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Abstract

Machine learning-based approaches have been widely used to address natural language
processing (NLP) problems. Considering the similarities between natural language text
and source code, researchers have been working on the application of NLP techniques to
code-related tasks. However, it is crucial to acknowledge that source code and natural
language are different by their natures. For example, source code is highly structured and
executable; while NLP techniques may not understand the structure of source code. As
a result, applying NLP techniques directly may not yield optimal results, and effectively
adapting these techniques to suit software engineering tasks remains a significant challenge.

To tackle this challenge, in this thesis, we focus on two important intersections between
the source code and natural language text: (1) learning and evaluating distributed code
representations (i.e., code embeddings), which plays a fundamental role in numerous soft-
ware engineering tasks, especially in the era of deep learning, and (2) improving the textual
information in logging statements (i.e., logging texts), which record useful information (i.e.,
logs) to support various software engineering activities.

For distributed code representations, we first conduct a comprehensive survey of existing
code embedding techniques. This survey encompasses techniques borrowed from NLP, as
well as those specifically tailored for source code. We also identify six downstream software
engineering tasks to evaluate the effectiveness of the learned code embeddings. Moreover,
based on our analysis of existing code embedding techniques, we propose a novel approach
to learn more generalizable code embeddings in a task-agnostic manner. This approach
represents source code as graphs and leverages Graph Convolutional Networks to learn
code embeddings that exhibit greater generalizability.

For the textual information in logging statements, we propose to improve the current
logging practices from two aspects: (1) proactively suggesting the generation of new logging
texts: we propose automated deep learning-based approaches that generate logging texts
by translating the related source code into short textual descriptions; (2) retroactively
analyzing existing logging texts: we make the first attempt to comprehensively study
the temporal relations between logging and its corresponding source code, which is later
successfully used to detect anti-patterns in existing logging statements.

Based on the experimental results on the subject systems, we anticipate that our work
can offer valuable suggestions and support to developers, aiding them in the effective
utilization of NLP techniques for software engineering tasks.
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Chapter 1

Introduction

Machine learning-based approaches have been widely used to address natural language
processing (NLP) problems. Considering the similarities between natural language and
programming language, researchers have been working on applying techniques from NLP
to deal with code [8]. For instance, Feng et al. [44] propose CodeBERT, which directly
employs the BERT model from NLP to source code to deal with software engineering tasks,
such as natural language code search and code documentation generation. Nevertheless, the
direct application of NLP techniques may not yield optimal results, given the fundamental
differences between source code and natural language text. For example, code is executable
and has formal syntax, which may not be effectively captured by techniques designed
primarily for natural language tasks. Consequently, optimizing these NLP techniques to
better adapt to software engineering tasks remains a challenging task.

In recent times, researchers have proposed different approaches to encoding code-specific
properties. For example, Guo et al. [53| further enhance CodeBERT to create Graph-
CodeBERT by leveraging the data flow information of source code. Among the recent
advancements in these techniques, we focus on two research areas: (1) distributed code
representations, and (2) the textual information in logging statements, which we
believe are two important intersections between the natural language and source code.

Distributed code representations, also called code embeddings!, project code
tokens into a low-dimensional semantic space, where each token is represented by a vector
of real numbers. In the era of deep learning, code embeddings play a fundamental role in
various software engineering (SE) tasks, including automatic program repair |29, 178, 185],
software vulnerability prediction [57, 144], and code clone detection [21].

IThroughout this thesis, unless explicitly specified, by code embeddings we often refer to distributed
code representations.



Researchers have explored several approaches for representing source code into vectors
in SE tasks. Some have directly applied word embedding techniques from NLP to source
code to produce representations for code tokens. While this direct application of NLP
techniques provides satisfactory results, it still comes with limitations, as programming
languages have unique properties (e.g., code is executable and has formal syntax.) that
may not be fully captured by existing NLP techniques. Therefore, the optimization of
word embedding techniques to encode the unique information in the source code remains
a challenge [8].

The textual information in logging statements is another important intersection
between the source code and natural language text. Figure 1.1 provides an example logging
statement from HBase, which contains a textual description (i.e., logging text?), “Failed to
create dir’. The logging texts are usually written by developers to record system execution
behaviors. Logging statements execute and produce useful information (i.e., logs) while
systems are running. These logs are used in various software engineering activities, such
as failure diagnosis and system monitoring [13, 89, 197].

LOG.warn("Failed to create dir {}", dst)

Figure 1.1: An example of logging statement from HBase.

Extensive prior research has demonstrated that writing appropriate logging statements
is an important yet challenging task [24, 157, 199, 202|. This challenge is particularly
evident when it comes to determining and refining the texts within logging statements [23,
59]. Therefore, more research efforts on logging texts are needed to develop techniques that
can better support developers in their daily tasks of writing proper logging statements.

Given the significance of code embeddings and logging texts in software engineering
activities, as well as the aforementioned challenges, this thesis focuses on these two areas
as a first step. On this basis, we aim to conduct studies and propose approaches to offer
valuable suggestions and support to developers, aiding them in the effective utilization of
NLP techniques for software engineering tasks.

Chapter organization. The rest of this chapter is organized as follows: We present the
research hypothesis in Section 1.1. Section 1.2 gives an overview and the organization of
the thesis. In Section 1.3, we discuss the contributions of this thesis.

2Throughout this thesis, unless explicitly specified, by logging texts we often refer to the textual infor-
mation in logging statements.



1.1 Research Hypothesis

Our research hypothesis is as follows:

Given the similarities between source code and natural language
text, natural language processing techniques can be applied di-
rectly to source code. However, recognizing the inherent differ-
ences between code and natural language, the advancement of
code-specific approaches holds the potential for further enhancing
downstream Software Engineering tasks.

The goal of this thesis is to investigate how code-specific properties influence the per-
formance of SE tasks and to explore effective strategies for optimizing NLP techniques to
encode such features extracted from code. We will validate our research hypothesis through
two parts: Part I - Learning and evaluating distributed code representations and
Part II - Improving the textual information in logging statements.

1.2 Thesis Overview

Figure 1.2 provides an overview of the work presented in this thesis, which is divided into
two parts based on the research hypothesis.

Part I focuses on the learning and evaluating of distributed code representations. De-
tailedly,

In Chapter 2, we first give a background, which discusses the training context (Fig-
ure 1.2(a)) and some representative techniques used for learning code embeddings (Fig-
ure 1.2(b)). We then present an overview of the recent research that is related to
the field of distributed code representations as well as their limitations.

In Chapter 3, we revisit the use of pre-trained code embeddings for downstream soft-
ware engineering tasks. In this chapter, we start off by conducting a comprehensive
survey of existing code embedding techniques, and then we talk about the identified
six downstream SE tasks (Figure 1.2(c)) that are used to assess the effectiveness
of using pre-trained code embeddings in SE tasks. We also propose a framework,
StrucTexVec, which uses a two-step unsupervised training strategy to incorporate
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Figure 1.2: An overview of the work presented in this thesis.

the textual and structural information of the code (Figure 1.2(a)). Finally, we
present our results: (1) different embedding techniques can result in diverse perfor-
mance for some SE tasks; (2) using well-pre-trained embeddings usually improves
the performance of SE tasks; (3) the structural context has a non-negligible impact
on improving the quality of code embeddings.

In Chapter 4, we propose our approach to learning generalizable code embeddings that
can benefit different downstream SE tasks. Based on the findings in Chapter 3
(e.g., the lack of generalizability of existing embeddings, and the significance of the
structural information from the source code), we propose GraphCodeVec, which rep-
resents the source code as graphs and leverages the Graph Convolutional Networks
to capture the structural information. We find that GraphCodeVec outperforms all
the baselines in five out of the six downstream tasks and its performance is relatively
stable across different tasks and datasets.

Following our exploration of fundamental code embeddings, we shift our research focus
to improving the textual information in logging statements, which constitutes Part II in
Figure 1.2. Detailedly,

In Chapter 5, we discuss two types of research related to improving the current logging
practices: (1) automated logging suggestions and (2) empirical studies on soft-
ware logging. These align well with our proactive suggestions for new logging texts



(Figure 1.2(d)) and retroactive analysis of existing logging texts (Figure 1.2(e)),
respectively.

In Chapter 6, we present our work of proactively suggesting the generation of new log-
ging texts (Figure 1.2(d)). We first formulate this problem into a neural machine
translation task and propose LoGenText, an automated approach that generates
logging texts by translating the related source code into short textual descriptions.
Furthermore, we extend LoGenText to LoGenText-Plus by incorporating the syn-
tactic templates of the logging texts. Different from LoGenText, LoGenText-Plus
decomposes the logging text generation process into two stages and tries to solve
the problem with a coarse-to-fine strategy. Both the quantitative and human eval-
uations indicate the superiority of our proposed approaches.

In Chapter 7, we discuss our research on retroactively analyzing existing logging texts
(Figure 1.2(e)). Specifically, we make the first attempt to comprehensively study
the temporal relations between logging and its corresponding source code. Then,
based on these findings, we propose a tool named TempoLo to automatically detect
the issues of temporal inconsistencies between logging and code. This work lays the
foundation for describing temporal relations between logging and code and demon-
strates the potential for a deeper understanding of the relationship between logging
and code.

Finally, in Chapter 8, we conclude the thesis and discuss future directions.

1.3 Thesis Contributions

This work presents several novel contributions aimed at providing valuable guidance and
support to developers in optimizing NLP techniques for use in software engineering (SE)
tasks.

e First, we revisit and extend previous work by evaluating more embedding techniques
across a wider variety of downstream SE tasks. We find that models using pre-trained
embeddings can perform better than models without pre-trained embeddings, and
there does not exist an embedding technique that consistently outperforms others
across all or even the majority of the tasks. Moreover, the experimental results
show that the structural information has a non-negligible impact on the quality of
pre-trained code embeddings.



e Then, based on our analysis of existing code embedding techniques (i.e., the gen-
eralization issues of the existing techniques and the stronger impact of the struc-
tural information), we propose to represent the source code as graphs and leverage
the Graph Convolutional Networks to capture the structural information, aiming to
learn more generalizable code embeddings in a task-agnostic manner. Our results
show that our proposed approach generally outperforms the baseline approaches and
can produce more stable results.

e Third, following the distributed code representation, we shift our research focus to
improving the textual information in logging statements, as it is another important
intersection between the source code and natural language text. We make efforts to
proactively suggest the generation of new logging texts. In this part, we formulate
the automatic logging text generation problem as a neural machine translation task,
where we identify the source input and target output, and confirm the validity of our
findings in our research questions that leverage the quantitative metrics. Moreover,
we also show the effectiveness of incorpoarating the structural information using the
multi-encoders architecture.

¢ Finally, we make the first attempt to model the temporal relationships between the
existing logging texts and their corresponding code. We optimize the temporal rela-
tions from NLP and propose the logical and semantic temporal relations for source
code. We also derive rules to detect the logical and semantic temporal relations
between logging and code, as well as rules to detect logging-code temporal inconsis-
tencies. The rules are further implemented as a tool, which has been successfully used
to detect the temporal issues and thus improve the quality of the logging activities.
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Chapter 2

Background and Related Work

In this chapter, we discuss the background related to distributed code representations.
We then talk about the prior research that proposes and applies code embeddings in
software engineering tasks.

2.1 Background

In this section, we present a background of existing code embedding techniques. We begin
by introducing the training context, followed by an examination of the code embedding
techniques evaluated in this thesis.

2.1.1 Training Context

In this part, we introduce two types of training contexts for code embeddings (1) textual
context, which is the plain text of the source code, and (2) structural context, which refers
to the abstract syntax trees (ASTs) of the source code.

Textual context Like natural languages, programming languages are repetitive and
predictable [61], and thus researchers [19, 43, 166] consider source code as plain text and
directly apply existing word embedding techniques to source code. More specifically, to
make source code suitable for embedding training, the source code is usually tokenized into
a sequence of tokens [19, 43, 166]. For example, the following source code® in Figure 2.1,

https://commons.apache.org/proper/commons-io/javadocs/api-2.5/src-html/org/apache/
commons/io/filefilter/AndFileFilter.html


https://commons.apache.org/proper/commons-io/javadocs/api-2.5/src-html/org/apache/commons/io/filefilter/AndFileFilter.html
https://commons.apache.org/proper/commons-io/javadocs/api-2.5/src-html/org/apache/commons/io/filefilter/AndFileFilter.html

after tokenization, is converted to a sequence of code tokens, shown in Figure 2.2. The

public boolean accept(final File file) {
if (this.fileFilters.isEmpty()) {
return false;
}
for (final IOFileFilter fileFilter : fileFilters) {
if (!fileFilter.accept(file)) {
return false;
}
}
return true;

}

Figure 2.1: Code snippet from Apache Commons project.

generated token sequence is used as the training corpus and finally fed into embedding
techniques.

public boolean accept ( final File file ) { ... file ) ) { return false ; } } return true ; }

Figure 2.2: Code tokens after tokenization.

Structural context Another representation of source code is the abstract syntax tree
(AST). AST represents source code with a tree structure. Figure 2.3 is the AST represen-
tation of the code snippet in Figure 2.1, where the leaf nodes of the tree are the tokens
from the source code, while the non-leaf nodes are a set of AST node types that provide
the syntax structure of the code. Due to its ability to capture not only the lexical infor-
mation but also the syntactic structure of source code, AST has proven to be useful in a
wide range of software engineering tasks, including code embeddings [11, 169, 204]. For
example, Alon et al. [11] take the AST nodes as input and train a path-attention network
for generating code embeddings.

2.1.2 Embedding Learning Techniques

With the rapid development of deep learning in SE applications, various distributed code
representation techniques have been proposed, which can be categorized into two broad
categories (1) non-contextual embeddings (e.g., Word2vec, GloVe, etc.), which learn unique
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Figure 2.3: The AST of the code snippet from Figure 2.1. The leaf nodes of the tree are
the tokens from the source code, while the non-leaf nodes are a set of AST node types that
provide the syntax structure of the code.

fixed representations for tokens in the vocabulary without considering the meanings of to-
kens in different contexts, and (2) contextual embeddings (e.g., CodeBERT and CuBERT),
which are generally obtained from the transformer-based models and the representations of
tokens are adjusted based on different contexts. In this section, we first introduce the two
categories and then describe the existing embedding learning techniques (i.e., Word2vec,
GloVe, fastText, code2vec, CodeBERT, and CuBERT) that are evaluated in this work.
Table 2.1 summarizes these techniques in more detail.

2.1.2.1 Non-contextual embeddings

Non-contextual embeddings map source code tokens into a low-dimensional semantic space,
where each code token is assigned with a unique real-valued vector. Non-contextual em-
beddings act as a static look-up table E € [V| x R? to map a token in the vocabulary, V
to a d-dimensional vector. The embeddings are usually learned from a large corpus and
can be applied to downstream tasks to either initialize the weights of the embedding layer
(i.e., the input layer) of deep learning models or be used as feature vectors for traditional
machine learning models. In this section, we introduce several state-of-the-art distributed
code representation approaches in detail.
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Table 2.1: Summary of different embedding techniques.

Technique

Category

Task type

Corpus

type

Corpus

level

Description

Word2vec

GloVe

fastText

code2vec

Non-

Contextual

Unsupervised

Code as

plain text

Token

Word2vec considers source code as plain text and
adopts simple neural networks to learn the embeddings
based on the tokens within a local context window,
and thus, it may fail to take the advantage of 1) some
global information, 2) the character level information,
and 3) the structural information (e.g., AST).

GloVe also considers source code as plain text and
learns the embeddings based on the global word-word
co-occurrence statistics. However, it only considers the
token level information and ignores the character level
information as well as the structural information (e.g.,

AST).

Character

fastText extends the skip-gram model (cf.  Sec-
tion 2.1.2.1) and takes into account subword informa-
tion. However, it still ignores the global and structural
information.

Supervised

AST

Token

code2vec is a supervised approach which means to
guarantee good results, it requires human-labeled data
for training. Besides, code2vec is trained on the task
of method name prediction and thus, the code embed-
dings produced by code2vec is task-specific and may
not generalize well to other downstream tasks.

CodeBERT

CuBERT

Contextual

Unsupervised

Code as
plain text
&
code

documentation

Character

Both CodeBERT and CuBERT are transformer-based
models and learn the context-sensitive representations
of tokens. However, there may still exist limitations for
these two models. The first one is that they both treat
the source code as plain text and do not consider the
structural information explicitly. Another limitation
is the high computation cost for training such huge
models (both have millions of parameters), making it
almost impossible for us to modify and re-train the
models by ourselves.
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Word2vec Word2vec has become popular in software engineering tasks [204] due to its
high efficiency. In particular, Word2vec [123, 124] has two model architectures: Continuous
Bag-of-Words (CBOW) and skip-gram, both consider the source code as plain text and
take the textual context as input for training the embeddings.

An illustration of the CBOW and skip-gram models are shown in Figure 2.4, where w;
is one target token from the vocabulary, and C,, are the context tokens of the target word
Wt.

Input Projection Output

Input Projection Output

6096059

E E B

cod [cog

(a) CBOW (b) skip-gram

Figure 2.4: An illustration of CBOW and skip-gram models architecture.

Continuous Bag-of-Words model. The CBOW model tries to predict the target
token by considering its context within the local window. Formally, given a sequence of
tokens D, and wy is the t' token (i.e., target token) in the corpus, the objective of the
model is to maximize the following objective function:

L= logp(w]Cu,) (2.1)

’th'D

where C,, are the local context tokens of the target token w;, and p is the conditional
probability of generating the central target token w; from given context tokens C,,.

Skip-gram model. As Figure 2.4b shows, the skip-gram model shares a similar ar-
chitecture with the CBOW model. Rather than predicting the target token based on the
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local context, it tries to predict the context tokens based on the target token. Thus, the
objective of this model becomes to maximize the function:

L= > logp(welw) (2.2)

WED weECw,
The conditional probability, p (w.|w;) is defined using the following softmax function:

€xp (th TUwc )
weD eXp (th T Uw)

p (welwy) = 5 (2.3)

where V,, and U,, denote the “input” and “output” vectors of token w in the vocabulary
D, respectively.

Limitations. As discussed above, Word2vec is one of the shallow window-based meth-
ods, which adopts simple neural networks to learn the embeddings based on the tokens
within a local context window, and thus, it may fail to take advantage of some global
information. For example, considering the preprocessed source code in Figure 2.2, assum-
ing the window size is 10, and the target token is the method name “accept”, then the
first returned value “false” can be captured as one of the context tokens by the window.
However, the last returned value “true” is missed as its distance to the target token is
beyond the window size, which is not in accord with the programming rules: both should
be the context tokens of “accept”, as they are the returned values, which should be directly
connected to the method.

GloVe To better capture the global statistic information of the training corpus, Pen-
nington et al. [142] propose GloVe (Global Vectors for Word Representation). GloVe is
also an unsupervised embedding learning algorithm and uses token-token co-occurrence
statistics to obtain vector representations for source code tokens. Similar to Word2vec, in
this model, the source code is treated as plain text, and the textual context is considered
as the training context. The goal of GloVe is to minimize the following weighted least

squares errors:
D]

J= 3 f(Xig) (wli; —log X 5)° (2.4)

ij=1
where X denotes the matrix of token-token co-occurrence counts, f(X; ;) is a weighting
function, w; and w; are word and separate context word vectors, respectively.

Limitations. Models like Word2vec or GloVe learn the embeddings at the token
level. Although they can effectively capture the semantic properties of different tokens,
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they ignore the character level information. Considering the naming conventions for vari-
ables/methods in programming languages, for example, the Java camel cases or lowercase
with tokens separated by underscores in Python, the insufficient use of the character level
information is a non-negligible limitation for the embedding techniques that work at the to-
ken level. Besides, these techniques also suffer from the out-of-vocabulary (OOV) problem
for the tokens that do not appear in the existing training corpus, especially for program-
ming languages, as developers usually combine different tokens together as one.

fastText fastText? [19] is a recently proposed technique that exploits the internal struc-
ture of words (i.e., character level information), and tries to tackle the OOV problem by
using character level units. In particular, fastText also considers the source code as plain
text, where each token is represented by a set of n-grams appearing in this token. It then
learns representations for the character n-grams and represents words as the sum of the
character n-gram vectors. fastText extends the skip-gram model (cf. Section 2.1.2.1) by
using a new softmax function which takes into account the subword representation. Similar
to skip-gram, the goal of fastTest is also to maximize the function:

L= > logp(welw) (2.5)

WED wcECw,

where D is the given sequence of tokens, C,, is the local context tokens of the target token
wy. The conditional probability, p (w.|w;) is defined using the following softmax function:

(e | ) = o (2.6)

P(We | W) = (0w 2.6
ZweDe (wew)

s(wy, we) = Z zngc (2.7)

gegwt

where s (wy;, w,) is a score function, G,, is the set of n-grams appearing in w;, z, and v,,,
are vectors of the n-gram ¢ and w,, respectively.

Limitations. Although fastText has the ability to capture the character level infor-
mation, the three embedding techniques discussed above still consider source code as plain
text and take the textual context for embedding training. However, source code is by
nature different from plain text, as it also contains structural information, which may be
helpful for generating distributed representations of code tokens.

2https://github.com/facebookresearch/fastText
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Code2vec Code2vec is a recently released code representation model by Alon et al. [11]
that takes into account the structural context (i.e., the abstract syntax tree representation
of the source code). Given the AST representation of a code snippet, code2vec collects the
paths between every two AST leaf nodes, and thus it represents the code snippet as a bag
of paths. Code2vec then employs a path-attention network with fully connected layers to
learn vector representations of the tokens and method names. The embeddings are trained
in a supervised process with the objective to minimize the cross-entropy loss of predicting
method names,

Lplg) = = > py)logaly (2.8)

yeyY

where, p(y) is the distribution of the ground truth, if y is the true label of the case, then
p(y) = 1, and 0 otherwise (i.e., binary indicator of whether y is the actual label.), ¢(y) is
the predicted probability.

Limitations. As code2vec is a supervised approach which means to guarantee good
results, it requires human-labeled data for training. Besides, it is trained on the task
of method name prediction, and thus, the code embeddings produced by code2vec are
task-specific and may not generalize well to other downstream tasks [72].

Limitations of non-contextual embeddings. Non-contextual embeddings (e.g., Word2vec
and GloVe) have been playing an important role for improving the results of downstream
tasks. Despite the powerful ability to represent source code tokens into vectors, these
non-contextual embeddings also have their limitations: they are context-independent and
assign each token with a single static representation. Therefore, they cannot effectively
capture the different nuances of the same token in different contexts. For example, given
the following code snippet, non-contextual embeddings assign the keyword “public” with

public class Accept{
public int a;
public boolean accept(final File file) {

3
b

Figure 2.5: An example code snippet with public deceleration for class, method, and
variable.

only one unique vector, despite that they appear three times with different functionalities.
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However, considering the fact that they are modifiers for different levels of source code (i.e.,
class, attribute, and method), they should have different representations to better capture
the properties.

2.1.2.2 Contextual embeddings

To address the limitations of non-contextual embeddings, researchers recently proposed
several methods to learn the context-dependent code embeddings (also known as PLM,
short for pre-trained language models), such as CodeBERT and CuBERT. Unlike static
code embeddings, contextual embeddings are dynamic representations of tokens, that is the
same token can have different representations based on the different surrounding context.
For example, the three “public” keywords in Figure 2.5 would be assigned different vectors
with respect to their different contexts. Recall that non-contextual embeddings act as
a look-up table where each row of the real numbers is the vector representation of the
corresponding token. However, for contextual embeddings, they are actually complicated
transformer-based models, which take a sequence of code tokens as input and can return a
set of fine-tuned embeddings for each token respectively. Formally, given a target token, wy,
together with the whole code snippet where it appears, wy,--- ,wy, -+ ,w,, the adjusted
vector for w; is

Ve, s Vags Ve, ] = f (w01, wy, -+, wy) (2.9)

where f is the pre-trained model with millions of parameters.

The pre-trained models (contextual embeddings) are usually trained on a general and
large corpus and can be specialized to different downstream tasks by adding a task-specific
layer and fine-tuning the parameters based on the training dataset of the specified task.
In our work, to make the contextual embeddings suitable for our downstream tasks, we
extract the embedding layer of the model, save the weights into the Word2vec format, and
then use them as described in Section 2.1.2.1.

In this section, we first introduce the BERT architecture as a background and then
describe two recent applications of BERT on learning contextual embeddings for source

code (i.e., CodeBERT and CuBERT).

BERT The contextual embeddings are popularized by BERT (Bidirectional Encoder
Representation from Transformer) [35]. As shown in Figure 2.6, BERT uses the bidirec-
tional Transformer encoder which can effectively exploit both the left and right contexts
of a target token.
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Figure 2.6: The overall architecture of BERT. E and T are the input and output vectors
respectively, and Trm is the encoder of Transformer.

In the work of Devlin et al. [35], the authors present two main models: BERTgasE
which has a total number of 110M parameters and BERT,argr with 340M parameters.
To effectively learn the model parameters, two objectives are designed for BERT: masked
language model (MLM) and next sentence prediction (NSP).

Unlike the most common language model, which uses the previous sequence of tokens
to predict the next token (the loss function is shown in Eq. 2.10):

L=— Z log p (wy | wy, -+, w_1) (2.10)

wr€D

in masked language model, some of the tokens in a sequence are randomly masked and
the goal is to predict these masked tokens based on their surrounding unmasked context
tokens:

L=~ > logp(w | wy, w1, w1, wy) (2.11)
thM
where M represents the masked tokens and wy, - -+ ,w;_1, wiyq, - -+ , wy represent the rest

of tokens in the sequence.

BERT also utilizes the next sentence prediction as the second objective to capture
relationships between sentences for some sentence-based downstream tasks (e.g., question
answering (QA)). In this task, the goal is to predict whether the sentence is the next
sentence of the current:

L= —logp(y | s, Sts1) (2.12)

where y = 1 if sy, 1 is the next sentence of sy and y = 0 otherwise.

17



To apply BERT to downstream tasks, Devlin et al. [35] also propose to use the two-step
training strategy (1) pre-training on unlabeled data and (2) fine-tuning using labeled data
from the downstream tasks.

Since the release of BERT, researchers have made a few changes to the original model
and achieved continuous improvements. For example, Liu et al. [106] find that training
the BERT model without the NSP loss can slightly improve downstream task perfor-
mance. Thus, they propose RoOBERTa (short for A Robustly Optimized BERT Pretraining
Approach), which improves the performance of BERTgasg on downstream tasks by re-
training the model with larger batches and more data, but without NSP loss.

CodeBERT and CuBERT Given the revolutionized success of BERT for many NLP
tasks, it has been widely applied to many other domains. For example, Feng et al. [44]
propose CodeBERT, which shares exactly the same model architecture as RoOBERTagask.
Kanade et al. [71] propose CuBERT to learn contextual code embeddings using the BERT L aArGE
model.

Both CodeBERT and CuBERT use the BERT model architecture and treat the source
code as plain text for training. The differences between CodeBERT and CuBERT mainly
come from the way of constructing the training corpus. CodeBERT considers the natural
language texts (i.e., the description documentation of source code) and source code as two
different types of data and constructs the training corpus (i.e., bimodal data and unimodal
data) based on these two types of data. However, CuBERT does not separate the natural
language texts and source code and mixes natural language tokens with source code tokens
during training.

Limitations. Based on our understanding, we find that there may still exist limita-
tions for these two models. The first one is that they both treat the source code as plain
text and do not consider the structural information explicitly. Another limitation is the
high computation cost for training such huge models (both have millions of parameters.),
making it almost impossible for us to modify and re-train the models by ourselves. For ex-
ample, CodeBERT spends more than ten days to finish the training using 16 interconnected
NVIDIA Tesla V100 GPUs.

2.2 Related Work

Source code embeddings is an essential part of many SE tasks [6, 11, 21, 28, 29, 57, 144, 178,
185]. Due to the advancement of neural networks, researchers propose various approaches
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for learning code embeddings to assist in SE tasks. In this section, we report related works
for each category of code embedding presented in Section 2.1.1.

Textual context-based code embeddings. Prior work extracts the local textual in-
formation from the source code and then applies embedding techniques to the extracted
textual information. For example, Harer et al. [57] propose a source-based model for au-
tomated software vulnerability detection. In their model, they first tokenize the collected
open-source C/C-++ programs into sequences of tokens and then apply Word2vec to con-
vert code tokens into vector representations. The learned Word2vec representation of code
tokens is finally fed into a TextCNN model [74] for classification. Chen and Monperrus
[29] train Doc2vec [80] on a corpus of Java files. Source code components from each Java
file are extracted and tokenized. The tokenized source code components are used to train
a Doc2vec model for automated program repair. Similarly, White et al. [185] train source
code embeddings using Word2vec from the normalized file-level corpora. The trained em-
beddings are then used for the initialization of the embedding layer of the recursive autoen-
coder which is a type of neural network that recursively learns the representations of the
code snippet. In addition, Efstathiou and Spinellis [43] adopt fastText [19], which utilizes
the subword information, to train code embeddings for different programming languages,
including Java, Python, PHP, C, C++, and C#. However, they only propose potential
applications of the models without evaluation. Theeten et al. [166] propose to use the
skip-gram model of Word2vec [123, 124] to generate embeddings for library packages of
different programming languages, which are later used for retrieving the similar libraries
of a given library.

Intuitively, using local textual context is reasonable as developers always code the
related statements together. However, during the embedding training, neither using a too-
large local window nor a too-small window is desired. A too-large local window size may
include redundant or unrelated tokens (i.e., noise tokens) in, while a too-small local window
size may lose the important context tokens. In addition, considering the code snippet as
plain text results in the omitting of the structural information in the source code that may
be important for some downstream tasks.

Structural context-based code embeddings. To leverage the rich structural informa-
tion of source code, some researchers propose AST-based representation approaches. An
AST represents the source code with a tree structure, which has been proven to be useful
in a wide range of software engineering fields. For example, Zhang et al. [204] propose to
learn source code representations based on abstract syntax trees. They train the program
embeddings for two downstream tasks, i.e., code clone detection and source code classi-
fication. Similarly, Biich and Andrzejak [21] implement an AST-based Recursive Neural
Network (RNN) for code clone detection. Alon et al. [11] propose code2vec, which also
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relies on the AST representation of the source code. The ASTs are converted into a set of
triples which are later fed into an attention-based neural network for the task of method
name prediction. Bertolotti and Cazzola [16] try to learn the statement-level code repre-
sentations based on the sub-trees of the ASTs. The code embeddings are then evaluated on
three downstream SE tasks: code summarization, statement separation, and code search.

Except for the direct use of ASTs, recently, researchers have proposed to adopt more
sophisticated structural information from source code. For example, Tufano et al. [169]
try to combine different code representations for detecting code clones. In their work,
they consider four different training contexts i.e., identifiers, AST, bytecode, and control
flow graph (CFG) extracted from the source code fragments. Zeng et al. [201] propose
deGraphCS to transfer source code into variable-based flow graphs and then apply a gated
graph neural network to model them. Similarly, Liu et al. [105] convert the program
to a graph with syntactic edges (AST Edge, NextToken SubToken) and data-flow edges
(ComputedFrom, LastUse and LastWrite) to represent the source code. However, they
only focus on the task of code search. Yu et al. [196] adopt a graph-based code semantics
learning method to encode CFG (Control Flow Graph) or PDG (Program Dependency
Graph) for semantic code clone detection.

Allamanis et al. [8] extract the data flows from the source code and then use a Gated
Graph Neural Network to learn the program representation. However, the data flows they
extracted are based on the AST representation of the source code. In other words, they
explicitly expose part of the AST of a program (i.e., the subtree that contains syntax
tokens corresponding to declarations and updates of variables) as the structured input
to the embedding learning model. This might be useful for downstream tasks that are
sensitive to the data operations of a program, for example, the task used in their work,
variable misuse detection. Although by doing this, they can focus on the utilization of
the data flows, there is still a chance of missing some important information about the
program, at least, one cannot build a program only based on the data-flow graph.

To further explore the structural information of the source code for producing general-
izable code embeddings, Sui et al. [162] utilize control flows and data flows of a program.
They extend the structural information by 1) mining long-range data flows across different
methods, and (2) precisely extracting the data-flow information based on the pointer alias
information. The long-range and precise data flows make the generated code embeddings
able to capture the method or data dependence of the program, which is useful for tasks
that involve the interaction between different methods, for example, in the task of code
summarization: if the target method calls another method in the method body, it would
be useful to utilize the long-range data flows to analyze what happens between these two
methods. However, this kind of global information may not bring many benefits for other
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tasks, such as the task of code authorship identification, as the programs (i.e., the in-
put of the task) are isolated from each other and written by different authors, where the
method-level approach (e.g., code2vec) may perform better.
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Chapter 3

Revisiting the Use of Code Embeddings
for SE Tasks

Word representation plays a key role in natural language processing (NLP). Various repre-
sentation methods have been developed, among which pre-trained word embeddings (i.e.,
dense vectors that represent words) have shown to be highly effective in many neural
network-based NLP applications. However, the use of pre-trained code embeddings for
software engineering (SE) tasks has not been extensively explored. A recent study by
Kang et al. [72| finds that code embeddings may not be readily leveraged for the down-
stream tasks that the embeddings are not trained for. However, Kang et al. [72] only
evaluate two code embedding approaches on three downstream tasks, and both approaches
may have not taken full advantage of the context information in the code when training
code embeddings. Considering the limitations of the evaluated embedding techniques and
downstream tasks in Kang et al. [72], we would like to revisit the prior study by examining
whether the lack of generalizability of pre-trained code embeddings can be addressed by
considering both the textual and structural information of the code and using unsupervised
learning.

In this chapter, we propose a framework, StrucTexVec, which uses a two-step unsuper-
vised training strategy to incorporate the textual and structural information of the code.
Then, we extend prior work |72] by evaluating seven code embedding techniques and com-
paring them with models that do not utilize pre-trained embeddings in six downstream
tasks. Our results first confirm the findings from prior work, i.e., pre-trained embeddings
may not always have a significant effect on the performance of downstream SE tasks. Nev-
ertheless, we also observe that: (1) different embedding techniques can result in diverse
performance for some SE tasks; (2) using well-pre-trained embeddings usually improves the
performance of SE tasks (e.g., all six downstream tasks in our study); (3) the structural
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context has a non-negligible impact on improving the quality of code embeddings (e.g.,
embedding approaches that leverage the structural context achieve the best performance
in five out of six downstream tasks among all the evaluated non-contextual embeddings),
and thus future work can consider incorporating such information into the large pre-trained
models. Our findings imply the importance and effectiveness of combining both textual
and structural contexts in creating code embeddings. Moreover, one should be very careful
with the selection of code embedding techniques for different downstream tasks, as it may
be difficult to prescribe a single best-performing solution for all SE tasks.

3.1 Introduction

In recent times, distributed representations of words, also called word embeddings, have
shown to be highly effective in many neural network models-based natural language pro-
cessing (NLP) tasks, such as named entity recognition (NER), part-of-speech (POS) tag-
ging [84], and sentence classification [78|. In NLP, various word embedding techniques
have been developed to encode words with different meanings into a low-dimensional vec-
tor space. Meanwhile, distributed code/program representations (i.e., code embeddings)
have also proven to be useful in assisting in software engineering tasks, such as automatic
program repair [29, 178, 185], software vulnerability prediction [57, 144], method name
prediction [6, 11], and code clone detection [21].

Researchers have worked on a number of approaches for representing source code into
vectors in SE tasks. Among these, some directly apply word embedding techniques to
source code to produce representations for code tokens, for example, Theeten et al. [166] use
Word2vec [123, 124] to generate embeddings for software libraries, while other researchers
have proposed task-specific approaches for SE tasks. For example, Alon et al. [11] propose
a path-attention network to learn source code embeddings for the task of method name
prediction. These generated source code embeddings that are trained on large source code
datasets can later be used for other SE tasks, and thus are also called pre-trained code
embeddings.

Although different code embedding learning techniques have been proposed, the use of
pre-trained code embeddings for different SE downstream tasks has not been extensively
explored. A recent study by Kang et al. [72| evaluates two code embedding approaches
(i.e., GloVe [142] and code2vec [11]) on three downstream SE tasks, namely code comment
generation, code authorship identification, and code clone detection. They find that the
pre-trained code embeddings may not be readily leveraged for the downstream tasks that
the embeddings are not trained for.
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Intuitively, pre-trained code embeddings can bring more knowledge about the semantic
and syntactic meanings of code tokens as they are trained on large external datasets. Thus,
models using pre-trained code embeddings are expected to perform better than models
without that information. On the other hand, both studied embedding techniques only
utilize partial information during the embedding training and do not take full advantage
of the information from the source code. In particular, GloVe treats the source code as
plain text and only considers the unstructured local textual information, and code2vec
parses each method in the source code to an abstract syntax tree (AST) and focuses on
the utilization of the structural information extracted from such ASTs. Hence, we would
like to find out whether the poor performance of the pre-trained code embeddings can be
addressed by combining both the textual and structural information in the source code, as
well as how the different types of information affect the performance of downstream tasks.
In addition, we would like to understand how the advancement of embedding techniques
in recent years impacts the findings from the prior research.

Therefore, in this chapter, we revisit and extend the assessment of using pre-trained
code embeddings across a wider variety of SE tasks, aiming to provide more insights to guide
further research that leverages code embeddings. Note that the main goal of this chapter
is not meant to propose entirely new methods. Instead, the goal and main contribution of
the chapter is to revisit the findings from prior research in order to understand whether
they still hold with the fast progress of related research in recent years and with the
consideration of extra information (e.g., method invocation).

Our work extends prior work [72] from two aspects. First, in addition to GloVe and
code2vec, we evaluated more code embedding techniques. In particular, we propose a two-
stage embedding learning approach called StrucTexVec, designed specifically for source
code data with the special consideration of learning from both the textual and structural
information. In particular, in the first stage, to capture the structural information, we pre-
train the embeddings by customizing the dependency-based word embedding approach [84].
Unlike code2vec, which only considers the AST information within every single method,
StrucTexVec also utilizes method call and variable reference information. In the second
stage, to incorporate the textual context information, we re-train the embeddings on the
tokenized source code. The code embedding learning is framed as an unsupervised learn-
ing procedure, as we aim to generalize the learned embeddings to different downstream
tasks. Thus, StrucTexVec does not require any manual labeling of the training data. In
addition, we also consider Word2vec [123, 124|, fastText [19] and the recently released
contextual embedding techniques, such as CodeBERT [44| and CuBERT [71] for training
code embeddings. In total, we evaluate seven code embedding techniques with different
configurations.
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Second, we also extend prior work |72] by considering more downstream tasks. To assess
the effectiveness of using pre-trained code embeddings in SE tasks and understand the
impact of structural and textual information on creating generalizable code embeddings,
we conduct a comprehensive quantitative evaluation in six downstream SE tasks: code
comment generation, code authorship identification, code clone detection, source code
classification, logging statement prediction, and software defect prediction. We apply and
compare the seven learned code embeddings in these benchmark tasks. The source code and
benchmark tasks are publicly available. The contributions of this chapter are as follows!:

e We revisit and extend previous work by evaluating more embedding techniques across
a wider variety of downstream SE tasks.

e Our findings confirm the challenge of using pre-trained code embeddings in down-
stream SE tasks [72], as using pre-trained code embeddings may not always achieve
boosting in performance.

e We observe that using pre-trained embeddings performs better than not using them
in all the downstream tasks. However, different embedding techniques can result in
diverse performance, and there does not exist an embedding technique that outper-
forms others in all nor even the majority of the tasks.

e We also observe that both the structural and textual information have a non-negligible
impact on the quality of pre-trained code embeddings and find that the structural
information has a larger impact on the quality of the code embeddings than the tex-
tual information. Researchers may consider incorporating the structural information
into CodeBERT or CuBERT for further improvement.

Our findings suggest that future research and practice should take careful consideration
on the selection of code embedding techniques before training their models for different
tasks, as it may be impossible to prescribe a single best-performing solution for all SE
tasks.

Chapter organization. We describe our proposed approach, StrucTexVec in Section 3.2.
Section 3.3 presents the experimental setup. Section 3.4 presents our experimental results
and answers to research questions. Section 3.5 discusses our lessons learned. Section 3.6
presents threats to the validity of our study. Finally, Section 3.7 concludes this chapter.

'We share the trained embeddings together with the downstream tasks at Google Drive.
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Figure 3.1: The overall framework of StrucTexVec.
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3.2 StrucTexVec: Embedding with Structural and Tex-
tual Information

To understand the impact of the structural and textual information on the performance
of downstream tasks, we propose StrucTexVec, which consists of a context generation
phase followed by a two-stage embedding learning phase. Figure 3.1 outlines the overall
framework of StrucTexVec. StrucTexVec preprocesses a collection of source code files to
generate the textual and structural context. In the embedding learning phase, the cus-
tomized dependency-based skip-gram technique [84] is used to train the token embeddings
based on the structural context. Then, to incorporate the textual information, Struc-
TexVec re-trains the token embeddings (our focus is the token embeddings, and thus the
path embeddings are ignored during the re-training stage) on the tokenized textual context.
Below, we elaborate on each of the phases of StrucTexVec.

3.2.1 Context Generation

In this section, we describe the procedures for generating the textual and structural context
from source code files.

3.2.1.1 Textual context generation
Word2vec, GloVe, and fastText all use a window with a fixed length to construct the target

word’s context [19, 123, 124, 142| from the training corpus. In software engineering tasks,
many existing approaches consider the source code as plain text (i.e., sequences of tokens)
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and achieve promising results |5, 7, 61, 179]. Similarly, in this work, we also utilize the
textual context and treat the source code files as plain text.

As described in Section 2.1.1, to convert the source code into the trainable textual
context, the source code is first tokenized into a sequence of tokens, where all the non-
identifiers (e.g., quotation marks) are removed. Meanwhile, following previous studies |11,
28, 72|, the tokenized source code is lowercased.

3.2.1.2 Structural context generation

Apart from using the textual context for source code embedding training, some researchers |10,
18, 148] also utilize the structural context for software engineering tasks. Therefore, in our
work, we also adopt the structural context. In particular, to enrich the context, our struc-
tural context contains three components: (1) AST paths, (2) method calls, and (3) variable
references.

In StrucTexVec, we use stcML? [31] to represent source code as abstract syntax trees.
As described in Section 2.1.1, the leaf nodes are tokens in the source code that are connected
by a set of srcML tags that provide the syntax structure of the code.

Based on the XML tree representation provided by srcML, we then extract the struc-
tural context into a sequence of path triples. Our work shares an analogous way with that
of Alon et al. [11] to extract within-method triples. However, rather than only considering
the information within a single method as in Alon et al. [11], we enrich the structural
context by mining the following three types of context: (1) AST paths, (2) method calls,
and (3) variable references as described below.

AST path context. Given the ASTs of the source code, we perform a structural
traversal to extract a collection of path triples. In each triple, (wy,p,wy), wy and ws
are two different leaf nodes in one method’s AST, p is the shortest path between these
two nodes. The leaf nodes are source code tokens and the shortest path describes the
syntactic relationship between any two of them. Algorithm 1 presents the details to
construct such path triples. For example, as shown in Figure 2.3, given two source
code tokens, e.g., “public”’, and “accept”, the AST node sequences in the shortest path
is {speci fier, type, function,namey. Considering the traversal directions, the final repre-
sentation of the path becomes specifier'-type'- function-name*, where the 1 and | are
traversing directions and no direction means that it is an inflection node of a path. Thus,
we get the path triple, ( “public”, specifier'-type'- function-name', “accept”). Similarly,

2https ://www.srcml.org/.
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Algorithm 1: TripleGeneration
Input: AST of a method, M.
Output: A collection of path triples, T'.

1 begin
2 T — g
// Extract all the leaf nodes of M
3 leafNodes «— FindLeafNodes (M)
4 foreach wq € leafNodes do
// Find the path from root to the leaf node
5 path2w, «—— GetPathFromRootTo (w1)
6 foreach w9 € leaf Nodes do
7 if w1 # wy then
8 path2wy «—— GetPathFromRootTo (ws)
/* Return the longest common path prefix of path2w; and path2ws.
*/
9 commPrefir «— GetCommonPrefix (path2wi, path2ws)
10 remove the subpath commPrefix from path2w; and path2ws
/* Concatenate path2w; and path2ws with the last element in
commPrefix. */
11 p «— path2w; + commPre fix[—1] + path2w,
12 T «— T+ <wi,p,wy >
13 return T

we can change the target node and the source node to collect more path triples for embed-
ding learning.

Method call context. We aim to extract the method calls within one project. We
first identify all project-defined methods and the methods that are called by the identified
project-defined methods. Then, we start to collect the call chain information between these
methods. To accelerate the process of constructing call graphs, we use a heuristic that in-
volves only faster shallow exact method name matching. More specifically, stcML provides
a function tag that helps us to identify all the project-defined methods and a call tag to
label the methods that are called by another method. For example, the previous code snip-
pet (see Figure 2.1) defines a method “accept”, and assume it is called in another method
that is defined in this project, “connect”, and therefore, we have the triple, (*“connect”, call,

“accept”), where the “accept” is the project-defined method name and called by the method
“connect”.

Variable reference context. We also extract the variable references. We first iden-
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tify all class variables and instance variables in one Java file using srcML, and then we
collect methods that contain references to the previously identified variables by using the
heuristic of exact variable name matching. For example, in the previous code snippet (see
Figure 2.1), the variable “fileFilters” is declared and initialized as an instance variable
and referenced in method “accept”, and therefore, we have the triple, (“accept”, re ference,
“fileFilters”), where “accept” is the method which contains references to the instance
variable “fileFilters’.

The output of our context generation phase (i.e., the structural and textual context)
are used as the input for the embedding learning phase.

3.2.2 Embedding Learning

In order to combine both the textual and structural knowledge into code embeddings,
StrucTexVec adopts a two-step training strategy: (1) pre-training token and path embed-
dings using the customized dependency-based model [84] and (2) re-training the token
embeddings using Word2vec [123, 124].

3.2.2.1 Path-based model for embedding pre-training

As explained in Section 2.1, the original Word2vec models use a local fixed-size window
to construct a word’s context, and then the context words are used for embedding train-
ing [123, 124]. Different from the original models, Li et al. [84] improve Word2vec by inte-
grating the syntactic dependency information between words into the embeddings. Since
it is a recently released model and achieves competitive results on different tasks in natu-
ral language processing [84], in this work, following previous work [19] which extends the
skip-gram model of Word2vec, we also customize the improved skip-gram as a path-based
skip-gram for training code embeddings, aiming to incorporate the structural context of
source code.

Path-based skip-gram. Figure 3.2 is an overview of the customized path-based skip-
gram (PSG). In the original work of Li et al. [84], a word is modeled by its context of the
syntactic dependency information. In our model, words are replaced with the tokens in
the source code, and the dependency information is changed to the paths between these
tokens in the ASTs of the source code. By doing this, we can apply the model to our
extracted structural context. Following Li et al. [84], we use negative sampling to improve
the computation efficiency. As Figure 3.2 shows, in the modified model, the token (i.e.,
Vipub1ic’) is the target token, the path (i.e., Vi .iriert typet functionnamet) 15 the token’s
connecting path, the negative token (i.e., V_.pup1icv) is selected from the vocabulary and
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Figure 3.2: The overview of the path-based skip-gram model with negative sampling (take
“public” as an example).

the negative path (i.e., V__  iricrt typet- function-namet) 15 selected from the path sets. All
the negative samples are randomly selected based on the frequency of occurrence in the
training corpus. We build two vocabularies, the tokens in the training corpus and those in
the extracted paths. The vector representations of both vocabularies are updated during
the training process.

After that, we concatenate the two negative parts together and form a negative sample
for later embedding learning. We take the following as the objective function of the model:

c=> 1] 1] L(wy, @, 1)), (3.1)

wt€D wieCp (wt) ue{w}u N EG™t (wy))

where N EG™ (wy;)) is defined as the negative sampling set for target token wy, Cp(wy;) is the
context set for wy, and L(wy, Wy, u) = L' (u)-log[o(z L 0")]+[1— L (u)] log[1 -0 (zF.0")],
where o(-) is the sigmoid activation function, 6" is the parameter vector of NS neuron,
and L"*(u) is an indicator function of which value depends that u is a positive example or
negative example.

We would like to note that the path-based model is different from code2vec in the
following aspects (1) our path-based model is an unsupervised approach, which does not
require any manual labeling of the training data, aiming to produce more generalizable
embeddings; 2) we attempt to include more types of information, such as the method
call context and the variable reference context, which are not included in code2vec and
Word2vec.

The path-based model produces a vector for each token and each path that captures
the structural context of the source code. (i.e., the Token&Path embeddings in Figure 3.1).
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3.2.2.2 Word2vec for embedding re-training

To further incorporate the textual context of code tokens, we adopt the original skip-gram
to re-train the code embeddings produced by the path-based skip-gram. Here, we use the
token vectors produced by the pre-training stage to initialize the embeddings instead of
using the original random initialization. As introduced in Section 2.1.2.1, skip-gram takes
a sequence of tokens as input, in this work, words are replaced with tokens in the textual
context.

The output of our two-stage embedding learning process (i.e., the token embeddings)
are used as the input for our downstream tasks.

3.3 Experimental Setup

In this section, we present details of our dataset used for training the code embeddings.
We also introduce six common downstream tasks for quantitative evaluation of the pre-
trained embeddings, three of which, i.e., (1) code comment generation, (2) code authorship
identification and (3) code clone detection, are used for evaluating pre-trained embeddings
in prior research [72|; while (4) source code classification, (5) logging statement prediction
and (6) software defect prediction, are newly added in this chapter.

3.3.1 Dataset for Learning Pre-trained Embeddings

In this work, we use the Java-Small dataset® to build the pre-trained embeddings for all
the non-contextual embedding techniques. This dataset is collected from Java projects
hosted on GitHub. Note that for CodeBERT and CuBERT, due to the limitations of the
computation resources, we use their released models, instead of training CodeBERT and
CuBERT from scratch. We save their embedding layers into Word2vec/GloVe format to
integrate into our evaluation pipelines.

After fetching the files of the training projects, we first perform filtering to remove the
irrelevant files and only keep the source code files with the .java extension. As illustrated
in Figure 3.1, we composite two types of contexts from the filtered source code files: (1)
structural context, which refers to extracted path triples in the source code and (2) textual
context, which is the plain text of Java files.

3https ://s3.amazonaws . com/code2vec/data/java-small_data.tar.gz
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3.3.2 Settings for Embedding Learning

At the pre-training stage, the token vectors are randomly initialized and trained using
the path-based model. At the re-training stage, the token vectors are initialized by the
embeddings produced by the path-based model and further trained using the skip-gram
implemented in Gensim* [149).

Moreover, to investigate the impact of pre-trained embeddings on software engineering
tasks, we also evaluate the other six existing embedding techniques as described in Sec-
tion 2.1 and compare their performance with the models without pre-trained embeddings.
To ensure a fair comparison across all the embedding techniques, we either follow the
parameter settings in previous work (e.g., 128 dimensions) or use the default parameter
values when the parameters are not specified in previous work (e.g., training epochs). To
avoid bias, we do not try to fine-tune these settings only for our method. The detailed
parameter settings are shown in Table 3.1.

Table 3.1: Parameter settings for different embedding techniques.

Non-contextual embeddings Contextual embeddings
Word2vec | GloVe | fastText | code2vec | StrucTexVec | CodeBERT | CuBERT
Vocabulary | 109,743 | 192,363 | 109,743 | 507,271 192,362 50,265 50,297
Epoch 5 5 5 20 10&5 - 2
Window 5 5 5 ) ) - -
Negtive 5 - 5 - 4 &5 - -
Dimension 128 128 128 128 128 768 1024

Note (1) Dimension: following the settings in prior work [11, 84, 204], we set the dimension of the trained
token vectors to 128. For CodeBERT and CuBERT, we take the results from their released models. 2)
Epoch: StrucTexVec contains a two-step training, in our experiments, 10 epochs for pre-training and 5
epochs for re-training, both are the default values of the released source code.

The embeddings of StrucTexVec, GloVe, fastText, and Word2vec are all trained in
CPUs and code2vec is trained in an NVIDIA GTX 1080 Ti GPU, and it takes less than
30 minutes to finish the training process of each of the embedding techniques, which is
acceptable. For CodeBERT and CuBERT, we do not train them from scratch and choose
to use the already released models, as it requires not only more GPUs but also a long
period (several days) to finish the training. For example, CodeBERT spends more than
ten days to finish the training using 16 interconnected NVIDIA Tesla V100 GPUs.

“https://radimrehurek.com/gensim/
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3.3.3 Evaluation Tasks

In this section, we briefly describe the six downstream tasks that are used to evaluate
our pre-trained embeddings, as well as the corresponding datasets and evaluation metrics.
Five of the six tasks use neural network-based methods and one task (i.e., software defect
prediction) uses a traditional machine learning method (i.e., logistic regression). Our focus
is the impact of the embeddings on different downstream tasks, i.e., whether the pre-trained
code embeddings can improve the model performance or not.

Besides, for comparison between different embedding techniques, all the embeddings are
used in the same manner for downstream tasks, that is for each task, only the embeddings
are changed, and other parameters are kept the same. For example, for deep learning-based
tasks, the code embeddings are used to initialize the embedding layer, and OOV tokens are
randomly initialized, which can be later updated based on the training data from different
tasks.

Code comment generation is a task to automatically generate code comments for
a code snippet (63, 122, 127, 160], which is helpful in program understanding and mainte-
nance. Code comment generation is considered a downstream task in previous work [72]
to evaluate the effectiveness of code embeddings.

In our work, we follow the work of Kang et al. [72| and evaluate the embeddings based on
the approach proposed by Hu et al. [63]. Hu et al. [63] treat the code comment generation
task as a neural machine translation task, where the input is the source code snippet and the
output is the code comment. Thus, they adopt an encoder-decoder model. In particular,
they use two Long Short-Term Memory (LSTM) layers for both the encoder and decoder
and 500 hidden units for each layer. During model training, both the learning rate and
dropout rate are set to 0.5. The model is trained for 50 epochs. The training dataset is
provided by Hu et al. [63], which was initially collected from GitHub. The dataset contains
over 330,000 <method, comment> pairs for training, 5000 pairs for validation, and 5000
for testing.

We follow the work of [63, 72| and use the machine translation evaluation metric
BLEU [141] to measure the quality of the generated comments®.

Code authorship identification is a task of identifying the author of a given code |2,
64]. This task has attracted increasing attention in the field of privacy and security, where
it can be used to identify the authors of malware and other malicious programs. We follow
the work of Kang et al. [72| and select this task as a downstream task.

5The detailed explanation of BLEU score can be found in Section 6.4.
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In our work, we evaluate the embeddings based on the approach proposed by Kang
et al. [72]. Kang et al. [72] treat the code authorship identification task as a multi-class
classification problem, where the input is the code snippet and output is the author. They
build a neural network-based model, which contains two LSTM layers and a fully connected
layer. During model training, we set the batch size to 64 to guarantee a relatively smaller
training loss. The model is trained for 50 epochs. We use the same dataset as that
of Kang et al. [72], which was collected from Google Code Jam. The dataset contains 2250
programs written by 250 authors, among which there are 2000 programs for training and
250 programs for testing, and within each part the classes are balanced.

We follow the previous work [72] and use the test accuracy to measure the performance
of the models with different code embeddings.

Code clone detection is a task of identifying all pairs (or groups) that are clones (of a
given type). It is a useful task for program maintenance [12, 42, 70, 121, 153, 167, 181, 184].
For example, if a bug is identified in one code fragment, all the other duplicate code
fragments also need to be checked for the same bug. This task is also identified as a
downstream task to evaluate code embeddings in prior work [72].

In general, there are four different types of code clones based on the type of similarity
two code fragments have [79]:

e Type-1 clone refers to identical code fragments except for changes in comments,
whitespace, and layout.

e Type-2 clone refers to identical code fragments except for differences in identifier
names or literal values, comments, types, and layouts.

e Type-3 clone refers to code fragments that are syntaxally similar but have statements
added, modified, or removed.

e Type-4 clone refers to code fragments that are syntaxally different but with the same
functionality.

In our work, we use the approach proposed by Zhang et al. [204], as it is recently
proposed and gives competitive results. Zhang et al. [204] consider the code clone detection
task as a binary classification task, where the input is two code snippets and the output is 1
if they are duplicates and 0 otherwise. They use a bidirectional Recurrent Neural Network
based model, and the model is trained for 15 epochs with a batch size of 128. This task
contains two datasets, which are constructed from standard BigCloneBench (BCB) [163]
and Online Judge system (namely, OJClone). For BCB dataset, The similarity of two
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fragments of Type-1 and Type-2 is 1. Type-3 contains two subcategories: Strongly Type-3
and Moderately Type-3, of which the similarities are in the range [0.7, 1) and [0.5, 0.7),
respectively. The similarity of Type-4 is in the range [0, 0.5) [204].

We follow the work of [204] and use Fl-measure (F1) as the evaluation metric in this
task.

Source code classification is a typical classification task that classifies code fragments
into corresponding categories. This task is identified as a downstream task as it is widely
studied in the literature [50, 73, 131, 171, 204] and has various applications [50, 73, 131,
171, 204].

In our work, the source code classification task is considered as a multi-class classifi-
cation problem. We apply a convolutional neural network proposed by Kim [74] to the
source code. We choose to use this model as it is widely used for classification tasks and
achieves competitive results, and we want to cover more different types of neural network
models. The input to the model is the source code and the output is its class label (e.g.,
functionality). During training, we use the default parameters, that is we set the learning
rate to 0.01, batch size to 64, and dropout rate to 0.5. We train the model with 50 epochs.
The dataset is collected from the Online Judge system® and provided by Mou et al. [131].

Similar to the task of code authorship identification, we follow the work of [204] and
use the test accuracy as the evaluation metric.

Logging statement prediction is a task of predicting whether there is a need to
insert logging statements for a given code snippet. Logging statements play important
roles in the daily tasks of developers [37, 88|, and this task can provide logging suggestions
that are helpful for software developers [88].

Li et al. [88] consider the logging statement prediction task as a binary classification
problem, where the input is the code snippet without the logging statement and output
is the decision whether to insert a logging statement or not. In this task, we also use the
approach proposed by Kim [74] as in the task of source code classification. The evaluation
dataset is provided by Li et al. [88], which contains five subject systems.

In this work, same as prior work [88], the balanced accuracy (BA) metric is used to
evaluate the performance of the model with different embeddings.

Software defect prediction is a task of predicting whether the code snippet contains
defects or not. Defect prediction can help avoid future bugs in software releases and
improve the quality of software [179]. This task is selected as a downstream task because
it is widely studied in the literature [179].

Shttps://sites.google.com/site/treebasedcnn/
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For this task, following prior work by [179], we leverage the Logistic Regression (LR)
classifier where the input features are the average of the embeddings of the code tokens in
a file and the output is the 1 if there is a defeat detected or 0 otherwise. The dataset is
provided by Wang et al. [179], and they use F1 score as the evaluation metric. Thus, we
follow their work and use the same metric for this task.

3.4 Experimental Results

In this section, we show the quantitative results on the previously identified downstream
tasks, and based on the results, we aim to answer the following research questions:

RQ1: How effective are pre-trained embeddings in improving the
performance of downstream SE tasks?

To evaluate the effectiveness of using pre-trained code embeddings, we compare models
using pre-trained embeddings, including the non-contextual embeddings and contextual
embeddings, to models that do not use pre-trained code embeddings (i.e., None).

Models using pre-trained embeddings can perform better than models with-
out pre-trained embeddings. Table 3.2 shows the evaluation results of utilizing different
code embeddings on six downstream tasks. The best results are highlighted in bold. As
shown in the table, models using pre-trained embeddings achieve the best results in all six
tasks. For example, by using embeddings produced by code2vec, we obtain a 2.6% absolute
increase in accuracy on the source code classification task compared to the model without
pre-trained embeddings. In addition, we observe that there is a slight improvement in
the tasks of code comment generation and logging statement prediction when using the
embeddings generated by StrucTexVec than other prior non-contextual pre-trained embed-
dings that only consider structural or textual information, which implies the effectiveness
of combining both the textual and the structural context in creating generalizable code
embeddings. We further analyze the datasets of these two tasks and find that when there
is a relatively larger training dataset, StrucTexVec performs better. For example, for the
task of code comment generation, there are more than 330,000 training samples, and there
are more than 20,000 training samples for the task of logging statement prediction. More-
over, we find that in all the evaluated tasks, code embeddings trained in an unsupervised
manner do not always outperform embeddings trained on a specific task. The results
demonstrate that existing neural networks can benefit from the pre-trained embeddings,
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which challenges the findings of Kang et al. [72]. The findings highlight the potential of
applying well-trained code embeddings to downstream SE tasks.

On the other hand, we find that including more types of training information cannot
always guarantee better results, and other factors (e.g., training model, different prepro-
cessing strategies) can also have an impact on the quality of the generated embeddings.
For example, both the CodeBERT and CuBERT are trained only based on the textual
information, but both of them achieve results comparable with the approaches consider-
ing both the textual and structural information (e.g., StrucTexVec). Besides, although
StrucTexVec attempts to include more structural information (i.e., AST paths, method
call, and variable reference), it cannot always outperform code2vec in the six downstream
tasks. To understand why the performance may differ even though we use more types of
training information, we do a further analysis of these two techniques. As a result, we
summarize that the performance difference can come from the following aspects: (1) The
difference between the training objectives. For the training objectives, our method is a
task-agnostic embedding approach, which does not need to be trained together with the
downstream tasks; code2vec is task-specific and trained together with the downstream task
(i.e., method name prediction.). Thus, for the tasks that share similar intrinsic properties
with the downstream task that is used to train the embeddings, code2vec would perform
better. For example, the task of source code classification, which is to classify code frag-
ments into corresponding categories, is similar to the method name prediction, where a
category (i.e., method name) is assigned to a code fragment based on its functionality. (2)
The difference between the training models. As we described in Section 3.2.2, during the
embedding learning, we simply concatenate the embeddings of the token and the AST path
into one single vector and then use this vector for future training. However, in code2vec,
the paths and tokens are treated differently at the beginning and then fused together by
using an attention layer, which is better at transmitting the information between the paths
and tokens than our method. As a result, even if we use more information in our method,
due to the limited ability to embed such information into the code embeddings, our method
performs worse on some datasets. (3) The difference between the vocabulary sizes. We
find that there are 507,271 tokens for code2vec and 192,362 tokens in our generated embed-
dings, which means more tokens are filtered out for our method during the preprocessing
step, and this poses a non-negligible effect on the quality of the generated embeddings.

Besides, for the performance of non-contextual embeddings on the downstream tasks,
we find that the vocabulary size of the embeddings has a more significant impact on the
traditional machine learning models than on deep learning-based models. For example,
Word2vec and fastText have a relatively smaller vocabulary size and perform worse on the
task of software defect prediction that uses a traditional machine learning model. On the
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contrary, code2vec has the largest vocabulary size and performs better on the same task.
This can be explained by the fact that a smaller vocabulary size causes more OOV tokens,
and thus weakens the representation ability of the code embeddings, especially considering
the fact that the code embeddings are directly used as features for the traditional machine
learning models. However, for deep learning-based models, the embeddings are only used
to initialize the weights of the first embedding layer, and the weights are later adjusted to
better fit the training data. As a result, the impact of OOV tokens may be diminished or
even erased during the model training and weight updating.

For a specific downstream task, different embedding methods can result in
diverse performance, and there does not exist an embedding technique that
consistently outperforms others across all or even the majority of the tasks.
Table 3.2 compares the results for applying different embeddings to six downstream tasks.
The tasks of code comment generation and code authorship identification illustrate a di-
verse performance that may be caused by different embeddings. For example, on the code
comment generation task, using embeddings trained on fastText can only have a 14.6 of
BLEU, compared to 15.9 when using embeddings trained on GloVe. In addition, different
evaluation tasks result in different orderings of embedding techniques, raising the ques-
tion that there may not exist a single optimal vector representation for all SE tasks. For
instance, code embeddings suitable for source code classification (e.g., code2vec) even per-
form no better than random embeddings on code authorship identification. This may come
from the fact that different SE tasks might highly differ in their nature and thus require
different external information to boost performance. The findings suggest that one should
be very careful with the selection of code embedding techniques before starting the model
training in terms of different tasks. In particular, the non-contextual embeddings that
leverage structural information of the code, including StrucTexVec and code2vec, perform
better than other non-contextual embedding techniques and have the best results in five
out of six downstream tasks.

Using pre-trained embeddings may not always improve the performance
of downstream tasks significantly. We find that by using pre-trained embeddings,
although we can obtain an increase in performance on different tasks, the improvement
may be limited. For example, in the task of logging statement prediction, we only obtain
a maximum increase of 0.5% by utilizing the pre-trained embeddings (the model with-
out pre-trained embeddings compared to that using pre-trained embeddings produced by
CodeBERT). In addition, using pre-trained embeddings causes a decrease in accuracy for
the task of code authorship identification. This observation is similar to that of prior stud-
ies |72, 84, 170]. One possible reason is that the neural network-based models themselves
are powerful enough and already have good results, thus it is difficult to have a large im-
provement (e.g., the great performance in code clone detection task shown in Table 3.2).
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The result indicates the limited effect of pre-trained embeddings, as they only work on
initializing the embedding layer for neural network-based models. This confirms the find-
ings of Kang et al. [72]. Namely, code embeddings may not be a key role in boosting the
performance of deep learning models. Software engineering researchers and practitioners
should not only rely on using embeddings to improve their automated techniques.

W )

In general, using pre-trained code embeddings can improve the performance of down-
stream SE tasks. However, different embedding techniques can result in diverse
performance. Practitioners and researchers should be careful when selecting the
embedding techniques for their specific tasks, as there is no single best solution.

RQ2: How do the structural and the local textual information affect
the performance of the pre-trained embeddings?

To verify the effectiveness of incorporating different information extracted from source code
(i.e., structural and local textual information), we design ablation experiments on these
six downstream tasks.

First, to analyze the effect of the structural information, we treat the source code as
plain text and only learn from the local textual information. More specifically, we remove
the pre-training stage from StrucTexVec, which results in the original Word2vec model.
Then, to analyze the performance gain achieved due to the utilization of the local tex-
tual context, we train the embeddings only based on the structural information extracted
from the source code. In other words, we remove the re-training stage from StrucTexVec,

—text

resulting in the path-based skip-gram with negative sampling (i.e., StrucTexVec in
Table 3.3). The results of our ablation experiments are shown in Table 3.3.

The structural information extracted from the source code can improve the
performance of the code embeddings. By comparing the results of Word2vec with
that of StrucTexVec, in total, we find that StrucTexVec can outperform Word2vec in all
downstream tasks. The comparison results demonstrate that incorporating the structural
context can help improve the performance of the embeddings. For example, on the code
authorship identification task, by pre-training the embeddings using the structural context,
StrucTexVec has an accuracy of 86.5% compared to 80.2% without the pre-training phase.
This is consistent with the observation of Zhang et al. [204]. We consider that the poor
performance of GloVe in the work by Kang et al. [72] may be related to the exclusion of
structural information in the embeddings.
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Table 3.3: Evaluation results of embeddings trained with and without the structural and
local textual contexts. Word2vec is equivalent to the variant of StrucTexVec which removes
the structural information from the training process; StrucTexVec ~*** only utilizes the
structural information for embedding learning.

Downstream Code comment Code authorship Code clone detection Source code Logging statement prediction

Tasks generation identification o classification o o

Datasets GitHub Google Code Jam|BCB 0OJClone 0J dataset |Airavata Camel CloudStack Directory-Server Hadoop

StrucTexVec 16.0 86.5 93.6 88.1 89.1 94.5  79.2 87.3 86.6 71.0

Word2vec 15.4 80.2 93.8 86.8 87.0 943 778 86.0 84.1 73.6

StrucTexVec ~fert 15.7 79.7 93.6 86.9 89.7 95.3  76.0 85.2 90.0 71.2

Downstream Software defect prediction

Tasks ’ ’

Datasets Ant Ant Camel  Camel  jEdit jEdit Log4j  Lucene Lucene POI POI Xalan
1.5->1616->1.712->1414->1632->404.0->4110->1.12.0->2222->2415->2525->3.024->25

StrucTexVec 34.2 434 46.8 50.2 59.5 64.7 62.7 63.9 65.2 7.8 71.4 47.5

Word2vec 35.5 44.9 43.3 47.0 52.0 60.5 65.7 62.6 66.3 64.8 72.4 41.7

StrucTexVec ~**t| 38.1 50.2 46.4 45.2 57.4 58.9 62.9 66.9 63.1 81.2 71.8 43.6

Code embeddings can benefit from the local textual context. According to the
results of StrucTexVec ~*** and StrucTexVec from Table 3.3, we find that StrucTexVec
can achieve better performance than StrucTexVec " in five out of six downstream tasks.
The comparison results indicate that by re-training the embeddings on the textual context,
we can achieve an overall better performance. For example, on the code authorship iden-
tification task, the embeddings trained only with the structural information have a lower
accuracy compared to those using both structural and textual information (i.e., 79.7%
vs. 86.5%). This is consistent with the intuition that developers put similar code state-
ments together and thus using a local context window is able to capture some semantic
information from the source code.

However, the benefit from the local textual context is limited for some
downstream tasks. We also find that the improvement is not always significant. For
example, for the tasks of code comment generation, logging statement prediction, and
software defect prediction, there is only a 0.2% to 0.3% absolute increase. Moreover,
for some tasks and datasets, re-training the code embeddings using local textual context
even causes a degradation of the performance. For example, the accuracy of the source
code classification task decreases from 89.7% to 89.1% when utilizing the local textual
information. One possible reason is that the structural information extracted from the
source code is rich enough for the downstream tasks and incorporating the local textual
context cannot provide much more benefit.

The structural information has a stronger impact on the quality of the code
embeddings than that of local textual information. By comparing StrucTexVec

—tert with Word2vec, we can see that StrucTexVec ~**! outperforms Word2vec in four out
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six downstream tasks. For example, on software defect prediction task, removing the local
textual information from StrucTexVec (i.e., StrucTexVec ~**') causes a degradation of
0.2%, while Word2vec only has an accuracy of 54.7%, which is a 2.6% absolute decrease.
Our results suggest the promising research direction of utilizing the structural information
for SE tasks.

W )

On one hand, we find that including structural or local textual information in embed-
dings can improve the performance of downstream SE tasks. On the other hand, the
impact of structural information is stronger for some downstream tasks. This finding
highlights the importance and effectiveness of incorporating AST-based structural
information for SE tasks.

3.5 Discussion

In this section, we discuss our lessons learned and compare them with the findings of Kang
et al. [72]. The summary of the comparison is presented in Table 3.4.

Models using pre-trained embeddings can perform better than models with-
out pre-trained embeddings. The choice of embedding techniques has a non-
negligible impact on the model performance. We evaluate the effect of utilizing
pre-trained code embeddings on six downstream tasks. We observe that utilizing the pre-
trained code embeddings can improve the performance of existing models that do not use
the pre-trained embeddings in all downstream tasks. For example, in the task of code com-
ment generation, using pre-trained code embeddings produced by StrucTexVec results in a
BLEU score of 16.0, which is 7.4% relatively higher than the model without the pre-trained
embeddings. Our findings are different from that of Kang et al. [72]. The different results
may be caused by (1) the selection of training corpus: we use the Java-Small dataset
while Kang et al. [72] chose the Java-Large dataset which may contain noise data that can
affect the quality of the generated code embeddings; (2) we evaluated more code embed-
dings produced by different techniques, among which some embedding techniques cannot
benefit the models without pre-trained embeddings. For example, using code embeddings
produced by fastText negatively impacts the performance of existing models.

Simpler baselines may not always outperform complex techniques. The
model parameters have a non-negligible impact on the performance of the deep
learning-based models. In our evaluation, we see that on the task of code authorship
identification, all of our reported results outperform the simpler approach that uses simple
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TF-IDF features reported by Kang et al. [72] (i.e., an accuracy of 77%). The only difference
is that we set the batch size to 64 instead of the default 128. This finding shows that by
tuning the parameters of the complex models, we can outperform the simpler baselines.
Also, to verify our findings, we implement another two simpler baselines that use traditional
features (i.e., PROMISE and TF-IDF) for the software defect prediction task, and we also
observe that the use of pre-trained code embeddings can outperform the simpler baselines.
Our results concur with the findings of Kang et al. [72] that other considerations (e.g.,
pre-processing) may have an impact on the performance of deep learning models.

Using pre-trained embeddings may not always improve the performance
of downstream tasks significantly. Our findings are similar to that of Kang et al.
[72], although we can obtain an increase in the performance of different tasks, the im-
provement may be limited. For example, in the task of logging statement prediction, the
best-performing code embeddings only have a 0.5% absolute improvement compared to the
model without the pre-trained code embeddings. One possible reason is that the neural
network-based models themselves are powerful enough and already have good results and
the code embeddings are only used for initializing the embedding layer of these models,
thus it is difficult to have a large improvement for some downstream tasks. The results
suggest researchers should be careful when deciding whether to use pre-trained embeddings
for their specific downstream tasks.

Further investigation of the composition of code embeddings is needed. Pre-
trained code embeddings are numerical vectors for individual tokens in the source code
and a key challenge is how to represent the whole code snippet with a sequence of code
tokens. In practice, multiple methods for code embedding composition (i.e., combining the
embeddings of each token in the source code to an embedding of the entire code snippet) are
adopted, such as simply adding or averaging the embeddings of all the tokens. Similar to
that of Kang et al. [72], we find that the way of composition of code embeddings can impact
the performance of the models. We implement four experiments for the task of software
defect prediction with different composition strategies, i.e., summation, averaging, TF-
IDF weighted averaging, and TF-IDF weighted summation. For example, when the four
composition strategies are performed on code2vec for the task of software defect prediction,
we get the F1 scores, 52.1, 58.7, 53.3, and 53.7, respectively. The results show that different
composition strategies can result in diverse results and simple averaging still is the best
way to represent the source code.

Code embeddings can benefit from considering both the structural and tex-
tual information. And the embeddings produced by StrucTexVec and code2vec
which leverage structural information of the source code perform better than
embeddings that do not. In our experiment, to check the effect of different information
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Table 3.4: Comparison with the findings from previous work [72].

Our findings

Previous findings

Discussion

Models using pre-trained em-
beddings can perform better
than models without pre-
trained embeddings. The
choice of embedding techniques
has a non-negligible impact on
the model performance.

Code embeddings
cannot  be  used
readily to improve
the performance of
simpler models.

In our evaluation, we find that in all six
downstream tasks, the use of code em-
beddings can improve the performance of
the models. The difference in the find-
ings may be caused by (1) the training cor-
pus, in this work, we select the Java-Small
dataset; (2) we evaluate more embedding
techniques on more downstream tasks.

Simpler baselines may not al-
ways outperform complex tech-
niques. The model parame-
ters have a non-negligible im-
pact on the performance of the
deep learning-based models.

Simpler baselines
run faster and may
outperform complex
techniques.

In our evaluation, we see that on the task
of code authorship identification, the use of
code embeddings outperforms the simpler
approach that uses simple TF-IDF features
reported by Kang et al. [72]. The only dif-
ference is that we set the batch size to 64
instead of the default 128. Besides, to ver-
ify our findings, we implement another two
simpler baselines which use traditional fea-
tures for the software defeats prediction.
As the results show, some of the embed-
dings still perform better. Meanwhile, our
results concur with the findings of Kang
et al. [72] that other considerations (e.g.,
pre-processing) may have an impact on the
performance of deep learning models.

Using pre-trained embeddings
may not always improve the
performance of downstream
tasks significantly.

Code embeddings
may not be able
to boost the per-
formance of neural
network-based mod-
els.

Our findings are similar to that of Kang
et al. [72]. Although we can obtain an
increase in the performance of different
tasks, the improvement may be limited.
One possible reason is that the neural
network-based models themselves are pow-
erful enough and already have good re-
sults, thus it is difficult to have a large
improvement for some downstream tasks.
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Composing a meaningful repre-
sentation from a set of code to-
kens using pre-trained code em-
beddings is a challenging task
and further investigation of the
composition of code embeddings
is needed.

The composition of
source code token
embeddings requires
further investigation.

To further investigate the composition of
code embeddings, we do another four ex-
periments for the task of software de-
fect prediction, using different composi-
tion strategies. i.e., summation, averaging,
TF-IDF weighted averaging, and TF-IDF
weighted summation. We find that simple
averaging still is the best way to represent
the source code.

Code embeddings can benefit
from considering both the struc-
tural and textual information.
And the embeddings produced
by StrucTexVec and code2vec
that leverage structural infor-
mation of the source code per-
form better than other non-
contextual embeddings that do
not.

The poor perfor-
mance of utilization
of code embeddings
may indicate that
token  embeddings
learned over source
code may not encode
enough information
usable for different
downstream tasks.

In our experiment, to check the effect
of different information on generating the
code embeddings, we use different train-
ing contexts and design ablation experi-
ments. The results indicate the embed-
dings can encode different information for
downstream tasks.

on generating the code embeddings, we use different training contexts and design ablation
experiments. The results indicate that except for the training techniques, the training
context also impacts the quality of the code embeddings. Especially, the embeddings (i.e.,
StrucTexVec and code2vec) that incorporate the structural context yield better results than
other non-contextual models. The results show that the embeddings can encode different
information for downstream tasks.

3.6 Threats to Validity

This section discusses the threats to the validity of our work. We consider three types of
threats.

External validity. One major threat of using pre-trained code embeddings in downstream
tasks is the computational costs of training the embeddings. In our work, the embeddings
of StrucTexVec, GloVe, fastText, and Word2vec are all trained in CPUs and code2vec is
trained in an NVIDIA GTX 1080 Ti GPU, and it takes less than 30 minutes to finish the
training process of each of the embedding techniques, which is acceptable compared to the
computational cost of the running the downstream tasks (e.g., it takes more than 10 hours
to finish the task of code comment generation). However, the training of CodeBERT and
CuBERT, not only requires more GPUs but also several days to finish the training. For ex-
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ample, CodeBERT spends more than ten days to finish the training using 16 interconnected
NVIDIA Tesla V100 GPUs, which might be challenging for us to train the embeddings in
our own machine. The findings in this work are concluded based on the evaluation results
of seven code embedding techniques on six downstream tasks, and the code embeddings
are trained on Java projects. Thus, we cannot confirm that our findings may generalize
to all the SE tasks, programming languages, and code embedding techniques. Besides, in
this work, we adopt external SE tasks to reflect the impact of different code embedding
techniques, and each task has its specific model to train, and thus the parameters involved
during the embedding evaluation may have an impact on the conclusions. To minimize the
influence of these parameters, in our work, we intentionally do not do any other parameter
tuning on the model structures (e.g., layers, hidden dimensions, etc.) and try to use the
same experimental settings that are reported in the literature, hence only examining the
impact of different embedding techniques on the downstream tasks. Another factor that
can influence the results and conclusions is the evaluation metrics used in the downstream
tasks, as code embedding techniques that perform better under one evaluation metric may
perform worse when evaluated using other metrics. In this work, to reduce the selection
bias, we try to follow previous works and select the evaluation metrics that are used in
the existing papers related to the downstream tasks. In addition, we provide our data and
source code for future work to replicate and further improve the evaluation. For the only
change of batch size in the task of code authorship identification, we want to explain that
we initially set the batch size to 128 and observed that the precision remains at around
50% even on the training dataset, which was far behind the expected performance of deep
learning models on the simple classification tasks. Thus, we reduce the batch size, and
after that, the training precision improves to more than 90%. Also, this improvement con-
firms the finding from previous work that using small batch sizes achieves better training
stability [117]. Moreover, the datasets used for different downstream tasks are unbalanced
which would have an impact on the conclusions if we compare the results on the dataset
level. As described in Section 3.3, all the datasets are provided by previous work and are
commonly used benchmark datasets. To avoid such influence, we only focus on the task
level comparison. Besides, there is a lack of ways for direct evaluation of the quality of code
embeddings. Future studies can develop some datasets or tasks, such as token similarity,
that can be directly used for code embedding evaluation.

Internal validity. One of the threats to the internal validity is related to the conclusion of
results in response to RQ2. In order to answer RQ2, we conducted ablation experiments to
analyze the impact of structural and textual context. However, the analysis in RQ2 may
not indicate the actual impact of structural and textual information, as they may have
overlappings. For example, in the AST representation of the source code, the code tokens
are also considered during the embedding training. Besides, in our experiments, we only
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evaluate the embeddings that are trained based on the AST or plain text of the source
code. However, there exists other information from the source code that may be more
valuable for representing the properties of the source code. For example, [8] exploit the
use of data flows in a program and [162] further extend the use of structured information
extracted from the source code and they adopt the interprocedural program dependence
for representing the source code into vectors. Another threat comes from the fact that
there is a lack of interpretability of the code embeddings. The embeddings are real-valued
numbers and are hard to analyze directly, thus, our findings cannot explain when and why
the embeddings are effective.

Construct validity. The embedding training dataset selection may be biased, as we only
select the top-ranked Java projects based on the number of stars they have, and we may
still miss some Java projects that are from unpopular fields. Future studies can collect
projects across different fields to complement the findings of our study. Another threat is
the parameters of the code embedding techniques during embedding learning, such as the
embedding dimensions and negative samples. Although, by fine-tuning the parameters, we
can make the model better conform to the downstream tasks. However, in our work, we try
our best to follow the literature and intentionally do not fine-tune the parameters to avoid
bias from the unfairness among the tasks. We leave it as future work to analyze the impact
of different combinations of parameter settings on the quality of the code embeddings.

3.7 Conclusion

In this chapter, we revisit and extend a recent study by Kang et al. [72| on the assessment
of pre-trained code embeddings in SE tasks. Complementing the two evaluated pre-trained
embedding techniques in prior work, we propose an unsupervised framework, StrucTexVec,
for enhancing the learned code embeddings by incorporating both the textual and structural
knowledge into the embedding training process. In total, we evaluate the effectiveness of
seven techniques for pre-trained code embeddings on six downstream SE tasks. On one
hand, we find that, in general, models using pre-trained embeddings can perform better
than the models without pre-trained embeddings, and both the structural information and
the textual information have a non-negligible impact on the performance of the downstream
SE tasks. On the other hand, our work concurs with prior research that pre-trained
embeddings may not always improve the performance of downstream SE tasks significantly,
and different embedding techniques can lead to diverse results. Our results suggest the need
for researchers and practitioners to carefully consider the choices of embedding techniques
when conducting SE tasks. Our findings also shed light on future research for improving
embedding techniques to assist in SE tasks.
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Chapter 4

Towards Learning Generalizable Code
Embeddings

Code embeddings have seen increasing applications in software engineering (SE) research
and practice recently. Despite the advances in embedding techniques applied in SE re-
search, one of the main challenges is their generalizability. A recent study finds that code
embeddings may not be readily leveraged for the downstream tasks that the embeddings
are not particularly trained for.

In this chapter, we propose GraphCodeVec, which represents the source code as graphs
and leverages the Graph Convolutional Networks to learn more generalizable code embed-
dings in a task-agnostic manner. The edges in the graph representation are automatically
constructed from the paths in the abstract syntax trees, and the nodes from the tokens
in the source code. To evaluate the effectiveness of GraphCodeVec, we consider six down-
stream benchmark tasks. For each downstream task, we apply the embeddings learned by
GraphCodeVec and the embeddings learned from four baseline approaches and compare
their respective performance. We find that GraphCodeVec outperforms all the baselines in
five out of the six downstream tasks and its performance is relatively stable across differ-
ent tasks and datasets. In addition, we perform ablation experiments to understand the
impacts of the training context (i.e., the graph context extracted from the abstract syntax
trees) and the training model (i.e., the Graph Convolutional Networks) on the effectiveness
of the generated embeddings. The results show that both the graph context and the Graph
Convolutional Networks can benefit GraphCodeVec in producing high-quality embeddings
for the downstream tasks, while the improvement by Graph Convolutional Networks is
more robust across different downstream tasks and datasets. Our findings suggest that
future research and practice may consider using graph-based deep learning methods to
capture the structural information of the source code for SE tasks.
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4.1 Introduction

Despite recent advances in code embeddings, one of the main challenges of applying such
embeddings in research and practice is their generalizability to downstream tasks that
the embeddings were not particularly trained for. Recently, Kang et al. [72] evaluate two
pre-trained code embeddings generated by GloVe [142] and code2vec [11], by applying
these two pre-trained embeddings to three downstream SE tasks, including code comment
generation, code authorship identification, and code clone detection. However, the results
show that code embeddings may not be readily leveraged in the models of the downstream
tasks for which they have not been trained. In other words, pre-trained code embeddings
may not generalize to different downstream tasks.

On the other hand, both studied embedding techniques in the prior work [72] have
their limitations. In particular, GloVe [142] treats the source code as plain text and only
considers the unstructured local textual information which may miss the useful syntax
information from the source code. Code2vec [11] parses each method in the source code to
an abstract syntax tree (AST) and focuses on the utilization of the structural information
extracted from such ASTs. However, the token vectors are learned using a supervised ap-
proach, where the training objective is method name prediction instead of a task-agnostic
purpose. Therefore, in this work, we aim to find out whether the lack of general-
izability of these code embeddings can be alleviated by learning task-agnostic
embeddings from both the syntax and semantic information of the source code
in a task-agnostic manner.

Meanwhile, the recently proposed graph-based deep learning methods [93] have been
successfully employed in several SE tasks such as variable name prediction [8] and variable
misuse prediction [8]. However, such graph-based methods have not been used for learning
source code embeddings. Therefore, in this chapter, we adopt the Graph Convolutional
Networks (GCN) [33, 77] to learn code embeddings due to its ability to handle structural
information in graphs. We first construct graph representations from the abstract syntax
trees (ASTs) of the source code, then leverage the GCN model to train the code embed-
dings from the context information provided by the graph representations. Unlike previous
work [8, 11, 204] which learns code representations for specific tasks, this work learns task-
agnostic code embeddings, aiming to effectively apply the learned embeddings to different
downstream SE tasks.

To quantitatively assess the quality of our learned code embeddings in SE tasks, we use
and extend the existing benchmark tasks published by Kang et al. [72]. Specifically, we
add three new downstream tasks to the existing ones, resulting in a total of six downstream
tasks: code comment generation, code authorship identification, code clone detection,
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source code classification, logging statement prediction, and software defect prediction.
We apply our learned code embeddings in these benchmark tasks and compare them with
four baseline approaches. Specifically, we organize the discussion of our results along with
the following three research questions (RQs).

RQ1 How effective is GraphCodeVec compared with other baseline embedding techniques
in representing the source code?” We compare GraphCodeVec with the other four
state-of-the-art baseline embedding techniques in the six downstream tasks. We
observe that GraphCodeVec outperforms the baseline approaches in five out of the
six downstream tasks.

RQ2 How does the structural context information of the source code impact the effec-
tiveness of the embeddings generated by GraphCodeVec? We perform an ablation
experiment to understand the impact of the context information extracted from the
structures of the source code (i.e., the ASTs) on GraphCodeVec. We find that al-
though overall, such structural context information can benefit GraphCodeVec in
producing code embeddings for the downstream tasks, there may be cases where the
structural information may not provide additional benefit.

RQ3 How does the GCN model impact the effectiveness of the embeddings generated by
GraphCodeVec? We perform another ablation experiment to understand the impact
of the used model (GCN) for training the code embeddings. We find that using

the GCN model performs better than using a shallow neural network as used in
Word2vec.

The main contributions of this work include:

e We propose a source code embedding approach, GraphCodeVec, which represents
the source code as graphs and utilizes the Graph Convolutional Networks (GCN) to
learn task-agnostic code token representations.

e We conduct comprehensive experiments on the benchmark downstream tasks, which
demonstrates that GraphCodeVec performs comparable or better than the existing
approaches on all the studied downstream tasks.

e We perform ablation experiments to understand the impact of the important model-
ing decisions (i.e., training context and training model) on our approach and demon-
strate that both the structural context information and the GCN model benefit our
approach in producing more generalizable code embeddings.
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e We share our trained embeddings and downstream tasks with the research commu-
nity!.

Chapter organization. In Section 4.2, we describe our proposed approach. Section 4.3
presents our experimental setup. Section 4.4 discusses the experimental results of eval-
uating GraphCodeVec along three research questions. In Section 4.5, we further discuss
the impact of different parameter settings and different data sampling strategies on the
performance of code embeddings. Section 4.6 discusses the threats to the validity of our
study. Finally, Section 4.7 concludes this chapter.

4.2 Approach

Prior work [72| finds that pre-trained code embeddings may not be readily leveraged for
the downstream tasks that the embeddings are not trained for. However, considering
the limitations of the existing code embedding techniques, we propose GraphCodeVec,

—
Method Abstract syntax tree
Source files extraction Extracted methods generation Abstract syntax trees
~y ~y

1 —_—
Evaluation on < o
downstream tasks | Token embeddings |« E ding; < Method graph |« Graph context
learning representation generation

Figure 4.1: The overall framework of GraphCodeVec. Note: we apply the same token
embeddings trained from a general dataset on all downstream tasks.

I

which consists of a training context preparation phase followed by an embedding learning
phase. Figure 4.1 outlines the overall framework of GraphCodeVec. GraphCodeVec first
extracts methods from a collection of source code files (i.e., Java classes), which are later
transformed into AST representations. Based on these AST representations of methods, a
context graph is then constructed for each extracted method. In the embedding learning
phase, the GCN embedding approach [170] is used to train the token embeddings based
on the graph context. Below, we describe the training context preparation and embedding
learning phases in detail.

IThe embeddings and downstream tasks are available at Google Drive.
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4.2.1 Training Context Preparation

In this section, we describe the procedures of how to represent the source code using a
graph. Formally, given a code snippet D = (wy, ws, . .., w,), where w, is the nth token in
the code, the goal of this step is to generate its graph representation, G = (V, £), where V
is the set of nodes (i.e., tokens in the source code), € = {e,,|u,v € V} refers to the edges
in the graph (e, , represents the edge connecting nodes u and v).

4.2.1.1 AST generation

Apart from using the local window to construct the context, many NLP tasks adopt Syn-
tactic Dependency Parse (SDP) to composite the context |78, 82, 84, 147, 194]. Meanwhile,
previous studies [10, 18, 148] demonstrate that software engineering tasks can greatly ben-
efit from leveraging the syntax information of programming languages. Hence, in this
section, we follow a similar approach with that of Alon et al. [10] to extract the AST
representations of source code.

In GraphCodeVec, source code is first transformed into ASTs using JavaParser?, which
provides the functionality of converting source code into tree representations. The struc-
tural syntax information of each method is preserved in an AST tree. For example, given
the following code snippet, JavaParser produces the tree representation shown in Figure 4.3.

public void printName (String someone){
name = someone;
System.out.println(name);

Figure 4.2: An example code snippet.

As Figure 4.3 shows, the leaf nodes are tokens in the source code that are connected
by a set of JavaParser AST node types that provide the syntax structure of the code.

Based on the AST, we then extract the nodes and edges from the AST and represent
the source code using a graph. Our work shares a similar way with Alon et al. [10, 11].

’https://javaparser.org/.
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MethodDeclaration

(ClassOrInterfaceType

E
{ name } [ = } [ someone J

Figure 4.3: Tree representation of the code snippet generated by JavaParser. For simplicity,
only part of the tree is displayed.

4.2.1.2 Graph context construction

Once we have the AST representation of each method of the source code, we start to
construct the graph context. We first traverse the extracted ASTs (see Section 4.2.1.1) to
collect all the leaf nodes for each method (i.e., code tokens in the source code). The col-
lected leaf nodes are the nodes in the constructed graph. We adopt the depth-first search
algorithm implemented in “TreeVisitor™ for the traversal. To construct a graph repre-
sentation of the method, we also need to identify the AST node types connecting these
leaf nodes. The identified AST node types are the edges in the constructed graph. Given
any two different leaf nodes, w; and wy, the edge, e 2 is the shortest path between these
two nodes in the method’s AST. We also keep the path traversing direction to preserve
as much information as possible. As a result, we can collect two different type paths for
each pair of leaf nodes. The reason why we preserve the path direction is that different
paths represent different syntactic relationships between these nodes. For example, in our
above example, “name = someone;”, for the token “name”, “someone” is the source expression
(i.e., assigner), and for the token “someone”, “name” is the target variable (i.e., assignee). In
other words, the dependency relationship from “name” to “someone” is different from the de-
pendency relationship from “someone” to “name”. Moreover, the direction of the dependency
relationship is not only considered in SE tasks (e.g., [11]) but also in NLP tasks (e.g., [84]).
By doing such a directed structural traversal, we construct the graph representation of
the source code, where nodes represent the code tokens in the source code while the edges
represent the AST node types connecting two nodes. In the constructed graph, there are

3https://www.javadoc.io/doc/com.github. javaparser/javaparser-core/3.6.0/com/github/
javaparser/ast/visitor/TreeVisitor.html.
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N nodes and N = (N — 1) directed edges® describing the syntactic relationship between any
two nodes, and N is the number of leaf nodes in the AST (i.e., code tokens in the source
code).

void

Figure 4.4: Graph representation of the code snippet based on the AST. For simplicity,
only part of the graph is displayed.

Figure 4.4 illustrates a simple example of how to construct a graph from an AST.
Basically, we look for the subtree rooted on the closest common ancestor of the source and
the target leaf nodes. The detailed procedure is as follows:

1. Given an abstract syntax tree of a method, e.g., “printName”, we first collect all the
leaf nodes.

2. We then choose two of the leaf nodes as the target and source nodes (e.g., the
parameter type “String” and the parameter name “someone”), respectively.

3. Next, we extract the paths from the root node,
MethodDeclaration, to the target and source mnodes respectively (i.e.,
<MethodDec1aration, parameters, Parameter,ClassOrInterfaceType, SimpleName>
and (MethodDeclaration, parameters, Parameter, SimpleName)).

The longest common prefix of these two paths is
(MethodDeclaration, parameters, Parameter).

4. We then remove the longest common prefix from the two paths, resulting in two
sub-paths, (ClassOrInterfaceType, SimpleName) and (SimpleName). We keep the
last element of the common prefix (i.e., Parameter).

5. We preserve the path direction from the target node to the source node and con-
nect the path elements with —. Specifically, we reverse the sub-path connecting
the target node and assign the up direction (represented as 7). For the sub-path

4We further filter the edges by a length threshold, explained later in this section.
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connecting the source node, we remain in the same order and assign the down
direction (represented as |). For example, after this step, the two paths become
SimpleName'-ClassOrInterfaceType' and SimpleName'.

6. We then concatenate the two sub-paths with the pre-
served  last  element of the common  prefix (ie., Parameter),
SimpleName'-ClassOrInterfaceType'-Parameter-SimpleName'. Finally, we
have two nodes, “String” and “someone” and the edge connecting them, i.e.,
SimpleName'-ClassOrInterfaceType'-Parameter-SimpleName!, where the 1 and
| are the traversing directions and no direction means an inflection node of a
traversing path.

7. We repeat steps (2) through (6) for each pair of source and target nodes, until we
collect all the nodes and edges in the AST.

However, the number of edges is approximately the square of the number of tokens (i.e.,
leaf nodes). To reduce the size of the training data, we follow previous work [11] and limit
the number of edges by a maximum length: if the length of an edge (i.e., the number of
AST node types in the shorted path) exceeds the threshold, the edge will be ignored. In
our work, we follow the work of code2vec [11], and set the threshold to eight as we find that
two tokens connected by a longer edge usually do not have a direct structural relationship.
Note that a relatively longer edge can preserve a more complete relationship between the
leaf nodes, in other words, with a larger threshold, in the constructed graph, the target
node can have edges to more other nodes, and thus, generating more training context.
Meanwhile, if the threshold is too large, more indirect relationships with the target node
would be included, which may introduce more noise to the training corpus, leading to poor
quality of the generated code embeddings. And if the threshold is too small, although
the target token would have a more direct relationship with other nodes, the number of
connected nodes would be small and lead to insufficient training data. Thus, the threshold
should be tuned for specific tasks or training contexts.

The output of our training context preparation phase (i.e., the graph context of code
tokens) is used as the input for our embedding learning.

4.2.2 Embedding Learning
This section provides a detailed description of our approach to learning distributed token

representations in a task-agnostic manner. More specially, in this work, we adopt the
Graph Convolutional Networks (GCN) [170] to train the token embeddings based on the
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graph context generated in Section 4.2.1. The reason why we choose GCN is that it can
not only preserve both the semantic information (i.e., leaf nodes in ASTs), but also the
structural information (i.e., the connecting paths in ASTS) of the source code [8].

Figure 4.5 illustrates our embedding learning phase. Assuming the target token is
“someone”, the relevant context tokens (e.g., “name”, “String”, “printName”, “void”) are fed into
the GCN model for predicting the target token, “someone”. Formally, given a graph rep-
resenting the source code snippet, G = (V, ), the goal is to learn a d-dimensional
embedding for each token in V.

public
void
printName : h,
. ' wy :
printName ;O I
String : o, \ someone ;,
. : : w
String :O I :\ ) t
someone : P, .
name () CCLLT 7
name : Py T
b

vid OO |

someone

system

Figure 4.5: An overview of our embedding learning phase: assume the target code token
is “someone”, the nodes in blue are the relevant context tokens which are fed into a one-
layer Graph ConvolutionalNetwork (GCN) for learning the distributed representations of
the target token. h,,, h,, are the hidden representations of the context token and target
token, respectively.

Similar to the Continuous Bag-Of-Words (CBOW) model [123, 124], which tries to
predict the target token using its surrounding tokens within a local window, our approach
utilizes the directly connected nodes (i.e., its neighbors), C,, to predict the given target
node wy.

Hidden representation for each node. The hidden representation (hidden state) of
each node is the output of a convolutional layer in GCN. As Figure 4.5 shows, the hidden
representation of the target token h,, € R? is updated based on its neighbors in the graph
context. More specially, the representation for the target node w; at the (I + 1)th layer in
GCN is computed by:

=Y (W L) (4.1)

WeECw,
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where Welwc ., and béwc ., are a trainable weight matrix and a bias, and hl, is the hidden
representation for context node w,. at the [th layer.

Edge-wise gating mechanism. As described in Section 4.2.1, to reduce the number
of edges in the graph, we do filtering using a threshold of edge length. In addition, there
may exist different relationships among the leaf nodes: some are weak and meaningless,
while others may be more meaningful. For example, we see in Figure 4.5 that even though
the target token “someone” is directly connected with the token “void”, their relationship is
not meaningful. In comparison, the relationship between “name” and “someone” is stronger.
Therefore, we should assign different weights to different context nodes when calculating
the hidden representation for the target node.

To address this issue, we adopt the edge-wise gating mechanism [113]|. For each target
node wy, the weight score with its context token w, is calculated as follows:
—0 (We”f hE 4ok ) (4.2)

l
gewc,wt we,wy We Cwe,wy

where W/t “and b are trainable parameters and o (-) is the sigmoid function. Thus,
the hidden representation of the target nodes is formulated as:

Pt =D g < (W B L) (4.3)

WeECw,

Training objective. Given a graph representation of the source code, G = (V, £), and
the target node, w; (the t*® node), the objective of the model is to maximize the following
objective function:

L= Z log P (w;|Cy,) (4.4)

wt 9%

where C,, is the context nodes (i.e., neighbors in the graph) of the target nodes wy,
P (w|Cy,) is the conditional probability of observing the target node w; given the con-
text nodes, Cy,. P (w;|Cy,) is defined using the following softmaxz function:

exp(Vu, ")
Ywey €XP(ViTh,)

P (w|Cy,) = (4.5)

where v,, and h,, denote the target embedding and hidden representation of the node w,
respectively.

Optimization. One issue in GraphCodeVec is the high cost of computation in the
softmaz function (i.e., Equation 4.5) because it involves the iteration through every node
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over V. To address this issue, different optimization strategies can be applied, such as
hierarchical softmax and negative sampling [124|. Hierarchical softmax [126, 128| uses a
binary tree to represent the tokens in the vocabulary, V, where each leaf node of the tree
is a token. The probability of traversing from the root to the leaf node (i.e., target token)
along the unique path is used to estimate the conditional probability. By doing such an
approximation, the complexity of calculating the probability of each word goes down from
O(|V|) to around log,(|V|) [107, 150]. While negative sampling is more straightforward [107,
150]. The idea of negative sampling is to update a small sample of the token vectors rather
than all of them, such that the computing cost of the softmaz function can be reduced.
In this work, following previous work [51, 142, 170], we adopt the negative sampling, as it
tends to give better results than hierarchical softmax [52, 142].

The output of our embedding learning phase (i.e., the token embeddings) are used as
the input for our downstream tasks for evaluation.

4.3 Experimental Setup

In this section, we present details of our embedding training settings and describe the six
downstream tasks used in our quantitative evaluation. Three of the SE tasks, i.e, (1) code
comment generation, (2) code authorship identification, and (3) code clone detection, are
used for the evaluation of code embeddings in prior research [72]; while the other three,
i.e., (4) source code classification, (5) logging statement prediction and (6) code defects
prediction, are newly added in our extended benchmark. We select these tasks either due
to the fact that they are chosen for evaluating code embeddings in previous work [72], or
they are of great importance for SE community and commonly studied in the literature.

4.3.1 Dataset Preparation

In our experiments, the dataset used for embedding learning comes from the Java-small
dataset®, which is provided by Alon et al. [11] and originally based on the dataset of Al-
lamanis et al. [7]. This dataset is collected from publicly available open-source GitHub
repositories.

Following the previous approach for pre-processing the source code [11, 28, 72|, we
convert the tokens into lower cases and remove all the non-identifiers (e.g., quotation
marks). Meanwhile, we follow the common practice [123, 124, 142, 170] and ignore all

Shttps://s3.amazonaws.com/code2vec/data/java-small_data.tar.gz
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tokens with a total frequency of less than five as there is not enough data to do any
meaningful training on those rare tokens [19, 149, 182]. While constructing the graph
representation, due to the limitation of the memory, we only keep the top-100 most frequent
edge types (i.e., edges with the identical path representation) and others are replaced with
a unique identifier (i.e., -1). As during embedding learning, we need to batch the training
context with different edge types into the GCN model, and in the GCN model, we create an
adjacency matrix for each edge type, that means if there are a large number of edge types,
the model requires more memory to keep these matrices and would run out of memory and
cannot be moved to GPU for embedding training. Besides, as recommended by Vashishth
et al. [170], we also limit the size of each graph to a maximum of 100 unique nodes and
800 edges; that is, if the size of the graph exceeds the threshold, the graph will be removed
from the training set. After preprocessing, we collect 637,108 training methods (there are
665,115 methods before the preprocessing), each of which is represented by a graph for
subsequent embedding learning. In this work, considering the fact that code2vec can only
be trained on method level corpus (cf., Section 2.1.2.1), to have a fair comparison with
these baselines, we only construct the method level graph context. However, as ASTs can
represent the source code with different levels (e.g., method level, statement level, class
level, etc.), our method can also be applied to other types of training data.

The datasets used in the downstream tasks may have different vocabulary from the
training dataset, a.k.a, the out-of-vocabulary (OOV) problem. To handle the OOV tokens,
we choose to randomly initialize the vector representation of tokens that only appear in
downstream tasks to minimize the impact of these unseen tokens (i.e., to make tasks
with OOV vocabulary predictable). By doing this, we can make sure that all tokens in
downstream tasks have vector representations, therefore it is always predictable (but may
lead to poor performance as the vectors representing these OOV tokens are not learned
from their context).

4.3.2 Training Details

While training the model, we follow the settings in prior work [11, 72, 204] and set the di-
mension of token vectors to 128. To prevent overfitting and avoid performance degradation,
we set the number of GCN layers to 1, as GCN tends to suffer performance degradation
with increased depth (i.e., number of layers) [26, 85, 90, 151, 209]. The training batch size
is set to 64 by default. Considering (1) the small number of weights of our model (i.e., one
layer and 128 input dimensions), (2) the relatively large size of the training data (i.e., more
than half a million graphs), and (3) the remarkable learning ability of GCNs from the graph
data, we train our embeddings for one epoch and the training loss is small enough. This
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is consistent with the finding of Mikolov et al. [123], that is for word embeddings, training
a model on a relatively large dataset using one epoch gives comparable or better results
than more epochs on the same dataset. As indicated in a prior work by Mikolov et al.
[124], the number of negative samples in the range of two to five is useful for large training
datasets and five to 20 for small training data. Hence, in this work, to balance efficiency
and accuracy, we set the number to five. The training of our embeddings is conducted in
a machine with an NVIDIA GTX 1080Ti GPU and 32GB memory. We summarize the
thresholds and hyperparameters used in our experiment in Table 4.1.

We evaluate the quality of the trained embeddings on six downstream tasks. For the
downstream tasks that use neural network-based models, the embeddings are used to ini-
tialize the embedding layer of neural networks, as changing the embeddings of the embed-
ding layer would affect the way the model is learned and thus the models with different
code embeddings would have different performance. For the downstream tasks that use
traditional machine learning models, the embeddings are used as feature vectors (i.e., each
dimension of the embeddings is treated as a feature). For example, we have a code snippet
“String name = someone”, and each token (“string”, “na.me", and “someone”; “=" s removed)
within the vocabulary has its corresponding vector representation, such as [0.1, 0.2, 0.3,
..]; [0.1, 0.1, 0.1, ...] and [0.2, 0.2, 0.3, ...], these vectors can be summed up (or other
operations) as a feature vector (each feature is one dimension of the embedding), which

later can be used for traditional machine learning models.

4.3.3 Baselines

To evaluate the effectiveness of our trained embeddings, we compare GraphCodeVec with
the following existing embedding models (i.e., the baselines):

e Word2vec® is a popular unsupervised word embedding method proposed by Mikolov
et al. [123]. We use the implementation in Gensim’ [149].

e GloVe is an unsupervised algorithm using token-token co-occurrence statistics, pro-
posed by Pennington et al. [142].

e fastText is proposed by Facebook’s Al Research lab [19]. It is an unsupervised
algorithm, which utilizes the subword information to enrich the word vectors. In

SThere are two variants in the implementation of Word2vec (i.e., Skip-gram and CBOW) and two
different optimization strategies (i.e., negative sampling and hierarchical softmax). Following previous
work [170], we here select the CBOW with negative sampling as a representation for comparison.

"https://radimrehurek.com/gensim/
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Table 4.1: Hyperparamters and thresholds used during the two stages of GraphCodeVec
for generating the code embeddings.

Default L
Stage Name clan Description
value

Edge length is the number of AST nodes connecting two leaf nodes (i.e., code tokens). It would
influence the quality and quantity of the training context. A smaller value would result in a
Edge tighter connection but fewer connected nodes to the target token, leading to not enough training
length context. On the contrary, a larger value may include more unrelated token pairs and introduce
noise to the training context. In our work, we follow the work of code2vec [11] and set it to
eight to make a fair comparison.
Unique node refers to the number of unique tokens within each method. This parameter would
influence the size of each constructed graph for training. The values should be tuned based on
. the GPU memory size, as we need to batch the graphs into the GPU for training, if the graphs
Unique . «
node 100 are too large, the mOflol requires more memory to keep these dgta and would throw an “out of
Training context memory” error. Vashishth et al. [170] suggest the number of unique nodes should be set to no
generation larger than 100. And in our settings, only about 4% of the graphs are filtered which not only
(cf., Sec. 4.2.1 and RQ2) has a small effect on the quantity of the training context but also can avoid the memory error.
Edge refers to the total number of extracted AST node types within each method. It has a
similar effect with the parameter Unique node on the size of the contracted graph. Also, the
values should be tuned based on the GPU memory size, in our work, we set this parameter to
800, as we find that only about a small portion (i.e., 4%) of the graphs are filtered out.
Window (cf., RQ2) is the maximum distance between the current and its neighboring word
within a method. It is similar to edge length, which also has an impact on the constructed
training context. A larger window size would be able to capture broader context, but with the
5 possibility of introducing noise, as the context tokens might not be tightly related to the target
token. On the contrary, a smaller window size may contain more focused information about the
target word but may not be able to capture sufficient context. Setting the context window size
to five is commonly done in the literature [19, 82, 123, 124, 149].
Layer refers to number of layers in GCN. It controls the depth of a GCN and directly influences
the quality of the model. Previous work [26, 85, 90, 151, 209] shows that GCN tends to suffer
performance degradation with increasing depth (i.e., number of layers). In our work, we follow
the work of [170] and use the default value.
Dim. is the dimensionality (i.e., vector size) of each token. It has a non-negligible impact on the
quality of the embeddings. A small vector size cannot preserve the properties of the tokens of
high dimensional spaces, leading to the degradation of quality of learned embeddings. However,
a too large size requires more computing resources and training time, and may suffer the sparsity
problem if the training data is not enough. In our work, we follow the settings in prior work
[11, 72, 204].
Neg. refers to the number of negative samples used when updating the wights of the model.
A larger value means more samples to calculate and thus more training time needed. This
parameter should be adjusted based on the size of training context. As suggested by Mikolov
et al. [123, 124], 5-20 samples works well for smaller datasets, and 2-5 words for large datasets.
Batch size defines the number of training samples presented in a single batch. A larger size can
64 speed up the training process but requires more GPU memory [15] while using small batch sizes
achieves better training stability [117]. In this work, we use the default 64.
Dropout rate is the probability of dropping a unit out. Dropout is a regularization technique
Dropout for avoiding the model overfitting. As larger models (more layers or more units) tend to more
rate easily overfit the training data [151, 161] and considering the small size of our model, we don’t
use this strategy, instead, we reduce the training epochs to avoid overfitting.
Epoch is the number of iterations through the entire training dataset. This factor affects the
performance of the embeddings directly. Increasing the number of epochs may overfit the model
Epoch 1 and a small number of epochs may lead to a not fully trained model. In our work, considering
the size of the training dataset and the number of weights of our model (i.e., one layer, 128 input
dimensions) [123, 124], we train our model for one epoch, as the training loss is small enough.

Edge 800

Window
(cf., RQ2)

Layer 1

Dim. 128

Embedding learning Neg. 5
(cf., Sec. 4.2.2)

Batch
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their approach, each word is represented as a bag of character n-grams, and the word
is represented as the sum of these character n-grams representations. We use the
implementation in Gensim® [149].

e code2vec’ is a recently proposed supervised model for source code representation.
Prior work |72] evaluates code2vec on three downstream SE tasks. This model is pro-
posed by Alon et al. [11] and utilizes the AST information to learn code embeddings.

We train these embeddings on the same dataset that is used for training our GraphCodeVec
embeddings (i.e., the Java-small dataset). To make a fair comparison, we do the same
preprocessing as in Section 4.3.1, that is converting the tokens into lower cases and removing
all the non-identifiers, as well as ignoring all tokens with a total frequency lower than five.

4.3.4 Downstream Tasks for Evaluation

To control the quality of the embedding evaluation experiments, we enrich the work of Kang
et al. [72] by adding three new tasks and adopting different modeling methods for the
six tasks, including deep learning approaches and traditional machine learning methods.
Specifically, for the first five tasks, including (1) code comment generation, (2) code author-
ship identification, (3) code clone detection, (4) source code classification, and (5) logging
statement prediction, we use neural network-based approaches; while for the task of (6)
software defect prediction, we follow the approaches used in their original work and adopt
traditional machine learning methods (i.e., logistic regression, LR in short). More details
can be found in Section 3.3.3.

We intentionally select both the deep learning and the traditional machine learning
approaches to ensure the code embeddings are adequately evaluated across different tasks
(i.e., six downstream tasks) and modeling approaches (i.e., traditional machine learning
and deep learning). However, we specifically select LR for the only task of software defect
prediction due to the fact that most of the downstream tasks that rely on code embeddings
use deep learning models, thus we only select one task and put more focus on the impact on
deep learning models. We run the experiments with 10-fold cross-validation to mitigate the
effects of the random separation of the training and test sets, and report the average scores
of the results of the 10-fold cross-validation. For the models’ selection for downstream SE
tasks, we follow the rules that (1) used in previous work [72, 139, 179], and (2) commonly
used and have the state-of-the-art or competitive results [75, 204|. To further ensure a fair

8https://radimrehurek.com/gensim/
Shttps://github.com/tech-srl/code2vec
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comparison with baselines, we either follow the parameter settings in previous work or use
the default parameters and avoid fine-tuning these settings only for our method.

In the evaluation, our focus is the effectiveness of different embeddings instead of the
approaches for the specific tasks themselves. Thus, we do not aim to reach the SOTA for
a specific task. Moreover, for each downstream task, we try to use the same experimental
settings that are reported in the literature, hence only examining the impact of different
embedding techniques on the downstream tasks.

4.4 Experimental Results

In this section, we discuss our experimental results of the evaluation of our proposed
approach, GraphCodeVec, organized along three research questions (RQs). For each RQ),
we explain the motivation and the approach before discussing the corresponding results.

RQ1: How effective is GraphCodeVec compared with other baseline
embedding techniques in representing the source code?

Motivation

Prior research [11, 21, 29, 43, 57, 63, 169, 204] proposes different distributed code repre-
sentations (i.e., code embeddings) approaches to assist in software engineering tasks (e.g.,
method name prediction and software vulnerability prediction). However, a recent study
by Kang et al. [72] finds that code embeddings may not be readily leveraged to enhance
existing models for the downstream tasks which they have not been trained for. Therefore,
in this research question, we would like to explore whether our task-agnostic GCN-based
approach (i.e., GraphCodeVec) can produce more generalizable token embeddings for a
variety of SE tasks compared with other baselines.

Approach

To answer our first research question, we need to train the token embeddings produced
by different embedding techniques (i.e., GraphCodeVec and baselines, cf., Section 4.3.3).
As shown in Figure 4.6, during code embeddings training, the same preprocessed training
dataset (i.e., the Java-small dataset, cf., Section 4.3.1) is used by different embedding
techniques.

Once we finish the code embedding training, we then need to evaluate these pre-trained
embeddings. However, as there is no direct evaluation methodology for evaluating the
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Figure 4.6: The overall design of the approach for RQ1. In this experiment, the same
preprocessed dataset is used by GraphCodeVec and baselines.

quality of code embeddings, we thus follow previous work [72] and use six downstream
SE tasks to evaluate the quality of code embeddings. Each of the tasks has its respective
dataset for model training and evaluation, and the only varying factor in each evaluation
task is the code embeddings (produced by GraphCodeVec and baselines) used for code token
representation (i.e., for each task, only the embeddings are changed, and other parameters
are kept the same), and thus we can conclude the performance changes are caused by
the code embeddings. Note that the change of code embeddings would also impact the
weights learned for each model, which is discussed in Section 4.6. The detailed description
of the downstream SE tasks and the corresponding evaluation metrics are presented in
Section 4.3.4.

Results

Overall, GraphCodeVec performs comparable or better than all baseline
approaches on all downstream tasks. The experimental results are provided in Ta-
ble 4.2 with the best results for each task and dataset highlighted in bold. In particular,
GraphCodeVec achieves the best results in five out of the six tasks'?, including the tasks
of code authorship identification, code clone detection, source code classification, logging
statement prediction, and software defect prediction. To better illustrate the results, we
specifically compare with GloVe, as did in Kang et al. [72], since it was one of the most im-
portant work aiming for generating task-agnostic embeddings at the time of our research.
Then, we conduct a statistical analysis using a Wilcoxon signed-rank test to compare the
performance of GraphCodeVec and the performance of GloVe. We use a p-value that is
below 0.05 to indicate that the performance difference is statistically significant. For the
differences that are statistically significant, we further compute the Cliff’s delta effect size.
The reason why we use the Wilcoxon signed-rank test and Cliff’s delta is that they both
do not assume a normal distribution of the compared data. As shown in Table 4.2, Graph-
CodeVec performs better than Glove in 16 out of 23 cases, and 68.8% of the improvements
are statistically significant with a magnitude of large. We obtain a 5.0% relative increase

10We compute the average score across all datasets for each task, and GraphCodeVec achieves the highest
average score for five out of six downstream tasks.
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Table 4.2: Evaluation results of using GraphCodeVec and baselines on the test sets in the
six downstream tasks.

Baselines
?;);f{;lstream Evaluation Metrics Dataset GraphCodeVec ~ Word2vec GloVe fastText code2vec
Code comment BLEU GitHub 20.7(-4.7%)*F 21.1 21.7 19.9 21.0
generation ROUGE 36.1(-2.4%)*F 36.9 37.0 36.0 36.3
Code authorship  Accuracy Google Code Jam  80.2(+1.1%) 78.9 793 766 79.4
identification
Code clone Fl BCB 93.4(+0%) 93.4 93.4 93.4 93.4
detection OJClone 93.8(+8.7%)*L 88.4 86.3 84.6 93.4
Source code Accuracy 0J dataset 93.7(+5.0%)*~ 85.5 892 767 91.4
classification
Airavata 95.7(+0.7%) 9.3 951 951 95.0
Logging Camel 81.4(40.4%) 80.9 81.1 79.8 80.5
statement BA CloudStack 86.3(-0.8%) 86.5 87.0 86.7 86.1
prediction Directory-Server 89.1(42.5%) 87.9 86.9 88.6 87.6
Hadoop 75.6(+0.7%) 75.7 75.0 74.4 73.9
Ant 1.5 > 1.6 42.7(+23.5%)* 359 346 360 47.5
Ant 1.6-> 1.7 50.5(+13.0%)*r 439 47 442 46.8
Camel 1.2 > 1.4 44.6(+5.3%)*>  41.9 423 418 2.7
Camel 1.4 -> 1.6 46.7(-4.6%)*L 45.3 49.0 45.8 49.6
Software jEdit 3.2 -> 4.0 57.0(-2.3%) 53.4 58.3 53.6 57.9
T - Bdit 4.0 -> 4.1 58.0(-3.3%)*" 61.0 600  60.7 58.5
L Logdj 1.0-> 1.1 72.5(+9.1%)** 640 665  63.1 68.5
prediction Lucene 2.0 -> 2.2 67.0(+9.3%)*" 63.1 613 632 63.2
Lucene 2.2 -> 2.4 65.2(+2.4%)*" 65.4 637 653 62.4
POI'1.5-> 25 84.6(+4.0%)*L 65.7 81.4 65.1 82.1
POI 2.5 -> 3.0 74.9(+2.6%)*L 72.5 73.0 72.2 74.0
Xalan 2.4 -> 2.5  52.5(+24.1%)*L 42.5 42.3 42.4 51.2

Note: The best results for each task and dataset are highlighted in bold. The numbers in the brackets
indicate the relative change of GraphCodeVec to GloVe. The * means that the difference is statistically
significant. The superscript L represents large effect size.

in accuracy on the source code classification task compared to the representative baseline
(i.e., GloVe). Moreover, for the evaluation on the task of software defect prediction, which
uses a traditional machine learning approach (i.e., Logistic Regression), our embeddings
reach the best results on more than half of the datasets. For the Log4j dataset, we obtain
around 10.1% absolute increase (24.1% relative increase) in the F1 score compared to that
of GloVe. The results demonstrate that the learned embeddings from GraphCodeVec can
better represent the source code and generalize to various downstream tasks. Besides, we
find that on the task of code authorship identification, by using the code embeddings gen-
erated by GloVe, we achieve an accuracy of 79.3% and outperform the simpler approach in
the work of Kang et al. [72| which uses the TF-IDF features. This finding is different from
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that of Kang et al. [72]. The difference may be caused by the different preprocessing steps
on the training corpus and parameters for GloVe training. This finding suggests that we
should be careful with the parameter selection and corpus reprocessing. To further investi-
gate the influence of these factors, we have conducted more than 20 new experiments with
different experimental settings, the results are discussed in Section 4.5 and Section 4.6.

However, we observe that for some downstream tasks (e.g., source code classification
and code authorship identification), different embedding techniques can result in diverse
performance. In particular, for the source code classification task, using the embeddings
trained by fastText can only have a 76.7% of test accuracy, compared to an 89.2% test
accuracy when using the embeddings trained by GloVe. This finding suggests practitioners
should be careful with the selection of code embedding techniques for different downstream
tasks, as they may produce diverse results. On the other hand, we also observe that
leveraging different embeddings may not always impact the performance of downstream
tasks significantly. This observation is similar to that of prior studies [72, 84, 170]. We
find that by using different embeddings, although we can obtain different performances on
different tasks, the difference is limited in some cases. For example, the different embedding
techniques result in the same F1 score of 93.4% on the BCB dataset for code clone detection.
One possible explanation is that the approaches used in the SE tasks are already powerful
enough and there is enough dataset for learning a good model. Thus, the impact of using
different embedding techniques may be negligible.

Compared to other embedding techniques, GraphCodeVec produces more
stable results across all the downstream tasks and datasets. Figure 4.7 shows
the comparison of performance results produced by GraphCodeVec and baselines. In this
figure, to show the difference to the best performance of each task, the results are scaled
to the range of 0-100%, which is the ratio of the current method’s performance to the
best performance of one task, and in each boxplot, we consider all the measures for all the
datasets (i.e., there are 23 data points in each boxplot). We did not rank all the results
and check the overall ranking of each technique, because different downstream tasks use
different measures with different ranges. Thus, for each downstream task, we normalize
the performance of each technique against the best performance across all techniques (i.e.,
we use scaled performance). The scaled performance has consistent ranges across different
downstream tasks thus allowing better comparison and visualization of the performance
of different techniques. We also calculate the coefficient of variation (CV) for all the
embedding techniques to quantify the variances. The results show that GraphCodeVec
has a relatively lower variance among all the tasks. For example, the biggest relative
difference appears in the task of software defect prediction on the Ant dataset, which
is 42.7% compared to the best result, 47.5%. Meanwhile, code2vec also has a stable
performance on SE tasks, but its median is lower than that of GraphCodeVec. On the
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contrary, some embedding techniques lead to unstable results. For example, the fastText
embedding technique achieves the best results on the BCB dataset but the worst result
(i.e., 84.6% compared to the best result, 93.4%) on the OJClone dataset for the code clone
detection task. Future work that depends on embedding techniques should consider a
stable technique such as GraphCodeVec, otherwise the performance may be compromised.

2.5% 7.5% 6.7% 7.8% 2.0%

1007 — 1 - =
95% S ° i

80% °

75%
°

GraphCodeVec Word2vec GloVe fastText code2vec

Figure 4.7: Comparison of the results of GraphCodeVec and baselines. The horizontal axis
represents all the evaluated methods; the vertical axis is the scaled performance of different
methods, which is calculated as the ratio of the current method’s performance to the best
performance of one task. The numbers on top of each box are the corresponding coefficient
of variance.

Discussion

In the above paragraphs, we have quantitatively demonstrated the superiority of Graph-
CodeVec on the six downstream tasks, thus in this part, we would like to discuss the limita-
tions of GraphCodeVec, as well as provide a qualitative analysis of the learned embeddings
to complement our quantitative evaluation on downstream tasks.

Strengths and limitations

As shown in Table 4.2, although, overall, GraphCodeVec performs the best compared to
all baseline approaches on five out of six downstream tasks, there is still a non-negligible gap
between GraphCodeVec and GloVe on the task of code comment generation. By comparing
the natural property of these tasks, we find that our GraphCodeVec works better on the
classification tasks, such as code authorship identification, code clone detection, and source
code classification, etc., but not on the text generation task (i.e., code comment generation).
For the classification tasks, the output is pre-defined labels and the embeddings only work
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Table 4.3: The agreement of the results between GraphCodeVec and baselines on the task
of code clone detection.

Word2vec GloVe fastText code2vec

0OJClone 0.82 0.77 0.75 0.89
BCB-Type-1 1.00 1.00 1.00 1.00
BCB-Type-2 1.00 .00 1.00 1.00
BCB-Type-3 (Strongly) 0.99 0.99 0.99 1.00
BCB-Type-3 (Moderately) 0.99 0.99 0.99 0.99
BCB-Type-4 1.00 1.00 0.99 0.99

Note: We use Cohen’s kappa to measure the agreement between the results generated by our method and
that of the other four baselines.

in the first embedding layer which converts the source code tokens to real number vectors.
However, for the task of code comment generation, we use an encoder-decoder architecture
where in the encoder part, similar to classification tasks, the embeddings are utilized
to transform source code tokens into vectors, while in the decoder part, the same code
embeddings (instead of word embeddings trained on comments or texts) are also used to
convert the comment tokens (i.e., extracted from code comments) into vectors. As the
code tokens and comment tokens are naturally different and thus, using only one code
embedding for both source code and code comments would confound the model, in other
words, one good code embedding may not perform well on texts. Thus, we conclude that
the poor performance may be caused by the fact that GraphCodeVec is able to capture the
properties of the source code, but the learned knowledge is too specific for the source code
and thus cannot be transferred to natural language tokens. In future work, to improve the
performance of GraphCodeVec on such text generation tasks, we can enhance the model
by jointly learning the code and word embeddings based on the code and text information
(e.g., documents and comments).

Moreover, we also observe that for some tasks or datasets, GraphCodeVec does not
bring significant benefits. For example, GraphCodeVec has the same results on the BCB
dataset with the other embedding techniques for code clone detection!! but best perfor-
mance (i.e., 8.7% improvement) on the OJClone dataset. Besides, similar results are also
observed on the Camel dataset for logging statement prediction, where GraphCodeVec has
a small improvement (i.e. 0.4%) compared to other embedding techniques but a relatively
larger improvement (i.e., 2.5%) on the Directory-Server dataset. One explanation for this
phenomenon is that larger training datasets may produce more powerful models and mit-
igate the differences between different embedding techniques. To obtain such fully trained
models, one possible way is to collect enough training datasets. Thus, we check the sizes of
the datasets, and we find that the size of the BCB dataset is almost twice larger than that

1 We further check the results, and as Table 4.3 shows, all the code embeddings almost produce identical
(clones) results on the BCB dataset.
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of the OJClone dataset and the size of the Camel dataset is more than five times larger than
that of Directory-Server. The findings highlight that GraphCodeVec can work better for
downstream tasks that have small training datasets. In other words, if the model cannot
learn enough knowledge from the training dataset, we can use the embeddings generated
by GraphCodeVec, as it can bring more external knowledge to the trained model, which is
another ultimate goal of the pre-trained embeddings (i.e., learning useful knowledge from
external datasets to improve the performance of downstream tasks).

Qualitative analysis of the learned embeddings

To further understand the trained embeddings, following prior work [11, 166|, we discuss
the characteristics of the trained embeddings from a qualitative perspective. We manually
inspect code embeddings on one qualitative task, i.e., token similarity, as it is usually
considered the most straightforward feature to evaluate token representations |11, 123,
124, 166].

We select the target tokens and query their most similar tokens and then explore them
intuitively. However, we should be aware that there is no explicit guideline for selecting
the representative tokens, thus qualitative analysis might be subjective. In this work, we
try our best to avoid the bias and select the subject tokens based on the following three
criteria: (1) tokens should be well-known in the vocabulary - to ensure that evaluators
are familiar with the characteristics of the tokens, (2) some of the tokens should provide
different functionalities - to ensure that their embeddings have a low similarity and thus are
located far from each other in the semantic space, and (3) some of the tokens should share
similar functionalities - to ensure that their embeddings have high semantic similarity.

Following prior work [11, 84, 166], we manually chose nine tokens from the vocabu-
lary with different frequencies. All the selected tokens are either Java reserved words (e.g.
“println” and “finally”) or frequently used methods (e.g. “sort”) and some of them share
similar functionalities (e.g., “sort” vs. “comparator”) and others provide different function-
alities (e.g., “while” vs. “sort”). For each chosen token, we retrieve its 40 most similar
tokens (using cosine similarity) according to different embeddings.

Visualization. In order to visualize high-dimension (i.e., 128 dimensions) embeddings, we
compress them down to a low-dimensional space (i.e., two dimensions) using t-SNE [112].
The idea of t-SNE is to reduce dimensions while trying to preserve the information of the
original data points, namely, keeping similar tokens close on the plane while maximizing
the distance between dissimilar tokens. We plot the target tokens and their most similar
tokens. A good code embedding should project similar (e.g., similar functionalities) code
tokens into the space with a shorter distance and project the unrelated code tokens far
from each other.
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Figure 4.8: Visualization of the target tokens and their 40 most similar tokens. The
horizontal and vertical axes show the two dimensions that are reduced from the original
128 dimensions using the t-SNE.

As shown in Figure 4.8, for the visualization of our embeddings (i.e., GraphCode-
Vec), we see that several clusters are plotted closely, such as the clusters of “sort” and
“comparator”’, which is consistent with the fact that they are frequently used together when
performing sorting actions. Meanwhile, we do co-occurrence statistics (i.e., count the num-
ber of times that every two tokens are used together) of the listed keywords on the training
corpus and find that for the token “comparator”, “sort” is the one that occurs together
more times than any other listed keywords, which conforms to our interpretation. Besides,
for fastText, each target token’s cluster is clearly separated from that of other target to-
kens. However, fastText cannot project similar tokens with a relatively shorter distance.
For example, the cluster of “sort” is plotted closer to that of “system” or “while”, instead
of “comparator”. For the comparison between GraphCodeVec and Glove, if we focus on
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the inter-relationships between these clusters, they both project “sort” and “comparator”,
“release” and “lock” as well as “system” and “printin” closer in the space; however, if we
focus on the intra-relationships within each cluster, GloVe projects the token “release”
scattered across different clusters, while on the contrary each cluster of GraphCodeVec is
more compact.

This finding confirms that GraphCodeVec can project syntactically similar tokens to the
vector space with a relatively short distance. Although the visualization cannot provide us
with a direct measurement of the quality of the embeddings, it still helps us gain insights
into the characteristics of the resulting embeddings.

Meanwhile, we also try to manually inspect the top-10 nearest neighbors of the given
token using cosine similarity. For example, given the target token, “while”, we retrieve its
top-10 most similar tokens and examine whether the token, “for” appears in the list or
not. The results show that the “for” token only appears in the top-10 nearest neighbors
of “while” when retrieved using the embeddings generated by Word2vec. This observation
shows that the trained embeddings may return some results that are different from the
prior knowledge of developers or researchers and are hard to interpret [72]. This finding
also suggests the necessity of exploring the characteristics of the learned embeddings from
different perspectives and shows that Word2vec may perform better than other embeddings
when used for retrieving similar tokens.

However, the above findings may not violate the first visualization part of the qualitative
analysis. For the visualization using the t-SNE, we retrieve the 40 most similar tokens for
the given target token and plot the clustering figures for each token, which is different from
retrieving top-k nearest neighbors and checking whether the expected tokens are in the list
or not.

Our evaluation results show that GraphCodeVec achieves better results than all the
baselines in five out of six downstream tasks. Besides, GraphCodeVec has the most
stable results on all downstream tasks. Future research and practice that rely on
code embeddings should be careful with the selection of code embedding techniques
for specific downstream tasks, as they may produce diverse results.
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RQ2: How does the structural context information of the source
code impact the effectiveness of the embeddings generated by Graph-
CodeVec?

Motivation

In RQ1, our results show that our GCN-based approach GraphCodeVec has the most
stable performance and outperforms the baseline approaches. On one hand, prior stud-
ies [11, 21, 63, 169, 204] show that incorporating the structural information (e.g., AST
structure of source code) of a particular source code of interest may provide promising
results in some software engineering (SE) tasks that rely on neural network-based tech-
niques and code is structured by its nature (e.g, class, method, and block) and thus the
code embeddings may benefit from the structural representation. On the other hand,
there are some studies that treat the source code as plain text and achieve satisfactory
results |29, 43, 57|. Therefore, in this research question, we aim to understand how the
structural information (i.e., the graph context extracted from the ASTs) affects the per-
formance of GraphCodeVec.

Approach

Original

Traini Origianl token
raining context beddings
generation (based on ASTs) \\ embe 8!
Embeddings .
l N Learming Uawg | < < < << e e e e e e eae e e Evaluationon |, ... ..
downstream tasks
GCN
Training context oken embeddings
without strutucal
information

generation (without ASTs)
Figure 4.9: The overall design of the approach for RQ2. In this figure, original refers to
our GraphCodeVec. No-struc refers to the method that does not utilize the ASTs while
keeping other settings the same as GraphCodeVec.

No-struc

In RQ1, the training context for generating code embeddings by GraphCodeVec is con-
structed based on the graph representation of source code, which preserves the structural
information of source code. Thus, in this section, to analyze the impact of our graph context
on generating the embeddings, we design an ablation experiment on these six downstream
tasks. In this experiment, as shown in Figure 4.9, the embedding training technique is
the same (i.e., GCN), with the only difference in the training context. We generate the
training context from the extracted methods without the structural information (unlike
our GraphCodeVec, which generates the training context based on ASTs) and then feed it
into the GCN model to obtain the code embeddings. We then compare the performance
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of the embeddings trained with and without the AST structure using the same training
technique (i.e., GCN). As the training context is the only changing factor, thus, we state
that the performance changes are caused by the different training context. That is if the
embeddings with the AST information perform better, then we can conclude that our em-
beddings can benefit from utilizing the ASTs. More specifically, we treat the source code as
plain text and do not consider the AST relationship among the tokens. Below we discuss
the details of how we extract the training context and incorporate it in GCN.

First, the source code is transformed into plain text, of which all the tokens are low-
ercased, and the non-identifiers (including punctuations such as “;” and operators such as
“=") are removed. As the training model (i.e., GCN) requires graph-format data as input,
to make source code suitable for training, we then adopt a local window to convert the
plain text into graphs. Given a target token, all the surrounding tokens located in this
window are connected to the target token in the graph by an edge. For example, given the
code snippet in Figure 4.2, assuming the target token is “public”, then “void”, “printname”,

“string’, “someone”, and “name” are the neighboring nodes in the generated training context.

public void printname string someone name someone system out println name

We construct a graph context for the target token “public” in the format shown in
Figure 4.10.

printname

voidQ\\ O
name (07 AT () string
Figure 4.10: An overview of the constructed graph context based on the plain text.

More specifically, the target token “public” is the central node of this graph and connects
to all the other five nodes, among which there is no edge between each other. We then feed
the generated context to the embedding learning phase. Finally, the learned embeddings
are evaluated on the six downstream tasks. In our experiment, we set the window size
to five on each side surrounding the target token, which is by default used in previous
work [19, 82, 123, 124, 149]. Note that a larger window size would be able to capture more
broad context, but with the possibility of introducing noise as the context tokens might
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not be tightly related to the target token. On the contrary, a smaller window size may
contain more focused information about the target token but may not be able to capture
sufficient context.

Table 4.4: Evaluation results of GraphCodeVec with and without utilizing the graph con-
text extracted from the ASTs.

Dowsnstream Code ¢ t de authorshi . e cod . -
owsnstream Code comment  Code authorship Code clone detection Source code Logging statement prediction

Tasks generation identification classification

Datasets GitHub Google Code Jam|BCB 0JClone 0J dataset |Airavata Camel CloudStack Directory-Server Hadoop

Metrics BLEU ROUGE Accuracy F1 Accuracy BA

Original 20.7 36.1 80.2 93.4 93.8 93.7 95.7 814 86.3 89.1 75.6

No-struc 20.7  36.0 80.0 93.4 93.5 93.6 95.3 80.6 86.0 87.7 4.7

Dowsnstream Software defect predicttion

Tasks

Datasets Ant Ant Camel Camel jEdit  jEdit Log4j Lucene Lucene POI POI Xalan
1.5->1.6 1.6->1.7 1.2->1.4 1.4->1.6 3.2->4.0 4.0->4.1 1.0->1.1 2.0->2.2 2.2->2.4 1.5->2.5 2.5->3.0 2.4->2.5

Metrics F1

Original 42.7 50.5 44.6 46.7 57.0 58.0 72.5 67.0 65.2 84.6 74.9 52.5

No-struc 43.9 48.3 43.5 48.3 57.6 58.9 66.7 59.8 65.9 82.7 74.6 51.9

Results

Overall, the graph context extracted from the ASTs can improve the perfor-
mance of the code embeddings generated by GraphCodeVec; however, Graph-
CodeVec may not always significantly benefit from the utilization of the graph
context. Table 4.4 shows the results of comparing the performance of the original Graph-
CodeVec and the one that does not use the structural information. In the table, Original
refers to our GraphCodeVec. No-struc is the variant of GraphCodeVec, which only utilizes
the plain text of the source code instead of the graph context extracted from the ASTSs
while keeping other settings the same as GraphCodeVec. In total, as Table 4.4 shows, we
find that our original GraphCodeVec outperforms No-struc (i.e., the variant of GraphCode-
Vec that does not consider the graph context extracted from the ASTs) in five out of six
downstream tasks'?. The comparison results demonstrate that even though we train the
embeddings using the same model, utilizing the graph context extracted from the ASTs can
help improve the performance of the embeddings. For example, on the logging statement
prediction task, by training the embeddings using the graph context, GraphCodeVec has
an overall balanced accuracy of 85.6% compared to 84.8% without the graph context.

On the other hand, for some tasks, the improvement is limited, and incorporating
the graph context extracted from the ASTs may cause performance degradation on some

12We compute the average score across all datasets for each task, and GraphCodeVec achieves the highest
average score for five out of six downstream tasks.
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datasets. For example, on the task of code authorship identification, the overall improve-
ment is only 0.2% and 0.1% for the task if source code classification. In addition, in
almost half of the datasets of the software defect prediction task, utilizing the graph con-
text degrades the performance of GraphCodeVec. The result indicates the limited effect of
incorporating the graph context in some cases. One possible reason is that some tasks may
not be sensitive to the structural information of the source code, thus using a structured
code representation may not improve the performance significantly.

We further conducted two more experiments with different window sizes (i.e., two and
eight) and the result (shown in Table 4.6) shows that paying more attention to closer neigh-
bors (a smaller window size) would bring more benefits. As when we reduce the window
size to two, we observe statistically significant improvement in five out of seven (i.e., seven
cases have significant performance changes among which five cases have improvement) cases
(71.4%), and when we increase the window size to eight, we observe statistically significant
improvement in four out of eight cases (50%).

Although overall, the structural information extracted from the ASTs can benefit
GraphCodeVec in producing code embeddings for the downstream SE tasks, there
may be cases where the structural information may not provide additional benefit.

RQ3: How does the GCN model impact the effectiveness of the
embeddings generated by GraphCodeVec?

Motivation

Prior work [84] proposes a novel word embedding approach for NLP tasks that adopts a
shallow, two-layer neural network instead of Graph Convolutional Networks to incorporate
the syntactic information between words and achieves promising results. Their results raise
our concern about whether a simple two-layer neural network is powerful enough to model
the syntactic information within the corpus. Therefore, in this research question, we want
to study how the GCN model affects the performance of GraphCodeVec for generating the
code embeddings for the downstream tasks.

Approach

In RQ2, we analyze the impact of structural context information on the effectiveness
of the embeddings generated by GCN. We train two different code embeddings using dif-
ferent training contexts (i.e., with and without AST information) but the same training
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Figure 4.11: The overall design of the approach for RQ3. In this figure, original refers
to our GraphCodeVec. No-GCN refers to the method that does not utilize the GCN for
embedding learning.

embedding technique (i.e., GCN). In this section, to analyze the impact of the GCN model
on generating the embeddings, similar to RQ2, we design an ablation experiment on these
six downstream tasks. In this experiment, as shown in Figure 4.11, we adopt two different
training techniques with the same training context, which both consider the structural
information for code embedding learning. Specifically, we implement another method,
namely, No-GCN [84] for comparison. No-GCN uses a similar approach to extract the
graph context from the ASTs but adopts a shallow, two-layer neural network to train em-
beddings. No-GCN was originally proposed by Li et al. [84] for learning word embeddings
by incorporating the dependency information between words in a sentence. Li et al. [84]
modify the original Word2vec model and integrate the syntactic dependency information
between words into the embeddings. In this work, we customize No-GCN by replacing the
syntactic dependency with the AST paths extracted from the source code.

No-GCN uses a similar way of extracting the training context from the source code. It
first transforms the source code into ASTs, then traverses the trees to collect triples, where
the first and last elements are the leaf nodes of an AST and the second element is the AST
path connecting the other two elements. For example, given a target token, “public” in
Figure 4.3, it starts from “public” and keeps traversing the tree until it reaches another
leaf node (e.g., “void”), and the traversing path is recorded. By doing this, it can collect a
set of triples that can be used for training the code embeddings. Similar to our work, the
number of triples is also limited by the length of an AST path.

Different from the GCN used in this chapter, No-GCN modifies the original Word2vec
model to include the AST paths instead of only considering the tokens (more details can
be found in the work [84]).

Results

The comparison results with No-GCN show the advantage of using GCN for
modeling the graph context. Our experimental results for comparing GraphCodeVec
with No-GCN on the six SE tasks are presented in Table 4.5. As Table 4.5 shows, we find
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Table 4.5: Evaluation results of utilizing different models to train the code embeddings
from the graph context.

Dowsnstream Code comment Code authorship Code clone detection Source code Logging statement prediction

Tasks generation identification classification

Datasets GitHub Google Code Jam|BCB 0JClone 0J dataset |Airavata Camel CloudStack Directory-Server Hadoop

Metrics BLEU ROUGE Accuracy F1 Accuracy BA

Original 20.7  36.1 80.2 93.4 93.8 93.7 95.7 814 86.3 89.1 75.6

No-GCN 21.4 36.7 79.8 93.4 91.0 90.1 95.9 804 86.3 87.4 4.7

?;SVI:Snstream Software defect predicttion

Datasots Ant Ant Camel Camel jEdit  jEdit Logd4j Lucene Lucene POI POI  Xalan
1.5->1.6 1.6->1.7 1.2->1.4 1.4->1.6 3.2->4.0 4.0->4.1 1.0->1.1 2.0->2.2 2.2->2.4 1.5->2.5 2.5->3.0 2.4->2.5

Metrics F1

Original 42.7 50.5 44.6 46.7 57.0 58.0 72.5 67.0 65.2 84.6 74.9 52.5

No-GCN 43.3 49.8 44.1 49.6 58.6 57.3 69.1 63.0 62.0 7.2 71.8 48.4

that overall our GraphCodeVec has the best results in five out of six downstream tasks.
For example, on the source code classification task, No-GCN achieves a test accuracy of
90.1%, while GraphCodeVec reaches 93.7%. The comparison results show that GCN is more
suitable for representing the source code as graphs and capturing the syntactic structure of
the source code when generating code embeddings. However, similar to the results in RQ1,
GraphCodeVec also does not reach the best results on the task of code comment generation.
This may be due to the fact that GraphCodeVec is good at capturing the properties of
source code, while the task of code comment is for generating the natural language texts,
and thus our approach cannot perform well. Besides, we find that the improvement for the
task of code authorship identification is limited, with only 0.4% absolute increase. This
observation further confirms our findings in RQ2 that some tasks may be not sensitive to
the structural information of the source code.

Compared to the impact of the graph context in RQ2, we find that the GCN model
has a more stable influence on the performance of GraphCodeVec. On the one hand, in
RQ2, replacing the graph context with plain text causes a relatively smaller performance
decrease on the downstream SE tasks compared to changing the training model in RQ3. For
example, there is a 0.1% degradation of the test accuracy on the source code classification
task after changing the training context in RQ2, compared to 3.6% degradation after
changing the training model in RQ3. On the other hand, in RQ2, we do not observe
improvement by using the graph context on almost half of the datasets of the software
defect prediction task; while in RQ3, we observe improvement by using the GCN model on
nine datasets. Our results suggest the promising research direction of using graph-based
deep learning methods for SE tasks.
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Instead of using a vanilla neural network, the use of Graph Convolutional Networks
can robustly benefit the performance of GraphCodeVec for training code embeddings
for the downstream SE tasks.

4.5 Discussion

In Section 4.4, we have conducted several experiments and shown that our task-agnostic
GraphCodeVec can effectively be applied to different downstream tasks. In this section,
we would like to have a discussion about the impact of different model parameters and
the results of repeating our experiments with different data sampling using a 10-fold cross-
validation.

Impact of modeling parameters. GraphCodeVec contains two stages (i.e., training
context generation and embedding learning) for learning the code embeddings where some
thresholds and model hyperparameters are involved for generating the training corpus as
well as defining the GCN structure. In this work, we either simply follow previous work or
use the default settings of the model and do not try to fine-tune the parameters for fitting
into different tasks. In this part, to examine whether our generated code embeddings can be
further improved and assess the impact of the hyperparameters on the quality of the gener-
ated code embeddings, we conduct more than 20 new experiments with different parameter
settings and the corresponding results are listed in Table 4.6. We also conduct a Wilcoxon
signed-rank statistical test to check whether there is a significant performance change be-
tween the performance of the model using the newly configured parameters and that of
the model using the default parameters results are significant, for significant changes, we
further conduct Cliff’s delta statistic to check the effect sizes. The significant changes are
marked in bold as shown in Table 4.6.

The performance of GraphCodeVec on some tasks can be further improved by fine-
tuning the model parameters. For example, if we set the dimensionality of the embeddings
to 300, we observe a performance increase of the F1 score (i.e., from 93.8 to 95.6) on the
OJClone dataset for the task of code clone detection. Meanwhile, changing the parameters
can also decrease the performance of GraphCodeVec. In our experiment, using a smaller
dimensionality (i.e., 50) of the embeddings leads to performance degradation in almost all
the tasks and datasets. The reason may be that a small dimensionality of the embed-
dings cannot preserve the properties of the tokens of high dimensional spaces, leading to
the degradation of the quality of learned embeddings. On the contrary, using a relatively
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larger dimensionality can preserve more information and improve the quality of the gen-
erated embeddings. Another possible reason may be underfitting of the models used in
downstream tasks, as a smaller input dimension means a simpler model and fewer weights
to be learned during model training, and thus the model cannot capture the relationship
between the input and output variables accurately, generating a high error rate on the test-
ing data. To examine the impact of the number of training epochs, we provide another two
experiments with more training epochs (i.e., five and ten epochs). During the embedding
learning phase, the training loss reduces from 1.79 at the beginning of the first training
epoch to 0.73 at the end of the first epoch, which further drops to 0.47 and 0.48 at the end
of the fifth and the tenth epochs, respectively. Further, we also evaluated the quality of
the newly generated embeddings on the downstream tasks. Overall, as shown in Table 4.6,
when the training epoch increases to five, we observe seven improvements in the evaluation
of the downstream tasks. On the other hand, we also observe that there are degradations
on some (i.e. five) of the datasets from source code classification and software defect pre-
diction tasks. The results indicate that the training epochs have different effects (either
positive or negative depending on the downstream tasks) on the quality of the generated
embeddings, and developers can fine-tune these epochs, especially for their tasks. In our
experiments, as we stated in Section 4.3.4, we avoid fine-tuning these settings only for our
method aiming for better performance.

A model with more layers (i.e., a deeper model) may not guarantee better performance,
especially for GCN models. In our supplement experiments, we increase the depth (i.e.,
layers) of GraphCodeVec from one to three and five, we find a continuous performance
degradation for almost all the tasks, the model even returns an F1 score of zero for the
task of software defect prediction on the Lucene project. This finding is consistent with
previous works [26, 85, 90, 151, 209]|, that is with an increased depth (i.e., number of
layers), GCN tends to easily overfit the training data and suffer a continuous performance
degradation. Except for reducing the number of layers (we set the layer to one to avoid
overfitting and performance degradation, cf., Section 4.3.2) of the model, researchers [161|
also propose to use dropout to prevent overfitting. Dropout is a regularization technique
that randomly drops out the units along with their connections of neural networks. To
examine the impact of using dropout on the quality of our generated code embeddings,
we have experimented with two different dropout rates (i.e., 0.2 and 0.5). Overall, as
Table 4.6 shows, we do not have obvious performance improvements when using different
dropout ratios. This can be explained by the fact that our model (e.g., one layer, 128 input
dimension, and trained for only one epoch) does not suffer the overfitting problem, and thus
using dropout cannot further improve the performance of our embeddings on downstream
tasks. However, the results in our experiments do not mean that dropout is useless, instead,
it indicates that our model structure may not suffer from the overfitting issue. Moreover,
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previous work [22, 49, 52] and experiments!®!* also show that using dropout may not

always improve the performance of neural networks, which further confirms our findings.
For example, Garbin et al. [49] and Cai et al. [22] observe that adding dropout may reduce
the performance of the model. Besides, in the original work of dropout [161], the authors
also explored the effect of changing data set size when dropout is used, and the results show
that when the size of data sets is very small (e.g., 100, 500 samples) or very large (e.g.,
50K samples), dropout may not give any improvements. These results suggest that we
should be careful when applying the dropout to the neural networks. Meanwhile, previous
work [52, 161]| provides suggestions on how and when to use dropout to avoid overfitting.
For example, it is expected that dropping the neurons in the model would reduce the
effective capacity of a model, thus Srivastava et al. [161] suggest increasing the size of the
model when using dropout and they suggest setting the number of units to n/p, where p
is the dropout rate and n is the number of optimal units for a model without dropout.
Besides, Goodfellow et al. [52] also suggests that when there is a large amount of training
data, the benefit of using dropout may be outweighed by the computational cost of using
dropout and larger models. Thus, considering our simple model architecture and the large
size of the training dataset (i.e., over 60K samples), it is reasonable that using dropout does
not significantly improve the quality of our generated embeddings. To better illustrate the
ability of dropout in preventing model overfitting, future work can try to add more layers
with more training epochs.

Traditional machine learning model (e.g., logistic regression used in the task of soft-
ware defect prediction) is more sensitive to the changes of code embeddings. As shown in
Table 4.6, almost any changes in the parameters of GraphCodeVec could lead to significant
changes in the performance (either improvement or deterioration) of the software defect
prediction task. This may be explained by the fact that the code embeddings are directly
used as features for the traditional machine learning models, thus any changes in embed-
dings could be immediately propagated to the final output of these models. However, for
deep learning-based models, the embeddings are only used to initialize the first embedding
layer of which the value would be later adjusted to better fit the training data, as a result,
the impact of utilizing different embeddings may be diminished or even erased during the
model training and weights updating.

The thresholds used during the training context generation stage have a relatively more
minor impact on the code embeddings generated by GraphCodeVec than that of the pa-
rameters involved during the embedding learning stage. For example, as we lower the
thresholds of unique nodes (i.e., 50 and 80), there is only one significant performance

Bnttps://github.com/mvshashank08/article-dropout
Mnttps://github.com/harrisonjansma/Research-Computer-Vision/blob/master/08-12-18Y%
20Batch’20Norm%20vs%20Dropout/08-12-18%20Batch%20Norm}%20vs%20Dropout . ipynb
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Table 4.7: Evaluation results of fastText with different preprocessing strategies.

Dowsnstream Code comment Code authorshi . Source code . L
P Code clone detection Logging statement prediction

Tasks generation identification classification

Datasets GitHub Google Code Jam|BCB 0OJClone 0OJ dataset |Airavata Camel CloudStack Directory-Server Hadoop

Metrics BLEU ROUGE Accuracy F1 Accuracy BA

Original 19.9 36.0 76.6 93.4 84.6 76.7 95.1 79.8 86.7 88.6 74.4

Lowercase 19.3 35.3 70.5 93.4 75.2 60.2 96.2  80.2 86.8 88.5 74.1

Dowsnstream Software defect prediction

Tasks

Datasets Ant Ant Camel Camel jEdit jEdit Log4j Lucene Lucene POI POI  Xalan
1.5->1.6 1.6->1.7 1.2->1.4 1.4->1.6 3.2->4.0 4.0->4.1 1.0->1.1 2.0->2.2 2.2->2.4 1.5->2.5 2.5->3.0 2.4->2.5

Metrics F1

Original 36.0 44.2 41.8 45.8 53.6 60.7 63.1 63.2 65.3 65.1 72.2 42.4

Lowercase 29.3 41.7 44.5 46.0 53.3 61.5 58.7 65.0 62.3 69.9 72.5 47.1

Note: Original and Lowercase are two different preprocessing strategies, where Original contains three
steps (1) remove non-identifiers, 2) filter out the rare tokens, and 3) lowercase all tokens; while Lowercase
means that we only perform a lowercase preprocessing on the tokens (i.e., without removal of
non-identifiers and low-frequency tokens). We compute the average score across all datasets for task-level
comparison.

change among all 23 tasks or datasets. This finding shows that GraphCodeVec is different
from fastText, which is sensitive to the preprocessing of the corpus [69]. To complement
the experiments, we have done another experiment for fastText where we only perform
a lowercase preprocessing on the tokens (i.e., without the removal of non-identifiers and
low-frequency tokens). The results are shown in Table 4.7. In our experiment, we find
that among all the six tasks, the performances of four tasks (i.e., code comment genera-
tion, code authorship identification, code clone detection, source code classification) have
relatively large changes. The results confirm that fastText is sensitive to the preprocessing
of training context. For example, on the task of source code classification, there is a 16.5%
absolute decrease in fastText with different preprocessing strategies. Besides, by checking
the significant performance changes caused by different GraphCodeVec settings, we find
that changing parameters involved during the embedding learning stage has a higher possi-
bility of causing significant performance changes in the different tasks and datasets. More
specifically, modifying the threshold of unique nodes and the edge only causes one or two
significant performance changes, even on the software defect prediction task, which is more
sensitive to the change of code embeddings.

Impact of different data sampling. Different separations between training and test
sets have a non-negligible effect on the performance of the models. Figure 4.12 shows the
results of different embedding techniques on all datasets using 10-fold cross-validation. We
can observe the apparent variances in almost all the tasks or datasets. For example, on
the task of code authorship identification, all the results of the evaluated code embeddings
have large variances, and the differences between the lowest and highest scores even exceed
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10%. Although the variances on the tasks of code comment generation and source code
classification seem to be small, both have obvious outliers, and the range of the Y-axis is
larger. This finding further indicates the necessity of running multiple times with different
separations between the training and test datasets to mitigate the effects on the data
separation. Otherwise, the reported conclusions may be misleading, as the rankings of the
performance of different embedding techniques may differ.

Finally, we want to highlight that, on the one hand, fine-tuning parameters of Graph-
CodeVec for the different downstream tasks can usually result in improved performance.
On the other hand, different parameters can have diverse impacts on the final performance,
and if we do not know which settings to choose, starting from the suggestions from previous
work is always not a bad choice.

4.6 Threats to Validity

This section discusses the threats to the validity of our work.

External validity. One major threat of using GCN for training embeddings is the
computational costs. In our work, the embeddings are trained in an NVIDIA GTX 1080Ti
GPU, and it takes around 18 minutes to finish the training process, which is acceptable. In
fact, the major computational costs are caused by the downstream tasks. For example, it
takes around 10 hours to finish the evaluation of the comment generation task. Considering
the large amount of time and computing resources needed for executing the downstream
tasks, our quantitative evaluation is conducted on six SE tasks. However, we train our
embeddings in a task-agnostic manner using an independent dataset from the datasets
used in the downstream tasks. Although our study only focuses on six tasks, the scale of
our study is comparable to prior research on embedding evaluation [72]. Meanwhile, there
exist other tasks that adopt the pre-trained embeddings, and we cannot confirm that our
embeddings might be generalizable to all the tasks. For example, for the tasks that rely on
both natural language texts and source code, such as traceability link recovery [136, 137]
and user review classification [140], we think that our embeddings may not perform very
well on these two tasks as our code embeddings are only trained on source code and cannot
capture the properties of natural language texts, which is confirmed by the task of code
comment generation. However, we believe it would be a very promising research direction to
jointly learn the code and text embeddings, and in that way, the embeddings can be applied
to such tasks which involve both texts and source code. Another threat is that some of our
models used in downstream tasks may not give state-of-the-art results. For example, we use
logistic regression in the task of software defect prediction, which is simple and a bit out of
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date, especially in the era of deep learning. However, our goal is to show the performance
changes of different code embeddings. Although this model is simple, it is able to reflect the
representation ability of different code embeddings. Nevertheless, we admit that our choices
of the models in the studied downstream tasks pose a threat to the generalizability of our
findings. Thus, using the downstream task of software defect prediction as an example, we
experimented with other models, including Random Forest (RF), Naive Bayesian (NB),
and Support Vector Machines (SVM). We observe that our general findings remain the
same, and our proposed embedding approach achieves the best results for all the models
except NB. We speculate that it may be because NB is not best suited for the task as it
holds a strong assumption on the independence of the features which are difficult to satisfy
in the resulting embeddings. In fact, the performance of NB is among the worst of all the
considered models. On the other hand, we encourage future work to validate our findings
on more downstream tasks and models. Moreover, there is a lack of qualitative tasks for
quality evaluation, and all the downstream tasks are external tasks, which means we cannot
do the evaluation directly. To minimize the threat and explore the internal characteristics
of embeddings, we also provide a qualitative evaluation. While the qualitative evaluation
may include subjective bias in terms of selection of example tokens and interpretation of
their projection in the semantic space, that may be introduced by the different backgrounds
of researchers. However, we have already provided the trained embeddings, and readers
can explore the properties among the tokens of their own interests. Future studies can
apply GraphCodeVec to other tasks, such as method name prediction, and develop some
qualitative evaluation datasets, such as token similarity or token analogy test sets. For the
comparison of the results, we report the final score of each evaluation metric. However,
small variations (e.g., when one instance is classified in a different direction) may change
the results. Our goal is to understand the performance changes between different code
embeddings among different tasks. Although a small number of misclassifications may
cause significant changes in the final scores, especially for small datasets, even in such
cases, the improvement or decrease of the performance can still reflect the effect of the
different embeddings. Besides, we do a 10-fold cross-validation to reduce the impact of
such cases.

Internal validity. As described in Section 4.2.1, we attempt to represent the source
code into graphs, where the nodes are tokens in the source code, and edges are AST paths.
There could exist other strategies for representing the source code as a graph. Besides, we
rely on the surface forms of the tokens to build the connected graph within a method, as a
result, changing the name of a variable would lead to the change of the constructed graph.
In particular, using meaningless identifiers (e.g., “v”) may negatively impact the quality of
the resulting embeddings and their effectiveness in the downstream tasks. However, we
have applied our approach to a variety of real-world software projects. The results demon-
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strate the effectiveness of our approach when applied to ordinary code written by different
developers. Meanwhile, using the same identifiers in different surrounding code contexts
would also impact the performance of our approach. For example, the keyword “public”, can
be used as modifiers for different levels of source code (i.e., class, attribute, and method),
and ideally, they should have different representations to better capture the properties.
However, in our approach, the token ‘public‘ has been assigned only one unique vector rep-
resentation, which is non-optimal. Another threat to validity is that there is a possibility
that the temporal dependencies among code tokens (i.e., the sequence of the source code
tokens) may not be captured by the ASTs. However, prior work [11, 21, 63, 97, 169, 204|
finds that the structural information performs better for some SE tasks. On the other
hand, our way of constructing the training context still can capture such information, if
the distance between the sequence of code tokens is within the threshold (i.e., a pre-defined
value of the maximum number of AST nodes connecting two leaf nodes, cf., Table 4.1).
To better illustrate it, given the following code sequence, “public static void main”, the
temporal dependencies would be “public” -> “static’-> “void’-> “main”, if we convert the
code sequence to an AST, only the structure information of the code sequence is preserved
and the sequence information is lost. While, if the distances between these tokens in the
source code are within a threshold, by using our method to traverse the AST, we are able

to construct the following triples, “public” - > “static”, “static” “void”, and “void” ->
“main” (different colors represent different AST paths). And thus we can construct a graph
that captures the temporal dependencies, “public” - > “static” -~ “void” -> “main”. Besides,

in RQ2, we also treat the source code as a sequence of plain text for embedding generation,
which also confirms the findings that, overall, the structural information extracted from
the ASTs can benefit code embedding generation for the downstream SE tasks. Another
threat is that in RQ2, we examine how the training context (with or without AST) impacts
the resulting embeddings and thus the performance of the downstream tasks. Although we
only vary the input of the embedding training from the process point of view, the change
in the resulting embeddings can impact the training process of the subsequent downstream
tasks. More specifically, the changes in code embeddings would lead to different weight val-
ues between layers and neurons depending on the embedding during the training process.
Thus, the training context is not the sole varying factor of the analysis, and it confounds
with other factors such as the training of the downstream tasks. Future work may further
investigate the impact of the individual steps (e.g., embedding training) while isolating
other steps (e.g., downstream stream task training). In Section 4.3.1, we remove the
rare tokens during the preprocessing stage, which may also cause the removal of important
tokens, leading to an overfitting model. While, on the contrary, rare tokens mean that
there is not enough data for training. As we described in Section 4.2, if the tokens appear
only once or twice, the vector (i.e., embeddings) of that token can only be updated limited
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times (depending on the epoch) which would result in a poor embedding of the code em-
beddings [19, 149, 182], thus we follow common practice [19, 149, 182] and remove these
rare tokens. In RQ1, we provide a qualitative analysis of different embeddings, while the
manual inspection may include subjective bias introduced by the individual participants.
Future work can consider different graph representations and perform manual analysis to
verify our findings.

Construct validity. As described in Section 4.3, we select six different tasks and
corresponding models to evaluate the generalizability of the code embeddings. Thus, one
of the threats is the quality of the models used in the downstream tasks. In our work, most
of the models have a comparable or better performance compared to the work in the liter-
ature [72, 88, 179, 204]. Although, in our experiment, the model used in the task of code
comment generation performs not as well as the original work [63, 72| (i.e., with a 5.7%
performance degradation). This may be caused by the different parameters used for the in-
ference stage and the data separation. Previous work |63, 72| only mentions the parameters
for the model training but do not provide the parameters for inference, and unlike what we
do in RQ1, they only randomly split the data into training, validation and test sets without
a 10-fold cross-validation which also has a non-negligible impact on the results. However,
we can still observe the performance changes in the model caused by different code embed-
dings. Another threat is that the training data used for our embeddings is the Java-small
dataset. There may exist other datasets that can be used for embedding training. And in
order to make a fair comparison with baselines, we only extract the training context based
on the methods which may lead to the inadequate use of the class or project-level informa-
tion from the source code. However, as ASTs can represent the source code with different
levels (e.g., method level, statement level, class level, etc.), our method can also be applied
to other types of training data. Besides, the edges (i.e., AST paths) in the graph repre-
sentations are extracted based on the JavaParser tool. JavaParser is a mature tool and
has been widely used in various software engineering research. Nevertheless, the quality
of the data generated by JavaParser may impact the results of our study. GraphCodeVec
requires several hyper-parameters for the training process, such as the dimensions, the
number of GCN layers, and the number of training epochs, which may impact the result-
ing code embeddings. To minimize the bias caused by the hyper-parameter configurations,
we follow the practices from prior studies [11, 72, 204] to configure the hyper-parameters.
Performing further fine-tuning on these hyper-parameters may further improve the results
of GraphCodeVec. In our experiments, we randomly initialize the OOV tokens with real
numbers, which may affect the performance of downstream tasks. However, to minimize
such influence, we conduct a 10-fold cross-validation for all experiments.
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4.7 Conclusions

In this chapter, we introduce a graph convolutional network-based approach, GraphCode-
Vec, which represents source code as graphs and learns code token embeddings from the
context information provided by the graphs. GraphCodeVec trains code token embeddings
in an unsupervised way, aiming to improve the generalizability of the learned embeddings.
We evaluate GraphCodeVec on an extended benchmark containing six downstream SE
tasks. The experiment results show that GraphCodeVec performs comparable or better
than all existing code embedding techniques on all SE tasks. Our approach and our pre-
trained embeddings can be leveraged by software engineering researchers and practitioners
in their downstream tasks that rely on or can be improved by code embeddings. Our work
also sheds light on future work that explores different approaches to constructing graph
representations of source code and utilizing graph-based deep learning methods to leverage
the graph representations.
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Part 11

Improving the Textual Information in
Logging Statements

90



Chapter 5

Background and Related Work

In this chapter, we first present the background of the textual information in logging
statements. We then talk about the prior research that is related to this part.

5.1 Background

Logging statements are inserted by developers in the source code to collect valuable run-
time information about software systems. Figure 5.1 shows an example code snippet, which
contains a logging statement (line 3). The logging statement has four components: (1) a
logging object “LoG”, (2) a verbosity level “info”, (3) a dynamic variable “this.rmAddress”,
and (4) a logging text, “Connected to ResourceManager at ”. The content of a logging state-
ment is typically written by developers.

1. private void registerWithRM() throws YarnRemoteException {

2 this.___r_”_§_§ou_r_c_§Tracker = getRMClient(d;

3 L0G. infa('{Connected to ResourceManager at " + ithis.rmAddress;

4 -

5 RegistrationResponse regResponse = this.resourceTracker
.registerNodeManager (request).getRegistrationResponse();

6.

7. 3}

Figure 5.1: A code snippet from Hadoop with a logging statement (line 3).

Logging statements produce execution logs at runtime, which play important roles in
the daily tasks of developers and other software practitioners [13, 89]. Prior work has
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leveraged the rich information in logs to support different software engineering activities,
including system comprehension [46, 158, anomaly detection [45, 66, 100, 114, 190, 191],
and failure diagnosis [132, 164]. In particular, logs are usually the only available resource
for diagnosing field failures [197].

5.2 Related Work

Although logs are of much value to software practitioners, the usefulness of logs highly
depends on their quality. Both logging too much and logging too little are undesired in
practice [89, 199]. There exists a significant challenge for developers to make proper logging
decisions. In this section, we categorize prior research into two types: (1) automated logging
suggestions and (2) empirical studies on software logging, which align with our proposed
two research aspects: (1) proactively suggesting new logging texts and (2) retroactively
analyzing existing logging texts.

Automated logging suggestions. Prior research has proposed automated approaches
that provide different logging suggestions including the locations of logging statements [47,
88, 193, 206, 210], the verbosity levels [86, 96|, the variables to include in a logging state-
ment [108], and the need to update an existing logging statement [87|. The most related
work to ours is from He et al. [59], who conduct an empirical study on the usage of natural
language descriptions in logging statements and propose an automated logging text gener-
ation approach that leverages logging texts from similar code snippets. Their approach has
been adopted in the next chapter as the baseline approach (cf., Section 6.3). Recently, pre-
trained models of code have achieved new state-of-the-art results for several code-related
tasks, such as clone detection, code search, and code completion [54]. Inspired by these ad-
vances, Mastropaolo et al. [120] propose to train a Text-To-Text-Transfer-Transformer (T5)
model to support the automatic generation of the complete logging statement, including
the logging positions, logging levels, and logging texts (the focus of our work). However,
although the model is trained on more than 1,000 projects, the generated logging texts
only have a BLEU score of 15. Other research aims to detect issues in logging statements.
Li et al. |92] perform the first extensive study on applying LLMs for logging statement
generation. Chen et al. [23] and Hassani et al. [58] discovered anti-patterns of logging
statements from prior log-related code changes and issue reports. Li et al. [94] discuss the
issue of duplicate logging statements. Automated tools are designed and implemented to
detect these anti-patterns in logging statements.

Despite the above research efforts, providing automated suggestions for logging texts
is still challenging. Prior work has highlighted the great importance of the information in
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the logging texts [89, 198|. Therefore, our work aims to provide automated generation of
logging texts to support developers’ logging decisions.

Empirical studies on software logging. Empirical studies have been conducted on the
practices of logging. The first empirical study on quantitatively characterizing the logging
practices was performed by Yuan et al. [199]|. Afterwards, follow-up studies by Chen et
al. [24] and Zeng et al. [202] extend Yuan et al’s study from C/C++ projects to Java
projects and Android app projects, respectively. Similarly, Shang et al. [157] conduct a
study focusing on the evolution of logging statements. Recently, Li et al. [89] conduct
a qualitative study on the benefits and costs of logging based on surveying developers
and studying logging-related issue reports. Li et al. [99] conduct a series of interviews
with industrial practitioners and investigate their expectations of the readability of log
messages. Besides those characteristic studies on logging, empirical studies are also car-
ried out focusing on different aspects of logging practices. The studied topics include the
stability of logging statements [68], logging utilities [25] and libraries|67], logging config-
urations [208], and the relationship between logging practices and software quality [159]
and performance 30, 202].

All prior studies provide empirical evidence that shows the challenges in software logging
practices, which motivates our work towards retroactive analysis of existing logging texts.
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Chapter 6

Proactively Suggesting the Generation
of New Logging Texts

Developers insert logging statements in the source code to collect important runtime in-
formation about software systems. The textual descriptions in logging statements (i.e.,
logging texts) are printed during system executions and exposed to multiple stakeholders
including developers, operators, users, and regulatory authorities. Writing proper logging
texts is an important but often challenging task for developers. Prior studies find that de-
velopers spend significant efforts modifying their logging texts. However, despite extensive
research on automated logging suggestions, research on suggesting logging texts rarely ex-
ists. To fill this knowledge gap, we first propose LoGenText, an automated approach that
uses neural machine translation models to generate logging texts by translating the related
source code into short textual descriptions. LoGenText takes the preceding source code of
a logging text as the input and considers other context information such as the location
of the logging statement, to automatically generate the logging text. The LoGenText’s
evaluation on 10 open-source projects indicates that the approach is promising for auto-
matic logging text generation and significantly outperforms the state-of-the-art approach.
Furthermore, we extend LoGenText to LoGenText-Plus by incorporating the syntactic
templates of the logging texts. Different from LoGenText, LoGenText-Plus decomposes
the logging text generation process into two stages. LoGenText-Plus first adopts a neural
machine translation model to generate the syntactic template of the target logging text.
Then LoGenText-Plus feeds the source code and the generated template as the input to
another neural machine translation model for logging text generation. We also evaluate
LoGenText-Plus on the same 10 projects and observe that it outperforms LoGenText on
nine of them. According to a human evaluation from developers’ perspectives, the logging
texts generated by LoGenText-Plus have a higher quality than those generated by LoGen-
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Text and the prior baseline approach. By manually examining the generated logging texts,
we then identify five aspects that can serve as guidance for writing or generating good
logging texts. Our work is an important step towards the automated generation of logging
statements, which can potentially save developers’ efforts and improve the quality of soft-
ware logging. Our findings shed light on research opportunities that leverage advances in
neural machine translation techniques for automated generation and suggestion of logging
statements.

6.1 Introduction

Extensive prior research has shown that writing proper logging statements is an important
and challenging task [24, 157, 199, 202]. Besides the typical challenges of deciding where
to log [38, 39, 95, 210] and how to choose verbosity levels [86, 165], deciding the textual
information in the logging statement is even more challenging [59]. Prior studies find
that developers spend significant efforts modifying the textual information in their logging
statements |24, 87, 157, 199, 202]. A recent study has shown that developers rely heavily
on reading the text in the logging statement while misleading textual information often
makes the use of logs counterproductive [89].

Despite the importance of logging texts, there exists a rare research effort that devotes
to assisting developers in writing logging texts. A recent study by He et al. [59] proposes
an approach that reuses the texts in the logging statements from similar code snippets.
However, since only existing logging texts are directly reused, the texts generated by the
prior approach may still require significant revisions by practitioners. Nevertheless, prior
work [59] has demonstrated the potential possibility of automatically generating logging
texts.

In order to help developers address the challenges of writing logging texts, we propose
LoGenText [37], a neural-machine-translation-based approach. LoGenText automatically
generates the textual description of a logging statement by translating the related source
code into logging texts. Specifically, we adopt a Transformer-based Sequence-to-Sequence
model which leverages an encoder-decoder architecture to automate translations and uses
the attention mechanism to boost its performance [172]. In LoGenText, the target sequence
of the Transformer-based model is a logging text, and the source sequence is its related
source code. We consider the source code preceding the logging text as the source input.
We also consider incorporating other contexts that may provide relevant information about
the logging texts to be generated, including the location of the logging statement, the
succeeding source code, and the logging texts in similar code snippets. To incorporate such
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contexts, we further extend the Transformer by adding additional encoders that integrate
the context information into the model [83]. The outputs of these encoders are then
formed as a new input to the decoder which generates the logging text as the final output
of LoGenText.

We evaluate LoGenText on 10 open-source Java projects from different domains. We
first evaluate the automatically generated logging texts by comparing them with the orig-
inal logging texts inserted by developers using quantitative metrics such as BLEU and
ROUGE-L. LoGenText achieves BLEU scores of 23.3 to 41.8 and ROUGE-L scores of
42.1 to 53.9, which outperforms the baseline approach from prior research [59] by a large
margin. On the other hand, our evaluation results show that incorporating other context
information (e.g., the location of the logging statement) can further improve LoGenText.
In order to further understand the effectiveness of LoGenText, we conduct a human-based
evaluation that involved 42 participants. The results confirm that LoGenText can pro-
vide high-quality logging texts and it significantly outperforms the baseline approach in
generating logging texts.

Although LoGenText has achieved superior performance over the baseline approach,
it still has limitations. For example, in our previous work [37], we find that there exists
a non-negligible gap between the automatically generated logging texts and those written
by developers, as LoGenText may generate logging texts that have similar meanings but
different syntactic structures from the developer-written logging texts. Meanwhile, recent
studies [41, 55, 177, 187, 192] on text generation tasks (e.g., text summarization, sentence
generation) show that incorporating the templates of the target sentences can produce
promising results in generating better translations, as templates can provide a positive
impact for guiding the translation process [192].

Therefore, we further extend LoGenText to LoGenText-Plus to incorporate the tem-
plate information (i.e., syntactic structures) of the logging texts, which may guide the
generation of the logging text. In this work, we use constituency-based parse trees of log-
ging texts from the training set to train an NMT-based model to generate templates. Then,
the generated templates are used to guide the generation of the logging texts. Figure 6.1
illustrates the process of generating logging texts based on the source code and templates.
In this example, the source code (i.e., Figure 6.1(a)) is used to generate the coarse syntactic
template (i.e., Figure 6.1(b)) which contains different levels of information, including the
syntactic symbols (i.e., “VBD”, verb with past tense and “VP”, verb phrase) and tokens
(i.e., “t0”) of the target logging text. Then, the template together with the source code
is fed into a Transformer-based model for generating the target logging text. We assume
that by using the templates, we are breaking down the task of logging text generation into
several stages in a coarse-to-fine manner and the coarse syntactic templates can guide the
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generation of the target logging texts.

void replaceSession(SessionType oldSession) throws Exception { ‘VBD!  to LVP !
Y Lo (b) Template.
EnewSession.close:(false);
}Ecatch (Exception ex):i { l
LOG.error( )
} ) EFailedEtoEclose an unneeded session?
(a) Source code. (c) Target logging text.

Figure 6.1: An example of the process of generating logging texts based on the source code
and templates. “VBD” represents a verb with the past tense, and “VP” represents a verb
phrase.

To assess the performance of LoGenText-Plus, we evaluate it on the same 10 projects
that were previously used to evaluate LoGenText. We first compare the logging texts
generated by LoGenText-Plus with that generated by LoGenText as well as the baseline
approach [59]| using quantitative metrics. Experiments show that LoGenText-Plus out-
performs the baseline approach as well as the best-performing version of LoGenText in
nine out of the 10 projects. Besides, we conduct another human evaluation to qualita-
tively evaluate the quality of the generated logging texts. The results further confirm that
LoGenText-Plus can provide higher-quality logging texts.

The contributions of this chapter include:

e Our automated approach LoGenText significantly outperforms the baseline approach
in generating logging texts.

e The newly extended approach, LoGenText-Plus, which incorporates the syntactic
templates of logging texts further advances the state-of-the-art.

e Our work suggests that automated approaches for logging text generation should not
only focus on the preceding code of a logging statement (as done in prior work) but
also consider other context information to further improve the performance.

e Our work demonstrates the promising direction of leveraging advances in neural
machine translation techniques to generate logging texts.

e Based on the manual evaluation results, we identify five aspects that can be used to
generate better logging texts.
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Our work is an important step towards the automated generation of logging statements.
Our findings shed light on future research opportunities that apply up-to-date neural ma-
chine translation techniques in automated generation and suggestion of logging statements.
We share our extracted datasets from the 10 open-source projects and the source code used
for training our models!.

Chapter organization. Section 6.2 presents the details of our approach: LoGenText and
its extension LoGenText-Plus. Section 6.3 presents the setup of the experiment for eval-
uating LoGenText and LoGenText-Plus. Section 6.4 and Section 6.5 present the results
of evaluating LoGenText and LoGenText-Plus through quantitative metrics and human
evaluation. Section 6.6 discusses threats to the validity. Finally, Section 6.7 concludes the
chapter.

6.2 Approach

In this section, we describe the details of LoGenText and its extension LoGenText-Plus
that leverage neural machine translation (NMT) to automatically generate logging texts.

6.2.1 Approach Overview

6.2.1.1 LoGenText

LoGenText is an NMT-based approach that uses deep neural networks to translate source
code into logging texts. The bottom half of Figure 6.2 (i.e., the part delimited by the
black dashed lines) illustrates the overall approach of LoGenText which consists of three
phases. First, for each logging statement in the source code, LoGenText extracts its logging
text, the source code preceding the logging text (i.e., the pre-log code), and the context
information from the source code (i.e., data preparation). Then, LoGenText feeds the
extracted logging text, the pre-log code (i.e., the source), and the context information into a
Transformer-based Sequence-to-Sequence (Seq2Seq) model [172] that consists of embedding
layers, encoders, and decoders (i.e., model training). Finally, the trained model takes
the source (the pre-log code) and the context information as input and translates it into
the corresponding logging text (i.e., model inference).

In the base form of LoGenText, we use the pre-log code of a logging statement to
generate its logging text. We evaluate the base form of LoGenText in RQ1 (Section 6.4-
RQ1). In RQ2 (Section 6.4-RQ2) and RQ3 (Section 6.4-RQ3), we propose a context-aware

'Replication package: https://tinyurl.com/4njsbudm
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Figure 6.2: An overview of LoGenText and its extension (LoGenText-Plus) which is de-
limited by the blue dashed lines and highlighted with *. In LoGenText-Plus, to train the
template generation model, the templates extracted from logging texts are used as the
target sequence, the templates extracted from logging texts in similar code (highlighted
in blue) are concatenated with the pre-log code as the source, and the structural (AST)
context is used as the context; To train the logging generation model, the logging texts
are used as the target sequence, the templates extracted from logging texts in similar code
(highlighted in blue) are concatenated with the pre-log code as the source, and the struc-
tural (AST) context is used as the context. During inference, the generated templates are
concatenated with the pre-log code as the source, and the structural (AST) context is used
as the context.

form of LoGenText and discuss the impact of adding the context information, including
the location of the logging statement in the abstract syntax tree (AST) (i.e., the structural
(AST) context), the source code succeeding the logging statement (i.e., the post-log code),
and the logging text in the most similar code snippet, on the performance of LoGenText.
The pre-log code is fed as the source, while other context information is fed as the context
to the model.
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6.2.1.2 LoGenText-Plus

Besides, we extend LoGenText to LoGenText-Plus by incorporating the template of the
target logging text. Different from LoGenText, LoGenText-Plus contains two stages:

Stage 1: template generation, where LoGenText-Plus adopts a Transformer-based
model to predict the templates. As shown in Figure 6.2, during data preparation, for
each logging statement in the source code, LoGenText-Plus first extracts four types of
information (i.e., the target logging text, the pre-log code, the structural (AST) context
information and the logging text in the most similar code (cf. Section 6.4-RQ3)) [37] which
are also used in LoGenText. Then LoGenText-Plus extracts the syntactic template from
the logging text as the target sequence for training and from the logging text in similar code
which is concatenated with pre-log code as the source sequence. During model training,
LoGenText-Plus feeds the template from the target logging text (i.e., target sequence),
the pre-log code together with the template from the logging text in the similar code (i.e.,
the source sequence), and the structural (AST) context into a Transformer-based model.
Finally, during model inference, the trained model (i.e., Template generator) takes the
source sequence (i.e., the pre-log code together with the template from the logging text in
the similar code) and the structural (AST) context information as input and translates it
into the corresponding template (i.e., Generated template).

Stage 2: template-based logging text generation, where LoGenText-Plus adopts
another Transformer-based model to predict the final logging text based on the generated
template in stage 1. As shown in Figure 6.2, during data preparation, similar to that of
the template generation stage, for each logging statement in the source code, LoGenText-
Plus first extracts four types of information (i.e., the target logging text, the pre-log code,
the structural (AST) context information and the logging text in the most similar code).
Then LoGenText-Plus extracts the syntactic template from the logging text in similar
code which is concatenated with pre-log code as the source sequence. During model
training, LoGenText-Plus feeds the target logging text (i.e., target sequence), the pre-
log code together with the template from the logging text in the similar code (i.e., the
source sequence), and the structural (AST) context into the Transformer-based model.
Finally, during model inference, the trained model (i.e., Logging text generator) takes
the source sequence (i.e., the pre-log code together with the generated template in the
template generation stage) and the structural (AST) context information as input and
translates it into the corresponding logging text (i.e., Generated logging text).

In RQ4 (Section 6.4-RQ4) and RQ5 (Section 6.4-RQ5), we detail LoGenText-Plus and
discuss the impact of incorporating different templates on its performance.
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6.2.2 Data Preparation

In this part, we describe the steps for preparing data that are required by both LoGenText
and LoGenText-Plus.

Data preparation involves three types of information: (1) logging tezt, which refers to
the static plain text in the logging statement, (2) (part) source, which contains the pre-log
code, and (3) context, which includes the structural (AST) context, the post-log code, and
the logging text in similar code.

The steps for preparing data that are required by both LoGenText and LoGenText-Plus
are as follows. Details for step template extraction specific to LoGenText-Plus can be
found in Section 6.4-RQ4, in which we evaluate LoGenText-Plus.

Extracting the logging text. We first extract the complete logging message (including
the logging text and variables) from the logging statement. Since our focus is on the
logging text, we then replace the variables with a wildcard (<wid>). For example, given
the following logging statement from Hadoop, the extracted logging text is “Removed child
queue: <vid>”.

LOG.debug("Removed child queue: {}",

" . . <vid>”
cs. getOueueName()) : —_ Removed child queue vid

(a) Original logging statement. (b) Extracted logging text

Extracting (part of) the source data. We use the pre-log code as the main input (i.e.,
the source data) for LoGenText. Specifically, the source data includes the code from the
method start point to the location right before the logging text of the logging statement.
We consider the pre-log code as our main input for logging text generation because a
logging statement usually communicates the runtime behavior of the system before the
execution of the logging statement [47, 89].

Extracting the context data. We consider three types of data as the context input of
our neural translation model, including the structural (AST) context, the post-log code
context, and the logging text in similar code. We discuss the details of extracting the
structural context and the post-log code context in RQ2 where we discuss the impact of
such contexts. Similarly, we discuss the details of extracting the logging text in similar
code in RQ3.

Pre-processing the logging text and source data. Following the previous approaches
for pre-processing the input text data |59, 61, 88|, we convert the logging text and source
code text into lower cases and tokenize them into token units. We also remove all the
non-identifiers (e.g., quotation marks).
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A potential challenge is the out-of-vocabulary (OOV) tokens of the source code and
logging texts [60, 63]. At testing time, there would be tokens that have never occurred
in the training data, which may lead to the poor translation of the NMT systems [111].
One way to alleviate the OOV problem is to enlarge the dictionary size to include more
rare tokens. However, due to the fact that user-defined identifiers (i.e., not reserved by the
programming language) take up the majority of code tokens, they have a non-negligible
influence on the vocabulary of translation dictionary [63]. Thus, using a large dictionary to
cover the user-defined tokens would increase the difficulty of training the translation model,
as it requires more training data and hardware resources [63|. To address this problem,
we employ byte pair encoding (BPE), a data compression technique, to segment the code
tokens into subword units [48, 155]. This is based on the intuition that users often define
identifiers via combining smaller word units. For example, the token “getQueueName” is a
combination of three subwords, i.e., “get”, “queue” and “name”. In this way, our approach
can encode all tokens as sequences of subword units.

Note that sometimes, preserving the original case of the source code provides more
information, which can be useful for certain code-related tasks. For example, in the task
of logging variable recommendations (i.e., which variable in the source code should be
logged), the capitalization information can be a strong signal for identifying the variables.
However, the authors of BERT also note that typically, the uncased model is better? for
a range of downstream tasks. In our experiments, our goal is to generate the textual
description in the logging statements. Although using BPE tokenization allows us to have
relatively good coverage with small vocabularies, unknown tokens still exist. Therefore, we
lowercase the source code and logging text to further reduce the out-of-vocabulary (OOV)
tokens, especially considering the fact that the capitalization might be inconsistent between
the source code and logging text. For example, in the project ActiveMQ?, the source code
contains a variable named “sendShutdown”, but in the logging statement the token “shutdown”
is used.

We set the maximum length of both the logging text sequences and the source code
sequences to 1,024 (the default value of our Transformer-based model). The tokens of the
sequences beyond the maximum length will be truncated; the sequences shorter than the
maximum length are padded. 0% of the logging text sequences are truncated and 3.7% to
3.8% of the source code sequences are truncated in the studied projects.

2https://github.com/google-research/bert#pre-trained-models

3https ://github.com/apache/activemq/blob/905£00c843b96996b25017e1b8646de15d703398/
activemq-broker/src/main/java/org/apache/activemq/network/DemandForwardingBridgeSupport.
java#L324
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6.2.3 NMT-based Log Generation

In this work, we consider the logging text generation task as a machine translation task,
i.e., translating a code snippet into logging text that communicates the internal behavior
of the code snippet. Thus, we can apply neural machine translation (NMT) techniques
to solve the logging text generation problem. Formally, given a source sequence X =
(1, 29,...,xg), our goal is to predict tokens in the target logging text Y = (y1,¥2,...,yr).
Most NMT models use an encoder-decoder architecture. The input to the encoder is the
source sequence X, and the output of the encoder is a sequence of distributed representa-
tions. The generated representations are then fed into the decoder part, where the tokens
in the target sequence are generated one by one [174]. Hence, the objective of the models
is to approximate the conditional distribution log P (Y |X; ) over the given source-target
pairs and model parameters 6.

Our model is also based on an encoder-decoder model, in particular, the Transformer
model proposed by Vaswani et al. [172], which has shown outstanding performance in
many software engineering tasks (e.g., source code summarization [4] and code comple-
tion [104]). Figure 6.3 illustrates the structure of the Transformer translation model that
is implemented in LoGenText and LoGenText-Plus. Note that the two models used in the
different stages of LoGenText-Plus are both based on the Transformer model. Like many
other sequence to sequence models, the Transformer utilizes an encoder-decoder structure,
which is explained in detail in the rest of this section.

Source encoder: As Figure 6.3 shows, the source encoder component makes use of N
stacked layers. Each layer is broken down into two sub-layers. The first sub-layer is a self

attention layer:
T

. Q
Attention (Q, K, V') = softmax(
Vg
where ), K,V are the query, key, and value vectors, v/dy, is a normalization factor and dj, is
the dimension of the key/query vector, Attention is the output of the attention layer. The
self attention mechanism allows the model to look at other positions for extra information
while encoding the current position.

W (6.1)

The residual connection and layer normalization are then applied to the output of the
attention layer:
Layer Norm (Attention + X) (6.2)

where X is the vector representation of the input token after positional encoding (explained
in the next paragraph). The output is then fed to the second sub-layer, a fully connected
feed forward network. Note that the feed forward network is point-wise, which means the
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Figure 6.3: An overview of the Transformer translation model.

network is applied independently to individual vectors generated by the attention layer.

Positional encoding: The orders of the tokens in the source sequence are important
for a machine translation model. To address this, unlike RNN and its variances, Trans-
former adopts positional encoding to inject the relative positional information into the
token representations. Specifically, a positional vector is added to the input embedding,
where the positional vector pe for ¢ token is calculated as follows:

, sin (wy, - t) if ¢ = 2k
pei—{ Snlwe i (6.3
cos (wy - t) if i =2k +1
where k is used for determining whether ¢ is an odd or even number, i € {0,...,d — 1} is
the encoding index, d is the dimensionality of the input embedding, and w; = m.

The final token representation that is fed into the self attention layer is a sum of the token
embedding and the positional encoding.

Context encoder: The structure of the context encoder is the same as the source
encoder. As the context inputs (i.e., the structural context, the post-log code context, and
logging text in similar code) are only discussed in RQ2 and RQ3, we describe the details
about how we integrate the context into our model in RQ2.
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Target decoder: The decoder in Transformer has a similar structure to the encoder.
It also consists of N stacked layers, with three sub-layers in each layer (slightly different
from the two sub-layers in the source encoder). The additional second sub-layer takes
the source encoder’s output and the decoder’s states which are generated by the first self
attention sub-layer. Besides, an attention masking is applied to the first self attention sub-
layer. This masking prevents future information from being leaked to the decoder before
the prediction and ensures that the predictions only rely on the previous outputs.

Given a source code and logging text corpus D, the goal of training the Transformer
model is to find parameters 6 that maximize the log-likelihood of the training data:

0 = arg max Z log P (Y]X,Y?;0) (6.4)
O (XY)D

where P is the conditional probability of the target sequence Y (i.e., the logging text) given
the source sequence X (i.e., the source code) and the previous sequence Y.

Note that in LoGenText-Plus, we also consider the template generation as a machine
translation task, i.e., translating a code snippet into a template that provide the syntactical
information of the logging text. The model shares the same structure as in Section 6.2.3,
where the target sequence is changed to the template. As the template information is only
used in RQ4 and RQ5, we describe the details about how to generate templates in RQ4
and RQ5.

6.3 Evaluation Setup

6.3.1 Subject Projects

We evaluate our proposed LoGenText and LoGenText-Plus on 10 open-source Java projects.
We choose the same subject projects that are used in prior work [59] which studies the char-
acteristics of logging texts. The details of the studied versions of these projects are listed
in Table 6.1. The source lines of code of the studied projects range from 330K to 1.7M.
These projects have about 2K to 12K logging statements, among which 76.2% to 95.8%
have logging texts. Similar to prior work [59], we evaluate LoGenText and LoGenText-Plus
on the logging statements with logging texts.
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Table 6.1: Details of the studied projects.

. . ## of logging # of logging

Project Version  SLOC statements statements with text
ActiveMQ  5.16.0 415k 2,185 2,093 (95.8%)
Ambari 2.7.5 490K 4,150 3,651 (88.0%)
Brooklyn 1.0.0 339K 2,937 2,813 (95.8%)
Camel 3.4.2 1.4M 7,046 6,366 (90.3%)
CloudStack 4.14.0 645K 12,015 10,613 (90.3%)
Hadoop 3.3.0 1.7M 12,471 11,270 (88.3%)
HBase 2.3.0 778K 5,534 5,071 (90.4%)
Hive 3.1.2 1.7M 6,845 6,290 (91.6%)
Ignite 2.8.1 1.1M 3,366 3,048 (90.6%)
Synapse 3.0.1 330K 1,978 1,508 (76.2%)
Avg. 890K 5853 5272 (90.1%)

6.3.2 Experimental Settings
6.3.2.1 Model training settings

The goal of LoGenText and LoGenText-Plus is to use the Transformer-based model to
automatically generate logging texts with the source code as the input. Our LoGenText
and LoGenText-Plus are implemented based on Fairseq [83, 138], a sequence-to-sequence
modeling toolkit. We use the same model structure as in the original Transformer model:
six stacked layers (i.e., N = 6), 512 embedding dimensions for both the source encoder
and the target decoder, and 2,048 feed-forward embedding dimensions. We use the Adam
optimizer to optimize the model parameters (same as the original Transformer model). To
prevent overfitting, we use a dropout rate of 0.1 [44, 54, 118, 119, 120]. More details about
the configuration of hyperparameters can be found in our replication package®.

For each subject project, we split all the instances into 80%/10%/10% training/valida-
tion/testing sub datasets®. As the number of instances in each subject project is relatively
small (i.e., about 1.5K to 11K), it is challenging to fit a Transformer model with more
than forty million parameters. To overcome this problem, we adopt a two-stage training
strategy (a.k.a., transfer learning (TL)) [52, 135, 195]: for each subject project, (1) we first
pre-train a model using all the training sets from 10 projects for 50 epochs, and (2) we then
continue to fine-tune the pre-trained model parameters using the target project’s training

4https://github.com/conf—202X/experimental—resu1t
5The sizes of training datasets range from 1K to 9k.
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set for another 50 epochs. The idea is inspired by the work of He et al. [59], where the
authors have shown that the logging practices are quite different across different projects,
and the n-gram patterns in different projects vary a lot. Meanwhile, a large project usu-
ally has a long development history (e.g., years). By fine-tuning a model for a specific
project using its existing data, we can leverage the model to suggest logging text for its
future development activities. Therefore, we intentionally train separate models for each
project, aiming to accurately capture the in-project language patterns while avoiding the
(negative) impact of other projects. The validation set is used to monitor the performance
of the model during training to avoid overfitting.

For inference, we use the beam search with a width of eight, which means at each step,
the top eight candidate tokens with the highest scores are kept for the next step. However,
the beam search algorithm favors shorter sequences |20, 133]. To address this problem, we
adopt the length penalty, which gives favor to longer sequences [188]. In our experiments,
we set the value of the length penalty to 2.5. In addition, we set the maximum length and
minimum length of the generated logging text to be 100 and 3, respectively, as we find
that the lengths of 92.4% to 98.4% of the logging texts in the studied projects fall in this
range.

The training of our models is conducted in a cluster of machines each with an NVIDIA
V100 Tensor Core GPU.

6.3.2.2 Model evaluation approaches

We evaluate the performance of LoGenText and LoGenText-Plus using a combination of
quantitative evaluation and human evaluation.

Quantitative evaluation: We use two widely used machine translation evaluation
metrics, BLEU [141] and ROUGE [102], to evaluate the quality of the generated logging
text sequences in terms of their similarity to the original logging texts inserted by the
developers. The details of these evaluation metrics are described in the research questions
that apply these metrics.

Human evaluation: In order to evaluate how developers perceive the generated
logging texts, we also performed a human evaluation, which is detailed in Section 6.5.

6.3.3 Baseline Approach

We compare our approach with prior work by He et al. [59], which is by far the state-of-
the-art approach for generating logging texts. Their method assumes that similar code
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snippets tend to have similar logging texts. To generate the logging text for a given code
snippet, He et al. [59] perform a search in the training corpus to retrieve the most similar
code snippet based on Levenshtein distance [81]. The logging text of the most similar
code snippet is used as the logging text for the given code snippet. We re-implement their
method as a baseline to compare with our approach.

6.4 Evaluation Results

In this section, we discuss the results of evaluating LoGenText and LoGenText-Plus through
answering six research questions. More specifically, the first three research questions (i.e.,
RQ1-RQ3) are related to LoGenText, and RQ4-RQ6 are newly proposed research questions
and related to its extension, LoGenText-Plus.

RQ1: How well can the base form of LoGenText automatically generate logging
text?

Motivation.

Prior research [59] has observed that logging texts are predictable and proposes a sim-
ple approach (the baseline approach in Section 6.3) based on the intuition that similar
code snippets contain similar logging texts. Such a simple approach has demonstrated
a promising result. Therefore, in this RQ, we would like to explore whether our NMT-
based solution (i.e., LoGenText) can automatically generate logging texts with a better
performance than the baseline approach.

Approach.

We evaluate the base form of LoGenText, i.e., using only the source input (pre-log code)
to generate the logging texts and compare it with the baseline approach [59]. Following
prior work [59], we evaluate the quality of the generated logging texts using two widely
used metrics for machine translation evaluation, i.e., BLEU® [141, 143] and ROUGE" [102].
Both BLEU and ROUGE take the automatically generated logging texts and the reference
logging texts (i.e., the original logging texts written by developers) as input and calculate
the similarity between them, which outputs a percentage score between 0 and 1. The
higher the score, the better the generated logging texts in terms of their similarity to the
reference logging texts.

6https ://github.com/mjpost/sacrebleu
"https://github.com/pltrdy/rouge
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BLEU (Bilingual Evaluation Understudy) is used to evaluate the match between a
generated text and a reference text, which is calculated as follows:

N
BLEU = BP - exp (Z w, log pn) (6.5)
n=1
B 1 ife>r
BP = {e(l_’"/c) if e<r (6.6)

where p, is the modified n-gram precision (i.e., the maximum number of n-grams co-
occurring in the automatically generated logging text and the reference logging text divided
by the total number of n-grams in the generated logging text), w, are positive weights that
can be configured, BP is a brevity penalty, c¢ is the length of the generated logging text
and r is the length of the reference logging text. In our evaluation, we choose N = 4 and
uniform weights w,, = 1/N, same as prior work [59]. In addition to the overall BLUE score,
we also consider the specific BLEU-n (n = 1, 2, 3, 4) scores, which are the BLUE scores
considering only one gram size.

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a set of metrics for
evaluating automated generated texts in text summarization and translations. ROUGE is
calculated as follows:

ZgramneRef CountmatCh (gramn)

ngmneRef Count(gram,,)

where n is the length of the n-gram (gram,,), and Countacn(gram,) is the number of

n-grams co-occurring in the automatically generated logging text and the reference logging
text, Ref. We calculate ROUGE-1, ROUGE-2 and ROUGE-L. ROUGE-L measures the
longest matching sequence of tokens using LCS (Longest Common Subsequence).

Results.

ROUGE-n = (6.7)

Our base form of LoGenText generally outperforms the baseline approach.
Our experimental results of comparing LoGenText with the baseline on the 10 studied
projects are presented in Table 6.2. The best results are highlighted in the bold font. We
can see that the base form of LoGenText provides a ROUGE-L score of 41.1 to 52.3 and
a BLEU score of 21.8 to 39.0 for the studied projects. As shown in Table 6.2, LoGenText
outperforms the baseline approach for all the projects in terms of ROUGE-L by 5.7%
to 22.8% and has a higher BLEU score than the baseline approach by 2.9% to 18.5% in
seven out 10 projects. In addition, besides the overall BLEU and ROUGE-L, LoGenText
performs better than the baseline approach in almost all different gram sizes (i.e., BLEU-
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n and ROUGE-n). Our results indicate the promising research direction of using neural
translation techniques in the automated generation of logging text.

On the other hand, we also observe that the base form of LoGenText may not always
provide a better performance in terms of BLEU scores (e.g., BLEU-4). As shown in
Table 6.2, LoGenText performs better than the baseline approach for seven out of 10
projects in terms of BLEU but worse for the other three projects (Brooklyn, Synapse, and
Hive). By examining the BLEU scores of different gram sizes (i.e., BLEU-n), we realize
that the base form of LoGenText always outperforms the baseline in terms of smaller
gram sizes (i.e., BLEU-1 and BLEU-2); in some cases (e.g., for the projects Brooklyn,
Synapse, and Hive), the base form of LoGenText may not perform better than the baseline
approach in terms of larger gram sizes (i.e., BLEU-3 and BLEU-4). This phenomenon can
be explained by the different working mechanisms of these two different approaches. The
baseline approach simply reuses logging texts from other code snippets [24], thus it tends
to produce long sequences of identical tokens between code snippets, which can result in
relatively high larger-gram BLEU scores, especially when there are many duplications of
logging texts [94]. In contrast, LoGenText automatically generates new logging texts token
by token, thus it may not always produce long sequences of tokens that are identical to
the ones written by developers, even though the generated ones may have similar semantic
meanings with the written ones, as discussed in our user study in Section 6.5.

The base form of our NMT-based approach LoGenText generally outperforms the
baseline approach that leverages the existing logging texts in similar code snippets.
Our results illustrate the promising future research opportunity of formulating au-
tomated logging text generation as a neural machine translation task.

\.

RQ2: Can incorporating context information improve the base form of LoGen-
Text in generating logging texts?

Motivation.

Prior studies [14, 76, 115, 116, 174, 175, 183, 203] on NMT show that incorporating
the context information (e.g., surrounding text) of the source input may provide promis-
ing results in generating better translations. In addition, the context information (e.g.,
surrounding source code, AST structure of source code) of a particular source code of
interest has shown benefits in some software engineering (SE) tasks that rely on neural
network-based techniques [11, 21, 63, 169, 204|. Therefore, in this research question, we
aim to understand whether the context information (e.g., the post-log code and the struc-
tural (AST) information of a logging statement) can help further improve LoGenText in
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automatically generating logging texts.
Approach.

We propose a context-aware form of LoGenText and consider two types of context infor-
mation in this research question: the post-log code and the structural (AST) information
related to a logging statement. Below we discuss how we extract such context information
and incorporate it in LoGenText.

Extracting context information. Extracting the structural (AST) context: We use
AST extracted by sreML [31] to represent the location of a logging statement. The struc-
tural information represented by the AST has been applied successfully in many SE tasks,
including suggesting where to log [210] and how to choose log levels [86]. First, we extract
the AST of the method containing the logging statement. Then, we convert the AST into
a sequence of AST node types (e.g., if statement) following a preorder traversal. We only
keep the sequence of AST node types prior to the logging statements.

Extracting the post-log code context: Although a logging statement is usually not di-
rectly related to the subsequent code (i.e., post-log code), prior research [59] shows the
post-log code may provide some extra information relevant to the logging text. There-
fore, we consider the post-log code as the context input instead of the source input in our
NMT-based model. Specifically, the post-log code contains the code from the location that
immediately follows the logging statement to the end of the containing method. We use
the same approach as the pre-log code (cf., Section 6.2) to convert the post-log code into
a sequence of code tokens.

Integrating context information in our models. There are mainly two approaches
for integrating the context information in NMT-based models: (1) simply concatenating the
context and the source as a new input sequence [3, 168], and (2) utilizing a multi-encoder
model, where additional neural networks are used to encode the context [83, 174, 203]. Prior
work [83, 174] shows that the multi-encoder approach is more effective for incorporating
context information in NMT tasks. We experimented with both approaches and we also
found that the multi-encoder approach shows better performance in our context. Therefore,
we use the multi-encoder approach in this chapter.

The structure of our context integration approach is illustrated in Figure 6.4. The
context encoder replicates the original Transformer encoder and takes one type of context
information (e.g., AST context, post-log code context) as input. The output of the context
encoder together with the output of the source encoder is then fed into a self-attention
layer. Then, the outputs of the attention layer and the source encoder are fused by a gated
sum. Formally, let S be the output of the source encoder and C' be the output of the
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Figure 6.4: An overview of the multi-encoder Transformer.
attention layer, the output of the gated sum G is
G=A0C+(1-)N0OS (6.8)
where the gating weight A is calculated by
A=oc(WI[C,S]+0) (6.9)

where o (+) is the sigmoid function, W is the weight parameters of the model and b is the
bias.

In order to understand the impact of different types of context information, we evaluate
the performance of the models using each type of context. We use the same metrics used
in RQ1 (i.e., BLEU and ROUGE-L) to evaluate the quality of the generated logging texts.

Results.

Incorporating context information can improve the performance of the base
form of LoGenText and outperforms the baseline approach in all the studied
projects. Table 6.3 shows the results of incorporating different context information. By
comparing the context-aware form of LoGenText with the base form, we find that by incor-
porating the context information using multi-encoder models, we can obtain a performance
improvement on almost all the projects. For example, by encoding the structural (AST)
context into our LoGenText, we obtain a 29.2% relative (8.4% absolute) increase in terms
of BLEU score in project Synapse over the base form of LoGenText. Overall, as shown in
Table 6.3, the context-aware form of LoGenText that incorporates the AST context pro-
vides a BLEU score of 23.3 to 41.8 and a ROUGE-L score of 42.1 to 53.9 for the studied
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Table 6.3: Evaluation results of incorporating contexts (AST, post-log code) in LoGenText
for logging text generation (RQ2).

BLEU(%)
‘ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse‘Avg.
Baseline 21.0 19.8 26.0 37.9 30.1 19.6 19.5 28.2 215 34.1 25.8
Base LoGenText (RQ1) 23.0 22.8 25.4 39.0 34.6 21.8 23.1  28.0 249 28.8 27.1
With |AST 24.1 23.8 27.8 41.8 34.6 23.3 23.5 29.6 28.8 37.2 29.5
context | Post-log code 24.1 24.5 28.4 39.9 34.3 23.1 24.3 29.6 282 34.8 29.1

ROUGEL(%)
‘ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse‘Avg.

Baseline 36.1 36.8 38.1 474 43.9 34.1 384 424 37.1 46.9 40.1
Base LoGenText (RQ1) 43.4 42.9 43.6 52.3 50.1 41.1 46.5 46.7 455 49.5 46.2
With |AST 42.5 43.4 44.0 53.9 50.8 42.1 46.4 48.2 47.6 53.6 |47.3
context | Post-log code 42.8 43.5 44.7 53.6 50.4 41.5 46.3 48.0 46.0 53.4 47.0

Note: Values in bold font indicate the best-performing models.

projects, which are 5.0% to 34.0% and 13.7% to 28.3% higher than the baseline approach,
respectively. In addition, unlike the base form of LoGenText which may underperform
the baseline approach for certain projects (e.g, Brooklyn and Synapse) in terms of BLEU
scores, sizes (i.e., BLEU-3 and BLEU-4), our context-aware form of LoGenText can provide
better BLEU scores than the baseline approach for all the studied projects. The results
demonstrate that LoGenText can benefit from the extracted context information.

Meanwhile, we observe that for some projects (e.g., Synapse and Camel), different
types of context can result in diverse performance. In particular, for the Synapse project,
incorporating AST and post-log code results in BLEU scores of 37.2 and 34.8, respectively.
This finding suggests that practitioners should be careful with the selection of contexts for
different projects, as they may produce diverse results. On the other hand, we also observe
that leveraging the AST context performs better than the post-log context in seven out
of the 10 projects and has the largest improvement over the base form of LoGenText on
average. This observation further confirms the success of applying AST information in
suggesting logging activities [86, 210].

We also find that incorporating additional context may not always improve the per-
formance of LoGenText significantly. As shown in Table 6.3, by adding context using the
multi-encoders model, the performance on the project CloudStack (using AST context)
remains the same as that without the context. This may be due to the fact that Cloud-
Stack has a much higher number of pre-log code tokens for each generated logging text
(information used in the base form of LoGenText) than other projects, leading to less value
in adding the context information.

Additionally, to gain a deeper understanding of why utilizing AST context is more ben-
eficial, we conduct a comprehensive manual analysis. First, we sort the cases in descending
order based on the BLEU score gap between utilizing the AST context and utilizing the
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post-log code. This sorting allows us to identify the cases where the utilization of AST
context has the most significant impact on performance improvement. Subsequently, we
select the top 10 cases from each project, resulting in a total of 100 cases.

We find that most (i.e., 90%) of the logging statements, where utilizing AST outper-
forms relying on the post-log code, are describing the preceding source code (i.e., pre-log
code). As a result, the succeeding code (i.e., post-log code) would be a source of noise and
has a negative impact on the generation of the logging text.

Moreover, to understand how the post-log code would be a source of noise during the
logging text generation process, we further manually analyze the characteristics of the
post-log code. We find that the noise mainly comes from two aspects: (1) For a testing
case, there exist training cases that share exactly the same post-log code, but a different
pre-log code. Therefore, utilizing the post-log code would cause LoGenText to (partly)
copy from such existing logging texts. It is intuitive that the post-log codes are similar,
as developers may put return or exception statements at the end of a method; (2) The
post-log code contains irrelevant tokens and thus misleads the generation of the logging
text.

In short, all the noisy information can be summarized as the introduction of irrelevant
code to the source input. As a result, LoGenText cannot effectively focus on the most
important source code to generate the logging text. Moreover, we find that even though
in some cases, the logging texts are describing the succeeding source code, they are only
related to one or two lines of post-log code. Therefore, using all the post-log code as the
context in LoGenText would sometimes decrease the performance of our approach.

Incorporating context information (AST and post-log code) can improve the per-
formance of the base form of LoGenText for generating logging texts, and different
context information may have a diverse impact on the studied projects.

RQ3: Can incorporating logging text from similar code improve the base form
of LoGenText in generating logging texts?

Motivation.

Prior work [59] proposes a preliminary logging text generation approach that simply
reuses the logging text from the most similar code snippet (i.e., our baseline approach) and
achieves promising results. Their results suggest that the logging statement in a similar
code may provide additional information about the logging text to be generated. Although
we demonstrate better performance of LoGenText than the baseline, it may be the case
that the information captured by LoGenText and that captured by the baseline approach
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Table 6.4: Evaluation results of incorporating logging text from similar code in LoGenText
for logging text generation (RQ3).

BLEU(%)
‘ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse‘AVg.
Baseline 21.0 19.8 26.0 37.9 30.1 19.6 19.5  28.2 215 34.1 25.8
Base LoGenText (RQ1) 23.0 22.8 25.4 39.0 34.6 21.8 23.1  28.0 249 28.8 27.1
With |Logging text from
context similar code 25.8 25.3 27.5 41.6 34.4 22.8 24.0 29.2 26.6 34.0 29.1
ROUGE-L(%)
‘ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse|Avg.
Baseline 36.1 36.8 38.1 47.4 43.9 34.1 384 424 37.1 46.9 40.1
Base LoGenText (RQ1) 43.4 42.9 43.6 52.3 50.1 41.1 46.5  46.7 45.5 49.5 46.2
With |Logging text from
context similar code 44.8 44.1 43.9 53.9 50.7 41.8 46.6 47.5 46.4 53.1 [47.3

NNote: Values in bold font indicate the best-performing models.

do not overlap. Given that including the information provided by the baseline may further
improve the results, in this research question, we aim to explore the impact of incorporating
logging text in similar code on automated logging text generation and examine whether
we can improve the base form of LoGenText by utilizing such logging information.

Approach.

Similar to prior work [59], we leverage the logging texts from similar code snippets in
the generation of logging texts.

Extracting logging text from similar code. For each logging statement, we ex-
tract its pre-log code and search for the most similar code snippet in the training dataset.
Specifically, for a given pre-log code snippet, we follow prior work [59] and use the Leven-
shtein distance [81] to calculate the similarity between it and other code snippets in the
training dataset. We then extract the logging text in the most similar code snippet.

Incorporating logging text from similar code. We adopt the same multi-encoder
approach as in RQ2 to incorporate the retrieved logging text from similar code. In par-
ticular, the logging text in a similar code snippet is encoded using a context encoder, and
then a gated sum is applied to the outputs of the context encoder and the source encoder,
the output of the gated sum is then fed to the target decoder.

Similar to RQ1 and RQ2, we evaluate the performance of LoGenText that incorporates
the logging text from the similar code using the BLEU and ROUGE-L metrics.

Results.

Incorporating logging text from similar code can improve the performance
of the base form of LoGenText. As shown in Table 6.4, we find that by incorporating
the retrieved logging text from similar code using a context encoder, the performance of
the base form of LoGenText can be increased in nine out of the ten studied projects (e.g.,
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the average BLEU score increases from 27.1 to 29.1). The results indicate that the logging
in similar code may contain useful knowledge for the logging text to be generated in the
NMT model. However, incorporating the logging text from similar code (with an average
BLEU of 29.1) is less effective than the LoGenText that incorporates the AST context
(with an average BLEU of 29.5, cf. RQ2).

Similar to our results in RQ2, incorporating logging text from similar does not improve
the performance on the CloudStack project over the base form of LoGenText. Similarly,
this result may be due to the fact that CloudStack has a large number of pre-log code tokens
for each generated logging text (information used in the base form of LoGenText), which
may lead to less value of incorporating the additional logging information from similar
code.

Incorporating logging text from similar code can provide additional information to
the base form of LoGenText. However, it cannot further improve the best-performing
version of LoGenText that incorporates the AST context.

RQ4: Can incorporating the template information into LoGenText-Plus im-
prove LoGenText in generating logging texts?

Motivation.

Prior studies [41, 55, 177, 187, 192 on text generation tasks (e.g., text summarization,
sentence generation) show that incorporating the template information of the target sen-
tences can provide promising results in generating better texts. For example, Yang et al.
[192] use syntax-based templates to guide the translation procedure and outperform the
baseline models in the task of neural machine translation. In addition, based on the manual
inspection of the two generated logging texts in the section of human evaluation provided
by Ding et al. [37], we find that the syntactic structures of the two logging texts are differ-
ent from each other and carry distinct information for each logging text. Such variety and
specificity raise the question of whether we can extract syntactic templates from the syntac-
tic structures and adopt templates to guide the automatic logging text generation process.
Figure 6.5 are two different constituency-based parse trees produced by Stanza [146] for
two logging texts. Based on these two syntactic trees, we may construct two syntactic
templates (the construction process is elaborated in the following section Approach.),
“copying JJ NN IN NP” and “no beanstalks defined IN NP”, where JJ NN IN NP are non-
terminal symbols of the parse tree, representing different token syntactic abstractions (e.g.,
NP refers to a noun phrase and NN means noun). As illustrated in Figure 6.5, templates
are abstract representations of logging texts that encompass the syntactic characteristics
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of logging texts and may serve as a guide when generating logging texts. Therefore, in this
research question, we aim to understand whether the syntactic template information can
help further improve LoGenText in automatically generating logging texts.

)
EIE
Enln ol () [omes] (o] () [w)]
CIRC o

(a) The constituency-based parse tree of (b) The constituency-based parse tree
the logging text, “copying localfile vid of the logging text, “no beanstalks

H
(2]

to hdfspath vid”. defined for initialization’.

Figure 6.5: Two constituency-based parse trees for the logging texts. The no-terminal (i.e.,
syntactic tags) and terminal (i.e., tokens in logging text) symbols delimited by the black
lines can be selected to construct the templates.

Approach.

To answer our research question, we propose LoGenText-Plus, which uses the pre-
log code and the logging template as the source and AST as the context to generate
the logging text. Unlike LoGenText, LoGenText-Plus not only extracts the three types
of information (i.e., logging text, the pre-log code, and the context information) used
in LoGenText but also considers the syntactic template of logging texts. As stated in
Section 6.2.1.2, LoGenText-Plus contains two stages: (1) template generation and (2)
template-based logging text generation.

Stage 1: template generation. LoGenText-Plus uses a Transformer-based Seq2Seq
model to generate the templates for the given source input. To effectively incorporate
the template and AST information, LoGenText-Plus considers concatenating the template
from the logging text in the similar code with the pre-log code (i.e., the source input
in LoGenText) as the new input to the source encoder, and AST as the context to the

context encoder. Below, we describe how we extract the template and incorporate it into
LoGenText-Plus.
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Extracting the template from the logging text in the similar code. Similar to RQ3, in
this step, we assume that similar code snippets would have similar logging templates, and
incorporating the logging template in similar code would ease the process of predicting
the target templates. For example, “failed to unregister vid’ is a logging text from the
project ActiveMQ), and the logging text in its similar code is “failed to dispose of vid’.
Both can have the same syntactic template “failed TO VP”. In RQ3, we have extracted
logging text from similar code based on the given pre-log code snippet. In this step, we
first use Stanza [146|, an open-source NLP library, to perform constituency parsing for
each logging text from similar code. Constituency parsing is the task of analyzing phrase
structures (e.g., simple declarative clauses, verb phrases, noun phrases, etc.) for a given
sentence. Figure 6.5 shows two parsed trees, where the terminal symbols (or, leaf nodes in
the tree) are tokens in the logging text, and non-terminal symbols are syntactic categories
(e.g., “S” for simple declarative clause, “NP” for a noun phrase and “VP” for a verb phrase).

After having the consistency-based parse tree, we choose a certain depth of the constituency-
based parse tree to construct the template. Then, all the symbols (including both terminal
and non-terminal symbols) at the pre-defined depth are collected as the template. For
example, assuming the depth is four, then the template for the logging text, “copying lo-
calfile vid to hdfspath vid”, is “copying JJ NN IN NP”. The depth ranges from one to the
maximum depth of the generated tree (e.g., six for both examples in Figure 6.5), resulting
in different templates for the logging text. Among all the templates, one special case is that
we set the depth to a number larger than the maximum depth of the tree, the templates
are exactly the same as the logging texts. With the decrease of the depth, the complexity
of the templates (e.g., the length of the template and the number of unique tokens in the
template) is also reduced.

In this research question, we start with the depth of one due to the following reasons (1)
each template contains only one token and should be easier to predict, and (2) even though
the template contains only one token, it still can convey different syntactic information
(e.g., “S” for simple declarative clause and “NP” for noun phrase as shown in Figure 6.5).
Note that this may be different from the text generation tasks (e.g., machine translation)
in NLP, where the target text is usually a complete sentence (that is if we set the depth to
one, the template may always be “S”.). On the contrary, for the logging text in the source
code, some developers prefer to use noun phrases while others may use complete sentences
to monitor the status of the software. Moreover, the experiment in RQ5 also demonstrates
that our choice is optimal for automatic logging text generation.

Concatenating the pre-log code and the template. In previous research questions (i.e.,
RQ1-RQ3), the source is the pre-log code. However, in this step, we consider concatenating
the pre-log code and the template from the logging text in a similar code as the new source
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input to the source encoder of the Transformer-based model. We adopt this incorporation
strategy due to the following considerations: (1) by doing the input concatenation, the
newly formed input sequence is almost a complete code structure (i.e., the pre-log code
and the template of the logging text from similar code). In other words, in the newly
formed input sequence, the template acts as a placeholder, which needs to be refined or
replaced by the output of the Transformer-based model. (2) Besides, under this setting, we
can still integrate the AST information using our multi-encoder strategy which has been
proven to be useful for generating the logging text [37].

Extracting the template from the target logging text. The goal of this stage is to predict
the template based on the source input, thus, we need to construct a new target sequence,
which is the template of each logging text. As we have already collected the logging
text from each logging statement in Section 6.2.2, in this step, we share the same way of
extracting the template from the logging text in a similar code to extract the template
from the logging text.

By now, we have the source sequence (i.e., the concatenated pre-log code and the tem-
plate from the logging text in similar code), target sequence (i.e., the template from the
target logging text), and context information (i.e., AST information extracted in RQ2).
Next, we describe how we integrate the context information into the model used for gen-
erating the template.

Integrating context information in our models. In RQ2, LoGenText utilizes another
encoder to encode the context information. As shown in Figure 6.4, the outputs of the
context encoder and source encoder are converted into a new representation by an attention
layer, which is finally fused with the output of the source encoder by a gated sum. The
input of the target decoder, G, is a deep hybrid of both the source and the context inputs.
However, this design may have one limitation, that is the deep hybrid happens at the
encoder part, as a result, the context information may not be passed into the decoder
part effectively and the influence of the context may vanish after the attention and gated
sum operations. Hence, in this step, we adopt another design to incorporate the context
information at the decoder part [83, 203].

The structure of our new context integration approach is illustrated in Figure 6.6.
Similar to the context encoder in the multi-encoder Transformer used in RQ2, the context
encoder replicates the original encoder Transformer and takes the AST as the input. The
output of the context encoder and the output of the source encoder are then passed to the
target decoder separately, where the two outputs together with the previously generated
template sequences are fed into self-attention layers (i.e., context attention layer and source
attention layer as shown in Figure 6.6), respectively. Then, the outputs of the attention
layers are fused by a gated sum. Formally, let S’ be the output of the source attention
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Figure 6.6: An overview of the new multi-encoder Transformer used for template genera-
tion. The left “Self Attention” is the source attention layer and the right “Self Attention”
is the context attention layer.

layer and C” be the output of the context attention layer, the output of the gated sum G
is

G=)X00C+(1-)N0OY5 (6.10)
where the gating weight A is calculated by

A=o(W[C,S]+b) (6.11)

where o (+) is the sigmoid function, W is the weight parameters of the model and b is the
bias.

Finally, the template generation stage produces a template for each of the newly con-
structed source input (i.e., Generated templates in Figure 6.2), which is later used for the
template-based logging text generation (i.e., the model inference in Figure 6.2).

Stage 2: template-based logging text generation. LoGenText-Plus adopts the
same model structure as the model used in template generation for template-based logging
text generation. During the model training of logging text generation, LoGenText-Plus
concatenates the template from the logging text in the similar code with the pre-log code
(i.e., the source input in LoGenText) as the new input to the source encoder, and AST as
the context to the context encoder, while the target sequence is the logging text instead of
the template. During the model inference, LoGenText-Plus concatenates the pre-log code
with the template produced in stage 1 as the new input to the source encoder. The output
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Table 6.5: Evaluation results of using LoGenText-Plus, LoGenText and the baseline ap-
proach to generate logging texts in the studied projects (RQ4).

BLEU(%)
‘ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse‘Avg.
Baseline 21.0 19.8 26.0 37.9 30.1 19.6 19.5 282 215 34.1 25.8
Base LoGenText (RQ1) 23.0 22.8 25.4 39.0 34.6 21.8 23.1  28.0 24.9 28.8 27.1
LoGenText with AST (RQ2) 24.1 23.8 27.8 41.8 34.6 23.3 23.5  29.6 28.8 37.2 29.5
LoGenText-Plus 26.6 25.5 31.2 40.1 35.0 23.8 23.7 30.3 28.8 37.9 ]30.3

ROUGE-L(%)
‘ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse‘Avg.

Baseline 36.1 36.8 38.1 47.4 43.9 34.1 384 424 371 46.9 40.1
Base LoGenText (RQ1) 43.4 42.9 43.6 52.3 50.1 41.1 46.5 46.7 45.5 49.5 46.2
LoGenText with AST (RQ2) 42.5 43.4 44.0 53.9 50.8 42.1 46.4 48.2 47.6 53.6 47.3
LoGenText-Plus 44.4 44.0 46.6 54.0 50.1 42.5 46.2 476 473 54.3 |47.7

Note: Values in bold font indicate the best-performing models.

is the final prediction of the logging text. Note that during model training, we intentionally
use the template from the logging text in the similar code instead of the template from the
corresponding logging text, because the former contains noise that can be used to simulate
the prediction errors in the generated template. Otherwise, during model training, if we use
the template from the corresponding logging text, the model would pay more attention to
the template part. However, during inference, the generated template may contain errors,
which would mislead the model, thus, resulting in a poor quality of the generated logging
text. Our experiment results also confirm our assumption.

In order to understand the impact of the syntactic template information, similar to
previous RQs, we evaluate the performance of LoGenText-Plus on all the subject projects,
where we train separate models for each project (cf. Section 6.3.2.1).

Besides, we conduct another experiment to study how the diversity across different
projects would impact our approach. We first train a single model using the combined
ten training datasets and evaluate its performance on each of the ten individual projects.
Furthermore, we extend the evaluation to include a new dataset from the project Cassan-
dra, allowing us to assess the generalizability of our approach to unseen data. We select
Cassandra as it is widely studied in the literature {94, 96, 109, 110, 200, 205|.

We use the same metrics used in RQ1 (i.e., BLEU and ROUGE-L) to evaluate the
quality of the generated logging texts.

Results.

Overall, our newly proposed approach LoGenText-Plus outperforms the
baseline approach as well as the best-performing version of LoGenText that
incorporates the AST context. The experimental results on the 10 studied projects are
provided in Table 6.5 with the best results highlighted in bold. In particular, LoGenText-
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Plus outperforms LoGenText in eight out of 10 projects in terms of BLEU score. For
example, we obtain over 10% relative increase (i.e., 12.3%) for the project Brooklyn in
terms of BLEU score and a 5.9% increase in ROUGE-L score. Our results indicate the
effectiveness of incorporating templates in guiding the automated generation of logging
text.

In addition to the overall BLEU and ROUGE-L, LoGenText-Plus can provide relatively
good performance for relatively small projects. As shown in Table 6.5, LoGenText-Plus
achieves a BLEU score of 25.5 to 37.9 for the ActiveM(@Q, Ambari, Brooklyn, and Synapse
projects, which are the smallest projects with less than 500K SLOC. LoGenText-Plus has
the largest BLEU improvements on three of these four smallest projects (i.e., 10.3%, 7.1%,
12.3% relative increases on projects ActiveM(Q), Ambari, and Brooklyn respectively) over
the best-performing form of LoGenText. It is widely recognized that deep neural networks
usually require larger training data to generalize better [52, 91|. However, our results
indicate that our LoGenText-Plus could alleviate the (negative) impact of limited training
data and effectively generate logging texts for smaller projects.

However, we also observe that LoGenText-Plus may not always improve the per-
formance significantly. For example, as Table 6.5 shows, the improvement of BLEU
score on some relatively larger projects (e.g., HBase, Hadoop, and Ignite) is limited, and
LoGenText-Plus performs even worse than LoGenText on the project Camel. This phe-
nomenon may be explained from two aspects: (1) The size of the project: the project
contains more lines of source code, which provides more source information and training
sets for learning a good model, as a result, the impact of the template can be mitigated, and
(2) The different context integration strategies: as we stated in RQ4- Approach, we adopt
another integration strategy, where we move the context integration from the encoder part
to the decoder, trying to enlarge the impact of the context. On the other hand, it should
be noted that the context may contain noise, as a result, the impact of the noise is also
increased, which makes the performance even worse. Thus, we further conduct another
experiment on the 10 projects using the integration strategy proposed by LoGenText. The
results are presented in Table 6.6. The results confirm that the integration strategy does
have an impact on the performance of logging text generation. Specifically, we get a BLEU
score of 42.3 on project Camel, which is higher than LoGenText-Plus and LoGenText (i.e.,
40.1 and 41.8, respectively). This observation also matches previous studies that show
that enlarging the context may lead to performance degradation of NMT models due to
the noise introduced by the enlarged context [203, 207].

Additionally, we find that training separate models for each project (cf. Section 6.3.2.1)
can benefit the performance of our approach. Table 6.7 shows the results of the different
training strategies, as well as the performance of the model trained on the 10 studied
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Table 6.6: Evaluation results of incorporating templates with different multi-encoder Trans-
formers for logging text generation (RQ4).

BLEU(%)
ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse|Avg.
Integrating context at decoder 26.6 25.5 31.2 40.1 35.0 23.8 23.7 30.3 288 37.9 |30.3
Integrating context at encoder 26.0 23.3 31.0 42.3 35.1 23.6 23.3 30.6 294 36.0 30.1

ROUGE-L(%)
‘ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse‘Avg.

Integrating context at decoder 44.4 44.0 46.6 54.0 50.1 42.5 46.2 47.6 473 54.3 | 47.7
Integrating context at encoder 43.5 43.3 46.5 54.5 50.7 41.7 46.4 48.8 48.2 53.5 47.7

Note: Values in bold font indicate the best-performing models.

Table 6.7: Evaluation results of different training strategies for logging text generation in
the studied projects and a new project (RQ4).

BLEU(%)
ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse|Avg.|Cassandra
Separate models 26.6 25.5 31.2 40.1 35.0 23.8 23.7 30.3 28.8 37.9 130.3 20.1
Single model 22.1 21.9 27.2 36.9 32.8 20.9 22.0 275 265 34.1 27.2 11.3

ROUGE-L(%)
[ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse[Avg.|Cassandra

Separate models 44.4 44.0 46.6 54.0 50.1 42.5 46.2 47.6 47.3 54.3 |47.7 42.0
Single model 41.5 42.1 42.9 50.1 49.1 40.2 454 464 46.5 51.5 45.6 31.2

Note: Values in bold font indicate the best-performing models. The single model of Cassandra is trained
on the 10 studied projects.

projects, when applied to the new project, Cassandra. As the table shows, by training
only one single model on all the training datasets, the performance of LoGenText-Plus
decreases on almost all the projects and reaches an average BLEU score of 27.2, which is
lower than that of the separate models (i.e., 30.3). The results may be due to the fact that
the training data from other projects would bring some noise, and thus may negatively
impact the performance of the model. Furthermore, when evaluating the single trained
model on the unseen dataset (i.e., Cassandra), the model gives a BLEU score of 11.3.
Meanwhile, we also evaluate the model that is trained on the project Casandra and the
model has a BLEU score of 20.1. For comparison, we further evaluate the baseline approach
under these two settings, which gives BLEU scores of 8.8 and 15.7 respectively. On the one
hand, the results confirm the findings from previous work [59] that the language patterns
in different projects vary a lot. On the other hand, the results reveal one of the limitations
of our approach: although our approach has better performance than the baseline, there is
still a non-negligible performance drop when the training and testing datasets are drawn
from different distributions. The results call for future research that can alleviate such
performance decreases across different distributions.

Although LoGenText-Plus exhibits improved performance compared to LoGenText,
and both approaches surpass the baseline approach, it is important to acknowledge that
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there is still potential for further improvement in both approaches. To better understand
the limitations and instances requiring enhancement, we conduct another manual analysis
on instances where both LoGenText and LoGenText-Plus do not achieve satisfactory per-
formance. By closely examining these cases, we aim to identify the specific challenges and
factors contributing to suboptimal outputs.

In particular, we check the distribution of the BLEU scores for the generated logging
texts and find that, on average, approximately 35 cases yield a BLEU or ROUGH score
of zero. To gain further insights into these cases, we randomly selected 10 cases for each
project, which we would thoroughly analyze.

We have categorized the characteristics of the cases into two main categories, each with

several subcategories®:

Limited source input. Both LoGenText and LoGenText-Plus rely on the pre-log code
as the source input, and in some cases, the pre-log code may lack sufficient information
for logging text generation, resulting in unsatisfactory outputs. We have identified two
common scenarios (1) The logging statement is put at the beginning of the method of
which the method name is very simple and common and does not provide meaningful
information. For instance, Figure 6.7a presents an example where the corresponding code
(i.e., lines 2 and 3) only contains a few tokens and does not provide much information.
2) The logging statement describes the post-log code, while in our approaches, we use
the preceding code as the input, which would result in the wrong output. As shown in
Figure 6.7b, line 8 is the corresponding code that the logging statement (i.e., line 4) is
describing, but our approaches ignore such information.

Similar source input in the training set. There are some test cases that share a
very similar input with the training cases, where both approaches may simply copy the
logging texts from the training cases. Specifically, (1) There are two consecutive logging
statements in the original source code and one of them is used as the training case. For
example, line 3 of Figure 6.7c appears in the training set and has the same source input
as line 4 (i.e., the logging text to generate). (2) There are two logging statements that are
close to each other in the original code. For example, in Figure 6.7d, the logging statement
in the if block (i.e., line 4) is used as the training set, and when generating the logging
statement in the else block (i.e, line 7), our approaches may simply copy the logging text
from line 4, due to the minimal difference in source input.

Based on these findings, future work may consider (1) incorporating the data flow
information to discriminate similar source input, (2) utilizing the method call graph to

8Note that these categories may not be strictly exclusive. For instance, in Example (a), the code (i.e.,
lines 2 and 3) is very common and there is a high possibility that it appears in the training set.
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1 @Override

2 public void run() { 2
3 try { 3 - Candidate log start ----------------
S —— Candidate log start---------------- 4 Original log: LOG.debug("Setting subscriptions: {}", ...)
5 Original log: LOG.debug("Executing task #{}", taskId) 5 Generated log-ast: dispose old state
6 Generated log-ast: logsearchfilenamerequestrunnable starting 6 Generated log-plus: disposition disconnect
7 Generated log-plus: persisting metric metadata 7 - Candidate log end ----------------
8 - Candidate log end---------------- 8 connected.putSubscriptions(this.subscriptions);
9 9
(a) (b)
1 private void printHelp() { 1
2 2 if (jobScheduler != null) {
3 logger.info("Default values:"); 3 jobScheduler.removeJob(jobId);
4 4 LOG.info("Removed scheduled Job " + jobId);
5 —mmmmmmmmmeeo Candidate log start---------------- 5 3} else {

6 Original log: logger.info(DOUBLE_INDENT + "HOST_OR_IP ¢ _______________ Candidate log start----------------
7 =" + DFLT_HOST) 7 original log: LOG.warn("Scheduler not configured")
8 Generated log-ast: default values 8 Generated log-ast: removed scheduled job vid
9 Generated log-plus: default values 9 Generated log-plus: removed scheduled job vid
10 ——————=—=————-- Candidate log end---------------- 10 —============—m Candidate log end----------------
11 . 11

(c) (d)

Figure 6.7: An illustration of error cases generated by LoGenText and LoGenText-Plus.

identify more context for the logging text at the beginning of a method, and (3) identifying
more relevant source code, while avoiding the introducing of noise.

LoGenText-Plus generally outperforms the baseline approach that leverages the ex-
isting logging texts in similar code snippets as well as the best-performing version of
LoGenText that incorporates the AST context. Our results illustrate the effective-
ness of using templates for guiding the generation of the logging text.

\.

RQ5: How does the granularity of logging templates impact the performance
of LoGenText-Plus in generating logging texts?

Motivation.

In RQ4, we have introduced the approach of how to build the templates from the
consistency-based parse tree and have shown the effectiveness of using these templates. On
one hand, we start building the templates with the depth of one, which produces simple
yet effective templates. On the other hand, choosing different depths can result in diverse
templates, which may convey different levels of information for guiding the generation
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of logging texts. For example, as shown in Figure 6.5b, if we set the depth to one, the
template only has one symbol “NP”, which means that the logging text is a noun phrase.
The template is very short and cannot capture too much information. Meanwhile, if we set
the depth to six (or a larger number), the template is exactly the same as the logging text,
which violates our assumption. Therefore, in this research question, we aim to explore the
impact of incorporating different templates derived from the tree with different depths on
automated logging text generation.

Approach.

In this RQ, we adopt the same approach as in RQ4 to construct and incorporate the
templates. In particular, we extract the templates with depths from one to nine and
concatenate them with the pre-log code, separately. Based on the newly constructed source
input, we train different models and evaluate the performance of LoGenText-Plus that
incorporates different templates using the BLEU and ROUGE-L metrics.

Results.

The performance of LoGenText-Plus on the subject systems can be further
improved by incorporating templates with different depths compared to that
of LoGenText-Plus using templates with a depth of one. As shown in Table 6.8,
we find that by incorporating the new templates constructed with different depths, the
performance of LoGenText-Plus can be increased in half of the 10 studied projects (e.g.,
the average BLEU score increases from 29.5 (i.e., LoGenText with AST, cf. RQ2) to 30.9
(i.e., the best-performing depths)). The biggest improvement is observed in the project
ActiveM Q. When setting the depth to two, LoGenText-Plus achieves a BLEU score of 28.9,
which is 19.9% and 8.7% higher than LoGenText (i.e., 24.1, cf. RQ2) and LoGenText-Plus
with the depth of one (i.e., 26.2, cf. RQ4). The results indicate that the templates
constructed with different depths may capture various types of knowledge to help with
automatic logging text generation. With proper depth, the template can further improve
LoGenText-Plus for the studied projects.

However, similar to our findings in RQ2, incorporating templates with different depths
can result in diverse performance for each project. Figure 6.8 shows the distribution of
performance results produced by LoGenText-Plus with different templates. To quantify
the variance of the differences, we also calculate the coefficient of variation (CV) for each
project. The results show that the projects with a relatively small size (SLOC), are more
sensitive to the templates. As Figure 6.8 shows, the four smallest projects, ActiveMQ),
Ambari, Brooklyn, and Synapse projects have the largest variances, 5.0%, 4.0%, 5.2%,
4.7%, respectively. While for large projects, the impact of utilizing different templates is
relatively weak. For example, for the project Synapse, using the template with a depth of
six can only have a BLEU score of 33.4, compared to a BLEU score of 38.0 when using the
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Table 6.8: Evaluation results of incorporating templates constructed with different depth
in LoGenText-Plus for logging text generation (RQ5).

BLEU (%)
Depth‘ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse‘Avg.
1 26.6 25.5 31.2 40.1 35.0 23.8 23.7 30.3 28.8 37.9 30.3
2 28.9 24.4 31.5 40.8 34.2 22.9 242 29.0 289 36.4 30.1
3 28.2 24.6 29.3 40.6 34.5 22.1 241 29.1 30.5 37.4 30.0
4 24.8 23.4 28.2 40.2 35.0 21.9 24.3 29.0 29.2 35.0 29.1
5 25.9 23.2 30.5 39.6 33.2 22.3 22.7 28.8 28.1 38.0 29.2
6 26.4 23.2 29.0 40.8 34.0 21.9 23.7 284 27.7 33.4 28.9
7 25.6 23.9 304 39.3 33.8 21.8 242 289 276 34.6 29.0
8 26.1 22.2 27.6 39.6 33.7 21.2 23.3 28.8 285 34.1 28.5
9 27.8 23.6 27.3 38.9 33.2 21.5 24.6 29.0 26.9 35.7 | 28.8
Best 28.9 25.5 31.5 40.8 35.0 23.8 24.6 30.3 30.5 38.0 |30.9
ROUGE(%)
Depth|ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse‘Avg.
1 44.4 44.0 46.6 54.0 50.1 42.5 46.2 47.6 473 54.3 47.7
2 44.6 42.2 46.7 52.3 50.8 41.0 46.6 47.3 48.3 52.4 47.2
3 44.8 43.2 45.9 53.3 50.2 41.2 47.0 474 48.6 55.2 |47.7
4 43.5 42.7 45.5 52.1 50.4 41.5 46.9 473 477 53.6 47.1
5 42.4 43.5 44.4 53.0 48.9 40.7 45.2 48.0 47.2 54.0 46.7
6 43.5 424 45.1 53.2 49.9 40.1 46.8 47.2 47.0 53.6 46.9
7 42.7 43.8 45.8 52.4 49.9 41.3 47.7 477 46.5 52.3 47.0
8 42.7 424 44.7 53.0 50.0 40.2 46.2 47.2 485 51.7 46.7
9 44.5 43.3 43.5 52.5 49.8 40.7 47.7 475 46.3 53.5 | 46.9
Best 44.8 44.0 46.7 54.0 50.8 42.5 47.7 48.0 48.6 55.2 |48.2

Note: Values in bold font indicate the best-performing models.

template with a depth of five, but for the project Hive, the biggest performance different
is 1.9 (i.e., 30.3 when depth is one vs. 28.4 when depth is six). One explanation for this
phenomenon may be that larger projects may contain more source data, and thus, produce
more powerful models and mitigate the differences between different templates.

In addition, as shown in Table 6.8, with the increases in depth, the average BLEU
score tends to decrease. In particular, when the depth is one, LoGenText-Plus has the
best BLEU and ROUGE scores on average. Besides, for most of the projects, LoGenText-
Plus achieves the best performance when the depth is less than five. For example, the
BLEU scores on projects ActiveMQ, Brooklyn and Camel reach the highest with a depth
of three. This is reasonable given that with the increases in depth, more terminal symbols
(tokens in logging text) are captured, resulting in more complex templates. Figure 6.9
shows the distribution of the length of templates under different depths as well as the
vocabulary size (i.e., the number of unique tokens in templates). It is obvious that both
the length of templates and the vocabulary size increase significantly with the increases in
depth. As a result, the task of template generation becomes more difficult, which means
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Figure 6.8: The distribution of the results produced by LoGenText-Plus with different
templates. The horizontal axis represents all the studied projects; the vertical axis is the
performance (i.e., BLEU or ROUGE) in different projects. The numbers on top of each
box are the corresponding coefficient of variance.

that LoGenText-Plus may not generate accurate templates, and thus negatively impacting
the performance of generating the logging texts.

Discussion

In the above sections, we have quantitatively demonstrated the superiority of LoGenText-
Plus on the 10 subjects. Based on the extensive experimental results, in this part, we

would like to elaborate more on the design choice as well as the potential limitations of
LoGenText-Plus.

Strengths and limitations

In LoGenText-Plus, we divide the logging text generation task into two stages: tem-
plate generation and template-based logging text generation. Therefore, the advantages of
LoGenText-Plus can be discussed from two aspects:

e Design paradigm: Instead of directly predicting the logging texts, we are trying to
solve the problem with a coarse-to-fine strategy. Intuitively, predicting the templates
is a little easier compared to predicting the logging texts directly, as (1) the size of
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Figure 6.9: The distribution of the length of templates (i.e., violin plot) constructed with
different depths and the vocabulary size (i.e., line plot). The horizontal axis represents the
different depths; the left vertical axis is the template length (i.e., the number of tokens in
each template); the right vertical axis is the vocabulary size (i.e., the number of distinct
tokens in all the templates).

the symbols (about 60 tags) in the templates is much smaller than the number of
tokens (i.e., natural language words plus source code tokens) in the logging texts,
and (2) the templates are relatively shorter than the corresponding logging texts. In
particular, if the depth is set to one, the template only contains one element. As
a result, we are actually converting the template generation task to a multi-class
classification problem, which should be easier to tackle.

e Enriched information: By incorporating the templates of the logging texts, we are
explicitly introducing more knowledge into the model. Previous works [37, 59] mainly
focus on the information extracted from the source code, such as the abstract syntax
trees, and code sequences, while few works consider utilizing the information from
the target sequence. In this work, the template is constructed from the constituency-
based parse tree of the logging text which provides a syntactical representation of
the logging texts. The low-level syntactic information (i.e., syntactic tags) with
the high-level semantic information (i.e., some tokens in the logging text) in the
template complements the source code and thus may be useful for the generation of
the logging texts. This finding also explains the experimental results in RQ4 that
LoGenText-Plus can provide relatively good performance for relatively small projects,
as LoGenText-Plus can bring more external knowledge to the trained model.
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However, LoGenText-Plus also has limitations. Although using the template may pro-
vide useful information, there is still a chance that the generated templates contain noise,
and thus may harm the performance of LoGenText-Plus. As the experimental results in
RQ5 show, with the increases in depths, predicting the templates tends to be a more chal-
lenging task. As a result, the generated templates may be of poor quality with a risk of
misleading the generation process of the logging texts. Moreover, we also observe that for
some projects, LoGenText-Plus does not bring significant benefits, especially when the size
of the projects is large enough. For example, LoGenText-Plus has the same BLEU score
on the Ignite project with LoGenText. This may be due to the fact that larger datasets
may produce more powerful models and mitigate the differences caused by the external
information (i.e., syntactic information from the logging texts.). In future work, to further
improve the performance of LoGenText-Plus, we can focus on generating more accurate
templates.

Another limitation may come from the fact that we use the pre-log code as the source
input, while there may exist some logging texts describing the succeeding source code. Due
to the lack of information on the corresponding source code, our approach may fall short
of generating satisfactory logging texts. In this work, the design choice of only considering
the pre-log code as the main source input is based on the findings from previous work by
He et al. [59], where they find that using the code surrounding (i.e., code preceding and
succeeding) the logging text would result in worse results, compared to only using the code
preceding the logging text.

We also conduct another two experiments on LoGenText and LoGenText-Plus, where
we concatenate the pre-log code and post-log code as the source input and utilize the AST
as the context. We find that both LoGenText and LoGenText-Plus have a performance
degradation, with an average BLEU score of 27.6 and 26.7 respectively, compared to the
initial BLEU scores of 30.1 and 30.3 without the use of post-log code. The results show that
incorporating more contexts can not always guarantee a better model, which conforms to
the results in the work of He et al. [59]. This phenomenon can be explained by the fact that
developers prefer to insert logging statements to describe the actions in the preceding source
code [40, 59|, and thus, the use of post-log code may bring in some noise. Especially for
LoGenText-Plus, as it involves the use of post-log code in two stages: template generation
and logging text generation. The errors in the generated template may propagate to a later
stage, and mislead the generation of the logging texts. Meanwhile, there is a possibility
that the use of all the pre-log code might not be optimal, as the logging statements may
only describe a few lines of code (e.g., the example in our introduction section). Future
work may consider improving the performance by identifying the most relevant source code
as input.
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The performance of LoGenText-Plus on the subject systems can be further improved
by incorporating different templates with different depths. However, the selection
of the templates is a trade-off, as incorporating templates with different depths can
result in diverse performance for each project.

\.

RQ6: Can we harmonize the wording in the generated logging text with the
logging text written by developers using n-gram dictionaries?

Motivation.

Prior work [37]| proposes an NMT-based model to automatically generate the logging
text based on the source code (i.e., LoGenText) and achieves promising results. However,
while reviewing the generated logging texts, they find that the generated text sequence and
the text sequence in the developer-written logging text may not always be consistent. For
example, the logging text in Figure 6.5a uses the term “localfile”, while the generated logging
text uses the noun phrase “local file”. Although these two terms have very similar meanings
for developers, the use of different words may cause inconsistency in the wording and affect
downstream log-related tasks (e.g., log parsing, and log compression). Meanwhile, it is
obvious that the term “localfile” should be an identifier from source code (e.g., method
names, or variables) and is constructed by two natural language tokens (“local” and “file”).
Therefore, in this research question, we aim to explore whether we can refine the wording
and make it consistent with the original logging text written by developers based on the
extracted identifiers in the source code.

Approach.

In this RQ, we first build n-gram dictionaries from the source code and then extract
the token sequences of a certain length (i.e., n-grams) from the generated logging text.
Then, we check whether we can compose the extracted sequence into bigger units based
on the dictionary. We here choose the n-gram model, as it has been proven to be useful
for processing log data [32].

Building n-gram dictionaries from the source code. Pre-processing source code.
In this step, we try to extract identifiers from the source code. We first apply srcML? to
the method that contains the logging text. srcML converts the source code into an XML
tree, where the leaf nodes are the tokens in the source code. We then use Beautiful Soup to
select the nodes with a “name” tag, which is used to mark the identifiers of the source code.
For example, Figure 6.10a shows a code snippet from the project Ambari and the extracted

Yhttps://www.sreml.org/
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private void retryHostRoleCommand(HostRoleCommandEntity hrc) {
try ¢ void
hrc.setStatus(HostRoleStatus.PENDING);
hrc.setStartTime(-1L);

retryHostRoleCommand

HostRoleCommandEntity

} catch (Exception e) {
LOG.error("Error while updating hostRoleCommand. Entity: {}", hrc, e} m_hostRoleCommandDAO
throw e;
}
}
(a) Code snippet from Ambari. (b) Extracted identifiers.
retry Host, Host Role, Role Command
(¢) 2-grams. ¢ retry, Host, Role, Command

retry Host Role, Host Role Command (¢) Extracted unit tokens

(d) 3-grams.

Figure 6.10: An overview of the process of building n-gram dictionaries from the source
code.

identifiers are shown in Figure 6.10b. Then, we tokenize the identifiers based on the camel
case convention. Figure 6.10c is the tokenized token units of “retryHostRoleCommand”,
which are later used for building the dictionaries.

Building n-gram dictionaries from tokens. In this step, we build n-gram dictionaries
based on the extracted token units. In our approach, an n-gram is a contiguous subsequence
of n token units from a tokenized identifier. For example, given the sequence of token units
“retry, Host, Role, Command”, we can build a dictionary with three 2-grams or a dictionary
with two 3-grams, as shown in Figure 6.10. We build such n-gram dictionaries for each
method that contains the logging text.

Composing n-grams in the generated logging text together into bigger units.
Identifying n-grams in generated logging text. Similar to the last step, we extract n-grams
for each generated logging text. For each n-gram from the logging text, we check whether
it appears in the pre-constructed dictionary in the last step. If the n-gram is found in the
dictionary, we consider it as an n-gram that may be combined into one new token. We
filter out the n-grams that never appear in the dictionaries. Figure 6.11a is the generated
logging text based on the given source code in Figure 6.10a. Based on the dictionary built
from the source code (i.e., Figure 6.11c and Figure 6.10d), we filter out all the 3-grams
except the “host role command”.

Composing identified possible n-grams. From the last step, we have obtained a list of n-
grams that may be combined into new tokens. However, not all the n-grams are meaningful
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unable to set host role command original start time vid exception vid unable to set

(a) Generated logging text. to set host

host role command

error while updating hostrolecommand entity vid

(b) Extracted 3-grams.
(e) Original logging text. l

unable to set hostrolecommand original start time vid exception vid D retry Host Role, Host Role Command

(d) Refined logging text. (c) 3-gram dictionary.
Figure 6.11: An overview of the process of composing n-grams in the generated logging
text together into bigger units.

or frequently used in the logging text. If we simply combine all these identified n-grams,
we may have a lot of False Positives, especially when n is small (e.g., 2). For example, in
Figure 6.11, if we use a 2-gram dictionary (i.e., Figure 6.10c), we may combine “host role”
or “role command”, which results in worse wording in the generated logging text. To avoid
such improper combinations, we define two rules (1) syntactic analysis, and (2) logging
practice. The details are shown below:

-3 @ 8 0 0 0 O B

command

Figure 6.12: The constituency-based parse tree of the logging text in Figure 6.11a. The
tokens delimited by the black lines are three siblings and the only children of the node
“NP?’.

e Syntactic analysis-based rule (rule 1): The n-gram to be combined should be the
only siblings of the same parent (e.g., “NP”, “VP”) in the consistency-based parse
tree. Figure 6.12 illustrates the constraint that “host, role, command” are siblings
(i.e., three nouns) with the same parent node (i.e., “NP”), and their parent only has
these three children. Thus, they can be used together to compose a bigger token
unit.
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e Logging practice-based rule (rule 2): Meanwhile, some developers prefer to use sep-
arate tokens of identifiers in the logging text. Therefore, to make the combined new
tokens conform to the existing logging text conventions, we propose our second rule:
for a 2-gram, the newly composed bigger token unit in the existing logging texts (i.e.
the training corpus) should be more frequently used than that of the 2-gram (i.e.,
the number of occurrences of the newly composed bigger token unit should be larger
than that of a 2-gram); for 3-grams, the newly combined token should appear at least
once in the existing logging text.

Note that in our experiment, to balance the recall and precision, we further adjust the
scope of the rules, that is we limit the identifiers for building dictionaries to the method
name.

To examine the effect of our dictionary-based combination strategy, we first compare the
generated logging texts and the logging texts written by developers, and then we manually
study the results.

Results.

Although we can refine the generated logging text with the post-processing
strategy, the improvement is limited. We first manually check the generated logging
texts and compare them with the original logging texts extracted from the source code.
For a generated logging text, if it contains a combined n-gram that can be found in the
original logging texts, then it is considered a ground truth. We find there do exist n-grams
in the generated logging text that can be possibly combined, but the number is relatively
small (i.e., Ground truth in Table 6.9). As shown in Table 6.9, the number of ground truth
is small, which means that there are a few generated logging texts containing a n-gram
that should be combined to harmonize the wording (e.g., the generated logging text in
Figure 6.11a).

To examine the impact of our proposed two rules, we have conducted another three
ablation experiments. First, we remove the two rules and combine the n-grams only based
on the dictionary (i.e., None in Table 6.9). As Table 6.9 shows, a much larger size of the
generated logging texts is detected, while a small number of the detected logging texts are
relevant to the ground truth (i.e., True Positives). To filter out the irrelevant logging texts
(i.e., False Positives), we apply the two rules to the detected logging texts. As a result, we
successfully detect two logging texts that can be further refined. The results show that by
using our proposed post-processing strategy we can further improve the generated logging
texts, but the improvement is incremental. Future research may consider modifying the
architecture of the Transformer-based model and incorporating the n-gram dictionary into
the model (e.g., N-Grammer [152]) during the training or inference stage to improve the
quality of the generated logging texts.
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Table 6.9: Evaluation results of applying different constraints for composing n-grams in
the generated logging text together into bigger units (RQ6). Ground truth represents
the number of the generated logging texts containing n-grams that should be combined.
Detected is the number of the detected logging texts by our strategy. Relevant rep-
resents the number of the detected ground truth. Both, None, Rule 1, and Rule 2
represent when applying both constraints, no constraint, the first constraint and the second
constraint respectively.

Rules ‘ ActiveMQ Ambari Brooklyn Camel CloudStack Hadoop HBase Hive Ignite Synapse
Ground truth 1 4 0 4 6 6 4 2 2 2
Both Detected 1 1 0 0 0 3 2 1 0 1
Relevant 1 1 0 0 0 0 0 0 0 0
None Detected 12 24 21 48 165 82 30 30 25 8
Relevant 1 2 0 1 4 4 2 1 1 0
Rule 1 Detected 5 13 9 16 96 42 20 16 7 4
Relevant 1 1 0 0 0 2 1 1 1 0
Rutle 2 Detected 1 1 0 0 3 5 2 1 0 1
Relevant 1 1 0 0 0 1 0 0 0 0

Finally, we manually study the detection results and identify two possible reasons for
incorrectly detected logging texts: (1) Inconsistent writing convention. For example, al-
though this research question is motivated by the logging text in Figure 6.14, we still fail
to refine this generated logging text by combining the 2-gram “local file”. We check the
method and find both “localfile” and “local file” are used in the logging statements of this
method, but “localfile” only appears once in this extracted logging text, thus the combi-
nation operation is ignored. (2) Missed n-grams in the dictionary. This is reasonable,
as we limit the identifier to the method name for building the dictionaries, we have the
chance to miss some n-grams. However, selecting the identifiers is a trade-off. If we chose
more identifiers; as a result, we would produce more false positives. On the contrary, fewer
identifiers would cause the miss of the possible combinations.

It is possible to harmonize the wording in the generated logging text with the post-
processing strategy that leverages the token sequence (i.e., n-grams) in the source
code, however, the improvement is limited. Future research may consider incorpo-
rating the obtained n-grams from the source code into the logging text generation
model during the training or inference stage, to improve the quality of the generated
logging texts.
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6.5 Human Evaluation

Our approach LoGenText and its extension LoGenText-Plus are evaluated in the last
section based on quantitative metrics (i.e., BLEU and ROUGE scores) that measure the
similarity between the original and the generated logging texts. However, the quantitative
metrics may not directly reflect how developers perceive the quality of the generated logging
texts. Therefore, in this section, we conduct two separate human evaluations to further
evaluate LoGenText and LoGenText-Plus.

6.5.1 Evaluation of LoGenText

We invited 42 participants in our human evaluation. The participants include a mix of 23
graduate students who major in computer science or software engineering and 19 full-time
employees (e.g., software developers, software researchers, and data analysts) in software-
related companies across the globe. These companies include multimedia, video games,
social media, telecommunications and finance. 10 participants have at least five years of
experience in software development and 32 participants have around 10 years of experience.

Our human evaluation for LoGenText contains two tasks: task 1) evaluating the sim-
tlarity between the automatically generated logging texts and the original logging texts
extracted from source code; task 2) evaluating the logging texts separately from three
aspects [189], i.e., relevance, usefulness and adequacy based on the given source code. For
task 1, each participant was given 15 logging statements that were randomly sampled from
the 10 projects to evaluate. We presented the participants with the original logging texts,
the logging texts generated by the baseline, and the logging texts generated by LoGen-
Text. Since our results in Section 6.4 show that the context-aware form of LoGenText
incorporating the AST context has the best overall performance, we used it to generate
logging texts for our human evaluation. We named the logging text from the original
logging statement as log-ref and the two generated logging texts as log-1 and log-2. We
asked the participants to rate the similarity between the generated logging texts (log-1
and log-2) and the original logging texts (log-ref). In order to avoid the bias caused by
the order of the two generated logging texts, we randomly assigned the one generated by
LoGenText or by the baseline as log-1 or log-2. Each generated logging text is evaluated
based on a scale from 0 to 4 where 0 means no similarity and 4 means perfect similarity.
For task 2, each participant was randomly given three logging statements to evaluate. We
presented each participant with the original logging text, the logging text generated by
the baseline, the logging text generated by LoGenText, and the surrounding method of
the logging statement that highlights the location of the logging statement. We randomly
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assigned the three logging texts as log-a, log-b and log-c. We asked the participant to rate
the three logging texts based on the given code snippet from three aspects, i.e., relevance,
usefulness and adequacy. Relevance refers to how relevant the logging text is to the given
source code. Usefulness refers to how useful the logging text is for collecting valuable run-
time information of the source code. Adequacy refers to how the logging text is acceptable
in quality or quantity with regard to the given source code. Each logging text is evaluated
based on a scale from 0 to 4 where 0 means irrelevant /useless/unacceptable and 4 means
perfect relevance/usefulness/adequacy.

LoGenText generates logging texts that are significantly more similar to the
original logging texts than that generated by the baseline approach. Figure 6.13
presents the distribution of the user ratings in our evaluation. We find that LoGenText
generates more logging texts with ratings of 3 and 4 while fewer logging texts with ratings
of 0 and 1 than the baseline approach. We conducted a Wilcoxon signed-rank test [186]

B LoGenText
220 201 [0 Baseline

165
127,

1irkn

Rating

Count

Figure 6.13: Distribution of the rating results (in task 1) in terms of the similarity between
the generated logging texts and the reference logging texts.

to statistically compare the ratings of the logging texts generated by LoGenText and the
baseline approach. With a p-value « 0.00001'°, we can confirm that the difference between
the ratings of the logging texts generated by the two approaches is statistically significant.
On the other hand, despite the significant improvement over the baseline approach, we
still observe that more than one-third of the automatically generated logging texts by
LoGenText receive a rating of 0 or 1. The results suggest opportunities for future research
that further improves the automated logging generation.

In order to reflect on the results of our research questions that leverage quantitative
metrics BLEU and ROUGE to evaluate LoGenText (cf., Section 6.4), we analyze the rela-
tionship between the results of the quantitative measurement and the human evaluation.

10We also conducted the Vargha and Delaney A index, due to the significant overlap between the ratings,
the effect size is negligible.
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Specifically, we group the logging texts generated by LoGenText by each rate, then evaluate
the BLEU and ROUGE scores of the logging texts in each group. As shown in Table 6.10,
higher BLEU and ROUGE scores are both associated with higher user ratings. Such results
confirm the validity of our findings in our research questions that leverage the quantitative
metrics.

Table 6.10: Comparing the human ratings (in task 1) and the BLEU and ROUGE scores
of the logging texts generated by LoGenText.

Rating 0 1 2 3 4

BLEU 143 20.6 274 364 785
ROUGE-L 214 29.7 374 464 87.3

We manually examine the generated logging texts for which the participants assigned
a very high rating (i.e., 3 or 4) while the BLEU and ROUGE values are relatively low
(i.e., lower than the median), in order to further understand the quality of the generated
logging texts. In particular, there are 79 (12.5%) cases where the human ratings are high
(i.e., 3 or 4) while the BLEU scores are lower than the median. We find two main reasons
contributing to such inconsistency: (1) Using shorter words. In the generated logging
texts, the generated words are often short and easy to follow. For example, in a logging
statement from Ambari,

LOG.info("copying localfile := " + sourceFilepath + " to hdfsPath := " + destFilePath)
l (a) Original logging statement.
- : compares - -
"copyingilocalfilej<vid> to hdfspath <vid>" “— "copying} local Fileli<vid> to <vid>"
(b) Extracted logging text. (c) Generated logging text.

Figure 6.14: An example generated logging text from Ambari.

the original logging text uses the term “localfile”’; while our generated logging text uses the
term “local file”. Although these two terms have a very low similarity in terms of BLEU
and ROUGE, they have a very similar meaning. (2) Using synonyms. Another reason
for the inconsistency is the use of synonyms. For example, a logging text from Hadoop
says “no beanstalks defined” while our generated logging text says “no beanstalk definitions
found”. Both logging texts have similar meanings but with different choices of words, which
results in a high human rating but low BLEU and ROUGE-L values.
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log.debug(”"No beanstalks defined for initialization."”)

l (a) Original logging statement.

- - compares - <
"no :‘beanstalks definedifor initialization” —> "no;beanstalk definitions foundifor initialization”

(b) Extracted logging text. (c) Generated logging text.

Figure 6.15: An example generated logging text from Hadoop.

LoGenText outperforms the baseline approach in all three aspects. Table 6.11
shows the mean and median of relevance, usefulness and adequacy scores of the reference
logging texts and the logging texts generated by LoGenText and the baseline approach.
We can see that LoGenText outperforms the baseline approach on all three aspects with
an average score of 2.67, 2.41 and 2.15, respectively. Similar to task 1, we also conducted
a Wilcoxon signed-rank test and the difference is statistically significant for each aspect.
However, there is still a non-negligible margin between the logging texts generated by Lo-

Table 6.11: Comparing the mean and median ratings of the logging texts in task 2. The
median ratings are in the brackets following the mean ratings.

Relevance Usefulness Adequacy
Reference 3.37 (4) 3.19 (4) 3.02 (3)

Baseline 2.09 (2) 1.89 (2) 1.75 (2)
LoGenText 2.67 (3)*** 2.41 (3)*** 2,15 (2)**

Note: ***: p-value<0.001; **: 0.001<p-value<0.01. The
effect size is small for three aspects.

GenText and the reference logging texts. The results call for future research that narrows
down the gap between the logging texts written by developers and the automatically gen-
erated logging texts. On the other hand, the mean scores of the reference logging texts
are 3.37, 3.19 and 3.02 respectively, which indicate that some logging texts inserted by the
developers can still be further improved and call for high-quality logging texts to record
the software execution information.

w )

The logging texts generated by LoGenText have a higher quality than that generated
by the baseline approach in terms of relevance, usefulness, adequacy, and similarity
to the logging texts written by developers. Our results also suggest future research
opportunities for improving automated logging generation.
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6.5.2 Evaluation of LoGenText-Plus

In the last section, we have conducted a human evaluation to compare LoGenText and
the baseline and the results show that LoGenText outperforms the baseline approach in
all aspects. Therefore, in this section, we conduct another human evaluation to compare
baseline and LoGenText with LoGenText-Plus. Considering the number of cases to evalu-
ate, we invited 10 out of the 42 participants and nine of them are from academia and one
from industry.

Our human evaluation for LoGenText-Plus contains two tasks: task 1) comparing
the quality of the logging texts generated by LoGenText with that of LoGenText-Plus
based on the given source code, and task 2) comparing the quality of the logging texts
generated by the baseline approach with that of LoGenText-Plus. To be consistent with
the evaluation for LoGenText, we use the same dataset as that of task 2 in Section 6.5.1.
In order to avoid redundancy, we filter the dataset to remove cases where LoGenText-Plus
and LoGenText as well as the baseline approach, generate the identical logging texts. As
a result, approximately half of the samples are filtered out, leaving us with 69 out of 126
samples for task 1 and 96 out of 126 samples for task 2. Similar to the methodology used in
task 2 in Section 6.5.1, each participant was presented with the two generated logging texts
as log-1 and log-2 and the surrounding method of the logging statement that highlights
the location of the logging statement. Note that the names log-1 and log-2 were randomly
assigned to avoid bias. Then each participant was asked to examine whether log-1 is better
than log-2 based on the given code snippet. We listed three options for each comparison,
TRUE, FALSE, and NA. TRUE means that log-1 is better than log-2, FALSE means that
log-2 is better, and NA means the two logging texts are hard to compare (e.g., both are
similar or useless). Besides, each participant was asked to provide reasons why they made
the decision.

Overall, LoGenText-Plus generates better logging texts compared to that gen-
erated by LoGenText and the baseline approach. Figure 6.16 presents the distribu-
tion of the user ratings in our evaluation, where “Neutral” means that the two generated
logging texts are hard to compare. We find that LoGenText-Plus generates more logging
texts that are better than LoGenText (i.e., 53.6% vs. 34.8%) and the baseline approach
(i.e., 57.3% vs. 28.1%), which shows the improvement of LoGenText-Plus over LoGenText
and the baseline. However, we still observe that around 30% of the automatically gener-
ated logging texts by LoGenText and the baseline approach receive a better rating. The
results suggest opportunities for future research to further improve LoGenText-Plus.

Besides, to uncover the reasons why LoGenText-Plus or LoGenText receives a higher
rating, we further manually examine the comments provided by participants as well as the
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Figure 6.16: Comparing the human ratings of the logging texts generated by LoGenText-
Plus, LoGenText, and the baseline approach. “Neutral” means that the two generated
logging texts are hard to compare.

generated logging texts. In other words, the goal of this step is to find out what kind of
logging texts (i.e., the characteristics) are considered with a higher quality by developers,
aiming to provide guidance for writing or generating good logging texts.

We summarize five main reasons that a developer may favor a logging text. The reasons
together with examples are presented in Table 6.12. We discuss each reason in detail in
the rest of this section.

More relevant to the source code. The logging text should be more relevant to
the source code, which means that the actions that happened in the source code should
be similar or the same as the described actions in the logging text. For example, as shown
in Table 6.12a, the method is about the action “shut down”, while the generated log-2 is
describing the action of “connection”, which is irrelevant to the source code, thus, log-1 is
selected as a better logging text.

More descriptive and useful information to the source code. We find that
some logging texts are very short and simple, and thus cannot detailly describe what is
happening in the software system. For example, as shown in Table 6.12b, the generated
log-1 provides more information, as it not only tells the action taken (i.e., “load”) before
the logging statement but also shows the result of this action (i.e., an exception occurs).

More succinct and less confusing/redundant words. On one hand, the logging
text should provide enough information for failure diagnosis. On the other hand, the
logging text should also be more succinct and avoid confusing or redundant descriptions.
For example, in the generated logging text log-2 in Table 6.12¢, the last few words are a little
meaningless and may confuse developers while analyzing the logs. Besides, our approach
can insert “<vid>"s to the generated logging text as variable placeholders. However, one
participant commented that some “<vid>"s may be unnecessary.
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Table 6.12: The summary of the five main reasons that a developer may favor a logging
text. The “Generated log-1/2” represents two logging texts by either LoGenText-Plus or
LoGenText. “Original log” denotes the logging statement written by developers. The better
logging text is highlighted in bold green.

Reason Example

public void shutdown() {
——————————————— Candidate log start---------------—-

Generated log-1: shutting down connection to zk <vid>
M 1 h d Generated log-2: connection to zookeeper <vid>
ore relevant to the source code Original log: LOG.debug("CamelDestination shutdown()")

(a) CamelDestinationjava from Camel

load(key.file(), props);
} catch (IOException e) {

More descriptive and useful Generated log-1: load of <vid> failure exception <vid>

information to the source code Generated log-2: load of <vid>
Original log: LOG.error("Failed to load:

+ key + ", reason:" + e.getlLocalizedMessage())

(b) ReloadablePropertiesjava from ActiveMQ

if(filterPart.size() !'= 2) {

Generated log-1: invalid filter specification <vid> skipping

More succinct and less Generated log-2: invalid filter specification filters count <vid> skipping split s
confusing/redundant words Original log: LOG.warn("Invalid filter specification " + filterClass + " - skipping")
——————————————— Candidate log end----------------

} else {
(c) ThriftServerjava from HBase
try {

newSession.close(false);
} catch (Exception ex) {

More accurate Generated log-1: failed to close an old session ignoring
Generated log-2: failed to close session <vid>
Original log: LOG.error("Failed to close an unneeded session", ex)

(d) TezSessionPooljava from Hive
public void deleteAllMessages() throws IOException {

getAdapter().doDropTables(c);
getAdapter().setUseExternalMessageReferences(isUseExternalMessageReferences());
getAdapter().doCreateTables(c);

More specific and focusingon | -----------—-— Candidate log start----------------

critical actions in source code Generated log-1: deleted apache activemq <vid>

Generated log-2: executing sql <vid>

Original log: LOG.info("Persistence store purged.")

(e) JDBCPersistenceAdapterjava from ActiveMQ
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More accurate. Another important factor for a better logging text is to use more
accurate descriptions. The logging text should avoid providing the wrong information,
which may mislead the developers. For example, as shown in Table 6.12d, the generated
log-1 uses “an old” to describe the object “session”. However, based on the source code in
the “try” block, the “session” should be a “new” session, instead of the “old”.

More specific and focusing on critical actions in source code. We notice that
there may exist several statements inserted before the target logging statement in the source
code. For such cases, the logging text should focus on more critical statements and describe
the specific statements with less general words. For example, as shown in Table 6.12e,
there are a list of database-related actions, including “doDropTables” and “doCreateTables”,
which is exactly what the generated log-2 describes, “executing sql <vid>". However, based
on the feedback from the participants as well as the original logging statement, the logging
text “executing sql” is too general, while “deleted” is more specific and describes the more
critical action “doDropTables”.

Besides, as shown in Figure 6.16, there are also some cases where log-1 and log-2 are
hard to compare. This may be caused by two reasons: (1) The two generated logging
texts are inaccurate or even wrong. For example, in Figure 6.17, the actual action
in the source code is “scanning” file, instead of the generated “restoring” or “deleting”. 2)

private voidiscanFileOrDirectoryi(final ...) {

FileObject fileObject = null;
if (log.isDebugEnabled()) {

Figure 6.17: An example generated logging text from Synapse.

The two generated logging texts have a very similar meaning. For example, in
Figure 6.18, the two generated logging texts are almost the same, except for the missing
preposition “to” in generated log-2, of which the influence can be ignored. Therefore, they
are considered to convey the same information.
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——————————————— Candidate log start----------------
Generated log-14 failed to transferi<vid> to <vid> retryable error attempt <vid> vid <vid>
Generated log—2:{failed transferi <vid> to <vid> retryable error attempt <vid> vid <vid>

n

Original log: log.warn('{Failed to transferi” + urlToInstall + " to " + machine + ", not a
retryable error so failing: " + e)

Figure 6.18: An example generated logging text from Brooklyn.

Overall, the logging texts generated by LoGenText-Plus have a higher quality than
that generated by LoGenText. Besides, we identify five possible reasons that a
developer may favor a logging text. The reasons can be used as a guideline for
practitioners to improve the process of automated logging generation.

6.6 Threats to Validity

Internal Validity. In this work, we compare our approach with prior work by He et al.
[59]. Meanwhile, pre-trained models of code have achieved new state-of-the-art results for
several code-related tasks, such as clone detection, code search, and code completion [54].
Therefore, we also try to select UniXcoder [54| as a comparison, which is most recently
released and has shown to have better performance than CodeBERT [44], CodeT5 [180],
and GraphCodeBERT [53]. We conduct the experiments under two settings: (1) zero-
shot logging statement completion, and (2) fine-tuning the model on our training dataset.
Similar to our experiments, we use the pre-log code as input. Under the zero-shot setting,
there is only an average of 26.6% logging statements generated among all the test inputs,
with an average BLEU score of 12.9. Besides, we also fine-tune UniXcoder on our training
dataset of each project, and there is an average of 34.7% logging statements generated
among all the test inputs, with an average BLEU score of 22.2, which is slightly worse than
that of the baseline approach and our proposed approaches. The reasons may come from
(1) the lack of training data on logging statements and (2) the lack of optimized training
objectives for logging statement-related tasks. Future work may consider designing logging
statement-specific pre-training objectives and pre-training the model using the dataset
curated for logging. Meanwhile, Mastropaolo et al. [120] propose to train a T5 model
to support the automatic generation of complete log statements, including the generation
of logging texts, where to log, and which level to log. However, as mentioned in the
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work of Mastropaolo et al. [120], the generated logging texts have a BLEU score of 15,
which is also lower than the average result (i.e., 30.3) reported in our thesis. However, we
believe that the performance of the T5 model can be further improved by, for example,
(1) training on a larger corpus (currently, it is only trained with 6M Java methods) and
(2) including the AST or other types of information extracted from source code, which
has shown to be useful for code-related tasks. In RQ2, we attempt to include two types
of context information to further improve LoGenText. Similarly, we design two strategies
in RQ3 to incorporate logging texts from similar code snippets. There could exist other
context information and other strategies for integrating the context information, while our
findings do not in any way claim to generalize the usefulness of other types of context
information or other integration strategies. We evaluate the effectiveness of LoGenText
and LoGenText-Plus based on both quantitative metrics (i.e., BLEU and ROUGE) and
human ratings. The quantitative metrics may not reflect the actual quality of the generated
logging from developers’ perspective, while the human ratings may include subjective bias
introduced by the individual participants. However, to mitigate this effect, we try our best
to invite more than 40 participants. The number of participants is much larger than that
of previous research [176]. Future work should consider further evaluating LoGenText and
LoGenText-Plus by using them in a real-life industrial setting.

External Validity. In this chapter, we evaluate LoGenText and LoGenText-Plus based
on 10 subject systems. All of the subject systems are open-source systems that are mainly
written in Java. In addition, all of the subject systems are server or desktop applications,
while logging practices on mobile devices are found to be different [202]. Evaluating Lo-
GenText and LoGenText-Plus on other systems that are written in other languages, with
closed-source code, or running on mobile devices, may further demonstrate the effectiveness
and limitations of our approach.

Construct Validity. Our data (e.g., logging texts, pre-log code, post-log, and ASTs) are
extracted based on the srcML tool [31]. sreML is a mature tool and has been widely used
in various software engineering research. Nevertheless, the quality of the data generated by
srcML may impact the results of our study. LoGenText and LoGenText-Plus require several
hyperparameters for the training process, such as the dimensions, the number of layers, and
the number of attention heads, which may impact the results of generating logging texts.
To minimize the bias caused by the hyperparameter configurations, we follow the practices
from prior studies [83, 172] to configure the hyperparameters. Performing further fine-
tuning on these hyperparameters may even further improve the results from LoGenText
and LoGenText-Plus. In our evaluation, the data from each project is randomly split into
80%/10%/10% training, validation, and testing datasets. The evaluation results may show
some differences with other splits of the training, validation, and testing datasets. Besides,
we find that there exists a duplication of the data samples between the training and testing
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datasets, which may also impact the evaluation results. Specifically, there are 1 to 29 or
0.5% to 6.6% duplicate logging statements in the studied subjects. However, we did not
remove these duplicates as the number of duplicate instances is relatively small, and we
want to evaluate our approach in a real-life situation where duplicate logging statements
do exist [94, 98]. Future work may consider exploring how duplicate logging statements
would impact the tool.

6.7 Conclusion

In this chapter, we present our approach, LoGenText, and its improved version, LoGenText-
Plus, which automatically generates the textual descriptions of logging statements based
on neural machine translation models. By comparing the generated logging texts with the
actual logging texts in the source code, we find that both LoGenText and LoGenText-
Plus show promising results in the automated generation of logging texts. Our approach
LoGenText-Plus, which leverages the logging template information, outperforms the state-
of-the-art LoGenText and the baseline approach in terms of both quantitative metrics
(BLEU and ROUGE) and human ratings. Our research sheds light on promising research
opportunities that exploit and customize neural machine translation models for the auto-
mated generation of logging statements, which will reduce developers’ efforts in logging
development and maintenance and potentially improve the overall quality of software log-

ging.
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Chapter 7

Retroactively Analyzing Existing
Logging Texts

Prior work shows that misleading logging texts (i.e., the textual descriptions in logging
statements) can be counterproductive for developers during their use of logs. One of
the most important types of information provided by logs is the temporal information of
the recorded system behavior. For example, a logging text may use a perfective aspect
to describe a fact that an important system event has finished. Although prior work
has performed extensive studies on automated logging suggestions, few of these studies
investigate the temporal relations between logging and code.

In this chapter, we make the first attempt to comprehensively study the temporal
relations between logging and its corresponding source code. In particular, we focus on
two types of temporal relations: (1) logical temporal relations, which can be inferred from
the execution order between the logging statement and the corresponding source code; and
(2) semantic temporal relations, which can be inferred based on the semantic meaning of
the logging text. We first perform qualitative analyses to study these two types of logging-
code temporal relations and the inconsistency between them. As a result, we derive rules
to detect these two types of temporal relations and their inconsistencies. Based on these
rules, we propose a tool named TempoLo to automatically detect the issues of temporal
inconsistencies between logging and code. Through an evaluation of four projects, we find
that TempoLo can effectively detect temporal inconsistencies with a small number of false
positives. To gather developers’ feedback on whether such inconsistencies are worth fixing,
we report 15 detected instances from these projects to developers. 13 instances from three
projects are confirmed and fixed, while two instances of the remaining project are pending
at the time of this writing. Our work lays the foundation for describing temporal relations
between logging and code and demonstrates the potential for a deeper understanding of
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the relationship between logging and code.

7.1 Introduction

Logging texts provide high-level human-readable information and are usually written to
describe the behaviors of the corresponding source code. Well-written logging texts can
provide developers and other software practitioners with valuable information for system
comprehension or failure diagnosis. Thus, it is important for developers to write proper
logging texts for their logging statements. Recent work shows that incorrect logging texts
often make the use of logs counterproductive [23, 58, 89, 98]. For example, according to
a Hadoop issue report!, the logging text of the logging statement in Figure 7.1 is mis-
leading: the logging text indicates a perfective action (“connected”), while the source code
corresponding to the action (line 5) is placed after the logging statement, causing an incon-
sistency between the textual description of the logging statement and its logical relationship
with the corresponding source code. When the logging statement is executed and a log
message is produced, the log message will provide misleading information that the “connec-
tion” has been established while it is not. To avoid such confusion, the word “connected”
in the logging text was changed to “connecting” (indicating a progressive action) in the
patch that fixed the issue.

Prior work has performed extensive studies on software logging, including the studies
that perform empirical investigations of logging practices [24, 27, 59, 98], that characterize
and detect logging-related issues, as well as the studies that propose automated tools to
support where to log [38, 39, 95, 210], what to log [37, 59, 120], and how to choose log
levels [86, 96]. While a few studies indicate and discuss the importance of the relationship
between logging and code [59, 89], none of them offer a satisfactory solution to address this
issue. For example, a recent study by He et al. [59] finds that developers insert logging
statements to describe three types of program operations (i.e., completed, current, and
next operations). In their study, only the relative position between the logging statement
and its corresponding code is considered, while the underlying intention in the developer-
written logging text is ignored. However, both aspects are critical for logging quality
and various log analysis tasks. As explained previously in the Hadoop logging example
(Figure 7.1), the inconsistency between these two aspects can mislead practitioners who
rely on analyzing logs for various tasks (e.g., debugging). Specifically, four of the logging
benefits (e.g., knowing the status of an ongoing event) observed in a recent survey [89]
would be impaired with such inconsistency. Moreover, by carefully examining real-life log

1https ://issues.apache.org/jira/browse/MAPREDUCE-4262
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RegistrationResponse regResponse = this.resourceTracker
.registerNodeManager (request).getRegistrationResponse();

(o]

2012-05-16 18:04:25,844 INFO org.apache.hadoop.yarn.server.nodemanager.NodeStatusUpdaterImpl:! i Connected ! 1to

ResourceManager at /xx.xx.xx.xx:8¢25 .
2012-05-16 18:04:26,870 INFO org.apache.hadoop.ipc.Client: lRetrylng connect to-server host-xx=-xx-xx-
XX/XX.XX.XX.Xx:8025. Already tried @ time(s). :::::::::::::::::::
2012-05-16 18:04:26,870 INFO org.apache.hadoop.ipc.Client: lRetrylng connect to-server host-xx—xx-xx-
XX/XX.XX.XX.XX:8025. Already tried 1 time(s).  TTTTTT

Figure 7.1: A code snippet from Hadoop with a logging statement (line 3), generated logs,
and its related issue report.

anti-patterns [24| and log bugs data [58], we observe many real-world cases (over 20) fixing
such inconsistency.

Therefore, in this work, we make the first attempt to comprehensively study the re-
lationship between logging and its corresponding code. In particular, we focus on the
temporal relations. Specifically, we study the logging-code temporal relations from two
perspectives: (1) logical temporal relations, which can be inferred from the execution
order between the logging statement and its corresponding source code; and (2) semantic
temporal relations, which can be inferred based on the semantic meaning of the log-
ging text. While the logical temporal relations describe what the actual order is in the
code, the semantic temporal relations describe what the order is inferred from the gen-
erated logs. When there is an inconsistency between these two relations (i.e., temporal
inconsistency), it is misleading to practitioners who rely on the clues provided by logs
to understand system runtime behaviors [46, 158]. In this work, we first perform qualita-
tive analyses to study these two types of logging-code temporal relations and the issues of
temporal inconsistency. Based on the observations from our qualitative analyses, we also
propose a tool (named TempoLo) to automatically detect the issues of temporal inconsis-
tency in the source code.

We evaluate our tool on four open-source projects. Our evaluation contains three parts:
(1) applying our tool to the logging statements used in our qualitative study, which shows
that the tool can cover a majority (78.8%) of the manually identified temporal inconsis-
tencies; (2) applying our tool to the remaining logging statements that are not manually
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analyzed, which shows that the tool can successfully detect another 326 inconsistencies
with a relatively small number of false positive cases (48 cases and almost half are caused
by the dependent NLP library); and (3) applying the tool to another dataset of temporal
inconsistencies which we collected from the commit history of the studied projects, which
shows that our tool can detect 83.3% of the inconsistencies. To gather developers’ feedback
on whether such inconsistencies are worth fixing, we report 15 detected instances from these
projects to developers. 13 instances from three projects are confirmed and fixed, while two
instances of the remaining project are still pending at the time of this writing.

The contributions of this chapter include:

e We provide empirical observations on the temporal relations between logging and
code.

e We derive rules to detect the logical and semantic temporal relations between logging
and code, as well as rules to detect logging-code temporal inconsistencies.

e We implement a tool that can automatically detect logging-code temporal inconsis-
tencies in the source code.

Our work is an important step toward analyzing the relationship between logging and
code. Our empirical observations and tool can raise developers’ and researchers’ awareness
of the importance of the temporal relations between logging and code, to avoid and iden-
tify temporal relation-related bugs. Our research also sheds light on promising research
opportunities that exploit other types of relations between logging and code (e.g., semantic
inconsistencies) to improve software logging or detect logging anti-patterns in the source
code, which will potentially improve the overall quality of software logging.

Chapter organization. Section 7.2 presents the background of temporal relations. Sec-
tion 7.3 describes our subject projects, and data collection, and gives an overview of our
study. Section 7.4 describes the approaches and results of our qualitative study of the
temporal relations between logging and code. Section 7.5 presents the implementation
and evaluation of our tool that automatically detects logging-code temporal inconsisten-
cies which is based on the observations from our qualitative study. Section 7.6 discuss the
threats to the validity of our results. Finally, Section 7.7 concludes the chapter.

7.2 Background

In this section, we present the concepts of temporal relations that are widely studied in
the natural language community.
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Before describing temporal relations, we first focus on the concept of “event” which is
a fundamental term in natural language. Event is defined as a situation that happens or
occurs [145], and it is often expressed in verbs (as shown in the example below) to describe
an action or a transition. Another important concept is the semantic relation, also called
temporal relation, that holds between relevant events. Given the following example,

| The server stopped unexpectedly, we are starting it again.

According to the definition of events, in this sentence, there are two events, stopped
(E1) and starting (E2). The occurring order of these two events is the temporal relation.
In this example, event E2 should happen after event E1.

Identifying the events and the temporal relations among them plays a vital role in
many natural language processing (NLP) tasks, such as temporal information extraction
(IE) [103], question answering [154] and knowledge base (KB) construction. To better
annotate the events and temporal relations, researchers have proposed several represen-
tation schemas (e.g., Allen’s interval algebra [9], STAG [156], and TimeML) [145]. In
our work, we mainly focus on Allen’s interval algebra [9], as it has become the standard
representation [34, 103].

Allen [9] first proposed the interval-based algebra for representing temporal relations
that may exist between any event pair in natural language. The representation consists of
a set of 13 distinct and exhaustive interval relations (i.e., the relations between two time
intervals) and are listed in Table 7.1 [34, 130], where A and B are two relevant events.
The previous example describes two events, E1 and E2, and the corresponding temporal
relation should be E2 after E1 (or E2 met-by El, as it is possible that E2 starts when
E1l ends.).

Since the appearance of Allen’s algebra, researchers also propose modified temporal
relations for capturing temporal relations in different domains [65, 130, 156, 173]. For
example, Styler IV et al. [65] combine Allen’s algebra and TimeML schema and identify
five temporal relations for clinical narratives. Besides, Mostafazadeh et al. [130] find that
using a number of four relations is sufficient to handle the inter-event temporal relation in
ROCStories corpus [129]. Considering the wide research of temporal relations for NLP, we
would like to examine whether we can formally define our own set of temporal relations to
model the relations between the logging statements and source code.
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Table 7.1: Allen’s 13 temporal relations.

Relation (A to B) Visualization Explanation

Before CA 1 [CB ] A ends before B starts

After CB 1A ] A starts after B ends

During % A starts and ends while B is ongoing

Contains % B starts and ends while A is ongoing

Overlaps |I|II| A starts before B and ends during B
Overlapped-by %‘E B starts before A and ends during A

Meets CATB ] A ends at the point B begins

Met-by CB T A 1] B ends at the point A begins

Starts I—A—,|I| Share the start point, but A ends before B ends
Started-by II',T Share the start point, but B ends before A ends
Finishes |II—A— A and B share end point, but A begins later
Finished-by T|I|| A and B share end point, but B begins later
Equals g A and B start and end at the same time

7.3 Study Setup

In this section, we describe the setup of our study?. Figure 7.2 shows an overview of
our study. Overall, our study contains two parts: (1) a qualitative study of the temporal
relations between the logging statement and source code, and the logging-code temporal
inconsistencies, and (2) the implementation and evaluation of a tool for automatically iden-
tifying the temporal inconsistencies. Below, we first present our subject projects and the
collection of data for the qualitative study, then we provide an overview of our qualitative
study and the implementation and evaluation of our tool.

7.3.1 Subject Projects

We base our case study on four open-source Java projects: Hadoop, Tomcat, JMeter and
ActiveM@Q. The four selected projects are from different application categories: Hadoop
is a distributed server-side data processing system; Tomcat is a server-side application

2The replication package is available at https://github.com/senseconcordia/
TempoLo-replication-package
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Figure 7.2: An overview of our study.

used for powering web applications; JMeter is a client-side software for conducting load
testing; ActiveMQ is a middleware project that provides useful messaging service for both
the server and client-side projects. We choose the subject projects since they are widely
used and actively maintained, and have been studied in prior research |23, 24]. The details
of the studied versions of these projects are listed in Table 7.2. The source lines of code of
the studied projects range from 145K to 1.8M. These projects have about ~2K to ~13K
logging statements, among which 94.3% to 97.6% have logging texts.

Table 7.2: Details of the studied projects.

. . # of loggin # of loggin
Project  Version SLOC statemgegntsg statements %vgithgtext
ActiveMQ 5.6.0 412K 2,139 2,087 (97.6%)
Hadoop 3.4.0 1.8M 13,204 12,463 (94.3%)
JMeter 5.5.0 145K 1,932 1,842 (95.3%)
Tomcat 10.1.0 349K 2,590 2,477 (95.6%)
Total 2.7M 19,865 18,868 (95.0%)

7.3.2 Data Collection: Logging Statements and Logging State-
ment Changes

As shown in Figure 7.2, we collect logging statements data from the source code of the
subject projects to perform our qualitative study of the temporal relations between logging
and code and to evaluate our tool that detects temporal inconsistencies. In addition, we
collect logging statement change data from the version control repositories of the subject
projects to evaluate our tool. Below, we describe our data collection processes.
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7.3.2.1 Collecting logging statements

We collect logging statements from the latest versions (as indicated in Table 7.2) of the
four subject projects at the time of writing this chapter’. We use static analysis and
regular expressions to identify the logging statement and the method that contains the
logging statement. More specifically, we use JavaParser [134] to find out methods that are
invoked in each Java file as logging is typically a method call (e.g., log.info()), then use
regular expressions to filter out the logging statements using keywords (e.g., “log”, “logger”,
“logging”). The statistics of the collected logging statements are shown in Table 7.2.

To conduct our manual analysis, we then do random sampling with 95% confidence
level and a 5% confidence interval [36] on the collected logging statements. We finally
select 326, 373, 321, and 335 logging statements (1,355 samples in total) for ActiveMQ),
Hadoop, JMeter and Tomcat, respectively. Note that we have sampled from each subject
individually, rather than combining all the logging statements into one dataset for sampling,
though it would dramatically reduce our manual labeling efforts (from 1,355 samples to 377
samples). The main reason is that the distribution of the logging statements across different
projects is highly imbalanced (i.e., the differences in the number of logging statements in
different projects), thus to better understand the characteristics of the temporal relations
between the logging statements and the target source code from a wider perspective, we
do the sampling for each project individually.

7.3.2.2 Collecting logging statement changes

We also construct an oracle dataset from the commit history of our subject projects to
further evaluate the performance of the tool. Our idea is that: if developers change the
position of a logging statement relative to its corresponding code, it indicates a potential
temporal inconsistency in the first place. We collect all the commits of the four studied
projects and keep the commits that have logging statement changes. Then, we manually
examine the logging statement changes that fix temporal inconsistencies. We detail the
steps in Section 7.5.4.3.

7.3.3 Overview of the Qualitative Study

With the sampled logging statements (see Section 7.3.2.1), we manually label the temporal
relations between the logging statement and the target source code. Four participants
jointly perform the labeling process.

3The time of the data collection is July 2021.
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We analyze the logging-code temporal relations from two perspectives: (1) logical
temporal relations, where our assumption is that the logging statement and its cor-
responding source code can be considered as a different but relevant event pair and the
temporal relation (in other words, execution order) of the event pair can be inferred from
their relative position in the code snippet; and (2) semantic temporal relations, where
the action described in the logging text and the execution of the logging statement is
regarded as an event pair, and the temporal relations can be inferred from the semantic
meaning of the logging text, which is similar to existing NLP tasks [103, 173].

We then manually identify the temporal inconsistencies. We consider that there exists
a temporal inconsistency if the two types of relations violate each other. We detail our
qualitative study steps in Section 7.4.

7.3.4 Overview of Our Tool Implementation and Evaluation

In this step, based on the observations from our qualitative study, we implement a tool
named TempolLo that automatically detects the logging-code temporal relations and the
temporal inconsistencies for a given logging statement and its containing method. The
tool implements three functionalities: (1) logical temporal relation detection, (2) semantic
temporal relation detection, and (3) temporal inconsistency detection.

To evaluate the effectiveness of Tempol.o, we apply it to the unsampled logging state-
ments (the remaining logging statement after sampling for manual labeling) to examine
its ability to detect new temporal inconsistencies. As there is no readily available oracle
dataset for temporal inconsistencies, we also construct an oracle dataset from the commit
history of the subject projects for further evaluation. Finally, we reported the detected
inconsistencies as bugs through issue reports and pull requests to the developers of the four
studied projects. We detail the steps and results in Section 7.5.

7.4 A Qualitative Study

In this section, we describe the steps of our qualitative study that aims to understand
the temporal relations between logging and code, as well as to identify the inconsistencies
between the temporal relations inferred from the code (i.e., logical temporal relations)
and that inferred from the semantic meaning of the logging text (i.e., semantic temporal
relations).
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7.4.1 Studying Logical Temporal Relations

In this section, we manually label and analyze the logical temporal relations.

7.4.1.1 Labeling logical temporal relations

We follow a three-step manual labeling process:

Step 1. We start by manually labeling a random sample of 406 logging statements
(i.e., 30% of the total 1,355 sampled logging statements). In this step, we employ four
participants to do the labeling. The logical temporal relation of each logging statement is
labeled by two annotators separately. Therefore, each annotator is assigned 203 logging
statements to label. Each logging statement together with its corresponding code snippet
is provided to the annotators using a URL that locates the logging statement in the cor-
responding GitHub repository. The annotators decide the most appropriate relation for
each logging statement from Allen’s 13 temporal relations.

Step 2. Once the 406 logging statements are labeled, the four annotators compare their
labeling results. The results in this step have a substantial agreement for the labeling of
the logical temporal relations (Cohen’s Kappa of 0.81). Each logging statement is labeled
by two annotators, and thus, when there is any disagreement regarding the labeling, the
other two annotators would join and discuss until they reach a consensus.

Step 3. Based on the common understanding of the labels obtained from the last step,
the remaining 949 from the total sample of 1,355 logging statements are equally distributed
to the four annotators, then, each participant labels around 237 logging statements indi-
vidually.

Note that there exist some logging statements that do not have explicit temporal rela-
tions with the source code, and the annotators simply label the temporal relation as “N/A”.
For example, considering the code snippet in Table 7.3(a), there is no clear target source
code for the logging statement, and thus, it is impossible to infer a temporal relation.

7.4.1.2 Identified logical temporal relations

In total, we have identified five logical temporal relations between the logging statement and
its corresponding source code, as shown in Table 7.3. As compared with Allen’s 13 relations
(cf., Section 7.2), we do not include the relations contains, overlaps, overlapped-by,
starts, started-by, finishes, finished-by and equals. The reason is that we consider
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Table 7.3: An overview of the logical temporal relations.

Relation Code snippet
private void handleBrowse(SampleResult ...
LOGGER.debug("isBrowseOnly") ;
N/A StringBuilder sb = new ...
}
(a) JMSSampler.java (JMeter)
public void setRunning(boolean running, String host) {
. log.info("setRunning({}, {})", running, host);
During }
(b) JMeterMenuBar.java (JMeter)
public void run() { ...
log.debug("Sampler start");
Before sample() ;
.3
(c) AbstractPerformanceSampler.java (ActiveMQ)
public void onAMQPData(Object command)
frame = header.getBuffer();
After LOG.trace("Server: Received from client: {} bytes",
}
(d) AmgpConnection.java (ActiveMQ)
void waitForAuthentication()
LOG.debug("Waiting for authentication response");
Meets handler.waitForAuthentication();
}
(e) Application.java (ActiveMQ)
protected void unregisterProducer(
managementContext.unregisterMBean (key) ;
} catch (Throwable e) {
Met-by L0G.warn("Failed to unregister MBean {}", key);

}

(f) ManagedRegionBroker.java (ActiveMQ)
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the execution of a logging statement as a time point and the corresponding code as a time
interval. Below, we discuss each of our identified logical temporal relations.

During: The logging statement executes while the target source code is ongoing. As shown
in Table 7.3(b), the corresponding code of the logging statement is the whole method, and
the logging statement executes while the method is ongoing, thus, we label the relation as
during.

Before: The logging statement executes before the corresponding source code. As shown
in Table 7.3(c), the corresponding code of the logging statement is the method “sample”,
and there is other source code between the logging statement and the corresponding code,
thus, we label the relation as before.

After: The logging statement executes after the corresponding source code. As shown in
Table 7.3(d), the target code of the logging statement is the assignment operation “frame
= header.getBuffer();”, and there is another source code between the logging statement
and the corresponding code, thus, we label the relation as after.

Meets: The logging statement executes right before the corresponding source code. As
shown in Table 7.3(e), the corresponding code of the logging statement is the method
“waitForAuthentication()”, and there is no other source code between the logging statement
and the corresponding code, thus, we label the relation as meets.

Met-by: the logging statement executes right after the corresponding source code. As
shown in Table 7.3(f), the corresponding code of the logging statement is the method
“unregisterMBean(key)”, and there is no other operations between the logging statement
and the corresponding code, thus, we label the relation as met-by.

7.4.1.3 Findings from labeling logical temporal relations

During the labeling process, the most challenging part is locating the target source code
of the logging statement. However, we find that the main verb in the logging text, which
typically shows the action that occurs in a sentence, can be effectively used for locating the
corresponding source code. Therefore, we list observations for locating the corresponding
source code based on the logging text. The number in the parentheses is the proportion of
these matches respectively.

Finding L.1: The main verb in the logging text (partially) matches the cor-
responding source code (40.4%). For instance, in Table 7.3(e), the main verb of the
logging text “Waiting for authentication response” is “waiting”, which partially matches
“waitForAuthentication” in the statement “handler.waitForAuthentication();”. As the log-
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ging statement is logically executed right before the corresponding code statement, we can
label the relation as meets.

Finding L.2: The direct object or subject of the main verb in the logging text
(partially) matches the corresponding source code (18.3%). The direct subject
(object) is usually a noun or noun phrase that performs (receives) the action of the main
verb. For instance, in Table 7.3(c), the logging text is “Sampler start” and the main verb
is “start”, whose subject “Sampler” partially matches the statement “sample();”. There are
other statements between the logging statement and the corresponding code, we, therefore,
label the relation as before.

Finding L.3: The synonyms of the main verb in the logging text match the
corresponding source code (11.1%). Developers also use synonyms of the main verb
to describe the source code. As shown below, the corresponding code for the logging
statement invokes the “append” method; while developers choose to use its synonym, “add”
to describe the action.

private void initUserTags(BackendListenerContext ...
userTagBuilder.append(’,’) .append(. ..tagToStringValue (tagName))

log.debug("Adding ’{}’ tag with ’{}’ value ", tagName, tagValue);

}

Finding L.4: The main verb in the logging text implicitly matches an operator
of the corresponding source code (17.3%). For example, in Java, the phrase “instan-
tiating a class” means calling the constructor of a class and creating an object of that class,
which is done by using the “new” keyword. Below is an example, where “Instantiating” is
used to describe the “new” operation.

private void startWebApp() {

AHSWebApp ahsWebApp = new AHSWebApp(...
LOG.info("Instantiating AHSWebApp at " +

}

Finding L.5: The open clausal complement of the main verb in the logging text
matches the target source code (10.0%). The open clausal complement of the main
verb is usually a predicative or clausal complement, which can also convey actions of the
source code. For instance, in Table 7.3(f), the logging text is “Failed to unregister MBean”
and the main verb is “Failed”, whose open clausal complement, “unregister”, matches the
method “unregisterMBean()”.
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7.4.2 Studying Semantic Temporal Relations

In this section, we study semantic temporal relations that can be inferred from the semantic
meaning of logging text.

7.4.2.1 Labeling semantic temporal relations

To get the labels of the logging texts, we follow the same three-step manual labeling
process as in Section 7.4.1.1. We also achieve a substantial agreement on the semantic
temporal relations (Cohen’s Kappa of 0.83). Besides, there also exist logging statements of
which the textual descriptions cannot be used to infer temporal relations. For instance, in
Table 7.4(a), there is no explicit event that can be extracted, and the participants simply
label the temporal relation as “IN/A”.

Table 7.4: An overview of the semantic temporal relations.

Relation Logging statement

N/A (a) log.debug ("Arg: {}", arqg)

During (b)log.info ("setRunning ({}, {})", running, host);
Before (c)LOG.debug ("Active scan starting")

After (d)log.info (“"Thread started:{}”, ...);

7.4.2.2 Identified semantic temporal relations

In total, we have identified three semantic temporal relations inferred from the logging
text, as shown in Table 7.4.

Considering the intrinsic similarity between this labeling process and the 2007 TempE-
val challenge in NLP [103, 173] as well the fact that it is hard to be certain about whether
two events occur exactly during the same time or starting/ending right after/before each
other [130] (e.g., we are unable to ensure that the “starting” would exactly occur right after
the logging statement.), we thus follow the previous work [173] and restrict the original
Allen’s 13 interval relations to a set of three (before, after and during) temporal rela-
tions, which based on observation are enough to capture the semantic temporal relations.
Below, we discuss our identified set of three semantic temporal relations.

During: The logging statement is called while the event described in the logging statement
is ongoing. As shown in Table 7.4(b), the event is the “setRunning”, and we can infer that
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the logging statement should execute while the event is ongoing, thus, we label the relation
as during.

Before: The logging statement is called before the event. As shown in Table 7.4(c), the
event is “starting”’, which should occur after the execution of the logging statement, thus,
we label the relation as before.

After: The logging statement is called after the event. As shown in Table 7.4(d), the
logging statement should be executed after the event “started”, thus, we label the relation
as after.

7.4.2.3 Findings from labeling semantic temporal relations

We discuss the findings that can be used for inferring the semantic temporal relations. We
find that the tense and aspect of the main verb are two major pieces of evidence that can
be used to infer semantic temporal relations. Tense and aspect are two important concepts
in natural language embodying the linguistic encoding of time [1, 56]. There are two tenses
in English, past and present, and two aspects, perfective and progressive, indicating that
the action is complete or ongoing, respectively.

Finding S.1: If the main verb has a past tense or perfective aspect, the relation
is often after. As shown in Table 7.4(d), the main verb “started” has a tense of past,
and thus is labeled a relation, after. However, we find that in some cases, just tense solely
can not determine the semantic relation, for instance, the expression “have stopped” has
an after relation, but the tense is present. In this situation, we consider the aspect, as the
aspect is perfective.

Finding S.2: If the main verb has a present tense or progressive aspect, the
relation is often before. In Table 7.4(c), the main verb “starting” has a present tense
and progressive aspect, and the temporal relation is labeled as before. Note that the
main verb with a past tense can still have a progressive aspect, for example, given the verb
phrase “was stopping”, it has a progressive aspect but past tense, for such cases, we label
them as after.

Finding S.3: If the logging text is in CamelCase and does not contain any
explicit tense or aspect, the relation may be during. In Table 7.4(b), the logging
text “setRunning” is in CamelCase and does not contain any verbs and thus the temporal
relation is labeled as during.
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7.4.3 Studying Temporal Inconsistencies

We have labeled the temporal relations for the collected logging statements in previous
steps. As one of our goals is to uncover the patterns of temporal inconsistencies (i.e., the
inconsistencies between the logical and semantic temporal relations), in this section, we
first describe how to identify the temporal inconsistencies and then describe the findings.

Our way to identify the inconstancy is straightforward: if the temporal relation inferred
from the source code (i.e., logical temporal relation) violates the temporal relation inferred
from the textual description of the logging statement (i.e., semantic temporal relation), we
label the logging statement as a logging statement with a temporal inconsistency. Below,
we describe three intuitive rules for such inconsistencies (see Table 7.5).

Rule 1: The temporal relation inferred from the source code is After or Met-by,
but the temporal relation inferred from the logging text is Before. For instance,
in Table 7.5(a), the logging statement “L0G.info("Adding a new node: ");” starts right after
its target source code “clusterMap.add(node)”, thus has a met-by relation inferred from
the code. However, the semantic temporal relation inferred from the text of the logging
statement is before, as the logging statement should execute earlier than the “Adding”
event. The correct event expression should be “Added”, or the logging statement should
be moved to the line above the code “if (clusterMap.add(node)){".

Rule 2: The temporal relation inferred from the source code is Before or Meets,
but the temporal relation inferred from the logging text is After. For instance,
in Table 7.5(b), the logging statement “log.warn("Existing AuthManager {} superseded by
{3")” executes before its target source code “setProperty()”, and thus has a before relation
inferred from the code. However, the temporal relation inferred from the text of the logging
statement is after, as the execution of the logging statement should occur later than the
“superseded” event.

Rule 3: The temporal relation inferred from the source code is During, but
the temporal relation inferred from the logging text is After or Before. For
instance, in Table 7.5(c), both the logging statements execute while the target method is
ongoing, and thus they have a during relation. However, the temporal relations inferred
from the texts of the two logging statements are after and before, respectively, as the
execution of the logging statements should occur later and earlier than the “stopped” and
“starting” events, respectively. Ideally, the first logging statement should execute after the
“registerHost ()” method, and the second one should execute before the “registerHost()”
method. However, as we stated in Section 7.4.1.2, the execution of a logging statement is
considered as a time point and thus, both should be moved to the end and start point of
the method, respectively.
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Table 7.5: An overview of the rules for labeling the inconsistencies of temporal relations.

Rule 1: The temporal relation inferred from the source code is After or Met-by, but the temporal
relation inferred from the logging text is Before.

public void add(Node node) {
After or Met-by

if |clusterMap add(node)h—(—4)
[LOG.info ([Adding] a new nodef—

+NodeBaj!e .getPath (node)) ;

} Before

(a) NetworkTopologyWithNodeGroup.java (Hadoop)

Rule 2: The temporal relation inferred from the source code is Before or Meets, but the temporal
relation inferred from the logging text is After.

public void setAuthManager (AuthManager valug)ﬂei_

log warn ("Existing AuthManager {} sugerseded by|
{1™, mgr.getName (), value.getName());
Before or Meets

setProperty (new
TestElementProperty (AUTH MANAGER, value))

}
(b) HTTPSamplerBase.java (JMeter)

Rule 3: The temporal relation inferred from the source code is During, but the temporal relation
inferred from the logging text is After or Before.

private void registerHost (Host host) ({
After | During

|log.info("registerHost({}) lgtogge ]", host)

|log.info("registerHost({}) Etarting].", host)

... v
} Before

During

(¢) Modified MapperListener.java (Tomcat)
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7.4.4 Summary of Our Qualitative Study

In previous sections, we have described our findings from the qualitative study. Here,
we discuss the distribution of the logical and semantic temporal relations, as well as the
temporal inconsistencies that we identified in the sampled dataset. Table 7.6 shows the
statistics of the temporal relations and the identified inconsistencies in the four studied
projects.

Table 7.6: The statistics of the manually labeled temporal relations.

Types ActiveMQ Hadoop JMeter Tomcat ‘ Total

During 4 ) 7 0 16
Before 11 17 8 12 48
Logical temporal After 24 44 24 34 126
relations Meets 82 93 64 44 283
Met-by 178 171 171 192 712
N/A 27 43 47 53 170
During 5 ) 5 0 15
Semantic temporal Before 93 119 75 61 348
relations After 194 199 179 213 785
N/A 34 50 62 61 207
Rule 1 4 13 3 3 23
Temporal Rule 2 4 1 4 1 10
inconsistencies Rule 3 - - - - 0
Total 8 14 7 4 33

Note: We did not find any inconsistency that matches Rule 3, as Rule 3 is deduced
from the correct cases during labeling.

Developers prefer to insert the logging statement right after/before the cor-
responding source code. Table 7.6 shows that about 73.4% of the sampled logging
statements are located next to (either right before or after) the corresponding source code
(i.e., with meets or met-by logical temporal relations).

Compared to inserting the logging statements before the target source code,
developers prefer to see logs after the target source code being executed. Ta-
ble 7.6 shows that about 61.8% of the sampled logging statements are inserted (right) after
the target source code (i.e., with met-by or after logical temporal relations). This obser-
vation is consistent with the findings of previous work [24, 37| that logging statements are
more relevant to their pre-log code.

There exist a non-negligible amount of inconsistencies (i.e., 2.4%) between the
logical and semantic temporal relations, which can potentially confuse the end
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users and make the use of logs counterproductive [89]. Our Rule 1 can detect more
than twice the temporal inconsistencies as Rule 2. This gap may be caused by the fact that
some developers just insert the base form (i.e., with present tense) of a verb in the logging
text and put the logging statement after the target source code, paying little attention
to the tense or aspect of the action itself. Note that Rule 3 is deduced from the correct
cases. In particular, we find that developers may put the method name together with a
verb indicating the start of the execution at the first line of the method body. Therefore,
we did not detect any inconsistency by Rule 3 during our labeling.

Inspired by our qualitative study and the non-negligible amount of inconsistencies, we
decide to implement our findings into a tool to assist developers in automatically detecting
the logging-code temporal inconsistencies in the source code.

7.5 TempoLo: Automatically Detecting Temporal In-
consistencies between Logging and Code

In this section, we propose a tool, Tempol.o, which automatically detects inconsistencies
between the logical and semantic logging-code temporal relations, based on our findings
from Section 7.4. Formally, given a logging statement and the method that contains
the logging statement, the proposed tool can automatically analyze both their logical
and semantic temporal relations and detect whether there is a temporal inconsistency.
TempoLo is built as a static code analyzer that could be integrated into an IDE in practice,
of which the storage needed is in a matter of KBs and time cost is almost negligible. We
detail our implementation and evaluation in the rest of this section.

7.5.1 Detecting Semantic Temporal Relations
As we discussed in Section 7.4.2.3, the aspect and tense of the main verb can be effectively

used to detect semantic temporal relations. In this section, we describe how to extract the
logging text, and its main verb with tense and aspect.

7.5.1.1 Extracting the logging text
Following the approach used in prior work [37], we first extract the logging texts and vari-

ables from the logging statements which are collected in Section 7.3.2. Since our focus is
on the main verb of the logging text, we replace the variables with a wildcard (vip). For
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instance, the extracted logging text of the logging statement in Table 7.4(d) is “Thread
started: VID”. Note that some projects (e.g., Tomcat) use an internationalization /localiza-
tion helper class to fill the text in the logging statement instead of inserting the logging text
directly. For example, Tomcat provides multiple local string files with different languages
and uses a helper class and a key (e.g., in
“sm” is the helper class, and “requestFacade.nullRequest” is the key) to retire the specific
string. In such cases, we first convert the keys into the corresponding logging text using
the underlying resource bundle (e.g., locale-specific resource).

sm.getString("requestFacade.nullRequest")”,

7.5.1.2 Identifying the main verb and its tense and aspect

In this step, we use spaCy [62], an open-source NLP library, to perform dependency parsing
and part-of-speech (POS) tagging on the extracted logging text. Dependency parsing is
the task of defining the dependency relations (e.g., subject, object) between the tokens
of a sentence. Part-of-speech (POS) tagging is the task of categorizing each token in the
sentence with different types (e.g., verbs). Figure 7.3 shows the result (a dependency
parsing tree) of performing dependency parsing and POS tagging on an example logging
text. The arrows and labels at the top are the syntactic dependency relations and the tags
at the bottom are the identified part-of-speech tags. Based on the dependency parsing
tree, we consider the following two types of tokens as the main verb: (1) a token with a
verb tag and its head (i.e., parent node) in the dependency tree is the token itself, or, (2)
the first token with a verb tag. For example, in Figure 7.3, the head of the first token
“Starting” is itself, and it has a tag “verb”, thus “starting” is considered as the main verb of
the logging text. Once we get the main verb, we can get the tense and aspect of the main
verb using spaCy.

| dobj l | prep l | pobj l

Starting plan for Node
VERB NOUN ADP PROPN

Figure 7.3: A dependency parsing tree of an example logging text.

7.5.1.3 Identifying the semantic temporal relation

To identify the semantic temporal relation, we apply the findings (i.e., Finding S.1 - Finding
S.3) in Section 7.4.2.3 to the results from the previous step: if the main verb has a past
tense or perfective aspect, we label the relation as after, and if the main verb has a
present tense or progressive aspect, we label the relation as before. If the logging text is
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in CamelCase and does not contain any explicit tense or aspect, we label the relation as
during.

7.5.2 Detecting Logical Temporal Relations

As we discussed in Section 7.4.1.3, locating the target source code of the logging statement
plays a vital role in detecting logical temporal relations. In this section, we use the same
approach (cf., Section 7.5.1) to extract the logging text and identify the main verb of the
logging statement, after which, we perform lemmatization on the main verb to get its base
form using spaCy. Below, we describe how we locate the source code using the lemmatized
main verb.

7.5.2.1 Extracting all the potential statements

During our manual analysis, we also observe that the target source code is mainly method
calls, assignment, return, if, else, or break statements. Therefore, in this step, we try to
extract such statements as the potential statements. We first apply srcML to the method
that contains the logging statement. srcML converts the source code into an XML tree,
in which the tags provide the information of the potential statements. For example, all
method calls are wrapped with a “call” tag. We then adopt XPath and Beautiful Soup® to
extract the statements.

7.5.2.2 Locating the corresponding statements

Once we have extracted statements, we need to locate the corresponding statement. We
implement the five rules observed (i.e., Finding L.1 - Finding L.5) in Section 7.4.1.3, to
identify the corresponding statement®. To collect the synonyms of a given main verb, we
adopt WordNet, which is a large lexical database of English [125].

7.5.2.3 Identifying the logical temporal relation

After we locate the target source code, we extract its line number, which is an attribute
of the code component in the XML tree. Then we compare it with the line number of the

4https ://www. crummy . com/software/BeautifulSoup/bs4/doc/

5We also implemented an ML-based approach to locate the target source code, but the top-1 accuracy
is not satisfactory (only around 50%). Therefore, we opt to use the rule-based approach instead of the
ML-based approach. Please refer to the replication package for more details.
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logging statement and identify the logical temporal relations defined in Section 7.4.1.2.

7.5.3 Detecting Temporal Inconsistencies

Based on the result from the previous two steps, we implement the rules observed in
Section 7.4.3 to detect temporal inconsistencies. For each logging statement, TempoLo
would scan the pair of the detected logical and temporal relations to check whether they
violate each other. Note that on one hand, there may exist some cases that do not have a
verb in the logging text or we cannot match any target source code based on the rules, for
such cases, we do not label their temporal relations. On the other hand, there is a possibility
that one main verb may match more than one target source code in Section 7.5.2.2, and thus
we collect multiple logical temporal relations for the logging statement. For these cases,
we keep all the logical temporal relations, and if all the relations violate the semantic
temporal relation, we then label it as a temporal inconsistency. By doing this, we can have
a relatively acceptable accuracy and low false positive rate.

7.5.4 Evaluation

7.5.4.1 Evaluation on the manually identified logging statements

We first apply TempoLo to our manually identified logging statements. As shown in
Table 7.6, we manually identify a total of 33 temporal inconsistencies, we run our tool on
this dataset and can successfully detect 26 logging statements out of the 33 (i.e., 78.8%,
with a false negative rate of 21.2%) having an inconsistent temporal relation. The results
verify the usefulness of the findings and the correctness of the implementation. We then
manually check the undetected cases, in order to further understand the reasons that may
cause our tool to fail. We find two main reasons contributing to such detection errors: (1)
Mismatch of the target code. In the step of determining the logical temporal relation
of the logging statement, our tool returns the incorrect target source code. An example is
shown below.

public NodePlan plan(DiskBalancerDataNode node)
LOG.info("Starting plan for Node : {}:{}", node.getDataNodeName(),

}

The main verb of the logging text is identified as “starting”. The term “get” in the method
call “getDataNodeName()” is one of the synonyms of “start”. Thus, our tool made a mis-
take by matching the logging text to the "getDataNodeName()” method. (2) No main
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verb found in the logging text. Our tool relies on spaCy to determine the main
verb as well as the tense and aspect of the verb. There exist some cases in which spaCy
may not return an incorrect result. For example, given the following logging statement,
“log.trace("Registering key for read:"+ key)”, we can infer that the main verb is ‘“register-
ing” with a progressive state. However, spaCy recognizes ‘registering” as a noun.

7.5.4.2 Evaluation on the remaining unsampled logging statements

In this part of the evaluation, we would like to check whether Tempolo can detect unseen
temporal inconsistencies while having a low false positive rate. Therefore, we evaluate
TempoLo on the remaining unsampled logging statements (the remaining logging state-
ments after sampling for manual labeling). We manually check the detected cases, in order
to understand the false positive rate and the reasons that may cause our tool to falsely
report a correct case as an inconsistency.

TempoLo reports a total of 326 logging statements with temporal inconsistencies. Two
participants manually check each of them to determine whether it is a true positive or false
positive. The two participants achieve an agreement ratio of 78.3% and finally identify 48
false positives after reaching a consensus. In general, the false positives are caused either
by (1) an incorrect main verb or (2) an incorrect target source code. Below, we detail the
reasons that may lead to false positives:

(1) Incorrect identification of the main verb. If the logging text contains more than
one verb, TempoLo may not detect the correct main verb. For example, TempolLo wrongly
identifies “ask” as the main verb for the logging statement “L0G.info("Requested container
ask: "+ ...);” (the correct one should be “requested”). This error is essentially caused by
spaCy, as our way to detect the main verb relies on the dependency parsing tree generated
by spaCy. Besides, TempoLo may wrongly return a non-verb token as the main verb.
For example, in the logging statement, “L0G.info("included nodes = "+ ...);”, TempoLo
identifies “included” as the main verb, while it is an adjective. This error is caused by the
POS tagging of the tokens, which is provided by spaCy. It is reasonable that spaCy has low
accuracy in analyzing logging texts (which is different from sentences in NLP) even though
we use the state-of-the-art transformer-based model. Future work can train a model on
the annotated software engineering data to improve the performance of spaCy for software
engineering.

(2) Incorrect match of the target source code. TempoLo may not be able to locate
the target source code. For example, in the logging statement “L0G.info("..., moving
files from ... "”, developers use “moving files” to describe the actions of the source code,
however, the target source code is “mergePaths()”. Moreover, some descriptions in the
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logging statements mean no action in the source code. For example, some developers use
“stopping” in the catch block to indicate the end of the method, and TempoLo cannot
detect such cases. To address this problem, developers can manually construct a project-
orientated dictionary that maps the token in the logging text to the statements in the
source code.

7.5.4.3 Evaluation on the logging statements collected from commit history

Finally, we evaluate whether TempoLo can detect historical issues of temporal inconsis-
tencies between logging and code. Since such issues may not be all reported in the issue
tracking system, we construct an oracle dataset from the commit history to further evaluate
TempoLo. Below, we describe how we construct the dataset.

We first clone the git version control repositories of our subject projects and use “git
log” to extract all the code commits. We then use “git show” to analyze the changes. In
order to make sure the commit changes are relevant to logging statements, we focus on two
types of commits: (1) only the locations of the source code are changed and the changed
code contains logging statements; and (2) logging statements are only modified by changing
their temporal information (e.g., verb tense in the sentence) in the logging text. After this
step, we gathered a total of 1,273 code changes from our studied projects. Intuitively, not
all commits are indeed related to logging statements. Therefore, two participants manually
examine each of the commits to confirm that the commit is related to a logging statement.
The two participants achieve an agreement ratio of 86.0% and collect 59 commits that
are logging statement-related code changes. Furthermore, as the focus of this study is
the temporal inconsistency, we find that a majority of the 59 commits are caused either
by (1) regular code changes (e.g., new code is added or deleted, causing the change of
the logging statement) or (2) logging efficiency (e.g., moving the logging statement out of
loops). Therefore, we continue filtering the commits and finally, we extract a total of six
logging statement changes that are related to temporal inconsistencies.

We then evaluate the tool on the six collected logging statements on their versions
before the commit and TempoLo can successfully detect five of them (i.e., 83.3%, which
is similar to the accuracy when being evaluated on the manually sampled dataset, with a
false negative rate of 16.7%.). The one inconsistency case that our tool failed to detect is
as follows:

+ log.info("Ending thread " + ...);
allThreads.remove (thread) ;
- log.info("Ending thread " + ...);
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Our tool fails to detect this case since we cannot successfully match the action “remove”
with the event “ending”.

7.5.4.4 Reporting issues to developers

To gather developers’ feedback on whether such inconsistencies are worth fixing, we report
our detected instances to developers. To avoid spamming developers, we iteratively and
gradually report issues to developers (e.g., by issue reports or PRs). We first only select
and report two instances for each project to developers to know whether developers care
about this kind of issue. Then if developers confirm the instances (e.g., by fixing the issue
or accepting the PR), we further report more instances for that project. In the instance
selection process, we prioritize the instances without ambiguity (e.g., we avoid instances
that contain verbs that are the same in the present and past tense (e.g., “read”)). We have
reported 15 instances covering the four projects. So far, all 13 instances from three projects
are confirmed and fixed, and two instances of the other project are still under discussion.
There are two main strategies for fixing the reported inconsistencies: (1) moving the logging
statement to the proper position, and (2) correcting the tense or aspect of the main verb
of the logging statement®.

TempoLo can successfully detect the temporal inconsistencies in the source code with
a low false positive rate of 14.7%. 13 out of 15 reported inconsistency instances have
been fixed by developers and received positive feedback.

7.6 Threats to Validity

External Validity. As the study involves four Java open-source projects, the number
of studied subjects and programming languages may pose a threat to the study’s validity.
To mitigate this, careful consideration goes into the selection of subjects. These four ana-
lyzed projects are well-known and have gained considerable attention from developers and
researchers, based on the stars on GitHub and existing research papers [23, 24]. Besides,
we did obtain consistent empirical results across the four studied projects. Furthermore,
Java is a mature programming language that provides built-in logging and third-party
logging frameworks. Many studies [23, 25, 37, 86| focus only on Java logging because of

6The details of the pull requests can be found in our replication package.
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its abundance of logging usage. Considering the universality of logging, the findings from
Java logging studies may be applicable to other programming languages, which will require
further research.

Internal Validity. Since the study involves a manual study, its validity can be influenced
by the knowledge and experiences of the participants. As a way to mitigate human bias,
we use peer review to reach a consensus as a baseline for further review. Participants are
all professional researchers in the field of software engineering.

Construct Validity. This study leverages several third-party tools to preprocess the
source code, such as JavaParser and spaCy. These tools could have their limitations. For
example, almost half of the detected false positives are caused by spaCy. However, all of
the tools used in this study were used in previous studies [11, 101] and are well recognized
in the Computer Science community. For example, JavaParser has ~4K Github stars and
spaCy has ~23K stars at the time of writing this chapter. We observe a 15% (48,/326) false
positive rate, while we admit that after all, our tool is a static analysis-based technique.
85% is rather on-par or above most static analysis-based tools. Besides, as our tool can
pinpoint the location of inconsistencies, the cost of manually verifying a false positive is
relatively low.

7.7 Conclusion

In this chapter, we have formally defined two sets of temporal relations between the logging
statement and the corresponding source code: logical and semantic temporal relations.
Based on the defined temporal relations, we have concluded three rules for detecting the
temporal inconsistencies that can jeopardize the quality of logging. We then implement
the rules as a tool to automatically detect such inconsistencies. By analyzing the results,
we find that our tool can successfully detect the temporal inconsistencies in the source code
with a relatively low false positive rate. We have reported some detected inconsistencies to
the developers of each of our subject projects and received positive feedback. Moreover, our
research sheds light on the promising research opportunity of formalizing other logging-code
relations to assist in various downstream software engineering tasks (e.g., improving the
quality of the automatically generated logging texts [37] and more accurately representing
the actual temporal status of the events described in the logs [17]). Future research may
build more and improve existing log analysis approaches by incorporating the defined
temporal relationship.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

Researchers have been working on applying techniques from NLP to deal with code. How-
ever, source code and natural language are by nature different. Thus, directly applying
the NLP techniques may not be optimal, and how to effectively modify these techniques
to adapt to software engineering (SE) tasks remains a challenge.

In this dissertation, we have explored two research directions as a first step and pro-
posed different approaches to optimize existing NLP techniques to encode the code-specific
features. In Chapter 3, we discuss the challenges of applying word embedding techniques to
learn distributed code representations and proposed StrucTexVec to analyze the impact of
different training contexts on the quality of code embeddings. We find that the structural
information extracted from the source code has a non-negligible effect. Then, to better cap-
ture such kind of structural information, in Chapter 4, we propose to represent the source
code as a graph and leverage the GCN model to train the code embeddings from the con-
text information provided by the graph representations. Then, based on the distributed
code representation, we have also discussed another important intersection between the
source code and natural language text, the textual information in logging statements. We
have tried to improve the current logging texts from two aspects (1) proactively suggest-
ing the generation of new logging texts, and (2) retroactively analyzing existing logging
texts. In Chapter 6, we first propose an automated deep learning-based approach towards
generating accurate logging texts by translating the related source code into short textual
descriptions to reduce development efforts. Inspired by the temporal relations in NLP, we
make the first attempt to model the temporal relationships between the existing logging
texts and their corresponding code, aiming to detect the related temporal issues and thus
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improve the quality of the logging activities.

In summary, this dissertation validates our research hypothesis and shows that by
encoding code-specific information, the performance of SE tasks can be further improved.

8.2 Future Directions

While this dissertation presents our current research toward the goal of providing sugges-
tions to developers in optimizing NLP techniques to assist in SE tasks, there are still many
research opportunities. Below, we discuss some directions for future work, focusing on code
embeddings and logging practices:

8.2.1 Analyzing Code Information’s Impact on Embedding Qual-
ity

In Chapter 3 and Chapter 4, we proposed approaches to encode the textual and structural
(AST) information extracted from the code. Meanwhile, there exist other types of code-
specific information that can be incorporated for training code embeddings. For example,
bytecode, control flows and data flows can also be extracted and learned by our proposed
framework. Therefore, future work may consider analyzing the impact of different types
of code-specific information on different downstream software engineering tasks.

8.2.2 Learning Multi-modal Code Embeddings

In Chapter 4, one of our observations is that the code embeddings cannot perform very well
on the code comment generation task. One possible reason is that our code embeddings are
purely trained on the source code, while this task involved both natural language text (i.e.,
comment) and source code. Future work may consider incorporating both source code and
comments during the training phase to create embeddings that capture the relationships
between code and comments. This could involve a joint training approach where the model
learns to represent the code and comments in a shared space.

8.2.3 Improving the Existing Works on Suggesting Logging Texts

Currently, we use all the pre-log code as the source input. However, in our recent work,
by manually examining the logging statement, we find that sometimes, the logging text
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is only related to a part of the source code, either before or after the logging statement.
Thus, how to better build the input for the generation of the logging texts (i.e., selecting
the relevant part of the source code as input) is worth further exploring.

8.2.4 Logging for Different Computing Platforms

In the second part of this dissertation, we have proposed approaches to provide support
for traditional software systems. Logging support for other computing platforms is also
needed. For example, there are few studies that have worked on heterogeneous computing
platforms, and in the future, researchers may investigate the potential of providing logging
support for heterogeneous computing platforms (e.g., FPGA), especially considering the
limitation of the FPGA architecture (e.g., lack of external memory to keep a large amount
of runtime data, cannot print the message to the users).

8.2.5 Suggesting Analysis-aware Logging Statements

Most of the existing works provide logging suggestions based on historical logging decisions
instead of the usage of logs in downstream tasks. This kind of suggestion would potentially
cause a gap between the inserted logging statements and the usage of the produced logs,
which may (negatively) impact the analysis process of these logs. Therefore, to better
support the downstream log analysis tasks, inserting analysis-aware logging statements
should be a direction for further improving the logging activities. For example, we can
provide logging suggestions for performance monitoring.
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