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Abstract. We consider the question of whether every collection of compact
operators that is contained in a triangular operator algebra (in the sense of
Kadison and Singer) must be simultaneously triangularisable. The answer is
shown to be affirmative if the collection consists of finite-rank operators or is
a norm-closed algebra of compact operators.

1. Introduction

One of the most basic results concerning linear operators acting on a finite-dimen-
sional, complex Hilbert space H � Cn is that each operator T can be triangularised ;
that is, there exists an orthonormal basis {ek}nk=1 for H relative to which the matrix
[tij ] associated to T satisfies tij = 0 if i > j. In other words, the matrix associ-
ated with T is upper triangular. More generally, a collection S of linear operators
on a finite-dimensional space is said to be simultaneously triangularisable if
there is an orthonormal basis such that the matrix of every operator in the col-
lection is upper triangular with respect to that basis. In the finite-dimensional
setting, simultaneous triangularisation of the collection S is equivalent to each of
the following:

(i) there exists a maximal chain of subspaces

{Mk := span{e1, e2, . . . , ek} : 0 ≤ k ≤ n}
of H, each of which is left invariant by every operator in the collection; i.e.
TMk ⊆ Mk for each k and T ∈ S, and

(ii) there exists an algebra A ⊆ Mn(C) such that A∩A∗ is a maximal abelian,
selfadjoint subalgebra (i.e., a masa) and A contains all of the operators in
the collection.

As we shall see, (i) and (ii) are not equivalent on infinite-dimensional spaces. In
this paper, we consider the relationship between these properties for collections of
compact operators.

We denote by B(H) the algebra of all bounded linear operators acting on the
complex Hilbert space H, while K(H) denotes the closed, two-sided ideal of compact
operators in B(H). A non-empty subset S ⊆ B(H) is said to be transitive ([11,
Chapter 6]) if for each 0 �= x ∈ H, Sx := {Sx : S ∈ S} is dense in H. The
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terminology irreducible triangular algebra is often used to mean a “transitive
triangular operator algebra”. For any collection S of operators, we denote by Lat S
the lattice of closed subspaces of H that are invariant for all members of S.

In their seminal paper on non-selfadjoint operator algebras [6], Kadison and
Singer defined a triangular operator algebra as any algebra T of bounded linear
operators acting on a Hilbert space H whose diagonal DT := T ∩ T∗ is a maximal
abelian von Neumann algebra in B(H). Five years after the publication of the
Kadison-Singer paper, Ringrose [14] introduced the notion of a nest algebra.

Recall that a nestN on a Hilbert space H is a complete, totally ordered collection
of closed subspaces of H which includes {0} and H itself. To say that a nest
is complete means that it is closed under the lattice operations of (arbitrary)
intersection (∧) and closed linear spans (∨). If N is a nest on H and N ∈ N, we
define

N− := ∨{M ∈ N : M � N}.
It is clear that N− is either the immediate predecessor of N in N (if N− �= N),
or N− = N . A non-zero subspace of the form EN := N 
N− is referred to as an
atom of N. We say that the nest N is atomic if H is (densely) spanned by the
atoms of N, and that N is continuous if it has no atoms.

The nest N is said to be maximal if it is not properly contained in any other
nest, and it is known [13] that N is maximal if and only if every atom of N has
dimension 1. Following Erdos [2], we say that the nest N is quasi-maximal if
every atom of N has dimension 1 or ∞.

Given a nest N, Ringrose defined the corresponding nest algebra to be the
weak-operator topology closed algebra

T (N) := {T ∈ B(H) : TN ⊆ N for all N ∈ N}.
A collection S of bounded linear operators on a Hilbert space is (simultane-

ously) triangularisable if there is a maximal nest of closed subspaces of H that
are simultaneously invariant under all operators in the collection ([3, 7, 8, 10]), or
in other words, there exists a maximal nest N for which S ⊆ T (N). There are
many necessary and many sufficient conditions that a collection of operators be
triangularisable – see [11] for a treatment of many of the known results.

Kadison and Singer [6] asked if every operator lies in some triangular operator
algebra; as they pointed out, this would represent some kind of “triangular form”
even though it would not even imply that every operator has a non-trivial invariant
subspace (since there are irreducible triangular operator algebras [6] – see below).
This question remains open.

We consider the question: what are necessary and/or sufficient conditions that
a collection of operators be contained in a triangular operator algebra?

Definition 1.1. A collection S of bounded linear operators acting on a complex
Hilbert space H is said to be Kadison-Singer triangularisable – abbreviated
K.S.T. – if it is contained in a triangular operator algebra.

Notation. A collection S of bounded linear operators acting on a complex Hilbert
space H is S.T. if it is simultaneously triangularisable.

A very natural question is: what relations exist between K.S.T. and S.T.?
As was shown in [6], every triangular operator algebra T is contained in a maxi-

mal (with respect to inclusion) triangular operator algebra Tmax. Thus S ⊆ B(H) is
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contained in a triangular operator algebra if and only if it is contained in a maximal
triangular operator algebra. The following result of Erdos will prove useful.

Theorem 1.2 ([2, Theorem 1]). Let T be a maximal triangular operator algebra
acting on an infinite-dimensional, separable Hilbert space H. Then LatT is a quasi-
maximal nest.

Recall that a triangular operator algebra T acting on an infinite-dimensional
Hilbert space H is said to be irreducible if LatT = {{0},H}. Of course, if T

is an irreducible triangular operator algebra and Tmax is a maximal triangular
operator algebra which contains T, then Tmax is again irreducible. The existence of
irreducible triangular operator algebras was demonstrated in [6]. The fascinating
and particularly inconvenient (for our purposes) result that exhibits the existence
of maximal irreducible triangular operator algebras which are not norm-closed is
due to Orr [9].

If T is an irreducible triangular operator algebra, then T is K.S.T. but not
S.T.. On the other hand, if N is a maximal nest such that the projections onto
the subspaces in N do not generate a maximal abelian selfadjoint algebra (e.g. if
they generate an abelian self-adjoint algebra of uniform multiplicity 2), then the
corresponding nest algebra T (N) is S.T. but not K.S.T., since DT (N) = T (N) ∩
(T(N))∗ is not abelian. Thus neither of K.S.T. and S.T. implies the other, in
general. There are, however, implications under additional hypotheses.

Most of the known results about simultaneous triangularisability concern alge-
bras or semigroups of compact operators [11, Chapters 7 and 8]. Thus there are
natural questions concerning the relationship between K.S.T. and S.T. for more
general collections of compact operators. A theorem of Erdos [2, Theorem 3] may
be used to establish one implication.

Theorem 1.3. If S ⊆ K(H) is S.T., then S is K.S.T..

Proof. Let N be a maximal nest, and let L ⊆ T (N) be a collection of compact
operators leaving the subspaces in N invariant. Let M be any maximal abelian von
Neumann algebra containing all of the projections onto the members of N. Erdos’
result [2, Theorem 3] states that the algebra generated byM and L is triangular. �

We have been unable to determine if the converse of this theorem holds; i.e.,
whether K.S.T. implies S.T. for collections of compact operators. We shall show,
however, that K.S.T. implies S.T. for collections of finite-rank operators and for
norm-closed algebras of compact operators.

2. A reduction to irreducible triangular operator algebras

If A ⊆ B(H) is a norm-closed algebra and N1, N2 ∈ Lat A satisfy N1 ⊆ N2, we
refer to PN2�N1

A|N2�N1
as the compression of A to the space N2 
N1. Observe

that the map A �→ PN2�N1
A|N2�N1

is a contractive homomorphism.
Let T ⊆ B(H) be a maximal triangular operator algebra, so that N := Lat T

would be a quasi-maximal nest (by Theorem 1.2). Then, for each N ∈ N, the space
PN−B(H)PN ⊆ T; for otherwise, T + PN−B(H)PN is a triangular operator algebra
which properly contains T.

As such, the difference between T and T (N) lies in the compression of each of
these algebras to infinite-dimensional atoms. Let us denote by Ω the collection of
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infinite-dimensional atoms of N; that is,

Ω := {EN := N 
N− : N ∈ N, dim EN = ∞}.
In the case of T (N), we have that PEN

(T (N))PEN
= B(EN ) for each EN ∈ Ω,

whereas for T, we have that PEN
TPEN

is an irreducible triangular operator algebra.

Proposition 2.1. Let T ⊆ B(H) be a maximal triangular operator algebra of opera-
tors acting on a separable Hilbert space and let L ⊆ T. Suppose that the compression
of L to each of the infinite-dimensional atoms of LatT is S.T.. Then L is S.T..

Proof. Let N = LatT. By Erdos’ Theorem 1.2 above, N is a quasi-maximal nest.
Once again, let us denote by Ω the collection of infinite-dimensional atoms of N;
that is,

Ω := {EN := N 
N− : N ∈ N, dim EN = ∞}.
Suppose that the compression of L to each infinite-dimensional atom in LatT is

S.T.. Given EN ∈ Ω, there exists a maximal nestMEN
in EN such that PEN

L|EN
⊆

T (MEN
). It follows that if

M := N ∪ (∪EN∈Ω{N− ⊕M : M ∈ MEN
}) ,

then M is a maximal nest in H and L ⊆ T (M). In other words, L is S.T.. �

When the family L consists of compact operators, we obtain a converse result.
First we recall the following result from [11] (cited as Theorem 7.3.9 there):

Theorem 2.2. If L is a simultaneously triangularisable family of compact operators
acting on a separable Hilbert space, then every chain of invariant subspaces of L is
contained in a triangularising chain – i.e. a maximal nest.

Theorem 2.3. Let T be a maximal triangular operator algebra acting on a separable
Hilbert space and suppose that L ⊆ T is a collection of compact operators. Then
L is S.T. if and only if the compression of L to each of the infinite-dimensional
atoms of LatT is S.T..

Proof. If every compression of L to each of the infinite-dimensional atoms of LatT
is S.T., then it follows immediately from Proposition 2.1 that L is S.T..

Conversely, suppose that L is S.T.. Then LatT ⊆ LatL is a quasi-maximal chain
of invariant subspaces for L, and as such extends (by Theorem 2.2) to a maximal
nest M of subspaces for L. If EN = N 
 N− ∈ Ω is an infinite-dimensional atom
of LatT, then {M ∩ EN : M ∈ M} is a maximal nest in EN which triangularises
PEN

L|EN
. �

Of course, if T ⊆ B(H) is any triangular operator algebra and L ⊆ T is a
collection of compact operators, then we may extend T to a maximal triangular
operator algebra Tmax, and then L will be S.T. provided that the compression of
L to each infinite-dimensional atom of LatTmax is S.T.. There is no reason to
believe, however that the extension of T to Tmax should be unique.

Corollary 2.4. Let T be a maximal triangular operator algebra acting on a sepa-
rable Hilbert space . The following are equivalent.

(a) T ∩ K(H) is S.T..
(b) For each EN ∈ Ω, the compression of T to EN has no non-zero compact

operators.
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Proof. That (b) implies (a) is an immediate consequence of Theorem 2.3, with
L := T ∩ K(H).

Conversely, if there exists EN ∈ Ω such that PEN
K|EN

�= 0 for some K ∈
T ∩ K(H), then the fact that J := PEN

(T ∩ K(H))|EN
is a non-zero ideal in the

irreducible algebra PEN
T|EN

implies that that J is itself transitive in B(EN ) ([11,
Theorem 7.4.6]), and thus T ∩ K(H) is not S.T.. �

We note that the above proof shows that if T is a maximal triangular operator
algebra and 0 �= K ∈ T∩K(H), then the (not necessarily closed) ideal of T generated
by K is S.T. if and only if the compression of K to each infinite-dimensional atom
of Lat T is zero.

3. Collections of finite-rank operators

In this section, we show that K.S.T. implies S.T. for collections of finite-rank
operators.

We begin with a lemma about rank-one operators in triangular operator algebras
whose diagonal is the most familiar maximal abelian von Neumann algebra.

Lemma 3.1. Let M be the maximal abelian von Neumann algebra consisting of
multiplication operators by essentially bounded functions acting on the Hilbert space
H = L2([0, 1], dx). Then every operator of rank one in any triangular operator
algebra containing M is nilpotent.

Proof. Each such rank-one operator can be written in the form

(h⊗ g∗)(f) := 〈f, g〉h for all f ∈ L2([0, 1], dx),

where h and g are fixed elements of L2([0, 1], dx). We show that 〈h, g〉 = 0, so that
(h⊗ g∗)2 = 0. Since 〈h, g〉 =

∫
hgdx, it suffices to prove that hg = 0 a.e..

For each n, let Mn denote the operator of multiplication by the characteristic
function χEn

of En := {t ∈ [0, 1] : max(|h(t)|, |g(t)|) ≤ n}. (Of course, En is defined
up to a set of measure zero.) It then suffices to prove that (Mnh)(Mng) = 0 a.e.
for all n ≥ 1.

If there is an N ≥ 1 for which that does not hold, let h0 := MNh and g0 := MNg
for that N . Since g0, h0 ∈ L∞([0, 1], dm), we see that Mg0 ,Mh0

∈ M. Also,
h0 ⊗ g∗0 = MN (h⊗ g∗)MN lies in every algebra containing M and h⊗ g∗.

Now

Mg0(h0 ⊗ g∗0)Mh0
= (g0h0)⊗ (h0g0)

∗

is a multiple of a self-adjoint projection of rank at most one that is in any triangular
operator algebra containing h⊗g∗ and M, and must therefore be in M. Since there
are no finite-rank operators other than 0 in M, this operator is 0. Thus h0g0 = 0
a.e. �

Lemma 3.2. If A is a transitive algebra acting on a space of dimension greater
than one, and if A contains an operator of finite rank other than 0, then A contains
a non-nilpotent operator of rank 1.

Proof. Since the finite-rank operators in A form an ideal, there is an operator F ∈ A

of finite rank greater than or equal to 1 in A. Then

{FT |FH : T ∈ A}
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is a transitive algebra of operators acting on the finite-dimensional space FH, so –
by Burnside’s Theorem (see, e.g., [11, Theorem 1.2.2]), it consists of all operators
acting on the space FH. In particular, it contains an operator FT of rank 1; then
FTF is a rank 1 operator in A, so that FTF = h⊗ g∗ for some h and g. Since A

is transitive, we may choose an A ∈ A such that Ah is not orthogonal to g. Then
A(h⊗ g∗) ∈ A is a rank-one operator that is not nilpotent. �

A result of Dong and Lu [1, Theorem 2.4] shows that if T is a norm-closed
irreducible triangular operator algebra acting on a separable Hilbert space H, then
T does not contain any finite-rank operators other than zero. Theorem 3.3 removes
the condition that T need be closed.

Theorem 3.3. Let T be an irreducible triangular operator algebra acting on an
infinite-dimensional, separable Hilbert space H. Then T does not contain any non-
zero finite-rank operators.

Proof. Let T be an irreducible triangular operator algebra. Suppose first that the
diagonal DT := T∩T∗ of T contains at least two independent minimal projections,
say P1 and P2. In this case, P1 and P2 have orthogonal ranges and each has
rank equal to one, so that P := P1 + P2 has rank equal to 2. Then PT|PH is a
transitive algebra acting on the 2-dimensional space PH. By Burnside’s Theorem,
PT|PH = B(PH) � M2(C). In particular, there are self-adjoint operators of the
form PT1P and PT2P with Ti ∈ T such that PT1P does not commute with PT2P ,
contradicting the fact that DT := T ∩ T∗ is abelian.

Thus we can assume that DT has at most one minimal projection, say R. Let
Q := I −R. Then QDTQ is a completely non-atomic masa on QH.

A non-zero ideal of a transitive algebra is transitive ([12], Lemma 7.4.6), so
the set of finite-rank operators in T is transitive. Thus QTQ contains finite-rank
operators other than 0.

Since the diagonalDQTQ of QTQ is a completely non-atomic masa on a separable
Hilbert space, it is unitarily equivalent to the algebra

M := {Mϕ : ϕ ∈ L∞([0, 1], dx)},

acting on L2([0, 1], dx) [5, Theorem 9.4.1]. Thus, by [4], QT|QH is unitarily equiv-
alent to a triangular operator algebra T0 such that DT0

= M and T0 contains a
non-zero operator of finite rank.

However, no such T0 exists, by Lemmas 3.1 and 3.2. This completes the proof.
�

Corollary 3.4. If L ⊆ B(H) is a non-empty collection of finite-rank operators
acting on an infinite-dimensional, separable Hilbert space H and L is K.S.T., then
L is S.T..

Proof. As we have seen, we may assume without loss of generality that L is con-
tained in a maximal triangular operator algebra T. If F ∈ L, then F is of finite
rank and thus the compression of F to any infinite-dimensional atom of T is again
of finite rank. But the compression of T to an infinite-dimensional atom is an irre-
ducible triangular operator algebra, and so by Theorem 3.3, the compression of F
to that atom is 0.

By Corollary 2.4, L ⊆ T ∩ K(H) is S.T.. �
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Remark 3.5. The presence of finite-rank operators in a triangular algebra T does
not ensure that T is S.T.. For example, one need only consider T = T0 ⊕ T2(C),
where T0 is an irreducible triangular algebra and T2(C) denotes the space of 2× 2
upper-triangular complex matrices.

4. Collections of compact operators

The problem of determining whether K.S.T. implies S.T. for collections of com-
pact operators is two-fold. First, there is the previously mentioned pathology con-
cerning irreducible triangular operator algebras, namely: the fact that they need
not be norm-closed. Because of this, at the moment the presence of a compact
operator with a non-zero eigenvalue in an irreducible triangular operator algebra
may not necessarily imply the presence of the corresponding Riesz projection in
that algebra. Second, the compression of a norm-closed algebra to a semi-invariant
subspace (i.e. a subspace of the form N1 
N2, where N1 < N2 ∈ Lat T) need not
necessarily be closed. Because of this, in the proof of the next result, we may not
a priori assume that our given triangular operator algebra is irreducible.

Theorem 4.1. A norm-closed algebra A of compact operators acting on a separable
Hilbert space H is S.T. if and only if it is K.S.T..

Proof. The forward (only if) implication follows immediately from Theorem 1.3.
Let A be a norm-closed algebra of compact operators, and suppose that T is a

triangular algebra such that A ⊆ T. Without loss of generality, we may assume that
T is maximal, in which case N := Lat T is a quasi-maximal nest by Theorem 1.2.

Suppose that EN = N 
N− is an infinite-dimensional atom of N, and let PEN

denote the orthogonal projection of H onto EN . Then the compression TEN
:=

PEN
T|EN

of T to EN is an irreducible triangular operator algebra. Suppose that
K ∈ A and that KEN

:= PEN
K|EN

�= 0. Since TEN
is transitive, we may ap-

ply Lomonosov’s Lemma [11, Lemma 7.3.1] to obtain an element B0 in AEN
:=

PEN
A|EN

such that 1 ∈ σ(B0KEN
). If B ∈ A is chosen such that PEN

B|EN
= B0,

then it is not hard to see that 1 ∈ σ(BK) as well.
But BK ∈ A and A is a norm-closed algebra, which implies that the (finite-rank)

Riesz projection F1 for BK corresponding to {1} lies in A. Since 1 ∈ σ(B0KEN
),

we see that the compression of F1 to EN is non-zero, which contradicts our earlier
result showing that TEN

does not admit any finite-rank operators.
Thus the compression of each element of A to EN must be zero. By Corollary 2.4,

A is S.T.. �

Corollary 4.2. If T is a norm-closed irreducible triangular operator algebra acting
on a separable Hilbert space H, then

T ∩ K(H) = {0}.

We finish with the main question we have been unable to resolve.

Question. If H is infinite-dimensional and separable, and T ⊆ B(H) is triangular,
irreducible, but not norm-closed, can T contain a non-zero compact operator?
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