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Abstract

To improve the quality of spectral library search, several MS/MS spectrum predictors have
been developed in the last decades. After success in various fields, deep learning techniques
are adopted by MS/MS spectrum predictors to increase the accuracy of predicted spectra.
However, the quality and quantity of the training set are both required to train a deep
learning model. Due to the less representation of MHC-associated peptides in most spectral
libraries, current MS/MS spectrum predictors provide less accurate predicted spectra for
MHC-associated peptides than their performance for other peptides.

In this thesis, we built several MHC-associated peptide spectral libraries for training
and evaluation purposes. We selected PredFull as our base model and performed transfer
learning with these MHC-associated peptide libraries, which are much smaller than com-
mon tryptic spectral libraries. The result showed that the fine-tuned model outperformed
the original model significantly when predicting MHC-associated peptides.
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Chapter 1

Introduction

1.1 Background

Proteins are the fundamental macromolecule for all living molecules, involving in the con-
stitution of organs and muscles, synthesis of nuclei acids, hormones and antibodies that
defence invading pathogens, etc. In 1995, Marc Wilkins created the term ”proteomics”
[1] , which means studying the overall protein content of a cell.[2] Proteomics is a cross-
disciplinary research field and in turn plays an crucial role in various areas, including
studying protein-protein interactions, analyzing post-translational modifications (PTMs)
[3], identifying biomarkers for various diseases like cancer and drug discovery. [1]

Identification of proteins and peptides is considered as the pivotal aspect of proteomics.
The state-of-the-art technique of this process is known as tandem mass spectrometry
(MS/MS). In general, proteins or peptides are separated and measured into the mass-
to-charge ratio of ions to obtain identification and quantification. [4] Next, the acquired
MS/MS spectra are matched with sequence in protein or peptide database based on spe-
cific algorithms. The success of spectral library searching depends on the existence of a
high-quality spectral library covering the spectra of the peptides to be identified.

To improve the quality of spectral library search, several MS/MS spectrum predic-
tors for accepting peptide sequences as input, and generating predicted MS/MS spectra
as output have been developed, in which deep learning techniques greatly increase the
accuracy of predicted spectra. However, for the study of MHC(Major histocompatibility
complex)-associated peptides, which are essential for immune system, there is a lack of
high-quality presentation for most spectral libraries. In particular, current MS/MS spec-
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trum predictors provide less accurate predicted spectra for MHC-associated peptides than
their performance for other peptides.

1.2 Workflow of LC-MS/MS

The typical MS/MS workflow for protein identification begins at sample preparation.[4]
Traditionally, the mixture of protein would be separated by their physical or chemical
properties at the beginning to reduce the further analysis complexity, named ”top-down”.
[3] To the contrary, another method called “bottom-up”, is to apply a protease(usually
trypsin) that breaks the peptide bonds of protein before separating simple or complex
protein samples with gel electrophoresis or liquid chromatography. When ”bottom-up”
method is applied on the complex protein mixture, it is also called ”Shotgun”[4].

After digestion with protease, there will be a variety of peptides needing to be separated
before MS/MS. Liquid chromatography (LC) is the most widely used separation method to
feed these peptides into MS/MS based on the different retention time(RT) of each peptide.
After that, samples will go through MS/MS.

Firstly, these peptides will be ionized by ion source to obtain peptide’s individual mass-
over-charge ratio. The first MS analyzer could recognize these precursor ions(parent ions)
[5], separate them by mass-over-charge(m/z) ratio, and output MS1 spectra. Meanwhile,
the selected precursor ions will undergo fragmentation and transform into product ions.
The second MS analyzer could recognize them and output MS2 spectra.[6]

1.3 Peptide Identification From MS/MS Spectra

In this section, we introduced several methods for peptide identification from MS/MS
spectra. In 1994, Eng et al. published a software SEQUEST to identify peptide sequences
from MS/MS spectra if they existed in a protein database. [7] For each MS/MS spectrum,
the algorithm would find out all the peptides with similar mass as candidates from the
protein database. Considering the properties of the instruments, a mass tolerance would
be specified. Then, a theoretical MS/MS spectrum would be generated for each peptide
candidate, and a scoring function would be applied on the theoretical MS/MS spectrum
and the experimental MS/MS spectrum. [7]. This method, called database search later,
became the standard method for identifying peptides[8]. After this, various database search
engines have been published. For example, Comet, released in 2013, facilitated a fast cross-
correlation algorithm as a filter to reduce the computation amount. The algorithms behind

2



it were implemented with multi-thread support that increaseing its efficiency on modern
multi-core CPUs[9]

TANDEM, published by Craig et al. in 2004, searched peptide candidates from spectral
libraries that included both peptide sequences and their annotated MS/MS spectra, instead
of protein databases only containing protein sequences.[10] When performing a spectral
library search, the experimental spectrum would be compared with annotated spectra from
the library, generating scores representing the similarity between them[11]. The scoring
function, based on equations proposed by Fenyö et al., considered both the number of
matched peaks and the intensities of these peaks[12]. In 2007, Lam et al. published a
new spectral library search engine called SpectraST. They designed a new set of equations
to calculate the score between experimental spectrum and the spectra from the library.
Compared to the widely-used database search engine SEQUEST, SpectraST reached a
better sensitivity at the same FDR level. [13]. It was integrated into Trans Proteomic
Pipeline (TPP) suite[14], and soon became the most popular spectral library search engine.

1.4 Traditional Prediction Tools for MS/MS spectra

The success of spectral library searching depends on the existence of a high-quality spectral
library, which covers the spectra of the peptides to be identified. [15] A high-accuracy
MS/MS spectra predictor could improve the accuracy of peptide identification. [16] In this
section, we introduced various predictors released in the past two decades.

In 2004, MassAnalyzer showed its advantages in the low-energy collision-induced dis-
sociation (CID) spectra prediction based on a kinetic model, consisting of 11 potential
fragmentation pathways including ”cleverages of backbone amide bonds” that could result
in b and y ions[17]. There were 236 parameters during fragmentation process, which were
optimized by facilitation of a CID dataset with 5605 spectra. The program was imple-
mented in C++, reaching a considerable speed for spectrum prediction ”on a 1.7 GHz
Pentium IV computer”.

In 2006, Arnold et al. published PeptideArt, a model with ”two-layer feed-forward neu-
ral networks”[18], outperforming the kinetic model MassAnalyzer[19]. MS2PIP, released by
Sven Degroeve et al. in 2013, used random forests regression to predict the peak intensity
that showed better accuracy than PeptideArt[19].

3



1.5 Deep Learning and its Application on MS/MS

Spectrum Prediction

Deep learning (DL) had became the most widespread machine learning (ML) application
since last decade. Compared to traditional methods, deep learning abandoned human-
designed rules, but built a multi-layer artificial neural network (ANN). Data were fed into
this network to adjust its weights[20] . Several researches showed that building a deep
learning model requires a larger dataset to reach expected performance [21].

Inspired by genomics, a public repository for proteomics data, ProteomeXchange, went
live in 2006[22] [23]. It collected the MS/MS spectrum data uploaded by researchers from
all over the world, and these datasets became public available for further research. It
eliminated hassles for researchers searching for proteomics data, especially raw MS/MS
spectra, and benefited training deep learning models with these datasets.

Since then, more and more high quality MS/MS spectrum datasets were published. For
example, NIST Consensus Human HCD Libraries was initially published in 2016 and un-
derwent several updates[24]. After the last update in 2020, 600k unique peptide sequences
and their associated spectra were collected. NIST Human Synthetic HCD library , pub-
lished in 2017, contained 189k unique peptides [25]. All of these pubic spectral libraries
achieved high quality of MS/MS spectrum and extensive coverage of peptides.

An ideal process of training deep learning models was considered being easy, concise
and quick. Machine learning frameworks like Tensorflow[26] and PyTorch[27] provided a
user-friendly interface and were successfully applied in various fields, including prediction of
MS/MS spectra. For example, In 2019, Guan el at. applied bidirectional LSTM for spectra
prediction[28] and Siegfried Gessulat et al. Published Prosit [29] that was composed of a
bi-directional recurrent neural network, a recurrerrent GRU layer and an attention layer.

1.6 MHC Associated Peptides

Major histocompatibility complex (MHC; also known as human leukocyte antigen(HLA)
in humans) molecules play an important role in immune response [30][31]. MHC molecules
could display a small peptide fragment derived from pathogens or self-proteins, which is
also called MHC-associated Peptides(MAP), on the surface of a cell for T cells recognition.
[32] Generally,MHC molecules can be grouped into MHC Class I, MHC Class II and MHC
Class III, and the first two classes attracted most of the attention. [33] MHC Class I-
associated peptides and MHC Class II-associated peptides differ in both peptide structure
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and their role in the intracellular pathways. Most MHC Class I peptides have length
between 9-12 amino acids, which came from the ubiquitin-proteasome system degradating
intracellular proteins. Cytotoxic CD8+ T cells recognizes MHC Class I-peptides complex
to enable immune system against pathogens and cancer.[34]. While For MHC class II,
associated peptides are typically 13-17 amino acid long and are recognized by Cytotoxic
CD4+ T cells[32] .

1.7 Transfer Learning

The goal of transfer learning is to learn features from the source domain data and facilitate
our learning to improve the prediction on the target domain data. Typically, the size of
target domain was much smaller than the source domain[35], which made transfer learning
a powerful tool in solving problems with insufficient training samples in various fields [20].

In 2021, Yang et al. facilitated human-virus protein-protein-interaction (PPI) data
including HIV, Influenza, etc. and transferred these knowledge into human-SARS-CoV-2
PPI prediction[36]. Zhang et al. used general RNA-binding proteins(RBPs) as the initial
training, and fine-tuned their model with species-specific RBP datasets to reach higher
RBP identification accuracy[37].

When it comes to prediction of MS/MS spectra, pDeep2 facilitated transfer learning
to reach higher efficiency on post-translational modification (PTM), regarding the limited
PTM data sets [38]. In 2021, Chen et al. developed pDeepXL to predict MS/MS spectra
of cross-linked peptide pairs. They leveraged a large dataset of MS/MS spectra of linear
peptides, as well as datasets of cross-linked peptide pairs or cross-link spectrum matches
that were 35-fold smaller than the linear peptides [16].

The number of identified MHC-associated peptides is quite limited, making it very hard
to train a deep learning model from scratch. Transfer learning was a powerful technique
to deal with insufficient training samples, [35] making it a good fit for MHC-associated
peptides prediction

1.8 Contribution

In this thesis, we introduced that we fine-tuned a pre-published deep learning model, and
reached better predictions for MS/MS spectra of MHC-Associated Peptides. This thesis is
organized as following:
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• In Chapter 2, we selected a pre-published deep learning model, and introduced how
we fine-tuned this model.

• In Chapter 3 we described the datasets we selected, how we processed these datasets,
and how we split train and test sets.

• In Chapter 4, we compared the accuracy of predicted spectra between the original
model and the fine-tuned model.

• In Chapter 5, we discussed the reasons of the improvement after fine-tuning.

• In Chapter 6, we summarized this thesis, and discussed the potential work in future.
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Chapter 2

Transfer Learning Methods

2.1 Selection of the Base Model

Figure 2.1: Architecture of the neural network. PredFull as the backbone model.

In our study, we selected PredFull[39] as our backbone model. It had the ability to
predict the intensity for a/b/c/x/y/z ions, so we considered it to be with higher potential
of reaching a better prediction accuracy. We remained the structure of the PredFull model,
which facilitated the residual convolutional neural network [40]. As shown in Figure 2.1,
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it had two input layers, embedding and meta. Each peptide was converted into a 32 by
29 matrix for embedding, and a 3 by 30 meta for meta. The 2022-May PredFull model
supports variable-length peptides, but considering the length of MHC-associated peptides,
we limited the peptide length at 32 amino acids. In the embedding matrix, each amino
acid was paired with the first dimension. In the second dimension, Pos 1-21 were used to
represent the amino acid with one-hot encoding. All Leucine was considered as Isoleucine
as they share the same mass. Pos 24 represents the monoisotopic mass of the amino acid
after scaling. Pos 25 represents the peptide length. Pos 26-28 represents the modifications.
In the meta matrix, peptide charge, peptide mass and Normalized Collision Energy(NCE)
were stored.

A pooling layer, which was composed of eight parallel convolutional layers would receive
the input data. These convolutional layers were 1-dimensional, with a constant filter size
at 64 and their kernel sizes varied from 2 to 9. After merging, the result was passed
into 8 sequential Squeeze-and-excitation blocks (SE blocks) [41]. After that, there were 3
sequential residual blocks [40]. Finally, the output layer decodes the previous layer’s data
into a vector with length of 20 000, matching the Representation of MS/MS Spectrum
below.

2.2 Representation of MS/MS Spectrum

We followed the same method with PredFull to represent the MS/MS spectrum with an
1-D array[39]. A MS/MS spectrum was a list of peaks, and each peak had two properties,
m/z and intensity, noted as (p, t). Firstly, the precursor peaks were removed from this
list. Secondly, the peak with the highest intensity was selected. Its intensity was called
tmax. Thirdly, the relative intensity was calculated. That is to say, for each peak, ri =
ti/tmax. The peak with highest intensity would receive 1.0 as its relative intensity. Fourthly,
squareroot would be applied to relative intensity for normalization, si =

√
ri Finally, the

m/z range was restricted to 0-2000 and the bin width was set to 0.1 The index q of each
peak was calculated by q = ⌊p ∗ 10⌋. Therefore, it would result in an 1-D vector with
20 000 elements.

For example, given such spectrum.

M/Z Intensity

187.108 6811.49

203.139 4380.94

560.379 14433.56

688.476 11370.93
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It would be processed by such procedures:

1. There were no precursor ions in this spectrum.

2. The highest intensity tmax = 14433.56 was selected.

3. For the first peak, (p1, t1) = (187.108, 6811.49) , r1 = 6811.49/14433.56 = 0.4719

4. Normalization: s1 =
√
0.4719 = 0.6869

5. Calculating the index: q = 181.1 ∗ 10 = 1871

It would result in a very sparse 1-D vector with 20 000 elements. v[1871]=0.6869,
v[2031]=0.5509, v[5604]=1.0, v[6685]=0.8876, and all other elements were filled with 0.

2.3 Fine-tuning and Hyper-parameters

2.3.1 Trainable Layers

Considering we were using a smaller training set for fine-tuning, only a small portion of
the model was trainable. As shown in Figure 2.1, only the last two residual blocks and the
output layer were set to trainable. All other layers remained frozen. They were considered
to extract the features from the embedding and meta inputs.

2.3.2 Optimizer

Aligning with PredFull’s training process, Adam Optimizer [42] was selected.

2.3.3 Loss Function

Cosine similarity was selected as the loss function, and Tensorflow built-in implementation
was executed[26]. The safeguard of the division was different with the score function in
section 2.4. In tensorflow, the cosine similarity was considered as 0 if one vector’s norm
was too close to zero.
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2.3.4 Batch size

Regarding to the restriction of 16G VRAM, we set the batch size to 32. The peak memory
usage was around 14G, showing that we’ve maximized the computational power of our
hardware. During the 4-th cross-validation of the MHC-I Q-Exactive Model, the training
process had crashed repeatedly, so the batch size was set to 16 for this run.

2.3.5 Epochs

For all three models, there were 100 epochs. When training the MHC-I Q-Exactive Model,
the average time for one epoch was around 800s. For the MHC-I Fusion Lumos and Eclipse
Tribrid Model, the time for each epoch reduced to 85s, due to the smaller training set. For
the MHC Class II-associated peptides, each epoch cost 120s.

2.3.6 Learning Rate

For the MHC Class I-Associated Peptides Q-Exactive Instruments model, we selected 1e-5
as the learning rate. For the MHC-I Fusion Lumos and Eclipse Tribrid Model and the
MHC Class II-associated Peptides Model, the learning rates were set to 7e-6. All of them
were smaller than the learning rate for training the original PredFull model, which was
3e-4.

2.4 Score Function

Following the evaluation method by PredFull[39], cosine similarity between the predicted
spectrum and real spectrum was selected as the score function, which was the criteria
to reflect our model’s improvement from the original model. As stated above in 2.2 , the
predicted spectrum and real spectrum were represented as 1-D vectors, their raw intensities
were replaced with relative intensities, and the precursor peaks were removed. It’s worth
noting that we choose the square root function to normalize the intensities, aligning with
PredFull’s evaluation. The cosine similarity of these two vectors was considered of the
score of prediction.

Formally, when the experimental spectrum and the predicted spectrum are represented
in 1-D vectors u and v, after normalization and removing the precursor ions, the score
function is defined as
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S =
u · v

∥u∥∥v∥

There is a safeguard for computation that, if the norm for a vector is too small, 1e-16
would be filled as the divisor. However, as only the well-annotated experimental spectra
were selected, and the intensities of the peaks were normalized in advance, this case was
very rare to happen.

2.5 HardWare and Software Environment

Our server used two Intel Xeon Gold 6248 CPU @ 2.50GHz and one Nvidia Tesla V100
with 16G GPU Memory. Ubuntu Linux was installed on the server, and Docker 20.10.14
was available. We used NVIDIA TensorFlow Docker release (23.02-tf2-py3), which shiped
CUDA (Version 11.6), TensorFlow (Version 2.8.0) and Python (3.8.10). We also bundled
pyteomics 4.5 [43][44] and biopython 1.80 [45] in our Docker image to process spectra files.

We used MSConvert[46] [47] to process RAW files, and we used Comet (2022.01 rev.
2) [9], to perform the database search.

We used Jupyter Notebook, Matplotlib[48], Seaborn[49] and spectrum utils [50] to do
the data analysis and visualization.
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Chapter 3

Data Source and Data Process

In this chapter, we described the datasets we selected, and introduced how we process
these datasets, including the tools and parameters for database search

3.1 MS Data Selection

We’re training three separate models, based on the classification of MHC-associated pep-
tides and instruments.

3.1.1 MHC-I Q-Exactive Model

For this model, we used these following datasets:

• PXD004894 (MHC I-associated peptides) collected samples from melanoma with Q
Exactive or the Q Exactive HF mass spectrometers [51]

• PXD008500 collected samples from four lymphoblastoid cell lines (LCL) which are
HLA-B*27:05-positive [52] .

• PXD022020 collected samples from Jurket cells[53] .

• PXD026702 used Q-Exactive HF to study pluripotency-associated MHC I peptides
(paMAPs) [31].
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Inspired by previous research [54], we only use PXD004894 to do the fine-tuning. The
other three datasets were only used to evaluate the performance of the fine-tuned Q-
Exactive model.

Database ID PSMs
PXD004894 (MHC-I) 671,551
PXD008500 35,399
PXD022020 19,074
PXD026702 26,002
PXD024965 2,464
PXD011723 48,729
PXD024562 16,539

Table 3.1: The number of PSMs in each MHC-I peptide datasets

3.1.2 MHC-I Fusion Lumos and Eclipse Tribrid Model

For this, we used these three datasets for training and evaluation

• PXD024965 uses Orbitrap Fusion Lumos on breast cancer cell lines [55]

• PXD011723 used Orbitrap Fusion Lumos on Jurket cells [56]

• PXD024562 used Orbitrap Eclipse Tribrid on Loucy and A375 cell lines.[57]

3.1.3 MHC-II Model

MHC II-associated peptides in PXD004894 [51] were used to train and evaluated the MHC-
II model.

3.2 File format conversion

The MS/MS spectrum were provided in RAW format. We facilitated MSConvert, a tool
under ProteoWizard[46] [47] to convert RAW files into mgf format[58], which was a plain
text format, and could be fed into various softwares and scripts.
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Converting a RAW file into other formats with MSConvert needed to import a closed-
source DLL file. As we were running it on our server which ran Ubuntu Linux, we followed
MSConvert’s guidance to run with wine. The dependency, wine, was packed in MSCon-
vert’s official docker image.

docker run -it --rm -e WINEDEBUG=-all \

-v /data/zhenboli/library :/ data_in \

-v /data/zhenboli/result :/ data_out \

chambm/pwiz -skyline -i-agree -to -the -vendor -licenses \

wine msconvert \

/data_in/raw_spectrum_file.raw \

--filter "peakPicking true 2-" \

--filter "threshold absolute 0 most -intense" \

-o /data_out --mgf

3.3 Database Search

Considering Comet has a native Linux release, and it could facility the multi-core CPU
on our server, we used Comet (2022.01 rev. 2) [9] for the database search. We search
against the UniProt database [59] (Human 80,851 entries, Dec 2022). We selected HCD
instruments and set the fragment ion tolerance to 0.02 Da. The peptide mass tolerance
varies by dataset (7 to 20 ppm). We disabled modifications. We set no specific enzyme
and allowed no missed cleavage. We performed FDR control at 1% level on Comet results.
For MHC I-associated peptides, we filtered out peptides with 13 or more amino acids. The
result of our database search process is shown in Table 3.1

The search command was:

./ comet.linux.exe -Duniprot_human.fasta raw_spectrum_file.mgf

3.4 Dataset Split

Using the same backbone model, we trained three separate models for to reach the best
performance.
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Partition Patients ID PSMs
P1 M15 225,116
P2 M16 92,708
P3 M3,M20,M21,M28,M30,M35,M38 95,882
P4 M24,M26,M27,M29,M34,M36,M40 96,247
P5 M4,M12,M25,M33,M39,M42 93,671
Independent Test Set M5,M8,M41 67,927

Table 3.2: Grouping PXD004894 into 5 Partitions and an Independent Test Set by Patients

3.4.1 Q-Exactive Family

We solely used MHC Class-I associated peptides in PXD004894[51] for training the Q-
Exactive model with a five-fold cross validation, and other Q-Exactive datasets were only
used for evaluation. Following the approach from Liu et al. [60], we selected roughly 90%
PSMs of PXD004894 as the cross-validation set. The remaining 10% PSMs were selected as
the independent test set and used to benchmark the prediction of our model. PXD004894
was composed of data from 25 patients and all the observations of the same patient should
be gathered into the same partition. Hence, making equal-size partitions was a multiway
number partitioning problem, proved to be NP-hard[61]. We applied a greedy algorithm
to approximately divide the cross-validation set into five partitions evenly. The result was
shown in Table 3.2.

3.4.2 Fusion Lumos and Eclipse Tribrid

We used all three PXD024965[55], PXD011723[56] and PXD024562[57] to train and eval-
uate our Fusion Lumos and Eclipse Tribrid model. For each of them, we firstly grouped
all PSMs with the bin of 0.01 Da. Considering that the same peptide may appear in the
dataset with slightly different mass, grouping the PSMs into bags could avoid the same
peptide appears in both training and testing dataset. The numbers of the PSMs and bags
were shown in Table 3.3

We randomly selected 10% bags of each dataset as the independent test and split the
remaining 90% bags into five partitions. That is to say, each partition would include 18%
bags. Similarly to the Q-Exactive Model, four partitions were used as the training set, and
the remaining partition was used as the validation set for this 5-fold cross-validation.
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ID PXD024965 PXD011723 PXD024562
PSMs 2,464 48,729 16,539
Bags 1,410 4,624 5,920

Table 3.3: The number of PSMs and Bags of Fusion Lumos and Eclipse Tribrid datasets

3.4.3 MHC II-Associated Peptides

We used the MAP Class II part of PXD004894 to train and evaluate the MHC Class II
model. Similar to above, we grouped the 82692 PSMs by 0.01 Da, resulting in 12278 bags.
We randomly selected 10% bags as the independent test set, and the remaining 90% bags
were used for a three-fold cross validation.
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Chapter 4

Result

4.1 Q-Exactive Model

Figure 4.1: Five-fold cross-validation on PXD004894. The dotted lines represent the quar-
tile (25%,50%,75%) of the distribution. V1: partitions P2,P3,P4,P5 were used as the
training set, and partition P1 were used as the validation set.
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4.1.1 Performance on Q-Exactive family datasets with 5-fold Cross
validation

In this part, a five-fold cross-validation was performed to compare our fine-tuned model
with the original PredFull model. As stated in Table 3.2, the PXD004894 dataset was
grouped into partitions by patients. As shown in Figure 4.1, the quartile increased from
(0.525,0.606,0.679) to (0.714,0.782,0.834), showing a 35% increase. The lower quartile
(25%) of the fine-tuned models was even higher than the medium(50%) of the PredFull
model. The average of cosine similarity between predicted spectra and real spectra in-
creased from 0.6477 to 0.7820. These results suggested that fine-tuned model outperformed
the PredFull model.

4.1.2 Performance on New Q-Exactive Family Datasets

Figure 4.2: The dotted lines represent the quartile (25%,50%,75%) of the distribution. The
violin plot showed the performance on new datasets tested on the V2 model.

To test the ability of our fine-tuned model for predicting the MS/MS spectrum of new
datasets, we tested its performance on three new Q-Exactive datasets that didn’t appear
in the cross-validation. We also tested this fine-tuned model against the independent test
set, which contained around 10% PSMs of PXD004894. Among the five cross-fold models
in Section 4.1.1, the V2 model was selected for evaluation.
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Figure 4.2 showed that on the Independent Test Set, the average of cosine similarity
increased from 0.6658 to 0.7577(+13.8%). The lower quartile of the fine-tuned model was
0.6895, which was higher than the median of the original model, 0.6777. On PXD008500,
the average cosine similarity increased from 0.5729 to 0.6573(+14.7%), and the median in-
creased from 0.5801 to 0.6705(+15.58%). On PXD022020, the average increased from
0.6024 to 0.6601(+9.6%). And on PXD026702, the average increased from 0.5892 to
0.6853(+16.3%). The fine-tuned model showed higher prediction accuracy on all four
new datasets compared to the original model.

4.1.3 Pairwise Performance Evaluation on Q-Exactive Family
Datasets

We also compared our re-trained model with PredFull pair-wisely. That is to say, for each
observation in the test dataset, we used the PredFull model (Without Fine-Tune) and
the Fine-Tuned model to predict the spectra for the given peptide sequence. Using the
evaluation method mentioned in Section 2.4, we calculated the square of cosine similarity
between the predicted spectrum and the experimental spectrum. We used scatter plots to
represent the prediction scores of the two models. As shown in Figure 4.3, the fine-tuned
model performed better for most peptide sequences in all four datasets.

4.1.4 Case Study of Predicted MS/MS Spectrum Before and Af-
ter Fine-Tuning

In this section, we had a deeper look at examples of individual peptides from the indepen-
dent test set. We picked four sequences as examples to represent improved, stalled and
worsened predictions after the fine-tuning.

Peptide TASEMILVL was from the independent test set. The information of immonium
ions might benefit peptide identification, including reducing the size of the search space for
improving the speed in large-scale database search[62]. The original model didn’t output
immonium ion peaks of TASEMILVL (left-most part in Figure 4.4a), while the fine-tuned
model predicted the immonium ion peaks successfully (Figure 4.4b ). The original model
ignored b5 peak in its output, and overestimated the intensities of y1 and b7 peaks. The
fine-tuned model predicted these three peaks with much more accurate intensities.

Peptide LPQLTGAENVL was another example from the independent set, showing
the improvement of the fine-tuned model. In Figure 4.4c, the original model ignored
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Figure 4.3: Pairwise comparison of each observation in the four new datasets. S2 was the
square of cosine similarity between the real spectrum and the predicted spectrum. For each
observation, X-axis represented S2 for the original model before fine-tuning, and Y-axis
represented the fine-tuned model.

immonium ion peaks, while the fine-tuned model predicted the immonium ion successfully
(Figure 4.4d). The fine-tuned model displayed b3, b5, b6, b7 which were missed by the
original model. Also, the fine-tuned model predicted the intensities of y1, b8, b9 peaks
more accurately.

Transfer learning didn’t result in better prediction accuracy for peptide TSERTVLRY.
Before the fine-tuning, the cosine similarity between the predicted spectrum and the real
spectrum was 0.7282, which was already an accurate prediction (Figure 4.5a) After fine-
tuning, the cosine similarity slightly dropped to 0.7182.It suggested that fine-tuning had
very little effect on the model’s prediction of peptide TSERTVLRY (Figure 4.5b ).
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(a) TASEMILVL: Without Fine-Tune (b) TASEMILVL: With Fine-Tune

(c) LPQLTGAENVL: W/O Fine-Tune (d) LPQLTGAENVL: With Fine-Tune

Figure 4.4: Example of predictions improved after fine-tuning. In each subfigure, the upper
part was the predicted spectrum and lower part was the real mass spectrum.

KLGDSPIQK was an example of decreased performance. As shown in Figure 4.5c ,
the original model predicted the spectrum with a high accuracy and all the immonium ion
peaks were predicted successfully. After fine-tuning(Figure 4.5d), two fake immonium ion
peaks were generated, and the cosine similarity dropped from 0.8338 to 0.6308.
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(a) TSERTVLRY: Without Fine-Tune (b) TSERTVLRY: With Fine-Tune

(c) KLGDSPIQK: Without Fine-Tune (d) KLGDSPIQK: With Fine-Tune

Figure 4.5: Example of predictions with no improvements after fine-tuning. In each subfig-
ure, the upper part was the predicted spectrum and lower part was the real mass spectrum.
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4.2 Prediction Performance on Fusion Lumos and Eclipse

Tribrid Datasets

Figure 4.6: Five-fold cross-validation on Fusion Lumos and Eclipse Tribrid datasets. The
dotted lines represent the quartile (25%,50%,75%) of the distribution. V1 means we used
partitions P2,P3,P4,P5 as the training set, and partition P1 as the validation set.

Similarly to the Q-Exactive model, a five-fold cross validation was applied on three
these datasets, PXD011723, PXD024562 and PXD024965. As shown in Figure 4.6, the
average cosine similarity between the predicted spectrum and the real spectrum increased
from 0.6828 to 0.7237(+6%). The the quartile (25%,50%,75%) increased from (0.6039,
0.6959, 0.7772) to (0.6575, 0.7375, 0.8050). It indicated that the fine-tuned model had
better prediction in the cross-validation.

We also evaluated the performance on the independent test set, composed of roughly
10% PSMs which never appeared in the cross-validation process. As figure 4.7 showed, the
average cosine similarity increased from 0.6820 to 0.7259 (+6%). The quartile (25%,50%,75%)
increased from (0.5995, 0.6949, 0.7806) to (0.6591, 0.7388, 0.8076). It suggested that the
fine-tuned model was capable of providing more accurate predictions on unseen datasets
compared to the original model.
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Figure 4.7: Evaluation on Independent Test Set of Fusion Lumos and Eclipse Tribrid

4.3 Prediction Performance on MHC II-Associated

Peptides

We performed a three-fold cross validation on the MHC II-associated peptides. Shown
in Figure 4.8, After fine-tuning, the average of cosine similarity between predicted spec-
trum and real spectrum had an 18.7% increase (from 0.5937 to 0.7051). The quartile
(25%,50%,75%) also increased from (0.4966, 0.6158, 0.7120) to (0.6434, 0.7301, 0.7945).

We evaluated the fine-tuned model’s performance on the independent test set on the
V1 model. As shown in Fig 4.9, a high quality performance was observed. The average of
cosine similarity had a 20.2% increase, from 0.5828 to 0.7003. The quartile (25%,50%,75%)
increased from (0.4799, 0.6028, 0.7033) to (0.6413, 0.7263, 0.7883).
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Figure 4.8: Three-fold cross-validation on MHC II-associated peptides from PXD004894.
The dotted lines represent the quartile (25%,50%,75%) of the distribution. V1 means we
used partitions P2,P3 as the training set, and partition P1 as the validation set.

Figure 4.9: Evaluation on Independent Test Set of MAP II-associated peptides
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Chapter 5

Factor of Improvements Analysis

In this chapter, we looked deeper into the improvements of the prediction. There is a
famous idiom in the early ages of computer science: Garbage In, Garbage Out.[63] When
it comes to training a machine model, the quality of training data is crucial to the quality
of the model. The bias present in the training data would result in the constraints of the
model’s prediction.

5.1 Tryptic peptides were more likely to be improved

by fine-tuning

The majority of published MS/MS spectrum predictors were trained with tryptic peptide
spectral libraries. However, most MHC-associated peptides were non-tryptic peptides. For
example, Prosit[29] used PXD004732[25] and PXD010595[29] to train their model, which
were both tryptic peptide datasets. Guan et al. [28], used another tryptic peptide dataset,
MassIVE-KB [64]. Our base model, PredFull, used NIST HCD library[24], NIST Synthetic
HCD library, MassIVE Human HCD library , ProteomeTools synthetic HCD library [25].
All these datasets were tryptic.

Dataset NIST HCD consisted of 605,927 unique peptides. 290519 of them were ended
with K, and 266563 were ended with R.

NIST Synthetic HCD library consisted of 188,804 peptides and more than 90%
were ended with R or K.
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MassIVE v2 consisted 2,512,045 unique peptides, 40% ended with K and 38% ended
with R

ProteomeTools synthetic HCD library consisted of 391,273 unique peptides and
more than 96% were ended with R or K.

In total, PredFull was trained with tryptic peptides and more than 90% of its input
peptides were ended with K or R. In the independent test set, there were 67,927 PSMs
with 22,816 unique peptides, of which 32% ended with K, and 4% ended with R. That is
to say, only 36% peptides were tryptic peptides.

5.1.1 The original model’s performance dropped with non-tryptic
models

Firstly, we compared the original PredFull model’s performance on tryptic peptides with
non-tryptic peptides. As shown in Fig 5.1a, typtic peptides had better predictions. This
result was validated through an one side t-test, yielding p=0.0 (too close to zero).

5.1.2 Fine-Tuning Improved Performance on both Tryptic and
Non-Tryptic Peptides

Given that the original model exhibited a higher likelihood of inaccurately predicting non-
tryptic peptides, we focused on if the fine-tuned model had improved performance on
tryptic and non-tryptic peptides.

Among 22,816 peptides in the independent test set, 15,437 peptides increased at least
5%, 12,426 increased at least 10%, 5,800 increased 25% and 1622 peptides increased more
than 50%. In these 1622 peptides, 35% ended with L and only 14.5% end with K.

We defined the changed score as the fine-tuned model’s prediction score minus the
original model’s prediction score. We performed a T-test on all the peptides’ improved
scores (shown in Fig 5.1b). It showed that tryptic peptides were more likely to be improved
with the fine-tuning, yielding p=1.8e-65.

After fine-tuning, the prediction quality for tryptic peptides was better than non-tryptic
peptides (Fig 5.1c)
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(a) Before Fine-Tuning (b) With vs. W/O (c) After Fine-Tuning.

Figure 5.1: Distribution of prediction score in the Independent Test Set. Score function
was the cross similarity of the predicted spectrum and the experimental(real) spectrum

5.2 Effect of amino acids with possitive charges(K,R,H)

There are three positive charged amino acid: Lysine (Lys, K), Arginine (Arg, R) and
Histidine (His, H) . We conducted an in-depth analysis of their impact on the model’s
performance.

In the datasets used for training the original PredFull model (see section 5.1.1), more
than 80% of the peptides had 1-2 positive amino acids. As they were tryptic datasets, less
than 0.5% of the peptides contained no amino acids with positive charges.

In the independent test set, the distribution of positively charged amino acids were
similar except roughly 10% peptides contained no K,R or H.

A peptide with no Lys, Arg or His would definitely be a non-tryptic peptide. Figure 5.2
showed that the original model and the fine-tuned model had similar patterns of the rela-
tionship between number of positively charged amino acids and the quality of prediction.
The scores of all predictions were significantly higher after fine-tuning.
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Figure 5.2: The relationship between the number of Lys, Arg and His in the peptide and
the models’ prediction score

5.3 Effect of Peptide Charges

In the Independent Test Set, 62% peptides had 2+ charge, 25% peptides had 3+ charge
and only 13% peptides had 1+ charge.

As shown in Figure 5.3, the model’s prediction on peptides with all charges were im-
proved by the fine-tuning.

5.4 Effect of Proline

Proline (Pro; P) is a unique amino acid with a cyclinc structure. In both the PredFull’s
training sets and the independent data set, there were about 40-50% peptides containing
at least one Proline.

Figure 5.4a showed that if one or more Proline appeared in the peptide, the original
model tended to provide worse predictions. An one-side t-test confirmed this conclusion,
yielding p=7.3e-27.

We tested the same dataset on the fine-tuned model and compared the prediction score
between the fine-tuned and the original model. As before, changed score was defined as the
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Figure 5.3: Prediction Score for different peptides’ charges. Left: Without Fine-Tune.
Right: With Fine-Tune

prediction score of the fine-tuned model minus the original model’s. As shown in Figure
5.4b , prediction scores of all peptides were higher due to fine-tuning, and peptides with
Proline tended to receive more significant improvements. An one-tailed T-Test supported
this conclusion,yielding p=4.4e-65.

5.5 Number of Annotated peaks in the Experimental

Spectrum

5.5.1 Definition of Less Peak Peptides

we used spectrum utils[50] to annotate the peaks in both the real spectra and the pre-
dicted spectra. We considered primary peptide fragments (abcxyz) and allowed 0.02 Da
as fragment tolerance.

In the independent test set, among all 67,927 PSMs, each real spectrum had 30.05
annotated peaks on average. The quartile (25%, 50%, 75%) of annotated peaks were 24,
30, 36. Therefore, if a peptide’s number of peaks was in the lower 25% bracket(less than
25 annotated peaks), we considered this peptide as a less peak peptide.
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(a) Model’s Prediction Score. Left: Without Fine-Tune.
Right: With Fine-Tune

(b) Improvement (changed
score) after Fine-Tuning

Figure 5.4: Effect of Proline.

5.5.2 Performance with Less Peak Peptides

When the real spectra had a small number of annotated peaks, the original model’s predic-
tion quality dropped. The original model’s average prediction score on less peak peptide
was 0.645, which was lower than its performance on other peptides 0.672 (Fig 5.5a ). After
fine tuning, this gap was closed. The fine-tuned model’s average prediction score is 0.764
for less peak peptides, and 0.738 for other peptides(Fig 5.5b ).

5.6 Summary

In this chapter, we found that the fine-tuning had such effects:

• Improving performance of both tryptic and non-tryptic peptides. Tryptic peptides
received more significant enhancements.
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• Improving performance of peptides with various number of positively charged amino
acids (Lys, Arg and His).

• Improving performance of peptides with different charges.

• Improving performance of peptides with Proline.

• Improving performance of peptides with low numbers of annotated peaks (less peak
peptides).
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(a) Original model’s distribution of predic-
tion score in the Independent Test Set.

(b) Fine-tuned model’s distribution of pre-
diction score in the Independent Test Set.

Figure 5.5: Low-peaks means the real spectrum had less than 25 annotated peaks
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Chapter 6

Conclusion

In this thesis, we picked up a pre-published deep learning model for prediction of MS/MS
spectrum, applied transfer learning on it and reached better accuracy when predicting
MAC associated peptides.

In the beginning, as we found no public spectral libraries for MHC-associated peptides,
we applied database search to build them. They were used for transfer learning and evalua-
tion of the fine-tuned model. Next, we applied transfer learning on a pre-published model.
Due to the different properties of the peptides, we trained three models. Considering the
size of the training datasets, we reduced learning rates to reach the best loss on validation
set.

During the evaluation, we observed all these three models had significant improvement
after fine-tuning. We also applied further investigation on the MHC Class I with Q-Exactive
instruments. It could provide better predictions on datasets who didn’t appear in training
or validation set as well. In addition, we found that the fine-tuned model was more likely
to have better predictions for immonium ions. Lastly, we showed that the improvement
might came from the improved coverage for non-tryptic peptides.

In the future, we propose these improvements

Unite the three models into one. In our research, we found that the improvement in
MHC Class I with Q-Exactive instruments would decrease the performance in MHC Class I
with other instruments. By modifying the input layer of the model, and to add more meta
data in the model input, including instruments and types of MHC associated peptides, it
may be possible to reach good prediction accuracy with a single model.

Provide better training dataset. The quality of input dataset was crucial to deep
learning. As the data of MHC associated peptides were limited, the power of the database
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search engine was more crucial. We selected Comet for several reasons: (1) Comet is across-
platform software, so we could integrate it with other workflows on our workstation, which
runs Ubuntu Linux. (2) Comet has good multi-thread supporting, which could reach the
best efficiency on our workstation. (3) Comet is an open-source software and it is free of
charge. However, as Parker et al. pointed out, Comet might not be the best search engine.
In their research, they found that Peaks performed the best when searching for MHC
Class I associated peptides. MSGF+ also performed better than Comet [65]. Switching
the search engine may enlarge the spectral libraries, thus improving the performance of
the fine-tuned model.
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Al-Shamma, J. Santamaŕıa, Mohammed A. Fadhel, Muthana Al-Amidie, and Laith
Farhan. Review of deep learning: concepts, CNN architectures, challenges, applica-
tions, future directions. 8(1):53.

[21] Alexandre Bailly, Corentin Blanc, Élie Francis, Thierry Guillotin, Fadi Jamal, Béchara
Wakim, and Pascal Roy. Effects of dataset size and interactions on the prediction
performance of logistic regression and deep learning models. Computer Methods and
Programs in Biomedicine, 213:106504, January 2022.

[22] Henning Hermjakob and Rolf Apweiler. The proteomics identifications database
(pride) and the proteomexchange consortium: making proteomics data accessible.
Expert review of proteomics, 3(1):1–3, 2006.

[23] Eric W Deutsch, Nuno Bandeira, Yasset Perez-Riverol, Vagisha Sharma, Jeremy J
Carver, Luis Mendoza, Deepti J Kundu, Shengbo Wang, Chakradhar Bandla, Selvaku-
mar Kamatchinathan, Suresh Hewapathirana, Benjamin S Pullman, Julie Wertz, Zhi
Sun, Shin Kawano, Shujiro Okuda, Yu Watanabe, Brendan MacLean, Michael J Mac-
Coss, Yunping Zhu, Yasushi Ishihama, and Juan Antonio Vizcáıno. The ProteomeX-
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