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Abstract

With global climate change, quantifying water availability for management under non-stationary 

conditions is, and will continue to be, a major challenge. When hydrologic models are calibrated to 

historic climatic conditions, they may lack the ability to simulate future extreme climates. This research 

quantified changes in model calibration under non-stationary climate conditions using the Harold L. 

Disney Training Center (HLDTC) site in Kentucky, USA for demonstration. An integrated hydrologic 

model of the site was developed using HydroGeoSphere (HGS) and was calibrated using PEST. 

Hydraulic conductivity (K), specific storage (Ss), and surface friction coefficient parameters were 

calibrated under four different climate scenarios based on two moderately-extreme precipitation events 

during the observation period: a. the entire observation record, including the two moderately-extreme

precipitation events (base scenario), b. the entire observation record minus the short duration event 

(April 2017), c. the entire observation record minus the long duration event (February 2018), and d. the 

observation record without either event. The results demonstrate that the inclusion of observations from 

extreme precipitation events impact the calibration of the hydrologic model. The variations in K and Ss 

were the highest between scenarios of all the calibration parameters tested, while the ridge surface 

friction, topsoil hydraulic conductivity, or clayey sand specific storage remain unchanged. K has the 

greatest decrease in lateral K (x and y direction) of the clayey sand layers in Scenario D, and greatest 

increase in lateral K of fractured rock formation in Scenario C. This indicates the importance of lateral 

flow in the fractured rock during the shorter duration precipitation event. Ss changed in the fractured 

rock formation in Scenario B, indicating the importance of storage in the fractured rock during the 

longer duration precipitation event. The model constructed by this study can better capture shorter 

duration moderately-extreme precipitation events, demonstrated by a better match between observed 

and simulated hydraulic heads in Scenario C. The results also suggest that not only the presence or 

absence of these events informs model calibration, but the timing and duration of these events 

influences the parameters it informs. 
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Chapter 1

Introduction

Fresh water, which occupies only 2.59% of the world's water resources, is the foundation on which humans 

and all life depend (USGS, 2019). Of this, only 23% of water resources, including groundwater and surface 

water, are accessible (USGS, 2019). Over the past few decades, as the population increased, the water 

demands of industry and agriculture also increased. It is predicted that by 2050, industrial water demand 

will grow more rapidly than agricultural water, especially in less developed regions such as Africa (Boretti 

& Rosa, 2019). However, the total amount of fresh water available to humans will further decrease, which 

will exacerbate the problem of water scarcity everywhere. Therefore, the establishment of long-term water 

resources management systems will continue to be an issue of concern. 

Climate change is also a major environmental issue confronting the world and water management, 

particularly extreme climatic events. Weather observations in recent years show that some regions are 

experiencing a trend of increasing frequency of rainfall with temperature, such as in India (Meehl et al., 

2000). The same trend has been found in the Netherlands, where scientists have shown that although the 

increase in temperature has reduced the frequency of extreme cold events which is beneficial to agriculture, 

the increase in extreme precipitation events can still have a negative impact on crops (Powell & Reinhard, 

2016). Thus, it has become evident that we must consider extreme climate conditions in water resources 

management planning. 

Numerical modelling is a common approach for supporting water resources management. Models can 

estimate groundwater and surface water availability over time by combining existing aquifer properties, 

geological settings, surface properties, and climatic factors into the governing equations for surface water 

and groundwater movement. However, there are always inaccuracies between model predictions and actual 

measurements. These inaccuracies are caused by the simplification of the conditions and processes 

represented in the models, either to facilitate calculations and computations or due to a lack of data. At the 
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same time, extreme events that are associated with climate change, such as floods and droughts, may cause 

bias in predictions due to their uncertainty in its intensity and duration (Schewe et al., 2019). 

Climate predictions are very uncertain, and this includes uncertainty in the prediction of the frequency and 

intensity of extreme events, which can then cause significant uncertainty in predicting the hydrologic 

response to the events. In addition, as future climates are predicted to be much different than past climates, 

there are concerns that hydrologic models calibrated using historic climate conditions may not be able to 

simulate future conditions. As such, it is important to consider the impact of this non-stationarity on 

hydrologic models and their ability to simulate the hydrologic response to extreme climatic events (Holman 

et al., 2011). There are several challenges associated with identifying and quantifying this impact, including 

underlying model assumptions and uncertainty, and uncertainty in the model parameters and observed data 

used to calibrate these models. 

There is also uncertainty associated with how climate conditions are incorporated or coupled to hydrologic 

models (Grimaldi et al., 2019). With one-way feedback between climate and hydrology there is a disconnect 

between the climate conditions and the hydrologic conditions – the climate cannot respond to changes in 

hydrology. To enable climate simulations in hydrologic models, coupling a hydrologic model with one or 

more climate models is often required. Due to the differences in parameters, model structure, etc. between 

models, large uncertainties may arise when simulations are performed with the coupled model, especially 

for large-scale sites (Grimaldi et al., 2019). 

It is evident that holistic approaches are necessary to assess hydrologic responses to climate change; 

however, computational efficiency is necessary. While there remain issues related to coupling of climate 

and hydrology, integrated hydrologic models that can capture surface water and groundwater flow and 

transport conditions are readily available. An integrated hydrologic model incorporates surface water, 

groundwater, and the interactions between them and is more capable of simulating hydrologic responses to 

extreme events than models that simulate the surface or subsurface flow conditions separately. However, 

what remains uncertain is how well an integrated model, calibrated under historic conditions, can simulate 

extreme events which are outside of the range of the data used to calibrate and validate the model.
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The objective of this study is to quantify changes in model calibration under non-stationary climate 

conditions using the Harold L. Disney Training Center (HLDTC) site in Kentucky, USA for demonstration. 

Recent work by Sherman (2019) provides hydrological characterization of the site, in addition to hydrologic 

data collected during recent moderately-extreme flood events at this site. In this work, this data is used to 

develop and calibrate an integrated hydrologic model of the site using HydroGeoSphere. The model is 

calibrated with and without recent moderately-extreme climate events to identify how calibrated parameters 

and model results vary, identifying and quantifying the importance of incorporating extreme climate events 

into hydrological models.
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Chapter 2

Background

This research uses the integrated hydrologic model, HydroGeoSphere (HGS), to model the study site, the 

Harold L. Disney Training Center (HLDTC) in Kentucky, USA. In the following sections, details about the 

site and model selection are provided. 

2.1 Study site

The Harold L. Disney Training Center (HLDTC) is operated by the Kentucky Department of Military 

Affairs located in Knox County, Kentucky, and is adjacent to the town of Artemus (Fig. 1). The Köppen 

climate classification of the region is defined as humid subtropical, characterized by hot and humid 

summers (average high temperature of 30°C in July), and relatively mild winters (average low temperature 

of -4.9°C in January) (Sherman, 2019). The annual average temperature of Artemus, Kentucky is 13.3°C, 

and the annual average precipitation is 1275 mm (Weatherbase, 2022). The area experiences an average of 

123 days of precipitation throughout the year. The most frequent rainfall is in March (11.8 days) while the 

most frequent snowfall is in January (1.8 days) (Weatherbase, 2022). 

The site is surrounded by the Cumberland River on three sides and a ridge on the southern border (Fig. 1; 

Sherman, 2019). The site is used primarily for military and government training exercises and crop 

cultivation. Based on satellite photos and field observations, the vegetation in the study area can be roughly 

categorized into two types: crops (corn and soybeans) in the floodplain, and forest that surrounds the 

cultivated land. The crops are planted in June and harvested in October and November, for soybean and 

corn respectively. It also follows a routine that corn is planted in even years, while soybean is planted in 

odd years (G. Disney, personal communication). 
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Fig. 1 Location and map of the HLDTC site in USA. The orange line is the HTDTC boundary, with the monitoring 

wells indicated by the blue symbols. (Modified from: Sherman, 2019); inset retrieved from: www.sporcle.com)

Located in the Eastern Coal Field Region, the alluvium, including flood plain and low-level terrace, is 

comprised of silt, clay, sand, and gravel (Sprinkle et al., 1983). The Pennsylvanian Breathitt Formation is 

one of the major formations underlying the area (Fig. 2) and most of the groundwater is stored in the 

fractures of the formation (Sprinkle et al., 1983). Three of the five subunits of the Breathitt Formation 

outcrop in the area, with the sub-basal unit forming the ridge on the southern edge of the site (Sherman,

2019). 
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The alluvium could provide adequate 

water quantities for local needs, but the 

water quality varies with depth 

(Sherman, 2019). Previous research 

indicated that, compared with river 

water, groundwater in the research site 

has higher concentrations of geogenic 

manganese and iron, which are higher 

than the drinking water standards in the 

National Secondary Drinking Water 

Regulations (NSDWRs); however, 

these elevated ion concentrations do not 

pose a health risk (Sherman, 2019). 

Though military activities frequently 

take place at the study site, these 

activities have not significantly 

impacted water quality (Sherman, 

2019). 

Water samples were collected and 

analyzed from eleven monitoring wells 

and the Cumberland River quarterly from January 2017 to March 2018 (Sherman, 2019). Geological 

analyses such as soil core logs, grain size, carbon content, and mineral composition were also performed to 

better understand the geological setting and the hydraulic parameters. Water levels were hand-measured 

quarterly. In addition to this, pressure transducers were installed at MW-6 and MW-7 to measure hourly 

water levels and temperature, while the logged water levels were corrected for barometric pressure. 

Fig. 2 Geologic cross-section of the study site. (Sherman, 2019)
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Water level measurements indicate that groundwater generally flows northward (from the ridge bottom 

toward the river), which is relatively consistent with the regional topography (Fig. 3) (Sherman, 2019). The 

shallowest groundwater levels based on the hydraulic head ranges are near the base of the ridge and are less 

than 1 mbgs (meters below ground surface), while the deepest groundwater levels are near the riverbanks 

are greater than 4.5 mbgs (Sherman, 2019). The water levels at HLDTC also fluctuate seasonally, with 

higher water levels in the spring and lower water levels in the fall (Sherman, 2019). It was found that the 

chemical composition of the groundwater is similar to that of precipitation, which indicates that 

precipitation is the main source of groundwater recharge. 

Fig. 3 HLDTC water table map, January 2018 (Sherman, 2019)

For aquifer characterization, aquifer tests and sieve analyses were conducted to estimate hydraulic 

parameters. The estimated hydraulic conductivity (K) values from sieve analyses ranged from 0.002 to 

0.015 cm/s (Table 1), and are consistent with typical ranges for silty sands, fine sands, and well-sorted 

sands (Sherman, 2019). Estimates of K from slug and pumping tests were generally lower, ranging from 
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4.85×10-6–1.00×10-3 cm/s, and are consistent with typical ranges for silt, silty sands, and well-sorted sands 

(Sherman,2019).

Table 1 HLDTC HydrogeoSieveXL hydraulic conductivity (K) estimates of the wells within the greater study area 

(Modified from: Sherman, 2019)

Well ID MW-3R-3 MW-3R-4 MW-4-3 MW-4-4 MW-4-5 MW-5-4

Mean Value (m/s) 4.82E-05 6.58E-05 8.65E-05 1.82E-04 3.76E-05 6.70E-05

Well ID MW-5-5a MW-5-5b MW-5-6b MW-7-5 MW-7-7b

Mean Value (m/s) 6.95E-05 5.31E-05 6.40E-05 2.06E-05 3.42E-05

2.2 Hydrologic Model

There are a number of integrated hydrological models available that could be applied to this site, including 

ParFlow (Maxwell et al., 2023), CATHY (CATchment HYdrology) (Camporese et al., 2010), GSFLOW 

(Regan & Niswonger, 2021), and HydroGeoSphere (HGS) (Aquanty Inc., 2018). ParFlow is an integrated 

hydrologic model that simulates surface and subsurface water movement using the Richards equation, 

applying multigrid-preconditioned Newton–Krylov methods to perform three dimensional simulations of 

variably saturated subsurface flow in heterogeneous porous media (Maxwell et al., 2023). ParFlow has been 

used to simulate a wide range of applications such as hydrologic response to climate projections, reactive 

transport, and land-water energy balancing (Kuffour et al., 2020). Parflow is generally applied to large-

scale systems, providing high-resolution surface and groundwater simulations up to continental scales, such 

as Naz et al. (2023) who developed high-resolution hydrologic models of continental Europe, coupling 

ParFlow with Common Land Model (CLM). In this work, the ParFlow-CLM model presented a relatively 

good performance in terms of estimating evapotranspiration, topsoil moisture, and groundwater storage 

(Naz et al., 2023). Other recent research includes work by Yang et al. (2023), who further advanced the 

ParFlow model developed for the contiguous United States (CONUS-ParFlow) to better represent 

continental-scale water source problems such as impacts of climate change on groundwater in the United 

States. Similar to the work by Naz et al. (2023), this study also used the CLM model to provide the required 
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atmospheric and environmental inputs to ParFlow (Condon & Maxwell, 2019). The model developed by 

Yang et al. (2023) provides a more accurate description of topography and hydrostratigraphy resulting in 

better simulation of surface water-groundwater interactions and variations.

CATHY (CATchment HYdrology) is an integrated hydrological model that focuses on catchment-scale 

simulations. CATHY is a finite difference model that uses the 3-D Richards equation for subsurface flow 

and the diffusion-wave version of St. Venant’s equation for surface flow (Camporese et al., 2010). CATHY 

can extract and construct conceptual drainage networks from DEM files, simulating the flow and solute 

transport under different topographies (Camporese et al., 2010). Niu et al. (2014) developed a tool to 

simulate lake dynamics and flash floods using CATHY, which are critical components of climate change 

modeling. CATHY is also coupled to the land surface model (LSM), NoahMP, which provides more 

detailed simulations of precipitation and vegetation than other LSMs, thus providing more accurate climate 

inputs to hydrologic models (Niu et al., 2014).  

GSFLOW is also a widely used integrated hydrologic model that integrates USGS Modular Groundwater 

Flow Model (MODFLOW) and USGS Precipitation-Runoff Modeling System (PRMS) (Markstrom et al., 

2008). The subsurface flow is simulated in MODFLOW with the Richards equation using finite difference 

(Harbaugh, 2005), while surface water flow (precipitation, evapotranspiration, surface runoff, etc.) is

simulated by hydrologic response units (HRUs) and water routing in the PRMS algorithm (Markstrom et 

al., 2008). Wu et al. (2019) applied GSFLOW to water resources management in the arid zone of Northwest 

China. Combining DEM data as well as the meteorological data from local weather stations, the model was 

calibrated with manually adjusted parameters (Wu et al., 2019). By applying the calibrated model to nine 

CMIP5 climate scenarios, the study found that the future water resources changes in the Zhangye Basin 

area are problematic under the current level of agricultural activities (Wu et al., 2019).

HydroGeoSphere (HGS) is the integrated hydrological model that was selected for this research (Aquanty 

Inc., 2018). HGS uses the control-volume finite element method or finite difference approach to simulate 

coupled surface and subsurface flow and transport (Aquanty Inc., 2018). A modified Richards equation is 
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used to simulate the three-dimensional transient subsurface flow in a variably saturated porous medium 

(Equation 1: Aquanty Inc., 2018). 

−∇ ∙ (𝑤𝑚𝑞) +∑Γ𝑒𝑥 ± 𝑄 = 𝑤𝑚
𝜕

𝜕𝑡
(𝜃𝑠𝑆𝑤)

𝑞 = −𝐾 ∙ 𝑘𝑟∇(𝜓 + 𝑧)

(1)   

𝑤𝑚 = volumetric fraction of the total porosity occupied by the porous medium [-]

𝑞 = flux [L T-1]

Γ𝑒𝑥 = volumetric fluid exchange rate [L3L-3T-1]

𝑄 = fluid exchange with the outside of the simulation domain [L3L-3T-1]

𝜃𝑠 = saturated water content [-]

𝑆𝑤 = degree of water saturation term [-]

𝐾 = hydraulic conductivity [L T-1]

𝑘𝑟 = the relative permeability of the medium [-]

𝜓 = pressure head [L]

𝑧 = elevation head [L]

For surface water flow, HGS uses the diffusion wave version of the Saint Venant equation for depth-

integrated surface water flow (Equation 2: Aquanty Inc., 2018). 

𝜕𝜙0ℎ0
𝜕𝑡

−
𝜕

𝜕𝑥
(𝑑0𝐾0𝑥

𝜕ℎ0
𝜕𝑥

) −
𝜕

𝜕𝑦
(𝑑0𝐾0𝑦

𝜕ℎ0
𝜕𝑥

) + d0Γ0 ± 𝑄0 = 0 (2)   

𝜙0 = surface flow domain porosity [-]

ℎ0 = water surface elevation [L]

𝑡 = time [T]

𝑑0 = depth of flow [L]

𝐾0𝑥, 𝐾0𝑦 = surface conductance [L T-1]

d0Γ0 = volumetric flow rate per unit area [L T-1]
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𝑄0 = volumetric flow rate per unit area [L T-1]

HGS has been applied to many water resource problems, including both small-scale and large-scale 

simulations, making it relevant for this work. Lü et al. (2021) simulated runoff to the Shiguan River basin 

in China by integrating HGS with different precipitation modules. Results of the study suggest that the 

simulated annealing (SA) approach is preferable for representing precipitation patterns in HGS, especially 

for depicting flood peaks in large-scale watersheds (Lü et al. 2021).

The work by Davison et al. (2018) is an example of HGS application on a larger scale. In this work, HGS 

was coupled with a weather prediction model, the Weather Research and Forecasting (WRF) model. This

coupled model was applied to the California Basin, simulating a ten-day period. The study identified a 

connection between the water table level and surface latent heat fluxes in the region and also suggested that 

the HGS-WRF model can save computational costs compared to traditional basin-scale models (Davison 

et al., 2018). 

HGS can be auto calibrated using PEST, a software package that automatically calibrates and performs 

uncertainty analyses for any numerical model (Doherty et al., 2021). PEST can provide more accurate 

parameter estimations because it removes user bias and is able to perform regularization both before the 

parameter estimation and during the inversion process (Doherty et al., 2021). An example of HGS coupled 

with PEST was conducted for the Waterloo Moraine in Ontario, Canada by Tong et al. (2021). To perform 

the hydraulic tomography analysis, the research applied and calibrated four geologic models using the 

coupled HGS-PEST model (Tong et al., 2021). 
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Chapter 3

Methods

This research focuses on the southwest corner of the HLDTC site, which is about one third of the entire site 

area and includes five monitoring wells (MW-3R, MW-4, MW-5, MW-6, MW-7) and one dry well (MW-

3; Fig. 4). This model domain includes the streambank, floodplain and part of the ridge and was selected 

due to the relatively higher density of monitoring wells, which provides characterization data, and high-

resolution water level data at MW-6 and MW-7 for calibration.

Fig. 4 Model domain at the HLDTC. The orange line is the study area boundary, with the monitoring wells indicated 

by the blue symbols. (Modified from: Sherman, 2019)
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3.1 Mesh Generation

The mesh was generated with Algomesh (version: 2.0.20.32621, x64) (Merrick & Merric, 2016) and it 

accurately represents the well locations, streambed, and ridge features (Fig. 5). The topography of the study 

area was imported into Algomesh using the regional elevation data acquired from U.S. Geological Survey 

(USGS) (2017; Fig. 5). To ensure stable model simulations, the DEM data were smoothed to accommodate 

sudden changes in topography (e.g., cliffs) along the ridge. The mesh was refined in regions of 

topographical change, subdividing the channels, floodplains, and ridges (Fig. 6). 

Fig. 5 Elevation data of the study area in meters above sea level. The orange line is the study area boundary. 

(Modified from USGS, 2017; present in Tecplot)
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Fig. 6 Mesh developed of the HLDTC site with Algomesh (present in Tecplot).

The geologic model was constructed in HGS using multiple layers of various thicknesses. Field 

observations including well logs (Appendix A; Appendix B) and a schematic diagram (Fig. 7) from

Sherman (2019) provide detailed information on the composition and thickness of each layer, as well as the 

initial static water level at the time of well installation. Based on these observations and the USGS elevation 

data, the 3D mesh is divided into 18 layers consisting of four layers that are 0.25 m thick, followed by four

layers that are 2.25 m thick, then two 1 m thick layers which allow for accurate representation of the depth 

of water level measurements, and finally three 2 m thick layers, from top to bottom. This vertical 

discretization was selected to capture the groundwater flow dynamics of the site and remain 

computationally feasible. These subsurface layers are assigned to three lithological zones, starting with the 

base of the model located 18 meters below ground surface. This depth was selected to be deep enough to 

minimize the influence of the bottom boundary condition on the local flow paths. The layers above the 

bottom boundary are a weathered rock with a thickness of 10.25 m, overlain by a clayey sand layer of a 
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thickness of 7.5 m, which is overlain by a 0.25 m thick topsoil. The surface of the domain is also divided 

into two zones, the ridge and the flood plain, which is consistent with the mesh generation and with the 

different land cover types at this site. Overall, the mesh has 8359 nodes, with 643 nodes per layer and 13 

layers of varied thickness.

3.2 Boundary conditions

The model has incorporated stream, climate, 

and hydrogeological data to constrain 

boundary conditions on the surface and in 

the subsurface of the model. 

3.2.1 Surface boundary conditions

Boundaries applied to the surface of the 

model include those constraining river flow, 

overland flow, and precipitation. The 

boundary condition at the river varies with 

time; unfortunately, there is no measured 

streamflow available along the section of 

the Cumberland River in the study area. 

Therefore, data from the closest gage stations located upstream and downstream of the study site were used 

to estimate river height along the site within the study period.

The closest USGS monitoring stations with streamflow data available during the observation period along 

the Cumberland River are Pineville (03402900) which is upstream of the HLDTC site and Barbourville 

(03403500) which is downstream. Additionally, high resolution elevation data of the streambed for the 

length of the river between these gages was acquired from KyFromAbove (2022). To interpolate the river 

depth along the model domain, the gradient of water level change between the gage station was calculated

based on change in streambed elevation following: 

Fig. 7 Schematic diagram of HLDTC lithology. (Sherman, 

2019)
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∆=
𝐺𝑃 − 𝐺𝐵
𝐸𝑃 − 𝐸𝐵

(3)

   𝐺𝑃 = gage height from Pineville 

   𝐺𝐵 = gage height from Barbourville 

   𝐸𝑃 = elevation near Pineville

   𝐸𝐵 = elevation near Barbourville 

This gradient was calculated daily and was applied to the length of the river within the model domain to 

determine the surface boundary condition. 

The remaining lateral surface boundaries are set as critical depth boundary conditions, allowing water to 

leave the model domain if the surface hydraulic gradient is towards the boundary, but not allowing water 

to enter the domain. 

The model’s top boundary condition is calculated as precipitation minus estimated evapotranspiration (ET),

and therefore represents only the portion of precipitation contributing to surface runoff and groundwater 

recharge. This approach was taken to reduce the computational burden of the model and the 

parameterization required for the ET module. The precipitation data used for this boundary is consistent 

with Sherman (2019) and is measured every 30 minutes at the Pineville and Barbourville gage stations. 

Daily precipitation for the two sites was averaged for model input. ET was removed from precipitation for 

the top boundary. Although the vegetative land cover is variable across the site and varies with time (higher 

in summer and fall, lower in winter and spring), a constant ET of 60% of precipitation was used for this 

work (Kentucky Geological Survey, n.d.) due to the computational limitations. This approach ignores all 

the factors that cause temporal and spatial variation of ET, including air temperature, soil moisture and 

solar radiation, and future work should include estimates of ET that vary spatially and temporally with these 

changing conditions. However, since the site is not located at the headwaters of the basin, the river boundary 

conditions integrate the effects of varying ET as the river responds to the basin conditions, including the 
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partitioning of precipitation. The river boundary is based on observed data and changes on a daily basis, 

and so the river gage height does represent the upstream basin response to variations in ET.

3.2.2 Subsurface boundary conditions

The subsurface boundaries of the site consist of the boundary below the river, the bottom boundary, and 

the remaining lateral boundaries. Given the multiple layers of the subsurface river boundary, it is difficult 

to specify temporally-variable water levels as the surface boundary does. Therefore, all the subsurface river 

nodes are assigned the daily average water level of the surface river boundary. This assumes that the 

subsurface immediately below the river is fully saturated and is in equilibrium with the river.

The remaining lateral subsurface boundaries are set as no-flow boundary conditions, due to a lack of 

information about lateral groundwater flow movement, making the river the main subsurface boundary 

constraint of the model. 

To ensure numerical stability, precipitation increased by 1 x 10-12 m/s to avoid timesteps with no 

precipitation. A constant flux boundary of 1 x 10-12 m/s was assigned to all bottom nodes to eliminate the 

precipitation input error caused by HGS while creating downward flows which are more consistent with 

the actual environment. 

3.3 Initial Conditions

The model requires initial conditions for simulation, and spin-up runs are needed to generate these initial 

conditions for integrated hydrologic models. This ensures that the initial surface and subsurface hydrologic 

conditions are in equilibrium. Spin-up runs used average climate conditions and constant river and 

subsurface boundary conditions. 

For the spin-up model, the river (surface and subsurface) boundary conditions are set to the average steady 

state value over the observed period (January 05, 2017, to March 10, 2018), while the precipitation 

boundary is set to a value similar to the long-term precipitation average minus ET. A detailed table of the 
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model set up including the spin run model can be found in Table 2. Results of the spin-up run were 

consistent with field measurements reported by Sherman (2019) and provide a reasonable initial condition 

for the transient simulations (Fig. 8).

Table 2 Boundary conditions applied for both the spin-up and the transient simulations. 

Boundary Spin-up Model Transient Model

River (surface) 291.0 m 298.3 – 299.4 m

River (subsurface) 290.3 m 290.3 – 299.4 m

Ridge (surface) Critical depth Critical depth

Ridge (subsurface) No flow No flow

Sides (surface) Critical depth Critical depth

Sides (subsurface) No flow No flow

Bottom (subsurface) 1E-12 m/s 1E-12 m/s

Precipitation (excluding ET) 1E-08 m/s 0 – 3.35E-7 m/s



19

Fig. 8 Model simulation result for January 05, 2017, present in Tecplot 360

3.4 Model Calibration

The model is automatically calibrated using PEST (version 17.5, 32-bit) to best match observed water level 

data from monitoring wells MW-6 and MW-7. Calibration parameters are hydraulic conductivity (K), 

specific storage (SS), and surface friction coefficients for various layers and regions in the domain. The 

subsurface properties, K and SS, were selected to vary in response to changes in the climatic inputs, allowing 

groundwater flow conditions to vary. For surface water flow, the surface friction coefficients were allowed 

to vary and were the only surface parameter in this model available for calibration. Initial values and 

calibration ranges (Table 3) for all parameters are selected from either previous literature for the formation 

or surface type, or previous field work from the study site. As a result of preliminary model simulations, 

the initial values for hydraulic conductivity are larger in the vertical direction compared to lateral. While 

this was not expected, it is feasible that fracture orientation in the bedrock in addition to shrinkage and 

cracking in the clayey layers could cause this level of anisotropy. PEST is constrained with parameter 
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ranges that are consistent with site characteristics and measurements provided by Sherman (2019) (Table 

3). 

Table 3 Calibration parameters and ranges for PEST

Calibration Parameter Initial value Minimum value Maximum value Source

Floodplain (friction, isotropic) 0.038 0.010 0.100 Aquanty Inc. (2018)

Ridge (friction, isotropic) 0.015 0.010 0.100 Aquanty Inc. (2018)

Topsoil (K, m/s, isotropic) 2.67E-4 5.0E-5 5.0E-4 Sherman (2019)

Clayey sand (K, m/s, X/Y) 5.0E-6/5.0E-6 1.0E-6/1.0E-6 1.0E-4/1.0E-4 Sherman (2019)

Clayey sand (K, m/s, Z) 1.0E-4 1.0E-6 1.0E-4 Sherman (2019)

Fractured rock (K, m/s, X/Y) 5.0E-5/5.0E-5 1.0E-6/1.0E-6 5.0E-4/5.0E-4 Sherman (2019)

Fractured rock (K, m/s, Z) 3.0E-4/3.0E-4 1.0E-6/1.0E-6 5.0E-4/5.0E-4 Sherman (2019)

Clayey sand (SS, m-1) 1.62E-4 1.0E-5 5.0E-4 Sherman (2019)

Fractured rock (SS, m-1) 8.0E-7 5.0E-8 5.0E-6 Sherman (2019)

Two moderately-extreme precipitation events occurred at HLDTC site during the measurement period in 

April 2017 and February 2018 (Fig. 9). The April 2017 event had one distinct hydrologic response to the 

precipitation event, while the February 2018 event had multiple distinct responses of varying stage heights. 

Both events are representative for moderately-extreme precipitation events in the region: the magnitude of 

the April 2017 event had occurred years prior in 2015 and 2003, while the February 2018 event was the 

second largest flood event within the region in the past 10 years. The base model for this research will be 

calibrated to the entire data record, and three additional scenarios will be simulated to quantify the impact 

of these events on calibrated parameters: one with the removal of the observations associated with the 

February 2018 event, one with the removal of the observations associated with the April 2017 event, and 

one with both events removed. The fit between observed and measured data and the calibrated parameters 
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will be compared between each of these scenarios and the base case to determine what additional 

information the extreme precipitation events provided to the calibration process.

Fig. 9 HLDTC hydrographs for MW-6 and MW-7, with interpolated river stage, January 2017 to March 2018 

(Sherman, 2019); average daily precipitation was averaged from USGS gage stations Pineville (03402900) and 

Barbourville (03403500)
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Chapter 4

Results and Discussion

The PEST-calibrated HGS model of the HLDTC site was simulated for four different combinations of 

calibration datasets: a. the entire observation record, including the two moderately-extreme precipitation

events (base scenario), b. the entire observation record minus the 1st event (April 2017), c. the entire 

observation record minus the 2nd event (February 2018), and d. the observation record without either event. 

In the spin-up simulation, the clayey sand layer was divided into three horizontal sublayers and the fractured 

rock layer was divided into two horizontal sublayers to capture any vertical differences in these units. Initial

results indicate no differences in either unit, and so the model properties are considered uniform within the 

clay-sand layers and the fractured-rock layers.

Calibration results and parameters (Table 3) for the base scenario are compared to three alternative 

scenarios that exclude one or both moderately-extreme precipitation events. Comparison of the model 

results and calibrated parameters among the scenarios quantify the impact of these extreme events on the 

calibration process.

4.1 Base Scenario

The base scenario is calibrated with all the observed data, including the hydrologic response to the two 

moderately-extreme precipitation events. The calibrated parameters for the base scenario are provided in 

Table 4. Comparing the model results to the observations (Fig. 10), the simulated hydraulic heads for both 

observation wells are lower than the observed hydraulic heads (RMSE = 4.21). MW-7 shows a relatively 

high correlation (R2 > 0.9) with the measured values and the timing of hydrologic response to precipitation 

events is consistent with observations. In both the observed data and model results, responses to 

precipitation events are strong in the winter and spring seasons, with a delay of about one day between the 

event occurrences and significant hydraulic head change. Conversely, in summer and fall, the hydrologic 

responses to precipitation events are weak, with small, lagged changes in hydraulic head. This seasonally 
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shifting pattern of hydrologic response is likely related to the ET at the site. Vegetation and crops at the site 

increase ET during the summer and fall, while less vegetative coverage in winter and spring creates more 

rapid groundwater flow responses to precipitation events. Despite not capturing the temporal or spatial 

variations in ET in the model, these seasonal variations were still evident in model results because the river 

water levels also reflected the seasonal changes, with a larger change in river stage in response to 

precipitation events in the winter and spring compared to summer and fall. As MW-7 is located near the 

Cumberland River, the hydrologic response at this well is likely strongly influenced by river water levels.

Therefore, the model was able to represent the seasonal variations in hydrologic response to precipitation 

observed at MW-7.

In contrast, the model has generally poor correlation to observed values at MW-6 (R2 < 0.1, RMSE = 3.25). 

The model captures a response to only the two moderately-extreme precipitation events, and these 

hydrologic responses lag the precipitation event by more than ten days compared to measured values which 

respond within three days. In addition, the simulated hydraulic heads do not fall as rapidly as the observed 

values after the event. The error between the simulation and the observation is likely related to the 

simplification of the model. The model depicts the southern portion of the HLDTC site and, due to a lack 

of data to constrain them, has boundary conditions that ignore potential lateral groundwater flow through 

the site. MW-6 is located in the central part of the floodplain further from the river compared to MW-7. As 

a result, water level variations are likely influenced more by precipitation and lateral groundwater flow 

boundaries compared to MW-7 where the river boundary condition dominated the response. Due to a lack 

of data to constrain the lateral groundwater flow boundaries, the lateral movement of groundwater from 

outside of the domain (northeast) was ignored, thus the simulation results for MW-6 do not match the 

observations well. It should also be noted that the high RMSE value for both MW-6 and MW-7 reflect the 

lower simulated hydraulic heads compared to observations, presumably because the linear interpolation of 

the surface river boundary condition did not reflect the actual water level.
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Table 4 Model calibration results for all simulated scenarios.

Calibration Parameter a. Two events b. 2nd only (Feb 2018) c. 1st only (Apr 2017) d. No events

Floodplain (friction, X/Y) 0.100/0.100 0.095/0.095 0.100/0.100 0.098/0.098

Ridge (friction, X/Y) 0.015/0.015 0.015/0.015 0.015/0.015 0.015/0.015

Topsoil (K, m/s, X/Y/Z) 2.7E-4/2.7E-4/2.7E-4 2.7E-4/2.7E-4/2.7E-4 2.7E-4/2.7E-4/2.7E-4 2.7E-4/2.7E-4/2.7E-4

Clayey sand (K, m/s, X/Y/Z) 4.3E-6/4.3E-6/9.1E-5 4.2E-6/4.2E-6/7.8E-5 4.3E-6/4.3E-6/7.8E-5 1.4E-6/1.4E-6/7.8E-5

Fractured rock (K, m/s, X/Y/Z) 4.5E-5/4.5E-5/2.6E-4 4.5E-5/4.5E-5/9.7E-5 1.2E-4/1.2E-4/8.0E-5 5.8E-5/5.8E-5/1.6E-4

Clayey sand (SS, m-1) 1.62E-4 1.62E-4 1.62E-4 1.62E-4

Fractured rock (SS, m-1) 7.83E-7 2.32E-6 7.83E-7 7.76E-7
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a. b.

c.

Fig. 10 Hydraulic head comparison between the model simulation based on the base scenario calibration and 

the observation from Sherman (2019) a. MW-6 b. MW-7 c. Hydrograph during the observation period with 

both data sets.
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4.2 Alternative Scenarios

The HLDTC model was calibrated using PEST using three alternative scenarios with different 

combinations of the extreme hydrologic responses removed from the calibration dataset. Table 5

provides a summary of the percent change in calibrated parameters in the alternative scenarios 

compared to the base scenario. 

Table 5 Percentage of parameter variation between base scenario and alternative scenarios (%)

Calibration Parameter
b. 2nd only 

(Feb 2018)

c. 1st only 

(Apr 2017)
d. No events

Floodplain (friction, isotropic) -5% 0% -2%

Ridge (friction, isotropic) 0% 0% 0%

Topsoil (K, m/s, isotropic) 0% 0% 0%

Clayey sand (K, m/s, X/Y) -2% 0% -67.4%

Clayey sand (K, m/s, Z) -14.3% -14.3% -14.3%

Fractured rock (K, m/s, X/Y) 0% +166.7% -28.9%

Fractured rock (K, m/s, Z) -62.7% -69.2% -38.5%

Clayey sand (SS, m-1) 0% 0% 0%

Fractured rock (SS, m-1) +196.3% 0% -0.9%

Of the parameters calibrated, and across all scenarios, the model was not sensitive to ridge surface

friction, topsoil hydraulic conductivity, or clayey sand specific storage. Comparing the three alternative 

scenarios to the base scenario, the results indicate that the absence of one or more moderately-extreme

precipitation events does impact the remaining calibration parameters to varying degrees. 

Of all the parameters that did vary between scenarios, the surface friction coefficient for the floodplain 

changed the least, decreasing by 5% in Scenario B (containing only the February 2018 event) and by 

2% in Scenario D (containing neither event). Compared to parameters that characterize surface 

properties, the calibration of subsurface properties is more sensitive to variations between scenarios. 

With respect to the clayey sand layers, K is reduced by 14.3% in the z-direction for all three alternative 
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scenarios compared to the baseline. Lithologies are isotropic in the x and y directions. In scenarios B 

and C, which contain one event, K of clayey sand layer remain essentially unchanged in the x and y 

directions (Scenario B decreases by 2%), while in Scenario D, which has no precipitation events, the K 

in these directions decreases by 67.4% from the base scenario. So, when either of the events are 

removed (Scenarios B and C), the simulated water flow is slower vertically in the clayey sand 

formation. When both events are removed (Scenario D) the lateral flow is also limited, inferring both 

events captured faster lateral flow in the model. This indicates that the inclusion of these precipitation 

events provides information about faster flow conditions in all directions of the clayey sand units. The 

K values in the vertical direction are greater than those in the horizontal direction in all three alternative

scenarios, which, as previously mentioned, could be a result of formation shrinkage and cracking. 

Future work should further study the anisotropy of this site, including seasonal changes and changes in 

response to dry and/or wet conditions.

Differing from the clayey sand layers, the fractured rock layers had variation in both K and SS. For 

fractured rock hydraulic conductivity, scenarios B, C, and D all had relatively large variations from the 

base scenario. Scenario B and C had similar changes with a decrease of 62.7% and 69.2% respectively 

for K in the z-direction, demonstrating that both events are necessary to capture the faster vertical 

movement through this unit. Scenario C also had a 166.7% increase in K for the x- and y-directions, 

indicating that the first event provided more information about lateral movement in the fractured rock 

layer. Scenario D had the smallest change, with a 28.9% increase in K for the x- and y-directions, and 

a 38.5% decrease in K for the z-direction. In Scenarios B and D, K in the vertical direction and 

horizontal direction maintain the same relationship as in the base scenario (vertical value greater than 

horizontal value). This can indicate the vertical fracture orientation of the fractured rock layer. In 

Scenario C, due to the increase of K in the horizontal direction, its value is larger than that in the vertical 

direction, the water tends to flow horizontally more than vertically. Future work should also study the 

anisotropy of the fractured bedrock units to better inform these parameters. As for fractured rock SS, 

Scenario B increased by 196.3%, which is the largest variation among all parameters, while Scenarios 
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C and D are essentially unchanged (0% and -0.9% respectively). Scenario B includes an event with a 

longer duration precipitation event, and the increase in storage indicates the need to have more water 

within the matrix to store that water as opposed to moving it within the domain. The variations in 

fractured rock formation K indicate that, compared to the base scenario, water flow is more oriented 

toward horizontal than vertical flow in all three scenarios. Compared to the base scenario, the inclusion 

of both moderately-extreme precipitation events provides more active hydrologic response in the 

fractured rock formation in the vertical direction, while the horizontal direction is limited. 

The above analysis of the calibration results indicates that both the surface and subsurface calibrated 

parameters respond to the inclusion or exclusion of extreme precipitation events, with the subsurface 

response being more pronounced, and fractured rock having the most significant changes in calibration 

parameters of the subsurface layers. For the calibrated parameters, K is more sensitive to the inclusion 

of the extreme precipitation events compared to SS, which also suggests that K has more uncertainty in 

the calibration process and that future work should focus on better constraining these parameters.

The intensity and duration of the extreme precipitation events also contribute to the differences in

calibration results. The two events chosen for this study differed significantly in the amount of 

precipitation and the duration of the event, where the first event is more moderate in both aspects 

compared to the second (Fig. 9). Thus, the scenarios calibrating data from only one of these 

precipitation events (Scenario B and C) yielded different calibration datasets. Although the tendency 

of K in the z-axis direction (and in the horizontal direction for clayey sand) is similar in both scenarios, 

Scenario B, which contains only the large, longer duration precipitation event, has a dramatic increase 

in water storage in the fractured rock formation, while Scenario C, which contains only the shorter 

duration precipitation event, has a dramatic increase in lateral water flow in the fractured rock 

formation. Summarizing above findings with precipitation and river gage data, it can be inferred that 

watersheds respond and recover more quickly from the shorter moderately-extreme precipitation 

events, which corresponds to K in x- and y- direction of the fractured rock formation being higher and 

water being discharged to the river more rapidly. In contrast, longer duration moderately-extreme
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precipitation events caused a more prolonged response in the watershed, including the river levels. 

These higher river levels then force groundwater to be stored rather than discharged, thus enhancing 

the importance of storativity of the fractured rock formation.

As each scenario provided a different calibrated model, the results between them also differ. Based on

R2 values (Table 6), the calibration parameters of Scenario C provide the most similar trends to the 

observed data and that scenario is the only simulation that provides even a fair correlation to the 

observed trends. However, the RMSE for Scenario C is the highest of all the scenarios (Table 7) 

indicating that it did not match the magnitudes as well as the other scenarios. All of the scenarios have 

significant mismatch between model results and observed data at both MW-6 (Fig. 11a) and MW-7 

(Fig. 11b) but are much closer for MW-7. Scenario A and Scenario B have nearly identical results, 

while Scenario D has the same patterns as Scenario A but with slightly lower hydraulic heads, and 

therefore greater RMSE (Table 7).

Table 6 Coefficient of determination (R2) for all calibration scenarios.

Well ID a. base scenario
b. 2nd only 

(Feb 2018)

c. 1st only 

(Apr 2017)
d. No events

MW-6 0.01 0.01 0.38 0.01

MW-7 0.91 0.91 0.94 0.93

Table 7 The Root Mean Squared Error (RMSE) for all calibration scenarios.

Well ID a. base scenario
b. 2nd only 

(Feb 2018)

c. 1st only 

(Apr 2017)
d. No events

MW-6 3.25 3.25 5.60 3.99

MW-7 4.21 4.21 4.71 4.37
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a. 

b. 

Fig. 11 Hydrograph during the observation period with the model simulations based on all four scenario 

calibrations and the observation from Sherman (2019) a. MW-6 b. MW-7
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4.3 Future Scenario

It is predicted that by the end of the 21st century, the climate in Kentucky will become moderately 

wetter and warmer (U.S. Global Change Research Program [USGCRP], 2018). Annual precipitation 

may increase by 2.5-5%, with increased potential for extreme precipitation events, while annual ET

may also increase 5-10% due to increased temperatures (Chattopadhyay et al., 2017; EPA, 2016; 

USGCRP, 2018). Here, we use the HLDTC model with calibrated parameters from Scenarios A and C 

(the base scenario and the scenario with the highest R2) with +5% (1.768 x 10-8 m/s) and -5% (1.600 x 

10-8 m/s) annual average precipitation. Both models were run until steady state was reached (simulated 

for 100 years). These simulations demonstrate how different future predictions on water availability 

would change with differing calibration datasets. 

Head differences between Future Scenarios A and C indicate significant differences in water 

availability, as demonstrated by the differences in hydraulic head (Fig. 12). While the overall trends in 

hydraulic head across the domain are similar for both future cases, Future Scenario A has higher water 

levels than Future Scenario C, which is consistent with the calibration results (Fig. 11). The near surface 

layer has the least changes between Future Scenarios A and C, since the topsoil properties were the 

same for both of them. Beneath topsoil, the differences in hydraulic head decrease moving towards the 

river, from a maximum of 4 m around the ridge to 1 m near the riverbank. These results are consistent 

with the results discussed in section 4.2. In Future Scenario C, the change in K results in less vertical

but more lateral flows through the fractured rock formation, causing more water to flow to the stream 

rather than being stored in the rock as in Future Scenario A. It is clear from these results that the 

inclusion of extreme events in calibration datasets does influence projections of future water 

availability.



32

a. 

b. 

Fig. 12 Hydraulic head differences in future climates between models with calibrated parameters from Scenario 

a and c a. Future +5% b. Future -5%
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Chapter 5

Conclusions

An integrated hydrologic model of the HLDTC site was developed using HGS and calibrated with 

PEST. This model was then calibrated with four different observation datasets: a. the entire observation 

record, including the two moderately-extreme precipitation events (base scenario), b. the entire 

observation record minus the 1st event (April 2017), c. the entire observation record minus the 2nd event 

(February 2018), and d. the observation record without either event. 

Calibration parameters for this research are surface friction coefficient, hydraulic conductivity (K) of 

the topsoil, clayey sand, and fractured rock layers, and specific storage (SS) of the clayey sand and 

fractured rock. The results demonstrate that the inclusion of observations responding to extreme 

precipitation events impacts the calibration of the hydrologic model. The model constructed by this 

study can better capture the response to shorter-duration moderately-extreme precipitation events, 

demonstrated by a better match between observed and simulated hydraulic heads in the scenario that 

includes only the shorter duration event. The variations in K and SS were the highest between the base 

scenario and alternative scenarios of all the calibration parameters tested, with K having more 

variability than SS. K changes in the alternative scenario for both the clayey sand and fractured rock 

layers; it has the greatest decrease in lateral K (x and y direction) of the clayey sand layers in Scenario 

D, and greatest increase in lateral K of fractured rock formation in Scenario C. SS changed in the 

fractured rock formation in Scenario B. These results indicate that the inclusion of both precipitation 

events provides information about faster flow conditions for vertical groundwater flow of both 

formations. Additionally, short duration moderately-extreme precipitation events informed the model 

of faster lateral flow in the fractured rock formation, while longer duration moderately-extreme

precipitation events informed the model of greater storativity in the fractured rock formation. Overall, 

it is evident that not only the presence or absence of these events informs model calibration, but the 

timing and duration of these events influences the parameters it informs.
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Due to model simplifications, computational constraints, and data limitations, observations from one 

of the two monitoring wells used in this work was not well represented by the model. Future work 

should develop a larger scale model of the site to better characterize lateral groundwater movement 

across the site, in addition to collecting additional data to better constrain subsurface boundary 

conditions. It is also suggested that this model could develop a solution that effectively estimates ET 

and reflects its seasonal variation pattern. As K shows the most variation in the calibration process, 

future work should focus on this parameter, particularly its anisotropy.
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