
Optimizing Differential Computation for

Large-Scale Graph Processing

by

Siddhartha Sahu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2024

© Siddhartha Sahu 2024

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examining
Committee is by majority vote.

External Examiner: Keval Vora
Associate Professor,
School of Computing Science,
Simon Fraser University

Supervisor: Semih Salihoğlu
Associate Professor,
School of Computer Science,
University of Waterloo

Internal Member: M. Tamer Özsu
University Professor,
School of Computer Science,
University of Waterloo

Internal Member: Khuzaima Daudjee
Research Associate Professor,
School of Computer Science,
University of Waterloo

Internal-External Member: Patrick Lam
Associate Professor,
Electrical and Computer Engineering,
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement of Con-
tributions included in the thesis. This is a true copy of the thesis, including any required final
revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

Some portions of this thesis are based on peer-reviewed joint work with Semih Salihoglu,
Amine Mhedhbi, Jimmy Lin, and M. Tamer Özsu, in which I am the first author and the primary
contributor [140, 141, 142].

iv

Abstract

Diverse applications spanning areas such as fraud detection, risk assessment, recommenda-
tions, and telecommunications process datasets characterized by entities and their relationships.
Graphs naturally emerge as the most intuitive abstraction for modeling these datasets. Many
practical applications seek the ability to share computations across multiple snapshots of evolv-
ing graphs to efficiently perform analyses, such as evaluating changing road conditions in
transportation networks or performing contingency analysis on infrastructure networks. The
research in this thesis is motivated by the challenge of efficiently supporting such applications
on large datasets.

Differential computation (DC) has emerged as a powerful general technique for incrementally
maintaining computations over evolving datasets, even those containing arbitrarily nested loops.
It is thus a promising technique that can be used to build the kinds of applications that motivate
this thesis. We present a study of DC that explores how it can be used to build practical data
systems. In particular, this thesis addresses two challenges that impede the adoption of DC:
(i) the lack of high-level interfaces that can be used to develop graph-specific applications;
and (ii) scalability challenges that arise due to the general maintenance technique used by DC,
making it less efficient for application-specific workloads.

The main contribution of this thesis is to show how DC can be made more practical for
graph processing systems. To address the lack of high-level interfaces, we built GraphSurge,
a system that can be used to create and analyze multiple views over static graphs using a
declarative programming interface. When users perform graph computations on a collection of
views, GraphSurge internally uses DC to share the computation across all views. We develop
several optimizations that improve the scalability of DC. Within GraphSurge, we identify two
optimization problems, which we call collection ordering and collection splitting, and present
algorithms to solve these problems. These optimizations improve the runtime of GraphSurge
applications by up to an order of magnitude. In the reference implementation of DC, we identify
two design bottlenecks in how data is indexed and processed within operators. To address
the bottlenecks, we implement a new index and an optimization called Fast Empty Difference
Verification, which improves the runtime of graph processing workloads by up to 14×. Our
work was informed by insights from a non-technical user survey we conducted to understand
how graphs are used in practice.

v

Acknowledgements

This thesis has been a long time in the making. As far back as I can remember, I have always
wanted to do a Ph.D. Now that I am at the end of the journey, I can only take a small slice of the
credit. I am here mainly because of the generosity and help of so many wonderful people.

I will start by mentioning my eternal gratitude for my family. My grandma and grandpa
always showered me with unwavering love, spoiling me to the core. My mom and dad kept me
more grounded, at the same time encouraging me to follow my own path and unhesitatingly
providing me with everything I needed to do so. They are the ones who instilled in me a love for
books and learning. Despite our sibling rivalry, my sister has always been there for me when I
needed her. I would not have been able to come halfway around the world to Canada from a
small city in India without all the hard work and sacrifices that my family has put in.

I owe everything I know about research and academic writing to my advisor Semih Salihoğlu.
Semih has been a strong guiding light throughout my Ph.D. journey with all its ups and downs.
Semih’s ability to drill down to the core of a problem and ask the right questions has never failed
to amaze me. I was fortunate enough to be one of his first students. I vividly remember our
early days of building the first version of GraphflowDB, with many rounds of meticulous code
reviews. We managed to quickly publish what was my first academic paper and drive down to
Chicago together to present it, giving me a great first taste of what research is all about. The
projects I worked on from there were more challenging, but Semih always managed to point
me in the right direction. Outside of research, Semih constantly encouraged us to socialize and
have fun as a group, including organizing many social meets, gaming sessions, and barbecue
outings. I will always look up to him as a great researcher and a great human being.

I am grateful to the Naiad team for developing Differential Computation, and a special
shout-out to Frank McSherry for putting in the effort to implement Differential Dataflow (DD),
an open-source Rust project that serves as the foundation of my thesis. Rust is an exceptional
systems programming language, and I am glad to have been able to use it throughout my
research. Especially when working with a complex codebase like DD, Rust ensures that memory
safety and concurrency bugs have not crept in while modifying and refactoring code, leaving
more room to focus on the actual logic. I appreciate the Rust community for having been able to
create a delightful ecosystem around the core language.

I am grateful to Bogdan Arsintescu, Juan Colmenares, and the rest of the LIquid graph team
at LinkedIn for hosting me as an intern and answering all my incessant questions. It gave me a
great perspective on what it took to run a practical graph system at scale.

I am constantly amazed by the thoughtfulness and vivacity of themany friends and colleagues
I have met through the years. In no particular order, I thank: Amine Mhedhbi and Chathura

vi

Kankanamge, with whom I have fond memories of spending countless days and nights doing
research and discussing life; Angshuman Ghosh and Khushbu Patel, who are my goto partners-
in-crime for everything food and fun; Mayumi, for giving me a place to stay and teaching me
about Japanese culture, Arjun Singh, whom I can trust to travel with anywhere in the world;
Pranjal Gupta, who spent a lot of time with me biking and driving around Ontario; Anurag
Dubey, with whom I shared many great hiking experiences in Mumbai and Denver; Olivier
Nguyen, my first housemate in Canada who graciously tolerated my enthusiasm at the new
Canadian life; Babar Memon, who led me on several adventures exploring the Waterloo social
scene; Abeer Khan, Hemant Saxena, Vineet John, Kshitij Jain, Brad Glasbergen, Michael Abebe,
Anil Pacaci, Royal Sequiera, Shahid Khaliq, and Nafisa Anzum, who were always fun to be around
in and outside the DSG lab; Aaditya Tripathy, who is always up for trying new experiences;
Ravi Hemnani, Bharath MS, Abhinav Sethi, Shyam Sunder, and the rest of the gmond gang,
for making life at work enjoyable and for getting me started on my Ph.D. applications; Aamir
Jamal, Sunny Lalwani, Vivek Mangal, Rahul Prakash, and Indrajit Sarkar, who showed me how
to have fun in life; Pankaj Kumar, who got me out of my comfort zone; Vishal Kumar and Samir
Pramanik, for our intense gaming sessions; and Margaret Hancock, who I was lucky to have as
a landlady, taught me how to make a pizza, and made life during the pandemic more bearable
with puzzles and socially distant outings. Most importantly, I thank my girlfriend, Meenakshi
Gupta, for always pushing me to be my better self and for her unwavering support that made
the hours spent on my thesis less lonely.

I am truly grateful to the UWaterloo staff who take care of all the work necessary to keep
academia functioning. I especially thank Paula Roser and Nadine Zinger for being readily
accessible, Jo-Ann Hardy and Joe Patrick with whom I had many fun interactions, and Lori
Paniak for his constant vigilance of our server farms.

I had many enthusiastic conversations with Prof. Khuzaima Daudjee. He always had a
welcoming presence in the DSG Lab, often dropping in to check up on my research. I also
had a lot of fun TAing his distributed systems course, helping design and evaluate a prototype
distributed file system assignment. I thank Prof. Bernard Wong and Prof. Samer Al-Kiswany,
whom I interacted with through their graduate courses and who gave me great advice on how
to navigate academic life. I also thank Prof. Sujan Kumar Saha and Prof. Abhijit Mustafi from
my undergraduate years, who gave me encouragement and support in pursuing my Ph.D.

Finally, I thank my committee members: Prof. Keval Vora, Prof. Tamer Özsu, Prof. Khuzaima
Daudjee, and Prof. Patrick Lam. Everyone asked great questions, both at a high level as well
as on the nitty-gritty details, and their suggestions for improvements were spot on. I sincerely
appreciate the time that they have taken to read and engage with my work. The moment when
they announced my thesis had been approved made me feel that it was all worth it.

vii

Dedication

To

Thakuma & Dadu,
for their everlasting love and care,

and

Ma, Bapi, & Munu,
for always having my back.

viii

Table of Contents

Examining Committee ii

Author’s Declaration iii

Statement of Contributions iv

Abstract v

Acknowledgements vi

Dedication viii

List of Figures xiii

List of Tables xv

Quotation xvii

1 Introduction 1

1.1 Contributions . 3
1.1.1 Survey of Graph Technology Users . 3
1.1.2 The Graphsurge System . 3
1.1.3 Optimizations to DC and DD . 4

1.2 Thesis Outline . 4

ix

2 User Survey of Graph Technology 6

2.1 Methodology of Online Survey, Mailing Lists, and Source Repositories 7
2.1.1 Online Survey Format and Participants 8

2.2 Online Survey . 11
2.2.1 Graph Datasets . 11
2.2.2 Computations . 14
2.2.3 Graph Software . 17
2.2.4 Practical Challenges . 18

2.3 Applications from Whitepapers . 19
2.3.1 Methodology . 19
2.3.2 Applications . 20

2.4 Applications from Interviews . 20
2.4.1 Methodology . 20
2.4.2 Overall Observations . 22
2.4.3 Contingency Analysis of Power Failures at StateGrid 23

2.5 Related Work . 24
2.6 Summary . 24

3 Differential Computation 26

3.1 Dataflows and Timestamps . 26
3.2 Differential Computation (DC) . 28
3.3 Iterative Frontier Expansion Dataflow (IFE) . 30

3.3.1 Single-source Shortest Paths (SSSP) . 30
3.3.2 Multiple Pair Shortest Path (MPSP) . 32
3.3.3 Weakly Connected Components (WCC) 32
3.3.4 Strongly Connected Components (SCC) 33

3.4 A Note on the Differential Implementation of Operators 34
3.5 Timely Dataflow (TD) and Differential Dataflow (DD) 37

x

4 Graphsurge: Graph Computations on View Collections Using Differential

Computation 39

4.1 The Graphsurge System . 42
4.1.1 Individual Views . 43
4.1.2 View Collections . 44

4.2 Collection Ordering . 47
4.3 Collection Splitting . 50
4.4 Evaluation . 53

4.4.1 Experimental Setup . 53
4.4.2 Comparison of Differential Computing vs Rerunning from Scratch . . . 54
4.4.3 Benefits of Collection Splitting . 54
4.4.4 Benefits of Collection Ordering . 56
4.4.5 Baseline Temporal Systems . 58
4.4.6 Distributed Execution and Scalability . 59

4.5 Summary . 60

5 Scaling Differential Computation for Large-Scale Graph Processing 61

5.1 Background . 62
5.1.1 Arrangements . 63
5.1.2 Operations on Arrangements . 65

5.2 Read-optimized Compact Batches . 66
5.3 Time-based Indices . 67
5.4 FEDiV: Avoiding Difference Computations . 68

5.4.1 Preliminary Example . 70
5.4.2 Input History Scanning Rules . 71
5.4.3 Avoiding Input History Scanning . 72

5.5 Evaluation . 75
5.5.1 Setup . 75

xi

5.5.2 Runtime Evaluation on Dynamic Graph Workloads 76
5.5.3 Scaling Out-of-Memory . 78
5.5.4 Scaling Across Compute Nodes . 80
5.5.5 Graphsurge Evaluation . 80

5.6 Summary . 81

6 Related Work 83

6.1 General Techniques for Computation Sharing 84
6.1.1 Other Computation Sharing Techniques 85

6.2 Specialized Computation Sharing Techniques . 86
6.2.1 Streaming Graph Computation Systems 86

6.3 State Management . 87
6.3.1 Spilling to Disk . 88
6.3.2 Recreating State on Demand . 89

7 Conclusion and Future Work 91

7.1 Contributions . 91
7.2 Future Work . 93

7.2.1 FEDiV for higher dimensional timestamps 93
7.2.2 Explicit State Management . 93
7.2.3 Theories for IVM Comparing DC to Other IVM Techniques 94

References 95

xii

List of Figures

3.1 Example loop within a dataflow. Ingress and egress operators respectively add
and remove the last dimension of the timestamps inside the loop. 27

3.2 The generic IFE dataflow that appears as a subroutine in the graph computations
covered in this thesis. 30

3.3 Example dataflow for computing SSSP and an input graph. 31
3.4 Example dataflow for computing MPSP. 33
3.5 Example dataflow for computing SCCs and an input graph. 34

4.1 Example phone calls graph. 40
4.2 Graphsurge architecture. 42
4.3 An example EBM for the view collection in Listing 4.3 and 2 EDS’s for 2 different

collection orders (Section 4.2). 46
4.4 𝐺0𝐵 of the collection from Listing 4.3. Purple lines are the output tour/order of

the Christofides algorithm. 50
4.5 Runtimes of computations running on views differentially, from scratch, or

adaptively. 55
4.6 Runtime of algorithms showing the benefits of collection ordering with adaptive

splitting turned on and off. 57
4.7 Graphsurge vs GraphBolt. 59
4.8 Runtimes in a distributed setting. 59

5.1 Dataflow and input graph for SSSP. 63

xiii

5.2 Differences, Batches, and Spine for SSSP on the example graph from Figure 5.1b. 64
5.3 Compact Batch layout with merged (value, 𝑡∗, Δ). 66
5.4 Example Batch indexed by (key, time). 68
5.5 DD index operations with or without time-based indices. 68
5.6 Input and output regions for a single key 𝑣 during Reduce recomputation. . . . 69
5.7 WCC input and output differences for 𝑣200 when inserting the edge 𝑣350 → 𝑣500. 70
5.8 WCC input and output differences for 𝑣200 when deleting the edge 𝑣100 → 𝑣300. . 71
5.9 Generic description of consolidating input differences to 2 graph versions. . . . 72
5.10 Example merging of input differences. 73
5.11 Runtimes of the optimizations for different graph computations. 77
5.12 DD’s total memory usage over the course of computations for each optimization. 77
5.13 Runtimes of optimizations when operating under low memory conditions. . . . 79
5.14 Runtimes of optimizations in a distributed setting. 81
5.15 Runtimes of optimizations on datasets from Graphsurge. 81

xiv

List of Tables

2.1 Software products used for recruiting participants and the count of active users
on their mailing list in Feb-Apr 2017. The last column is the total user count for
each technology. 9

2.2 The demographics of the participants. 10
2.3 Real-world entities represented by the participants’ graphs and studied in publi-

cations. Legend for non-human entities: Products (NH-P), Business and Financial
Data (NH-B), Web Data (NH-W), Geographic Maps (NH-G), Digital Data (NH-D),
Infrastructure Networks (NH-I), Knowledge and Textual Data (NH-K). 12

2.4 The sizes of the participants’ graphs. 13
2.5 The topology and stored data types of the participants’ graphs. 14
2.6 Frequency of changes. 14
2.7 Academic conferences and surveyed years. 15
2.8 Graph computations performed by the participants and studied in publications. 15
2.9 Machine learning computations and problems performed by the participants

and studied in publications. 16
2.10 Software for graph queries and computations. 17
2.11 Software used for non-querying tasks. 18
2.12 Graph processing challenges faced by participants. 19
2.13 Application areas and example uses of graphs in various fields described in graph

software whitepapers. 21

3.1 SSSP differences for the example graph. 𝛿𝐸 = ∅ and is omitted after iteration 0. 32

xv

3.2 SCC differences for the example graph. Differences in the IFE iterations are not
shown. 35

4.1 Runtimes of BFS and PR for two view collections on the Orkut graph, containing
1K- and 3.5M-size difference sets, in two ways: (i) diff-only; and (ii) scratch. 51

4.2 Runtimes (s) of computations for the Caut view collection showing that the
adaptive optimizer can outperform both running differentially and from scratch. 56

4.3 The number of diffs and collection creation time (CCT) in seconds for C10,5 and
C7,4 on CLJ andWTC for three random orders R1, R2, and R3, and our optimizer’s
order. 58

5.1 Datasets used in the experiments. 76
5.2 Counts of total Reduce recomputations, recomputations which do not produce

any output, and recomputations that FEDiV was actually able to skip. 78
5.3 Total disk I/O incurred due to swapping. 80

xvi

“The world is full of fascinating problems waiting to be solved.”

— How To Become A Hacker

“And when all the wars are done, a butterfly will still be beautiful.”

— Ruskin Bond

xvii

http://www.catb.org/esr/faqs/hacker-howto.html
https://www.goodreads.com/quotes/3229554-and-when-all-the-wars-are-done-a-butterfly-will

1
Introduction

A variety of applications, such as fraud detection, risk assessment, and recommendations from
telecommunications, transportation, financial, social, and biological networks process large
datasets that consist of a set of entities and the relationships between these entities. Graphs
are perhaps the most natural abstraction to model the records of these datasets in data systems.
Many applications require the core capability of sharing computation across multiple similar
snapshots of these graphs to perform their computations efficiently. An example of a popular
application is analyzing dynamic graphs which evolve by ingesting small-size updates. For
example, finding the shortest paths on a transportation network where road conditions change
over time can be modeled as a dynamic graph. The states of the graph after each set of updates
can be seen as multiple snapshots, over which the same computation of finding the shortest
paths needs to be performed. Similarly, contingency or perturbation analysis is a type of “what
if” analysis performed on infrastructure networks. In this analysis, the network is modified
in small ways to study its resilience to perturbations. Different perturbation scenarios can be
modeled as multiple snapshots of graphs over which the same set of computations analyze the
structures of these snapshots. In order to efficiently support these applications on large-scale
datasets, data systems need the ability to sharing computations across snapshots instead of
re-executing these computations from scratch. These applications and this core problem are the
primary motivation of the research conducted in this thesis.

Computation sharing across different snapshots of datasets is the key problem behind two
fundamental optimization problems in data management, namely, incremental view mainte-
nance [150] and multi-query optimization [147]. There is a long line of research on these
problems for supporting data computations that can be expressed in relational algebra [77].

1

However, these approaches do not efficiently handle recursive computations and thus often
fall short on many graph computations, which are recursive in nature. Differential computa-
tion (DC) [47, 124] is a recent technique that has emerged as a general technique for sharing and
maintaining computation across evolving datasets—or those that can be modeled as such—for
arbitrary dataflow computations, including those that contain nested recursive loops. As such, it
is a promising technique that could serve as a foundation for building data systems that support
the applications motivating this thesis.

Briefly, DC is based on a simple principle. Given a dataflow that consists of operators whose
inputs and outputs are sets of records, DC maintains and indexes all input and output records
of each operator at every “timestamp” in the computation. Timestamps are multi-dimensional
and represent points in time in the computation, such as the version of an input dataset or the
iteration number within a recursive loop. DC stores records as a set of timestamped differences,
such that the set of records can be reproduced for each timestamp. Upon changes to base
datasets, DC automatically activates the operators whose inputs and outputs may have changed,
so that they rerun to “fix” the previously indexed state of computation. As shown in the original
publications on DC [47, 124] and several follow-up work [52, 142], DC is very general and can
maintain complex graph computations, such as finding weakly connected components, finding
shortest paths, and some regular path queries. The popular algorithms of these computational
problems have single loops. DC can even maintain and share computation when running
algorithms that contain nested loops, such as the Coloring algorithm [132] for finding strongly
connected components (SCC). Indeed, maintenance of SCC was the motivating example used in
the original publication of DC [124].

The study of DC in the literature is in its infancy and the principles for making it more
practical in actual data systems are still not well understood. The premise of this thesis is that
two challenges, among others, hinder the adoption of DC in practical graph systems:

• The Differential Dataflow (DD) system [46], which is the reference implementation of DC,
is a general and not graph-specific data processing system. As such, it lacks the interfaces
needed for developing graph computation applications.
• As a general computation maintenance and sharing technique, DC is oblivious to the proper-

ties of the graph-specific computations, which can make it less efficient than graph-specific
maintenance techniques.

This thesis argues that we can make DC more practical for application developers by designing
systems with graph-specific interfaces and graph-specific optimizations, i.e., optimizations that
are specialized to the common graph computations. In the rest of this introductory chapter, we
first give an overview of the contributions and then an outline of the thesis.

2

1.1 Contributions
1.1.1 Survey of Graph Technology Users
In Chapter 2, we present a user study that aims to understand what type of graph data users
have, what graph computations they perform, what applications use these computations, which
software they use, and what their main challenges are. The chapter presents the results of
an online survey that was filled by 89 users of different graph technologies and 8 in-person
interviews, as well as a study of the white-papers of existing open-source and commercial
graph technologies, including graph database management systems, graph computations, and
graph visualization systems. The contributions of this chapter are orthogonal to the technical
contributions of this thesis in other chapters and may be of independent interest to readers. The
rationale for including it as part of the thesis is that some of our findings in this study serve as
motivation for the technical problems that will be addressed in the rest of the thesis. Specifically,
the survey identifies performance and scalability problems in existing graph technologies, the
importance of graph computations over dynamic graphs, and the description of an actual
contingency analysis application on an electric grid network. This chapter can be read in
isolation and in any order, while the rest of the chapters should be read in order.

1.1.2 The Graphsurge System
In Chapter 4, we present the Graphsurge system. Graphsurge is a graph computation system
for analyzing multiple snapshots of a static graph. It is designed to support applications similar to
contingency analysis, where a common analysis, such as a path or connectivity analysis, needs to
be performed on many snapshots of the same graph. Graphsurge has a high-level programming
interface to define individual graph snapshots called views, and view collections, which consist
of multiple views. Users program Graphsurge by writing batch graph computations over a
single snapshot using a dataflow-based API. Graphsurge then runs the computation across all
views and uses DC to automatically share computation. Within the context of Graphsurge, we
introduce two optimization problems:

• Collection ordering is the problem of giving an order to the views in a view collection so
that DC can maximize computation sharing across the views. We show that this problem is
NP-hard and provide an efficient 3×-approximation algorithm.
• Collection splitting is the problem of choosing the graph views in an ordered collection that

do not share enough computationwith their previous view so that re-executing a computation
from scratch is cheaper than trying to share computation. We provide an adaptive algorithm
that can decide when to “split” a view during runtime, i.e., when Graphsurge is performing
the computation on a view collection.

3

We present extensive experiments demonstrating that our algorithms improve the runtimes of
contingency analysis-like applications by up to an order of magnitude compared to using vanilla
DC, as well as several specialized systems that can be repurposed to run the same workloads. The
research presented in this chapter demonstrates that DC can be the foundation for developing
graph computation systems for contingency analysis-like applications by developing graph-
specific interfaces. This is also the first demonstration that DC can be applied to workloads
other than dynamic graph computations, which was the motivating application of DC in prior
literature. Further, this research also demonstrates that DC’s performance can be improved by
designing application-specific optimizations.

1.1.3 Optimizations to DC and DD
In Chapter 5, we study the problem of optimizing DC and its reference implementation DD.
We first study the problem of how the differences should be stored in DD. We present two
design alternatives, either by indexing the differences by the values or by the timestamps. We
show that for a suite of common graph computations, the second option is often more efficient,
especially when the system memory is limited. Second, we observe that the main computational
bottleneck of DC is to rerun operators on different dataset snapshots to determine whether
the outputs of these operators may have changed or not. Often, this expensive computation
of rerunning the operators only verifies that there are no new differences in the output of the
operator. Based on this observation, we ask whether it is possible to detect that there are no
output differences, without rerunning DC’s default operator logic. We answer this question in
the affirmative by providing an optimization that is designed for a dataflow sub-routine called
iterative frontier expansion [52] (IFE), a common subroutine across many graph computations.
Our optimization is called Fast Empty Difference Verification (FEDiV). FEDiV can only be applied
for IFE and as such is a graph-specific optimization, as stated in the central argument of this
thesis. We leave open whether FEDiV-like optimizations can be applied to DC when maintaining
arbitrary dataflow computations. We provide proof that FEDiV is correct. Finally, we provide
experiments demonstrating that using timestamp-based indexing of differences and FEDiV on a
suite of graph computation workloads can improve DD’s runtime by up to 19×. The workloads in
this suite include both dynamic graph workloads as well as workloads that are used to evaluate
Graphsurge in Chapter 4.

1.2 Thesis Outline
The rest of this thesis is organized as follows. We first present the methodology and analysis of a
non-technical user survey in Chapter 2. We then give a background on differential computation in

4

Chapter 3. Chapter 4 presents our work on Graphsurge and Chapter 5 shows how we optimized
DC for scalability. We then present related work in Chapter 6 and end with conclusions and
directions for future work in Chapter 7.

5

2
User Survey of Graph Technology1

In this chapter, we present a survey of users of several classes of graph technology. Graph
technology used for managing or processing graphs is highly varied and includes graph database
management systems (DBMSs) [12, 14, 18, 27, 30, 36, 41] and RDF systems [35]. These are
the two classes of DBMSs in the market that offer a graph-based data model. Graph DBMSs
adopt the property graph data model [64], while RDF systems adopt the resource description
framework datamodel [64]. Additional graph technologies include linear algebra software [13,28],
graph visualization software [16, 19], graph query languages [11, 34, 160], and distributed graph
processing systems [5, 7, 9]. Despite the prevalence of these software, there is little research on
how graph data is actually used in practice and the major challenges facing users of graph data,
both in industry and research. In April 2017, we conducted an online survey across 89 users of
22 different software products, to answer 4 high-level questions:

(i) What types of graph data do users have?

(ii) What computations do users run on their graphs?

(iii) Which software do users use to perform their computations?

(iv) What are the major challenges users face when processing their graph data?

Our major findings that are specifically relevant for this thesis are as follows:
1Contents of this chapter have appeared in VLDB 2018 Conference [140] and a special issue of the VLDB

Journal [141]. The survey was reviewed and received ethics clearance through the University of Waterloo Research
Ethics Committee (ORE #22102).

6

• Variety: Graphs in practice represent a wide variety of entities, many of which are not natu-
rally thought of as vertices and edges, such as traditional products, orders, and transactions.
• Ubiquity of Very Large Graphs: Many graphs in practice are large, often containing over a
billion edges. Many of these graphs are highly dynamic and change frequently.
• Challenge of Scalability: Scalability is unequivocally the most pressing challenge faced by
participants. The ability to process very large graphs efficiently seems to be the biggest
limitation of existing software.

Many users indicated that they perform incremental or dynamic computations, but using
custom solutions. This indicates the need for easy-to-use solutions for performing incremental
computations on large dynamic graphs. Our survey has also highlighted other interesting facts,
such as the importance of graph visualization for users, the prevalence of RDBMSes to manage
and process graphs, the prevalence of machine learning on graph data, e.g., for clustering vertices,
predicting links, and finding influential vertices.

We further reviewed user feedback in the mailing lists, bug reports, and feature requests in
the source code repositories of 22 software products between January and September of 2017
with two goals: (i) to answer several new questions that the participants’ responses raised; and
(ii) to identify more specific challenges in different classes of graph technologies than the ones
we could identify in participants’ responses.

To better understand the applications supported by graphs, we reviewed the whitepapers
posted on the websites of 8 graph software products. We also interviewed 6 users and 2
developers of graph processing systems. Our reviews and interviews corroborated our findings
that graphs have a wide range of applications but also highlighted several new applications, such
as contingency analysis, that we had not identified in our online survey. Contingency analysis
will be one of the motivating applications for the Graphsurge system covered in Chapter 4.

2.1 Methodology of Online Survey, Mailing Lists, and Source
Repositories
In this section, we first describe the format of our survey and then how we recruited the
participants. Next, we describe the demographic information of the participants, including the
organizations they come from and their roles in their organizations. Then we describe our
methodology for reviewing user feedback in the mailing lists, bug reports, and feature requests
in the code repositories of the software products. Finally, we describe our methodology of
reviewing whitepapers and our interviews in Sections 2.3.1 and 2.4.1, respectively.

7

2.1.1 Online Survey Format and Participants

Format

The survey was in the format of an online form. All of the questions were optional. There were
2 types of questions:

(i) Multiple Choice: There were 3 types of multiple choice questions: (a) yes-no questions;
(b) questions that allowed only a single choice as a response; and (c) questions that allowed
multiple choices as a response. The participants could use an Other option when their
answers required further explanation or did not match any of the provided choices. We
randomized the order of choices in the questions about the computations that participants
run and the challenges they face.

(ii) Short Answer : For these questions, the participants entered their responses in a text box.

There were 34 questions grouped into six categories: (i) demographic questions; (ii) graph
datasets; (iii) graph andmachine learning computations; (iv) graph software; (v) major challenges;
and (vi) workload breakdown.

Participant Recruitment

We prepared a list of 22 popular software products for processing graphs (see Table 2.1) that
had public user mailing lists covering 6 types of technologies: graph database systems, RDF
engines, distributed graph processing systems (DGPSes), graph libraries to run and compose
graph algorithms, visualization software, and graph query languages.2 Our goal was to be as
comprehensive as possible in recruiting participants from the users of different graph technolo-
gies. However, we acknowledge that this list is incomplete and does not cover all of the graph
software used in practice.

We conducted the survey in April 2017, and used 4 methods to recruit participants from the
users of these 22 software products:

• Mailing Lists: We posted the survey to the user mailing lists of the software in our list.
• Private Emails: Five mailing lists: (i) Neo4j; (ii) OrientDB; (iii) ArangoDB; (iv) JanusGraph;

and (v) NetworkX, allowed us to send private emails to the users. We sent private emails to
171 users who were active on these mailing lists between February and April of 2017.
2The linear algebra software we considered, e.g., BLAS [13] and MATLAB [28], either did not have a public

mailing list or their lists were inactive.

8

Technology Software # Users

Graph Database System

ArangoDB [12] 40

238

Caley [14] 14
DGraph [18] 33
JanusGraph [27] 32
Neo4j [30] 69
OrientDB [36] 45
Sparksee [41] 5

RDF Engine Apache Jena [8] 87 110Virtuoso [35] 23

Distributed Graph
Processing Engine

Apache Flink (Gelly) [5] 24
39Apache Giraph [7] 8

Apache Spark (GraphX) [9] 7
Query Language Gremlin [11] 82 82

Graph Library

Graph for Scala [22] 4

97
GraphStream [26] 8
Graphtool [23] 28
NetworKit [31] 10
NetworkX [32] 27
SNAP [40] 20

Graph Visualization Cytoscape [16] 93 116Elasticsearch X-Pack Graph [19] 23
Graph Representation Conceptual Graphs [15] 6 6

Table 2.1: Software products used for recruiting participants and the count of active users on
their mailing list in Feb-Apr 2017. The last column is the total user count for each technology.

• Slack Channels: Two of the software products on our list, Neo4j and Cayley, had Slack
channels for their users. We posted the survey to these channels.
• Twitter : A week after posting our survey to the mailing lists and Slack channels and sending

private emails, we posted a tweet with a link to our survey to 7 of the 22 software products
that had an official Twitter account. Neo4j retweeted our tweet.

Participants that we recruited through different methods shared the same online link and we
could not tell the number of participants recruited from each method. We suspect that there
were more users from graph database systems because their mailing lists contained more active
users, as can be seen in Table 2.1. Moreover, 4 of the 5 mailing lists that allowed us to send
private emails and the Slack and Twitter channels belonged to graph database systems. Within
one week of posting the survey on Twitter, we received 12 responses.

In the end, there were 89 participants. Below, we give an overview of the organizations these
participants work in and the role of the participants in their organizations.

9

Field Total R P

Information Technology 48 12 36
Research in Academia 31 31 0

Finance 12 2 10
Research in Industry Lab 11 11 0

Government 7 3 4
Healthcare 5 3 2

Defense & Space 4 3 1
Pharmaceutical 3 0 3

Retail & E-Commerce 3 0 3
Transportation 2 0 2

Telecommunications 1 1 0
Insurance 0 0 0

Other 5 2 3

(a) The participants’ fields of work.

Size Total R P

1−10 27 17 10
10−100 23 6 17
100−1000 14 4 10
1000−10000 6 4 2
> 10000 15 4 11

(b) Sizes of the participants’ organizations.

Table 2.2: The demographics of the participants.

Field of Organizations: We asked the participants which field they work in. Participants could
select multiple options. Table 2.2a shows the 12 choices and participants’ responses. In the
table, “R” and “P” indicate researchers and practitioners (defined momentarily), respectively.
In addition to the given choices, using the Other option, participants indicated 5 other fields:
education, energy market, games and entertainment, investigations and audits, and grassland
management. In total, participants indicated 17 different fields, demonstrating that graphs are
being used in a wide variety of fields. Throughout the chapter, we group the participants into 2
categories:

• Researchers are the 36 participants who indicated at least one of their fields as research in
academia or research in an industry lab.
• Practitioners are the remaining 53 participants who did not select research in academia or an
industry lab.

Size of Organizations: Table 2.2b shows the sizes of the organizations that the participants
work in, which ranged from very small organizations with fewer than 10 employees to very
large ones with more than 10,000 employees.

Role at Work: We asked the participants their roles in their organizations and gave them the
following 4 choices: (i) researcher; (ii) engineer; (iii) manager; and (iv) data analyst. Participants
could select multiple options. The top 4 roles were engineers, selected by 54, researchers, selected
by 48, data analysts, selected by 18, and managers, selected by 16. The other roles participants
indicated were architect, devops, and student.

10

2.2 Online Survey
In this section, we describe the questions we asked in the survey and report the responses of the
participants.

2.2.1 Graph Datasets
In this section, we describe the properties of the graph datasets that the participants work with.

Real-World Entities Represented

We asked the participants about the real-world entities that their graphs represent. We provided
them with 4 choices and the participants could select multiple choices.

(i) Humans: e.g., employees, customers, and their interactions.

(ii) Non-Human Entities: e.g., products, transactions, or web pages.

(iii) RDF or Semantic Web.

(iv) Scientific: e.g., chemical molecules or biological proteins.

For the participants who selected non-human entities, we followed up with a short-answer
question asking them to describe what these are. Participants indicated 52 different kinds of
non-human entities, which we group into 7 broad categories.3 We indicate the acronyms we use
in our tables for each category in parentheses:

(i) Products (NH-P): e.g., products, orders, and transactions.

(ii) Business and Financial Data (NH-B): e.g., business assets, funds, or bitcoin transfers.

(iii) World Wide Web Data (NH-W).

(iv) Geographic Maps (NH-G): e.g., roads, bicycle sharing stations, or scenic spots.

(v) Digital Data (NH-D): e.g., files and folders or videos and captions.

(vi) Infrastructure Networks (NH-I): e.g., oil wells and pipes or wireless sensor networks.

(vii) Knowledge and Textual Data (NH-K): e.g., keywords, lexicon terms, words, and definitions.

Table 2.3 shows the responses. In the table, the number of academic publications that use each
type of graph is listed in the A row. We highlight two interesting observations:

3Six entities that the participants mentioned did not fall under any of our 7 categories, which we list for
completeness: call records, computers, cars, houses, time slots, and specialties.

11

Category Human RDF Scientific Non-Human NH-P NH-B NH-W NH-G NH-D NH-I NH-K

Total 45 23 15 60 13 11 4 7 5 9 11
R 18 11 9 22 1 6 2 4 1 7 6
P 27 12 6 38 12 5 2 3 4 2 5
A 165 20 45 169 7 28 77 33 0 17 11

Table 2.3: Real-world entities represented by the participants’ graphs and studied in publications.
Legend for non-human entities: Products (NH-P), Business and Financial Data (NH-B), Web
Data (NH-W), Geographic Maps (NH-G), Digital Data (NH-D), Infrastructure Networks (NH-I),
Knowledge and Textual Data (NH-K).

• Variety: Real graphs capture a very wide variety of entities. Readers may be familiar with
entities such as social connections, infrastructure networks, and geographic maps. However,
many other entities in the participants’ graphs may be less natural to think of as graphs.
These include malware samples and their relationships, videos and their captions, or scenic
spots, among others. This lends credence to the cliché that graphs are everywhere.
• Product Graphs: Products, orders, and transactions were themost popular non-human entities

represented in practitioners’ graphs, indicated by 12 practitioners. This contrasts with their
relative unpopularity among researchers and academics. Such product-order-transaction
data is traditionally the classic example of enterprise data that perfectly fits the relational
data model. Interestingly, enterprises represent similar product data as graphs, possibly
because they find value in analyzing connections in such data.

Size

We asked the participants the number of vertices, number of edges, and total uncompressed
size of their graphs. They could select multiple options. Tables 2.4a, 2.4b, and 2.4c show the
responses. As shown in the tables, graphs of every size, from very small ones with fewer than
10K edges to very large ones with more than 1B edges, are prevalent across both researchers
and practitioners. We make one interesting observation:

• The Ubiquity of Very Large Graphs: A significant number of participants work with very
large graphs. Specifically, 20 participants (8 researchers and 12 practitioners) indicated using
graphs with more than a billion edges. These large graphs represent a variety of entities,
including social, scientific, RDF, product, and digital data,4 indicating that very large graphs
appear in a wide range of domains.

4Some participants selected multiple graph sizes and multiple entities, so we cannot perform a direct match
of which graph size corresponds to which entity. The entities we list here are taken from the participants who
selected a single graph size and entity, so we can directly match the size of the graph to the entity.

12

Vertices Total R P

< 10K 22 11 11
10K−100K 22 9 13
100K−1M 19 7 12
1M−10M 17 6 11

10M−100M 20 10 10
> 100M 27 10 17

(a) Number of vertices.

Edges Total R P

< 10K 23 11 12
10K−100K 22 9 13
100K−1M 13 3 10
1M−10M 9 5 4

10M−100M 21 8 13
100M−1B 21 8 13

> 1B 20 8 12

(b) Number of edges.

Size Total R P

< 100MB 23 12 11
100MB−1GB 19 9 10
1GB−10GB 25 9 16

10GB−100GB 17 5 12
100GB−1TB 20 8 12

> 1TB 17 5 12

(c) Total uncompressed bytes.

Table 2.4: The sizes of the participants’ graphs.

One thing that is not clear from our survey is how much larger the participants’ graphs are
beyond the maximum limits we inquired about (100 million vertices, 1 billion edges, and 1TB
uncompressed data). In order to answer this question, we categorized the graph sizes mentioned
in the user emails we reviewed that were beyond these sizes. Focusing on the number of
edges, we found 42 users with 1–10B-edge graphs, 17 with 10B–100B-edge graphs, and 7 users
processing graphs over 100B edges. Two participants also clarified through an email exchange
that their graphs contained 4B and 30B edges. As in our survey results, these large graphs
represented a wide range of entities, such as product-order-transaction data, or entities from
agriculture and finance.

Other Questions on Graph Datasets

Topology: We asked the participants whether their graphs were: (i) directed or undirected; and
(ii) simple graphs or multigraphs. We clarified that multigraphs are those with possibly multiple
edges between two vertices, while simple graphs do not allow multiple edges between two
vertices. Tables 2.5a and 2.5b show the responses.

Types of Data Stored on Vertices and Edges: We asked the participants whether they stored
data on the vertices and edges of their graphs. All participants except 3 indicated that they do.
We asked the types of data they store and gave them 4 choices: (i) string; (ii) numeric; (iii) date
or timestamp; and (iv) binary. Table 2.5c shows participants’ responses. Five participants also
indicated storing JSON, lists, and geographic coordinates using the Other option.

Dynamism: We asked the participants how frequently the vertices and edges of their graphs
change, i.e., are added, deleted, or updated. We provided 3 choices with the following explana-
tions: (i) static: there are no or very infrequent changes; (ii) dynamic: there are frequent changes,
and all changes are stored permanently; and (iii) streaming: there are very frequent changes

13

Topology Total R P

Only Directed 63 23 40
Only Undirected 11 6 5
Both 15 7 8

(a) Directed vs. Undirected

Topology Total R P

Only Simple Graphs 26 9 17
Only Multigraphs 50 20 30
Both 13 7 6

(b) Simple vs. Multigraphs

Type
Vertices Edges

Total R P Total R P

String 79 31 48 66 24 42
Numeric 63 23 40 59 23 36
Date/Timestamp 56 19 37 49 18 31
Binary 15 8 7 8 4 4

(c) Data types stored on vertices and edges.

Table 2.5: The topology and stored data types of the participants’ graphs.

Frequency Total R P

Static 40 21 19
Dynamic 55 22 33
Streaming 18 9 9

Table 2.6: Frequency of changes.

and the participants’ software discards some of the graph after some time. Table 2.6 shows the
responses. 55 users (22 researchers and 33 practitioners) indicated they had dynamic graphs
and 18 (9 researchers and 9 practitioners) indicated they had streaming graphs. This is strong
evidence that many graphs used in practice are changing frequently.

2.2.2 Computations
In this section, we describe the computations that the participants perform on their graphs.

Graph Computations

Our goal in this question was to understand what types of graph queries and computations, not
including machine learning computations, participants perform on their graphs. We asked a
multiple choice question that contained as choices a list of queries and computations followed
by a short answer question that asked for computations that may not have appeared in the first
question as a choice. In the multiple choice question, instead of asking for a set of ad-hoc queries
and computations, we selected a list of graph queries and computations that appeared in the
publications of 6 conferences. The conferences we reviewed are shown in Table 2.7.

14

Conference Years reviewed

VLDB 2014 [105], 2017 [63], 2018 [51]
KDD 2015 [119], 2017 [111], 2018 [112]
SOCC 2015 [148], 2017 [153], 2018 [154]
OSDI / SOSP 2016 [113], 2017 [155], 2018 [55]
ICML 2016 [56], 2017 [136], 2018 [84]
SC 2016 [107], 2017 [58], 2018 [145]

Table 2.7: Academic conferences and surveyed years.

Computation Total R P A

Finding Connected Components 55 18 37 31
Neighborhood Queries (e.g., finding 2-degree neighbors of a vertex) 51 19 32 9
Finding Short / Shortest Paths 43 18 25 28
Subgraph Matching (e.g., finding all diamond patterns, SPARQL) 33 14 19 52
Ranking & Centrality Scores (e.g., PageRank, Betweenness Centrality) 32 17 15 45
Aggregations (e.g., counting the number of triangles) 30 10 20 24
Reachability Queries (e.g.,checking if 𝑢 is reachable from 𝑣) 27 7 20 8
Graph Partitioning 25 13 12 12
Node-similarity (e.g., SimRank) 18 7 11 11
Finding Frequent or Densest Subgraphs 11 7 4 4
Computing Minimum Spanning Tree 9 5 4 4
Graph Coloring 7 3 4 8
Diameter Estimation 5 2 3 2

Table 2.8: Graph computations performed by the participants and studied in publications.

Table 2.8 shows the 13 choices we provided in the multiple choice question, the responses
we got, and the number of academic publications that use or study each computation. As
shown in the table, all of the 13 computations are used by both researchers and practitioners.
Except for 2 computations, the popularity of these computations is similar among participants’
responses and academic publications. The exceptions are neighborhood and reachability queries,
which are respectively used by 51 and 27 participants, but studied respectively in 10 and 8
publications. Finding connected components appears to be a very popular and fundamental graph
computation—it is the most popular graph computation overall and also among practitioners.
We will use algorithms to solve this problem extensively throughout the thesis.

15

Computation Total R P A

Clustering 42 22 20 22
Classification 28 10 18 34
Regression (Linear / Logistic) 11 5 6 2
Graphical Model Inference 10 5 5 5
Collaborative Filtering 9 4 5 5
Stochastic Gradient Descent 4 2 2 9
Alternating Least Squares 0 0 0 1

(a) Machine learning computations.

Computation Total R P A

Community Detection 31 15 16 15
Recommendation System 26 10 16 5
Link Prediction 25 10 15 11
Influence Maximization 14 5 9 6

(b) Problems solved by machine learning algorithms.

Table 2.9: Machine learning computations and problems performed by the participants and
studied in publications.

Machine Learning Computations

We next asked participants what kind of machine learning computations they perform on their
graphs. Similar to the previous question, these questions were formulated to identify the machine
learning computations that appeared in the academic publications we reviewed. We asked the
following 2 questions:

• Which machine learning computations do you run on your graphs? The choices were: cluster-
ing, classification, regression (linear or logistic), graphical model inference, collaborative
filtering, stochastic gradient descent, and alternating least squares.
• Which problems that are commonly solved with machine learning do you solve using graphs?
The choices were: community detection, recommendation system, link prediction, and
influence maximization.

Tables 2.9a and 2.9b show the responses and the number of academic publications that use or
study each computation. It is clear that machine learning is used very widely in graph processing.
Specifically, 61 participants indicated that they either perform a machine learning computation
or solve a problem using machine learning on their graphs. Clustering is the most popular
computation performed, while community detection is the most popular problem solved using
machine learning.

Other Questions on Computations

Streaming Computations: We asked the participants if they performed incremental or stream-
ing computations on their graphs: 32 participants (16 researchers and 16 practitioners) indicated
that they do. We followed up with a question asking them to describe the incremental or
streaming computations that they perform. A total of 4 participants indicated computing graph

16

Software Total R P A

Graph Database System (e.g., Neo4j, OrientDB, TitanDB) 59 20 39 6
Apache Hadoop, Spark, Pig, Hive 29 11 18 10
Apache Tinkerpop (Gremlin) 23 9 14 1
Relational Database Management System (e.g., MySQL, PostgreSQL) 21 6 15 7
RDF Engine (e.g., Jena, Virtuoso) 16 8 8 12
Distributed Graph Processing Systems (e.g., Giraph, GraphX) 14 8 6 36
Linear Algebra Library / Software (e.g., MATLAB, Maple, BLAS) 8 6 2 6
In-Memory Graph Processing Library (e.g., SNAP, GraphStream) 7 5 2 4

Table 2.10: Software for graph queries and computations.

or vertex-level statistics and aggregations; A total of 3 participants indicated incremental or
streaming computation of the following algorithms: approximate connected components, 𝑘-core,
and hill climbing. The incremental connected components computation will be one of the core
of computations we will use throughout this thesis.

We note that the 22 software products in Table 2.1 have limited or no support for incremental
and streaming computations. We believe this is due to the lack of user-friendly off-the-shelf
incremental and streaming systems for graphs. Although this thesis does not produce such a
system, it argues that DD is a good foundation on which to develop such systems.

2.2.3 Graph Software
We next review the properties of the different graph software that the participants use.

Software Types

Software for Querying and Performing Computations: We asked the participants which
types of graph software they use to query and perform computations on their graphs. The
choices included 5 types of software from Table 2.1 as well as distributed data processing
systems (DDPSes), such as Apache Hadoop and Spark, relational database management systems
(RDBMSes), and linear algebra libraries and software, such as BLAS and MATLAB. Table 2.10
shows the exact choices and responses: 84 participants answered this question and each selected
2 or more types of software. We highlight 2 interesting observations:

• Popularity of Graph Database Systems: The most popular choice was graph database systems.
We suspect this is partly due to their increasing popularity and partly due to the inherent

17

Software Total R P A

Graph Visualization 55 22 33 15
Build / Extract / Transform 14 8 6 0
Graph Cleaning 5 1 4 2
Synthetic Graph Generator 4 3 1 49
Specialized Debugger 2 0 2 0

Table 2.11: Software used for non-querying tasks.

bias in the participants we recruited—as explained in Section 2.1.1, more of them came from
users of graph database systems.
• Popularity of RDBMSes: 21 participants (6 researchers and 15 practitioners) chose RDBMSes.
We consider this number high given that we did not recruit participants from the mailing
lists of any RDBMS. Interestingly, 16 of these 20 participants also indicated using graph
database systems. From our survey, we cannot answer what the participants used RDBMSes
for. It is possible that they use an RDBMS as the main transactional storage and a graph
database system for graph-specific tasks such as traversals.

Software for Non-Querying Tasks: We asked the participants which types of graph software,
possibly an in-house one, they use for tasks other than querying graphs. Table 2.11 shows the
choices and the responses. We highlight one interesting observation:

• Importance of Visualization: Visualization software is, by a large margin, the most popular
type of software participants use among the 5 choices. This clearly shows that graph
visualization is a very common and important task. Aswe discuss in Section 2.2.4, participants
also indicated graph visualization as one of their most important challenges.

2.2.4 Practical Challenges
We asked the participants 2 questions about the challenges they face when processing their
graphs. First, we asked them to indicate their top 3 challenges out of 10 choices we provided.
Table 2.12 shows the choices and the participants’ responses. Second, we asked them to state their
biggest challenge in a short-answer question. Three major challenges stand out unequivocally
from the responses:

• Scalability: The ability to process large graphs is the most pressing challenge participants
face. Scalability was the most popular choice in the first question for both researchers and
practitioners. Moreover, it was the most popular answer in the second question where 13
participants reiterated that scalability is their biggest challenge. The specific scalability

18

Challenge Total R P

Scalability (i.e., software that can process larger graphs) 45 20 25
Visualization 39 17 22
Query Languages / Programming APIs 39 18 21
Faster graph or machine learning algorithms 35 19 16
Usability (i.e., easier to configure and use) 25 10 15
Benchmarks 22 12 10
More general purpose graph software (e.g., that can process
offline, online, and streaming computations)

20 9 11

Graph Cleaning 17 7 10
Debugging & Testing 10 2 8

Table 2.12: Graph processing challenges faced by participants.

challenges that the participants mentioned include inefficiencies in loading, updating, and
performing computations, such as traversals, on large graphs.
• Visualization: Perhaps more surprisingly, graph visualization emerges as one of the top
3 graph processing challenges, as indicated by 39 participants in the first question and 1
participant in the short-answer question.
• Query Languages and APIs: Query languages and APIs present another common graph

processing challenge, as indicated by 39 participants in the first question and 5 participants in
the short-answer question. The specific challenges mentioned in the short-answer responses
include expressivity of query languages, compliance with standards, and integration of APIs
with existing systems.

2.3 Applications from Whitepapers

2.3.1 Methodology
In order to understand the popular application areas and fields using graph software, we surveyed
the whitepapers of software vendors. Whitepapers are documents that software vendors provide,
often for marketing purposes, to give information about the use cases of their products. In
our case, we consider whitepapers to be any document found on a software vendor’s official
website categorized as a whitepaper, a use case, a case study, or a scenario. From the initial
software products in Table 2.1, only four graph database systems, specifically ArangoDB, Neo4j,
OrientDB, and Sparksee had whitepapers. To extend our review, we add the whitepapers of four

19

RDF engines that were not in our initial list: AllegroGraph [3], AnzoGraph [4], GraphDB by
Ontotext [25], and Stardog [42]. We note that we only found whitepapers for graph database
systems and RDF engines. In the end, we reviewed 89 whitepapers.

2.3.2 Applications
We labeled each whitepaper with a high-level application category and the field of industry of
the customer in the case study. Table 2.13 shows the different applications, the fields of industry
in which the application was covered, and the number of whitepapers from graph databases and
RDF systems that discussed the project. We found a total of 12 applications described in the
whitepapers of graph databases and 5 applications in the whitepapers of RDF systems. As seen
in the table, there is an overlap of the applications across both types of systems.
The three most popular applications were as follows:

• Data Integration: 44 whitepapers discussed primarily some data integration task that con-
structs a central, highly heterogeneous graph from multiple sources. Data integration was
also referred to asmaster data management or knowledge graph creation by some whitepapers.
Many of these 44 whitepapers, as well as many whitepapers that discussed an initial data inte-
gration step, emphasized that customers found data integration easier in the semi-structured
graph models than in structured relational tables.
• Personalization & Recommendations: The second most popular application was the use of
graph-based application data to personalize user interactions and provide better recom-
mendations for customers. For example, one whitepaper described an e-commerce website
that created a graph representation of the behavior of online shoppers and the interactions
between customers and products to help make new product recommendations [2].
• Fraud & Threat Detection: The third most popular application was the detection of fraud and
threats in various businesses. For example, one whitepaper described the use of graphs to
detect financial fraud in banks by looking for cycles in the graph formed after linking bank
accounts, personal details, and financial transactions [17].

2.4 Applications from Interviews

2.4.1 Methodology
Whitepapers give an overview of the important applications using different software, but often
contain very high-level and non-technical marketing language. To understand some of the
applications using graphs in more depth, we invited the participants of our online survey for an

20

Application Example Fields GDB RDF Total

Data Integration Building an ontology by integrating
multiple heterogeneous biomedical
data sources

Aerospace, Art & Culture & Her-
itage, Education, Entertainment,
Finance, Food & Cooking, Gov-
ernment, Health & Life Sciences,
Intelligence & Law Enforcement,
IT, Journalism, Marketing, Retail,
Social Media, Toys & Figurines

23 21 44

Personalization & Rec-
ommendation

Recommending products on an e-
commerce platform

Entertainment, Finance, Health
& Life Sciences, Hospitality &
Travel, IT, Manufacturing, Mar-
keting, Media, Music, Retail, So-
cial Media, Telecommunication

19 5 24

Fraud & Threat Detec-
tion

Detect cybercrime by searching for
anomalous patterns

Finance, Government, Insurance,
Media, Retail

9 1 10

Risk Analysis & Com-
pliance

Risk reporting by banks to comply
with government regulations.

Finance, Health & Life Sciences,
IT, Supply Chain & Logistics

2 3 5

Identity & Access Man-
agement

Monitor direct and indirect owners
of businesses for financial analysis

Insurance, IT, Telecommunica-
tion

4 0 4

Infrastructure Manage-
ment & Monitoring

Manage cascading failures by track-
ing server interdependencies

Intelligence & Law Enforcement,
IT

3 0 3

Delivery & Logistics Routing and tracking delivery parcels Retail, Supply Chain & Logistics 2 0 2

Social Network Analy-
sis

Find the most viral users with maxi-
mum reach to other users

Social Media 2 0 2

Other Applications Natural language question answer-
ing, Call graph analysis, Code ana-
lysis, Drug discovery, Traffic route
recommendation

IT, Telecommunication, Traffic
Management

3 2 5

Table 2.13: Application areas and example uses of graphs in various fields described in graph
software whitepapers.

21

in-person interview. 33 participants had provided us with their email addresses and 4 of them
agreed. To extend our interviews, we reached out to several of our contacts in major software
companies and graph vendors. We did 4 additional in-person interviews; 2 developers and 2
users of graph processing software in major enterprises.
The occupations of our interviewees were as follows:

• Two IT consultants to several large enterprises on graph technologies.
• A developer of graph processing systems at Alibaba.
• A developer of graph processing systems at Siemens.
• A principal scientist at Amazon working on knowledge graphs.
• Engineers from a contact management company called FullContact [20], an electric utility
company called State Grid [43], and a startup called OpenBEL [33] that develops data
publishing tools for biologists.

We led the interviews with an open-ended question asking the interviewee to walk us through a
concrete business application that uses graph data. The developers explained the applications
of their customers. We asked questions about the details of the graph data, the computations
they run, and the processing software they use in their applications. In addition, we asked if the
interviewees used graph visualization and performed incremental computations on their graphs.

2.4.2 Overall Observations
We make four observations:

• None of the applications that used graphs representing transactional business data used
a graph database or an RDF store as the main system of record. In each case, a relational
system was the main system of record and the transactional data was replicated to a graph
software for the application to use. This gives a sense of where graph databases and RDF
systems are in the IT ecosystem of our interviewees’ enterprises.
• Interviewees mentioned visualizing graphs in data exploration, debugging, query formula-

tion, and as a presentation tool within the enterprise, e.g., to show a manager the benefits of
modeling an application data as a graph.
• Several interviewees mentioned processing highly dynamic graphs and buffering a window
of several hours or days of these graphs. However, the computations in those applications
were batch computations. For example, in one case, 3 days of business data would be
copied over into a graph software to search for subgraph patterns. None of the interviewees
mentioned using a readily available system with incremental computation capabilities for
these computations. All of the solutions were custom-made solutions.

22

Overall there were similarities between the applications described by our interviewees and those
from the whitepapers but we also discovered some new applications. We cover one such new
application called contingency or perturbation analysis in the next section. This application will
be one of the motivating applications for the research presented in Chapter 4.

2.4.3 Contingency Analysis of Power Failures at StateGrid
Contingency analysis is a preemptive analysis done on an electric power grid to check the
severity of different possible failures. Our interviewee from StateGrid described a contingency
analysis system designed for the grid in one Chinese province. In contrast to other applications
which often use one large graph, this application, logically, uses a very large number of small
graphs. Interestingly, these graphs are very similar to each other and the application repeats the
same computation on each graph in parallel. We describe the input graph, the computation, and
the software used by the application.

Input Graph: The application has a base graph that represents the components of the power grid
using the abstract bus-branch standardized model [92]:

• Vertices correspond to buses that represent electrical nodes, which can include power system
elements like substations, loads, and generators. Operational parameters such as bus ID, load
power, voltage magnitude, voltage angle, self-impedance, and power injection are stored as
vertex attributes. There are approximately 2.5K vertices.
• Edges correspond to branches that represent electrical paths for current flows, such as
transmission lines and transformers. Operational parameters such as power flow, line
impedance, and transformer turn ratio are stored as edge attributes. There are approximately
3K edges.

This is a dynamic graph. The attributes on the edges change every few seconds and the topology
changes every few minutes, e.g., when a new node is added or removed.

Computation and Software Used: To determine how the failure of a component affects the flow of
power in the grid, the application generates a few thousand logical derived graphs from the base
graph. Each derived graph perturbs the base graph slightly, say by removing a single edge, to
simulate a potential failure. For each derived graph𝐺′, the application formulates some power
equations. We do not provide the details of these equations, but an overview can be found
in reference [170]. In a simplified form, readers can think of these as equations of the form
𝐴𝑥 = 𝐵, where 𝐴 and 𝐵 are power-related matrices, each row of which represents information
about the neighborhood of a vertex in the derived graph. These equations are solved in parallel
using matrix factorization. We note that there is a significant potential to reuse the computation

23

results across the derived graphs, as the graphs are very similar. However, the solution our
interviewee described does not share any computation and runs the same computation over
different snapshots separately. The base graph is stored in Tigergraph [44]. Derived graphs
are logical and not explicitly stored but their corresponding matrices A and B are read from
Tigergraph in parallel and moved to a custom code that solves the power flow linear algebra
equations. The solution 𝑥 ’s are analyzed to assign severity values to each derived graph and an
alert is raised for abnormally high severity values, indicating the system has found a potential
failure case, which could have severe outcomes.

2.5 Related Work
To the best of our knowledge, our survey is the first study that has been conducted across
users, and of a wide spectrum of graph technologies and various public information about
these technologies, to understand graph datasets, computations, and software that is in use, the
business applications that use graphs, and the challenges users face.

Several surveys in the literature have conducted user studies to compare the effectiveness of
different techniques used to perform a particular graph processing task, primarily in visualiza-
tion [65, 101] and query languages [106, 135, 137]. Additionally, several software vendors have
conducted surveys of their users to understand how their software is used to process graphs.
Some of these surveys are publicly available [1, 6, 10]. However, these surveys are limited to
studying a specific software product.

There are also numerous surveys in the literature studying different topics related to graph
processing. Examples include surveys on query languages for graph database systems and RDF
engines [54, 95, 102], graph algorithms [49, 100, 110, 164], graph processing systems [57, 120], and
visualization [79, 161]. These surveys do not study how users use the technologies in practice.

2.6 Summary
Managing and processing graph data is prevalent across a wide range of fields in research and
industry. We surveyed 89 users, interviewed 8 users, and reviewed user emails, code repositories,
and whitepapers of a large suite of software products. The participants’ responses and our review
provide useful insights into the types of graphs users have, the software and computations users
use, the business applications they develop, and the major challenges users face when processing
their graphs. Some of our findings have motivated the research that will be presented in the
following chapters. Specifically, the survey results indicate that many users have applications
that perform incremental computations on very large and dynamic graphs. Yet, there are also

24

no readily available systems that can be easily used for developing these applications. The core
technical capability of systems that can perform incremental computations is the ability to share
computation across different snapshots of a graph. The contingency analysis application that
we reviewed, although not an application on a dynamic graph, can also benefit from the same
capability of sharing computations across snapshots. The use of DC and DD systems to provide
this core capability to support such applications efficiently and at scale is the motivation for the
technical research conducted in this thesis.

25

3
Differential Computation

In this chapter, we cover the background of the following topics:

• The dataflow abstraction we assume. Here we also introduce the multi-dimensional times-
tamps that identify different points in time in dataflows and how recursive loops that run
until a fixed point are constructed.
• The DC incremental maintenance technique.
• The iterative frontier expansion subroutine, which is the common dataflow computation
that is used in several popular graph computations, including those used in this thesis.
• The Timely Dataflow and Differential Dataflow systems, on top of which the reference
implementation of DC is based.

For reference, the details of the background we give on dataflows, timestamps, and DC can be
found on the original publications on DC [47, 124].

3.1 Dataflows and Timestamps
We assume that computations are expressed as dataflows that consist of operators that consume
one or more input collections, and output a collection that in turn can be an input to other
operators. Collections can contain any generic data 𝑑 , where usually 𝑑 = (key, value). But
as explained momentarily, they are modeled in an extended manner in DC. We assume that
operators work on partitions of collections, execute independently on each key, and produce
an output, as done in standard dataflow-based data processing systems, such as Spark [166] or

26

(i, j) ...

EgressIngress
Op1 Op1 Opl

CIN COUT

(i, j)

(i, j, 0)
(i, j, 1)
(i, j, 2)

(i, j, 0)
(i, j, 1)
(i, j, 2)

(i, j, 1)
(i, j, 2)

Figure 3.1: Example loop within a dataflow. Ingress and egress operators respectively add and
remove the last dimension of the timestamps inside the loop.

MapReduce [80]. Some operators consume “external” collections that are input from outside of
the dataflow and can change over time. Different points in time in the computation are identified
by timestamps. We assume that a central scheduler analyzes the input and output connections
in the dataflow and ensures that all operators in a dataflow make progress by processing their
inputs. Once there are no operators to execute, the dataflow has finished its computation.

Initially, the timestamps for the source operators that consume data from external collections
start at 𝑡 = (0). This first dimension of the timestamps is incremented by one each time the
user updates external collections. New dimensions to the timestamps are automatically added
within loops, the constructs within which recursive computations execute. The outputs of loops
are fed back into the loop as inputs until a fixed point is reached. Figure 3.1 shows an example
loop construct of a dataflow. The loop takes collection C𝐼𝑁 as input and outputs C𝑂𝑈𝑇 . Loops
start with an Ingress operator and ends with an Egress operator. Ingress extends the time (i, j) by
adding a new dimension with its value initialized to 0, i.e., the time in the inner loop starts at (i,
j, 0). In the loop, the output of the loop is fed back into the loop. The actual implementation has
two other operators that we omitted from the figure for simplicity: a Feedback operator that
duplicates the output of the last operator (the one before Egress) and a Concat operator that
combines Feedback’s output with the original input from Ingress to give to the first operator of
the loop. In Figure 3.1, the loop runs 3 times, at timestamps (i, j, 0), (i, j, 1), and (i, j, 2), before
a fixed point is reached. For each output, Egress removes the last dimension, such that the
timestamp for the operator after Egress, i.e., to the right of Egress outside of the loop, executes
at (i, j) again. Note that the fact that time is at (i, j) indicates that the loop shown in Figure 3.1 is
a nested loop within another loop that is running at iteration j and the external input collections
have received i updates.

To summarize, time “moves forward” in two ways. First, time moves within loop bodies
as explained above. Second, the application developer can notify the scheduler that some new
inputs have arrived at the dataflow. This increments the very first dimension of the timestamps
by 1. For example, the next time external collections are updated, time would move to (𝑖+1, 0). In

27

practice, this operation is done by the application managing the dataflow by externally signaling
the dataflow scheduler that new inputs are available at (𝑖+1).

The dataflow abstraction we covered is very general and can model both batch computations
with arbitrarily nested loops, as well as streaming computations. That is, as long as new data
arrives at the system, the first dimension can continue incrementing in an unbounded manner.

3.2 Differential Computation (DC)
DC is a very general incremental maintenance technique that can maintain the outputs of any
arbitrary computation that can be modeled in this dataflow model. There are two components to
how DC works. First, DC stores every input and output collection for each operator in a dataflow
in each timestamp that has been executed in the form of differences. Second is theDCmaintenance
procedure which consists of two rules that decide when an operator Op in the dataflow should
re-execute to maintain Op’s output collection when external inputs to the dataflow change. We
cover each component in turn following the overview of DC from reference [52].
Differences: Instead of keeping a copy of each collection 𝐶𝑡 at each timestamp 𝑡 in the
computation, DC stores these values compactly as a set of differences 𝛿𝐶𝑡 , such that the version
of a collection at any timestamp can be reconstructed. Differences extend data tuples 𝑑 =

(key, value) to triples as ((key, value), 𝑡∗, Δ), where𝑇𝑖 is the timestamp and Δ is the multiplicity
of 𝑑 at time 𝑇𝑖 , normally represented by signed integers. For external collections, +Δ and -Δ
represent insertions or deletions to the base data collections. For intermediate collections that
are generated by the operators, the multiplicities may not have a clear interpretation. We will
give examples of these non-obvious differences later in this thesis.

Collections support multiset operations. Specifically, the union of two collections 𝐶1 +𝐶2,
also called the consolidate operation, adds the multiplicities of each unique ((key, value), 𝑇𝑖)
tuple present in both 𝐶1 and 𝐶2. Tuples with 0 multiplicity are removed. 𝐶1 −𝐶2 is also a union
operation, except the multiplicity of the differences in 𝐶2 is first flipped to the opposite sign.

The +Δ or -Δ assigned to differences ensure that the union of all collections 𝛿𝐶𝑖 prior to and
including timestamp 𝑡 gives exactly 𝐶𝑡 . Consider an operator with one input and one output
collection, 𝐼 and 𝑂 , respectively. DC ensures that the following equations hold for the operator:

𝐼𝑡 =
∑︁
𝑠≤𝑡

𝛿𝐼𝑠 ⇒ 𝛿𝐼𝑡 = 𝐼𝑡 −
∑︁
𝑠<𝑡

𝛿𝐼𝑠 (3.1)

𝑂𝑡 = Op(
∑︁
𝑠≤𝑡

𝛿𝐼𝑠) ⇒ 𝛿𝑂𝑡 = Op(
∑︁
𝑠≤𝑡

𝛿𝐼𝑠) −
∑︁
𝑠<𝑡

𝛿𝑂𝑠 (3.2)

28

DC uses Equations 3.1 and 3.2 to compute which differences should be stored in 𝛿𝐼𝑡 and 𝛿𝑂𝑡
for each timestamp. These differences are logically kept for each timestamp that the dataflow has
executed at. Note that for many timestamps, many (key, value) pairs will have empty differences
and do not need to be stored. These differences are stored in an index and different versions of a
collection at different timestamps 𝑡 can be constructed by DC’s maintenance procedure when
needed, as explained next.
DC’s Maintenance Procedure Let 𝐶𝑘𝑡 indicate the differences in 𝐶𝑡 ’s partition for key 𝑘 . DC
reruns an operator Op using Equation 3.2 according to two rules:

(i) Direct rerunning rule: If Op’s input 𝐼 has differences at timestamp 𝜏 for a key 𝑘 , i.e., 𝛿𝐼𝑘𝜏
is non-empty, DC first reruns Op on key 𝑘 at 𝜏 , i.e., DC reassembles 𝐼𝑘𝜏 =

∑
𝑡≤𝜏 𝛿𝐼𝑘𝑡 , then

executes Op(𝐼𝑘𝜏), which computes a new 𝑂𝑘𝜏 . DC then computes the difference set 𝛿𝑂𝑘𝜏 as
𝛿𝑂𝑘𝜏 = 𝑂𝑘𝜏 −

∑
𝑡<𝜏 𝛿𝑂

𝑘
𝑡 .

(ii) Upper bound rule: DC may also rerun Op at particular timestamps 𝜔 , even if Op’s inputs
have no changes at 𝜔 . Specifically, DC finds all timestamps 𝑡𝑖 ≮ 𝜏 in which Op’s input has
differences for key 𝑘 and reruns Op on timestamps 𝜔 that are in the “join”, i.e., least upper
bound, of 𝑡𝑖 and 𝜏 . For example, if DC reran Op at 𝜏=(1, 2) and 𝑘 has input differences at
𝑡𝑖=(0, 5), then DC will also rerun Op at 𝜔=(1, 5). Note that because timestamps may be
multi-dimensional, we use the symbol ≮ instead of >. Multi-dimensional timestamps are
only partially, and not fully, ordered and DC uses this property to correctly operate on
nested and iterative computations.

Reference [47] formally proves that applying these two rules, to decide which operators to rerun
and compute differences for, can maintain any dataflow computation correctly.

Although based on very simple principles, DC is a general incremental maintenance tech-
nique. Specifically, since it can maintain arbitrary dataflows with arbitrary loop structures, it
is suitable for maintaining complex dynamic graph computations, which can be singly and
even doubly nested. That is why it is a promising technique to be the algorithmic foundation
of systems built to support applications that operate on dynamic graphs. DC can be efficient
because often, upon updates to a graph, no differences will be computed for many keys’ inputs.
For example, consider running a connected components algorithm on a dynamic graph. When
a small set of updates is applied to a graph, it may affect only a small set of vertices, which
would be the keys in a dataflow, and DC can automatically detect and localize the changes,
without rerunning the entire computation. In the next section, we give several example dataflow
computations and how DC would maintain these computations upon updates, demonstrating
the effectiveness of DC. At the same time, if updates to a graph lead to many changes, then DC
may need to rerun the operators in a dataflow for many keys, which would be very inefficient.

29

Edges Final
Vertex Labels

Join &
Message Reduce

Vertex Labels

Figure 3.2: The generic IFE dataflow that appears as a subroutine in the graph computations
covered in this thesis.

If we model the updates to a graph as snapshots, intuitively DC is an efficient technique if the
input and output collections that would be generated across different snapshots are similar. This
can be equivalently stated as follows: DC can be an efficient technique if the computational
footprint of a dataflow, as captured by the state of the collections that it generates, is similar
across different snapshots of its external input collections.

3.3 Iterative Frontier Expansion Dataflow (IFE)
We next describe the IFE dataflow, which is a common subroutine in the graph computations
that will be used in this thesis. IFE is the dataflow expression of the common vertex-centric
paradigm that is commonly used to parallelize graph computations. The vertex-centric paradigm
works as follows. Initially, each vertex in an input graph starts with a label. Then, iteratively,
vertices aggregate their neighbors’ labels and compute a new label for themselves until a fixed
point of vertex labels is reached. Depending on the computation, sometimes incoming and
sometimes outgoing neighbors could be used to aggregate vertex labels. Figure 3.2 shows this
paradigm as a dataflow. In the dataflow, a Join and Message (henceforth Join) and a Reduce
operator are in a loop. In this figure and the rest of the dataflow figures we use in this thesis, we
omit the Egress and Ingress operators for simplicity. Join implements the logic of each vertex
𝑣 “messaging” its neighbors with 𝑣 ’s label. Reduce implements the logic of aggregating. IFE is
a singly-iterative computation, i.e., contains a single loop. Therefore, the timestamps within
the IFE loop are 2-dimensional, where the first dimension identifies the number of updates that
happen to the graph and the second dimension identifies the iterations in the loop. We next
give several examples of IFE dataflows implementing specific graph computations.

3.3.1 Single-source Shortest Paths (SSSP)
We begin with the Bellman-Ford [78] algorithm to compute SSSP on a possibly weighted directed
graph implemented as a dataflow computation. We also use this example to simulate DC. In this
computation, a source 𝑠 is identified and starts labeling itself with value 0, while all other vertices

30

Root
Output

Edges
Join Reduce

Loop L

E

L

J R

(a) Dataflow of the Bellman-Ford SSSP algorithm.

s w1
2 w2

2 w3
1 2

10

5

z11

5

zdk

5 5

z1k zdk

1

billions of
other edges

...

...

...

(b) Edges (E).

Figure 3.3: Example dataflow for computing SSSP and an input graph.

label themselves with∞. These labels indicate the latest distances found to each vertex. Then
iteratively until a fixed point, each vertex 𝑣 takes the minimum of each of its in-neighbor𝑤 ’s
latest distance plus the weight on the𝑤→𝑣 edge, and updates its own latest distance. The SSSP
dataflow is shown in Figure 3.3a. Join takes two input collections, Edges (E) and Distances (L),
and outputs the messages between vertices as collection J. Reduce aggregates the join output
and produces collection R, which is fed back into the loop as L.

Now consider running this dataflow on the graph shown in Figure 3.3b. Vertex 𝑠 in the
graph is the source vertex. Consider further the graph being updated first by changing (𝑠,𝑤1)’s
cost from 2 to 1 and then (𝑠,𝑤2)’s cost from 10 to 1. Table 3.1 shows the differences that
would be generated by DC. The columns represent graph snapshots and the rows represent IFE
iterations. The input graph contains billions of edges among the 𝑧 𝑗𝑘 vertices, and we summarize
the difference sets relevant to them as 𝛿𝑍𝐸 , 𝛿𝑍𝐷 , and 𝛿𝑍𝑀 , without showing the individual
differences between them in Table 3.1. Moreover, we only start with 𝛿𝐿0,0 = [(𝑠, 0, +1)] and
omit all other vertices—the absence of a label implies∞. Now consider that 𝛿𝐿(0,1) contains a
(𝑤1, 2, +1) capturing the fact that after the first messaging between vertices,𝑤1’s latest known
distance improves from (an implicit)∞ to 2. Similarly, consider 𝛿 𝐽(1,0) , i.e., at the first iteration
after the graph has been updated to 𝐺1. There are differences (𝑤1, 2,−1) and (𝑤1, 1, +1), which
capture the change in the messages “sent” from 𝑠 to𝑤1 in the very first iteration, i.e., iteration 0,
of the SSSP computation, reflecting the change in edge weight between 𝑠 and𝑤1 in the graph.

Importantly, observe that maintaining computations differentially can be very efficient.
Indeed, for graph snapshots 𝐺1 and 𝐺2, Table 3.1 shows all of the merely 30 updates that DC
generates, even though the graph contains billions of edges. This is because DC automatically
notices that the results of computations working on partitions related to vertices 𝑧𝑖 𝑗 effectively
could not have changed after the updates. As a result, DC does not rerun any computation for
those vertices. Therefore, DC effectively shares virtually the entire SSSP computation, except
for generating and keeping track of minor differences in this example billion-scale graph.

31

𝐺0 𝐺1 𝐺2

0

𝛿𝐸
(𝑠, (𝑤1, 2), +1), (𝑠, (𝑤2, 10), +1),
(𝑤1, (𝑤2, 2), +1), 𝑑𝑍𝐸

(𝑠, (𝑤1, 2),−1),
(𝑠, (𝑤1, 1), +1)

(𝑠, (𝑤2, 10),−1),
(𝑠, (𝑤2, 1), +1)

𝛿𝐿 (𝑠, 0, +1) ∅ ∅
𝛿 𝐽 (𝑤1, 2, +1), (𝑤2, 10, +1), 𝑑𝑍𝑀 (𝑤1, 2,−1), (𝑤1, 1, +1) (𝑤2, 10,−1), (𝑤2, 1, +1)

1

𝛿𝐸 ∅ ∅ ∅
𝛿𝐿 (𝑤1, 2, +1), (𝑤2, 10, +1), 𝑑𝑍𝐷 (𝑤1, 2,−1), (𝑤1, 1, +1) (𝑤2, 10,−1), (𝑤2, 1, +1)
𝛿 𝐽 (𝑤2, 4, +1), (𝑤3, 12, +1), 𝑑𝑍𝑀 (𝑤2, 4,−1), (𝑤2, 3, +1) (𝑤3, 12,−1), (𝑤3, 3, +1)

2

𝛿𝐿 (𝑤2, 10,−1), (𝑤2, 4, +1), (𝑤3, 12, +1), 𝑑𝑍𝐷 (𝑤2, 4,−1), (𝑤2, 3, +1) (𝑤2, 10, +1), (𝑤2, 3,−1),
(𝑤3, 12,−1), (𝑤3, 3, +1)

𝛿 𝐽 (𝑤3, 12,−1), (𝑤3, 6, +1), 𝑑𝑍𝑀 (𝑤3, 6,−1), (𝑤3, 5, +1) (𝑤3, 5,−1), (𝑤3, 12, +1)

3

𝛿𝐿 (𝑤3, 12,−1), (𝑤3, 6, +1), 𝑑𝑍𝐷 (𝑤3, 6,−1), (𝑤3, 5, +1) (𝑤3, 5,−1), (𝑤3, 12, +1)
𝛿 𝐽 𝑑𝑍𝑀 ∅ ∅

· · · rest contains 𝑑𝑍𝐷 , 𝑑𝑍𝑀 rest is ∅ rest is ∅
k · · · · · · · · ·

Table 3.1: SSSP differences for the example graph. 𝛿𝐸 = ∅ and is omitted after iteration 0.

3.3.2 Multiple Pair Shortest Path (MPSP)
The MPSP algorithm finds the shortest paths between multiple (𝑠𝑟𝑐, 𝑑𝑠𝑡) pairs. Figure 3.4 shows
the dataflow for MPSP implementing the bidirectional variant of the Bellman-Ford algorithm.
The 𝑠𝑟𝑐 and𝑑𝑠𝑡 vertices from all pairs independently start with a label 0. Iteratively, the minimum
distance is propagated to the neighbors from both the forward and background directions, along
with metadata identifying the query pair to which a propagated distance belongs. Pairs whose
𝑠𝑟𝑐 and 𝑑𝑠𝑡 meet are filtered out as output, and the iterations continue until either all pairs
have been matched or there are no more edges left to process, indicating that unmatched pairs
do not have a path between them. Note that the dataflow for MPSP contains 3 pairs of Join
and Reduce operators instead of the single pair in IFE. However, the semantics of the Join and
Reduce pair in the IFE that we rely on in this thesis remain the same for the 3 pairs. Similar to
SSSP, this computation also uses 2-dimensional timestamps.

3.3.3 Weakly Connected Components (WCC)
The WCC algorithm finds all subgraphs of a given graph, such that each vertex in a subgraph is
reachable from every other vertex by some undirected path. The WCC IFE is very similar to the
SSSP IFE except the graph is undirected and edges are not weighted. We omit its dataflow figure.
Briefly, vertices start by labeling themselves with their own IDs and iteratively update their

32

mapEdges

Join Reduce

Reverse Edges

Loop C

(src, dst)

map

src roots

dst roots

map

Join Filter
Active

Join Join Reduce

Reduce Join Join

forward

backward

Reduce

Reduce

Output

Figure 3.4: Example dataflow for computing MPSP.

labels to the minimum (Reduce operator) of their labels and the latest labels of their neighbors.
When the computation reaches a fixed point, each vertex 𝑣 is identified with the minimum vertex
ID in 𝑣 ’s weakly connected components. Similar to SSSP and MPSP, this computation also uses
2-dimensional timestamps.

3.3.4 Strongly Connected Components (SCC)
The SCC algorithm finds the subgraphs of a given graph, such that each vertex in a subgraph
is reachable from every other vertex by a directed path. We describe a variant of the Coloring
algorithm by Orzan [132] to compute the SCCs of a directed graph 𝐺 . Our goal is to present
an example computation that requires 3-dimensional timestamps. In this variant of Coloring,
the algorithm removes the cross-SCC edges from the graph iteratively until no edges can be
removed. When the computation ends, only the edges that are local to an SCC remain. This will
be based on the forward and backward “coloring” iterations. First, using only the forward edges
of 𝐺 , a WCC-like label propagation computation assigns labels to each vertex. If two adjacent
vertices 𝑢→𝑣 get different labels, then the 𝑢→𝑣 is removed. Then using only the transpose of
the edges in 𝐺 , the same computation is repeated. These forward-backward coloring phases
are repeated until we can no longer remove any edges. If one prefers to assign each vertex a
label that identifies its SCC, a final label propagation, similar to the WCC computation, can be
applied after the cross-SCC edge removal.

The dataflow of this computation is shown in Figure 3.5a. Recall that we identify loops with
a box. In the figure, the large box corresponds to the outer loop that continues the forward-
backward label propagations until there are no edge removals. Timestamps at the operators

33

Roots

map

map
E

Edges

Join Reduce
LF

C

map

Reverse Edges

Roots

Join Reduce
FJoin

Filter

LR RJoin
Filter Output

E

Loop LF Loop LR

Loop C

(a) Dataflow of the SCC Coloring algorithm.

v2

v1

v4 v3

(b) Edges (E).

Figure 3.5: Example dataflow for computing SCCs and an input graph.

outside the large box are 1-dimensional, corresponding only to graph versions. Timestamps
at the operators inside the large box but outside of the nested inner boxes are 2-dimensional.
Finally, the operators inside the nested inner boxes are 3-dimensional (𝑖, 𝑗, 𝑘), where 𝑖 is the
graph version𝐺𝑖 , 𝑗 is the current forward-backward pass 𝑃 𝑗 , and 𝑘 is the IFE iteration 𝐼𝑘 . The
inner boxes correspond to the loops of the forward and backward label propagations. Consider
running this dataflow on the input graph shown in Figure 3.5b. In the graph, the black edges
are the original edges for graph 𝐺0 and the green 𝑣4→𝑣1 edge is an insertion that is performed
to obtain graph 𝐺1. For reference, Tables 3.2a and 3.2b show the differences generated when
executing the SCC dataflow on the 𝐺0 and 𝐺1, respectively. The columns in each table now
represent the forward-backward passes. The differences for the IFE iterations are not shown.
Observe that the 4 output differences 𝛿𝑅 for 𝐺0 are present in two passes 𝑃0 and 𝑃1. The
final output for 𝐺0 can be computed as 𝑅0 = consolidate([(𝑣1, 𝑣2, +1), (𝑣2, 𝑣1, +1), (𝑣4, 𝑣3, +1),
(𝑣4, 𝑣3,−1)]) = [(𝑣1, 𝑣2, +1), (𝑣2, 𝑣1, +1)], which are the two edges belonging to the single SCC
in 𝐺0. Similarly, the output for 𝐺1 is the union of all 8 differences in 𝛿𝑅 for both 𝐺0 and 𝐺1,
resulting in the 4 edges belonging to the two SCCs in 𝐺1.

3.4 A Note on the Differential Implementation of Operators
We next discuss how certain differential operators are implemented. One can imagine a DC
implementation that takes operators as a black box, simply monitors the inputs and outputs of
the operators, and applies the maintenance procedure of DC using Equation 3.2. For instance,
the Reduce operator operates on a single input 𝛿 𝐽𝑡 and produces output 𝛿𝑅𝑡 by following the
equation. However, this can be inefficient, as the output differences of some operators can be
computed more efficiently. In particular, we note the following two specializations:

34

𝑃0 𝑃1 𝑃2

𝛿𝐶
(𝑣1, 𝑣2, +1), (𝑣1, 𝑣4, +1),
(𝑣2, 𝑣1, +1), (𝑣4, 𝑣3, +1)

(𝑣1, 𝑣2, +1), (𝑣1, 𝑣2,−1), (𝑣1, 𝑣4,−1), (𝑣2, 𝑣1, +1),
(𝑣2, 𝑣1,−1), (𝑣4, 𝑣3, +1), (𝑣4, 𝑣3,−1) (𝑣4, 𝑣3,−1)

<𝐿𝑜𝑜𝑝 𝐿𝐹> 3 inner IFE iterations with timestamps 𝑡 = (𝐺0, 𝑃 𝑗∈[0,3) , 𝐼 1𝑘∈[0,3)) to compute forward edges labels.

𝛿𝐿𝐹
(𝑣1, 1, +1), (𝑣2, 1, +1),
(𝑣3, 1, +1), (𝑣4, 1, +1) (𝑣4, 1,−1), (𝑣4, 4, +1), (𝑣3, 1,−1), (𝑣3, 3, +1) ∅

𝛿𝐹
(𝑣1, 𝑣2, +1), (𝑣2, 𝑣1, +1),
(𝑣1, 𝑣4, +1), (𝑣4, 𝑣3, +1) (𝑣1, 𝑣4,−1), (𝑣4, 𝑣3,−1) ∅

<𝐿𝑜𝑜𝑝 𝐿𝑅> 3 inner IFE iterations with timestamps 𝑡 = (𝐺0, 𝑃 𝑗∈[0,3) , 𝐼 2𝑘∈[0,3)) to compute reverse edges labels.

𝛿𝐿𝑅
(𝑣1, 1, +1), (𝑣2, 1, +1),
(𝑣3, 3, +1), (𝑣4, 3, +1) (𝑣4, 3,−1), (𝑣4, 4, +1) ∅

𝛿𝑅
(𝑣1, 𝑣2, +1), (𝑣2, 𝑣1, +1),
(𝑣4, 𝑣3, +1) (𝑣4, 𝑣3,−1) ∅

(a) Differences for 𝐺0.

𝑃0 𝑃1 𝑃2

𝛿𝐶 (𝑣4, 𝑣1, +1) (𝑣1, 𝑣4, +1), (𝑣4, 𝑣1, +1), (𝑣4, 𝑣1,−1), (𝑣4, 𝑣3,−1) (𝑣4, 𝑣3, +1)

<𝐿𝑜𝑜𝑝 𝐿𝐹> Elided inner iterations with timestamps 𝑡 = (𝐺1, 𝑃 𝑗∈[0,3) , 𝐼 1𝑘∈[0,3)) to compute forward edges labels.
𝛿𝐿𝐹 ∅ (𝑣4, 1, +1), (𝑣4, 4,−1) ∅
𝛿𝐹 (𝑣4, 𝑣1, +1) (𝑣1, 𝑣4, +1) ∅

<𝐿𝑜𝑜𝑝 𝐿𝑅> Elided inner iterations with timestamps 𝑡 = (𝐺1, 𝑃 𝑗∈[0,3) , 𝐼 2𝑘∈[0,3)) to compute reverse edges labels.
𝛿𝐿𝑅 (𝑣4, 1, +1), (𝑣4, 3,−1) (𝑣4, 3, +1), (𝑣4, 4,−1) ∅
𝛿𝑅

(𝑣1, 𝑣4, +1), (𝑣4, 𝑣1, +1),
(𝑣4, 𝑣3,−1) (𝑣4, 𝑣3, +1) ∅

(b) Differences for 𝐺1 after 𝑣4→𝑣1 insertion.

Table 3.2: SCC differences for the example graph. Differences in the IFE iterations are not shown.

35

Linear Operators

These operators have the property that Op(∑𝑠≤𝑡 𝛿𝐼𝑠) = Op(𝛿𝐼𝑡) + Op(
∑
𝑠<𝑡 𝛿𝐼𝑠). Since Op(

∑
𝑠<𝑡 𝛿𝐼𝑠)

=
∑
𝑠<𝑡 𝛿𝑂𝑠 and cancel out, Equation 3.2 simplifies to:

𝛿𝑂𝑡 = Op(𝛿𝐼𝑡)

Thus, linear operators can directly compute 𝛿𝑂𝑡 from 𝛿𝐼𝑡 , completely avoiding the rerunning
logic of Equation 3.2. Examples of such operators include: (i) Map, which transforms input
differences by applying a user-defined function 𝑓 (𝑑𝑎𝑡𝑎); (ii) Filter, which only outputs input
differences that pass a predicate 𝑝 (𝑑𝑎𝑡𝑎); and (iii) Negate, a DD specific operator used to flip
multiplicities from +Δ to -Δ and vice versa.

The Join Operator

Join operates on two inputs Edges 𝛿𝐸𝑡 and Labels 𝛿𝐿𝑡 at timestamp 𝑡 to produce output 𝛿 𝐽𝑡 .
According to Equation 3.2, the differences in the output of Join is computed as:

𝛿 𝐽𝑡 = Join((𝛿𝐸𝑡 +
∑︁
𝑠<𝑡

𝛿𝐸𝑠), (𝛿𝐿𝑡 +
∑︁
𝑠<𝑡

𝛿𝐿𝑠)) −
∑︁
𝑠<𝑡

𝛿 𝐽𝑠

The Join operation can be distributed over the collections as:

𝛿 𝐽𝑡 = Join(𝛿𝐸𝑡 ,
∑︁
𝑠<𝑡

𝛿𝐿𝑠) + Join(
∑︁
𝑠<𝑡

𝛿𝐸𝑠, 𝛿𝐿𝑡) + Join(𝛿𝐸𝑡 , 𝛿𝐿𝑡) + Join(
∑︁
𝑠<𝑡

𝛿𝐸𝑠,
∑︁
𝑠<𝑡

𝛿𝐿𝑠) −
∑︁
𝑠<𝑡

𝛿 𝐽𝑠

We can also show that Join(∑𝑠<𝑡 𝛿𝐸𝑠,
∑
𝑠<𝑡 𝛿𝐿𝑠) is equal to

∑
𝑠<𝑡 𝛿 𝐽𝑠 and they cancel out, as

follows. First, recall that in IFE, timestamps are 2-dimensional (𝑖, 𝑗), where 𝑖 corresponds to
the graph updates and 𝑗 corresponds to the IFE iterations. We consider the two cases, when
𝑗=0 and 𝑗>0, respectively. First, 𝛿𝐸𝑡 is only non-empty at 𝑗=0. Join(∑𝑠<(𝑖,0) 𝛿𝐸𝑠,

∑
𝑠<(𝑖,0) 𝛿𝐿𝑠)

is then exactly equal to Join(∑𝑠≤(𝑖−1,0) 𝛿𝐸𝑠,
∑
𝑠≤(𝑖−1,0) 𝛿𝐿𝑠). This is the result of the join for the

previous update 𝑖−1 and corresponds to output
∑
𝑠≤(𝑖−1,0) 𝛿 𝐽𝑠 . The importance of being able

to convert the < to ≤ in the timestamps is that, DC maintains the differences such that at
any timestamp 𝑡 , the outputs of operators are exactly equal to running the operator on the
union of the differences up to and including time 𝑡 (𝑂𝑡 = Op(∑𝑠≤𝑡 𝛿𝐼𝑠) from Equation 3.2).
This guarantees that Join(∑𝑠<𝑡 𝛿𝐸𝑠,

∑
𝑠<𝑡 𝛿𝐿𝑠) is equal to

∑
𝑠<𝑡 𝛿𝑂𝑠 at timestamps (𝑖, 0). Second,

when 𝑗 > 0, 𝛿𝐸𝑡 is empty because edges only change before the IFE iterations start. There-
fore, Join(∑𝑠<(𝑖, 𝑗) 𝛿𝐸𝑠,

∑
𝑠<(𝑖, 𝑗) 𝛿𝐿𝑠) = Join(∑𝑠≤(𝑖, 𝑗−1) 𝛿𝐸𝑠,

∑
𝑠≤(𝑖, 𝑗−1) 𝛿𝐿𝑠). Therefore, by the same

36

argument as in the previous case, we can argue that Join(∑𝑠<𝑡 𝛿𝐸𝑠,
∑
𝑠<𝑡 𝛿𝐿𝑠) is equal to

∑
𝑠<𝑡 𝛿 𝐽𝑠 .

Thus, Equation 3.2 can be simplified as:

𝛿 𝐽𝑡 = Join(𝛿𝐸𝑡 ,
∑︁
𝑠<𝑡

𝛿𝐿𝑠) + Join(
∑︁
𝑠<𝑡

𝛿𝐸𝑠, 𝛿𝐿𝑡) + Join(𝛿𝐸𝑡 , 𝛿𝐿𝑡)

This simplification avoids the more expensive recomputation logic of Equation 3.2, by not
having to recompute Join twice on two sets of combined inputs or process the previous outputs.
Indeed, this is the Join operator implementation available in the Differential Dataflow system
that we will review next. Another key takeaway from this observation is that in IFE computation
Join is computationally cheap while Reduce is expensive.

3.5 Timely Dataflow (TD) and Differential Dataflow (DD)
DD [46] is a reference implementation of the DC algorithm to maintain dataflow computations.
DD is implemented on top of TD [29, 127]. TD is a system for general, possibly iterative,
data-parallel computations that are expressed as a combination of timely operators, such as
Map, Reduce, and Iterate, that transform one or more input data collection streams to an
output collection stream. TD is an inherently streaming system, similar to systems like Apache
Flink [69], and be used to develop event-driven applications. Operators process their streams at
different timestamps and get notified when certain timestamps have been processed by upstream
operators, so they can proceed with any pending work they need to do before times move
forward. Despite being a streaming system, TD can be used to implement bulk synchronous
computations, since developers have the ability to notify TD when certain times have finished.
These notifications can be used by operators to synchronize at these timestamps.

Dataflows in TD can contain loops as in the abstraction we described in Section 3.1. In
dataflows with loops, timestamps become multi-dimensional vectors of integers, <𝑖1, 𝑖2, . . . , 𝑖𝑘>.
𝑖 𝑗 represents different nested iterations of the computation. Finally, similar to systems such as
MapReduce and Spark, TD takes in a dataflow computation and can automatically scale the
computation to multiple workers, within or across compute nodes, where each worker processes
only a partition of input collections and produces a partition of an output collection stream.

DD is built on top of TD. The DD layer has two main components. First is the library of
differential operators implemented in DD. These operators include Map, Filter, Join, Concat,
and different versions of Reduce. The differential operators implement DC’s maintenance
procedure of Equation 3.2 or some optimized version of these operators. Using TD’s default
scheduler and these operators, users can compose programs that will automatically bemaintained
by DD. The second component of DD is an index to store the input and output differences of

37

operators. We delay presenting this structure, called Spine in the DD codebase, to Chapter 5,
where we will discuss optimizations to how this index can be architected.

DD is available as an open-source library built using the Rust programming language. The
systems and optimizations we present in this thesis are implemented on top of DD. However,
we note that DC is a general algorithm that can be implemented using different techniques
in different languages. For instance, in a separate work that is not part of this thesis, we
implemented DC in a single-threaded Java system as part of our work in reference [52]. All of
the optimizations we present in this thesis, except for the one that targets DD’s index, can be
applied to these other implementations as well.

38

4
Graphsurge: Graph Computations

on View Collections Using
Differential Computation

In this chapter, we describe the Graphsurge system. Although the motivating applications for
DC in the publications that introduced it were on incremental maintenance of computations
on dynamic inputs, Graphsurge is a system that uses DC for computations over multiple
views of static graphs. Many applications require the ability to analyze different snapshots
or views of a large-scale static graph, often based on selecting subsets of nodes or edges that
satisfy different predicates. In Chapter 2 (Section 2.4.3), we reviewed the contingency analysis
application from the StateGrid company, which performs a “what if” analysis on an electric
grid network. Here, multiple and highly similar views of the electric grid, modeled as a graph,
are constructed and the same computations are performed on each of these views. Each view
models a possible perturbation scenario to the current state of the grid. Similar contingency
analysis applications have also been described in the literature from many other fields, such
as communication [156], transportation [103], or biological networks [165]. For example, in
network analyses in neuroscience, scientists “lesion” anatomical or functional brain networks
by deleting nodes or edges randomly or in a targeted way [68], e.g., by deleting subsets of the
highest degree nodes, and study the effects of these lesions on the average path lengths between
different nodes in these graphs.

Another popular example application that analyzes multiple views of static graphs is his-
torical analyses of graphs where nodes or edges have some time property. A network scientist

39

5

N
Y
, D

octor

8

LA, Lawyer

2

LA
, D

oc
to

r

6

LA, Engineer

1

LA, Engineer

3

LA, Engineer

7

NY, Lawyer

4

NY, Lawyer

{7, 2015}

{19, 2019}

{1
3,
20
19

}

{1
8,
20
19

}

{6, 2019}

{18,2019}

{32, 2017}

{1,2010}

{1
0,
20
18

}

{3
,2
01
9}

{1
2,
20
17

}{7,2018} {2
,2
01
3}

{4, 2019}

{3
4,
20
19

}

Figure 4.1: Example phone calls graph.

might study the history of the connectivity of the call graph from Figure 4.1 and compute one
view of the graph for each year between 2010 and 2020. Similarly, the analyst can study the
history of more complex views, where each view contains only the calls up to a certain duration,
say for ≤ 1, ≤ 5, or ≤ 10 minutes. A classic example of such analyses from the literature is
reference [118] that studied the component size, vertex degrees, and diameters of different
time-windows in time-stamped citation and web graphs, and under different selection criteria
of vertices, e.g., those belonging to a particular component or without incoming edges. In other
settings, applications may study the history of social or e-commerce networks to find the trends
in the centralities or importance rankings of nodes across different snapshots.
These and many other applications require constructing multiple, sometimes hundreds of, views
of a static input graph, and running the same computation across each view. Without system
support, users would need to resort to running these computations from scratch on each view,
which can be very inefficient. A system that can share computation across views would be of
immense use in enabling the efficient development of these applications. This chapter presents
the Graphsurge system, which is built for this purpose.1 Graphsurge is an computation
system developed on top of Timely Dataflow (TD) and Differential Dataflow (DD) that treats
graph views as first-class citizens. The system has a declarative view definition language called
GVDL, using which users can define: (1) individual graph views; or (2) collections of graph
views, called view collections. Users program Graphsurge by writing batch computations using
a dataflow-based API. When users execute their programs on view collections, Graphsurge

1Code is available at https://github.com/dsg-uwaterloo/graphsurge.

40

https://github.com/dsg-uwaterloo/graphsurge

automatically shares computation across the views to improve performance by leveraging
differential computation, which can have significant performance benefits. For example, in a
historical analysis application that analyzes the evolution of a Stack Overflow dataset over 5
years, running a strongly connected components algorithm from scratch takes 431s, while the
same analysis takes merely 43s using Graphsurge (see Section 4.4.2).

Our approach is based on the observation that although Graphsurge processes static graphs,
one can organize view collections as edge difference sets that represent them as an evolving graph.
Specifically, Graphsurge first orders a view collection 𝐶 with 𝑘 views and gives each view an
index 𝐺𝑉1, . . . ,𝐺𝑉𝑘 (discussed momentarily). Then, the system runs a TD program that first
materializes 𝐺𝑉1 and for each remaining view 𝐺𝑉𝑖 , materializes only 𝐺𝑉𝑖 ’s edge differences, i.e.,
edge additions and deletions, compared to 𝐺𝑉𝑖−1. This edge difference-based storage compactly
materializes all of the views in the 𝐶 and represents 𝐶 as an evolving graph over 𝑘 time steps.
Finally, when running the same computation across the views of 𝐶 , Graphsurge feeds the user
program and the computed difference sets for each𝐺𝑉𝑖 to DD, which shares computation across
views internally by running the program differentially across the views.

Unlike streaming applications on DD or specialized graph streaming systems, such as
GraphBolt [122], the static nature of the views defined in Graphsurge gives the system several
interesting optimization opportunities, which we next discuss.
Collection Ordering Problem: Intuitively, once a view collection is ordered as consecutive
edge difference sets, neighboring views that are more similar allows differential computation to
share more computation across the views. In streaming or continuous query processing systems,
a system has no choice over the order of the updates that come in, so effectively has no choice
as to the order of the snapshots on which a computation has to be performed. Instead, the static
nature of the views gives Graphsurge an opportunity to order the views as a preprocessing
step and put similar views close to each other. We show that this problem is NP-hard, but show
a constant-factor approximation algorithm that we have integrated into Graphsurge. In our
evaluations, we show that our collection ordering optimization can lead to up to 10× runtime
improvements when good orderings are unclear.

Collection Splitting Problem: Even after a system has found a good ordering that minimizes
the differences between views and maximizes computation sharing, there are cases when
differentially maintaining the computation for a view 𝐺𝑉𝑗 , given the differential output for
𝐺𝑉0, . . . ,𝐺𝑉𝑗−1, might be slower than rerunning 𝐺𝑉𝑗 from scratch. We call this the collection
splitting problem, as rerunning the computation from scratch at 𝐺𝑉𝑗 effectively splits the view
collection into 2 sub-collections, each of which would be run differentially (in the absence of
further splittings). Several factors can trigger this behavior, such as the computation being
executed may be unstable or the views may not be similar enough to benefit from differential

41

Graph View Definition Language

View Query Executor

View Collection Executor

Collection Ordering and
Adaptive Optimizer

Computation
Executor

Graph Store

View &
Collection Store

Timely Runtime

Differential Runtime

Computation API

Figure 4.2: Graphsurge architecture.

computation sharing. We show that Graphsurge can monitor the performance characteristics
of computations at runtime and make effective decisions about whether to run each view
differentially or from scratch. In our evaluations, we show that our collection splitting optimizer
can detect whether running views differentially or from scratch is optimal, leading to up to 1.9×
performance improvements over the better of these baselines when neither is optimal.

In the rest of the chapter, we first present the system architecture of Graphsurge in Sec-
tion 4.1, and then present the two optimization problems—collection ordering in Section 4.2
and collection splitting in Section 4.3. Finally, we present extensive experiments that evaluate
Graphsurge in Section 4.4 and then summarize our contributions in Section 4.5.

4.1 The Graphsurge System
Figure 4.2 shows the architecture of Graphsurge. Users program Graphsurge through two
interfaces: (i) a declarative graph view definition language (GVDL) to define individual views and
view collections over base graphs; and (ii) a DD-based API to write dataflow programs for graph
computations that consume the difference stream of a view or view collection. Graphsurge uses
TD and DD as its execution layer for both creating views as well as for running user-specified
computation programs on views. As such, dataflows written in TD and DD can be automatically
parallelized both in a single multi-core machine and in a distributed cluster.

Users import base input graphs to Graphsurge through CSV files that contain the nodes
and edges of the graph and their properties. Upon loading, nodes and edges are given unique
32-bit IDs and stored as a node stream and edge stream in the Graph Store (GStore), respectively.
Each edge in an edge stream is a (eID, sID, dID, key1, val1, . . .) tuple, where eID is the edge ID,

42

create view CA−Long−Calls on Calls
edges where src.state = ’CA’ and dst.state = ’CA’

and duration > 10 and year = 2019

Listing 4.1: Example GVDL view query.

sID and dID are source and destination node IDs that point to offsets in the node stream, and
key𝑖 and val𝑖 are the key-value properties of the edge.

When a user runs a GVDL query, a TD program is executed that reads the edge stream from
the GStore, applies the filter predicates to generate the difference sets for the corresponding
view or view collection, and stores them in the View and Collection Store (VCStore). When the
user runs a computation on a view or view collection, a DD program reads the difference sets
from the VCStore to run the user-defined dataflow. In a distributed cluster, both GStore and
VCStore are replicated across all the machines. Each thread of a running TD and DD dataflow
operates on a logical partition of the edge stream when creating views or view collections, and
of the difference sets when running a computation. The parallel running operators in the TD
and DD dataflows perform read-only queries to GStore and VCStore and do not require any
locks or coordination.

4.1.1 Individual Views

Individual View Definition

GVDL is a language to define views over base graphs. A GVDL query to create a view has a
single where clause, applied as a predicate on an input graph (or another materialized view), that
specifies the edges of the output view. Predicates can be arbitrary conjunctions or disjunctions
and can access the properties of the source and destination nodes as well as the edges.
Example 1. Listing 4.1 shows a view an analyst can construct on our running example Calls
graph. The view consists of calls made in California in 2019 with a duration > 10 minutes.

GVDL queries that define individual views are straightforwardly compiled into TD dataflow
programs. The dataflow consists of a filter operator to apply the user-specified predicates to the
edge stream and compute the difference sets. The output of the program is materialized as a
stream in the VCStore.

The views that users can express in GVDL are noticeably simple. For instance, GVDL allows
filtering nodes and edges but does not allow their aggregations. This is because we designed
GVDL to be able to express the use cases we have explored in this chapter. In Section 4.1.2, we
will discuss a second advantage of keeping GVDL simple when we discuss how to compactly
store multiple views in a view collection.

43

pub trait GraphSurgeComputation {
type Results;
fn graph_computation(input_stream: &InputStream) −> Collection<Self::Results>

}

Listing 4.2: Differential Computation API.

Computations on Individual Views

Users write arbitrary DD dataflow programs to run computations on their views with the
constraint that one of the inputs to the dataflow is the Graphsurge-specific difference stream
for the view. Graphsurge exposes a Rust interface to users containing a graph_computation
function, using which users can write arbitrary DD programs that are expected to return output
associated with the vertices of a view, such as the connected component ID of each vertex in a
connected components computation. Listing 4.2 shows the interface of the graph_computation
function. Users invoke their programs through a separate command line and specify their
graph_computation function and the view on which to run this function. Graphsurge’s
computation executor calls the users’ graph_computation function to obtain a computation
dataflow, and feeds the edge stream corresponding to the view into it. When the computation is
executed on a single view, the entire edge stream is fed into the dataflow at once. Computations
executed on a view collection are more involved and are described in the next section.

4.1.2 View Collections

View Collection Definition

To share computations across multiple views of the same graph, Graphsurge allows users
to organize views in a view collection. A view collection organizes a set of views as a single
timestamped2 edge difference stream 𝐶 , where each view corresponds to a state of the stream at
a particular timestamp 𝑡 .

Example 2. Listing 4.3 shows a simple demonstrative GVDL query defining a view collection
with four views on our Calls graph. Each view including all calls within a range of edge IDs.

Graphsurge materializes the view collection described by a GVDL query in three steps.
Below, we let 𝑝 𝑗 denote the predicate defining 𝐺𝑉𝑗 in a given view collection.

2We use the term timestamp to follow differential computations’ terminology. This should not be confused with
any application-specific “time” property, such as the year property we use in our running example.

44

create view collection call−analysis on Calls
[𝐺𝑉1: ID < 100],
[𝐺𝑉2: ID ≥ 50 and ID < 199],
[𝐺𝑉3: ID ≥ 10 and ID < 100],
[𝐺𝑉4: ID ≥ 60 and ID < 199]

Listing 4.3: Example GVDL view collection query.

Step 1. Edge Boolean Matrix Computation: For each edge 𝑒𝑖 in the base graph and each view
𝐺𝑉𝑗 in the collection, Graphsurge runs the predicate 𝑝 𝑗 on 𝑒 and outputs an edge boolean matrix
(EBM) that specifies whether 𝑒𝑖 satisfies 𝑝 𝑗 . This is an embarrassingly parallelizable computation
and is performed by a TD dataflow.
Step 2. Collection Ordering: The goal of this step is to put views with a higher overlap of
their edges next to each other so that the differences between neighboring views are smaller,
and running a computation on the collection results in higher computation sharing. To achieve
this, Graphsurge reorders the views in EBM so that views whose predicates satisfy highly
overlapping sets of edges are adjacent to each other. As we will discuss momentarily, the goal of
this optimization is to store the views in the collection in a more compact edge difference stream,
i.e., using fewer edge differences. As we demonstrate in our evaluations, this optimization
step can lead to significant performance benefits. The output of this step is the same EBM but
possibly with a different column ordering. We defer the details of how collections are ordered to
Section 4.2.
Step 3. Edge Difference Stream (EDS) Computation: Finally, Graphsurge takes the reordered
EBMs and materializes the views in the view collection as an edge difference stream that is
consistent with the semantics of difference sets of DC. Specifically, we treat the entire view
collection𝐶 as an evolving input stream according to the order obtained in step 2. For simplicity,
let 𝐺𝑉1, . . . ,𝐺𝑉𝑘 be the order of the views after step 2, so 𝐶𝑡 = 𝐺𝑉𝑡 . Recall Equation 3.1 from
Section 3.2, that according to DC semantics, the differences of a stream 𝑆 at timestamp 𝑡 is
𝛿𝑆𝑡=𝑆𝑡−

∑
𝑠<𝑡 𝛿𝑆𝑠 . So the edge difference of a view 𝛿𝐶𝑡 at time 𝑡 is computed to ensure that

𝛿𝐶𝑡=𝐺𝑉𝑡−
∑
𝑠<𝑡 𝛿𝐶𝑠 equality holds. Specifically, the multiplicity of each edge 𝑒𝑖 in 𝛿𝐶𝑡 is: (i) 0 if

𝐺𝑉𝑡−1 and 𝐺𝑉𝑡 both contain or both do not contain 𝑒𝑖 ; (ii) 1 if 𝐺𝑉𝑡−1 does not contain 𝑒𝑖 and 𝐺𝑉𝑡
does; or (iii) -1 if 𝐺𝑉𝑡−1 contains 𝑒𝑖 and 𝐺𝑉𝑡 does not. The contribution of each edge 𝑒𝑖 to 𝛿𝐶𝑡
can be computed independently, so this is another embarrassingly parallelizable step.

Example 3. Figure 4.3 shows an example EBM for the view collection from Listing 4.3. For example,
𝐺𝑉1 has 1 for all the edges 𝑒0 to 𝑒99 and 0 for others since its predicate is 𝐼𝐷 < 100. Ignore the right
side of the figure for now. On the left side, the figure also shows the EDSdef that corresponds to the
default order of𝐺𝑉1,𝐺𝑉2,𝐺𝑉3,𝐺𝑉4. The first row of EDSdef for 𝑒0-𝑒9 contains: (i) +1 for𝐺𝑉1 because

45

𝐸𝐵𝑀 𝐸𝐷𝑆def (# = 540) 𝐸𝐷𝑆opt (# = 260)
edges 𝐺𝑉1 𝐺𝑉2 𝐺𝑉3 𝐺𝑉4 𝐺𝑉1 𝐺𝑉2 𝐺𝑉3 𝐺𝑉4 𝐺𝑉3 𝐺𝑉1 𝐺𝑉2 𝐺𝑉4

𝑒0-𝑒9 1 0 0 0 +1 -1 ∅ ∅ ∅ +1 -1 ∅
𝑒10-𝑒49 1 0 1 0 +1 -1 +1 -1 +1 ∅ ∅ -1
𝑒50-𝑒59 1 1 1 0 +1 ∅ ∅ -1 +1 ∅ ∅ ∅
𝑒60-𝑒99 1 1 1 1 +1 ∅ ∅ ∅ ∅ ∅ +1 ∅
𝑒100-𝑒199 0 1 0 1 ∅ +1 -1 +1 ∅ ∅ +1 ∅

Figure 4.3: An example EBM for the view collection in Listing 4.3 and 2 EDS’s for 2 different
collection orders (Section 4.2).

𝐺𝑉1 contains all of these edges; (ii) -1 for 𝐺𝑉2 because 𝐺𝑉2 does not contain any edges (so that the
union of these differences with 𝐺𝑉1 gives the empty set); and (iii) ∅ for the rest of the views because
they also do not contain these edges.

We end this section with a note on GVDL. Recall from Section 4.1.1 that we have limited
the view queries users can express in GVDL to simple node and edge filter predicates. This
ensures that each view over the same base graph contains a subset of a larger “ground truth” set
of edges and that each view has the same set of node IDs, i.e., a node with ID 𝑢 in a view 𝐺𝑉𝑖
maps to the node with ID 𝑢 in a view 𝐺𝑉𝑗 . This allows Graphsurge to easily compute an EBM
for a collection, and the edge differences between the views from the EBM. If we allowed views
that created new nodes, and we could not assume a node ID mapping between the views, the
system could not easily compute an edge boolean matrix or difference stream, which is critical
for us to store the views compactly and use differential computation when we run computations
over view collections (discussed in the next section). One can extend GVDL to support more
general individual views that can create new nodes and edges, e.g., those that form super nodes
and edges, and run computations over these views. However, it would be challenging to store
multiple such views compactly in a view collection as an edge difference stream, if the system
cannot infer a mapping between the nodes across views.

Computations on View Collections

Given a computation program 𝑃 that a user wants to run on all views of a view collection 𝐶 , in
the absence of any collection splitting, which is an optimization we describe in Section 4.3, the
computation executor runs 𝑃 as follows. First, the system runs P on 𝐶0, i.e., the “first” view in 𝐶 ,
and when this computation finishes, in an outside loop advances (in DD terminology)𝐶 to𝐶1 by
feeding 𝛿𝐶1 to DD. Then the system feeds 𝛿𝐶2 to DD, and so on and so forth, until all views are
evaluated. When computing 𝑃 at each time 𝑡 , DD will automatically share computation from the
“prior” views on which 𝑃 has been computed, in some cases leading to significant performance

46

gains as compared to running 𝑃 on each view from scratch. The output of the DD program is a
set of output differences in the form of a (VID, Results) output stream. The output difference
stream can then be stored or processed further by the user.

Support for dynamic graphs

While Graphsurge is built for applications that work with views of a static graph, it can
also support analysis of dynamic graphs by ingesting a timestamped stream of updates to a
graph and creating a view collection where the views represent batches of updates for different
time windows given by a filter predicate on the edge timestamps. However, in our current
implementation, the computations are not performed in a traditional streaming fashion and
all of the data that a user wants to analyze needs to be fully ingested into Graphsurge before
creating view collections and running computations on them.

4.2 Collection Ordering
Given a set of 𝑘 views in a view collection𝐶 defined by an application, there are 𝑘! different ways
Graphsurge can order the views before running computations differentially on the collection.
This is important because the number of edge differences that are generated in the final collection
is solely determined by the order of the views. Recall from Section 4.1.2 that when running
computations on a view collection 𝐶 , Graphsurge iterates over neighboring views and for
view 𝑡 feeds in the difference set 𝛿𝐶𝑡 to DD (in absence of collection splitting). The smaller the
size of the differences, the larger the structural overlap between view 𝐶𝑡 and the union of the
views prior to 𝐶𝑡 , which we expect to lead to larger computation sharing. As we present in our
evaluations, by picking orderings that minimize the set of differences, Graphsurge can improve
performance significantly in certain applications. We can formulate this problem as a concrete
optimization problem as follows:
Definition 1. Collection Ordering Problem (COP): Given a view collection 𝐶 , find the collection
ordering that minimizes the sum of the sizes of difference sets 𝛿𝐶𝑡 .

We next show that COP is NP-hard. Our proof is through a reduction from the consecutive
block minimization problem (CBMP) for boolean matrices. In a boolean matrix 𝐵, such as the
edge boolean matrix (EBM) in Figure 4.3, a consecutive block is a maximal consecutive run of
1-cells in a single row of 𝐵, which is bounded on the left by either the beginning of the row or a
0-cell, and bounded on the right by either the end of the row or a 0-cell. Given a column ordering
𝜎 for 𝐵, let 𝑐𝑏 (𝐵, 𝜎) denote the total number of consecutive blocks in 𝐵 over all rows. CBMP is
the problem of finding the ordering 𝜎∗ of the columns of 𝐵 that minimizes min𝜎 𝑐𝑏 (𝐵, 𝜎). CBMP
is known to be NP-hard [115].

47

Theorem 4.2.1. COP is NP-hard.

Proof. For an input graph 𝐺 , let 𝐶 be a view collection over 𝐺 , and let the EBM of 𝐶 be 𝐶EBM.
For a fixed column ordering 𝜎 of 𝐶EBM, let the size of the difference sets in 𝜎 be 𝑑𝑠 (𝐶EBM, 𝜎).
Therefore, COP is equivalent to the following problem on boolean matrices: given a boolean
matrix 𝐶EBM, find the 𝜎∗ that minimizes min𝜎 𝑑𝑠 (𝐶EBM, 𝜎). Recall from step 3 of view collection
materialization (Section 4.1.2) that the difference set for an edge 𝑒 , which is represented by a
row 𝑟 in 𝐶EBM, is calculated as follows: for the first appearance of 𝑒 from left to right, i.e., for
the first 1 in 𝑟 , we count one difference. Then for each subsequent alternating appearance of a
0, then 1, then 0, etc., we count one additional difference. Note that this is different from the
definition of a consecutive block. For example, a row 1110 has 1 consecutive block but 2 diffs:
one diff for the first view, and one diff for the last view.

Our reduction is from CBMP. Given a 𝑘1 × 𝑘2 matrix 𝐵 to CBMP and its complement 𝐵𝐶 ,
consider (in poly-time) constructing a 2𝑘1 × 𝑘2 matrix 𝐵EBM that contains B and 𝐵𝐶 under 𝐵. 𝐵𝐶
contains 1s where B contains 0s and vice versa. Note that for each row 𝑟 of 𝐵, both 𝑟 and 𝑟𝐶
appear in 𝐵EBM exactly once. Let 𝐵0, 𝐵1, and 𝐵01 be the set of rows in 𝐵 that contain only 0s,
only 1s, and both a 0 and a 1, respectively, and let |𝐵0 | =𝑚0, |𝐵1 | =𝑚1, and |𝐵01 | =𝑚01. Given
an arbitrary column ordering 𝜎 , each row in 𝐵 induces the following differences in 𝐵EBM:

• Row 𝑟 in 𝐵0 yields 0 but 𝑟𝐶 yields 1 difference.
• Row 𝑟 in 𝐵1 yields 1 difference but 𝑟𝐶 yields 0 difference.
• Row 𝑟 in 𝐵01 requires analyzing two cases. Let 𝑐𝑏 (𝑟, 𝜎) denote the number of consecutive

blocks only in row 𝑟 . (i) If 𝑟 ’s last cell is a 0, then 𝑟 yields 2𝑐𝑏 (𝑟, 𝜎) and 𝑟𝐶 yields 2𝑐𝑏 (𝑟, 𝜎) − 1
differences; and (ii) otherwise 𝑟 yields 2𝑐𝑏 (𝑟, 𝜎) − 1 and 𝑟𝐶 yields 2𝑐𝑏 (𝑟, 𝜎) differences.
Therefore, in either case, 𝑟 yields 4𝑐𝑏 (𝑟, 𝜎) − 1 differences.

Therefore,𝑑𝑠 (𝐵EBM, 𝜎) is: (
∑
𝑗∈𝐵01 4𝑐𝑏 (𝑟, 𝜎)−1)+𝑚0+𝑚1, which is equal to 4𝑐𝑏 (𝐵, 𝜎)−𝑚01+𝑚0+𝑚1.

This establishes a one-to-one connection between the sizes of the difference sets in 𝐵EBM and
the number of consecutive blocks in 𝐵 under any ordering 𝜎 . Since for any 𝐵, 𝑚0, 𝑚1, and
𝑚01 are fixed, finding the optimal ordering 𝜎∗ that minimizes 𝑑𝑠 (𝐵EBM) also minimizes 𝑐𝑏 (𝐵),
completing the proof that solving COP is NP-hard. □

We next describe a 3-approximation to COP, which uses a 1.5-approximation algorithm for
CBMP from reference [96], CBMP1.5, which we next review. CBMP1.5 takes as input an𝑚 × 𝑘
boolean matrix 𝐵, creates the matrix 0𝐵 by padding a 0-column and then transforms 0𝐵 into
a (𝑘 + 1) clique 𝐺0𝐵 , where each column (so each view in our case) is a node, and the weight
between the nodes is the Hamming distance of the columns they represent. Reference [96]
shows that 𝐺0𝐵 satisfies the triangle inequality and the entire transformation from 𝐵 to 𝐺0𝐵

48

Algorithm 1: Collection Ordering Optimizer
input: Edge Boolean Matrix 𝐵𝑚×𝑘 , W workers
output: A column ordering 𝜎∗
begin

Partition 𝐵𝑚×𝑘 →
𝑊−1⋃
𝑖=0

𝐵𝑖 ;

begin At each worker𝑤𝑖, 0 ≤ 𝑖 <𝑊 :
𝐶𝑖 ← [0|𝐵𝑖];
𝑈 ← unit matrix;
𝐷𝑖 = 𝐶

𝑇
𝑖 (𝑈 −𝐶𝑖) + (𝑈 −𝐶𝑖)𝑇𝐶𝑖 ;

Shuffle 𝐷𝑖 to worker𝑤0
begin At worker𝑤0:

Receive 𝐷𝑖 from all workers𝑤𝑖 ;
𝐷 ← ∑𝑊−1

𝑖=0 𝐷𝑖 ;
𝐺0𝐵 ← complete graph (|𝑉 |= (𝑘+1)) induced from 𝐷 ;
𝜎∗ ← tsp_christofides(𝐺0𝐵);
Broadcast 𝜎∗ to all workers𝑤𝑖 ;

is approximation preserving. Therefore, solving the Traveling Salesman Problem, with the
well-known Christofides algorithm [76] yields a 1.5-approximation to CBMP after removing the
0-column from the tour, which gives a chain between the remaining columns to get an ordering.

Corollary 4.2.1.1. Running CBMP1.5 on the EBM of a view collection gives a 3-approximation
algorithm for COP.

Proof. To see this, consider any input 𝐶EBM to COP and any ordering 𝜎 for 𝐶EBM. Because each
row 𝑟 contains either 2𝑐𝑏 (𝑟, 𝜎)−1 or 2𝑐𝑏 (𝑟, 𝜎) differences, 𝑐𝑏 (𝐶EBM, 𝜎) ≤ 𝑑𝑠 (𝐶EBM, 𝜎) ≤ 2𝑐𝑏 (𝑟, 𝜎).
Therefore, since Christofides algorithm returns a 1.5-approximation algorithm for CBMP, it
returns a 3-approximation for COP. □

Algorithm 1 shows our collection ordering optimizer. Given EBM 𝐵 = 𝐶EBM as input, we
construct 𝐺0𝐵 using a TD program that performs the padding and then in an embarrassingly
parallel way finds the Hamming distances between each view. Then we collect the 𝐺0𝐶𝐵 in
a single TD worker and run the Christofides algorithm. The output of this algorithm gives 2
possible orders, one for each direction of the chain and either is a 3-approximation. However,

49

0

GV1

GV2

GV3

GV4

100

150

90
140 150

10

160
140

10

150

Figure 4.4: 𝐺0𝐵 of the collection from Listing 4.3. Purple lines are the output tour/order of the
Christofides algorithm.

these orders do not necessarily yield the same number of differences, and we pick the order
with the smaller differences3.

Example 4. Figure 4.4 shows the example𝐺0𝐵 corresponding to the view collection from Listing 4.3,
whose EBM was shown in Figure 4.3. For example, the weight of the edge between 𝐺𝑉1 and 𝐺𝑉3 is
10 because there are only 10 edge differences between these two views, specifically 𝐺𝑉1 contains
edges 𝑒0 to 𝑒9, while 𝐺𝑉3 does not and the views overlap on other edges. The red lines in the figure
show the TSP tour that the Christofides algorithm outputs. Taking the 0 node out of the tour gives us
a chain, where the 𝐺𝑉3,𝐺𝑉1,𝐺𝑉2,𝐺𝑉4 order is the better of the two possible orders. The EDS 𝐸𝐷𝑆opt
that corresponds to this optimized order is shown on the right side of Figure 4.3, which reduces the
number of differences of the input order from 540 to 260.

Our collection ordering technique materializes each view in a collection. An interesting
question is whether a good ordering can be obtained through only inspecting the definitions of
the views and without inspecting and materializing the views. This can be possible for example
when there is a containment relationship between the predicates defining the views, in which
case the best order follows the containment order. For example, a system can infer that a view
defined by the predicate “year < 2010” is contained within the view defined by “year < 2011”.
Although general query or view containment [74] is a hard problem [71, 151], prior literature
has identified cases when it can be determined, e.g., when the predicates are certain conjunctive
queries [48, 72]. In cases when views are arbitrary, we do not know of any technique to find a
good ordering without inspecting the data in the views.

4.3 Collection Splitting
Even after we find a good ordering that minimizes the sizes of the difference sets generated,
running computations on each view differentially may not be ideal. If the computation footprint

3We note that these orders would return the same value for CBMP.

50

|Difference Sets| Algorithm diff-only scratch

1K
BFS 1.4s 13.5s
PR 66.5s 136.2s

3.5M
BFS 13.0s 25.7s
PR 281.9s 193.2s

Table 4.1: Runtimes of BFS and PR for two view collections on the Orkut graph, containing 1K-
and 3.5M-size difference sets, in two ways: (i) diff-only; and (ii) scratch.

of 𝑃 on 𝐺𝑉𝑖 and 𝐺𝑉𝑖+1 are very different, differentially fixing 𝑃 on 𝐺𝑉𝑖+1 might be slower than
running 𝑃 on 𝐺𝑉𝑖+1 from scratch.

Several factors determine how big the difference is between 𝑃 ’s footprint on two consecutive
views 𝐺𝑉𝑖 and 𝐺𝑉𝑖+1, which determines how expensive it is to compute 𝐺𝑉𝑖+1 differentially.
Two of these factors can be observed by Graphsurge: (1) how stable is 𝑃? (2) how large are
the difference sets? We use the term unstable to refer to computations that may generate a
lot of output differences even with small differences in input datasets. We next demonstrate
these factors through a controlled experiment. We will also demonstrate this on a more realistic
application in Section 4.4. We take 10M edges from the Orkut social network graph and construct
an initial view 𝐺𝑉1 and then construct two artificial view collections each containing 20 views:
(i) 𝐶1𝐾 , in which we randomly add 500 edges and remove 500 edges to each 𝐺𝑉𝑖−1; (ii) 𝐶3.5𝑀 ,
in which we add 2M edges and remove 1.5M edges randomly to each 𝐺𝑉𝑖−1. The sizes of the
difference sets are picked to obtain a collection with highly similar and highly different views,
respectively. We then run Breadth First Search (BFS) and PageRank (PR) on both the collections
in two ways: (i) diff-only: runs the collection only differentially; and (ii) scratch: runs each
view in the collection from scratch.

Table 4.1 shows the runtimes. First, notice that on 𝐶3.5𝑀 , while it is better to run BFS
differentially, it is better to run PageRank from scratch. This is because PageRank is a less
stable algorithm than BFS. For example, assume 𝐺𝑉𝑖+1 = 𝐺𝑉𝑖 ∪ {𝑢→𝑣}, so the views differ by a
single edge addition, and consider differentially updating the first iteration of BFS. This addition
results in 1 difference in the Join operator. In vertex-centric terms, it will result in 𝑢 sending 1
more extra message to 𝑣 containing 𝑢’s current distance. In contrast, in PageRank, 𝑢 sends a
message of 1/𝑑𝑒𝑔(𝑢) to its neighbors, so all the messages that 𝑢 sends might change after the
update. Second, observe that when the views are sufficiently similar, specifically in𝐶1𝐾 , running
PageRank differentially also starts to be the better option. That is, the size of the differences also
determines whether running views differentially vs from scratch is the better option.

We have implemented an adaptive optimizer that decides whether to run each view 𝐺𝑉𝑖 in
a view collection differentially or from scratch. Our optimizer observes two simple runtime

51

metrics to make its splitting decisions: (i) Each time the system decides to split the collection at
𝐺𝑉𝑖 and run 𝐺𝑉𝑖 from scratch, we measure how long it took to compute 𝑃 on 𝐺𝑉𝑖 from scratch
and what was the size of 𝐺𝑖 ; and (ii) Each time the system decides to run 𝐺𝑉𝑖 differentially,
we keep track of how long it took to run 𝑃 and what was the size of 𝛿𝐶𝑖 . Then, using two
linear models, the optimizer estimates how long it would take to rerun 𝐺𝑉𝑖 from scratch and
differentially, respectively, given the sizes of𝐺𝑉𝑖 and 𝛿𝐶𝑖 , and picks the faster predicted option.
Specifically:

1. Run 𝐺𝑉1 from scratch and 𝐺𝑉2 differentially and keep track of (|𝐺𝑉1 |, 𝑠𝑡1), for scratch time,
and (𝛿𝐶2, 𝑑𝑡2), for differential time.

2. For each view 𝐺𝑉𝑖 for 𝑖 = 3, . . . , 𝑘 , estimate the run time of running 𝐺𝑉𝑖 from scratch or
differentially using the previously collected data.

In our actual implementation, we make splitting decisions for ℓ views at a time (10 by default) as
feeding multiple views to DD makes DD’s data indexing code run faster. We will demonstrate
that our optimizer can adapt to running computations differentially or from scratch, depending
on which option is superior, and can even outperform both options in some cases by selectively
splitting collections in a subset of the views.

We next discuss an important question: how much faster can an algorithm 𝑃 running
differentially on a view collection 𝐶 be compared to running 𝑃 on each view from scratch (and
vice versa)? A high-level answer should instruct the benefits we can expect from adaptive
splitting. Consider a 𝑘-view collection 𝐶 , where each view is identical. This is conceptually
the best case for running 𝑃 on 𝐶 differentially, where after the first view, the rest of the views
are computed instantaneously. Therefore, differentially computing 𝑃 can be 𝑘 factor better
than running 𝑃 from scratch. Interestingly, the situation is not similar in the reverse direction.
The worst case for running 𝑃 on 𝐶 differentially is if each view was completely disjoint, i.e.,
𝛿𝐶𝑖=−𝐺𝑉𝑖−1+𝐺𝑉𝑖 . We effectively completely remove 𝐺𝑉𝑖−1 and add 𝐺𝑉𝑖 . Therefore, when
running 𝑃 on 𝐺𝑉𝑖 differentially, DD, to the first approximation, will “undo” computation for
𝐺𝑉𝑖−1 and then run 𝑃 from scratch differentially. We effectively compute 𝑃 on each view twice,
and should expect a bounded, around 2x, slow down to running computations differentially
even in this worst case. This is an important robustness property of running computations
differentially. It is still important to perform our splitting optimization because: (i) there can
still be a significant performance gain over pure differential computation (we will report up to
1.9× improvements); and (ii) some unstable computations consistently perform better when
computed from scratch and our splitting optimization automatically detects those cases.

52

4.4 Evaluation
We next present our experiments. Section 4.4.2 starts by empirically demonstrating the possible
performance gains of running computations differentially across views vs running them from
scratch. Section 4.4.3 and 4.4.4, respectively, evaluate the benefits of our collection splitting
and ordering optimizations. Section 4.4.5 presents baseline comparisons between DD and the
GraphBolt [122]. Finally, Section 4.4.6 presents that Graphsurge obtains good scalability across
compute nodes in a cluster.

4.4.1 Experimental Setup
Datasets: We evaluate Graphsurge on 5 real-world graphs. size below indicates the size of
each dataset on disk.

• Stack Overflow [38] (SO, |V| = 2M, |E| = 63M, size = 1.6GB) is a temporal dataset where
every edge has an associated UNIX timestamp indicating its creation time.
• Paper Citations (PC, |V| = 172M, |E| = 605M, size = 14.8GB) is a paper-to-paper citation

graph constructed from the Semantic Scholar Corpus [53] (version 2019-10-01). The vertices
have 2 associated properties: the year of publication and the count of co-authors.
• Com-Livejournal [37] (CLJ, |V| = 4M, |E| = 34M, size = 1.1GB) is a social network graph
containing a list of ground-truth communities representing social groups that a subset of
the users are part of. Users can be part of multiple communities.
• Com-Wiki-Topcats [39] (WTC, |V| = 1M, |E| = 28M, size = 719MB) is a web graph whose
vertices can belong to one or more communities representing the category of a web page.
• Twitter [116] (TW, |V| = 42M, |E| = 1.5B, size = 25GB) is a social network graph.

Computations: We use 6 different computations: (i) weakly connected components (WCC); (ii)
strongly connected components (SCC); (iii) breadth-first search (BFS); (iv) single source shortest
path (SSSP); (v) PageRank (PR); and (vi) multiple pair shortest path (MPSP). For BFS and SSSP,
we set the source to a random vertex that has outgoing edges. For MPSP, we select 5 pairs of
vertices (src, dst) that have a path between src and dst of length equal to the diameter of the
graph. All computations are implemented using Graphsurge’s DD-based computation API.
Hardware and Software: We compiled Graphsurge using rustc v1.46.0, timely-dataflow
v0.11.0, and differential-dataflow v0.11.0 and performed our experiments on a cluster of
up to 12 machines each running Ubuntu 18.04.3. Each machine has 2× Intel E5-2670 @2.6GHz
CPU with 32 logical cores. Every machine has 256 GB RAM, except 2, which have 512GB RAM.
Except for our scalability experiments, all experiments were performed on a single machine.

53

4.4.2 Comparison of Differential Computing vs Rerunning from Scratch
Recall our observation from Section 4.3 that while differentially computing 𝑃 can be unboundedly
faster than running from scratch, the reverse comparison is bounded. We start by demonstrating
this intuition empirically. We model a historical analysis application, where we build two sets of
view collections on the SO dataset:

(i) Csim: are a set of similar view collections that each start with a 5-year window of the graph,
from May 2008 to May 2013, which forms the first view. Then we set a time window of
size𝑤 of 1 day, 1 month, 6 months, 1 year, and 2 years, and expand the initial window by𝑤 ,
so each view 𝐺𝑉𝑖 includes 𝐺𝑉𝑖−1 plus an additional number of edges for a larger 𝑤-size
window. This generates 5 collections. Csim:1d contains the most similar and largest number
of views. Csim:2y is the least similar and contains the fewest number of views.

(ii) Cno: are a set of non-overlapping, so highly different views, where we start with a window
of the graph from May 2008 till December 2008, then we completely slide the window by a
window of size𝑤 of 6 months, 1, 2, 3, and 4 years. This generates 5 collections, all of which
are completely non-overlapping. The window size𝑤 allows us to create collections with
increasingly more views.

We evaluated the performance of 6 computations on each collection, turning our splitting
and ordering optimizers off, in two ways: diff-only and scratch, which we described in
Section 4.3. We expect diff-only to be more performant than scratch in each Csim collection,
but increasingly more as 𝑤 gets smaller and there are a larger number of views. We expect
scratch to be more performant in each Cno collection, but we do not expect to see increasingly
more gains as the number of views increases. Figures 4.5 show our results for the Csim and Cno
collections, respectively. Observe that in Csim collections, indeed as𝑤 gets smaller, we see an
increasing factor on benefits for diff-only varying from 1.5× to 13.9×. The only exception is
PR, which we observed is not as stable as the rest of our computations. In contrast, in the Cno
collection, we see up to 2.5× performance improvements for scratch, but we do not observe
improved factors with an increasing number of views.

4.4.3 Benefits of Collection Splitting
We next evaluated Graphsurge’s adaptive splitting optimizer, continuing our previous setup.
We kept our ordering optimizer off to only study the behavior of our adaptive optimizer, which
we refer to as adaptive. We reran the previous experiment with adaptive. The adaptive bar
in Figure 4.5 shows our results. Except for two experiments, running BFS and SSSP on 𝐶𝑛𝑜 with
6-month slides, adaptive can perform as well or almost as well as the better of diff-only or

54

1d 1m 6m 1yr 2yr
0

20

40

60

80

11
.7

x

5.
1x

2.
6x

2.
1x

2.
1x

WCC

(a
)
C

s
im

R
un

ti
m

e
(s

)

1d 1m 6m 1yr 2yr
0

20

40

13
.6

x

7.
4x

3.
6x

2.
3x

2.
3x

BFS
1d 1m 6m 1yr 2yr

0

200

400

600

9.
8x

3.
6x

2.
3x

1.
9x

1.
5x

SCC
1d 1m 6m 1yr 2yr

0

100

200

1.
4x

1.
2x

1.
2x

1.
2x

1.
0x

PR
1d 1m 6m 1yr 2yr

0

20

40

10
.7

x

7.
2x

3.
2x

2.
9x

2.
2x

SSSP
1d 1m 6m 1yr 2yr

0

50

100

150

13
.9

x

5.
3x

2.
4x

2.
1x

1.
5x

MPSP

diff
scratch
adapt

6m 1yr 2yr 3yr 4yr
0

10

20 1.
1x

1.
0x

1.
0x

1.
1x 1.

1x

WCC

(b
)
C

n
o

R
un

ti
m

e
(s

)

6m 1yr 2yr 3yr 4yr
0

5

10

15

0.
7x 1.

1x

1.
3x

1.
2x 1.

0x

BFS
6m 1yr 2yr 3yr 4yr

0

50

100

150

200

2.
4x

2.
5x

2.
3x

1.
5x 1.

8x

SCC
6m 1yr 2yr 3yr 4yr

0

20

40

60

1.
5x

1.
6x

1.
6x

1.
4x 1.

6x

PR
6m 1yr 2yr 3yr 4yr

0

5

10

15

0.
7x 1.

0x 1.
1x

1.
0x 1.

1x

SSSP
6m 1yr 2yr 3yr 4yr

0

10

20

30

1.
2x 1.

5x

1.
4x

1.
3x 1.

6x

MPSP

Figure 4.5: Runtimes of computations running on views differentially, from scratch, or adaptively.

scratch. Note that in these experiments, it is always better to either run the computations
with one of diff-only or scratch, so we do not expect adaptive to outperform both of these
strategies. Importantly, in almost all cases, we adapt to the better strategy.

Next, we created a view collection in which adaptive can outperform both diff-only
and scratch. Specifically, we created a view collection Caut on the PC citation dataset, which
contains the Cartesian product of two sets of windows on two properties. First is a 5-year non-
overlapping window from [1996, 2000] to [2016, 2020]. The other is a window for the number of
authors on the papers, that expands from [0, 5] to [0, 25] in windows of size 5. For example, the
view [1996, 2000] × [0, 5] is the view that contains all papers written between 1996 and 2000
containing at most 5 authors and their citations. This collection contains views that generate a
sequence of addition-only differences as the number of authors window expands, and then a non-
overlapping view, when the year window slides, creating a potential splitting point. Table 4.2
shows the runtimes of 6 computations on Caut. Observe that adaptive matches or outperforms,
by up to 1.9x, the better of diff-only and scratch. adaptive is able to appropriately split
the computation when the year window slides and consistently outperforms diff-only and
scratch when running all the computations.

55

WCC BFS SCC
diff 117.26 (1.9×) 19.29 (1.4×) 314.78 (1.8×)
scratch 120.53 (1.9×) 44.20 (3.3×) 351.83 (2.0×)
adapt 61.88 13.54 179.27

PR SSSP MPSP
diff 79.07 (1.6×) 18.6607 (1.3×) 20.4278 (1.2×)
scratch 114.74 (2.3×) 42.3927 (3.0×) 43.7398 (2.6×)
adapt 50.13 14.347 16.6355

Table 4.2: Runtimes (s) of computations for the Caut view collection showing that the adaptive
optimizer can outperform both running differentially and from scratch.

4.4.4 Benefits of Collection Ordering
The goal of our next experiment is to study the performance gains of our collection ordering
optimization. We developed a perturbation analysis application on CLJ, which contains ground-
truth communities. We constructed view collections by taking the 𝑁 largest communities and
removing 𝑘 combinations of these N communities to perturb the graphs in a variety of ways.
Specifically, we constructed collections for two (𝑁,𝑘) combinations: C10,5 sets 𝑁=10 and 𝑘=5
and contains 252 views, and C7,4 sets 𝑁=7 and 𝑘=4 and contains 35 views. Note that this is
an application where finding a good manual order is difficult, as each view removes possibly
millions of edges, and there are hundreds of views in the collection. Therefore as a baseline, we
will use random collection orderings.

We first turned our adaptive splitting optimizer off to isolate the benefits due to collection
ordering only and compared the performance of the order that Graphsurge picks, which we
call Ord, with 3 random orderings, denoted by R, R’, and R”, respectively. We then executed
6 computations on the view collections. The no adapt bars in Figure 4.6 show our results.
Table 4.3 presents the amount of total edge differences in our edge difference sets. Observe that:
(i) our optimizer’s order generates between 3.4× to 16.8× fewer differences than the random
orders; and (ii) our ordering optimization improves performance consistently and between
1.3× to 9.8× across our experiments. For reference, Table 4.3 also reports the times it takes
Graphsurge to compute the collections, with and without ordering, in row CCT (collection
creation time). The difference between the random order’s CCT and Ord’s CCT is the overhead
of ordering, which ranged between 1.3× and 1.8×.

We next turned the adaptive splitting optimization on to measure the performance benefits in
the full system. This forms a full end-to-end experiment as both of our optimizations are turned
on. We expect the benefits of ordering to decrease when adaptive splitting splits and improves
the performance of the random ordering. If adapting defaults to running only differentially, we

56

O
rd R R

’

R
”

0

200

400 4.
0x

3.
8x

3.
8x

3.
6x

3.
5x

3.
5x

WCC

10
C

5
R

un
ti

m
e

(s
)

O
rd R R

’

R
”

0

100

200

300 4.
2x

4.
0x 4.
1x

4.
0x

3.
9x

3.
9x

BFS

O
rd R R

’

R
”

0

2

4

6

·104

4.
1x

4.
1x

4.
0x

2.
0x

2.
0x

2.
0x

SCC

O
rd R R

’

R
”

0

1000

2000

3000

4000

1.
4x

1.
4x

1.
4x1.

7x

1.
6x

1.
6x

PR

O
rd R R

’

R
”

0

1000

2000

3.
6x

3.
6x

3.
5x4.

8x

4.
3x

4.
4x

SSSP

O
rd R R

’

R
”

0

500

1000 9.
8x

9.
4x

9.
5x10
.1

x

9.
4x 9.
8x

MPSP

no adapt adapt

O
rd R R

’

R
”

0

20

40

60

80

2.
3x 2.
4x

2.
4x

2.
1x 2.
4x 2.
5x

WCC

7C
4

R
un

ti
m

e
(s

)

O
rd R R

’

R
”

0

20

40

60

2.
3x 2.
5x

2.
4x

2.
3x 2.
4x 2.
5x

BFS

O
rd R R

’

R
”

0

2000

4000

6000

8000
2.

5x 2.
8x

2.
7x

1.
5x

1.
5x

1.
6x

SCC

O
rd R R

’

R
”

0

200

400

1.
3x

1.
3x

1.
3x

1.
2x

1.
2x 1.
3x

PR

O
rd R R

’

R
”

0

100

200

300

2.
1x 2.
2x

2.
1x

1.
9x 2.

4x

2.
1x

SSSP

O
rd R R

’

R
”

0

50

100

150

3.
4x 4.

4x

4.
2x

3.
5x 4.

5x

4.
2x

MPSP

(a) CLJ dataset.

O
rd R R

’

R
”

0

100

200

6.
4x

5.
9x 6.
6x

7.
0x

6.
8x

6.
9x

WCC

10
C

5
R

un
ti

m
e

(s
)

O
rd R R

’

R
”

0

100

200

4.
5x

4.
5x 4.
9x

4.
7x

4.
3x

4.
4x

BFS

O
rd R R

’

R
”

0

2000

4000

6000

3.
5x

3.
3x 3.
7x

3.
6x

5.
6x

3.
5x

SCC

O
rd R R

’

R
”

0

1000

2000

3000

1.
7x

1.
7x 1.
8x2.
0x

1.
9x

1.
9x

PR

O
rd R R

’

R
”

0

500

1000

5.
1x

4.
9x 5.
4x

5.
3x

7.
5x

5.
2x

SSSP
O

rd R R
’

R
”

0

200

400

600

6.
0x

5.
9x 6.
1x

5.
9x 6.

8x

5.
8x

MPSP

O
rd R R

’

R
”

0

20

40

60

2.
8x 2.
9x 3.
2x

2.
0x

2.
1x

3.
6x

WCC

7C
4

R
un

ti
m

e
(s

)

O
rd R R

’

R
”

0

10

20

30

40

2.
4x 2.
6x

2.
5x

1.
7x 1.

9x

1.
9x

BFS

O
rd R R

’

R
”

0

200

400

600

800

2.
1x

1.
9x 2.
3x

1.
5x 1.
7x

2.
3x

SCC

O
rd R R

’

R
”

0

100

200

300

1.
3x

1.
2x 1.
4x

1.
1x

1.
0x 1.

1x

PR

O
rd R R

’

R
”

0

50

100

150

200

2.
3x

2.
1x 2.
5x

2.
2x 2.
5x

3.
3x

SSSP

O
rd R R

’

R
”

0

20

40

60

80
2.

1x 2.
4x

1.
9x2.

0x

2.
0x

1.
8x

MPSP

(b) WTC dataset.

Figure 4.6: Runtime of algorithms showing the benefits of collection ordering with adaptive
splitting turned on and off.

57

Ord R1 R2 R3
CLJ 10C5 # Diffs 158M 1.5B (9.6×) 1.4B (9.6×) 1.5B (9.6×)

CCT 355.0 (+151.5) 203.5 (1.7×) 207.8 (1.7×) 236.0 (1.7×)
7C4 # Diffs 54M 191M (3.6×) 211M (3.6×) 194M (3.6×)

CCT 38.8 (+8.7) 30.2 (1.3×) 31.4 (1.3×) 34.7 (1.3×)
WTC 10C5 # Diffs 73M 1.2B (16.8×) 1.1B (16.8×) 1.1B (16.8×)

CCT 299.0 (+128.5) 170.5 (1.8×) 168.9 (1.8×) 192.3 (1.8×)
7C4 # Diffs 44M 149M (3.4×) 149M (3.4×) 192M (3.4×)

CCT 35.1 (+8.5) 26.6 (1.3×) 25.6 (1.3×) 30.0 (1.3×)

Table 4.3: The number of diffs and collection creation time (CCT) in seconds for C10,5 and C7,4
on CLJ and WTC for three random orders R1, R2, and R3, and our optimizer’s order.

expect the results to be similar to our previous results. The adapt bars in Figure 4.6 show our
results. There are 3 experiments in which adapting improves the random order’s performance
by splitting: when running SCC on CLJ with both C10,5 and C7,4 collections and running SSSP
on CLJ with C7,4 experiment. In these cases, the benefits of ordering decrease compared to when
adapting optimization was off. For example, when running SCC on CLJ with C10,5 collection, the
benefits of ordering decrease from 4.1× to 2.0×. In other experiments, our adaptive optimization
defaults to running all computations differentially (or performs slightly worse than running
only differentially). In these cases, the ordering optimization improves the performance similar
to when adaptive optimization was off (between 1.1× to 10.1×).

4.4.5 Baseline Temporal Systems
In this section, we provide baseline comparisons against GraphBolt [122] (GB). GB is a shared-
memory streaming system that is developed on top of Ligra [152] and designed to maintain
computation results over a stream of updates. As such, we can develop a Graphsurge-like
system on top of GB by feeding our view collections as an evolving graph to GB instead of DD.
The primary difference between DD and GB, and the reason we chose DD, is that GB requires
users to write explicit maintenance code in functions such as retract or propagatedelta,
which is challenging for some algorithms, such as the doubly-iterative SCC algorithm.

The GB reference implementation [24] includes two incremental computation engines. The
first is the Kickstarter engine [163], which is limited to monotonic graph computations and is
used to implement SSSP. The second is the Graphbolt engine, which is more general and is used
to implement PR.

We evaluate the performance of Graphsurge and GB for two computations, SSSP and
PR, on the TW dataset. We simulate a temporal computation application in Graphsurge by

58

0

500

1000

1500

6.
4x

SSSP

R
un

ti
m

e
(s

)

0

2

4

·104

2.
3x

PR

GS GB

Figure 4.7: Graphsurge vs GraphBolt.

12 4 8 12
0

500

1,000

compute machines

R
un

ti
m

e
(s

)

SSSP
PR

Figure 4.8: Runtimes in a distributed setting.

constructing a view collection with 1001 views, where the first view contains 50% of the total
edges in the original graph selected randomly, and each of the remaining views contains 500
additions and 500 deletions based on the previous view. Figure 4.7 shows the comparison results.
We note that Graphsurge is up to 6.4× faster than GB for SSSP, but is up to 13.5× slower than
GB for PR. These numbers are similar to the numbers in reference [122] (Figures 8 and 9) for GB
and DD.

There are two primary reasons for the lower performance of Graphsurge for PR. First,
DD’s execution engine uses a dataflow architecture, which is based on message passing, and
has a higher runtime overhead as compared to the shared memory architecture of GB, which
propagates updates by directly writing tomemory locations using atomic operations. Despite this
advantage, as reference [122], we foundDD to bemore performant on SSSP. Second, Graphsurge
uses DD as its computation engine, which is built to support general incremental computation.
However, this generality can naturally come at a performance cost, because DD is unable
to take advantage of computation-specific optimizations. For example, GB implements a PR-
specific incrementalization code, which is more efficient than differential computation. However,
specialized incremental versions of many algorithms are similar to differential computation. For
example, GB’s incremental SSSP algorithm is effectively differential computation, and for such
algorithms, DD generates equally efficient incremental versions automatically.

4.4.6 Distributed Execution and Scalability
We next demonstrate the ability of Graphsurge to scale in a distributed setting. We modified
the Twitter dataset by assigning artificial city, state, and country attributes to the vertices and
an affinity weight to edges that indicate the level of interaction between users. We modeled a
social network analysis application that studies the connected users who live within the same
city, state, and country with three different affinity levels, low, medium, and high, constructing a

59

view collection with 9 views. We measured the runtime for 2 computations: SSSP and PR, on this
view collection using up to 12 compute machines, each with 32 worker threads. Figure 4.8 shows
the scalability results on this large view collection. Additional machines improve the runtime for
both of the computations almost linearly. This experiment demonstrates that Graphsurge can
take full advantage of TD and DD for seamlessly scaling to multiple machines in a distributed
environment. Since this experiment aimed to simply verify that Graphsurge is able to utilize
DD’s ability to scale in a distributed setting, we did not run the rest of the 4 computations and
expect them to exhibit similar runtime characteristics.

4.5 Summary
We presented the design and implementation of Graphsurge, an open-source view-based graph
computation system, developed on top of the TD system and its DD layer. Graphsurge allows
users to define arbitrary views over their graphs, organize these views into view collections,
and perform arbitrary graph computations using a DD-based computation API. Graphsurge is
motivated by real-world applications, such as perturbation analysis or analysis of the evolution
of large-scale networks, that require capabilities to analyze multiple, sometimes hundreds of
views of static input graphs efficiently. We presented two optimization problems, the collection
ordering and splitting problems, for which we described efficient algorithms and studied the
performances of our optimizations. Graphsurge’s approach for computation sharing is based
on differential computation. Within the context of this thesis, the research presented in this
chapter demonstrates that one can make DC more practical for developers of graph applications
through graph-specific interfaces over the DD system. Further, the chapter showed that DC
has broader applications than dynamic graph computations. Finally, the collection ordering
and splitting optimizations demonstrate that one can improve the performance of DC through
application-specific optimizations. We will provide another graph-specific optimization directly
for DC’s maintenance rules in the next chapter.

60

5
Scaling Differential Computation
for Large-Scale Graph Processing

The DD system, which is the reference implementation of DC, and which we used in Chapter 4,
is a general dataflow system that is oblivious to the underlying computation. In the Graphsurge
system, we showed that several graph applications can benefit from DC by designing: (i) graph-
specific interfaces over its reference implementation DD; and (ii) graph-specific optimizations.
These are the core arguments of this thesis. In this chapter, we show that we can also provide
graph-specific optimizations to DC and DD directly to improve the performance of graph
applications that can benefit from DC. All of our optimizations are motivated by the behavior of
DC on the IFE dataflow.

We identify two optimizations to DD’s in-memory index, which stores operator state. First,
we observe that DD’s index is a write-friendly implementation. But to check if operators need
to generate differences, DC’s core maintenance logic, based on Equation 3.2, does significant
reads of differences. Therefore, we propose a new design that makes the storage of indexes more
read-friendly. Second, DD stores differences, which consist of keys, values, timestamps, and
multiplicities, indexed by keys and values. We show that by indexing by keys and timestamps
instead, we can decrease the amount of data that is scanned from indices to temporary buffers
to implement Equation 3.2.

Our third and most important optimization is Fast Empty DIfference Verification (FEDiV). It is
an optimization for the Reduce operator in IFE when Reduce uses a min or max aggregation,
which is the case in all of the graph algorithms we considered so far in the thesis, such as

61

WCC, MPSP, or BFS, except PR. Reduce is computationally one of the most expensive operators
to maintain for DD. We show how to verify that such Reduce operators do not produce any
differences at time 𝑡 without inspecting any of the input differences to Reduce at times < 𝑡 , by
only inspecting the output differences. Because input differences to Reduce consist of the output
of Join, they are much larger than the output differences. Therefore, when FEDiV is successful,
i.e., it verifies that the Reduce’s output is empty, it avoids both expensive scans out of the index
and rerunning the Reduce logic.

5.1 Background
Recall from Section 3 that DD operates on collections that are a multiset of differences of the
form ((key, value), 𝑡∗, Δ). DD operators process one or more input collections to produce an
output collection based on Equation 3.2, which we can rewrite as:

𝛿𝑂𝑡 = Op(𝛿𝐼𝑡 +
∑︁
𝑠<𝑡

𝛿𝐼𝑠) −
∑︁
𝑠<𝑡

𝛿𝑂𝑠 (5.1)

Equation 5.1 indicates that DD operators receive inputs 𝛿𝐼𝑡 at time 𝑡 and produce output 𝛿𝑂𝑡 ,
by possibly requesting access to their input history

∑
𝑠<𝑡 𝛿𝐼𝑠 and output history

∑
𝑠<𝑡 𝛿𝑂𝑠 , which

DD indexes separately. To save memory, DD avoids automatically storing the input and output
history for every operator because not every operator needs such access, as we discussed in
Chapter 3 (Section 3.4). Instead, operators individually specify which of their input and output
history should be indexed.

Collections are indexed in DD using the arrange operator [123]. Operators requiring access
to their input or output history operate on the arrangements of the corresponding collection. For
instance, Figure 5.1 shows the arrangements used by the operators in the dataflow of the SSSP
algorithm from Chapter 3. In particular, Join requires arrangements of its two input collections
𝐸 and 𝐿 and produces an output collection 𝐽 . Reduce, in turn, requires an arrangement of 𝐽 as
its input and maintains an arrangement of its computed outputs 𝑅.

Arrangements are not shared across workers. Instead, collections are sharded based on
the key such that all differences for a particular key are indexed together in a single worker.
Thus, read and write operations on an arrangement do not require any expensive coordination
between workers. Within a worker, multiple operators can share an arrangement. For example,
in Figure 5.1a, the arrangements 𝑅 and 𝐿 store the same set of differences (except for those of
Root). We can rewrite the dataflow such that a single arrangement, say 𝑅, can be used by both
Join and Reduce without affecting the computation semantics, thus avoiding a second copy of
the index. Our implementation does this optimization, but we omit it in the figure for simplicity.

62

Root
Output

Edges
Join Reduce

Loop L

E

L
J R

(a) Dataflow of SSSP with arranged collection indices.

v0 v1 v2 v310

9

2 1

5 21

1

(b) Edges (E).

Figure 5.1: Dataflow and input graph for SSSP.

When using arrangements, operators process input and outputs in units of a Batch. The
history of a collection is represented using a set of Batches, which is organized in a data structure
called the Spine. We next describe how Batches and the Spine are used to create arrangements,
and then show how operators retrieve data out of the arrangements for their computations.

5.1.1 Arrangements
The Arrange operator takes a collection as its input and transforms them into a sequence of
Batches, each representing a unit of work containing differences for one or more keys. Consider
Table 5.2a, which shows the differences when running SSSP on the example graph in Figure 5.1b.
For the input differences 𝛿 𝐽1,1 at 𝑡=(1, 1), Figure 5.2b shows the corresponding Batch created
by the Arrange operator. Each Batch is a composite two-level index, stored as a set of 5 arrays,
mapping sorted keys and then sorted values to (𝑡∗, Δ) pairs. Two offset arrays are used to indicate
the associated entries in the next array.

As the computation progresses, operators create new output Batches at different timestamps.
DD stores these batches inside the Spine, which stores an array of Batches, maintaining the
invariant that an index 𝑖 of the array stores a Batch of length 2𝑖 , where the length of a Batch is
the count of its (𝑡∗, Δ) pairs. Incoming Batches are inserted at the appropriate index and existing
Batches are progressively merged into larger Batches, creating a series of larger and larger
Batches stored along the array indices. Figure 5.2 shows the state of the Spine for arrangement
𝐽 for the differences shows in Table 5.2a.

For long-running computations, the collection history can grow unboundedly across a large
number of timestamps. However, as timestamps expire, the differences at those timestamps
can be merged and potentially removed when they cancel out. For example, Figure 5.2d shows
how Batches 𝐵0,1 and 𝐵1,1 can be merged into a new Batch 𝐵𝑛𝑒𝑤 . Note how the differences
(12, (0, 1), +1) and (12, (1, 1),−1) for 𝑣2 cancel out and doesn’t need to be stored in 𝐵𝑛𝑒𝑤 . Similarly
for the value 19 of 𝑣3. It is safe to perform such cancellations after the timestamp (1,1) has
expired, as DD operators can no longer seek data for timestamps 𝑡≤(1, 1).

63

𝐺0 𝐺1

0
𝛿𝐸

(𝑣0, (𝑣1, 10), +1), (𝑣0, (𝑣2, 5), +1), (𝑣0, (𝑣3, 21), +1),
(𝑣1, (𝑣2, 2), +1), (𝑣1, (𝑣3, 9), +1), (𝑣3, (𝑣2, 1), +1) (𝑣0, (𝑣1, 1), +1), (𝑣0, (𝑣1, 10),−1)

𝛿𝐿 (𝑣0, 0, +1) ∅
𝛿 𝐽 (𝑣1, 10, +1), (𝑣2, 5, +1), (𝑣3, 21, +1) (𝑣1, 1, +1), (𝑣1, 10,−1)

1
𝛿𝐿 (𝑣1, 10, +1), (𝑣2, 5, +1), (𝑣3, 21, +1) (𝑣1, 1, +1), (𝑣1, 10,−1)
𝛿 𝐽 (𝑣2, 12, +1), (𝑣2, 22, +1), (𝑣3, 19, +1) (𝑣2, 12,−1), (𝑣2, 3, +1), (𝑣3, 10, +1), (𝑣3, 19,−1)

2
𝛿𝐿 (𝑣3, 19, +1), (𝑣3, 21,−1) (𝑣2, 3, +1), (𝑣2, 5,−1), (𝑣3, 10, +1), (𝑣3, 19,−1)

𝛿 𝐽 (𝑣2, 20, +1), (𝑣2, 22,−1) (𝑣2, 11, +1), (𝑣2, 20,−1)

(a) SSSP differences. 𝛿𝐸 = ∅ and is omitted after iteration 0.

v2 v3
0 2

3 12 10 19
0 1 2 3

(1,1), +1 (1,1), -1 (1,1), +1 (1,1), -1

keys

key offsets

values

value offsets

(timestamp, Δ)

(b) 𝛿 𝐽 Batch 𝐵1,1, len=4.

v2 v3
0 2

12 22 19
0 1 2

(0,1), +1 (0,1), +1 (0,1), +1

(c) 𝛿 𝐽 Batch 𝐵0,1, len=3.

v2 v3
0 2

3 22 10
0 1 2

(1,1), +1 (1,1), +1 (1,1), +1

(d) Merged 𝐵0,1 + 𝐵1,1, len=3.

i=0

i=1

i=2

i=3

t=0,0

len = 3

t=0,1 t=0,2

len = 6

len = 2

t=1,0

len = 6

len = 2

len = 2

B1,0B0,2

B0,0

B0,0+B0,1

B0,2

t=1,1

len = 6

len = 4

B1,1

t=1,2

B0,0 + B0,1 + B0,0 + B0,1

len = 8

len = 4

B1,1

B1,2

len = 2

B0,0

len = 3

B0,1

len = 3

B0,0+B0,1 B0,0+B0,1

len = 4

B0,2+B1,0

(e) State of Spine for 𝐽 at different timestamps.

Figure 5.2: Differences, Batches, and Spine for SSSP on the example graph from Figure 5.1b.

64

5.1.2 Operations on Arrangements
DD arrangements offer several functions to retrieve data from the index, defined for both
individual Batches and the Spine. The key functions include:

• seek_key(𝑘): searches for Batches that contains key 𝑘 using binary-search.
• seek_value(𝑘, 𝑣): among the Batches containing 𝑘 , searches for those containing value 𝑣 ,
using binary-search.
• get_value(𝑘): returns the next sorted value across all Batches containing 𝑘 .
• get_times(𝑘, 𝑣): returns (𝑡∗, Δ) pairs from all Batches containing (𝑘, 𝑣).
• consolidate(array:[(data, Δ)]): computes the multiset union of the given array, by
sorting and merging entries into (data,

∑
Δ𝑖) pairs, and dropping any (data, 0) pairs.

When accessing arrangements, an operator first searches for a key 𝑘 using seek_key(𝑘).
If found, the operator next loops through all values 𝑣 for 𝑘 using get_values(𝑘), extracts the
(𝑡∗, Δ) pairs for each value using get_times(𝑘, 𝑣), and stores the consolidated (value, 𝑡∗, Δ)
tuples in a temporary buffer for further processing.

We next show an example of how Reduce uses arrangements to compute its output. Consider
again the example in Table 5.2a, with the Reduce operator computing the output 𝑅𝑣21,1 for key 𝑣2
at timestamp 𝑡 = (1, 1). The input arrangement is Spine{𝐵0,0, 𝐵0,1, 𝐵0,2, 𝐵1,0}, while the output
arrangement is Spine{𝐵0,1, 𝐵0,2, 𝐵1,0}
Reduce does the following 8 sub-computations representing units of Equation 5.1:

(i) 𝛿 𝐽 𝑣21,1 = [(3, +1), (12,−1)], based on values for 𝑣2 from 𝐵1,1.

(ii)
∑
𝑠<1,1 𝛿 𝐽

𝑣2
𝑠 = [(5, +1), (12, +1)], based on values for 𝑣2 in the input arrangement. Batch 𝐵0,2

contains 𝑣2 but is ignored because 𝑡0,2 ≮ 𝑡1,1.

(iii) 𝛿 𝐽 𝑣21,1 +
∑
𝑠<1,1 𝛿 𝐽

𝑣2
𝑠 = [(3, +1), (12,−1), (5, +1), (12, +1)] as the union of (i) and (ii).

(iv) consolidate(𝐽 𝑣21,1 +
∑
𝑠<1,1 𝛿 𝐽

𝑣2
𝑠) = [(3, +1), (5, +1)], from (iii).

(v) 𝑚𝑖𝑛(𝐽 𝑣21,1 +
∑
𝑠<1,1 𝛿 𝐽

𝑣2
𝑠) = [(3, +1)], from (iv). For SSSP, Reduce computes the min.

(vi)
∑
𝑠<1,1 𝛿𝑅

𝑣2
𝑠 = [(5, +1)], based on values of 𝑣2 in the output arrangement. Only Batch 𝐵0,1

contains 𝑣2.

(vii) consolidate(∑𝑠<1,1 𝛿𝑅
𝑣2
𝑠) = [(5, +1)], from (vi).

(viii) Finally, 𝛿𝑅𝑣21,1 = [(3, +1)] − [(5, +1)] = [(3, +1), (5,−1)], from (v) and (vii).

65

(1,1), +1key-data 3 +1 (1,1), -112 +1 (1,1), +110 +1 (1,1), -119 +1

(v2, 0) (v3, 2)keys

Figure 5.3: Compact Batch layout with merged (value, 𝑡∗, Δ).

Reduce repeats these steps for all keys 𝑘𝑖𝑡 that are either present in 𝛿 𝐽𝑡 or are marked for
recomputation from an earlier time 𝑡𝑝 < 𝑡 . 𝛿𝑅𝑡 is the union of the Reduce output for all keys
processed at time 𝑡 and is inserted as one or more new Batches in the output arrangement 𝑅.

5.2 Read-optimized Compact Batches
The Batch structure is designed to handle general user-defined collections of the form ((K, V), T,
R), where K, V, T, and R are generic types implementing certain required interfaces (called traits
in Rust). The Batch layout, as we showed in Figure 5.2b, handles two key operations: (i) seek
keys and values within keys, using binary search on the sorted key and value arrays; and (ii)
merge two batches, by performing a sorted merge on the key and value arrays, such that (𝑡∗, Δ)
pairs for each (key, value) can be consolidated from both batches, as we showed in Figure 5.2e.

For the graph computations using IFE computations that we focus on in this thesis, collections
are more well-defined. In particular, all types can be represented using integers, with keys
representing node IDs, values representing either neighbor nodes IDs or labels, timestamps
representing graph version or IFE iterations, and Δs representing positive or negative counts.

Moreover, we observe that Join and Reduce, the two main operators in IFE, access arrange-
ments in a well-defined pattern: (i) find Batches containing key 𝑘 ; (ii) retrieve and merge (value,
𝑡∗, Δ) entries from the matching Batches containing 𝑘 . We focus on the second operation. Since
values and their (𝑡∗, Δ) pairs are stored in separate arrays within a Batch, they are unlikely to
be stored close together in memory, requiring seeks to different memory pages.

To optimize memory reads, we modified the Batch layout to make it more compact, by
merging the five arrays into just two arrays. Consider Batch 𝐵1,1 from Figure 5.2b. Figure 5.3
shows the equivalent compact Batch 𝐵𝑐𝑜𝑚𝑝𝑎𝑐𝑡1,1 . We store the keys and key offsets in one array,
and the values, value offsets, and (𝑡∗, Δ) pairs together in the second array. Since values and
their corresponding (𝑡∗, Δ) pairs are stored together, all the data for a key stored in a compact
Batch can be fetched from consecutive memory locations.

Seeking randommemory pages is a fast operation and we expect that Batches with or without
compaction will have the same random access characteristics. However, the compact Batches

66

have two performance benefits: (i) values and their associated (𝑡∗, Δ) pairs are more likely to
present together on the same page and thus in the same CPU cache lines; and (ii) merging
Batches are more efficient since values and their associated data can copied together into the
merged Batch using memcpy. In our evaluation in Section 5.5, we show runtime gains of up to
1.7× when DD is operating fully in memory.

We next consider datasets whose working set does not entirely fit in the available memory.
DD can continue with degraded performance by letting the operating system swap excess
memory pages to disk. In such a scenario, the compact Batch layout has a better advantage over
the existing layout due to sequential disk accesses as compared to random access and benefits
from prefetching. In our evaluation, we show a runtime gain of up to 4.2× when computations
are limited to 10% of total memory required for their working set.

5.3 Time-based Indices
Batches store collection differences indexed over keys and values, which allows it to efficiently
seek specific keys and values in arrangements. However, operators in IFE dataflows do not need
to seek specific values. Instead, at time 𝑡 , they retrieve all (value, 𝑡∗, Δ) tuples for a key for all
𝑡∗ ≤ 𝑡 . Figure 5.5a outlines how operators use a temporary buffer to perform this operation.
Since the same value can occur in multiple Batches, operators first copy all values and their
corresponding (𝑡∗, Δ) pairs to union them together. Entries corresponding to timestamps 𝑡∗ ≮ 𝑡
are simply marked for future recomputation and skipped. The remaining (value, Δ) pairs are
then collected for further processing by the operators.

Consider the casewhere a key is present in all𝑁 IFE iterationswith timestamps (0, 𝑗 ∈ [0, 𝑁)).
Now suppose the graph is updated such that output for 𝑘 needs to be recomputed. At 𝑡=(1, 0),
the entire history of 𝑘 across 𝑁 iterations is first copied into the temporary buffer. However, all
values except those at 𝑡=(0, 0) are irrelevant and will be skipped, thus utilizing only a fraction
of the values copied into the temporary buffer, resulting in wasted runtime and memory.

We made a second modification to the Batch layout where the secondary index is based
on the timestamps instead of values. Figure 5.4 shows an example Batch B𝑡𝑖𝑚𝑒 when indexed
by (key, timestamp). Figure 5.5b outlines the state of the temporary buffers with the modified
layout. Operators can now directly retrieve all timestamps 𝜏𝑖 of a key, and only copy values
when 𝜏𝑖 ≤ 𝑡 , thus saving CPU time due to fewer copies and avoiding unnecessary memory
allocations for irrelevant values. In our evaluation, we show up to 4.3× better runtime and up to
1.7× less memory utilization from this optimization.

67

(v2, 0) (v3, 2)keys

key-data 3, +1+2(1,1) 12, +1 10, +1+2(1,1) 19, +1

Figure 5.4: Example Batch indexed by (key, time).

Batch

Batch

(t1, Δ1), (t2, Δ2)

copy (val,Ti,Δ)

copy (val, Δ), skip Ti > t

(v1, Δ1), ...

(t2, Δ3)

v1

v2

...

spine
(key, value) indexed

temp buffer

(a) Using Batch indexed by (key, value).

spine

Batch

Batch

(key, timestamp) indexed

copy Ti

(t1, p1), (t2, p2),
(t2, p3), ...

(v1, Δ1), ...

copy (val, Δ), skip Ti > t

temp buffer

(b) Using Batch indexed by (key, time).

Figure 5.5: DD index operations with or without time-based indices.

5.4 FEDiV: Avoiding Difference Computations
The most expensive operator of the IFE dataflow is the Reduce operator. Vanilla DC applies
the general DC rule of recomputing an operator Op. We review this rule here briefly. Consider
Figure 5.6 which divides the input and output indices of an operator for a single key 𝑣 into 4
regions, A, B, C, and D, respectively. Each region represents the differences in the index with
timestamps covered by that region. In the figure, the 𝑥-dimension shows graph versions and the
𝑦-dimension shows IFE iterations. For simplicity, the operator is assumed to have a single input
index. Recall from Chapter 3 that the recomputation logic is the following:

𝛿OUT(𝑖, 𝑗) = Op(
∑︁
𝑡≤(𝑖, 𝑗)

𝛿IN𝑡) −
∑︁
𝑡<(𝑖, 𝑗)

𝛿OUT𝑡 (5.2)

Let’s call the computation Op(∑𝑡≤(𝑖, 𝑗) 𝛿IN𝑡) as the “new output computation”. This involves
scanning and consolidating the input index up to and including time (𝑖, 𝑗) and then rerunning
the Reduce operator on the consolidated input. Similarly,

∑
𝑡<(𝑖, 𝑗) 𝛿OUT𝑡 scans and consolidates

the output index up to but excluding time (𝑖, 𝑗).

68

INDINC

INA INB

graph versions

...

IF
E

 it
er

at
io

ns

...

(a) Input index 𝐼𝑁 .

OUTDOUTC

OUTA OUTB

graph versions

...

IF
E

 it
er

at
io

ns

...

(b) Output index 𝑂𝑈𝑇 .
Figure 5.6: Input and output regions for a single key 𝑣 during Reduce recomputation.

This rule is oblivious to the actual computation that happens inside Op and ignores any
properties of the Reduce operator in the IFE dataflow. In this section, we ask: “Can we specialize
the DC recomputation rule to skip certain recomputations of Reduce?” One reason to ask this
question is that often the Reduce recomputations yield empty deltas, i.e., 𝛿OUT(𝑖, 𝑗) = ∅. Recall
that workloads for which updates to inputs do not generate many output differences are the
cases when DC can be effective. This is the case when the computational footprint of DC is
very similar across two versions of the input, so we can “fix” these differences effectively. Yet, to
verify that the deltas are empty still requires many recomputations. In this section, we seek to
exploit domain-specific knowledge about the actual computation that happens inside the Reduce
operators in IFE to avoid doing the full recomputation. Specifically, we will show an effective
way to determine some popular scenarios when we can determine 𝛿OUT(𝑖, 𝑗) = ∅ without doing
the “new output computation” at all and instead by only inspecting 𝛿IN(𝑖, 𝑗) , which corresponds
to IN𝐷 in Figure 5.6a, and

∑
𝑡<(𝑖, 𝑗) 𝛿OUT𝑡 . In DD, when Reduce operator executes at (i, j), 𝛿IN(𝑖, 𝑗)

is readily available, so reading it does not require scanning the input index.
Our optimization exploits the property that Reduce operators are minimum or maximum

aggregation operators in the graph computations we consider. These computations have two
properties: (i) at any timestamp 𝑡 , they take as input a set of inputs and produce a single output
value 𝛿OUT(𝑖, 𝑗) = (𝑣𝑎𝑙, +1) tuple; and (ii) when running the IFE dataflow on a graph input, the
Reduce outputs monotonically decrease (for minimum aggregation) or increase (for maximum
aggregation). We begin by building an intuition for how we can guarantee that 𝛿𝑂𝑈𝑇(𝑖, 𝑗) = ∅
with some simple cases and also describe where this intuition falls short. Then we describe two
rules, one of which partially scans the input index and the other completely avoids scanning
it (except 𝛿IN(𝑖, 𝑗)), and present rigorous proof of the correctness of these rules. We call this
optimization FEDiV, for Fast Empty DIfference Verification.

69

0 (200, +1)

1 (300, +1)
(500, +1)

2 (300, -1), (100, +1)
(500, -1), (400, +1)

(400, -1)
(350, +1)

3 (400, -1), (100, +1) (400, +1)

4

0 (200, +1)

1

2 (200, -1)
(100, +1)

3

4

Figure 5.7: WCC input and output differences for 𝑣200 when inserting the edge 𝑣350 → 𝑣500.

5.4.1 Preliminary Example
The first observation we make is that since Reduce operator Op is an aggregation operator,
the union of the output differences in a rectangle between the origin (0, 0) and any (𝑖, 𝑗) in
Figure 5.6b is a single value𝑚 with +1 multiplicity. This is because, by Equation 5.2, the union
of the output differences in the rectangle is equal to Op(∑𝑡≤(𝑖, 𝑗) 𝛿𝐼𝑁𝑡), which outputs a single
aggregate value. This is “the value of key 𝑣 at the 𝑗 ’th iteration after the 𝑖’th update to the graph”.
The goal of the recomputation logic is to compute the output differences OUT𝐷 , such that OUT𝐷
when unioned with OUT𝐴, OUT𝐵 , and OUT𝐶 , alternatively written as OUT𝐴+𝐵+𝐶+𝐷 , gives a
single value (𝑚, +1). Therefore, if the union OUT𝐴+𝐵+𝐶 is not a single value, we can be certain
that OUT𝐷 is not empty and we need to rerun the Reduce operator and follow Equation 5.2.
This establishes our first rule: “If OUT𝐴+𝐵+𝐶 is not a single value (𝑚, +1), then we cannot avoid
Reduce recomputation. Moving forward, we focus on the case when OUT𝐴+𝐵+𝐶 is a single value.
We also assume that the aggregation operator in Reduce is the minimum function.

Intuitively one may think that the following rule is correct: “If the new batch of updates
IN𝐷 contains input differences strictly greater than𝑚, then these new input differences cannot
“retract”𝑚 from the output. Therefore𝑚 has to be the final output of Op(∑𝑡≤(𝑖, 𝑗) 𝛿IN𝑡).” For
example, consider running the WCC version of IFE in the input graph shown in Figure 5.7 and
inserting a new edge from a 𝑣350 to 𝑣500. Figure 5.7 shows the input and output differences that
would be generated for key 𝑣200 upon this update. Consider running the Reduce computation
at 𝑡=(1, 2). DC would recompute Reduce at (1, 2) since there are non-empty input differences
at (1, 2). OUT𝐴+𝐵+𝐶=(100, +1) and IN𝐷={(400,−1), (350, +1)}, which intuitively cannot retract
(100, +1). So one might think that the rule articulated at the beginning of this paragraph is
correct. We next show that unfortunately, this intuition is incorrect and that we must further
inspect the differences in IN𝐶 (or symmetrically in IN𝐵).

70

0 (200, +1)

1 (300, +1)
(500, +1)

2 (300, -1), (100, +1)
(500, -1), (400, +1)

(100, -1)
(300, +1)

3 (400, -1), (100, +1)

4

0 (200, +1)

1

2 (200, -1)
(100, +1)

(200, +1)
(100, -1)

3 (200, -1)
(100, +1)

4

Figure 5.8: WCC input and output differences for 𝑣200 when deleting the edge 𝑣100 → 𝑣300.

5.4.2 Input History Scanning Rules
Now consider the example in Figure 5.8, which shows the differences generated when deleting
the edge 𝑣100 → 𝑣200. Consider running the Reduce computation at timestamp (1, 3). DC
would recompute Reduce at (1, 3) since (1, 3) is in the join of (0, 3) and (1, 2). In this case,
OUT𝐴+𝐵+𝐶=(200, +1) and IN𝐷=∅. However, there are still output differences, as shown in the
figure. Intuitively, the reason behind this is that there were 2 paths from 𝑣100 to 𝑣200 prior to
the update. One of them of length 2 and the other of length 3. Previously, the longer path was
not generating any output differences, since by the time the label 100 reaches 𝑣200 through the
longer path, the label of 𝑣200 was already 100, thus preventing IN𝐶 , which in this example is the
input differences at timestamp (1, 3), from generating any differences in OUT𝐶 .

To fix this, we need to inspect not only IN𝐷 but also IN𝐶 and ensure that the input differences
in IN𝐶 also cannot retract𝑚. That is, the following rule would correctly skip recomputations
without doing the full computation in Equation 5.2: “If OUT𝐴+𝐵+𝐶=(𝑚, +1) and the input differ-
ences in 𝐼𝑁𝐶 and IN𝐷 contains differences with values greater than𝑚, then𝑚 has to be the final
output of Op(∑𝑡≤(𝑖, 𝑗) 𝛿𝐼𝑁𝑡).” Symmetric to this rule, we could also have checked if IN𝐵 contains
differences with values greater than𝑚. We omit the proof of this rule as we will implement and
prove another rule that avoids inspecting the input differences at all with a stricter precondition.
The problem with these rules is that in addition to inspecting IN𝐷 , which DD keeps in a separate
buffer and makes readily available to the Reduce operator, they also require scanning these
input differences and identifying the ones in region IN𝐶 or IN𝐵 . This is an expensive operation
for two reasons: (i) input differences are generated by the in-neighbors of vertices, and vertices
in real-world graphs often have large numbers of neighbors; and (ii) differences in IN𝐶 and IN𝐵
are in the spine index and not readily available.

71

...

IF
E

 it
er

at
io

ns

...

... INA INB

INDINC

Figure 5.9: Generic description of consolidating input differences to 2 graph versions.

5.4.3 Avoiding Input History Scanning
We next describe a rule that only requires inspecting IN𝐷 . Our rule is the following:

Theorem 5.4.1. Let IN𝐴+𝐵+𝐶+𝐷 and OUT𝐴+𝐵+𝐶=(𝑚, +1) be defined as before. Let OUT𝐴+𝐵 =

(𝑚𝐵, +1) be the union of OUT𝐴 and OUT𝐵 . Let OUT𝐴+𝐶=(𝑚𝐶, +1) be the union of OUT𝐴 and OUT𝐶 .
If𝑚 =𝑚𝐵 =𝑚𝐶 and the differences in IN𝐷 are greater than𝑚, then OUT𝐷 is empty.

This is the FEDiV rule that we implemented in DD. FEDiV first computes OUT𝐴+𝐵+𝐶 and
checks that it is a single value (𝑚, +1). Then it computes𝑚𝐵 and𝑚𝐶 and checks that they equal𝑚.
Finally, it checks that the differences in IN𝐷 are greater than𝑚. We next prove Theorem 5.4.1.

Proof. Let IN𝐴+𝐵+𝐶+𝐷 be the union of IN𝐴, IN𝐵 , IN𝐶 , and IN𝐷 . We prove the theorem by proving
two lemmas whose proofs we will present momentarily:
Lemma 5.4.1.1. The value𝑚 has to appear with a positive multiplicity in IN𝐴+𝐵+𝐶+𝐷 .

Lemma 5.4.1.2. No value smaller than𝑚 can appear with a positive value in IN𝐴+𝐵+𝐶+𝐷 .

These two lemmas imply as a corollary that𝑚 is the smallest value in IN𝐴+𝐵+𝐶+𝐷 that appears
with a positive difference, and hence the output of Op(∑𝑡≤(𝑖, 𝑗) 𝛿IN𝑡), which runs the Reduce
operator on IN𝐴+𝐵+𝐶+𝐷 , must be (𝑚, +1). Therefore, the result of the difference computation in
Equation 5.2 is empty, since OUT𝐴+𝐵+𝐶 is already (𝑚, +1). □

Proof of Lemma 5.4.1.1. Let’s first prove that 𝑚 has to appear with a positive multiplicity in
IN𝐴+𝐵+𝐶+𝐷 . Consider merging all graph versions between 0 and i-1 (inclusive) to a single
dimension. Figure 5.9 shows this operation. This is the difference-merging operation that DD

72

0 (200, +1)

1 (300, +1)
(500, +1)

2 (300, -1), (100, +1)
(500, -1), (400, +1)

(400, -1)
(350, +1)

(100, -1)
(300, +1)

3 (400, -1), (100, +1) (400, +1)

4

0 (200, +1)

1 (300, +1)
(500, +1)

2 (300, -1), (100, +1)
(500, -1), (350, +1)

(100, -1)
(300, +1)

3 (100, +1)

4

Figure 5.10: Example merging of input differences.

performs from time to time when old graph versions are no longer needed. Within each IFE
iteration, this operation unions all of the differences in graph versions 0 to 𝑖 − 1 and consolidates
all the differences. This does not affect the consolidated contents of IN𝐴 and IN𝐶 . After merging,
we have 2 graph versions—𝐺𝑚0 , the first graph version without any updates, and 𝐺𝑚1 , the graph
version after the “first update”. Therefore, the consolidated differences in IN𝐴 and IN𝐶 are exactly
the differences that are generated if we were to apply all graph updates from 𝐺0 to 𝐺𝑖−1 into a
single static graph and run IFE on that. For example, Figure 5.10 shows an example of reducing
graph versions from 3 to 2. The figure considers performing the two updates of inserting
𝑣350 → 𝑣500 and deleting 𝑣100 → 𝑣200 one after another in our running example. Readers can
verify that the differences in the 𝐺𝑚0 column after merging are exactly equal to the differences
one would get when running WCC in the bottom graph snapshot in the figure, i.e., including
the 𝑣350 → 𝑣500 edge.

We first argue that 𝑚 cannot appear with a negative value in IN𝐶 . Recall that the input
differences correspond to the outputs of the Join operator. At any iteration, the Join operator
joins any new Reduce outputs for a vertex 𝑤 from the previous iteration with the outgoing
edges of𝑤 , producing an output difference for each outgoing neighbor of𝑤 . Since there are no
graph updates in𝐺𝑚0 , the join outputs generated by vertex𝑤 monotonically decrease. Therefore,
if there is any (𝑚,−1) at iteration 𝑗 , i.e., in IN𝐶 , it must be the case that it is followed with a
lower value (𝑚′ < 𝑚, +1). Since Reduce outputs the minimum value of all input differences with
positive values, and since𝑚′ is one such value in IN𝐶 , OUT𝐴+𝐶 would have to be a value smaller
than or equal to𝑚′ < 𝑚. But this contradicts our assertion that OUT𝐴+𝐶=𝑚𝐴=𝑚. Therefore𝑚
cannot appear with a negative multiplicity in IN𝐶 .

We also know that OUT𝐴+𝐵=𝑚𝐵=𝑚, therefore IN𝐴+𝐵 must include𝑚 with a positive difference.
Finally, we verified that IN𝐷 only contains differences with values greater than𝑚. Therefore

73

𝐼𝑁𝐴+𝐵+𝐶+𝐷 , i.e., the union of IN𝐴+𝐵 , IN𝐶 , and IN𝐷 , must contain𝑚 with a positive difference,
completing the proof of the lemma. □

Proof of Lemma 5.4.1.1. Next, we prove that no value 𝑚′ < 𝑚 can appear in 𝐼𝑁𝐴+𝐵+𝐶+𝐷 with
a positive difference. We already know that IN𝐷 contains only differences greater than 𝑚.
Note that since OUT𝐴 is a rectangle from the origin, OUT𝐴 consolidates to a single value.
Let’s call the union of differences at OUT𝐴 = 𝑚𝐴. We first show that if 𝑚 = 𝑚𝐵 = 𝑚𝐶 ,
then it must be that 𝑚𝐴 is also equal to 𝑚. Since OUT𝐴+𝐶 = 𝑚𝐶 , we can write OUT𝐶 as
(𝑚𝐴,−1) + 𝐸𝐶 + (𝑚𝐶, +1) where 𝐸𝐶 are some set of (possibly empty) differences that when
consolidated results in the empty set. Similarly, we can write OUT𝐶 as (𝑚𝐴,−1) + 𝐸𝐵 + (𝑚𝐵, +1)
for some 𝐸𝐵 that when consolidated results in the empty set. Since OUT𝐴+𝐵+𝐶 = 𝑚, we have
𝑚 = (𝑚𝐴, +1) + ((𝑚𝐴,−1) +𝐸𝐵 + (𝑚𝐵, +1)) + ((𝑚𝐴,−1) +𝐸𝐶 + (𝑚𝐶, +1)). Simplifying this equation
gives 𝑚 = (𝑚𝐵, +1) + (𝑚𝐴,−1) + (𝑚𝐶, +1). Therefore, 𝑚𝐴 must cancel out either 𝑚𝐵 or 𝑚𝐶 .
However, since we already assumed𝑚 =𝑚𝐵 =𝑚𝐶 , this establishes that𝑚𝐴 is also equal to𝑚.
Consequently, IN𝐴 must contain a minimum value𝑚 with a positive difference.

Let the union of differences in IN𝐴 be 𝑆𝐴. IN𝐴 represents a set of Reduce outputs of the
incoming neighbors of 𝑣 from the previous iteration, so only contains a set of values (val1, +k1),
. . ., (val𝑧 , +k𝑧), such that val𝑖 ≥ 𝑚 and 𝑘ℓ > 0. That is, S𝐴 only contains values with positive
differences. Since IN𝐴+𝐵 is also a rectangular region, its consolidation is also a set of values
S𝐴+𝐵 are greater than or equal to𝑚 with positive differences. Let’s represent the consolidated
differences in IN𝐵 as 𝑆𝐴− + S𝐵+ , where: (i) 𝑆𝐴− is the set of values with negative differences, which
must intersect with the values in 𝑆𝐴 (since 𝐼𝑁𝐴+𝐵 only contains values with positive differences);
and (ii) S𝐵+ are the set of values with positive differences. Note that since the minimum value in
S𝐴+𝐵 is𝑚, 𝑆𝐵+ cannot contain a value𝑚′ < 𝑚. Therefore, the consolidated IN𝐵 does not contain
a value𝑚′ < 𝑚. A symmetric argument (omitted) shows that consolidated IN𝐶 cannot contain a
value𝑚′ < 𝑚 with a positive difference. Therefore none of consolidated IN𝐴, IN𝐵 , IN𝐶 , or IN𝐷
can contain a value𝑚′ < 𝑚 with a positive difference, completing the proof of the lemma. □

Readers might wonder if a more flexible rule that only checked that𝑚 is equal to𝑚𝐵 instead
of checking that𝑚 is equal to both𝑚𝐵 and𝑚𝐶 could have worked. The answer is no, and the
example in Figure 5.8 gives a counter-example. In this example at IFE iteration 3,𝑚=(200, +1),
OUT𝐴+𝐵=𝑚𝐴=(200, +1), and there are further no differences in IN𝐷 . Yet OUT𝐷 is non-empty. In
this example, since OUT𝐴+𝐶=𝑚𝐶=(100, +1), which is not equal to𝑚𝐴, our optimization would
not skip the DC’s default recomputation logic in Equation 5.2. Finally, it is not clear, and probably
unlikely, that our proof generalizes to higher-dimensional computations in DC. That is because
at least our proof makes very explicit use of several properties of IFE computation, which is a 2D
computation in DC. An interesting research question is whether similar rules can be designed

74

for generic and possibly arbitrary-dimensional DC computations, possibly by assuming some
properties of the operators in a dataflow.

The above proof heavily relies on the aggregation function in the IFE dataflow being a
minimum, although a symmetric argument would also work if it was a maximum. However, it
would not work for other common aggregation functions, such as computing the average. It is
also left open whether a similar rule can be derived for dataflows that lead to timestamps with 3
or a higher number of dimensions. The above proof relied heavily on the merging operation
to reduce one of the dimensions to just 2, so we could prove that𝑚 could not appear with a
negative value. This argument does not seem easy to generalize to 3D, for example for the SCC
dataflow from Section 3.3.4, and is left for future work.

5.5 Evaluation
We next evaluate the effectiveness of the three optimizations presented in this chapter on a
suite of graph computations that use IFE. Our goals are to measure how much benefit these
optimizations provide over vanilla DD in several settings. We expect that under our compact
and time-based indices, DD should use less memory, due to time-based indices leading to fewer
temporary memory allocations and compact indices leading to more sequential reads. We also
expect that the FEDiV optimization should improve the runtime of computations as well as lead
to fewer data reads, as each time the optimization skips rerunning the Reduce operator, the
system avoids scanning data from the input index of Reduce to temporary buffers completely.
We cover cases when all data fits in memory. as well as when it does not. We cover the case when
data spills over to disk to demonstrate the performance benefits when scaling out of memory.

5.5.1 Setup
We implemented all of our optimizations on top of DD. For simplicity, we implemented each
optimization on top of the previous one, as follows:

• Udd: Unmodified DD.
• Ocidx: Udd + compact indices, from Section 5.2.
• Otime: Ocidx + time-based indices, from Section 5.3.
• Ofediv: Otime + avoiding recomputations in the Reduce operator, from Section 5.4.

We evaluate our optimizations on 3 real-world graphs, as shown in Table 5.1, using 3 different
computations: (i) weakly connected components (WCC); (ii) multiple source shortest path (MSSP),
which computes the shortest weighted path from multiple sources to all other nodes in the

75

Dataset |V| |E| Disk Size Description

ego-Gplus (GPlus) 107K 13M 53M Social graph from Google+
soc-LiveJournal (SocLJ) 4M 68M 301M Social graph from LiveJournal
Twitter 42M 1.5B 5.5G Social graph from Twitter

Table 5.1: Datasets used in the experiments.

graph; and (iii) multiple pair shortest path (MPSP), which computes the shortest path between
multiple pair of nodes. For MSSP, we randomly select 3 nodes that have outgoing edges. For
MPSP, we select 5 pairs of vertices (𝑠𝑟𝑐, 𝑑𝑠𝑡), such that there is a path between 𝑠𝑟𝑐 and 𝑑𝑠𝑡
of length equal to the diameter of the graph. All computations are implemented using DD’s
dataflow API. Using these computations, we evaluated our optimizations on a dynamic graph
workload, where we start with an initial graph and perform updates to it to incrementally
maintain these computations (Section 5.5.2). We also evaluated them on the workloads we
used to evaluate Graphsurge from Chapter 4 (Section 5.5.5). Sections 5.5.3 and 5.5.4 contain
experiments demonstrating the effects of our optimizations when we scale the system out of
memory as well as across multiple machines.

We performed our evaluation on a cluster of up to 12 machines each running Ubuntu 18.04.3.
Each machine has 2× Intel E5-2670 @2.6GHz CPU with 32 logical cores and up to 512GB
RAM. Except for the experiments evaluating out-of-memory performance, all experiments were
performed in memory. We consider computations that require more than 500GB RAM to have
failed with an Out-Of-Memory (OOM) error and that exceed 3 hours of runtime to have failed
with a Time-Limit-Exceeded (TLE) error.

5.5.2 Runtime Evaluation on Dynamic Graph Workloads
For each of the three datasets from Table 5.1, we simulate a continuous graph dataset by first
randomly selecting 90% of the edges to form the first batch and then performing 5000 updates,
each consisting of 25 edge additions and 25 edge deletions.

We evaluate the performance of 3 computations on each dataset, turning the optimizations
on one by one. We expect that the cumulative effect of each optimization will result in better
performance as compared to Udd. Figure 5.11 shows the runtime to perform 5000 updates. We
exclude the time to run the computations on the initial batch.

We can observe that except in two cases, MSSP on GPlus, each optimization is able to reduce
the runtime consistently over the previous one. Ocidx shows the lowest runtime gains—up to
1.7× over Udd. This is expected since Ocidx adds read-optimized indices, which only have a
small effect on the runtime of purely in-memory computations. In the upcoming Section 5.5.3, we

76

D
D

O
ci

dx
O

ti
m

e
O

fe
di

v

0

100

200

300

400

500

1.
1x

3.
3x

14
.2

x

WCC

Ru
nt

im
e

(s
)

D
D

O
ci

dx
O

ti
m

e
O

fe
di

v

0

500

1000

1500

2000

1.
4x

1.
1x

6.
7x

MSSP

D
D

O
ci

dx
O

ti
m

e
O

fe
di

v
0

50

100

150

200

250

1.
1x

2.
1x

6.
3x

MPSP

(a) GPlus
D

D
O

ci
dx

O
ti

m
e

O
fe

di
v

0

10

20

30

40

50

1.
0x

2.
2x

2.
8x

WCC
Ru

nt
im

e
(s

)

D
D

O
ci

dx
O

ti
m

e
O

fe
di

v

0

200

400

600

800

1000

1.
7x

1.
9x

3.
8x

MSSP

D
D

O
ci

dx
O

ti
m

e
O

fe
di

v

0

50

100

1.
1x

2.
3x

3.
0x

MPSP

(b) SocLJ

D
D

O
ci

dx
O

ti
m

e
O

fe
di

v

0

0.2

0.4

0.6

0.8

1

1.2
·104

1.
0x

4.
4x

19
.4

x

WCC

Ru
nt

im
e

(s
)

D
D

O
ci

dx
O

ti
m

e
O

fe
di

v

0

50

100

150

200

250

1.
3x

2.
3x

4.
2x

MSSP

D
D

O
ci

dx
O

ti
m

e
O

fe
di

v

0

20

40

60

O
O

M
O

O
M

MPSP

(c) Twitter

Figure 5.11: Runtimes of the optimizations for different graph computations.

0 50 100 150 200 250 300
0

1

2

3

Runtime (s)

M
em

or
y
RS

S
(G
B)

Udd
Ocidx
Otime
Ofediv

(a) MPSP on GPlus.

0 20 40 60 80 100 120

5

10

15

Runtime (s)

M
em

or
y
RS

S
(G
B)

(b) WCC on SocLJ.

0 500 1,000 1,500
0

100

200

300

400

Runtime (s)

M
em

or
y
RS

S
(G
B)

(c) MSSP Twitter.

Figure 5.12: DD’s total memory usage over the course of computations for each optimization.

show that the effect is magnified when the computations run in a memory-limited environment.
Next, Otime results in up to 4.4× runtime gain over Udd. Of note, MPSP on the Twitter dataset
is only able to run successfully in memory after enabling Otime. These results show that
the benefit of reducing memory allocations and copies leads to visible reductions in runtime.
Finally, Ofediv results in up to 19.4× runtime gains over Udd and up to 6.3× over Otime. As we
discussed in Section 5.4, Ofediv reduces memory allocations and avoids expensive consolidation
operations, which also translates to important runtime gains, as the experiments demonstrate.

Figure 5.12 shows the actual memory consumption of DD with the optimizations turned on
or off. We can observe that Ocidx does not cause any practical difference to the memory usage.
However, Otime is able to significantly reduce memory usage, by up to 1.7x, which then also
benefits Ofediv. Note that the 𝑥-axis is the time needed to finish the computation and DD is
able to finish sooner with the optimizations turned on.

77

Dataset Comp #recomputations #empty #skipped %skipped

GPlus WCC 2712632 2705761 2358871 87.18
MPSP 6430534 6265441 6176585 98.58
MSSP 30317350 29870879 29823361 99.84

SocLJ WCC 4391819 4260463 3903925 91.63
MPSP 24464521 22805542 22296333 97.77
MSSP 154396098 144650405 141026770 97.49

Twitter WCC 2880159 2851472 2547692 89.35
MSSP 21913192 21677886 21629107 99.77
MPSP 24937244 24382549 24301488 99.67

Table 5.2: Counts of total Reduce recomputations, recomputations which do not produce any
output, and recomputations that FEDiV was actually able to skip.

A natural next question is to ask how effective the Fediv optimization is in skipping re-
computations where possible. We can answer this question by counting how many Reduce
recomputations result in no effective change in output and how many of those calls were suc-
cessfully skipped by the Ofediv optimization. Table 5.2 shows the counts for 3 computations
over the 3 datasets. We can observe that Ofediv skipped 87-99% of all recomputations which
resulted in an empty output. Note that although we can avoid falling back to DC’s default slower
recomputation logic over 90% of the time, we cannot expect commensurate gains for several
reasons. First, we also do some computation to do the checks in Fediv, which partially offsets
the computational gains. Second, there are other computations than Reduce in IFE, such as the
Join operator as well as the work done in the arrange operators to index differences. Yet, overall
we observe that Ofediv is highly effective in avoiding output difference computations when it
is possible to do so.

5.5.3 Scaling Out-of-Memory
Udd normally aims to run computations purely in memory. In this section, we evaluate the
runtime performance of Udd with and without optimizations, when computations do not have
access to sufficient memory. To avoid OOM failures, we enable Linux swap on the machines
and allow the OS to transparently handle swapping memory in and out of disk. Because our
machines normally have sufficient RAM for most of the computations, we simulated a low
memory system by running the computations in Docker [45] containers, where we manually
restrict the amount of available RAM inside the container. For each computation and dataset
that we ran in Section 5.5.2, we noted the maximum amount of RAM M_max consumed over
the entire run, by recording the process Resident Set Size (RSS) as reported by the OS. Next,
we created 3 containers, each restricted to 50%, 25%, and 10% of M_max RAM. We then reran

78

D
D

O
ci

dx
O

ti
m

e
O

fe
di

v

0

100

200

300

1.
2x

2.
4x

7x

50%

Ru
nt

im
e

(s
)

D
D

O
ci

dx
O

ti
m

e
O

fe
di

v

0

200

400

600

800

1.
4x

4.
4x

8.
4x

25%

D
D

O
ci

dx
O

ti
m

e
O

fe
di

v

0

500

1000

1500

2000

2.
1x

3.
3x

5.
7x

10%

(a) MPSP on the GPlus.
D

D
O

ci
dx

O
ti

m
e

O
fe

di
v

0

500

1000

1500

2000

2.
74

3.
78

7.
07

50%

Ru
nt

im
e

(s
)

D
D

O
ci

dx
O

ti
m

e
O

fe
di

v

0

2000

4000

2.
42

3.
75

4.
24

25%

D
D

O
ci

dx
O

ti
m

e
O

fe
di

v

0

0.5

1

·104

4.
15

4.
12

4.
80

10%

(b) MSSP on the SocLJ.

D
D

O
ci

dx
O

ti
m

e
O

fe
di

v

0

0.5

1

·104

1x
4.

6x
16

.2
x

50%

Ru
nt

im
e

(s
)

D
D

O
ci

dx
O

ti
m

e
O

fe
di

v

0

0.5

1

·104

1x
4.

4x
14

.3
x

25%

D
D

O
ci

dx
O

ti
m

e
O

fe
di

v

0

500

1000

1500

TL
E

TL
E

TL
E

10%

(c) WCC on the Twitter.

Figure 5.13: Runtimes of optimizations when operating under low memory conditions.

the computations with the optimizations turned off or on in these 3 containers. Overall, we
expect that our optimizations consistently yield visible improvements over vanilla DD as in the
pure memory case. However, we expect the incremental benefits from FEDiV to decrease as the
system is under more and more memory pressure. This is because FEDiV primarily decreases
the amount of computation. Yet, as the system has less memory, more runtime will be spent on
I/O, so the computation will start becoming more I/O and less computation-bound.

In this experiment, we used one computation on each dataset, specifically MPSP on GPlus,
MSSP on SocLJ, and WCC on Twitter. Figure 5.13 shows the runtime results. First, from
Figure 5.13 we can observe that Ocidx results in better runtimes, up to 4x, as compared to
running purely in-memory in Section 5.5.2. This is mainly because, with Ocidx turned on, all
data for a key is stored together. We expect this to result in better cache locality when swapping
in and out of disk. Storage devices, both memory and disk, also benefit from prefetching when
reading sequentially, so the sequential storage of Ocidx should also lead to better prefetching
when swapping data in. Next, we observe that benefits from all the optimizations turned on first
increase as memory gets more restricted, then decrease again as memory gets scarce. Initially,
the benefits from lower memory utilization and avoiding recomputations dominate, as Udd
needs to spend more time seeking data inside indices and recomputing results. However, as
memory gets more and more restricted, the entire computation is competing for access to data in
memory, and local optimizations in Reduce and indices do not retain any additional advantage.
However, we can observe that overall runtime gains persist even in low memory conditions.
Table 5.3 shows the amount of reads and write I/O performed by different system configurations
with decreasing memory. We can verify that with each added optimization, the amount of I/O
from and to disk decreases, the one exception being Otime for WCC on Twitter. For instance,
DD incurs 4× more reads as compared to Ocidx and 5× more reads as compared to Ofediv
when running MSSP on SOcLJ at 10% memory.

79

50% 25% 10%

Udd Reads (GB) 2.07 10.80 41.42
Writes (GB) 1.19 2.88 3.47

Ocidx Reads (GB) 1.15 6.94 21.89
Writes (GB) 0.62 2.15 3.12

Otime Reads (GB) 0.10 1.61 11.09
Writes (GB) 0.00 1.11 2.37

Ofediv Reads (GB) 0.22 1.65 10.42
Writes (GB) 0.00 1.05 2.32

(a) MPSP on GPLus.

50% 25% 10%

112.14 562.69 1577.46
42.15 67.96 86.45

15.10 176.76 384.19
12.58 31.95 46.71

0.88 96.20 321.14
0.00 26.90 46.20

1.10 93.92 317.40
0.00 27.18 45.91

(b) MSSP on SocLJ.

50% 25% 10%

11.90 49.59 104.09
0.00 27.66 35.50

14.56 40.58 81.11
0.00 22.90 30.85

6.82 22.21 113.77
0.00 12.90 113.64

6.63 15.38 54.63
0.00 3.53 13.22

(c) WCC on Twitter.

Table 5.3: Total disk I/O incurred due to swapping.

5.5.4 Scaling Across Compute Nodes
We next evaluate how our optimizations affect the ability of DD to scale in a distributed setting.
We measured the runtime of 3 algorithms on the Twitter dataset, using up to 12 compute
machines, each with 16 worker threads, running Udd and Ofediv only.

These experiments mainly aim to verify that the pure in-memory single-node performance
gains we saw translate to a distributed setting as well. Figure 5.14 shows the scalability results.
As we expected, additional machines improve the runtime for DD both with and without
optimizations turned on, up to 8 machines. However, with 12 machines, the runtime for both Udd
and Ofediv degrade. This is because the number of updates per batch is small and consequently
the amount of work to do per batch is low. With a large number of workers in a distributed
environment, more time is spent coordinating between the workers than doing useful work.

5.5.5 Graphsurge Evaluation
For completeness, we evaluate the effect of our optimizations on the view collections that we
developed for the evaluation of Graphsurge, the DD-based view computation system that we
described in Chapter 4. In particular, we prepared datasets for 2 sets of view collections: (i) 𝐶𝑠𝑖𝑚 ,
which is a set of 5 view collections corresponding to windows of 1 day, 1 month, 6 months, 1 year,
and 2 years, respectively, and contain views similar to each other, as described in Section 4.4.2;
and (ii)𝐶𝑎𝑢𝑡ℎ , a view collection that contains sequence of similar views, separated by completely
dissimilar views, as described in Section 4.4.3. We ran 3 computations on these two sets of view
collections. Figure 5.15 shows the results. We only show representative results for 2 of the 5
view collections from 𝐶𝑠𝑖𝑚 . The rest of the results are similar.

When the view collections are similar, as in 𝐶𝑠𝑖𝑚 with a window of 1 day, our optimizations

80

2 4 8 120

0.5

1
·104

machines

Ru
nt
im

e
(s)

(a) WCC

2 4 8 120

200

400

600

800

1,000

machines
Ru

nt
im

e
(s)

Udd
Ofediv

(b) MSSP

2 4 8 120

500

1,000

machines

Ru
nt
im

e
(s)

(c) MPSP

Figure 5.14: Runtimes of optimizations in a distributed setting.

Ud
d

O
ci
dx

O
ti
me

O
fe
di
v

0

10

20

30

1.1
x

3.0
x

8.7
x

WCC

Ru
nt
im

e
(s)

Ud
d

O
ci
dx

O
ti
me

O
fe
di
v

0

20

40

60

80

100

120

1.2
x

2.1
x

5.0
x

MSSP

Ud
d

O
ci
dx

O
ti
me

O
fe
di
v

0

2

4

6

8

10

1.2
x

2.9
x

4.2
x

MPSP

(a) 1-day 𝑪𝒔𝒊𝒎 .

Ud
d

O
ci
dx

O
ti
me

O
fe
di
v

0

20

40

60

80

1.1
x

1.5
x

1.8
x

WCC

Ru
nt
im

e
(s)

Ud
d

O
ci
dx

O
ti
me

O
fe
di
v

0

100

200

300

1.0
x

1.5
x

1.7
x

MSSP

Ud
d

O
ci
dx

O
ti
me

O
fe
di
v

0

5

10

15

20

25

1.0
x

1.4
x 1.3
x

MPSP

(b) 2-years 𝑪𝒔𝒊𝒎 .

Ud
d

O
ci
dx

O
ti
me

O
fe
di
v

0

500

1000

1500

1.0
x

1.2
x

1.3
x

WCC

Ru
nt
im

e
(s)

Ud
d

O
ci
dx

O
ti
me

O
fe
di
v

0

5

10 1.1
x

1.2
x

1.2
x

MSSP

Ud
d

O
ci
dx

O
ti
me

O
fe
di
v

0

5

10

15

20

25

1.1
x

1.2
x

1.1
x

MPSP

(c) Cauth.

Figure 5.15: Runtimes of optimizations on datasets from Graphsurge.

show a combined improvement of up to 8.7x. However, when views are dissimilar, as in 𝐶𝑎𝑢𝑡ℎ ,
runtime gains are only up to 1.3x. This is expected, as when views are dissimilar, Reduce is
less likely to produce empty output and we cannot avoid recomputations. Moreover, benefits
from time-based indices are also minimized because when views are completely dissimilar, time
spent recomputing completely new output across both Join and Reduce dominates the time
saved in creating temporary buffers. The optimizations we have developed work best when
recomputations due to updates result in only a small amount of new output.

5.6 Summary
DC relies on collection inputs and outputs indices to maintain computations. In this Chapter,
we explored the design of these indices in DD and described how DD operators retrieve index

81

data to run their computation. We then identified some bottlenecks in the existing index design
and designed a new index that is: (i) compact; and (ii) indexed by timestamps rather than values.
Both these optimizations are better suited for IFE-dataflow computations. We also identified
a case where the Reduce operator uselessly performs a lot of work even though the outputs
remain empty. To avoid this work when possible, we implement a new optimization called
Fast Empty DIfference Verification, that can determine when reruns of the Reduce operator
will be empty, without running the full operator logic. We experimentally evaluated each of
our optimizations and showed significant scalability improvement in terms of both runtime
and memory. We again demonstrated how application-specific optimizations can enhance the
scalability of DC.

82

6
Related Work

Differential computation (DC) was first described as a component of the Naiad system [124,127],
with well-developed theoretical foundations [47]. This thesis studies DC in the context of graph
computations, which it is especially suitable for due to its ability to incrementally maintain
arbitrarily nested iterative dataflows. Several other applications in the literature make use of DC,
demonstrating its generality. Examples include maintaining and verifying routing configuration
in large software-defined networks [157, 168], incrementally updating machine-learning models
to forget parts of the data they were trained on [146], deriving output lineage in iterative dataflow
computations [75], and efficiently querying and transforming model frameworks used to design
product lines, such as in aerospace and automotive industries [169].

DC is one of many approaches for computation sharing in the literature, which we can
broadly classify into two categories: general incremental computation techniques and solutions
specialized for specific computations. DC is an example of the first category, but we cover the
related literature on both topics here. In particular, we cover the literature on incremental view
maintenance from database literature, focusing on general techniques that canmaintain recursive
computations similar to DC. Sharing computations implies the need to store computation state
and we cover the various techniques that have been developed to optimize state maintenance.

We reviewed the related work for our non-technical survey work in Chapter 2 and thus
omit it here. The technical work presented in this thesis is on the Differential Dataflow (DD)
system, which is built on top of the Timely Dataflow (TD) system. TD is a distributed dataflow
system. There is extensive work in the literature on distributed dataflow systems such as
MapReduce [80], Spark [167], and Flink [69]. Some of these systems have been extended to run

83

iterative computations effectively. Examples include HaLoop [66], GraphX [90], CIEL [128],
and Gelly Streaming [21]. However, unlike DC, these systems do not support sharing previous
output when the input data changes. For this reason and that this thesis focuses primarily on
the computation-sharing abilities of DC, we do not cover distributed dataflow systems in detail.

6.1 General Techniqes for Computation Sharing
Overview of IVM: View materialization [94] is a classic technique in data systems used to
precompute and cache the results of a query 𝑄𝑉 as a logical view 𝑉 over some base data 𝐷 ,
i.e, 𝑉=𝑄𝑉 (𝐷). Views facilitate reusing previous results to answer repeated queries instead of
rerunning them from scratch. When the base data changes (say from 𝐷 to 𝐷′), 𝑉 should also
be updated to 𝑉 ′=𝑄𝑉 (𝐷′) to avoid outdated responses. View maintenance is the problem of
keeping the views up to date with respect to the base data. Instead of rerunning the view
definition query from scratch after every update, incremental view maintenance (IVM) is a
technique that incrementally updates a view using the set of delta changes to the base data,
i.e, 𝑉 ′=𝑉+𝛿𝑉 , where 𝛿𝑉=𝑄𝑉 (𝛿𝐷) and 𝛿𝐷=𝐷′−𝐷 . Because 𝛿𝐷 is expected to be small relative
to 𝐷 , IVM can significantly reduce the time required to update the view results. There is
extensive literature on incremental view maintenance of the outputs of relational or datalog
queries [70,82,93,126,143]. Shirkova et al. [150] is a recent general survey on viewmaterialization
and maintenance techniques. Prior work in this literature, excluding those on IVM of Datalog
programs and DBSP, which we cover momentarily, generally discusses computations that can
be expressed in relational algebra, which does not contain recursion. A popular technique in
this space is to algebraically decompose the joins in the queries into multiple smaller “delta”
queries [61]. Each delta query is easy to evaluate because at least one of the relations in the
query is a delta relation 𝛿𝑅, i.e., contains only the updated tuples in 𝑅. The state-of-the-art
approach here is F-IVM [130], for factorized IVM, which also compresses the outputs of the
delta-queries as tries, using the compression technique of factorization, and maintains the delta
queries on these tries [131].

Many IVM techniques for relational algebra, including many delta decomposition-based
techniques, are stateless techniques, though some techniques do store state. DBToaster [50]
is an example technique that keeps state in the form of results of higher-order delta queries.
Briefly, higher-order queries generalize delta queries to deltas of delta queries, similar to taking
higher-order derivatives of functions. We omit the details as these are related to non-recursive
queries and do not directly relate to graph computations, which is the focus of this thesis.

IVM Algorithm for Datalog: Traditional IVM techniques for Datalog programs can be broadly
classified into two approaches. The first consists of counting approaches that track the lineage

84

of facts with counts, such that a zero count implies a fact can be deleted. However, counting
algorithms only work for non-recursive Datalog [126].

The second group consists of the Delete/Rederive (D/Red) algorithm [94] and its derivatives,
such as the Forward/Backward/Forward algorithm [126]. Unlike counting, these algorithms
can maintain recursive Datalog programs. However, these techniques can be highly inefficient
as input deletions require propagating the delete to all derived facts and rederiving the ones
that are still valid, which can require a large amount of work, even if the final output changes
very little. In contrast to DC, D/Red can be seen as a stateless but computationally less efficient
maintenance algorithm. There is no open source Datalog system that we are aware of that
implements D/Red. The only project we are aware of that has IVM capabilities over Datalog is
the Differential Datalog project [139]. Interestingly, Differential Datalog is built on top of DD
and uses DC instead of Datalog-specific algorithms such as D/Red.
DBSP: DBSP [67] is perhaps the most directly related work that has recently been published.
DBSP is a mathematical theory to describe general incremental computation in databases using
formalism from discrete digital signal processing. As stated by the authors, it was inspired by
DC and started as an effort to provide a new abstraction for DC that is easier to understand. It
models relations as timestamped streams, similar to collections in DC, and generic operators
that map streams to other streams and loops. These ingredients can model the dataflows in DC.
Then with higher level operators such as incrementalizing, taking derivatives, and integrating
operators, they provide the same capability of being able to maintain arbitrary dataflow of
computations. The authors show how one can convert recursive Datalog queries into equivalent
DBSP programs and maintain them.

At the moment, the computational efficiency of the general DBSP maintenance algorithm in
terms of the state it keeps is not understood. The authors primarily provide proof of DBSP’s
correctness. This is similar to how the original publications on DC only focused on correctness
and not on the resource usage of DC. There is also no reference implementation of DBSP so far,
although a closed-source version is being developed at a commercial company by the authors.
It is an important direction for future work to both provide an implementation of DBSP and
compare its resource consumption to DC. However, it is a recent alternative to DC that can
be the foundation for maintaining arbitrary dataflow computations including iterative graph
computations that we focus on in this thesis.

6.1.1 Other Computation Sharing Techniqes
DC stores the computational footprint of a dataflow computation on a given input and detects and
shares this stored state when the computation is executed on an updated version of the input. This
is similar to work that shares computations across multiple queries that run over the same input.

85

Examples include work on continuous querying systems, such as NiagaraCQ [73], or systems that
support running multiple queries, e.g., when incrementally maintaining multiple views [109] or
running multiple queries in a batch [108,138]. These techniques share computation by detecting
common sub-expressions across queries over the same input, while DC incrementally maintains
the same computation for evolving inputs.

6.2 Specialized Computation Sharing Techniqes
There is a vast literature [60, 83, 88, 98, 125, 133] studying specialized implementations of graph
algorithms on dynamic graphs, which can incrementally update their output when the input
graph changes. Covering this entire literature is beyond the scope of this thesis. To compare the
research in this thesis broadly with these specialized techniques, we cover 2 example publications.

Fan et al. [87] presents theoretical results that show that the cost of performing six specific
incremental graph computations, e.g., regular path queries and strongly connected components,
cannot be bounded by only the size of the changes Δ𝐺 in input and output. Then they develop
and evaluate algorithms that have guarantees in a more relaxed notion of boundedness, based
on the subset of the graph inspected by the batch algorithm being incrementalized.

GraphBolt [122] is a shared-memory parallel streaming system that can maintain dynamic
versions of graph algorithms. GraphBolt requires users to write explicit maintenance code in
functions such as retract or propagateDelta that generic systems such as DC do not require.
As graph updates arrive, the system executes these functions, and if a user-provided dynamic
algorithm has provable convergence guarantees, the system will correctly maintain the results.

These incremental algorithms specialized to specific algorithms can be more efficient than
a DC implementation using generic operators. For instance, the authors of GraphBolt demon-
strated, and we verified in Chapter 4, that their custom implementation of PageRank is faster
than the corresponding implementation in DC. Nevertheless, generic solutions such as DC have
the advantage that users can program arbitrary computations as a static dataflow, which DC
will automatically maintain for changing inputs.

6.2.1 Streaming Graph Computation Systems
Many systems in the literature are built to support computation on streaming graphs, i.e., inputs
represent a sequence of edge additions or deletions, as extensively surveyed in Besta et al. [59].
These systems, such as the S-Graffito streaming graph system [134], support windowed queries
over streams. The primary difference between streaming graphs and dynamic graphs, which
this thesis is concerned with, is that streaming systems assume that the data is too large and

86

cannot be stored in its entirety, so computations need to be done on sliding windows of tuples
as time moves on. Instead, systems with incremental computation capabilities primarily assume
that the data is changing but can be kept in its entirety. In a sense, systems for dynamic graphs
evaluate growing windows from time 0.

Tegra [104] is a system developed on top of Apache Spark [167], that is designed to perform
ad-hoc window-based computations on a dynamic graph. Specifically, Tegra allows users to tag
arbitrary snapshots of their graphs with timestamps. The system has a technique for sharing
arbitrary computation across snapshots through a differential computation-like computation
maintenance logic. However, the system is optimized for retrieving arbitrary snapshots quickly
instead of sharing computation across snapshots efficiently.

Kickstarter [163] is a technique built to improve stream processing systems that maintain
approximate results of iterative computations but do not support edge deletions. Kickstarter
enables support for edge deletions in such systems by carefully tracking dependencies between
edges and computation outputs and trimming approximate values affected by edge deletions.
This technique is suitable only for monotonic graph algorithms, such as shortest path queries.
DZiG [121] is a related streaming graph processing system that is designed to exploit the
computation sparsity of iterative computations, where vertices often converge to a value that
remains stable across evolving inputs. DZiG incorporated sparsity tracking into its incremental
processing engine, allowing computations to track and incrementally refine computed values
while avoiding unnecessary propagations when the values stabilize.

Chronos [97] optimizes sharing computation across multiple temporal graph snapshots
by designing a specialized graph layout that enhances the data locality of the snapshots when
processed together. The Chronos execution engine is designed to exploit the special layout, for
instance by batching computations for a vertex across multiple snapshots and reusing computed
values across snapshots. Vora et al. [162] develops two general optimizations for temporal graph
processing. First, they reduce the cost of retrieving values of a vertex for multiple snapshots by
reordering computations such that overlapping vertices are processed together. Second, they
reduce the amount of recomputation done for a snapshot by sharing computed values from
earlier snapshots.

6.3 State Management
Differential Dataflow (DD) operators can require indexing the state of previous inputs and
outputs. DD stores these indices in memory, enabling fast reads and writes. However, compu-
tations can often result in a prohibitively large amount of state, for instance when operating
on big datasets, even exceeding the amount of available memory on a machine. This is the

87

general problem of managing the state of computations in processing systems [159]. DD can
handle such a scenario in two ways. First, it can scale out [144] the computation across multiple
machines, using its Timely Dataflow runtime. Second, DD indices can be shared between opera-
tors where possible [123], lowering the memory required for the computation. However, these
techniques may not be sufficient, for instance when a distributed environment is unavailable or
cost-prohibitive. In the next two sections, we review techniques that can generally be used by
systems to operate gracefully in a limited memory environment.

6.3.1 Spilling to Disk
Main-memory systems can combine the fast performance of in-memory data with the scalability
of disk-based systems. Traditional disk-based database systems use a buffer pool manager [91]
(BPM) to transparently switch data between disk and main memory. However, this classic
implementation of BPM assumes that the data is primarily stored on disk, which adds a significant
overhead [99] if used directly in main-memory systems [86]. Instead, recent systems invert the
BPM model, assuming that the data is primarily stored in memory, and moving a subset of cold,
i.e., least recently used, to disk when necessary. We next review multiple approaches in the
literature that support the inverted BPM model.

Anti-Caching [81] tracks accesses to the tuples of a table by storing additional metadata
per tuple and moves the least recently used tuples to disk. Indexes point to tuples existing both
in memory and on disk. The system aborts transactions that need to access data residing on
disk and restarts them after loading the required data into memory. Because the entire index in
Anti-Caching is kept in memory, the system can face significant memory overhead as the data
size and number of indexes increase. Siberia [85] only tracks in-memory data instead. For the
remaining data on disk, Siberia uses a Bloom filter to test for the existence of potential records
before accessing the data on disk. However, the need to track the data movement between
memory and disk, and maintain the indexes and the Bloom filters, leads to implementation
complexity. LeanStore [117] developed a simpler technique by removing indirect logical page
identifiers used in traditional BPMs and using direct virtual memory pointers to address data
pages. To distinguish between pages residing in memory and on disk, LeanStore uses pointer
swizzling [114] that stores the page status in one bit of the address pointer. Unlike prior systems,
LeanStore does not directly write cold pages to disk, but instead moves them to an intermediate
cooling state, which gives the system a chance to prevent pages that need to be immediately
accessed again from being dropped. These techniques allow LeanStore to get close to optimal
performance when the data resides completely in memory, which gracefully degrades as the
size of the data grows beyond the available memory. Umbra [129] extended the LeanStore
implementation to work with variable-sized pages, which allows better handling of large data
tuples that might not fit in pages of a fixed size.

88

6.3.2 Recreating State on Demand
Instead of keeping the entire state of an incremental computation, which enables fast computa-
tions, systems can drop a subset of the state and recompute them when next required by the
computation. We review three such techniques.

Thework byAmmar et al. [52], which the author of this thesis also co-authored, demonstrated
how a single node implementation of DC can operate with dropped state. Specifically, for IFE
dataflows, output differences from the Join operator can be partially dropped to recover memory
and recreated on demand. However, the system still needs to maintain some additional state for
each dropped difference, so that it can correctly determine if a recomputation is needed, but limits
how much memory is recovered by dropping differences. This limitation can be overcome by
tracking state in a probabilistic data structure, such as a Bloom filter [62], which uses much less
memory at the expense of more recomputations. DC can thus continue operating with a bounded
memory by trading off increased computation time. As part of the work we did for this thesis,
we implemented the easiest of these state recreation techniques in DD called join on demand
(JOD). JOD does not save the output of the Join operator in the IFE dataflow. Instead, when
a key 𝑢 in the Reduce operator needs its input, which is the “dropped” Join output, it would
create it on demand by reading the outputs of Reduce of its neighbors. In the shared-memory
implementation of DC implemented by Ammar et al. [52], since all indices are in memory and
accessible, these lookups are cheap. However, in the distributed dataflow implementation, which
we implemented in DD, all of these correspond to network communications and round trips
between TD workers, which showed us that at least JOD can be prohibitively expensive when
implemented on DD. Specifically, we saw two orders of magnitude slow down in the performance
of vanilla DD (though we used less memory).

Noria [89] uses partially-stateful dataflows to incrementally maintain the results of relational
views and answer read-heavy workload queries. SQL views in Noria are internally computed
using a parallel and distributed directed acyclic dataflow graph, consisting of relational operators
such as Join, Reduce, and Filter. The operators store only a partial recently-accessed subset
of their results and mark the rest as evicted. Noria ensures that these partial results are kept
synchronized with updates to the base table. When an evicted key is needed, the operators
recompute it by querying its upstream operators, recursively going back to the base tables in the
worst case. Noria ensures that materialized views are eventually consistent and correct in the
presence of concurrent updates and recomputations, thus allowing it to operate with a bounded
amount of operator state.

CrocodileDB [149] supports viewmaterialization using Intermittent Query Processing [158].
When users allow for a delay in materializing results, CrocodileDB intelligently defers output ma-
terialization until strictly required. When deferring executions, the system can deactivate query

89

execution and release resources. However, instead of dropping the entire state, CrocodileDB
uses a predictive query planner to dynamically select a subset of the intermediate state that fits
within available memory and which is most likely to be reused, thus reducing the amount of
useful state that needs to be recomputed.

90

7
Conclusion and Future Work

Graphs are the most intuitive abstraction to represent data characterized by entities and their
relationships. Many practical applications that process graphs can benefit from sharing computa-
tions across multiple snapshots of evolving graphs, for instance when evaluating changing road
conditions in transportation networks or conducting contingency analysis on infrastructure
networks. The research in this thesis was motivated by the challenge to efficiently support such
applications on large-scale datasets.

DC is a general technique for incrementally maintaining computations across evolving
datasets, even those containing arbitrarily nested loops. It is thus well suited for supporting the
kind of applications that motivated this thesis. We presented a study of DC that showed how
it can used to build practical data systems. In particular, this thesis identified and addressed
two key challenges that impede the adoption of DC. The first is the lack of high-level interfaces
that can be used to develop graph-specific applications. The second is scalability challenges
that arise due to the general maintenance technique used by DC, making it less efficient for
graph-specific workloads.

7.1 Contributions
This thesis has studied the application of DC to large-scale graph computations. We built the
Graphsurge system that shows a novel application of DC beyond dynamic datasets. We also
developed several optimizations that leverage application-specific characteristics. Our work was
in part led by insights we gleaned from a user survey.

91

This thesis first presented results from a non-technical user survey that we conducted to
understand how graphs are used in practice in both academia and industry. To the best of our
knowledge, this survey was the first study of its kind to understand the data, computations,
applications, software, and main challenges users face when working with graphs. We analyzed
the findings from 89 surveyed users, 8 in-person interviews, and a study of the white papers of
several graph technologies. The survey identified the need to address scalability problems in
existing graph software, the importance of graph computations over dynamic graphs, and the
description of an actual contingency analysis application on an electric grid network. These
insights informed our work in the rest of the thesis.

The next contribution of this thesis was the Graphsurge system that we built to support a
view-based analysis of static graphs. It allows users to create different views of a static graph
using a high-level programming interface. Users can run arbitrary graph computations on
collections of such views, which internally uses DC to automatically share computation across
similar views. We identified two optimization problems within Graphsurge. The first is the
collection ordering problem of determining the best order of views in a view collection such that
DC can maximize computation sharing. We showed that this problem is NP-hard and provided
an efficient 3x-approximation algorithm. The second was the collection splitting problem of
detecting when views in an ordered collection do not share enough computation with the
previous view, such that re-executing a computation from scratch is cheaper than trying to share
computation. We developed an adaptive algorithm that can decide when to split a collection
dynamically at runtime, to prevent sharing computation across dissimilar views. We presented
extensive experiments demonstrating that our algorithms improve the runtime of view-based
computations in Graphsurge by up to an order of magnitude compared to the baselines.

The final research contribution of this thesis was to improve the scalability of DC and its
reference implementation DD. We developed two key optimizations that are suitable for a
common dataflow subroutine called iterative frontier expansion (IFE). The first optimization
was based on the observation that it is more optimal to index collection differences in operators
by timestamps rather than values. The second optimization was based on the observation that
rerunning DC operators repeatedly performs a lot of work only to verify that the operator output
is empty. We presented a technique called Fast Empty Difference Verification (FEDiV) that can
detect empty operator output without actually running the full operator logic. Experimental
evaluation demonstrated that our optimizations are effective in improving the scalability of DD.

The research presented in this thesis demonstrated the suitability of DC for building graph
computation systems. We showed how DC can be made more practical for users by presenting
high-level interfaces to express graph computations. We also showed how DC can be used in
novel workloads beyond dynamic datasets. Through experimental evaluation, we showed how
application-specific optimizations can effectively improve DC’s performance.

92

7.2 Future Work
We now discuss some possible directions for future work that can extend the work done in this
thesis and study the many questions that it raises.

7.2.1 FEDiV for higher dimensional timestamps
In Section 5.4, we presented a proof for FEDiV, which can safely avoid differences recomputation
in the Reduce operator when we can guarantee that the output will be empty. This technique
only works for an IFE sub-dataflow in singly nested computations, i.e., those with 2-dimensional
timestamps, such as WCC and SSSP.

Although the proof we provided in Section 5.4 does not seem to be directly applicable to
higher dimensions, a different proof could extend the idea of using common properties such as
min and max aggregations to computations with 3 or even higher dimensional timestamps, such
as the SCC computation shown in Figure 3.5a. SCC especially should be the first step of this
generalization because it uses IFE and our proof may in fact generalize to SCC with a similar
approach. More broadly, our work leaves open the following important question: what other
alternative rules to DC’s maintenance logic rules from Equation 5.2 can be used to verify that
the outputs of DC operators are empty? Positive answers to this more general question could
yield improvements for any applications running on DD.

7.2.2 Explicit State Management
Differential Dataflow (DD) at present relies on operating system (OS) swap to deal with low
memory environments when its working set cannot fit in the available memory. DD could
instead adapt well-known techniques for buffer pool management to manually handle the
movement of data between memory and disk, possibly resulting in a better runtime performance
compared to simply swapping. For instance, DD can use its internal knowledge of computations
to predict the set of hot and cold memory pages as the computation progresses. In contrast,
the OS can only employ black box cache eviction policies such as tracking Least Recently Used
pages. We did not pursue this research direction in the context of this thesis.

Furthermore, although our initial implementation of some of the state-dropping and recon-
struction optimizations proposed by Ammar et al. [52] for DC yielded poor memory performance
tradeoffs, we did not fully cover all of the optimizations proposed by them. Dropping some of
the differences selectively can still provide more reasonable tradeoffs. Our intuition is that these
optimizations are still likely to yield poorer tradeoffs compared to techniques that don’t drop
differences but simply spill them to disk. This hypothesis should however be tested.

93

7.2.3 Theories for IVM Comparing DC to Other IVM Techniqes
Perhaps themost foundational question that is not answered in this thesis or any prior publication
on DC is: how does DC fare in terms of its resource usage compared to other IVM techniques?
For example, no theory tries to capture DC, delta query compositions, and DRed algorithms
together to be able to compare whether or not they are optimal. We know for example that
delta query compositions and DRed do not store any state and perform expensive computations
to maintain queries. In contrast, DC maintains a large amount of state, in fact, the entire set
of input and output differences. There are also other IVM techniques, such as DBToaster that
also stores state and DBSP which is similar to DC. An understanding of how to compare these
approaches would be of immense interest to the research community. Even a theory that can
help analyze the complexity of the work done by DC to maintain queries would be a good step
in better understanding the foundations of DC.

94

References

[1] The 2016 State of the Graph Report. https://neo4j.com/resources/2016-state-of-the-
graph.

[2] AboutYou Data-Driven Personalization with ArangoDB. https://www.arangodb.com/why-
arangodb/case-studies/aboutyou-data-driven-personalization-with-arangodb.

[3] AllegroGraph. https://franz.com/agraph/allegrograph.

[4] AnzoGraph. https://www.cambridgesemantics.com/product/anzograph.

[5] Apache Flink. https://flink.apache.org.

[6] Apache Flink User Survey 2016. https://github.com/dataArtisans/flink-user-survey-
2016.

[7] Apache Giraph. https://giraph.apache.org.

[8] Apache Jena. https://jena.apache.org.

[9] Apache Spark GraphX. https://spark.apache.org/graphx.

[10] Apache Spark. Preparing for the Wave of Reactive Big Data. https://info.lightbend.com/
white-paper-spark-survey-trends-adoption-report-register.html.

[11] Apache TinkerPop. https://tinkerpop.apache.org.

[12] ArrangoDB. https://www.arangodb.com.

[13] Basic Linear Algebra Subprograms. http://www.netlib.org/blas.

[14] Caley. https://cayley.io.

95

https://neo4j.com/resources/2016-state-of-the-graph
https://neo4j.com/resources/2016-state-of-the-graph
https://www.arangodb.com/why-arangodb/case-studies/aboutyou-data-driven-personalization-with-arangodb
https://www.arangodb.com/why-arangodb/case-studies/aboutyou-data-driven-personalization-with-arangodb
https://franz.com/agraph/allegrograph
https://www.cambridgesemantics.com/product/anzograph
https://flink.apache.org
https://github.com/dataArtisans/flink-user-survey-2016
https://github.com/dataArtisans/flink-user-survey-2016
https://giraph.apache.org
https://jena.apache.org
https://spark.apache.org/graphx
https://info.lightbend.com/white-paper-spark-survey-trends-adoption-report-register.html
https://info.lightbend.com/white-paper-spark-survey-trends-adoption-report-register.html
https://tinkerpop.apache.org
https://www.arangodb.com
http://www.netlib.org/blas
https://cayley.io

[15] Conceptual Graphs. http://conceptualgraphs.org.

[16] Cytoscape. http://www.cytoscape.org.

[17] Detect Fraud in Real Time with Graph Databases. https://neo4j.com/whitepapers/fraud-
detection-graph-databases.

[18] DGraph. https://dgraph.io.

[19] Elasticsearch X-Pack Graph. https://www.elastic.co/products/x-pack/graph.

[20] FullContact. https://www.fullcontact.com.

[21] Gelly Streaming. https://github.com/vasia/gelly-streaming.

[22] Graph for Scala. http://www.scala-graph.org.

[23] Graph-tool. https://graph-tool.skewed.de.

[24] GraphBolt: Dependency-Driven Synchronous Processing of Streaming Graphs. https:
//github.com/pdclab/graphbolt.

[25] GraphDB by Ontotext. https://www.ontotext.com/products/graphdb.

[26] GraphStream. http://graphstream-project.org.

[27] JanusGraph. http://janusgraph.org.

[28] MATLAB. https://www.mathworks.com.

[29] A Modular Implementation of Timely Dataflow in Rust. https://github.com/

TimelyDataflow/timely-dataflow.

[30] Neo4j. https://neo4j.com/download-center/#community.

[31] NetworKit. https://networkit.iti.kit.edu.

[32] NetworkX. https://networkx.github.io.

[33] OpenBEL. http://openbel.org.

[34] openCypher. https://www.opencypher.org.

[35] OpenLink Virtuoso. https://virtuoso.openlinksw.com.

96

http://conceptualgraphs.org
http://www.cytoscape.org
https://neo4j.com/whitepapers/fraud-detection-graph-databases
https://neo4j.com/whitepapers/fraud-detection-graph-databases
https://dgraph.io
https://www.elastic.co/products/x-pack/graph
https://www.fullcontact.com
https://github.com/vasia/gelly-streaming
http://www.scala-graph.org
https://graph-tool.skewed.de
https://github.com/pdclab/graphbolt
https://github.com/pdclab/graphbolt
https://www.ontotext.com/products/graphdb
http://graphstream-project.org
http://janusgraph.org
https://www.mathworks.com
https://github.com/TimelyDataflow/timely-dataflow
https://github.com/TimelyDataflow/timely-dataflow
https://neo4j.com/download-center/#community
https://networkit.iti.kit.edu
https://networkx.github.io
http://openbel.org
https://www.opencypher.org
https://virtuoso.openlinksw.com

[36] OrientDB. https://orientdb.com.

[37] SNAP: Network datasets: Com-livejournal social network. https://snap.stanford.edu/
data/com-LiveJournal.html.

[38] SNAP: Network datasets: Stackoverflow temporal network. https://snap.stanford.edu/
data/sx-stackoverflow.html.

[39] SNAP: Network datasets: Wiki-topcats network. https://snap.stanford.edu/data/wiki-
topcats.html.

[40] SNAP: Standford Network Analysis Project. https://snap.stanford.edu.

[41] Sparksee. http://www.sparsity-technologies.com.

[42] Stardog. https://www.stardog.com.

[43] State Grid. http://www.sgcc.com.cn/ywlm/index.shtml.

[44] TigerGraph. https://www.tigergraph.com.

[45] Docker, 2024. https://www.docker.com.

[46] An Implementation of Differential Dataflow Using Timely Dataflow on Rust, 2024. https:
//github.com/TimelyDataflow/differential-dataflow.

[47] M. Abadi, F. McSherry, and G. D. Plotkin. Foundations of Differential Dataflow. In Foun-
dations of Software Science and Computation Structures, 2015. https://doi.org/10.1007/
978-3-662-46678-0_5.

[48] F. Afrati, C. Li, and P. Mitra. Rewriting Queries Using Views in the Presence of Arithmetic
Comparisons. Theoretical Computer Science, 368(1-2), 2006, https://doi.org/10.1016/
J.TCS.2006.08.020.

[49] C. C. Aggarwal and H. Wang. Graph Data Management and Mining: A Survey of
Algorithms and Applications. In Managing and Mining Graph Data. 2010. https:

//doi.org/10.1007/978-1-4419-6045-0_2.

[50] Y. Ahmad, O. Kennedy, C. Koch, andM. Nikolic. DBToaster: Higher-order Delta Processing
for Dynamic, Frequently Fresh Views. Proceedings of the VLDB Endowment, 2(2), 2009,
https://doi.org/10.14778/1687553.1687592.

97

https://orientdb.com
https://snap.stanford.edu/data/com-LiveJournal.html
https://snap.stanford.edu/data/com-LiveJournal.html
https://snap.stanford.edu/data/sx-stackoverflow.html
https://snap.stanford.edu/data/sx-stackoverflow.html
https://snap.stanford.edu/data/wiki-topcats.html
https://snap.stanford.edu/data/wiki-topcats.html
https://snap.stanford.edu
http://www.sparsity-technologies.com
https://www.stardog.com
http://www.sgcc.com.cn/ywlm/index.shtml
https://www.tigergraph.com
https://www.docker.com
https://github.com/TimelyDataflow/differential-dataflow
https://github.com/TimelyDataflow/differential-dataflow
https://doi.org/10.1007/978-3-662-46678-0_5
https://doi.org/10.1007/978-3-662-46678-0_5
https://doi.org/10.1016/J.TCS.2006.08.020
https://doi.org/10.1016/J.TCS.2006.08.020
https://doi.org/10.1007/978-1-4419-6045-0_2
https://doi.org/10.1007/978-1-4419-6045-0_2
https://doi.org/10.14778/1687553.1687592

[51] S. Amer-Yahia and J. Pei, editors. Proceedings of the VLDB Endowment, Volume 11. 2017/2018.
http://www.vldb.org/pvldb/volumes/11.

[52] K. Ammar, S. Sahu, S. Salihoglu, and M. T. Özsu. Optimizing differentially-maintained
recursive queries on dynamic graphs. Proceedings of the VLDB Endowment, 15(11), 2022,
https://doi.org/10.14778/3551793.3551862.

[53] W. Ammar, D. Groeneveld, C. Bhagavatula, I. Beltagy, M. Crawford, D. Downey, J. Dunkel-
berger, A. Elgohary, S. Feldman, V. Ha, R. M. Kinney, S. Kohlmeier, K. Lo, T. C. Murray,
H.-H. Ooi, M. E. Peters, J. L. Power, S. Skjonsberg, L. L. Wang, C. Wilhelm, Z. Yuan, M. van
Zuylen, and O. Etzioni. Construction of the literature graph in semantic scholar. In
Human Language Technology: Conference of the North American Chapter of the Association
of Computational Linguistics, 2018. https://doi.org/10.18653/v1/n18-3011.

[54] R. Angles, M. Arenas, P. Barcelúndefined, A. Hogan, J. L. Reutter, and D. Vrgoc. Founda-
tions of Modern Query Languages for Graph Databases. ACM Computing Surveys, 50(5),
2017, https://doi.org/10.1145/3104031.

[55] A. C. Arpaci-Dusseau and G. Voelker, editors. Proceedings of the Symposium on Operating
Systems Design and Implementation. 2018. https://www.usenix.org/conference/osdi18.

[56] M.-F. Balcan and K. Q. Weinberger, editors. Proceedings of the International Conference on
Machine Learning. 2016. http://jmlr.org/proceedings/papers/v48.

[57] O. Batarfi, R. E. Shawi, A. G. Fayoumi, R. Nouri, S.-M.-R. Beheshti, A. Barnawi, and S. Sakr.
Large Scale Graph Processing Systems: Survey and an Experimental Evaluation. Cluster
Computing, 18(3), 2015, https://doi.org/10.1007/s10586-015-0472-6.

[58] Bernd Mohr and Padma Raghavan, editors. Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. 2017. https://doi.org/
10.1145/3126908.

[59] M. Besta, M. Fischer, V. Kalavri, M. Kapralov, and T. Hoefler. Practice of streaming
processing of dynamic graphs: Concepts, models, and systems. IEEE Transactions on
Parallel and Distributed Systems, 34(6), 2023, https://doi.org/10.1109/TPDS.2021.3131677.

[60] S. Bhattacharya, M. Henzinger, and D. Nanongkai. A New Deterministic Algorithm for
Dynamic Set Cover. In Foundations of Computer Science, 2019. https://doi.org/10.1109/
FOCS.2019.00033.

98

http://www.vldb.org/pvldb/volumes/11
https://doi.org/10.14778/3551793.3551862
https://doi.org/10.18653/v1/n18-3011
https://doi.org/10.1145/3104031
https://www.usenix.org/conference/osdi18
http://jmlr.org/proceedings/papers/v48
https://doi.org/10.1007/s10586-015-0472-6
https://doi.org/10.1145/3126908
https://doi.org/10.1145/3126908
https://doi.org/10.1109/TPDS.2021.3131677
https://doi.org/10.1109/FOCS.2019.00033
https://doi.org/10.1109/FOCS.2019.00033

[61] J. A. Blakeley, P.-Å. Larson, and F. W. Tompa. Efficiently Updating Materialized Views. In
ACM International Conference on Management of Data, 1986. https://doi.org/10.1145/
16894.16861.

[62] B. H. Bloom. Space/Time Trade-Offs in Hash Coding with Allowable Errors. Communica-
tions of the ACM, 13(7), 1970, https://doi.org/10.1145/362686.362692.

[63] P. Boncz and K. Salem, editors. Proceedings of the VLDB Endowment, Volume 10. 2016/2017.
http://www.vldb.org/pvldb/volumes/10/.

[64] A. Bonifati, G. Fletcher, H. Voigt, and N. Yakovets. Querying graphs. In Synthesis Lectures
on Data Management. 2018. https://doi.org/10.2200/S00873ED1V01Y201808DTM051.

[65] S. Bridgeman and R. Tamassia. A User Study in Similarity Measures for Graph Drawing.
In Graph Drawing Symposium. 2001. https://doi.org/10.1007/3-540-44541-2_3.

[66] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. Haloop: Efficient Iterative Data Processing
on Large Clusters. Proceedings of the VLDB Endowment, 3(1-2), 2010, https://doi.org/
10.14778/1920841.1920881.

[67] M. Budiu, F. McSherry, L. Ryzhyk, and V. Tannen. DBSP: Automatic Incremental View
Maintenance for Rich Query Languages. Proceedings of the VLDB Endowment, 16(7), 2022,
https://doi.org/10.14778/3587136.3587137.

[68] E. Bullmore and O. Sporns. Complex Brain Networks: Graph Theoretical Analysis of
Structural and Functional Systems. Nature Reviews Neuroscience, 10(3), 2009, https:
//doi.org/10.1038/nrn2575.

[69] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas. Apache Flink:
Stream and Batch Processing in a Single Engine. The Bulletin of the Technical Committee
on Data Engineering, 38(4), 2015. http://sites.computer.org/debull/A15dec/p28.pdf.

[70] S. Ceri and J. Widom. Deriving Production Rules for Incremental View Maintenance. In
Very Large Data Bases Conference, 1991. http://www.vldb.org/conf/1991/P577.PDF.

[71] A. K. Chandra and P. M. Merlin. Optimal Implementation of Conjunctive Queries in
Relational Data Bases. In Symposium on the Theory of Computing, 1977. https://doi.org/
10.1145/800105.803397.

[72] C. Chekuri and A. Rajaraman. Conjunctive Query Containment Revisited. In International
Conference on Database Theory, 1997. https://doi.org/10.1007/3-540-62222-5_36.

99

https://doi.org/10.1145/16894.16861
https://doi.org/10.1145/16894.16861
https://doi.org/10.1145/362686.362692
http://www.vldb.org/pvldb/volumes/10/
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.1007/3-540-44541-2_3
https://doi.org/10.14778/1920841.1920881
https://doi.org/10.14778/1920841.1920881
https://doi.org/10.14778/3587136.3587137
https://doi.org/10.1038/nrn2575
https://doi.org/10.1038/nrn2575
http://sites.computer.org/debull/A15dec/p28.pdf
http://www.vldb.org/conf/1991/P577.PDF
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/800105.803397
https://doi.org/10.1007/3-540-62222-5_36

[73] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A Scalable Continuous Query
System for Internet Databases. In ACM International Conference on Management of Data,
2000. https://doi.org/10.1145/342009.335432.

[74] R. Chirkova. Query containment. In Encyclopedia of Database Systems. 2018. https:

//doi.org/10.1007/978-1-4614-8265-9_1269.

[75] Z. Chothia, J. Liagouris, F. McSherry, and T. Roscoe. Explaining Outputs in Modern Data
Analytics. Proceedings of the VLDB Endowment, 9(12), 2016, https://doi.org/10.14778/
2994509.2994530.

[76] N. Christofides. Worst-Case Analysis of a New Heuristic for the Travelling Salesman
Problem. Operations Research Forum, 3(1), 2022, https://doi.org/10.1007/S43069-021-
00101-Z.

[77] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communications of
the ACM, 26(1), 1983, https://doi.org/10.1145/357980.358007.

[78] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. 3rd
edition edition, 2009. http://mitpress.mit.edu/books/introduction-algorithms.

[79] W. Cui. A Survey on Graph Visualization. PhD thesis, Hong Kong University of Science
and Technology, 2007. https://cse.hkust.edu.hk/~huamin/MSBD5005/graph.pdf.

[80] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.
In USENIX Symposium on Operating Systems Design and Implementation, 2004. http:

//www.usenix.org/events/osdi04/tech/dean.html.

[81] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S. Zdonik. Anti-Caching: A New
Approach to Database Management System Architecture. Proceedings of the VLDB Endow-
ment, 6(14), 2013, https://doi.org/10.14778/2556549.2556575.

[82] A. Deligiannakis. View maintenance aspects. In Encyclopedia of Database Systems. 2009.
https://doi.org/10.1007/978-0-387-39940-9_838.

[83] R. Duan, H. He, and T. Zhang. Dynamic Edge Coloring with Improved Approxima-
tion. In ACM-SIAM Symposium on Discrete Algorithms, 2019. https://doi.org/10.1137/
1.9781611975482.117.

[84] J. G. Dy and A. Krause, editors. Proceedings of the International Conference on Machine
Learning. 2018. http://jmlr.org/proceedings/papers/v80/.

100

https://doi.org/10.1145/342009.335432
https://doi.org/10.1007/978-1-4614-8265-9_1269
https://doi.org/10.1007/978-1-4614-8265-9_1269
https://doi.org/10.14778/2994509.2994530
https://doi.org/10.14778/2994509.2994530
https://doi.org/10.1007/S43069-021-00101-Z
https://doi.org/10.1007/S43069-021-00101-Z
https://doi.org/10.1145/357980.358007
http://mitpress.mit.edu/books/introduction-algorithms
https://cse.hkust.edu.hk/~huamin/MSBD5005/graph.pdf
http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html
https://doi.org/10.14778/2556549.2556575
https://doi.org/10.1007/978-0-387-39940-9_838
https://doi.org/10.1137/1.9781611975482.117
https://doi.org/10.1137/1.9781611975482.117
http://jmlr.org/proceedings/papers/v80/

[85] A. Eldawy, J. Levandoski, and P.-Å. Larson. Trekking Through Siberia: Managing Cold
Data in a Memory-Optimized Database. Proceedings of the VLDB Endowment, 7(11), 2014,
https://doi.org/10.14778/2732967.2732968.

[86] F. Faerber, A. Kemper, P.-Å. Larson, J. Levandoski, T. Neumann, and A. Pavlo. Main
Memory Database Systems. Foundations and Trends in Databases, 8(1-2), 2017, https:
//doi.org/10.1561/1900000058.

[87] W. Fan, C. Hu, and C. Tian. Incremental Graph Computations: Doable and Undoable. In
ACM International Conference on Management of Data, 2017. https://doi.org/10.1145/
3035918.3035944.

[88] W. Fan, X. Wang, and Y. Wu. Incremental Graph Pattern Matching. ACM Transactions on
Database Systems, 38(3), 2013, https://doi.org/10.1145/2489791.

[89] J. Gjengset, M. Schwarzkopf, J. Behrens, L. T. Araújo, M. Ek, E. Kohler, M. F. Kaashoek, and
R. T. Morris. Noria: Dynamic, Partially-Stateful Data-Flow for High-Performance Web
Applications. In USENIX Symposium on Operating Systems Design and Implementation,
2018. https://www.usenix.org/conference/osdi18/presentation/gjengset.

[90] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica. GraphX: Graph
Processing in a Distributed Dataflow Framework. In USENIX Symposium on Operating
Systems Design and Implementation, 2014. https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/gonzalez.

[91] G. Graefe. Buffer Pool. In Encyclopedia of Database Systems. 2018. https://doi.org/

10.1007/978-1-4614-8265-9_682.

[92] W. Group. Common Format For Exchange of Solved Load Flow Data. IEEE Trans-
actions on Power Apparatus and Systems, PAS-92(6), 1973, https://doi.org/10.1109/

TPAS.1973.293571.

[93] A. Gupta, I. S. Mumick, et al. Maintenance of Materialized Views: Problems, Techniques,
and Applications. Data Engineering Bulletin, 18(2), 1995. http://sites.computer.org/

debull/95JUN-CD.pdf.

[94] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining Views Incrementally. Sigmod
Record, 22(2), 1993, https://doi.org/10.1145/170036.170066.

[95] P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A Comparison of RDF Query Languages. In
International Semantic Web Conference. 2004. https://doi.org/10.1007/978-3-540-30475-
3_35.

101

https://doi.org/10.14778/2732967.2732968
https://doi.org/10.1561/1900000058
https://doi.org/10.1561/1900000058
https://doi.org/10.1145/3035918.3035944
https://doi.org/10.1145/3035918.3035944
https://doi.org/10.1145/2489791
https://www.usenix.org/conference/osdi18/presentation/gjengset
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://doi.org/10.1007/978-1-4614-8265-9_682
https://doi.org/10.1007/978-1-4614-8265-9_682
https://doi.org/10.1109/TPAS.1973.293571
https://doi.org/10.1109/TPAS.1973.293571
http://sites.computer.org/debull/95JUN-CD.pdf
http://sites.computer.org/debull/95JUN-CD.pdf
https://doi.org/10.1145/170036.170066
https://doi.org/10.1007/978-3-540-30475-3_35
https://doi.org/10.1007/978-3-540-30475-3_35

[96] S. Haddadi and Z. Layouni. Consecutive Block Minimization is 1.5-Approximable. Infor-
mation Processing Letters, 108(3), 2008, https://doi.org/10.1016/j.ipl.2008.04.009.

[97] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran, W. Chen, and E. Chen.
Chronos: A graph engine for temporal graph analysis. In European Conference on Computer
Systems, 2014. https://doi.org/10.1145/2592798.2592799.

[98] K. Hanauer, M. Henzinger, and C. Schulz. Recent Advances in Fully Dynamic Graph
Algorithms – a Quick Reference Guide. ACM Journal of Experimental Algorithmics, 27(1.11),
2022, https://doi.org/10.1145/3555806.

[99] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker. OLTP Through the Looking
Glass, and What We Found There. In ACM International Conference on Management of
Data, 2008. https://doi.org/10.1145/1376616.1376713.

[100] I. Herman, G. Melançon, and M. S. Marshall. Graph Visualization and Navigation in
Information Visualization: A Survey. IEEE Transactions on Visualization and Computer
Graphics, 6(1), 2000, https://doi.org/10.1109/2945.841119.

[101] D. Holten and J. J. van Wijk. A User Study on Visualizing Directed Edges in Graphs. In
Human Factors in Computing Systems, 2009. https://doi.org/10.1145/1518701.1519054.

[102] F. Holzschuher and R. Peinl. Performance of Graph Query Languages: Comparison
of Cypher, Gremlin and Native Access in Neo4j. In Joint International Conference on
Extending Database Technology/International Conference on Database Theory Workshops,
2013. https://doi.org/10.1145/2457317.2457351.

[103] W. H. Ip and D. Wang. Resilience Evaluation Approach of Transportation Networks. In
International Joint Conference on Computational Sciences and Optimization, 2009. https:
//doi.org/10.1109/CSO.2009.294.

[104] A. P. Iyer, Q. Pu, K. Patel, J. E. Gonzalez, and I. Stoica. TEGRA: Efficient Ad-Hoc An-
alytics on Evolving Graphs. In USENIX Symposium on Networked Systems Design and
Implementation, 2021. https://www.usenix.org/conference/nsdi21/presentation/iyer.

[105] H. V. Jagadish and A. Zhou, editors. Proceedings of the VLDB Endowment, Volume 7.
2013/2014. http://www.vldb.org/pvldb/volumes/7.

[106] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri. Querying knowledge graphs by
example entity tuples. In IEEE International Conference on Data Engineering, 2016. https:
//doi.org/10.1109/ICDE.2016.7498391.

102

https://doi.org/10.1016/j.ipl.2008.04.009
https://doi.org/10.1145/2592798.2592799
https://doi.org/10.1145/3555806
https://doi.org/10.1145/1376616.1376713
https://doi.org/10.1109/2945.841119
https://doi.org/10.1145/1518701.1519054
https://doi.org/10.1145/2457317.2457351
https://doi.org/10.1109/CSO.2009.294
https://doi.org/10.1109/CSO.2009.294
https://www.usenix.org/conference/nsdi21/presentation/iyer
http://www.vldb.org/pvldb/volumes/7
https://doi.org/10.1109/ICDE.2016.7498391
https://doi.org/10.1109/ICDE.2016.7498391

[107] John West and Cherri M. Pancake, editors. Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. 2016. https://

ieeexplore.ieee.org/xpl/conhome/7875333/proceeding.

[108] C. Kankanamge, S. Sahu, A. Mhedbhi, J. Chen, and S. Salihoglu. Graphflow: An Active
Graph Database. In ACM International Conference on Management of Data, 2017. https:
//doi.org/10.1145/3035918.3056445.

[109] K. Karanasos, A. Katsifodimos, and I. Manolescu. Delta: Scalable Data Dissemination
Under Capacity Constraints. Proceedings of the VLDB Endowment, 7(4), 2013, https:
//doi.org/10.14778/2732240.2732241.

[110] A. Katifori, C. Halatsis, G. Lepouras, C. Vassilakis, and E. Giannopoulou. Ontology
Visualization Methods: A Survey. ACM Computing Surveys, 39(4), 2007, https://doi.org/
10.1145/1287620.1287621.

[111] Proceedings of the International Conference on Knowledge Discovery and Data Mining. 2017.
https://doi.org/10.1145/3097983.

[112] Proceedings of the International Conference on Knowledge Discovery and Data Mining. 2018.
https://doi.org/10.1145/3219819.

[113] K. Keeton and T. Roscoe, editors. Proceedings of the Symposium on Operating Systems
Design and Implementation. 2016. https://www.usenix.org/conference/osdi16.

[114] A. Kemper. Adaptable Pointer Swizzling Strategies in Object Bases: Design, Realiza-
tion, and Quantitative Analysis. The VLDB Journal, 4(3), 1995, https://doi.org/10.1007/
BF01231646.

[115] L. T. Kou. Polynomial Complete Consecutive Information Retrieval Problems. SIAM
Journal on Computing, 6(1), 1977, https://doi.org/10.1137/0206004.

[116] H. Kwak, C. Lee, H. Park, and S. B. Moon. What Is Twitter, a Social Network or a News
Media? In The Web Conference, 2010. https://doi.org/10.1145/1772690.1772751.

[117] V. Leis, M. Haubenschild, A. Kemper, and T. Neumann. LeanStore: In-Memory Data
Management beyond Main Memory. In IEEE International Conference on Data Engineering,
2018. https://doi.org/10.1109/ICDE.2018.00026.

[118] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph Evolution: Densification and Shrinking
Diameters. ACM Transactions on Knowledge Discovery from Data, 1(1), 2007, https:
//doi.org/10.1145/1217299.1217301.

103

https://ieeexplore.ieee.org/xpl/conhome/7875333/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7875333/proceeding
https://doi.org/10.1145/3035918.3056445
https://doi.org/10.1145/3035918.3056445
https://doi.org/10.14778/2732240.2732241
https://doi.org/10.14778/2732240.2732241
https://doi.org/10.1145/1287620.1287621
https://doi.org/10.1145/1287620.1287621
https://doi.org/10.1145/3097983
https://doi.org/10.1145/3219819
https://www.usenix.org/conference/osdi16
https://doi.org/10.1007/BF01231646
https://doi.org/10.1007/BF01231646
https://doi.org/10.1137/0206004
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1109/ICDE.2018.00026
https://doi.org/10.1145/1217299.1217301
https://doi.org/10.1145/1217299.1217301

[119] Longbing Cao, Chengqi Zhang, Thorsten Joachims, Geoffrey I. Webb, Dragos D.
Margineantu, and Graham Williams, editors. Proceedings of the International Conference
on Knowledge Discovery and Data Mining. 2015. http://dl.acm.org/citation.cfm?id=

2783258.

[120] Y. Lu, J. Cheng, D. Yan, and H. Wu. Large-scale Distributed Graph Computing Systems:
An Experimental Evaluation. Proceedings of the VLDB Endowment, 8(3), 2014, https:
//doi.org/10.14778/2735508.2735517.

[121] M. Mariappan, J. Che, and K. Vora. DZiG: Sparsity-Aware Incremental Processing of
Streaming Graphs. In European Conference on Computer Systems, 2021. https://doi.org/
10.1145/3447786.3456230.

[122] M. Mariappan and K. Vora. GraphBolt: Dependency-Driven Synchronous Processing of
Streaming Graphs. In European Conference on Computer Systems, 2019. https://doi.org/
10.1145/3302424.3303974.

[123] F. McSherry, A. Lattuada, M. Schwarzkopf, and T. Roscoe. Shared Arrangements: Practical
Inter-Query Sharing for Streaming Dataflows. Proceedings of the VLDB Endowment, 13(10),
2020, https://doi.org/10.14778/3401960.3401974.

[124] F. McSherry, D. G. Murray, R. Isaacs, and M. Isard. Differential Dataflow. In Confer-
ence on Innovative Data Systems Research, 2013. http://cidrdb.org/cidr2013/Papers/

CIDR13_Paper111.pdf.

[125] J. Mondal and A. Deshpande. CASQD: Continuous detection of activity-based subgraph
pattern queries on dynamic graphs. In Distributed and Event-based Systems, 2016. https:
//doi.org/10.1145/2933267.2933316.

[126] B. Motik, Y. Nenov, R. Piro, and I. Horrocks. Maintenance of Datalog Materialisations
Revisited. Artificial Intelligence, 269, 2019, https://doi.org/10.1016/j.artint.2018.12.004.

[127] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: A
Timely Dataflow System. In ACM Symposium on Operating Systems Principles, 2013.
https://doi.org/10.1145/2517349.2522738.

[128] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Madhavapeddy, and
S. Hand. CIEL: A Universal Execution Engine for Distributed Data-Flow Com-
puting. In USENIX Symposium on Networked Systems Design and Implementation,
2011. https://www.usenix.org/conference/nsdi11/ciel-universal-execution-engine-

distributed-data-flow-computing.

104

http://dl.acm.org/citation.cfm?id=2783258
http://dl.acm.org/citation.cfm?id=2783258
https://doi.org/10.14778/2735508.2735517
https://doi.org/10.14778/2735508.2735517
https://doi.org/10.1145/3447786.3456230
https://doi.org/10.1145/3447786.3456230
https://doi.org/10.1145/3302424.3303974
https://doi.org/10.1145/3302424.3303974
https://doi.org/10.14778/3401960.3401974
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper111.pdf
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper111.pdf
https://doi.org/10.1145/2933267.2933316
https://doi.org/10.1145/2933267.2933316
https://doi.org/10.1016/j.artint.2018.12.004
https://doi.org/10.1145/2517349.2522738
https://www.usenix.org/conference/nsdi11/ciel-universal-execution-engine-distributed-data-flow-computing
https://www.usenix.org/conference/nsdi11/ciel-universal-execution-engine-distributed-data-flow-computing

[129] T. Neumann and M. Freitag. Umbra: A Disk-Based System with In-Memory Performance.
In Conference on Innovative Data Systems Research, 2020. http://cidrdb.org/cidr2020/
papers/p29-neumann-cidr20.pdf.

[130] M. Nikolic and D. Olteanu. Incremental View Maintenance with Triple Lock Factorization
Benefits. In ACM International Conference on Management of Data, 2018. https://doi.org/
10.1145/3183713.3183758.

[131] D. Olteanu and J. Závodný. Size Bounds for Factorised Representations of Query Results.
ACM Transactions on Database Systems, 40(1), 2015, https://doi.org/10.1145/2656335.

[132] S. Orzan. On Distributed Verification and Verified Distribution. PhD thesis, VU Amsterdam,
2004. https://www.cs.vu.nl/en/Images/SM_Orzan_5-11-2004_tcm210-258582.pdf.

[133] A. Pacaci, A. Bonifati, and M. T. Özsu. Regular Path Query Evaluation on Streaming
Graphs. In ACM International Conference on Management of Data, 2020. https://doi.org/
10.1145/3318464.3389733.

[134] A. Pacaci, A. Bonifati, and M. T. Özsu. Evaluating Complex Queries on Streaming Graphs.
In IEEE International Conference on Data Engineering, 2022. https://doi.org/10.1109/

ICDE53745.2022.00025.

[135] R. Pienta, A. Tamersoy, A. Endert, S. Navathe, H. Tong, andD. H. Chau. VISAGE: Interactive
Visual Graph Querying. In Advanced Visual Interfaces, 2016. https://doi.org/10.1145/
2909132.2909246.

[136] D. Precup and Y. W. Teh, editors. Proceedings of the International Conference on Machine
Learning. 2017. http://jmlr.org/proceedings/papers/v70.

[137] M. Rath, D. Akehurst, C. Borowski, and P. Mäder. Are Graph Query Languages Applicable
for Requirements Traceability Analysis? In Requirements Engineering - Foundation for
Software Quality, 2017. https://ceur-ws.org/Vol-1796/poster-paper-2.pdf.

[138] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and Extensible Algorithms for
Multi Query Optimization. In ACM International Conference on Management of Data, 2000.
https://doi.org/10.1145/342009.335419.

[139] L. Ryzhyk and M. Budiu. Differential Datalog. In Datalog 2.0 - CEUR Workshop, volume
2368, 2019. http://ceur-ws.org/Vol-2368/paper6.pdf.

105

http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
https://doi.org/10.1145/3183713.3183758
https://doi.org/10.1145/3183713.3183758
https://doi.org/10.1145/2656335
https://www.cs.vu.nl/en/Images/SM_Orzan_5-11-2004_tcm210-258582.pdf
https://doi.org/10.1145/3318464.3389733
https://doi.org/10.1145/3318464.3389733
https://doi.org/10.1109/ICDE53745.2022.00025
https://doi.org/10.1109/ICDE53745.2022.00025
https://doi.org/10.1145/2909132.2909246
https://doi.org/10.1145/2909132.2909246
http://jmlr.org/proceedings/papers/v70
https://ceur-ws.org/Vol-1796/poster-paper-2.pdf
https://doi.org/10.1145/342009.335419
http://ceur-ws.org/Vol-2368/paper6.pdf

[140] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu. The Ubiquity of Large Graphs
and Surprising Challenges of Graph Processing. Proceedings of the VLDB Endowment,
11(4), 2017, https://doi.org/10.1145/3186728.3164139.

[141] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu. The Ubiquity of Large Graphs
and Surprising Challenges of Graph Processing: Extended Survey. The VLDB Journal,
29(2-3), 2020, https://doi.org/10.1007/s00778-019-00548-x.

[142] S. Sahu and S. Salihoglu. Graphsurge: Graph Analytics on View Collections Using
Differential Computation. In ACM International Conference on Management of Data, 2021.
https://doi.org/10.1145/3448016.3452837.

[143] K. Salem, K. S. Beyer, R. Cochrane, and B. G. Lindsay. How to Roll a Join: Asynchronous
Incremental View Maintenance. In ACM International Conference on Management of Data,
2000. https://doi.org/10.1145/342009.335393.

[144] S. Salihoglu and M. T. Özsu. Response to “Scale up or scale out for graph processing”.
IEEE Internet Computing, 22(5), 2018, https://doi.org/10.1109/MIC.2018.053681359.

[145] Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. 2018. http://dl.acm.org/citation.cfm?id=3291656.

[146] S. Schelter. "Amnesia" - A Selection of Machine Learning Models That Can Forget
User Data Very Fast. In Conference on Innovative Data Systems Research, 2020. http:

//cidrdb.org/cidr2020/papers/p32-schelter-cidr20.pdf.

[147] T. K. Sellis. Multiple-Query Optimization. ACM Transactions on Database Systems, 13(1),
1988, https://doi.org/10.1145/42201.42203.

[148] Shahram Ghandeharizadeh, Sumita Barahmand, Magdalena Balazinska, and Michael J.
Freedman, editors. Proceedings of the Symposium on Cloud Computing. 2015. http:

//dl.acm.org/citation.cfm?id=2806777.

[149] Z. Shang, X. Liang, D. Tang, C. Ding, A. J. Elmore, S. Krishnan, and M. J. Franklin.
CrocodileDB: Efficient Database Execution through Intelligent Deferment. In Conference
on Innovative Data Systems Research, 2020. http://cidrdb.org/cidr2020/papers/p14-

shang-cidr20.pdf.

[150] R. Shirkova and J. Yang. Materialized Views. Foundations and Trends in Databases, 4(4),
2011, https://doi.org/10.1561/1900000020.

106

https://doi.org/10.1145/3186728.3164139
https://doi.org/10.1007/s00778-019-00548-x
https://doi.org/10.1145/3448016.3452837
https://doi.org/10.1145/342009.335393
https://doi.org/10.1109/MIC.2018.053681359
http://dl.acm.org/citation.cfm?id=3291656
http://cidrdb.org/cidr2020/papers/p32-schelter-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p32-schelter-cidr20.pdf
https://doi.org/10.1145/42201.42203
http://dl.acm.org/citation.cfm?id=2806777
http://dl.acm.org/citation.cfm?id=2806777
http://cidrdb.org/cidr2020/papers/p14-shang-cidr20.pdf
http://cidrdb.org/cidr2020/papers/p14-shang-cidr20.pdf
https://doi.org/10.1561/1900000020

[151] O. Shmueli. Equivalence of Datalog Queries is Undecidable. Journal of Logic Programming,
15(3), 1993, https://doi.org/10.1016/0743-1066(93)90040-N.

[152] J. Shun and G. E. Blelloch. Ligra: A Lightweight Graph Processing Framework for Shared
Memory. ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming,
48(8), 2013, https://doi.org/10.1145/2517327.2442530.

[153] Proceedings of the Symposium on Cloud Computing. 2017. http://dl.acm.org/

citation.cfm?id=3127479.

[154] Proceedings of the Symposium on Cloud Computing. 2018. http://dl.acm.org/

citation.cfm?id=3267809.

[155] Proceedings of the Symposium on Operating Systems Principles. 2017. http://dl.acm.org/
citation.cfm?id=3132747.

[156] J. P. G. Sterbenz, E. K. Çetinkaya, M. A. Hameed, A. Jabbar, and J. P. Rohrer. Modelling and
Analysis of Network Resilience. In International Conference on Communication Systems
and Networks, 2011. https://doi.org/10.1109/COMSNETS.2011.5716502.

[157] C. Stuecklberger. Expressing the Routing Logic of a SDN Controller as a Differential
Dataflow. Master’s thesis, ETH Zürich, 2016. http://hdl.handle.net/20.500.11850/155817.

[158] D. Tang, Z. Shang, A. J. Elmore, S. Krishnan, and M. J. Franklin. Intermittent Query
Processing. Proceedings of the VLDB Endowment, 12(11), 2019, https://doi.org/10.14778/
3342263.3342278.

[159] Q.-C. To, J. Soto, and V. Markl. A Survey of State Management in Big Data Processing
Systems. The VLDB Journal, 27(6), 2018, https://doi.org/10.1007/S00778-018-0514-9.

[160] O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi. PGQL: A property graph query
language. In Graph Data Management Experiences and Systems, 2016. https://doi.org/
10.1145/2960414.2960421.

[161] C. Vehlow, F. Beck, and D. Weiskopf. Visualizing Group Structures in Graphs: A Survey.
Computer Graphics Forum, 36(6), 2017, https://doi.org/10.1111/cgf.12872.

[162] K. Vora, R. Gupta, and G. Xu. Synergistic Analysis of Evolving Graphs. ACM Transactions
on Architecture and Code Optimization, 13(4), 2016, https://doi.org/10.1145/2992784.

107

https://doi.org/10.1016/0743-1066(93)90040-N
https://doi.org/10.1145/2517327.2442530
http://dl.acm.org/citation.cfm?id=3127479
http://dl.acm.org/citation.cfm?id=3127479
http://dl.acm.org/citation.cfm?id=3267809
http://dl.acm.org/citation.cfm?id=3267809
http://dl.acm.org/citation.cfm?id=3132747
http://dl.acm.org/citation.cfm?id=3132747
https://doi.org/10.1109/COMSNETS.2011.5716502
http://hdl.handle.net/20.500.11850/155817
https://doi.org/10.14778/3342263.3342278
https://doi.org/10.14778/3342263.3342278
https://doi.org/10.1007/S00778-018-0514-9
https://doi.org/10.1145/2960414.2960421
https://doi.org/10.1145/2960414.2960421
https://doi.org/10.1111/cgf.12872
https://doi.org/10.1145/2992784

[163] K. Vora, R. Gupta, and G. H. Xu. Kickstarter: Fast and Accurate Computations on Streaming
Graphs Via TrimmedApproximations. InArchitectural Support for Programming Languages
and Operating Systems, 2017. https://doi.org/10.1145/3037697.3037748.

[164] C. Wang and J. Tao. Graphs in Scientific Visualization: A Survey. Computer Graphics
Forum, 36(1), 2017, https://doi.org/10.1111/cgf.12800.

[165] G. Yadav and S. Babu. NEXCADE: Perturbation Analysis for Complex Networks. PLOS
ONE, 7(8), 2012, https://doi.org/10.1371/journal.pone.0041827.

[166] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
in-Memory Cluster Computing. In USENIX Symposium on Networked Systems Design and
Implementation, 2012. https://www.usenix.org/conference/nsdi12/technical-sessions/
presentation/zaharia.

[167] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster Comput-
ing withWorking Sets. InUSENIXWorkshop on Hot Topics in Cloud Computing, 2010. https:
//www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets.

[168] P. Zhang, Y. Huang, A. Gember-Jacobson, W. Shi, X. Liu, H. Yang, and Z. Zuo. Incremental
Network Configuration Verification. In ACM Workshop on Hot Topics in Networks, 2020.
https://doi.org/10.1145/3422604.3425936.

[169] Q. Zhang, D. Balasubramanian, T. Kecskes, and J. Sztipanovits. Differential-FORMULA:
Towards a Semantic Backplane for Incremental Modeling. In ACM SIGPLAN Workshop on
Domain-Specific Modeling, 2021. https://doi.org/10.1145/3486603.3486779.

[170] Y. Zhao, C. Yuan, G. Liu, and I. Grinberg. Graph-based Preconditioning Conjugate Gradient
Algorithm for "N-1" Contingency Analysis. In IEEE Power & Energy Society General Meeting,
2018. https://doi.org/10.1109/PESGM.2018.8586214.

108

https://doi.org/10.1145/3037697.3037748
https://doi.org/10.1111/cgf.12800
https://doi.org/10.1371/journal.pone.0041827
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://www.usenix.org/conference/hotcloud-10/spark-cluster-computing-working-sets
https://doi.org/10.1145/3422604.3425936
https://doi.org/10.1145/3486603.3486779
https://doi.org/10.1109/PESGM.2018.8586214

	Examining Committee
	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Quotation
	Introduction
	Contributions
	Survey of Graph Technology Users
	The Graphsurge System
	Optimizations to DC and DD

	Thesis Outline

	User Survey of Graph Technology
	Methodology of Online Survey, Mailing Lists, and Source Repositories
	Online Survey Format and Participants

	Online Survey
	Graph Datasets
	Computations
	Graph Software
	Practical Challenges

	Applications from Whitepapers
	Methodology
	Applications

	Applications from Interviews
	Methodology
	Overall Observations
	Contingency Analysis of Power Failures at StateGrid

	Related Work
	Summary

	Differential Computation
	Dataflows and Timestamps
	Differential Computation (DC)
	Iterative Frontier Expansion Dataflow (IFE)
	Single-source Shortest Paths (SSSP)
	Multiple Pair Shortest Path (MPSP)
	Weakly Connected Components (WCC)
	Strongly Connected Components (SCC)

	A Note on the Differential Implementation of Operators
	Timely Dataflow (TD) and Differential Dataflow (DD)

	Graphsurge: Graph Computations on View Collections Using Differential Computation
	The Graphsurge System
	Individual Views
	View Collections

	Collection Ordering
	Collection Splitting
	Evaluation
	Experimental Setup
	Comparison of Differential Computing vs Rerunning from Scratch
	Benefits of Collection Splitting
	Benefits of Collection Ordering
	Baseline Temporal Systems
	Distributed Execution and Scalability

	Summary

	Scaling Differential Computation for Large-Scale Graph Processing
	Background
	Arrangements
	Operations on Arrangements

	Read-optimized Compact Batches
	Time-based Indices
	FEDiV: Avoiding Difference Computations
	Preliminary Example
	Input History Scanning Rules
	Avoiding Input History Scanning

	Evaluation
	Setup
	Runtime Evaluation on Dynamic Graph Workloads
	Scaling Out-of-Memory
	Scaling Across Compute Nodes
	Graphsurge Evaluation

	Summary

	Related Work
	General Techniques for Computation Sharing
	Other Computation Sharing Techniques

	Specialized Computation Sharing Techniques
	Streaming Graph Computation Systems

	State Management
	Spilling to Disk
	Recreating State on Demand

	Conclusion and Future Work
	Contributions
	Future Work
	FEDiV for higher dimensional timestamps
	Explicit State Management
	Theories for IVM Comparing DC to Other IVM Techniques

	References

