
Task-Parameterized Transformer for
Learning Gripper Trajectory from

Demonstrations

by

Yinghan Chen

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2024

© Yinghan Chen 2024

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

This thesis by articles contains one article for which I am the main author and another for
which I am the co-author.

Article details: Task-Parameterized Transformer for Modelling Manipulation Trajec-
tories. ICRA 2024. Yinghan Chen, Xueyang Yao, Bryan Tripp. The article was submitted
to ICRA 2024 IEEE International Conference on Robotics and Automation.

Personal contributions: I am entirely responsible for the modifications made to
the transformer model required for trajectory prediction, the training process, the imple-
mentation of the trajectory rotation data augmentation technique, and the collection and
analysis of the results.

Article details: Improved Generalization of Probabilistic Movement Primitives for
Manipulation Trajectories. Xueyang Yao, Yinghan Chen, Bryan Tripp

Personal contributions: I aided in the setup, collection, processing, labelling of
the demonstration data set, and the application of the Dynamic Time Warping(DTW)
algorithm for trajectory realignment.

The capture of task demonstrations, gripper control, and code for camera recording
is done in collaboration with Xueyang Yao. Camera calibration, gripper tracking system
setup, trajectory and image frame synchronization, and object position estimation are done
entirely by Xueyang Yao.

iii

Abstract

The goal of learning from demonstration or imitation learning is to teach the model
to generalize across unseen tasks based on available demonstrations. This ability can be
important for the stable performance of a robot in a chaotic environment such as a kitchen
when compared to a more structured setting such as a factory assembly line. By leaving
the task learning up to the algorithm, human teleoperators can dictate the action of robots
without any programming knowledge and improve overall productivity in various settings.
Due to the difficulty of manually collecting gripper trajectories in large qualities, successful
application of learning from demonstrations would have to be able to learn from a sparse
number of examples while still providing a high degree of predicted trajectory accuracy.

Inspired by the development of transformer models for large language model tasks
such as sentence translation and text generation, I seek to modify the model for trajectory
prediction. While there have been previous works that managed to train end-to-end models
capable of taking images and contexts and then generating control output, those works rely
on a massive quantity of demonstrations and detailed annotations. To facilitate the training
process for a sparse number of demonstrations, we created a training pipeline that includes
a DeeplabCut model for object position prediction, followed by the Task-Parameterized
Transformer model for learning the demonstrated trajectories, and supplemented with data
augmentations that allow the model to overcome the constraint of limited dataset. The
resulting model is capable of outputting the predicted end effector gripper trajectory and
pose at each time step with better accuracy than previous works in trajectory prediction.

iv

Acknowledgements

I would like to thank all the people who made this thesis possible. I would like to
thank my supervisor Bryan Tripp who offered valuable knowledge and insights toward
the development of this research project. I also appreciate the help of my Ph.D. labmate
Xueyang Yao for his hard work in helping to collect the demonstrations together and being
a wonderful labmate to work with.

I would also like to thank my fellow lab-mates for making my stay at the lab enjoyable
with board games and companionship.

v

Table of Contents

Author’s Declaration ii

Statement of Contributions iii

Abstract iv

Acknowledgements v

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Motivation . 2

1.2 Contribution . 2

2 Background 4

2.1 Movement Primitives . 4

2.1.1 Dynamic Movement Primitive . 4

2.1.2 Task-Parameterized Gaussian Mixture Model 5

2.1.3 Probabilistic Movement Primitives 7

2.1.4 Kernel Movement Primitives . 8

vi

2.1.5 Task-Parameterized Probabilistic Movement Primitive 10

2.2 Deep Learning . 11

2.2.1 Transformers . 12

2.2.2 Gato . 14

2.2.3 RT-1 . 14

2.2.4 PaLM-E . 15

3 Methodology 17

3.1 Introduction . 17

3.2 Data Collection . 17

3.2.1 Tasks . 17

3.2.2 Hardware . 18

3.2.3 Object Pose Estimation . 20

3.2.4 Quaternions . 23

3.3 Data Processing . 25

3.3.1 Outlier Detection . 25

3.3.2 Dynamic Time Warping . 25

3.3.3 Data Augmentation . 27

3.3.4 Normalization . 29

3.4 Model Structure . 31

3.4.1 Introduction . 31

3.4.2 Object and Trajectory Input . 31

3.4.3 Positional Encoding . 32

3.4.4 Hyperparameter Selection . 33

3.4.5 Loss Function . 35

vii

4 Results 37

4.1 Model Performance . 37

4.1.1 Introduction . 37

4.1.2 Model Task Parameterization . 37

4.1.3 Performance in Single and Multi-Task Learning 39

4.1.4 Impact of the Encoder Layers . 39

4.2 Model Comparison . 44

4.2.1 Introduction . 44

4.2.2 Demonstration Size . 44

4.2.3 Runtime Comparison . 48

5 Conclusions 57

5.1 Summary . 57

5.2 Future Directions . 57

References 60

APPENDICES 64

A PDF Plots From Matlab 65

A.1 Quaternion Identities . 65

viii

List of Figures

3.1 Real world task setup for pick-and-place(top), pouring(middle), and shoot-
ing puck(bottom). 19

3.2 A collection of the relevant objects used in all three tasks, which includes
teabag, cup, pitcher, hockey stick and puck, and net. 21

3.3 Disconnected robotic gripper unit used for grasping object during demon-
stration. 22

3.4 The cup labelled with markers at the four corners and along the handle in
DeepLabCut. 23

3.5 The pitcher labelled with markers at the tip of the pitcher and along the
distinguishable part of the handle in DeepLabCut. 24

3.6 The gripper speed versus the time step for two demonstrations of the water
pouring task with no realignment. 27

3.7 The constrained and non-constrained realignment paths for the two water
pouring demonstrations. 28

3.8 The gripper speed versus the time step for two demonstrations of the water
pouring task after realignment. The realignment uses the first demonstration
as the reference demonstration. 29

3.9 An example of a randomly selected point in the trajectory and the verti-
cal axis around which the entire coordinate system will rotate. Original
trajectory (top) and rotated trajectory (bottom) are shown. 30

3.10 A graph of the model structure. Note that the input linear layers share the
same weights for both object sequence and target sequence. 34

ix

4.1 The predicted starting positions of the gripper versus the positions of the
corresponding teabag(top), pitcher(middle), and puck(bottom) over multi-
ple inference trials from the validation and test data set. 40

4.2 The predicted positions of the gripper versus the positions of the correspond-
ing cup(top), cup(middle), and net(bottom) over multiple inference trials.
Selected time steps are those when the gripper is closest to the targeted
object. That is, the end of the task for pick-and-place and shooting puck
and near the middle of the task for pouring water. 41

4.3 Four of the test demonstrations for the pick-and-place task and their corre-
sponding trajectory predictions from the TP-Transformer, TP-GMM, TP-
ProMP, and KMP models. 45

4.4 Four of the test demonstrations for the water pouring task and their corre-
sponding trajectory predictions from the TP-Transformer, TP-GMM, TP-
ProMP, and KMP models. 46

4.5 Four of the test demonstrations for the shooting puck task and their corre-
sponding trajectory predictions from the TP-Transformer, TP-GMM, TP-
ProMP, and KMP models. 47

4.6 A comparison of the model performance in terms of predicted gripper po-
sitional error versus the size of the training demo set. The shaded area
delimits the first standard deviation based on three separately trained mod-
els for each training set size. 49

4.7 A comparison of the model performance in terms of the predicted gripper
orientation versus the size of the training demo set. The shaded area delimits
the first standard deviation based on three separately trained models for each
training set size. 50

4.8 Samples of pick-and-place test demonstrations and their corresponding tra-
jectory predictions based on the 5/10/20/30 data split. 51

4.9 Samples of water pouring test demonstrations and their corresponding tra-
jectory predictions based on the 5/10/20/30 data split. 52

4.10 Samples of puck shooting test demonstrations and their corresponding tra-
jectory predictions based on the 5/10/20/30 data split. 53

4.11 TP-transformer ADE of test set demonstrations at each 500 epochs for all
three tasks. 55

x

List of Tables

3.1 Hyperparameter values’ search space range and their selected values. . . . 35

4.1 Mean gripper position trajectory error between the prediction and ground
truth for models learned on single and multiple tasks. The error is measured
using Euclidean distance(mm). 43

4.2 Pick-and-place model performance for different number of encoder layers.
The error for the gripper trajectory position and orientation are separately
measured using the Euclidean distance and the Norm of the Difference for
gripper rotation comparison, respectively. 43

4.3 Water Pouring model performance for different number of encoder layers.
The error for the gripper trajectory position and orientation are separately
measured using the Euclidean distance and the Norm of the Difference for
gripper rotation comparison, respectively. 43

4.4 Puck shooting model performance for different number of encoder layers.
The error for the gripper trajectory position and orientation are separately
measured using the Euclidean distance and the Norm of the Difference for
gripper rotation comparison, respectively. 46

4.5 Model training time comparison between the TP-transformer, TP-GMM,
KMP, and TP-ProMP models. The TP-Transformer model is trained on
the GPU and the remaining models are trained on the CPU. 55

4.6 Model inference time comparison between the TP-transformer, TP-GMM,
KMP, and TP-ProMP models. 56

xi

Chapter 1

Introduction

With the advancement of automation in recent years, robots have developed the potential
to be used in a wide range of applications from everyday cleaning tasks to industrial-
scale assembly lines. Nonetheless, these machines require a specific set of step-by-step
instructions that they must follow to accomplish a task all the while accounting for any
physical constraints and different variations of the same task. Even if an experienced
programmer can write a custom script for a specific task when given enough time, this is
often not feasible when the workers or the users lack the necessary programming knowledge
nor is it straightforward to write for more complex interactions. To enable the average
layman to be capable of teaching the robot without expert coding knowledge, there has
to be an intuitive way to instruct the robot on the steps of a task. In addition, the robot
must be capable of learning flexibly and adapting to previously unseen situations rather
than memorizing the exact motions. The collection of randomly placed trash and the
hammering of nails at different locations are some simple examples where generalization
would benefit. The learning can be done through natural demonstrations by directly
operating the robot and then training a generalized model of the motions based on those
demonstrations [6][13][20][24].

With the introduction of machine learning models, robots can be trained to a high
degree of accuracy while allowing the average worker without any programming knowledge
to provide them with natural demonstrations and context[16]. These robots are then
able to replicate these actions, freeing up human labour in various settings and improving
overall productivity. While some of the current work in machine learning has produced
promising models that perform well across many different tasks, these models often rely on
a massive collection of simulated or real-world training sets in the hundreds of thousands of
demonstrations due to their end-to-end nature, converting from multiple modalities such

1

as images and languages directly to control output[16]. Particularly for real-world data
sets, their collections can be very complicated and labour-intensive depending on the tasks
involved and can be tedious to collect in large numbers. Our work hopes to provide a
lightweight alternative capable of learning multiple tasks similar to the larger models while
requiring significantly fewer task demonstrations.

Chapter 2 will describe the previous works for learning trajectories based on task
demonstrations, some of which inspired the modifications made to our own model. Chapter
3 will then list and explain our data collection setup, the tools used in the demonstrations,
the data preprocessing methods before the model prediction, and finally our modification to
the original transformer model to allow it to predict trajectories. Chapter 4 then performs
an analysis and comparison of the different models’ performance.

1.1 Motivation

I hypothesize that previous transformer models’ large data set requirement resulted from
the need to perform image pose detection or interpret context from languages rather than
strictly trajectory prediction. Hence our goal here is to develop a novel alternative pipeline
and trajectory prediction model that depends on very few demonstrations and can learn
multiple tasks simultaneously. Furthermore by reducing the size of the model in terms of
the parameters, the model can be more easily deployed on older and cheaper hardware.
Doing so will allow a wider range of users without specialized, expensive hardware or
expert programming knowledge to set up customized models for their automated tasks
and improve their productivity.

1.2 Contribution

A summary of the contributions that this thesis made to the field of deep learning and
robotics is as follows:

• Modified the transformer model originally used for language translation tasks to be
capable of predicting gripper positional trajectories and orientations given a scene’s
object configuration. This is done through providing information such as task and
object identifiers in addition to their poses from the environment as input to the
model, allowing the model to adapt to the various arrangements.

2

• Introduced a novel data augmentation for demonstration trajectory inspired by image
augmentation for Convolutional Neural Networks (CNN). This allows for improved
generalization across previously unseen object configurations and improves the overall
model accuracy.

• The collection and marking of the pick-and-place, water pouring, and hockey shooting
demonstrations used for the training and testing of the TP-Transformer model.

Finally, in the conclusion I provided further instructions on how to potentially imple-
ment other common features such as via-points or force-based feedback control in real-time
on top of the TP-Transformer model, but these were not added due to the time constraint.

3

Chapter 2

Background

2.1 Movement Primitives

In motor control, movement primitives or motor primitives are related to the muscle activ-
ity involved in motion and make up the structure of complex movements such as grasping
and pouring. By breaking down the demonstrated motion into atomic primitives and un-
derstanding them, these elements can be recomposed into new higher-level motor skills [11].
Furthermore, the primitives can be defined at different levels that consider the kinematic
elements, purely motion-based, or kinetic elements, involving force and muscle control [11].
Additional capability of the movement primitives includes the modulation of motion speed,
following via-points, periodic motions, and extrapolating new configurations based on pre-
vious demonstrations. Below we provide a background of the popular movement primitive
models that inspired our current work.

2.1.1 Dynamic Movement Primitive

Inspired by biological systems and their complex motor controls, dynamic movement prim-
itive (DMP) is a non-linear dynamical system and can be used to generate complex motor
commands for robotic systems [24]. In addition to the guaranteed convergence to the tar-
get, the algorithm can adapt to changes in the environment in real-time [24]. As there are
many variations of the DMP algorithm such as Orientation and Periodic DMP, the one
described next will be the base discrete DMP model encoding discrete point-to point mo-
tions [24]. The components of the classic discrete DMP include a second-order dynamical

4

system where the first term of the equation is an attractor term pushing the current trajec-
tory position y towards the goal g. αz and βz are the learning parameters controlling the
attractor’s behaviour. The z term is the first-order derivative of y times τ or the current
velocity. The second term has x as the phase variable for the stage of the trajectory and f
as a function of the linear weighted basis function ϕ that allows for a complex trajectory
as can be seen in Equation 2.2. Alternatively, the basis function can be modified to be
sinusoidal to allow for rhythmic motion such as swiping. The number of weights N allows
the resolution of the trajectory to be fine-tuned according to task complexity. Finally, the
τ term in all the equations modulates the time or the speed at which the phases change
and the corresponding speed of the trajectory motion [24].

To learn the weight values, the example demonstration’s trajectory and its correspond-
ing derivatives with respect to the time are needed. Then Equation 2.1 is rearranged to
approximate the weights in f(x). The weight learning process can be done through Lo-
cally Weighted Regression in which the f(x) is broken down into a basis matrix and weight
vector component, where the weight values are updated iteratively [24].

τ ż = αz(βz(g − y) − z) + f(x)

τ ẏ = z

τ ẋ = αxx

(2.1)

f(x) =

∑N
i=1 wiϕ(x)∑N
i=1 ϕ(x)

(2.2)

2.1.2 Task-Parameterized Gaussian Mixture Model

To flexibly adapt to different object positions, the task-parameterized Gaussian mixture
model (TP-GMM) [6] models the local trajectory relative to the objects within the scene.
The task parameter in this work refers to the configuration of the objects or the state of the
environment. In this case for the jth out of of all P reference frames at time t, bt,j represents
the center of the object and At,j is its corresponding transformation matrix. Beginning
with the global trajectory data represented by ξt, it is converted into the corresponding

relative trajectory X
(j)
t in the j-th local reference frame using the transformation Equation

2.3. A k-Component Gaussian mixture model of the local reference trajectory X
(j)
t for the

j-th reference frame can be learned by fitting the mixing coefficient πi, the mean µ
(j)
i ,

5

and the covariance matrix Σ
(j)
i for all components i = 1, 2, ..., k through the expectation-

maximization algorithm [6].

The resulting normal distribution from each reference frame containing the variability

and correlation from multiple demonstrations, Σ̂
(j)

t,i , at the estimated trajectory point ξ̂
(j)

t

can then be combined as a product of Gaussian as shown in the Equation 2.4 [6]. The cer-
tainty of the trajectory from a particular local reference frame is reflected by the variability
of that distribution’s covariance matrix. The final probabilistic encoding of the trajectory
at time t for component i, N(ξ̂t,i, Σ̂t,i), from multiple coordinate systems is most influ-
enced by the local frame with the highest trajectory certainty. As a result, the work’s use
of multiple local reference frames can adapt to unseen configurations of the task parame-
ters by aggregating multiple predictions and guaranteeing that trajectories are accurately
following segments that have highest level of certainty. For example, demonstrations for
tightening nut and bolt would consistently see the gripper approaching and staying near
the local reference of the nut for the final segment of the motion trajectory.

With algorithmic runtime independent of the number of demonstrations, Gaussian
mixture regression of the trajectory can then be conditioned on the continuous timestamp
t which gives the distribution shown in 2.5. This is done through modelling the joint
distribution of input dimension (i.e. time or the state of environment for ξIt) and the
output dimensions (i.e. position, velocity, joint angles, etc. for ξOt) with K-component
GMM [6].

X
(j)
t = A−1

t,j (ξt − bt,j) (2.3)

N(ξ̂t,i, Σ̂t,i) =
P∏

j=1

N(µ̂
(j)
t,i , Σ̂

(j)

t,i)

Σ̂t,i =
(P∑

j=1

Σ̂
(j)

t,i
−1
)−1

ξ̂t,i = Σ̂t,i

P∑
j=1

Σ̂
(j)

t,i
−1µ̂

(j)
t,i

Σ̂
(j)

t,i = At,jΣ
(j)
i A⊺

t,j

µ̂
(j)
t,i = At,jµ

(j)
i + bt,j

(2.4)

6

Pr(ξ
O
t |ξIt) ∼

K∑
i=1

hi(ξ
I
t)N(µ̂O

i (ξIt), Σ̂
O

i)

µ̂O
i (ξIt) = µO

i + Σ̂
OI

i Σ̂
I

i
−1(ξIt − µI

i)

Σ̂
O

i = Σ̂
O

i −ΣOI
i ΣI

i

−1
ΣIO

i

hi(ξ
I
t) =

πiN(µI
i ,Σ

I
i)∑K

j=1 πjN(µI
j ,Σ

I
j)

(2.5)

2.1.3 Probabilistic Movement Primitives

Similar to the TP-GMM model, the Probabilistic Movement Primitives (ProMP) model
also aims to provide a probabilistic way of learning from demonstrations and sampling new
trajectories [20]. The trajectory model represents the demonstrations as a multivariate nor-
mal distribution from which compact representations of the learned trajectory or weights
w can be sampled from. The distribution of the weight w is modelled by the Gaussian
distribution p(w|θ) where θ consist of the learned parameters mean vector, µw, and the
covariance matrix, Σw [20]. The weight is then multiplied by a matrix of time-dependent
or phase-based Gaussian basis functions Φt as seen in 2.6, where ϕi(t) is the k-dimension
time-dependent basis function for each of the D output dimensions, to generate the mean
of the trajectories and its corresponding time-varying covariance matrix [20]. The mod-
elling of the covariance allows the model to better learn trajectories for demonstrations
with a high level of variation. The sampled trajectory is represented by τ = {yt}t=0,...,T

conditioned on the weight for a total of T time steps and its probability function is shown in
Equation 2.7. Finally, the conditional probability for τ given the learned task parameters
or the likelihood of the trajectory is shown in Equation 2.8.

In addition to modelling the position and velocity of the gripper, the model is also
capable of modelling the periodic/rhythmic motions by including separate Von-Mises basis
functions, modulating via-points, adjusting velocity, and blending movement primitives
[20]. The coupling between the different degrees of the joints can also be accounted for by
adding or removing the non-diagonal basis functions in the Φ matrix [20]. this can be done
at the cost of requiring significantly more demonstrations for learning the parameters.

7

Φt =

ϕ1(t) . . . 0
...

. . .
...

0 . . . ϕD(t)

 (2.6)

p(τ |w) =
T∏
t=0

N(yt|Φ⊺
tw,Σy)

yt = Φ⊺
tw + ϵy

(2.7)

p(τ |θ) =

∫
p(τ |w)p(w|θ)dw (2.8)

2.1.4 Kernel Movement Primitives

The Kernel Movement Primitives (KMP) method attempts to combine the work of ProMP
and TP-GMM by replacing the predefined basis functions with kernel functions [13]. The
local-KMP version of the algorithm is capable of learning trajectories in the local refer-
ence frames in the manner of TP-GMM through the use of the coordinate transformation
represented by A(p) and b(p) for reference frame p. These modifications allow the model
to leverage the extrapolation capability while providing an improvement over the ProMP
algorithm.

The major additions over the previous works include [13]:

• Learning a probabilistic representation based on multiple demonstrations.

• Adoptions and superposition of multiple trajectories.

• Generalizing to extrapolated trajectories.

• Better performance when given high dimensional inputs by replacing basis functions
with kernel functions.

The algorithm minimizes the KL-Divergence objective function between the trajectory
distribution given the weight distribution from ProMP, Pp(ξ|sn), and the trajectory distri-
bution based on the Gaussian Mixture Regression, Pr(ξ|sn), conditioned on the sn input,
typically time. This is shown in Equation 2.9 where n is the order in the trajectory, ξ is the

8

output trajectory, and Φn = Φ(sn) is the same basis function matrix as described in the
Probabilistic Movement Primitives subsection. The conditional distribution equations are
from the ProMP and TP-GMM algorithm with time-driven input as shown in Equation
2.10.

DKL(Pp(ξ|sn)||Pr(ξ|sn)) =

∫
Pp(ξ|sn) · log(

Pp(ξ|sn)

Pr(ξ|sn)
)δξ (2.9)

Pr(ξ|sn) = N(ξ|µ̂n, Σ̂n)

Pp(ξ|sn) = N(ξ|Φ⊺
nµw,Φ

⊺
nΣwΦn)

(2.10)

Then by using the property of two Gaussian distributions under KL-divergence, the
resulting objective function can be broken down into mean and covariance minimization
problems which optimizes the mean µw and Σw of the parametric trajectory distribution
[13]. The scalar λ > 0 is introduced to regulate the penalty term ||µw||2 in the mean
minimization problem 2.10. In short, the optimal parameters can be derived through
Equation 2.11. The two separate equations can then have their original basis functions
replaced with kernel functions by defining the kernel as shown in Equation 2.12. Lastly to
generate the trajectory given the input s∗, the expected output, E(ξ(s∗)), is calculated from
Φ(s∗)⊺µ∗

w and its corresponding covariance, D(ξ(s∗)), is calculated from Φ(s∗)⊺Σ∗
wΦ(s∗)

[13]. The final equations of the expected mean and covariance after replacing the basis
functions with the kernel functions are shown in Equation 2.14.

µ∗
w = Φ(Φ⊺Φ + λΣ)−1µ

Σ∗
w = N(ΦΣ−1Φ∗⊺ + λI)−1

(2.11)

k(si, sj) = ϕ(si)
⊺ϕ(sj)

K =

k(s1, s1) . . . k(s1, sN)
...

. . .
...

k(sN , s1) . . . k(sN , sN)

 (2.12)

ϕ = [ϕ(s1), ...ϕ(sN)]

Σ = blockdiag(Σ̂1, ...Σ̂N)

µ = [µ̂⊺, ...µ̂⊺]⊺

k∗ = [k(s∗, s1), ...k(s∗, sN)]

(2.13)

9

E(ξ(s∗)) = k∗(K + λΣ)−1µ

D(ξ(s∗)) =
N

λ
(k(s∗, s∗) − k∗(K + λΣ)−1k∗⊺ (2.14)

2.1.5 Task-Parameterized Probabilistic Movement Primitive

The task-parameterized probabilistic movement primitive (TP-ProMP) model makes use
of the same local reference frames from TP-GMM and expands upon the ProMP model
[33]. In comparison to KMP, TP-ProMP uses basis function rather than kernel functions
and Maximum A-Posteriori to estimate the parameters rather than KL-Divergence. One
of the problems that TP-ProMP addresses is mode collapse where multiple variations of
accomplishing the same task with identical task parameters lead to the model generating
poor trajectories. For example, if there is the option of pouring from the left or right
side of a cup, the model trained on such demonstrations would generate the mean of the
demonstrated trajectory even if it is not a valid option. For training and testing, the TP-
ProMP uses a set of common household tasks and actions such as pick-and-placing teabag,
pouring water, shooting puck into a net, and sweeping trash [33].

Now we will summarize the structure of the TP-ProMP model in this section. As with
TP-GMM, The starting pose and position of the objects are represented as Aj and bj
respectively and are also used for converting between the object reference frame and the
global reference frame. Based on the concatenated trajectories, shown in Equation 2.15,
from each local reference frame τ ′ ∈ RDR×T where the D is the number of dimensions being
modelled, R local reference frames, and T time steps, a ProMP model is fitted [33]. Given
M = DR, the ProMP learns a weight distribution for w with the weight parameters µw for
the mean weight, Σw for the weight covariance, and Σϵ for the trajectory covariance which
can then be used to replicate τ ′ in combination with the M -block basis function matrix
Φt from Equation 2.7. This gives the trajectory probability conditioned on learned weight
parameters as can be seen in Equation 2.16 where the trajectory mean µχt

and covariance
Σχt at time t can be split by local reference frame. Combining the Gaussian product of
the local reference trajectory estimates as in TP-GMM yields the optimal trajectory points
and corresponding variance.

To deal with mode collapse, TP-ProMP must also be able to differentiate the variations
in weight values w for their corresponding trajectory. This is done by breaking the model
training down into two steps. The first step involves clustering the N demonstrations
into C groups with a Gaussian Mixture and learning the distribution parameters through

10

expectation-maximization [33]. The second step takes the clustered demonstrations and
separately trains an individual model for each variation using the previously learned cluster
parameters, i.e. µw, Σw, and Σϵ, as the initial parameters to aid in further training [33].
These individual models can then be separately sampled according to the mode of the
action.

The work also introduces the paired-object reference frame in which local reference
frames are centred at the source object but the local x-axis is pointed toward a target
object [33]. This is useful for situations where directed motion is required for a task, for
example in a puck shooting task where the puck must be launched along the local x-axis
relative to the net. These modifications allow the TP-ProMP model to tackle a variety of
tasks at the cost of additional computation time.

τ ′ = {X t}Tt=1

X t = (x
(1)
1,t , ..., x

(1)
D,t, ..., x

(R)
1,t , ..., x

(R)
D,t)

(2.15)

p(X t|w) =

∫
N(X t|Φ⊺

tw,Σϵ)N(w|µw,Σw)dw

= N(X t|µχt
,Σχt)

µχt
= Φ⊺

tµw

Σχt = Φ⊺
tΣwΦt + Σϵ

(2.16)

µχt
= [µ(1)

χt
, ...,µ(R)

χt
]

Σχt =

Σ
(1)
χt

. . . 0
...

. . .
...

0 . . . Σ(R)
χt

 (2.17)

2.2 Deep Learning

Deep learning has shown broad applicability in fields ranging from image recognition to an-
swering complex inquiries. With modifications to model structures and data pre-processing,
these algorithms have demonstrated the incredible ability to successfully perform various

11

narrow tasks much more proficiently than their human counterparts such as in the case of
playing Go, an ancient board game[25], and video games. Yet despite their super-human
ability, their internal working remains mostly a mystery and are prone to adversarial at-
tacks [32]. This part will explore the use of deep learning algorithms in robotic-related
tasks and describe their advantages and shortcomings.

The most basic blocks of deep learning models generally consist of neural network layers
of learned parameters. The basic fully connected (FC) layer or multi-layer perceptron
(MLP) can be represented as a matrix of weights where each of the output neurons is
connected to each of the input neurons by a row of learnable weights. To mimic the
working of the biological neural process, non-linear activation functions are added between
the layers to determine whether parts of the input are important enough to be ”fired” or
passed down to the next layer, leading to the learning of complex relationships between
various features. Different models such as the Convolutional Neural Network (CNN) [15]
commonly applied to image tasks mainly differ in the type of connections between the
different neurons of each layer. In general, the deeper the layers of the model the better it
is at learning and processing a higher level of abstraction.

The actual learning of parameters in deep learning is achieved through the application
of the chain rule and the back-propagation of errors [22] and can be done in multiple ways.
Supervised learning maps out the relationship between the input and the output values and
learns using the error between the ground truth and the model prediction. This method
requires the target value of the data set to be labelled or collected beforehand and is useful
for predicting categories or values that may otherwise be difficult to determine. A method
commonly used in robotics, reinforcement learning relies on a feedback reward system and
environmental observations to find the optimal action required to maximize the expected
reward [27]. The reward can be whether the agent accomplishes a task while following the
physical constraints. While this may make reinforcement learning appealing for robotic
tasks, it is often not straightforward to define the reward function for complex tasks and
requires extensive testing and training in the real world.

2.2.1 Transformers

Originally applied to learning language tasks such as translations and sentence completion,
the transformer model has recently seen its application to general robotic control tasks [29].
The transformer model is an improvement over previous state-of-the-art Recurrent Neural
Network (RNN) [23] and long short-term memory (LSTM) neural networks [12]. These
are sequence-to-sequence models capable of processing a sequence of inputs and output

12

another sequence, for example, converting sentences from English to French. This is done
through an encoder and a decoder component with the original sentences passed through
the encoder and the targeted translation generated by the decoder. In the transformer
model’s case, this is done through the use of the attention mechanism [29]. Individual
layers of the model’s encoder and decoder contain the attention mechanism which processes
sequences of embedded vectors each representing a word. This mechanism allows for each
word in the sequence to attend to all other words in different ways depending on the type
of relationship such as whether an adjective describes a particular noun or the object a
pronoun refers to. The resulting output therefore encodes higher level relationships between
the elements and is useful for understanding the overall context.

How the attention mechanism learns the relationship between the word tokens is by
first linearly mapping them into their corresponding key K, query Q, and value vectors
V . The level of attention between a word token and all other words in the sequence is
mapped out by the dot-product of that word’s query and the keys of all the words in the
sequence. A softmax function is then applied to the scaled dot-product to generate a set
of corresponding weights for each value element in the sequence as shown in Equation 2.18
where dk is the dimension of the key embedding [29]. The weighted sum of the value tokens
is then combined to generate the final output, x, for the query token, which is then passed
to a feed-forward layer, FFN(x), as shown in Equation 2.19 where W i and bi are the
matrix weight and the vector bias [29]. The outputs, each corresponding to a query token,
are then combined to form the output sequence which is then passed to the next attention
block.

Attention(Q,K, V) = softmax(
QK⊺

√
dk

)V (2.18)

FFN(x) = max(0,xW 1 + b1)W 2 + b2 (2.19)

The decoder takes the contextual information and generates the next translated token
based on the translation so far. This is done with the cross-attention mechanism which uses
the same attention structure but combines the key and value output sequences from the
encoder with the query sequence from the decoder. A mask can be added to the decoder
to hide the tokens that follow the current token to make the model auto-regressive.

Compared to RNN which must generate hidden states for each word before the next
word can be processed, the transformer can process all the words in parallel which results in

13

faster training speed and the ability to work with long input sequences [29]. As a result in
recent times, transformer models have replaced RNN and LSTM as the state-of-art model
for various tasks involving sequence prediction. Below we will introduce some promising
transformer models used in robotics-related tasks and address their shortcomings when it
comes to their practicality for learning from demonstrations.

2.2.2 Gato

The main goal of the Gato model is to train a single generalist agent, through offline
supervised learning or reinforcement learning, capable of learning a vast array of different
tasks proficiently and leverage that knowledge to learn new tasks with a minimal number of
demonstrations [21]. The Gato model structure consists of a decoder that auto-regressively
predicts the distribution of the next discrete token, either as texts or agent actions, given
the inputs so far. The actions can then be fed to the agent to generate the next set of
observations from the environment and repeat the process.

The tasks introduced in the paper include dialogues, captioning images, playing Atari
games, navigation, and, more relevant to our work, stacking objects with robotic arms.
For the model to be able to accept different modalities of data including images, discrete
button presses, continuous inputs, text, and joint torque, the raw input must be converted
into machine-interpretable vectors. This is done through the tokenization of the various
input modalities and ordered into a sequence of embedded tokens acceptable as inputs to
the decoder [21].

To test for skill mastery and generalization, the Gato model is applied to a simulated
RGB Stacking robotics task and the same real-world stacking task using a Sawyer robot arm
[21]. The setup uses 128x128 camera images and the robot’s joint and poses information
to stack red blocks on top of blue ones while ignoring the green blocks [21]. While Gato
is capable of performing competitively on the stacking benchmark, the requirement of
up to hundreds of thousands of simulated and real training data sets is not feasible for
more practical applications where human-collected demonstrations are the only data sets
available and are sparse in quantity.

2.2.3 RT-1

Similar to that of our works, the goal of the Robotic Transformer (RT-1) is to train a model
that can learn from a large, task-agnostic data set such that it exhibits generalization
capabilities such as zero-shot learning and adaption to new environments [5]. To facilitate

14

this process, the RT-1 model must be capable of inputting images and instructions and
then outputting the corresponding discrete robot actions and poses. The main model
components that permit this capability include a FiLM EfficientNet [28], a TokenLearner,
and a transformer. To preserve the efficiency of the model, the images are tokenized through
the pre-trained EfficientNet while conditioned on the language instruction embeddings from
the FiLM layer which are interweaved between the convolution blocks [5]. TokenLearner
then further compresses and sub-samples the output of the EfficientNet into a smaller
sequence of tokens. Finally, the decoder-only transformer combines the tokens of all images
and produces action tokens which are then discretized.

With a total size of 35M parameters, the model is trained on a broad range of tasks
collected using a mobile manipulator arm with 7 degrees of freedom within different kitchen
settings [5]. The number of real-world, human-collected demonstrations is around 130k and
each demonstration has to be labelled with a description of the task that was performed
[5]. The model is capable of generating output at 3Hz as a result of its large size, which is
far slower than the Movement Primitive models from previous subsections. Nonetheless,
the evaluation shows that the model has a high success rate and generalizes well to new
tasks and environmental variations.

2.2.4 PaLM-E

Similar to the Gato model, PaLM-E is a single generalist large language model for embodied
language tasks that attempts to plan step-by-step instructions for robotic manipulation
tasks based on visual information, the robot’s state, and text embedding inputs. The
model differs from the original Pathways Language Model(PaLM) which is trained purely
for natural language tasks [8]. To be able to process visual data, Vision Transformer (ViT)
is added to PaLM-E to convert image data into token embeddings [10]. The output is
generated in the same manner as Gato in that PaLM-E is a decoder LLM that accepts
inter-weaved prompts from multiple modalities and outputs its corresponding completion
auto-regressively. Applications of the model include creating jokes based on given images,
processing written math calculations, and comprehending visual-question answering tasks.

The work seeks to combine the model’s interpretation of the text with the robot’s
sensory inputs such as joint configurations and visuals by converting them into embeddings
in the same space as the language token [10]. This would allow the model to successfully
solve tasks where the visual of the environment and state of the agent is important. The
embedded instructions output can then be returned as the answer to the scenario or be
used to condition the low-level policy handling the robotic motion control. By training

15

on multiple tasks similar to Gato, the model has shown the ability to perform one-shot or
zero-shot generalization to a previously unseen combination of objects or object types.

To complete the pipeline from the raw inputs to controller output, a low-policy control
is required to convert the intermediate step-by-step instruction into the control actions.
For example, the Interactive Language model [16] can map text commands and state to
robotic action by training a conditional policy. This may involve simultaneously fine-
tuning the parameters of both high and low-level policies which is difficult. Furthermore,
the model faces the same problem as Gato and requires to be trained on a massive 600,000
demonstration dataset. The collection involves the operator continuously performing var-
ious tasks and then manually adding hindsight annotated labels to the relevant segments
of the data.

16

Chapter 3

Methodology

3.1 Introduction

This chapter will go into detail about the components that make up our pipeline and the
rationale behind our decisions. The first section will talk about the tasks and the data
collection involved. The second section will describe the data preprocessing that allows the
model to process the relevant input information and helps to facilitate the model training.
Finally, the last section will lay out the modifications made to the original transformer
model to generate trajectory predictions.

3.2 Data Collection

3.2.1 Tasks

To thoroughly test the capability of our model, we collected demonstration from a set
of tasks with varying levels of trajectory complexity. The same tasks are used for the
training of the TP-ProMP model and include pick-and-placing teabags, pouring water
from a pitcher, and shooting puck [33]. The data set is collected over the period of roughly
two months after the setup of the task environment was completed. Figure 3.1 below shows
the setup for each of the tasks.

The pick-and-place task consists of gripping the teabag with the tips of the gripper
from the teabag holder and carrying it to the top of the cup before releasing it. This task

17

mainly tests the model’s capability to follow the position of the gripper from the starting
position to the end target and to generalize to different object positions. This is followed by
the more complex pouring task which requires significant changes in the orientation of the
gripper during the demonstration and depends on the direction the pitcher is approaching
the target object. The pouring water task involves the gripper grasping the side of the
pitcher, moving to the cup, and pouring the liquid content into the cup before placing the
pitcher beside the cup. Due to the potential hazard of working with liquid near electronics,
we use grains as a rough representation of the water. Finally, the shooting task requires
the gripper to launch a puck object, randomly placed in front of the net, directly into
the net while holding a mini hockey stick. This task requires the model to learn to shoot
the puck in the direction of the net at a sufficient speed and be able to generalize to the
various starting positions of the puck. These tasks test the model’s ability to learn distinct
movements that are likely to be part of any realistic task and allow the model performances
on each movement type to be separately measured.

The total number of demonstrations collected for each task is separated into 30 training
demonstrations per task and separate sets of validation and test sets consisting of 5-8 demos
per task. Here the training set is used for the training of the model, the validation for
finding the optimal hyperparameters, and the test set for the final model accuracy and the
performance comparison.

3.2.2 Hardware

This subsection will describe the physical setup involved in the collection of the demon-
strations, the hardware used, and the procedures for operating the hardware.

Essential to the manipulation of the objects in the scene is the robotic gripper unit
previously developed for a naturalistic grasp demonstration system [19]. The unit is directly
connected to the computer via a cable to allow the gripper’s control to be programmed.
The opening and closing motion of the gripper and the corresponding force of the grasp
are controlled by a human operating a joystick. The start/end and success/failure of a
demonstration are also recorded with the use of separate button inputs on the joystick,
with the success button saving the demonstration and the failure button discarding it.
To mimic the natural motion of a human grasp, the human operator directly holds and
controls the gripper via a handle.

The position and orientation of the gripper are tracked through the NDI Polaris Optical
Tracking System with two separate sets of reflective markers mounted on the gripper. Each
set of markers is mounted at different positions to ensure one set is always facing the optical

18

Figure 3.1: Real world task setup for pick-and-place(top), pouring(middle), and shooting
puck(bottom).

19

tracker throughout the duration of the demonstration. Nonetheless, not all orientation of
the gripper is possible due to either obstruction by the human hand or poor angles. The
NDI tracking system is also connected to a separate computer that record the trajectory
and detects when the markers are visible.

In addition to recording the gripper trajectory data, image data is also required to
detect the position, orientation, and type of the objects in the scene. This is done through
a ZED2 stereo camera connected to the desktop in order to record a continuous stream
of video frames. The camera is calibrated with a printed checkerboard to ensure that
the marker estimations will be accurate. The left and right eye stereo images for the
demonstrations are collected at 1080p resolution which is required for depth perception
after further processing. The camera is mounted overhead on a frame and all relevant
object manipulations are performed within the view of the camera. Both the NDI optical
tracking system and the stereo camera are synchronized and capture a frame every 0.08
seconds or 12.5 frames per second.

The TP-Transformer model was trained on an RTX2080TI graphics processing unit
(GPU) with Intel Xeon Bronze 3106 CPU 1.70GHz. In addition, the DeepLabCut im-
age processing and labelling described in the following subsection was also performed on
the same hardware [17]. While it is recommended to have similar hardware, lower-grade
hardware would likely still work as the TP-Transformer model is fairly lightweight.

Other items used in the collection of the task include cups, a single pitcher, a teabag,
a hockey puck and stick, and a net. All of the objects can be in the Figures 3.2 and 3.3.

3.2.3 Object Pose Estimation

DeepLabCut [17] is used for visual labelling and predicting the 3D position of the object
markers trained on sample images manually labelled by our group as can be seen in Figures
3.4 and 3.5. This is done by first uploading the videos of the demonstrations and then
selecting distinct frames for labelling algorithmically or through visual inspection. The
markers are then placed on the distinctive parts of the object that can be consistently
pinpointed with a high degree of accuracy and are visible for most of the time, such as
the intersections of the handle to the main body of the pitcher, the pitcher’s pouring tip,
or the sharp corners of any object. Then through the use of DeepLabCut3D, the raw
camera images can be combined to triangulate the depth of the marker and predict the
3D positions of each point in the camera coordinate system. Multiple points could be
predicted by DeepLabCut that correspond to the same part, and we chose the point with
the highest confidence score [17]. An alternative method using a pre-trained LEAstereo

20

Figure 3.2: A collection of the relevant objects used in all three tasks, which includes
teabag, cup, pitcher, hockey stick and puck, and net.

which predicts the disparity map based on the left and right images was also tried [7].
However, due to erratic depth prediction for reflective, metallic objects, the method was
dropped from the pipeline and replaced with DeepLabCut3D.

Next, a template of the unique object types needs to be generated to convert between
the different coordinate systems. These object templates are generated by placing an
object with all markers {ptempl

i }i=1...Ntempl
visible and the template object center is defined

as the mean position btempl of all the markers in the global reference frame or NDI’s
coordinate system [33]. The Atempl matrix is then defined as an identity matrix for
the template in the global reference frame and represents the default orientation of the
template object. By matching the detected object markers from the actual demonstrations
{pobj

i }i=1...Nobj
to the template, the object center and orientation can be estimated even

when some points are obscured in the environment. It follows that Nobj ≤ Ntempl as a result
of the visual obstruction. Given the detected markers, a rigid 3D transformation algorithm
can be used to estimate the object position bobjtempl and orientation Aobj

templ relative to the
template by minimizing the least-square error as in Equation 3.1 [2][33]. The algorithm
solves for the rotation matrix of Aobj

templ by using singular value decomposition (SVD)

[26] on the covariance matrix of the two re-centred point sets, {ptempl
i }i=1...Ntempl

and

21

Figure 3.3: Disconnected robotic gripper unit used for grasping object during demonstra-
tion.

{pobj
i }i=1...Nobj

, and then multiplying the two orthogonal matrices U and V T to calculate
the orthogonal rotation matrix. The resulting object orientation and position in the global
reference frame would therefore be calculated as Aobj

global = Aobj
templA

templ and bobjglobal =

Atemplbobjtempl + btempl respectively [33].

LSE = Σ
Nobj

i=1 ||pobj
i − (Aobj

templp
templ
i − bobjtempl)||2 (3.1)

22

Figure 3.4: The cup labelled with markers at the four corners and along the handle in
DeepLabCut.

3.2.4 Quaternions

So far the orientation of the objects in the scene is modelled with rotation matrices. To
allow the model to predict gripper rotation trajectory, we use an alternative quaternion
representation. A quaternion represents a rotation in a 3D coordinate system with four
scalar parts, qw, qx, qy and qz, and the orthogonal basis vectors, i, j, and k, defined in
the complex number space as shown in Equation 3.2. These basis vectors can be thought
to represent the axis unit vector of a 3D coordinate system and has additional proper-
ties described in Appendix A. Addition information about the operations and identities of
quaternions can also be found in the appendix section. Our model predicts the four real
values as they determine the final rotation. Composition of rotations applied to an object
can be easily done with multiplication and following the quaternion identities. Further-
more, the magnitude of the quaternion can be normalized to 1 to transform into a unit
quaternion.

To measure the difference between two different rotations, we need a special function
that accounts for the unique properties of quaternions. We decided on the Norm of the
Difference of Quaternions as a similarity metric for testing the predicted gripper rotation

23

Figure 3.5: The pitcher labelled with markers at the tip of the pitcher and along the
distinguishable part of the handle in DeepLabCut.

of the various models against the ground truth rotation [14]. For the metric, the output
similarity measure between any two unit quaternions lies between 0 and the square root
of 2 where 0 equates to the unit quaternions being the same. In Equation 3.3 below,
the selection of the minimum of the norms of the difference and sum of q1 and q2 allows
the metric to account for the fact that negative of a quaternion is equal to the original
quaternion, or q = −q. This means that the Norm of the Difference of Quaternions is also
a pseudo-metric for comparing quaternion similarity as the function is mapped two-to-one
from two quaternions to a single real number [14]. In the result section, the performances
will be compared based on this metric.

q = qw + qxi + qyj + qzk (3.2)

24

Φ(q1, q2) = min(||q1 − q2||, ||q1 + q2||) (3.3)

3.3 Data Processing

3.3.1 Outlier Detection

Due to the sensor noises in estimating the object markers or the gripper positions, some
demonstrations are invalid and can not be used for the training process. To remove the in-
valid demonstration, we introduce an algorithm that detects the outlier trajectories among
all the demonstrations for a particular task. This is done by comparing the points of the
trajectory at the same time step and removing trajectories that significantly deviate from
the mean position of the group by three standard deviations. Due to the skewing of the
more extreme outliers, the process is repeated until no new outliers are detected after the
mean positions and the standard deviations are updated after each pass. The process is
applied to both the trajectory start points and end points to detect invalid demonstrations
more flexibly.

3.3.2 Dynamic Time Warping

Commonly used for pattern matching, Dynamic Time Warping (DTW) [18], a dynamic
programming algorithm, compares the similarity between two different time series to re-
align and synchronize the corresponding distinctive time periods. Tasks that it has been
used on include finding common patterns between stock prices for varying periods, speech
recognition, and refining raw data sets for useful features. This section will describe the
application of Dynamic Time Warping for realigning multiple trajectory demonstrations
for a single common task.

Due to demonstrations persisting for different time lengths as can be seen in Figure 3.8
depicting the speed versus the time step for two random demonstrations of the same task,
we wish to apply the DTW algorithm to normalize the duration of all tasks demonstrations
[18]. This can be done by first selecting a representative reference as the demonstration
with the median number of time steps and then applying the algorithm to the reference
along with all other demonstrations from the same task. While the maximum or minimum
time steps can also be chosen as the common time step, we picked the median time step
reference frame as it is more robust to extreme trajectories that may not be representative of

25

all the task trajectories. Another reason to use the median time step is that the introduced
slope constraints will fail if the reference demonstration’s time steps are more than twice
as long as that of the target demonstration and vice versa.

For the Dynamic Time Warping algorithm to know what kind of pattern it should
be searching for in the time series, it needs to have a cost metric that tests the relevant
features. For our purpose, the minimized cost metrics used in the algorithm are defined as
the difference in gripper speed between the reference demonstration and that of the target
demonstration. As can be seen in Figure 3.8 for pouring task demonstrations, the gripper
displays distinct periods of peaks to and away from the cup and a slow down during the
pouring action. These distinct features can be used to realign the trajectories to normalize
all demonstration duration. The algorithm then functions by taking two trajectories with
total time steps N and M and minimizing the cost metric between the matched points.

The minimization is done under the requirement that the index of the start and end
of the trajectories are matched and that the realignment path satisfies the monotonicity
constraint as can be seen in the equations 3.4 [18]. Here (i(k), j(k)) = (n,m) are a pair of
matched indices between two trajectories where k represents a common time step and the
two functions, i and j, represent mappings from time step to indices.

While the DTW algorithm can be applied to two time series of any size, this can often
result in poor quality matching. To ensure the smooth index matching of the two trajec-
tories and to avoid extreme jumps in trajectory as can be seen in Figure 3.7, additional
slope constrain has been imposed that disallow paths with slopes greater than 2 or less
than 1

2
[18]. Hence the time series that are too long and time series that are too short can

not be matched without breaking the constrain.

n = i(k) where k = 1, 2, ..., K

m = j(k)

1 = i(1)

1 = j(1)

N = i(K)

M = j(K)

i(k + 1) ≥ i(k)

j(k + 1) ≥ j(k)

(3.4)

26

Figure 3.6: The gripper speed versus the time step for two demonstrations of the water
pouring task with no realignment.

3.3.3 Data Augmentation

As shown for previous works in language and robotic manipulation tasks, the transformer’s
capability comes with a heavy demand on the size of the training set or additional fine-
tuning on top of a pre-trained model. This is required as the models need to be able to
generalize to unseen tasks, particularly for large models with a huge number of learned
parameters. To augment the few demonstrations that can be feasibly collected, I draw
inspiration from the field of Convolutional Neural Networks and image processing.

In the YOLOv4 object detection paper, the authors introduce a bag of freebies as a way
of making the model more robust to detecting objects in various environments and positions
[4]. The collection of image transformations includes modification of brightness, saturation,
contrast, noises, scaling, flipping and rotation. While some of the transformations can only

27

Figure 3.7: The constrained and non-constrained realignment paths for the two water
pouring demonstrations.

be applied to images, others such as rotation can be more broadly applied to trajectory
transformation.

To help generalize our model to different feasible object configurations, I introduced the
rotated trajectory augmentation method. As described in the YOLOv4 paper, the rotation
data augmentation is used to randomly rotate the image by a certain degree around the
image center. In our case for a single selected trajectory, a point p on the trajectory is
first randomly selected. Then a degree of rotation between 0°and 359°is randomly selected
and is used to rotate the entire coordinate system around the vertical axis at the point p,
generating up to 359 new trajectories per point. The new configuration is still a physically
possible configuration after the transformation but becomes distinct from the original tra-
jectory. The initial objects’ position and orientation are equally transformed, creating a
new set of task parameters. An example is given in Figure 3.9. The model performance
improved significantly as a result of introducing the data augmentation technique. For a
detailed comparison to models without the augmentation for each task, see Tables 4.1.4,
4.1.4, and 4.1.4 in the Results section.

28

Figure 3.8: The gripper speed versus the time step for two demonstrations of the water
pouring task after realignment. The realignment uses the first demonstration as the refer-
ence demonstration.

3.3.4 Normalization

As the different task demonstrations can take place in different areas of the task envi-
ronment and the center of the task platform is off-shifted meters from the center of the
global coordinate system, the range of the trajectory points in different axes varies. For
example for all three collected task demonstrations, the range of the coordinates on the
x-axis is between -1400 and -2000 millimetres while that of the y-axis is between -400 and
0 millimetres. In addition, there exists a difference in the scaling between the distance
metric and quaternion metrics, since the unit quaternion’s magnitude or L2 Norm of the
four coefficients equals 1 where

√
q2w + q2x + q2y + q2z = 1 while the unit of the demonstrated

trajectories is in millimetres. This will impact the weights of each part when it comes

29

Figure 3.9: An example of a randomly selected point in the trajectory and the vertical
axis around which the entire coordinate system will rotate. Original trajectory (top) and
rotated trajectory (bottom) are shown.

30

to calculating the loss function and would have to be manually adjusted to rectify the
imbalance.

To deal with the scaling problem above, normalization is introduced to our pipeline to
better facilitate the stability of the training process. Some of the common normalization
methods include scaling the values between 0 and 1 using the minimum and maximum
values or applying log-scale to distributions with extremely skewed tail values. These
techniques are commonly used in machine learning algorithms before the training process
to convert the input values into similar ranges. Here the Z-score normalization is used as
there does not appear to be extreme distribution of the trajectory points.

We hope to normalize the demonstrated trajectory path and object placement by sub-
tracting the mean of the overall trajectory path and then dividing it by its standard
deviation. This transforms the values to be mostly around 0 with the standard deviation
of 1. To keep the weight equal among the x, y, and z axes, the same scaling is applied
across all of the axes. The mean position and the standard deviation of the trajectory are
then saved and can be used again when converting the predicted trajectories back into the
world coordinate system.

3.4 Model Structure

3.4.1 Introduction

This subsection will describe the modifications made to the original language translation
model introduced in the paper “Attention is All You Need” [29] adapted for the task of
trajectory prediction. A brief description of the model’s attention mechanism was given in
the background chapter.

3.4.2 Object and Trajectory Input

Before the raw positions and orientation of the object and gripper can be processed by the
model for prediction, they have to be modified with the relevant information. In the original
transformer language model, the input tokens representing words or other miscellaneous
symbols were converted into embedding vector representations before entering the model as
inputs. In this case, vectors are created containing the individual information of the objects
and gripper in the scene. This includes the object position, orientation, type, and the

31

current task for the demonstration. Here I let the vector pobj = [pobjx , pobjy , pobjz] represents
the object position and qobj = [qobjx , qobjy , qobjz , qobjw] represents the object orientation.

For the model to know the corresponding object that the pose information is for, it
needs to know the object type. For the object type, one hot embedding vector is used to
represent each of the possible unique object types on = [o1, o2, ..., oN] where N is the total
number of unique object types and n is the unique object identification. This also allows for
multiple objects of the same type in the scene to be tracked simultaneously. Similarly, the
task tag is represented by one hot embedding vector tm = [t1, t2, ..., tM] of dimension size M
for the number of unique tasks to be learned and m is the unique task identification. This
allows for a single model to be trained on multiple tasks and perform the corresponding
object manipulation for the indicated task. Alternatively, separate embedding for task and
object type could potentially be learned and used instead of one-hot vector representations,
but as the number of tasks is few, one-hot is sufficient for our purpose.

To combine the various types of task parameter information from the previous sections,
the object pose, type, and actions are concatenated into a single vector. This vector is
shown in Equation 3.5. Vector for each of the objects can then be aggregated into the
object sequence in any arbitrary order. The target sequence follows the same format
with the exception that the object tag indicates the vector belongs to a gripper and the
pose information is initialized as all zeros when training. These final sequences are then
passed through the same shared linear transformation layers before the object sequence
is separately passed to the transformer encoder and the target sequence is passed to the
decoder. The predicted trajectory sequence contains the pose of the gripper or the end
effector across the time steps for the selected task.

eobj,m = [pobj, qobj,on, tm]

where
N∑
i=1

oi = 1,
M∑
j=1

tj = 1

on = 1, tm = 1

n is the object type of obj

(3.5)

3.4.3 Positional Encoding

The positional encoding, in the case of the original translation application, was added to
the embedded tokens in the encoder and decoder to indicate the order of the words in the
sentences [29]. This is required as the local context in which the words are used determines

32

the meaning of those words. For example, an adjective that is placed right before a noun
most likely describes that noun. But if the adjective is placed further away from the noun
in another sentence, then the relationship between the noun and the adjective is likely
weak.

For our purposes, we avoided adding positional encoding to the encoder’s object se-
quences as the order of the objects does not provide meaningful information about their
relationship. So the desirable property for the encoder object sequence to have is to be
object permutation invariant. In contrast, the order of the predicted trajectory correspond-
ing to the time steps is significant as the current point in the trajectory depends on the
trajectory followed so far. Hence positional encoding is applied to the incoming decoder
target sequence.

While there are many different possible positional encoding, I chose the sinusoidal
encoding used in the original paper that allows for the learning of the relative position of
the word tokens [29]. The sinusoidal encoding, as shown in Equation 3.6, and the target
sequence embedding are combined right before the attention layers as shown in Figure 3.10.
pos represents the position of the token in the sequence and dembed represents the embedding
dimension. The full structure of the modified model with the positional encoding is shown
in Figure 3.10.

pepos,2i = sin(
pos

100002i/dembed
) where i = 1, 2, ...

dembed

2

pepos,2i+1 = cos(
pos

100002i/dembed
)

(3.6)

3.4.4 Hyperparameter Selection

Hyperparameters of a model are a set of programmer-defined parameters for training a
model. These parameters control the rate at which the weights are updated or how fast
the model is trained, the size of the model, and the settings of the model regularization.
These are aspects that dramatically impact the final performance of the model and the
programmer must take important considerations when choosing their hyperparameter’s
value. While the programmer could test out their choice of hyperparameters based on
their experience, this is often time-consuming and arbitrary. Hence this task is typically
automated by testing out the values uniformly or randomly for a fixed number of trials.
The problem is exacerbated as the search space increases exponentially along with the
number of hyperparameters. The remaining section will explain our hyperparameter tuning
procedure and list our selected values.

33

Figure 3.10: A graph of the model structure. Note that the input linear layers share the
same weights for both object sequence and target sequence.

Due to the difference in the demand of computation power required for translation and
predicting trajectory based on a few demonstrations, our model can be made significantly
smaller than those in the original paper or the generalist models such as Gato and PaLM-
E [21][8]. While a simple grid search algorithm can do the job of testing all possible
combinations and selecting the hyperparameter combination with the optimal score, it is
very inefficient due to the number of different hyperparameters. Optuna is an open-source
automation tool that allows for the efficient search and the quick pruning of unpromising
results through the optimization of a customizable object function [1]. To help minimize
the size of the model while retaining its prediction capability, Optuna is used to search
for the hyperparameters that impact the model size and training speed which are shown
in Table 3.4.4 along with the search ranges. The hyperparameter search algorithm uses
Tree Parzen Estimator [31], which builds a probability model 3.7 for the expected score s

34

conditioned on the hyperparameters, whparam, tested so far through Bayesian optimization
[3]. The most promising set of hyperparameters is fetched and used to train the final
models. The probability model is then updated with the score and the corresponding
hyperparameter information each time the model finishes training and its performance is
measured against the objective function. This is far more efficient than grid search as the
latter spends additional time searching in the poor ranges of the hyperparameter values.

P (s|whparam) (3.7)

hyperparameter min max selected
embedding dim 16 512 32
attention heads 1 32 8
attention layers 1 6 3

learning rate 10e-5 10e-2 10e-3
dropout rate 0 1 0.2

Table 3.1: Hyperparameter values’ search space range and their selected values.

A separate validation data set is used as a metric for how well the hyperparameter
performed. Around 100 trials are conducted for 1000 epochs and the hyperparameters with
minimum validation loss are saved. The final hyperparameters selected for the training of
the future models are 8 multi-heads, 3 attention layers for the encoder and decoder, an
embedding dimension of 32, a learning rate of 1e-3, and a dropout rate of 0.2. While the
selected hyperparameters did not have the highest score during the search, they scored
near the performance of the optimal model while being significantly smaller and easier to
train. The final parameter size of the model using the chosen hyperparameters is 838,663
compared to the 1.2B required for Gato and 562B for PaLM-E.

3.4.5 Loss Function

To allow the model to learn from the training demonstrations, it has to learn from the
error between the ground truth and the predicted trajectory generated by the model. This
is done through the back-propagation of the error using the chain rule followed by iterative
updates to the parameters of the model. Different prediction tasks require different types
of loss functions to be able to measure the error in the model output. Common supervised
learning loss functions include Cross Entropy Loss for category classification and Mean

35

Square Error for regression problems. But for our work, a loss function is needed capable
of comparing two trajectories.

For our model, the error is calculated through the Average Displacement Error(ADE)
[34] or the mean of the L2 norms between the elements of the predicted sequence of position
and orientation, ppred

t and qpred
t , and those of their corresponding ground truth, pgt

t and qgt
t ,

at the same time step t. L2 norms measure the Euclidean distance between the vectors or
how far the predicted point is from the ground truth. The output trajectory sequence for
task m is previously normalized by a fixed number of total time steps Tm using Dynamic
Time Warping. Hence the elements with the index 1 : Tm are the only valid outputs of
the model being compared with the ground truth. Then to minimize the loss function, the
model must generate trajectory point that matches those of the ground truth as closely as
possible at each time step. The equation for ADE is shown below in Equation 3.8 where,
for example, the variable xgt

t represents the gripper’s ground truth value in the x-axis at
time t and xpred

t represents the gripper’s predicted x-axis value at time t.

ADE =

∑T
t=0

√
||pgt

t − ppred
t ||2 + ||qgt

t − qpred
t ||2

T

pgt
t =

xgt
t

ygtt
zgtt

qgt
t =

qx

gt
t

qy
gt
t

qz
gt
t

qw
gt
t

ppred
t =

xpred
t

ypredt

zpredt

qpred
t =

qx

pred
t

qy
pred
t

qz
pred
t

qw
pred
t

(3.8)

36

Chapter 4

Results

4.1 Model Performance

4.1.1 Introduction

The previous chapter described the model structure and the methodology used for training
the model. In this chapter, we provide an analysis of the TP-Transformer model when it
comes to its performance across all three tasks. Items to be compared include the model’s
overall ability to make use of the task parameters [6] for generating accurate trajectory,
the impact of the demonstration size, an ablation study of the model structure, and the
model’s performance against those of the previous movement primitive models. Along with
each section, we will also describe any modifications made to the model training process
to test the different aspect of the model in question.

4.1.2 Model Task Parameterization

For the successful completion of a task, the model must demonstrate the ability to create
a valid trajectory based on the task parameters or the object configuration in the scene.
This is important as the task parameters provide information about where the gripper
should move relative to the objects’ starting position at each time step. For example, the
newly predicted trajectory based on the previous pouring task demonstrations must learn
to start at the position where it is capable of grasping the pitcher and approaching the cup
naturally. Similarly, for the pick-and-place task, the gripper must start near the teabag

37

and end near the cup. As part of the training process, the task parameters can change from
demonstration to demonstration. The random placement of the objects’ starting location
is reflected by the variation in the position values and serves as a way to test the model’s
ability to adapt to new scenarios.

To visualize the relationship between the gripper and the relevant objects, we compare
the position of both items in the horizontal plane. Shown in Figure 4.1 and 4.2 are the
correlation graphs corresponding to each of the collected tasks, and the positions in each
axis are aligned around 0. The points lying close to the y=x red dashed line show the
strong correlation between the object and the gripper position. This can mean that the
gripper directly interacted with the object during the demonstration. For example, due to
the smaller size of the teabag, the gripper can more easily grasp the teabag closer to the
center of the gripper. This results in the tight clustering along the diagonal line for the
pick-and-place task.

Amongst the correlation plots that do not show a consistent strong correlation or dis-
play an offset, they tend to demonstrate a consistent pattern indicating a task-specific
relationship between the gripper and object. It is important to note that due to the way
the gripper interacts with the geometric shape and volume of the target object, the cor-
relation can be seen in Figure 4.1 to be consistently offset by a certain amount. This is
the case in the water pouring task where the pitcher used in the demonstration is signifi-
cantly larger than items such as teabags and the gripper could not fully grasp around its
diameter. For the shooting puck task, the gripper does not directly grab the puck, hence
the correlation is not as strong. Similarly for Figure 4.2, the plots for the pick-and-place
and the water-pouring tasks display a weak correlation between the gripper and the target
object near the end and the middle of the task demonstration, respectively. This indicates
that while the gripper can learn to approach over the cup to place the teabag or pour the
water, there are still some natural variations in how the tasks can be completed due to the
size of the cup or the different directions of approaching the target.

There exists also unique patterns in tasks where the gripper operates far from the
object. For the shooting puck task, the graph shows three distinct clusters in the x-
dimension corresponding to the three directions, left, right, and center, that the gripper
can approach relative to the net as can be seen in the bottom plot of Figure 4.2. Two of the
clusters for left and right are far from the center of the net as the gripper approaches from
those directions but never reaches the center. The tight shifted cluster in the y-dimension
is also the result of the gripper halting some distance before the net. Hence based on the
starting puck position and the relative position of the net, the model learns to start at the
puck, then approach and halt the gripper right before the net, and launch the puck towards
the net. Based on all of the previous observations, it can be seen that the model can learn

38

from the task parameters provided and make modifications to its trajectory based on the
different configurations.

4.1.3 Performance in Single and Multi-Task Learning

Similar to how Gato can quickly adapt to new tasks by fine-tuning itself to previously
unseen data [21], this section examines our TP-Transformer model’s ability to perform
well on multiple tasks when compared to the same model trained for a single task. By
training the model on multiple tasks, it is expected that the movements learned from one
task can be used by the model to refine the motions for a separate task. This would impact
the model efficiency since the multiple tasks can all be learned on a single model and still
perform adequately, resulting in the reduction of the overall parameters.

To determine if the TP-Transformer model benefits from multi-task learning, a series of
TP-Transformer models are separately trained on the single-task demonstrations and then
compared to the models trained on all three tasks. Both types of models are trained for an
equal number of epochs with the single-task model requiring one-third of the time due to
the reduction in data set size. The results of the performance are shown in Table 4.1.3 with
separate columns for single and multi-tasks. The difference between the single-task model
and the multi-task model is that the single-task model slightly outperforms the multi-task
model in all tasks except for water pouring when few demonstrations are available.

Alternatively, the size of the model parameters is also doubled in terms of encoder and
decoder layers to test if the model is bottle-necked by its learning capacity. However, we
have found that a larger model does not imply an increase in performance and efficiency
and the training time is significantly longer due to additional parameter updates. Based
on our observation of the task size and previous experience, we expect that a larger model
would only be beneficial with a wider set of tasks and that our model size can be further
reduced on single-task learning.

4.1.4 Impact of the Encoder Layers

In the original introductory usage of a transformer for translation tasks, the encoder is
responsible for the processing of the embedding of the original language before passing the
output sequence to the decoder [29]. The output generated by the encoder itself alone
has versatile applications and can contain very useful information as can be seen by the
popularity of the BERT encoder-only models [9]. For example, the embedded output of
the BERT model can be further processed by a classifier that determines the category that

39

Figure 4.1: The predicted starting positions of the gripper versus the positions of the cor-
responding teabag(top), pitcher(middle), and puck(bottom) over multiple inference trials
from the validation and test data set.

40

Figure 4.2: The predicted positions of the gripper versus the positions of the corresponding
cup(top), cup(middle), and net(bottom) over multiple inference trials. Selected time steps
are those when the gripper is closest to the targeted object. That is, the end of the task
for pick-and-place and shooting puck and near the middle of the task for pouring water.

41

the sentence belongs to such as in sentiment analysis or for predicting the order of a set
of sentences. These usages usually require that the BERT model be pre-trained due to
the size of language models and are done by masking parts of the input text tokens and
predicting the missing token through bi-directional self-supervised learning. Any additional
parameters and model layers are then fine-tuned on the specific tasks with the learned word
embedding.

Given that the encoder processes the task parameters in our model, it is important
to examine the effect of the encoder size on the accuracy of the prediction and if useful
information about the relationship between the objects is derived from the object sequence.
To test that hypothesis, I vary the number of encoder layers from 0 to 3 layers, which
would also allow us to reduce the model parameters and the training time. Note that with
0 layers, the embedded object sequence is passed directly to the decoder’s cross-attention
block. The results are shown in Tables 4.1.4, 4.1.4, and 4.1.4 for all three tasks. Note
that the orientation column measures how well the predicted gripper rotation matches the
ground truth rotation, while the position column shows how closely the predicted trajectory
matches the ground truth which is demonstrated within a roughly one-meter squared task
space.

Based on the results, the models follow a general trend of improved accuracy as the
number of encoder layers increases across all tasks. While the average of the 3-layer encoder
in the water pouring task is not optimal, the difference is minuscule and may be due to
the randomness in the model training process. Overall, the result shows that the encoder
can generate useful information about the object relationship that aids in the prediction
of the gripper trajectory.

The start and end gripper position errors shown in the tables also reflect the certainty
of the trajectory at each stage of the task similar to what was demonstrated in the task
parameterization result section. Both of the predicted gripper position errors are generally
smaller than the average error in most tasks, except for water pouring where the end
placement of the pitcher is random.

Also included in the table is the full model without the trajectory rotation augmentation
introduced in the Data Augmentation section. The non-augmented model demonstrates a
significant loss of performance in all tasks due to the lack of generalization ability. As the
trajectory rotation data augmentation takes very little computation power, this technique
can be considered a freebie to improve model accuracy.

42

Pick-and-Place Pouring Shooting
Demos Single Multi Single Multi Single Multi

5 51.78 56.82 88.95 75.50 52.81 76.56
10 43.31 51.79 79.24 70.53 47.50 55.96
20 37.31 45.18 58.40 61.99 42.10 48.05
30 35.97 38.70 54.06 54.83 35.41 43.73

Table 4.1: Mean gripper position trajectory error between the prediction and ground truth
for models learned on single and multiple tasks. The error is measured using Euclidean
distance(mm).

Position (mm) Orientation
Encoder Layers start end average average

0 32.79 40.46 49.4 0.064
1 19.04 51.44 45.7 0.060
2 21.67 41.98 41.06 0.059
3 19.44 36.24 38.70 0.060

3 (No Aug) 70.49 97.69 83.02 0.047

Table 4.2: Pick-and-place model performance for different number of encoder layers. The
error for the gripper trajectory position and orientation are separately measured using
the Euclidean distance and the Norm of the Difference for gripper rotation comparison,
respectively.

Position (mm) Orientation
Encoder Layers start end average average

0 27.36 81.04 66.35 0.093
1 26.43 77.99 53.75 0.080
2 27.32 81.20 55.77 0.094
3 24.93 79.11 54.83 0.083

3 (No Aug) 55.28 115.06 115.12 0.112

Table 4.3: Water Pouring model performance for different number of encoder layers. The
error for the gripper trajectory position and orientation are separately measured using
the Euclidean distance and the Norm of the Difference for gripper rotation comparison,
respectively.

43

4.2 Model Comparison

4.2.1 Introduction

This section will compare the performance between the TP-Transformer and previous
movement primitive models such as KMP, TP-GMM, and TP-ProMP using the test
data set. The goal will be to clarify the advantages and disadvantages of using the TP-
Transformer model over the other models. With this in mind, the previous models were
modified to be trained on the same training data set split and the same validation set was
used to find the optimal hyper-parameters of their respective models.

4.2.2 Demonstration Size

Due to the inherent difficulty of demonstration collection in the real-world setting by
human operators, the ability of the model to generate accurate trajectories based on a few
demonstration examples is a useful property. Here our model is tested by varying the size
of the unique demonstrations and measuring the corresponding model’s performance in
terms of the ADE and the average Norm of the Difference of Quaternions introduced in
the metrics section of the previous chapter.

The modification made to the training process involves splitting the total 30 demon-
strations per task into sizes of 5, 10, 20, and 30 unique demonstrations per task. Three
separate models are then trained independently per demonstration size. For sizes greater
than 10, the total 30 demonstrations per task are truncated into the appropriate size with
overlaps in demonstrations. For example for a size of 10 demonstration, the first model
will learn based on the first 1-10 demonstration indices, the second model based on the
11-20 demonstration indices, and so on. For the size of 20 demonstrations, the first model
would take the 1-20 demonstration indices, 11-30 for the second, and 21-30 and 1-10 for
the third, resulting in a partial overlap of data. For the size 30 demonstration models,
the model is trained on the full data set. Hence when considering the results below, the
variance of the prediction error will be dependent on the size of the unique demonstrations
and will decrease as the size increases.

Based on the error plots 4.6 and 4.7, all the models generally display increasing accuracy
as the size of the demonstration training set increases. This is expected as the model has
more demonstrations that it can learn from. The performance jump is particularly visible
between the models trained on the size 5 demonstration set and those trained on size 10.
This can be seen in Figures 4.8, 4.9, and 4.10 where the trajectories generated by a demo

44

Figure 4.3: Four of the test demonstrations for the pick-and-place task and their cor-
responding trajectory predictions from the TP-Transformer, TP-GMM, TP-ProMP, and
KMP models.

45

Position (mm) Orientation
Encoder Layers start end average average

0 43.78 33.52 47.21 0.051
1 38.64 37.08 48.95 0.056
2 37.65 32.22 46.29 0.047
3 32.44 31.77 43.73 0.050

3 (No Aug) 37.82 32.43 55.14 0.066

Table 4.4: Puck shooting model performance for different number of encoder layers. The
error for the gripper trajectory position and orientation are separately measured using
the Euclidean distance and the Norm of the Difference for gripper rotation comparison,
respectively.

Figure 4.4: Four of the test demonstrations for the water pouring task and their cor-
responding trajectory predictions from the TP-Transformer, TP-GMM, TP-ProMP, and
KMP models.

46

Figure 4.5: Four of the test demonstrations for the shooting puck task and their cor-
responding trajectory predictions from the TP-Transformer, TP-GMM, TP-ProMP, and
KMP models.

47

size 5 model often deviate significantly from those generated by models with larger demo
sizes. Hence it is recommended that a minimum of 10 demonstrations are used to train
the TP-Transformer model.

In terms of performance across different models, the TP-Transformer shows a notice-
able performance improvement over some of the previous models. The TP-Transformer
surpasses the TP-GMM and KMP models by at least 20 mm at larger training sizes and
stays close to the performance of the TP-ProMP model in most tasks.

For the quaternion metrics, the demonstration size does not affect the model perfor-
mance for pick-and-place and shooting puck as those tasks do not involve a high degree
of gripper orientation change during their demonstrations. Hence it is only useful to ex-
amine the water pouring task for pose prediction accuracy. According to Figure 4.7, the
TP-Transformer is consistently better than most previous models across different demon-
stration sizes except for TP-ProMP, where the performances are also very close.

4.2.3 Runtime Comparison

This section will examine how quickly the model can be trained and used to generate the
predicted trajectory. This can be important as bigger models can require a significant
amount of time to train and process new inputs. For example, having a fast algorithm
could mean that the model can more rapidly adapt to new changes in the environment or
be deployed quickly after demonstration collection.

While the training time for all models differs from hardware to hardware, to ensure a fair
comparison between the different models we run the models on the same computer except
for when the TP-Transformer model leverages the GPU for training and inference. Here
it can be observed that the training time for the TP-Transformer model is significantly
longer than those of the movement primitive models. Each training epoch took 1.384s
for 30 demos per task or 90 demonstrations in total. The models are trained for 20,000
epochs or a total of around 7.7 hours. This is significantly longer than the training time
of the established models as can be seen in Table 4.2.3. However, as shown in Figure
4.11 displaying the loss versus the number of epochs for all three tasks, TP-Transformer
performance had converged around the 2500 epochs mark or around one hour. Further
fine-tuning of the learning rates during the training could potentially improve the training
time.

The TP-Transformer model’s inference time is longer than that of most of the movement
primitive models except for TP-ProMP as shown in Table 4.2.3 on a CPU, but still requires
only around 1/100 of a second to generate the entire trajectory. This is promising as it

48

Figure 4.6: A comparison of the model performance in terms of predicted gripper positional
error versus the size of the training demo set. The shaded area delimits the first standard
deviation based on three separately trained models for each training set size.

49

Figure 4.7: A comparison of the model performance in terms of the predicted gripper
orientation versus the size of the training demo set. The shaded area delimits the first
standard deviation based on three separately trained models for each training set size.

50

Figure 4.8: Samples of pick-and-place test demonstrations and their corresponding trajec-
tory predictions based on the 5/10/20/30 data split.

51

Figure 4.9: Samples of water pouring test demonstrations and their corresponding trajec-
tory predictions based on the 5/10/20/30 data split.

52

Figure 4.10: Samples of puck shooting test demonstrations and their corresponding tra-
jectory predictions based on the 5/10/20/30 data split.

53

opens up the model to applications where we would want to update the model with new
data about the environment and rapidly react by generating new trajectories on the go.
Another discrepancy between the inference time across different tasks is due to the different
number of time steps which also correlates with the complexity of the task.

54

Figure 4.11: TP-transformer ADE of test set demonstrations at each 500 epochs for all
three tasks.

Model Pick-and-Place Pouring Shooting Total
Training Time(seconds)

TP-GMM 0.17 0.54 0.07 0.78
KMP 0.22 0.92 0.10 1.24

TP-ProMP 29.70 172.18 108.76 310.64
Training Time(hours)

TP-Transformer - - - 7.7

Table 4.5: Model training time comparison between the TP-transformer, TP-GMM, KMP,
and TP-ProMP models. The TP-Transformer model is trained on the GPU and the re-
maining models are trained on the CPU.

55

Inference Time(milliseconds)
Model Pick-and-Place Pouring Shooting

TP-GMM 3.174 6.872 2.464
KMP 0.145 0.421 0.550

TP-ProMP 17.253 96.518 38.365
TP-Transformer(CPU) 12.262 9.722 11.004
TP-Transformer(GPU) 10.727 10.732 10.737

Table 4.6: Model inference time comparison between the TP-transformer, TP-GMM, KMP,
and TP-ProMP models.

56

Chapter 5

Conclusions

5.1 Summary

The previous chapters describe the training process behind the TP-Transformer for accom-
plishing a variety of everyday tasks. The modification I made to the model is inspired by
previous works as described in related literature presented in Chapter 2, and I attempted
to incorporate their methodologies to overcome the disadvantages of other models such
as requiring large data sets and task generalization. Chapter 3 further explains the pro-
cesses and the structure of our pipeline. Our usage of DeeplabCut helps us facilitate the
capture of object pose information from the environment recorded with a stereo camera.
Furthermore, it is shown that by adopting trajectory data augmentation and combining
the task parameters into an object sequence for trajectory generation, the model can gen-
eralize across scenarios more efficiently and improve prediction accuracy. Finally, I have
described and compared the TP-Transformer with previous KMP, TP-ProMP, and TP-
GMM models in Chapter 4 and have found that despite requiring longer training time, the
TP-Transformer model has better overall performance and the capacity to learn multiple
tasks on a single model.

5.2 Future Directions

Due to time constraints, there are some promising properties of the TP-Transformer that
I am not able to test out further on more complex and demanding tasks. In this section, I

57

will offer some potential future directions direction to explore to improve the applicability
of the model to a wider range of tasks.

One of the areas that future works on the TP-Transformer model can explore is the
use of the model on feedback tasks such as in the case of nut-and-bolt assembly. In this
task, a robotic arm would have to learn to pick and place both the nut and bolt parts
onto a fixed jig. The jig contains multiple slots that roughly fit both the nut and bolt and
holds in place the hexagonal nut when screwing the bolt. The steps required to complete
the task involve first correctly picking up and placing the nut in the jig. This is then
followed by vertically picking and placing the bolt into the bolt slot next to the nut. The
robotic end-effector will grasp the exposed head of the bolt, move on top of the location
of the placed nut and perform a screwing motion. Finally, the assembled piece is placed
into a box dedicated to the finished product. This is a long-horizon task different from
the previous tasks introduced in the thesis since multiple steps are required for successful
completion.

Force feedback is an important aspect of the environment observation that must be
integrated into the current TP-Transformer model when considering the nut-and-bolt as-
sembly task. This is necessary for error detection and correction if the threads on the
bolt get stuck when inserted into the nut component. For example, the model, as soon as
it detects the high torque caused by a halted screwing action, must rectify its action in
real-time by performing an unscrewing motion until the bolt is freed or the forces exerted
on the robot are gone. A potential way that this can be done is by predicting only the
next sequence of short-term trajectory based on the true current state of the robotic arm.
Due to the small size and faster inference time of the model, this is a feasible option.

To fully leverage the encoder capability, the model can make use of the current state
of the environment such as the object placement and pose to predict the next short-term
action. This can be done by letting the encoder part infer the next action based on the
current configuration rather than explicitly providing the model with a task action to
perform as is done currently. This is useful when the task can be broken down into shorter
stages that involve manipulating the same set of objects and the model would infer which
stages of the task the environment is currently at.

While other models can account for via-points for which the generated trajectory must
pass through, the current TP-Transformer lacks a similar feature. This can be remedied
by training the model with a new object type for via-point, which serves as additional
information for the path planning happening in the decoder. Alternatively, the via-point
position can also be placed in the input target sequences at a specific time step of the task.
For example, placing a via-point location at the end of the target sequence in the pouring

58

task will help the model decide where to place the pitcher after pouring is completed.
Similarly, placing the via-point at the middle time step of the target sequence can be used
to decide the direction in which the gripper should approach the cup to perform the pouring
motion. Overall, the integration of via-points would offer a greater degree of flexibility and
control over how the task can be accomplished.

Lastly, while the current model can successfully deal with tasks involving different types
of object manipulation, the data set diversity remains small. Hence it would be interesting
to apply the model to a wider range of tasks. Not only will this test the robustness of the
model, but it will also be useful to examine more deeply the model’s ability to generalize
motions across tasks.

59

References

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.
Optuna: A next-generation hyperparameter optimization framework. In Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery & data
mining, pages 2623–2631, 2019.

[2] K Somani Arun, Thomas S Huang, and Steven D Blostein. Least-squares fitting of
two 3-d point sets. IEEE Transactions on pattern analysis and machine intelligence,
(5):698–700, 1987.

[3] James Bergstra, Daniel Yamins, and David Cox. Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision architectures. In
Sanjoy Dasgupta and David McAllester, editors, Proceedings of the 30th International
Conference on Machine Learning, volume 28 of Proceedings of Machine Learning Re-
search, pages 115–123, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

[4] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal
speed and accuracy of object detection, 2020.

[5] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis,
Chelsea Finn, et al. Rt-1: Robotics transformer for real-world control at scale, 2023.

[6] Sylvain Calinon. A tutorial on task-parameterized movement learning and retrieval.
Intelligent service robotics, 9:1–29, 2016.

[7] Xuelian Cheng, Yiran Zhong, Mehrtash Harandi, Yuchao Dai, Xiaojun Chang, Tom
Drummond, Hongdong Li, and Zongyuan Ge. Hierarchical neural architecture search
for deep stereo matching, 2020.

[8] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, et al. Palm: Scaling language modeling with pathways, 2022.

60

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding, 2019.

[10] Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery,
Brian Ichter, et al. Palm-e: An embodied multimodal language model, 2023.

[11] Simon F Giszter. Motor primitives—new data and future questions. Current Opinion
in Neurobiology, 33:156–165, 2015. Motor circuits and action.

[12] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Compu-
tation, 9(8):1735–1780, 1997.

[13] Yanlong Huang, Leonel Rozo, Joao Silvério, and Darwin G Caldwell. Kernelized
movement primitives. The International Journal of Robotics Research, 38(7):833–852,
2019.

[14] Du Q Huynh. Metrics for 3d rotations: Comparison and analysis. Journal of Mathe-
matical Imaging and Vision, 35:155–164, 2009.

[15] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard,
Wayne Hubbard, et al. Handwritten digit recognition with a back-propagation net-
work. Advances in neural information processing systems, 2, 1989.

[16] Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert
Baruch, Travis Armstrong, and Pete Florence. Interactive language: Talking to robots
in real time, 2022.

[17] Alexander Mathis, Pranav Mamidanna, Kevin M Cury, Taiga Abe, Venkatesh N
Murthy, Mackenzie Weygandt Mathis, et al. Deeplabcut: markerless pose estimation
of user-defined body parts with deep learning. Nature neuroscience, 21(9):1281–1289,
2018.

[18] Cory Myers, Lawrence R. Rabiner, and Aaron E. Rosenberg. Performance tradeoffs
in dynamic time warping algorithms for isolated word recognition. IEEE TRANSAC-
TIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 28(2):623–635,
1980.

[19] Victor Reyes Osorio, Rajan Iyengar, Xueyang Yao, Presish Bhattachan, Adrian Rago-
bar, Nolan Dey, et al. 37,000 human-planned robotic grasps with six degrees of free-
dom. IEEE Robotics and Automation Letters, 5(2):3346–3351, 2020.

61

[20] Alexandros Paraschos, Christian Daniel, Jan R Peters, and Gerhard Neumann. Prob-
abilistic movement primitives. Advances in neural information processing systems, 26,
2013.

[21] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gómez Colmenarejo, Alexander
Novikov, Gabriel Barth-maron, et al. A generalist agent. Transactions on Machine
Learning Research, 2022. Featured Certification, Outstanding Certification.

[22] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning repre-
sentations by back-propagating errors. Nature, 323:533–536, 1986.

[23] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning internal
representations by error propagation, 1985.

[24] Matteo Saveriano, Fares J Abu-Dakka, Aljaz Kramberger, and Luka Peternel.
Dynamic movement primitives in robotics: A tutorial survey. arXiv preprint
arXiv:2102.03861, 2021.

[25] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, et al. Mastering the game of go with deep neural net-
works and tree search. Nature, 529:484–503, 2016.

[26] Olga Sorkine-Hornung and Michael Rabinovich. Least-squares rigid motion using svd,
2016. Technical note.

[27] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[28] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolu-
tional neural networks. CoRR, abs/1905.11946, 2019.

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz others, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[30] Leandra Vicci. Quaternions and rotations in 3-space: The algebra and its geometric
interpretation. 06 2001.

[31] Shuhei Watanabe. Tree-structured parzen estimator: Understanding its algorithm
components and their roles for better empirical performance, 2023.

62

[32] Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang, and Anil K.
Jain. Adversarial attacks and defenses in images, graphs and text: A review, 2019.

[33] Bryan Tripp Xueyang Yao, Yinghan Chen. Improved generalization of probabilistic
movement primitives for manipulation trajectories. page 8, 2023.

[34] Simone Zamboni, Zekarias Tilahun Kefato, Sarunas Girdzijauskas, Christoffer Norén,
and Laura Dal Col. Pedestrian trajectory prediction with convolutional neural net-
works. Pattern Recognition, 121:108252, 2022.

63

APPENDICES

64

Appendix A

Mathematics

A.1 Quaternion Identities

This section will describe the quaternion identities relevant to the background calculation
of the different object orientations in the paper.

Given the i, j, and k hypercomplex vectors of the quaternions that makes up the
original quaternion equation q = qw + qxi+ qyj + qzk, they follow the following identities.
This can be further divided into two separate components. The real quaternion occurs
when the quaternion only contains real number such as in the case q = qw, while the
vector quaternion is represented by the case where q = qxi+ qyj + qzk [30]. An alternative
sinusoidal representation for unit quaternions is shown in equation A.2 where θ stands
for the degree by which the orientation is rotated along the (x, y, z) vector. The general
representation would then be written as q = cq̂ where the unit quaternion is multiplied by
some scaling value c.

i2 = j2 = k2 = ijk = −1 (A.1)

q̂ = cos(
θ

2
) + sin(

θ

2
)(xi + yj + zk) (A.2)

The conjugate of a quaternion, q̄, for quaternion q = qw+qxi+qyj+qzk is defined as in
equation A.3 and has the distribution property where p̄+ q̄ = p + q and p̄q̄ = pq for any
two quaternions q and p. Multiplications in quaternions lack the commutative property

65

with an exception in the case of real quaternions, hence pq does not equal qp in general
and distinct left/right quotations, q−1

L and q−1
R , can be defined that satisfies qq−1

L = p and
q−1
R q = p. Using the conjugate, the definition of the magnitude or norm of the quaternion

can then be written as in equation A.4. The unit quaternion has a Pythagorean sum of 1
for its magnitude and multiplying it with another quaternion returns a rotated quaternion
vector with the same magnitude [30]. By defining p = 1 for unit quaternion q, then it
follows that the inverse can be calculated as q−1 = q

||q||2 or q−1 = q since ||q||2 = 1[30].

q̄ = qw − qxi− qyj − qzk (A.3)

||q|| = q̄q = qq̄ =
√

q2w + q2x + q2y + q2z (A.4)

A unit quaternion multiplied with another quaternion returns a rotated quaternion
vector with the same magnitude. Using this property, the composition of two or more
unit quaternions represents a single successive rotation from the initial orientation or q3 =
q1q2[30]. This allows for the conversion of object orientation from one coordinate system
to another by multiplying the corresponding quaternion.

66

	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contribution

	Background
	Movement Primitives
	Dynamic Movement Primitive
	Task-Parameterized Gaussian Mixture Model
	Probabilistic Movement Primitives
	Kernel Movement Primitives
	Task-Parameterized Probabilistic Movement Primitive

	Deep Learning
	Transformers
	Gato
	RT-1
	PaLM-E

	Methodology
	Introduction
	Data Collection
	Tasks
	Hardware
	Object Pose Estimation
	Quaternions

	Data Processing
	Outlier Detection
	Dynamic Time Warping
	Data Augmentation
	Normalization

	Model Structure
	Introduction
	Object and Trajectory Input
	Positional Encoding
	Hyperparameter Selection
	Loss Function

	Results
	Model Performance
	Introduction
	Model Task Parameterization
	Performance in Single and Multi-Task Learning
	Impact of the Encoder Layers

	Model Comparison
	Introduction
	Demonstration Size
	Runtime Comparison

	Conclusions
	Summary
	Future Directions

	References
	APPENDICES
	PDF Plots From Matlab
	Quaternion Identities

