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ABSTRACT
Artificial intelligence (AI) assistants such as GitHub Copilot and
ChatGPT, built on large language models like GPT-4, are revolu-
tionizing how programming tasks are performed, raising questions
about whether code is authored by generative AI models. Such
questions are of particular interest to educators, who worry that
these tools enable a new form of academic dishonesty, in which
students submit AI-generated code as their work. Our research ex-
plores the viability of using code stylometry and machine learning
to distinguish between GPT-4 generated and human-authored code.
Our dataset comprises human-authored solutions from CodeChef
and AI-authored solutions generated by GPT-4. Our classifier out-
performs baselines, with an F1-score and AUC-ROC score of 0.91. A
variant of our classifier that excludes gameable features (e.g., empty
lines, whitespace) still performs well with an F1-score and AUC-
ROC score of 0.89. We also evaluated our classifier with respect to
the difficulty of the programming problem and found that there
was almost no difference between easier and intermediate prob-
lems, and the classifier performed only slightly worse on harder
problems. Our study shows that code stylometry is a promising
approach for distinguishing between GPT-4 generated code and
human-authored code.

KEYWORDS
code stylometry, chatgpt, AI code, GPT-4 generated code, author-
ship profiling, software engineering

1 INTRODUCTION
AI tools like Github Copilot [24], ChatGPT [42], and Code Whis-
perer [46] are disrupting how educators teach and assess program-
ming. These tools are promoted as coding “assistants” that aim to
improve developer productivity by suggesting code snippets, bug
fixes, code refactorings, and test cases. The use of AI assistants in
introductory programming courses has been shown to increase
the productivity of novice programmers in solving introductory
programming problems, both in terms of improving the quality
of their programs and easing the cognitive load and development
effort required [32].

Eventually, however, educators need to assess how well students
can program without the aid of their coding assistants, and they are
worried about academic dishonesty. Programming courses already
suffer from high levels of plagiarism [5] and contract cheating [13].

The ease with which these new tools can automatically generate
code raises concerns about a new form of academic dishonesty, in
which students submit AI-generated programs as their work [7, 22,
36]. Existing approaches to detecting plagiarism among student-
submitted programs rely on automated similarity comparison tools,
but these tools are unlikely to detect AI-generated solutions because
AI-generated code has low similarity to student-authored code [45].

The goal of our research is to determine the viability of con-
structing a classifier that can distinguish between GPT-4 generated
and human-authored code. We hypothesize that the low similarity
between student-authored and GPT-4 generated code suggests that
code stylometry and machine-learning classification can be used to
distinguish between the two.

In this paper we make the following contributions: (1) We make
a best-effort attempt at constructing a classifier for detecting GPT-4
generated Python code, using a combination of supervised machine
learning (XGBoost [12]), and a collection of 140 code-stylometry
features. The classifier is trained and evaluated on a dataset com-
prising 798 human-authored solutions and 798 GPT-4 generated
solutions to 399 Python problems of varying degrees of difficulty
from CodeChef.1 To our knowledge, this is the first attempt to con-
struct a classifier for detecting GPT-4 generated code based on a
dataset with over 1000 solutions. (2) Our evaluation focuses on four
research questions:

RQ1: How well can code-stylometry features distinguish
human-authored code from GPT-4 generated code?
Prior work has shown that a classifier trained on code-stylometry
features can distinguish among different human developers. We
conjecture that a classifier can be built to differentiate code
developed by humans from code generated by AI tools.

RQ2: How influential are non-gameable features in dif-
ferentiating human-authored vs. GPT-4 generated code?
Coding styles are deemed gameable if they can be easily and
strategically altered or avoided with minimal effort, particularly
to mask the AI-generated nature of the code. Examples of such
gameable styles include the use of empty lines and whitespace
for readability, which can be quickly adjusted without signifi-
cantly impacting the overall code structure or functionality. If
a classifier relies heavily on gameable features, then it may be
relatively easy to disguise a GPT-4 generated solution through

1https://www.codechef.com/

1
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simple code edits. We hypothesize that a classifier built using
non-gameable code-stylometry features can effectively identify
GPT-4 generated code.

RQ3: How well does the classifier perform when trained
and evaluated on only correct solutions?
We hypothesize that a dataset containing incorrect GPT-4 gener-
ated solutions may exhibit distinctive characteristics that could
potentially enhance a classifier’s ability to identify GPT-4 gener-
ated solutions.

RQ4: How well does the classifier perform when trained
and evaluated across varying levels of problem difficulty?
We hypothesize that as the complexity of coding problems in-
creases, the discriminative features between human and GPT-4
generated code may become more pronounced. This could be
attributed to the unique problem-solving approaches employed
by human developers compared to AI systems when faced with
complex programming tasks.

(3) Our dataset comprising 399 problems and 1596 human and
GPT-4 generated solutions is itself a contribution that we make
publicly available to other researchers working on the problem
of identifying GPT-4 generated code. We also provide a subset of
the dataset comprising 161 problems whose solutions have been
checked for correctness.

We provide a replication package,2 which includes raw data,
feature lists, and code scripts.

2 MOTIVATION AND RELATEDWORK
In this section, we provide a real-world example of code-style dif-
ferences between human and GPT-4 generated code to motivate
our study and related work.

2.1 Motivation
Figure 1 presents two Python programs, both of which compute the
sum of all palindromic numbers within an input range of integers3
Figure 1a represents a user submission obtained from CodeChef,
whereas Figure 1b was generated by ChatGPT. The two solutions
exhibit clear differences in coding styles. The AI-generated code
includes empty lines, and helper functions, whereas the human-
authored code uses shorter identifiers. These differences and other
code-style patterns (e.g., frequency of different keywords, complex-
ity of expressions) used in prior studies on author attribution led
us to question whether we could use code-stylometry features to
build a classifier that distinguishes between human-authored code
and GPT-4 generated code.

2.2 Related Work
2.2.1 Detecting AI-generated Code. The prevalence and potency
of AI assistants have led researchers to start investigating the prob-
lem of detecting code generated by AI assistants. Puryear and
Sprint [45] investigated how well-established plagiarism detection
tools, MOSS [4], Codequiry [1], and CopyLeaks [2], could detect
Copilot-generated solutions among a set of data science program-
ming assignments. They found that Copilot-generated solutions

2https://zenodo.org/doi/10.5281/zenodo.10152237
3https://www.codechef.com/problems/SPALNUM

1 for _ in range(int(input())):

2 l, r = map(int , input().split())

3 result = 0

4 for i in range(l, r + 1):

5 if str(i) == str(i)[:: -1]:

6 result += i

7 print(result)

(a) Example of human code

1 def is_palindrome(n):

2 return str(n) == str(n)[::-1]

3

4 def palindromic_numbers_sum(l, r):

5 total = 0

6 for n in range(l, r+1):

7 if is_palindrome(n):

8 total += n

9 return total

10

11 t = int(input())

12

13 for i in range(t):

14 l, r = map(int , input().split())

15 result = palindromic_numbers_sum(l, r)

16 print(result)

(b) Example of ChatGPT code

Figure 1: Solutions to a palindrome problem from CodeChef

exhibited little similarity to solutions authored by students. The
highest observed similarity, identified by MOSS at 36%, fell well
below the thresholds of similarity between student solutions that
suggest plagiarism. Moreover, when “similar” Copilot and student
solutions were manually inspected, the researchers determined
that code similarities often reflected standard, commonly employed
coding solutions or expected variable declarations. In work that is
closest to ours, Bukhari et al. [10] attempt to use machine learning
to distinguish between 28 student-authored and 30 AI-generated
solutions for a C-language programming assignment involving
singly-linked lists. Their approach leverages lexical and syntactic
features in conjunction with multiple machine-learning models,
achieving an accuracy rate of 92%.

We are also starting to see commercial tools such as Hacker-
Rank [26] and Coderbyte [14] that claim to identify AI-generated
code within user-submitted code. Unfortunately, evidence of their
performance has not been provided and is not freely available for
third-party evaluation.

Our study expands on the body of work in this emerging field,
employing amore diverse problem set andmore descriptive features
for interpretability compared to the study by Bukhari et al. [10].

2.2.2 Code Stylometry. A related research problem focuses on iden-
tifying code authorship, typically by using code stylometry, which
analyzes distinct coding styles that reflect patterns in the way pro-
grammers write code. There exists a substantial body of work on
coding constructs that can serve as distinctive identifiers of individ-
ual coding styles. Pioneering work by Oman and Cook in 1989 [41]
analyzed the authorship of 18 distinct Pascal programs published
in six independently authored computer science textbooks. More
recent studies have used code stylometry for authorship attribution

2

https://zenodo.org/doi/10.5281/zenodo.10152237
https://www.codechef.com/problems/SPALNUM
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GPT-4
399 coding problems

Generated prompts from
coding problems

798 AI
solutions

798 human soloutions

Our
dataset

1596 solutions

1 Data Collection

2 Feature Extraction

140 features
Extraction

Classifier
Construction

XGBoost
Classifier

Classifier
Evaluation Results

3 Classification

Figure 2: An overview of our approach in detecting GPT-4 generated code

[6, 11, 16, 23, 28, 49] and plagiarism detection [19, 43, 50]. Although
these terms are sometimes used interchangeably, authorship attri-
bution deals with identifying the author of code, while plagiarism
detection, on the other hand, assumes the author is known and
aims to identify instances of unoriginal code [30]. In these studies,
different code stylometry features were found to be effective, with
layout or typographical features [41] proving to be more accurate
than Halstead’s metrics [27],4 a conventional complexity metric.
Some studies used syntactic features [6, 16, 23, 28, 49], whereas
others combined layout, lexical, and syntactic features [11, 19, 50].

Our work leverages many of the code stylometry features used
in the above studies for a new purpose: to distinguish between
human-authored and GPT-4 generated code.

2.2.3 Machine Learning Approaches. More generally, machine learn-
ing techniques have been applied in various code analysis tasks
such as testing [40], defect defection [3], refactoring [34, 48], vul-
nerability detection [20, 31, 33], program comprehension [47], code
smells detection [44], authorship attribution [6, 11, 16, 23, 28, 49],
and plagiarism detection [19, 43, 50]. In our work, we use a machine
learning technique to determine whether or not a program is GPT-4
generated.

3 STUDY DESIGN
In this section, we describe the different phases of our approach, in-
cluding data collection, feature extraction, and classification. These
phases are illustrated in Figure 2.

3.1 Data collection
The data collection phase is depicted on the left of Figure 2. We
collected Python problems and human solutions from a repository
of programming problems, and we used an AI assistant to generate
AI solutions. We chose Python specifically due to its status as a
beginner-friendly language [9] commonly adopted in introductory
programming courses [35]. To ensure a wide range of programming
problems, we chose CodeChef as our problem repository. CodeChef
is a renowned competitive coding platform known for offering
problems of varying difficulty levels. We believe that there are
not inherent differences across other competitive programming
platforms, so our approach’s performance on CodeChef should be
similar to its performance on these other platforms.
4Halstead’s metrics are measurable properties based on the author’s hypothesis that
the structure of code is based on two independent properties—operators and operands.

Table 1: Difficulty Levels of Selected CodeChef Problems

Level Range Count

Beginner 0 - 999 12
1* Beginner 1000 - 1199 45
1* Advanced 1200 - 1399 71
2* Beginner 1400 - 1499 55
2* Advanced 1500 - 1599 56
3* Beginner 1600 - 1699 60
3* Advanced 1700 - 1799 53

4* 1800 - 1999 30
5* 2000 - 2199 14
6* 2200 - 2499 2
7* 2500 - 5000 1

399

Due to the absence of public APIs, we extracted data by scraping
CodeChef’s website, obtaining both problem sets and user sub-
missions. The data collection process is divided into two steps, as
highlighted in Figure 2. We briefly describe each step below.
Problem Set and Human Solutions Extraction. In this step, we
curated a problem set of coding problems from CodeChef and their
corresponding human solutions.

CodeChef assigns each problem on its platform a difficulty score
and classifies ranges of difficulties into 11 buckets, as depicted in Ta-
ble 1. To ensure that our study’s problem set has a good distribution
with respect to difficulty, we fetched the 100 most popular problems
from each difficulty level. Here popularity refers to the number of
accepted solution attempts that existed when the data was scraped
(November 2023). In the case that a user submits multiple solutions
to the same problem statement, we collect only the latest correct
solution submitted by the user. Thus, we began our filtering process
with 1100 problem statements.

To further refine our problem set, we selected those problems
with at least two correct solutions submitted in 2020. This year was
specifically chosen as it postdates the end-of-life for Python 2 in
January 2020 and predates the release of AI assistants like Copilot
in October 2021 and ChatGPT in November 2022. We purposefully
excluded solutions submitted after the release of these AI assistants
to ensure that the human-authored solutions in our dataset are not

3
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Table 2: Final Problem Set Binned into 3 Classes of Difficulty

Difficulty Difficulty Scores - Range Average Count

Easy 828 - 1417 1224.95 133
Medium 1419 - 1646 1529.51 133

Hard 1647 - 3420 1827.50 133

polluted with AI-generated code. We also purposefully excluded in-
correct solutions to avoid including incomplete submissions that do
not reflect a typical attempt at a successful solution. In the context
of our study, a solution is deemed correct if it passes CodeChef’s
public tests.5 Such a solution represents code that is successfully
interpreted and executed, effectively solving the specified problem
as far as the public tests are concerned.

After this filtering, the number of problems in our dataset was
reduced to 419. Upon closer inspection, we found 20 problems
that were tagged as “Python3” problems but had only Python2
solutions. These problems were therefore excluded from our study,
resulting in a problem set comprising 399 problems, each with at
least two correct human-authored Python3 solutions submitted in
2020. In addition, each problem includes comprehensive details from
the platform such as the problem statement, unique problem code
ID, input and output formats, assigned difficulty score, subtasks,
constraints, problem names, user-assigned tags, computed tags, and
sample test cases containing input, output, and explanations.

After filtering we noted that we were left with very few problems
in the highest levels of difficulty as shown in Table 1. This could be
attributed to the fact that competitive programmers often choose
C/C++ over Python for various reasons, particularly in contests
involving problems of higher difficulty. To mitigate issues with
inference due to disparities in the number of problems per category,
we re-binned the 399 problems into three classes of difficulty (easy,
medium, and hard) of equal size. The classes contain 133 problems
each, with average difficulty scores of 1224.95, 1529.51, and 1827.50
respectively as shown in Table 2. This reclassification of difficulty
attempts to ensure a balanced representation across categories and
enables a fair evaluation of howwell our classifiers fare with respect
to problems of different difficulty.
Not including comments. Although comment-based features like
commentsDensity [11], inlineCommentsDensity [41], and blocked-
CommentsDensity [41] have been used in past works on authorship
attribution, we have chosen not to include comments for two rea-
sons:

(1) Commentsmaymake it too easy for a classifier to determine
if the code is human-authored or GPT-4 generated. This
is because when you specifically ask for comments from a
model like GPT-4, the number of comments is far more than
any human would normally write. By excluding comments
we handicap our approach and thus provide a lower bound
for our classifier. Besides this, comment-based features are
easily gameable.

5In the context of competitive programming, a submission is deemed correct if it passes
all public and private test cases; however, we had access only to CodeChef’s public
tests for each problem.

You are an expert Python Programmer. Your job is to look at a
programming puzzle provided by the user and output 2 different
ways to solve the solution in python.
The Input is provided with the following contents:
{The problem statement}
{How the input would be formatted},
{Format to be followed in the output generated},
{Constraints on the variables specified in the problem}
Make sure to take the input from the user considering the input
format Output should be printed as defined in the output format
Do not attempt to explain the solution only output the code in the
following format:
[PYTHON1]
{Solution to given puzzle in Python}
[\PYTHON1]
[PYTHON2]
{Alternate solution to given puzzle in Python}
[\PYTHON2]

Figure 3: Prompt used for generating 2 AI code solutions

(2) The amount of comments present in GPT-4 generated code
varies by the prompt that we give. If we simply query the
API of the model to write a program for the problem at
hand, the model generates code only and no comments.
Alternatively, if we prompt the model to explain the code,
then almost every line of code is commented on. Given that
the focus of this work is to explore whether we can differen-
tiate between human-authored and GPT-4 generated code,
we did not want the choice of prompt to be a variable of
the experiment.

Hence we explicitly asked the GPT-4 model not to explain the
code and then we stripped any comments that may have been
included even by mistake. We apply the same comment-stripping
technique to remove any comments from the human code as well.
Therefore in this study, we explicitly avoid using comment-related
features for classification.
AI Solutions Generation. To generate AI solutions to the prob-
lems in our problem set we used GPT-4 (Version 0613), which is
one of the most powerful and easily accessible generative models
available to consumers as of November 2023 through OpenAI [29].
We set the temperature to 0 so that our results are reproducible (at
the time of this writing, setting a seed for consistent generation was
not available through the API). We used the prompt shown in Fig-
ure 3 to obtain two GPT-4 solutions for each of the 399 problems in
our problem set, resulting in 798 unique solutions. In constructing
our prompt, we employed strategies recommended by OpenAI for
effective prompt engineering.6 The specific strategies we followed
are outlined below:

• Include Details in Your Query to Get More Relevant
Answers: The prompt specifies the details of the task by
defining the format of the input (problem statement, input

6https://platform.openai.com/docs/guides/prompt-engineering/strategy-provide-
reference-text

4
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format, output format, constraints) and the required out-
put (two Python solutions). This helps in getting relevant
and specific answers tailored to the given programming
problem.

• Ask the Model to Adopt a Persona: The prompt begins
with "You are an expert Python Programmer." This tactic of
persona adoption sets a context for the responses expected
and guides the AI to frame its responses within the expertise
of a Python programmer.

• UseDelimiters toClearly IndicateDistinct Parts of the
Input: The prompt uses a structured format with clear de-
limiters, such as [PYTHON1] and [PYTHON2], to separate
the two different solutions. This helps the AI understand
that two distinct solutions are required and organizes the
output in a clear, readable manner. It also enables us to
programmatically process the outputs generated.

• Specify the Steps Required to Complete a Task: While
the prompt implicitly suggests the steps (understand the
problem, code the solution), it doesn’t explicitly break down
the task into smaller steps. In tasks like programming, out-
lining steps such as analyzing the problem, considering
algorithms, and then coding can enhance the quality of the
response.

We opted for a zero-shot inference approach. We intentionally
did not constrain the output length within the prompt or provide
a detailed step-by-step breakdown, among the other suggested
strategies to accommodate the diverse nature of problems in our
dataset. While this prompt could be further refined, our goal was
to develop a pragmatic, ’best effort’ prompt reflective of what a
typical user might employ.

All generated GPT-4 solutions were syntactically valid and could
be successfully parsed, which was important for AST-based features.
In the case of duplicate solutions to a problem, we reran the prompt
to obtain a new solution to swap in.

Private tests for the problems could not be scraped from the
platform, thus we evaluated the GPT-4 generated solutions on the
available public tests to check whether they were correct to some
degree. We found that only 137 problems had two GPT-4 solutions
that satisfy the available public tests, and another 24 problems
had only one of the solutions passing the test cases. We used this
information to create a sanitized set of 161 problems that includes
correct GPT-4 solutions for each problem and an equal number of
unique and correct human solutions to those problems for RQ3.

3.2 Feature Extraction
Our study leverages a combination of layout, syntactic, and lex-
ical features that have been effectively used in previous studies
for authorship attribution and plagiarism detection among human
programmers [11, 18, 21, 25]. Layout features refer to the visual or-
ganization of code, such as indentation and spacing. Lexical features,
on the other hand, are derived from analyzing the tokens within
the code, capturing elements such as keywords and literals. While
syntactic features are extracted based on the code’s structural pat-
terns, involving the arrangement and relationships between various
code elements. Our study also incorporates Halstead’s metrics [27],

which have been used in previous studies for authorship attribu-
tion [8, 41]. We also included additional complexity metrics such
as maintainability index [15] and cyclomatic complexity [39] to
enrich our approach.

In the feature extraction phase (shown in the middle of Figure 2),
we iterate through the Python solution files, systematically gener-
ating these code stylometry and complexity features essential for
training and evaluating our classifier.

We extracted 31 base features (shown in Table 3) plus variants,
leading to 140 features. Most base features have no variants. Feature
keywordsDensity has 28 variants, out of 35 Python keywords; these
are listed in the replication package. Features ASTNodeTypesTF
and ASTNodeTypeAvgDep each have 42 variants, out of 130 pos-
sible AST node types; these are listed in the replication package.
The prefixes “nttf_” for ASTNodeTypesTF, “ntad_” for ASTNodeTy-
peAvgDep, and the suffix “_Density” for KeywordsDensity were
adopted to correlate variants with their respective base features.

Our approach to feature extraction varies somewhat from prior
studies [11, 18, 41]. We normalized our features by source lines of
code rather than by character count [11] or by omitting normal-
ization altogether [18, 41]. Additionally, we refrained from loga-
rithmic transformations of some features, as practiced by Caliskan
et al. [11], to facilitate the ease of interpretability of our feature
set, particularly for visual analysis. For the nestingDepth feature,
we considered node types rather than actual tokens. The Maintain-
abilityIndex feature measures code maintainability by evaluating
complexity and modularity and is calculated using complexity met-
rics such as Cyclomatic Complexity, and SLOC. Our version was
computed with the Radon Python library, 7 which uses a modified
formula different from the study by Coleman et al. [15]. Although
our dataset contains only single-file solutions, the Maintainabili-
tyIndex feature is included in our study as it may yield insights
into the relative maintainability of code produced by AI assistants
compared to code authored by humans, potentially impacting the
performance of our classifier.

Of the 140 features extracted, four are Halstead metrics, selected
to explore their viability in this context. Their ineffectiveness in the
context of authorship attribution in human code has been pointed
out by Berghel and Sallach [8] and Oman and Cook [41], but we in-
cluded them for completeness. Our research is directed at assessing
how well these metrics can identify GPT-4 generated code.

3.3 Classification
The righthand side of Figure 2 provides an overview of the classifi-
cation phase, where we construct a model to distinguish between
GPT-4 generated and human-authored code and subsequently eval-
uate its performance. We describe each step of this phase below.
Classifier Construction. To construct our classifier, we chose XG-
Boost [12], because it is an effective and scalable machine learning
algorithm. Additionally, in the study by Bukhari et al [10], XG-
Boost with syntactic and lexical features had the best performance
when considering accuracy and F1 score. This allows us to com-
pare our approach with the best of the earlier study’s approaches.
XGBoost constructs decision trees iteratively, refining the model
by correcting misclassifications at each step. During training, the

7https://pypi.org/project/radon/
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Table 3: Code Stylometry and Code Complexity Features

Feature Description

ASTNodeTypesTF [11] Term frequency of 130 possible AST node types excluding leaves
ASTNodeTypeAvgDep [11] Average depth of 130 possible AST node types excluding leaves.
avgFunctionLength [21] The average length of lines in a function.
avgIdentifierLength [21] The average length of identifier names.
avgLineLength [11] The average length of characters in each line.
avgParams [11] The average number of parameters across all functions.
branchingFactor [11] Average branching factor of the code’s AST.
cyclomaticComplexity [39] The number of decisions within a block of code.
emptyLinesDensity [11] The number of empty lines divided by source code lines.
keywordsDensity [11] Frequency of Python keywords divided by source lines of code.
maintainabilityIndex [15] A metric that gauges the ease of supporting and modifying the source code.
maxDecisionTokens The maximum number of tokens in decision conditions excluding ternary conditions.
maxDepthASTNode [11] Maximum depth of an AST node.
nestingDepth [11] Deepest level to which conditional statements, loops, and functions are nested within each other.
numAssignmentStmtDensity [18] The total number of assignment statements divided by source code lines.
numClassesDensity The total number of classes divided by source code lines.
numFunctionCallsDensity [18] The total number of function calls divided by source code lines.
numFunctionsDensity [18] The number of functions divided by source code lines.
numInputStmtsDensity [18] The total number of input statements divided by source code lines.
numKeywordsDensity [11] The total number of unique Python keywords divided by source code lines.
numLiteralsDensity [11] The number of literals divided by sloc.
numStatementsDensity [18] The total number of statements divided by source code lines.
numVariablesDensity [18] The total number of assignment variables divided by source code lines.
numberOfDistinctOperands [27] The number of distinct operands.
numberOfDistinctOperators [27] The number of distinct operators.
sloc [25] The total number of source code lines.
stdDevLineLength [11] The standard deviation of character lengths of each line.
stdDevNumParams [11] The standard deviation of the number of parameters across all functions.
totalNumberOfOperands [27] The total number of operands.
totalNumberOfOperators [27] The total number of operators.
whiteSpaceRatio [11] The ratio of whitespace characters to non-whitespace characters.

algorithm optimizes an objective function to strike a balance be-
tween prediction accuracy and model simplicity. At each tree, the
algorithm assigns scores to examples, and each example’s final
prediction is calculated by summing the scores [12]. Through this
aggregation process, the resulting model classifies code as either
human-authored or GPT-4 generated.
Classifier Evaluation. To evaluate the classifier’s performance on
unseen data, we employ ten-fold cross-validation, which divides the
dataset into ten subsets. This approach provides robust assessments
by training on nine subsets and testing on the remaining subset.
This process is iterated ten times, guaranteeing that each subset
serves as the test set exactly once.

To enhance the evaluation process and avoid data poisoning
during training, we grouped solutions based on the specific coding
problem they addressed, resulting in 399 distinct groups corre-
sponding to the 399 coding problems in our dataset. We employed
GroupKFold to ensure that each group, representing solutions to a
particular problem, appeared only once in the test set across all folds.
This grouping strategy maintains the integrity of the evaluation by
preserving the context of solutions within each problem, prevent-
ing the model from training and testing on the same problem sets
since each problem set contains multiple solutions.

Themodel’s performance is measured in terms of accuracy, recall,
precision, F-measure, and AUC-ROC.

Baselines Comparison. In our model comparison, we eval-
uate our approach alongside two baselines: (1) a naive baseline
approach, based on the assumption that GPT-4 generated code can
be detected through random guessing, and (2) the approach pre-
sented by Bukhari et al. [10] that identified AI-generated solutions
for C programming assignments. To benchmark our classifier, we
replicated the methodology of Bukhari et al. [10] using Python and
an XGBoost classifier, motivated by XGBoost performing the best
in their study on syntactic and lexical features. We evaluate the
performance of our classifier using metrics such as accuracy, recall,
precision, F-measure, and AUC-ROC.

Given that our case study focuses solely on utilizing the CodeChef
dataset, we will not employ statistical significance tests like the
Mann-Whitney U or T-test between our approach and the second
baseline. These tests typically require multiple datasets, a require-
ment our single-dataset study does not meet. Additionally, such
tests cannot be employed on the classifier’s raw prediction scores
due to the presence of high probability misclassifications. Further-
more, applying statistical significance tests to performance metrics
derived from ten-fold cross-validation is problematic due to the
overlap of the training dataset across folds, with about 80% of data
shared between each pair of training sets [17]. This overlap leads
to interdependence among the folds, thereby violating the indepen-
dence assumption of these tests. As a result, we risk incorrectly
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Table 4: Classifier Performance Comparison amongDifferent
Approaches for Distinguishing between AI-generated and
Human-authored Code

Our Approach Baseline

All Non-Gameable Naive n-grams + L
n = 2 n = 3

Accuracy 0.91 0.89 - 0.86 0.88
Precision 0.91 0.89 0.5 0.86 0.87
Recall 0.91 0.89 0.5 0.88 0.88
F1-score 0.91 0.89 0.5 0.87 0.88
AUC-ROC 0.91 0.89 - 0.86 0.88

rejecting the null hypothesis even in instances where there may be
no actual difference.

4 RESULTS
We present the results of our model evaluation in relation to our
research questions. For each research question, we first outline our
approach to addressing it, followed by the observed results.
(RQ1.) How well can code-stylometry features distinguish human-
authored code from GPT-4 generated code?

Approach. To address our research question, we build a classi-
fier trained on code stylometry features. After training, we evaluate
its performance using ten-fold cross-validation, focusing on metrics
such as precision, recall, F-measure, and AUC-ROC. High scores in
these metrics will support our research hypothesis, demonstrating
our approach’s ability to distinguish human-authored code from
AI-generated code. Additionally, we compare this classifier with
an alternative classifier trained on the same feature set but aug-
mented with Halstead’s metrics. The objective is to evaluate the
impact of Halstead’s metrics in detecting GPT-4 generated code.
This will involve a comparative analysis of the classifiers’ perfor-
mances with and without Halstead’s metrics. Moreover, we contrast
the performance of our classifier with two baselines.

The Naive Baseline is a random guess and its performance met-
rics can be computed by applying statistics to our dataset. The
precision is calculated by dividing the number of GPT-4 generated
code by the total number of solutions:

Precision =
number of GPT-4 generated code

total number of solutions
= 0.5 (1)

The recall is 0.5, reflecting the classifier’s two possible outcomes—
identifying code as either GPT-4 generated or human-authored.
This results in a probability of 0.5 for classifying solutions as GPT-4
generated. Based on precision and recall values, we compute the 𝐹1
score of the naive baseline as:

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= 0.5 (2)

Results. As shown in Table 4,8 our approach achieved a high
average precision and recall of 0.91, ensuring accurate and com-
prehensive identification of GPT-4 generated code. This highlights
the potential of code stylometry in differentiating between GPT-4
generated and human-authored code. Comparing the classifiers,
one with and the other without Halstead metrics, we found a strik-
ing similarity in their performance metrics. Between both classi-
fiers, all the metrics considered were the same, except recall which
was higher for the classifier with Halstead metrics by 0.01. This
observation suggests that the presence of Halstead metrics does
not considerably enhance the classifier’s ability to distinguish be-
tween human-authored and GPT-4 generated code supporting past
work [25, 37].

When compared to the baselines, our classifier shows a consid-
erable improvement. It notably outperformed the Naive Baseline,
which has a precision and recall of 0.5, demonstrating that our
classifier considerably exceeds what would essentially be random
guessing. We also compare with the work presented in Bukhari
et al. [10] that incorporated lexical features of 2-4 n-grams. How-
ever, in our replication, we could only process 2-3 n-grams due to
the memory-intensive nature of the task. The data for the 4-gram
model was at least 212.33 GBs, resulting in out-of-memory errors
in our machine (Macbook Air 2020, with 16GBs of RAM). Also, it
took more than 8 hours to extract the data for the 4-gram model.
However, our classifier has no such issue. We were also able to
achieve higher precision and recall by 4% and 3% respectively.

Our study demonstrates a higher predictive power over the n-
grams baseline and provides interpretable predictions. Unlike its
n-gram-based features, which may obscure the reasoning behind
predictions, our model uses a feature set that clarifies the decision-
making process. To understand the influence of specific features
on our model’s predictions, we used the SHAP framework [38],
a method renowned for its interpretability of machine learning
models. SHAP offers tools for both local (individual) and global
(overall) explanations of model predictions.

The global interpretive power of our classifier is demonstrated
in the SHAP summary plot depicted in Figure 4. This plot visualizes
key features in our classifier, arranging them on the y-axis by their
aggregate SHAP values, with the highest at the top. The x-axis
displays these SHAP values, showing how each feature shifts the
prediction from a neutral base value, indicated by the vertical line at
0 on the x-axis. Deviations to the left or right increase the likelihood
of the prediction being a human or GPT-4 class, respectively. The
plot uses a blue-to-red color gradient to signify feature magnitudes,
and the data points represent feature values across instances.

As depicted in Figure 4, the avgLineLength is the most important
feature, distinctly separating human and GPT-4 classes where its
lower values are typically associated with the human class, whereas
higher values are associated with the GPT-4 class. This implies that
a line of code from a human is shorter on average compared to a
line of code from GPT-4. In contrast, the ntad_Name feature, is the
tenth most important feature and quantifies the average depth at
which the Name node occurs within an AST. The Name node in

8It is just a coincidence that the performance metrics for our models all have the same
value when considering all features (0.91) and all non-gameable features (0.89)
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Figure 4: SHAP feature importance of our approach

Python’s AST represents identifiers, which are the names of vari-
ables, functions, classes, modules, or other objects in the code. The
distribution of the ntad_Name feature across all instances shows a
relatively narrow range of SHAP values, suggesting that its impact
on the model is less compared to the features ranked above it. It is
important to note that SHAP functions as an explanation model that
provides an interpretable approximation of our classifier. Therefore,
while SHAP values offer a simplified and interpretable view, the
feature importance rankings derived directly from our classifier
are based on the classifier’s internal mechanisms. Consequently,
the feature importance rankings from our classifier, do not entirely
align with SHAP’s. Despite these differences, there is considerable
overlap in the primary features identified by both methods. This
overlap highlights the value of SHAP in interpreting the model’s
predictions, offering insights into how features influence outcomes
rather than detailing the classifier’s internal mechanisms.

(RQ2.) How influential are non-gameable features in differentiat-
ing human-authored vs. GPT-4 generated code?

Approach. To assess the impact of non-gameable features on
the detection of GPT-4 generated code, we build a classifier that
excludes gameable features.

In our analysis, we consider the non-code layout features empty-
LinesDensity and whiteSpaceRatio as gameable features. After train-
ing on the non-gameable features, we evaluate the performance
of this classifier in contrast to our classifier with both gameable
and non-gameable features. We also evaluate this classifier with
the same n-grams baseline compared in RQ1 as the baseline does
not include the features we consider gameable in its feature set.
Through these comparisons, we aim to evaluate the relative impor-
tance of using only non-gameable features in the classification of
code as human-authored or GPT-4 generated.

Results.As shown in Table 4, there is a noticeable but not severe
drop in performance for the non-gameable classifier compared to
the classifier built on gameable and non-gameable features. This
suggests that although gameable features contribute to the classi-
fier’s accuracy, non-gameable features alone still provide a high

Human GPT-4

Figure 5: SHAP feature importance of non-gameable features

Table 5: Classifier Performance Comparison on Correct and
Randomly Sampled Solutions

Our Approach Baseline (n-grams + L)

C R n = 2 n = 3
C R C R

Accuracy 0.86 0.87 0.83 0.84 0.87 0.86
Precision 0.87 0.87 0.83 0.84 0.87 0.86
Recall 0.86 0.88 0.81 0.85 0.87 0.85
F1-score 0.86 0.87 0.82 0.84 0.87 0.86
AUC-ROC 0.86 0.87 0.83 0.84 0.87 0.86
C = Correct Solutions, R = Random Solutions, L = Lexical Features

predictive power. In comparison to the n-grams baseline, the non-
gameable classifier still performs better and is interpretable as evi-
dent in the summary plot of Figure 5. The plot reveals that aside
from the two gameable features among the ten most important fea-
tures of the classifier trained on both gameable and non-gameable
features shown in Figure 4, the other features remain consistent
with a slight reordering. The absence of these two gameable features
accounts for the performance dip in the non-gameable classifier.
Consequently, stdDevLineLength and nttf_Name, the latter repre-
senting the term frequency of the Name node, now appear in the top
ten. The stdDevLineLength feature influences predictions towards
the GPT-4 class at lower values and towards the human class at
intermediate values. Conversely, nttf_Name influences predictions
towards the human class at higher values and towards the GPT-4
class when lower.

(RQ3.) How well does the classifier perform when trained and
evaluated on only correct solutions?

Approach. To address this research question, we refine our
dataset to include only correct solutions, resulting in a balanced
dataset of 596 correct solutions from both humans and GPT-4. We
aim to evaluate our classifier’s predictive power by eliminating the
potential noise incorrect solutions might introduce. This ensures
that the detection of GPT-4 generated solutions is based on inherent
characteristics of code, not the errors they might contain.
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Results. Table 5 shows a slight decline in performance when
compared to the classifier in Table 4. The minor decline could stem
from the correct solutions being a smaller subset. Hence, we ran-
domly sample the solutions comprising both correct and incorrect
solutions with the same distribution of difficulty levels. When com-
pared with the random solutions classifier, both perform almost the
same. This implies that genuine differences in coding styles between
human and GPT-4 generated code are being detected, rather than
errors introduced by incorrect solutions. When compared to the
baseline [10], for correct solutions, our classifier outperformed the
2-gram baseline but was marginally less effective than the 3-gram.
The classifier with randomly sampled solutions showed noticeable
improvement over the 2-gram baseline and was marginally better
than the 3-gram.

(RQ4.) How well does the classifier perform when trained and
evaluated across varying levels of problem difficulty?

Approach. To address this research question, we construct sep-
arate classifiers for the three problem difficulty levels outlined in
Table 2. By training and evaluating these classifiers independently,
we evaluate their performance and the potential impact of problem
complexity on the classifier’s ability to correctly identify GPT-4
generated code. This stratified analysis allows us to understand the
nuances of classifier performance across problem difficulty levels.

Results. Table 6 shows a correlation between the classifier per-
formance and the difficulty of the problems. The performance of
classifiers of easy and medium problem difficulty are close as they
have the same F1-score of 0.89. The performance of the classifier
with hard problems had a minor drop in performance with an
F1-score of 0.87. When compared to the baseline, there is no con-
siderable difference in the baseline for easy questions. For both
medium and hard questions, our classifiers perform better than
both 2-gram and 3-gram classifiers, showing improvements of 3%
and 9%, respectively. This result highlights the effectiveness of our
approach.

5 DISCUSSION
Based on our findings, wemake observations on our classifier, exam-
ining why it correctly and incorrectly predicts solutions in specific
instances. Understanding the reason behind its performance on a
specific instance is crucial for humans to make the final decision
whether it is human-authored or GPT-4 generated.

5.1 Correctly Predicted Solution
Figures 6 and 7 present examples where our model correctly classi-
fies (i.e., correctly distinguishes between human-authored and GPT-
4 generated code). Examining the important features in Figure 4 and
5, we can gain insights into the model’s overall decision-making
process by investigating the waterfall plot for each example. The
waterfall plot presents the model’s expected value, with each row
representing how each feature contributes positively (red) towards
GPT-4 generated code or negatively (blue) towards human-authored
code.

Figure 6, shows a correctly predicted human-authored code and
its corresponding SHAP waterfall plot. This plot provides a local
explanation of the classifier, visually depicting the key features
that influence individual predictions, starting from the base value.

At the bottom of the plot in Figure 6b, the model’s prediction be-
gins at this base value. It progresses towards the GPT-4 generated
class, influenced by the cumulative effect of 127 other features
whose contributions are relatively minor and thus aggregated in
the plot. These are ranked in ascending order of SHAP values. The
ntad_Assign feature, representing the AST node for assignment
operations, has the most impact towards the GPT-4 class, with its
value of 1.29. The value of this feature, in addition to the value of
other features with red arrows in the plot, is indicative of the GPT-4
generated class. However, the most impactful feature overall is the
avgLineLength, its value of 14.36 in addition to the value of other
features with blue arrows in the plot influences the model’s decision
towards its final prediction, the human class. This shows that code
having an avgLineLength (the average length of characters in each
line) of 14.36, emptyLinesDensity, (i.e. the ratio of empty lines to
sloc) of 0.4, def_Density of 0, whiteSpaceRatio (i.e. the ratio of white-
space to non-whitespace characters) of 0.35, avgIdentifierLength
(i.e. the average length of identifier names) of 2.67 and no function
is likely human-authored, not taking into consideration the other
features.

Figure 7 shows a correctly predicted GPT-4 generated code and
its corresponding SHAP waterfall plot. In Figure 7b, the most im-
portant feature with a value of 0.25 is the def_Density. The value of
this feature alongside the value of other features with red arrows
influences the model’s decision towards the final prediction, the
GPT-4 class. This suggests that code having def_Density of 0.25,
ntad_Assign of 1, maxDecisionTokens of 0, maintainabilityIndex of
81.856 is likely GPT-4 generated, not taking into consideration other
features. MaintainabilityIndex is a feature that isn’t observed by
looking at the code, this is an interesting find on how a complexity
metric could potentially influence the classifier’s decision.

These findings underscore the model’s ability to correctly pre-
dict solutions based on distinctive features, shedding light on the
significance of specific code characteristics in the classification
process.

5.2 Incorrectly Predicted Solution
Figure 8 presents an incorrectly predicted GPT-4 generated code
and its corresponding SHAP waterfall plot. This case is concerning,
as the model incorrectly guesses the authorship of the code as GPT-
4 generated. While a false negative (predicting GPT-4 generated
code as human-authored) is bad, we especially want to avoid false
positives. This is because we do not want to unjustly accuse some-
one of presenting GPT-4 generated code when they have shared
their written code. However, all classification techniques are bound
to have some false positives. We hope that our choice of an ex-
plainable model helps educators look at the SHAP waterfall plot
and understand the reasons before making a final decision as an
educator.

By examining important features from SHAP in Figure 4 and 5,
we aim to gain insights into why the model made this incorrect
prediction. In Figure 8b, the two top features that influence the
model’s prediction towards the GPT-4 generated class are related to
the length of the code (i.e., avgFunctionLength, avgLineLength) and
have values of 13 and 24.86, respectively. In the case of both avg-
LineLength and avgFunctionLength, their values are high compared
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Table 6: Classifier Performance Comparison Across Levels of Problem Difficulty

Our Approach Baseline (n-grams + Lexical Features)

Easy Medium Hard n = 2 n = 3

Easy Medium Hard Easy Medium Hard

Accuracy 0.89 0.89 0.87 0.87 0.79 0.80 0.89 0.86 0.80
Precision 0.87 0.88 0.89 0.85 0.80 0.79 0.89 0.87 0.80
Recall 0.91 0.90 0.86 0.89 0.77 0.82 0.88 0.85 0.81
F1-score 0.89 0.89 0.87 0.87 0.79 0.80 0.89 0.86 0.80
AUC-ROC 0.89 0.89 0.87 0.87 0.79 0.80 0.89 0.86 0.80

1 n, m = map(int , input().split())

2 mi = 2

3 ma = n + m

4 ans = [1 for i in range(ma + 1)]

5

6 for i in range(2, int(ma **0.5) + 1):

7 for j in range(i + i, ma + 1, i):

8 ans[j] = 0

9 ans[0] = 0

10 ans[1] = 0

11 print(ans.count (1))

12

13

14

(a) Human code

Human

(b) SHAPwaterfall plot showing how features impact themodel’s
decision for this code

Figure 6: Correctly predicted human code

1 def solve(n, m):

2 return 1 if min(n, m) > 1 else 2

3

4 n, m = map(int , input().strip().split())

5 print(solve(n, m))

(a) GPT-4 generated code

GPT-4

(b) SHAPwaterfall plot showing how features impact themodel’s
decision for this code

Figure 7: Correctly predicted GPT-4 generated code.

to the feature values of other observations within the dataset, and
features with higher avgLineLength and avgFunctionLength tend to
drive the model’s prediction towards the GPT-4 generated class.

These observations explain why the model predicted this code
as GPT-4 generated, highlighting the challenges in accurately dis-
tinguishing certain code characteristics and the potential conse-
quences of false positives.
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1 def getCount(h,m,i) :

2 h=int(h)

3 m=int(m)

4 h1=0

5 lst =[11 ,22 ,33 ,44 ,55 ,66 ,77 ,88 ,99]

6 while(h1<h) :

7 for m1 in range(0,m) :

8 if h1 <10 :

9 if(m1 <10 and h1==m1) : count[i]+=1

10 if (m1 in lst and m1%10==h1) : count[i]+=1

11 else :

12 if(m1 in lst and h1==m1) : count[i]+=1

13 if(h1 in lst and h1%10==m1) : count[i]+=1

14 h1+=1

15 t=int(input())

16 count =[0]*t

17 for i in range(0,t) :

18 h,m=input().split()

19 getCount(h,m,i)

20

21 for i in count : print(i)

(a) Human code

GPT-4

(b) SHAPwaterfall plot showing how features impact themodel’s
decision for this code

Figure 8: Human code predicted incorrectly as AI-generated code

6 THREAT TO VALIDITY
We break down the threats into two parts, external and construct.

6.1 External Threat to Validity
These threats relate to the ability to generalize based on our re-
sults. In this study, we conducted an empirical investigation on the
competitive programming platform CodeChef for human-authored
code and utilized GPT-4 for AI-generated code. Coding practices
may vary on other platforms. However, in this study, to encompass
different styles, we selected the most popular 100 problems for
each difficulty level (i.e., from beginner level to 7* level) and ex-
tracted those that include Python solutions. This approach should
enable us to generalize coding styles from beginners to experts.
Our classifier performed well on easy, medium, and hard questions
and we believe that due to the classifier’s performance on easy
and medium questions, it can perform fairly well on introductory
programming courses. This is because problems in programming
courses are likely to be of easy to medium difficulty. However, hu-
man solutions provided for easy to medium questions may not
accurately represent the expertise level of all users. This means the
solutions, while insightful, might not fully reflect the skill level of
specific groups, such as students new to programming in introduc-
tory programming courses. Nonetheless, they do offer a general
insight into human coding styles. Another concern is since we
only generate code using GPT-4, the generated code may not be
representative of code by other AI assistants. However, compared
to other tools, GPT-4 is the most popular AI assistant and should
represent real-world usage. In future work, we aim to expand to
other programming languages, coding platforms and adapt to a
broader range of AI models.

6.2 Construct Validity
These threats relate to the degree to which our measurements are
captured. In terms of correctness of AI-generated code, we extract
public test cases from CodeChef, which do not include private tests
for the problems. We decided not to pursue direct submissions
of AI-generated code to CodeChef, as this would violate ethical
guidelines to submit AI-generated code as a human solution.

7 CONCLUSION
The advent of AI assistants has introduced a new form of academic
dishonesty, where students submit AI-generated code as their work.
In this study, we investigated the impact of using code stylome-
try features to differentiate between human-authored and GPT-4
generated code, focusing on submissions from CodeChef and GPT-
4 generated solutions in Python. The findings demonstrate our
approach’s promise. Our classifier achieved an F1-score and AUC-
ROC score of 0.91, highlighting its potential as a preliminary tool
for identifying AI-generated code. Additionally, we identified sev-
eral key distinguishing features, with the average line length as the
most important feature. By providing a means to identify GPT-4
generated code, our study contributes to the ongoing discourse on
the use and regulation of AI assistance in coding tasks.
Future Work. To broaden the scope and applicability of our study,
we could evaluate our hypothesis that our approach can perform as
well on Python programs from other sources such as other compet-
itive programming platforms besides CodeChef and programming
assignments from introductory courses. We could also extend our
study to include other programming languages. Additionally, fur-
ther research could evaluate the effectiveness of our approach in
identifying AI-generated code that has been intentionally modi-
fied post-generation or through prompt engineering. Such inves-
tigation would provide valuable insights into the robustness and
shortcomings of our detection methods when AI-generated code is
deliberately altered to evade identification.
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