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Abstract 

Lakes are regarded as sentinels of change, where shifts in environmental conditions 

significantly affect lake phenology. A significant consequence of the change is the perceived 

increase in the frequency, magnitude, and severity of algal blooms in lakes globally. Algal 

blooms/increased productivity in lakes pose significant ecological, economic and health risks, 

impacting fisheries, tourism, and freshwater access. The impacts of external nutrient loading 

from anthropogenic sources are well documented; however, blooms have been observed to 

occur in even remote lakes. Climate change is a hypothesized driver of these recent algal bloom 

trends, such as increasing global air temperatures, water temperatures, lake ice loss, 

precipitation intensity, and drought. Past research on the impact of climatic drivers on algal 

biomass dynamics has often been limited to lab, mesocosm, or short termed observations, due 

to limited in situ data. New remote sensing data products make use of historic multispectral 

satellite image archives to provide greater spatial and temporal coverage of algal biomass 

concentrations, allowing for longer time series observational studies to be conducted over large 

areas. Using data provided by the European Space Agency (ESA) Climate Change Initiative 

(CCI) Lakes project (product version 2.0.0), daily chlorophyll-a (chl-a; proxy of algal 

biomass), Lake Surface Water Temperature (LSWT) and Lake Ice Cover (LIC) from 2002 to 

2020 were derived from five North American Great Lakes: Great Bear Lake (GBL), Great 

Slave Lake (GSL), Lake Athabasca (LA), Lake Winnipeg (LW), and Lake Erie (LE). 

Additional atmospheric and lake physical variables were provided by the European Centre for 

Medium-Range Weather Forecasts (ECMWF) ERA5-Land data as part of the ERA5 climate 

reanalysis product including: 2-m air temperature (T2m), Total Precipitation (PPT), Surface 

Net Solar Radiation (SNSR), Surface Runoff (SR) and Subsurface Runoff (SSR), Wind Speed 

(WS) and Lake Mix-Layer Depth (LMLD). Such data products allow for comprehensive time 

series analysis on the interaction effects of atmospheric and lake physical parameters on algal 

biomass dynamics. 

 Winter temperatures exhibit the highest rate of change relative to other seasons, where 

LIC loss is important for Northern hemisphere lakes; however, its effect on algal biomass 
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dynamics is relatively unknown. To investigate how LIC duration alters algal biomass in North 

American Great Lakes, annual and seasonal algal biomass, LSWT and LIC parameters were 

calculated for the five study lakes using ESA CCI Lakes data. Algal biomasses (β = 0.01 – 

0.75 μg L-1 yr-1) and LSWT (β = 0.03 – 0.14 K yr-1) were found to increase, with a general 

decrease in LIC (β = -0.88 – -1.08 Days yr-1) from 2002 to 2020. Vector autoregressions 

(VARs) showed that in Northern Lakes (NL; GBL, GSL and LA), LSWT and LIC parameters 

provide greater explanatory power for annual/seasonal chl-a concentrations (𝑎𝑑𝑗.   𝑟2̃ = 0.75)  

compared to Southern Lakes (𝑎𝑑𝑗.   𝑟2̃ = 0.46). Additionally, LIC parameters were found to 

provide higher explanatory power for NLs during the spring season compared to LSWT. 

However, higher explanatory power does not indicate predictive capacity, where machine 

learning methods may provide stronger predictive models. 

 To determine if LIC may act as a predictor of algal biomass parameters, multiple linear 

regression (MLR) and artificial neural networks (ANN) were constructed using per-pixel 

observations of annual/seasonal algal biomass, LSWT, and LIC parameters. Irrespective of 

season, LSWT only models returned lower prediction error (median NRMSE = 0.82) compared 

to LIC only models (median NRMSE = 0.93). However, models consisting of both LIC and 

LSWT returned the lowest predictive error (median NRMSE = 0.75). While LIC did not act as 

a strong predictor of algal biomass, a random forest (RF) classifier was used to determine 

whether LIC could classify the presence of lake-specific anomalies in chl-a concentrations. 

The RF model found that LIC parameters (ice on/off) had the highest mean accuracy decrease 

on average for NLs during the spring season. LIC timings are changing, where it was found to 

have greater importance on springtime abnormal algal biomass growth in NLs. While LIC was 

important at this time compared to LSWT, the impact of other important atmospheric and lake 

physical variables on algal biomass dynamics are not well understood, particularly at a smaller 

temporal scale (i.e., daily).  

 To assess the potential interaction effects between algal biomass, atmospheric, and lake 

physical parameters, a network analysis was conducted using a High Order Dynamic Gaussian 

Bayesian Network (HO-DGBN) for the original time series, the stationary, non-stationary, and 
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residual signals at varying temporal ranges (Δ: daily, three days, weekly, biweekly, and 

monthly averages). It was found that LSWT, T2m and SNSR were the most important 

parameters on average, where LSWT exhibited the highest importance on the daily scale 

compared to the monthly. Additionally, LMLD returned increased importance at longer 

temporal frequencies, while SSR returned increased importance at shorter temporal 

frequencies. Temperature interactions were mixed, typically returning both positive and 

negative interactions, while SNSR typically exhibited a positive interaction with chl-a, while 

LMLD exhibited a frequent negative interaction.  PPT and WS were found to be the least 

important parameters in all study lakes.  

 This thesis provides some of the first analytical uses of the ESA CCI Lakes product; a 

product that undergoes regular updates (every two years or so) as new satellite and in situ data 

become available, and algorithms for the retrieval of chl-a, LSWT and LIC are being improved. 

As such, improvements are expected in future releases of the product, limiting the accuracy of 

some findings in the thesis. Of the data presented, there is evidence that LIC is a significant 

contributor to spring algal biomass dynamics for NLs; however, Southern Lakes (SL; LW and 

LE) exhibit more complex interactions, likely due to anthropogenic impacts. This thesis 

identifies the complexity of LSWT interactions with algal biomass and identifies LMLD as a 

predominantly negative effect in the development of algal biomass. Algal biomasses are 

increasing, where increases in LSWT yield higher algal biomass peaks (at varying times 

throughout the year) within the study lakes. Future climate scenarios may provide conditions 

favorable for algal biomass growth, where Northern landscapes are at the greatest risk.  
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Chapter 1: Introduction  

1.1 Motivation 

There is a perception that the frequency, magnitude and severity of algal blooms have 

increased globally in recent decades, posing significant environmental, economic and human 

health issues (Paerl & Huisman, 2008; Winter et al., 2011; Brooks et al., 2016; Pick, 2016; 

Favot et al., 2023). There has been a larger increase in blooms in recent years compared to 

those of past decades (Hou et al., 2022). Phytoplankton are ecologically important for lakes, 

as they form the basis of aquatic food webs (Field et al., 1998; Wilken et al., 2018), are 

significant contributors of global biogeochemical cycling (Carr & Whitton, 1982; Wehr et al., 

2015), and contribute ~40% of atmospheric oxygenation (Falkowski and Raven, 2007). 

Additionally, phytoplankton are photosynthetic autotrophs, and key in the storage and cycling 

of phosphorus, cycling of iron, and the fixation/remineralization of nitrogen (Gimenez et al., 

2018). Lakes are considered sentinels of change, where the shift in algal species composition 

and biomass is key to indicators of biogeochemical and lake physical changes (Adrian et al., 

2009; Kong et al., 2017a). The excess of algae leads to increased bacterial respiration of DO 

during algal decomposition, resulting in deep-water anoxia (Wells et al., 2015). Shifts in algal 

community structure, introduction of invasive species, and anoxia may also limit or suppress 

native zooplankton (Roman et al., 2019; Senar et al., 2019). Blooms may result in beach and 

lake closures, impacting tourism and water sports industries, while anoxia can lead to fish kills, 

significantly impacting fisheries (Moore et al., 2019; Smith et al., 2019). Nuisance blooms can 

clog water intake pipes and disrupt drinking water availability, while many genera of 

cyanobacteria produce neurotoxins which can result in neurological, hematological, and 

hepatological illnesses (Hilborn & Beasley, 2015).  

The trend in increasing algal biomass and bloom formation is traditionally attributed to 

the anthropogenic introduction of allochthonous macro and micronutrients (Schindler, 1977; 

Huisman et al., 2005). However, in recent years, blooms have been observed to occur within 

remote and oligotrophic lakes with minimal anthropogenic influence (Pick, 2016; Favot et al., 

2019; Smol, 2019). Global climate change is an anticipated driver of these recent trends in 
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algal biomass (Paerl & Huisman, 2008; Bartosiewicz et al., 2019; Ho & Michalak, 2020). 

There has been an increase in global air temperatures of  ~1.09°C (Pörtner et al., 2022), with 

high-latitude regions experiencing the greatest increase (Screen & Simmonds 2010; Jeong et 

al., 2014). Higher air temperatures drive freshwater warming, where many genera of algae 

yield a higher growth rate (Wells et al., 2015). Changes in temperature can also affect the rate 

and duration of stratification (Kraemer et al., 2015), lake mixing regimes (Adrian et al., 2009; 

Ficker et al., 2017), and even nutrient exchange, which can affect algae in different ways 

(Tammeorg et al., 2020; Harrow-Lyle & Kirkwood, 2021). Shifts in precipitation affect the 

rate of external loading (Creed & Band 1998; Coffey et al., 2019), flushing (Ho & Michalak, 

2020) and mixing (Bakker & Hilt, 2016) within a lake, which ultimately affects algal biomass 

growth (Reichwaldt & Ghadouani, 2012). Factors such as wind speed and light availability 

will also impact algal growth dynamics (Huang et al., 2016; Zhou et al., 2021). The presence 

and duration of lake ice cover is a key factor in controlling lake mixing regimes, light 

availability, and the duration of the growing season (Rumyantseva et al., 2019). Canadian 

winter temperatures are increasing at a higher rate than in any other season (Zhang et al., 

2019a), thus disproportionately impacting overwintering conditions. As such, it is imperative 

to understand how this change in ice cover may impact algal biomass.  

There have been many studies that have addressed the impacts of atmospheric and lake 

physical variables on algal biomass dynamics; however, these are often limited to lab-

controlled experiments, mesocosm studies, and short-term observations, due to data 

limitations. In addition, very few observational studies have been conducted on the connection 

between changes in lake ice cover and algal biomass. The effects of lake ice cover change on 

algal biomass are relatively unknown. New remote sensing data products and climate 

reanalysis data sets have allowed comprehensive observational studies to better understand the 

dynamics between climate-induced variables and algal biomass. Such research may be used to 

improve algal biomass forecasts, projection models, and early warning systems.  
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1.2 Objectives 

The primary objective of this research is to determine the influence that climate-

induced atmospheric and lake physical variables have on the trends, variability, and dynamics 

of algal biomass in five North American Great Lakes: Great Bear Lake (hereafter referred to 

as GBL), Great Slave Lake (GSL), Lake Athabasca (LA), Lake Winnipeg (LW) and Lake Erie 

(LE) over a 19-year period (2002 – 2020). These lakes are selected to provide varying 

latitudinal and anthropogenic conditions, where the Northern Lakes (NL; GBL, GSL, and LA) 

reside within primarily natural watersheds with minimal anthropogenic development, while 

the Southern Lakes (SL; LW and LE) reside within heavily developed watersheds (agriculture 

and urban). Due to limited in situ observations, complete time series of lake biological and 

physical characteristics (e.g., algal biomass, lake ice, surface water temperatures, etc.) across 

many lakes (particularly in Northern regions) are not available. Utilizing new remote sensing 

data products provided by the European Space Agencies (ESA) Climate Change Initiatives 

(CCI) Lakes project, it is possible to provide a comprehensive analysis of algal biomass trends, 

variabilities, and dynamics. The ESA CCI Lakes product provides a harmonized 1-km daily 

gridded imagery from 2002 – 2020 of various lake parameters including lake ice classification, 

chlorophyll-a concentration (chl-a; proxy of algal biomass) and lake surface water 

temperatures (LSWT). Additional gridded climatic parameters such as precipitation, wind 

speed, net surface solar radiation, land air temperature, and surface/sub-surface runoff 

provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5-

land allow for additional interaction effects analysis. 

This research aimed to achieve three main objectives: (1) determine if lake ice affects 

the trends and variability of algal biomass, (2) determine if lake ice is a predictor of algal 

biomass, and (3) assess and compare the interaction effects of lake physical and atmospheric 

forcings on algal biomass dynamics. 

1.3 Structure 

This thesis is comprised of a total of seven chapters and structured in a manuscript 

format. This first and current chapter highlights the general motivations, purpose, and 
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objectives regarding algal biomass dynamics, its environmental drivers, and how remote 

sensing products may be used to fill in current data gaps. Chapter 2 provides an in-depth review 

of how environmental variables associated with climate change affect the abiotic and biotic 

drivers within a lake, thus affecting the growth rate, concentration, and community 

composition of algae in freshwater lakes. Chapter 2 also provides information regarding how 

these variables are changing and their implications for lake phenology, and a review of remote 

sensing techniques and challenges within freshwater systems, providing an overview of 

empirical, machine learning, and bio-optical chl-a retrieval techniques. Additional information 

is provided on Bayesian network analysis techniques to provide additional context for the 

methodology of Chapter 6. Chapter 3 covers an overview of the study area and data sets used for this 

thesis. All research conducted in the three following chapters (4 – 6) was carried out for the same five 

North American Great Lakes and used the same ESA CCI Lakes and ERA5-land data.  

Chapter 4 addresses lake ice as a potential driver of trends and variability in algal 

biomass within study lakes over a 19-year period. This research explores the preprocessing of 

the ESA CCI Lakes product and assesses the trends and variance of various annual and 

seasonal chl-a concentrations (proxy of algal biomass), LSWT, and lake ice cover (LIC) 

parameters. This chapter is planned for submission to one of the following journals: Frontiers 

in Water, Water, or the Journal of Great Lakes Research. 

Chapter 5 explores whether LIC is a predictor of algal biomass, using empirical and 

machine learning techniques. In addition, classification techniques using a random forest (RF) 

model were implemented to determine whether LIC can determine whether a given pixel can 

return the lake an abnormal algal biomass concentration. This chapter is planned for 

submission to one of the following journals: Frontiers in Water, Water, or the Journal of Great 

Lakes Research. 

Chapter 6 expands upon the previous studies by assessing the interaction effects of 

many physical and atmospheric forcings of lakes on the dynamics of algal biomass, at a higher 

temporal resolution (daily – monthly scale). This chapter utilizes a High-Order Dynamic 

Gaussian Bayesian Network (HO-DGBN) to provide a Directed Acyclic Graph (DAG), to 
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simplify the interactions, and provide a dynamic context, as there is often a lagged response 

between an environmental trigger and an algal biomass response. This chapter is planned for 

submission to one of the following journals: Frontiers in Water, Water, or the Journal of Great 

Lakes Research. 

Chapter 7 summarizes the findings of the previous chapters, identifies key challenges, 

and directs the potential for future work. The manuscripts are included in their original format 

and therefore may include some repetition in dataset descriptions, study areas, and 

methodologies between chapters. 
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Chapter 2: Algal biomass response to environmental change and its 

detection via satellite remote sensors 

2.1 Introduction 

The earliest recorded descriptions of algal blooms (AB) were made by Giraldus 

Cambrensis in 1188 (Reynolds & Walsby, 1975). After the discovery of microorganisms in 

1665 by Robert Hooke and the work of Dr. Arthur Hassall in 1850 (Hassall, 1850), 

phytoplankton were defined by Victor Hensen, where AB were termed a “flowering of the 

waters” (Hensen, 1887; Whipple, 1899; Reynolds & Walsby, 1975). Light and temperature 

were known as the main growth drivers of ABs by 1899, where the effects of phosphates 

(Atkins, 1924) and land use (Lackey & Sawyer, 1945) were assessed by the early to mid-20th 

century. ABs became a significant issue within North America in the 1950’s (Scott, 1955; 

Carmichael; 2008), where Lake Erie became known as the “Dead Sea of North America” by 

the 1960-1970s due to dissolved oxygen (DO) depletion (Ludsin et al., 2001; Manivanan, 

2008). ABs were associated with economic loss and health risks (Gorham, 1964; Reynolds & 

Walsby, 1975), the consequences of which prompted research by David Schindler in the 

Experimental Lakes Area of Canada, which had shown the impact of phosphorus on the growth 

of algae in a natural system (Schindler, 1974). Studies found that a reduction in phosphate-

based detergents could reduce phosphorus (P) loading (Gakstatter & Allum, 1978; Maki et al., 

1984), where voluntary reductions began in the United States and Canada in the late 1970s and 

were banned by the detergent industry in 1994 (Litke, 1999).  

P limitation success in reducing eutrophication/AB occurrence (Schindler et al., 2016; 

Smith et al., 2015) was short-lived, as AB occurrences increased globally by the turn of the 

21st century (Crossman et al., 2019). A 20-year time series (1998-2017) study of the Western 

Basin of Lake Erie had found an increase in the duration (days) and severity of annual 

cyanobacterial ABs (Sayers et al., 2019). ABs have been observed to increase in frequency in 

recent decades (Hou et al., 2022) where increases in intensive agriculture, reduction of 

wetlands/forests, increase in nitrogen-rich waste waters, and dissemination of invasive species 

are prevalent theories for the increase in ABs (Mitsch, 2017; Waters et al., 2021). Global 
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climate change is considered a significant driver of ABs and the shift to toxin producing 

cyanobacteria (Paerl & Huisman, 2008; Salmaso et al., 2018), which can result in neurological, 

hepatological, and hematological damage (Hilborn & Beasley, 2015). While some consider 

climate change a major driver (Paerl & Otten, 2013; Edlund et al., 2022), others contest that 

anthropogenic nutrient loading is a mandatory prerequisite (Wang et al., 2021; Chen et al., 

2014). Climate change impacts various environmental variables, which ultimately impact the 

lifecycle and growth rate of algae. 

2.2 Climate Change Impacts on Lake Phenology 

 There is significant evidence that climate conditions are changing at an accelerated rate 

within the last 100 years compared to the past, driven by anthropogenic activities (Hallegraeff, 

2010; Waters et al., 2016). Lakes are considered sentinels of change, where the impacts of 

changes in environmental conditions are reflected in the health and productivity of lakes 

(Adrian et al., 2009). Conditions such as shifts in air temperatures, more frequent and intense 

heatwaves/droughts, desertification, and more frequent/intense precipitation events trigger 

change in lakes such as: increased water temperatures, reduction in water levels, aeolian dust 

deposition, higher external/internal loading, reduction of lake ice duration, changes in mixing 

classifications, longer thermal stratification, methanogenesis, and acidification of lakes. 

Ultimately, such significant change to lake physical and biogeochemical structures can 

significantly affect the biota within the lake, leading to increased algal bloom potential.  

2.2.1 Air Temperature Increase 

Environmental conditions are changing at a heterogeneous and unprecedented rate, 

impacting freshwater lake physical and biogeochemical systems (Woolway et al., 2020). Air 

temperatures have increased by 1.09°C from 1850 – 2022, due in part to the anthropogenic 

emission of various greenhouse gases (i.e., Methane (CH4), Nitrous Oxide (N2O), and CO2) 

(Pörtner et al., 2022). The rise in air temperatures coincides with a rise in freshwater 

temperatures, with an average increase of ~0.30 – 0.34°C per decade (Komatsu et al., 2009; 

O’Reilly et al., 2015; Yang et al., 2019; Woolway et al., 2022). Regional studies coincide with 
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global results in various regions: 0.26°C per decade in China (Xie et al., 2022), 0.40 – 0.46°C 

per decade in western Russia (Filatov et al., 2019), 0.23°C per decade in Austria (Niedrist et 

al., 2018), 0.25°C per decade in Colorado, US (Roberts et al., 2017), 0.40°C per decade in 

Europe (Stefanidis et al., 2022), amongst others (Woolway et al., 2019).  

2.2.2 Heatwaves and Droughts Increase 

In addition to increases in average annual temperatures, global studies have reported 

increases in temperature anomalies (Varotos et al., 2013; Liu & Duan, 2018; Perkins-

Kirkpatrick & Lewis, 2020). Heatwave intensity has increased from 1 – 8°C per decade (1950 

– 2014), where Northern Canada, Europe and Asia are the most affected (Perkins-Kirkpatrick 

& Lewis, 2020). Climate models predict double the frequency of severe drought conditions for 

Europe at a 2 – 3°C global temperature increase (Samaniego et al., 2018). The frequency of 

100-year droughts is also anticipated to increase, particularly in the mid-west and Northern 

latitude regions (Zhao et al., 2020). Increased drought and heatwave conditions increase the 

duration and severity of stratification and lower lake water levels (Zhai et al. 2023). 

Additionally, drought conditions result in dried soil surface conditions, limiting percolation 

potential and increasing surface runoff during rainfall events (Rakkasagi et al., 2023).  

2.2.3 Desertification Extension 

The extension of drought conditions, along with anthropogenic terrestrial 

modifications, is a primary driver of desertification, primarily for arid, semi-arid, and semi-

humid regions (Emadodin et al., 2019; Huang et al., 2020). Desertification increases the 

amount of suspended aeolian dust (Ajaj et al., 2017), resulting in higher iron (Fe) deposition 

(O’Neil et al., 2012). Atmospheric dust is photo-reduced to ferrous ions (Fe2+) (Shi et al., 

2012), which is reoxidized to ferric ions (Fe3+) in waters of a pH > 6, while waters with a pH 

< 6 will not oxide and remain soluble (Molot et al., 2014). However, drought conditions are 

regional and not a global change, as various regions show heterogeneous change (Dai et al., 

2018).  
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2.2.4 Precipitation Changes 

 Climate models suggest an increase in global average precipitation from 1979 – 2020, 

with mean trends of 0.006 – 0.0102 mm day-1 per decade (Gu & Adler, 2023). Despite the 

average increase in precipitation, the change is highly heterogeneous, where various tropic and 

subtropical regions have seen reduced precipitation, while high latitudes showed an increase 

(Dai et al., 2018). Regions that experience increased precipitation are also expected to see 

extreme drought conditions, as shifts in precipitation are primarily a result of increased 

intensity (Zhao et al., 2020). Global land regions are expected to observe an increase in 

precipitation extremes by 32±8% – 55±13% than present by 2100 under varying climate 

scenarios (Thackeray et al., 2022). Others have found that, while the frequency of intense 

precipitation is increasing, the magnitude is only increasing significantly for the northwestern 

hemisphere (Papalexiou & Montanari, 2019). Regional studies indicate an observed increase 

in heavy storms by 7%, 14% of very heavy storms, and 20% of intense storms for the US from 

1908 – 2000 (Groisman et al., 2004). A UK study returned similar results, with an observed 

increase in intense precipitation events from 1996 – 2009, with more intense events projected 

(Kendon et al., 2014). Intense precipitation events prevent percolation, increasing surface 

runoff/flood risks, particularly when followed by drought events (Smith et al., 2013). Arctic 

precipitation is expected to increase at a greater rate than previously projected, where there is 

an expected transition from snow to rain in the summer/fall seasons, impacting lake ice 

formation timings (McCrystall et al., 2021).  

Despite the changes to summer/fall conditions, it has been observed that winter 

temperatures are increasing at the highest rate, particularly for high-latitude regions (Hansen 

et al., 2006; Houze et al., 2019; Zhang et al., 2019a). As a result of changes in water 

temperatures and precipitation patterns, lake ice phenology has observed a significant 

reduction globally (Woolway et al., 2020). 

2.2.5 Reduction of Ice Cover 

 Ice-free duration for Northern hemisphere lakes has increased from 0.63 days per 

decade over the past 150 years to an increase of 1.83 days per decade from 1975 – 2005 
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(Benson et al., 2012), where ice duration trends were found to be six times faster (1992 – 2016) 

compared to any other previous quarter centuries (Sharma et al., 2021). Regional studies have 

returned similar findings: 2.2 days per decade in the Great Lakes Basin/ Northern Wisconsin 

(Hewitt et al., 2018), 1.2 days per decade in Northern Europe (Lopez et al., 2019), 0.31 – 0.34 

days per year in Northeastern Canada, 0.10 – 0.14 days per year in Northern Europe, 0.34 – 

0.60 days per year in Alaska, US, 0.34 – 1.05 days per year in Central Siberia (Šmejkalová et 

al., 2016), and 1.91 – 2.21 days per decade in China (Yao et al., 2016). Similar to air 

temperatures, Northern latitude lakes have experienced higher ice loss and earlier break up 

rates compared to lower latitude lakes (Du et al., 2017), where rate of change is often due to 

air temperatures, lake morphometry, elevation, precipitation, and cloud cover (Brown & 

Duguay, 2010). Lakes have been observed to change in ice cover classification, where 

perennial ice-covered lakes have begun to show seasonal melt (Obryk et al., 2019; Sharma et 

al., 2013), seasonal ice-covered lakes have transitioned to intermittent coverage, and 

intermittently covered lakes now experienceno winter ice coverage (Sharma et al., 2019). The 

number of intermittently ice-covered lakes is expected to increase significantly under varying 

climate scenarios, where by 2080, the current ~15,000 intermittent ice-covered lakes are 

expected to increase between 35,300 and 215,600 (scenarios: 2 – 8°C global air temperature 

increase). Ice cover plays an important role in facilitating the duration of light exposure, the 

timing of lake mixing, and the duration of stratification. 

2.2.6 Shift in Lake Mixing Classes 

 Lake mixing indicates that the hypolimnion and epilimnion in a lake have equalized 

temperatures and densities, allowing for a cycling of waters within the water column (Jewson 

et al., 2009). Mixing supports and enables the transfer of macro and micronutrients from the 

benthos throughout the water column, increasing their availability (Stockenreiter et al., 2021). 

Lakes are classified by the patterns and seasonality of mixing a lake experiences (Table 2.1 

and Figure 2.1), which is controlled by the morphometry of the lake, the sources of 

inflow/outflow, precipitation, wind speed, cloud cover, etc. (Rocha et al., 2022).  
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Table 2.1. Lake mixing classes as defined by Lewis (1983). 

Mixing Class Mixing Sub-Class Definition 

Polymictic 

Continuous cold 

polymictic 

Ice forming lakes with continuous mixing 

throughout the year. Typically does not see 

seasonal stratification. 

Continuous warm 

polymictic 

Non-ice forming lakes with continuous mixing 

throughout the year. Typically does not see 

seasonal stratification. 

Discontinuous cold 

polymicitic 

Ice forming lakes with irregular mixing events 

throughout the year. Typically does not see 

seasonal stratification. 

Discontinuous 

warm polymicitic 

Non-ice forming lakes with irregular mixing 

events throughout the year. Typically does not see 

seasonal stratification. 

Monomictic 

Cold monomictic 

Ice forming lakes with a single summer mixing 

event (typical at high latitudes with extensive ice 

cover). Stratified under ice (fall-spring). 

Warm monomictic 
Non-ice forming lakes with a single winter 

mixing event. Stratified spring to fall. 

Dimictic - 

Ice forming lakes with two annual mixing events 

during spring and fall seasons. Stratified in the 

summer and winter months. 

Meromictic - 
Non-ice forming lakes which never mix and are 

perennially stratified. 

Amictic - 
Ice forming lakes which never mix and are 

perennially stratified (perennial ice cover). 

 

 It has been observed that as a result of earlier ice breakup, earlier mixing occurs, which 

allows for longer open water seasons, resulting in the occurrence of summer stratification in 

arctic lakes, transitioning from a cold monomictic to a dimictic class (Vincent et al., 2012). 

Historically, dimictic lakes have also been observed to transition to warm monomictic lakes, 

and even polymictic lakes to dimictic (Adrian et al., 2009; Ficker et al., 2017). A study by 

Woolway & Merchant (2019) found that of 600 globally distributed lakes, 100 will change in 

mixing class, of which 17 will transition from dimictic to warm monomictic. The shift to 

dimictic mixing ensures summer stratification, which can significantly affect the rate of 

internal loading and dissolved oxygen (DO) within the lake, significantly impacting the biota.  
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Figure 2.1. Examples of annual lake mixing classes (Dimictic, Cold Monomictic, and Warm Monomictic). 

2.2.7 Increased Severity and Duration of Stratification 

 Due to the increases in global air temperatures, heatwaves, and droughts, the duration 

and severity of thermal stratification has increased in recent years for freshwater lakes 

(Kraemer et al., 2015; Jane et al., 2023; Wang et al., 2023). Stratification occurs when 

prolonged solar radiative flux and air temperatures create a difference in water density and 

temperatures between the epilimnion and hypolimnion, preventing nutrient exchange 

(Anderson et al., 2017). Lake morphometry and wind speed also play a role in the timing of 

stratification (Tanentzap et al., 2008). Lakes express a heterogeneous pattern of stratification, 

particularly in large and deep lakes, which take longer to stratify, have shorter stratification 

periods, and show greater persistence of temperature anomalies (Woolway and Merchant, 

2018). Under climate scenario models, it is anticipated that lakes globally see stratification 

occur 22.0±7.0 days earlier and dissipate 11.3±4.7 days later than currently seen (Woolway et 
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al., 2021). Under various climate projections, it is anticipated that 12% – 66% of NLs will shift 

to the same thermal regimes of low-latitude lakes by 2080 – 2099 (Maberly et al., 2020).   

Precipitation and wind events can initiate mixing, increasing internal loading within 

the benthos and external loading due to runoff (Weinke & Biddanda, 2019; Zhang et al., 2022). 

The increase in turbidity from external and internal loading in surface waters increases the rate 

of stratification onset due to higher irradiance scatter in surface waters and limited penetration 

throughout the water column (Coats et al., 2006; Butcher et al., 2015). The longer stratification 

occurs, the more intense the stratification is (thinner thermocline, higher temperature 

difference between the epilimnion and hypolimnion), thereby further increasing its duration, 

as surface waters take longer to cool (Mesman et al., 2021). Stratification is also known to play 

a role in methanogenesis, where extended periods of anoxia increase benthic release of CH4 in 

eutrophic lakes (Bartosiewicz et al., 2019; D'Ambrosio & Harrison, 2021). The prospect of 

methanogenesis may exceed the offset of carbon sequestration performed by algae 

(Skwierawski, 2022).  

2.2.8 CO2 Deposition 

 The emission of CO2 is considered the most significant greenhouse gas contributing to 

anthropogenic warming, increasing the deposition of CO2 in lakes (Rao & Riahi, 2006; 

Mustafa et al., 2021). The deposition of CO2 in waters results in the formation of inorganic 

carbon compounds; carbonic acid (H2CO3) and bicarbonate (HCO3-) (Talling, 1976; Cole & 

Prairie, 2013). For waterbodies with low primary productivity (oligotrophic), the deposition of 

H2CO3 decreases the pH, while high productivity (eutrophic waters) results in an increase in 

pH due to carbon sequestration (Talling, 1976; Verschoor et al., 2013). Acidification may be 

more likely to occur during the fall as algal levels decline, and more alkaline in the summer 

(Raven et al., 2020).  

 There is significant evidence of shifts in environmental conditions globally, where 

waters are becoming warmer, precipitation events (drought and rain) are becoming more 

extreme and frequent, lake ice is reducing, lake mixing regimes are changing, and stratification 



 

 14 

rates are increasing. Water chemistry profiles are changing due to increases in external loading, 

higher rates of internal loading, CO2 deposition, and reductions of DO in benthic waters. NLs 

are experiencing the greatest rate of change and, therefore, are at the greatest risk. These 

impacts will have a significant effect on algal growth cycles, biomass accumulation, and 

species compositions. 

2.3 Impact of Changes in Lake Phenology on Algal Biomass Dynamics 

 Lakes are changing in response to the change in climate, due to shifts in physical and 

biogeochemical parameters (Figure 2.2). The impacts of these changes are dynamic and 

complex and vary both spatially and temporally. The impact of changes in various physical or 

atmospheric parameters differs depending on lake morphometry, algal community 

composition, anthropogenic influences, watershed terrain, etc. Various studies provide insight 

into how shifts in environmental parameters impact the dynamics of algal biomass. 
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Figure 2.2. Pathways of biotic and abiotic drivers of algal blooms. The black arrows represent a positive interaction (an 

increase in the driver results in an increase in the target), red arrows a negative interaction (an increase in the driver results 

in a decrease in the target), and the orange arrows represent both a positive and negative interaction. 

2.3.1 Impacts of Temperature on Algal Biomass 

 The increase in water temperature is frequently reported as the most significant climatic 

contributor to increased algal biomass accumulation, due to the impact warmer temperatures 

have on algal growth optimums (Paerl & Huisman, 2008; Paerl & Otten, 2013; Cross et al., 

2015; Borowitzka et al., 2016; Thomas & Litchman, 2016; Gobler, 2020). Algal growth 
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optimums are genera specific, where various genera of cyanobacteria (i.e. Anabaena and 

Microcystis) proliferate at higher water temperatures (optima of ~30°C) while diatoms and 

dinoflagellates (optima of ~12 – 20°C) proliferate in cooler waters (Paerl & Otten, 2013). A 

study by Ho and Michalak (2019) showed that summer temperatures were a driving factor in 

algal biomass accumulation, and prolonged summer conditions drove cyanobacterial 

dominance in continental US lakes. Others had found that increased water temperatures are 

driving the dominance of toxin producers, where various cyanobacteria have been observed to 

express higher toxicity (Lamb et al., 2019). NLs may also see an increase in cyanobacterial 

dominance due to the increase in lake thermal regimes supporting invasive species northward 

migration (Gobler, 2020). The increase in temperature for Northern regions results in a loss in 

permafrost, lowering albedo, and increasing regional radiance absorption (Chadburn et al., 

2017). Permafrost thaw is also linked to browning, increasing dissolved organic carbon (DOC), 

DOM and N, concentrations, impacting algal abundance and species composition (Kurek et 

al., 2022; Myrstener et al., 2022; Coleman et al., 2023). The increase in nutrients drives 

primary productivity, which can increase autochtonous DOM, fueling primary productivity 

further (Miller et al., 2009; Creed et al., 2018). When primary productivity is high, however, 

surface waters become turbid and therefore waters become light limiting, reducing primary 

production (Gameiro et al., 2011). The limitation of light penetration intensifies the rate of 

stratification in lakes.  

2.3.2 Stratification Effects on Internal Loading 

 The increase in stratification may increase the growth rate of algae due to stable, non-

turbulent water conditions, conditions that often favour cyanobacterial dominance (Brasil et 

al., 2016; Lehman et al., 2017). The accumulation of epilimnetic algae results in the eventual 

deposition of decaying algae in the benthos, where bacterial respiration increases, decreasing 

DO levels, where prolonged stratification prevents mixing, and further increases the severity 

of hypolimnetic hypoxia (DO < 2mg L-1) (Nolan et al., 2019). The decomposition of algae in 

the benthos will also increase the deposition of nutrients, converting organic P to inorganic P, 

which can be made available during the following mixing cycle (Orihel et al., 2017; Kim, 
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2018). Hypoxia may also increase the rate of hypolimnetic internal loading via lower redox 

potential (Woolway et al., 2021). Sedimented Fe3+ is reduced under hypoxic conditions to Fe2+, 

where low redox can break Fe-P complexes increasing P availability (Tammeorg et al., 2020; 

Harrow-Lyle & Kirkwood, 2021). Stratified waters provide a competitive edge to 

cyanobacteria, which can migrate from the photic zone to the nutrient rich benthos, facilitating 

further growth (Huisman et al., 2018). Cyanobacteria acquire Fe2+ for facilitating nitrogen 

fixation, where Fe2+ can limit cyanobacterial growth, however Fe3+ can be acquired via iron 

chelators (i.e., sideophores) (Molot et al., 2014). Hypoxia may also indirectly support 

cyanobacterial dominance. Hypoxic conditions cause zooplankton to disperse into shallower 

waters, altering grazing patterns and reducing their efficiency, leading to suppression and 

potential mortality (Kimmel et al., 2009; Nolan et al., 2019; Roman et al., 2019). Poorer 

nutritional quality of cyanobacteria may also increase their dominance due to selective grazing 

by zooplankton (Caron & Hutchins, 2012; Senar et al., 2019). Mixing can disrupt water column 

stability, allow aeration of the benthos and disperse benthic nutrients, providing advantages to 

non-motile algae such as diatoms (Sommer et al., 2012; Jewson et al., 2009).  

2.3.3 Mixing Controls on Nutrient Availability 

 Mixing controls the timing of benthic nutrient suspension where macro- (P, N, C, and 

silicon (Si)), and micronutrients (Fe, copper (Cu), and zinc (Zn) facilitate algal growth and 

cellular reproduction, and are primarily found in their dissolved form (Raven, 1988; 1990; 

Smayda, 2008; Bonachela et al., 2012; Song et al., 2012; Lin et al., 2016). P is considered the 

primary controlling nutrient of algal bloom formation (Schindler, 1974; Conley et al., 2009). 

However, cyanobacteria have been hypothesized to benefit the most from N loading, as they 

can metabolize proteins from multiple N sources, both terrestrial and atmospheric (Zhan et al., 

2017; Erratt et al., 2018). A lower N:P promotes cyanobacteria over other algae (Schindler et 

al., 2008). Algae also require C for the metabolic process during photosynthesis, which can be 

sourced from DOM (comprised of ~50% DOC) or by atmospheric deposition (Talbot et al., 

1990; Zeebe & Wolf-Galdrow, 2001; Bade et al., 2007; Moody & Worrall, 2017; Raven et al., 

2020). Micronutrients also play an important role in algal community compositions, where 
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higher Fe supports cyanobacteria due to its role in N2 fixation (Hong et al., 2017; Luo et al., 

2019; Freeman et al., 2020). Higher Cu may also support cyanobacteria by increasing Fe 

bioavailability (Zhang et al., 2019b), while Zn is also used for photosynthesis, it can become 

phytotoxic in large amounts (Ohki, 1976; Lahive et al., 2011; Chen et al., 2019a). Depending 

on the lake mixing structure, the timing and duration of mixing can impact the community 

composition and when algal biomass peaks occur, where cool turbulent waters will support 

non-motile algal growth (Salmaso, 2010). During winter, waters are typically stratified; 

however, turbulent waters provide earlier nutrient resuspension, therefore favouring several 

genera of dinoflagellates in spring phytoplankton assemblages over diatoms (Klais et al., 2011; 

Hjrene et al., 2019). The duration of mixing is important, as a short mixing cycle between the 

onset of mixing and stratification does not allow for full overturn, resulting in lower benthic 

DO, increasing internal loading, and has been known to lead to algal blooms, even for remote 

lakes (Favot et al., 2019; Reinl et al., 2021). Mixing is not only controlled by changes in air 

temperature, as strong wind and precipitation events can initiate mixing, primarily for 

polymictic lake systems (Woolway et al., 2017; Holgerson et al., 2022).  

2.3.4 External Loading Driven by Precipitation 

 Increased wind speeds may induce mixing, stimulating algal growth for relatively 

shallow lakes, as wind-wave action can trigger mixing, suspending sedimented inorganic P 

(Huang et al 2016; Zhou et al 2021). Precipitation events allow for a mobilization of 

allochtonous sediments, often bound with nutrients, depending on the surface conditions of the 

catchment, where agricultural regions are often associated with high nutrient loading (Creed 

& Band 1998; Coffey et al., 2019). Although increasing external loading, precipitation will 

induce flushing in lakes, disrupting stable growth conditions, depending on lake morphometry 

(Ho & Michalak, 2020; Bakker & Hilt, 2016). Lake waters become turbid following 

precipitation events, increasing the rate of stratification, where significant precipitation events 

followed by long periods of stratification and high temperatures are the predominant cause of 

cyanobacterial dominance (Paerl & Scott, 2010; Paerl, 2018; Coffey et al., 2019). Rainfall 

events can replenish epilimnetic nutrients, prolonging/supporting cyanobacteria and higher 
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biomass (James et al., 2008; Reichwaldt & Ghadouani, 2012); however, they  may also 

disrupt/collapse high biomass and blooming events (Jacobsen & Simonsen, 1993; Jones & 

Poplawski, 1998; Ahn et al., 2002; James et al., 2008). Others have observed no significant 

correlation between precipitation and agal biomasses (Chinain et al., 1999; Haakonsson et al., 

2017; Wiltsie et al., 2018). Precipitation, along with temperature are significant contributors 

to lake ice formation timings, and ice type compositions (Ariano & Brown, 2019). 

2.3.5 Lake Ice Controls on the Succession of Algae 

 Overwintering lakes were historically assumed ecologically dormant; however, under 

ice algal biomasses and even blooms have been observed (Hampton et al., 2015; Block et al., 

2019). Waters under ice are typically stratified; however, snow depth and ice composition are 

the primary controllers of light penetration, which can induce mixing under ice (Palshin et al., 

2019). Highest algal biomass has been observed in ice-covered lakes without snow 

(Kalinowska et al., 2019). Mixotrophs and diatoms favour the cold and dark water conditions 

present under ice and during spring conditions, where the typical succession of algae begins 

with spring biomasses dominated by diatoms and cryptophyceae, leading to green algae in 

early summer and cyanobacteria in late summer/fall (De Senerpont Domis et al., 2007; Fang 

& Sommer, 2017). The reduction in ice cover has been observed to favour various 

dinoflagellates (e.g. Ceratium hirundinella) in spring assemblages (Salmaso et al., 2018). In 

some cases, cyanobacteria have been observed to dominate spring assemblages when winter 

temperatures increase and light is not limited (Blenckner et al., 2007; Cameron et al., 2022; 

Rohwer et al., 2023). The presence of lake ice controls the timing of mixing and the duration 

of stratification, indicating its importance in algal biomass assemblages throughout the year.  

Climates are changing at a rapid rate, where the effects on algal biomass, bloom trends 

and community composition are complex. Lakes differ in their response due to their 

morphometry, legacy nutrients, climate conditions, etc. Higher temperatures increase algal 

growth rates to an optimum, the exceeding of which exhibits a negative effect. The duration of 

stratification is controlled by the duration of lake ice, wind, and precipitation events, which 

can affect the amount of internal and external loadings significantly impacting algal biomasses 
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depending on the community compositions. While there is an understanding of the important 

growth factors, forward models for bloom formation prediction have not been developed due 

to the inherent complexity of these interactions and lack of data (Janssen et al., 2019). The 

application of remote sensing systems has allowed the use of historic image archives to provide 

comprehensive spatial and temporal coverage of algal biomass trends, potentially improving 

our understanding of these complex interactions. 

2.4 Application of Remote Sensing for Algal Biomass Retrieval 

 To improve our understanding of algal biomass dynamics, remote sensing can be 

applied to extend the in-situ data record by providing approximations from satellite or aerial 

observations. Remote sensing provides instant observations at a wider spatial and temporal 

range, at the expense of limited accuracy due to sensor issues, turbid water conditions, 

over/underfitting of retrieval algorithms, and atmospheric correction issues (Mohebzadeh et 

al., 2021; Mathews et al., 2023). Freshwater lake monitoring is a considerable challenge, with 

an estimated ~117 million lakes globally at a size of > 0.002 km2, in situ monitoring is often 

limited to non-remote, anthropogenically significant lakes (Verpoorter et al., 2014). Due to the 

spatial extent of lakes, ex situ observations have become a popular method, as in situ sampling 

is lengthy, expensive and not always possible (Bosse et al., 2019). Remote sensors detect 

differences in incoming/outgoing electromagnetic radiation (EMR), where incoming spectral 

irradiance (Esun) interacts with various surface and atmospheric molecular compounds with 

varying levels of absorption, reflection and transmission differing by wavelength, impacting 

the outgoing radiance (Lλ) (Jensen, 2005). Surface features can be detected by the difference 

in Esun and Lλ at given wavelengths (from gamma (10-16 m) to radio waves (108 m)) measured 

with a spectroradiometer (Jensen, 2005). Studies as early as Boland (1975) have utilized 

remote sensors to detect algal biomass in waters. Since then, a wide variety of satellites have 

been applied to detect algal biomass.  
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2.4.1 Overview of Satellite Systems 

 There is a wide variety of remote sensors available, the applicability of which varies 

depending on the field of study. Remote sensors may be active or passive, each of which may 

be multispectral or hyperspectral. Active vs passive sensors differ in their method of data 

collection, where active sensors emit a signal for illumination, while passive sensors detect Lλ, 

primarily via solar illumination (Zhu et al., 2018). Hyperspectral sensors measure Lλ at 

continuous intervals as small as 1nm, while multispectral sensors measure Lλ at irregular 

intervals that cover EMR ranges from 10nm to >100nm (Stuart et al., 2019). Continuous 

measurements of hyperspectral sensors can improve surface feature identification; however, 

they are much more data intensive than multispectral sensors and have less applicability for 

historic data analysis and image archiving (Vincent et al., 2004; Stuart et al., 2019). Therefore, 

multispectral satellite sensors are better suited to long-term observations of algal biomass. 

However, satellites are limited by cloud cover and often have poorer spatial/temporal 

resolution due to their orbital path (Schott et al., 2016; Rasti et al., 2018). Satellite sensors vary 

in their spatial/temporal resolution, in which higher temporal resolution means larger swath 

width and lower spatial resolution (Schott et al., 2016; Rasti et al., 2018).  

Satellite image quality and file size also depend on the bit-depth, which determines the 

number of unique observations the sensor records (e.g. a 6 bit system detects 64 (26) unique 

observations, while 12-bit can detect 4096 (212) observations) (Mika, 1997; Gerace et al., 

2013). The number of along-track detectors the sensor has may also improve the signal-to-

noise ratio (SNR) by increasing their surface scanning duration (Vermote et al., 1997; Schott 

et al., 2016; Rasti et al., 2018). Sensors with low bit-depth and SNR (e.g., Landsat 5 and 7) 

may be unable to discern between dark surface features and have lower applicability in 

oligotrophic waters (Schott et al., 2016). A wide range of satellites have been used to retrieve 

surface water algal biomass concentrations, where optical satellites such as the Landsat satellite 

series (TM, ETM+ and OLI), MODerate resolution Imaging Spectroradiometer (MODIS), 

MEdium Resolution Imaging Spectrometer (MERIS), and the Sentinel satellite series (2A and 
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3A) are the most commonly used. The retrieval of surface water algal biomass must first 

minimize the impacts of atmospheric and optically active constituents (OACs). 

2.4.2 Interactions of Light and the Atmosphere: Atmospheric Correction 

 Atmospheric aerosols (water vapour, aeolian dust, atmospheric gases, etc.) are highly 

heterogenous, impacting the rate and direction of irradiance scatter, and atmospheric pressure 

affecting the optical depth observed by a sensor (Vermote et al., 1997). As atmospheric 

conditions vary, so too will the Lλ observed by the satellite (Song et al., 2021). Freshwater 

systems are also highly heterogenous, where OACs such as algal and non-algal particles 

(NAPs) vary in concentrations, thereby impacting the inherent optical properties (IOPs) of the 

water (Werther et al., 2022). The apparent optical properties (AOPs) observed by the sensor 

as surface remote sensing reflectance (Rrs), are dependent on the IOPs, and therefore vary 

significantly, where it is important to first address what the contribution of the atmosphere is 

before making assumptions of the surface water conditions (Pan et al., 2022). Atmospheric 

correction over freshwater is, however, complicated and often a source of error in algal biomass 

retrieval algorithms.  

 The application of atmospheric correction can be either image or radiative transfer-

based. A commonly used image-based correction is that of the Dark Object Subtraction (DOS) 

method (Vincent, 1972; Chavez, 1988; 1996), which assumes that all Lλ of shaded relief areas 

are due to atmospheric haze, representing a black body (black pixel assumption). Conversely, 

radiative transfer assumes a non-Lambertian surface and uses various atmospheric forward 

models to calculate two scatter models: Rayleigh (scatter by atmospheric gases), and Mie 

(scatter by atmospheric aerosols with a diameter ≥ intercepting wavelength of light) (Figure 

2.3) (Vermote et al., 1997). Radiative transfer models such as the Second Simulation of a 

Satellite Signal in the Solar Spectrum (6S) (Tanré et al., 1990; Vermote et al., 1997) and 

LibRadtran (Mayer & Kylling, 2005), however, include the black pixel assumption (Dark 

Dense Vegetation (DDV) model) for estimating aerosol optical thickness (Liu et al., 2016; 

Müller-Wilm, 2017). Many early algal biomass retrieval algorithms had used the DOS method 

(Worth et al., 1989; Ritchie et al., 1990; Lathrop et al., 1991; Carrick et al., 1994), while 
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studies by the late 2000s commonly used radiative transfer correction methods (De Moraes 

Novo et al., 2006; Li et al., 2007; Wu et al., 2009; Han et al.,2010). Both DOS and radiative 

transfer models violate the black pixel assumption, as freshwater lakes are often the darkest 

features for many satellite images, where Lλ signals are due to the IOPs and AOPs of water, 

and not just contributed by the atmosphere (Siegel et al., 2000; Wang et al., 2019). The 

violation of the black pixel assumption may introduce erroneous errors (e.g., anomalous or 

non-physical), particularly over turbid waters (Wang et al., 2019). To avoid these errors, 

researchers have used simplified radiative transfer equations, correcting for only Rayleigh 

scattering, and retaining atmospheric aerosol contribution (Matthews et al., 2012; Matthews & 

Odermatt, 2015; Zhang et al., 2016; Tao et al., 2017; Pahlevan et al., 2020). Improved aerosol 

contribution models over lakes are a current and significant field of research for accurate 

retrieval of freshwater quality parameters (Molkov et al., 2022; Pan et al., 2022; Wang et al., 

2023; Zhao et al., 2023;). Although atmospheric correction may introduce some errors, it is 

the differentiation of algal biomass signals from other OACs that is difficult.  
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Figure 2.3. Geometry and pathways of visible-NIR atmospheric scatter observed by a satellite sensor where: 𝐸𝑆𝑈𝑁𝜆 is the 

exoatmospheric irradiance, 𝑡𝑜𝑧 ↓ (𝜆) is the downwelling ozone transmittance, 𝑡𝑜𝑧 ↑ (𝜆) is the upwelling ozone 

transmittance, 𝐿𝜆 is the observed at satellite radiance, 𝜃𝑠 is the solar zenith angle, 𝜃𝑣 is the satellite zenith angle, 𝜙𝑠 is the 

solar elevation angle, 𝜙𝑣 is the satellite elevation angle, 𝜓𝑠 is the solar azimuth angle and 𝜓𝑣 is the satellite azimuth angle. 

2.4.3 Interaction of Light and Water: Complications by OACs 

 The diffusion of light at the air-water interface can vary by the geometry of light, 

surface water conditions (i.e., waves), and the presence of OACs. Factors such as solar glint 

occur when the Esun is at a low solar elevation angle (Φs), increasing the observed Lλ (Dinnat 

& Le Vine, 2008). The surface water conditions impact the diffusion of light, as still waters 

cause specular reflection, while rough surfaces can result in Lambertian or non-Lambertian 

diffusion (De Keukelaere et al., 2023; Yang et al., 2023). Specular reflection is defined by 
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Snell's law, in which the solar zenith angle (θs) is equal to the sensor viewing angle (θv), while 

a Lambertian surface reflects the incoming Esun in all directions (Reifsnyder, 1967; Bukata et 

al., 1995; Yang et al., 2023). Only a portion of incoming Esun will reflect off the air-water 

interface, and the remaining light will be either absorbed or transmitted through the medium, 

resulting in subsurface scatter and reflection (Pinnel et al., 2004). Esun penetration in water is 

dependent on the concentration/composition of OACs and the wavelength (Figure 2.4) 

(Shanmuga Priyaa et al., 2022). Marine waters have observed light penetration of ~1000m at 

450 – 490nm (Reynolds & Lutz, 2001), however only up to ~55m at 475nm is observable by 

satellite sensors (Gordon & McCluney, 1975). In shallow, clear waters, light may reflect from 

the bottom of the lake increasing the observed Lλ, introducing error in retrieval algorithms 

(Bielski & Toś, 2022; Deutsch et al., 2022). However, light penetration in freshwater lakes is 

highly variable, due to the significant variance of OACs.  

 

Figure 2.4. Freshwater optics for the remote sensing of phytoplankton where: CDOM is Colour Dissolved Organic Matter, 

SPM is Suspended Particulate Matter, 𝑹(𝟎−, 𝝀) is the subsurface spectral irradiance, 𝒂𝒊(𝝀) is the absorption coefficient at a 

given wavelength, and 𝒃𝒃 is the backscatter coefficient. 

  OACs refer to constituents present in waters that contribute to the Lλ observed by a 

sensor (the IOPs of the water), which include coloured dissolved organic matter (CDOM), non-

algal particles (NAPs) and the photosynthetic pigments of algae such as: chlorophyll-a (chl-
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a), chlorophyll-b, chlorophyll-c, phycocyanin, etc. (Xue et al., 2019; Sagan et al., 2020). The 

concentration and composition of OACs affect the rate of transmittance, absorption, scatter, 

and reflection of water; and are the primary source of variance for freshwaters (Devlin et al., 

2008; Soja-Woźniak et al., 2020). The contribution of IOPs is determined by the absorbance 

of the matter and its backscatter, which can be modelled via Beer’s Law, depending on 

wavelength, and the assumption that the attenuation length of light is proportional to the 

concentration of the medium (Smith & Baker, 1978; Bukata et al., 1995; Carder et al., 1999). 

These assumptions may be valid for pure water; however, in freshwater lakes, IOPs are in 

constant flux, making the establishment of forward models difficult (Janssen et al., 2019; 

Moore et al., 2017). For example, the absorption rate of chl-a observed by a sensor varies 

depending on the concentration and presence/concentration/composition of NAPs (Schalles, 

2006). Chl-a exhibits an absorption peak at 440nm, coinciding with CDOM and NAPs; 

therefore, the presence of CDOM or NAPs may be confused with chl-a at these wavelengths 

(figure 2.5) (Giardino et al., 2018). Recent research has implemented prior classification of 

optical water types (OWTs), to separate pixels by Lλ using supervised/unsupervised classifiers 

for the development of different algal biomass retrieval algorithms (Moore et al., 2014; 

Spyrakos et al., 2018; Neil et al., 2019; Rodrigues et al., 2022). Algorithms developed for 

differing OWTs havebeen found to improve algal biomass retrieval as the variance in IOPs is 

minimized (Dallosch & Creed, 2021; Dang et al., 2023). Algal biomass retrieval algorithms 

use in situ observations in combination with Lλ to derive an inverse model, using empirical, 

bio-optical and machine learning techniques. 
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Figure 2.5. Absorption spectral curve of Chlorophyll-a, Phycocyanin, Coloured Dissolved Organic Matter (CDOM) and 

Non-algal Particles (NAPs). Adapted from: Roesler (2014) and Poniedziaek et al. (2017). 

2.4.4 Empirical Regression Methods for Algal Biomass Retrieval Algorithms 

 Empirical regression techniques for algal biomass retrieval are one of the most 

frequently implemented due to their simplicity and low computation time (Odermatt et al., 

2012; Yang et al., 2022). The empirical approach formulates a regression/multiple regression 

between Lλ and in situ observations of chl-a as a proxy of algal biomass (Ruiz-Verdú et al., 

2008). Regression methods utilize, in situ observations of surface water chl-a paired within 

±1-7 days of Lλ observations at wavelengths that strongly denote algal presence, typically at 

the absorbance (440 and 670nm) and reflectance peaks (550nm and >700nm) (Schalles et al., 

2006). Hyperspectral sensors can specifically target these peaks, however, multispectral 

sensors measure Lλ at a wider spectral range, within fewer radiometric bands (Johansen et al., 

2023). Depending on the multispectral satellite, not all absorbance or reflectance peaks are 

covered, where wider bandwidths may also include other OAC peaks, significantly impacting 

the sensors' capacity to resolve chl-a (Li et al., 2019). Multispectral sensors typically employ 

band mathematics, where various bands are used to minimize the impact of signal mixing, and 
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maximize the signal expected from chl-a, often targeting bands centered on the maximal 

absorption and reflectance of each parameter (Yang et al., 2022).  

 Common empirical retrieval algorithms use a ratio of blue (0.44-0.5µm) or red (0.6-

0.7µm) to green (0.5-0.6µm) or NIR centered bands (>0.7µm) (O'Reilly et al., 1998; Sass et 

al., 2007; Ha et al., 2017; Salem et al., 2017). Band ratios such as blue:green have shown high 

applicability in oligotrophic waters (Carder et al., 2004; Sudheer et al., 2006; Dang et al., 

2023), where the majority of the optical signal is that of water and chl-a, bands used in 

algorithms such as the ocean colour chlorophyll (OC) models developed by NASA (O’Reilly 

& Werdell, 2019). For turbid waters, a band ratio of the red-NIR edge (620nm; maximal 

refectance) to NIR bands (670nm; maximal absorption) has shown improved retrieval (Han et 

al., 1994; Singh et al., 2014), as longer wavelengths are less impacted by tripton and sediments 

due to the high absorption of water minimizing backscatter and increasing the chl-a 

fluorescence signal (Schalles, 2006; Matthews, 2011). The success of band ratios varies, as 

studies have found success with other ratios such as blue:red (Han & Jordan, 2005) and 

green:red (Brezonik et al., 2005). More advanced band mathematics have also been employed, 

such as the three-band algorithms (Gitelson et al. 2003; 2011), normalized difference algal 

index (Ghunowa et al., 2019), floating algal index (Page et al., 2018; Rodríguez-López et al., 

2023), empirical orthogonal functions (Xi et al., 2020), and line-height algorithms (Zeng & 

Binding, 2019; Tong et al., 2022). The relationship between chl-a and Lλ may not be linear, 

where polynomial and quadratic equations have been applied, however, are prone to overfitting 

(Tiwari et al., 2022). Machine learning methods have been used to address issues of non-

linearity. 

2.4.5 Machine Learning Methods for the Retrieval of Algal Biomass 

 Various machine learning methods have been used for the retrieval of algal biomass 

parameters such as support vector machines (SVMs), random forests (RF), and artificial neural 

networks (ANN). SVM methods include the use of regression, or SVR, which can classify 

high-dimensional data by defining a hyperplane, which is determined by non-linear mapping 

function via a kernel, which can be linear, polynomial, radial, etc. (Awad & Khanna, 2015). 
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The hyperplane defines the weights and bias to derive a relationship between Lλ of various 

radiometric bands and in situ chl-a, which has been used for algal biomass retrieval problems 

in previous studies (Kong et al., 2017b; Kim et al., 2014).  

The RF method utilizes a series of regression trees that separate the inputs into clusters 

based on the total error observed within each cluster. For application in phytoplankton biomass 

retrieval by remote sensors, multivariate band inputs can be used as predictor variables 

(𝑥1, 𝑥2 … 𝑥𝑛) to the response variable of chl-a or PC (𝑦). Regression trees as described by 

Breimen et al., (1984) use a series of linear regressions to determine predictor thresholds that 

produce the lowest possible error for the response variable. The predictor variable split points 

(𝑡1, 𝑡2 … 𝑡𝑗) are binary and result in terminal nodes of the response variable (𝑌1, 𝑌2 … 𝑌𝐿), where 

the binary split only stops due to a predefined criterion (e.g. minimum number of observations). 

Regression trees tend to overfit the training data, have low bias, and high variance, where other 

empirical measurement options are preferred. However, RF methods use many regression 

trees, where the input training observations are bagged, in which each tree consists of different 

training data. The process of bagging helps reduce variance in the testing data and show 

improved results compared to a single regression tree. Breiman (1996) describes the bagging 

process where the total data set (ℒ) consists of observation pairs {(𝑥𝑛, 𝑦𝑛), 𝑛 = 1, … 𝑁}, where 

𝑦 = 𝜑(𝑥, ℒ) (in which 𝜑(𝑥, ℒ𝑘) is a predictor) and is derived from multiple bags ({ℒ𝑘}) (in 

which 𝑘 is the number of bags). When bagging, a randomized observation pair {(𝑥𝑛, 𝑦𝑛), 𝑛 =

1, … 𝑁} may either not be used at all in the model, or used more than once across all bags and 

even within the same bag (Breiman, 1996). RF methods have been used to derive chl-a 

concentrations from satellite data (Shi et al., 2022; Xu et al., 2022; Leggesse et al., 2023); 

however, other machine learning approaches such as an ANN are also commonly 

implemented. For a more in depth look at bio-optical models, please refer to supplementary 

section A2. 

The structure of an ANN is composed of 3 primary layers (Figure 2.6): input, hidden, 

and output, in which the hidden layer is represented by a complex set of weights and biases to 

determine node (or neuron) activation, mimicking the human brain process (Mani & 
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Srinivasan, 1997; Chang & Bai, 2018). ANN excel at identifying complex, nonlinear patterns, 

and typically require a high number of training observation pairs compared to other empirical 

methods, where the higher the number of inputs, nodes, and layers, the more complex the 

network and the longer the training time (Chang & Bai, 2018). Many ANN structures have 

been used for algal biomass retrieval, such as convolution (Nofrizal et al., 2022; Xu et al., 

2023), or back propagation (Xu et al., 2022; Zhu et al., 2022;), however a common structure 

for regression purposes is the single layer feedforward neural network (SLFN), the structure 

of which use x,y pairs ({𝑥𝑖, 𝑦𝑖}) as defined by (Chang & Bai, 2018):  

 
∑ 𝑣𝑖𝑔𝑖(𝑥𝑗)

𝐿

𝑖=1

= ∑ 𝑣𝑖𝑔(𝑎𝑖 ∙ 𝑥𝑗 + 𝑏𝑖)

𝐿

𝑖=1

 (𝑗 = 1,2,3, … , 𝑁) (2.1) 

 

in which 𝐿 are the total hidden nodes, 𝑗 the total input samples, 𝑎𝑖 = [𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑁]𝑇(𝑖 =

1,2,3, … 𝐿) which are the weights ith hidden node, 𝑣𝑖 = [𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑁]𝑇(𝑖 = 1,2,3, … 𝐿) are 

the weights of the ith hidden node to the output, 𝑔𝑖(𝑥𝑗) the activation function and 𝑏𝑖 the bias 

of each hidden node. The nodes activation is calculated via an activation function (i.e.., Linear, 

cosine, ReLU, etc.), based on the given weights and biases, calculating the output layer 

(Apicella et al., 2021). Weights and biases are determined by the optimization function (e.g., 

stochastic gradient descent), allowing users to define parameters such as learning rate and 

momentum, to find the coefficients that return to lowest error (Tieleman et al., 2017). The 

number of epochs determines how many times the SLFN is trained with the same inputs, while 

the batch size indicates the number of training data is used, and thereby the number of training 

iterations within each epoch (Chang & Bai, 2018). The higher the number of epochs, the longer 

the training time, where too many iterations can cause overfitting (Perin et al., 2021). Several 

studies have used SLFN for algal biomass retrieval, with improved performance over standard 

linear regressions (Baruah et al., 2001; 2002; Wang et al., 2008; Song, 2011; Song et al., 2012; 

Huo et al., 2014; Chen et al., 2017; Batur & Maktav, 2019). The performance of inverse models 

such as an ANN depends on the timing between in situ observations and Rrs observations, 

atmospheric interference, and presence of OACs (Syariz et al., 2019; Dong et al., 2020). 
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Attempts have been made to construct forward models using semi-analytical methods such as 

bio-optical retrieval. More in-depth examples of RF and ANN methods can be found in 

supplementary section A1. 

 

Figure 2.6. Artificial Neural Network Structure for chl-a/PC retrieval. 𝒂𝒊𝑵 represents the weights, 𝒈𝒊(𝒙𝒋) represents the 

activation function. 

2.4.6 Bio-Optical Methods for the Retrieval of Algal Biomass 

The development of forward models for algal biomass retrieval in freshwater lakes is 

difficult due to the spatial-temporal change in IOPs, as an inversion model of AOPs and IOP 

to Rrs are required (Ogashawara et al., 2017). Case-I waters (oligotrophic) have forward 

models developed (Morel & Prieur, 1977), however case-II requires an inversion. IOP 

inversion uses Rrs to derive an absorption coefficient at a given wavelength (𝑎𝑖(𝜆)) of water 

(𝑎𝑤(𝜆)), chl-a (𝑎𝐶ℎ𝑙(𝜆)); along with the 𝑏𝑏(𝜆) of water (Simis et al., 2005). The change in the 

turbidity of water is proportional to the ratio of 𝑎(𝜆) and 𝑏𝑏(𝜆), as calculated by the Kubelka-
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Munk remission function (Ogashawara et al., 2017). The inversion of IOPs from Rrs assumes 

that the observed absorption is due to 𝑎𝑤𝑎𝑡𝑒𝑟(𝜆), 𝑎𝑝ℎ𝑦𝑡(𝜆), the absorption of tripton (or other 

NAPs; 𝑎𝑁𝐴𝑃(𝜆)) and the absorption of CDOM (𝑎𝐶𝐷𝑂𝑀(𝜆)), with 𝑏𝑏(𝜆) a product of 𝑏𝑏𝑤𝑎𝑡𝑒𝑟(𝜆) 

and 𝑏𝑏𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠(𝜆)  (Roesler & Perry, 1995). The spectral shape of each parameter is described 

by Beer’s law; as the concentration increases, so does the IOP, which is predicted by the 𝑎(𝜆) 

and in situ concentration (Smith & Baker, 1978; Roesler et al.,1989). Chl-a retrieval (proxy of 

algal biomass) can be calculated based on these inversions, as seen by Gons (1999), and later 

adapted for satellites such as MERIS and Landsat with high success (testing r2 = 0.68 – 0.96) 

(Gons et al., 2002; Simis et al., 2005; Allan et al., 2015). Studies have found higher inversion 

precision compared to empirical (Allan et al., 2015; Kong et al., 2015). The complexity and 

variability of IOPs in lakes can make the definition of the spectral shapes difficult, where 

models are often lake specific (Eleveld et al., 2017). For a more in-depth look at bio-optical 

models, please refer to supplementary section A3. 

2.4.7 Overview of Bayesian Networks Application 

This research makes use of time-series analytics to infer the interactions within a 

multivariate system as they change over time and affect algal biomass dynamics. Any given 

time series may be composed of three given signals: the stationary, non-stationary and the 

residuals (Kulshreshtha, 2020). A stationary signal denotes the presence of seasonality within 

the data, whereby the mean and variance do not change over time (McElroy, 2012). The non-

stationary signal denotes the presence of a trend, where the mean and variance change with 

time (Hammond & White, 1996). The residuals of a time series denote the noise and error, in 

which the change over time is random (Gujer, 2008). Statistical analysis often makes an 

assumption of homogeneity and normality, where the data are assumed stationary and normally 

distributed, however, this is rarely true with real-world data and are often left unchecked 

(Hoekstra, et al., 2012).  

To better understand the dynamics of algal biomass response in a system of varying 

atmospheric and lake physical variables, a Bayesian network (BN) analysis is preferred over 
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standard regression methods. Regression methods (e.g., Ordinary Least Squares) utilize a 

frequentist approach, in which model coefficients are fixed and constant across repeatable 

samples (Law et al., 2014). BNs however, fit probabilities or distributions based on a fixed 

sample, where the parameters are random (Law et al., 2014), and therefore are considered more 

flexible (Ickstadt et al., 2011; Rhodes, 2017; StataCorp, 2015). Given that the parameterization 

of frequentist and BN methods vary, so do the approximations, both on a technical and 

theoretical basis. The frequentist approach constructs confidence intervals for each predicted 

value for given a hypothetical number of samples, where 95% of the intervals constructed 

would contain the true value (Morey et al., 2016). Conversely, with a BN approach, credible 

intervals (posterior probability intervals) are constructed for each forecasted observation, in 

which there is a 95% probability that the value lies within (Flor et al., 2020). Therefore, in 

regards to hypothesis testing, assuming that a given null hypothesis is true, a frequentist 

approach looks to understand how likely you are to observe your data. Instead, a BN approach 

asks how likely the null hypothesis is given your provided data (Rhodes, 2017; StataCorp, 

2015). BNs offer some distinct advantages, such as the incorporation of priors (Samaniego, 

2010), are considered more comprehensive due to the use of the entire posterior distribution 

returning direct uncertainty (van de Schoot et al., 2013), can determine complex 

interdependencies between variables and can easily predict for multiple explanatory variables 

(Jackson-Blake et al., 2022).  

Other machine learning methods such as an Artificial Neural Network (ANN) and 

Random Forest (RF) are often ill-equipped for determining variable interdependencies, as they 

frequently take a “black box approach” (Koushik et al., 2020). The increase in available data 

size and scope has led to a large-scale black-box optimization problem, where it becomes 

increasingly difficult to understand which decision variables returned the desired result (Chen 

et al., 2022). For these reasons, the BN approach is most suitable for research goals in 

understanding the dynamics of algal biomass in freshwater lakes.  
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This research specifically implements a Dynamic Gaussian Bayesian Network 

(DGBN), however, to better understand its utility in achieving our research objectives, a typical 

discrete BN will be first described and built upon from there. 

2.4.7.1 Discrete Bayesian Networks 

A BN is trained using a set of discrete data amongst multiple variables and comprised 

of two components: a directed acyclic graph and a probability distribution (Sebastiani et al., 

2005). The goal of the BN is to identify the interdependencies of the input variables by 

calculating the conditional dependence of all variables. A variable with no dependency is 

considered a parent node in the network and is represented by a marginal probability table. 

Variables with conditional dependence are considered a child node and are represented as a 

joint probability table. Therefore, the state of the child node (𝑥𝑖) is conditionally dependent on 

the state of the parent nodes (𝐴𝑖), which is described as 𝑃(𝑥𝑖|𝐴𝑖). A simplified network with 

three given nodes P(𝐴, 𝐵, 𝐶), may represent one of three fundamental connections (Table 2.2). 

A network may be comprised of one or all three connection types. 

Table 2.2. Graphical separation indicating the conditional independence and probability decomposition of a three-node 

network. Modified from Nagarajan et al., 2013. 

Connection Network Equation EQ (#) 

Converging 

 

𝑃(𝐴, 𝐵, 𝐶)
= 𝑃(𝐶|𝐴, 𝐵)𝑃(𝐴)𝑃(𝐵) 

2.3 

Serial 

 

𝑃(𝐴, 𝐵, 𝐶)
= 𝑃(𝐵|𝐶)𝑃(𝐶|𝐴)𝑃(𝐴) 

2.4 

Diverging 

 

𝑃(𝐴, 𝐵, 𝐶)
= 𝑃(𝐴|𝐶)𝑃(𝐵|𝐶)𝑃(𝐶) 

2.5 
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A BN follows the Markov assumption, in which a node is conditionally independent of nodes 

that do not descend from it, while a child node is conditionally dependent on its parent nodes 

(Nagarajan et al., 2013). The joint probability distribution of the variables within the network 

is enabled by the Markov assumption, in which the joint probabilities are a product of 

conditional probability distributions as described by the following equation by Nagarajan et 

al. (2013): 

 
𝑃𝑋(𝑋) =  ∏ 𝑃𝑋𝑖

(𝑋𝑖|𝛱𝑋𝑖
)

𝑝

𝑖=𝑙

 (2.2) 

Where 𝑋𝑖 is a given variable and 𝛱𝑋𝑖
 is the set of parents of 𝑋𝑖. A set of connected parent and 

child nodes that are separate from the rest of the network are considered a Markov blanket. As 

seen in Table 2.2, each ordered or unordered pair of nodes are connected via a directed arc (or 

vertex). Various methods can be implemented to determine the optimal structure of the 

network and the direction of the nodes. A constraint-based approach calculates all possible 

combinations of conditional independence tests and, although effective, is limited to smaller 

networks with a lower number of variables (Bretta et al., 2018). Conversely, the network can 

be trained using a score-based approach, where the network structure is determined by 

maximizing the likelihood of the data estimation (Bretta et al., 2018). More recent methods 

have utilized a heuristic search technique that seeks to minimize the BN search space. Many 

heuristic methods may also be considered score-based. Hybrid methods seek to optimize the 

network structure using both constraint and score-based methods. A detailed look at the 

different optimization structures can be seen in Table 2.3. The network now has a given 

structure, organized between parent and child nodes, where the state of the child node is a 

conditional probability of the state of their parent. Therefore, scenarios can be derived from 

the parent nodes to determine the state of the child node.  

Table 2.3. Summary of fundamental Bayesian network optimization structures as described by Nagarajan et. al. (2013). 

Type Algorithm Description Source 

Constraint-

Based 
PC Uses a backwards selection procedure. 

Sprites et al., 

2001 
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Type Algorithm Description Source 

Grow-Shrink 

(GS) 

Simple forward selection Markov 

blanket approach. 

Margaritis, 

2003 

Incremental 

Association 

(IAMB) 

Forward selection followed by a 

backwards selection. 

Tsamardinos et 

al., 2003 

Fast IAMB 

Reduces the number of conditional 

independence tests from IAMB using a 

speculative stepwise forward selection. 

Yaramakala and 

Margaritis, 

2005 

Interleaved 

IAMB 

Avoids false positives of the IAMB 

through the use of a forward stepwise 

selection. 

Tsamardinos et 

al., 2003 

Score-

Based 

Greedy Search 

(GS) 

The search space starts with an empty 

graph, and iteratively changes 

(adds/removes) from the structure until 

the score no longer improves. 

Bouckaert, 

1995 

Genetic 

Search space provides random 

alterations (mutations) to a 

combination of two network structures. 

Larrañaga et al., 

1997 

Simulated 

Annealing 

Stochastic local search which allows 

both an increase and decrease to the 

network score. 

Bouckaert, 

1995 

Heuristic 

Hill-Climbing 

(HC) 

Local search space where incremental 

changes are made to decrease network 

error and find the local minimum. 

Nagarajan et 

al., 2013 

Tabu Search 

(TS) 

Local search space which implements 

an adaptive memory to retract non-

improving moves in finding the local 

minimum. 

Glover, 1989 

Particle Swarm 

Optimization 

(PSO) 

Local search space which implements 

many simultaneous ‘particles’ to search 

for the local minimum and updates the 

velocity after each iteration. 

Sahin et al., 

2004 

K2 

Local search to determine the local 

minimum given a user defined prior 

and implements a GS method.  

Cooper & 

Herskovits, 

1992 
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Type Algorithm Description Source 

Hybrid 

Max-Min Hill-

Climbing 

(MMHC) 

Expansion of HS which minimizes the 

search space by using a smaller set of 

related nodes, which then seeks to 

maximize the network score. 

Tsamardinos et 

al., 2006 

Sparse 

Candidate 

Similar to MMHC, however, the min 

and max steps are applied iteratively 

until the network score no longer 

improves.  

Friedman et al., 

1999 

 

There are several ways in which the BN can be used to answer questions (e.g. 

probabilistic reasoning or belief updating) a user may have regarding the system, known as 

inference (Pearl, 1988; Nagarajan et al., 2013). Probabilistic reasoning utilizes either hard 

(instantiation of one or more variables) or soft (new distribution for one or more variables) 

evidence to determine the change in the network probabilities under a given hypothesis testing 

problem (Nagarajan et al., 2013). Exact inferencing applies Bayes' theorem in conjunction with 

local computations to obtain exact probability values of a given target node, however, are often 

limited to small/simple networks (Nagarajan et al., 2013). Approximate inference algorithms 

instead estimate the local probabilities using a Monte Carlo simulation and are therefore more 

applicable to high-dimensional networks where the multivariate distribution is complex 

(Nagarajan et al., 2013; Kwisthout, 2018). Casual inference methods look to determine the 

change in the network based on the effects of interventions (separate dataset modified by the 

user). A summary of various inference methods can be found in Table 2.4.  

Table 2.4. Summary of Bayesian network inferences as described by Nagarajan et al. (2013). 

Type Method Description Source 

Probabilistic 

Reasoning 

Conditional 

Probability 

The change in the target node(s) is 

assessed given a change in the parent 

nodes, which is useful in experimental 

design factors or outcome analysis. 

Nagarajan et 

al., 2013 

Maximum a 

Posteriori 

Looks to find the values of the target 

node(s) that have the highest posterior 

probability, which is useful for imputing 

Nagarajan et 

al., 2013 
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Type Method Description Source 

missing data or comparing the true values 

with the new values of the target node(s) 

Exact 

Inference 

Variable 

Elimination 

Direct use of the BN structure, where the 

optimal operative sequence on the local 

distributions is used on the local 

distribution. 

Nagarajan et 

al., 2013 

Junction 

Trees 

The network graph is converted into a 

tree, clustering the original nodes. 

Nagarajan et 

al., 2013 

Message-

Passing 

Inference on junction trees in which 

directed messages are passed from a node 

and its neighbors to the child node. 

Korb & 

Nicholson, 

2010 

Approximate 

Inference 

Rejection 

Sampling 

Monte Carlo estimation of a complex 

distribution where the samples are 

derived from an approximate distribution, 

and only accepted given the 

approximation is ≤ true distribution; 

otherwise, the sample is rejected. 

Robert & 

Casella, 2009 

Importance 

Sampling 

Monte Carlo estimation of a complex 

distribution where the samples are 

derived from a modified distribution of 

the weighted average of random samples. 

Robert & 

Casella, 2009 

Particle 

Filtering 

Monte Carlo estimation computed by 

representing the posterior probability 

through individual sample generation and 

randomly sampling them based on their 

likelihood weighting. Useful for noisy 

data. 

Moral, 1997; 

Orhan, 2012 

Casual 

Inference 

Ideal 

Interventions 

Measures the effects of fixed 

interventions on the casual network 

structure as opposed to a belief change in 

the observed data. 

Nagarajan et 

al., 2013 

Stochastic 

Interventions 

Similar to ideal, however, the 

interventions are not fixed and instead 

random. 

Nagarajan et 

al., 2013 

 



 

 39 

Discrete BN have been applied in various fields such as healthcare (McLachlan et al., 

2020; Kyrimi et al., 2021), economics (Gemela et al., 2001; Masmoudi et al., 2019), risk 

management (Khakzad et al., 2013; Ruiz-Tagle, 2022), genetics (Vignes et al., 2011; Su et al., 

2013), and environmental (Aguilera et al., 2011; Barton et al., 2012) modelling. Despite the 

wide applicability, such network structures are limited to discrete datasets, limiting their 

potential when only continuous measurements are available. If a network analysis is desired 

when only continuous data is available, as is often the case in economics and environmental 

modelling, a Gaussian Bayesian Network (GBN) can be implemented.  

2.4.7.2 Gaussian Bayesian Networks 

A GBN is structured the same as a BN, in which it is composed of a DAG, however, 

all random variables are continuous and assumed Gaussian distributions. Therefore, all parent 

nodes are an assumed Gaussian distribution, and all child nodes are a conditional multivariate 

Gaussian distribution, as opposed to the marginal and joint probability tables of the discrete 

BN (Grzegorczyk, 2010). The GBN therefore assumes a univariate normal distribution within 

the local network and a multivariate normal distribution in the global network (Neapolitan, 

2004; Nagarajan et al., 2013). However, some studies have allowed local networks to violate 

this assumption utilizing non-parametric BN (Vitale et al., 2020; Marella et al., 2019). The 

parent-child node relationship is therefore represented as a linear Gaussian model as defined 

by Quesada et al. (2021a): 

 𝑝(𝑥𝑗|𝑃𝑎𝑗) = 𝒩(𝛽0𝑗 + 𝛽1𝑗𝑥1(𝑗) + ⋯ + 𝛽𝑟𝑗𝑥𝑟(𝑗); 𝜎𝑗
2) (2.6) 

Where 𝑥𝑗 represents the target node, 𝑃𝑎𝑗 = {𝑥1(𝑗), … , 𝑥𝑟(𝑗)} is the set of parent nodes for 𝑥𝑗, 

𝒩 represents the density function of a normal distribution, 𝛽0𝑗 is the independent coefficient 

(intercept), {𝛽1𝑗, … , 𝛽𝑟𝑗} are the parent coefficients (slope), while 𝜎𝑗
2 is the variance (error) of 

𝑥𝑗. The parent-child node connections are represented by multivariate Gaussian linear 

regressions, however, this method differs from the frequentist approaches both as described in 

Section 2.4.4-6, and through the method of inference. Provided that all nodes are linear 
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Gaussian models, the joint Gaussian distribution of the network can be written as described by 

Quesada et al. (2021a): 

 

𝑝(𝑥) = ∏ 𝑝(𝑥𝑗|𝑃𝑎𝑗) = ∏ 𝒩(

𝑛

𝑖=1

𝑛

𝑖=1

𝛽0𝑗 + ∑ 𝛽𝑗𝑖

𝑟(𝑖)

𝑗=1

𝑥𝑗(𝑖); 𝜎𝑗
2) (2.7) 

Where 𝑥 = (𝑥1, … , 𝑥𝑛) represents the number of nodes within the network, and 𝑟(𝑖) represents 

the total amount of parent nodes for 𝑥𝑗. The model coefficients are estimated using a Gaussian 

multivariate linear regression distribution. Optimization and structure of the models is the same 

as a discrete BN, where any measure of metrics can be used as seen in Table 2.3. Once the 

network is constructed, the network can be used to inference new data based on the 

distributions of the parent nodes (Table 2.4).  

 Like discrete BNs, GBNs have also been applied to a variety of fields, including 

medical (Huang et al., 2011; Wang et al., 2020), economics (Charfi et al., 2020), risk 

management (Arfin & Yodo, 2021; Liu et al., 2023), genetics (Liu et al., 2020; Graafland & 

Gutiérrez, 2022), environmental (Zhang et al., 2012; Meineri et al., 2015), and algal biomass 

(Jackson-Blake et al., 2022; Deng et al., 2023) modelling. There are instances where both 

discrete and continuous variables are needed, in which case a mixed discrete-continuous BN 

(MBN) is used (Hu et al., 2022). Mixed data networks function the same as the discrete and 

continuous case. The MBN are inferenced as a conditional linear Gaussian (CLG) network, 

where discrete variables may only act as a parent node and not a child-node (Bøttcher & 

Dethlefsen, 2003; Hu et al., 2022), however, CLG networks can be modified for inferencing 

discrete data (Lerner et al., 2013). Discrete, continuous, and mixed BN are all considered static 

models, as they do not account for the temporal domain (Nagarajan et al., 2013), where those 

that do are known as a Dynamic BN (DBN). This research makes use of only continuous data, 

and therefore only a Dynamic Gaussian Bayesian Network (DGBN) is described in section 

2.4.7.3. 
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2.4.7.3 Dynamic Gaussian Bayesian Network 

 The DGBN is a desired network analysis method when concerned with the interaction 

of variables as they change over time (Quesada et al., 2021). The structure of a DGBN is 

similar to that of the GBN; however, each variable is described in the temporal domain 𝑋 =

{𝑋𝑖(𝑡); 𝑖 = 1, … , 𝑘; 𝑡 = 1, . . , 𝑡}. Variables are also conditionally dependent on the past 

observations of other variables by a given time-step (Nagarajan et al., 2013). A time-step (lag 

interval) is measured at the temporal frequency of the input data (i.e., daily observations where 

𝑡1 represents a 1-day lag, 𝑡2 represents a 2-day lag, etc.). The time step indicates which ordered 

pairs of variables are represented in the multivariate linear Gaussian equation. For example, a 

network in which variable 𝑋1 at 𝑡1 is paired with the same variable 𝑋1 at 𝑡0, the ordered pair is 

of 𝑡1: 𝑡1 − 1. The joint probability of the DGBN now includes all time slices 𝑡 to a given 

horizon 𝑇 as described by Quesada et al. (2021a): 

 
𝑝(𝑋0, 𝑋1, … , 𝑋𝑇) = 𝑃(𝑋0:𝑇) = 𝑝(𝑋0) ∏ 𝑝(𝑋𝑡+1|𝑋0:𝑡)

𝑇−1

𝑡=0

 (2.8) 

Where 𝑋𝑡 = (𝑋1𝑡, 𝑋2𝑡, … , 𝑋𝑛𝑡) is the vector of all the nodes in a time slice 𝑡, where 𝑡 =

0,1, … , 𝑇 and 𝑇 is the maximum number of time slices. There are four main assumptions of the 

DGBN as described by Nagarajan et al. (2013): 

1. The stochastic process is first-order Markovian (i.e., any variable at time 𝑡 is dependent 

only on the past variables at time 𝑡 − 1). 

2. Variables at the same time 𝑡 are conditionally independent given their immediate past. 

3. The temporal profile of a variable cannot be written as a linear combination of the 

temporal profile of any other variable (i.e., each variable’s temporal profile is unique).  

4. Often assumed the temporal process is homogeneous and invariant (i.e., the observed 

phenomena are under the same rules for the entire study period).  

Interaction effects can only be observed at the minimum temporal scale of the input 

data; therefore, any effects at a smaller scale cannot be observed in the network (i.e., daily data 

inputs cannot account for hourly effects). Assumptions 1-3 are required for constructing an 
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accurate DGBN, however, assumption 4 is often not true with most real-world data and instead 

used to simplify the model (Nagarajan et al., 2013). Flexible models that relax assumption 4 

typically require a higher number of observations (Xuan Vinh et al., 2012). Studies have 

successfully implemented DBGN with non-homogenous data (Grzegorczyk, 2016; Quesada et 

al., 2021a). A first-order Markovian network as described by Koller and Friedman (2009) is 

one in which the state of a given time slice is dependent on only the preceding time slice (figure 

2.7), which is important to understand given assumptions 1 and 2.  

 

Figure 2.7. An example of a simplified DGBN where (a) represents a two-time slice, (b) represents a DGBN with 0 time 

slices, and (c) represents a DBN with 3 time slices. Taken from Koller & Friedman, 2009. 

The joint distribution of a first-order Markovian model can then be summarized as the 

following equation as described by Quesada et al. (2021a): 

 
𝑝(𝑋0:𝑇) = 𝑝(𝑋0) ∏ 𝑝(𝑋𝑡+1|𝑋𝑡)

𝑇−1

𝑡=0

 (2.9) 

 

This combines the GBN structure with a temporal component where the child nodes of a given 

time slice can only have parents from 1 time slice prior. However, in some cases, connections 

between 𝑡 and observations > 𝑡 + 1 may occur, in which high order Markovian models 

(known as a high order DGBN, or HO-DGBN) are needed. High-order Markovian models 
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exponentially increase the complexity of the network, and therefore require significant training 

time (Quesada et al., 2021a). To reduce model complexity, the arcs can be directed to only the 

most recent time slice, known as a transition network (Quesada et al., 2021b), as this is often 

the target of interest when constructing a DBN. An HO-DGBN can be represented as explained 

by Santos et al. (2014), where 𝑋𝑡 is 𝑋𝑡 = {𝑋𝑡
1, 𝑋𝑡

2, … , 𝑋𝑡
𝑁} for 𝑁 variables in 𝑇 total time slices, 

and the conditional independencies for the probability distribution is 

𝑝(𝑋𝑡+1, 𝑋𝑡+2, … , 𝑋𝑡+𝑇|𝑋𝑡). From here the network can be restricted so that directed arcs are 

only calculated from the present time slice to any other time slice (inter-time slice), 

disregarding arcs within a time slice (intra-time slice) (Figure 2.8). The notation for the present 

time slice can be regarded as 𝑡0 or 𝑡+𝑇, where in the context of 𝑝(𝑋𝑡+1, 𝑋𝑡+2, … , 𝑋𝑡+𝑇|𝑋𝑡), 𝑡𝑇 

is the present time slice (i.e., if 𝑇 = 5, the present time slice is 𝑡+5, and 𝑡0 is 5 time slices 

prior), or 𝑝(𝑋𝑡|𝑋𝑡−1, 𝑋𝑡−2, … , 𝑋𝑡−𝑇), 𝑡0 is the present slice (i.e., if 𝑇 = 5, the present time slice 

is 𝑡0, and 𝑡−5 is 5 time slices prior). A DGBN typically utilizes its network learning and 

optimization which incorporates the temporal domain as seen in Table 2.5. Learning structure 

types, however, remain the same as described in section 2.4.7.1. Once the networks are learned, 

inferences can be made in the same way as GBN, as described in table 2.4, however the data 

is forecasted as a time series, considering the temporal sequence of the events.  

 

Figure 2.8. Example of an order 2 Markovian network where arcs are only directed toward the latest time-slice. Quesada et 

al., 2021 
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Table 2.5. Summary of fundamental dynamic Bayesian network optimization structures as described by Nagarajan et al. 

(2013) 

Type Method Description Source 

Constraint-

Based 

Least Absolute 

Shrinkage and 

Selection 

Operator 

(LASSO) 

Estimates coefficients via L1-

constrained least squares where only 

nonzero coefficients determine 

significant dependence. 

Tibshirani, 1996; 

Meinshausen & 

Bühlmann, 2006 

James–Stein 

Shrinkage 

Estimates the covariance matrix by 

shrinking the correlation coefficients 

to zero and the variance to their 

median. 

James and Stein, 

1961; Opgen-

Rhein and 

Strimmer, 2007 

Score-Based 

Statistical 

Inference for 

Modular 

Networks 

(SIMoNe) 

Based on LASSO, optimizes the L1 

penalization by searching for latent 

clustering of the network that returns 

the lowest BIC. 

Chiquet et al., 

2009 

Heuristic 

First-Order 

Conditional 

Dependencies 

Approximation 

The DAG is approximated by a first-

order conditional dependencies 

graph. 

Lèbre, 2009 

Particle Swarm 

Optimization 

(PSO) 

Local search space which 

implements many simultaneous 

‘particles’ to search for the local 

minimum and updates the velocity 

after each iteration. 

Sahin et al., 2004 

PSO with 

Order 

Invariant 

Encoding 

Extension of the PSO for HO-

DGBN, where computational costs 

are reduced by representing the 

network as vectors of natural 

numbers with a constant length. 

Quesada et al., 

2021b 

Hybrid 

Dynamic Max-

Min Hill-

Climbing 

(DMMHC) 

Adaptation of MMHC by 

minimizing the search space and 

maximizing the network score, for 

each node and time slice. 

Trabelsi, 2013 

Reversible 

Jump Markov 

chain Monte 

Randomly generates an initial model 

and for each iteration modifies it 

which can be either accepted or 

rejected. 

Green, 1995 
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 DGBN considers the temporal domain when constructing the interactions between 

variables as they change over time. Such methods are useful in macroeconomics (Dabrowski 

et al., 2016; Lytvynenko et al., 2020), genetics sequencing (Perrin et al., 2003; Suter et al., 

2022) and even environmental monitoring (Chang et al., 2023; Valero-Leal et al., 2002). 

Several studies have used static BN and GBN to enquire about the effects of the interaction of 

algal biomass with various environmental variables (Rigosi et al., 2015; Moe et al., 2016; Shan 

et al., 2019; Jiang et al., 2021; Jackson-Blake et al., 2022). There are currently no studies 

applying a DGBN to understand the interaction effects of various atmospheric and lake 

physical variables on algal biomass dynamics, as this requires significant data (Jiang et al., 

2021), however, it is considered a desirable product for future analysis (Shan et al., 2019). This 

research proposes the use of satellite-derived chl-a concentrations to fill the DGBN data 

requirements, thus incorporating the temporal domain.  

2.5 Conclusion 

The impacts of climate change on algal biomass dynamics are complex, with differing 

impacts depending on lake morphometry, watershed environments, algal community 

compositions, and anthropogenic influences. Limited comprehensive analyses have been 

performed to identify the interactions between climate change and algal biomass dynamics, 

mainly due to the lack of in situ observations. Satellite remote sensing provides new avenues 

for determining interaction effects of climate and algal biomass dynamics by supplementing 

in situ observations with estimates retrieved from historic image archives suing state-of-the-

art algorithms. Remote sensing of algal biomass in freshwaters is difficult, however, as the 

atmospheric and OAC in waters can introduce errors in retrieval algorithms. New remote 

sensing data products are currently available, allowing researchers to focus on improving our 

Type Method Description Source 

Carlo (RJ-

MCMC) 
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understanding of how these variables are changing over time, and how this change coincides 

and is affected by other environmental data.   
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Chapter 3: Study Area and Data 

3.1 Study Area 

Five North American Great Lakes have been selected for this study; Lake Erie, Lake 

Winnipeg, Lake Athabasca; Great Slave, and Great Bear Lake. These lakes were selected as 

they are large and therefore resolvable using coarse spatial resolution satellite imagery (1km 

grid) and coarse climatic gridded data (9km grid) and provide a range of temporal to arctic lake 

systems with varying climatic and land use conditions. Gridded data within each lake and the 

surrounding catchment will be used in all subsequent chapters of this thesis. A map of the study 

area along with the general land use of the regions can be found in Figure 3.1. 

 

Figure 3.1. Map of study lakes and their corresponding basins and rivers. Land cover delineation provided by ESA CCI 

Landcover (http://maps.elie.ucl.ac.be/CCI/viewer/download.php). 
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3.1.1 Lake Erie 

Lake Erie is the smallest by volume of water of the Laurentian Great Lakes, with a 

surface area of 25,744 km2, and is relatively shallow, with an average depth of ~19 m and 

composed of three distinct basins: Western, Central and Eastern (EPA, 2020). The Western 

basin of Lake Erie is the shallowest, with an average depth of ~7.4m, and the most turbid. The 

central basin is moderately deep, with an average uniform depth of ~18.3 m, while the Eastern 

basin is the deepest, with an average depth of 24 m (EPA, 2020). The lake has a retention time 

of ~2.6 years, and 80% of the lake’s inflow is a result of the Detroit River. Approximately 12 

million people live within the Lake Erie watershed, in which a significant amount of toxic ABs 

have occurred, prompting significant research by various agencies. Most of the watershed is 

composed of urban and agricultural regions, which have contributed greatly to the observed 

eutrophication. The lake is dimictic, in which mixing and subsequent internal loading occur 

during spring and fall, with summer and winter stratification. As Lake Erie is relatively 

shallow, most years result in high ice cover; however, frequent breaks and melts occur 

(Fujisaki et al., 2012). 

3.1.2 Lake Winnipeg 

Lake Winnipeg is the 10th largest in the world, with a surface area of 23,750 km2, is 

very shallow, with an average depth of ~12 m, and composed of two basins: north and south 

(Government of Manitoba, 2021). The north basin is the largest and deeper of the two basins, 

with an average depth of ~13.3m compared to ~9m of the south basin, while the south basin 

remains more eutrophic. The lake has a retention time of 3-5 years, with four major tributaries: 

Red, Winnipeg, Saskatchewan, and Dauphine rivers (Government of Manitoba, 2021). 

Approximately 7 million people live within the Lake Winnipeg watershed, in which the 

population of toxin-producing cyanobacteria has increased greatly since the 1990s, due to an 

increase in nutrient loading (Government of Manitoba, 2021; Binding et al., 2018). The lake 

is polymictic, in which mixing events occur at irregular intervals, often triggered by wind and 

precipitation events due to the shallowness of the lake. The lake experiences annual ice 

coverage with some breakup throughout the winter months. As the south basin is shallower 
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than the north, it experiences an ice-off date ~2 weeks earlier than the north basin (ECCC, 

2020).  

3.1.3 Lake Athabasca 

Lake Athabasca is the smallest of those selected in this study with a surface area of 

7,770 km2 and is relatively shallow with an average depth of ~20.0 m (Mitchell & Prepas, 

1990). There are not well-defined basins within the lake itself; however, the Western side of 

the lake is significantly more shallow (maximum depth = 16m) than the eastern side of the lake 

(maximum depth = 124m) (Mitchell & Prepas, 1990). The Athabasca River (merged with the 

Peace and Birch Rivers) contributes to 53% of the lake’s inflow, while Fond du Lac, McFarlne 

and Birch rivers contribute 21%, 6% and 3% respectively (Mitchell & Prepas, 1990; Leconte 

et al., 2008). The terrestrial region of the watershed is relatively undeveloped, with the largest 

human settlement, Fort Chipewyan, located on the Western edge of Lake Athabasca with a 

population of 852 (Statistics Canada, 2016). The Western edge of Lake Athabasca is also the 

most turbid due primarily to the inflow of the Athabasca River; however, the majority of the 

lake is considered oligotrophic with low algal biomass (Mitchell & Prepas, 1990). Indigenous 

people have reported an increase in algal growth that has been attributed to discharge from oil 

sands mining operations transported through the Athabasca River (Bill et al., 1994; Timoney, 

2008; Parlee & D’Souza, 2019). Lake Athabasca is dimictic, in which mixing occurs 

biannually (spring and autumn), with winter and summer stratification (Leconte et al., 2008). 

Of the Northern Great Lakes (Lake Athabasca, Great Bear Lake and Great Slave Lake), Lake 

Athabasca has the shortest ice cover duration, with an ~16-day shorter ice cover season 

compared to Great Slave Lake, where midwinter breakup is very uncommon (Bussières, 2008).  

3.1.4 Great Slave Lake 

Great Slave Lake has a surface area of 28,450 km2 and is one of the deepest lakes in 

the world with an average depth of ~88 m (Rouse et al., 2008). The lake is distinguished by 

three main basins; Central, Northern, and Eastern, in which the Eastern basin is considered the 

deepest portion and the Northern basin the shallowest (Avalon Rare Metals Inc, 2011; 
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Schertzer et al., 2008). Despite the depth and volume of the lake, it has a retention time of 16 

years with ~75% of the inflow from the Slave River and most of the outflow in the Mackenzie 

River (Evans, 2000; Gibson et al., 2006). The watershed surrounding Great Slave Lake is 

relatively undisturbed, with some built-up regions including Yellowknife, Fort Providence, 

and Fort Resolution. Although oligotrophic, Great Slave Lake has been observed to experience 

cyanobacterial blooms in Yellowknife Bay in September 2013 (Pick, 2016; Rühland et al., 

2023). The lake is dimictic and, therefore, experiences two annual mixing cycles (Rouse et al., 

2008). Great Slave Lake experiences annual ice cover and has a 10-day later ice on date and a 

21-day earlier ice off date compared to Great Bear Lake (Woo & Rouse, 2008).  

3.1.5 Great Bear Lake 

Great Bear Lake is the ninth largest in the world, with a surface area of 31,153 km2 and 

an average depth of ~76 m (Johnson, 1975; Rouse et al., 2008). The lake is distinguished by 

five arms; McVicar, Keith, Smith, Dease, and McTavish, where McTavish is the deepest and 

McVicar is the shallowest and considered its own basin (Johnson, 1975; Chavarie et al., 2015). 

The two main sources of inflow in Great Bear Lake are the Johnny Hoe River (McVicar arm), 

and the Camsell River (McTavish arm) with the Whitefish River (Smith arm) and the Dease 

River (Dease arm) also contributing, while the Great Bear River is the main outflow (Keith 

arm) (Chavarie et al., 2015). Due to the volume and low outflow, Great Bear Lake has the 

longest residence time of the selected lakes of 124 years (Johnson, 1975). The watershed 

surrounding Great Bear Lake is relatively undisturbed, with the settlement of Délı̨nę as the 

largest populated area and some impacts of mining operation (Schindler, 2001). Great Bear 

Lake is considered an oligotrophic system and, although algal blooms have not been reported, 

studies have found that productivity has increased from 2003-2018 (Sayers et al., 2020). The 

lake has traditionally been considered a cold monomictic system; however, recent studies have 

shown that some regions of the lake are transitioning/currently dimictic (Rouse et al., 2008). 

Great Bear Lake experiences annual ice cover with the longest ice cover duration of the 

selected lakes (Woo & Rouse, 2007).  
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3.2 Data Sources 

 To ensure a complete time series of lake physical and biological parameters, satellite 

derived daily data provided by the European Space Agency (ESA) Climate Change Initiative 

(CCI) Lakes data product (Carrea et al., 2022; Carrea et al., 2023), and European Centre for 

Medium-Range Weather Forecasts (ECMWF) ERA5-Land data as part of the ERA5 climate 

reanalysis product (Muñoz, 2019) is to be used (2002 – 2020). Of the ESA CCI Lakes data 

products, Lake Water Leaving Reflectance (LWLR; satellite derived chl-a product), Lake Ice 

Cover (LIC), and Lake Surface Water Temperature (LSWT) is to be used. The ESA CCI lakes 

product also includes Lake Water Level, Lake Water Extent, and Lake Ice Thickness, but not 

used herein. Of the ERA5-Land data, 2-m air temperature, Hourly Land Total Precipitation, 

Hourly Land Surface Net Solar Radiation, Hourly Land Surface/Subsurface Runoff, and 

Hourly Land 10m U & V Wind Components is to be used.  

3.2.1 European Space Agency (ESA): Climate Change Initiative (CCI) Lakes+ 

The ESA CCI Lakes+ product aims to provide a consistent and valid global lake 

database with the longest period of combined satellite observations, covering multiple lake 

wide variables (Carrea et al., 2022). The specific objectives of the project assess climate 

research community needs, develop algorithms for produce and provide various lake products, 

validate through independent climate research groups, and generate new interest in earth 

observation data for inland water research. This research looks to provide validation and 

application of these datasets for monitoring algal biomass dynamics as they relate to 

atmospheric and lake physical variables, all of which are impacted by climate change. Each of 

the data products were developed using different satellites at varying spatial and spectral 

resolutions. All products have been harmonized to a common 1/120o latitude-longitude (ca. 1 

km) grid (Carrea et al., 2022) at a daily scale. While the ESA CCI Lakes+ product also provides 

lake water level (LWL), and lake water extent (LWE) variables, only LWLR, LIC and LSWT 

were used for the purpose of this thesis, as LWL and LWE do not vary per pixel.  
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3.2.1.1 Lake Water Leaving Reflectance (LWLR) 

The LWLR product is developed using MERIS and Sentinel-3A OLCI satellites, with 

MODIS algorithms currently in development to bridge the data availability gap between the 

MERIS and Sentinel-3A launch and decommission dates. The v2.0 product provides 

normalized water-leaving reflectances (Rw) for visible-NIR radiometric bands corresponding 

to MERIS/Sentinel-3A bands (443-900 nm) and Aqua-MODIS bands (405-877 nm; 2012-

2015). In situ chl-a measurements were provided by the Lake Bio-optical Measurement and 

Matchup Data for Remote Sensing (LIMNADES) database which is maintained by the 

University of Stirling and the GloboLakes project (https://limnades.stir.ac.uk). The images 

were pre-processed in the ESA Sentinel Application Platform (SNAP) to identify water extent 

and dynamic pixel classification using an ANN to determine optical water types (OWTs). 

Atmospherically corrected images (POLYMER v4.12) were matched with in situ observations 

within a temporal window of several days (Carrea et al., 2022). The LWLR product 

development team has tested multiple empirical retrieval algorithms (utilizing the Red-NIR 

edge bands) and semi-analytical models, which varied in performance depending on OWT 

(Carrea et al., 2022). The poorer performance of the ANN may have been attributed to the 

limited number of training and matchup data. Uncertainty mapping is determined via the 

weighted OWT membership score, along with uncertainty functions from the algorithm 

validations. Algorithms were validated using a Round-robin comparison, where each algorithm 

was tested for each OWT (Simis et al., 2023). Data may be missing due to cloud/ice cover, and 

due to extreme solar zenith angles for high-latitude lakes during some winter months. 

3.2.1.2 Lake Ice Cover (LIC) 

            The LIC product was developed using MODIS Terra/Aqua level 1B top-of-atmosphere 

(TOA) calibrated radiance products (MOD02/MYD02). Lake water pixels were identified 

using ESA CCI land cover (v4.0) data at a 150m resolution. The v2.0 and beyond utilizes a 

random forest based classification for distinguishing ice, cloud and open water classes. The 

classification algorithm makes use of bands 1-7, solar zenith angle, geolocation (latitude and 

longitude), and rasterized QA bands (MOD02). The LIC product provides 3 output bands 
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defining the LIC flags (forms ice/does not form ice), LIC class (1 = water, 2 = ice, 3 = cloud, 

4 = bad), and the classification uncertainty, which is defined using the model accuracy 

assessment via independent statistical validation (Carrea et al., 2022). This data product 

enables the identification of total ice cover extent, ice-on, and ice-off timing. Some 

misclassifications may occur due to shoreline mixed pixilation along with some temporal 

continuity issues with the MODIS Terra and Aqua sensors (Carrea et al., 2022).  

3.2.1.3 Lake Surface Water Temperature (LSWT) 

            The LSWT was developed using a geophysical inversion via an optimal estimation 

technique. This method utilizes a classification system to identify and therefore exclude all 

non-water pixels via the visible-SWIR bands of the ASTR and AVHRR satellites. A Bayesian 

inference of the LSWT is defined by the difference of the modelled and satellite-retrieved 

values. The modelled data are derived from numerical weather predictions as inputs of a 

radiative transfer equation (Simis et al., 2020). Multiple differing satellites are used to compare 

modelled and observed values, where inter-sensor adjustments are made using AVHRR as a 

reference. Uncertainty is calculated defined by the standard deviation of the estimated error 

distribution (Carrera et al., 2023) which are used with water detection scores, sensitivity of the 

retrieval and the chi-square value. Quality indicators are defined using the uncertainty measure, 

distance from shoreline, chi-square test etc. A quality value of 0 indicates no data, 1-3 indicates 

poor data quality, while 4-5 indicates acceptable quality. Missing daily data prior to 2006 is 

due to the lower coverage of ATSR at this time (Simis et al., 2020). 

3.2.2 ERA5-Land Hourly Data 

ERA5-Land is a reanalysis data product offering a greater spatial resolution (0.1o by 

0.1o; 9 km native grid), compared to its ERA5 counterpart (0.5° by 0.5°; 31 km native grid). 

The reanalysis product uses modelled data in conjunction with earth observations (terrestrial 

and atmospheric) to provide simulated hourly global climate data from 1950 to present. Factors 

such as air temperature, humidity and pressure are also corrected for altitude. As the ERA5 

data are simulated, uncertainty occurs, with uncertainty increasing with the decrease in time 
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(early years have higher uncertainty than present). ERA5-Land is widely used for many surface 

modelling applications, informing policy, business and decision making. For the purposes of 

this thesis, several ERA5-Land products are used to inform multiple lake physical and 

atmospheric impacts on algal biomass dynamics: Total Precipitation (PPT), Surface Net Solar 

Radiation (SNSR), Surface Runoff (SR), Subsurface Runoff (SSR), Wind Speed (WS), Lake 

Mixing Level Depth (LMLD) and Air Temperature (T2m).  

3.2.2.1 Total Precipitation (PPT) 

The ERA5 hourly data product models the total precipitation (snow and rain) as 

modelled by the sum of large-scale and convective precipitation patterns. The large-scale 

precipitation data is derived from the ECMWF integrated forecasting system (IFS) cloud 

scheme, which represents the formation of clouds by changes in atmospheric conditions 

(pressure, temperature, and moisture). The convective precipitation is generated by the IFS 

convection scheme, which identifies convection at smaller scales. All modelled precipitation 

data are measured in meters (m) and does not factor fog, dew, or atmospherically evaporated 

water (Muñoz, 2019). Precipitation is an important component in the mixing of the water 

column and mobilization of surface and subsurface nutrients.  

3.2.2.2 Surface Net Solar Radiation (SNSR) 

The ERA5 hourly data product models the Surface Net Solar Radiation (SNSR), which 

measures the amount of direct and diffuse shortwaves radiation (0.2-0.4 µm) at the earth’s 

surface and subtracted by the surface albedo. Radiative flux is measured at the top-of-

atmosphere (TOA) and takes into account both the absorption and scattering of radiance within 

the atmosphere due to clouds, aerosols, and atmospheric gases. All modelled SNSR data are 

measured in joules per square meter (J m-2) (Muñoz, 2019). Solar radiation is an important 

component of algal growth and influences water temperature/stratification.  

3.2.2.3 Surface Runoff (SR) 

The ERA5 hourly data product models surface runoff as the water flux that exceeds the 

infiltration rate using both the Tiled ECMWF Scheme for Surface Exchanges over Land 
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(TESSEL) and the Hydrology TESSEL (HTESSEL) models. Runoff is calculated for up to six 

surface classes (bare, low/high vegetation, intercepted water, and shaded/exposed snow) and 

two water classes (open/frozen water), with four vertically stacked soil classes, whose depths 

are approximated by geometric relation. The model includes a soil heat budget (using Fourier 

diffusion law) and takes into account soil water melt/freeze up, where the top layer is a net 

ground heat flux and the bottom a zero-flux. The model determines the point of saturation, 

whereby any excess water (via rainfall) is mobilized either through infiltration or surface runoff 

(Balsamo et al., 2009). Vegetation is characterized using the Biosphere-atmosphere Transfer 

Scheme (BATS) model, which classifies land surface biomes and provides vegetation 

characteristics (high or low) and area fraction (high and low) (Balsamo et al., 2009; ECMWF, 

2016). Surface runoff is measured in meters (m) and represents the mean over a grid square. 

This product does not indicate mobilization or directionality of the runoff. Surface runoff is an 

important component of how much terrestrial nutrient export within the watershed. 

3.2.2.4 Subsurface Runoff (SSR) 

The ERA5 hourly data product models the subsurface runoff as the portion of water 

that infiltrates the soil column using the TESSEL and HTESSEL models. The model utilizes 

Darcy’s law to calculate subsurface water flux and calculates the soil water equation via the 

four-layer soil discretization plus the heat budget equation (Balsamo et al., 2009). The top 

boundary of the subsurface runoff is the infiltration rate/surface evaporation, while the bottom 

boundary assumes free drainage, and all layers in-between exhibit water sinks via root 

extraction over vegetated regions (Balsamo et al., 2009). All subsequent equations are 

processes are calculated in the same way as surface runoff as described in section 1.5.6. 

Subsurface runoff is measured in meters (m) and represents the mean over a grid square. This 

product does not indicate mobilization or directionality of the runoff. Subsurface runoff is an 

important component that determines the amount freshwater export and subsurface nutrient 

mobilization. 
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3.2.2.5 10m U & V Wind Components (WS) 

The ERA5 hourly data product models both the Eastward (U) and Northward (V) 

‘neutral’ wind speeds. Wind speeds models incorporate surface roughness for inhomogeneous 

terrain through the introduction of ‘exposure correction’. This correction metric makes use of 

the blending height and roughness length for varying surface conditions (low and high 

vegetation, buildings, etc.) (ECMWF, 2016). Neutral wind speeds assume the air is stable and 

stratified, thereby providing slower speeds than real conditions during stable air masses and 

higher than real conditions during unstable air masses. Wind speeds are measured in meters 

per second (m s-1) at 10 m above the earth’s surface. Wind speed is an important metric in the 

lateral mobilization of algae and promotes lake mixing in shallow waters.  

3.2.2.6 Lake Mix-Layer Depth (LMLD) 

The ERA5 hourly data product models the depth at which freshwater bodies have a 

near uniform temperature gradient with depth (from the surface) and is therefore well mixed. 

Therefore, the model indicates two layers, the upper is the mixing layer and the lower is the 

thermocline (Muñoz, 2019). The mixing layer depth is modelled through the use of the FLake 

model, which is done through the analysis of the lake temperature profile, wind speed, 

humidity, precipitation, and both long- and shortwave radiation (Betts et al., 2020). The LMLD 

is measured in meters (m) and is important in determining the duration of lake mixing events 

and subsequent redox potential of benthic nutrients.   

3.2.2.7 2m Air Temperatures (T2m) 

The ERA5 2-m air temperature (T2m) represents the temperature (K) of the air as it is 

2 m above the earth’s surface. This product takes into account various atmospheric conditions 

and is calculated by interpolating the Earth’s surface with the lowest level of the H-TESSEL 

model (ECMWF, 2016). 
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3.3 Conclusion 

Algal biomass dynamics remain difficult to identify due to the sparsity of data with 

traditional in situ methods, water sampling expenses, and the remote location/quantity of lakes. 

The ESA CCI Lakes+ data provides daily surface water chl-a concentrations for thousands of 

lakes at a 1km grid, along with LSWT and LIC. This data is utilized in the following chapters 

to explore algal biomass dynamics as they relate to lake physical and atmospheric forcings 

change over time. 

 Chapter 4 utilizes the LWLR product to calculate seasonal and annual mean/max chl-

a concentrations, peak chl-a timings, and establish lake specific algal biomass anomalies. The 

LSWT product was used to calculate seasonal and annual mean/max LSWTs, peak LSWT 

timings, and LSWT anomalies. Finally, The LIC product can be used to identify lake ice on/off 

timings and lake ice duration. Such derived LSWT and LIC data from the ESA project can be 

used to determine the role LIC plays in the observed seasonal and annual algal biomass trends 

and variability over the past 19 years. LIC is an important factor for ice forming lakes and their 

phenology, potentially affecting algal community structures, the timing of nutrient availability, 

stratification, mixing timings, and DO (Rumyantseva et al., 2019). LSWT is widely regarded 

as on of the most important variables in algal growth, directly impacting productivity (Paerl & 

Otten, 2013; Borowitzka et al., 2016; Gobler, 2020).  

The ESA CCI data provides complete LWLR, LSWT and LIC data for all lakes as 

established in section 3.1, providing an opportunity for identifying the trends and variability 

for each lake and their subsequent basins. These data can be further used to determine if LIC 

is an important predictor for annual and seasonal algal biomasses, as seen in chapter 5, using 

various machine learning techniques as seen in section 2.4.5.  

The ERA5 data allows for an expansion of analysis beyond LIC, to other lake physical 

and atmospheric variables, all of which are impacted by climate change, as explored in chapter 

6. Such products provide daily observations of all variables, allowing for comprehensive 

network analysis to determine how these variables interact while changing over time using a 

DGBN as seen in section 2.4.7.3. The variables used impact algae in different ways: T2m and 
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SNSR impacts algal productivity (Paerl & Huisman, 2008), PPT, SR and SSR act as vectors 

for external nutrient mobilization and lake flushing (Coffey et al., 2019), LMLD indicates the 

level of mixing occurring within the lake water column, affecting nutrient availability and 

community compositions (Salmaso, 2010), while WS can act as a disruptor of surface algae 

and can initiate mixing in shallower waters (Huang et al 2016; Zhou et al 2021). The temporal 

resolution of the ESA CCI Lakes+ and the ERA5-Land data allows for an identification of 

temporal lag effects between these variables and the algal biomass response at as fine as the 

daily scale.  

The impacts of lake physical variables and atmospheric forcings on algal biomass 

dynamics remain relatively unknown, where remote sensing technologies improve data 

availability and provide avenues for longer time series observational studies. The following 

chapters will explore these data products in detail, and identify trends, variances, predictive 

capacities and interaction effects between the predictor variables and algal biomasses, to better 

understand their dynamics and how they may change in a changing world.  

  



 

 59 

Chapter 4: Is Lake Ice a Driver of Trends and Variability of Algal Biomass 

in North American Great Lakes? 

4.1 Introduction 

It has been hypothesized that the perceived increase in global algal blooms 

(ABs)/biomass is attributed to climate change (Paerl & Huisman, 2008; Pick, 2016; Winter et 

al., 2011). The primary driver of AB formation in mid-latitude lakes is predominately 

attributed to anthropogenic eutrophication through intensive agriculture, reduction of natural 

wetlands/forested environments, increased phosphorus/nitrogen-rich waste waters, and 

dissemination of invasive species (Mitsch, 2017; Waters et al., 2021). Recent studies, however, 

have indicated that changes in global climate provide favorable conditions for AB formation 

and biomass growth (Wells et al., 2015; Trainer et al., 2020), even for remote mid (30°N - 

60°N) to high (>60°N) latitude lake systems (Ayala-Borda et al., 2021; Favot et al., 2019). 

The observed and projected increase in air and water temperatures (Komatsu et al., 2007; 

O’Reilly et al., 2015; Filatov et al., 2019; Niedrist et al., 2018; Woolway et al., 2019) are 

known to prolong the growing season (Adrian et al., 2016), improve algae growth rate and 

(predominately) increase spatial/temporal range of cyanobacteria (Deng et al., 2014; 

Borowitzka et al., 2016; Cross et al., 2015; Gobler, 2020). Furthermore, increasing global 

temperature increases thermal stratification rates (Ficke et al., 2007; Woolway et al., 2020), 

which fuels anoxia (Nolan et al., 2019) and provides a potential increase in cyanobacterial 

toxicity (Lürling et al., 2017), both of which can lead to subsequent suppression of 

zooplankton, limiting grazing pressures (Lamb et al., 2019; Caron & Hutchins, 2012). Factors 

such as the observed increasing frequency of short but more intense rainfall events (Min et al., 

2011; Groisman et al., 2004), increase nutrient runoff during the growing season (Dalton et 

al., 2018; Jeppenson et al., 2011), and when followed by stratification due to drought/heatwave 

conditions, have been known to significantly increase the probability of AB formation 

(Reichwaldt & Ghadouani, 2012). The impact of these climatic parameters on AB formation 

during the growing season is well documented in a variety of lab (Hennon & Dyhrman, 2020; 

Griffith & Gobbler, 2020), mesocosm (Trochine et al., 2010; Moss et al., 2003; 2004) and 
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small-scale (spatial/temporal) observational studies (Vilhena et al., 2010; Qin et al., 2021). 

However, the impact of overwintering climate conditions on ABs and algal biomass formation 

is less understood due to logistical challenges and the assumption of ecological dormancy 

(Block et al., 2019; Hampton et al., 2015).   

Winter air temperatures have increased at a higher rate compared to any other season, 

with high latitudes experiencing the highest rate of change (Zhang et al., 2019a). As a result, 

there has been an observed decrease in ice duration for mid-high latitude lakes by 106 days per 

century (1995 – 2016), six times what was observed in earlier periods (1846 – 1995) (Sharma 

et al., 2021). Ice cover has wide-ranging impacts on lake ecosystems: controlling lake mixing 

(Pilla & Williamson, 2021), the timing of internal loading (Jewson et al., 2009), the duration 

of the growing season (Adrian et al., 2016), and the succession of algal community 

compositions (De Senerpont Domis et al., 2007; Salmaso et al., 2018; Blenckner et al., 2007). 

Additionally, snow or ice composition can affect the amount of light available under the ice, 

resulting in under-ice ABs observed in Lake Baikal (Hampton et al., 2015; Kalinowska et al., 

2019). Despite the control that the presence of ice cover has on many biotic and abiotic factors 

within a lake, there is a lack of observational studies assessing its importance on algal biomass 

and AB formation. A significant limiting factor in the observational analysis of lake ice 

phenology and algal biomass interactions is the lack of in-situ measurements. However, remote 

sensing technologies can use historical satellite image archives to provide comprehensive time-

series analysis of large lakes worldwide. Comprehensive data on ice and algal biomass can 

provide insight into their trends and variability over time and how they may explain their 

variance. 

This study uses three satellite-derived thematic products generated by the European 

Space Agency (ESA) Climate Change Initiative (CCI) Lakes project (Carrea et al., 2022; 

Carrea et al., 2023): lake water leaving reflectance chlorophyll-a (LWLR chl-a; proxy of algal 

biomass), lake ice cover (LIC),  and lake surface water temperature (LSWT) for five North 

American Great Lakes along a latitudinal transect (North to South); Great Bear Lake (GBL), 

Great Slave Lake (GSL), Lake Athabasca (LA), Lake Winnipeg (LW) and Lake Erie (LE). The 
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dataset (version 2.0.0; Carrea et al., 2022) is used to construct a 19-year time series (2002-

2020) of annual LIC parameters (ice-on (ON), ice-off (OF) and ice duration (DR)), annual and 

seasonal (spring, summer, and fall) LWLR algal biomass parameters (mean and maximum chl-

a (MC and XC), mean abnormally high chl-a (a proxy for ABs, denoting relative anomaly lake 

chl-a concentrations; BC), abnormally high chl-a days (BD) and peak chl-a (DOY), and annual 

and seasonal LSWT parameters (mean and maximum LSWT (MT and XT), LSWT anomaly 

days (AT) and peak LSWT DOY (PT)) for each lake and their basins (to account for spatial 

heterogeneity as a result of complex lake morphometry). These satellite-derived parameters 

will be used to achieve the following objectives: (1) assess short-term trends and variabilities 

in LIC, LSWT and algal biomass parameters from 2002 to 2020; and (2) assess the role of LIC 

and LSWT parameters in explaining the variance in algal biomass over time in a multivariate 

space using vector autoregression (VAR). Due to the control that LIC has on the timing of 

nutrient availability via internal loading (mobilized by mixing) (Huang et al., 2022) and the 

greater rate of change, it is anticipated that LIC is a significant driver of algal biomass trends 

for the remote Northern Lakes (NL; GBL, GSL, and LA) (Feiner et al., 2022) compared to the 

more anthropogenically developed Southern lake regions (LW and LE). Furthermore, LIC is 

expected to have a greater impact on algal biomass trends during spring due to earlier light 

availability and nutrient release, compared to later in the year when temperature and external 

loading play a more critical role.  

4.2 Study Area 

 Five North American Great Lakes were selected to determine the trends and variability 

in the chl-a parameters along a latitudinal transect (North to South): Great Bear Lake (GBL), 

Great Slave Lake (GSL), Lake Athabasca (LA), Lake Winnipeg (LW), and Lake Erie (LE). 

Table 4.1 provides a summary of the general characteristics of the lakes.  

Table 4.1. Summary of the study lakes morphometry and their sources. Mean depth encompasses the entire lake (including 

all basins), residence time indicates the duration in which water remains within the lake, major inflow and outflow rivers 
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represent the sources where the majority of water enters and exits the lake, and basins indicate regions within a lake where 

there is minimal hydrological connectivity to other regions within the same lake (often a result of lake morphometry).  

Lake 

Mean 

Depth 

(m) 

Surface 

Area 

(km2) 

Residence 

Time (years) 

Main Inflow 

River(s) 

Main Outflow 

River(s) 
Basins 

Great Bear 

Lake 
~761,2 31,1531,2 ~1241 

▪ Johnny Hoe 

River3 

▪ Camsell River3 

▪ Great Bear 

River1 

▪ Central 

▪ South 

(McVicar 

Arm)1,3 

Great Slave 

Lake 
~882 28,4502 ~164,5 

▪ Slave River4,5 
▪ Mackenzie 

River4,5 

▪ North6,7 

▪ Central6,7 

▪ East6,7 

Lake 

Athabasca 
~208 7,7708 ~6* 

▪ Athabasca 

River9 

▪ Fond du Lac 

River9 

▪ MacFarlane 

River9 

▪ Rivière des 

Rochers9 
▪ NA 

Lake 

Winnipeg 
~1210 23,75010 ~3-510 

▪ Winnipeg 

River10 

▪ Saskatchewan 

River10 

▪ Red River10 

▪ Dauphine 

River10 

▪ Nelson 

River11 

▪ North10 

▪ South10 

Lake Erie ~1912 25,74412 ~2.612 
▪ Detroit River12 

▪ Niagara 

River13 

▪ Welland 

Canal13 

▪ West12 

▪ Central12 

▪ East12 

(1) Johnson, 1975; (2) Rouse et al., 2008; (3) Chavarie et al., 2015; (4) Evans, 2000; (5) Gibson et al., 2006; (6) Avalon 

Rare Metals Inc, 2011; (7) Shertzer et al., 2008; (8) Mitchell & Prepas, 1990; (9) Rasouli et al., 2013 (10) Government of 

Manitoba, 2021; (11) Warrack et al., 2017; (12) EPA, 2020; (13) Docker er al., 2021. 

*Calculated by dividing the total volume of Lake Athabasca by total inflow (Bennett et al., 1973) 

 

The surrounding watersheds of the Northern Lakes (NL; GBL, GSL and LA) are 

relatively undisturbed, with the settlement of Délı̨nę as the largest populated area near GBL; 

Yellowknife, Fort Providence, and Fort Resolution near GSL; and Fort Chipewyan near LA 

(Statistics Canada, 2016; Schindler, 2001). GSL was impacted by the construction of Bennett 

dam in 1967, affecting seasonal flows, sedimentation, and winter nutrient export (Rühland et 

al., 2023). However, all NLs are impacted by mining operations, such as radium and uranium 

mining in the GBL watershed (Muir et al., 2012), gold mining in GSL (Chételat et al., 2019) 

and LA receiving oilsands runoff via the Athabasca River (Bill et al., 1994; Schindler, 2001; 

Timoney, 2008; Parlee & D’Souza, 2019). Of the NLs, GSL and LA exhibit dimictic mixing 

cycles (Leconte et al., 2008; Rouse et al., 2008), while GBL is traditionally cold monomictic; 
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however, it is anticipated that some regions of the lake are transitioning/currently dimictic 

(Rouse et al., 2008; Rao et al., 2011). The NLs are typically oligotrophic, with GSL 

experiencing some cyanobacterial ABs in Yellowknife Bay, and indigenous groups have 

reported increased algal growth in LA (Pick, 2016; Parlee & D’Souza, 2019). 

The surrounding watersheds of the Southern Lakes (SL; LW and LE) experience 

significant anthropogenic development, including agriculture, urbanization, and industrial 

development (Government of Manitoba, 2021; EPA, 2020) (Figure 4.1). Of the SLs, LW and 

the west basin of LE exhibit a polymictic mixing cycle, where mixing is triggered by 

wind/precipitation events, while the Central and Eastern basins of LE exhibit a dimictic mixing 

cycle (Nürnberg & LaZerte, 2016; Karatayev et al., 2021). Both LW and LE have experienced 

significant ABs over the past 20 years, with the majority occurring in the north basin of LW 

and the eutrophic west basin of LE (Budd et al., 2001; LWIC, 2005; Wassenaar et al., 2012; 

Binding et al., 2018; Binding et al., 2019). Of the selected lakes, only LE experiences 

intermittent ice cover (Cai et al., 2022), with frequent breaks during the ice season, while GBL, 

GSL, LA, and LW all experience a complete ice cover annually (Howell et al., 2009; Ziyad et 

al., 2020). 
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Figure 4.1. Map of study lakes and their corresponding basins and rivers. Land cover delineation provided by ESA CCI 

Landcover (http://maps.elie.ucl.ac.be/CCI/viewer/download.php). 

4.3 Data Sources 

 Complete annual and seasonal time series (2002-2020) were prepared using a 

multivariate daily satellite data product available from the European Space Agency’s (ESA) 

Climate Change Initiative (CCI) Lakes project (Carrea et al., 2022). The ESA CCI Lakes 

product is a harmonized dataset that includes various daily metrics for over 2000 of the largest 

lakes globally georeferenced on a 1/120 degree latitude-longitude (ca. 1 km) grid (Carrea et 

al., 2023). For the purposes of this study, Lake Water Leaving Reflectance (LWLR; satellite-

derived chl-a product), Lake Ice Cover (LIC), and Lake Surface Water Temperature (LSWT) 

http://maps.elie.ucl.ac.be/CCI/viewer/download.php
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are used. Version 2.0.0 of the LWLR thematic product provides chl-a (mg m-3) retrievals based 

on MERIS (2002-2011) and Sentinel-3A OLCI (2016-2020) satellite data, with MODIS (2012-

2015) algorithms bridging the data availability gap.  

The LWLR product makes use of the Lake Bio-optical Measurement and Matchup Data 

for Remote Sensing (LIMNADES) database which is maintained by the University of Stirling 

and the GloboLakes project (https://limnades.stir.ac.uk). The in-situ observations were used to 

construct empirical, bio-optical and ANN retrieval algorithms combined with dynamic pixel 

classification of varying optical water types (Carrea et al., 2022). The LWLR product does 

present some limitations, such as the impact of turbid water conditions increasing retrieved 

algal biomass and potential bias between sensors. The LIC thematic product provides lake 

cover classes (open water, ice, cloud and ‘bad’ (unusable) data). It is generated using MODIS 

Terra/Aqua data processed using a random forest (RF) algorithm (Wu et al., 2021). High 

overall classification accuracy (>95%) has been achieved with the RF algorithm in both spatial 

(global set of lakes) and temporal (several ice seasons) transferability assessments (Wu et al., 

2021). However, it is important to note that the presence of clouds as well as extensive cloud 

cover periods and low solar illumination angles (> 85o), particularly during the fall freeze-up 

at high latitudes, introduce classification errors and limit the retrieval of open water and ice 

cover for several days of the year.  (Carrera et al., 2022). The LSWT product provides surface 

water temperature measurements (Kelvin) derived from MODIS, Sentinel-3A/B SLSTR and 

ERA5 data utilizing a geophysical inversion technique with various modelled priors (Carrea et 

al., 2023). The limitations of the LSWT product include issues with water pixel identification, 

static emissivity assumptions, and sub-optimal lake-satellite geometries. To identify seasonal 

threshold timings for the study period (2002-2020), the ERA5-Land hourly  2-m air 

temperature (Kelvin) product provided by the European Centre for Medium-Range Weather 

Forecasts (ECMWF) was used (Muñoz, 2019). Given the known limitations of the current 

version of the CCI Lakes dataset, the data was preprocessed to mitigate outliers and fill missing 

data gaps, such as eliminating pixels with high uncertainty, and interpolating missing values 

temporally.  

https://limnades.stir.ac.uk/
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4.4 Methods 

To identify features such as peak chl-a concentrations and ON/OF timings, missing 

data must be filled, and therefore preprocessing was necessary to construct a complete time 

series (2002-2020) of LIC, LSWT, and algal biomass. R software version 4.3.1 was used to 

develop five algal biomass parameters (mean chl-a (MC), max chl-a (XC), mean abnormal chl-

a  (BC), abnormal chl-a days (BD) and peak chl-a DOY (PC)), three LIC parameters (ice on 

(ON), ice off (OF), and ice duration (DR)), and four LSWT parameters (mean LSWT (MT), 

max LSWT (XT), anomaly LSWT (AT) and peak LSWT DOY (PT)) . Daily rasters were 

stacked via water years from 1 September 2001 to 31 August 2020 and masked to daily pixel 

quality flags (LIC data product flags pixels as “bad” or “cloud”, LSWT product flags 

uncertainty by the “quality_level” band, where a pixel value of 1 is not recommended for use, 

2-3 are for use at the user’s discretion, and 4-5 are recommended for use), which converted the 

corresponding pixel values to “NA”. Each stacked pixel was used to represent a time series of 

6,940 days, where missing data values (flagged as NA) were temporally interpolated linearly. 

Annual LIC is determined through water years (1 September to 31 August) to cover the start 

(ON) and end (OF) of each ice season. Algal biomass (chl-a concentrations) and LSWT were 

calculated annually by Julian calendar years to cover the beginning (post OF) and end (pre 

ON) of the growing season.  

Seasonal data were aggregated within three seasons: spring, summer, and fall. Seasonal 

date thresholds differ between lakes due to significant latitudinal and geographic distances. To 

determine seasonal thresholds, the hourly ERA5 2-m air temperature is used to calculate a 

daily mean, which was then used to calculate the spatial mean within the lake boundary. The 

daily spatial 2-m air temperature means were then used to calculate the DOY mean for the 

study period (2002-2020). Mean DOY temperatures ≤ 273.15 K were manually classified as 

the winter season and excluded from any analysis of LSWT and algal biomass. The remaining 

days were entered into an unsupervised univariate k-means classifier to determine the threshold 

between two clusters. Cluster 1 represents two classes; spring and fall, where spring is defined 
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as the dates after winter (air temperatures > 273.15 K) but before cluster 2 (summer), and fall 

is defined as the dates after cluster 2 but before winter.  

Five algal biomass parameters were calculated for the interpolated daily algal biomass 

rasters: MC, XC, BC, BD, and PC. Since ABs are unlikely to occur in NLs, abnormal chl-a is 

used as a proxy. The interquartile range (IQR) and third quartile values (Q3) were calculated 

using a natural log transform of the chl-a to eliminate outliers due to potential retrieval error 

(e.g., chl-a concentrations exceeding 500μg L-1 in GBL). Retrieval error may be a result of 

mixed pixelation, turbid water conditions, LIC presence, and sun glint. The following equation 

was used to establish the threshold for determining outliers due to retrieval error: 𝑂 = 𝑄3 +

(1.5 ∗ 𝐼𝑄𝑅) where O is the outlier threshold. Natural log scaled chl-a concentration pixels that 

exceed this threshold were classified as an outlier and reclassified as “NA”. The 

annual/seasonal MC and XC were calculated per pixel. The PC represents the DOY where chl-

a was highest for each pixel. To determine BC, a threshold was calculated using a z-score (𝑍 =

(𝑥 − 𝜇)/𝜎), where the mean (𝜇) and 𝜎 were calculated from the entire spatial extent of the 

lake over the entire study period (2002 – 2020). The chl-a concentrations were also scaled with 

a natural log to better represent a normal distribution. Any pixel with a z-score of >2 was 

classified as an abnormal chl-a concentration (BC). Annual/seasonal BC represents the average 

of only abnormal values for that given lake and year/season at each pixel. If no chl-a 

concentration exceeds a z-score of 2 at a given pixel position at any point in the year/season, 

it is classified as “NA” and excluded from spatial mean calculations, unlike XC, which identify 

max chl-a concentrations for every pixel. This means that we are only looking at pixels/regions 

of the lake where chl-a concentrations are in the highest of the distribution, typically referring 

to the most productive waters of each lake. The thresholds are calculated lake wide and not at 

the basin level. To determine the BD, chl-a concentrations that exceeded the BC threshold 

were reclassified as value of 1, while those below the threshold were reclassified as 0. The 

annual/seasonal sum was calculated at each pixel to determine the number of days above the 

threshold.  
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The LIC data product was used to determine each lake's annual ON, OF, and DR per 

pixel. The ON/OF and DR were only calculated annually, since these parameters occur only 

once a year during the winter. To determine the lake ON/OF date, an annual stack of daily LIC 

rasters was created by water year (1 September to 31 August). The raster was reclassified so 

that all pixels labelled 3 (“cloud”) and 4 (“bad”) were converted to a “NA” value. At each 

pixel, the stacked raster (1:365 or 1:366 per leap year) was linearly interpolated to provide a 

value between 1 (water) and 2 (ice) where observations were not available. As each raster stack 

begins on 1 September (before ice formation), the ON date begins earlier in the stack compared 

to the OF. The ON date was calculated by determining the position within each stack where 

the ice pixels (values > 1) persisted for at least 14 days. The OF date was calculated with the 

same process; however, the raster stack was inverted, and the position is corrected by 

subtracting the length of the raster stack from the retrieved position. The DR was determined 

by calculating the difference between the OF and the ON dates for each pixel.  

A total of four annual/seasonal LSWT parameters were calculated from the interpolated 

daily LSWT rasters: MT, XT, PT, and AT. Pixels flagged with an uncertainty of ≤ 3 were 

reclassified as NA values, where the missing observations were then linearly interpolated 

temporally for each pixel. Mean and maximum annual/seasonal LSWTs were calculated per 

pixel. Peak LSWT DOY represents the DOY where each pixel's LSWT values were highest. 

To determine LSWT anomaly days, a LSWT threshold was calculated using the sum of the 

median (𝜇) and standard deviation (𝜎) LSWT across the entire lake/basin from 2002-2020. 

Any daily pixel that exceeded the threshold was converted to a 1, while those below the 

threshold were converted to 0. The per pixel sum was then calculated annually/seasonally, 

where each pixel represented the number of days in which the LSWT exceeded the lake-specific 

threshold.  

Global trends in the increase in algal biomass and frequency and severity of AB have 

been observed to be not accurate but rather a result of increased surveillance in reporting 

(Hallegraeff et al., 2021). It was, therefore, imperative to determine whether monotonic trends 

existed within each study lake before any meaningful conclusions could be drawn regarding 
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the relationship between LIC, LSWT and algal biomass parameters. To identify monotonic 

trends, each lake was separated by basin and season, where a mean pixel value was used for 

each year, for a total of 19 values (2002-2020) for each lake/basin/season. A Mann-Kendall 

test (R package ‘Kendall’ by Mcleod, 2005) was used to determine if a significant trend was 

present (p-value < 0.1), while a Theil-Sen regression (R package ‘RobustLinearReg’ by 

Hurtado, 2020) was used between each parameter and year to calculate the slope (β) for the 

direction and magnitude of the trend, and the standard error (se) for the variability. The se 

indicates how much variance there is between true and predicted values of the regression, 

where the higher the se, the greater the variability. Heteroskedasticity in linear regression 

residuals was calculated using the Breusch-Pagan test in r (‘lmtest’ package), where a p-value 

< 0.1 indicated a change in the magnitude of variance over time.  

Vector autoregression (VAR) was employed to determine the interaction of LIC and 

LSWT with algal biomass over time. VAR models have been used in the past for AB modelling 

(Liu et al., 2007), allowing for simple and flexible multivariate time series modelling, 

incorporating past and current observations (Cruz et al., 2021). VAR is similar to multiple 

linear regression (MLR) in that it is defined by the linear relationships between each predictor 

variable and the response variable, where each predictor is defined by a slope coefficient, with 

all parameters sharing a common intercept. Additionally, VAR is an extension of a univariate 

autoregression model, in which a linear model of each variable over time is regressed to one 

or more prior observations in the time series. VAR adds the vector of time and the lagged time 

of each predictor variable in multiple regressions. The lag component indicates that a prior 

observation may be related to the subsequent observations, whereby LIC or LSWT measured 

at a prior interval may impact future algal biomass parameters, not just those at the same time 

step. Chl-a concentrations observed in a lake will likely affect the prevalence of future chl-a 

concentrations (Bégin et al., 2020). Furthermore, legacy effects due to significant changes in 

climatic conditions have been observed in lakes and rivers, altering thermal regimes and 

affecting biomass (Kendrick et al., 2018; Woolway & Merchant, 2018). A standard VAR is 

calculated using the following equation: 
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 𝑦𝑡 =  𝐴1𝑦𝑡−1 + ⋯ + 𝐴𝑝𝑦𝑡−𝑝 + 𝑢𝑡 (4.1) 

where 𝑦𝑡 represents a set of 𝐾 endogenous variables, 𝐴𝑖 is a coefficient (𝐾 × 𝐾) matrix 

(where 𝑖 = 1 … 𝑝), and 𝑢𝑡 is a k-dimensional vector of the 𝑡 residuals where the current time 

step depends on the previous time step, plus a white noise error metric (Schlabing et al., 2014; 

Pfaff, 2008). The traditional VAR assumes all input parameters represent a stationary process; 

however, given the nature of the research question, non-stationary processes were expected 

due to anthropogenic climate change. Deterministic regressors 𝐷𝑡  were included in the VAR, 

where both the intercept and trend of the time series were added to address issues of non-

stationarity, resulting in a modified VAR as given in the following equation: 

 𝑦𝑡 =  𝐴1𝑦𝑡−1 + ⋯ + 𝐴𝑝𝑦𝑡−𝑝 + 𝐷𝑡 + 𝑢𝑡 (4.2) 

This study utilized the R package ‘vars’ (Pfaff, 2008) for model calculations. A VAR 

is sensitive to over-parameterization when there is a low number of observations and a high 

number of parameters (Nicholson et al., 2017). Lag tests were performed with all potential 

combinations of LIC and LSWT parameters for each biomass parameter. The lag test with the 

highest mean adjusted r2, and the lowest mean Bayesian Information Criteria (BIC) and 

standard error across all combinations of parameters was selected for use. A MLR was used to 

determine if a simplified regression without a lag order provideed a similar or superior 

explanation of variance. Once the lag order was selected, the model performance and error 

metrics were used to determine which LIC and LSWT parameters provided the best fit over 

the lagged time series (Table 4.2). 

Table 4.2. Summary of performance and error metrics for VAR models were Adj. r2 = corrected (adjusted) coefficient of 

determination, AICc = Akaike information criterion second order, BIC = Bayesian Information Criteria, fpe = Final 

Prediction Error, and se = Standard error. 

Parameter Equation Variables Measure 
EQ 

(#) 

Adj. r2 1 − [
(1 − 𝑟2) × (𝑛 − 1)

(𝑛 − 𝑘 − 𝑙)
] 

𝑛 = sample size, 𝑟2 = 

coefficient of determination, 𝑘 

= number of independent 

variables 

Corrected (adjusted) 

coefficient of 

determination (r2) to 

determine model 

accuracy 

4.3 
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Parameter Equation Variables Measure 
EQ 

(#) 

AICc 

−2(𝑙(𝜃)) + 2𝑘

+ [
2𝑘(𝑘 + 1)

(𝑛 − 𝑘 − 1)
] 

𝑛 = sample size, 𝑘 = number of 

model parameters, 𝑙(𝜃) = the 

log-likelihood 

Akaike information 

criterion (AIC) second 

order for model quality. 

Useful for datasets with 

small sample size 

4.4 

BIC −2 × 𝑙(𝜃) + 𝑘 × log (𝑛) 𝑛 = sample size, 𝑘 = number of 

model parameters 

Bayesian Information 

Criteria (BIC) for model 

quality 

4.5 

fpe (
𝑇 + 𝑛∗

𝑇 − 𝑛∗)
𝑘

det (�̃�𝑢(𝑛)) 

𝑇 = the time step, 𝑛∗= total 

number of parameters in each 

equation, �̃�𝑢= sum of residuals 

and white noise of the lag order 

(𝑛) 

Final Prediction Error at 

the given lag-timestep 

interval (difference 

between actual and 

forecasted values) 

4.6 

se √
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

𝑑𝑓
 

𝑦𝑖 = the observed value, 𝑦�̂� = 

the predicted value, 𝑑𝑓 = 

degrees of freedom 

Standard error of the 

residuals indicating 

model fit and variance 

4.7 

 

To assess the relative importance of LIC compared to LSWT parameters in explaining 

the variance of the change in algal biomass over time, performance metrics across all models 

were aggregated into three categories for each lake, basin, and season: (1) models where only 

LIC parameters were included; (2) models where only LSWT parameters were included, and 

(3) models where at least one LIC and one LSWT parameter was included. To determine which 

model and, subsequently, which input predictor parameters provided the best fit for each algal 

biomass parameter, a ranking system was devised using all the performance metrics outlined 

in Table 4.2. Each model performance metric was ranked for all lakes, basins, and seasons, 

where the lower the rank value, the greater the comparative performance of the model. The 

model with the lowest mean rank value across all performance metrics was selected as the best-

performing. Individual parameter performance was determined by the mean rank when the 

parameter was included in the model. Performance metrics were also aggregated into two lake 

groups; Northern (GBL, GSL and LA) and Southern (LW and LE), to identify differences in 

parameter performance.  

The residuals derived from the VAR models provided insight into the variability of the 

response of algal biomass to the LIC and LSWT parameters. Residuals showing greater 
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fluctuation were indicative of increasing variability in the algal biomass parameter, while the 

se quantified the magnitude. All input parameters were rescaled by their mean and standard 

deviation to improve comparisons between parameters and lakes/basins. 

4.5 Results 

4.5.1 Seasonal Threshold Identification 

 The data are aggregated into seasonal measures to compare the annual LIC parameters 

with the daily algal biomass measurements. Each season was used to build its own time series 

from 2002-2020. Of the ERA5 mean lake-wide 2-m air temperature (2002-2020), the k-means 

classifier defined the seasonal (spring, summer, fall) thresholds, as seen in Table 4.3.  

Table 4.3. Delineated seasonal thresholds as defined by k-means from ERA5 2-m air temperature for comparison of LIC 

parameters to algal biomass measurements. 

Lake and Season 
Start 

DOY 
Start Date End DOY End Date 

GBL Spring 137 17 May 174 23 June 

GBL Summer 175 24 June 258 15 September 

GBL Fall 259 16 September 286 13 October 

GSL Spring 130 10 May 173 22 June 

GSL Summer 174 23 June 259 16 September 

GSL Fall 260 17 September 300 27 October 

LA Spring 120 30 April 164 13 June 

LA Summer 165 14 June 257 14 September 

LA Fall 258 15 September 302 29 October 

LW Spring 108 18 April 156 5 June 

LW Summer 157 6 June 270 27 September 

LW Fall 271 28 September 310 6 November 

LE Spring 72 13 March 136 16 May 

LE Summer 137 17 May 287 14 October 

LE Fall 288 15 October 366 1 January 

 

 For GBL, the seasonal duration lasts 37, 83 and 27 days for spring, summer, and fall, 

respectively, with GSL lasting 43, 85, and 40 days, LA lasting 44, 92, and 44 days, LW lasting 

48, 113, and 39 days, and LE lasting 64, 150 and 78 days. These seasonal thresholds define the 
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timeframe where lake/basin-wide means are derived for all parameters for each year of 

analysis. 

4.5.2 Trends of Timeseries 

Theil-Sen slopes (Figure 4.2) of each annual and seasonal mean algal biomass 

parameter (MC, XC, BC, BD and PC), LIC parameter (ON, OF and DR) and LSWT parameter 

(MT, XT, AT and PT) were used to derive the β, while a Mann-Kendall (MK) test was used to 

determine significance (p < 0.1) (Figures 4.3 for algal biomass time series, 4.4 for LSWT time 

series and 4.5 for LIC time series). The number of tests is based on the number of lakes and 

basins (5 lakes, 10 sub-basins), and the number of seasons (3 season, 1 annual). The total 

number of tests across all 15 lakes/basins and all 4 seasons for each parameter is 60. A total of 

300 MK tests were conducted (15 lakes/basins, 4 season, and 5 parameters) for algal biomass 

parameters, 240 MK tests (15 lakes/basins, 4 season, and 4 parameters) for LSWT parameters, 

and 45 MK tests (15 lakes/basins, 1 season, and 5 parameters) for LIC parameters. 

For MC, XC and BC parameters, across all seasons and lakes basins, 63.33% (114 out 

of 180 total MK tests) returned significant trends, where 95.61% (109/114 MK tests) were 

positive (increasing) (β = 0.01 – 0.75 μg L-1 yr-1). The spring season shows the greatest 

difference in MC, XC and BC trends between NL and SL, where NL returned a mean β of 0.16 

μg L-1 yr-1 compared to -0.05 μg L-1 yr-1 of SL. While most trends were positive, LW 

consistently returned a (decreasing) trend for BC, where 16.67% (2/12 MK tests), were 

significant. For BD and PC parameters, across all seasons and lakes, only 20.00% (24/120 MK 

tests) returned significant trends, where 45.83% (11/24 MK tests) were positive (β = 0.20 – 

2.50 days yr-1) and 54.17% (13/24 MK tests) were negative (β = -0.25 – -1.93 days yr-1). 

Summertime BD returned a higher trend compared to any other season. The trend of PC varies 

between lakes and seasons, where PC is occurring earlier in the Fall for NL and later for SL, 

while the inverse is true for the summer (figure 4.2). Map examples of MC can be found in 

supplementary figure B.7.1. 
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For ON, OF and DR parameters, across all lakes, only 17.78% (8/45 MK tests) returned 

significant trends, of which, 100% were negative (decreasing) (-0.88 – -1.08 Days yr-1). The 

remaining 82.22% of tests across all LIC parameters and lakes were not significant, exhibiting 

little change, either positive (increasing) or negative (decreasing). Of the non-significant 

trends, little change was found for ON in NL, however most SL returned a negative 

(decreasing) trend. Of the non-significant trends, the OF and DR were negative (decreasing) 

for all lakes with the exception of LW. 

For MT and XT parameters, across all seasons and lakes, only 11.67% (14/120 MK 

tests) returned significant trends, where 85.71% (12/14 MK tests) were positive (0.03 – 0.14 

K yr-1). Both summer and fall show an increase in MT and XT across all lakes, with the 

exception of LW. However, Spring MT is highly variable across all lakes, while Spring XT 

shows a general increase for NL, and a decrease for SL. Annual MT show a general decreasing 

trend for NL and an increasing trend for SL, while annual XT is increasing for all lakes. For 

AT and PT parameters, across all season and lakes, only 9.17% (11/120 MK tests) returned 

significant trends, where 27.27% (3/11 MK tests) were positive (0.20 – 0.30 Days yr-1) and 

73.73% (8/11 MK tests) were negative (-0.30 – -0.67 Days yr-1). For complete results, refer to 

supplementary tables B.7.1 to B.7.4. 
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Figure 4.2. Theil-Sen slope calculated for 15 lake/basins at an annual/seasonal scale for 12 parameters. The presence of an 

“a” indicates a significant (p < 0.1) time-series as calculated by a Mann-Kendall test. GBL = Great Bear Lake, GSL = Great 

Slave Lake, LA = Lake Athabasca, LW = Lake Winnipeg and LE = Lake Erie. MC = Mean Chl-a, XC = Max Chl-a, BC = 

Abnormal Chl-a, BD = Abnormal Chl-a Days, PC = Peak Chl-a DOY, MT = Mean LSWT, XT = Max LSWT, AT = 

Anomaly LSWT Days, PT = Peak LSWT DOY, ON = Ice On DOY, OF = Ice Off DOY and DR = Ice Duration. 
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Figure 4.3. Time series of lake/basin-wide averages of 5 annual/seasonal algal biomass parameters for 15 lakes/basins. GBL 

= Great Bear Lake, GSL = Great Slave Lake, LA = Lake Athabasca, LW = Lake Winnipeg and LE = Lake Erie. AB = All 

basins, CB = Central Basin, SB = South Basin, EB = East Basin, NB = North Basin, WB = West Basin. MC = Mean Chl-a, 

XC = Max Chl-a, BC = Abnormal Chl-a, BD = Abnormal Chl-a Days, and PC = Peak Chl-a DOY. All values are 

normalized to improve visualization across lakes/basins.  
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Figure 4.4. Time series of lake/basin-wide averages of 4 annual/seasonal LSWT parameters for 15 lakes/basins. GBL = 

Great Bear Lake, GSL = Great Slave Lake, LA = Lake Athabasca, LW = Lake Winnipeg and LE = Lake Erie. AB = All 

basins, CB = Central Basin, SB = South Basin, EB = East Basin, NB = North Basin, WB = West Basin. MT = Mean LSWT, 

XT = Max LSWT, AT = Anomaly LSWT Days, and PT = Peak LSWT DOY. All values are normalized to improve 

visualization across lakes/basins.  
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Figure 4.5. Time series of lake/basin-wide averages of 3 annual/seasonal LIC parameters for 15 lakes/basins. GBL = Great 

Bear Lake, GSL = Great Slave Lake, LA = Lake Athabasca, LW = Lake Winnipeg and LE = Lake Erie. AB = All basins, 

CB = Central Basin, SB = South Basin, EB = East Basin, NB = North Basin, WB = West Basin. ON = Ice On DOY, OF = 

Ice Off DOY and DR = Ice Duration. All values are normalized to improve visualization across lakes/basins.  

4.5.3 Variability of Timeseries 

The variance of each algal biomass, LSWT and LIC parameter differed between 

seasons and lakes, as measured by the se of a Theil-Sen test. Of the MC, XC and BC parameters, 

SL typically exhibited higher variance (𝑠�̃� = 1.96 𝜇𝑔 𝐿−1) compared to the NL (𝑠�̃� =

0.82 𝜇𝑔 𝐿−1) across all seasons and parameters. The fall and spring seasons showed higher 

variances for all lakes (𝑠�̃� = 2.02 𝜇𝑔 𝐿−1) compared to annual and summer (𝑠�̃� =

0.86 𝜇𝑔 𝐿−1) seasons for MC, XC and BC, with the exception of LW which returned high 

variance for all seasons. LE frequently had the lowest variance for MC, XC and BC, with the 

exception of the fall season. Of the BD and PC parameters, there was little difference between 

variances observed for NL (𝑠�̃� = 9.83 𝑑𝑎𝑦𝑠) and SL (𝑠�̃� = 7.78 𝑑𝑎𝑦𝑠), with the exception of 

LE EB which observed a significantly higher variance compared to all other lakes in the 

summer season. Of the MT and XT parameters, NL observed higher variance in the summer 
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season (𝑠�̃� = 1.00 𝐾) compared to the SL (𝑠�̃� = 0.71 𝐾). For XT, spring and fall seasons 

observed higher variance (𝑠�̃� = 1.41 𝐾) compared to the annual and summer seasons (𝑠�̃� =

0.99 𝐾). Of the AT and PT parameters, NL observed higher variance in the spring season 

(𝑠�̃� = 13.76 𝑑𝑎𝑦𝑠) compared to SL (𝑠�̃� = 3.81 𝑑𝑎𝑦𝑠), while annual and summer seasons 

observed higher variance for SL (𝑠�̃� = 16.52 𝑑𝑎𝑦𝑠) compared to NL (𝑠�̃� = 7.51 𝑑𝑎𝑦𝑠). The 

fall season for AT and PT returned the lowest variance with no significant differences between 

lakes. Of the LIC parameters, SL observed higher variance (𝑠�̃� = 21.13 𝑑𝑎𝑦𝑠) compared to 

the NL (𝑠�̃� = 8.71 𝑑𝑎𝑦𝑠), particularly for LE (Figure 4.6). 
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Figure 4.6. Theil-Sen standard error (se) calculated for 15 lake/basins at an annual/seasonal scale for 12 parameters. GBL = 

Great Bear Lake, GSL = Great Slave Lake, LA = Lake Athabasca, LW = Lake Winnipeg and LE = Lake Erie. MC = Mean 

Chl-a, XC = Max Chl-a, BC = Abnormal Chl-a, BD = Abnormal Chl-a Days, PC = Peak Chl-a DOY, MT = Mean LSWT, 

XT = Max LSWT, AT = Anomaly LSWT Days, PT = Peak LSWT DOY, ON = Ice On DOY, OF = Ice Off DOY and DR = 

Ice Duration. 
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4.5.4 Vector Autoregression Results 

 The VAR is used to determine how LSWT and LIC explained the trends and variability 

of the algal biomass response over time while accounting for the previous time-steps (lag). Lag 

selection was determined by the mean performance (adj. r2, se and BIC) across all possible 

combinations of LSWT and LIC parameters for all seasons. The sample size (n = 19) is further 

reduced by the size of the lag (n – lag), which limits the number of endogenous variables to be 

included. For the MLR (lag = 0) and a VAR with a lag of 1, upwards of 8 input parameters 

were included in the VAR model (127 combinations), lag of 2 tested upwards of 5 input 

parameters (98 combinations) and a lag of 3 upwards of 3 input parameters (28 combinations). 

A lag order of 3 was selected as 2-4 of 5 total biomass parameters showed the highest mean 

adj. r2 across the seasons, 4 of 5 showed the lowest se, and 5 of 5 showed the lowest BIC (Table 

4.4). 

Table 4.4. Mean performance and error of MLR (0 lag) and VAR models (1-3 lag order) for each algal biomass parameter. 

MC represents mean chl-a, XC is maximum chl-a, BC is abnormally high chl-a, BD is abnormally high chl-a days, and PC 

is maximum chl-a DOY. Bold indicates the best-performing metric for each algal biomass parameter and season. 

  Adj. r2 se BIC 

Parameter MC XC BC BD PC MC XC BC BD PC MC XC BC BD PC 

A
n

n
u

a
l 

MLR -0.01 0.00 -0.04 0.07 0.09 1.00 1.00 1.02 0.96 0.94 65.02 64.84 65.42 63.02 62.38 

1 0.43 0.49 0.62 0.14 0.04 0.73 0.68 0.58 0.93 0.85 52.03 48.79 42.60 61.66 57.72 

2 0.43 0.44 0.61 0.00 -0.06 0.72 0.71 0.58 1.01 0.88 50.34 49.65 41.72 63.32 57.84 

3 0.49 0.49 0.60 -0.02 -0.01 0.66 0.65 0.58 1.01 0.81 43.52 42.71 38.71 59.25 51.65 

S
p

r
in

g
 

MLR 0.04 0.05 0.07 0.09 0.09 0.97 0.96 0.96 0.95 0.94 63.08 62.74 62.99 62.61 61.89 

1 0.03 0.08 0.13 0.12 0.17 0.87 0.83 0.86 0.92 0.79 56.28 55.42 58.28 60.84 55.38 

2 0.06 0.01 0.12 0.18 0.21 0.87 0.85 0.86 0.88 0.76 54.66 55.50 56.49 57.90 53.24 

3 0.16 0.13 0.19 0.24 0.09 0.76 0.77 0.78 0.84 0.78 45.45 47.87 48.52 52.37 50.40 

S
u

m
m

e
r
 

MLR 0.02 0.02 0.06 0.03 0.04 0.99 0.99 0.97 0.98 0.98 64.41 64.41 63.64 63.95 63.74 

1 0.37 0.52 0.56 0.21 0.00 0.78 0.66 0.63 0.85 0.96 54.76 48.06 46.64 57.85 63.00 

2 0.37 0.52 0.58 0.18 -0.02 0.79 0.67 0.62 0.88 0.94 54.56 48.37 45.59 58.22 60.55 

3 0.46 0.56 0.61 0.20 0.13 0.73 0.63 0.57 0.85 0.87 48.62 43.08 39.12 53.33 53.89 

F
a

ll
 

MLR 0.03 0.01 0.01 -0.02 0.08 0.98 0.99 0.99 1.01 0.95 64.17 64.58 64.55 65.11 62.86 

1 0.24 0.33 0.34 0.06 0.09 0.68 0.61 0.57 0.93 0.94 44.31 39.70 36.69 61.42 62.28 

2 0.19 0.31 0.31 0.04 0.13 0.71 0.61 0.57 0.94 0.92 45.54 40.16 36.06 60.74 59.87 

3 0.23 0.35 0.35 0.07 0.03 0.67 0.58 0.53 0.89 0.98 41.21 36.28 31.50 55.25 57.99 
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To determine the importance of LIC in driving the trends and variability in 

annual/seasonal algal biomass, the mean ranking of performance/error metrics for VAR 

models (Table 4.2) containing only LIC, LSWT, and both LIC and LSWT parameters were 

assessed. LSWT only VAR models consistently returned higher performance for NL (𝑟𝑎𝑛𝑘̅̅ ̅̅ ̅̅ ̅ =

13.31) for all seasons, with the exception of spring, in which LIC only models were higher 

performing (𝑟𝑎𝑛𝑘̅̅ ̅̅ ̅̅ ̅ = 13.31). LIC only models in NLs returned the highest ranking in the 

majority of lake basins for the MC parameter, during the annual, spring and fall seasons (GSL 

CB, GSL NB, GSL AB and LA AB) (Table 4.5). For XC and BC models, LSWT only models 

consistently returned a higher performance (𝑟𝑎𝑛𝑘̅̅ ̅̅ ̅̅ ̅ = 13.85) compared to LIC parameters 

(𝑟𝑎𝑛𝑘̅̅ ̅̅ ̅̅ ̅ =16.06). The performance of LSWT only, LIC only and a mix of both varied between 

lakes for the BD and PC parameter, showing no discernible pattern. 

Table 4.5. Number of lakes/basins with the highest ranking for VAR models consisting of only LIC, LSWT or both LIC and 

LSWT within Northern and Southern regions. 

Season Parameter 
Northern Lakes Southern Lakes 

LIC LSWT Both LIC LSWT Both 

A
n

n
u

a
l 

Mean Chl-a 4 4 0 1 6 0 

Max Chl-a 2 6 0 3 4 0 

Abnormal Chl-a 1 6 1 1 6 0 

Abnormal Chl-a Days 1 6 1 2 4 1 

Peak Chl-a DOY 1 5 2 4 2 1 

S
p

r
in

g
 

Mean Chl-a 4 3 1 1 5 1 

Max Chl-a 2 5 1 2 5 0 

Abnormal Chl-a 1 7 0 3 4 0 

Abnormal Chl-a Days 2 3 3 3 3 1 

Peak Chl-a DOY 4 4 0 3 4 0 

S
u

m
m

e
r
 

Mean Chl-a 3 5 0 2 5 0 

Max Chl-a 3 4 1 3 4 0 

Abnormal Chl-a 1 6 1 4 2 1 

Abnormal Chl-a Days 3 3 2 5 2 0 

Peak Chl-a DOY 2 4 2 2 5 0 

F
a

ll
 

Mean Chl-a 4 3 1 3 4 0 

Max Chl-a 4 3 1 3 4 0 

Abnormal Chl-a 1 5 2 1 6 0 

Abnormal Chl-a Days 1 4 3 3 4 0 
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Season Parameter 
Northern Lakes Southern Lakes 

LIC LSWT Both LIC LSWT Both 

Peak Chl-a DOY 3 4 1 1 6 0 

 

VAR Model performance for NL varied significantly across lakes/basins and seasons 

(Figures 4.7 and 4.8). NL annual VAR models for MC, XC and BC parameters provided 

adequate performance for MC, XC and BC models (𝑎𝑑𝑗.  𝑟2̃ = 0.75, 𝑠𝑒 = 0.51), while BD and 

PC returned poor results for all seasons (𝑎𝑑𝑗.  𝑟2̃ = 0.10, 𝑠𝑒 = 0.90). Spring VAR models for 

MC, XC and BC parameters returned the lowest performance of any season (𝑎𝑑𝑗.  𝑟2̃ =

0.40, 𝑠𝑒 = 0.79). 

VAR Model performance for SL returned frequent poor results for LW, and adequate 

results for LE; however, frequently poorer in comparison to NLs. SL annual and summer VAR 

models for MC, XC and BC parameters provided adequate results (𝑎𝑑𝑗.  𝑟2̃ = 0.46, 𝑠𝑒 =

0.70), while BD and PC also returned poor results for all seasons (𝑎𝑑𝑗.  𝑟2̃ = 0.06, 𝑠𝑒 = 0.84). 

Most SL spring and fall VAR models for all algal biomass parameters returned poor 

p`erformances (𝑎𝑑𝑗.  𝑟2̃ = −0.02, 𝑠𝑒 = 0.79). Despite the poor performance on average, LW 

returned adequate spring VAR model performances for BC (𝑎𝑑𝑗.  𝑟2̃ = 0.52, 𝑠𝑒 = 0.42). For 

full results, refer to supplementary tables B.7.5 to B.7.8. 
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Figure 4.7. Plots representing VAR model mean adj. r2 for five algal biomass parameters. Colour indicates the lake, shapes 

the basin and the shade whether the VAR models contained only LIC parameters, only LSWT parameters, or both for (a) 

Annual, (b) Spring, (c) Summer and (d) Fall. 



 

 85 

 

Figure 4.8. Plots representing the VAR model mean standard error (se) for five algal biomass parameters. Colour indicates 

the lake, shapes the basin and the shade whether the VAR models contained only LIC parameters, only LSWT parameters, 

or both for (a) Annual, (b) Spring, (c) Summer and (d) Fall. 
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4.5.5 Parameter Performance 

 VAR models were ranked based on the average rank of each performance metric (Table 

4.2) when a given parameter was included. LSWT parameters were associated with the most 

frequent high performing VAR models across all biomass parameters and seasons for NL 

(Figure 4.9). The inclusion of MT and AT in annual NL VAR models returned a higher 

performance compared to that of other parameters for all algal biomass parameters (𝑟𝑎𝑛𝑘̅̅ ̅̅ ̅̅ ̅ =

1.9). While not found as the highest performing parameter, OF returned a higher performance 

when included in spring and summer NL VAR models across all algal biomass parameters 

(𝑟𝑎𝑛𝑘̅̅ ̅̅ ̅̅ ̅ = 2.7). The ON was frequently associated with the poorest performing NL VAR 

models across all algal biomass parameters and seasons (𝑟𝑎𝑛𝑘̅̅ ̅̅ ̅̅ ̅ = 6.2). For full results, please 

refer to supplementary tables B.7.5 to B.7.8. 

 Similar to the NL, LSWT were associated with the most frequent high performing VAR 

models across all biomass parameters and seasons for SL (figure 4.9). The inclusion of XT, 

AT and PT in annual SL VAR models returned a higher performance compared to that of other 

parameters for all algal biomass parameters (𝑟𝑎𝑛𝑘̅̅ ̅̅ ̅̅ ̅ = 2.7). Similar to the NL, LIC parameter 

performance increased for spring and summer SL VAR models, however, was less consistent 

across algal biomass parameters. The inclusion of ON for spring SL VAR models returned 

higher performance for BC, BD and PC (𝑟𝑎𝑛𝑘̅̅ ̅̅ ̅̅ ̅ = 3.3), while OF returned higher performance 

for XC, BC and BD in summer (𝑟𝑎𝑛𝑘̅̅ ̅̅ ̅̅ ̅ = 2.0). The inclusion of MT and XT in fall SL VAR 

models returned higher performance across all algal biomass parameters (𝑟𝑎𝑛𝑘̅̅ ̅̅ ̅̅ ̅ = 2.2). For 

full results, please refer to supplementary tables B.7.5 to B.7.8. 
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Figure 4.9. Ranking (1 to 7) of VAR model performance when a given independent variable was included. Model 

performance was determined by the calculating the median ordered rank of each VAR model performance metric: Corrected 

(adjusted) coefficient of determination (adj. r2), Akaike information criterion second order (AICc), Bayesian Information 

Criterion (BIC), Standard Error (se) and final prediction error (fpe). The rankings were calculated separately for Northern 

Lakes and Southern Lakes using annual/seasonal data. The y-axis represents the independent variable, the x-axis the 

dependent variable. MC = Mean Chl-a, XC = Max Chl-a, BC = Abnormal Chl-a, BD = Abnormal Chl-a Days, PC = Peak 

Chl-a DOY, MT = Mean LSWT, XT = Max LSWT, AT = Anomaly LSWT Days, PT = Peak LSWT DOY, ON = Ice On 

DOY, OF = Ice Off DOY and DR = Ice Duration. 
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4.5.6 Model Performances 

The VAR models with the highest ranking (Table 4.6) for NL explained -21% – 99% 

of the variance in all algal biomass parameters across all seasons (𝑎𝑑𝑗.  𝑟2̃ = 0.78, 𝑠𝑒 = 0.47). 

Most of the top-ranked annual NL VAR models contained MT and AT parameters (45% and 

40%, respectively) (Table 4.7), where the coefficients showed frequent positive β 

(supplementary figure B.7.2). However, the majority of the top-ranked spring and summer NL 

VAR models contained OF and XT parameters (40% – 43% and 35% – 40%, respectively), 

where VAR model coefficients returned a primarily negative β for OF in spring and positive 

in summer. The majority of top performing fall NL VAR models contained PT parameters 

(38%), which exhibited a primarily negative β with XC and BC, and positive with MC and BD 

parameters (supplementary figure B.7.2). Of the top-ranked NL VAR models, MC, XC and 

BC parameters returned a higher performance (𝑎𝑑𝑗.  𝑟2̃ = 0.87, 𝑠𝑒 = 0.38) across all seasons. 

Conversely, the top-ranked NL VAR models returned a poorer performance for BD and PC 

parameters (𝑎𝑑𝑗.  𝑟2̃ = 0.66, 𝑠𝑒 = 0.53) across all seasons. 

The top-ranked VAR models (Table 4.6) for SL returned a poorer performance 

compared to the NL, which explained 10% – 99% of the variance in algal biomass parameters 

across all seasons (𝑎𝑑𝑗.  𝑟2̃ = 0.68, 𝑠𝑒 = 0.49). The majority of top-ranked annual and fall SL 

VAR models contained primarily XT, AT and PT parameters for most lakes (31% – 34%, 31% 

– 34%, and 29% – 37%, respectively). Annual VAR model β coefficients were primarily 

negative when XT and PT were included, annual AT and fall XT, PT and AT were mixed 

depending on the lake/basin (supplementary Figure B.7.2). Similar to NL, LIC frequency had 

increased amongst the top-ranked spring and summer SL VAR models; however, MT and PT 

parameters remained the most frequent occurring (40 – 45.71% and 42.86%, respectively), 

where spring VAR model β coefficients were primarily positive when MT or PT were 

included; summer PT was primarily negative (supplementary Figure B.7.2). Of the top-ranked 

NL VAR models, MC, XC and BC parameters typically returned a higher performance 

(𝑎𝑑𝑗.  𝑟2̃ = 0.71, 𝑠𝑒 = 0.40) across all seasons. The spring VAR MC and BC models had 
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however returned a poorer performance (𝑎𝑑𝑗.  𝑟2̃ = 0.46, 𝑠𝑒 = 0.68) in comparison to the XC, 

BD and PC models (𝑎𝑑𝑗.  𝑟2̃ = 0.71, 𝑠𝑒 = 0.46).  

Table 4.6. Top-ranked annual VAR models for each lake and basin performance and error metrics. MT = mean LSWT, XT = Max 

LSWT, AT = anomaly LSWT days, PT = peak LSWT DOY, MC = mean chl-a, XC = max chl-a, BC = abnormal chl-a, BD = 

abnormal chl-a days, PC = peak chl-a DOY. Filled box indicates a p-value < 0.1, empty box indicates a p-value > 0.1. 

 Model 
Adj. 

r2 
AICc fpe se P  Model 

Adj. 

r2 
AICc fpe se P 

G
B

L
 C

e
n

tr
a

l 
B

a
si

n
 MC ~ XT + AT 0.63 140.56 0.01 0.64 ■ 

L
W

 N
o
r
th

 B
a

si
n

 MC ~ XT + PT 0.68 135.40 0.36 0.55 ■ 

XC ~ AT + DR 0.92 117.25 0.12 0.31 ■ XC ~ XT + DR 0.54 139.35 0.53 0.62 □ 

BC ~ MT + AT 0.92 115.36 0.01 0.29 ■ BC ~ XT + PT 0.60 141.09 0.41 0.65 □ 

BD ~ OF + DR 0.87 124.05 0.00 0.38 ■ BD ~ MT + ON 0.69 137.80 0.81 0.59 ■ 

PC ~ AT + ON 0.74 127.84 0.01 0.43 ■ PC ~ ON + DR 0.51 134.45 0.72 0.53 □ 

G
B

L
 S

o
u

th
 B

a
si

n
 MC ~ AT 0.99 14.35 0.01 0.12 ■ 

L
W

 S
o

u
th

 B
a
si

n
 

MC ~ MT + 

ON 
0.80 129.92 0.88 0.46 ■ 

XC ~ PT + ON 0.97 100.22 0.00 0.18 ■ XC ~ MT + ON 0.46 146.27 0.67 0.77 □ 

BC ~ AT 0.98 18.68 0.02 0.14 ■ BC ~ XT 0.19 79.03 0.28 0.90 □ 

BD ~ MT + AT 0.59 139.83 0.09 0.63 □ BD ~ XT + ON 0.79 131.63 0.25 0.48 ■ 

PC ~ XT + ON 0.58 136.91 1.45 0.57 □ PC ~ ON + DR 0.50 138.94 0.14 0.61 □ 

G
B

L
 A

ll
 B

a
si

n
s 

MC ~ MT + AT 0.81 129.87 0.08 0.46 ■ 

L
W

 A
ll

 B
a

si
n

s 

MC ~ PT + AT 0.58 139.91 0.03 0.63 □ 

XC ~ AT + DR 0.92 117.03 0.05 0.31 ■ XC ~ XT + PT 0.62 136.90 0.39 0.57 ■ 

BC ~ MT + AT 0.93 114.42 0.01 0.28 ■ BC ~ XT + PT 0.64 139.11 0.36 0.61 ■ 

BD ~ MT + XT 0.84 125.57 0.00 0.40 ■ BD ~ MT + AT 0.69 138.72 0.17 0.61 ■ 

PC ~ AT + DR 0.66 132.15 0.03 0.49 ■ PC ~ AT + ON 0.77 121.20 0.27 0.35 ■ 

G
S

L
 C

e
n

tr
a

l 
B

a
si

n
 MC ~ PT + DR 0.97 100.32 0.09 0.18 ■ 

L
E

 C
e
n

tr
a
l 

B
a
si

n
 MC ~ MT + AT 0.92 114.45 0.09 0.28 ■ 

XC ~ MT + DR 0.90 116.03 0.04 0.30 ■ XC ~ MT + AT 0.99 82.26 0.01 0.10 ■ 

BC ~ MT + OF 0.91 116.80 0.02 0.31 ■ BC ~ PT + AT 0.97 98.19 0.02 0.17 ■ 

BD ~ MT + OF 0.50 146.18 1.04 0.76 □ BD ~ XT 0.14 82.30 1.55 1.00 □ 

PC ~ AT + OF 0.60 118.77 0.07 0.32 □ PC ~ MT + ON 0.68 136.06 0.35 0.56 ■ 

G
S

L
 E

a
st

 B
a
si

n
 MC ~ PT + ON 0.94 112.83 0.01 0.27 ■ 

L
E

 E
a

st
 B

a
si

n
 

MC ~ PT + AT 0.92 115.43 0.01 0.29 ■ 

XC ~ MT + PT 0.97 99.91 0.01 0.18 ■ XC ~ PT 0.73 61.60 0.06 0.52 ■ 

BC ~ MT + AT 0.95 108.12 0.01 0.23 ■ BC ~ AT + DR 0.95 101.93 0.02 0.19 ■ 

BD ~ XT + PT 0.22 152.66 0.07 0.94 □ BD ~ ON + OF 0.44 146.63 0.02 0.77 □ 

PC ~ AT + OF 0.81 122.78 0.43 0.37 ■ PC ~ XT + ON 0.77 131.01 0.01 0.48 ■ 

G
S

L
 N

o
r
th

 B
a
si

n
 

MC ~ AT + DR 0.63 137.04 0.05 0.57 ■ 

L
E

 W
e
st

 B
a
si

n
 MC ~ MT + DR 0.44 144.98 0.29 0.74 □ 

XC ~ PT + DR 0.82 128.50 0.19 0.44 ■ XC ~ PT + DR 0.65 134.18 0.08 0.53 ■ 

BC ~ XT + DR 0.84 127.59 0.02 0.43 ■ BC ~ PT + AT 0.82 126.44 0.08 0.41 ■ 

BD ~ MT + AT 0.63 139.67 1.24 0.62 ■ BD ~ MT + AT 0.60 129.47 0.16 0.45 □ 
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PC ~ ON 0.11 80.89 2.55 0.96 □ PC ~ XT + OF 0.77 125.04 0.06 0.39 ■ 
G

S
L

 A
ll

 B
a

si
n

s 

MC ~ MT + 

OF 
0.96 102.71 0.02 0.20 ■ 

L
E

 A
ll

 B
a

si
n

s 

MC ~ PT 0.91 44.31 0.02 0.30 ■ 

XC ~ MT 0.87 48.32 0.03 0.35 ■ XC ~ MT + AT 0.97 99.52 0.13 0.18 ■ 

BC ~ AT + ON 0.90 118.57 0.05 0.32 ■ BC ~ PT 0.88 47.90 0.05 0.34 ■ 

BD ~ MT + OF 0.53 144.90 1.30 0.73 □ BD ~ XT + DR 0.48 146.45 0.24 0.77 □ 

PC ~ AT + OF 0.59 117.79 0.03 0.31 □ PC ~ PT 0.71 61.45 0.59 0.52 ■ 

L
A

 

MC ~ MT 0.76 60.77 0.06 0.51 ■        

XC ~ MT 0.55 70.88 0.14 0.70 ■        

BC ~ MT 0.71 63.13 0.08 0.55 ■        

BD ~ PT + DR 0.75 133.37 0.42 0.51 ■        

PC ~ MT + XT 0.62 138.39 0.05 0.60 ■        

 

Table 4.7. Frequency of predictor parameter (MT = mean LSWT, XT = Max LSWT, AT = anomaly LSWT days, PT = peak 

LSWT DOY) presence in top-ranked VAR models within Northern (NL) and Southern Lakes (SL). 
 

Annual Spring Summer Fall 

Parameter NL SL NL SL NL SL NL SL 

MT 45% 29% 13% 46% 25% 40% 23% 31% 

XT 15% 31% 35% 14% 40% 31% 33% 34% 

AT 45% 31% 28% 11% 33% 29% 28% 34% 

PT 18% 37% 28% 43% 25% 43% 38% 29% 

On 15% 29% 10% 17% 8% 6% 33% 26% 

OF 20% 6% 40% 20% 43% 17% 18% 14% 

DR 25% 20% 35% 37% 8% 31% 28% 17% 

 

4.5.7 Model Variance 

When looking at the VAR model residuals, it was observed that MC, XC and BC 

concentration models returned low variance in GBL SB and the LE EB. BC also returned low 

variances for all GBL, GSL and LE compared to the other lakes and algal biomass parameters. 

Of the MC, XC and BC parameters, models showed increased variance over time in GBL, LA 

and, LE particularly, around 2016-2020, while LW showed an inverse trend for BC. BD and 

PC showed greater variability in all lakes (Figure 4.10). 
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Figure 4.10.  VAR model residuals for five algal biomass parameters, where the colour represents the lake basin. 

4.6 Discussion 

4.6.1 Pre-Processing and Sources of Error 

 Daily chl-a concentrations at a 1-km grid provided an opportunity to understand the 

phenology of algal biomass in many large freshwater lakes. Variance due to retrieval error 

introduced a challenge for data analysis, where pre-processing was implemented to mitigate 

retrieval error issues. Missing data due to cloud cover, sensor image gaps, and outliers (i.e., 

retrieved chl-a concentrations of > 500.00 μg L-1 in oligotrophic lakes) required interpolation. 

While more complex interpolation methods exist, linear temporal interpolation can provide a 

fast, simple and reliable means of interpolating smaller missing data gaps (Oehmcke et al., 
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2016; Schlegel et al., 2019). Missing data from 2012-2015 due to a gap in sensor image 

archives (2002-2011 for MERIS, 2016-present for Sentinel-3A), limited the capacity of the 

VAR models to identify trends due to interpolation. The data derived from Sentinel-3A (2016 

– 2020) typically returned higher chl-a concentration for primarily GBL, LA and LE compared 

to MERIS (2002 – 2011), presenting potential sensor bias as seen in the time series (Figure 

4.3) and the variance plots (Figure 4.10). This sensor bias may influence the trends observed, 

providing a stronger trend then is accurate. Future versions of the ESA CCI Lakes product may 

improve these findings. As the jump in variance was not observed for all lakes/basins, the 

trends may instead be a result of shifting algal biomass dynamics; however, higher temporal 

resolution is needed (Seekell et al., 2011). The ice on/off period may have introduced higher 

error, due to a reduction of available open water pixels, mixed pixilation of ice-water edges, or 

increased turbidity due to higher runoff, resulting in an over estimation of chl-a concentrations 

(Jiang et al., 2023; Zhang & Pavelsky, 2019). Overestimation of chl-a concentration in turbid 

waters is a common issue in optical remote sensing, in which the application of OWT was 

employed to minimize this issue (Carrera et al., 2023). ON date identification was also limited 

due to high cloud coverage during the ice-forming season, however, was mitigated using 

interpolation methods.  

Seasonal thresholds were fixed across all years to maintain consistency in data 

separation across all years, however seasonality can be transient. Warm spring seasons will 

have earlier growing periods, while some years may be cooler and start later. A fixed threshold 

impacts the number of available pixels for each year, where warmer spring periods have a 

greater number of open water pixels, while colder periods have fewer. Higher ice coverage can 

impact chl-a retrieval due to the adjacency effect and mixed pixelation (Jiang et al., 2023). 

4.6.2 Trend Analysis of Input Parameters 

Despite the increase in chl-a concentrations from Sentinel-3A retrieved data, most 

lakes (GSL, LA and LE) showed a positive trend in MC, XC and BC from 2002-2011 (Figure 

4.3). The increase in chl-a concentrations coincides with other studies which found both an 

increase and decrease in biomass (i.e., LW) (Ho et al., 2019). Kraemer et al. (2022) found that 
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63% of the 344 globally distributed lakes studied had an increasing trend in chl-a 

concentrations (1997-2020); however, only 44% of the lake surface area showed a positive 

trend. Lakes/basins in this study are treated as a singular value, therefore it is unknown if this 

trend persists across the majority of the lake surface area. Studies have shown that eutrophic 

lakes typically exhibit a positive trend in increasing algal biomass with increasing LSWT, 

compared to oligotrophic lakes which decreased (Kraemer et al., 2017). Oligotrophic lakes 

have also shown a decrease in pH and subsequent algal biomass due to atmospheric carbon 

deposition due to the formation of carbonic acid, while lakes with higher algal biomass increase 

pH and showed higher growth rates (Talling, 1976; Verschoor et al., 2013; Raven et al., 2020; 

Li et al., 2016). It stands to reason that in large lakes with complex morphometries (such as 

the study lakes), regions with higher nutrient inflow via non-algal particles would exhibit a 

positive trend but represent a smaller lake surface area. The rate of chl-a concentration increase 

likely outweighs the decrease, resulting in annual/seasonal spatial mean increases observed in 

MC, XC and BC (Figure 4.3), with the exception of LW, which showed a negative trend in 

algal biomass (supplementary Tables B.7.1 to B.7.4).  

BC represents the mean of chl-a, which exceeded the defined threshold (see methods 

section 4.4). This represents chl-a concentrations greater than expected in a normal distribution 

for that entire lake surface area over a 19-year duration. The BD is a measure of the mean 

frequency that BC is present. Despite the increase in abnormal chl-a, the frequency decreased 

over time (GSL, LW and Eastern basin of LE), potentially indicating these abnormal surges in 

biomass are more intense but shorter lasting. The timing of the chl-a peak occurred earlier in 

the year except for LE, which may result from the earlier OF seen in most lakes. Earlier OF 

periods result in earlier internal loading and light availability, initiating earlier algal growth 

(Jewson et al., 2009). Lakes with limited external loading during the growing season (typical 

in remote regions) may see nutrient limitation later in the year due to the earlier open water 

season (Sommer et al., 2012), resulting in earlier algal biomass peaks. LE experiencing later 

peak chl-a is likely due to a longer open water season with higher nutrient replenishment and 

more frequent mixing events (Kane et al., 2014).  
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The mean observed annual XT returned an increasing trend, a result found in other 

studies (O’Reilly et al., 2015). However, annual/spring MT had a slight decreasing trend, but 

a slight increase in the summer and a more substantial increase in the fall (Figure 4.4). Due to 

the use of a fixed window during the spring season, later OF periods return fewer open water 

samples. Later OF periods often exhibit a higher rate of temperature change (Feiner et al., 

2022; Dugan, 2021; Favot et al., 2019), where a smaller number of observations and a faster 

rate of LSWT change would likely return a higher mean, despite lower LSWT for the spring 

season. Due to the nature of remote sensing data, under ice water temperature is not resolved, 

and therefore not included in the mean calculations. Under ice LSWT is an assumed static 

273.15K at the ice-water interface, however this temperature will vary due to snow depth, ice 

thickness, and ice composition (Palshin et al., 2019; Tsvetova, 2016), likely fluctuating 

between 273.15K and 277.15K (Huo et al., 2023).  

4.6.3 VAR Models 

 Assessment of individual parameter trends provided insight into their variability and 

how they change over time; however, we would also like to know how the LIC and LSWT 

parameters interact and affect the algal biomass over time, particularly what the role of LIC is 

in algal biomass dynamics, as it is not fully understood. The LIC parameters were expected to 

explain a greater portion of the variance in algal biomass, particularly MC and XC in the NLs, 

compared to the lakes with higher anthropogenic influence. Lake ice facilitates the timing of 

internal loading and mixing, a period where oligotrophic lakes such as GBL and GSL have the 

highest available suspended nutrient concentrations for algal biomass to fixate (Sommer et al., 

2012). While LIC parameters ranked higher in the NLs than in SLs, it was highly variable. 

LSWT plays a significant role in the growth rate of algae (Gobler et al., 2020) and typically 

explained a higher proportion of the variance, particularly during the summer. Despite ranking 

higher for MC and XC, the difference in performance compared to LSWT is negligible. LIC 

parameters were expected to be significant in explaining the variance of algal biomass in the 

spring season compared to others. However, LIC was more prevalent in spring for the NLs 

than the SLs; NLs did not have a higher variance explanation than other seasons. The poor 
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performance of VAR models for SLs during spring may be due to frequent overwintering 

snow/ice melt or fertilizer timing, which may explain the variance to a greater degree 

(Michalak et al., 2013).  

 Model performance typically worked well; however, GSL NB, LW SB and LE WB 

typically had a poorer performance, as LIC and LSWT did not explain a significant portion of 

the variance in algal biomass. Both the SB of LW and the west basin of LE are highly eutrophic 

(Binding et al., 2018; Binding et al., 2019) and near major river inflows within high 

agricultural regions. Frequent flushing, mixing and nutrient run-off due to precipitation and 

periodic crop fertilization are likely to trigger changes in algal biomass. Therefore, physical 

controls on internal loading are less critical. The NB of GSL is shallower compared to the rest 

of the lake, with a longer DR and higher water temperatures compared to the CB (Figures 4.7 

and 4.8). The NB also has a significant legacy of mining-related contamination, of which has 

been observed to affect algal assemblages (Chételat et al., 2019), where it has been observed 

that sub-arctic lakes near Yellowknife had experienced trophic shifts due to eutrophication 

driven by urbanization and mining activities (Sivarajah et al., 2021), with Yellowknife Bay 

experiencing an AB in 2013 (Pick et al., 2016). It is possible that the north basin of GSL could 

be experiencing higher than baseline external loading compared to the other NLs. Algal 

community compositions have indicated that a regime shift had occurred post 2000CE within 

the CB of GSL, attributed to ice loss and rise in air temperatures (Rühland et al., 2023). The 

shallow NB of GSL may have experienced a stronger shift in biomass; however, further 

research is required to unravel this. Retrieval pre-processing errors are also potential sources 

for variance in these lakes as well. 

 Performances of individual parameters varied depending on season and lake/basin and 

followed what was expected with some exceptions. ON showed little change throughout most 

lakes and had difficulties in identification due to high cloud cover, which may also impact DR 

calculations. However, ON identification was mitigated by interpolation methods, providing 

estimations of ice formation occurrence between dates of observed open water and ice cover 

pixels for each year. ON was also associated with higher overall fpe and se, and was present in 
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fewer high-performing models, which is expected. OF and DR were most frequently found in 

the best performing spring VAR models, primarily for NLs, while SLs returned high 

performance for DR in only the WB of LE (which is unexpected due to the high variance of 

LIC for LE).  

The summer season VAR model coefficients indicated that when OF or DR were 

included in a model, there was a frequent positive slope with MC, XC and BC parameters, 

indicating that a later OF or longer DR returned a decrease in chl-a concentrations in the 

summer (supplementary Figure B.7.2). It has been observed in other north temperate lakes that 

earlier OF and lower DR returned lower summer algal biomass (Hrycik et al., 2021). As a 

dimictic but shallow lake, the timing between OF and stratification due to high temperatures 

can lead to significant late summer/early fall ABs, as seen in Dickson Lake (located in 

Algonquin Provincial Park, Ontario), where a late ice melt coupled with rapid stratification 

resulted in incomplete mixing and a subsequent AB (Favot et al., 2019). Shallow, turbid waters 

stratify faster and may lead to poor mixing (Butcher et al., 2015; Coats et al., 2006). While the 

NLs are deep, some basins such as the SB of GBL and the NB of GSL remain quite shallow, 

where rapid stratification onset may be impactful. The duration of PT was the best predictive 

parameter (MC, XC and BC) on average for NLs and was consistently the highest ranked 

(Figure 4.9). This is possibly a result of the legacy effect high-temperature events have on deep 

lakes (Woolway & Merchant, 2018), where the lag order considers the impact of anomaly 

LSWT duration from prior years. While these parameters worked well for explaining the 

variance in changes to the concentration of chl-a, there was a generally poor performance in 

explaining the variance in the timing of peak chl-a and the duration of BC. There is 

considerable variability in the timing of chl-a peaks, as most lakes will exhibit multiple annual 

peaks, introducing variance in the VAR models. BD may also depend on the nutrient 

availability, quantity and frequency of external loading, as studies have found nutrient 

availability positively correlated with AB duration (Binding et al., 2018). Despite issues with 

some algal biomass parameter retrieval, VAR model performance with both LIC and LSWT 
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parameters provided a strong explanation of variance for annual time series of algal biomass 

parameters across all lakes. The NL VAR models however, did outperform those of the SLs.  

4.7 Conclusion 

 LIC is an often-overlooked factor regarding the phenology of algal biomass despite its 

control on various lake properties, such as the timing of internal loading, mixing classification, 

and open water season. This study looked to determine if LIC could explain the trends and 

variability seen in algal biomass parameters (MC, XC, BC, BD and PC) in five North American 

Great Lakes. Algal biomass concentrations were found to increase annually, while LIC was 

decreasing and maximum LSWT was increasing. A VAR was used to establish a multivariate 

relationship between LIC/LSWT parameters and the algal biomass response to determine how 

these parameters interact over time. It was observed that NLs (GBL, GSL and LA) saw LIC 

parameters explain a greater portion of the variance in algal biomass trends (2002-2020) 

compared to SLs (LW and LE). NLs also had a greater explanation of variance in algal biomass 

trends during spring on average compared to SLs, which returned poor results. On average, 

NLs returned stronger VAR models than SLs, regardless of input parameters.  

 This research showcases some of the first uses of multiple ESA CCI Lakes variables in 

monitoring and assessing changes in lake phenology and biota. The current version of the ESA 

CCI Lakes product presents some limitations due to missing data (2012 – 2015), turbid waters 

during the OF period effecting chl-a retrieval, water-pixel identification and classification, 

amongst others, where future versions look to improve retrieval, uncertainty levels, and filling 

missing data gaps. Version 2.0.2 of the ESA CCI Lakes+ product does provide filled data gaps 

with MODIS aqua for some lakes, however they were excluded from this study due to 

abnormally high chl-a concentrations found during the MODIS years, likely due to high sensor 

bias. As future versions further improve in accuracy and scope, the methods/framework 

presented in this paper can be revisited to further improve on the results presented. Such 

methods can be applied to other lakes, as the ESA CCI Lakes+ product provides data for over 

2000 large lakes globally. These results provide evidence that climatic parameters show 

significant explanatory power in NL systems that have limited anthropogenic influence. Under 
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a changing climate with exacerbated trends at higher latitudes, we can expect changes in algal 

biomass concentrations, timings and community compositions. While these results show 

explanatory power, predictive power is not as well understood. Additional research into how 

LIC, alone or in combination with LSWT, can predict algal biomass requires increased training 

observation data and potentially more robust prediction methods such as machine/deep 

learning techniques. Future research also aims to better understand the interaction effects of 

additional lake physical and atmospheric forcings on algal biomass dynamics in the same lakes. 

Such research can improve algal forecasting models, particularly for remote NLs. 
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Chapter 5: Is Lake Ice a Predictor of Algal biomass in North American 

Great Lakes? 

5.1 Introduction 

There has been a perceived increase in algal bloom frequency and severity globally 

(Favot et al., 2023; Winter et al., 2011; Paerl & Huisman, 2008), with occurrences increasing 

in recent years compared to past decades (Hou et al., 2022). Climate change has often been 

indicated as a potential driver of this trend, since traditionally oligotrophic lakes (Favot et al., 

2019; Pick, 2016; Winter et al., 2011; Smol, 2019) and high-latitude lakes (Ayala-Borda et al., 

2021; Freeman et al., 2020) have been observed to bloom despite little to no anthropogenic 

activities. The primary impacts of climate change on algal biomass are attributed to increasing 

water temperatures (Borowitzka et al., 2016; Cross et al., 2015), shorter and more intense 

precipitation events followed by drought conditions (Reichwaldt & Ghadouani, 2012), and 

prolonged lake stratification periods (Jirsa et al., 2013; Mosley, 2015). However, changes in 

lake ice cover (LIC) are often an overlooked mechanism in algal bloom formation and 

accumulation of algal biomass for lakes forming ice. LIC is altered by warming climate, with 

high latitudes exhibiting the highest rate of air temperature increase, particularly during the 

winter months (Hansen et al., 2006; Houze et al., 2019). LIC plays an important role in lake 

ecology and biogeochemical cycling, including the internal loading rate (Reynolds, 1994; 

Joung et al., 2017), lake mixing classification (Vincent et al., 2012), light availability (Hébert 

et al., 2021) and algal community composition and succession (Salmaso et al., 2018; Blenckner 

et al., 2007). Additionally, LIC controls the duration of the algal growing season, where 

prolonged stratification due to a longer growing season has been observed to contribute to an 

increase in the prevalence of algal blooms (Jirsa et al., 2013; Mosley, 2015), particularly for 

various cyanobacterial genus (Brasil et al., 2016; Lehman et al., 2017; Rühland et al., 2023). 

As a result, spring and summer algal biomass has been seen to increase following earlier ice-

off periods in various studies (Adrian et al., 1999; Preston et al., 2016; Beyene & Jain, 2020). 

Algal biomass has also been observed to have increased in some European lakes following 

shorter ice cover periods (Weyhenmeyer et al., 2008; Noges et al., 2010). It has previously 
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been observed how the variability and trends in algal biomass relate to those of the LIC and 

the lake surface water temperature (LSWT) parameters (chapter 4), where LIC provided a 

greater explanation of the variance in algal biomass within Northern remote lakes such as Great 

Bear Lake and Great Slave Lake compared to more anthropogenically developed regions. 

However, it remains unclear whether LIC parameters are a strong predictor of algal biomass.  

The impacts of LIC on to algal biomass dynamics is less understood compared to 

climatic parameters, as few studies have done direct comparisons. Some recent publications 

have included LIC in algal bloom modelling (Ai et al., 2023; Lin et al., 2023), where machine 

learning algorithms that included the timing of lake ice (on/off) had improved performance in 

the prediction of abnormally early spring algal blooms (Lin et al., 2023). Additional studies 

have found that spring algal blooms were highly sensitive to warming in lakes controlled by 

ice-off/onset of stratification (Gronchi et al., 2021). Others have found that reduced ice cover 

led to greater zooplankton productivity, resulting in increased bloom suppression (Hébert et 

al., 2021). These recent studies have used increasingly open and available reanalysis and 

remote sensing data products to improve our understanding of algal biomass dynamics in a 

changing climate.  

This research uses remote sensing data products provided by the European Space 

Agency’s (ESA) Climate Change Initiative (CCI) Lakesproject to identify the importance of 

LIC in predicting annual and seasonal (spring, summer and fall) algal biomass parameters in 

five North American Great Lakes; Great Bear Lake, Great Slave Lake, Lake Athabasca, Lake 

Winnipeg, and Lake Erie, from 2002 to 2020 (Carrea et al., 2022). The Lake Water Leaving 

Reflectance (LWLR) product provides daily gridded chlorophyll-a (chl-a; proxy of algal 

biomass) concentrations, which was used to calculate five annual and seasonal algal biomass 

parameters; mean (MC) and max chl-a (XC) concentrations, abnormally high chl-a 

concentrations (BC), abnormally high chl-a days (BD), and peak chl-a DOY (PC). The ESA 

CCI Lakes product provides harmonized lake data, where the LIC parameter was used to 

calculate lake ice on (ON), ice off (OF) and lake ice duration (DR). To determine the 

importance in LIC for algal biomass parameter prediction, the Lake Surface Water 
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Temperature (LSWT) product from the ESA CCI Lakesproject was used to calculate four 

annual and seasonal parameters; mean (MT) and max LSWT (XT), anomaly LSWT days (AT), 

and peak LSWT DOY (PT). LSWT is an important factor in the algae growth cycle and can 

therefore be compared with that of LIC to indicate where and when LIC is an important 

predictive factor in annual and seasonal algal biomass parameters. This research looks to 

determine if the LIC and LSWT parameters can predict for annual and seasonal algal biomass 

utilizing linear (multiple linear regression) and non-linear (feed-forward artificial neural 

networks) functions. Additionally, a random forest (RF) classifier was used to determine if the 

LIC and LSWT parameters can classify the presence of annual and seasonal BC (only pixels 

with a chl-a concentration z-score of > 2 of each given year). Due to the control on internal 

loading and light availability, it is hypothesized that LIC will provide a strong predictive 

performance for remote Northern Lakes (NL), particularly during the spring season, due to 

limited external nutrient loading. Furthermore, it is anticipated that LSWT will provide greater 

importance during the summer and fall periods compared to LIC. An improved understanding 

of how LIC and LSWT parameters can be used to predict algal biomass may improve future 

algal biomass projection models.  

5.2 Study Area 

 Annual and seasonal algal biomass, LIC and LSWT parameters were calculated for five 

North American Great Lakes; Great Bear Lake (GBL), Great Slave Lake (GSL), Lake 

Athabasca (LA), Lake Winnipeg (LW) and Lake Erie (LE) and their subsequent basins from 

2002-2020. This research utilizes the same study area as outlined in section 4.2. The five lakes 

are divided into two classes: Northern (GBL, GSL, and LA) and Southern Lakes (SL; LW and 

LE) as seen in Figure 5.1.  

The NLs have a greater mean depth (~20-88m) (Johnson, 1975; Rouse et al., 2008; 

Mitchell & Prepas, 1990), longer residence time (~6-124 years) (Johnson, 1975; Evans, 2000; 

Gibson et al., 2006), and vary in size (7,770-31,153 km2), compared to the SLs, with LA as 

the smallest of the selected lakes. NLs are oligotrophic and show limited anthropogenic 

influence, with mining operations being the most significant pollutant contributor through the 
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Athabasca River (Bill et al., 1994; Schindler, 2001; Timoney, 2008; Parlee & D’Souza, 2019), 

since there is little to no agriculture/urban land use within the watersheds. Yellowknife Bay of 

GSL has the largest urban area of the NLs, where an algal bloom did occur in September of 

2014 (Pick, 2016). Both GSL and LA exhibit a dimictic mixing classification, whereby vertical 

lake temperature profiles equalize (~4°C) and allow for epilimnetic and hypolimnetic exchange 

twice a year (typically during the spring and fall seasons) (Rouse et al., 2008; Leconte et al., 

2008). GBL exhibits a cold monomictic mixing classification, whereby mixing occurs once a 

year (during summer), therefore only stratifies during the ice cover season. However, recent 

studies have suggested that the GBL is transitioning from cold monomictic to dimictic for some 

regions of the lake (Rouse et al., 2008). 

The SLs are significantly shallower (~12-19m), with shorter residence times (~2.6-5 

years) compared to NLs, with a large surface area (23,750-25,744 km2) (Government of 

Manitoba, 2021;  EPA, 2020). The SLs range in trophic status through different basins, with 

the south basin of LW and the west basin of LE exhibiting higher algal biomass compared to 

the north basin of LW and the Central/East basins of LE (Ali & English, 2019; Smith et al., 

2019). SLs receive external nutrient loading from extensive agricultural development within 

the surrounding watershed, mainly mobilized by the Saskatchewan and Red River for LW and 

the Detroit River for LE. Eutrophication due to external nutrient loading has resulted in high 

algal biomass within predominately the south basin of LW and the west basin of LE. Both LW 

and the west basin of LE are classified as polymictic, where mixing occurs at irregular 

intervals, often initiated by high water inflow and wind mobilization, while the deeper Central 

and East basins of LE are classified as dimictic (Nürnberg & LaZerte, 2016; Karatayev et al., 

2021). Additionally, both lakes have experienced significant algal blooms, often increasing in 

intensity/frequency in recent years (Wassenaar et al., 2012; Binding et al., 2018; Binding et 

al., 2019).  
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Figure 5.1. Map of the study lakes and their corresponding basins and rivers. Land cover deliniation provided by ESA CCI 

Landcover. (http://maps.elie.ucl.ac.be/CCI/viewer/download.php). 

5.3 Data Sources 

 This research makes use of the daily remote sensing data product provided by the 

ESA’s CCI Lakes project (Carrea et al., 2022). The Lakes project provides a harmonized 

remote sensing data product on a 1/120o latitude-longitude grid (approx. 1 km) consisting of 

various lake properties for over 2,000 lakes globally. Of the lake properties, this research 

makes use of the LWLR, LIC and LSWT data, which were preprocessed and rescaled to annual 

and seasonal intervals from 2002-2020. Seasonal intervals were defined by 2-m air temperature 

data for each lake using the hourly land gridded (0.1° x 0.1°; native resolution of  9 km) climate 

reanalysis data product (ERA5-Land) provided by the European Centre for Medium-Range 

Weather Forecasts (ECMWF). Preprocessing was performed to derive five annual and seasonal 

http://maps.elie.ucl.ac.be/CCI/viewer/download.php
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algal biomass parameters, four annual/seasonal LSWT parameters, and three annual LIC 

parameters. Algal biomass and LSWT are rescaled annually to allow comparisons to annual 

changes in the duration and timing of the LIC.  

Of the algal biomass parameters, MC and XC represent the average/maximum chl-a 

concentration per pixel during the ice free (annual) and the temperature defined (spring, 

summer and fall) seasons. BC represents the average for only chl-a concentrations that 

exceeded a lake-wide spatial-temporal threshold annually and seasonally. This threshold is 

seasonally dependent, as, in example, the threshold for spring differs from summer as it only 

accounts for the historic spring concentrations. BC is indicative of only pixels where chl-a 

concentrations exceed a z-score of 2, thereby representing only pixels/regions of the lake where 

chl-a concentrations are relatively greater than the rest of the lake. BC thresholds are lake 

specific, and therefore use the same threshold for each sub-basin. BD represents the number of 

days annually/seasonally a chl-a pixel was flagged as abnormally high. These ACCs can be 

considered a proxy for algal “blooms” since they are either extremely rare, or do not occur in 

NLs and therefore the thresholds used by other studies (i.e., >10.00 μg L-1), to flag an algal 

bloom (Binding et al., 2021) would not be relevant. As such, these “blooms” are referred to as 

BC given the available time series. Finally, PC represents the day of year/season a given pixel 

exhibited the highest chl-a concentration annually/seasonally.  

Of the LSWT parameters, MT and XT represent the average/maximum temperature per 

pixel during the ice-free (annual) and the temperature-defined (spring, summer, and fall) 

seasons. AT represents the number of days in which the water temperature exceeded a lake 

wide spatial-temporal threshold annually and seasonally, which is also seasonally and lake 

dependent. Finally, PT represents the day of year/season for which a given pixel exhibited the 

highest temperature. 

Of the LIC parameters, ON represents the DOY each pixel saw continuous ice cover 

for a minimum of 14 days, starting per water year (September – August). OF represents the 

first DOY where each pixel saw continuous open water for a minimum of 14 days. DR 
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represents the number of days between the ice on and the ice off date per pixel. For a full 

description of the preprocessing methods, please refer to section 4.4. 

5.4 Methods 

 To determine the capacity of LIC to predict algal biomass concentrations, data were 

preprocessed at an annual scale, as the minimum temporal resolution of ON, OF and DR is 

annual. However, LIC may exhibit a more significant control on algal biomass during the 

spring season compared to later in the year. Therefore, algal biomass parameters were also 

calculated annually for the spring, summer, and fall seasons. Due to the large size of the study 

lakes, the lakes were divided into basins, as different regions of a lake may exhibit different 

water chemistry profiles, depths, and mixing patterns, which therefore may react differently to 

changes in LIC. To allow for a comparison in predictive performance, LSWT parameters were 

introduced on the same scale as the algal biomass parameters, as water temperature is known 

to be a significant controller of algal growth and development (Borowitzka et al., 2016; Cross 

et al., 2015). This research assesses predictive performance in two different ways: (1) 

prediction of annual/seasonal algal biomass parameters via regressors, and (2) prediction of 

annual/seasonal abnormal algal biomass flags (presence of a BC pixel) via classifiers. 

Regressors assessed in this study are linear (multiple linear regression; MLR) and non-linear 

(feed-forward artificial neural network; ANN). 

 To predict annual and seasonal algal biomass parameters (MC, XC, BC, BD and PC), 

an MLR was calculated for each lake/basin and season, using only LIC parameters ON, OF, 

DR), only LSWT (MT, XT, AT, PT) parameters and both parameters. An MLR is calculated 

as linear combination of each independent input parameter via the following equation (1): 

𝑌 = 𝛼 + 𝑋1 ∙ 𝛽1 + 𝑋2 ∙ 𝛽2 + ⋯ + 𝑋𝑛 ∙ 𝛽𝑛 (5.1) 

Where Y is the predicted algal biomass parameter, α is the bias, 𝑋1⋯𝑛 is the input 

parameters, and 𝛽1⋯𝑛 is the weights. The chl-a concentration data were log scaled for the MLR 

to increase the likelihood of a normal distribution, as chl-a concentrations are typically left 

skewed. A stratified random sampling method is employed to select training data for chl-a 
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concentration measured algal biomass parameters (MC, XC and BC), where a random 250 

pixels for each threshold of chl-a concentrations (< 2.5 μg L-1, 2.5 – 5.0 μg L-1, 5.0 – 10.0 μg 

L-1, 10.0 – 20.0 μg L-1, > 20.0 μg L-1) are selected for each year (2002 – 2011 and 2016 – 2020; 

excluding 2012-2015 due to missing data). Stratified random sampling is used to ensure a wide 

range of chl-a concentrations to train the model, with a maximum sample size of 18,750 

independent replicates. The sample size will vary by lake, season, and year, as some may not 

have 250 observations above 20.0 μg L-1, and some NLs may see ice cover during the spring 

season, limiting the number of available observations. For both BD and PC, the training data 

are selected randomly, with 1,000 pixels selected each year/season, comprising a total of 

15,000 observations for each lake/basin. To validate the predicted chl-a concentrations, a 10-

fold cross-validation approach is implemented, resulting in a 90% / 10% training/testing data 

split, ensuring that observations not included in the model can be accurately predicted. The 

resulting MLRs and predicted algal biomass parameters are used to provide various 

performance metrics; coefficient of determination (r2), adjusted coefficient of determination 

(adj. r2), p-value, standard error (SE), Root Mean Squared Error (RMSE), Normalized Root 

Mean Squared Error (NRMSE), Median Absolute Percentage Error (MAPE) and Mean 

Absolute Error (MAE), as described in table 5.1.  

Table 5.1. Summary of performance and error metrics for the MLR and ANN (adj. r2 and Se are limited to the MLR only) 

Parameter Equation Variables Measure # 

Adj. r2 1 − [
(1 − 𝑟2) × (𝑛 − 1)

(𝑛 − 𝑘 − 𝑙)
] 

𝑛 = sample size, 𝑟2 = 

coefficient of determination, 𝑘 

= number of independent 

variables 

Corrected (adjusted) 

coefficient of determination 

(r2) for determining model 

accuracy 

(5.2) 

Se √
∑ (𝑦𝑖 − 𝑦�̂�)2𝑛

𝑖=1

𝑑𝑓
 

𝑛 = sample size, 𝑦𝑖 = the 

observed value, 𝑦�̂� = the 

predicted value, 𝑑𝑓 = degrees 

of freedom 

Standard error of the 

residuals indicating model fit 

and variance 

(5.3) 

RMSE 𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖 − 𝑦�̂�)2

𝑛

𝑛

𝑖=1

 

𝑛 = sample size, 𝑦𝑖 = the 

observed value, 𝑦�̂� = the 

predicted value 

Standard deviation of the 

prediction errors 
(5.4) 

NRMSE 𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝜎
 

𝑅𝑀𝑆𝐸 = Root Mean Square 

Error, 𝜎 = standard deviation of 

input dependent data 

RMSE normalized by the 

standard deviation of the 

input training data. Allows 

for comparison between 

models of varying values 

(5.5) 
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Parameter Equation Variables Measure # 

MAE 𝑀𝐴𝐸 =
∑ |�̂�𝑖 − 𝑦𝑖|𝑛

𝑖=1

𝑛
 

𝑛 = sample size, 𝑦𝑖 = the 

observed value, 𝑦�̂� = the 

predicted value 

Average error between pairs 

of predicted and observed 

values 

(5.6) 

MAPE 

𝑀𝐴𝑃𝐸
= 100

× 𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 [
|�̂�𝑖 − 𝑦𝑖|

𝑦𝑖
] 𝑓𝑜𝑟 𝑖

= 1, … , 𝑛 

𝑛 = sample size, 𝑦𝑖 = the 

observed value, 𝑦�̂� = the 

predicted value 

Median of the absolute 

percentage errors between 

the predicted and observed 

values 

(5.7) 

 

Each error metric is calculated per fold and averaged to get a mean error across all 

folds. While RMSE is a standard error metric, the study area contains lakes with a wide range 

of algal biomass concentrations, where GBL is highly oligotrophic, while LW is eutrophic. 

Therefore, as an example, an RMSE of 4.00 μg L-1 indicates a much poorer performance for 

GBL compared to LW. The normalization of the RMSE by the standard deviation of the 

observed values allows for better model performance comparison between different lakes.  

The interaction of LIC, LSWT and algal biomass may not exhibit a significant linear 

trend, where instead non-linear learners may provide a better predictive performance. Machine 

learning allows for the identification of complex patterns between dependent and independent 

variables. This study implements a feed-forward artificial neural network (ANN) for predicting 

each algal biomass parameter using only LIC, LSWT and both inputs (training data selection 

the same as for the MLR). The ANN was constructed using Keras for R and Tensorflow (Abadi 

et al., 2016; Falbel et al., 2019), and has two hidden layers with 64 and 32 nodes. As input 

training data are measured at differing scales (i.e., days, K, DOY), they were first normalized 

to the same scale to ensure proper convergence and stabilize the training process via the 

following equation: 

𝑧 =  
𝑋 −  𝜇

𝜎
 

(5.8) 

  Where 𝑋 = the input parameter, 𝜇 = the mean and 𝜎 = the standard deviation of the 

input parameters. Using the input data, the activation of each node is defined by the scaled 

exponential linear units (SELU) activation function, which is described by the following 

equation (Klambauer et al., 2017): 
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𝑠𝑒𝑙𝑢(𝑥) =  𝜆 {
𝑥                𝑖𝑓 𝑥 > 0
𝛼𝑒𝑥 − 𝑎   𝑖𝑓 𝑥 ≤ 0

} 
(5.9) 

 Where 𝛼 = 1.6733 and 𝜆 = 1.0507. If the given value of each node is greater than zero, 

the node is scaled by 𝜆, while inputs with a value of less than 0 are scaled with an additional 

constant. While the ReLU activation function is more common, there are issues where the 

neurons will consistently be calculated as zero, known as the dying ReLU problem. Dying 

ReLUs tend to occur when the learning rate is too high, or there are large negative biases, 

which is more likely to occur when the same ANN structure is applied to varying datasets (i.e., 

differing algal biomass parameters and lakes). The SELU activation function allows for node 

values of less than zero, and self normalizes, improving model training time. To calculate the 

global minima, the Adam optimization function was used with a batch size of 32, a learning 

rate of 0.001, a total of 100 epochs, and an internal training/validation split of 90%/10% where 

mean squared error was used as the internal error metric. Adam optimization was selected as 

it is computationally efficient, applicable for models with a high number of observations and 

suited for noisy gradients (Kingma & Ba, 2015). An early callback was implemented to reduce 

over-fitting, where if the internal mean squared does not decrease after 10 epochs the training 

was ended. The same ANN structure was trained using annual/seasonal input data for each 

lake/basin and season to predict for each algal biomass parameter. Performance metrics 

(RMSE, NRMSE, MAE and MAPE) were used to calculate each ANN performance, to allow 

for comparisons between lakes/seasons and determine whether models constructed from only 

LIC or LSWT parameters provided greater predictive performance.  ANN may provide 

evidence for the performance of LIC and LSWT in predicting algal biomass concentrations, 

however, this does not provide evidence for its predictive capacity of abnormal agal biomass 

conditions or potential “bloom flags”. Instead, a classifier is constructed using a Random 

Forest (RF).  

 To determine the capacity of LIC and LSWT to classify abnormal algal biomass 

conditions, an RF model is constructed using annual/seasonal LIC and LSWT parameters. The 

BC product was converted to a binary integer where all cells with a value were converted to 
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the value 1 flag (indicating abnormal biomass), and all NA pixels within the lake boundary 

were converted to the value 0 flag (indicating no abnormal biomass). This conversion is done 

to create a classifier capable of identifying the presence of relatively (lake specific) high chl-a 

concentrations based solely on the LIC and LSWT parameters. For each year of data (excluding 

2012-2015 due to missing data), a stratified random sampling of 1,000 abnormal and 1,000 no 

abnormal flagged pixels were extracted, with their corresponding LIC and LSWT pixel values. 

The RF model was constructed using all annual/seasonal LIC and LSWT parameters for each 

lake/basin, where a maximum of 100 trees were constructed with 80% / 20% training and 

testing data split, with a total of 10 RF iterations. The RF model was constructed using the 

‘randomForest’ package in r (Liaw & Wiener, 2002), which was ported from Breiman (2001). 

 While the RF model can provide evidence for accuracy in classifying abnormally high 

algal biomass parameters in each lake/season, it is also important to determine which input 

parameters had greater classification importance. The internal model error loss (variable 

importance) is calculated using an out-of-bag approach, where the model error is calculated 

per tree when each input parameter is excluded, with a mean standard error calculated across 

all trees. The ‘randomForest’ package calculates the internal model error loss and subsequently 

provides the mean decrease accuracy (MDA) across all trees when each parameter is excluded. 

The MDA is scaled by the standard deviation of the decrease in accuracy across the trees to 

improve the stability of the results (Breiman, 2001). The parameter with the largest MDA 

represents the parameter with the greatest importance. Comparisons of where and when the 

parameter importance changes have led to an understanding of the role LIC plays in classifying 

abnormal algal biomass in North American Great Lakes.  

5.5 Results 

The MLR method provided relatively poor performances compared to the ANN for all 

parameters of algal biomass, with the exception of the PC parameter (Figure 5.2). The use of 

LSWT parameters showed a significant improvement in the predictions of algal biomass 

parameters compared to models that used only LIC.  
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Figure 5.2. Normalized Root Mean Squared Error (NRMSE) of the Artificial Neural Network (ANN) and Multiple Linear 

Regression (MLR) for five algal biomass parameters: (a) mean chl-a concentrations, (b) maximum chl-a concentrations, (c) 

abnormal chl-a concentrations, (d) abnormal chl-a days, and € peak chl-a DOY. Where: GBL = Great Bear Lake, GSL = 

Great Slave Lake, LA = Lake Athabasca, LW = Lake Winnipeg, LE = Lake Erie, CB = Central Basin, SB = South Basin, 

NB = North Basin, EB = East Basin, WB = West Basin, and AB = All Basins. Data are separated into models that contain 

only lake surface water temperature parameters (LSWT), only lake ice cover parameters (LIC), or contain both LSWT and 

LIC parameters. 
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5.5.1 Multiple Linear Regression 

Across all seasons and lakes, LSWT only models produced a median NRMSE of 0.95 

compared to 1.00 produced by LIC only models for MC, with 0.95 and 1.01 for XC, 0.91 and 

0.98 for BC, 1.03 and 1.05 for BD, and 0.98 and 0.99 for PC. The inclusion of both LIC and 

LSWT parameters typically reduced predictive error, with a median NRMSE of 0.94, 0.94, 

0.88 1.01 and 0.98 for MC, XC, BC, BD and PC, respectively (Table 5.2).  

Across all lakes and model inputs, median NRMSE was lowest in the summer season 

for MC (0.93), XC (0.94) and BC (0.89) compared to annual, (0.95, 0.95, 0.91), spring (0.97, 

0.98, 0.96), and fall (1.00, 0.98, 0.95) seasons. Annual data returned the lowest median 

NRMSE for predicting BD (1.02) compared to spring (1.02), summer (1.03) and fall (1.04), 

while spring returned the lowest mean NRMSE for PC (0.97), compared to annual (0.98), 

summer (0.99) and fall (0.99).  

Across all seasons and model inputs, LA returned the lowest median NRMSE when 

predicting MC, XC, BC, and BD (0.76, 0.82, 0.88 & 0.99 respectively), while GBL (0.96, 0.97, 

0.94 & 1.02 respectively), GSL (0.96, 0.95, 0.90 & 1.03 respectively), LW (0.99, 0.99, 0.96 & 

1.05 respectively) and LE (0.95, 0.97, 0.95 & 1.02 respectively) performed significantly poorer 

on average. Predictions for PC returned GBL with the lowest, albeit poor, median NRMSE 

(0.97) compared to GSL, LA, LW and LE (0.98, 0.98, 0.98 & 1.00 respectively).  

The NRMSE varies between lake basins, seasons, and model inputs, where the best 

performances occurred when models contained both LSWT and LIC inputs during the summer 

season for all algal biomass parameters (median NRMSE = 0.56 – 1.04) (Figure 5.2). Of the 

models using both LIC and LSWT parameters in the summer season, LA returned the lowest 

median NRMSE for MC, XC, BC, and BD (0.56, 0.67, 0.76, & 0.99 respectively), while GBL 

returned the lowest median NRME for peak chl-a DOY (0.98). Within this same grouping, the 

NLs (GBL, GSL and LA) returned a lower median NRMSE for all algal biomass parameters 

(0.80 – 1.02, median = 0.94) compared to the SL (LW and LE) (0.90 – 1.04, median = 0.99), 

particularly for chl-a concentration parameters (median NRMSE of NLs = 0.83, SLs = 0.93). 

Of the NLs, for chl-a concentration parameters, all basins of GBL and LA had a relatively 
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lower median NRMSE (0.68 – 0.77), while all of GSL returned a relatively high NRMSE (0.89 

– 0.94). Of the SLs, LW returned the poorest results for all algal biomass parameters with little 

difference between the basins (0.98 – 1.04). The performance for LE returns the lowest 

NRMSE for the Central basin for all chl-a concentration parameters (0.75 – 0.87) compared to 

the other basins (0.85 – 0.95). 

Table 5.2. Lake basin range of mean seasonal MLR performance metrics where NRMSE = normalized root mean square 

error, RMSE = root mean square error (μg L-1 for mean/max/abnormal chl-a, days for abnormal chl-a days and peak chl-a 

DOY), MAPE = median absolute percentage error, MAE = mean absolute error (μg L-1 for mean/max/abnormal chl-a, days 

for abnormal chl-a days and peak chl-a DOY), Adj. R2 = adjusted coefficient of determination, and se = standard error (μg 

L-1 for mean/max/abnormal chl-a, days for abnormal chl-a days and peak chl-a DOY) 
  

Lake NRMSE RMSE MAPE MAE Adj. r2 se 

M
ea

n
 C

h
l-
a

 

L
S

W
T

 

GBL 0.86 - 0.90 2.01 - 2.73 0.30 - 0.53 1.33 - 1.69 0.34 - 0.51 0.48 - 0.85 

GSL 0.94 - 0.96 2.17 - 2.61 0.29 - 0.32 1.55 - 1.82 0.09 - 0.18 0.43 - 0.54 

LA 0.73 3.24 0.30 2.22 0.45 0.46 

LW 0.97 - 1.00 3.75 - 4.26 0.26 - 0.36 2.89 - 3.25 0.07 - 0.12 0.43 - 0.54 

LE 0.88 - 0.92 1.95 - 3.59 0.29 - 0.43 1.19 - 1.95 0.23 - 0.31 0.45 - 0.59 

L
IC

 

GBL 1.00 - 1.04 2.29 - 3.07 0.39 - 0.72 1.63 - 2.05 0.07 - 0.15 0.57 - 1.11 

GSL 0.96 - 1.03 2.23 - 2.80 0.30 - 0.31 1.59 - 1.86 0.01 - 0.12 0.44 - 0.57 

LA 0.82 3.67 0.34 2.56 0.33 0.52 

LW 0.99 - 1.01 3.83 - 4.32 0.27 - 0.38 2.93 - 3.30 0.04 - 0.06 0.44 - 0.54 

LE 0.97 - 1.02 1.97 - 4.05 0.33 - 0.45 1.25 - 2.23 0.03 - 0.17 0.52 - 0.64 

B
o

th
 

GBL 0.85 - 0.88 1.99 - 2.69 0.29 - 0.52 1.32 - 1.67 0.35 - 0.53 0.47 - 0.84 

GSL 0.91 - 0.96 2.16 - 2.59 0.28 - 0.33 1.54 - 1.81 0.10 - 0.22 0.42 - 0.54 

LA 0.68 3.04 0.28 2.1 0.51 0.44 

LW 0.94 - 0.98 3.68 - 4.19 0.25 - 0.36 2.81 - 3.17 0.10 - 0.15 0.42 - 0.53 

LE 0.86 - 0.92 1.78 - 3.54 0.28 - 0.38 1.09 - 1.92 0.28 - 0.35 0.44 - 0.55 

M
a

x
 C

h
l-
a

 

L
S

W
T

 

GBL 0.84 - 0.97 2.88 - 3.98 0.34 - 0.52 1.98 - 2.32 0.34 - 0.46 0.51 - 0.84 

GSL 0.90 - 0.94 3.60 - 3.92 0.29 - 0.32 2.45 - 2.92 0.14 - 0.22 0.44 - 0.54 

LA 0.80 3.97 0.30 2.71 0.37 0.45 

LW 0.97 - 1.00 5.71 - 6.62 0.24 - 0.33 3.99 - 4.14 0.06 - 0.11 0.39 - 0.50 

LE 0.93 - 0.96 3.01 - 9.23 0.31 - 0.40 1.69 - 3.13 0.18 - 0.27 0.47 - 0.59 

L
IC

 

GBL 1.00 - 1.06 3.41 - 4.42 0.44 - 0.68 2.45 - 2.78 0.06 - 0.13 0.61 - 1.04 

GSL 0.96 - 1.02 3.77 - 4.20 0.30 - 0.34 2.54 - 3.18 0.03 - 0.13 0.47 - 0.57 

LA 0.88 4.39 0.34 3.03 0.26 0.49 
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Lake NRMSE RMSE MAPE MAE Adj. r2 se 

LW 0.99 - 1.00 5.72 - 6.69 0.24 - 0.34 3.96 - 4.26 0.03 - 0.06 0.39 - 0.51 

LE 0.98 - 1.01 3.09 - 8.36 0.35 - 0.42 1.76 - 3.42 0.03 - 0.12 0.52 - 0.66 
B

o
th

 

GBL 0.84 - 0.94 2.86 - 3.95 0.34 - 0.52 1.96 - 2.29 0.35 - 0.47 0.51 - 0.83 

GSL 0.88 - 0.94 3.55 - 3.89 0.28 - 0.32 2.42 - 2.85 0.14 - 0.24 0.43 - 0.54 

LA 0.76 3.78 0.29 2.59 0.43 0.43 

LW 0.96 - 0.99 5.59 - 6.57 0.24 - 0.32 3.85 - 4.09 0.08 - 0.14 0.38 - 0.49 

LE 0.92 - 0.96 2.89 - 7.84 0.30 - 0.38 1.58 - 3.09 0.22 - 0.31 0.46 - 0.58 

A
b

n
o

rm
a

l 
C

h
l-
a

 

L
S

W
T

 

GBL 0.87 - 0.91 2.71 - 3.04 0.28 - 0.40 1.59 - 2.10 0.28 - 0.32 0.47 - 0.62 

GSL 0.85 - 0.92 1.96 - 3.36 0.16 - 0.21 1.61 - 2.03 0.20 - 0.30 0.21 - 0.28 

LA 0.84 3.42 0.22 2.67 0.32 0.31 

LW 0.96 - 1.00 4.21 - 7.32 0.12 - 0.16 2.81 - 3.71 0.02 - 0.13 0.22 - 0.26 

LE 0.92 - 0.94 1.71 - 4.55 0.16 - 0.25 1.19 - 2.29 0.13 - 0.24 0.25 - 0.35 

L
IC

 

GBL 0.94 - 0.98 2.80 - 3.18 0.35 - 0.46 1.81 - 2.25 0.10 - 0.20 0.53 - 0.68 

GSL 0.94 - 1.00 2.11 - 3.39 0.18 - 0.26 1.75 - 2.30 0.04 - 0.18 0.23 - 0.31 

LA 0.89 3.70 0.24 2.91 0.23 0.33 

LW 0.94 - 0.96 4.23 - 7.00 0.14 - 0.15 2.92 - 3.44 0.09 - 0.13 0.22 - 0.25 

LE 0.93 - 1.01 1.77 - 5.00 0.17 - 0.30 1.25 - 2.60 0.01 - 0.20 0.26 - 0.40 

B
o

th
 

GBL 0.86 - 0.89 2.62 - 2.98 0.28 - 0.38 1.58 - 2.04 0.31 - 0.37 0.46 - 0.60 

GSL 0.85 - 0.90 1.93 - 3.28 0.16 - 0.20 1.58 - 1.97 0.22 - 0.31 0.21 - 0.27 

LA 0.81 3.30 0.21 2.55 0.37 0.30 

LW 0.91 - 0.92 3.99 - 6.89 0.12 - 0.14 2.68 - 3.31 0.13 - 0.21 0.20 - 0.24 

LE 0.85 - 0.92 1.67 - 4.55 0.16 - 0.24 1.16 - 2.26 0.18 - 0.30 0.24 - 0.35 

A
b

n
o

rm
a

l 
C

h
l-
a

 D
a

y
s 

L
S

W
T

 

GBL 1.01 - 1.02 7.66 - 21.30 0.51 - 0.61 4.34 - 16.82 0.06 - 0.16 0.84 - 0.94 

GSL 1.01 - 1.04 6.97 - 11.13 0.51 - 0.61 4.10 - 7.16 0.06 - 0.14 0.93 - 0.95 

LA 1.00 9.12 0.61 5.00 0.10 0.96 

LW 1.04 - 1.05 6.63 - 6.74 0.58 - 0.61 4.46 - 4.62 0.04 - 0.05 0.91 - 0.94 

LE 1.01 - 1.08 9.80 - 39.51 0.60 - 0.76 4.76 - 24.15 0.03 - 0.08 0.96 - 1.31 

L
IC

 

GBL 1.01 - 1.04 7.84 - 21.09 0.54 - 0.62 4.41 - 18.16 0.02 - 0.08 0.89 - 0.95 

GSL 1.05 - 1.07 7.08 - 11.37 0.50 - 0.62 4.20 - 7.17 0.01 - 0.09 0.96 - 0.98 

LA 1.01 9.26 0.62 5.04 0.08 0.97 

LW 1.05 - 1.06 6.69 - 6.78 0.58 - 0.62 4.50 - 4.70 0.01 - 0.03 0.93 - 0.95 

LE 1.02 - 1.04 9.87 - 29.35 0.60 - 0.71 4.78 - 17.36 0.01 - 0.20 0.97 - 1.20 
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Lake NRMSE RMSE MAPE MAE Adj. r2 se 

B
o

th
 

GBL 1.00 - 1.01 7.62 - 21.37 0.50 - 0.60 4.30 - 16.72 0.07 - 0.17 0.84 - 0.93 

GSL 1.01 - 1.03 6.93 - 10.91 0.51 - 0.61 4.08 - 7.02 0.07 - 0.18 0.93 - 0.94 

LA 0.97 8.89 0.60 4.85 0.14 0.94 

LW 1.03 - 1.04 6.58 - 6.66 0.57 - 0.60 4.41 - 4.60 0.05 - 0.07 0.91 - 0.93 

LE 0.97 - 1.02 9.76 - 27.48 0.59 - 0.68 4.73 - 16.29 0.04 - 0.26 0.96 - 1.15 

P
ea

k
 C

h
l-
a

 D
O

Y
 

L
S

W
T

 

GBL 0.94 - 0.96 18.53 - 19.60 0.07 - 0.07 15.57 - 16.29 0.08 - 0.11 0.09 - 0.09 

GSL 0.94 - 0.97 20.45 - 22.96 0.06 - 0.08 16.13 - 19.43 0.05 - 0.12 0.10 - 0.11 

LA 0.98 26.28 0.10 22.1 0.04 0.14 

LW 0.96 - 0.99 23.04 - 27.43 0.06 - 0.11 18.28 - 23.65 0.03 - 0.09 0.11 - 0.14 

LE 1.00 - 1.02 35.31 - 45.19 0.13 - 0.18 29.93 - 39.90 0.01 - 0.03 0.22 - 0.30 

L
IC

 

GBL 0.94 - 0.98 18.45 - 19.89 0.07 - 0.07 15.89 - 16.88 0.05 - 0.11 0.09 - 0.09 

GSL 0.97 - 1.00 20.70 - 22.73 0.07 - 0.08 16.44 - 19.21 0.01 - 0.08 0.10 - 0.11 

LA 0.99 26.73 0.10 22.81 0.02 0.14 

LW 0.94 - 0.98 22.93 - 27.14 0.06 - 0.11 18.06 - 23.38 0.05 - 0.12 0.11 - 0.13 

LE 1.00 - 1.02 35.48 - 45.22 0.13 - 0.19 30.18 - 40.01 0.01 - 0.02 0.22 - 0.30 

B
o

th
 

GBL 0.92 - 0.96 18.09 - 19.46 0.07 - 0.07 15.34 - 16.15 0.10 - 0.14 0.09 - 0.09 

GSL 0.93 - 0.97 20.38 - 22.50 0.06 - 0.08 16.12 - 18.98 0.06 - 0.13 0.10 - 0.10 

LA 0.97 26.14 0.10 22.00 0.06 0.13 

LW 0.93 - 0.97 22.72 - 26.76 0.06 - 0.11 17.93 - 22.76 0.08 - 0.15 0.11 - 0.13 

LE 0.99 - 1.02 35.13 - 45.10 0.13 - 0.18 29.68 - 39.75 0.02 - 0.05 0.22 - 0.30 

 

5.5.2 Artificial Neural Network 

 The ANN method provided improved performance compared to the MLR for all algal 

biomass parameters, with the exception of the PC parameter (ANN median NRMSE = 0.81, 

MLR median NRMSE = 0.95). Similar to the MLR, the use of LSWT parameters provided 

improvements to the prediction of algal biomass parameters, compared to models using only 

LIC.  

Across all seasons and lakes, LSWT only models produced a median NRMSE of 0.82 

compared to 0.93 produced by LIC only models for MC, with 0.80 and 0.93 for XC, 0.79 and 

0.91 for BC, 0.83 and 0.94 for BD, and 0.96 and 0.98 for PC. The inclusion of both LIC and 
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LSWT parameters typically reduced predictive error, with a median NRMSE of 0.75, 0.76, 

0.74, 0.75 and 0.94 for MC, XC, BC, BD and PC, respectively (table 5.3).  

Across all lakes and model inputs, median NRMSE was lowest in the summer season 

for MC (0.76), XC (0.84), AC (0.79) and BD (0.78) compared to annual (0.82, 0.84, 0.79 & 

0.78), spring (0.85, 0.87, 0.84 & 0.87), and fall (0.83, 0.85, 0.79 & 0.89) seasons. Spring data 

returned the lowest median NRMSE for predicting PC (0.91), compared to annual (0.96), 

summer (0.98) and fall (0.96).  

Across all seasons and model inputs, LA returned the lowest median NRMSE when 

predicting MC, XC, BC, and BD (0.61, 0.73, 0.72 & 0.62 respectively), while GBL (0.81, 0.77, 

0.80 & 0.85 respectively), GSL (0.84, 0.85, 0.80 & 0.83 respectively), LW (0.88, 0.91, 0.86 & 

0.88 respectively) and LE (0.79, 0.83, 0.81 & 0.90 respectively) performed poorer on average. 

Predictions for PC returned LW with the lowest, albeit poor, median NRMSE (0.95) compared 

to GBL, GSL, LA and LE (0.96, 0.96, 0.96 & 0.98 respectively).  

Similar to the MLR, the ANN indicated the best performance for models that contained 

both LSWT and LIC inputs during the summer season for all algal biomass parameters (median 

NRMSE = 0.43 – 0.98) (Figure 5.2). Of the models that used LIC and LSWT in the summer 

season, LA returned the lowest median NRMSE for MC, XC, BC and BD (0.43, 0.59, 0.59, & 

0.50 respectively), while GBL returned the lowest median NRME for PC (0.96). Within this 

same grouping, NLs (GBL, GSL and LA) returned a lower median NRMSE for all algal 

biomass parameters (0.63 – 0.97, median = 0.74) compared to SLs (LW and LE) (0.76 – 0.99, 

median = 0.83), particularly for chl-a concentration parameters (median NRMSE of NLs = 

0.68, SLs = 0.80). Of the NLs, for the chl-a concentration parameters, all the GBL and LA 

basins had a relatively low median NRMSE (0.54 – 0.69), while the GSL Central basin returned 

the highest NRMSE (0.80 – 0.91). Of the GSL basins, the Eastern and Northern basins returned 

the lowest median NRMSE for all chl-a concentration parameters (0.69 – 0.76). Of the SLs, 

LW returned the poorest results for all algal biomass parameters with little difference between 

the basins (0.86 – 0.99). However, the Southern basin of LW provided considerably lower 

NRMSE (0.75) compared to the Northern basin (0.91) for ACC. The performance of LE varies 
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depending on the parameter, with MC returning lower NRMSE for the Central (0.67) and 

Eastern (0.69) basins compared to the Western basin (0.76), while BC returns lower NRMSE 

for the Western basin (0.69) compared to the Central (0.80) and (0.82) Eastern basins. Based 

on the findings presented, LIC acts as a poor predictor of any algal biomass parameter as 

LSWT consistently provides lower predictive error, irrespective of seasonality, location, or 

method (linear vs. non-linear). While LIC may not provide a strong prediction of a given algal 

biomass parameter value, it may aid in the classification of lake-wide BC flags. 

Table 5.3. Lake basin range of mean seasonal ANN performance metrics where NRMSE = normalized root mean square error, 

RMSE = root mean square error (μg L-1 for mean/max/abnormal chl-a, days for abnormal chl-a days and peak chl-a DOY), MAPE 

= median absolute percentage error, MAE = mean absolute error (μg L-1 for mean/max/abnormal chl-a, days for abnormal chl-a 

days and peak chl-a DOY), Adj. R2 = adjusted coefficient of determination, and se = standard error (μg L-1 for mean/max/abnormal 

chl-a, days for abnormal chl-a days and peak chl-a DOY) 

  
Lake NRMSE RMSE MAPE MAE 

M
ea

n
 C

h
l-

a
 

L
S

W
T

 

GBL 0.68 - 0.74 1.74 - 2.21 0.27 - 0.50 1.20 - 1.57 

GSL 0.76 - 0.87 1.87 - 2.36 0.23 - 0.30 1.37 - 1.73 

LA 0.59 2.6 0.25 1.84 

LW 0.86 - 0.89 3.31 - 3.82 0.22 - 0.32 2.54 - 2.93 

LE 0.73 - 0.78 1.51 - 2.97 0.25 - 0.36 1.01 - 1.70 

L
IC

 

GBL 0.88 - 0.92 2.09 - 2.64 0.37 - 0.75 1.55 - 1.97 

GSL 0.85 - 0.98 2.07 - 2.67 0.28 - 0.32 1.53 - 1.85 

LA 0.76 3.31 0.34 2.44 

LW 0.94 - 0.95 3.60 - 4.08 0.26 - 0.36 2.83 - 3.23 

LE 0.85 - 0.95 1.73 - 3.88 0.33 - 0.42 1.14 - 2.33 

B
o

th
 

GBL 0.64 - 0.70 1.64 - 2.10 0.26 - 0.50 1.14 - 1.47 

GSL 0.67 - 0.81 1.64 - 2.19 0.19 - 0.28 1.24 - 1.60 

LA 0.52 2.31 0.22 1.63 

LW 0.80 - 0.84 3.04 - 3.60 0.20 - 0.29 2.31 - 2.70 

LE 0.68 - 0.74 1.38 - 2.82 0.23 - 0.31 0.85 - 1.63 

M
a

x
 C

h
l-

a
 

L
S

W
T

 

GBL 0.72 - 0.74 2.44 - 3.45 0.30 - 0.51 1.73 - 2.23 

GSL 0.76 - 0.86 3.18 - 3.61 0.24 - 0.32 2.21 - 2.63 

LA 0.7 3.44 0.27 2.4 

LW 0.90 - 0.92 5.26 - 6.32 0.22 - 0.31 3.64 - 4.01 

LE 0.76 - 0.83 2.53 - 6.56 0.30 - 0.38 1.55 - 3.03 
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Lake NRMSE RMSE MAPE MAE 

L
IC

 

GBL 0.91 - 0.92 3.13 - 4.01 0.42 - 0.66 2.40 - 2.73 

GSL 0.87 - 0.98 3.50 - 4.02 0.30 - 0.38 2.49 - 2.93 

LA 0.84 4.12 0.35 3.01 

LW 0.93 - 0.95 5.44 - 6.47 0.22 - 0.34 3.77 - 4.22 

LE 0.89 - 0.94 2.87 - 7.91 0.39 - 0.43 1.68 - 3.67 
B

o
th

 

GBL 0.68 - 0.71 2.30 - 3.30 0.28 - 0.49 1.60 - 2.08 

GSL 0.69 - 0.84 2.86 - 3.50 0.20 - 0.30 2.03 - 2.53 

LA 0.64 3.16 0.25 2.22 

LW 0.87 - 0.90 5.06 - 6.18 0.20 - 0.29 3.45 - 3.83 

LE 0.74 - 0.78 2.34 - 6.16 0.29 - 0.35 1.41 - 2.91 

A
b

n
o

rm
a

l 
C

h
l-

a
 

L
S

W
T

 

GBL 0.72 - 0.78 2.35 - 2.59 0.26 - 0.35 1.44 - 1.81 

GSL 0.70 - 0.81 1.53 - 3.06 0.11 - 0.18 1.20 - 1.84 

LA 0.7 2.89 0.16 2.13 

LW 0.84 - 0.90 3.71 - 6.93 0.11 - 0.15 2.50 - 3.57 

LE 0.74 - 0.80 1.46 - 4.28 0.13 - 0.20 1.02 - 1.91 

L
IC

 

GBL 0.89 - 0.92 2.64 - 2.96 0.36 - 0.44 1.80 - 2.19 

GSL 0.81 - 0.95 1.79 - 3.21 0.14 - 0.24 1.44 - 2.27 

LA 0.84 3.47 0.22 2.74 

LW 0.84 - 0.90 3.99 - 6.86 0.12 - 0.15 2.77 - 3.46 

LE 0.77 - 0.96 1.67 - 4.86 0.17 - 0.32 1.23 - 2.71 

B
o

th
 

GBL 0.69 - 0.73 2.22 - 2.45 0.25 - 0.32 1.37 - 1.69 

GSL 0.63 - 0.74 1.37 - 2.84 0.10 - 0.16 1.06 - 1.68 

LA 0.62 2.54 0.14 1.86 

LW 0.75 - 0.82 3.31 - 6.36 0.10 - 0.13 2.22 - 3.13 

LE 0.70 - 3.30 1.31 - 11.98 0.12 - 0.18 0.91 - 1.92 

A
b

n
o

rm
a

l 
C

h
l-

a
 D

a
y

s 

L
S

W
T

 

GBL 0.72 - 0.80 8.75 - 14.12 0.21 - 0.60 6.36 - 10.94 

GSL 0.78 - 0.85 10.01 - 13.71 0.34 - 0.65 7.40 - 10.15 

LA 0.59 13.61 0.43 10.32 

LW 0.82 - 0.89 10.72 - 11.44 0.54 - 0.62 7.94 - 8.40 

LE 0.71 - 1.63 14.29 - 32.45 0.41 - 0.58 10.12 - 25.92 

L
IC

 GBL 0.91 - 0.96 10.94 - 19.09 0.26 - 0.69 8.37 - 16.34 

GSL 0.86 - 0.96 11.27 - 15.76 0.34 - 0.84 8.63 - 12.28 
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Lake NRMSE RMSE MAPE MAE 

LA 0.77 18.91 0.52 15.1 

LW 0.92 - 0.95 11.52 - 12.72 0.62 - 0.68 8.78 - 9.25 

LE 0.87 - 0.96 16.51 - 28.64 0.55 - 0.66 11.86 - 22.05 

B
o

th
 

GBL 0.70 - 0.77 8.20 - 13.67 0.20 - 0.58 5.83 - 10.44 

GSL 0.70 - 0.79 9.27 - 12.64 0.29 - 0.63 6.80 - 9.28 

LA 0.52 11.73 0.37 8.73 

LW 0.75 - 0.84 10.20 - 10.83 0.51 - 0.58 7.22 - 7.88 

LE 0.67 - 1.89 13.53 - 35.39 0.39 - 0.54 9.56 - 17.66 

P
ea

k
 C

h
l-

a
 D

O
Y

 

L
S

W
T

 

GBL 0.93 - 0.94 18.26 - 19.22 0.06 - 0.06 15.13 - 15.74 

GSL 0.92 - 0.97 20.32 - 22.18 0.06 - 0.07 16.10 - 18.41 

LA 0.96 25.74 0.09 21.49 

LW 0.91 - 0.96 22.63 - 26.26 0.06 - 0.10 17.72 - 22.10 

LE 0.96 - 0.98 34.12 - 43.27 0.11 - 0.16 27.52 - 38.02 

L
IC

 

GBL 0.93 - 0.96 18.29 - 19.57 0.06 - 0.07 15.34 - 16.09 

GSL 0.94 - 1.00 20.68 - 22.49 0.07 - 0.07 16.60 - 18.79 

LA 0.97 26.31 0.09 22.46 

LW 0.93 - 0.97 22.77 - 26.80 0.06 - 0.10 17.78 - 22.99 

LE 0.99 - 0.99 34.74 - 43.44 0.12 - 0.17 28.39 - 38.30 

B
o

th
 

GBL 0.90 - 0.92 17.79 - 18.94 0.06 - 0.06 14.62 - 15.41 

GSL 0.89 - 0.96 20.02 - 21.10 0.06 - 0.07 15.88 - 17.20 

LA 0.92 25.23 0.09 20.91 

LW 0.87 - 0.92 21.93 - 25.13 0.06 - 0.09 17.08 - 20.80 

LE 0.92 - 0.96 33.56 - 42.45 0.11 - 0.16 26.90 - 36.59 

 

5.5.3 Random Forest Classifier 

 The RF model returned variable predictive accuracy depending on the lake and season 

(72.88% – 97.27%, median = 84.22%) (Figure 5.3). When sorted by seasonality, BC flags in 

the summer season had the highest overall accuracy across all lakes (76.89% – 97.27%, median 

= 88.56%), followed by annual, spring and fall data (Table 5.4).  
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Figure 5.3. Mean random forest (RF) classification accuracy of the presence of abnormal algal biomass per lake, basin, and 

season across 10 RF model iterations. Error bars represent the minimum and maximum lower and upper boundary tree 

accuracy.  

Table 5.4. Random Forest classification accuracy of the presence of abnormal algal biomass where data is summarized per 

season across all lakes where Min. = minimum lower boundary accuracy, Max. = maximum upper boundary accuracy, Med.  

= median accuracy of all lakes per season, Pos. Pred. Value = median accuracy for positive classifications, Neg. Pred. Value 

= median accuracy for negative classifications, and P = percentage of lakes where the accuracy p-value is < 0.05. 

 Min. Max. Med. Pos. Pred. Value Neg. Pred. Value Precision P 

Annual 72.88% 95.21% 85.68% 85.47% 81.02% 85.47% 100% 

Spring 75.89% 93.03% 84.10% 81.44% 85.78% 81.44% 100% 

Summer 76.96% 97.27% 88.56% 86.66% 84.44% 86.66% 100% 

Fall 73.57% 93.71% 79.91% 77.70% 78.29% 77.70% 100% 

 

While most lakes show higher classification accuracy in the annual and summer 

models, LW indicates higher classification accuracy during the spring season compared to any 

other season (84.41 – 93.03%, median = 88.61%) (Figure 5.3). LA had the highest overall 

accuracy across all seasons (86.26 – 92.54%, median = 88.11%) followed by GBL, LE, GSL, 

and LW (Table 5.5). The NLs returned a higher accuracy (73.36% – 96.15%, median = 

85.87%) compared to the SLs (72.88% – 97.27%, median = 79.62%). 
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Table 5.5. Random Forest classification accuracy of the presence of abnormal algal biomass where data are summarized per 

lake across all seasons, where Min. = minimum lower boundary accuracy, Max. = maximum upper boundary accuracy, 

Med.  = median accuracy of all seasons per lake, Pos. Pred. Value = median accuracy for positive classifications, Neg. Pred. 

Value = median accuracy for negative classifications, and P = percentage of lakes where accuracy p-value is < 0.05. 

 Min. Max. Med. Pos. Pred. Value Neg. Pred. Value Precision P 

GBL 76.29% 96.15% 86.46% 86.20% 86.27% 86.20% 100% 

GSL 73.36% 90.97% 80.19% 79.69% 80.38% 79.69% 100% 

LA 86.26% 92.54% 88.11% 88.97% 87.64% 88.97% 100% 

LW 72.88% 93.03% 78.21% 78.55% 77.45% 78.55% 100% 

LE 75.22% 97.27% 84.63% 82.18% 81.85% 82.18% 100% 

 

Within each lake, the SB of GBL had the highest accuracy (85.15% - 96.15%, median 

= 92.42%) in BC classification, with the NB of GSL (85.85% – 90.97%, median = 88.53%), 

the SB of LW (76.62% – 93.03%, median = 80.56%) and the EB of LE (83.94% – 94.37%, 

median = 93.13%) having the corresponding highest accuracy (Table 5.6). The difference in 

accurate positive to accurate negative classifications remained within ±5.00% for 71.67% 

(43/60) of RF models for varying lakes and seasons, and has a median difference of ±1.08%. 

The 28.33% (17/60) RF models with a positive to negative accuracy difference exceeding 

±5.00% returned a median difference of ±11.24%. This difference occurred in 17 RF models, 

of which 41.18% (7/17) occurred in LE, 29.41% (5/17) in GBL, 23.53% (4/17) in GSL, 5.88% 

(1/17) in LW, and none in LA, with a near even split between seasons. The precision and 

accuracy of BC classification remained within ±5.00% for 91.67% of RF models (median 

difference = ±0.74%). Of the 8.33% (5/60) RF models where the difference in accuracy and 

precision exceeded ±5.00% (median difference = ±7.32%), three occurred in the Eastern basin 

of LE (for three seasons: annual, summer and fall), once in the Central basin of GBL (spring), 

and once in the Eastern basin of GSL (spring).  

Table 5.6. Random Forest classification accuracy where data are summarized per lake basin across all seasons, where Min. 

= minimum lower boundary accuracy, Max. = maximum upper boundary accuracy, Med.  = median accuracy of all seasons 

per lake basin, Pos. Pred. Value = median accuracy for positive classifications, Neg. Pred. Value = median accuracy for 

negative classifications, and P = percentage of lakes where accuracy p-value is < 0.05. 

Lake Min. Max. Med. 
Pos. Pred. 

Value 

Neg. 

Pred. 

Value 

Precision P 

GBL Central Basin 76.29% 89.84% 84.76% 81.59% 86.98% 81.59% 100% 
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Lake Min. Max. Med. 
Pos. Pred. 

Value 

Neg. 

Pred. 

Value 

Precision P 

GBL Southern Basin 85.15% 96.15% 92.42% 93.70% 83.16% 93.70% 100% 

GBL All Basins 79.07% 90.64% 85.48% 83.70% 86.72% 83.70% 100% 

GSL Central Basin 73.36% 81.05% 77.14% 77.08% 77.21% 77.08% 100% 

GSL Eastern Basin 78.63% 88.09% 83.66% 82.35% 84.84% 82.35% 100% 

GSL Northern Basin 85.85% 90.97% 88.53% 90.91% 83.25% 90.91% 100% 

GSL All Basins 73.89% 80.98% 77.82% 77.33% 78.34% 77.33% 100% 

LA All Basins 86.26% 92.54% 88.11% 88.97% 87.64% 88.97% 100% 

LW Northern Basin 72.88% 85.91% 76.23% 75.76% 76.71% 75.76% 100% 

LW Southern Basin 76.62% 93.03% 80.56% 79.32% 79.28% 79.32% 100% 

LW All Basins 73.57% 89.26% 76.73% 76.50% 76.96% 76.50% 100% 

LE Central Basin 75.22% 85.23% 79.38% 80.05% 79.32% 80.05% 100% 

LE Eastern Basin 83.94% 94.37% 93.13% 83.87% 94.59% 83.87% 100% 

LE Western Basin 75.52% 97.27% 86.08% 88.31% 76.22% 88.31% 100% 

LE All Basins 78.90% 89.28% 83.72% 83.62% 84.39% 83.62% 100% 

 

 To determine variable importance in classifying BC presence, the MDA was calculated 

across 10 RF iterations of different training and testing data. The distribution of the MDA 

across all RF iterations for each LSWT and LIC input parameter per lake and season is shown 

in Figure 5.4. The magnitude of the MDA is relative to the input data and may not be directly 

comparable to other RF models; therefore, it is the ranking of each variable that is important. 

Each parameter is ranked from 1 (greatest mean accuracy decrease) to 7 (lowest mean accuracy 

decrease) for each RF iteration and averaged to determine the overall ranking of variable 

importance as seen in Figure 5.5. Across all lakes, annual RF models showed higher 

importance for LSWT parameters compared to LIC, where AT returned the highest mean 

importance ranking (3.09), while OF (3.89) was ranked fifth. Across all lakes, spring RF 

models returned PT as the highest ranking (2.49) on average; however, OF jumps to second 

rank (3.29) indicating increased importance in the timing of ice melt during spring. The 

importance of LIC drops in the later seasons, as across all lakes in summer, PT is ranked first 
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(2.66) and XT during fall (2.48), while OF drops to third (3.61) and fourth (3.66) respectively 

(Table 5.7).  

 

Figure 5.4. Boxplot of Mean Decrease Accuracy (MDA) distributions of Random Forest (RF) classification models for 

abnormal algal biomass presence per lake, basin and season across 10 RF model iterations. Black dots represent outliers, and 

horizontal lines represent the median MDA. Where: GBL = Great Bear Lake, GSL = Great Slave Lake, LA = Lake 

Athabasca, LW = Lake Winnipeg, LE = Lake Erie, CB = Central Basin, SB = South Basin, NB = North Basin, EB = East 

Basin, WB = West Basin, and AB = All Basins. 

Table 5.7. Random Forest Mean Decrease Accuracy median rankings across all lakes per season, where MT = Mean Lake 

Surface Water Temperature (LSWT), XT = Maximum LSWT, PT = Peak LSWT DOY, AT = Anomaly LSWT Days, ON = 

Ice On date, OF = Ice Off date, and DR = Ice Duration.  

 MT XT PT AT ON OF DR 

Annual 3.39 3.31 3.31 3.09 4.61 3.89 6.41 

Spring 4.31 4.23 2.49 4.12 4.00 3.29 5.56 

Summer 2.98 4.04 2.66 4.37 4.47 3.61 5.87 

Fall 3.11 2.48 3.30 4.35 4.69 3.66 6.41 
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Across all seasons in GBL, AT returned the highest ranking (2.78), while ON and OF 

returned third and fourth, respectively (3.23 & 3.69). Across all seasons, both GSL and LA 

returned PT as the highest ranking (2.35 & 2.80) on average, with OF ranked second and third 

respectively (3.09 & 3.40). Across all seasons, both LW and LE returned the same mean rank 

orders, with MT as the highest ranking (2.63 & 2.44), while OF is the most important LIC 

variable at fourth (4.13 & 3.74) (Table 5.8).  

Table 5.8. Random Forest Mean Decrease Accuracy median rankings across all seasons per lake, where MT = Mean Lake 

Surface Water Temperature (LSWT), XT = Maximum LSWT, PT = Peak LSWT DOY, AT = Anomaly LSWT Days, ON = 

Ice On date, OF = Ice Off date, and DR = Ice Duration. 

 MT XT PT AT ON OF DR 

GBL 4.98 4.77 2.93 2.78 3.23 3.69 5.63 

GSL 3.95 3.49 2.35 4.79 4.46 3.09 5.87 

LA 3.28 4.88 2.80 4.23 4.08 3.40 5.35 

LW 2.63 2.78 2.90 4.22 4.97 4.13 6.38 

LE 2.44 2.81 3.59 3.84 5.04 3.74 6.52 

 

Based on mean ranking summaries, LIC parameters show greater importance for NLs 

and during the spring season. When rankings are averaged by both lake and season, LIC 

parameter importance increases during spring for high latitude lakes, as both GBL and GSL 

show OF as the highest-ranking variable (2.33 & 2.33), while DR is ranked third (3.40). In 

comparison LA during spring ranks DR as the third highest (3.40), ON third highest in LW 

(3.37), and OF as fourth highest in LE (3.33). Spring months typically show high LIC 

importance, often ranked first or second behind PT, with more LIC parameters at a higher 

ranking in NLs, with some variability (e.g., low LIC importance in the Northern basin of GSL, 

high OF importance in the Central basin of LE) (Figure 5.5). LIC importance drops later in the 

year, along with PT, as MT and XT return higher importance in the summer and fall (most 

notably for LW and LE).  
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Figure 5.5. Heat Map representing the mean ranking of the Mean Decrease Accuracy (MDA) variable importance for a 

Random Forest (RF) classifier of abnormal algal biomass presence across lakes, basins, and seasons. The lower the value 

(blue), the greater the variable importance on average across 10 RF model iterations. Where: GBL = Great Bear Lake, GSL 

= Great Slave Lake, LA = Lake Athabasca, LW = Lake Winnipeg, LE = Lake Erie, CB = Central Basin, SB = South Basin, 

NB = North Basin, EB = East Basin, WB = West Basin, and AB = All Basins. 
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5.6 Discussion 

5.6.1 Prediction of Algal Biomass Parameters 

 Between the two regression methods, the ANN consistently outperforms the MLR, 

returning lower error metrics with the exception of PC, as both methods returned poor results. 

This is expected as machine learning methods typically provide improved performance over 

linear regressors (Chen et al., 2019b; Amemiya et al., 2023). The BD returned the greatest 

difference between the ANN and MLR performance. Machine learning can capture non-linear 

patterns, in which the improved performance of the ANN indicates the relationship between 

algal biomass, LSWT and LIC are non-linear. The ANN may also be further improved by 

adapting the internal network structure to each lake, season, and algal biomass parameter, 

rather than generalized, as was done in this research. In particular, the PC parameter may have 

returned improved performance utilizing an alternate ANN structure, due to the poor 

performance of PC when using the same structure for all algal biomass parameters. However, 

the PC input data had substantial variance, as the chl-a peak was calculated as the DOY when 

chl-a was highest. Therefore, the same pixel position could return high chl-a in spring one year 

and fall the next year, resulting in highly variable data. Improvements to interpolation, and 

spatial/temporal smoothing could have reduced the PC variance and improved predictive 

capacity; however, lake surface chl-a peaks can still occur at any point in the ice-free period, 

depending on atmospheric, lake physical, and biogeochemical variables (Zhang et al., 2011; 

Tian et al., 2017). The PC parameter did not improve depending on the predictor parameters, 

as the inclusion of either LSWT or LIC did not show significant differences in performance. 

 The inclusion of both LSWT and LIC into the same model returned a lower error for 

both the MLR and the ANN, despite the poor performance of the LIC only models. Ice duration 

was consistently found to be the least important variable across all lakes, basins, and seasons 

for the RF. It is possible that the inclusion of ice duration in the LIC only MLR and ANN 

models increases the predictive error. Additional ANN and MLR models are needed to 

determine whether individual LIC parameters have improved predictive capacity over LSWT 

parameters. A total of 120 combinations of LSWT and LIC parameters would be required, 
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resulting in a total of 36,000 models (15 lakes/basins, 4 seasons, and 5 algal biomass 

parameters). Due to the training time required for the ANN, the data were only separated into 

LSWT only, LIC only, or both. Some studies have shown that the increase in inputs for 

machine learning models return improved performance (Trofimova et al., 2021), however, this 

is not guaranteed (Arif et al., 2020; Qiu et al., 2023; Domingos, 2012). It is possible that the 

LIC parameters do improve chl-a concentration predictions when included with LSWT. The 

inclusion of LIC parameters may have improved chl-a concentration predictions when 

combined with LSWT parameters, as the ratio in the timing between OF and MT/XT was a 

significant contributor to the algal blooms observed in the remote and traditionally oligotrophic 

Dickson Lake in 2014 (Favot et al., 2019). Previous research on the remote and traditionally 

oligotrophic Lake Dickson (Algonquin, Ontario, Canada) had found that the ratio in the timing 

between OF and MT/XT was a significant contributor to the 2014 algal bloom (Favot et al., 

2019). The timing between lake ice melt and stratification onset reduced the duration of the 

mixing season, where the lake did not mix fully, resulting in lower hypolimnetic oxygen (Favot 

et al., 2019). Low oxygen increases internal loading, where low redox potential breaks Fe-P 

complexes, increasing P availability (Tammeorg et al., 2020; Harrow-Lyle & Kirkwood, 

2021). The timing between ice melt and stratification may not be as impactful for the deep 

waters of the NLs, however, shallow basins within each lake (i.e. GBL SB and GSL NB) may 

be affected in such a manner. LIC parameters alone do not provide a strong predictive accuracy 

of algal biomass parameters as LIC is indicative of only the winter conditions, while LSWT is 

measured at the same time as the algal biomass parameters. The combination of winter 

conditions and LSWT in the same model provides a marked improvement in algal biomass 

predictions, particularly during the summer. 

 Predictive accuracy greatly increased for chl-a concentration predictions during the 

summer months, particularly for NLs. The prevalence of lake ice is still high during the spring 

season for lakes such as GBL and GSL, limiting the number of available satellite observations 

for open water. Additionally, misclassification between ice and water, and increased 

observable reflectance due to melting, broken ice in the water may have resulted in greater 
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over prediction of chl-a concentrations during the spring season. Lake ice formation may also 

occur during the fall, resulting in similar issues with spring chl-a retrieval. Additionally, cloud 

coverage for the region is much higher during this time, limiting observations, thus affecting 

retrieval accuracy (Konik et al., 2019). The spring and fall seasons are also considerably 

shorter than the summer, and therefore limit the number of available observations in which to 

derive a seasonal mean, increasing variance compared to the summer season. For these reasons, 

both annual and summer derived data return a lower predictive error. The contribution of lake 

ice during the summer may be related to stratification, increasing internal loading later in the 

year due to a lower redox potential (Woolway et al., 2021). An improved summer performance 

was also observed in LE within the more oligotrophic and mesotrophic Eastern and Central 

basins for MC and XC. Meanwhile, in the west basin of LE, all chl-a concentration parameters 

returned the highest predictive accuracy during spring, possibly because summer and fall 

conditions are more closely related to external nutrient loading. Lake depth may play a role in 

the seasonal predictive accuracy of the BC. Shallower basins (relative to the rest of the lake) 

such as the south basin of GBL, the north basin of GSL, and the south basin of LW returned 

greater differences in summer predictive accuracy to other seasons. Shallow waters stratify 

quickly, leading to earlier anoxia driven internal loading (Woolway et al., 2021), however, are 

prone to frequent mixing via precipitation driven flushing and high wind speeds, increasing 

turnover during the summer and subsequent epilimnetic available P (Robertson & Diebel, 

2020). Conversely, deeper waters such as the Central basin of GBL and GSL, the Eastern 

basins of GSL and LE, and the north basin of LW returned a stronger predictive performance 

of BC during the fall season. Deep waters take longer to stratify (Boehrer & Schultze, 2008), 

where epilimnetic P increases through turnover and diffusion (Robertson & Diebel, 2020; 

Tammeorg et al., 2020), resulting in increased observable surface algae during the fall. 

Therefore, the summer months for deep lakes may not experience a strong response in summer 

algae to high LSWTs, and more strongly affect the algae observed in the fall due to prolonged 

stratification.  
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Regions with high external loading (such as the SLs) during the growing season due to 

anthropogenic activities (herein referred to as anthropogenic loading) may introduce variance 

where the LSWT and LIC parameters will not fully explain the variance seen in the algal 

biomass response. The NLs typically outperformed the SLs in all seasons. Deep water regions 

of the NLs are often nutrient poor, where there is limited anthropogenic loading, and therefore 

the majority of nutrients are derived via internal loading (Finney et al., 2004). External loading 

is also high in some regions of the NLs, such as the CB of GSL, where the Slave River 

discharges various nutrients (Evans & Muir, 2016). Such loading however, is not dependent 

on anthropogenic activities, and therefore driven by natural systems. The NLs are therefore 

reliant on LSWT and LIC for both the timing of mixing, the extent/severity of hypolemntic 

anoxic diffusion, and river discharge. These NLs are also deeper than LW and LE, where 

diffusion would be more prevalent. Although NLs performed well, LA returned the best 

performance for all algal biomass parameters, with the exception of PC, with both ANN and 

MLR. LA is the shallowest of the three NLs, is oligotrophic, and has minimal anthropogenic 

influence with the exception of mining and oil sands operations runoff. There have been reports 

of increased algal growth by indigenous communities, primarily attributed to discharge from 

oil sands operations (Bill et al., 1994; Timoney, 2008; Parlee & D’Souza, 2019). The oil sands 

have been shown to increase total polycyclic aromatic hydrocarbons (PAHs) into waters (Smol, 

2019), which studies have found to increase algal growth (Anderson et al., 2010; Harris & 

Smith, 2016). There has been an observed increase in estimated PAH mass deposition in the 

Athabasca Oil Sands region in recent years (Chibwe et al., 2021; Lévesque et al., 2023), the 

origin of which may be from natural bitumen deposits (Hall et al., 2012). It is possible that the 

increase in PAHs in combination with warming waters returned stronger predictive models, as 

it has been observed that climate warming has reduced the sedimentation burial of PAHs (Tao 

et al., 2019). However, the LIC only models for LA returned low predictive accuracy compared 

to the LSWT, indicating a similar performance to the other lakes. There is little evidence to 

support that LIC parameters provide a strong predictor of algal biomass parameters, regardless 

of season, lake, or basin. LIC only models returned a similar error across all lakes, which is 
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consistently lower than the LSWT only parameters. However, its inclusion with LSWT 

parameters significantly improves predictive accuracy. 

5.6.2 Classification of Abnormal Algal Biomass Presence 

 Classification returned adequate accuracy for most lakes on average, with fall typically 

lower for most lake basins and highest in summer. Spring indicates the lowest variability in 

RF model performance (Figure 5.3), however, less accurate than the annual and summer 

seasons. This is interesting considering the high variance of the spring input data and the poor 

performance of the ANN and MLR models. Additionally, the Central basin of GSL and all of 

LW show the highest accuracy in spring compared to any other season. The summer and fall 

season in LW would likely show improved accuracy with the inclusion of biogeochemical 

variables (e.g., P, N, DO, etc.) and even lake mixing information, given LW classified as 

polymictic (Nürnberg & LaZerte, 2016). The importance of OF and PT is likely a proxy of 

spring and snow melt, coinciding with internal/external loading. The same should also be true 

for the Western basin of LE where the accuracy was highest in spring compared to the other 

basins but still poorer in comparison to summer. The odd pattern of LW performance may also 

stem from data product issues, as see in section4.5. Interestingly, regardless of season, 

relatively shallower and more eutrophic lake basins show higher precision and accuracy 

compared to deeper and more oligotrophic regions of the lake (Table 5.6), such as the south 

basin of GBL, the north basin of GSL, the south basin of LW, and the west basin of LE (east 

basin has a higher median accuracy but lower precision). Shallower waters have a stronger 

response to changes in temperature (Havens et al., 2016) and experience faster ice loss (Li et 

al., 2022). Additionally, all of these basins (with the exception of the NB of GSL), intersect 

with major river inflows, where nutrients are most frequently mobilized. The external nutrient 

concentrations are not dependent on anthropogenic activities, therefore the LSWT and LIC 

parameters provide stronger predictive capacity for the NLs (due to their control on nutrient 

availability timings).  

 Of the LIC parameters used, ON and OF were among the most important variables for 

predicting abnormal algae during the spring season, where OF was typically more important 
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for NLs. The timing of ice melt corresponds to both the onset of mixing and internal loading 

via turbulence (Vincent et al., 2012). Additionally, an early OF period extends the growing 

season and typically increases stratification duration due to prolonged solar radiative flux 

exposure (Dibike et al., 2011). The importance of OF was also associated with the highly 

important PT, in which an earlier timing may result in a more rapid onset of stratification 

(Woolway et al., 2021). LIC parameters may not be considered important for SLs due to 

frequent ice beak-up, and periodic snow melt during the winter season, particularly for regions 

such as the Western basin of LE and the south basin of LW. While ON and OF were found to 

be important, DR was not, returning the lowest ranking on average. There were difficulties in 

defining ON dates due to high cloud cover, which would increase the variability in the DR 

calculation, affecting the discernible relation between DR and algal biomass. The duration of 

ice cover  may not be important, given that nutrient and light availability can stimulate algal 

growth primarily when the OF period begins. The trend of later ON formation may not result 

in higher spring algal biomass formation, as a study by Hébert et al. (2021) found that later ice 

formation increased the survivability of zooplankton overwintering, initiating stronger top-

down controls during spring. Therefore, this complicates the relationship of DR to the algal 

biomass response, as later ON may reduce algal biomass; however, earlier OF may facilitate 

higher growth, likely resulting in the low importance of DR found in the RF. The importance 

of LIC parameters decreases in the later season on average (Figure 5.5). However, LA and LW 

still show high importance for OF during summer and fall, potentially due to prologued 

stratification induced by an earlier OF date. The RF models provide evidence that the LIC 

parameters are important in the classification of annual/seasonal abnormal algal biomass 

during the spring for NLs, along with the timing of algal biomass peaks. 

5.7 Conclusion 

 Despite the importance of LIC, it was not found to be a significant predictor of algal 

biomass concentrations but did improve linear and non-linear predictive models when included 

with LSWT parameters. A combination of the timing/duration of LIC and the measure of 

LSWT provides the best models for chl-a concentration prediction. The timing of ON, and in 
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particular OF, was of significant importance in classifying abnormal algal biomass conditions 

in spring, primarily for NLs. The application of LIC to algal biomass change is typically not 

explored, often due to data limitations, assumptions of ecological dormancy during winter, and 

frequently blooming/commonly studied lakes are either not ice-forming (e.g., Lake Taihu, 

Lake Okeechobee), or experience limited/intermittent ice cover (e.g., Lake Erie). This research 

has shown that LIC is an important variable in the springtime algal biomass response for NLs, 

which are experiencing LIC reduction at an accelerated rate. The inclusion of LIC parameters 

in algal biomass projection models may be important for ice-forming lakes. The reduction of 

LIC is a consequence of climate change, indicating that climate-driven factors are important 

predictors of algal biomass trends. NL models showed greater performance compared to SLs, 

potentially indicating a greater control of climatic variables on algal biomass dynamics for 

NLs. This research was limited to large lakes, where smaller lakes may exhibit a stronger 

response to environmental change. This research was additionally limited to annual scales, 

where other parameters (e.g., wind speed, precipitation) would likely have a significant intra-

annual impact on the algal biomass response. Future research may look to apply the given 

methods to other study regions or may look at the impact of other climatic parameters as they 

affect algal biomass within a shorter timeframe. Algal biomass dynamics may be better 

explained by additional lake physical and atmospheric parameters. Such research can improve 

our understanding of the role atmospheric and lake physical parameters play on the dynamics 

of algae, and how they differ between lakes. 
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Chapter 6: The Role of Lake Physical Variables and Atmospheric Forcings 

on the Change in Algal Biomass in North American Great Lakes 

6.1 Introduction 

Traditional understanding of freshwater algal biomass dynamics is attributed primarily 

to lake trophic conditions, where macronutrients (e.g., Phosphorus (P), Nitrogen (N), Carbon 

(C), etc.) and micronutrients (e.g., Iron (Fe), Copper (Cu), etc.) play a significant role in 

facilitating algal growth (Schindler, 1974; Bonachela et al., 2011; Song et al., 2012; Zhang et 

al., 2019). Unprecedented algal growth for a given lake or lake basin can result in a bloom, or 

bloom-like conditions. There has been a perceived increase in the frequency, severity, and 

duration of algal blooms globally (Favot et al., 2023; Winter et al., 2011; Paerl & Huisman, 

2008). Although the external anthropogenic load of nutrients (agricultural or urban 

runoff/wastewater) is an important driver, blooms have been observed in traditionally 

oligotrophic lakes, with minimal anthropogenic influence (Favot et al., 2019; Pick, 2016; 

Winter et al., 2011; Smol, 2019). Climate change has been hypothesized to play a significant 

role in recent algal bloom trends, primarily due to the increase in global air temperatures (Paerl 

& Huisman, 2008). It is often assumed that an increase in air temperature will result in higher 

water temperatures, where most algae exhibit increased growth rates (Borowitzka et al., 2016; 

Cross et al., 2014; Gobler, 2020). The interaction between water and air temperatures are more 

complex, however, where various atmospheric forcings (e.g., precipitation, windspeed, net 

solar radiation, etc.) and lake physical variables (e.g., morphometry, salinity, turbidity, lake 

flow rate, lake mixing depth/duration/timing, etc.) can affect not only water temperatures but 

also algal biomass dynamics (Rose et al., 2016; Walsh et al., 2020). The complexity of these 

interactions often limits our understanding of how climate change may drive not only algal 

biomass dynamics, but also bloom conditions.  

Global water temperatures have been observed to increase by ~0.30°C per decade 

(Komatsu et al., 2007; O’Reilly et al., 2015; Yang et al., 2019), with regional studies observing 

increases between 0.23-0.46°C per decade (Filatov et al., 2019; Niedrist et al., 2018; Roberts 
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et al., 2017; Woolway et al., 2019), with a higher rate of change at higher latitudes (Zhang et 

al., 2019). Most algae exhibit a higher growth rate at increased water temperatures; however, 

this trend is not linear, and growth rates decline past an optima (Singh & Singh, 2015; Paerl & 

Otten, 2013). Cyanobacteria typically have the highest growth temperature optima and are 

therefore anticipated to dominate algae community compositions in warmer waters (Paerl & 

Otten, 2013).  

Prolonged high-water temperatures with increased lake water column stability (low 

inflow, precipitation, and windspeed) and high net solar radiation, often results in stratification. 

Stratified waters limit nutrient exchange between the epilimnion and hypolimnion, where 

epilimnetic waters are warmer and often associated with higher algal biomass. The epilimnion 

during prolonged stratification periods can become nutrient poor, while in the hypolimnion, 

the decomposition of decaying algae results in anoxic conditions. Anoxic waters increase 

internal loading and, therefore, the availability of P, where mobile algae (e.g., flagellates and 

cyanobacteria) have advantageous fixation in stratified waters. Mobile algae may travel 

vertically within the water column to assimilate nutrients and return to the photic zone for 

favorable growth conditions (higher light availability, warmer waters) within a limited range 

(Brasil et al., 2016; Lehman et al., 2017).  

Conversely, when a lake mixes, the water column becomes oxygenated and nutrients 

are mobilized via internal loading (Orihel et al., 2017). The turbulence of the water during 

mixing typically minimizes algal growth due to turbulence; however, mixing events followed 

by stratification are often associated with higher algal growth (Salmaso, 2010). The onset of 

mixing varies between lakes, where some mix only once a year (monomictic), twice a year 

(dimictic), or frequently (continuous and discontinuous polymictic), often driven by changes 

in water temperature, windspeed, precipitation, and runoff. Studies have found that short 

mixing events (in which the lake does not fully oxygenate) exhibited prolonged anoxic 

conditions, leading to increased internal loading and subsequent algal blooms, even in 

oligotrophic systems (Favot et al., 2019). 
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The majority of research on the impacts of atmospheric forcings and lake physical 

variables on algal biomass is often limited to either controlled lab studies (Hennon & Dyhrman, 

2020; Griffith & Gobler, 2020), mesocosm experiments (Trochine et al., 2010; Moss et al., 

2003; 2004), or small-scale observations (Vilhena et al., 2010; Qin et al., 2021). The 

availability of water quality data often limits the potential scope of interaction-based analysis. 

Recent advances in remote sensing and computing technologies have allowed the widespread 

availability of comprehensive water quality data products. This research uses the European 

Space Agency (ESA), Climate Change Initiative (CCI) Lakes product (ver. 2.0.0) (Carrea et 

al., 2022), which provides daily surface water chlorophyll-a concentrations (chl-a; a proxy of 

algal biomass) and lake surface water temperatures (LSWT), for five North American Great 

Lakes (Great Bear Lake, Great Slave Lake, Lake Athabasca, Lake Winnipeg, and Lake Erie) 

and their basins. Additional atmospheric and lake physical parameters are derived from the 

European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5-Land data climate 

reanalysis product, where daily mean 2-m air temperature (T2m), 10-m east and north wind 

speed (WS), lake mixing level depth (LMLD), surface net solar radiation (SNSR), and daily 

total precipitation (PPT), surface runoff (SR), and subsurface runoff (SSR) were used (Muñoz-

Sabater et al., 2021).  

This research seeks to define the interaction effects of atmospheric and lake physical 

variables on algal biomass dynamics (2002-2020) utilizing a High Order Dynamic Gaussian 

Bayesian Network (HO-DGBN). The HO-DGBN must first provide adequate chl-a forecasting 

accuracies, ensuring that the network and input parameters provide a significant explanation 

of the algal biomass dynamics. To determine the interaction effects, this research looks to (1) 

determine the frequency and combination of significant parameters within temporal models 

across all lakes, (2) determine the nature of these interactions, (3) determine the importance of 

input parameters, and (4) asses the sensitivity of the models to changes in atmospheric and lake 

physical variables. A DGBN will be created utilizing not only a complete time series, but also 

the stationary, non-stationary and residuals of the training data inputs. The stationary, non-

stationary, and error signals provide context as to the interaction effects of seasonal, trend, and 
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background noise component, respectively. Models were constructed at not only the daily 

scale, but also three day, weekly, biweekly and monthly averages. Different temporal scales 

may return different importance and interaction effects between the algal biomass dynamics 

and parameters that may have a longer lag effect (e.g. T2m may not have a significant lag 

effect at the daily scale, but instead show greater importance at a longer temporal scale). The 

use of a DGBN can help conceptualize complex multivariate system interactions and identify 

key atmospheric or lake physical parameter contribution to algal biomass dynamics. The 

assessment of interaction effects may help better understand the dynamics of algal biomass  in 

a changing climate. 

6.2 Study Area 

 Daily to monthly mean lake physical and atmospheric forcing parameters are obtained 

for five North American Great Lakes; Great Bear Lake (GBL), Great Slave Lake (GSL), Lake 

Athabasca (LA), Lake Winnipeg (LW) and Lake Erie (LE), and their subsequent basins (Figure 

6.1) over a total of 19 years (2002-2020). This research utilizes the same study area as outlined 

in section 4.2.  
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Figure 6.1. Map of study lakes and their corresponding basins and rivers. Land cover deliniation provided by ESA CCI 

Landcover (http://maps.elie.ucl.ac.be/CCI/viewer/download.php). 

GBL is the largest of the selected study lakes, with a surface area of 31,153 km2, a 

mean depth of ~76m (Johnson, 1975; Rouse et al., 2008), and is comprised of two main basins; 

the larger, deeper Central basin (CB) (Smith, Dease, Keith, and McTavish arms), and the 

shallower south basin (SB) (McVicar arm) (Johnson, 1975). The CB of GBL is less productive 

with a mean annual chl-a concentration of 0.39 μg L-1, from 2002-2020, while the SB remains 

more productive with a mean chl-a of 2.77 μg L-1 (section 4.5). The major inflows to GBL are 

the Camsell River (CB) and the Johnny Hoe River (SB), with the Great Bear River (CB) as the 

major outflow (Johnson, 1975; Chavarie et al., 2015). GBL also exhibits the longest residence 

time of any of the selected study lakes at 124 years (Johnson, 1975), and is within a relatively 

undisturbed catchment (some mining operations and small settlements) (Schindler, 2001). The 

http://maps.elie.ucl.ac.be/CCI/viewer/download.php
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mixing classification of GBL is that of cold monomictic; however, some regions are 

transitioning to a dimictic system (Woo & Rouse, 2007).  

 GSL is the second largest of the study lakes, with a surface area of 28,450 km2 and is 

the deepest with a mean of ~88m (Rouse et al., 2008). GSL is composed of three basins, the 

largest by surface area being the CB, the deepest waters of the east basin (EB), and the smallest 

and shallowest waters of the north basin (NB) (Avalon Rare Metals Inc, 2011; Shertzer et al., 

2008). The EB of GSL is the least productive of the three basins, with a mean annual chl-a 

concentration of 2.96 μg L-1 from 2002-2020, 4.49 μg L-1 in the CB, and 5.32 in the NB (section 

4.5). The Slave River is the primary major inflow to GSL (CB), while the Mackenzie River is 

the primary major outflow (CB) (Evans, 2000; Gibson et al., 2006). GSL exhibits the second 

longest residence time compared to the other study lakes at 16 years, however, is significantly 

lower than that of GBL (Evans, 2000; Gibson et al., 2006). Similar to GBL, the catchment 

surrounding GSL is relatively undisturbed, with larger built-up regions (Yellowknife, Fort 

Providence, Fort Resolution). Yellowknife Bay of GSL has had an observed algal bloom in 

September 2013 (Pick, 2016) and exhibits a dimictic mixing cycle (Rouse et al., 2008).  

 LA is the smallest of the selected study lakes with a surface area of 7,770 km2, a mean 

depth of ~20m and has no discernable basins (Mitchell & Prepas, 1990). LA shows moderate 

primary productivity, with a mean chl-a concentration of 4.29 μg L-1 from 2002-2020 (section 

4.5). There are many major inflow rivers that supply LA waters, such as the Athabasca River, 

Fond du Lac River, and MacFarlane River, with Rivière des Rochers as the primary outflow 

(Rasouli et al., 2013). The surrounding catchment is largely undeveloped; however, there is 

oil sands wastewater deposited within the lake via the Athabasca River. Indigenous groups 

have attributed the observed increase in algal biomass within LA to oilsands operations (Bill 

et al., 1994; Timoney, 2008; Parlee & D’Souza, 2019). Lake Athabasca has a residence time 

of ~6 years (calculated by dividing total LA volume by total inflow found in Bennett et al., 

1973), and exhibits a dimictic mixing cycle (Leconte et al., 2008).  

 LW is the second smallest of the study lakes, with a surface area of 23,750 km2, is the 

shallowest on average with a mean depth of ~12m and is comprised of two main basins: the 
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larger and deeper NB and the shallower and more productive SB (Government of Manitoba, 

2021). The NB is slightly less productive, with a mean annual chl-a concentration of 7.38 μg 

L-1 from 2002-2020, while the SB is more productive with at 10.17 μg L-1 (section 4.5). Similar 

to LA, LW has many major river inflows, such as the Winnipeg River (SB), Saskatchewan 

River (NB), Red River (SB), and the Dauphine River (NB), with the Nelson River (NB) as the 

major outflow (Government of Manitoba, 2021; Warrack et al., 2017). LW exhibits the second 

shortest residence time of ~3-5 years (Government of Manitoba, 2021). Unlikethe surrounding 

remote GBL, GSL, and LA, the catchment is significantly developed predominantly along the 

SB inflow rivers, with agriculture dominating land use, often leading to increase nutrient 

loading and algal blooms within the lake (Government of Manitoba, 2021; Binding et al., 

2018). Unlike the other lakes in the study, LW exhibits a polymictic mixing structure, where 

mixing events occur at irregular intervals (Nürnberg and LaZerte, 2016).  

 LE is the only Laurentian Great Lake selected for study due to its significant history 

with algal blooms (Ho & Michalak, 2015; Watson et al., 2016; Smith et al., 2015). LE has a 

surface area of 25,744 km2, and a mean depth of ~19m, with the shallowest occurring in the 

west end of the lake and the deepest regions in the Eastern portion (EPA, 2020). LE is 

comprised of three major basins, the shallowest and most productive west basin (WB), the 

moderately deep CB, and the deepest and EB. The WB is the most productive with a mean 

annual chl-a concentration of 4.04 μg L-1, with the EB and CB being less productive at 2.83 

μg L-1 and 1.27 μg L-1 respectively (section 4.5). The Detroit River is the main major inflow to 

LE, with the Niagara River and the Welland Canal as the main river outflows (Docker et al., 

2021). LE has the largest amount of development within the surrounding catchment of any of 

the studied lakes with a lengthy history of past algal bloom occurrences, the majority of which 

have occurred within the WB (Sayers et al., 2019). LE EB and CB exhibit a dimictic mixing 

structure, while the shallower WB exhibits a polymictic mixing structure (Karatayev et al., 

2021). 
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6.3 Data Sources 

6.3.1 ESA CCI Lakes 

Complete daily lake-wide chl-a and LSWT values are derived from the ESA CCI Lakes 

plus dataset (v2.0.0 of the Lake Water Leaver Reflectance (LWLR) and the LSWT product), 

while other lake physical variables (LMLD, SNSR, SSR) and atmospheric forcings (T2m, WS, 

PPT, SR) are derived from the ECMWF ERA5-land data climate reanalysis product (2002-

2020). The ESA CCI Lakes project is a harmonized lake data product that provides various 

water quality and quantity metrics (productivity, temperature, lake ice, water level, etc.), daily 

at a 1/120 latitude-longitude grid (ca.1 km)for more than 2,000 lakes globally. The ERA5-

Land data product provides many climatic modelled reanalysis parameters (i.e., T2m, LMLD, 

WS, etc.) hourly and a 9 km grid, globally.  

The LWLR reflectance product, which provides daily estimated surface water chl-a 

concentrations, is developed using MERIS (2002-2012) and Sentinel-3A OLCI (2016-2020) 

satellite imagery. Within data version 2.0.0, there is currently no imagery between 2012-2016; 

current development looks to bridge the missing data using MODIS imagery. The chl-a 

estimates are calculated using atmospherically corrected images, with Idepix neural network 

routine to identify lake-wide extent and dynamic pixel classification (Carrea et al., 2022). The 

atmospherically corrected images were matched with in situ observations within several days. 

The derived matched pairs were used to create several bio-optical algorithms for varying water 

types. Data may be missing due to cloud/ice cover and due to extreme solar zenith angles for 

high-latitude lakes during some winter months. 

 The LSWT was developed using a classification system to identify and exclude all non-

water pixels via the visible-SWIR bands of the ASTR and AVHRR satellites and developed 

using a geophysical inversion of an optimal estimation technique. Multiple differing satellites 

are used to compare modelled and observed values, where inter-sensor adjustments are made 

using AVHRR as a reference. The LSWT product provides daily water skin temperatures 



 

 140 

(<0.1mm thermal emission layer) at a spatial resolution of 1 km. Missing some daily data prior 

to 2006 is due to the lower coverage of ATSR at this time (Carrea et al., 2022). 

6.3.2 ERA5-Land Hourly Data 

 ERA5 is the fifth in a series of reanalysis products developed by ECMWF, originally 

consisting of atmospheric conditions in 1979 (FGGE) at a grid resolution of 208 km, the current 

iteration of ERA5 currently provides hourly atmospheric, land, and water parameter conditions 

from 1950-present at a 31 km grid resolution (Hersbach et al., 2020). ERA5-Land provides 

improvements for terrestrial analytics by improving the resolution of ERA5 to a 9 km grid 

resolution (Muñoz-Sabater et al., 2021). ERA5-Land utilizes the Tiled ECMWF Scheme for 

Surface Exchanges over Land (H-TESSEL) model, which incorporates ground- based 

(SYNOP) and satellite-derived weather, atmospheric, radiation, ocean and surface convection 

models.  

 The ERA5 2-m air temperature (T2m) represents the temperature (K) of the air as it is 

2 m above the earth’s surface. This product takes various atmospheric conditions into account 

and is calculated via an interpolation between the Earth’s surface and the lowest H-TESSEL 

model level (Muñoz-Sabater et al., 2021). The ERA5-Land data total precipitation (PPT, m) is 

modelled by the sum of both large-scale and convective precipitation patterns. The large-scale 

precipitation patterns are derived from the ECMWF integrated forecasting system (IFS) cloud 

scheme, where the formation of clouds is determined by changes in atmospheric conditions 

(pressure, temperature, and moisture). The convective precipitation is generated by the IFS 

convection scheme, which identifies convection at smaller scales. The modelled precipitation 

data do not factor fog, dew, or atmospherically evaporated water (Muñoz-Sabater et al., 2021). 

The Surface Net Solar Radiation (SNSR, J m-2) measures the amount of direct and diffuse 

shortwaves radiation (0.2-0.4 µm) at the earth’s surface and subtracted by the surface albedo. 

Radiative flux is measured at the top-of-atmosphere (TOA) and considers both the absorption 

and scatter of radiance within the atmosphere due to clouds, aerosols, and atmospheric gases. 

Surface runoff (SR, m) is the water flux which exceeds infiltration rate, which is calculated 

using the TESSEL and H-TESSEL Models, taking into account the land use classification and 
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geometric relation soil class depth. Additionally, the modelled SR accounts for the vegetation 

and saturation points (Balsamo et al., 2009; ECMWF, 2016). Similarly, subsurface runoff 

(SSR, m) utilizes both TESSEL and H-TESSEL models and accounts for subsurface water flux 

and soil water equation with varying soil layers (Balsamo et al., 2009). Windspeed (WS, m s-

1) is measured in both Eastward (U) and Northward (V) ‘neutral’ wind speeds at 10 m above 

the Earth’s surface, which accounts for surface roughness of inhomogeneous terrain. Neutral 

wind speeds assume that the air is stable and stratified, thereby providing slower speeds than 

real conditions during stable air masses and higher than real conditions during unstable air 

masses (ECMWF, 2016). The Lake Mixing Layer Depth (LMLD, m) indicates the depth at 

which freshwater has a uniform temperature gradient (Muñoz-Sabater et al., 2021). The mixing 

layer depth is modelled through the use of the FLake model, which is done through the analysis 

of the lake temperature profile, wind speed, humidity, precipitation and both long and 

shortwave radiation (Betts et al., 2020). 

6.4 Methods 

6.4.1 Preprocessing – ESA CCI Lakes 

All ESA CCI Lakes data were downloaded locally from the CEDA archive. Satellite-

derived chl-a approximation pixels may be missing or heavily influenced due to cloud cover, 

poor atmospheric conditions (e.g. haze), varying water optical types, satellite spatial-temporal 

coverage, and satellite positioning (e.g. high solar zenith angle). As such, various measures 

were taken to ensure the highest level of data integrity. Detailed descriptions of the initial 

preprocessing of the raw ESA CCI Lakes gridded data can be found in section 4.4, where per 

pixel outliers were detected temporally, ice covered and low confidence pixels masked, and 

interpolated temporally (linear). Spatial surface water chl-a and LSWT means within identified 

1 km inward buffered lake basin boundaries were taken. Despite the removal of outliers and 

minimized variance from the spatial means, significantly higher algal biomass was observed 

during the ice on/off period, where few open water pixels were observed (Figure 6.2). Further 

preprocessing was done to the mean daily chl-a observations to minimize variance (Figure 
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6.2). Outlier detection of the daily mean time series (2002-2020) was calculated with the 

following equation: 

𝑂 = 𝑄3 + (1.5 ∗ 𝐼𝑄𝑅) 

where O is the outlier threshold, Q3 is the third quartile, and IQR is the interquartile range. 

Any daily value that exceeds this threshold was removed (converted to NA) from the time 

series. Due to the high ch-a approximations at the ice on/off period, daily observations where 

open water pixels were <90% of the maximum extent were removed (NA). Lake-specific 

growing seasons were identified in section 4.5.1 (Table 4.3), in which any chl-a and LSWT 

approximations outside of the growing season were converted to 0.00 μg L-1 and 273.15 K, 

respectively (the growing season was determined by average daily T2m from 2002-2020 where 

the winter season represents temperatures ≤ 273.15 K). Any missing observations (NA) were 

linearly approximated between the next available observations within the time series.  

 

Figure 6.2. Line plots for GBL CB representing the (a) total daily count of open water pixels and (b) daily mean chl-a (μg 

L-1) concentrations after phase 1 preprocessing. Lower open water pixels are due to ice cover. Significant retrieval errors 

exist at the ice on/off period.   

 The CCI data version used in this study (2.0.0) has missing chl-a approximations from 

2012-2015 due to the data gap between the MERIS satellite (2002-2012) decommission date, 

and its mission continuing satellite, Sentinel-3A (2016-present) launch date. New versions look 

to fill this gap, utilizing MODIS imagery. For this study, a complete temporal sequence is 

needed and therefore steps must be taken to fill this data gap. Daily chl-a from 2002 to 2011 

was used to construct a multi-seasonal time series, where a univariate Holts-Winter method 

(base r ‘stats’ package) forecasted daily chl-a approximations from 2012 to 2015. All lakes 
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used the same alpha (α), beta (β) and gamma (γ) parameters (α = 0.05, β = 0.10, γ = NULL), 

with the exception of the Western basin of Lake Erie (α = 1.00, β = 0.10, γ = NULL). For the 

forecasted chl-a estimation (2012-2015) to match the rest of the time series, the same seasonal 

threshold was used to ensure 0.00 μg L-1 during the ice cover season. Refer to Figure 6.3 for a 

detailed list of steps. 

 

Figure 6.3. Daily time series processing of ESA CCI Lakes data. Daily raster pre-processing is as described in section 4.4.  
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6.4.2 Preprocessing – ERA5-Land 

 The ERA5-Land hourly data were downloaded from the Copernicus Climate Data Store 

(CDS) from 2002-2020 (Muñoz, 2019) utilizing a sub-region extraction (N: 69.05, E: -70.95, 

S: 38.95, W: -129.05). The hourly gridded data was used to calculate a daily mean T2m, 

LMLD, SNSR and WS, while daily sums were calculated for PPT, SR and SSR. Spatial means 

within 1km inward buffered lake basin boundaries were taken daily for T2m, LMLD, SNSR 

and WS; however, PPT, SR, and SSR were derived from the surrounding catchment (Figure 

6.4). Since the ERA5 data are a forward model reanalysis product, sensor failure and 

approximation variance are not likely to impact the time series integrity and therefore no 

additional preprocessing was needed. 

6.4.3 Watershed Flow Pathways 

 The impact of PPT, SR, and SSR on algal biomass dynamics is not typically due to 

what is occurring within the lake boundaries but instead within the surrounding catchment, due 

to the mobilization of organic and inorganic matter. Daily PPT, SR, and SSR are calculated as 

a spatial mean within the watershed boundary. Since the lakes are divided into different basins, 

the watershed must be delineated to determine which areas flow into which basins. The original 

watershed extent is defined by using the level-04 HydroSHEDS product (Lehner et al., 2008). 

Flow accumulation and direction was calculated using a 1 km digital elevation model (CEC, 

2007) in ESRI ArcGIS. The fill tool (spatial analyst) was used to fill local minimum elevations, 

while the flow direction tool (spatial analyst) is used to determine the steepest slope direction 

in a D8 pathway. The flow accumulation tool (spatial analyst) calculates the total number of 

prior gridded cells that flow toward the target. The flow accumulation raster was converted to 

polylines by first reclassifying to a binary raster where 0 = no flow and 1 = flow (accumulation 

thresholds vary depending on the size of the watershed).  The stream link tool (spatial analyst) 

utilizes the reclassified raster and the direction raster to calculate the flow direction and stream 

orders. The stream-to-feature tool (spatial analyst) is used to convert the rasters to a polyline, 

where the line symbology can provide an arrow indicating directionality as seen in Figure 6.4. 

From here the watershed was manually delineated where regions which show direct 
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intersection with a given lake basin were associated with said basin. These regions define 

where the PPT, SR and SSR spatial means are derived.  
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Figure 6.4. Watershed deliniation defined by the flow direction and accumulation of water associated intersecting with a 

lake basin. DEM provided by CEC, 2007, and watershed boundaries provided by hydroSHEDS (Lehner et al., 2008).  
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6.4.4 High-Order Dynamic Gaussian Bayesian Network 

Bayesian Networks (BN) are a statistical analysis method used to infer conditional 

dependencies amongst variables (Nagarajan et al., 2013). Traditionally, BNs are trained using 

discrete data and are comprised of two components: a directed acyclic graph (DAG) and a 

probability distribution (Sebastiani, et al., 2009). The DAG provides a visual representation of 

the network, comprised of nodes and arcs (Nagarajan et al., 2013). A node (or variable) that is 

conditionally independent is considered a parent node and is represented by a marginal 

probability table. A node that is conditionally dependent is considered a child node and, 

therefore, represented by a joint probability table. The arcs are directed moving from a parent 

node to a child node, which is conditionally dependent on the parent. The structure of the 

network can be determined using priors (requiring user expertise) or learned through various 

optimization methods (i.e., Hill-Climbing, Particle Swarm Optimization (PSO), K2, etc.). 

Adaptations have been made for BNs with continuous data known as a Gaussian 

Bayesian Network (GBN), where the parent nodes represent a Gaussian distribution, and child 

nodes a conditional multivariate Gaussian distribution (Nagarajan et. al. 2013; Neapolitan, 

2004). As this study utilizes only continuous data, GBN form the foundation of parent-child 

relationship. The GBN assumes normality of the data in the global network; however, some 

studies have relaxed this assumption using non-parametric BNs (Vitale et al., 2020; Marella et 

al., 2019). The parent-child node relationship is represented as a linear Gaussian model, as 

defined by Quesada et al. (2021a): 

 𝑝(𝑥𝑗|𝑃𝑎𝑗) = 𝒩(𝛽0𝑗 + 𝛽1𝑗𝑥1(𝑗) + ⋯ + 𝛽𝑟𝑗𝑥𝑟(𝑗); 𝜎𝑗
2) (6.1) 

Where 𝑥𝑗 represents the target node, 𝑃𝑎𝑗 = {𝑥1(𝑗), … , 𝑥𝑟(𝑗)} is the set of parent nodes for 𝑥𝑗, 

𝒩 represents the density function of a normal distribution, 𝛽0𝑗 is the independent coefficient 

(intercept), {𝛽1𝑗, … , 𝛽𝑟𝑗} are the parent coefficients (slope), while 𝜎𝑗
2 is the variance (error) of 

𝑥𝑗. The parent-child node connections are represented by multivariate Gaussian linear 

regressions; however, this method differs from frequentist approaches (e.g., OLS). The GBN 

fits distributions based on a fixed sample with random parameters compared to the fixed 
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coefficients of OLS (Law et al., 2014), and are therefore considered more flexible with high 

variance data (Ickstadt et al., 2011; Rhodes, 2017; StataCorp, 2023). The GBN can be used to 

estimate a target node based on the network coefficients derived from conditional 

dependencies using a Monte Carlo simulation and are therefore more applicable to high 

dimensional networks where the multivariate distribution is complex (Nagarajan et al., 2013; 

Koller & Friedman, 2009). Provided that all nodes are linear Gaussian models, the joint 

Gaussian distribution of the network can be written as described by Quesda et al. (2021a): 

 

𝑝(𝑥) = ∏ 𝑝(𝑥𝑗|𝑃𝑎𝑗) = ∏ 𝒩(

𝑛

𝑖=1

𝑛

𝑖=1

𝛽0𝑗 + ∑ 𝛽𝑗𝑖

𝑟(𝑖)

𝑗=1

𝑥𝑗(𝑖); 𝜎𝑗
2) (6.2) 

Where 𝑥 = (𝑥1, … , 𝑥𝑛) represents the number of nodes within the network, and 𝑟(𝑖) represents 

the total amount of parent nodes for 𝑥𝑗. The model coefficients are estimated using a 

multivariate linear regression Gaussian distribution. Once the network is constructed, the 

network can be used to inference new data based on the distributions of the parent nodes. The 

BN and GBN methods are, however, static, and do not consider the temporal domain. Dynamic 

GBN (DGBN) is utilized to determine the interaction effects of variables as they change over 

time (Nagarajan et al., 2013). The structure of a DGBN is similar to that of the GBN, however, 

each variable is described in the temporal domain 𝑋 = {𝑋𝑖(𝑡); 𝑖 = 1, … , 𝑘; 𝑡 = 1, . . , 𝑡}. 

Variables are also conditionally dependent on the past observations of other variables by a 

given time-step (Nagarajan et al., 2013). The joint probability of the DGBN now includes all 

time slices 𝑡 to a given horizon 𝑇 as described by Quesada et al. (2021a): 

 
𝑝(𝑋0, 𝑋1, … , 𝑋𝑇) = 𝑃(𝑋0:𝑇) = 𝑝(𝑋0) ∏ 𝑝(𝑋𝑡+1|𝑋0:𝑡)

𝑇−1

𝑡=0

 (6.3) 

Where 𝑋𝑡 = (𝑋1𝑡, 𝑋2𝑡, … , 𝑋𝑛𝑡) is the vector of all the nodes in a time slice 𝑡, where 𝑡 =

0,1, … , 𝑇 and 𝑇 is the maximum number of time slices. It is often assumed that the temporal 

process is homogeneous and invariant, which is often not true with most real-world data (such 

as those provided in this study), and instead used to simplify the model (Nagarajan et al., 2013). 

Flexible models that relax this assumption typically require a larger number of observations 
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(Xuan Vinh et al., 2012). Studies have successfully implemented DBGN with non-

homogenous data (Quesada et al., 2021a; Grzegorczyk, 2015). Most implementations of 

DGBNs are first-order Markovian, in which the state of a given time slice is dependent on only 

the preceding time slice (Koller and Friedman, 2009). Surface water algal biomass, however, 

may have a longer lagged response to an environmental stressor than one just on day, such as 

a strong mixing event (i.e., precipitation), which may initially disrupt algal growth but then 

increase the biomass via nutrient mobilization (Reynolds, 1994). Given the potential for longer 

lag effects, high order Markovian models (known as a high order DGBN, or HO-DGBN) are 

needed. HO-DGBN exponentially increase the complexity of the network and therefore require 

significant training time (Quesada et al., 2021a). To reduce model complexity, this study 

implemented transition networks, where the arcs are directed to only the most recent time slice 

of chl-a (the target of interest) (Quesada et al., 2021b). A HO-DGBN can be represented as 

explained by Pasquini Santos et al. (2014), where 𝑋𝑡 in equation_ is 𝑋𝑡 = {𝑋𝑡
1, 𝑋𝑡

2, … , 𝑋𝑡
𝑁} for 

𝑁 variables in 𝑇 total time slices, and the conditional independencies for the probability 

distribution is 𝑝(𝑋𝑡+1, 𝑋𝑡+2, … , 𝑋𝑡+𝑇|𝑋𝑡). From here the network can be restricted so that 

directed arcs are only calculated from the present time slice to any other time slice (inter-time 

slice), disregarding arcs within a time slice. 

 This research uses an HO-DGBN, implementing a transition network to reduce training 

time using the R package ‘dbnR’ by Quesada and Valverde (2022), which also uses functions 

from the R package ‘bnlearn’ (Scutari et al., 2023). The HO-DGBN was optimized using a 

Particle Swarm Optimization (PSO) method with order invariant encoding, which directed 

interactions to only the most recent time slice, improving training time (Quesada et al., 2021b). 

Data from 2002-2019 were used to train the model, where data from 2020 were reserved for 

testing. All training data was normalized by the following equation: 

 𝑥𝑛𝑜𝑟𝑚 =
𝑥 − 𝜇

𝜎
 (6.4) 

and the forecasted values were reconverted by adding the mean (𝜇) and standard deviation (𝜎) 

of the original distribution to the forecasted chl-a. To determine the optimal number of time-
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slices, the HO-DGBN was trained from 1-5 days. Each iteration forecasted the 2020 data using 

an approximation Markov-Chain Monte Carlo simulation 10 times. Each iteration calculated 

the Root Mean Squared Error (RMSE), where the lowest RMSE was recorded. The network 

structure with the lowest RMSE was selected for analysis. Increasing the number of time-slices 

exponentially increases training time, and so a max of 5 days was implemented. However, a 

lag effect may persist at a longer interval than what is captured within 5 days. To increase the 

temporal range of the lag search without increasing training time, block averages are taken for 

all the input data every three days, weekly, biweekly and monthly. The change in temporal 

frequency (i.e., decreasing the temporal resolution by moving from daily to monthly 

frequencies) is represented by Δ. These temporal frequencies were tested for the optimal lag 

order in the same method. The assumption of homogeneity may also affect forecast results, as 

the provided data is non-homogeneous. To determine the impacts of the non-stationary signal, 

the timeseries were decomposed into their stationary, non-stationary and residual signals, 

where an HO-DGBN was constructed for each, along with the complete time series. 

Performance metrics between temporal signal time series indicated not only which signal 

introduced the higher error, but provided information on the dynamics of the season, trend, and 

the residuals. The decomposed time series were reconstructed by taking the sum of the same 

forecasted chl-a concentration from each temporal signal, as seen in the following equation: 

 𝐶ℎ𝑙�̂�𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 = 𝐶ℎ𝑙�̂�𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 + 𝐶ℎ𝑙�̂�𝑛𝑜𝑛𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 + 𝐶ℎ𝑙�̂�𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 (6.5) 

The reconstructed chl-a concentrations provided insight into whether time series 

decomposition can improve chl-a forecasts compared to those without decomposition 

(complete time series). A total of 220 HO-DGBNs were constructed, in which each recorded 

the RMSE, normalized RMSE (NRMSE), and Mean Absolute Error (MAE) (Table 6.1).  

Table 6.1. Summary of performance and error metrics for the HO-DGBN 

Parameter Equation Variables Measure 
EQ 

(#) 

RMSE 𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑛

𝑖=1

 

𝑛 = sample size, 𝑦𝑖 = the 

observed value, 𝑦�̂� = the predicted 

value 

Standard deviation of the 

prediction errors 
6.6 
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Parameter Equation Variables Measure 
EQ 

(#) 

NRMSE 𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝜎
 

𝑅𝑀𝑆𝐸 = Root Mean Square 

Error, 𝜎 = standard deviation of 

input dependent data 

RMSE normalized by the 

standard deviation of the input 

training data. Allows for 

comparison between models of 

varying values 

6.7 

MAE 𝑀𝐴𝐸 =
∑ |�̂�𝑖 − 𝑦𝑖|𝑛

𝑖=1

𝑛
 

𝑛 = sample size, 𝑦𝑖 = the 

observed value, 𝑦�̂� = the predicted 

value 

Average error between pairs of 

predicted and observed values 
6.8 

MAD 𝑀𝐴𝐷 =  
1

𝑛
∑ |𝑦𝑖 − �̅�|

𝑛

𝑖=1

 
𝑛 = sample size, 𝑦𝑖 = the 

observed, �̅� = mean of the dataset 

Determines the absolute 

deviation of an observed value 

from the true mean 

6.9 

 

The network structure provided insight into which parameters contribute to the algal biomass, 

while the parent-child node coefficients indicate the nature of the interaction (i.e., positive vs 

negative) at a given timestep. To better understand the coefficients across the many temporal 

frequencies, signals, and time-steps, the average positive and negative coefficients were 

calculated across all lakes. The absolute sum of all parent node coefficients for each parameter 

was divided by the absolute sum of all parent nodes coefficient in the network to determine 

each parameters percentage of contribution made to present time-slice chl-a (𝑐ℎ𝑙 − 𝑎0). The 

greater the contribution of a given parameter, the greater its significance in the HO-DGBN. 

 To determine the importance of a given variable within the network, an out-of-bag 

(OOB) approach was implemented. Using the selected model for each lake basin, temporal 

frequency and signal, a different input variable (apart from chl-a), was iteratively excluded 

from the network. Each HO-DGBN model was forecasted 10 times, where the median MAE 

was recorded. Models where the MAE is highest given a parameter is excluded indicated it 

was the most important variable, while the lowest MAE indicated it was least important. The 

sensitivity of the model was tested by iteratively changing one variable in the testing data by a 

given percentage (-30%, -15%, -5%, 0%, 5%, 15%, 30%) of the normalized value, and 

forecasting the new chl-a concentration. To determine which variable in the model was most 

sensitive to change, the Mean Absolute Deviation (MAD) was calculated for each percent 

change, where the forecast with no change (0%) is used to calculate the mean of which the 

other forecasted values may deviate from. The sensitivity not only provides insight into which 
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input parameters are more sensitive to change, but also what the algal response may be given 

that change, which could infer our understanding of how algal dynamics might be affected 

under future climate scenarios.  

6.5 Results 

6.5.1 Time-Series 

 Of the nine parameters (Figure 6.5), LSWT, Chl-a and SR most frequently returned a 

Theil-Sen slope of 0 across all lakes (Figure 6.6), due to the inclusion of the winter season, 

where chl-a is an assumed 0.00 μg L-1 and LSWT is 273.15 K. Across the change in temporal 

frequency (Δ), most parameters did not return a significant (p < 0.05) Theil-Sen slope (Table 

6.2). The number of significant Theil-Sen slopes typically decreased with the increase in Δ, 

however its magnitude tended to increase, most notably with LSWT, PPT, SR, and chl-a in LE 

(Figure 6.6). SSR most frequently returned significant Theil-Sen slopes (45.45% – 81.82% of 

lakes), where all lakes and basins show a general decrease (-2.68-6 m yr-1 – 5.80-7 m yr-1) apart 

from LE WB, LE CB and the GBL CB (1.10-7 m yr-1 – 2.41-6 m yr-1). The mean rate of change 

in T2m for Northern Lakes (NL; GBL, GSL, LA) (0.08 K yr-1) was twice that of the Southern 

Lakes (SL; LW, LE) (0.04 K yr-1) across all temporal frequencies. NL saw an average decrease 

in LMLD (-0.01 m yr-1) compared to the increase seen in SL (0.01 m yr-1) across all temporal 

frequencies. 
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Figure 6.5. Daily time series from January 1, 2002, to December 31, 2020, for Lake Surface Water Temperature (LSWT), 

2m Air Temperature (T2m), Total Precipitation (PPT), Wind Speed (WS), Lake Mixing Level Depth (LMLD), Surface Net 

Solar Radiation (SNSR), Sub Surface Runoff (SSR), Surface Runoff (SR), and Chlorophyll-a (Chl-a). 
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Figure 6.6. Theil-Sen (T-S) slope for each aggregated temporal frequency and lake basin. Calculated T-S slopes were 

converted to an annual metric to create a common unit. The letter ‘a’ represents a T-S p-value of <0.05, and the letter ‘b’ 

represents a Mann-Kendall p-value of < 0.05. Daily n = 6940, 3-day n = 2314, weekly n = 992,  biweekly n = 496, monthly 

n = 228. LSWT = Lake Surface Water Temperature, T2m = 2m Air Temperature, PPT = Total Precipitation, WS = wind 

speed, LMLD = Lake Mixing Level Depth, SNSR = Surface Net Solar Radiation, SSR = Subsurface runoff and Chl-a = 

Chlorophyll-a. 
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Table 6.2. Percentage of lakes (n = 11) that exhibit a significant (p < 0.05) Theil-Sen slope for each HO-DBNR input 

parameter, from daily to monthly temporal block means. LSWT = Lake Surface Water Temperature, T2m = 2m Air 

Temperature, PPT = Total Precipitation, WS = wind speed, LMLD = Lake Mixing Level Depth, SNSR = Surface Net Solar 

Radiation, SSR = Subsurface runoff and Chl-a = Chlorophyll-a.  

Time LSWT T2m TP WS LMLD SNSR SSR SR Chl-a 

Daily 0.00% 45.45% 0.00% 9.09% 9.09% 0.00% 81.82% 0.00% 27.27% 

Three Days 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 81.82% 0.00% 27.27% 

Weekly 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 63.64% 0.00% 27.27% 

Biweekly 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 54.55% 0.00% 27.27% 

Monthly 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 45.45% 0.00% 18.18% 

  

Of the nine parameters for use in the HO-DGBN, SNSR was the only parameter where 

no lakes exhibited a significant Mann-Kendall trend for any Δ, as SNSR is unlikely to exhibit 

a significant change over a 19-year period. The Mann-Kendall Test had found significant 

trends for the majority of lakes with the LMLD (0.00% – 81.82%), SSR (45.45% – 90.91%), 

SR (0.00% – 81.82%) and Chl-a (27.27% – 81.82%) parameters (Table 6.3). As Δ decreased, 

so did the number of lakes with significant Mann-Kendall trends. The lack of significant trends 

indicates a minimal influence of the non-stationary signal in the HO-DGBN. 

Table 6.3. Percentage of lakes (n = 11) that exhibit a significant (p < 0.05) Mann-Kendall trend for each HO-DBNR input 

parameter, from daily to monthly temporal block means. LSWT = Lake Surface Water Temperature, T2m = 2m Air 

Temperature, PPT = Total Precipitation, WS = wind speed, LMLD = Lake Mixing Level Depth, SNSR = Surface Net Solar 

Radiation, SSR = Subsurface runoff and Chl-a = Chlorophyll-a. 

Time LSWT T2m TP WS LMLD SNSR SSR SR Chla 

Daily 36.36% 45.45% 45.45% 9.09% 81.82% 0.00% 90.91% 81.82% 81.82% 

Three Days 9.09% 0.00% 0.00% 0.00% 63.64% 0.00% 81.82% 36.36% 81.82% 

Weekly 0.00% 0.00% 0.00% 0.00% 36.36% 0.00% 81.82% 0.00% 54.55% 

Biweekly 0.00% 0.00% 0.00% 0.00% 18.18% 0.00% 54.55% 0.00% 45.45% 

Monthly 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 45.45% 0.00% 27.27% 

 

6.5.2 Lag Order 

Of the 55 HO-DGBN constructed using a stationary signal (11 lake basins, 5 temporal 

frequencies), the majority of lakes returned lower NRMSE when having a higher number of 

time slices, with 85.5% (47/55) returning an optimal 𝑇 of 4-5, with only 14.5% (8/55) returning 
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an optimal 𝑇 of 1-3. For the non-stationary, 29.1% (16/55) returned an optimal 𝑇 of 4-5, and 

70.9% (39/55) returned an optimal 𝑇 of 1-3. For the residuals, 47.2% (26/55) returned an 

optimal 𝑇 of 4-5, and 52.7% (29/55) returned an optimal 𝑇 of 1-3. Without decomposition, 

65.5% (36/55) returned an optimal 𝑇 of 4-5, and 34.5% (19/55) returned an optimal 𝑇 of 1-3 

(Figure 6.7). The 𝑇 in Figure 6.7 are the those selected for each HO-DGBN moving forward. 
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Figure 6.7. HO-DGBN models across 1-5 time-steps with the lowest forecasting error (NRMSE) for 5 North American 

Great Lakes and their basins, where GBL = Great Bear Lake, GSL = Great Slave Lake, LA = Lake Athabasca, LW = Lake 

Winnipeg, and LE = Lake Erie, CB = Central Basin, SB = South Basin, EB = East Basin, NB = North Basin and WB = West 

Basin. HO-DGBN models are constructed using the original time series (complete), the stationary temporal signal, the non-

stationary, and the time-series residuals. Each HO-DGBN is also constructed using a daily time series, along with a three-

day block mean, weekly, biweekly and monthly means.  
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6.5.3 Performance Between Temporal Signals and Frequencies 

 The HO-DGBN using only the stationary signal returned the lowest error (𝑁𝑅𝑀𝑆𝐸̃  = 

0.31) compared to the non-stationary the residuals, complete, and the reconstructed (𝑁𝑅𝑀𝑆𝐸̃  

= 1.09, 0.93, 0.65, and 0.42 respectively) signals, across all temporal frequencies (Figure 6.8). 

The Δ returned a statistically significant (p < 0.1, n = 5) linear decrease in error for the 

stationary (β = -0.06 – -0.13 NRMSE Δ-1) and complete (β = -0.05 – -0.13 NRMSE Δ-1) signals 

for all lakes. Despite the poor performance of the non-stationary and residual only models, 

reconstructing the forecasted chl-a concentrations from a decomposed time series returned a 

lower error compared to no decomposition for daily to biweekly (𝑁𝑅𝑀𝑆𝐸̃  difference = 0.001 

– 0.43) frequencies, while the monthly (𝑁𝑅𝑀𝑆𝐸̃  difference = -0.15 – 0.20) frequency returned 

higher error for 4 lake basins (GSL CB, GSL EB, LW NB and LE EB). 
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Figure 6.8. (a) Performance results of the HO-DGBN models with the lowest time-step forecasting error (NRMSE). (b) 

Difference between the NRMSE of the forecasted chl-a constructed with the original time-series (complete) HO-DGBN and 

the NRMSE of the reconstructed forecasted chl-a from the stationary, non-stationary and residual HO-DGBN. Models are 

created for five North American Great Lakes and their basins, where GBL = Great Bear Lake, GSL = Great Slave Lake, LA 

= Lake Athabasca, LW = Lake Winnipeg, and LE = Lake Erie, CB = Central Basin, SB = South Basin, EB = East Basin, NB 

= North Basin, and WB = West Basin. 

6.5.4 Performance Between Lakes 

The HO-DGBN using the stationary signal across all Δ returned a similar forecasting 

error between NL and SL (𝑁𝑅𝑀𝑆𝐸̃  = 0.31 and 0.31, respectively). When using the non-

stationary signal, the SL returned lower error compared to the NL (𝑁𝑅𝑀𝑆𝐸̃  = 0.97 and 1.07 
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respectively), primarily driven by the poor forecasting results for GBL SB (𝑁𝑅𝑀𝑆𝐸̃  = 2.03). 

Notably, LE non-stationary chl-a forecasts at the monthly Δ compared to all other lakes 

(𝑁𝑅𝑀𝑆𝐸̃  = 0.69 and 1.20 respectively). The HO-DGBN models constructed with time series 

residuals, the original time series, and reconstructed time series returned no significant 

differences between NL and SL (𝑁𝑅𝑀𝑆𝐸̃  = 0.43 – 0.93 and 0.41 – 0.95, respectively).  

There was little difference in model performance between lake regions. Models 

constructed from only the stationary signals were the best performing; however, both complete 

and reconstructed models were also adequate in forecasting chl-a concentrations, primarily at 

the monthly temporal scales (Figures 6.9 and 6.10). Therefore, HO-DGBN models constructed 

with daily data provide networks with poorer structure, and therefore the results pertaining to 

the algal biomass dynamics are less accurate compared to the monthly model data. The results 

provided indicate that the HO-DGBN method can provide an accurate forecasting of algal 

biomass as they change over time, with improved accuracy with an increase in Δ. These models 

can, therefore, be used to understand which parameters were the most important in 

understanding algal biomass, the nature of the interactions, and the model sensitivity to a 

change in the parameters. 
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Figure 6.9. Forecasted chl-a concentrations derived from the HO-DGBN using daily time series inputs for 5 North 

American Great Lakes and their basins, where GBL = Great Bear Lake, GSL = Great Slave Lake, LA = Lake Athabasca, 

LW = Lake Winnipeg, and LE = Lake Erie, CB = Central Basin, SB = South Basin, EB = East Basin, NB = North Basin and 

WB = West Basin. HO-DGBN models are constructed using the original time series (all), the stationary temporal signal, the 

non-stationary, and the time-series residuals. 
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Figure 6.10. Forecasted chl-a concentrations derived from the HO-DGBN using monthly block mean time series inputs for 

five North American Great Lakes and their basins, where GBL = Great Bear Lake, GSL = Great Slave Lake, LA = Lake 

Athabasca, LW = Lake Winnipeg, and LE = Lake Erie, CB = Central Basin, SB = South Basin, EB = East Basin, NB = 

North Basin, and WB = West Basin. HO-DGBN models are constructed using the original time series (all), the stationary 

temporal signal, the non-stationary, and the time-series residuals. 

6.5.5 Variable Importance 

 Across all lakes and temporal frequencies, LSWT returned the highest forecasting error 

(𝑀𝐴�̃� = 6.19 μg L-1) when excluded from the stationary HO-DGBN, followed by T2m, SNSR, 

SSR, LMLD, SR, WS, and PPT the lowest (𝑀𝐴�̃� = 1.01 μg L-1) (table 6.4). The non-stationary 

HO-DGBN returned highly variable results with no clear pattern across all lakes and temporal 

frequencies, with LMLD returning the highest error (𝑀𝐴�̃� = 0.18 μg L-1) followed by LSWT, 
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T2m, SSR, PPT, WS, SNSR and SR the lowest (𝑀𝐴�̃� = 0.11 μg L-1). Similarly, the HO-DGBN 

constructed using the residuals of the time series returned minimal variance in results between 

all lakes and temporal frequencies, with SSR returning the highest error when excluded (𝑀𝐴�̃� 

= 0.50 μg L-1), followed by SNSR, SR, WS, LMLD, T2m, LSWT and PPT the lowest (𝑀𝐴�̃� 

= 0.43 μg L-1). Without any decomposition, LSWT returned the highest error (𝑀𝐴�̃� = 1.70 μg 

L-1) when excluded from the HO-DGBN model followed by T2m, SNSR, LMLD, SSR, SR, 

PPT and WS the lowest (𝑀𝐴�̃� = 1.10 μg L-1). When the forecasted chl-a were reconstructed, 

LSWT returned the highest forecasting error (𝑀𝐴�̃� = 6.25 μg L-1) when excluded from the 

HO-DBGN models (stationary, non-stationary and residual), followed by SNSR, T2m, SSR, 

LMLD, SR, PPT and WS the lowest (𝑀𝐴�̃� = 1.25 μg L-1).  

Table 6.4. Median MAE of variable importance across all temporal frequencies and lakes. Variable importance uses an out-

of-bag approach to determine which variable when excluded from the HO-DGBN returns the highest error. All values 

represent a forecasted chl-a concentration MAE (μg L-1). 

 Stationary Non-Stationary Error Complete Reconstructed 

LSWT 6.19 0.16 0.44 1.70 6.25 

T2m 3.48 0.16 0.45 1.60 2.82 

PPT 1.01 0.14 0.43 1.11 1.37 

WS 1.26 0.13 0.46 1.10 1.25 

LMLD 1.64 0.18 0.45 1.18 1.48 

SNSR 2.99 0.12 0.47 1.41 3.08 

SSR 2.42 0.16 0.50 1.16 2.27 

SR 1.39 0.11 0.46 1.11 1.37 

 

With the increase in Δ across all lakes for the stationary, complete, and reconstructed 

HO-DGBN, LSWT remains the most important parameter, while all other parameters show a 

shift in importance (Figure 6.11). Stationary HO-DGBN models show increasing importance 

for SR, SSR and PPT as Δ increases, while SNSR, T2m, LMLD and WS decrease in 

importance, with the reconstructed HO-DGBN models returning similar results (Figure 6.12). 

For the non-stationary HO-DGBN models, PPT, SNSR, SSR, and SR returned an increase in 

importance with increasing Δ, while LSWT, T2m, WS, and LMLD decreased in importance. 

Residual HO-DGBN returned decreasing importance for all parameters.  
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Figure 6.11. Median MAE of forecasted chl-a derived from HO-DGBN importance sampling across all study lakes as the 

change with increasing temporal frequency (from HO-DGBN construced using daily data to those using monthly block 

means). Importance sampling utilizes a mutilated network to exclude a given parameter. Higher forecasting error of chl-a 

when excluded indicates greater importance to the network. Parameters include Lake Lake Surface Water Temperature 

(LSWT), 2m Air Temperature (T2m), Total Precipitation (PPT), Wind Speed (WS), Lake Mixing Level Depth (LMLD), 

Surface Net Solar Radiation (SNSR), Sub Surface Runoff (SSR), Surface Runoff (SR).  
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Figure 6.12. Ranked parameter importance determined using a mutilated network importance sampling. Ranks are 

determined by the MAE derived from forecasting chl-a when a given parameter is excluded per lake. A rank of 1 indicates 

the highest importance (highest MAE), while a rank of 8 indicates the lowest importance (lowest MAE). NA indicates that 

no parent nodes of the parameter were used in the HO-DGBN network; therefore, it cannot be excluded for importance 

sampling. Parameters include Lake Lake Surface Water Temperature (LSWT), 2m Air Temperature (T2m), Total 

Precipitation (PPT), Wind Speed (WS), Lake Mixing Level Depth (LMLD), Surface Net Solar Radiation (SNSR), Sub 

Surface Runoff (SSR), Surface Runoff (SR). HO-DGBN models are constructed for five North American Great Lakes and 

their basins, where GBL = Great Bear Lake, GSL = Great Slave Lake, LA = Lake Athabasca, LW = Lake Winnipeg, and LE 

= Lake Erie, CB = Central Basin, SB = South Basin, EB = East Basin, NB = North Basin and WB = West Basin. HO-DGBN 

models are constructed using the original time series (complete), the stationary temporal signal, the non-stationary, the time-
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series residuals, and forecasted chl-a reconstucted from the decomposed time series (reconstructed). Each HO-DGBN is also 

constructed using a daily time series, along with a three-day block mean, weekly, biweekly and monthly means.  

6.5.6 Model Coefficients  

 The HO-DGBN provides a transparent network where the modelling coefficients can 

be extracted to understand how each parent node is weighted in its relation to 𝑐ℎ𝑙 − 𝑎0. A 

breakdown of the mean modelling coefficients across all lakes per temporal signal and Δ can 

be found in Figure 6.13.  
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Figure 6.13. Average HO-DGBN model coeffecients (𝜷) of the parent nodes per time-step (𝒓𝒋) for child node 𝒄𝒉𝒍 − 𝒂𝟎 

across all study lakes.  HO-DGBN models are constructed using the original time series (complete), the stationary temporal 

signal, the non-stationary, and the time-series residuals. Each HO-DGBN is also constructed using a daily time series, along 

with a three-day block mean, weekly, biweekly and monthly means. Parameters include Lake Lake Surface Water 

Temperature (LSWT), 2m Air Temperature (T2m), Total Precipitation (PPT), Wind Speed (WS), Lake Mixing Level Depth 

(LMLD), Surface Net Solar Radiation (SNSR), Sub Surface Runoff (SSR), Surface Runoff (SR) and Chlorophyll-a (Chl-a).  
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6.5.6.1 Stationary 

Across all lake basins, time-steps and Δ for the stationary HO-DGBN, LSWT was the 

largest weighted parameter on average, contributing to 38.32% of the normalized 𝛽𝑟𝑗 for  

𝑐ℎ𝑙 − 𝑎0, with past observations of chl-a at 16.49%, SNSR at 11.42%, T2m at 9.87%, SSR at 

9.70%, LMLD at 6.83%, WS at 3.41%, SR at 2.24% and PPT as the lowest, contributing 

1.72%. As Δ increased (daily to monthly), both LSWT and past observations of chl-a decreased 

in 𝛽𝑟𝑗 contribution, while SNSR, SR, T2m, PPT and WS all increased with Δ. Both LMLD 

and SSR increased with Δ, which peaked at the weekly scale and then decreased with 

increasing Δ (Figure 6.14). The relationship between the input parameters and 𝑐ℎ𝑙 − 𝑎0 were 

mixed (both positive and negative depending on 𝑇). Past observations of chl-a were primarily 

positive at the daily to weekly Δ, while primarily negative from the biweekly to monthly Δ. 

LMLD and WS were also primarily negative from the biweekly to monthly Δ. Across all 

parameters and lake basins from the daily to monthly Δ, the majority of 𝛽𝑟𝑗 contribution 

occurred within a 𝑡 of 1-2. For daily to weekly Δ, the majority of the positive 𝛽𝑟𝑗 contribution 

occurred at 𝑡 = 1, while biweekly was at 𝑡 = 2, and monthly was at 𝑡 = 4. For daily – weekly 

Δ, the majority of the negative 𝛽𝑟𝑗 contribution occurred at 𝑡 = 2-4, while biweekly and 

monthly was at 𝑡 = 1 (Figure 6.13).  

6.5.6.2 Non-Stationary 

Across all lakes basins, time-steps and Δ for the non-stationary HO-DGBN, past 

observations of chl-a were overwhelmingly the largest weighted parameter on average, 

contributing to 74.04% of the normalized 𝛽𝑟𝑗 for  𝑐ℎ𝑙 − 𝑎0, with SSR at 6.02%, LSWT at 

3.66%, T2m at 3.60%, LMLD at 3.11%, SNSR at 3.08%, PPT at 2.80%, SR at 2.30%, and WS 

as the lowest, contributing 1.40%. As Δ increased (daily to monthly), only past observations 

of chl-a showed a decrease in 𝛽𝑟𝑗 contribution while LSWT, T2m, LMLD, WS, SR, SSR, PPT 

and SNSR all increased with Δ. Similar to the stationary signal, most parameters exhibit a 

mixed positive to negative 𝛽 with chl-a contributing a mostly positive 𝛽 at the daily to weekly 

Δ, and mostly negative from biweekly to monthly Δ. Across all parameters and lake basins 
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from the daily to monthly Δ, the majority of the positive 𝛽𝑟𝑗 contribution occurred at 𝑡 = 1, 

while the majority of negative 𝛽𝑟𝑗 contribution occurred at 𝑡 = 2.  

6.5.6.3 Residuals 

Across all lakes basins, time-steps and Δ for the residual HO-DGBN, past observations 

of chl-a were the largest weighted parameter on average, contributing to 38.98% of the 

normalized 𝛽𝑟𝑗 for  𝑐ℎ𝑙 − 𝑎0, with LSWT at 14.92%, SSR at 12.68%, LMLD at 7.78%, PPT 

at 6.62%, SNSR at 6.40%, T2m at 4.87%, SR at 3.98% and WS as the lowest, contributing 

3.77%. As Δ increased (daily to monthly), both past observations of chl-a and LSWT decreased 

in 𝛽𝑟𝑗 contribution, while T2m, WS, LMLD, PPT, SR, and SNSR all increased in 𝛽𝑟𝑗 

contribution with Δ. SSR, however, returned the lowest contribution at the three-day Δ and 

peaked at the biweekly Δ (figure 6.13). Each parameter in the residual HO-DGBN model 

returned varying positive and negative effects on 𝑐ℎ𝑙 − 𝑎0. The past observations of chl-a, 

SNSR, and T2m returned a primarily positive 𝛽, LMLD, SR and WS were primarily negative, 

while LSWT, SSR and PPT returned a mixed effect. Across all parameters and lake basins 

from the daily to monthly Δ, the majority of the positive 𝛽𝑟𝑗 contribution occurred at 𝑡 = 1. 

The majority of negative 𝛽𝑟𝑗 contribution varied by Δ, where three day, weekly and monthly 

peaked at 𝑡 = 2, while daily peak at 𝑡 = 3, and biweekly peaked at 𝑡 = 1 (Figure 6.13). 

6.5.6.4 Complete 

Across all lakes basins, time-steps and Δ for the complete HO-DGBN, LSWT was the 

largest weighted parameter on average, contributing to 28.05% of the normalized 𝛽𝑟𝑗 for  

𝑐ℎ𝑙 − 𝑎0, with past observations of chl-a at 27.17%, SSR at 17.93%, SNSR at 8.86%, LMLD 

at 6.99%, T2m at 6.77%, PPT at 1.56%, SR at 1.34% and WS as the lowest, contributing 

1.32%. As Δ increased (daily to monthly), past observations of chl-a, LSWT and SSR returned 

a decrease in 𝛽𝑟𝑗 contribution, while T2m, LMLD, WS, SR, PPT and SNSR increased in 𝛽𝑟𝑗 

contribution with Δ. Each parameter in the complete HO-DGBN returned varying interactions 

with 𝑐ℎ𝑙 − 𝑎0, where past observations of chl-a, SNSR and T2m returned primarily positive 
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𝛽𝑟𝑗 contribution, while LMLD returned a primarily negative 𝛽𝑟𝑗 contribution. Parameters 

LSWT, SR, SSR, PPT and WS returned mixed 𝛽𝑟𝑗 contribution depending on the temporal lag 

and lake. Across all parameters and lake basins from the daily – monthly Δ, the majority of the 

positive 𝛽𝑟𝑗 contribution occurred at 𝑡 = 1. The majority of negative 𝛽𝑟𝑗 contribution varied 

with Δ where daily and weekly Δ peaked at 𝑡 = 3, three-day and biweekly Δ peaked at 𝑡 = 2, 

while monthly Δ peaked at 𝑡 = 4. All 𝛽𝑟𝑗 contribution percentages can be seen in Table 6.5 

and Figure 6.14. 

Table 6.5. Proportion of summed coeffecient β across all lakes and basins that exhibit either a positive or negative value at a 

given time slice (𝑻), for each temporal signal (stationary, non-stationary, residuals (error) and the complete time series) at 

each temporal frequency (daily to monthly). Colours represent the cell value (greens = high propotion, reds = low 

proportion).  

 

T = 1 T = 2 T = 3 T = 4 T = 5 T = 1 T = 2 T = 3 T = 4 T = 5

Daily 24.33% 12.09% 9.36% 10.72% 0.17% 2.96% 19.58% 15.85% 4.84% 0.10%

Three Days 15.45% 4.56% 11.74% 7.34% 11.27% 6.15% 13.51% 8.08% 18.57% 3.33%

Weekly 16.71% 9.91% 12.80% 10.41% 4.68% 5.57% 15.22% 10.26% 7.98% 6.45%

Biweekly 8.98% 15.00% 11.92% 4.31% 8.78% 13.64% 13.13% 11.38% 7.47% 5.39%

Monthly 6.09% 8.50% 11.05% 18.57% 5.86% 12.06% 8.49% 11.66% 11.00% 6.73%

Daily 61.41% 0.59% 0.55% 0.22% 0.00% 0.38% 35.78% 0.61% 0.44% 0.00%

Three Days 56.72% 1.04% 1.40% 0.48% 0.26% 0.94% 36.61% 0.82% 1.49% 0.24%

Weekly 46.78% 2.34% 3.36% 2.40% 2.30% 1.33% 28.69% 6.93% 2.56% 3.31%

Biweekly 41.55% 4.89% 3.53% 3.36% 0.55% 4.46% 29.68% 7.77% 2.09% 2.11%

Monthly 23.37% 6.95% 8.90% 8.17% 3.96% 5.03% 14.86% 12.76% 9.86% 6.14%

Daily 44.62% 8.01% 6.67% 4.68% 2.34% 6.55% 7.49% 15.04% 2.36% 2.23%

Three Days 49.09% 4.62% 5.52% 5.15% 0.51% 7.35% 19.91% 5.21% 1.48% 1.16%

Weekly 29.95% 8.71% 14.71% 4.11% 0.00% 10.59% 15.60% 4.12% 9.07% 3.13%

Biweekly 26.14% 15.24% 6.07% 7.68% 1.72% 12.89% 10.74% 10.84% 5.54% 3.14%

Monthly 16.08% 10.80% 7.73% 9.34% 5.35% 6.53% 14.72% 13.97% 8.58% 6.90%

Daily 33.75% 10.15% 8.42% 3.58% 1.65% 8.38% 7.93% 16.76% 7.27% 2.11%

Three Days 31.77% 16.82% 4.86% 12.25% 1.56% 5.40% 13.60% 5.91% 2.32% 5.50%

Weekly 25.62% 5.14% 8.28% 11.58% 0.85% 8.86% 13.21% 16.62% 7.45% 2.37%

Biweekly 19.35% 7.83% 10.26% 8.53% 5.19% 7.27% 17.43% 9.16% 10.70% 4.28%

Monthly 15.83% 13.18% 11.34% 10.79% 4.39% 9.31% 9.74% 11.60% 12.34% 1.48%
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Figure 6.14. Average HO-DGBN model coeffecients (𝜷) of the parent nodes per time-step (𝒓𝒋) for child node 𝒄𝒉𝒍 − 𝒂𝟎 

across all study lakes and time-steps, represented as a percentage of the sum of the absolute 𝜷. Shaded regions indicate the 

percentage of negative 𝜷 compared to the non-shaded positive 𝜷. HO-DGBN models are constructed using the original time 

series (complete), the stationary temporal signal, the non-stationary, and the time-series residuals. Each HO-DGBN is also 

constructed using a daily time series, along with a three-day block mean, weekly, biweekly and monthly means. Parameters 

include Lake Lake Surface Water Temperature (LSWT), 2m Air Temperature (T2m), Total Precipitation (PPT), Wind Speed 

(WS), Lake Mixing Level Depth (LMLD), Surface Net Solar Radiation (SNSR), Sub Surface Runoff (SSR), Surface Runoff 

(SR) and Chlorophyll-a (Chl-a). 
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6.5.7 Lake Model Coefficients: Monthly – Complete Time Series  

The non-stationary and residual HO-DGBN returned significantly higher error than 

their complete and stationary counterparts. These models enabled forecasting of 𝑐ℎ𝑙 − 𝑎0 via 

time-series reconstruction at a higher accuracy compared to the complete HO-DGBN at the 

daily-biweekly Δ. However, monthly HO-DGBN at the monthly scale had outperformed the 

reconstructed for some lakes and returned forecasting errors on par with the stationary data. 

To better understand how parameter interactions differ at the lake level, only the complete time 

series at the monthly Δ is used (Figure 6.15). The complete time series includes any non-

stationary trends, which are important in algal biomass dynamics. Due to its performance and 

the importance of the non-stationary trend (despite violation of the assumption of stationarity), 

further assessments of interaction effects between parameters and 𝑐ℎ𝑙 − 𝑎0 at the lake level 

are conducted for only HO-DGBN at the monthly scale using the complete time series.  

Across all lakes, the majority of SNSR, SR, T2m and past observations of chl-a parent 

nodes returned a positive β (≥ 60% of parent nodes), while LMLD, WS and PPT returned 

primarily negative β (≤ 40% of parent nodes). LSWT and SSR parent nodes returned a mixed 

β (40 – 60% of parent nodes), varying by lake and 𝑡. When separated by lake regions, NL 

showed a higher proportion of positive LSWT and T2m parent nodes compared to SL, where 

the effects were mixed. Additionally, NL saw a greater proportion of negative WS and SR 

parent nodes compared to SL (Table 6.6).  

Table 6.6. Proportion of HO-DGBN parent nodes that exhibited a positive or negative coeffecient (β) across all lakes, only 

Northern Lakes (Great Bear Lake, Great Slave Lake, and Lake Athabasca), and only Southern Lakes (Lake Winnipeg and 

Lake Erie), for each input parameter. Parameters include Lake Lake Surface Water Temperature (LSWT), 2m Air 

Temperature (T2m), Total Precipitation (PPT), Wind Speed (WS), Lake Mixing Level Depth (LMLD), Surface Net Solar 

Radiation (SNSR), Sub Surface Runoff (SSR), Surface Runoff (SR) and Chlorophyll-a (Chl-a). 

Region All Lakes Northern Lakes Southern Lakes 

Direction Positive Negative Positive Negative Positive Negative 

LMLD 40.00% 60.00% 46.15% 53.85% 33.33% 66.67% 

LSWT 57.14% 42.86% 64.71% 35.29% 45.45% 54.55% 

SNSR 71.43% 28.57% 61.54% 38.46% 87.50% 12.50% 

SR 70.83% 29.17% 64.71% 35.29% 85.71% 14.29% 

SSR 56.00% 44.00% 53.33% 46.67% 60.00% 40.00% 

T2m 70.00% 30.00% 83.33% 16.67% 50.00% 50.00% 
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Region All Lakes Northern Lakes Southern Lakes 

Direction Positive Negative Positive Negative Positive Negative 

WS 30.77% 69.23% 16.67% 83.33% 42.86% 57.14% 

PPT 37.50% 62.50% 37.50% 62.50% 37.50% 62.50% 

Chl-a 63.64% 36.36% 72.22% 27.78% 53.33% 46.67% 
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Figure 6.15. HO-DGBN mapped network using monthly block means and the original time-series (complete). The colours 

of the dots represent the model coeffecients (𝜷) direction (positive vs. negative). The size of the dots represents the 

magnitude of the slope in absolute values. Colours for the labels represent the derived parameter importance (Figure 6.12), 

where 1 is highest importance, 8 is lowest, and NA indicates the HO-DGBN model has no parent nodes of that parameter (in 



 

 175 

the case of chl-a, it cannot be excluded as the target parameter, therefore no importance sampling was done). The y-axis 

represents the time-steps. HO-DGBN models are constructed for 5 North American Great Lakes and their basins, where 

GBL = Great Bear Lake, GSL = Great Slave Lake, LA = Lake Athabasca, LW = Lake Winnipeg and LE = Lake Erie, CB = 

Central Basin, SB = South Basin, EB = East Basin, NB = North Basin and WB = West Basin. Parameters include Lake Lake 

Surface Water Temperature (LSWT), 2m Air Temperature (T2m), Total Precipitation (PPT), Wind Speed (WS), Lake 

Mixing Level Depth (LMLD), Surface Net Solar Radiation (SNSR), Sub Surface Runoff (SSR), Surface Runoff (SR) and 

Chlorophyll-a (Chl-a). 

Of GBL, the CB returned no PPT parent nodes for 𝑐ℎ𝑙 − 𝑎0 at any given 𝑡. Of the 

parameters included in the HO-DGBN, LSWT, T2m and SSR returned positive interactions at 

all 𝑡, while LMLD returned all negative. All other parameters returned mixed effects 

depending on 𝑡. The majority of 𝛽𝑟𝑗 contribution occurred with SNSR (34.52%) and chl-a 

(22.27%). 𝑆𝑁𝑆𝑅2 showed a positive effect on 𝑐ℎ𝑙 − 𝑎0 while 𝑆𝑁𝑆𝑅4−5 showed a negative 

effect. 𝑐ℎ𝑙 − 𝑎1−3 showed a positive effect on 𝑐ℎ𝑙 − 𝑎0, while 𝑐ℎ𝑙 − 𝑎4 showed a negative 

effect. SR returned the largest relative 𝛽𝑟𝑗 contribution (summed across all 𝑡) in GBL CB 

(11.83%) compared to all other lakes. Within the SB of GBL, SNSR returned no parent nodes 

for 𝑐ℎ𝑙 − 𝑎0 at any given 𝑡. Of the parameters included in the HO-DGBN, WS was the only 

parameter which exhibited an entirely negative interaction at all 𝑡, while all other parameters 

returned mixed effects. The majority of 𝛽𝑟𝑗 contribution occurred with LSWT (39.59%) and 

chl-a (24.43%). LSWT returned a shifting positive-to-negative effect on chl − a0 as 𝑡 

increased, while 𝑐ℎ𝑙 − 𝑎1,3,5 returned a positive effect and 𝑐ℎ𝑙 − 𝑎2 returned a negative effect.   

Of GSL, the CB returned no WS parent nodes for chl − a0 at any given 𝑡. Of the 

parameters included in the HO-DGBN, T2m, SNSR, and SR returned positive interactions at 

all 𝑡, while PPT returned all negative. Past observations of chl-a, LSWT, LMLD, and SSR all 

returned mixed effects depending on 𝑡. The majority of 𝛽𝑟𝑗 contribution occurred with SSR 

(31.16%) and LSWT (28.13%). SSR returned a shifting positive-to-negative effect on chl − a0 

as 𝑡 increased, while LSWT returned a shifting negative-to-positive effect with increasing 𝑡. 

SSR returned the largest relative 𝛽𝑟𝑗 contribution (summed across all 𝑡) in GSL CB compared 

to all other lakes. Within the EB, WS had also returned no parent nodes for chl − a0 at any 

given 𝑡. Of the parameters included in the HO-DGBN, T2m and PPT returned positive 

interactions at all 𝑡, while all other parameters exhibited mixed effects. The majority of 𝛽𝑟𝑗 

contribution occurred with LSWT (25.53%) and SNSR (23.58%). LSWT1,4 showed a positive 
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effect on chl − a0 while LSWT2,3 showed a negative effect. SNSR1 showed a positive effect 

on chl − a0 while SNSR2 showed a negative effect. Within the NB, both T2m and WS 

exhibited no parent nodes for chl − a0 at any given 𝑡. Of the parameters included in the HO-

DGBN, LSWT returned positive interactions at all 𝑡, while PPT returned all negative. All other 

parameters returned mixed effects depending on 𝑡. The majority of 𝛽𝑟𝑗 contribution occurred 

with SSR (30.60%) and SNSR (22.08%). SSR returned a shifting positive-to-negative effect 

on chl − a0 as 𝑡 increased. SNSR1,2 showed a positive effect on chl − a0 while SNSR3 showed 

a negative effect.  

Of LA, SR and Chl-a returned an entirely positive interaction at all 𝑡, while WS and 

PPT returned ally negative. All other parameters returned mixed effects depending on 𝑡. The 

majority of 𝛽𝑟𝑗 contribution occurred with LSWT (36.26%). LSWT returned a shifting 

negative-to-positive effect on chl − a0 as 𝑡 increased. 

Of LW, the NB returned no WS parent nodes for 𝑐ℎ𝑙 − 𝑎0 at any given 𝑡. Of the 

parameters included in the HO-DGBN, SR, SSR and SNSR returned positive interactions at 

all 𝑡, while past observations of chl-a, LSWT and LMLD returned all negative. All other 

parameters returned mixed effects depending on 𝑡. The majority of 𝛽𝑟𝑗 contribution occurred 

with SNSR (26.46%) and T2m (23.80%). T2m returned a shifting positive-to-negative effect 

on chl − a0 as 𝑡 increased. Within the SB, SR and SNSR returned positive interactions at all 

𝑡, while past observations of chl-a, and WS returned all negative. All other parameters returned 

mixed effects depending on 𝑡. The majority of 𝛽𝑟𝑗 contribution occurred with T2m (26.88%), 

LSWT (25.39%) and SNSR (22.45%). LSWT returned a shifting negative-to-positive effect 

on chl − a0 as 𝑡 increased, while T2m1,2 returned a positive effect, with T2m3 returning a 

negative effect.  

Of LE, the CB returned no PPT or SNSR parent nodes for 𝑐ℎ𝑙 − 𝑎0 at any given 𝑡. Of 

the parameters included in the HO-DGBN, LSWT and SR returned positive interactions at all 

𝑡, while T2m, LMLD and WS returned all negative. All other parameters returned mixed 

effects depending on 𝑡. The majority of 𝛽𝑟𝑗 contribution occurred with past observations of 
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chl-a (42.45%). chl − a1,3,5 returned a positive effect on chl − a0, while chl − a2 returned a 

negative effect. Within the EB, PPT, and SR returned positive interactions at all 𝑡, while SSR 

was all negative. All other parameters returned mixed effects depending on 𝑡. The majority of 

𝛽𝑟𝑗 contribution occurred with LSWT (41.01%), which ranked 1st in variable importance 

(Figure 6.12). 𝐿𝑆𝑊𝑇1 returned a negative effect on chl − a0, while 𝐿𝑆𝑊𝑇2,3 returned a positive 

effect. Within the WB, T2m and SNSR returned positive interactions at all 𝑡, while LMLD, 

PPT and SR returned all negative. All other parameters returned mixed effects depending on 

𝑡. The majority of 𝛽𝑟𝑗 contribution occurred with LSWT (34.02%) and past observations of 

chl-a (26.08%). 𝐿𝑆𝑊𝑇2 returned a positive effect on chl − a0, while 𝐿𝑆𝑊𝑇3,4 returned a 

negative effect. chl − a1,3,5 returned a positive effect on chl − a0, while chl − a2 returned a 

negative effect. 

6.5.8 Model Sensitivity: Monthly – Complete Time Series 

The sensitivity of each HO-DGBN determines how much the forecasted 𝑐ℎ𝑙 − 𝑎0 

varies from the original forecast given a percent change in the normalized parameter data. 

Parameters with a high MAD indicated high sensitivity to change in that given parameter. 

Across all lakes, SNSR returned the highest median MAD for the Monthly – Complete HO-

DGBN (0.72 μg L-1), followed by LSWT, T2m, LMLD, WS, SR, PPT and SSR (Table 6.7). 

LSWT returned the highest MAD for the largest number of lakes (63.4%; 7/11), while SNSR 

returned the highest MAD in GBL SB and GSL NB, and T2m returned the highest MAD in 

GBL CB and LW SB. Although LMLD returned minimal sensitivity in most lakes, all basins 

of LE showed a similar relative MAD with LSWT, T2m and SNSR compared to other 

parameters (0.28 – 4.00 μg L-1). While LSWT, T2m and SNSR returned the highest overall 

MAD across all lakes, the shift in forecasted 𝑐ℎ𝑙 − 𝑎0 varies by lake throughout the projected 

year.  

Table 6.7. Sensitivity results where each normalized input parameter was iteratively adjusted by -30%, -15%, -5%, 5% 15% 

and 30%, where the Mean Absolute Deviation (MAD) is calculated from the adjusted forecasted chl-a and from the original 

forecasted chl-a concentrations using HO-DGBN constructed using monthly block means of the original time-series 

(complete). HO-DGBN models are constructed for 5 North American Great Lakes and their basins, where GBL = Great 

Bear Lake, GSL = Great Slave Lake, LA = Lake Athabasca, LW = Lake Winnipeg and LE = Lake Erie, CB = Central Basin, 

SB = South Basin, EB = East Basin, NB = North Basin and WB = West Basin. Parameters include Lake Lake Surface Water 
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Temperature (LSWT), 2m Air Temperature (T2m), Total Precipitation (PPT), Wind Speed (WS), Lake Mixing Level Depth 

(LMLD), Surface Net Solar Radiation (SNSR), Sub Surface Runoff (SSR) and Surface Runoff (SR). All values are represent 

as μg L-1. 

 LSWT T2m PPT WS LMLD SNSR SSR SR 

GBL CB 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.01 

GBL SB 0.28 0.21 0.07 0.14 0.19 0.33 0.03 0.12 

GSL CB 0.34 0.15 0.02 0.10 0.20 0.20 0.01 0.07 

GSL EB 0.22 0.22 0.04 0.09 0.14 0.21 0.03 0.04 

GSL NB 0.55 0.39 0.07 0.09 0.25 0.95 0.05 0.08 

LA AB 0.29 0.20 0.11 0.09 0.17 0.14 0.05 0.10 

LW NB 1.18 0.80 0.12 0.19 0.30 0.92 0.06 0.08 

LW SB 0.54 1.20 0.17 0.15 0.24 0.83 0.12 0.18 

LE CB 9.86 1.53 0.33 0.72 4.00 8.19 0.46 0.13 

LE EB 0.93 0.72 0.04 0.52 0.28 0.74 0.07 0.06 

LE WB 2.09 1.51 0.04 0.26 0.50 0.72 0.24 0.07 

Median 0.54 0.39 0.07 0.14 0.24 0.72 0.05 0.08 

 

When LSWT was increased, GBL and GSL saw a decrease in spring/early summer 

𝑐ℎ𝑙 − 𝑎0 and an increase in the late summer/fall. LA saw multiple shifts, with a decrease in 

early spring 𝑐ℎ𝑙 − 𝑎0, increase in late spring, decrease in summer, followed by an increase in 

fall. LW saw an increase in spring 𝑐ℎ𝑙 − 𝑎0, and similar to LA, returned a decrease in summer, 

and an increase in fall. Finally, LE saw a decrease in spring 𝑐ℎ𝑙 − 𝑎0, which then increased in 

the early summer, followed by decrease in late summer, and a slight increase fall.  

When T2m was increased, GBL, GSL, and LA all saw a decrease in spring 𝑐ℎ𝑙 − 𝑎0, 

and an increase in the summer/fall. Similarly, LW NB saw a decrease in spring 𝑐ℎ𝑙 − 𝑎0 and 

increase in summer but saw a decrease in the fall. LW SB and LE saw a different pattern 

compared to other lakes, with an increase in spring 𝑐ℎ𝑙 − 𝑎0, a decrease in early summer, 

followed by an increase in late summer/fall. 

When SNSR was increased, NL saw minimal change in forecasted 𝑐ℎ𝑙 − 𝑎0, however, 

the SL saw a significant change. LW NB saw an increase in spring – fall 𝑐ℎ𝑙 − 𝑎0, while the 

SB saw a decrease in spring, a high increase in the summer, and little change in the fall. The 

response in LE varied by basin. LE CB saw an increase in the spring 𝑐ℎ𝑙 − 𝑎0, which decreased 
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in the summer, and increased again in the fall. LE WB returned a similar trend, with an increase 

in early spring 𝑐ℎ𝑙 − 𝑎0, a decrease in late spring/early summer, which then increased in late 

summer/fall. Finally, LE EB saw a decrease in spring 𝑐ℎ𝑙 − 𝑎0, which then increase in the 

summer, and showed little change in the fall.  

When LMLD increased, most lakes saw minimal change in forecasted 𝑐ℎ𝑙 − 𝑎0, 

however LE saw a significant change. LE CB and EB saw an increase in spring 𝑐ℎ𝑙 − 𝑎0, a 

decrease in the summer, and an increase in late summer/fall. LE WB returned similar results, 

except the fall 𝑐ℎ𝑙 − 𝑎0 decreased with the increase in LMLD. All other parameters showed 

minimal effect on the forecasted chl-a. Sensitivity results time series can be seen in Figure 

6.16. 
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Figure 6.16. Sensitivity results of the forecasted chl-a concentrations results where each normalized input parameter was 

iteratively adjusted by -30%, -15%, -5%, 5% 15%. The blue line represents the satellite-derived chl-a concentrations, while 

the red line represents the original HO-DGBN chl-a forecast. HO-DGBN models are constructed for 5 North American 

Great Lakes and their basins, where GBL = Great Bear Lake, GSL = Great Slave Lake, LA = Lake Athabasca, LW = Lake 

Winnipeg and LE = Lake Erie, CB = Central Basin, SB = South Basin, EB = East Basin, NB = North Basin and WB = West 

Basin. Parameters include Lake Lake Surface Water Temperature (LSWT), 2m Air Temperature (T2m), Total Precipitation 

(PPT), Wind Speed (WS), Lake Mixing Level Depth (LMLD), Surface Net Solar Radiation (SNSR), Sub Surface Runoff 

(SSR) and Surface Runoff (SR).  
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6.6 Discussion 

6.6.1 Time Series  

HO-DGBN allow for a potential breakdown of complex systems to a more 

understandable level, where parameter interactions are described as the density function of a 

linear Gaussian regression, which is directed toward a given parameter. This method assumes 

stationarity and homogeneity across time, which rarely occurs within real world data 

(Hoekstra, et al., 2012). Despite this assumption, several studies have implemented DBNs with 

non-stationary data (Quesada et al., 2021a; Robinson et al., 2010). Most input parameters had 

significant trends (Figure 6.6), however the decreased frequency of significance with 

increasing Δ was likely a result of a reduced sample size. The increase in Theil-Sen slope 

increasing Δ may have been a result of the minimization of variance from temporal means, 

which may also reduce the influence of overwintering stagnation (i.e. the assumption of 0.00 

μg L-1 for chl-a or 273.15 K for LSWT, and even reduced/prolonged overwinter runoff). The 

increase in significant negative LMLD trends for NL indicates a potential increase to 

stratification, likely a result of the significantly higher increase in T2m for the region, 

compared to the SL (Hansen et al., 2006; Houze et al., 2019). Conversely, the increase in 

LMLD for LE was potentially caused by the increase in PPT, inducing more frequent mixing 

events (Holgerson et al., 2022), including the spring season (Williams & King, 2020). Due to 

the presence of significant trends, the time series were decomposed to the stationary, non-

stationary and residual signals, to determine if the use of a complete time-series significantly 

impacts the quality of the network. 

6.6.2 Overview of the HO-DGBN 

The use of high order Markovian models provided higher quality networks with lower 

forecasting error (Figure 6.7). This may be due to the delayed response that several parameters 

may have in providing direct effects on algal biomass dynamics. A high order was found to be 

impactful regardless of Δ. However, both the stationary and complete HO-DGBN models 

showed a significant reduction in error with increasing Δ. The reduction in error with 
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increasing Δ may be a result of the minimization of variance derived from the remote sensing 

product. Per pixel accuracy in retrieved chl-a may return a wide range of values, where 

deriving a single daily value from a spatial mean reduced the variance. However, daily 

fluctuations persist (Figure 6.2), particularly during the ice on/off period. A temporal average 

helps minimize the variance seen during these periods, returning lower error. It is also possible 

that by increasing Δ, there is a stronger interaction effect between parameter observations 

weeks – months prior and 𝑐ℎ𝑙 − 𝑎0, than those only up to 1-5 days. Reconstructing the 

forecasted chl-a derived from stationary, non-stationary and residual HO-DGBN did reduce 

the total error compared to the use of a complete time series; however, this was mainly true at 

a lower Δ, where the difference at the monthly Δ was less significant. The Thel-Sein slopes 

were greater at the monthly scale, however, there were little to no significant Mann-Kendall, 

therefore the time-series at the monthly Δ is primarily stationary. Models consisting of 

stationary data return stronger networks, as the non-stationary and residual inputs performed 

poorly, and yielded little to no change in forecasting error with the change in Δ. The poor 

performance of the HO-DGBN at a smaller Δ, and for the non-stationary and residual models 

limit our confidence in the network structure accurately explaining algal biomass dynamics. 

While the inputs for the daily Δ have higher variance compared to the monthly Δ, the 

magnitude of forecasted chl-a concentrations remains lower (Figure 6.9) compared to that of 

the monthly data (Figure 6.10).  

6.6.3 Interaction Effects Between Parameters and Chl-a 

Despite the poor performance of the shorter Δ and non-stationary/residual models, 

some interesting results were observed. Importance sampling imposes a mutilated network 

with a new set of data observations (evidence), by excluding a given parameter, where the 

network excludes the parent nodes of that parameter and reweights the model (Koller & 

Friedman, 2009). As 𝑐ℎ𝑙 − 𝑎0 is the predictor target, it cannot be excluded from the network. 

It was found that LSWT was the most important parameter across all Δ, similar to other 

studies that consistently observe LSWT as one of the most important parameters in algal 

biomass dynamics (Borowitzka et al., 2016; Paerl & Huisman, 2008). It is often assumed that 
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higher LSWT equates to higher algal biomass; however, this is not always the case. LSWT 

may exceed the optima for the given algal community, slowing algal growth (Paerl & Otten, 

2013). Warmer waters will also increase the metabolic rate of algae, where nutrient-poor 

waters may exhibit a negative effect on algal growth (Kraemer et al., 2017). For the monthly 

– complete HO-DGBN (Figure 6.15), both oligotrophic (e.g., GSL EB) and eutrophic lake 

basins (e.g., LE WB), returned both positive and negative effects with LSWT. Each parent 

node time step is at a monthly interval; therefore, periods of high LSWT may be associated 

with nutrient depletion due to higher algal metabolic rates during warmer periods. Therefore, 

a period of increasing LSWT may have a negative impact on 𝑐ℎ𝑙 − 𝑎0. This is also true of past 

observations of chl-a, where months prior to increasing algae may return a negative effect on 

𝑐ℎ𝑙 − 𝑎0.  

The increase in T2m and SNSR showed greater importance at an increased Δ. The 

relationship between LSWT and T2m is not always linear and can vary between lakes (Rose 

et al., 2016; Walsh et al., 2020). Due to the high heat capacity of water, changes in T2m take 

a longer time to affect the LSWT; therefore, values derived from a higher Δ may create a 

stronger network for T2m. A negative interaction between T2m and 𝑐ℎ𝑙 − 𝑎0 is always at 𝑡 >

1, as there is often a delay between increasing LSWT and raising T2m; therefore, the potential 

depletion of nutrients impact may be further delayed compared to LSWT. The HO-DGBN 

models in NL were found to return a higher proportion of positive parent nodes for LSWT and 

T2m compared to SL (Table 6.6). Therefore, temperature has a more consistent positive effect 

on chl-a concentrations in NL, where temperatures return a higher rate of change. SNSR also 

exhibits a lag period between the onset of increased SNSR and algal biomass growth, lasting 

days to potentially weeks due to other factors such as water column stability, temperature, 

salinity, etc. (Williams, 1967; Sforza et al., 2012; Persuad et al., 2015). The importance of 

SNSR peaked at the biweekly Δ, and still showed high importance at a smaller Δ with the 

complete time-series. Light facilitates algal growth, where higher intensity can increase the 

metabolic rate of algae (Maltsev et al., 2021). Too high of a light intensity may also lower 

algal growth and cell count, as seen in culture studies (Sforza et al., 2012). SNSR exhibited a 
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higher proportion of negative 𝛽𝑟𝑗 contribution in the NL (Figure 6.14b) compared to the SL 

(Figure 6.14c), along with a higher proportion of negative parent nodes (Table 6.6) at the 

monthly Δ, likely a result of higher nutrient concentrations in the SL.  

SR and SSR association with algal biomass typically aid in the mobilization of nutrients 

such as DOC, P and N (Garnier et al., 2022; Ali & English, 2019). However, SR exhibited low 

importance compared to other parameters, while SSR only exhibited high importance for some 

SL at the daily Δ. This indicates that SSR has a more immediate influence on algal biomass 

dynamics compared to other parameters, where Figure 6.14 showed that this interaction was 

predominantly negative. While the importance of SSR was considered low in the NL, Figure 

6.14b indicates a very high contribution to the networks total 𝛽𝑟𝑗, particularly at the daily Δ, 

driven mainly by LA. The NL watersheds contain sporadic discontinuous permafrost, 

extensive continuous permafrost, and continuous permafrost (Sapriza-azuri et al., 2018). 

Permafrost regions may experience less or channelized SSR, potentially limiting its importance 

for those regions (Andresen et al., 2020). However, with thawing permafrost this may change, 

as can be seen in Figure 6.12, where the non-stationary signal returned high SSR importance 

at the daily scale.  

The LMLD returned higher importance at an increased Δ for the stationary HO-DGBN, 

where a shallow LMLD would indicate primarily stagnate waters, and high LMLD would 

indicate mixing. Mixing disperses surface water algae, while increasing nutrient availability 

throughout the water column (Reynolds, 1994). LMLD exhibits two peaks a year, a smaller 

one during early spring season, and a larger one during the fall (Figure 6.5). As the LMLD 

increases in the spring, the chl-a began to increase, however the inverse is true in the fall 

(Figure 6.5). At the monthly Δ, when chl-a is at its peak, past observations of LMLD are at a 

minimum, providing an association between previously stable conditions with higher algal 

biomass yield. This association is clearer when using a monthly Δ as the temporal lag reaches 

as far back as five months. The effect of LMLD on 𝑐ℎ𝑙 − 𝑎0 was predominantly negative 

across all lakes, with a higher percentage for SL (Table 6.6). As seen in Figure 6.15, no lakes 

returned a positive interaction between LMLD and 𝑐ℎ𝑙 − 𝑎0 at 𝑡 = 1, however positive 
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interactions do occur at 𝑡 > 1, indicating a typical immediate negative effect. PPT and WS 

both returned a low importance and contributed little to the total 𝛽𝑟𝑗 of the networks. PPT is 

expected to not only contribute to external loading (Coffey et al., 2019; Creed & Band 1998), 

but also contribute to lake mixing (Ho & Michalak, 2020), similar to the effects of WS (Huang 

et al 2016; Zhou et al 2021). Due to the size and depth of the study lakes, PPT and WS are 

unlikely to provide a significant impact, as wind-driven mixing and flushing are more 

impactful in shallower waterbodies (Kämpf, 2017). PPT does show some importance with the 

stationary HO-DGBN at the daily – three-day Δ (Figure 6.12), particularly for the shallower 

GBL SB, LA and LW.  

6.6.4 HO-DGBN Sensitivity 

 Sensitivity analysis provides insight into how sensitive the HO-DGBN model is to a 

change in each parameter, and how chl-a forecasts might change given a shift in these 

parameters. Unsurprisingly, variables with low importance, or low 𝛽𝑟𝑗 contribution, show little 

impact on the forecast of 𝑐ℎ𝑙 − 𝑎0 when changed. Instead, variables such LSWT, T2m, SNSR 

and to an extent LMLD provided some influential change to the forecasted 𝑐ℎ𝑙 − 𝑎0. Despite 

the uniform change in each parameter, the forecasted 𝑐ℎ𝑙 − 𝑎0 did not change uniformly. For 

the NL, the peak algal biomass had increased, along with chl-a concentrations later in the 

season (Figure 6.16). T2m also increased the algal biomass peak; however, it also increased in 

the preceding months compared to the latter of the LSWT. The NL exhibit shorter summer 

stratification periods and, as oligotrophic systems, return a singular algal biomass peak 

(Sommer et al., 2012). Therefore, the increase in temperature is expected to increase this peak. 

However, rising temperatures and earlier ice off timings are also anticipated to affect the rate 

of stratification, where earlier stratification may lead to an additional spring biomass peak 

(Sommer et al., 2012). The SL differed with respect to the impacts of temperature, where LW 

indicated increased spring algal biomass, while LE showed an increase in early summer algal 

biomass (Figure 6.16). However, T2m returned an inverse relationship, where the summer 

algal biomass peaks increased in LW, and both the spring and fall algal biomass peaks 

increased in LE. High spring temperatures leading to earlier onset of stratification, could also 
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result in incomplete mixing, and limiting the duration of internal loading, potentially limiting 

early algal biomass growth (Favot et al., 2019). However, earlier onset of stratification is 

associated with higher biomass later in the season (Favot et al., 2019). Additional research into 

developing future climate scenarios on lake system effects is possible with the provided 

networks. The application of DGBNs to scenario analysis has been done in the past (Molina et 

al., 2013; Xie et al., 2022) and is highly applicable to this research.  

6.7 Conclusions 

 This research showcases the application of the ESA CCI Lakes product in identifying 

interactions between daily chl-a observations and various lake physical and atmospheric 

parameters. HO-DGBN provide a robust method in identifying complex interactions between 

parameters as they change over time. It was found that temperature (LSWT and T2m) was the 

most important parameter and the largest contributor in the network to changes in algal 

biomass; however, these interactions were not always positive. Temperature parameter 

interactions with algal biomasses were more consistently positive for NL, compared to SL. 

Other important parameters such as SNSR generally had a positive effect on chl-a 

concentrations in all lakes, while LMLD exhibited a negative interaction. Factors such as PPT 

and WS returned little effect on algal biomass, while SR and SSR returned a higher importance 

at a shorter Δ. HO-DGBN models returned higher forecasting accuracy when constructed with 

monthly averaged parameters compared to the daily scale. The accuracy of the networks 

depends on the accuracy of the inputs, where future updates to the ESA CCI Lakes product 

that improve the chl-a retrieval accuracy and fill missing data gaps can further improve the 

HO-DGBN models, particularly at a low Δ.  
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Chapter 7: Conclusions 

7.1 Summary 

The primary objective of this thesis was to investigate the impact of lake physical and 

atmospheric variables on the trends, variability, and dynamics of algal biomass in five North 

American Great Lakes determined from  the ESA CCI Lakes and ECMWF (ERA5-land 

hourly) data products available for the period 2002-2020 . This work is vital, as described in 

Chapter 1, due to the ever present and emerging threat algal blooms pose to freshwater 

resources, impacting environmental, economic, and human health. Climate change is 

anticipated to drive the rise in algal blooms, threatening even remote, oligotrophic lakes. 

However, few comprehensive observational analyses have been conducted due to in situ data 

limitations. This research provided a novel approach to the application of remote sensing data 

products in analyzing algal biomass dynamics and interactions with various lake physical and 

atmospheric forcings.  

Chapters 2 provided an extensive overview of how climate change affects lake 

phenology, the dynamics of algal growth, community composition impacts, how remote 

sensing techniques are used to retrieve water quality parameters, and how various statistical 

techniques may be used to determine interaction effects amongst multiple variables. Within 

Chapter 2, it was shown that changes are occurring in abiotic factors such as air temperatures, 

LSWT, lake mixing regimes, LIC duration and extent, stratification, precipitation (duration, 

frequency and severity), wind speeds and CO2 depositions, and how these factors impact algal 

biomass growth, retention, dissipation and community composition. Anthropogenic activities 

have contributed to greater mobilization of allochthonous macro and micronutrients that 

stimulate algal growth, increase legacy P, and alter surface runoff of NAPs. Algae can be 

monitored through the use of optical satellite imagery, where empirical, machine learning, and 

bio-optical methods can make use of various wavelength channels to parse the chl-a signal 

from other NAPs and organic matter. Chapter 3 provided an overview of information regarding 

the general study area and lakes, where the Northern Lakes (NL; GBL, GSL and LA) are 

considerably deeper, cooler and oligotrophic compared to the warmer, shallower and eutrophic 



 

 188 

Southern Lakes (SL; LW and LE). This research made use of the ESA CCI Lakes product 

(v2.0.0), providing daily LWLR, LSWT and LIC data on a ca. 1 km gridded. Additional 9 km 

gridded data of lake physical and atmospheric parameters (T2m, WS, PPT, LMLD, SNSR, SR 

and SSR) were provided by the ERA5-Land hourly product.  

Due to the lack of LIC studies on the analysis of algal biomass trends, Chapter 4 

provided assessment of the ESA CCI Lakes data product for the five target lakes (2002 – 2020). 

A total of five algal biomass parameters (mean & max chl-a, abnormal chl-a, abnormal algal 

biomass days, and peak chl-a DOY), four LSWT (mean & max LSWT, anomaly LSWT days, 

and peak LSWT DOY), and three LIC (Ice on/off and duration) parameters were constructed 

annually and seasonally (spring, summer, and fall). It was found that ice-off periods changed 

by a total of -0.55 – 0.43 days-1 yr-1, annual maximum LSWTs by -0.03 – 0.11 K-1 yr-1 and 

mean annual chl-a concentrations by -0.02 – 0.17 μg L-1 yr-1. Vector Autoregression models 

with a lag order of three years were developed using all combinations annual and seasonal 

(spring, summer and fall) of LIC and LSWT parameters to determine which provided a greater 

explanation of variance in algal biomass over time. It was found that NLs (GBL, GSL and LA) 

had a higher percentage of variance explained by LIC parameters on average, compared to SLs 

(LW and LE). SLs provided a poor explanation for spring algal biomass parameters, regardless 

of the predictive parameter. On average, NLs provided a greater explanation of the variance 

for chl-a concentrations (mean adj. r2 = 0.59-0.79) compared to SLs (mean adj r2 = 0.36-0.38). 

The results of this study provide evidence that; (i) climate parameters provide greater 

explanatory power for remote NLs, and (ii) LIC has a more significant explanation of variance 

for algal biomass phenology compared to more eutrophic and anthropogenically impacted 

lakes. 

The results of Chapter 4 indicated that LIC had a significant impact on the phenology 

of algal biomass, particularly for NLs. Chapter 5 expanded on this concept to determine 

whether LIC may act as a predictor of the parameters of algal biomass. Using the annual and 

seasonal parameters developed in Chapter 4, MLR and ANN models were constructed to 

determine whether the LIC parameters significantly contribute to the prediction of algal 
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biomass compared to the LSWT parameters.  ANN models (median NRMSE = 0.81) 

significantly outperformed MLR models (median NRMSE = 0.95) in predicting algal biomass 

parameters. Models using only LSWT parameters returned significantly lower error (median 

NRMSE = 0.82) compared to LIC only models (median NRMSE = 0.93), while models 

including both LSWT and LIC returned the lowest error (median NRRMSE = 0.75). A random 

forest (RF) model was constructed to classify abnormal algal biomass presence for each 

lake/basin and season with varying accuracies (72.88% – 97.27%, median = 84.22%). It was 

found that the LIC parameters were the most important on average in classifying the presence 

of abnormal algal biomass presence within NLs (GBL, GSL, LA). LIC was not found to be a 

strong predictor of algal biomass parameters; however, it was an important variable in 

classifying abnormal springtime algal biomass concentrations, primarily in NLs. Due to the 

control of LIC on the timing and duration of mixing, it is a significant contributor to algal 

biomass growth in lakes which rely primarily on internal loading for nutrient availability.  

Chapter 5 provided evidence for the importance of LIC in remote NLs for the 

springtime algal biomass. However, LIC parameters can only assess the annual/seasonal trends 

and variance of algal biomass, thereby missing the intra-year trends, cycles, and variance. 

Additionally, various lake physical and atmospheric parameters were not included. Chapter 6 

saw the construction of various HO-DGBN to identify the interaction effects between various 

atmospheric (T2m, PPT, WS & SNSR) and lake physical (LSWT, LMLD, SR and SSR) 

parameters with chl-a, as they change over time. HO-DGBN models were constructed for all 

lakes in the study area, using the original time series, stationary, non-stationary and residual 

signals, in varying temporal ranges (Δ; daily, three days, weekly, biweekly and monthly 

averages). It was found that a HO-DGBN constructed using the stationary signal returned the 

lowest forecasting error (NRMSE = 0.08 – 0.71, median = 0.31), however the original time-

series using the monthly Δ returned similar error (NRMSE = 0.16 – 0.55, median = 0.39). 

Through importance sampling, LSWT and T2m returned the highest error when excluded from 

the HO-DGBN (median MAE = 1.70 & 1.60 μg L-1 respectively), followed closely by SNSR 

(median MAE = 1.41 μg L-1). Temperature interactions were mixed, typically returning both a 
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positive and negative interaction depending on the HO-DGBN time-slice and lake. LMLD 

returned increased importance at a longer Δ, while SSR returned increased importance at a 

shorter Δ. SNSR typically exhibited a positive interaction with chl-a, while LMLD exhibited 

a frequent negative interaction. The PPT and WS were found to be the least important 

parameters across all the study lakes. New remote sensing data products provide significant 

potential for network analysis using observational data, where future scenario analysis could 

provide improved forecasting in algal biomass dynamics in a changing climate. 

7.2 Limitations 

The primary limiting factor for this research is the accuracy of the ESA CCI Lakes 

product, as accurately retrieving chl-a concentrations across many optical water types, 

geolocations, and satellite sensors is highly difficult. As discussed in section 3.3, there are 

many complications which can convolute or overlap the chl-a signal within a turbid water 

body, often a result of NAPs, varying atmospheric conditions, and alterations in the 

illumination angles. It was found that observations from 2012-2015 were missing with this 

product, eliminating the potential to understand some dynamics within this period, which 

would improve the HO-DGBN models. Additionally, it was found that the transition from 

MERIS (2002 – 2020) to Sentinel-3A (2016 – present), returned a slight bias for some lakes, 

where Sentinel-3A returned higher values compared to that of MERIS. However, it is unknown 

if this is a sensor/retrieval bias, or due to a process of increasing algal biomass as seen in many 

lakes (Kraemer et al., 2022). 

7.3 Future Work 

The methods presented in this thesis showcase the potential of remote sensing data 

products to better understand algal biomass dynamics. By filling in missing data, it is possible 

to identify intricate trends and patterns, which are often unique to a given lake basin. Remote 

sensing products still return missing features, and while this thesis utilized methods to 

interpolate missing data, it was not the primary focus of the research. Improved data 

interpolation through non-linear means may improve the accuracy of the time-series. 
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Applications to a greater range of lakes would also provide greater context and validity to 

statements made between the Northern and Southern lake regions. Additionally, improvements 

to remote sensing data products would require a reapplication of the methods presented in this 

thesis to update the results and improve their accuracy. Additional environmental parameters 

such as land use dynamics (e.g., reduction of natural forest or wetland environments), 

atmospheric deposition of CO2, NOx and NH3, and macro and micronutrients were not 

included in this thesis, where future research may look to find methods of integrating these 

types of data. The purpose of improving our understanding of the dynamics of algal biomass 

in relation to changing atmospheric and lake physical variables is to improve forecasting and 

projection models. Integration of the findings presented in this thesis into future projection 

forecasts is a potential direction for future work in this field.  
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Appendices 
 

Appendix A: In Depth Review of Machine Learning and Bio-Optical Techniques 

A1. Artificial Neural Networks (ANN) 

One of the most commonly implemented methods for the retrieval of algal biomass is 

the ANN method. The ANN is designed to mimic the way the human brain processes data, 

first established by Dr. Frank Rosenblatt in the 1950s. The inputs of the ANN are connected 

to nodes, where the patterns of node activation derive the classification of the output, and as 

such may derive non-linear and non-deterministic relationships (Mani & Srinivasan, 1997). 

The structure of the network is composed of the input, hidden and output layer, with the hidden 

layer often described as a “black box” (Cao et al., 2022). This is because the hidden layer 

represents a complex set of equations to derive the activation of each node and then to 

determine the pattern of the activation (Chang & Bai, 2018). The number of hidden layers and 

nodes, or “neurons” within each hidden layer is decided upon by the user. The higher the 

number of layers and neurons, the more complex the model and the longer the training time 

(Chang & Bai, 2018). An ANN with many hidden layers is considered a deep learning method 

and is commonly used as artificial intelligence for classification methods (e.g., facial 

recognition), and requires a significant amount of training samples (Chang & Bai, 2018). For 

the purpose of algal biomass retrieval, typically only 1-2 hidden layers are required, as too 

many will result in over fitting of the model. However, the more training samples, the better 

the better the model, as the architecture of the ANN has a high tolerance for error and excels 

at identifying patterns in big data, using either supervised or unsupervised training (Chang et 

al., 2019). This is particularly beneficial for phytoplankton retrieval, as the change in IOPs can 

cause significant errors in which traditional regression methods are not capable of resolving 

patterns. The non-linear nature of freshwater optics is well suited to adaptive learning models 

such as the ANN. Typical chl-a/PC retrieval models will utilize a single layer feedforward 

structure design.  
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 The structure of the single layer feedforward neural network (SLFN) utilizes a training 

set of x and y data ({𝑥𝑖, 𝑦𝑖}) and is defined by Chang et al. (2019) as the following equation: 

 
∑ 𝑣𝑖𝑔𝑖(𝑥𝑗)

𝐿

𝑖=1

= ∑ 𝑣𝑖𝑔(𝑎𝑖 ∙ 𝑥𝑗 + 𝑏𝑖)

𝐿

𝑖=1

 (𝑗 = 1,2,3, … , 𝑁) (A1.1) 

where 𝐿 represents the number of hidden nodes, 𝑗 the number of input samples, 𝑎𝑖 =

[𝑎𝑖1, 𝑎𝑖2, … , 𝑎𝑖𝑁]𝑇(𝑖 = 1,2,3, … 𝐿) represents the weights of the input to the ith hidden node 

vectors, while 𝑣𝑖 = [𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑁]𝑇(𝑖 = 1,2,3, … 𝐿) represents the weights of the ith hidden 

node vectors to the output, 𝑔𝑖(𝑥𝑗) represents the activation function and 𝑏𝑖 represents the bias 

of each hidden node vector. The activation function defines the rate of activation expressed by 

each node given the weight and bias. Therefore, each node is defined as: 

 𝑌 = ∑(𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑖𝑛𝑝𝑢𝑡) + 𝑏𝑖𝑎𝑠 (A1.2) 

while the activation function can be expressed by various functions such as:  

▪ cosine: 𝑔𝑖(𝑥𝑗) =
1

1+𝑒−𝑥
 

▪ tanh: 𝑔𝑖(𝑥𝑗) =
2

1+𝑒−2𝑥 − 1 

▪ linear: 𝑔𝑖(𝑥𝑗) = 𝑐𝑥 

▪ piece-wise (i.e. rectified linear activation function (ReLU)): 𝑔𝑖(𝑥𝑗) = max (0, 𝑥) etc., 

in which each have their own benefits given the purpose of the SLFN and the input data. The 

activation function allows for the calculation of an output (𝑌) for the number of training inputs 

(𝑁) and is expressed as:  

 𝐻𝑉 = 𝑌 (A1.3) 

where 𝐻 represents the hidden layer output matrix and 𝑉 is the predicted value. The dimensions 

of 𝐻 is expressed as the number of training samples (𝑁) and the number of hidden nodes (𝐿) 

such as: 
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𝐻 = [

𝑔(𝑎1 ∙ 𝑥1 + 𝑏1) ⋯ 𝑔(𝑎𝐿 ∙ 𝑥1 + 𝑏𝐿)
⋮ ⋱ ⋮

𝑔(𝑎1 ∙ 𝑥𝑁 + 𝑏1) ⋯ 𝑔(𝑎𝐿 ∙ 𝑥𝑁 + 𝑏𝐿)
] (A1.4) 

 

𝑉 = [
𝑉1

𝑇

⋮
𝑉𝐿

𝑇
]

𝐿×𝑚

, 𝑌 = [
𝑌1

𝑇

⋮
𝑌𝑁

𝑇
]

𝑁×𝑚

 (A1.5) 

This process then seeks to minimize the difference between the approximated values and the 

true values, optimizing the model (or optimization function). Typically, this is done using 

stochastic gradient descent or variants such as Root Mean Square Propagation (RMSProp). 

Gradient descent looks to find at which point the model has the lowest possible error, where 

the weights are adjusted toward a lower error. For example, RMSProp can be defined by the 

following equation: 

 𝑣𝑡 = 𝜌𝑣𝑡−1 + (1 − 𝜌) ∙ 𝑔𝑡
2 (A1.6) 

 Δ𝜔𝑡 = −
𝜂

√𝑣𝑡 + 𝜖
∙ 𝑔𝑡 (A1.7) 

 𝜔𝑡+1 = 𝜔𝑡 + Δ𝜔𝑡 (A1.8) 

where 𝑣𝑡 is the exponential mean of squares of each gradient, 𝜌 is the momentum (user 

defined), 𝑔𝑡 is the sum of squares of each gradient, 𝜔 is the weight of each input, 𝑡 is the time 

step, 𝜂 is the learning rate (user defined), and 𝜖 is the error term. A random set of weights is 

set as an initial placement, where the optimization function then calculates the multivariate 

direction where lower error occurs 𝜂 and 𝜌 are user defined variables which determine how 

large each step is in this process, and how much momentum the step has. Momentum would 

allow the step to continue moving even if the error were to increase. Momentum is important, 

as the purpose of gradient descent is to find the global minimum error, to which the model then 

has optimal fit. However, the objective function may instead find a local minimum and assume 

that it is the best fit for the model, which may not be the case. Momentum helps in finding the 

global minimum. Additionally, the process is repeated across multiple attempts known as 

epochs, which is also user defined. The epoch with the lowest error is determined as the optimal 
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number of training batches the SLFN must undergo. While the increase in the number of 

epochs is useful in determining the global minimum, it does increase training time, and if too 

many batches are used, it can result in overfitting. Training time can be reduced using mini-

batches over all the training data with each step. Overfitting may occur when the total loss 

(measured in a user-defined error metric) of internal validation either exceeds that of the 

training error, or the difference is too great, indicating that the application of the model to new 

data would result in greater error than the model itself (which can be tested using a testing 

dataset). The use of too many nodes and hidden layers may also result in overtraining of the 

model (Rao et al., 2020). The number of recommended layers depends on the complexity of 

the problem and the number of training samples. A neural network model with a significant 

number of hidden layers and nodes is instead classified as a deep learning model. While not 

typically used in the retrieval of phytoplankton biomass, certain deep learning models such as 

a convolution neural network (CNN) are used.  

The process of feed forward artificial neural networks uses either single pixels, or a 

pixel window mean of the sampling location as the input vector. However, the CNN accounts 

for both the spatial and temporal patterns surrounding each input variable. A traditional CNN 

is used as a process of classification, in which all images are convoluted and then pooled to a 

smaller matrix. The process is repeated until all pixels are presented in a fully connected layer 

(1:n matrix). Convolution is the process of applying a moving window kernel of predetermined 

size features to calculate a new pixel value, compressing the size of the image to the convolved 

feature. Multiple kernels may be applied to train the model to detect specific features. Pooling 

(either max or mean) is also used to reduce the feature size, increase computational speed, and 

reduce noise. The max pooling method will return a maximum value within the pooling 

window (size determined by the user), while the mean returns the average. The pooling 

window will move across the convolved feature, with a predetermined stride value. The fully 

connected layer will then act as an input to the neural network, where the process is the same 

as described for the SLFN. For regression analysis, the CNN is as defined by Dong et al. (2020) 

and Li et al. (2018):  
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𝑚𝑎𝑝𝑙,𝑗
𝑥,𝑦

= 𝑓 (∑ ∑ ∑ 𝑘𝑙,𝑗,𝑚
ℎ,𝑤 𝑚𝑎𝑝(𝑙−1),𝑚

(𝑥+ℎ)(𝑦+𝑤)
+ 𝑏𝑙,𝑗

𝑊𝑙−1

𝑤=𝑜

𝐻𝑙−1

ℎ=𝑜𝑚

) (A1.9) 

where 𝑚𝑎𝑝𝑙,𝑗
𝑥,𝑦

 is the convolved output of each x and y pair per the number of node layers (𝑙) 

and total number of samples (𝑗), 𝑓(𝑥) is the activation function, 𝑚 is the number of convolved 

feature maps, ℎ and 𝑤 are the positions of the convolution kernel, 𝑘𝑙,𝑗,𝑚
ℎ,𝑤

 is the kernel value at 

the ℎ and 𝑤 position which is then connected to 𝑚𝑎𝑝(𝑙−1),𝑚
(𝑥+ℎ)(𝑦+𝑤)

, which is the 𝑚th convolved 

feature map for each node (𝑙 − 1), 𝐻 and 𝑊 are the height and width of the kernel and 𝑏𝑙,𝑗 is 

the bias at each node to input connection. The pooling layer would then use the following 

equation as described by Pyo et al. (2019): 

 𝑓𝑚(𝑥1) = max (𝑥𝑖
𝑙) (A1.10) 

where 𝑓𝑚(𝑥1) is the max pooling result for node layer of the CNN. The difference between a 

CNN for regression analysis to derive algal biomass and that of image classification is that the 

regression CNN as described by Dong et al. (2020) does not use the entire image for training, 

and instead only uses an initial 7x7 matrix surrounding each input in situ observation, which 

is then convolved down to the fully connected layer. Too large a window surrounding each 

input would potentially increase noise within the model, as pixels further away from the target 

location have less impact on the target location. Various studies have found varying CNN 

performance results with testing data r2 of 0.35 (Syariz et al., 2019), 0.98 (Dong et al., 2020), 

and 0.73 (Pyo et al., 2019). Compared to the bio-optical models of Simis et al. (2005), Duan 

et al. (2012) and Pyo et al. (2018), CNN models have had greater simulation accuracy and 

between 12-62% lower error (Pyo et al., 2019). In comparison to other machine learning 

models, Dong et al. (2020) had found much higher performance of the CNN than ANN, RF 

and SVR, with between 30-60% lower errors. However, CNN is found to have high variance 

in the results depending on the training data (Dong et al., 2020, Syariz et al., 2019).  
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A2. Random Forest (RF) 

The RF method utilizes a series of regression trees, which separates the inputs into 

clusters based on the total error observed within each cluster. For application in phytoplankton 

biomass retrieval by remote sensors, multivariate band inputs may be used as predictor 

variables (𝑥1, 𝑥2 … 𝑥𝑛) to the response variable of chl-a or PC (𝑦). Regression trees as described 

by Breimen et al. (1984) use a series of linear regressions to determine predictor thresholds 

which produce the lowest possible error for the response variable. The predictor variable split 

points (𝑡1, 𝑡2 … 𝑡𝑗) are binary and result in terminal nodes of the response variable (𝑌1, 𝑌2 … 𝑌𝐿), 

where the binary split only stops due to a predefined criterion (e.g., minimum number of 

observations). Regression trees tend to overfit the training data, have low bias, and high 

variance, whereas other empirical measurement options are preferred. However, RF methods 

use many regression trees, in which the input training observations are bagged, in which each 

tree consists of different training data. The process of bagging helps reduce variance in the 

testing data and shows improved results compared to a single regression tree. Breiman (1996) 

describes the bagging process where the total data set (ℒ) consists of observation pairs 

{(𝑥𝑛, 𝑦𝑛), 𝑛 = 1, … 𝑁}, where 𝑦 = 𝜑(𝑥, ℒ) (in which 𝜑(𝑥, ℒ𝑘) is a predictor) and is derived 

from multiple bags ({ℒ𝑘}) (in which 𝑘 is the number of bags). As this method is used as a 

regressor, 𝑦 is predicted using the average of 𝜑(𝑥, ℒ𝑘) as described by Breiman (1996) in the 

following equation: 

 𝜑𝐴(𝑥) = 𝐸ℒ𝜑(𝑥, ℒ) (A2.1) 

where 𝐴 is the aggregation of the predictor (𝑥) and 𝐸ℒ is the expectation over ℒ, in which there 

are multiple learning sets of ℒ. As there is often only one given set of data, an imitation of 

multiple learning sets is to bootstrap aggregate the data known as bagging and is given as the 

following equation:  

 𝜑𝐵(𝑥) = 𝑎𝑣𝐵𝜑(𝑥, ℒ (𝐵)) (A2.2) 

where ℒ (𝐵) is a repeated bootstrap of the input data with replacements of a total of 𝑁 

observations. In this case of bagging, the term replacement indicates that a randomized 
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observation pair {(𝑥𝑛, 𝑦𝑛), 𝑛 = 1, … 𝑁} may either not be used at all in the model or used more 

than once across all bags and even within the same bag (Breiman, 1996). Each terminal node 

or leaf represents the average of 𝜑(𝑥, ℒ𝑘), which aides in reducing variance of the prediction 

results (Hastie et al., 2001). The RF is a collection of regression trees, in which each tree 

represents the subset of the data ℒ (𝐵). A single tree predictor is defined as 𝜑(𝑥, ℒ𝑘), where the 

random forest will take the average over 𝑘 (Brieman, 2001). The mean-square generalization 

error of each output is defined as: 

 𝐸𝑥,𝑦(𝑦 − 𝜑(𝑥))2 (A2.3) 

where 𝑦 is the true value, and 𝐸𝑥,𝑦 is the error term for each observation pair. Therefore, as the 

number of bags or trees (𝑘) becomes very large (assumed infinite), the RF is defined by the 

Law of Large Numbers:  

 𝐸𝑥,𝑦(𝑦 − 𝑎𝑣𝐵𝜑(𝑥, ℒ (𝐵)))2 → 𝐸𝑥,𝑦(𝑦 − 𝐸ℒ𝜑(𝑥, ℒ))2 (A2.4) 

where the error observed in the trees represents the error of the data set. This can be 

summarized as the following: 

 𝑃𝐸∗(𝑡𝑟𝑒𝑒) = 𝐸ℒ𝐸𝑥,𝑦(𝑦 − 𝜑(𝑥, ℒ))2 (A2.5) 

where 𝑃𝐸∗ is the estimated generalized error of each tree and 𝐸ℒ is the error of the dataset. For 

the generalization error of the forest is summarized as: 

 𝑃𝐸∗(𝐹𝑜𝑟𝑒𝑠𝑡) = 𝐸𝑥,𝑦(𝑦 − 𝐸ℒ𝜑(𝑥, ℒ))2 (A2.6) 

If it is assumed that for all of ℒ the RF model is unbiased, in which the error of 𝑌 is equal to 

that of the predictor (∴ 𝐸𝑌 = 𝐸𝑥𝜑(𝑋, ℒ)) then the generalized error of the forest is less than or 

equal to the weighted correlation (�̅�) of the residuals of the data (𝑌 − 𝜑(𝑥, ℒ)) and bagged data 

(𝑌 − 𝜑(𝑥, ℒ𝐵)): 

 𝑃𝐸∗(𝐹𝑜𝑟𝑒𝑠𝑡) ≤ �̅�𝑃𝐸∗(𝑡𝑟𝑒𝑒) (A2.7) 

where a good RF model will show low correlation between the residuals and tree error 

(Breiman, 2001). The randomization due to bagging helps in reducing the correlation of the 

residuals and error (Segal, 2003). 
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 The RF model may also be used as a method of classification and has been shown to 

be effective in defining optical water types (Pereira-Sandoval et al., 2022) and algal bloom 

identification (Hill et al., 2020). Similar to the regressor, RF classification is constructed using 

a series of binary trees, which are composed of binary partitions called nonterminal nodes, 

whereby each predictor variable (𝑋𝑖) is split into two descendent nodes by the set of defined 

categories (𝑆𝑖 = {𝑆𝑖,1, … , 𝑆𝑖,𝑚) of the predicted variable (𝑆) (Cutler et al., 2011). The left 

descendent node contains a subset of the categories, the remainder to the right node, where 

each split is defined by the following equation: 

 𝑋𝑖 ∈ 𝑆 ⊂ 𝑆𝑖 (A2.8) 

  To determine the predictor split, a criterion is often used to determine the best partition, 

and is often determined using a GINI index as described in the following equation: 

 
𝑄 =  ∑ �̂�𝑘�̂�𝑘′

𝐾

𝑘≠𝑘′

 (A2.9) 

 Where �̂�𝑘 = proportion of observations of each class (𝑘) within the descendent node, 

as described in the following equation: 

 
�̂�𝑘 =  

1

𝑛
∑ 𝐼(𝑦𝑖 = 𝑘)

𝑛

𝑖=1

 (A2.10) 

 Where the larger the derived value, the lower the purity of the node, therefore, the split 

with the lowest derived value is selected. This procedure reoccurs until the stopping criteria 

are met, such as a predefined number of terminal nodes. The accuracy of the tree is assessed 

by determining the number of observations placed in terminal nodes which match the 

designated output class (Cutler et al., 2011).  

 

A3. Bio-Optical Models 

Establishing a forward model would allow water quality parameters to be predicted 

without the use of in situ observation data. Common forward models include radiative transfer 

equations and reflectance approximation, where simulated data derive coefficients to predict 
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remote sensing reflectances (Matthew, 2011). A forward model in freshwater systems is 

difficult to derive due to the spatial/temporal change and variability in IOPs, in which accurate 

profiles have not currently been developed. The semi-analytical approach utilizes both 

empirical and analytical measurements. An inversion model of AOPs, the relationship to IOPs 

along with remote sensing measurements, is necessary to construct a forward model 

(Ogashawara et al., 2017). Bio-optical models are predominantly a semi-analytical method in 

which remotely sensed measurements estimate the IOPs and 𝑏𝑏(𝜆) of water. The inversion of 

IOPs utilizes remotely sensed measurements to derive an absorption coefficient at a given 

wavelength (𝑎𝑖(𝜆)) of water (𝑎𝑤(𝜆)), chl-a (𝑎𝐶ℎ𝑙(𝜆)) and/or PC (𝑎𝑃𝐶(𝜆)) (Simis et al., 2005; 

Zhou et al., 2019). The semi-analytical approach has been found to have higher inversion 

precision compared to that of empirical regression methods (Allan et al., 2015; Kong et al., 

2015). The application of 𝑎(𝜆) and 𝑏𝑏(𝜆) is based on the Kubelka-Munk remission function 

in which the change in turbidity of a medium is proportionate to the ratio of 𝑎(𝜆) and 𝑏𝑏(𝜆) 

(Ogashawara et al., 2017). Of the bio-optical models developed overtime, only case-I waters 

have developed a forward model (analytical approach), while case-II waters required an 

inversion to derive IOPs (semi-analytical) (Morel & Prieur, 1977). The analytical bio-optical 

model requires a predetermined spectral shape function of each parameter along with an 

estimation of total 𝑏𝑏(𝜆). The relationship between the AOPs and IOPs was first defined by 

Gordon et al. (1975) and is defined as: 

 𝑅(0−, 𝜆) = 𝑓𝑏𝑏/(𝑎 + 𝑏𝑏) (A3.1) 

where 𝑅(0−, 𝜆) is the subsurface irradiance of a given wavelength at a depth of 0 and 𝑓 is a 

light field factor (Gorden et al., 1975; Simis et al., 2005). Based on the definition of AOP by 

Gordon, Morel and Prieur (1977) attempted to define the coefficients of 𝑎 and 𝑏𝑏 in case-I and 

case-II waters. Morel and Prieur defined scattering (𝑏(𝜆)) as the sum of the scattering of water 

(𝑏𝑤(𝜆)) and particles (𝑏𝑝(𝜆)): 

 𝑏(𝜆) = 𝑏𝑤(𝜆) + 𝑏𝑝(𝜆) (A3.2) 
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Based on this relationship, it was then assumed that 𝑏𝑏(𝜆) was similarly equal to the sum of 

the backscattering of water (𝑏𝑏𝑤(𝜆)) and the backscattering of particles (𝑏𝑏𝑝(𝜆)): 

 𝑏𝑏(𝜆) = 𝑏𝑏𝑤(𝜆) + 𝑏𝑏𝑝(𝜆) (A3.3) 

in which the scattering due to particles is a factor of particle size. Based on the understanding 

of how 𝑅(0−, 𝜆) is a factor of 𝑎 and 𝑏𝑏, and that 𝑏𝑏 is a factor of 𝑏𝑏𝑤(𝜆) and 𝑏𝑏𝑝(𝜆), a formulae 

to model the 𝑅(0−, 𝜆) is given for case-I waters: 

 
𝑅(𝜆) =

𝑏𝑏𝑤(𝜆) + 𝑏𝑏𝑝(𝜆)

𝑎𝑤(𝜆)
 (A3.4) 

Given the assumption of case-I water conditions, the modelled 𝑅(0−, 𝜆) visible spectra (400-

700nm) indicates high reflectance at shorter wavelengths and low reflectance at longer 

wavelengths due to 𝑎𝑤(𝜆). As 𝑏𝑤(𝜆) cannot change, only 𝑏𝑏𝑝(𝜆) can change, in which higher 

concentrations create a greater rate of change in 𝑅(0−, 𝜆) visible spectra at longer wavelengths 

compared to shorter ones. The modelled spectra closely resembled the observed spectra of the 

open ocean. To model 𝑅(0−, 𝜆) for turbid waters, the spectra is additionally a result of the 

absorption of phytoplankton (𝑎𝑝ℎ𝑦𝑡(𝜆)) which is proportional to chl-a, and absorption of 

particles not proportional to chl-a (𝑎𝑝(𝜆)), to formulate the case-II formulae: 

 
𝑅(𝜆) =

𝑏𝑤(𝜆) + 𝑏𝑏𝑝(𝜆)

𝑎𝑤(𝜆) + 𝑎𝑝ℎ𝑦𝑡(𝜆) + 𝑎𝑝(𝜆)
 (A3.5) 

The modelled case-II spectra, however, resulted in considerable variance when compared to in 

situ chl-a measurements, due to the algal cell size, species composition, and composition of 

optically active NAPs. While a forward model was possible given case-I waters, case-II waters 

are more complicated. Due to the variance of case-II waters, an inversion model is constructed 

using observed 𝑅(0−, 𝜆) instead, leading to the prevalence of the semi-analytical method.  

 To predict the IOPs from reflectance, it is assumed that the total amount of absorption 

is contributed by; 𝑎𝑤(𝜆), 𝑎𝑝ℎ𝑦𝑡(𝜆), the absorption of tripton (or other NAPs; 𝑎𝑁𝐴𝑃(𝜆)) and the 



 

 254 

absorption of CDOM (𝑎𝐶𝐷𝑂𝑀(𝜆)) (Roesler & Perry, 1995). The additive absorption 

assumption is as described in the following equation: 

 𝑎(𝜆) = 𝑎𝑤(𝜆) + 𝑎𝑝ℎ𝑦𝑡(𝜆) + 𝑎𝑁𝐴𝑃(𝜆) + 𝑎𝐶𝐷𝑂𝑀(𝜆) (A3.6) 

Similarly, it is also then assumed that the 𝑏𝑏(𝜆) is also a product of 𝑏𝑏𝑤(𝜆) and 𝑏𝑏𝑝(𝜆), as 

described by Roesler and Perry (1995) in the following equation: 

 𝑏𝑏(𝜆) = 𝑏𝑤(𝜆) + 𝑏𝑏𝑝(𝜆) (A3.7) 

Each parameter has an absorption rate described within the visible-NIR spectrum. The 

inversion model is then based on Beer’s law, which was applied to bio-optical modelling of 

chl-a by Smith and Baker (1978). Therefore, the concentration-specific spectral shape must be 

described, where the increase of the concentration will then increase the IOP. The 

concentration-specific spectral shape of phytoplankton (e.g. 𝑎 𝑝ℎ𝑦𝑡
∗ (𝜆)) can be predicted by the 

𝑎𝑝ℎ𝑦𝑡(𝜆) normalized by the chl-a concentration (Roesler et al., 1989). Therefore, the inverse 

may predict for the IOPs, in which 𝑎 𝑝ℎ𝑦𝑡
∗ (𝜆)) is multiplied by the concentration of chl-a as 

described by Roesler et al. (1989) in the following equation: 

 𝑎𝑝ℎ𝑦𝑡(𝜆) = 𝑐ℎ𝑙𝑎 × 𝑎 𝑝ℎ𝑦𝑡
∗ (𝜆) (A3.8) 

This equation will also equate the absorption of NAP and CDOM as well. Therefore, given a 

known spectral shape of each parameter, we can expand the equation by Gordon et al. (1975) 

to the following: 

 𝑅(0−, 𝜆) =
𝑓

𝑄
×

𝑏𝑏𝑤(𝜆) + 𝐴𝑏𝑝𝑏 𝑏𝑝
∗ (𝜆)

𝑏𝑏𝑤(𝜆) + 𝐴𝑏𝑝𝑏 𝑏𝑝
∗ (𝜆) + 𝑎𝑤(𝜆) + 𝐴𝑝ℎ𝑦𝑡𝑎 𝑝ℎ𝑦𝑡

∗ (𝜆) + 𝐴𝑁𝐴𝑃𝑎 𝑁𝐴𝑃
∗ (𝜆) + 𝐴𝐶𝐷𝑂𝑀𝑎 𝐶𝐷𝑂𝑀

∗  (A3.9) 

where the absorption specific spectral curves are modelled and the concentrations (𝐴𝑏𝑝, 𝐴𝑝ℎ𝑦𝑡, 

𝐴𝑁𝐴𝑃, 𝐴𝐶𝐷𝑂𝑀) are to be predicted, 𝑄 is the geometric attenuation of light and 𝑓 is a constant 

based on the volume scattering function (Sathyendranath et al., 1989; Roesler, 2014). The 

concentrations then act as an eigenvalue, where the absorption/backscatter specific spectra are 

the eigenvectors. A regression (either linear or non-linear least square) of the remotely 

measured spectra and the absorption specific spectral curves is used to derive the eigenvalue. 



 

 255 

While hyperspectral sensors can be used to define the optical curves, multispectral sensors use 

individual bands to estimate 𝑎 and 𝑏𝑏. Studies using multispectral sensors will also not always 

include the contribution of CDOM and NAP; either the impacts are considered negligible or 

correction factors are introduced. The wavelengths used to estimate 𝑎 and 𝑏𝑏 of the bio-optical 

model varies between studies and sensors. Gons (1999) established a chl-a retrieval bio-optical 

model using wavelengths measured by a spectroradiometer, and is defined as: 

 [𝐶ℎ𝑙 𝑎] = {𝑅(𝑎𝑤(704) + 𝑏𝑏) − 𝑎𝑤(672) − 𝑏𝑏}/𝑎∗(672) (A3.10) 

Where 𝑅 is the reflectance ratio (704/672), 𝑏𝑏 is the backscatter estimated at 776nm and 𝑎∗ is 

the chl-a specific absorption coefficient. The model returned high inversion accuracy with an 

r2 of >0.95 and a standard error of <9 mg m-3. Gons et al. (2002) then adapted this model to 

MERIS and is defined as: 

 [𝐶ℎ𝑙 𝑎] = {𝑅𝑀(𝑎𝑤(704) + 𝑏𝑏) − 𝑎𝑤(664) − 𝑏𝑏}/𝑎∗(664) (A3.11) 

where 𝑅𝑀 is the reflectance ratio (704/664), and 𝑏𝑏 is again estimated at 776nm. The Gons 

models operate on the assumption that the absorption at 672nm and 664nm is negligible for 

NAPs and therefore represents the chl-a signal. The Gons et al. (2002) bio-optical model was 

then adapted by Simis et al. (2005) for PC retrieval in which the 𝑎𝐶ℎ𝑙(𝜆) and the 𝑎𝑃𝐶(𝜆) must 

be separated. It was first established that both 𝑎𝐶ℎ𝑙(𝜆) and 𝑎𝑃𝐶(𝜆) signals are equal to the Gons 

et al. (2002) model at the 620nm maximal PC absorption, and is defined as: 

 𝑎𝐶ℎ𝑙(620) + 𝑎𝑃𝐶(620)

= ({[
𝑅(709)

𝑅(620)
] × [𝑎𝑤(709) + 𝑏𝑏]} − 𝑏𝑏 − 𝑎𝑤(620)) × 𝛿−1 

(A3.12) 

 

where 𝛿−1is the correction factor of 𝑎∗(620). To isolate 𝑎𝑃𝐶(620) from 𝑎𝐶ℎ𝑙(620), Simis et 

al. (2005) added a conversion factor (휀) derived from the absorption difference of chl-a at 620 

nm compared to the maximal absorption at 665nm, and is defined as: 
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𝑎𝑃𝐶(620) = ({[

𝑅(709)

𝑅(620)
] × [𝑎𝑤(709) + 𝑏𝑏]} − 𝑏𝑏 − 𝑎𝑤(620)) × 𝛿−1

− [휀 × 𝑎𝐶ℎ𝑙(665)] 

(A3.13) 

in which the ratio of 𝑎𝑃𝐶(620) and 𝑎∗(620) quantifies the PC concentration value. The Simis 

et al. (2005) model also returned a high inversion accuracy with a testing r2 of 0.94 and a root 

mean square error (RMSE) of 6.5 mg m-3. Allan et al. (2015) provide an alternative bio-optical 

model developed with Landsat 7 ETM+ imagery, in which the 𝑏𝑏(𝜆) model includes that of 

water constituents and phytoplankton, which the absorption estimates add CDOM. The Allan 

et al. (2015) 𝑏𝑏(𝜆) model is as follows: 

 𝑏𝑏(𝜆) = 𝑏𝑏𝑤(𝜆) + 𝐵𝑏𝑝𝑏  𝑝
∗ (𝜆)𝐶𝑝 + 𝐵𝑏𝜙𝑏  𝜙

∗ (𝜆)𝐶𝜙 (A3.14) 

where 𝑏𝑏𝑤(𝜆) is the backscattering coefficient of water, 𝐵𝑏𝑝(𝜆) is the backscattering ratio of 

particulates, 𝑏  𝑝
∗ (𝜆) is the specific coefficient of particulate matter, 𝐶𝑝 is the concentration of 

the particulates, 𝐵𝑏𝜙(𝜆) is the backscattering ratio of phytoplankton, 𝑏  𝜙
∗ (𝜆) is the specific 

scattering coefficient of phytoplankton and 𝐶𝜙 is the concentration of chl-a (Allan et al., 2015). 

The absorption model is described as: 

 𝑎(𝜆) = 𝑎𝑤(𝜆) + 𝐶𝜙𝑎 𝜙
∗ (𝜆) + 𝐶𝑝𝑎 𝑝

∗ + 𝑎𝐶𝐷𝑂𝑀(𝜆) (A3.15) 

where 𝑎 𝜙
∗ (𝜆) is the specific absorption of phytoplankton, 𝑎 𝑝

∗ (𝜆) is the specific absorption of 

particulates and 𝑎𝐶𝐷𝑂𝑀(𝜆) is the absorption of CDOM at 440nm. The wavelengths at which 

each parameter was measured were tested in each ETM+ band with an r2 ranging from 0.56-

0.68 with band 3 (660 nm) forming the best model with an RMSE of 10.69 mg m-3. As this 

model includes a measured concentration of suspended particles and chl-a, there is an emphasis 

on empirical measurements compared to other bio-optical models. Improved bio-optical 

models are still ongoing, with the complexities of case-II waters, semi-analytical models which 

invert the observed reflectance to predict IOPs remain highly accurate compared to other 

empirical methods. Bio-optical methods, however, require extensive in situ sampling and an 

understanding of the present lake biogeochemistry, in order to accurately define the absorption 
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specific spectral curves of each parameter. The complexity and the variability of IOPs in 

freshwater systems can make the definition of the spectral shapes difficult. Rather than 

attempting to define the shapes, the “black box” approach of machine learning has recently 

become a popular option.  

Appendix B: Tables and Figures for Chapter 4 

Table B.7.1. Annual time-series results for each parameter where β = Theil-Sen slope, se = standard error of a Theil-Sen 

regression, τ = Mann-Kendall tau value, and p = Mann-Kendall p-value. GBL = Great Bear Lake, GSL = Great Slave Lake, 

LA = Lake Athabasca, LW = Lake Winnipeg and LE = Lake Erie. AB = All Basins, CB = Central Basin, NB = North Basin, 

SB = South Basin, EB = East Basin, WB = West Basin. MC = Mean Chl-a, XC = Max Chl-a, BC = Abnormal Chl-a, BD = 

Abnormal Chl-a Days, PC = Peak Chl-a DOY, MT = Mean LSWT, XT = Max LSWT, AT = Anomaly LSWT Days, PT = 

Peak LSWT DOY, ON = Ice On DOY, OF = Ice Off DOY and DR = Ice Duration. 

Lake Parameter β se τ p Lake Parameter β se τ p 

G
B

L
 C

B
 

MC 0.005 0.079 0.240 □ 

L
W

 N
B

 

MC 0.003 1.180 0.018 □ 

XC 0.019 0.170 0.380 ■ XC 0.006 5.294 0.006 □ 

BC 0.063 0.317 0.427 ■ BC -0.060 5.092 -0.029 □ 

BD 0.813 10.304 0.203 □ BD 0.020 3.459 0.030 □ 

PC -1.600 20.323 -0.270 □ PC -0.875 14.518 -0.256 □ 

MT -0.005 0.422 -0.088 □ MT -0.003 0.502 -0.041 □ 

XT 0.041 1.508 0.099 □ XT 0.055 0.968 0.251 □ 

PT -0.333 7.236 -0.174 □ PT 0.200 9.340 0.065 □ 

AT -0.545 7.740 -0.219 □ AT -0.300 3.076 -0.404 ■ 

ON 0.000 1.237 0.132 □ ON -0.455 7.494 -0.196 □ 

OF -0.500 8.783 -0.236 □ OF 0.143 12.827 0.072 □ 

DR -0.600 8.545 -0.232 □ DR 0.833 17.968 0.219 □ 

G
B

L
 S

B
 

MC 0.140 0.569 0.497 ■ 

L
W

 S
B

 

MC -0.140 1.075 -0.415 ■ 

XC 0.367 1.334 0.637 ■ XC -0.158 5.557 -0.158 □ 

BC 0.142 0.588 0.532 ■ BC 0.011 4.233 0.006 □ 

BD 0.667 10.191 0.266 □ BD 0.000 2.931 -0.166 □ 

PC -0.767 14.436 -0.153 □ PC -3.440 55.494 -0.181 □ 

MT -0.022 0.519 -0.170 □ MT 0.018 0.677 0.135 □ 

XT 0.075 0.987 0.392 ■ XT 0.034 0.872 0.340 ■ 

PT 0.167 7.837 0.071 □ PT -0.400 9.005 -0.147 □ 

AT -0.500 7.426 -0.266 □ AT -0.700 18.279 -0.218 □ 

ON 0.000 1.572 0.108 □ ON -0.385 7.704 -0.155 □ 

OF -0.286 7.583 -0.173 □ OF 0.188 12.658 0.064 □ 

DR -0.462 7.106 -0.218 □ DR 0.400 18.794 0.130 □ 

G
B

L
 A

B
 

MC 0.005 0.082 0.263 □ 

L
W

 A
B

 

MC -0.022 1.181 -0.146 □ 

XC 0.021 0.175 0.392 ■ XC -0.024 4.334 -0.018 □ 

BC 0.070 0.365 0.450 ■ BC -0.014 4.963 -0.006 □ 

BD 1.091 15.827 0.248 □ BD 0.000 2.847 -0.030 □ 

PC -1.400 19.786 -0.265 □ PC -1.250 15.227 -0.260 □ 

MT -0.008 0.433 -0.088 □ MT 0.007 0.486 0.029 □ 

XT 0.038 1.497 0.088 □ XT 0.056 0.935 0.246 □ 

PT -0.429 7.960 -0.191 □ PT 0.333 9.304 0.100 □ 

AT -0.444 8.443 -0.161 □ AT -0.333 5.598 -0.278 □ 

ON 0.000 1.393 0.197 □ ON -0.500 7.445 -0.207 □ 
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Lake Parameter β se τ p Lake Parameter β se τ p 

OF -0.500 9.059 -0.244 □ OF 0.333 12.077 0.124 □ 

DR -0.545 8.514 -0.220 □ DR 0.833 18.414 0.202 □ 

G
S

L
 C

B
 

MC 0.066 0.422 0.509 ■ 

L
E

 C
B

 

MC 0.082 0.379 0.626 ■ 

XC 0.100 0.342 0.673 ■ XC 0.249 1.234 0.673 ■ 

BC 0.223 1.062 0.509 ■ BC 0.236 1.093 0.696 ■ 

BD -0.643 8.527 -0.314 ■ BD 0.000 3.579 0.043 □ 

PC -0.114 12.710 -0.035 □ PC 0.420 62.974 0.088 □ 

MT 0.002 0.364 0.018 □ MT 0.015 0.589 0.111 □ 

XT 0.064 0.827 0.333 ■ XT 0.033 0.819 0.170 □ 

PT 0.250 6.547 0.142 □ PT 0.083 14.148 0.047 □ 

AT 0.143 8.127 0.089 □ AT -0.500 29.490 -0.089 □ 

ON -0.083 5.825 -0.060 □ ON -1.077 16.236 -0.314 ■ 

OF -0.300 8.632 -0.195 □ OF -0.818 26.510 -0.130 □ 

DR -0.200 9.745 -0.136 □ DR 0.000 21.494 0.000 □ 

G
S

L
 E

B
 

MC 0.100 0.690 0.380 ■ 

L
E

 E
B

 

MC 0.039 0.243 0.520 ■ 

XC 0.229 1.240 0.474 ■ XC 0.115 0.651 0.614 ■ 

BC 0.160 0.742 0.497 ■ BC 0.180 1.979 0.450 ■ 

BD -0.125 9.373 -0.084 □ BD -1.406 19.646 -0.317 ■ 

PC -1.571 22.077 -0.223 □ PC 3.333 50.784 0.181 □ 

MT -0.015 0.346 -0.193 □ MT 0.013 0.542 0.123 □ 

XT 0.055 1.300 0.205 □ XT 0.008 0.786 0.136 □ 

PT 0.273 9.620 0.132 □ PT -0.083 16.271 -0.018 □ 

AT -0.154 5.075 -0.155 □ AT -0.286 31.042 -0.065 □ 

ON 0.000 3.464 -0.024 □ ON -1.000 23.785 -0.188 □ 

OF -0.222 9.615 -0.059 □ OF -1.200 35.191 -0.199 □ 

DR 0.000 9.375 -0.030 □ DR -0.333 23.289 -0.096 □ 

G
S

L
 N

B
 

MC -0.094 1.740 -0.251 □ 

L
E

 W
B

 

MC 0.066 0.446 0.474 ■ 

XC -0.039 3.401 -0.041 □ XC 0.213 1.486 0.567 ■ 

BC 0.280 1.465 0.450 ■ BC 0.259 1.183 0.731 ■ 

BD 0.700 16.380 0.141 □ BD 0.644 6.603 0.324 ■ 

PC -1.867 32.326 -0.171 □ PC 0.571 15.643 0.124 □ 

MT -0.053 0.875 -0.205 □ MT -0.007 0.524 -0.053 □ 

XT 0.070 0.624 0.399 ■ XT 0.032 0.907 0.176 □ 

PT 0.000 7.897 -0.042 □ PT -0.333 16.981 -0.088 □ 

AT -0.071 7.288 -0.054 □ AT -1.769 25.940 -0.228 □ 

ON 0.286 11.957 0.101 □ ON 0.333 12.809 0.065 □ 

OF -0.250 7.792 -0.174 □ OF -0.125 23.980 -0.012 □ 

DR -0.875 11.376 -0.282 ■ DR -0.286 23.870 -0.053 □ 

G
S

L
 A

B
 

MC 0.070 0.392 0.497 ■ 

L
E

 A
B

 

MC 0.078 0.376 0.626 ■ 

XC 0.106 0.360 0.673 ■ XC 0.209 1.227 0.673 ■ 

BC 0.197 0.937 0.497 ■ BC 0.230 1.071 0.684 ■ 

BD -0.720 8.322 -0.300 ■ BD 0.091 4.181 0.109 □ 

PC -0.440 10.945 -0.249 □ PC 2.875 43.329 0.251 □ 

MT 0.001 0.354 0.018 □ MT 0.013 0.582 0.135 □ 

XT 0.080 0.863 0.328 ■ XT 0.032 0.798 0.194 □ 

PT 0.250 5.945 0.143 □ PT 0.000 14.293 0.006 □ 

AT 0.000 7.670 0.000 □ AT -0.500 29.741 -0.059 □ 

ON -0.059 5.047 -0.066 □ ON -0.556 15.015 -0.124 □ 

OF -0.286 7.815 -0.161 □ OF -0.455 28.865 -0.118 □ 

DR -0.100 9.212 -0.060 □ DR -0.143 21.125 -0.060 □ 

L A
 

A B
 

MC 0.112 1.239 0.392 ■  
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Lake Parameter β se τ p Lake Parameter β se τ p 

XC 0.242 5.747 0.450 ■  

     
BC 0.559 4.716 0.509 ■  

     
BD 0.000 9.292 0.006 □  

     
PC 0.400 33.278 0.070 □  

     
MT -0.048 0.634 -0.392 ■  

     
XT 0.076 1.213 0.275 □  

     
PT 0.222 7.700 0.083 □  

     
AT -0.182 9.877 -0.071 □  

     
ON -0.167 6.815 -0.072 □  

     
OF -0.400 9.050 -0.119 □  

     
DR -0.500 12.486 -0.152 □  

     

 

Table B.7.2. Spring time-series results for each parameter where β = Theil-Sen slope, se = standard error of a Theil-Sen 

regression, τ = Mann-Kendall tau value, and p = Mann-Kendall p-value. GBL = Great Bear Lake, GSL = Great Slave Lake, 

LA = Lake Athabasca, LW = Lake Winnipeg and LE = Lake Erie. AB = All Basins, CB = Central Basin, NB = North Basin, 

SB = South Basin, EB = East Basin, WB = West Basin. MC = Mean Chl-a, XC = Max Chl-a, BC = Abnormal Chl-a, BD = 

Abnormal Chl-a Days, PC = Peak Chl-a DOY, MT = Mean LSWT, XT = Max LSWT, AT = Anomaly LSWT Days, PT = 

Peak LSWT DOY, ON = Ice On DOY, OF = Ice Off DOY and DR = Ice Duration. 

Lake Parameter β se τ p Lake Parameter β se τ p 

G
B

L
 C

B
 

MC 0.025 4.079 0.609 ■ 

L
W

 N
B

 

MC -0.012 1.486 -0.111 □ 

XC 0.037 5.488 0.597 ■ XC -0.044 1.946 -0.263 □ 

BC 0.748 3.142 0.934 ■ BC -0.300 3.140 -0.520 ■ 

BD -0.100 1.018 -0.271 □ BD -0.214 3.840 -0.234 □ 

PC -1.778 10.139 -0.565 ■ PC 0.114 10.280 0.072 □ 

MT -0.011 0.370 -0.117 □ MT -0.023 0.702 -0.205 □ 

XT -0.005 0.548 -0.023 □ XT -0.050 2.016 -0.135 □ 

PT 0.000 15.422 0.094 □ PT 0.300 10.827 0.297 ■ 

AT -0.200 19.429 -0.255 □ AT 0.000 2.722 -0.006 □ 

ON 0.000 1.237 0.132 □ ON -0.455 7.494 -0.196 □ 

OF -0.500 8.783 -0.236 □ OF 0.143 12.827 0.072 □ 

DR -0.600 8.545 -0.232 □ DR 0.833 17.968 0.219 □ 

G
B

L
 S

B
 

MC 0.127 0.886 0.657 ■ 

L
W

 S
B

 

MC -0.307 3.815 -0.392 ■ 

XC 0.208 1.797 0.669 ■ XC -0.138 5.203 -0.076 □ 

BC 0.374 4.519 0.293 ■ BC -0.274 3.684 -0.205 □ 

BD -0.077 3.704 -0.096 □ BD 0.313 7.030 0.153 □ 

PC -0.111 9.625 -0.154 □ PC -0.143 7.812 -0.065 □ 

MT 0.015 0.734 0.082 □ MT 0.035 1.497 0.123 □ 

XT 0.052 1.141 0.164 □ XT 0.089 1.467 0.170 □ 

PT 0.000 17.486 0.197 □ PT 0.143 3.660 0.286 □ 

AT 0.000 11.879 -0.061 □ AT 0.125 6.344 0.089 □ 

ON 0.000 1.572 0.108 □ ON -0.385 7.704 -0.155 □ 

OF -0.286 7.583 -0.173 □ OF 0.188 12.658 0.064 □ 

DR -0.462 7.106 -0.218 □ DR 0.400 18.794 0.130 □ 

G
B

L
 A

B
 

MC 0.036 3.164 0.282 ■ 

L
W

 A
B

 

MC -0.010 2.901 -0.041 □ 

XC 0.058 4.254 0.422 ■ XC -0.068 3.644 -0.228 □ 

BC 0.637 4.636 0.610 ■ BC -0.348 3.280 -0.462 ■ 

BD -0.333 2.082 -0.447 ■ BD 0.080 4.563 0.084 □ 

PC 0.000 12.012 -0.116 □ PC 0.250 9.530 0.136 □ 

MT -0.020 0.454 -0.194 □ MT -0.036 0.836 -0.193 □ 
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Lake Parameter β se τ p Lake Parameter β se τ p 

XT -0.007 0.664 -0.124 □ XT -0.076 1.784 -0.099 □ 

PT 0.000 16.597 0.085 □ PT 0.200 3.628 0.256 □ 

AT -0.091 11.836 -0.150 □ AT 0.000 3.985 0.006 □ 

ON 0.000 1.393 0.197 □ ON -0.500 7.445 -0.207 □ 

OF -0.500 9.059 -0.244 □ OF 0.333 12.077 0.124 □ 

DR -0.545 8.514 -0.220 □ DR 0.833 18.414 0.202 □ 

G
S

L
 C

B
 

MC 0.029 0.387 0.298 ■ 

L
E

 C
B

 

MC 0.037 1.117 0.158 □ 

XC 0.029 0.331 0.462 ■ XC 0.042 2.712 0.123 □ 

BC 0.062 1.719 0.135 □ BC 0.033 2.514 0.053 □ 

BD 0.000 3.285 -0.073 □ BD -0.083 6.264 -0.108 □ 

PC -0.314 12.361 -0.243 □ PC -0.600 9.744 -0.276 □ 

MT 0.022 0.428 0.146 □ MT -0.004 0.766 -0.029 □ 

XT 0.108 1.537 0.287 ■ XT -0.003 0.987 -0.041 □ 

PT 0.154 17.196 0.297 □ PT -0.214 2.888 -0.242 □ 

AT -0.118 3.572 -0.229 □ AT 0.083 3.220 0.096 □ 

ON -0.083 5.825 -0.060 □ ON -1.077 16.236 -0.314 ■ 

OF -0.300 8.632 -0.195 □ OF -0.818 26.510 -0.130 □ 

DR -0.200 9.745 -0.136 □ DR 0.000 21.494 0.000 □ 

G
S

L
 E

B
 

MC 0.168 1.101 0.485 ■ 
L

E
 E

B
 

MC 0.034 0.270 0.392 ■ 

XC 0.261 1.446 0.556 ■ XC 0.051 0.489 0.427 ■ 

BC 0.178 5.280 0.263 □ BC 0.042 1.678 0.064 □ 

BD 0.000 6.819 -0.037 □ BD 0.333 3.307 0.510 ■ 

PC 2.200 11.814 0.539 ■ PC 0.000 11.525 -0.012 □ 

MT -0.015 0.443 -0.135 □ MT 0.015 0.808 0.059 □ 

XT 0.001 0.758 0.006 □ XT -0.019 1.489 -0.059 □ 

PT 0.000 25.721 0.060 □ PT -0.200 3.351 -0.215 □ 

AT -0.200 13.595 -0.220 □ AT -0.250 4.200 -0.223 □ 

ON 0.000 3.464 -0.024 □ ON -1.000 23.785 -0.188 □ 

OF -0.222 9.615 -0.059 □ OF -1.200 35.191 -0.199 □ 

DR 0.000 9.375 -0.030 □ DR -0.333 23.289 -0.096 □ 

G
S

L
 N

B
 

MC -0.007 1.008 -0.006 □ 

L
E

 W
B

 

MC 0.014 0.527 0.064 □ 

XC 0.071 2.380 0.111 □ XC -0.028 1.774 -0.053 □ 

BC 0.225 1.905 0.427 ■ BC 0.027 2.284 0.053 □ 

BD 0.400 5.424 0.185 □ BD -0.167 5.746 -0.107 □ 

PC 0.273 4.969 0.179 □ PC 0.182 13.394 0.059 □ 

MT -0.049 0.947 -0.088 □ MT -0.001 0.957 -0.006 □ 

XT 0.135 1.531 0.287 ■ XT -0.077 1.490 -0.164 □ 

PT 0.125 3.315 0.192 □ PT 0.000 3.670 -0.018 □ 

AT 0.500 9.164 0.220 □ AT 0.167 4.528 0.170 □ 

ON 0.286 11.957 0.101 □ ON 0.333 12.809 0.065 □ 

OF -0.250 7.792 -0.174 □ OF -0.125 23.980 -0.012 □ 

DR -0.875 11.376 -0.282 ■ DR -0.286 23.870 -0.053 □ 

G
S

L
 A

B
 

MC 0.034 0.408 0.345 ■ 

L
E

 A
B

 

MC 0.050 0.651 0.216 □ 

XC 0.037 0.329 0.439 ■ XC 0.030 1.369 0.088 □ 

BC 0.077 1.848 0.170 □ BC 0.021 2.425 0.029 □ 

BD -0.017 2.771 -0.098 □ BD -0.067 5.893 -0.084 □ 

PC -0.167 11.940 -0.220 □ PC -0.429 9.642 -0.136 □ 

MT 0.015 0.466 0.111 □ MT -0.020 0.763 -0.111 □ 

XT 0.088 1.242 0.240 □ XT -0.006 0.940 -0.053 □ 

PT 0.143 16.836 0.219 □ PT 0.000 3.125 -0.030 □ 

AT -0.167 3.691 -0.199 □ AT 0.000 3.227 -0.086 □ 
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ON -0.059 5.047 -0.066 □ ON -0.556 15.015 -0.124 □ 

OF -0.286 7.815 -0.161 □ OF -0.455 28.865 -0.118 □ 

DR -0.100 9.212 -0.060 □ DR -0.143 21.125 -0.060 □ 

L
A

 A
B

 

MC 0.050 2.291 0.099 □       

XC 0.096 3.129 0.181 □       

BC 0.276 5.098 0.170 □       

BD -0.250 5.563 -0.254 □       

PC 0.273 14.369 0.126 □       

MT -0.067 2.925 -0.310 ■       

XT -0.188 2.765 -0.275 □       

PT 0.167 17.455 0.293 □       

AT 0.176 4.370 0.158 □       

ON -0.167 6.815 -0.072 □       

OF -0.400 9.050 -0.119 □       

DR -0.500 12.486 -0.152 □       

 

Table B.7.3. Summer time-series results for each parameter where β = Theil-Sen slope, se = standard error of a Theil-Sen 

regression, τ = Mann-Kendall tau value, and p = Mann-Kendall p-value. GBL = Great Bear Lake, GSL = Great Slave Lake, 

LA = Lake Athabasca, LW = Lake Winnipeg and LE = Lake Erie. AB = All Basins, CB = Central Basin, NB = North Basin, 

SB = South Basin, EB = East Basin, WB = West Basin. MC = Mean Chl-a, XC = Max Chl-a, BC = Abnormal Chl-a, BD = 

Abnormal Chl-a Days, PC = Peak Chl-a DOY, MT = Mean LSWT, XT = Max LSWT, AT = Anomaly LSWT Days, PT = 

Peak LSWT DOY, ON = Ice On DOY, OF = Ice Off DOY and DR = Ice Duration. 

Lake Parameter β se τ p Lake Parameter β se τ p 

G
B

L
 C

B
 

MC 0.007 0.063 0.333 ■ 

L
W

 N
B

 

MC 0.134 2.603 0.158 □ 

XC 0.018 0.117 0.392 ■ XC 0.006 10.289 0.006 □ 

BC 0.057 0.316 0.427 ■ BC -0.041 10.695 -0.029 □ 

BD -0.364 6.974 -0.183 □ BD 0.286 6.099 0.150 □ 

PC 0.000 10.457 0.024 □ PC 0.000 10.889 0.006 □ 

MT 0.035 0.981 0.123 □ MT -0.016 0.716 -0.076 □ 

XT 0.077 1.669 0.099 □ XT 0.055 0.960 0.251 □ 

PT -0.444 7.417 -0.256 □ PT 0.200 9.334 0.077 □ 

AT -0.500 8.318 -0.307 ■ AT -0.500 3.022 -0.508 ■ 

ON 0.000 1.237 0.132 □ ON -0.455 7.494 -0.196 □ 

OF -0.500 8.783 -0.236 □ OF 0.143 12.827 0.072 □ 

DR -0.600 8.545 -0.232 □ DR 0.833 17.968 0.219 □ 

G
B

L
 S

B
 

MC 0.108 0.507 0.450 ■ 

L
W

 S
B

 

MC 0.087 1.464 0.205 □ 

XC 0.298 1.157 0.602 ■ XC 0.058 6.440 0.099 □ 

BC 0.120 0.507 0.474 ■ BC 0.007 8.952 0.006 □ 

BD 0.145 6.210 0.101 □ BD -0.400 11.069 -0.229 □ 

PC 0.500 7.805 0.142 □ PC -0.182 13.301 -0.047 □ 

MT 0.006 0.995 0.018 □ MT -0.008 0.680 -0.053 □ 

XT 0.075 1.010 0.392 ■ XT 0.034 0.827 0.352 ■ 

PT -0.200 8.222 -0.071 □ PT -0.444 9.745 -0.159 □ 

AT -0.167 6.592 -0.196 □ AT 0.000 11.077 0.000 □ 

ON 0.000 1.572 0.108 □ ON -0.385 7.704 -0.155 □ 

OF -0.286 7.583 -0.173 □ OF 0.188 12.658 0.064 □ 

DR -0.462 7.106 -0.218 □ DR 0.400 18.794 0.130 □ 

G
B

L
 

A
B

 MC 0.007 0.067 0.333 ■ 

L
W

 

A
B

 MC 0.126 2.246 0.146 □ 

XC 0.019 0.123 0.380 ■ XC -0.097 8.403 -0.029 □ 
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BC 0.070 0.362 0.427 ■ BC -0.020 10.689 -0.006 □ 

BD -0.286 8.164 -0.101 □ BD 0.462 4.876 0.341 ■ 

PC 0.200 11.444 0.030 □ PC -0.333 10.550 -0.089 □ 

MT 0.034 0.998 0.123 □ MT -0.014 0.686 -0.064 □ 

XT 0.068 1.659 0.111 □ XT 0.056 0.927 0.246 □ 

PT -0.500 7.221 -0.231 □ PT 0.300 9.304 0.101 □ 

AT -0.643 8.734 -0.332 ■ AT -0.667 5.598 -0.473 ■ 

ON 0.000 1.393 0.197 □ ON -0.500 7.445 -0.207 □ 

OF -0.500 9.059 -0.244 □ OF 0.333 12.077 0.124 □ 

DR -0.545 8.514 -0.220 □ DR 0.833 18.414 0.202 □ 

G
S

L
 C

B
 

MC 0.029 0.326 0.392 ■ 

L
E

 C
B

 

MC 0.040 0.323 0.649 ■ 

XC 0.096 0.378 0.614 ■ XC 0.166 0.807 0.696 ■ 

BC 0.307 1.830 0.520 ■ BC 0.154 0.599 0.719 ■ 

BD 0.667 13.106 0.249 □ BD -0.750 4.270 -0.435 ■ 

PC 0.167 6.438 0.291 □ PC 0.175 5.349 0.178 □ 

MT 0.030 0.836 0.170 □ MT 0.037 0.581 0.240 □ 

XT 0.064 0.827 0.333 ■ XT 0.017 0.781 0.070 □ 

PT 0.250 6.603 0.152 □ PT -0.400 11.452 -0.153 □ 

AT 0.000 4.709 0.042 □ AT 0.000 21.063 0.012 □ 

ON -0.083 5.825 -0.060 □ ON -1.077 16.236 -0.314 ■ 

OF -0.300 8.632 -0.195 □ OF -0.818 26.510 -0.130 □ 

DR -0.200 9.745 -0.136 □ DR 0.000 21.494 0.000 □ 

G
S

L
 E

B
 

MC 0.099 0.558 0.485 ■ 

L
E

 E
B

 

MC 0.022 0.143 0.520 ■ 

XC 0.227 1.007 0.497 ■ XC 0.077 0.439 0.626 ■ 

BC 0.192 1.929 0.287 ■ BC 0.129 0.959 0.626 ■ 

BD -0.091 13.141 -0.096 □ BD -0.500 35.873 -0.202 □ 

PC 0.167 13.564 0.029 □ PC 2.500 34.409 0.340 ■ 

MT 0.020 0.867 0.064 □ MT 0.029 0.599 0.158 □ 

XT 0.069 1.395 0.205 □ XT 0.008 0.788 0.094 □ 

PT 0.333 6.170 0.175 □ PT -0.500 12.270 -0.153 □ 

AT -0.533 6.501 -0.304 ■ AT 0.000 18.898 0.048 □ 

ON 0.000 3.464 -0.024 □ ON -1.000 23.785 -0.188 □ 

OF -0.222 9.615 -0.059 □ OF -1.200 35.191 -0.199 □ 

DR 0.000 9.375 -0.030 □ DR -0.333 23.289 -0.096 □ 

G
S

L
 N

B
 

MC -0.058 1.694 -0.181 □ 

L
E

 W
B

 

MC 0.079 0.890 0.368 ■ 

XC -0.056 3.071 -0.076 □ XC 0.216 3.550 0.404 ■ 

BC 0.313 0.970 0.614 ■ BC 0.206 1.078 0.450 ■ 

BD -1.100 16.552 -0.288 ■ BD -1.925 11.060 -0.556 ■ 

PC 0.273 20.109 0.070 □ PC -0.875 8.139 -0.408 ■ 

MT 0.030 0.618 0.170 □ MT 0.030 0.581 0.181 □ 

XT 0.070 0.624 0.399 ■ XT 0.021 0.886 0.094 □ 

PT -0.118 7.870 -0.054 □ PT 0.000 18.224 0.000 □ 

AT -0.083 4.389 -0.084 □ AT 0.556 20.029 0.100 □ 

ON 0.286 11.957 0.101 □ ON 0.333 12.809 0.065 □ 

OF -0.250 7.792 -0.174 □ OF -0.125 23.980 -0.012 □ 

DR -0.875 11.376 -0.282 ■ DR -0.286 23.870 -0.053 □ 

G
S

L
 A

B
 

MC 0.040 0.303 0.532 ■ 

L
E

 A
B

 

MC 0.039 0.313 0.462 ■ 

XC 0.094 0.410 0.556 ■ XC 0.151 0.798 0.673 ■ 

BC 0.301 1.678 0.345 ■ BC 0.129 0.577 0.696 ■ 

BD 0.500 12.994 0.254 □ BD -1.333 7.061 -0.649 ■ 

PC 0.200 5.658 0.202 □ PC 0.385 8.225 0.183 □ 
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MT 0.049 0.919 0.170 □ MT 0.031 0.577 0.216 □ 

XT 0.080 0.863 0.328 ■ XT 0.027 0.769 0.124 □ 

PT 0.286 5.940 0.148 □ PT -0.462 13.307 -0.153 □ 

AT 0.000 4.784 -0.042 □ AT 0.000 20.116 -0.012 □ 

ON -0.059 5.047 -0.066 □ ON -0.556 15.015 -0.124 □ 

OF -0.286 7.815 -0.161 □ OF -0.455 28.865 -0.118 □ 

DR -0.100 9.212 -0.060 □ DR -0.143 21.125 -0.060 □ 

L
A

 A
B

 

MC 0.078 0.454 0.427 ■  

     
XC 0.186 0.581 0.649 ■  

     
BC 0.510 1.843 0.462 ■  

     
BD 1.167 12.440 0.312 ■  

     
PC 0.615 9.289 0.235 □  

     
MT 0.032 0.757 0.135 □  

     
XT 0.076 1.215 0.275 □  

     
PT 0.200 7.632 0.113 □  

     
AT 0.000 9.680 -0.030 □  

     
ON -0.167 6.815 -0.072 □  

     
OF -0.400 9.050 -0.119 □  

     
DR -0.500 12.486 -0.152 □  

     

 

Table B.7.4. Fall time-series results for each parameter where β = Theil-Sen slope, se = standard error of a Theil-Sen 

regression, τ = Mann-Kendall tau value, and p = Mann-Kendall p-value. GBL = Great Bear Lake, GSL = Great Slave Lake, 

LA = Lake Athabasca, LW = Lake Winnipeg and LE = Lake Erie. AB = All Basins, CB = Central Basin, NB = North Basin, 

SB = South Basin, EB = East Basin, WB = West Basin. MC = Mean Chl-a, XC = Max Chl-a, BC = Abnormal Chl-a, BD = 

Abnormal Chl-a Days, PC = Peak Chl-a DOY, MT = Mean LSWT, XT = Max LSWT, AT = Anomaly LSWT Days, PT = 

Peak LSWT DOY, ON = Ice On DOY, OF = Ice Off DOY and DR = Ice Duration. 

Lake Parameter β se τ p Lake Parameter β se τ p 

G
B

L
 C

B
 

MC 0.026 0.212 0.357 ■ 

L
W

 N
B

 

MC 0.238 3.369 0.170 □ 

XC 0.063 0.347 0.462 ■ XC 0.055 3.737 0.041 □ 

BC 0.158 0.884 0.579 ■ BC -0.124 5.104 -0.135 □ 

BD 0.040 2.666 0.085 □ BD 0.222 3.658 0.242 □ 

PC 0.000 6.427 0.048 □ PC 0.077 6.525 0.047 □ 

MT 0.037 0.847 0.146 □ MT -0.020 1.260 -0.029 □ 

XT 0.043 1.123 0.176 □ XT 0.023 1.801 0.059 □ 

PT 0.000 4.439 0.030 □ PT 0.200 2.974 0.292 ■ 

AT 0.000 4.298 -0.062 □ AT 0.000 3.869 0.030 □ 

ON 0.000 1.237 0.132 □ ON -0.455 7.494 -0.196 □ 

OF -0.500 8.783 -0.236 □ OF 0.143 12.827 0.072 □ 

DR -0.600 8.545 -0.232 □ DR 0.833 17.968 0.219 □ 

G
B

L
 S

B
 

MC 0.202 1.172 0.481 ■ 

L
W

 S
B

 

MC -0.017 1.657 -0.076 □ 

XC 0.367 1.583 0.587 ■ XC 0.056 2.867 0.099 □ 

BC 0.216 1.224 0.493 ■ BC -0.096 6.651 -0.099 □ 

BD 0.400 5.012 0.427 ■ BD 0.250 3.940 0.266 □ 

PC -0.375 5.998 -0.212 □ PC 0.727 6.519 0.375 ■ 

MT 0.066 1.040 0.240 □ MT 0.000 1.453 0.006 □ 

XT 0.052 1.327 0.141 □ XT -0.030 1.584 -0.029 □ 

PT 0.133 4.888 0.273 □ PT 0.077 3.587 0.180 □ 

AT 0.000 4.102 0.048 □ AT 0.000 4.454 -0.006 □ 

ON 0.000 1.572 0.108 □ ON -0.385 7.704 -0.155 □ 

OF -0.286 7.583 -0.173 □ OF 0.188 12.658 0.064 □ 
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DR -0.462 7.106 -0.218 □ DR 0.400 18.794 0.130 □ 

G
B

L
 A

B
 

MC 0.027 0.233 0.380 ■ 

L
W

 A
B

 

MC 0.092 2.709 0.135 □ 

XC 0.069 0.376 0.474 ■ XC 0.000 3.257 -0.006 □ 

BC 0.173 0.989 0.544 ■ BC -0.146 5.387 -0.111 □ 

BD 0.000 3.922 -0.049 □ BD 0.235 3.145 0.309 ■ 

PC 0.000 6.427 0.048 □ PC 0.200 6.132 0.101 □ 

MT 0.033 0.849 0.146 □ MT -0.012 1.260 -0.006 □ 

XT 0.041 1.139 0.176 □ XT 0.023 1.790 0.053 □ 

PT 0.000 4.439 0.030 □ PT 0.200 3.093 0.308 ■ 

AT 0.000 4.678 -0.048 □ AT 0.000 4.189 0.018 □ 

ON 0.000 1.393 0.197 □ ON -0.500 7.445 -0.207 □ 

OF -0.500 9.059 -0.244 □ OF 0.333 12.077 0.124 □ 

DR -0.545 8.514 -0.220 □ DR 0.833 18.414 0.202 □ 

G
S

L
 C

B
 

MC 0.039 0.466 0.298 ■ 

L
E

 C
B

 

MC 0.093 3.000 0.333 ■ 

XC 0.038 0.422 0.392 ■ XC 0.127 5.956 0.287 ■ 

BC 0.089 0.508 0.520 ■ BC 0.054 7.613 0.076 □ 

BD -0.250 2.850 -0.306 ■ BD 0.000 4.434 0.037 □ 

PC -0.280 8.655 -0.207 □ PC 0.617 12.146 0.375 ■ 

MT 0.025 0.950 0.158 □ MT 0.031 1.066 0.181 □ 

XT 0.071 1.347 0.146 □ XT 0.080 1.572 0.170 □ 

PT -0.333 3.109 -0.365 ■ PT -0.118 3.483 -0.198 □ 

AT -0.200 3.842 -0.163 □ AT -0.200 4.519 -0.179 □ 

ON -0.083 5.825 -0.060 □ ON -1.077 16.236 -0.314 ■ 

OF -0.300 8.632 -0.195 □ OF -0.818 26.510 -0.130 □ 

DR -0.200 9.745 -0.136 □ DR 0.000 21.494 0.000 □ 

G
S

L
 E

B
 

MC 0.096 0.847 0.450 ■ 

L
E

 E
B

 

MC 0.038 3.094 0.357 ■ 

XC 0.169 1.269 0.509 ■ XC 0.065 6.067 0.322 ■ 

BC 0.113 0.667 0.509 ■ BC 0.084 7.712 0.205 □ 

BD 0.200 4.363 0.336 ■ BD 0.277 6.548 0.136 □ 

PC -0.250 9.659 -0.112 □ PC 0.367 10.288 0.152 □ 

MT 0.028 0.890 0.123 □ MT 0.027 0.921 0.135 □ 

XT 0.066 1.342 0.135 □ XT 0.083 1.765 0.229 □ 

PT -0.154 3.386 -0.170 □ PT -0.200 5.426 -0.224 □ 

AT -0.133 2.263 -0.198 □ AT 0.000 4.109 0.018 □ 

ON 0.000 3.464 -0.024 □ ON -1.000 23.785 -0.188 □ 

OF -0.222 9.615 -0.059 □ OF -1.200 35.191 -0.199 □ 

DR 0.000 9.375 -0.030 □ DR -0.333 23.289 -0.096 □ 

G
S

L
 N

B
 

MC -0.044 2.562 -0.064 □ 

L
E

 W
B

 

MC -0.041 1.336 -0.357 ■ 

XC 0.138 2.738 0.170 □ XC -0.038 2.801 -0.146 □ 

BC 0.155 2.422 0.158 □ BC -0.006 8.770 -0.006 □ 

BD -0.214 6.416 -0.117 □ BD -0.364 6.160 -0.283 ■ 

PC 0.063 8.540 0.041 □ PC -0.235 8.501 -0.089 □ 

MT 0.061 1.697 0.170 □ MT 0.016 1.029 0.123 □ 

XT 0.134 2.524 0.205 □ XT 0.106 1.902 0.240 □ 

PT -0.267 5.490 -0.193 □ PT -0.167 4.538 -0.259 □ 

AT 0.000 1.183 -0.145 □ AT 0.000 1.970 -0.146 □ 

ON 0.286 11.957 0.101 □ ON 0.333 12.809 0.065 □ 

OF -0.250 7.792 -0.174 □ OF -0.125 23.980 -0.012 □ 

DR -0.875 11.376 -0.282 ■ DR -0.286 23.870 -0.053 □ 

G
S

L
 

A
B

 MC 0.047 0.413 0.322 ■ 

L
E

 

A
B

 MC 0.047 2.679 0.228 □ 

XC 0.048 0.401 0.544 ■ XC 0.083 5.473 0.275 □ 



 

 265 

Lake Parameter β se τ p Lake Parameter β se τ p 

BC 0.090 0.582 0.544 ■ BC 0.058 7.683 0.053 □ 

BD -0.111 2.567 -0.149 □ BD 0.000 4.557 -0.032 □ 

PC -0.364 8.624 -0.243 □ PC 0.444 11.565 0.169 □ 

MT 0.029 0.965 0.135 □ MT 0.023 1.006 0.251 □ 

XT 0.071 1.313 0.205 □ XT 0.093 1.676 0.251 □ 

PT -0.250 2.847 -0.291 □ PT -0.100 3.552 -0.156 □ 

AT -0.200 3.678 -0.151 □ AT -0.182 4.291 -0.189 □ 

ON -0.059 5.047 -0.066 □ ON -0.556 15.015 -0.124 □ 

OF -0.286 7.815 -0.161 □ OF -0.455 28.865 -0.118 □ 

DR -0.100 9.212 -0.060 □ DR -0.143 21.125 -0.060 □ 

L
A

 A
B

 

MC 0.108 0.597 0.567 ■       

XC 0.186 0.836 0.602 ■       

BC 0.243 2.139 0.333 ■       

BD -0.077 5.968 -0.042 □       

PC -0.583 7.017 -0.415 ■       

MT 0.043 1.161 0.123 □       

XT 0.059 1.785 0.099 □       

PT -0.400 4.603 -0.317 ■       

AT -0.176 3.091 -0.245 □       

ON -0.167 6.815 -0.072 □       

OF -0.400 9.050 -0.119 □       

DR -0.500 12.486 -0.152 □       

 

Table B.7.5. Annual Vector Autoregression results for each parameter where AICc = Akaike information criterion second 

order, fpe = final prediction error, and se = standard error. GBL = Great Bear Lake, GSL = Great Slave Lake, LA = Lake 

Athabasca, LW = Lake Winnipeg and LE = Lake Erie. AB = All Basins, CB = Central Basin, NB = North Basin, SB = 

South Basin, EB = East Basin, WB = West Basin. MC = Mean Chl-a, XC = Max Chl-a, BC = Abnormal Chl-a, BD = 

Abnormal Chl-a Days, PC = Peak Chl-a DOY, MT = Mean LSWT, XT = Max LSWT, AT = Anomaly LSWT Days, PT = 

Peak LSWT DOY, ON = Ice On DOY, OF = Ice Off DOY and DR = Ice Duration. 

Lake Parameter Adj. r2 
Median 

Adj. r2 
AICc fpe se 

Min-Max 

Param 

G
B

L
 C

B
 

MT -0.20 - 0.83 0.10 116.73 - 143.71 0.18 - 1.05 0.43 - 0.99 bd - bc 

XT -0.13 - 0.84 0.19 115.28 - 142.44 0.17 - 0.99 0.41 - 0.95 bd - bc 

AT -0.01 - 0.80 0.51 118.88 - 141.11 0.20 - 1.17 0.46 - 0.90 bd - bc 

PT -0.36 - 0.80 0.30 119.77 - 143.55 0.13 - 2.11 0.46 - 0.98 pc - bc 

ON -0.14 - 0.78 0.04 120.67 - 144.95 0.20 - 1.84 0.48 - 1.03 bd - bc 

OF -0.12 - 0.79 0.18 119.60 - 142.64 0.19 - 0.39 0.47 - 0.96 pc - bc 

DR -0.10 - 0.79 0.19 119.93 - 142.70 0.14 - 0.45 0.47 - 0.96 pc - bc 

G
B

L
 S

B
 

MT 0.04 - 0.96 0.90 94.99 - 139.19 0.04 - 1.20 0.22 - 0.86 pc - mc 

XT 0.07 - 0.95 0.93 97.96 - 138.51 0.04 - 1.35 0.24 - 0.84 pc - mc 

AT -0.08 - 0.98 0.91 80.34 - 140.49 0.03 - 2.06 0.14 - 0.90 pc - mc 

PT -0.50 - 0.95 0.94 98.18 - 146.30 0.02 - 2.20 0.24 - 1.07 pc - bc 

ON -0.26 - 0.95 0.92 95.91 - 141.77 0.07 - 2.38 0.23 - 0.96 pc - mc 

OF -0.58 - 0.95 0.91 98.29 - 147.32 0.04 - 1.91 0.24 - 1.10 pc - mc 

DR -0.60 - 0.94 0.91 98.67 - 147.50 0.04 - 1.77 0.24 - 1.11 pc - mc 

G
B

L
 A

B
 MT -0.12 - 0.82 0.14 117.32 - 142.72 0.24 - 1.00 0.43 - 0.99 bd - bc 

XT -0.07 - 0.81 0.26 118.53 - 140.56 0.19 - 0.75 0.45 - 0.90 bd - bc 

AT 0.30 - 0.82 0.48 117.29 - 134.86 0.12 - 0.55 0.43 - 0.76 bd - bc 

PT -0.33 - 0.76 0.20 122.66 - 144.24 0.18 - 1.77 0.51 - 1.01 bd - bc 
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ON -0.05 - 0.74 0.23 123.55 - 145.54 0.23 - 0.87 0.52 - 1.04 pc - bc 

OF -0.05 - 0.75 0.14 122.56 - 143.28 0.22 - 0.83 0.51 - 0.97 pc - bc 

DR -0.04 - 0.75 0.15 122.48 - 143.13 0.12 - 0.80 0.51 - 0.97 pc - bc 

G
S

L
 C

B
 

MT -0.15 - 0.83 0.82 113.82 - 144.61 0.04 - 0.79 0.39 - 1.01 bd - bc 

XT -0.20 - 0.79 0.64 120.36 - 144.29 0.48 - 1.04 0.47 - 1.00 pc - bc 

AT 0.28 - 0.85 0.71 113.90 - 136.10 0.07 - 0.73 0.39 - 0.77 pc - bc 

PT -0.17 - 0.83 0.66 115.93 - 143.07 0.44 - 1.86 0.42 - 0.97 pc - bc 

ON -0.23 - 0.78 0.65 120.82 - 145.19 0.54 - 2.24 0.48 - 1.03 pc - bc 

OF 0.09 - 0.82 0.64 114.19 - 140.00 0.22 - 1.23 0.40 - 0.87 pc - mc 

DR -0.09 - 0.86 0.65 109.79 - 141.86 0.12 - 2.19 0.35 - 0.93 pc - mc 

G
S

L
 E

B
 

MT -0.09 - 0.91 0.82 107.14 - 147.24 0.14 - 2.62 0.31 - 1.11 bd - xc 

XT -0.28 - 0.92 0.81 106.32 - 149.49 0.07 - 2.48 0.31 - 1.19 bd - xc 

AT -0.35 - 0.91 0.80 107.01 - 151.14 0.16 - 2.55 0.32 - 1.24 bd - xc 

PT -0.52 - 0.96 0.89 95.05 - 152.67 0.01 - 0.71 0.21 - 1.31 bd - xc 

ON -0.60 - 0.92 0.79 106.29 - 154.10 0.11 - 3.33 0.31 - 1.36 bd - xc 

OF -0.45 - 0.91 0.77 107.87 - 152.28 0.09 - 1.67 0.32 - 1.29 bd - xc 

DR -0.34 - 0.91 0.76 108.52 - 150.58 0.06 - 1.51 0.33 - 1.23 bd - xc 

G
S

L
 N

B
 

MT -0.75 - 0.71 0.47 126.41 - 153.39 0.46 - 3.08 0.57 - 1.33 pc - bc 

XT -0.80 - 0.74 0.36 124.48 - 153.94 0.71 - 4.08 0.54 - 1.35 pc - bc 

AT -0.72 - 0.77 0.51 122.61 - 152.65 0.29 - 5.03 0.51 - 1.31 pc - bc 

PT -0.53 - 0.78 0.34 121.37 - 151.24 0.82 - 6.23 0.49 - 1.25 pc - bc 

ON -0.05 - 0.80 0.40 120.48 - 145.42 0.45 - 2.99 0.48 - 1.03 pc - bc 

OF -0.37 - 0.71 0.51 126.46 - 149.44 0.54 - 5.09 0.57 - 1.18 pc - bc 

DR -0.16 - 0.78 0.46 121.77 - 147.05 0.05 - 1.03 0.49 - 1.09 pc - bc 

G
S

L
 A

B
 

MT -0.11 - 0.86 0.79 112.11 - 141.85 0.03 - 1.61 0.37 - 0.93 pc - bc 

XT -0.59 - 0.84 0.70 116.43 - 148.59 0.22 - 3.53 0.42 - 1.14 pc - bc 

AT -0.26 - 0.89 0.67 110.20 - 145.96 0.05 - 1.44 0.34 - 1.05 bd - bc 

PT -0.53 - 0.86 0.70 113.69 - 146.37 0.16 - 3.19 0.38 - 1.07 pc - bc 

ON -0.48 - 0.83 0.70 116.99 - 148.47 0.33 - 6.30 0.43 - 1.14 bd - bc 

OF -0.39 - 0.84 0.70 111.87 - 147.57 0.21 - 2.37 0.39 - 1.11 bd - bc 

DR -0.53 - 0.89 0.70 107.74 - 146.02 0.07 - 2.75 0.32 - 1.05 pc - mc 

L
A

 

MT 0.13 - 0.71 0.45 125.61 - 140.70 0.09 - 0.27 0.56 - 0.90 pc - mc 

XT -0.18 - 0.62 0.47 128.53 - 145.17 0.30 - 1.99 0.61 - 1.05 pc - mc 

AT -0.59 - 0.48 0.15 134.77 - 150.70 0.88 - 2.58 0.74 - 1.22 pc - mc 

PT -0.72 - 0.48 0.11 134.73 - 151.80 0.55 - 1.96 0.74 - 1.27 pc - mc 

ON -0.48 - 0.63 0.40 129.58 - 149.66 0.65 - 1.41 0.63 - 1.18 pc - mc 

OF -0.71 - 0.56 0.28 130.37 - 151.58 0.22 - 0.62 0.67 - 1.27 pc - mc 

DR -0.55 - 0.53 0.24 133.11 - 150.32 0.20 - 1.36 0.71 - 1.21 pc - mc 

L
W

 N
B

 

MT -0.58 - -0.01 -0.16 141.85 - 147.25 0.37 - 0.76 0.92 - 1.10 pc - mc 

XT -0.57 - 0.35 0.22 134.25 - 143.79 0.70 - 2.61 0.73 - 1.00 bd - xc 

AT -0.29 - 0.23 -0.09 133.27 - 149.00 1.00 - 3.81 0.71 - 1.16 bc - bd 

PT -0.32 - 0.18 0.08 136.33 - 142.57 0.35 - 1.46 0.80 - 0.96 pc - mc 

ON -0.20 - 0.07 0.00 133.97 - 146.44 0.70 - 1.35 0.73 - 1.07 bd - mc 

OF -0.53 - 0.00 -0.18 137.98 - 147.29 0.72 - 2.04 0.83 - 1.10 bd - xc 

DR -0.38 - 0.03 -0.14 138.06 - 146.83 0.56 - 2.17 0.84 - 1.09 bd - xc 

L
W

 S
B

 

MT -0.24 - 0.50 0.06 132.59 - 147.65 1.41 - 8.10 0.71 - 1.11 bc - mc 

XT -0.40 - 0.08 -0.17 139.83 - 150.55 0.55 - 1.97 0.88 - 1.22 mc - bc 

AT -0.53 - 0.20 0.11 136.06 - 152.28 1.67 - 7.09 0.78 - 1.28 xc - bd 

PT -0.34 - 0.18 -0.12 141.15 - 150.34 1.51 - 3.02 0.91 - 1.21 xc - mc 

ON -0.47 - 0.24 -0.16 134.85 - 150.91 0.48 - 4.69 0.75 - 1.25 xc - pc 

OF -0.49 - 0.17 -0.27 136.24 - 152.05 1.81 - 4.77 0.78 - 1.27 xc - pc 

DR -0.48 - 0.13 -0.27 136.82 - 151.86 1.08 - 4.10 0.80 - 1.26 xc - pc 
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L
W

 A
B

 
MT -0.42 - 0.19 -0.16 138.32 - 147.20 0.98 - 1.77 0.83 - 1.09 pc - xc 

XT -0.43 - 0.36 0.08 134.32 - 142.75 0.62 - 2.57 0.74 - 0.96 pc - xc 

AT -0.17 - 0.30 0.07 133.28 - 144.63 0.50 - 1.52 0.72 - 1.01 pc - xc 

PT -0.43 - 0.37 0.23 134.86 - 142.13 0.55 - 1.94 0.76 - 0.96 bd - mc 

ON -0.53 - 0.21 -0.09 133.81 - 146.45 0.91 - 2.10 0.74 - 1.07 bd - xc 

OF -0.61 - 0.14 -0.21 138.71 - 147.22 0.97 - 2.45 0.84 - 1.11 bd - xc 

DR -0.56 - 0.22 -0.13 137.89 - 146.60 0.72 - 2.37 0.82 - 1.08 bd - xc 

L
E

 C
B

 

MT 0.22 - 0.87 0.75 106.06 - 138.52 0.12 - 0.92 0.33 - 0.86 bd - xc 

XT 0.44 - 0.87 0.74 110.43 - 134.20 0.13 - 0.76 0.35 - 0.73 pc - xc 

AT 0.03 - 0.92 0.86 99.72 - 144.12 0.13 - 1.78 0.26 - 0.99 bd - xc 

PT 0.40 - 0.87 0.84 111.92 - 135.61 0.06 - 1.53 0.37 - 0.77 bd - mc 

ON -0.04 - 0.88 0.73 109.03 - 145.10 0.10 - 0.74 0.33 - 1.03 bd - xc 

OF 0.16 - 0.86 0.77 111.35 - 140.94 0.16 - 1.08 0.36 - 0.91 bd - xc 

DR 0.10 - 0.87 0.78 109.10 - 142.39 0.08 - 1.28 0.34 - 0.95 bd - xc 

L
E

 E
B

 

MT 0.25 - 0.62 0.57 123.84 - 140.44 0.27 - 0.89 0.53 - 0.90 bd - bc 

XT 0.42 - 0.63 0.57 123.63 - 134.54 0.16 - 0.73 0.53 - 0.75 pc - bc 

AT 0.14 - 0.87 0.71 105.98 - 142.55 0.11 - 2.37 0.31 - 0.97 bd - bc 

PT 0.38 - 0.87 0.65 113.19 - 138.35 0.03 - 0.95 0.38 - 0.83 bd - mc 

ON 0.57 - 0.70 0.66 119.11 - 132.55 0.17 - 0.55 0.47 - 0.69 bd - bc 

OF 0.27 - 0.64 0.61 123.19 - 138.86 0.09 - 0.74 0.53 - 0.88 bd - mc 

DR 0.24 - 0.66 0.56 120.10 - 140.82 0.24 - 0.49 0.49 - 0.91 bd - bc 

L
E

 W
B

 

MT 0.12 - 0.67 0.16 124.95 - 141.16 0.82 - 2.34 0.55 - 0.91 mc - bc 

XT 0.27 - 0.71 0.56 123.23 - 138.46 0.40 - 1.69 0.52 - 0.83 mc - bc 

AT 0.10 - 0.79 0.30 118.41 - 142.00 0.47 - 2.36 0.44 - 0.93 xc - bc 

PT 0.10 - 0.77 0.30 119.86 - 142.05 0.13 - 1.04 0.47 - 0.93 mc - bc 

ON 0.09 - 0.64 0.19 126.53 - 141.02 0.29 - 2.21 0.58 - 0.90 pc - bc 

OF 0.06 - 0.62 0.48 124.69 - 142.70 0.38 - 1.14 0.55 - 0.95 mc - bc 

DR 0.25 - 0.65 0.33 126.13 - 138.94 0.21 - 0.67 0.57 - 0.85 mc - bc 

L
E

 A
B

 

MT 0.43 - 0.84 0.75 112.67 - 136.27 0.26 - 0.74 0.39 - 0.78 bd - xc 

XT 0.54 - 0.84 0.74 113.31 - 132.26 0.15 - 0.43 0.39 - 0.69 pc - xc 

AT 0.44 - 0.92 0.87 101.08 - 136.01 0.17 - 1.07 0.26 - 0.77 bd - xc 

PT 0.64 - 0.89 0.83 109.07 - 128.94 0.02 - 0.67 0.33 - 0.62 pc - mc 

ON 0.41 - 0.87 0.81 110.82 - 136.51 0.25 - 0.95 0.35 - 0.79 bd - xc 

OF 0.40 - 0.85 0.76 112.24 - 136.87 0.16 - 0.62 0.38 - 0.80 bd - xc 

DR 0.37 - 0.86 0.79 111.55 - 137.70 0.09 - 0.37 0.36 - 0.82 bd - xc 

 

Table B.7.6. Spring Autoregression results for each parameter where AICc = Akaike information criterion second order, fpe 

= final prediction error, and se = standard error. GBL = Great Bear Lake, GSL = Great Slave Lake, LA = Lake Athabasca, 

LW = Lake Winnipeg and LE = Lake Erie. AB = All Basins, CB = Central Basin, NB = North Basin, SB = South Basin, EB 

= East Basin, WB = West Basin. MC = Mean Chl-a, XC = Max Chl-a, BC = Abnormal Chl-a, BD = Abnormal Chl-a Days, 

PC = Peak Chl-a DOY, MT = Mean LSWT, XT = Max LSWT, AT = Anomaly LSWT Days, PT = Peak LSWT DOY, ON = 

Ice On DOY, OF = Ice Off DOY and DR = Ice Duration. 

Lake Parameter Adj. r2 
Median 

Adj. r2 
AICc fpe se 

Min-Max 

Param 

G
B

L
 C

B
 

MT 0.26 - 0.91 0.81 105.57 - 142.00 0.13 - 0.94 0.30 - 0.93 bd - bc 

XT 0.31 - 0.95 0.87 90.34 - 140.81 0.07 - 1.22 0.20 - 0.89 bd - bc 

AT 0.18 - 0.91 0.82 107.64 - 143.20 0.08 - 0.97 0.32 - 0.97 bd - mc 

PT 0.38 - 0.92 0.85 104.97 - 138.94 0.23 - 1.02 0.29 - 0.84 bd - mc 

ON 0.29 - 0.91 0.80 105.66 - 137.15 0.16 - 1.50 0.30 - 0.80 pc - bc 

OF 0.29 - 0.90 0.81 105.41 - 140.97 0.07 - 0.52 0.33 - 0.90 bd - mc 
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DR 0.28 - 0.91 0.81 105.39 - 140.89 0.07 - 0.52 0.32 - 0.90 bd - mc 
G

B
L

 S
B

 
MT -0.02 - 0.69 0.03 128.53 - 146.32 0.07 - 0.61 0.61 - 1.07 pc - bc 

XT 0.01 - 0.65 0.18 130.42 - 146.06 0.20 - 0.74 0.65 - 1.07 bd - bc 

AT 0.03 - 0.66 0.31 129.22 - 146.39 0.10 - 1.49 0.63 - 1.07 bd - bc 

PT 0.04 - 0.66 0.29 129.77 - 144.64 0.28 - 0.65 0.63 - 1.01 xc - bc 

ON -0.33 - 0.65 -0.05 129.60 - 151.54 0.73 - 2.88 0.63 - 1.25 bd - bc 

OF -0.05 - 0.59 0.12 132.92 - 146.77 0.49 - 1.17 0.70 - 1.10 bd - bc 

DR -0.04 - 0.62 0.08 131.26 - 147.28 0.42 - 0.89 0.67 - 1.10 bd - bc 

G
B

L
 A

B
 

MT 0.31 - 0.87 0.84 114.59 - 139.25 0.11 - 0.93 0.39 - 0.86 pc - mc 

XT 0.40 - 0.89 0.88 111.25 - 137.14 0.07 - 0.78 0.36 - 0.80 pc - bc 

AT 0.56 - 0.91 0.86 107.35 - 131.13 0.10 - 0.65 0.32 - 0.67 pc - mc 

PT 0.47 - 0.90 0.87 110.21 - 135.06 0.17 - 1.36 0.35 - 0.75 pc - mc 

ON 0.31 - 0.88 0.85 112.32 - 139.19 0.22 - 2.50 0.37 - 0.85 pc - mc 

OF 0.38 - 0.88 0.84 112.40 - 135.97 0.08 - 0.93 0.37 - 0.80 pc - mc 

DR 0.34 - 0.88 0.84 111.59 - 138.09 0.07 - 0.95 0.37 - 0.83 pc - mc 

G
S

L
 C

B
 

MT -0.45 - 0.65 0.31 126.46 - 142.13 0.50 - 1.13 0.60 - 0.94 pc - bd 

XT -0.34 - 0.62 0.28 126.83 - 143.31 0.58 - 1.66 0.61 - 0.97 pc - bd 

AT -0.58 - 0.77 0.30 121.28 - 146.53 0.06 - 1.99 0.49 - 1.07 pc - xc 

PT -0.53 - 0.69 0.43 121.66 - 143.70 0.07 - 0.98 0.53 - 0.98 pc - mc 

ON -0.50 - 0.60 0.36 129.54 - 143.18 0.38 - 2.00 0.64 - 0.97 pc - bd 

OF -0.06 - 0.71 0.39 123.25 - 138.23 0.23 - 1.31 0.54 - 0.83 pc - bd 

DR -0.35 - 0.67 0.42 126.05 - 141.64 0.38 - 1.76 0.58 - 0.92 pc - bd 

G
S

L
 E

B
 

MT -0.10 - 0.46 0.31 136.49 - 147.29 0.35 - 2.86 0.78 - 1.10 bc - xc 

XT 0.12 - 0.50 0.39 135.00 - 141.69 0.57 - 1.45 0.75 - 0.93 pc - bd 

AT 0.00 - 0.62 0.33 130.60 - 145.35 0.54 - 1.77 0.65 - 1.03 pc - bd 

PT 0.02 - 0.49 0.25 135.62 - 144.98 0.53 - 2.24 0.76 - 1.03 bc - xc 

ON -0.33 - 0.53 0.15 133.84 - 150.54 0.38 - 3.89 0.73 - 1.21 bc - xc 

OF -0.05 - 0.55 0.28 133.29 - 145.63 0.40 - 1.68 0.71 - 1.06 bc - xc 

DR -0.01 - 0.60 0.29 131.42 - 144.93 0.22 - 1.62 0.67 - 1.04 pc - xc 

G
S

L
 N

B
 

MT -0.75 - 0.65 -0.17 124.67 - 153.98 0.62 - 3.46 0.55 - 1.35 xc - bc 

XT -0.96 - 0.69 -0.10 122.96 - 154.22 0.48 - 5.05 0.51 - 1.36 bd - bc 

AT -0.50 - 0.45 -0.20 131.44 - 149.88 1.06 - 2.94 0.68 - 1.19 bd - bc 

PT -0.72 - 0.46 -0.16 131.67 - 152.19 0.32 - 3.65 0.68 - 1.28 bd - bc 

ON -0.64 - 0.54 -0.08 129.25 - 151.10 1.33 - 4.02 0.62 - 1.24 bd - bc 

OF -0.78 - 0.45 -0.13 131.67 - 152.51 1.33 - 2.92 0.68 - 1.29 bd - bc 

DR -0.67 - 0.49 -0.16 130.71 - 151.45 0.60 - 1.80 0.66 - 1.25 bd - bc 

G
S

L
 A

B
 

MT -0.33 - 0.74 0.26 122.97 - 140.51 0.15 - 1.21 0.52 - 0.90 pc - bd 

XT -0.29 - 0.74 0.23 122.72 - 143.81 0.18 - 1.86 0.52 - 0.99 pc - bd 

AT -0.48 - 0.85 0.30 114.66 - 143.19 0.20 - 2.27 0.40 - 0.96 pc - bd 

PT -0.53 - 0.77 0.65 119.95 - 143.64 0.08 - 0.43 0.49 - 0.98 pc - xc 

ON -0.54 - 0.70 0.34 125.27 - 145.33 0.15 - 3.27 0.56 - 1.04 pc - bd 

OF -0.10 - 0.78 0.36 120.54 - 138.44 0.08 - 1.51 0.48 - 0.83 pc - bd 

DR -0.31 - 0.78 0.43 120.64 - 144.20 0.17 - 1.67 0.48 - 1.00 pc - bd 

L
A

 

MT -0.79 - 0.83 -0.29 110.05 - 155.32 0.00 - 0.08 0.34 - 1.42 bd - pc 

XT -0.82 - 0.71 -0.23 116.78 - 155.25 0.03 - 0.46 0.43 - 1.42 bd - pc 

AT 0.08 - 0.38 0.25 127.89 - 142.72 0.45 - 0.70 0.64 - 0.95 mc - bc 

PT -0.51 - 0.61 0.20 122.30 - 150.46 0.06 - 0.69 0.51 - 1.26 bd - pc 

ON -0.68 - 0.49 -0.17 123.79 - 154.58 0.53 - 1.69 0.56 - 1.38 bd - pc 

OF -0.45 - 0.66 0.06 118.65 - 149.84 0.11 - 0.72 0.46 - 1.24 bd - pc 

DR -0.59 - 0.55 -0.05 122.45 - 152.96 0.30 - 0.82 0.53 - 1.33 bd - pc 

L
W

 

N
B

 

MT -0.39 - 0.59 0.41 105.50 - 134.66 0.10 - 0.74 0.30 - 0.74 mc - bc 

XT -0.51 - 0.55 0.18 106.99 - 134.58 0.11 - 0.53 0.31 - 0.74 mc - bc 
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AT -0.15 - 0.52 0.22 101.97 - 131.18 0.33 - 1.08 0.27 - 0.67 mc - bd 

PT -0.12 - 0.74 0.25 96.31 - 129.90 0.01 - 0.17 0.23 - 0.64 pc - bc 

ON -0.44 - 0.75 0.11 105.32 - 131.46 0.09 - 0.69 0.30 - 0.67 mc - bc 

OF -0.33 - 0.57 0.17 103.71 - 132.77 0.10 - 0.36 0.28 - 0.70 xc - bc 

DR -0.41 - 0.66 0.09 105.46 - 133.26 0.13 - 0.60 0.30 - 0.71 xc - bc 

L
W

 S
B

 

MT 0.25 - 0.64 0.51 117.63 - 139.63 0.68 - 2.69 0.44 - 0.90 pc - bc 

XT -0.35 - 0.62 0.06 120.25 - 143.87 0.38 - 2.26 0.52 - 0.99 mc - bd 

AT -0.37 - 0.03 -0.11 134.65 - 145.62 1.18 - 3.42 0.76 - 1.06 mc - bd 

PT -0.29 - 0.38 0.16 131.15 - 143.32 0.63 - 3.30 0.67 - 0.97 mc - pc 

ON -0.09 - 0.08 -0.02 133.09 - 145.79 1.15 - 4.07 0.72 - 1.08 xc - bd 

OF -0.30 - 0.14 -0.02 132.40 - 144.47 1.01 - 4.51 0.71 - 1.05 mc - bd 

DR -0.32 - 0.04 -0.09 133.48 - 146.12 0.77 - 2.82 0.74 - 1.10 mc - bd 

L
W

 A
B

 

MT -0.31 - 0.62 0.28 75.24 - 127.34 0.01 - 0.69 0.12 - 0.60 xc - bc 

XT -0.25 - 0.45 0.20 73.89 - 129.65 0.02 - 0.82 0.11 - 0.65 xc - bd 

AT -0.33 - 0.53 0.23 73.53 - 128.08 0.04 - 1.28 0.11 - 0.61 xc - bd 

PT 0.39 - 0.74 0.57 61.61 - 118.35 0.02 - 1.10 0.08 - 0.46 pc - bd 

ON -0.32 - 0.74 0.27 69.81 - 126.87 0.02 - 0.77 0.10 - 0.58 xc - bd 

OF -0.43 - 0.55 0.11 75.38 - 130.41 0.03 - 0.93 0.12 - 0.65 xc - bc 

DR -0.42 - 0.62 0.11 74.86 - 125.31 0.03 - 0.59 0.12 - 0.55 xc - bd 

L
E

 C
B

 

MT -0.06 - 0.35 0.12 132.58 - 143.81 1.00 - 3.49 0.70 - 1.00 xc - bd 

XT -0.58 - 0.32 -0.38 139.59 - 150.96 1.83 - 4.96 0.87 - 1.23 xc - bd 

AT -0.89 - 0.20 -0.45 140.82 - 153.86 1.88 - 3.04 0.92 - 1.35 xc - bd 

PT -0.73 - 0.05 -0.69 145.29 - 152.74 3.51 - 5.18 1.03 - 1.30 xc - bd 

ON -0.60 - 0.29 -0.40 136.19 - 150.49 1.48 - 5.07 0.78 - 1.21 bc - bd 

OF -0.57 - 0.24 -0.34 140.85 - 150.70 1.16 - 2.28 0.91 - 1.22 xc - bd 

DR -0.55 - 0.16 -0.42 143.29 - 149.19 0.47 - 3.10 0.97 - 1.20 xc - bd 

L
E

 E
B

 

MT -0.36 - 0.50 0.09 124.77 - 146.57 0.30 - 1.05 0.54 - 1.07 bc - pc 

XT -0.59 - 0.37 0.03 129.09 - 148.79 0.56 - 1.57 0.62 - 1.16 bc - mc 

AT -0.13 - 0.23 0.18 132.47 - 143.24 0.36 - 1.14 0.69 - 0.97 bc - xc 

PT -0.50 - 0.57 0.21 125.25 - 148.19 0.15 - 1.40 0.56 - 1.13 bc - xc 

ON -0.76 - 0.43 -0.05 125.74 - 150.98 0.34 - 1.00 0.57 - 1.23 bc - pc 

OF -0.76 - 0.37 0.15 128.28 - 150.62 0.11 - 0.52 0.61 - 1.22 bc - pc 

DR -0.68 - 0.43 -0.12 126.02 - 149.03 0.25 - 1.36 0.57 - 1.18 bc - pc 

L
E

 W
B

 

MT -0.38 - 0.02 -0.12 133.47 - 147.63 0.49 - 2.80 0.71 - 1.11 bc - xc 

XT -0.38 - 0.19 -0.18 134.94 - 147.52 0.46 - 1.67 0.75 - 1.11 bc - xc 

AT -0.55 - 0.14 -0.11 137.12 - 149.81 0.64 - 3.40 0.80 - 1.19 bc - xc 

PT -0.30 - 0.31 0.12 128.88 - 147.42 0.70 - 1.82 0.62 - 1.11 bc - bd 

ON -0.16 - 0.39 0.04 133.42 - 145.14 0.22 - 2.89 0.72 - 1.03 bc - xc 

OF -0.60 - 0.56 0.04 128.83 - 150.32 0.33 - 2.95 0.63 - 1.21 bc - bd 

DR -0.45 - 0.47 -0.05 132.54 - 148.77 0.29 - 1.62 0.70 - 1.15 bc - bd 

L
E

 A
B

 

MT 0.03 - 0.60 0.19 128.76 - 140.16 0.87 - 3.15 0.63 - 0.88 xc - bd 

XT -0.53 - 0.37 -0.23 138.84 - 147.22 1.99 - 4.43 0.84 - 1.09 xc - bd 

AT -0.43 - 0.26 -0.05 138.92 - 144.78 1.53 - 2.20 0.89 - 1.03 xc - bd 

PT -0.32 - 0.63 -0.23 128.86 - 144.69 0.69 - 3.33 0.63 - 1.02 pc - bd 

ON -0.79 - 0.40 -0.44 134.79 - 149.50 2.02 - 5.42 0.74 - 1.18 xc - bd 

OF -0.73 - 0.35 -0.26 137.43 - 148.79 0.81 - 1.68 0.83 - 1.15 xc - bd 

DR -0.60 - 0.31 -0.36 139.42 - 147.23 0.20 - 2.01 0.87 - 1.11 xc - bd 

 

Table B.7.7. Summer Autoregression results for each parameter where AICc = Akaike information criterion second order, 

fpe = final prediction error, and se = standard error. GBL = Great Bear Lake, GSL = Great Slave Lake, LA = Lake 

Athabasca, LW = Lake Winnipeg and LE = Lake Erie. AB = All Basins, CB = Central Basin, NB = North Basin, SB = 

South Basin, EB = East Basin, WB = West Basin. MC = Mean Chl-a, XC = Max Chl-a, BC = Abnormal Chl-a, BD = 



 

 270 

Abnormal Chl-a Days, PC = Peak Chl-a DOY, MT = Mean LSWT, XT = Max LSWT, AT = Anomaly LSWT Days, PT = 

Peak LSWT DOY, ON = Ice On DOY, OF = Ice Off DOY and DR = Ice Duration. 

Lake Parameter Adj. r2 
Median 

Adj. r2 
AICc fpe se 

Min-Max 

Param 

G
B

L
 C

B
 

MT 0.34 - 0.89 0.48 109.55 - 139.02 0.05 - 0.32 0.34 - 0.86 mc - bc 

XT 0.41 - 0.91 0.51 102.18 - 137.68 0.05 - 0.30 0.30 - 0.82 mc - bc 

AT 0.74 - 0.89 0.77 108.15 - 125.03 0.11 - 0.17 0.33 - 0.55 mc - bd 

PT 0.27 - 0.92 0.53 104.11 - 138.67 0.05 - 0.37 0.29 - 0.87 bd - bc 

ON 0.47 - 0.86 0.65 114.47 - 136.28 0.18 - 0.51 0.39 - 0.78 mc - bc 

OF 0.29 - 0.89 0.55 105.53 - 137.65 0.07 - 0.21 0.32 - 0.85 bd - bc 

DR 0.30 - 0.89 0.54 107.53 - 137.99 0.08 - 0.18 0.33 - 0.85 bd - bc 

G
B

L
 S

B
 

MT -0.26 - 0.88 0.86 108.88 - 147.26 0.15 - 1.92 0.34 - 1.10 bd - xc 

XT -0.16 - 0.90 0.88 107.21 - 145.42 0.14 - 1.65 0.33 - 1.05 bd - bc 

AT -0.41 - 0.84 0.80 113.13 - 149.28 0.14 - 0.89 0.39 - 1.17 bd - xc 

PT -0.55 - 0.78 0.75 120.59 - 150.33 0.28 - 2.73 0.48 - 1.22 bd - bc 

ON 0.04 - 0.81 0.78 116.81 - 142.59 0.23 - 2.12 0.43 - 0.95 bd - xc 

OF -0.23 - 0.82 0.79 116.27 - 146.76 0.19 - 1.30 0.43 - 1.08 bd - bc 

DR -0.43 - 0.80 0.77 115.54 - 149.48 0.20 - 1.59 0.43 - 1.17 bd - xc 

G
B

L
 A

B
 

MT 0.33 - 0.89 0.61 110.14 - 139.36 0.06 - 0.24 0.35 - 0.87 mc - bc 

XT 0.42 - 0.90 0.61 100.82 - 137.39 0.05 - 0.17 0.30 - 0.81 mc - bc 

AT 0.74 - 0.84 0.79 114.59 - 125.14 0.09 - 0.19 0.40 - 0.55 mc - bc 

PT 0.40 - 0.90 0.55 107.82 - 137.02 0.02 - 0.24 0.32 - 0.81 bd - bc 

ON 0.43 - 0.82 0.61 117.73 - 137.46 0.15 - 0.39 0.44 - 0.81 mc - bc 

OF 0.43 - 0.87 0.55 108.52 - 137.38 0.04 - 0.18 0.36 - 0.81 mc - bc 

DR 0.42 - 0.86 0.52 109.38 - 137.39 0.04 - 0.15 0.37 - 0.81 mc - bc 

G
S

L
 C

B
 

MT 0.02 - 0.61 0.48 129.30 - 146.21 0.81 - 2.85 0.62 - 1.06 pc - xc 

XT -0.02 - 0.58 0.43 130.33 - 146.07 0.80 - 2.73 0.65 - 1.06 bd - xc 

AT 0.02 - 0.61 0.49 129.53 - 146.27 0.97 - 4.25 0.63 - 1.07 pc - xc 

PT -0.07 - 0.62 0.47 128.71 - 147.80 0.71 - 3.44 0.61 - 1.11 pc - xc 

ON -0.16 - 0.60 0.36 129.91 - 147.17 0.70 - 4.36 0.64 - 1.10 bd - xc 

OF 0.09 - 0.61 0.47 129.44 - 143.58 0.35 - 1.33 0.63 - 0.98 bd - xc 

DR 0.15 - 0.61 0.47 129.50 - 142.85 0.66 - 2.26 0.63 - 0.97 bd - xc 

G
S

L
 E

B
 

MT 0.22 - 0.87 0.55 110.88 - 141.21 0.11 - 1.62 0.36 - 0.91 bc - xc 

XT 0.44 - 0.92 0.58 102.46 - 134.91 0.04 - 0.76 0.28 - 0.76 bc - xc 

AT 0.20 - 0.94 0.54 100.35 - 142.56 0.02 - 0.72 0.26 - 0.95 bd - xc 

PT 0.21 - 0.96 0.40 93.47 - 142.45 0.03 - 1.02 0.20 - 0.94 bd - xc 

ON 0.05 - 0.87 0.50 111.36 - 144.65 0.09 - 2.62 0.36 - 1.01 bc - xc 

OF 0.28 - 0.89 0.55 107.02 - 140.13 0.07 - 0.95 0.32 - 0.89 bd - xc 

DR 0.19 - 0.89 0.51 107.70 - 142.88 0.07 - 1.37 0.33 - 0.95 bc - xc 

G
S

L
 N

B
 

MT -0.08 - 0.96 0.39 92.99 - 142.91 0.12 - 1.67 0.20 - 0.96 bd - bc 

XT -0.16 - 0.95 0.27 96.05 - 140.99 0.19 - 2.31 0.22 - 0.91 bd - bc 

AT -0.32 - 0.95 0.56 96.95 - 142.60 0.23 - 2.12 0.23 - 0.95 bd - bc 

PT -0.16 - 0.94 0.18 100.67 - 146.96 0.38 - 3.81 0.26 - 1.10 bd - bc 

ON -0.19 - 0.94 -0.03 100.02 - 147.56 0.39 - 5.06 0.25 - 1.11 bd - bc 

OF 0.06 - 0.94 0.33 99.53 - 143.04 0.29 - 2.99 0.25 - 1.00 pc - bc 

DR -0.08 - 0.95 0.09 97.57 - 145.69 0.10 - 2.09 0.23 - 1.06 bd - bc 

G
S

L
 A

B
 MT 0.09 - 0.65 0.40 127.85 - 142.59 0.61 - 1.96 0.60 - 0.98 pc - xc 

XT 0.02 - 0.64 0.36 128.51 - 144.66 0.60 - 2.07 0.61 - 1.01 bd - xc 

AT -0.04 - 0.62 0.43 129.21 - 146.69 0.89 - 2.04 0.62 - 1.08 pc - xc 

PT -0.12 - 0.76 0.48 122.32 - 147.01 0.31 - 3.38 0.50 - 1.09 bd - xc 

ON -0.14 - 0.64 0.39 128.25 - 147.21 0.93 - 4.77 0.61 - 1.10 bd - xc 
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OF 0.09 - 0.65 0.56 127.87 - 143.68 0.34 - 0.98 0.60 - 0.98 bd - xc 

DR 0.18 - 0.64 0.53 128.25 - 142.06 0.56 - 2.19 0.61 - 0.93 bd - xc 
L

A
 

MT 0.15 - 0.89 0.41 107.52 - 140.18 0.16 - 1.68 0.32 - 0.89 pc - bc 

XT 0.09 - 0.82 0.39 115.68 - 140.96 0.05 - 1.10 0.42 - 0.91 pc - xc 

AT 0.52 - 0.84 0.64 113.17 - 133.47 0.20 - 1.90 0.39 - 0.72 mc - xc 

PT 0.10 - 0.79 0.39 119.43 - 142.76 0.16 - 1.22 0.46 - 0.96 bd - xc 

ON 0.10 - 0.86 0.54 113.08 - 140.82 0.29 - 1.65 0.38 - 0.91 pc - xc 

OF 0.01 - 0.86 0.49 112.88 - 142.67 0.06 - 0.53 0.38 - 0.96 pc - xc 

DR 0.07 - 0.84 0.46 116.34 - 141.75 0.12 - 1.84 0.42 - 0.93 pc - xc 

L
W

 N
B

 

MT -0.08 - 0.18 0.12 133.30 - 140.86 0.52 - 0.97 0.74 - 0.90 bd - xc 

XT -0.20 - 0.42 0.21 130.54 - 140.05 0.19 - 1.97 0.68 - 0.88 pc - bc 

AT -0.44 - 0.47 0.25 132.22 - 141.07 0.25 - 1.00 0.69 - 0.90 bd - xc 

PT -0.40 - 0.69 0.30 117.93 - 142.64 0.32 - 0.74 0.50 - 0.95 pc - mc 

ON -0.29 - 0.35 0.15 131.54 - 140.84 0.50 - 1.10 0.67 - 0.90 pc - mc 

OF -0.49 - 0.40 0.24 134.19 - 143.81 0.28 - 1.56 0.73 - 0.98 pc - xc 

DR -0.35 - 0.34 0.21 131.47 - 141.78 0.13 - 1.19 0.69 - 0.93 pc - xc 

L
W

 S
B

 

MT -0.50 - 0.64 -0.03 128.18 - 153.09 0.38 - 1.45 0.61 - 1.31 bd - pc 

XT -0.28 - 0.40 0.01 135.39 - 150.07 0.40 - 1.89 0.77 - 1.20 xc - pc 

AT -0.13 - 0.49 0.20 133.73 - 148.25 0.55 - 9.89 0.72 - 1.13 bd - pc 

PT -0.50 - 0.49 0.16 131.03 - 153.00 1.22 - 9.81 0.70 - 1.31 bd - pc 

ON -0.48 - 0.53 -0.07 129.97 - 152.75 0.95 - 6.54 0.67 - 1.30 bd - pc 

OF -0.36 - 0.37 -0.09 137.14 - 151.27 0.52 - 4.26 0.80 - 1.24 xc - pc 

DR -0.45 - 0.43 -0.01 135.56 - 152.49 0.33 - 3.73 0.76 - 1.29 bd - pc 

L
W

 A
B

 

MT 0.05 - 0.30 0.22 132.71 - 138.30 0.38 - 0.93 0.70 - 0.83 bd - mc 

XT -0.02 - 0.45 0.33 129.80 - 139.05 0.16 - 1.72 0.66 - 0.85 pc - xc 

AT -0.06 - 0.65 0.58 124.45 - 139.93 0.32 - 0.56 0.54 - 0.87 pc - xc 

PT -0.32 - 0.74 0.52 116.91 - 143.41 0.33 - 1.73 0.45 - 0.97 pc - mc 

ON -0.18 - 0.40 0.19 131.82 - 141.86 0.50 - 1.56 0.69 - 0.92 bd - mc 

OF -0.26 - 0.36 0.24 133.74 - 142.67 0.29 - 1.61 0.73 - 0.95 pc - mc 

DR -0.18 - 0.33 0.25 134.61 - 141.42 0.17 - 1.24 0.75 - 0.92 pc - mc 

L
E

 C
B

 

MT 0.00 - 0.72 0.49 122.63 - 146.16 0.38 - 0.90 0.52 - 1.07 pc - bc 

XT -0.46 - 0.80 0.67 117.65 - 152.36 0.30 - 1.54 0.44 - 1.29 pc - bc 

AT -0.19 - 0.75 0.56 121.06 - 147.43 0.35 - 6.54 0.49 - 1.14 pc - bc 

PT -0.46 - 0.78 0.64 118.99 - 152.01 0.22 - 0.46 0.46 - 1.28 pc - bc 

ON 0.13 - 0.74 0.56 121.70 - 143.50 0.33 - 1.62 0.50 - 0.99 pc - bc 

OF -0.29 - 0.87 0.59 111.48 - 150.52 0.15 - 3.61 0.36 - 1.21 pc - bc 

DR -0.58 - 0.88 0.61 110.10 - 153.64 0.21 - 3.70 0.34 - 1.34 pc - bc 

L
E

 E
B

 

MT -0.02 - 0.67 0.54 125.88 - 145.43 0.34 - 1.20 0.57 - 1.05 pc - xc 

XT -0.49 - 0.69 0.46 125.04 - 151.90 0.22 - 2.22 0.56 - 1.27 pc - bc 

AT -0.48 - 0.69 0.32 123.05 - 152.01 0.27 - 2.20 0.55 - 1.27 pc - bc 

PT -0.43 - 0.75 0.59 120.47 - 151.52 0.16 - 0.98 0.50 - 1.25 pc - xc 

ON -0.31 - 0.73 0.54 122.16 - 149.83 0.22 - 1.28 0.51 - 1.19 pc - bc 

OF -0.16 - 0.87 0.52 110.67 - 147.91 0.01 - 1.10 0.36 - 1.12 pc - bc 

DR -0.12 - 0.81 0.57 115.66 - 146.81 0.20 - 1.36 0.42 - 1.09 pc - bc 

L
E

 W
B

 

MT -0.20 - 0.68 0.54 123.20 - 143.67 0.27 - 2.18 0.52 - 0.99 pc - bc 

XT 0.10 - 0.66 0.52 126.17 - 139.61 0.21 - 0.90 0.58 - 0.86 pc - bd 

AT 0.30 - 0.64 0.46 125.56 - 137.35 0.73 - 1.22 0.56 - 0.80 pc - bc 

PT -0.13 - 0.56 0.45 130.41 - 142.41 0.26 - 1.13 0.65 - 0.96 pc - bd 

ON -0.25 - 0.61 0.47 127.16 - 144.24 0.29 - 1.52 0.58 - 1.01 pc - bc 

OF -0.31 - 0.61 0.43 127.05 - 145.42 0.31 - 2.18 0.58 - 1.04 pc - bc 

DR -0.24 - 0.58 0.48 128.34 - 144.51 0.13 - 1.84 0.61 - 1.01 pc - bc 

L E
 

A B
 

MT -0.18 - 0.72 0.63 122.87 - 146.00 0.35 - 1.32 0.52 - 1.06 pc - bd 
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XT 0.09 - 0.80 0.64 116.24 - 142.08 0.23 - 0.78 0.43 - 0.93 pc - bc 

AT -0.27 - 0.77 0.67 118.71 - 147.42 0.50 - 2.86 0.49 - 1.10 pc - bd 

PT -0.15 - 0.76 0.64 118.85 - 145.62 0.29 - 0.67 0.47 - 1.04 pc - bc 

ON -0.37 - 0.72 0.60 125.87 - 148.57 0.71 - 1.77 0.56 - 1.14 pc - bd 

OF -0.22 - 0.88 0.79 109.55 - 146.59 0.13 - 1.75 0.36 - 1.07 pc - bd 

DR -0.28 - 0.84 0.81 113.05 - 147.36 0.17 - 0.87 0.39 - 1.10 pc - bc 

 

Table B.7.8. Fall Autoregression results for each parameter where AICc = Akaike information criterion second order, fpe = 

final prediction error, and se = standard error. GBL = Great Bear Lake, GSL = Great Slave Lake, LA = Lake Athabasca, LW 

= Lake Winnipeg and LE = Lake Erie. AB = All Basins, CB = Central Basin, NB = North Basin, SB = South Basin, EB = 

East Basin, WB = West Basin. MC = Mean Chl-a, XC = Max Chl-a, BC = Abnormal Chl-a, BD = Abnormal Chl-a Days, 

PC = Peak Chl-a DOY, MT = Mean LSWT, XT = Max LSWT, AT = Anomaly LSWT Days, PT = Peak LSWT DOY, ON = 

Ice On DOY, OF = Ice Off DOY and DR = Ice Duration. 

Lake Parameter Adj. r2 
Median 

Adj. r2 
AICc fpe se 

Min-Max 

Param 

G
B

L
 C

B
 

MT -0.04 - 0.77 0.71 121.26 - 143.91 0.35 - 1.10 0.50 - 0.99 pc - xc 

XT 0.07 - 0.77 0.74 120.88 - 143.36 0.25 - 0.84 0.49 - 0.97 bd - xc 

AT -0.27 - 0.76 0.63 121.47 - 147.03 0.17 - 0.45 0.49 - 1.10 pc - bc 

PT -0.02 - 0.86 0.71 112.07 - 143.78 0.12 - 0.79 0.37 - 0.99 pc - bc 

ON -0.46 - 0.78 0.63 120.05 - 149.67 0.15 - 0.98 0.47 - 1.18 pc - bc 

OF -0.37 - 0.77 0.67 122.17 - 148.78 0.12 - 0.65 0.50 - 1.15 pc - xc 

DR -0.40 - 0.77 0.67 122.18 - 148.95 0.09 - 0.79 0.50 - 1.16 pc - xc 

G
B

L
 S

B
 

MT -0.42 - 0.73 0.64 120.92 - 149.13 0.58 - 1.69 0.51 - 1.17 pc - xc 

XT -0.25 - 0.75 0.69 117.35 - 146.93 0.36 - 1.85 0.47 - 1.09 pc - xc 

AT 0.01 - 0.69 0.55 125.20 - 143.65 0.62 - 2.48 0.56 - 0.98 pc - xc 

PT 0.07 - 0.90 0.80 105.61 - 142.97 0.13 - 1.00 0.31 - 0.96 pc - xc 

ON -0.36 - 0.77 0.65 116.94 - 148.80 0.20 - 1.22 0.46 - 1.15 pc - xc 

OF -0.29 - 0.69 0.57 125.13 - 147.82 0.30 - 1.20 0.55 - 1.12 pc - xc 

DR -0.27 - 0.68 0.56 125.93 - 147.58 0.48 - 1.50 0.57 - 1.11 pc - xc 

G
B

L
 A

B
 

MT -0.03 - 0.76 0.55 122.91 - 143.74 0.36 - 1.40 0.51 - 0.99 pc - xc 

XT 0.05 - 0.78 0.63 121.52 - 143.00 0.21 - 1.00 0.49 - 0.98 bd - xc 

AT -0.08 - 0.73 0.60 123.82 - 144.40 0.18 - 0.65 0.53 - 1.01 pc - xc 

PT -0.01 - 0.79 0.59 119.90 - 143.58 0.11 - 0.77 0.47 - 0.98 pc - xc 

ON -0.24 - 0.71 0.56 124.14 - 147.16 0.20 - 0.89 0.54 - 1.09 pc - xc 

OF -0.36 - 0.74 0.42 124.11 - 148.73 0.14 - 0.85 0.53 - 1.15 pc - xc 

DR -0.34 - 0.74 0.44 123.97 - 148.44 0.12 - 0.70 0.53 - 1.14 pc - xc 

G
S

L
 C

B
 

MT -0.53 - 0.88 0.27 111.27 - 152.07 0.26 - 3.27 0.36 - 1.28 mc - bc 

XT -0.56 - 0.82 0.12 118.12 - 152.08 0.42 - 2.86 0.44 - 1.28 mc - bc 

AT -0.51 - 0.80 -0.09 119.01 - 151.69 0.50 - 2.74 0.46 - 1.27 mc - bc 

PT 0.08 - 0.82 0.42 117.46 - 143.33 0.36 - 1.47 0.43 - 0.98 mc - bc 

ON -0.26 - 0.79 0.00 119.66 - 148.43 0.70 - 2.96 0.46 - 1.15 mc - bc 

OF -0.31 - 0.78 0.05 120.46 - 148.40 0.58 - 2.82 0.48 - 1.16 mc - bc 

DR -0.24 - 0.79 0.23 119.12 - 144.34 0.38 - 1.63 0.46 - 1.01 bd - bc 

G
S

L
 E

B
 

MT 0.05 - 0.80 0.38 118.98 - 144.31 0.71 - 1.91 0.46 - 1.00 pc - bc 

XT 0.05 - 0.88 0.46 109.44 - 144.28 0.37 - 1.98 0.35 - 1.00 pc - bc 

AT -0.01 - 0.88 0.66 111.03 - 143.96 0.25 - 1.24 0.36 - 1.05 bd - bc 

PT -0.01 - 0.74 0.33 123.49 - 146.97 0.39 - 1.24 0.53 - 1.09 bd - bc 

ON 0.18 - 0.85 0.29 113.71 - 143.15 0.37 - 1.65 0.39 - 0.97 bd - bc 

OF 0.00 - 0.77 0.31 120.29 - 145.20 0.41 - 1.18 0.49 - 1.06 bd - bc 

DR 0.10 - 0.81 0.40 116.72 - 142.54 0.37 - 0.84 0.44 - 0.99 bd - bc 

G S
L

 

N B
 

MT -0.06 - 0.49 0.38 131.11 - 140.35 0.77 - 3.30 0.68 - 0.89 mc - bc 
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XT -0.09 - 0.65 0.45 128.09 - 139.98 0.54 - 2.52 0.60 - 0.89 mc - pc 

AT 0.13 - 0.64 0.38 126.71 - 143.49 0.53 - 3.19 0.58 - 0.97 bd - bc 

PT -0.08 - 0.68 0.52 123.65 - 146.77 0.75 - 3.67 0.54 - 1.08 bd - bc 

ON -0.06 - 0.71 0.23 121.85 - 145.55 1.07 - 4.78 0.51 - 1.06 mc - bc 

OF -0.02 - 0.62 0.20 125.77 - 144.40 0.60 - 3.93 0.58 - 1.03 bd - bc 

DR 0.16 - 0.82 0.26 115.10 - 138.67 0.16 - 1.27 0.40 - 0.90 bd - bc 

G
S

L
 A

B
 

MT -0.20 - 0.87 0.28 112.93 - 148.13 0.39 - 2.69 0.38 - 1.13 mc - bc 

XT -0.28 - 0.81 0.11 118.31 - 149.07 0.47 - 2.74 0.44 - 1.16 mc - bc 

AT -0.28 - 0.82 -0.06 116.82 - 146.19 0.34 - 4.07 0.43 - 1.07 bd - bc 

PT -0.06 - 0.80 0.22 119.15 - 147.17 0.68 - 1.93 0.46 - 1.10 pc - bc 

ON -0.15 - 0.77 0.22 120.54 - 147.09 0.86 - 2.59 0.48 - 1.10 mc - bc 

OF -0.25 - 0.76 0.31 121.61 - 144.12 0.63 - 4.13 0.50 - 1.02 bd - bc 

DR -0.21 - 0.76 0.38 121.39 - 143.43 0.30 - 2.45 0.50 - 0.99 bd - bc 

L
A

 

MT 0.19 - 0.76 0.43 121.29 - 136.93 0.11 - 0.91 0.49 - 0.81 bd - xc 

XT 0.05 - 0.78 0.38 119.70 - 141.72 0.10 - 1.10 0.47 - 0.92 bc - xc 

AT 0.15 - 0.77 0.32 120.65 - 139.12 0.25 - 1.61 0.48 - 0.86 bc - xc 

PT 0.06 - 0.77 0.33 120.72 - 141.71 0.05 - 0.43 0.48 - 0.92 bc - xc 

ON -0.12 - 0.81 0.62 117.38 - 143.89 0.17 - 1.57 0.43 - 1.00 bc - xc 

OF -0.23 - 0.77 0.39 120.49 - 145.87 0.09 - 0.49 0.47 - 1.05 bc - xc 

DR -0.16 - 0.81 0.49 117.70 - 144.77 0.13 - 1.03 0.43 - 1.02 bc - xc 

L
W

 N
B

 

MT 0.35 - 0.60 0.53 126.03 - 140.14 0.73 - 1.32 0.58 - 0.88 pc - mc 

XT -0.11 - 0.74 0.35 117.48 - 147.72 0.22 - 2.35 0.44 - 1.13 pc - xc 

AT -0.85 - 0.72 0.42 118.30 - 156.33 0.65 - 5.21 0.45 - 1.47 pc - xc 

PT -0.59 - 0.38 0.32 130.69 - 153.01 0.24 - 1.92 0.66 - 1.35 pc - xc 

ON -0.69 - 0.39 0.15 133.22 - 154.70 1.12 - 2.06 0.73 - 1.40 pc - bd 

OF -0.37 - 0.35 0.21 132.50 - 150.64 1.27 - 3.85 0.71 - 1.25 pc - bd 

DR -0.51 - 0.38 0.18 131.31 - 152.61 0.86 - 2.96 0.70 - 1.32 pc - bd 

L
W

 S
B

 

MT -0.43 - 0.16 0.00 142.31 - 151.86 1.09 - 2.60 0.94 - 1.28 mc - bc 

XT -0.12 - 0.25 0.09 141.08 - 147.43 1.35 - 3.58 0.91 - 1.10 xc - pc 

AT -0.55 - 0.48 0.29 135.42 - 152.26 1.79 - 6.80 0.76 - 1.29 xc - pc 

PT -0.55 - 0.23 0.00 142.24 - 152.09 2.29 - 4.48 0.94 - 1.28 xc - bd 

ON -0.46 - 0.16 0.04 142.95 - 151.43 2.27 - 7.15 0.97 - 1.25 xc - bd 

OF -0.48 - 0.10 -0.03 144.46 - 151.98 1.09 - 7.20 1.01 - 1.30 mc - pc 

DR -0.46 - 0.13 -0.05 143.58 - 151.37 0.59 - 4.54 0.98 - 1.28 mc - pc 

L
W

 A
B

 

MT 0.19 - 0.69 0.44 123.60 - 143.43 0.66 - 1.54 0.52 - 0.97 bd - mc 

XT -0.14 - 0.74 0.23 120.33 - 148.43 0.63 - 3.46 0.47 - 1.15 pc - mc 

AT -0.84 - 0.83 0.24 110.91 - 156.60 0.54 - 7.23 0.35 - 1.47 pc - xc 

PT -0.72 - 0.64 0.15 125.02 - 154.99 0.47 - 2.47 0.56 - 1.42 pc - mc 

ON -0.73 - 0.20 0.10 134.01 - 155.38 1.50 - 2.46 0.79 - 1.42 pc - mc 

OF -0.30 - 0.30 0.08 132.94 - 149.65 1.75 - 4.59 0.75 - 1.21 pc - mc 

DR -0.48 - 0.24 0.03 134.87 - 151.75 1.12 - 4.01 0.79 - 1.29 pc - mc 

L
E

 C
B

 

MT -0.12 - 0.58 0.37 74.99 - 129.73 0.02 - 0.50 0.11 - 0.63 mc - pc 

XT -0.35 - 0.64 0.02 81.52 - 129.08 0.05 - 1.02 0.14 - 0.63 mc - pc 

AT -0.25 - 0.33 0.02 78.74 - 135.00 0.04 - 0.67 0.13 - 0.77 mc - pc 

PT -0.35 - 0.49 -0.10 87.60 - 129.75 0.03 - 1.31 0.17 - 0.66 bc - pc 

ON -0.21 - 0.29 -0.05 82.38 - 136.33 0.02 - 0.56 0.15 - 0.80 bd - pc 

OF -0.25 - 0.38 -0.13 82.55 - 135.17 0.04 - 0.96 0.15 - 0.75 mc - pc 

DR -0.40 - 0.42 -0.10 87.42 - 133.11 0.05 - 0.77 0.17 - 0.72 mc - pc 

L
E

 E
B

 MT -0.47 - 0.64 0.39 60.19 - 151.34 0.00 - 5.76 0.07 - 1.25 pc - mc 

XT -0.11 - 0.63 0.15 60.83 - 147.00 0.00 - 3.86 0.07 - 1.09 pc - mc 

AT -0.24 - 0.69 0.11 55.68 - 148.56 0.00 - 4.90 0.06 - 1.15 pc - mc 

PT -0.30 - 0.59 0.05 62.12 - 149.23 0.00 - 3.53 0.08 - 1.17 bd - mc 
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ON -0.41 - 0.80 0.33 50.89 - 150.76 0.00 - 1.29 0.05 - 1.23 pc - mc 

OF -0.51 - 0.65 0.13 59.58 - 152.10 0.00 - 1.78 0.07 - 1.27 pc - mc 

DR -0.56 - 0.70 0.14 56.56 - 152.66 0.00 - 3.69 0.07 - 1.30 pc - mc 

L
E

 W
B

 

MT -0.66 - 0.47 -0.50 65.58 - 149.84 0.02 - 2.17 0.09 - 1.19 bd - bc 

XT -0.43 - 0.30 -0.18 77.67 - 146.96 0.05 - 1.91 0.13 - 1.09 pc - xc 

AT -0.47 - -0.17 -0.38 80.02 - 146.50 0.06 - 1.35 0.14 - 1.07 bc - bd 

PT -0.73 - -0.44 -0.48 83.92 - 149.61 0.03 - 1.63 0.15 - 1.18 bc - mc 

ON -0.59 - -0.06 -0.42 79.89 - 148.64 0.01 - 1.76 0.14 - 1.15 pc - xc 

OF -0.58 - -0.27 -0.41 78.91 - 148.66 0.02 - 2.30 0.14 - 1.14 pc - mc 

DR -0.66 - -0.32 -0.47 83.17 - 148.35 0.03 - 1.54 0.15 - 1.15 bc - mc 

L
E

 A
B

 

MT -0.20 - 0.59 0.30 75.96 - 134.05 0.03 - 0.76 0.12 - 0.72 bd - pc 

XT -0.12 - 0.71 0.06 80.58 - 132.21 0.06 - 1.10 0.14 - 0.69 mc - pc 

AT -0.21 - 0.61 -0.07 80.49 - 132.20 0.05 - 0.86 0.14 - 0.69 mc - pc 

PT -0.38 - 0.63 0.10 86.98 - 127.54 0.04 - 1.41 0.17 - 0.60 bc - pc 

ON -0.43 - 0.53 -0.05 83.69 - 136.86 0.03 - 0.93 0.15 - 0.79 bd - pc 

OF -0.15 - 0.59 -0.01 82.35 - 130.25 0.04 - 1.07 0.15 - 0.65 bc - pc 

DR -0.37 - 0.67 0.02 86.93 - 125.99 0.06 - 0.90 0.17 - 0.60 bc - pc 
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Figure B.7.1. Per pixel mean chl-a concentrations of three select years (2002, 2011, and 2020) for five North American 

Great Lakes where: GBL = Great Bear Lake, GSL = Great Slave Lake, LA = Lake Athabasca, LW = Lake Winnipeg and LE 

= Lake Erie.  
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Figure B.7.2. The proportion of Vector Autoregression (VAR) slopes (β) which are positive for a given parameter. GBL = 

Great Bear Lake, GSL = Great Slave Lake, LA = Lake Athabasca, LW = Lake Winnipeg and LE = Lake Erie. AB = All 

Basins, CB = Central Basin, NB = North Basin, SB = South Basin, EB = East Basin, WB = West Basin. MC = Mean Chl-a, 

XC = Max Chl-a, BC = Abnormal Chl-a, BD = Abnormal Chl-a Days, PC = Peak Chl-a DOY, MT = Mean LSWT, XT = 

Max LSWT, AT = Anomaly LSWT Days, PT = Peak LSWT DOY, ON = Ice On DOY, OF = Ice Off DOY and DR = Ice 

Duration. 

 


