across

a range of uncertain future climate scenarios (Bhave et al., 2016). By employing these

decisions derived from the robust version, the BESS operator can gain confidence in the

potential profitability of their operation decisions and develop a broader understanding of

the risks they will face (Constantino and Weber, 2021; Hallegatte et al., 2012). Secondly,

the robust model features linear equivalences that can be resolved directly and efficiently

using standard optimization tools.
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3.3.2 Robust Model

To help solve Model (3.2), we convert the BESS model into its robust version in two steps.

First, we model uncertain electricity prices as independent intervals over time. Second,

based on these intervals, we introduce the robust version of the model.

Modeling electricity price uncertainty : In our context, we model the electricity price Pt

(∀t ∈ T ) in the bus as a symmetric, independent, and bounded random variable, which

falls within the interval [p̄t − p̂t, p̄t + p̂t], where p̄t represents the mean value of Pt, and p̂t

represents the maximum potential deviation of Pt from its mean value. Note that we do

not require p̄t − p̂t > 0 as electricity prices can be negative (Zhou et al., 2019).

Robust model : We develop a robust investment model in which the operator anticipates

electricity prices to fall within the interval [p̄t − p̂t, p̄t + p̂t] (t ∈ T ). The operator adopts

a pessimistic stance and adversely selects electricity prices based on whether they are

charging (considering high prices within the interval) or discharging (considering low prices

within the interval). The operator’s objective is to maximize operating incomes of the BESS

under the worst variance of electricity prices, i.e., charging at a high price and discharging

at a low price. The operating incomes are the summation of two factors: (1) the total

discounted operating incomes and (2) the discounted value of the remaining power at the

end of period T , both under the worst variance of electricity prices. Within this pessimistic

framework, we can describe the robust version of BESS Model (3.2) as follows, denoted as
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Model (3.3):

Max{qCt ,qDt :∀t∈T }

∑
t∈T

δt[(p̄t − p̂t)η
DqDt − (p̄t + p̂t)q

C
t ] + δT (p̄T − p̂T )[x0 +

∑
t∈T

(ηCqCt − qDt )]

(3.3a)

s.t. 0 ≤ x0 +
k∑

t=0

(ηCqCt − qDt ) ≤ CS ∀k ∈ T (3.3b)

qCt q
D
t = 0 ∀t ∈ T (3.3c)

0 ≤ qCt ≤ CC ∀t ∈ T (3.3d)

0 ≤ qDt ≤ CD ∀t ∈ T (3.3e)

Constraints (3.3a), (3.3d), and (3.3e) ensure energy capacity limitation, charging ca-

pacity limitation, and discharging capacity limitation in each planning period, respectively.

Constraints (3.3c) prevent illegal wash trades of the BESS in each planning period.

Solving by linear transform: We address Model (3.3) by demonstrating its linear equiv-

alence, allowing for rapid resolution using standard optimization tools. Due to the presence

of non-convex constraints (3.3c), Model (3.3) constitutes a non-convex optimization prob-

lem. Consequently, solving Model (3.3) using standard optimization tools, algorithms, or

heuristics may not generate the (global) optimal solution. To overcome this challenge,

we show that constraints (3.3c) are inactive and can be eliminated from Model (3.3), as

demonstrated in the following Lemma 2.

Lemma 2 If p̄t + p̂t > ηCηD(p̄t − p̂t) (∀t ∈ T ), without constraints (3.3c), the optimal

charge and discharge profiles {qC⋆
t , qD⋆

t ,∀t ∈ T } of Model (3.3) satisfy that at least one of

91



qCt , q
D
t is 0 at any time t. In other words, constraints (3.3c) are redundant given p̄t + p̂t >

(p̄t − p̂t)ηCηD (∀t ∈ T ).

We present the proof of Lemma 2 in Appendix B.1.

Lemma 2 indicates that, at any given period t ∈ T , if the upper bound of the electricity

price (i.e., p̄t + p̂t) is greater than the product of the lower bound of the electricity price

and both the charge and discharge efficiency of the BESS (i.e., ηCηD(p̄t − p̂t)), charging

and discharging the BESS in the same period will result in an operating-income loss for

the BESS.

This loss occurs due to two reasons: 1) both charging and discharging result in electric-

ity loss, or, in other words, financial loss, as the charging and discharging efficiency (i.e.,

ηC and ηD) is less than 0, and 2) charging prices are not lower than discharging prices,

and charging at high prices and discharge at low prices may result in a financial loss. As

the objective function (3.3a) maximizes its value, the optimal solution will choose to either

charge or discharge (or neither) in each period.

If the upper bound of the electricity price p̄t + p̂t is consistently positive for all t ∈ T ,

then the inequality p̄t+ p̂t > ηCηD(p̄t− p̂t) holds for all t ∈ T . This implies that constraints

(3.3c) are redundant when the upper bound of the electricity price is always positive for

all t ∈ T by Lemma 2. Therefore, Model (3.3) is a linear programming model that can be

solved in polynomial time (Karmarkar, 1984) given p̄t + p̂t > 0 (∀t ∈ T ).

Furthermore, if any of the upper bounds of the electricity prices is negative, a minor

adjustment can be applied by rounding it to 0, transforming Model (3.3) into a linear

model.
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3.4 Study I: Day-ahead LMP in MISO under Climate

Change Scenarios

In this section, we predict future electricity prices, which offers price bounds for the ro-

bust BESS Model (3.3), under different climate scenarios. Specifically, we predict hourly

electricity prices for selected (bus) nodes in MISO from 2021 up to 2100. There are five

main steps to do the scenario-based case study. Firstly, we offer an introduction to the

MISO market, providing essential context and insights about our research background,

as detailed in Section 3.4.1. Second, we introduce a regression model to link electricity

prices and climate scenarios in section 3.4.2. Third, we present the data sources and data

processing procedures utilized for fitting the regression model in Section 3.4.3. We proceed

to fit the regression model and predict the day-ahead LMPs within MISO in Section 3.4.4

Finally, we conduct a thorough analysis of the prediction outcomes in Section 3.4.5.

3.4.1 Midcontinent Independent System Operator

Midcontinent Independent System Operator (MISO) — an Independent System Operator

and Regional Transmission Organization, Midcontinent Independent System — is respon-

sible for the operation of the deregulated wholesale electricity markets in the Midwest U.S.

and Manitoba, Canada. In this research, we only focus on the U.S. part of MISO. Figure

3.1 shows the map of the MISO that covers all or part of 15 U.S. states: Arkansas (AR),

Illinois (IL), Indiana (IN), Iowa (IA), Kentucky (KY), Louisiana (LA), Michigan (MI),

Minnesota (MN), Mississippi (MS), Missouri (MO), Montana (MT), North Dakota (ND),
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Figure 3.1: The map of MISO (retrieved from Alevin NRDCINC1 (2021))

South Dakota (SD), Texas (TX), and Wisconsin (WI).

MISO operates through a sequence of markets: the day-ahead market enables strate-

gic planning for the efficient utilization of generating units over various hours, while the

real-time market is designed to respond swiftly to unpredictable changes in demand (Mid-

continent, 2016). Specifically, first, the day-ahead market establishes prices and plans

hourly production and delivery for the subsequent operating day. Second, a real-time

market accepts generation bids 30 minutes before operation and employs them to resolve

last-minute demand changes every five minutes.

Within the deregulated wholesale electricity markets, such as MISO, electricity prices
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vary due to constraints imposed by limitations in grid transportation capacity. To account

for these variations in value, the MISO employs a pricing methodology known as loca-

tional marginal pricing (LMP) (Birge et al., 2018). Under the LMP framework, the price

attributed to each specific node or location corresponds to the marginal cost associated

with supplying an additional MWh of electricity at that node.

MISO provides comprehensive data encompassing two fundamental pricing metrics:

hourly day-ahead LMP data relevant to the day-ahead market and real-time LMP data

pertaining to the real-time market. In the context of our research, we rely on day-ahead

hourly LMP data. This preference is motivated by the greater predictability associated

with day-ahead LMPs (Birge et al., 2018), aligning seamlessly with the extensive temporal

scope of our long-term study.

MISO provides a favorable environment for the implementation of battery electricity

storage systems, as evidenced by the opening of its energy storage market with over 13

gigawatts (GW) in interconnection queue (Walton, 2022). The operator’s board of directors

of MISO also approved a $10.3 billion transmission plan to support electricity battery for

storing renewable energy (Walton, 2022). Given these favorable conditions, we chose MISO

as the primary focus for our case study on BESS operations.

In our case, we assume that the BESS functions as a price taker within the MISO

market. This assumption is predicated on the BESS’s arbitrage capacity of 10 MWh per

hour, as used in our case study. This capacity represents less than 0.01% of the total hourly

electricity demand in MISO, which ranges between 118.2 GW and 125.2 GW (Brown, 2022).

Consequently, the hourly arbitrage amount of the BESS constitutes only a small fraction of
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the total electricity demand per hour, and as a result, arbitrage decisions have a negligible

impact on the electricity market and electricity price.

3.4.2 Regression Model

To obtain the day-ahead LMP bounds as parameters for the robust Model (3.3), we employ

an electricity price model to estimate the trajectories of the bounds from 2021 to 2100.

References (Zhou et al., 2019; Mulder and Scholtens, 2013) point out that electricity prices,

such as day-ahead LMPs, are complex time series with mean reversion, spikes, seasonality,

climate-condition sensitivity, and negative values. In light of these two references, we

form an electricity price model (i.e., a regression model) as a combination of an inverse

hyperbolic sine function (to handle positive-negative values) and a seasonality function

with climate variables (to fit seasonality and climate impacts). We have opted not to

include an autoregression (AR) model in our electricity price model to account for mean

reversion, because an AR model may not significantly improve the electricity price model.

Furthermore, we have not incorporated a framework for addressing electricity price spikes,

as our focus is on the overall change in electricity prices over an extended (decades-long)

time horizon.

We introduce the main components of the electricity price model: electricity prices,

inverse hyperbolic sine transform, and seasonality function with climate variables.

Electricity prices : We denote day-ahead LMPs as hourly-level time series {Pt}t∈T dur-

ing the planning horizon T .

Inverse hyperbolic sine transform: The electricity prices are commonly transferred to
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obtain more stable variances before model fitting (Contreras et al., 2003). We use the

inverse hyperbolic sine function to transform electricity prices because this transform is

analogous to the natural logarithm but can model negative prices (Zhou et al., 2019). Let

sinh−1(x) = log(x +
√
x2 + 1) be the inverse hyperbolic sine function. We denote this

transformed electricity prices as {sinh−1(Pt)}t∈T . We can get electricity prices Pt from this

transformed electricity prices by calculating sinh(sinh−1(Pt)), where sinh(x) := (ex−e−x)/2

is the hyperbolic sine function.

Seasonality function with climate variables : This function includes four types of cli-

mate variables that affect electricity prices and four types of time dummy variables. As

a node’s local climate and climate in other areas among the MISO may both affect the

node’s LMPs, we consider climate data in the whole MISO to study the LMPs of a MISO’s

node. Specifically, we use the climate data of all counties in MISO. Let a be a constant

and C be the collection of counties covering the whole MISO. In period t ∈ T , for each

county c ∈ C, we employ four types of hourly climate variables including (2-meter) air

temperature (denoted as x1,t,c), precipitation (x2,t,c), (10-meter) wind speeds (x3,t,c), and

surface downwelling shortwave radiation (x4,t,c). We choose these climate variables be-

cause temperature is the main driver of electricity demand (Fan et al., 2019), precipitation

impacts both electricity demand and supply (Mideksa and Kallbekken, 2010), and wind

speed and shortwave radiation influence renewable energy generation from wind and solar

sources, respectively (Carta et al., 2009; The Office of Energy Efficiency and Renewable

Energy, 2023).

We let βi,c (∀c ∈ C and i = 1, 2, 3, 4) be xi,t,c’s coefficient. Let Iy(t), Im(t), Id(t), and

Ih(t) be the four types of dummy variables that equal one if period t is in year y, month
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m, weekday d, and hour h, respectively, and zero otherwise. Note that we fit electricity

price data from year Y1 to year Y2 (Y2 > Y1), so we use |Y2 − Y1| dummy variables Iy(t) to

distinguish these |Y2−Y1 + 1| years. Similarly, we employ 11 dummy variables for months,

six for weekdays, and 23 for hours. Let βy, βm, βd, and βh be the coefficients for these

four types of dummy variables, respectively. Then, we model the seasonality function with

climate variables as:

f(t) = a +
∑
c∈C

4∑
i=1

βi,cxi,t,c +

Y2−Y1∑
y=Y1

βyIy(t) +
11∑

m=1

βmIm(t) +
6∑

d=1

βdId(t) +
23∑
h=1

βhIh(t) (3.4)

We express the electricity price model as follows:

sinh−1(Pt) = f(t) + ϵt (3.5)

, where we assume that ϵt (t ∈ T ) are independent and identical random errors.

In Figure 3.2, we show a framework to solve regression Model (3.5), predict future

day-ahead LMPs, and use the predicted values to solve robust Model (3.3) under climate

change scenarios. The upper part (Section 3.4) of Figure 3.2 shows the framework of the

data sources and data processing (in Section 3.4.3) for solving Model (3.5), predicting

future day-ahead LMPs (in Section 3.4.4), and day-ahead LMP results (in Section 3.4.5).

In Section 3.4.3, we first collect historical hourly electricity price data and historical

hourly weather data to solve regression Model (3.5). Second, as future climate data is at

a daily level, we propose a downscaling method to convert these daily data into hourly

resolutions. We conduct the downscaling for each climate scenario, generating 108 hourly
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Figure 3.2: Methodology framework of Chapter 3

climate trajectories from 2021 to 2100. We also validate the downscaling method by

measuring the downscaling errors. Third, we analyze the results of the downscaled hourly

climate data.

In Section 3.4.4, we first use the Principal Component Analysis (PCA) method to

address multicollinearity issues among historical hourly climate data. Second, we predict

future electricity prices and provide an example of the resulting predicted electricity prices.

Note that the PCA is also applied to the (downscaled) future hourly climate projections

before predicting electricity prices.

In Section 3.4.5, we present the results of electricity price predictions.
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3.4.3 Data Sources and Data Processing

To estimate the parameters of Model (3.5) and subsequently generate forecasts of LMP

trajectories from 2021 to 2100, we need to acquire historical day-ahead LMP data, historical

climate data, and future climate projections data, all of which should be available at an

hourly level. Firstly, we introduce available data sources for Model (3.5). Secondly, as

future climate projections are only available at daily level, we downscale them to hourly

level. Finally, we present some key results about downscaled climate.

Data source and data prepossessing

We introduce the day-ahead LMPs and climate datasets for Model (3.5). While historical

day-ahead LMP and historical climate data are available at the required level, hourly

climate projections for the future are unavailable. Instead, we introduce available daily

climate projections for the future, which can be downscaled to the required hourly level.

Historical day-ahead LMP data: We derive the hourly day-ahead LMPs in 2016, 2017,

2018, and 2019 from the MISO Real-Time and Market Data source (MISO Energy, 2023).

We do not use day-ahead LMPs in 2020, as the year is affected by pandemics and presents

different demand/supply patterns for day-ahead LMPs compared to 2016-2019 (Santiago

et al., 2021). These four-year day-ahead LMP values represent the hourly price of electricity

at specific nodes within MISO system and are measured in $/MWh. Specifically, we focused

on gathering day-ahead LMP data for generation nodes located in Zones 2, 4, 8, and 9

of MISO, as detailed in Table 3.5 and illustrated in Figure 3.12. We select these four

Zones because they span vertically from north to south, allowing us to assess the impact
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of climate variations across different latitudes. We drop the nodes within the four Zones

without complete hourly data of all the four years, i.e., 2016, 2017, 2018, and 2019, resulting

in a final dataset of 358 nodes.

Due to the enormous number of selected nodes (i.e., 358 nodes) in MISO, executing

our electricity price model and BESS operation model for each individual node is time-

consuming. To simplify the process for our research, we only consider nodes that are not

highly correlated with other nodes within the MISO network. Nodes exhibiting correlation

values ranging from 0.7 to 1.0 or -0.7 to -1.0 are considered highly correlated (Mukaka,

2012).

Specifically, first, we calculate the similarity between the (day-ahead) LMP time series

from January 1, 2019, 00 : 00 : 00, to December 31, 2019, 23 : 00 : 00 for each pair of the 358

nodes using the cosine similarity. Given two n-dimensional vectors, A and B, the cosine

similarity between the two vectors is defined as A•B/(||A|| ||B||), where • represents the

dot product and || · || is the Euclidean norm. Second, we arrange the nodes by descending

order of the sum of their cosine similarity values with other nodes. Third, for each node in

this order, we calculate its correlation with other nodes and exclude the node displaying a

correlation exceeding 0.7 or falling below -0.7 with other nodes. Consequently, we select

a total of 13 nodes from Zone 2, Zone 4, Zone 8, and Zone 9, which exhibit not-high

correlation: ALTE.SHEEPSIN1, WPS.CRANECREK, and WPS.CUSTEGEN1 in Zone 2;

AMIL.HEN AMT P, AMIL.TRA ATRAE, MEC.NEALS 4, AMIL.STWF and in Zone 4;

EAI.ANO2, EAI.INDEPEND2, EAI.INDEPEND1, and EAI.AECCHYDRO2 in Zone 8;

LEPA.HOUMA G16 and LEPA.MURRAY in Zone 9 (see Table 3.5).
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To incorporate regression Model (3.5), we adjust the historical hourly day-ahead LMPs

from 2016 to 2019 to the USD value of the last hour of 2019. We carry out this adjustment

using an annual inflation rate of 0.02, which is set as the long-term inflation goal by the

Federal Open Market Committee (Board of Governors of the Federal Reserve System,

2021). Assuming that each hour experiences the same inflation rate, we can calculate the

inflation rate for each hour as approximately 2.3×10−6 using the formula (1.02)1/(365×24) ≈

(1.02)1/(366×24) ≈ 1 + 2.3×10−6, where 365×24 (respectively 366×24) is the total number

of hours in a non-leap (respectively leap) year.

Hourly historical climate data: We obtain the hourly historical climate data from the

European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5) dataset

(Copernicus Climate Change Service, 2023) for the required four types of climate variables.

The ERA5 dataset offers hourly global climate and weather data ranging from 1940 to the

present day. The dataset is gridded to a regular latitude-longitude grid of 0.25 degrees.

The ERA5 directly offers the values of the three (out of four) required climate variables 2-

meter air temperature, total precipitation, and surface shortwave radiation (or called solar

radiation) downward. The ERA5 dataset does not provide the 10-meter (10m) wind speed

(w10 ) data directly. Rather, the dataset offers the 10m v-component (or called northward

component) of wind (u10 ) and 10m u-component (or called eastward component) of wind

(v10 ) data. To obtain the w10 data, we calculate the magnitude of the u10 wind and v10

using the formula: w10 = [(u10 )2 + (v10 )2]1/2 (Smith et al., 1999). Table 3.1 presents the

details about these five climate variables. For our MISO case, we use the five climate

variables in Table 3.1 from 2016 to 2019 for the latitude-longitude grids covering the

Continental United States from the ERA5 dataset.
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Table 3.1: Historical hourly climate variables in the ERA5 data

Variable symbol
(unit)

Notes

1. 2-meter (air) temperature t2m (K) K = ◦C + 273.15
2. Total precipitation (m/hour) tp (m/hour) -
3. 10m u-component of wind u10 (m/s) using the magnitude of the

u10 and v10 to get w104. 10m v-component of wind v10 (m/s)
5. Surface solar radiation downwards ssrd (J/m2) J/m2 = 3,600 × W/m2

(only for this data)∗

∗: Copernicus Climate Change Service (2023)

Hourly climate projections for future (not available): Future hourly climate projec-

tions from 2021 to 2100 for the four required climate variables are not available for the

MISO area. Although the North American Coordinated Regional Climate Downscaling

experiment (Mearns et al., 2017) and the CMIP6 do provide hourly air temperature and

precipitation projections for the North America, wind speed and shortwave radiation pro-

jections at an hourly level are not available.

The most related and complete climate projection data for those four climate vari-

ables are at the daily level. In fact, we can downscale daily climate projections onto hourly

climate projections using some popular temporal-downscaling methods. The nearest neigh-

bour method (Lee and Singh, 2018) is widely used to downscale climate projections to finer

resolutions. We use this method to downscale daily climate projections to hourly levels.

Before conducting the downscaling process, we first introduce the available daily climate

projections used to generate hourly climate projections for future as follows.

Daily climate projections for future: The climate projections are derived from the NASA

Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6) (Thrasher
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et al., 2022). NEX-GDDP-CMIP6 assumes that the relative spatial patterns observed

from the reference period (1960-2014) will remain constant under future climate change

(Thrasher et al., 2022). There are about 140 climate projections generated by 35 GCMs,

with each projection parameterized based on four distinct Sustainable Development Sce-

narios (SSP): SSP126, SSP245, SSP370, and SSP585. These SSPs describe global socioe-

conomic changes and greenhouse gas emission trajectories up to 2100. Progressing from

SSP126 to SSP585, the socio-economic development trajectory relies more on fossil fuels,

consequently leading to more greenhouse gas emissions.

The NEX-GDDP-CMIP6 GCMs provides some bias-corrected daily climate variables,

including near-surface air temperature, precipitation, wind speed, or surface downwelling

shortwave radiation, at 0.25-degree horizontal resolution from 2015 to 2100. Table 3.2

shows the four variables from the NEX-GDDP-CMIP6. We only utilize the GCMs that

provide data for all four required climate variables across all four SSPs, resulting in 27

GCMs. Further details about the 27 GCMs can be found in Table 3.3. The daily data

simulated by the 27 GCMs are used to develop hourly measures of climate variables covering

MISO during the 2021-2100 period.

Table 3.2: Daily climate variables in the NEX-GDDP-CMIP6 climate change projection

Variable symbol (unit) Notes
1. (2-meter) Near-surface air temperature tas (K) -
2. Precipitation pr (kg/m2/s) 1kg/m2/s = 3.6m/hour
3. (10-meter) Surface wind speed sfcWind

(m/s)
-

4. Surface downwelling shortwave radiation rsds (W/m2) rsds and ssrd are often used
interchangeably (Stephens et al.,
2012; AMS, 2012)
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Table 3.3: A list of NEX-GDDP-CMIP6 GCMs used in the analysis and their reporting
institutions

Number Model Name Institution
1 ACCESS-CM2 Commonwealth Scientific and Industrial Research
2 ACCESS-ESM1-5 Organization and Bureau of Meteorology
3 BCC-CSM2-MR Beijing Climate Center

4 CanESM5
Canadian Centre for Climate

Modelling and Analysis
5 CESM2 Community Earth System Model Contributors
6 CMCC-CM2-SR5 Fondazione Centro Euro-Mediterraneo sui
7 CMCC-ESM2 Cambiamenti Climatici
8 CNRM-CM6-1 Centre National de Recherches
9 CNRM-ESM2-1 Météorologiques–Centre Européen de Recherche et

de Formation Avancée en Calcul Scientifique
10 EC-Earth3

EC–EARTH consortium
11 EC-Earth3-Veg-LR
12 FGOALS-g3 Chinese Academy of Sciences
13 GFDL-ESM4 NOAA Geophysical Fluid Dynamics Laboratory
14 GISS-E2-1-G Goddard Institute for Space Studies
15 INM-CM4-8

Institute for Numerical Mathematics
16 INM-CM5-0
17 IPSL-CM6A-LR L′Institut Pierre–Simon Laplace

18 KACE-1-0-G
National Institute of Meteorological Sciences

/Korea Meteorological Administration
19 MIROC-ES2L Japan Agency for Marine–Earth Science and Technology,
20 MIROC6 Atmosphere and Ocean Research Institute, The University of Tokyo,

National Institute for Environmental Studies, and
RIKEN Center for Computational Science

21 MPI-ESM1-2-HR
Max Planck Institute for Meteorology

22 MPI-ESM1-2-LR
23 MRI-ESM2-0 Meteorological Research Institute
24 NorESM2-LM

Norwegian Climate Centre
25 NorESM2-MM

26 TaiESM1
Research Center for Environmental Changes,

Academia Sinica
27 UKESM1-0-LL Met Office Hadley Centre

Sources: Thrasher et al. (2022); WDC Climate (2023)
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Note that to facilitate a comparison of climate variables between the ERA and NEX-

GDDP-CMIP6 datasets, we standardize the measurement units and adopt consistent sym-

bols, i.e., w10, t2m, tp, and ssrd, for both datasets. Additionally, we convert both datasets’

time zones to the Eastern Standard Time, aligning them with the time zone used by the

historical day-ahead LMP data.

Climate temporal downscaling: the nearest neighbor

In this part, we downscale the daily climate data simulated by the 27 GCMs to an hourly

level. The k-nearest neighbors method (k-NN) is a statistical technique that is commonly

used to downscale daily climate projections to an hourly resolution (Lee and Singh, 2018).

The main assumption of the method is that if two days have similar daily mean climate

values, they are considered to have similar climate conditions at hourly intervals.

In our study, we specifically utilize the 1-nearest neighbor (1-NN) approach. It is

important to note that our approach does not depend on considering multiple neighbors

to generate uncertainty in climate projections. Instead, we incorporate multiple GCMs

and SSPs to account for the uncertainty in climate projections. Additionally, to ensure

continuity of climate between consecutive hours in downscaling, we will modify the distance

measure in the original 1-NN method.

1-NN method : The original 1-NN method involves the following steps, which are illus-

trated here for a county c in the MISO region on a future day under one of the combinations

of GCMs and SSPs:

1. Establishment of sample pools: From a GCM under a SSP of NEX-GDDP-CMIP6
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datasets, we collect daily (mean) climate values for the four climate variables, denoted

as I := {w10, t2m, tp, ssrd}, for the future days between 2021 to 2100 (although some

days are in the past, we still call them future days in this research). Let yi,df ,c be the

value of the daily climate variable i (i ∈ I) at county c ∈ C on a future day df in

Df , where Df is the collection of days between 2021 to 2100.

From the ERA5 dataset, we collect hourly observations xi,do,c = {xi,do,c,h}h∈{0,1,...,23}

for climate variable i (i ∈ I) at county c ∈ C at the h-th (h ∈ {0, 1, ..., 23}) hour on

a historical day do ∈ Do, where Do is the collection of days between 1991 to 2020.

2. Estimation of distance: we estimate the distance between the daily climate projection

yi,df ,c and daily observations ȳi,do,co := 1
24

∑23
h=0 xi,do,co,h using the Euclidean distance,

given by Ddo,co =
∑

i∈I(yi,df ,c − ȳi,do,co)
2 for each do ∈ Do and co ∈ C.

3. Estimation of the nearest sample: we arrange the estimated distances Ddo,co (do ∈ Do

and co ∈ Co) from step (2) in ascending order and reserve the indices (do and co) of

the smallest distance. Denote the reserved indices as d∗ and c∗.

4. Estimation of hourly projection: we estimate the downscaled hourly projection x̂i,df ,c =

{x̂i,df ,c,h}h∈{0,1,...,23} for yi,df ,c, where each hourly observation xi,d∗,c∗,h is assigned to

x̂i,df ,c,h for each i ∈ I and h ∈ {0, 1, ..., 23}.

Modifying the distance measure in the 1-NN : In climate downscaling, ensuring continu-

ity between consecutive hours is essential. Specifically, it is important to ensure that the

climate conditions in the last hour of a given day are consistent with the climate conditions

in the first hour of the subsequent day. To achieve this, we modify the distance measure
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Ddo,co in the step 2 (of the 1-NN method) by including the time-based distance between

the climate values of the last hour of a day and the climate values of the first hour of the

following day. This adjustment is applied to 10-meter wind speed (w10 ) and 2-meter air

temperature (t2m). However, for solar surface radiation downward (ssrd) and precipitation

(tp), which exhibit discontinuities over hourly intervals, we do not incorporate them in the

time-based distance. This is because solar surface radiation downward is zero during night-

time hours and precipitation can vary greatly from one hour to the next, including cases

where it may rain in one hour and not rain in the subsequent hour. The revised distance

measure becomes Ddo,co =
∑

i∈I(yi,df ,c − ȳi,do,co)
2 +

∑
i∈\{w10,t2m}(xi,do,co,0 − x̂i,df−1,c,23)

2.

Additionally, we initialize x̂i,df−1,c,23 with the values of the climate variables from the last

hour of the last historical day (i.e., 23:00:00 December 31, 2020). This ensures a consistent

starting point for the downscaling process.

To ensure that a future rainy (respectively non-rainy) day is matched with a historical

rainy (respectively non-rainy) day, we exclusively select rainy (respectively non-rainy) days

from the historical data as the source for the future rainy (respectively non-rainy) day in

the modified 1-NN method. This selection process helps to maintain the consistency of

precipitation patterns in the nearest neighbor matching for future climate projections.

Additionally, to maintain consistency between future and historical daylight lengths,

we select days from the historical dataset that correspond to the same season as the future

days. In defining the seasons, we adhere to the Meteorological Seasons convention, wherein

Spring begins on March 1, Summer begins on June 1, Autumn begins on September 1, and

Winter begins on December 1.
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Downscaling process of the modified 1-NN : The downscaling process of the modified

1-NN for climate projections involves two key steps: data normalization and the establish-

ment of criteria to evaluate the quality of the downscaling results. We perform the data

normalization process to bring the climate variables involved in the downscaling process

to a range of [0,1]. This step ensures that the input data is comparable and eliminates any

potential biases or disparities caused by differences in units or magnitudes. Regarding the

evaluation criteria, we use the absolute and relative differences, commonly referred to as

errors, to quantitatively assess the goodness of the downscaling procedure. We discuss the

two steps and provide examples for our downscaling results as follows.

Step 1: data normalization As we conducted our study at a county level within MISO,

we spatially downscaled all the climate data from both ERA5 and NEX-GDDP-CMIP6

datasets, which are represented in grid format, to 883 counties within MISO. This downscal-

ing was accomplished using the remapbil operator of the Climate Data Operators (CDO)

(v1.9.9rc1; Schulzweida (2022)). To ensure uniformity, we normalized all the resulting cli-

mate data values to fall within the interval [0, 1]. This was achieved by dividing climate

values by the widths of their corresponding validation bounds, as specified in Table 3.4.

However, it is important to highlight that hourly ssrd values may exceed its daily bounds

shown in Table 3.4.

Due to the nature of ssrd being zero during the night for 11 hours, and relatively

weak during the early morning and early night hours, the range of daily (mean) ssrd

values becomes smaller compared to the hourly ssrd values. To address this issue, we have

adjusted the bounds for hourly ssrd by multiplying them by 24/11. Here, the value 11

(= 24 − 11 − 2) represents the number of hours with non-negligible ssrd within a day.
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Consequently, the adjusted bound for hourly ssrd are set as [0, 12000/11]. The maximum

value of the normalized hourly based on the adjusted bound ssrd is 0.98, falling within the

range of [0,1].

The histograms presented in Figures 3.3c, 3.3a, 3.3d, and 3.3b illustrate the numerical

distribution of the four normalized variables for the historical daily data, which represents

the normalized daily mean of hourly ERA5 data. These distributions are depicted with

purple bars. The normalized values for wind speed (w10 ) and precipitation (tp) are highly

skewed and primarily fall within the ranges of [0, 0.2] (see Figure 3.3c) and [0, 0.1] (see

Figure 3.3d), respectively, while the values of the remaining two variables temperature

(t2m) and radiation (ssrd) exhibit a much wider spread.

To ensure a balanced consideration of the importance of each variable within the mod-

ified 1-NN approach, we need to further process the wind speed (w10 ) and precipitation

(tp) variables. In line with the recommendation by Fu et al. (2010) in dealing with skewed

daily wind and precipitation data, we apply the root (power) transformation to deal with

skewed daily precipitation data. The nth-root transformation is defined as n
√
·, where we

choose n as a positive integer in our study.

Upon analysis, we find that the 4th root ( 4
√
·) of the normalized historical wind speed

(w10 ) data offers a more centralized distribution around 0.5 compared to lower roots (e.g.,

3rd root) or higher roots (e.g., 5th root), as depicted in Figure 3.3c. Therefore, we select

the 4th root transformation for the values of the normalized daily wind speed.

Similarly, for the normalized historical precipitation (tp) data, we find that the 10th

root of the normalized positive tp (i.e., rainy day) data present a median 0.49, which is

110



closer to the center of the normalization interval [0, 1], when compared to lower roots (e.g.,

9th root with a median 0.46) or higher roots (e.g., 11th root with a median 0.53), as shown

in Figure 3.3d. Therefore, we choose the 10th root transformation for the values of the

normalized daily precipitation data.

Note that, to accommodate the operational wind range (4-25 m/s) (or [4/50, 25/50]

after normalization) recommended for wind turbines (Association, 2023), we truncate the

wind speed (w10 ) data after normalization and before the root transformation. Any nor-

malized wind speed values outside the range [4/50, 25/50] are set to zero.

We run the modified 1-NN over the normalized and downscaled climate data for all 883

MISO counties, 27 GCMs, and 4 SSPs. This process results 108 (=27×4) hourly climate

trajectories for each MISO county between 2021 and 2100.

Table 3.4: Bounds for validation of climate data values (retrieved from Thrasher et al.
(2022))

Variables Lower bound Upper bound
w10 0 m/s 50 m/s
t2m 200 K 340 K
tp 0 kg/m2/s 0.012 kg/m2/s
ssrd 0 W/m2 500 W/m2

Step 2: criteria To evaluate the accuracy of the climate downscaling, it is necessary to

define a measure of goodness for the temporally downscaled (nearest-day) climate. One

possible approach, as proposed by Michel et al. (2021), is to compute the absolute and

relative differences between the future projections and the temporally downscaled time

series at a seasonal level. Let ȳi,d,c denote the value of projected future daily (of GCMs)

for the climate variables i (i ∈ I) on day d in county c (c ∈ C). Similarly, let ŷi,d,c denote
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(a) 2-meter air temperature (b) Surface solar radiation downwards

(c) Wind speed (d) (Total) precipitation

Figure 3.3: The histogram of normalized historical daily climate data
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the value of the temporally downscaled future daily for the climate variables i on day d

in county c. We calculate the daily absolute difference as 1
|C|

∑
c∈C |ŷi,d,c − ȳi,d,c| and the

daily relative difference as 1
|C|

∑
c∈C |(ŷi,d,c − ȳi,d,c)/ȳi,d,c|, where |C| equals the number of

counties in the county set |C|. To obtain the seasonal absolute (resp. relative) difference for

the climate variables i in each year, we sum the daily absolute differences (resp. relative)

within that season and year and then divide the summation by the number of days in the

season and the year. We calculate the seasonal absolute and relative differences for the

four seasons over the period from 2021 to 2100 for the four climate variables.

An example: downscaling differences For example, Figure 3.4a illustrates the absolute

differences between the temporally downscaled (nearest-day) climate data and the cor-

responding future climate data obtained from ACCESS-CM under SSP126. The figure

presents that the 1-NN method yields absolute differences below 5.2 W/m2 for ssrd, below

1.2 K for t2m, below 0.3 m/s for w10, and below 0.1 kg/m2/s for tp.

Figure 3.4b presents the relative differences between the temporally downscaled (nearest-

day) climate data and the corresponding future climate data obtained from the ACCESS-

CM GCM under SSP126. The figure illustrates that the 1-NN method yields relative

differences below 0.02 for t2m, below 0.04 for ssrd, below 0.06 for w10, and below 0.1 for

tp, suggesting that the modified 1-NN method has a low relative bias.

An example: temporal climate continuity in consecutive days For the temporally down-

scaled climate, we also examined the consistency of climate differences between the initial

hour of one day and the final hour of the previous day. Our analysis compared these dif-

ferences with historical data, demonstrating favorable continuity. Figures 3.5a and 3.5b
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(a) The absolute difference

(b) The relative difference

Figure 3.4: Example: the absolute/relative difference of the (modified) 1-NN method in
the ACCESS-CM GCM & SSP126 case
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present the climate differences between the two time periods (the initial hour of one day

and the final hour of the previous day) for w10 and t2m, respectively, under the ACCESS-

CM GCM & SSP126. We calculate the differences for each county for both the historical

period (1991-2020) and the downscaled future period (2021-2100). Yellow bars represent

the distribution of climate differences during the historical period, while blue bars depict

the distribution for the downscaled future period under the ACCESS-CM GCM & SSP126.

The yellow bars indicate that differences can be positive or negative, such as slightly higher

temperatures (or wind speed) at 00:00 on a day compared to 23:00 on the previous day.

For w10, the blue bars closely matched the yellow bars, indicating strong (temporal) con-

tinuity. For t2m, the blue bars exhibited a wider range than the yellow bars. However,

the probability for the wider parts that are bigger than 2.4 ◦C or smaller than -4 ◦C is less

than 0.05 and rare.

An example: spatial climate continuity While the modified 1-NN method does not

explicitly incorporate spatial climate correlations among counties within MISO, it does ex-

hibit a partial preservation of such correlations. This is because neighboring counties with

similar climatic characteristics tend to share similar nearest days during the downscaling

process, leading to comparable downscaled climate outcomes. For example, we use the the

modified 1-NN method to find the nearest historical day for a future climate projection

on May 31, 2100, (2100-May-31) under the ACCESS-CM GCM & SSP126 for each MISO

county. Figures 3.6, 3.7, 3.8, and 3.9 illustrate the comparison between the future daily cli-

mate and its nearest historical daily climate (or called downscaled daily climate). Overall,

the temporal downscaling by the modified 1-NN exhibited favorable spatial consistency for

all four climate variables. However, there is a bias observed for the downscaled t2m variable
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in the southernmost MISO, characterized by a lower value. Similarly, the downscaled ssrd

variable also demonstrates a bias with lower values in the middle MISO. These observations

suggest the presence of potential inaccuracies or limitations in the downscaling process for

t2m and ssrd variables in the southernmost and middle MISO regions, respectively.

In summary, the temporal downscaling method presents satisfactory results in down-

scaling accuracy (low relative downscaling difference), temporal climate continuity in con-

secutive days, and spatial climate continuity.

(a) w10 (b) t2m

Figure 3.5: The histograms of climate difference between 00:00 on a day and 23:00 on the
previous day under the ACCESS-CM GCM & SSP126

Results of Temporally Downscaled Future Climate

We present key results concerning the temporal downscaling of climate. Specifically, we

analyze the evolving standard variances of climate variables, as these variances may have

notable implications for the variability in day-ahead LMPs, a critical revenue source in

electrical arbitrage.

116



Figure 3.6: Wind speed downscaling on 2100-May-31 under the ACCESS-CM GCM &
SSP126

To conduct our analysis, we compute the cumulative sum of annual standard variances

over MISO counties using the downscaled county-level daily climate in each year. Note

that the daily climate data have been scaled to fit within the interval [0,1] for the purpose

of making comparisons between different climate variables. This analysis is performed for

each GCM, SSP, climate variable, and year among 2021-2100 periods.

We present the cumulative sum of annual standard variances across the 27 GCMs for

each SSP and climate variables in Figure 3.10. In the figure, the solid lines represent the

estimated annual means of the cumulative sums derived from the 27 GCMs for each SSP,

and the shaded regions represent the ranges of the means for corresponding SSP. While

standard variances exhibit annual fluctuations, distinct trends emerge for each climate

variable and SSP. Specifically, we observe a decreasing trend in the standard variances

of wind over time. In contrast, the standard variances of precipitation tend to increase

over the years. Regarding temperature and shortwave solar radiation, they do not have
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Figure 3.7: Total precipitation downscaling on 2100-May-31 under the ACCESS-CM GCM
& SSP126

obvious increasing or decreasing trends. However, as emission scenarios grow from SSP126

to SSP585, there is a noticeable rise in the increasing trends in precipitation over the

years. Among the four SSP scenarios, the SSP585 scenario consistently displays the most

standard variance increase in precipitation as time advances.

These findings in the cumulative climate-variance changes carry significance for the

electricity markets, particularly in the context of wind and precipitation, as higher (lower)

variances in these two climate variables have the potential to introduce greater (lower)

variability into day-ahead LMPs. Wind variances influence wind supply and, subsequently,

electricity prices over time. Precipitation variances impact water supply, which can, in turn,

affect electrical energy storage and power plant cooling, ultimately influencing electricity

prices.
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Figure 3.8: 2-meter temperature downscaling on 2100-May-31 under the ACCESS-CM
GCM & SSP126

3.4.4 Day-ahead LMP Prediction

After getting the downscaled hourly climate data for the future, we are ready to train the

electricity price model and further forecast future day-ahead LMPs. We use the ERA5 data

and the MISO day-ahead LMP data to fit regression Model (3.5) for each selected node.

However, Model (3.5) may encounter multicollinearity due to the correlation among climate

variables. We apply the Principal Component Analysis (PCA) to solve the multicollinearity

in Model (3.5). Then, we employ the ordinary squared least method to solve Model (3.5)

and generate the best-fitted Model (3.5). After getting the best-fitted model, we input

the temporally downscaled hourly climate trajectories to estimate future day-ahead LMPs

trajectories. This process generates 108 price trajectories at an hourly resolution for each

of the 13 selected MISO nodes, spanning the years from 2021 to 2100. In total, we obtain

1,404 (=108 * 13) such price trajectories, enabling comprehensive analysis of variations in
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Figure 3.9: Surface downwelling shortwave radiation downscaling on 2100-May-31 under
the ACCESS-CM GCM & SSP126

day-ahead LMPs under uncertain climate change.

Multicollinearity : The regression Model (3.5) encounter multicollinearity due to the

correlation among climate variables in different counties, as nearby counties have similar

climate patterns. To address this issue, we employ the PCA (Jolliffe, 2002), which can

transform dependent elements into independent elements that are formulated as linear

combinations of the original elements.

The PCA requires a hyperparameter, namely the number of principal components. We

determine the the number of principal components by ensuring the retention of a sufficient

number of principal components to capture 99% of the total variance in the original dataset.

To select the number of principal components, we utilize the PCA function from the Scikit-

learn Python package (v1.0.2; Pedregosa et al. (2011)). This package will output a PCA

transformation matrix, denoted as W, which can be used to calculate the standard variance
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(a) Wind (w10 ) (b) Precipitation (tp)

(c) Temperature (t2m) (d) Shortwave Solar Radiation (ssrd)

Figure 3.10: Annual cumulative standard variances of the downscaled climate
The solid lines are the mean of cumulative standard variances across the 27 GCMs; the shaded areas are the ranges of

cumulative standard variances across the 27 GCM.

of coefficients in Model (3.5). Further details are provided in Appendix B.2.

The PCA method also requires centralized data as input (Jolliffe, 2002). We centralize

the (normalized) historical climate data by subtracting the mean of (normalized) historical

climate data across all counties for each climate variable. Similarly, we centralize the

(normalized) future climate data by subtracting the same means.

Note that the PCA is exclusively applied to the climate variables and not the dummy
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variables. The purpose of PCA is designed to handle continuous variables, as indicated by

Pagès (2014). On the other hand, the dummy variables are retained for predicting LMPs

due to their time-varying nature.

By applying the PCA to the climate variables, we generate transformed climate vari-

ables based on the hyperparameter capturing 99% of the total variance in the original

dataset. These transformed climate variables are then combined with time dummy vari-

ables and a constant to form the independent variables in regression Model (3.5).

Example of the best-fitted regression model : As an example, Figure 3.11a displays the

real day-ahead LMP trajectory (depicted by the green line) and the best-fitted day-ahead

LMP trajectory (depicted by the red line) for the ALTE.SHEEPSIN1 Node. The period

covered in the figure spans from 2019-06-04 00:00:00 to 2019-06-08 03:00:00 (100 hours).

Figure 3.11b presents the forecasted day-ahead LMP for the same node from 2100-07-28

08:00:00 to 2100-08-01 11:00:00 (100 hours) under the ACCESS-CM2 GCM & SSP126.

The blue-dashed lines in both figures represent the 95% confidence intervals of the the

best-fitted or forecasted day-ahead LMPs.

In the Figure 3.11a, the red lines capture the primary trend of the green line but do

not achieve a perfect fit. The cosine similarity of the real day-ahead LMP trajectory (the

green line) and the best-fitted day-ahead LMP trajectory (the red line) is 0.966, indicating

a strong connection between the real day-ahead LMP trajectory and the best-fitted day-

ahead LMP trajectory. The blue-dashed lines encompass the main part of the green line,

indicating that using the 95% confidence intervals for predicting the day-ahead LMP is a

more reliable approach than relying solely on the best-fitted values (represented by the red
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line).

3.4.5 Day-ahead LMP Results

We analyze day-ahead LMP prediction results from two perspectives: (1) impacts of climate

change on day-ahead LMPs and (2) change in day-ahead LMP variance under climate

change scenarios.

Impact of climate change on day-ahead LMPs : To investigate how climate change

affects day-ahead LMPs across various regions within MISO, we conducted a statistical

analysis using the best-fitted Model (3.5). This analysis encompasses 13 selected nodes in

four different Zones (Zones 2, 4, 8, and 9) within MISO, as outlined in Table 3.5. Again,

we choose these four Zones due to their north-to-south vertical distribution, enabling us

to examine the effects of climate variations across various latitudes.

It is essential to note that the coefficients obtained for the best-fitted Model (3.5) pertain

to the PCA-transformed variables rather than the real (normalized) climate variables.

To derive coefficients for the real (normalized) climate variables, we need to transfer the

obtained coefficients by multiplying the PCA transfer matrix. For the sake of clarity, we

have averaged the transferred coefficients for each climate variable. We also calculated the

standard variance for the mean of coefficients for each climate variable and presented the

results in Table 3.5. The details about calculating the mean of the transferred coefficients

and the standard variance can be found in the Appendix B.2.

In Table 3.5, all nodes suggest that wind speed and precipitation exhibit negative

(marginal) impacts on day-ahead LMPs. This phenomenon can be attributed to higher
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(a) Best-fitted day-ahead LMP

(b) Forecasted day-ahead LMP

Figure 3.11: An example of the best-fitted day-ahead LMP and forecasted day-ahead LMP
(under the ACCESS-CM2 GCM & SSP126) in the ALTE.SHEEPSIN1 Node
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wind speeds increasing wind power generation, thereby reducing electricity prices. Addi-

tionally, increased precipitation facilitates power plant cooling and energy storage, leading

to a subsequent decrease in electricity prices. Conversely, all nodes indicate positive im-

pacts of temperature and solar radiation on day-ahead LMPs. Higher temperatures result

in increased energy consumption for cooling purposes, contributing to an increase in elec-

tricity prices. While higher solar radiation may lead to greater solar energy generation, it

is also associated with elevated temperatures, which, in turn, influence electricity prices

positively.

Zones 2 and 4 exhibit higher sensitivity to wind compared to Zones 8 and 9. The

WPS.CRANECREK Node in Zone 2 and three out of four nodes (AMIL.TRA ATRAE,

MEC.NEALS 4, and AMIL.STWF) in Zone 4 show mean wind coefficients smaller than

−1×10−3. Furthermore, the AMIL.STWF Node in Zone 4 reveals an even more pronounced

sensitivity, with mean wind coefficients below -4×10−3. However, all nodes in Zones 8 and

9 display mean wind coefficients greater than −0.7× 10−3 and smaller than −0.03× 10−3.

This variation in sensitivity patterns arises because a massive portion of the MISO active

wind-power capacity as of 2020 (a total of 15,720 MW) is concentrated in northern MISO

regions, such as Michigan (1,715 MW, 10.9%), Iowa (3,785 MW, 24.1%) and Illinois (2,337

MW, 14.9%). In contrast, there is a much smaller capacity in southern MISO regions like

Arkansas (407 MW, 2.6%) and Louisiana (less than 200 MW, 1.2%) (Sustainable FERC,

2021). Zones 2 and 4, situated in the northern MISO, are consequently more susceptible to

the influence of wind power supply, resulting in heightened wind sensitivity for day-ahead

LMPs in Zones 2 and 4 compared to Zones 8 and 9.

Change in day-ahead LMP variances under climate change scenarios : To examine the
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Table 3.5: Impacts of climate change on different MISO nodes

Location Zone Node Name
Mean of Climate Coefficients (standard variance) ×10−3

wind precipitation temperature radiation

Northern
Zone 2

ALTE.SHEEPSIN1 -0.05 (0.03) -1.61 (0.13) 0.78 (0.04) 0.57 (0.04)
MISO WPS.CRANECREK -1.45 (0.03) -3.18 (0.13) 0.50 (0.04) 0.96 (0.04)
, including WI WPS.CUSTEGEN1 -0.30 (0.02) -2.91 (0.10) 0.71 (0.03) 0.67 (0.03)

North-central
MISO
, including IL

Zone 4

AMIL.HEN AMT P -0.63 (0.04) -2.5 (0.15) 0.69 (0.04) 0.79 (0.05)
AMIL.TRA ATRAE -2.34 (0.07) -3.62 (0.28) 0.77 (0.08) 0.98 (0.08)
MEC.NEALS 4 -2.25 (0.04) -2.56 (0.18) 0.54 (0.05) 1.01 (0.05)
AMIL.STWF -4.61 (0.08) -0.53 (0.31) 0.14 (0.09) 0.98 (0.09)

South-central
MISO
, including AR

Zone 8

EAI.ANO2 -0.48 (0.05) -2.31 (0.20) 0.47 (0.06) 0.64 (0.06)
EAI.INDEPEND2 -0.16 (0.02) -2.02 (0.07) 0.38 (0.02) 0.66 (0.02)
EAI.INDEPEND1 -0.09 (0.02) -2.31 (0.10) 0.35 (0.03) 1.06 (0.03)
EAI.AECCHYDRO2 -0.69 (0.06) -2.10 (0.27) 0.11 (0.07) 0.93 (0.08)

Southern MISO
Zone 9

LEPA.HOUMA G16 -0.03 (0.02) -1.66 (0.14) 0.21 (0.03) 0.74 (0.03)
, including LA LEPA.MURRAY -0.05 (0.02) -1.42 (0.11) 0.24 (0.02) 0.41 (0.02)

Note: The standard variances (×10−3) in parentheses are for the mean of climate coefficients.

Figure 3.12: MISO Zone map (retrieved from MISO Inc. (2020))
Zone 2, including Wisconsin (WI), is shaded in blue. Zone 4, including Illinois (IL), is shaded in orange. Zone 8, including

Arkansas (AR), is shaded in brown. Zone 9, including Louisiana (LA), is shaded in red.

fluctuations in day-ahead LMPs in the MISO region, we investigate the growth rates of

day-ahead LMP variances under a range of climate scenarios. Calculating these growth

(%) involves the following steps, which are illustrated here for the ACCESS-CM2 GCM,
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in Zone 4 under SSP 585 (See Figure 3.13).

1. We calculate annual LMP variances for each node (in Zone 4) and year (from 2021

to 2100) by assessing the variance of predicted hourly LMP data for that node and

year. These annual variances are then averaged across all (four) nodes within the

same Zone (Zone 4) to obtain Zone-specific annual LMP variances (depicted as blue

dots in Figure 3.13).

2. We establish a line trend (regression) of the 80 annual variances for Zone 4 from 2021

to 2100 (See the blue line in Figure 3.13) and project the linear-fitted variances for

both 2021 and 2100.

3. We obtain the growth rates by subtracting the linear-fitted variance in 2021 from the

linear-fitted variance in 2100 and then dividing the result by the linear-fitted variance

in 2021.

We do these three-step calculations for each combination of 4 SSPs, 4 Zones, and 27 GCMs,

resulting in a total of 432 values.

Figure 3.14 shows the growth (%) in day-ahead LMP variances across four SSPs (for the

432 values). Under the SSP126 scenario, all 27 GCMs indicate the growth rates falling in

the range of [−4.7%, 5.2%]. As the emission scenario transitions from SSP126 to SSP585,

the ranges of the growth rates expand. Under SSP585, the highest emission scenario, the

ranges of the growth rates expand to [−15.0%, 3.5%]. All GCMs under SSP585 suggest

a reduction in LMP variances (at most 15%) over the 80-year period in Zone 2, 8, and

9. However, in Zone 4, two GCMs (i.e., CMCC-CM2-SR5 and CMCC-ESM2) suggest an
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Figure 3.13: An example of a line trend analysis of annual day-ahead LMP variances for
SSP585 in Zone 4 under the ACCESS-CM2 GCM
The blue line is the linear trend (regression) derived from all blue dots, with “r” denoting the Pearson correlation coefficient

and “p” indicating the p-value used to test for non-correlation, both associated with the blue line.

increase of LMP variations. This expansion of growth rate ranges may be attributed to

reduced wind variances and heightened precipitation variances, as the emission scenario

transitions from SSP126 to SSP585.

Zone 4 experiences a higher growth (or lower decrease) in LMP variances when com-

pared to Zones 2, 8, and 9 across all SSPs. This could be attributed to the increased

sensitivity of day-ahead LMP in Zone 4 to changes in wind patterns. The fluctuations in

wind due to climate change may result in greater LMP variance in Zone 4 in contrast to

Zones 2, 8, and 9.
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(a) SSP126 (b) SSP245

(c) SSP370 (d) SSP585

Figure 3.14: Growth (%) of day-ahead LMP variances between 2021 and 2100
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3.4.6 Discussion of day-ahead LMP forecasts

Here we discuss how different climate trajectories translate into differences in day-ahead

LMP variances. As greenhouse gas emissions increase (from SSP126 to SSP585), the level

of LMP variances deviating from their 2021 levels also rises. For example, in Figure 3.14,

under the low-emission scenario SSP126, most GCMs suggest that the LMP variances

remain relatively stable as climate evolves from 2021 to 2100. However, high-emission

scenario SSP585 implies that the LMP variances strongly deviate from their 2021 levels

as the climate evolves. Specifically, under SSP585, most GCMs suggest a decrease in the

LMP variances, mostly by around 15.0%, in Zone 2, 8, and 9, while two out of 27 GCMs

suggest an increase of the LMP variances of up to 3.5% in Zone 4.

3.5 Study II: Operation Decisions in MISO under Cli-

mate Change Scenarios

In this section, we apply the robust BESS Model (3.3) to study BESS operations in elec-

tricity nodes in MISO under different climate scenarios. Specifically, we study the optimal

hourly operations of a BESS in MISO from 2021 up to 2100. First, we formulate the LMP

bounds as intervals for each climate scenario. After getting the bounds, we solve Model

(3.3) multiple times under different scenarios to investigate operations of the BESS in the

MISO case.
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3.5.1 Methodology for the Empirical Study of Operation Deci-

sions

Based on the forecasted confidence intervals for future day-ahead LMPs, we establish the

day-ahead LMP bounds for the BESS operation model (see Model (3.3)). We illustrate

this process using an example for a node, a GCM, and an SSP within an hour t (t ∈ T ) to

demonstrate how to form the day-ahead LMP bound.

First, for the node, we calculate the mean of sinh−1(Pt) and its corresponding 95%

confidence interval (CI95). We assume that future year indicators are the same as the year

indicator in 2019 when predicting electricity prices, i.e.,
∑2019

y=2016 βyIy(t) = β2019 (∀t ∈ T ).

We denote the (estimated) mean of sinh−1(Pt) as sinh−1P̄t and the range of the CI95 as

2dt. Then, we can express the CI95 for sinh−1P̄t as [sinh−1P̄t − dt, sinh
−1P̄t + dt].

Second, we transform the confidence interval for sinh−1P̄t into the day-ahead LMP

bounds. We define p̄t = 1
2
[sinh(sinh−1P̄t − dt) + sinh(sinh−1P̄t + dt)], and p̂t = p̄t −

sinh(sinh−1P̄t − dt). We can model the day-ahead LMP bounds as [p̄t − p̂t, p̄t + p̂t].

For each node, SSP, GCM, and each hour in the period of 2021-2100, we follow these

two steps to form the price interval trajectory required for solving Model (3.3). In total,

we have 1,404 (13 × 4 × 27) trajectories of hourly day-ahead LMP bounds from 2021 to

2100.

Besides the price parameters, we set the remaining parameters in Model (3.3) as follows:

hourly discount rate δ = 1 − 2.3 × 10−6, the BESS’s energy capacity CS = 200 (MWh),

charging capacity in an hour CC = 10 (MWh), discharging capacity in an hour CD = 10
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(MWh), charging efficiency ηC = 0.9, discharging efficiency ηD = 0.9, and the BESS’s

initial storage level x0 = 0 (MWh).

We verify the 1,404 LMP bound trajectories and confirm that they all satisfy Lemma 2,

ensuring that Model (3.3) can be represented as an equivalent linear model. Subsequently,

we solve this equivalent linear model for each of the 1,404 LMP bounds using CPLEX,

resulting in the generation of 1,404 optimal operation policies for the BESS.

3.5.2 BESS Operation Results

This section presents the results of the numerical implementation in the MISO case. We

present how the operating income of the BESS evolves under climate change scenarios.

To understand how different climate scenarios affect the operating incomes of the BESS

in different MSIO regions, we studied annual operating incomes from 2021 to 2100 for all

108 climate scenarios (27 GCMs × 4 SSPs). The annual operating incomes are obtained

from the Model (3.3) for each node and climate scenario.

Figure 3.15 presents the annual operating incomes for all four Zones. Within the figure,

each solid line represents the mean of annual operating incomes across 27 GCMs and nodes

in the Zone for a given SSP. Dashed lines, sharing the same color as the solid line, represent

the ranges (bounds) of these annual operating incomes for the given SSP. Among the four

Zones, Zone 4 exhibits the highest mean operating incomes, likely due to its highest changes

in day-ahead LMP variance among the four zones. The lower bound of the annual operating

incomes in Zone 4 is even close to the upper bound of annual operating incomes in Zone 9.

Zone 2 shows the second-largest mean operating incomes with the largest variance around

132



the mean. The mean annual operating incomes in Zones 8 and 9 are lower than Zones 2

and 4.

Figure 3.15 also illustrates that the mean operating incomes are relatively stable across

different SSPs and the 80 years. However, there are substantial variations in mean oper-

ating incomes, indicating significant income disparities across the 27 GCMs. For instance,

Zone 2 demonstrates the widest range of operating incomes, reaching up to 79,000 USD,

closing even its mean operating incomes, which are approximately 71,000 USD.

It is also important to study how different climate scenarios affect change in operating

incomes. To understand this change, we study the operating income growths (%) for all

27 GCMs under 4 SSPs separately. The way to calculate the operating income growth is

similar to calculate the growth of day-ahead LMP variances (as discussed in Section 3.4.5)

but with the focus shifted to operating incomes rather than day-ahead LMP variances.

Here is a summary of the process illustrated for a SSP, in a Zone under a GCM:

1. Obtain annual Zone-specific operating incomes by averaging the annual operating

incomes of individual nodes within the Zone. Calculate these annual Zone-specific

operating incomes for an 80-year period spanning from 2021 to 2100. For comparison

purposes, we measure all the operating incomes in 2019 USD.

2. Fit a linear trend (regression) to the (Zone-specific) annual operating incomes to

project operating incomes for both 2021 and 2100.

3. Calculate the operating income growth as the quotient of the difference between the

projected 2100 and 2021 operating incomes, divided by the projected 2021 operating

income.
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(a) Zone 2: Northern MISO (b) Zone 4: North-central MISO

(c) Zone 8: South-central MISO (d) Zone 9: Southern MISO

Figure 3.15: Projected annual operating incomes in MISO Zones from 2021 to 2100
Each solid line is the mean of operating incomes across the 27 GCMs and nodes in the Zone, and dashed lines with the same
color as the solid line are the ranges (bounds) of operating incomes across the 27 GCMs and nodes in the Zone, for a SSP.

We perform the three-step calculation for each combination of 27 GCMs, 4 Zones, and 4

SSPs, resulting in 432 values.

Figure 3.16 presents operating incomes growth (%) of the BESS across SSP126, SSP245,

SSP370, and SSP585 (for the 432 values). Under SSP126 (see Figure 3.16a), all GCMs

suggest an operating income growth within the range of [-4%,9%] in Zones 2, 4, 8, and 9.
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Similar trends are observed for SSP245 and SSP370 (see Figures 3.16b and 3.16c).

However, in Zone 2, one GCM suggests operating income growth exceeding 10% for SSP245,

and two GCMs suggest the same for SSP370. Under SSP370, the MPI-ESM1-2-HR GCM

suggests operating income growths less than -6% in Zone 9.

For SSP585 (see Figure 3.16d), nine GCMs suggest an increase of more than 5% in

operating incomes in Zone 4, of which two GCMs anticipate an increase in operating income

by more than 10%. The CanESM5 GCM suggests operating income growth exceeding 15%

in Zone 2. In Zone 9, the BCC-CSM2-MR GCM suggest reductions in operating income

surpassing 5%.

All these patterns in the operating income growth underscore that the BESS’s operating

income growth varies across GCMs and SSPs. In general, the ranges of operating income

growth increase when greenhouse gas emissions escalate (from SSP126 to SSP585).

3.5.3 Discussion of Forecasted BESS Operations

The empirical study elucidates how hourly climate trajectories, generated by various cli-

mate models, impact the operating incomes of the BESS through arbitrage in MISO. These

results provide insights into how challenging it is to quantify disagreements between fore-

casts and translate them into different operating incomes.

The challenge of addressing aggregated forecasts becomes apparent when comparing the

operating incomes derived from different GCMs, SSPs, and Zones. Most GCMs suggest

that the operating income from 2021 to 2100, under SSP126, remains relatively stable over

time, although several GCMs suggests a minor increase of approximately 9% or a decrease
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(a) SSP126 (b) SSP245

(c) SSP370 (d) SSP585

Figure 3.16: Operating income growth (%) between 2021 and 2100 under each SSP

of about 4%. In contrast, the operating income growth rates associated with the other

three SSPs show more significant divergence. Under SSP585, the divergence in operating

136



income growth rates among different GCMs and Zones could surpass 20%. For example,

in Figure 3.16d, the operating income growth rate in Zone 2, suggested by the CanESM5

GCM, exceeds that in Zone 9, suggested by the BCC-CSM2-MR GCM, by more than 20%.

Zone 4 achieves the highest operating incomes through arbitrage among the four Zones.

The highest income is attributed to high sensitivity to wind variance and high LMP vari-

ance, creating more opportunities for profitable arbitrage. Investing in BESSs for arbitrage

in Zone 4 may be a promising choice, considering the anticipated decrease in BESS prices

in the future.

However, due to the high variance of operating incomes among different climate scenar-

ios, BESS operators or investors should consider multiple climate models in their decision-

making process to adapt to uncertain climate change.

3.6 Conclusion

This chapter contributes on two main fronts: Firstly, it introduces a scalable method-

ology tailored for assessing operational decisions within a timeframe and scope suitable

for climate adaptation research within the electricity market. Secondly, it applies these

methodologies to investigate the dependency of the operating incomes of a BESS on valu-

ations derived from diverse climate forecasts.

The empirical study uses a regression model and a robust optimization model to study

BESS operations over 80 years within the MISO from 2021 to 2100. The study suggests that

differences across climate scenarios have observable impacts on day-ahead LMP variance
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and the operating incomes of BESSs. As greenhouse gas emission scenarios increase, such

as the transition from SSP126 to SSP585, climate change leads to increased fluctuations

in electricity prices and the operating incomes of the BESS in the MISO market.
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Chapter 4

Conclusions and Future Research

This chapter summarizes the contributions of this dissertation and outlines directions for

future research.

4.1 Conclusions

Efficient climate change adaptation involves decision-making over a long-time horizon with

uncertainty. This dissertation presents a framework that combines climate data, regression

models, and robust optimization to study climate adaptation with applications in two areas:

land investment and electricity storage systems. This framework extends the application

of operations research in these two areas by connecting the broader climate perspective to

specific operational decisions. The results obtained from these two applications provide

valuable insights for a wide range of stakeholders, including investors, government bodies,

and the public.
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The main takeaway from these applications underscores the significance of incorporating

a wide range of specific climate scenarios, along with detailed temporal and geographic

data, when making climate adaptation decisions. The following two subsections provide

detailed conclusions for the two applications of the framework.

4.1.1 Climate Change Adaptation in Land Investment

We conducted a study on climate adaptation in land investment over a 68-year horizon

in the Mississippi River Basin (MRB). Our approach involved applying regression models

to predict future land price trajectories under different climate change scenarios. We

introduced a robust model parameterized by the land price trajectories to analyze a land

investor’s decisions regarding land acquisition, including when and where to buy or sell

land and how much to buy or sell. We demonstrated that these robust models have linear

equivalence and can be easily solved. Furthermore, our models extend the models found

in the literature. Our numerical study in the MRB case revealed that land investment

varies across climate scenarios and spatial areas. A high greenhouse gas emission scenario

(e.g., RCP8.5) diminishes land investment opportunities across the MRB, as this scenario

significantly decreases land values over the next 80 years.

4.1.2 Climate Change Adaptation in Electricity Storage Systems

We conducted a study on the arbitrage incomes of a battery energy storage system (BESS)

over an 80-year horizon in the Midcontinent Independent System Operator (MISO) market
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under climate change. We proposed a climate downscaling method to temporally down-

scale climate data to the desired resolution for our regression model that links electricity

prices and climate variables. We applied the regression models to predict future electric-

ity price trajectories under different climate change scenarios. Further, we proposed a

robust model parameterized by the electricity price trajectories to analyze a BESS’s op-

erational decisions, including when to charge and discharge the BESS and how much to

charge and discharge. Our numerical study in the MISO case suggests that climate change

impacts the variation in electricity prices and BESS’s operating incomes, both of which ex-

hibit differences across various climate scenarios and geographical regions. As greenhouse

gas emission scenarios increase (e.g., from SSP126 to SSP585), climate change introduces

greater variability in electricity prices and the operating incomes of the BESS in the MISO

market.

4.2 Future Research

While our two main applications of the proposed framework are attractive, this dissertation

also has certain limitations. We summarize these limitations and suggest directions for

further exploration in the future.

Firstly, we acknowledge that the assumption of a future investment environment or elec-

tricity market structure identical to the current conditions can be overly simplistic. Over

time, these environments and structures evolve and change. To address this, additional

prediction models can be integrated with the price regression models to more accurately

forecast future parameters for the robust optimization models.
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Secondly, our robust optimization models could benefit from the consideration of more

real-world settings or constraints to enhance the models’ applicability. For instance, in

the robust model for land investment, incorporating factors such as labor costs and farm

machinery transit costs could provide a more comprehensive measure of the profitability

of land investment. In the case of the electricity storage system, it would be beneficial to

include the real-time electricity market in the electricity price model and the robust model.

This is crucial because the real-time electricity market can also be profitable for electricity

storage systems.

Thirdly, it is worth noting that our proposed framework does not account for the

rationality of stakeholders. Our models assume rational stakeholders, while real-world

stakeholders often exhibit irrational behavior. Furthermore, stakeholders in practice may

not always possess complete information about the current and future environment. Future

research could explore these scenarios involving irrational stakeholders and incomplete

information to enhance the realism of our models.

Fourth, it is interesting to study the relationship between confidence levels and op-

erating results, especially determining at which confidence level the operating patterns

undergo significant changes. Answers to these questions may help operators choose the

proper confidence levels for their applications.
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Montréal, 2021.

Temesgen Tadesse Deressa. Measuring the economic impact of climate change on Ethiopian

agriculture, volume 4342. World Bank Publications, 2007.
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Redondo. Electricity demand during pandemic times: The case of the covid-19 in spain.

Energy policy, 148:111964, 2021.

164



João A Santos, Helder Fraga, Aureliano C Malheiro, José Moutinho-Pereira, Lia-Tânia
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Appendix A

Appendix: Chapter 2

A.1 Histogram of Farmland Prices

Figure A.1a presents a histogram of the discounted farmland price data for the years

1997, 2002, 2007, 2012, and 2017, as mentioned in Section 2.4.2. These data exhibit right

skewness with a long right tail. Some of these samples exceed $10,000, with two exceeding

$25,000.

Figure A.1b shows a histogram plot of the log-transformed (discounted) farmland price

data. The histogram indicates that the log-transformed farmland prices are less skewed

and exhibit symmetry around the value 8. These patterns indicate a logarithmic regression

model is preferable in our case.
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A.2 Proof of Theorem 1

We rely on duality to provide linear transformations for both the non-linear objective

function (2.4a) and the non-linear constraints (2.4b) into their corresponding linear forms.

These transformations effectively convert non-convex Model (2.4) into its linear equiva-

lences. We depend on strong duality to demonstrate that these linear equivalents generate

the same optimal objective value as the optimal objective value of Model (2.4).

First, we convert the objective function (2.4a) of Model (2.4) to a linear equivalence.

The objective function can be simplified as follows:

max
{btc,stc|∀t∈T \{T},c∈C}

{ ∑
c∈C\{m}

p̄Tc

∑
t∈T \{T}

(btc − stc) + pTm

∑
t∈T \{T}

(btm − stm)

+ min
{zTc|c∈C\{m}}

−
∑

c∈C\{m}

zTcp̂Tc

∑
t∈T \{T}

(btc − stc)
}

(A.1)

Let bt = (bt1, bt2, ..., bt(m−1)) and st = (st1, st2, ..., st(m−1)) (∀t ∈ T \ {T}). Given any

b = (b1, b2, ..., bT−1) and s = (s1, s2, ..., sT−1), we define:

γT (b, s) =
{

min
{zTc|c∈C\{m}}

−
∑

c∈C\{m}

p̂TczTc

∑
t∈T \{T}

(btc − stc)|
∑

c∈C\{m}

zTc ≤ ΓT

, 0 ≤ zTc ≤ 1,∀c ∈ C \ {m}
}

(A.2)
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, where the dual of this problem is:

max
{hT ,qTc|c∈C\{m}}

ΓThT +
∑

c∈C\{m}

qTc (A.3a)

s.t. hT + qTc ≤ −p̂Tc

∑
t∈T \T

(btc − stc) ∀c ∈ C \ {m} (A.3b)

hT ≤ 0 (A.3c)

qTc ≤ 0 ∀c ∈ C \ {m} (A.3d)

As we want the variables hT and qTc to be nonnegative, we can further transform Problem

(A.3) as follows:

max
{hT ,qTc|c∈C\{m}}

− ΓThT −
∑

c∈C\{m}

qTc (A.4a)

s.t. hT + qTc ≥ p̂Tc

∑
t∈T \T

(btc − stc) ∀c ∈ C \ {m} (A.4b)

hT ≥ 0 (A.4c)

qTc ≥ 0 ∀c ∈ C \ {m} (A.4d)

Similarly, we can convert the constraints (2.4b) to linear constraints. In fact, constraints
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(2.4b) can be simplified as follows:

∑
c∈C\{m}

[(1 + rlb)p̄tcbtc − (1 − rls)p̄tcstc] + (1 + rβb )ptmbtm − (1 − rβs )ptmstm

+ max
{ztc|c∈C\{m}}

{ ∑
c∈C\{m}

[(1 + rlb)p̂tcbtc + (1 − rls)p̂tcstc]ztc
}
≤ Bt ∀t ∈ T \ {T} (A.5)

For each t ∈ T \ {T}, we define:

γt(bt, st) = max
{ztc|c∈C\{m}}

∑
c∈C\m

[(1 + rlb)p̂tcbtc + (1 − rls)p̂tcstc]ztc (A.6a)

s.t.
∑

c∈C\m

ztc ≤ Γt (A.6b)

0 ≤ ztc ≤ 1 ∀c ∈ C \ {m} (A.6c)

, where the dual of this problem is:

min
{ht,qtc|c∈C\{m}}

Γtht +
∑

c∈C\{m}

qtc (A.7a)

s.t. ht + qtc ≥ (1 + rlb)p̂tcbtc + (1 − rls)p̂tcstc ∀c ∈ C \ {m} (A.7b)

ht ≥ 0 (A.7c)

qtc ≥ 0 ∀c ∈ C \ {m} (A.7d)

Since Model (A.6) is feasible and bounded for all Γt ∈ [0,m − 1], by the strong duality,

both Model (A.6) and (A.7) have the same optimal objective value. We have that γt(bt, st)

equals to the objective function value of Model (A.7).
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By replacing Model (A.1) and (A.4) in (2.4a), and replacing Model (A.5) and (A.7) in

(2.4b), Model (2.4) is equivalent to Model (2.5). □

A.3 Proof of Lemma 1

The central concept of the proof relies on the utilization of a counterexample to demonstrate

that (b∗, s∗,h∗, q∗) is not an optimal solution in cases where land buying and selling occur

within the same county and during the same period.

For notational simplicity, we let b∗ = (b∗11, b
∗
12, ..., b

∗
1m, b

∗
21, ..., b

∗
(T−1)m), s∗ = (s∗11, s

∗
12, ..., s

∗
1m

, s∗21, ..., s
∗
(T−1)m), h∗ = (h∗

1, h
∗
2, ..., h

∗
T ), and q∗ = (q∗11, q

∗
12, ..., q

∗
1(m−1), q

∗
21, ..., q

∗
T (m−1)). As-

sume ∃ u ∈ T \{T} and ∃ v ∈ C in the optimal solution (b∗, s∗,h∗, q∗) such that buv ·suv > 0.

Then, buv > 0 and suv > 0.

Case 1 : v ∈ C/{m}. Let eij (i ∈ T \ {T} and j ∈ C) be a (T − 1)m-dimensional row

vector with (i · j)-th element being 1 and others being 0. Let b = b∗ − euvmin{b∗uv, s∗uv} +

eum
(rlb+rls)p̄uvmin{b∗uv ,s∗uv}

(1+rβb )pum
and s = s∗ − euvmin{b∗uv, s∗uv}. We can easily see that (b, s,h∗, q∗)

satisfy (2.5c), (2.5d), (2.5e), (2.5f), (2.5g), and (2.5h). Regarding the constraints (2.5b), if
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t ∈ T /{u, T}, the constraints hold for (b, s,h∗, q∗); if t = u, we have:

∑
c∈C\{v,m}

[(1 + rlb)p̄ucb
∗
uc − (1 − rls)p̄ucs

∗
uc]

+ (1 + rlb)p̄uv(b
∗
uv −min{b∗uv, s∗uv}) − (1 − rls)p̄uv(s

∗
uv −min{b∗uv, s∗uv})

+ (1 + rβb )pum(b∗um +
(rlb + rls)p̄uvmin{b∗uv, s∗uv}

(1 + rβb )pum
) − (1 − rβs )pums

∗
um + Γuh

∗
u +

∑
c∈C\{m}

q∗uc

(A.8)

=
∑

c∈C\{m}

[(1 + rlb)p̄ucb
∗
uc − (1 − rls)p̄ucs

∗
uc] + (1 + rβb )pumb

∗
um − (1 − rβs )pums

∗
um

+ Γuh
∗
u +

∑
c∈C\{m}

q∗uc ≤ Bu (A.9)

Therefore, (b, s,h∗, q∗) satisfies the constraints (2.5b) and is a feasible solution for Model

(2.5).

Then, we want to prove that (b, s,h∗, q∗) gives a higher objective value than (b∗, s∗,h∗, q∗),

i.e., the latter is not an optimal solution. By replacing (b∗, s∗,h∗, q∗) with (b, s,h∗, q∗) in

the objective function (2.5a), the value of the second item of the objective function (i.e.,

pTm

∑
t∈T \{T}(btm − stm)) increases by pTm

(rlb+rls)p̄uvmin{b∗uv ,s∗uv}
(1+rβb )ptm

> 0 (as p̄uv, b
∗
uv, s

∗
uv, pTm, r

l
b,

and rls > 0) and other items of the objective function remain the same. Therefore,

(b∗, s∗,h∗, q∗) is not the optimal solution for Model (2.5), conflicting with the initial con-

dition that it is the optimal solution.

Case 2 : v = m. Let b = b∗ + eum(−min{b∗um, s∗um} +
(rβb +rβs )min{b∗um,s∗um}

1+rβb
) and s =

s∗ − eummin{b∗tm, s∗tm}. We can easily see that (b, s,h∗, q∗) satisfies (2.5c), (2.5d), (2.5e),

(2.5f), (2.5g), and (2.5h). Regarding the constraints (2.5b) and given (b, s,h∗, q∗), if
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t ∈ T /{u, T}, the constraints hold for (b, s,h∗, q∗); if t = u, we have:

∑
c∈C\{m}

[(1 + rlb)p̄ucb
∗
uc − (1 − rls)p̄ucs

∗
uc] + (1 + rβb )pum(b∗um −min{b∗um, s∗um}

+
(rβb + rβs )min{b∗um, s∗um}

1 + rβb
) − (1 − rβs )pum(s∗um −min{b∗um, s∗um}) + Γuh

∗
u +

∑
c∈C\{m}

q∗uc

(A.10)

=
∑

c∈C\{m}

[(1 + rlb)p̄ucb
∗
uc − (1 − rls)p̄ucs

∗
uc] + (1 + rβb )pumb

∗
um − (1 − rβs )pums

∗
um + Γuh

∗
u

+
∑

c∈C\{m}

q∗uc ≤ Bu (A.11)

Therefore, (b, s,h∗, q∗) satisfies the constraints (2.5b) and is a feasible solution for Model

(2.5).

Then, we want to prove that (b, s,h∗, q∗) gives higher objective value than (b∗, s∗,h∗, q∗),

i.e., the latter is not an optimal solution. By replacing (b∗, s∗,h∗, q∗) with (b, s,h∗, q∗) in

the objective function (2.5a) and given rβb + rβs > 0, the value of the second item of the

objective function (i.e., pTm

∑
t∈T \{T}(btm − stm)) increases by pTm

(rβb +rβs )·min{b∗tm,s∗tm}
1+rβb

> 0

(as b∗um, s
∗
um, pTm > 0) and other items of the objective function stay the same. There-

fore, (b∗, s∗,h∗, q∗) is not the optimal solution for Model (2.5), conflicting with the initial

condition that it is the optimal solution. □
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A.4 Generating Seasonal Temperature and Precipita-

tion

We obtain the seasonal temperature and precipitation values from the monthly historical

weather observations and climate projections, as detailed in Section 2.4.2, in the following

two steps. First, using the relevant exponential moving averages, we smooth monthly

historical observations and future projections for temperature and precipitation. Second,

using the seasonal accumulative averages, we further smooth the data from the first step

to get seasonal average observations and projections for temperature and precipitation.

A.4.1 Monthly Smoothing

We exponentially smooth the monthly average temperature and monthly total precipitation

in each month in each county in the MRB. We index the 12 months from January to

December with o ∈ {1, 2, .., 12}. We let Tc,o,t (resp. Rc,o,t) be monthly temperature (resp.

precipitation) at county c (c ∈ C \ {m}) in month o in year t (t ∈ {1997, 1998, ..., 2099}),

where “resp.” denotes respectively. Let T̂c,o,t (resp. R̂c,o,t) be the smoothed monthly

temperature (resp. precipitation). Let b0 (0 < b0 < 1) be a discount rate, η be a positive

scalar, and K be a smoothing window size. We express the monthly exponential smoothing

formulas for temperature and precipitation as follows:

T̂c,o,t =

K−1∑
k=0

η(1− b0)
kTc,o,t+k, ∀c ∈ C \ {m}, o ∈ {1, 2, .., 12}, t ∈ {1997, 1998, ..., 2099} (A.12)
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R̂c,o,t =

K−1∑
k=0

η(1− b0)
kRc,o,t+k, ∀c ∈ C \ {m}, o ∈ {1, 2, .., 12}, t ∈ {1997, 1998, ..., 2099} (A.13)

The temperature (resp. precipitation) is recalculated using the exponential moving

average, in which the weights decrease exponentially as temperature (resp. precipitation)

comes from further in the future — the furthest temperature (resp. precipitation) has

the smallest weight. We use (A.12) and (A.13) to smooth temperature and precipitation

observations over 1997 and 2020 to get monthly smoothed historical observations. In

practice, we let K̂ = min{2020 − t + 1, K} as a new window size to smooth each year

in the period. Similarly, we smooth temperature and precipitation projections over 2023

and 2099 to get monthly smoothed projections. In application, we choose η = 1∑K−1
k=0 (1−b0)k

being a normalization factor (letting the total weights to be one), b0 = 0.02 (same as the

inflation rate), and K = 10.

A.4.2 Seasonal Smoothing

We further seasonally average the monthly smoothed temperature and precipitation by

using the cumulative average. Index the four seasons from spring to winter with i ∈

I = {1, ..., 4}. Let T̃c,i,t and R̃c,i,t be seasonal temperature and precipitation at county c

in season i in year t. We express the seasonal-average temperature and precipitation as

follows:

T̃c,i,t =
1

3

2∑
k=0

T̂c,3i+k,t ∀c ∈ C \ {m}, i ∈ I, t ∈ {1997, 1998, ..., 2099} (A.14)
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R̃c,i,t =
1

3

2∑
k=0

R̂c,3i+k,t ∀c ∈ C \ {m}, i ∈ I, t ∈ {1997, 1998, ..., 2099} (A.15)

, where T̂c,13,t = T̂c,1,t, T̂c,14,t = T̂c,2,t, R̂c,13,t = R̂c,1,t, and R̂c,14,t = R̂c,2,t for notational

convenience.

We use (A.14) and (A.15) for two things: 1) to seasonally smooth historical data for

model fitting and 2) to seasonally smooth climate projections for model prediction.

A.5 Economic Indicator Parameters

For solving purposes, we collected three reliable economic indicators for the parameters of

Model (2.5). First, we set the buying rate and selling rate at 0.01 and 0.06 respectively

based on Lohano and King (2009). Second, we set the constant inflation rate β as 0.02

during 2023-2090 based on Board of Governors of the Federal Reserve System (2021).

Third, we assume the buying cost rate on risk-free assets, i.e., rβb , is 0 and the selling

cost rate on risk-free assets, i.e., rβs , is 0.01. We set the external income in period t as

Bt = 60, 000 USD (∀t ∈ T \ {T}). We summarize the values of parameters used in Model

(2.5) in Table A.1.

A.6 Cardinality

We summarize the cardinality of the data used in the MRB case in Table A.2.
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Table A.1: Parameter values

Parameters Value

Bt 60,000
β 0.02
rlb 0.01
rls 0.06

rβb 0

rβs 0.01

Table A.2: The cardinality of used data

Set Cardinality

C 545 + 1 (1 represents the artificial county
m)

T 68 (from year 2023 to year 2090)

A.7 Marginal Impacts in 2090

We present the marginal impacts of mean climate on farmland values in the MRB in 2090

under RCP4.5 and RCP8.5 in Figure A.2 and A.3, respectively.
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Histogram of farmland prices in the MRB
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Histogram of the logarithm of farmland prices in the MRB

Logarithm of farmland prices (in 2017 USD)

F
re

qu
en

cy

6 7 8 9 10

0
20

40
60

80
10

0
12

0
14

0

(b) Log-transformed

Figure A.1: Histogram of original and log-transformed farmland prices in the MRB
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(a) Temperature (Temp.) (b) Precipitation (Prep.)

Figure A.2: Marginal impact in percentage of farmland values of mean climate in 2090
under RCP4.5

(a) Temperature (Temp.) (b) Precipitation (Prep.)

Figure A.3: Marginal impact in percentage of farmland values of mean climate in 2090
under RCP8.5
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Appendix B

Appendix: Chapter 3

B.1 Proof of Lemma 2

Proof: We prove the Lemma through a contradiction. Assume that there is a µ ∈ T such

that both qCµ > 0 and qDµ > 0.

Case 1: ηCqC⋆
t > qD⋆

t . Let qt
C = qC⋆

t − qD⋆
t /ηC if t = µ and qt

C = qC⋆
t if t ∈ T \µ.

Similarly, let qt
D = 0 if t = µ and qt

D = qD⋆
t if t ∈ T \µ. We can easily see that the solution

{qtC , qtD,∀t ∈ T } satisfy Constraints (3.3b), (3.3d), and (3.3e). By replacing the solution

{qC⋆
t , qD⋆

t ,∀t ∈ T } with {qtC , qtD,∀t ∈ T } in the objective function (3.3a), the objective

function increases by qC⋆
t [(p̄t + p̂t)/η

C − (p̄t − p̂t)η
D] > 0. Therefore, {qC⋆

t , qD⋆
t ,∀t ∈ T } is

not the optimal solution for Model (3.3), conflicting with the initial condition that it is the

optimal solution.

Case 2: ηCqC⋆
t ≤ qD⋆

t . Let qt
C = 0 if t = µ and qt

C = qC⋆
t if t ∈ T \µ. Similarly, let
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qt
D = qD⋆

t − ηCqC⋆
t if t = µ and qt

D = qD⋆
t if t ∈ T \µ. We can easily see that the solution

{qtC , qtD,∀t ∈ T } satisfy Constraints (3.3b), (3.3d), and (3.3e). By replacing the solution

{qC⋆
t , qD⋆

t ,∀t ∈ T } with {qtC , qtD,∀t ∈ T } in the objective function (3.3a), the objective

function increases by qC⋆
t [(p̄t + p̂t) − (p̄t − p̂t)η

CηD] > 0. Therefore, {qC⋆
t , qD⋆

t ,∀t ∈ T } is

not the optimal solution for Model (3.3), conflicting with the initial condition that it is the

optimal solution. □

B.2 Regression based on Principle Component Anal-

ysis

Let X be an n × m-dimensional matrix representing the dataset, where n is the number

of samples, and each sample has m features. Let L be a positive integer. Let W be an

m × L-dimensional matrix, which we refer to as the transformation matrix (see Section

3.4.4). Let β be an L-dimensional vector. Let y be an n-dimensional vector. Let a be

an n-dimensional vector with all entries being constant a. Let I be an n× k-dimensional

(dummy) matrix with all entries being 0 or 1, where k is the number of dummy variables.

Let βI be a k-dimensional vector. Let ϵ be an n-dimensional vector representing random

errors. The regression model based on the Principle Component Analysis used in Section

3.4.4 can be expressed as follows:

y = a + XWβ + IβI + ϵ (B.1)
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Let β̂ be the estimator of β using the ordinary least squares (OLS) method provided

by the Python package statsmodels (Seabold and Perktold, 2010).

We denote B as the covariance matrix for β. To estimate B, we use the Python package

statsmodels and denote the estimator as B̂. The coefficients for X can be expressed as W β̂

and are referred to as the (estimated) original coefficients.

We want to calculate the standard variance for each of the four climate variables (i.e.,

wind, precipitation, temperature, and (shortwave) radiation). With loss of generality, let



Ww

Wp

Wt

Wr


(B.2)

be a row division of matrix W , where Ww is the transformation matrix for wind, Wp is the

transformation matrix for precipitation, Wt is the transformation matrix for temperature,

and Wr is the transformation matrix for (shortwave) radiation. Since we use each climate

variable for the same MISO counties, the divided four transformation matrices have the

same dimensions, each being m
4
× L, where m

4
is a positive integer.

Let 1 be an m
4

-dimensional vector with all entries set to 1. We can estimate the mean

of the original coefficients for each climate variable as 4
m
1⊤Wiβ̂, where i ∈ {w, t, p, r}.

Next, we can calculate the standard variance of the mean of original coefficients for
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each climate variable as follows:

[V ar(
4

m
1⊤Wiβ)]

1
2 =

4

m
[1⊤WiBW⊤

i 1]
1
2 , i ∈ {w, t, p, r} (B.3)

, where V ar represents the variance. We can estimate the numerical value of the standard

variance as 4
m

[1⊤WiB̂W⊤
i 1]

1
2 , where i ∈ {w, t, p, r}.
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