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Abstract

Artificial intelligence (AI) research has largely focused on rational thinking, decision
making, goal achievement, and reward maximization. Emotions have been considered non-
essential, or even detrimental, when designing and implementing AI systems. With the
advancement in affective computing research and the increasing adoption of AI agents
as part of human society, there is a growing need to have a deeper connection between
human and machine. Although significant efforts have been made in affective computing
towards recognizing human emotions and generating human-like emotions, there has been
less progress towards using emotions to guide decision and understanding human social
context. This thesis focuses on emotions and context in decision-making, towards building
socially intelligent agents, that are adaptive and emotionally aligned with humans.

I first conducted a systematic review of the literature on implemented systems for
decision making that used emotions. I synthesized extracted data into four conceptual
model types, viz. Matching, Appraisal and Coping, Decision-theoretic and Parametric
and provided a process view of each type. Then, I implemented one such model as a
brain-inspired neural model. The aim was to model the role of affect guiding decision-
making, resulting in interactions that are similar to human interactions, while inhibiting
some behaviors based on the social context. The model was implemented using Nengo, a
python library for building and simulating large-scale neural models, using spiking neurons.
I then investigated how to supply such a model with context, known to be a very important
factor in emotional-based decision making. I proposed a computer vision spatio-temporal
transformer model and its variations for joint learning and prediction, and evaluated on an
existing Video Group Affect dataset. Improvements to social event prediction were shown
by utilizing affective information. Finally, I considered a real-world care-giving scenario
which demonstrates the potential of our model for establishing an emotional relationship
and interaction between older adults, care partners, people living with dementia, and three
exemplar robots.

The insights gained in this thesis may encourage AI and affective computing research
to develop agents that can simulate human affective and decision-making mechanisms, and
in the process understand humans better.
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Chapter 1

Introduction

“All the world’s a stage, And all the men and women merely players; They
have their exits and their entrances, And one man in his time plays many parts”

- William Shakespeare

The above words by William Shakespeare beautifully describe the social reality and how
we, as humans, play various roles and do our part. Emotion, affect, sentiment, feeling
are a core part of our being and they guide our decisions and behavior. Knowledge of
context in a situation gives people a holistic view and helps them in their day-to-day
interactions. Understanding the nuances of human social interaction remains a challenging
area of research, but there is a growing consensus that social identity, a person presents in
a given context, is a critical aspect [Goffman and others, 1978; Schröder et al., 2016; Konig
et al., 2016; Khan and Hoey, 2017; Konig et al., 2017; Francis et al., 2019]. Therefore,
understanding the social context, emotions and behaviors displayed by humans, and being
able to maintain an identity itself, are crucial skills for a Socially Intelligent Agent (SIA).

In human-human interaction, decades of anthropological and sociological research have
shown the importance of heavily context-dependent social identities and roles [Goffman,
1959; Stets and Serpe, 2019; MacKinnon, 1994]. Identities are usually defined linguistically,
and carry significant emotional weight. If a ‘doctor’ is advising a ‘patient’ in a ‘hospital’,
both present embodied, with culturally defined and shared identities that are appraised
by the other and by the self. The ‘hospital’ context pervades the entire interaction. The
actors in this situation will adhere to social norms and prescriptions that are conditional
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on identities and context for selecting emotional signaling and concrete actions.1 Doctors,
for example, are socially expected (in western cultures) to be authoritative and directive.
Patients, on the other hand, are expected to be deferential and accepting.2 Should those
same two individuals find themselves in another situation, say the patient is the judge
in a case brought forward by the doctor (ignoring the apparent conflict of interest in
this constructed situation), their expected behaviors may change. If behaviors do not
correspond in this way to the identities at play, then tension is sure to result. Such tension
can arise from uncertainties in the situation caused by environmental noise (e.g., someone
mishears something), or by lack of information (e.g., the context is not well defined). For
example, if the doctor upbraids the patient for not taking his/her medicine on time, it may
impact the interaction negatively. If the patient chooses a behavior (e.g. apologize), then
a reduction in this tension may be possible, and the interaction can be brought back to
normal. If the same two people meet at a wedding reception or a sports event, the different
context may give rise to uncertainty in what identities should be adopted.

Therefore, on top of maintaining an identity of their own based on the context and
culture, agents also need the ability to detect the identity and emotions of a human with
whom they are interacting. For example, if an agent is in a hospital setting and is given
a task to take care of a patient, it should know that, in the context of the hospital, it
should adopt the identity of a ‘care-giver’, and when it is interacting with a human, the
knowledge that the other is a ‘patient’ and the setting is a ‘hospital’ will establish the
social context in which the agent must act. If the human is a ‘nurse’ or a ‘doctor’, then
the agent may have to interact differently. An agent given a task of teaching a ‘student’ in
a ‘classroom’, on the other hand, should know that in the context of a classroom, it should
take on the identity of a ‘teacher’ and that the human being will be acting according to
the identity of a ‘student’. Interactions that do not conform to the cultural prescription
will result in restorative behaviors (as when the patient apologized to the doctor), or re-
identifications (the patient starts thinking of the doctor as his ‘tormenter’ and himself as
a ‘victim’). These transient, context-dependent, identities can become salient and highly
significant in a non-coherent interaction, from a cultural prescription perspective. Context
in humans may involve any situational factors such as location, event, people, cultural,
political, economical, etc., or their internal state of being. In this thesis, I focus on social
event context and emotions to guide decision-making for a Socially Intelligent Agent (SIA).

1We distinguish between norms and prescriptions as the former are more rule-like (e.g. you must not
‘butt’ into a lineup, or, in ancient times, a man was expected to open a door for a woman), and may
invoke sanctions (e.g. you must stop at a stop-sign even if there is no one around), while prescriptions are
emotional (e.g. you must be deferential to your parents).

2While this may be true in a hospital context, the behavior expectations would be substantially different
in a different social context and in other cultures [Henrich, 2020].
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A comprehensive computational model of emotions in social interaction is Affect Control
Theory (ACT) [Heise, 1987; MacKinnon, 1994; Heise, 2007; MacKinnon and Robinson,
2014], which includes components for identity, normative behaviors, prescriptive emotions,
context, and transient sentiments. Although ACT is based on human empirical data from
various cultural groups and is quite promising, it is yet to be adopted in AI applications.
Some challenges for ACT-type models exist, which if tackled, may help towards its long-
term adoption in various domains such as healthcare, home, business, academic etc., where
human interactions and social contexts are important. In this thesis, I propose using ACT
for SIA and capabilities to perceive social scene and infer social context and affect to make
appropriate decision or behave with human(s) in an emotionally aligned manner.

1.1 Socially Intelligent Agent

Human beings live in a socio-cultural environment, which influences and shapes human
perceptions, thoughts, actions and vice versa. This process of continuous and dynamic
interaction keeps on evolving with time. In that sense, it was rightly said by Heraclitus
that “The Only Constant in Life Is Change.” A human being who can adapt to the changing
society and/or change the society such that it adapts to the human can survive better.
With scientific and technological advancements, we are able to develop AI agents who can
become part of this society, perform required tasks autonomously or in an assistive fashion,
and/or interact with humans. But they still lack adaptability and understanding of the
culture, context, and emotions. Figure 1.1 shows a simplistic view of the main theme of
this thesis, which aims to explore the role of emotions and context in decision-making for
an adaptive SIA in an environment.

Figure 1.1: SIA in an environment

3



1.1.1 Motivation

Since my childhood days, I was inspired by a television series called ‘Small Wonder’ 3 .
It was about a robot named V.I.C.I. (Voice Input Child Identicant), built by a robotics
engineer, who embodies it in a human-like form, like his daughter. He wanted the robot to
learn and evolve from the social environment at his home with his family and neighbors.
They portray her as their adopted daughter and not a robot. She interacts with people
around her, helps the family with various kinds of tasks, learns behaviors and but lacks
emotional connection. The emotions displayed by her are still robotic in nature. I was
fascinated by the superhuman abilities that was given to a human-like robot and always
dreamt of designing a better version of V.I.C.I., one that is more emotionally aligned with
humans and socially intelligent. Building an SIA is the motivation behind this thesis.

1.1.2 Research Questions

This thesis outlines four aspects of SIA that can be considered while designing and devel-
oping such agents, as depicted in Figure 1.2. They are as follows: models of emotion in
decision-making, brain-inspired implementation of such a model, context understanding,
and modeling for a real-world scenario. There can be other aspects as well, but they are out
of scope in this work. This thesis aims to explore below research questions (corresponding
chapters provided in brackets):

RQ1: What are the existing computational models of emotion which have an AI imple-
mentation and consider emotion to guide decision-making and behavior? (Refer Chapter
2 for systematic review)

RQ2: Can ACT, which is an existing socio-psychological model of decision-making be
implemented as a biologically-inspired neural model of decision-making for SIA? (Refer
Chapter 3 for background on ACT and Chapter 4 for neural implementation of ACT)

RQ3: How well can a computer vision system infer social event context and perceived
affect, as required by SIA, in a visual scene? Does affect improve social event classifica-
tion? (Refer Chapter 5 for scene context understanding)

RQ4: How can a SIA be designed and simulated in a realistic scenario using ACT? (Refer
Chapter 6 for modeling user study)

3https://www.imdb.com/title/tt0088610/
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Figure 1.2: Outline of this thesis and corresponding chapters

1.2 Contributions and Publications

The main contributions based on the above research questions are:

1. Comprehensive systematic review of literature for computational approaches to emo-
tions in decision-making in AI agents
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2. Implementing a biologically-inspired neural model of emotions in decision-making in
social interactions, i.e. ACT, to be used by SIA

3. Building a visual perception component for SIAs towards social scene understand-
ing and infer social event context and perceived affect.

4. Modeling ACT in a real-world interaction scenario for care-giving robots (being the
SIAs) interacting with patients with dementia, human care-givers and older adults

A list of particular chapters related to the above four contributions and the correspond-
ing articles published and/or submitted with my collaborators are given below, along with
details regarding my contribution.

• Chapter 2: Models of Emotions in Decision-making and Behavior

Paper(s): Aarti Malhotra, Jesse Hoey, Rebecca Hutchinson and Gabby Chan.
Computational Models of Emotions in Decision-Making Agents: A Systematic Re-
view. Submitted to Journal of IEEE Transactions on Affective Computing. [Malho-
tra et al., Under Review]

Contributions: AM, JH devised the survey. RH and AM worked on the search
query formation. RH queried all listed databases. AM and GC did title and ab-
stract screening. AM did full text screening, data extraction, data synthesis, paper
writing. JH reviewed queries, screening, data extraction, synthesis and paper writing.

• Chapter 4: Biologically-inspired model of ACT

Paper(s): Aarti Malhotra, Terrence C. Stewart, and Jesse Hoey. A Biologically-
inspired Neural Implementation of Affect Control Theory. International Conference
on Cognitive Modelling, Toronto, 2020. [Malhotra et al., 2020]

Contributions: AM conceptualized the design and worked on the ACT implementa-
tion and simulation scenarios. TS assisted with gaining understanding of the Nengo
library usage for the implementation, reviewed the code and provided feedback. AM
did the paper writing and TS and JH reviewed the same.
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• Chapter 5: Social Context Understanding

Paper(s): Aarti Malhotra, Garima Sharma, Rishikesh Kumar, Abhinav Dhall and
Jesse Hoey. Social Event Context and Affect Prediction in Group Videos. In Work-
shop on Addressing Social Context in Affective Computing, ACII 2023. [Malhotra
et al., 2023]

Contributions: AM conceptualized the study and built the hypothesis. AM, GS
and RK annotated the dataset with event labels. AM worked on the open sourced
code and created the main model and its variants. RK and GS reviewed the code in
detail. AM did paper writing. All authors reviewed the paper.

• Chapter 6: Application

Paper(s):

Jill Dosso, Ela Bandari, Aarti Malhotra, Jesse Hoey, Francois Michaud, Tony
Prescott, and Julie Robillard. Towards emotionally aligned social robots for de-
mentia: perspectives of care partners and persons with dementia. The Journal of
Alzheimer’s & Dementia, 2022. [Dosso et al., 2022b]

Jill Dosso, Ela Bandari, Aarti Malhotra, Gabriella Guerra, Jesse Hoey, Francois
Michaud, Tony Prescott, and Julie Robillard. User perspectives on emotionally
aligned social robots for older adults and persons with dementia. The Journal of
Rehabilitation and Assistive Technologies Engineering, 2022. [Dosso et al., 2022a]

Contributions: JD constructed the survey, led participant recruitment, performed
data coding, analysis, and visualization, and wrote the first draft of the manuscript.
EB and JR researched the literature, conceived the study, and designed and piloted
early study materials. JR conceptualized the project and supervised the work. AM
and JH performed data analyses related to Affect Control Theory. FM and TP pro-
vided study materials. GG performed data coding and checking. All authors reviewed
and edited the manuscript and approved the final version of the manuscript.
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1.3 Chapter Summary

The rest of the chapters of this thesis are as follows. Chapter 2 provides a systematic
survey of computational models of emotions in decision-making and behavior. It also gives
some background on psychological, neuroscience and sociological perspectives. Chapter 3
provides background and details on ACT. Chapter 4 introduces biologically-inspired neural
model of ACT. Chapter 5 gives details about a new predictive computer vision model of
social event context and perceived affect in videos with group of people. Chapter 6 provides
ACT modelling in a real-world scenario. Chapter 7 provides conclusion, limitations, future
work and ethical impact.
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Chapter 2

Models of Emotions in
Decision-making and Behavior

“The intuitive mind is a sacred gift and the rational mind is a faithful ser-
vant. We have created a society that honors the servant and has forgotten the
gift.”

- Albert Einstein

Emotions can influence decision-making, learning, and other aspects of human be-
havior [Bechara et al., 2000; Feldman et al., 2022]. Emotion (or affect) is a property of
consciousness [Barrett and Satpute, 2019] and a part of every psychological phenomenon,
even those that are not explicitly emotional [Hutchinson and Barrett, 2019]. Artificial In-
telligence (AI) systems that involve affective social interactions with humans have largely
focused on detecting and generating emotions. However, the use of emotions for decision-
making in AI systems is a less well studied problem. In recent times, popular conversational
AI chatbots like ChatGPT1 have also stayed away from incorporating emotions. Modelling
emotions in artificially intelligence systems could give insights about human affective pro-
cess, and would be a step towards systems being more human-like and less robotic. Our
view is that incorporating emotions into decision-making and behavior in SIAs may allow
these agents to be more aligned with humans.

With the primary objective of understanding the relationship between emotions and
decision-making in implemented systems, in this work we present a systematic review

1https://openai.com/blog/chatgpt
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on the computational models that have leveraged emotions for decision-making in the
form of an AI system or simulation. Based on extracted emotional and decision-making
features, we perform data synthesis and categorize these into four high level model types,
and provide a process view of how each type uses emotions in decision-making. We also
provide supplementary information which may be useful for practical development.

This chapter is organized as follows: Section 2.1 provides background on psychological,
neuroscience and sociological perspectives on how emotions may be influencing human
decision-making. It also outlines related surveys. Section 2.2 introduces five features of
emotions in decision-making agents used for data extraction and provides a conceptual
view with a hypothetical scenario. Section 2.3 gives details on our survey methodology,
which includes search strategy, inclusion/exclusion criteria, and selection process. Section
2.4 provides the data extraction procedure and content for the final selection of papers
based on the five features and supplementary information. Section 2.5 focuses on data
synthesis and model type categorization. It gives the process view of each type. Section
2.6 provides discussion and limitations of the survey. Section 2.7 concludes the chapter.
Appendix A provides search queries.

2.1 Background

We give a brief background from various studies in psychology, neuroscience and sociology,
that provide some evidence of influence of emotions in human decision-making.

2.1.1 Psychology

Psychological experiments have demonstrated that, in task performance, positive affect
becomes experienced as efficacy and negative affect as difficulty, with predictable conse-
quences for an individual’s cognition and goals, e.g., a happy mood makes hills look less
steep [Schwarz and Clore, 1983]. Bechara et al. [2000] have shown that emotions influence
decision-making, learning, and other aspects of human behavior. Many views of emotion,
such as appraisal theories, were based on a stimulus-response model that posits a response
being a result of assigning meaning to a stimulus [Lazarus, 1991; Scherer, 2009; Rose-
man, 2011]. Some effects of fleeting incidental emotions over time on decision-making are
explored in [Andrade and Ariely, 2009]. The study provided empirical evidence using a
sequence of ultimatum and dictator games, for the enduring impact of transient emotions
on economic decision-making, suggesting that people tend to behave consistently with past
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actions and cognitions, earlier choices, that are unconsciously based on a fleeting incidental
emotion can become the basis for future decisions and hence outlive the original cause for
the behavior (i.e., the emotion itself). Hoelzl and Loewenstein [2005] suggest that both
anticipated regret and social takeover (i.e., in sequential decision-making, knowing that
someone else might step in and assume an investment that one has decided to quit) can
influence decision-making with regards to keeping an investment. Research such as [Hoelzl
and Loewenstein, 2005] reviews the implications of moral standards and moral emotion
for moral decisions and moral behavior. A study [Fong and Wyer Jr, 2003] found that
the participants’ decisions in a simulated investment situation and an academic situation
were mediated by the emotional reactions they experienced in response to alternative de-
cision outcomes. Haidt [2001] argued that people tend to form moral judgments rapidly
and effortlessly and, in turn, generate rationales that support their affect-laden judgments.
Emotion as information perspective can be found in [Frijda, 1988; Schwarz, 1990; Schwarz
and Clore]. van Dijk and Van der Pligt [1997] reason that positive emotions, like elation,
signal that everything is fine and no further action is required. On the other hand, negative
emotions, like disappointment, signal a problematic state of affairs and a need for careful
information processing.

2.1.2 Neuroscience

According to the classic James-Lange theory [Lange and James, 1967], the perception of
an emotion provoking stimulus leads to an emotional behavior, which then leads to con-
scious experience of the emotion. Damasio supported the role of emotions in judgment
and decision-making, and for human social action [Damasio, 1994]. His ‘somatic marker
hypothesis’ is related to the learned neural bias based on social conventions and ethics,
which helps in working with fewer alternatives and guides decision-making. The cases of
Phineas Gage, Elliot and others suffering from frontal lobe lesions, have much in common
when it comes to failure in the personal and social domain, due to a lack of affect asso-
ciated with an event, although the knowledge of affect remains. These cases were clear
illustrations of the significance of emotions in human decision-making and behaviors. Gray
[1994] presents evidence supporting the existence of neuroanatomical components that me-
diate three fundamental behavior-coordinating systems: approach, avoidance and, fight or
flight. These systems reflect corresponding categories of affective reactions: positive af-
fect and approach behavior; negative affect and avoidance, and anger/aggression and fear.
Davidson et al. [2000] presents evidence about the location of some of these systems in the
brain: the behavioral approach system in the left anterior cortex, and the behavioral inhi-
bition system in the right anterior cortex. Recent perspectives follow a constructivist view
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where the brain constructs concepts and categorizes incoming sensory events as similar
based on past experiences. When past experiences of emotion are used to categorize the
predicted sensory array and guide action, then one perceives that emotion [Barrett, 2016].
Emotions are varied in nature and cannot be localized to a single neural circuit. When
it comes to the observed pattern for any single emotion category, variation is the norm.
The mechanisms that implement constructions of emotions are not specific to the domain
of emotion but operate across cognitions, perceptions, and action [Barrett and Satpute,
2019]. The impact of social factors on decisions has been demonstrated with many dif-
ferent decision tasks, and there have been numerous investigations of the neural circuitry
and neurochemistry mediating these effects (see [Rilling and Sanfey, 2011; Phelps et al.,
2014] for reviews). A review of the overlap in the neural circuitry of race, emotion and
decision-making is provided in [Kubota et al., 2012]. Some studies have considered the
impact of social roles or identities in social interaction. EEG-based hyperscanning studies
showed asymmetric brain-coupling patterns of leader-follower participants in a dyad dur-
ing coordinated movements [Dumas et al., 2010]. The asymmetric phenomena were also
emerged from some studies of decision-making in game contexts [Balconi and Vanutelli,
2016]. This asymmetric pattern of coupling may be explained by the differential roles of
the partners during the interaction, and the participants may have different expectations
for the assigned roles.

2.1.3 Sociology

Historical and cultural variability suggests that, to an important degree, subjective expe-
riences and emotional beliefs are both socially acquired and socially structured [Thoits,
1989]. In this view, emotions are signals to the self, but also they are signals to others
and are the objects of others’ responses, primarily about social roles or ‘identities’. This
view of emotions starts by treating humans as primarily social animals and fundamentally
group-oriented, rather than individualistic and rational ones. Strong and persistent ties
in human networks are relational rather than transactional [Lawler et al., 2009]. In this
view, rationality exists at the level of groups of agents, not of individuals. Intelligence
is defined by a social order that exists in a group and is internalized by each member
through affective dynamical structures of roles or identities. Members of a group learn
these structures as children, growing to assume a set of identities within the structures as
adults. Members seek out other members of the group that play complementary roles, and
enact a joint behavior for their chosen relationship. Small-scale breakdowns are handled
through a restorative set of multi-modal communicative cues that are displayed in the voice,
face, gestures, and body, and are commonly referred to as ‘emotion’ signals. Larger-scale
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breakdowns are handled by cognitive skill in creating new structures that are reified and
internalized by group members [Berger and Luckmann, 1967]. The dynamics of the role
relationships, coupled with human ability to cognitively explore, in a time- and energy-
bounded fashion, using reason and rationality, allow the entire group to build, maintain,
enact, and transform a social order [Goffman, 1963] that is jointly optimal for survival.

Affect Control Theory (ACT) [Heise, 2007] operationalizes this viewpoint using a model
of emotional coherence based in language that was founded on the control principle of [Pow-
ers, 1973], which states something very reminiscent of the free energy principle [Friston,
2010]: that people try to minimize incongruencies by controlling their perceptions. Heise
tranposed this to the sentiment space of [Osgood et al., 1957a], imposed a denotative
structure from symbolic interactionism [Mead, 1934], and added affective dynamics [Gol-
lob, 1974]. ACT is a computational model that has been used to predict classes of human
behavior in a variety of settings [Heise and MacKinnon, 2010].

2.1.4 Related Surveys

We provide a brief overview of some existing works which have surveyed computational
models and applications, that use emotions in autonomous agents. In [Rumbell et al., 2012],
twelve autonomous agents, incorporating an emotion mechanism into action selection are
selected partially arbitrary and analyzed based on characteristics of the agent architecture,
the action selection mechanism, the emotion mechanism and emotion state representation,
along with the emotion model it is based on. A narrative summary of empathic virtual
agents and robots as observers generating empathy in users or as targets evoking empa-
thy in users, is given in [Paiva et al., 2017]. A short review that focuses on how agents
show emotion while communicating with other agents is provided in [Martınez-Miranda
and Aldea, 2005]. A review of single-user and group recommender systems is provided in
[Tran et al., 2021], with a focus on influence of personality, emotions and group dynamics.
A short review on academic emotions and student engagement models is provided in [Sub-
ramainan and Mahmoud, 2020]. A systematic review of works related to social robotics
as a tool in autism therapy is given in [Pennisi et al., 2016]. A brief review of a eight se-
lected computational models of emotions compared by affective processes and theoretical
foundations is given in [Rodriguez et al., 2011]. A short review of recommender systems,
which compares filtering techniques, affective mode and recommended items is provided
in [Raheem and Ali, 2020]. A review on eleven architectures of models of emotions for
intelligent agents in crisis simulations, comparing on the underlying theories, application,
advantages and disadvantages is given in [Loizou et al., 2012].
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A survey of computational models of emotion in reinforcement learning (RL) agents,
comparing emotion elicitation, emotion type and emotion function is provided in [Moerland
et al., 2018]. A review of intrinsic motivation and emotion in player modeling, focused on
simulation-based game testing is outlined in [Roohi et al., 2018]. A critical analysis of com-
putational models, frameworks or architectures for artificial emotion generation was done
in [Ojha et al., 2021] to examine if they satisfy five properties of domain-independence,
integration of mood, integration of personality, data-driven mapping of appraisals into
emotion intensities, and ethical reasoning for emotion regulation. A review on affective
recommender systems is done in [Katarya and Verma, 2016], classifying based on perspec-
tives such as research gaps, nature, algorithm or method adopted, datasets, the platform
on executed, types of information and evaluation techniques applied. A review on 27 stud-
ies based on e-learning environment used, the categories of the emotional states measured,
the affective measuring methods, modalities and the major research purpose is done in
[Mejbri et al., 2022].

All the related surveys mentioned above have either hand-picked models or have done
a non-systematic search for emotional models. In this chapter, we do a systematic search
in four databases, perform detailed data extraction and data synthesis, giving both an in-
depth view as well as a high level categorization of models. As far as we know, this is the
first comprehensive systematic review of computational models of emotions, implemented
in a system or simulation, and used for decision-making.

2.2 Conceptual View

In this section, we clarify the features used for classifying the surveyed papers. We first
use a toy example to give our interpretation of terms, and then describe each such term as
a feature that we subsequently array the surveyed papers along. Throughout we consider
that we are dealing with a situated agent: one that has some mental model of: its own
state and actions; its context (environment); its preferred states (rewards); and of the
temporally deep relation between itself, its context and rewards. Features will be shown
in bold, while other relevant terms are italics.

Consider a human (say Mr. Bean), who has to perform a task of driving his car from
home to a supermarket. There may be many decisions that he will have to take in order
to complete the task. This is his ‘Policy’, which consists of step-wise decisions for task
completion based on context. Consider there are four routes A, B, C and D for Mr. Bean
to choose from (Figure 2.1). These are Mr. Bean’s ‘Choices’. If he has driven to that
store before, he may have a mental map of the routes and any context that he remembers
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of it. If he has never been to that store, he may gain a mental model of his own self and
the environment he is in, as he experiences for the first time. This is his internal model.
If his self state and/or environment context changes, he may need to update his internal
model to match. This will mean he is ‘Learning and Adaptive’. In Mr. Bean’s case,
if the shortest route A which he usually takes is now closed for construction, he will need
to appraise the situation (termed as ‘Appraisal’), decide about which other route would
be best for him, update the policy and also update his internal model for the changed
environment. When deciding amongst three other options, say route B, C or D, he can use
a mental simulation to explore some or all of the choices, or he can avoid the simulation
and choose one (say at random) and go with it. Mr. Bean’s emotions or affective feelings
associated with any concept (be it person, place, behavior, choices, etc.) gives him a
subjective signal, a somatic marker [Damasio, 1994], that may help in guiding him to
make a choice. This is the ‘Role of emotion’ in his situation. These markers, thought
to be largely encoded in frontal lobes in the human brain, are considered to be associated
with specific contexts or plans, and give fast evaluations of appraised situations. For Mr.
Bean, if route C had a lot of potholes and was a bad experience for him before, he will have
negative somatic markers associated with it. He can use these markers to simply eliminate
route C from his available options, narrowing his focus to options B and D, and simplifying
his subsequent decision process. Emotional process or affect in that sense is an ongoing
process. It can be unconscious (which may not be appraised) or conscious (which may be
appraised). If emotions are appraised after a decision is made, it may help in evaluating
the decision and take corrective action.

Figure 2.1: Hypothetical decision-making scenario used to explain terms.

Mr. Bean’s example was a hypothetical scenario, deliberately simplified to help solidify
the interpretation of terms we use in this chapter. If the situation is social, e.g., replace the
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supermarket with a social objective involving a group of agents, and the paths with social
etiquette, then one can see that the ‘narrowing’ of paths using emotional markers may
be critical to make the explored state space manageable in a short period of time, while
being socially intelligent. In Figure 2.2, the five features are shown in task learning and
execution, which will be a part of the main data extraction when we turn to analyzing the
computational models of emotions in decision-making in section 2.5. Note that a learning
and execution of a task can happen at the same time or in different phases, and that the
word Agent in this study is referred to the affective decision-maker. A description of each
of these features is given below.

Figure 2.2: Five features of a decision-making affective agent. Each feature has a number
of options, giving in total 144 possible models which we will reduce to 4 categories in
section 2.5.

2.2.1 Learning and Adaptive

This indicates if the agent can learn and adapt to its environment. The options for this
feature can be ‘Yes’ or ‘No’. ‘Yes’ would mean the agent can update or switch to a different
internal model of the environment in case of changes. ‘No’ would mean its internal model
of the environment remains fixed.
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2.2.2 Appraisal

This indicates assessment type of the situation or context by the agent. If the agent only
assesses emotions (of itself or another agent/human), the appraisal is ‘Emotion-based’. If
the agent assesses the value of choices or whether a goal is reached or not, then it is ‘Utility-
based’. If the agent assesses the gap between its own prediction and the actual situation,
then the appraisal is ‘Error-based’.

2.2.3 Role of emotion

This indicates whether the role of emotion is directly influencing ‘Behavior selection’, or
indirectly influencing behavior selection via ‘Reward shaping’, ‘Utility shaping’ or ‘Behavior
parameter tuning’. Lisetti and Gmytrasiewicz [2002]’s work highlights seven different ways
that emotions modify decision-making. Moerland et al. [2018] describes five ways in which
emotions impact decision-making. Lisetti and Gmytrasiewicz [2002]’s list (prefixed by
letter ‘L’) is given below:

(L1) emotions change perceptual processes;

(L2) emotions change action space (a) narrows action sets; (b) changes state probabilities
to make states more/less likely predictions;

(L3) emotions change utility functions or desires;

(L4) emotions can define new goals, essentially an exploration bonus in RL

(L5) emotions can directly specify actions

(L6) social contagion

(L7) social rationality - modification of reward to include group goals

Moerland et al. [2018]’s list (prefixed by letter ‘M’) is given below. Here we also show the
relationships between the taxonomies of Lisetti and Gmytrasiewicz [2002], Moerland et
al. [2018] and our quadruple of emotion roles:

(M1) modification of the reward function and reward shaping; corresponds to Lisetti &
Gmytrasiewicz’s (L3) and to our ‘Reward shaping’ or ‘Utility shaping’
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(M2) modification of the state, e.g., augment the state with emotion and plan over it;
(L1), (L2b)

(M3) meta-learning in which affect changes model hyperparameters like learning rate; (L4)
and ‘Behavior parameter tuning’

(M4) action selection (L5) and ‘Behavior selection’, or the exploration/exploitation trade-
off; (L4) and ‘Behavior parameter tuning’

(M5) epiphenomenal - sending emotional signals for the sake of sending emotional signals.
(L6)

2.2.4 Choice Exploration

This provides the choices explored by the agent in a temporal depth in the future. It can
be ‘All’, ‘Narrowed’ or ‘None’. In a pure decision-theoretic framing of any situation, ‘All’
is the only option. Exploring all choices to find the best option may be time-consuming.
Some algorithms may, nevertheless, prune certain parts of the state space based on some
heuristics and threshold settings, but these are non-emotional, such as estimates of ex-
pected utility. Exploring narrowed set of choices may make decision-making process faster.
No choice exploration may mean that the agent has been directed to choose a particular
option in a given situation.

2.2.5 Policy Computation

This focuses on policy computation being ‘Static’ or ‘Dynamic’. ‘Static’ means policies are
pre-determined hand-coded strategies for what decision to take in a particular situation,
whereas ‘Dynamic’ means policies are computed based on the current situation. Policy
computation may involve variable factors, resulting in a policy based on the situation.
This can be more generalized as opposed to static policies that have to be defined for each
situation an agent may encounter.

2.3 Survey Methodology

A systematic literature review methodology was chosen for this survey in order to find and
examine computational models of emotion in decision-making (or behavior as purposeful
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action) in AI systems discussed in the published literature. This study followed Kitchen-
ham’s guidelines [Kitchenham, 2004] for conducting the review, except for in the study
quality assessment stage as we were interested in all models regardless of their efficacy.
Guidance on design was also found in the PRISMA 2020 [Page et al., 2021] explanation
and elaboration document.

2.3.1 Identification of Research

Information Sources

Four databases were searched on October 20th, 2021, to identify relevant papers. The
same searches were rerun on June 12th, 2023 to identify relevant papers that were newly
published or recently added to a database. The IEEE Xplore Digital Library and the As-
sociation for Computing Machinery Full-Text Collection were searched to find studies on
affective computing from the computer science and software engineering disciplines. The
PsycINFO database was chosen to identify relevant studies in psychological and neuro-
science research, and it was searched via the American Psychological Association PsycNet
interface. Scopus, an interdisciplinary database covering these areas and more, was also
searched. Due to time constraints, we were not able to employ supplemental search tech-
niques such as citation searching or handsearching. We also chose to focus on the scholarly
published literature due to the broad nature of the topic, but the lack of a grey literature
search could result in missing some models due to publication bias.

Search Strategy

The search process began by identifying the main concepts within the research topic:
emotion, behavior, and artificial intelligent agent. Preliminary searches were conducted
to identify related reviews as well as appropriate keywords. The search was constructed
in the Scopus databases and possible keywords were tested using the AND NOT operator
to determine what would be missed if they were not included. Nesting was used for the
AI agent concept, for which there are some phrases that adequately describe both aspects
of this concept but also some phrases and keywords which only describe the AI aspect
or the agent aspect (ex. computational model) so they had to be ANDed together. See
Appendix A for the complete database searches.

The search results were also checked against previously identified relevant papers to en-
sure those would be retrieved. The final Scopus search was adapted for the other databases’
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search interfaces and features. Phrasing and truncation symbols were used as needed and
searches were limited to English when databases allowed.

2.3.2 Selection of Studies

We list here the inclusion and exclusion criteria, which were used for screening the papers.

Inclusion criteria:

• studies that describe computational models which make decisions based on an emo-
tional input, and act accordingly;

• the model must be described to a degree where researchers can understand how it
works;

• it must be implemented in a system that autonomously makes decisions;

• emotion, affect, sentiment or feeling must be involved in decision-making process the
AI agent has;

• the AI agent can be a virtual agent or human, a bot, a computer simulation, or a
robot or any form in which AI agent is implemented;

• written in English; and

• only peer reviewed research papers.

Exclusion criteria:

• studies that describe using an AI agent’s emotions to influence human decision-
making;

• models that use explicit rule based decision-making and behavior;

• studies that present a dataset (any modality) of emotion expressions and a classifier
only;

• work that simply expresses emotion without any reason for it or any understanding
of its effects;
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• work that computes some form of emotional representation, but uses it only to verify
a model of emotion;

• modelling only human’s behavior guided by human’s emotion;

• uses traits, moods and/or personality considerations in decision-making; and

• surveys, reviews, thesis or position papers (see section 2.1.4 for a review of related
surveys).

Study Selection Process

In October 2021, 5360 results were exported into RefWorks and duplicates were removed.
4710 unique records were exported into Covidence to facilitate screening and data extrac-
tion. In June 2023, 6414 results were exported into Covidence and duplicates were removed.
This added 1019 new unique results to review. Hence out of 11774 total exported search
results, 5729 were screened at the title/abstract stage. See PRISMA flow diagram in Fig-
ure 2.3 for more details on our search and screening results. Two reviewers (AM and GC)
independently screened the titles and abstracts of all the unique records added into Covi-
dence. Any disagreements about relevance were resolved through consensus. Overall, 843
papers that met the selection criteria were moved into the full text screening stage, which
was completed by one reviewer (AM). Based on the selection criteria, 714 papers were
excluded at the full-text stage (e.g. 172 for being rule-based, 101 for lacking a description
of a working model). Finally, 129 papers were included for final data extraction. Some
studies outlined the same model, giving us a distinct set of 102 models. Figure 2.4 shows
the distribution by publication year. There seemed to be an increase in papers on the topic
of this survey intermittently till June 2023.

To define our scope of survey with good focus, we had stricter criteria regarding imple-
mentation in system or simulations. Papers like [Gratch and Marsella, 2004] and [Ahn and
Picard, 2005] did not get included due to implementation being briefly discussed. Also,
in search queries, we considered papers where the search terms ‘behavior’ and ‘emotion’
were within 5 words of each other, to limit the huge results. Papers like [Hudlicka, 2004]
and [Malhotra et al., 2020] did not appear in search results. The former was due to the
word distance criteria and the latter was part of proceedings which was not indexed in the
chosen databases.
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Figure 2.3: PRISMA flow diagram for our systematic review.

2.4 Data Extraction

We studied the included 129 papers that satisfied the selection criteria, and extracted
the relevant emotional and decision-making features, viz. Learning and Adaptive, Ap-
praisal, Role of emotion, Choice exploration and Policy computation, that were
highlighted in section 2.2.
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Figure 2.4: Distribution of papers by publication year

2.4.1 Design and Contents of Data Extraction Chart

Table 2.1 Part 1 and Table 2.1 Part 2 summarizes the emotional and decision-making
features reviewed in section 2.2 for the 129 selected papers. It shows the values for the
five features for all papers, grouped into four high-level categories marked with distinct
background color. These groupings will be discussed in more detail in section 2.5. Some
supplementary feature extraction is provided in section 2.4.3. Tables 2.2 - 2.8 show the
supplemental information of each paper for the four model types.

2.4.2 Data Extraction Procedures

The data extraction was done manually by AM and reviewed by JH. In case of multiple
publications on the same model, they were joined together in the supplementary extraction
tables, resulting in 102 models in total, even though each of them were cited separately. An
iterative approach was followed to get feedback from all authors as extraction progressed.
Google shared drive was used to collaborate and place artifacts to review.
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2.4.3 Supplementary information

Information (beyond the five main features) of seven additional features for each of the
102 models were extracted in tabular format for further reference. Note that these may be
specific to the application used in the study. This can be found in tables 2.2, 2.3, 2.4, 2.5,
2.6, 2.7, 2.8. Additional features considered are:

1. Whose emotions?
This indicates whose emotions the agent considers in the model. It can be ‘Agent’ or
‘Human’ or ‘Both’.

2. Emotions
This lists all the emotions that the agent considers for decision-making.

3. Decision or behavior
This provides the decision or an action that the agent takes in the model.

4. Summary of emotion-decision link
This provides application specific summary of emotional influence on decision.

5. Computational approach
This provides the computational approach taken for building the model.

6. Code
This gives details of the code specified for implementation. If not specified, ‘NA’ is indi-
cated.

7. System/Simulation
This provides if the implementation is in the form of a real world system or a simulation
of a real world or some imagined scenario. In case there are multiple agents involved, it is
specified accordingly.

2.5 Data Synthesis

Table 2.1 Part 1 and Table 2.1 Part 2 provide data extraction for emotions and decision-
making features of 129 papers (102 models), based on the features listed in section 2.2. In
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Figure 2.5: High level process view of agents of four model types (Matching, Appraisal
and Coping, Decision-theoretic and Parametric)
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the data synthesis, we categorized high level model types that surfaced based on distin-
guishing feature values. Accordingly, we labelled these high level model types as Match-
ing , Appraisal and Coping , Decision-theoretic and Parametric. A simplistic
process view of agents of each model type in an environment is given in Figure 2.5. In the
following, we provide an understanding of agents categorized under each model type and il-
lustrate with a few sample papers. The words ‘model’ and ‘agent’ are used interchangeably.

Matching model appraises the emotion of itself or the human in a specific context, and it
matches the behavior to use for that particular emotion, which is the decision. This model
is relatively simplistic. Such agents have no learning feature and any internal model is
fixed and not adaptive. Emotion-based appraisal is used as a guide to a static pre-defined
policy. No choices are explored. In our earlier hypothetical scenario, if Mr. Bean is a
matching agent, he may be pre-programmed such that if he is in a happy state, he should
take route A, or if he is sad, he should take route B. He will not explore or evaluate any
routes at any decision intersection. For example, a DJ agent in a bar setting [Rincon et
al., 2017], appraises the social emotional state of the audience, and based on that plays a
song of a genre that will make them happy. If they are already happy, then the DJ will
continue to play music of same genre. Each song is tagged with an emotion. Similarly in
[Callejas et al., 2014], a virtual recruiter system is designed to challenge or comfort a user
based on anxiety level. Anxiety is appraised by an external source and dialog is gener-
ated based on a static policy. In [Sharma et al., 2023], based on user emotion, a movie is
recommended by the system. In [Denecke et al., 2020], depending on the user’s emotion,
a mobile application with an integrated chatbot suggests activities or mindfulness exercises.

Appraisal and Coping models perform goal related utility appraisal, such that the
situation and progress towards a goal is assessed, resulting in an emotion. Further cor-
rective action is taken based on the appraised emotion. Agents of such type use a static
pre-defined policy and no choices are explored. If Mr. Bean is an appraisal and coping
agent, he will appraise the distance from the goal as he takes route A. If he is far away and
getting late, he may feel frustrated, and take route B. He will not explore or evaluate any
routes at any decision intersection. Such agents have no learning feature, and the internal
model is fixed and non-adaptive. For example, in [Becker et al., 2007], a virtual human
‘Max’ is simulated, wherein a situation-based coping behavior is used. A vacuum cleaner
robot in [Gluz and Jaques, 2014b,a] appraises the situation and changes its affective reac-
tions. In a robot navigation simulation [Zhang et al., 2006], if the agent encounters a wall,
or an obstacle or a goal, it leads to fear, frustration or happiness respectively. Based on the
emotion, the agent avoids obstacles or goes to the goal. In a buyer and seller agent nego-
tiation simulation [Qie et al., 2022], the emotional value of the offer affects the counter-offer.
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Decision-theoretic models perform utility-based appraisal, such that they appraise the
rewards during task learning, and label emotion based on that. Policy computation is
dynamic, such that actions are corrected based on the emotions, learning takes place and
the internal model is adaptive. All the choices are explored to evaluate utilities. If Mr.
Bean is a Decision-theoretic agent, he may learn by simulating all the routes to the su-
permarket. At each route choice, he may evaluate the distance to the goal and the rewards
or cost that he accrues and what he feels based on that. Accordingly, he will choose the
best route to follow. This may take a long time to compute the policy. But once learned,
he may simply follow the policy. In [Homolová et al., 2018], a game simulation is used,
where an agent plays an ultimatum game with a human, and based on expected emotion
as reward, accepts or reject offers. In [Mashayekhi et al., 2022], a multi-agent normative
society simulation is performed, wherein agents take prosocial actions based on guilt. In
a social dilemma game simulation [Yu et al., 2013, 2015], based on emotion as intrinsic
reward, action is selected and utility values are updated. In an agent maze navigation sim-
ulation [Chao et al., 2016], navigation action is changed based on emotional state as reward.

Parametric model types use error-based appraisal, such that they confirm predictions
made about the environment, use emotions as a guide to narrow down the choice explo-
ration, and take action according to a decision-theoretic policy only defined over those
narrowed choices. Emotion influences behavior parameter tuning, which eventually leads
to decision or behavior. Emotions are viewed primarily as models of noise/uncertainty.
For example, negative emotional appraisals are generated by failed predictions (surprise),
and lead generally to broader (more modeled uncertainty) posterior distributions, and thus
to more exploration in reinforcement learning agents. Policy computation is dynamic and
the internal model is adaptive. Learning happens during execution, even though the agent
may start with an initial learned model. If Mr. Bean is a Parametric agent, he may start
on route A based on his prior experience, but if it is now closed for construction, which
causes a prediction error, and an associated emotional signal (of increased uncertainty)
may guide him towards taking route D, which he feels more confident (good) about as
next best option. He will update his internal model of his environment and his feelings as
he executes the task. For example, in [Hesp et al., 2021], based on reward prediction error, a
policy is changed dynamically. In [Hoey et al., 2016], an agent in social interaction changes
self and/or other’s identity and/or behavior based on the prediction error (called incoher-
ence or deflection) of the interaction. In [Broekens et al., 2007], reward-based exploitation
or exploration behavior is used. Positive affect influences exploitation, whereas negative
affect influences exploration. In a multi-agent simulation of choosing shopping locations
[Han et al., 2008], the location is selected based on the emotional value of utilities and error.
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Figure 2.6 shows the distribution in percentages of models by model type. Out of 102 mod-
els, 28 were Matching type, 29 were Appraisal and Coping type, 32 were Decision-
theoretic type and 13 were Parametric type.

27.5%
28.4%

31.3%
12.8%

Matching
Appraisal and Coping

Decision-theoretic
Parametric

Figure 2.6: Distribution of models by model type

2.6 Discussion

To survey and analyze studies and systems involving emotions in decision-making, we se-
lected five features for extraction based on our understanding of human decision-making,
which is quite subjective and can be based on variety of factors (some of which the decision-
maker may also not be aware of). This makes the search for unique characteristics challeng-
ing as well as interesting. Compared to many machine learning tasks, there is no standard
benchmark for comparison of emotional models, making this analysis somewhat qualita-
tive. In data synthesis, we categorized all surveyed papers into four high level model types,
based on the features. Some models did have feature values which seem to be falling in
multiple categories, but from a holistic perspective they were put into the majority model
type. For example, the model in [Pereira et al., 2017], uses a guilt payoff matrix with
transition probabilities for decision to cooperate or defect in an iterated prisoners dilemma
game simulation, which may mean it is ‘Decision Theoretic’, but because of the preset
nature of its emotional appraisal, it seems more appropriate in the ‘Matching’ category.

Models of human emotions and decision-making can range from very simplistic to very
complicated. AI systems are generally application and task focused. Depending on the goal
of the system, the complexity of environment and the expectation from the decision-making
agent, one can utilize one of the four model types, or have a hybrid model. The matching
model type simply matches user’s emotion (regardless of context) to behavior selection,
but recognizing user’s emotion itself is a challenging task and is context dependent. If
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one uses matching model type for a real-world application, there may be a need for a
different emotion recognition module for each user context. The appraisal model type
infers user’s emotion based on limited set of situational utility contexts, and selects a
behavior based on the emotion. The decision-theoretic model type bases emotions on
rewards and generalizes across situations. The parametric model type bases emotions on
prediction error, which generalizes to even more situations (including those where utility
or reward is not well defined). In summary, the four model types, viz. Matching, Appraisal
and Coping, Decision-theoretic and Parametric, range from simple to complex mechanisms,
and specific to more generalized contexts.

This systematic review attempts to cover all the literature, but some sources may have
been missed. These include grey literature (sources such as new articles, publications which
do not have appropriate search registry). These were not searched due to time constraints.

2.7 Conclusion

In this systematic review, we analyzed 129 papers (resulting in 102 models) for compu-
tational models of emotions in decision-making and behavior, that are implemented as a
system or a simulation. It is a challenging task to compare such models qualitatively, and
to surface their characteristics. We used five key features (learning and adaptive, appraisal,
role of emotion, choice exploration, and policy computation) for comparing 129 papers and
clustering them into four high-level model types, viz., Matching, Appraisal and Cop-
ing, Decision-theoretic and Parametric. While much work has gone into matching
and appraisal and coping mechanisms, these have deficits in terms of a lack of adaptivity,
a fixed action selection mechanism and a disconnect from the situation (e.g. emotions
are connected to behaviors through ad hoc. rules). Decision-theoretic models alleviate
many of these issues, but are left using emotions as simple reward-shaping mechanisms,
which does not alleviate the decision-theoretic requirement of exhaustive search through
action space. Further, decision theoretic models for social situations are often based on
shared reward functions, which would expand the search through action space even further.
Finally, parametric models connect emotions with parameters and uncertainty, and thus
with model selection, thereby alleviating this last problem and providing a clear method for
narrowing computation over action spaces (by using models that only have such narrowed
spaces). Such a mechanism for emotion’s interaction with decision-making is well aligned
with recent findings in neuroscience [Hesp et al., 2021]. This survey may help researchers
to frame literature on the topic, utilize models based on their application, and push the
boundaries of emotion, cognition, decision-making and affective computing research in AI.
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Table 2.1: Part 1: Data extraction of five features of emotions in decision-making agent
in papers analyzed. Papers related to same model are grouped by round brackets. The
major row sections correspond model types, from top to bottom: Matching, Appraisal
and Coping. Colors are model types, and exceptions are shown in cross-hatched grey
color (otherwise the value is that at the top of the column in the same color).

Studies Learning

and

adaptive

Appraisal Role of

emotion

Choice

exploration

Policy

computation

Lesani et al. [2004], Callejas et al. [2014],

Pereira et al. [2017], Alhijawi [2019],

(Mochida et al. [1995]; Tsankova [2009]),

(Mei [2016]; Ying and Zhentao [2016]), No-

vianto and Williams [2011], Taurah et al.

[2019], Álvarez et al. [2019], Li et al. [2021],

Siqueira et al. [2018], Kao et al. [2019], Pa-

pangelis et al. [2014], Rubilar et al. [2014],

Lee and Kim [2018], Hoogendoorn et al.

[2010], Kaklauskas et al. [2018], Mizgajski

and Morzy [2019], Karabelnikova and Sam-

sonovich [2021], Sarrafzadeh et al. [2008],

Fischl et al. [2019], Polignano et al. [2021],

Rincon et al. [2017], Sharma et al. [2023], De-

necke et al. [2020]

Pimentel and Cravo [2009]

Johansson and Dell’Acqua [2012]

Chen et al. [2022a]

Liu and Ando [2008], (Esau et al. [2006];

N. Esau, L. Kleinjohann, and B. Klein-

johann [2007]), Antos and Pfeffer [2011],

Lim et al. [2012], (Sharpanskykh and Treur

[2013],Sharpanskykh and Zia [2014], A.

Sharpanskykh and K. Zia [2012], Sharpan-

skykh and Treur [2010], A. Sharpanskykh

and J. Treur [2013]), Becker et al. [2007],

(Pontier and Siddiqui [2009]; Hoorn et al.

[2008]; J. F. Hoorn, M. Pontier, and G.

F. Siddiqui [2012]; Pontier et al. [2012]),

(Gluz and Jaques [2014b,a]), Belkaid et al.

[2017], (M. Belkaid, N. Cuperlier, and P.

Gaussier [2015]; M. Belkaid, N. Cuperlier

and P. Gaussier [2018]), (Faghihi et al. [2009,

2008, 2011]), Zhang et al. [2006], De Carolis

et al. [2017], Belhaj et al. [2016], Donaldson

et al. [2004], Kiryazov et al. [2013], Xie et al.

[2019], Yongsatianchot and Marsella [2022],

Prasad and Thomas [2022], Zhai et al. [2022],

Maroto-Gómez et al. [2023]

Daglarli et al. [2009]

Punithan and Zhang [2018]

Kim et al. [2004]

Jauffret et al. [2013]

Cabrera-Paniagua et al. [2023]

Qie et al. [2022]

Tzeng et al. [2021]

Lu et al. [2021]

No Emotion Behavior selection None Static

Narrowed

Utility

Yes

No Utility Behavior selection None Static

Yes

Reward shaping

Yes Dynamic

Yes Emotion, Error

Emotion Utility shaping All

Yes Utility shaping

Yes All Dynamic

Yes Utility, Emotion
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Table 2.1: (contd.) Part 2: Data extraction of five features of emotions in decision-making
agent in papers analyzed. Papers related to same model are grouped by round brackets.
The major row sections correspond model types, from top to bottom: Decision-theoretic
and Parametric. Colors are model types, and exceptions are shown in cross-hatched grey
color (otherwise the value is that at the top of the column in the same color).

Studies Learning

and

adaptive

Appraisal Role of

emotion

Choice

exploration

Policy

computation

Biancardi et al. [2019], (Liu et al. [2008];

C. Liu, K. Conn, N. Sarkar, and W. Stone

[2007]; Conn et al. [2008]), Homolová et al.

[2018], (Tripathi et al. [2019]; A. Tripathi,

T. Ashwin, and R. M. R. Guddeti [2018]),

Rach et al. [2021],Huang et al. [2020],

Chen et al. [2022b], Moussa and Magnenat-

Thalmann [2013], Chao et al. [2016], Scher-

merhorn and Scheutz [2009], Gadanho and

Hallam [2001], Salichs and Malfaz [2012],

Castro-González et al. [2013], Gomes et al.

[2019], Feldmaier and Diepold [2014], Jiang

and Wang [2019], Lu et al. [2016], Nasir

[2018], Ficocelli et al. [2015], Zhou and

Coggins [2002], (Yu et al. [2015, 2013]),

Bagheri et al. [2021], Barthet et al. [2021,

2022], Wang et al. [2022], Mashayekhi et al.

[2022], Sequeira et al. [2014]

(Zhang and Liu [2009]; H. Zhang and S. Liu

[2009] )

(Hoefinghoff et al. [2013]; Hoefinghoff and

Pauli [2013])

Chen and Wang [2019]

(Matsuda et al. [2011]; Horio and Matsuda

[2010]),

Kuremoto et al. [2013]

Tsankova [2002]

Duell and Treur [2012], (Hoey et al. [2016];

Asghar and Hoey [2015]; Hoey et al.

[2018]), Hesp et al. [2021]

Han et al. [2008], Broekens et al. [2007],

Huang et al. [2018b], Wu et al. [2022], Jiang

et al. [2022], Zhang and Zeng [2023]

(Morgado and Gaspar [2005]; L. Morgado

and G. Gaspar [2005]; L. Morgado and, G.

Gaspar [2007])

Johansson and Dell’Acqua [2009]

Hogewoning et al. [2007]

(Lee-Johnson and Carnegie [2009]; C. P.

Lee-Johnson and D. A. Carnegie [2007])

Yes Utility Reward shaping All Dynamic

Utility, Emotion

Emotion
Reward shaping,

Behavior selection
Narrowed

Reward shaping,

Behavior selection

Utility shaping

Behavior selection

Yes Error Behavior parameter tuning Narrowed Dynamic

Error, Utility

Error, Emotion

Error, Emotion All

Utility

Utility
Behavior parameter tuning,

Reward shaping
All
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Table 2.2: Summary of model implementation characteristics for Matching model type

# Paper Whose
emo-
tion?

Emotions Decision or be-
havior

Summary of
emotion-decision
link

Computational
Approach

Code System and/or
Simulation

1 Lesani et al.
[2004]

Agent nervousness refuse or agree to
task allocation

based on nervousness,
agree or reject request
from faulty agent

Formula based JADE
(Java)

Multi-agent simu-
lation of fault sit-
uations

2 Callejas et al.
[2014]

Human anxiety provide comfort
or challenge to
human

based on human’s
anxiety, adapt agent’s
dialog

Strategy rules SAIBA Virtual recruiter
system

3 Pereira et al.
[2017]

Agent Guilt cooperate or de-
fect

based on the guilt, co-
operate or defect

Evolutionary Game
Theory (EGT)

NA Iterated Pris-
oner’s Dilemma
simulation

4 Alhijawi
[2019]

Human like, love, haha,
wow, wad and an-
gry

recommend digi-
tal products

based on user satisfac-
tion and emotion, rec-
ommend item

modified collabora-
tive filtering, simi-
larity of users

NA Item recommen-
dation simulation

5 Mochida et
al. [1995],
Tsankova
[2009]

Agent frustration
state(indicating
pleasantness and
unpleasantness)

reach goal and
avoid obstacles

frustration is used to
avoid obstacles and
reach goal

Braitenberg’s ar-
chitecture

NA Autonomous mo-
bile robot simula-
tion

6 Mei [2016];
Ying and
Zhentao
[2016]

Human happy, angry grasp or avoid the
object

when emotion is
happy, then grasp,
else avoid

Emotion-Driven
Attention(EDA)
model

Matlab Robotic manipu-
lator simulation

7 Novianto
and Williams
[2011]

Agent valence, arousal play red ball or
drums or sleep
dilemma

based on emotional
preference, select ac-
tion

probabilistic causal
network, appraisal

NA ASMO Robot
bear simulation

8 Taurah et al.
[2019]

Human anger, contempt,
disgust, fear,
happiness, neu-
tral, sadness,
surprise

selecting time ta-
ble for the stu-
dent

based on the student’s
emotion, plan a time-
table

NN, Microsoft
Emotion API

Java
Spring-
Boot

MOOC system

9 Álvarez et al.
[2019]

Human tense, excited,
cheerful, relaxed,
calm, bored, sad,
irritated, neutral

selection of song
to play

based on an emotion
to be induced to the
user, select a song to
play

Annoy algorithm
(Approx Nearest
Neighbor Search),
Collaborative fil-
tering

Java
Spring
webser-
vice

DJ music recom-
mender system

10 Li et al.
[2021]

Human 58 emojis and
context

dialogue re-
sponses

based on current
context and expected
emotion, generate
dialogue

Transformer NA chatbot system

11 Siqueira et
al. [2018]

Human 2D valence and
arousal

decide when to
extend conversa-
tions based on in-
coherence

emotional incoherence
- driven dialogue

Appraisal, emo-
tional coherence
matching

NICO
robot

DJ Robot in-
teractive system
with human

12 Kao et al.
[2019]

Human neutral, joy, sad-
ness, fear, anger,
surprise, disgust,
non-neutral

dialogue genera-
tion

user emotion used for
dialogue generation

generative model
SeqGAN

NA experimental sim-
ulation for chat-
bot

13 Papangelis et
al. [2014]

Human happiness,caring,
depression, inad-
equateness, fear,
confusion, hurt,
anger, loneliness,
and remorse

dialogue with the
user

based on the emo-
tional score, generate
dialogue

Action Weights
Learning (AWL),
pattern matching

NA Adaptive Dia-
logue System
(ADS) PTSD as-
sessment system

14 Rubilar et al.
[2014]

Agent threat navigation threat causes beha-
vorist reaction

FSM MODI
(two-
wheeled
robot)

robot navigation
system

15 Lee and Kim
[2018]

Human emotion intensity
vector

recall emotional
episode and in-
teract with user
(alerting, encour-
aging, showing
empathy)

based on past memory
of anticipated emo-
tions, robot reacts

modified Deep ART
network

Mybot
robot

Robotic system
interacting with
human in kitchen
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Table 2.3: Summary of model implementation characteristics for Matching model type
(contd.)

# Paper Whose
emo-
tion?

Emotions Decision or be-
havior

Summary of
emotion-decision
link

Computational
Approach

Code System and/or
Simulation

16 Hoogendoorn
et al. [2010]

Agent positive, negative option selection emotion and intention
influences that of the
other person

Differential equa-
tions, somatic
marker hypothesis,
neurological mir-
roring

Matlab simulations of
leaders and fol-
lowers in group
decision

17 Kaklauskas
et al. [2018]

Human anger, surprise,
happiness, dis-
gust, sadness,
fear, neutrality,
valence, arousal

select video ad based on viewers emo-
tional expressions and
physiological parame-
ters, show ad video

Multiple Resource
Theory

Microsoft
Emotion
API

video recommen-
dation system for
real estate buying

18 Mizgajski
and Morzy
[2019]

Human PAD news content rec-
ommendation

expected reaction
based recommenda-
tion for similar items
for user

affective user
based collaborative
filtering with tar-
geting by expected
reaction (AUBCF-
WTBER)

Python content rec-
ommendation
system

19 Karabelnikova
and Sam-
sonovich
[2021]

Agent valence, arousal,
dominance

selection of a
partner, changing
facial expression,
dance patterns

emotion based moral
schema and appraisal
based feeling leads to
bias in action selec-
tion

eBICA, appraisal,
somatic marker

Python,
Unreal
engine

simulations of
virtual pet and
3 virtual dance
partner bots,
and system ex-
periment with
1 human and 2
bots

20 Sarrafzadeh
et al. [2008]

Human 6 basic emotions
by Ekman

tutoring actions past action-emotion
pattern matched to
do next action

Fuzzy approach,
pattern matching

NA Affective Tutor-
ing System

21 Fischl et al.
[2019]

Agent happy, neutral,
distressed

drive towards or
away from human
or be stationary

based on human fa-
cial expression, agent
emotion influences be-
havior to drive to-
wards or away from
human or be station-
ary

Rule based, NEF Nengo,
Python

human-robot in-
teraction system

22 Polignano et
al. [2021]

Human 6D vector(joy,
anger, sadness,
surprise, fear,
disgust)

song suggestion compute list of sug-
gested songs for user
based on his affective
preferences and affec-
tive state

formula based af-
fective coherence
score

IBM
Bluemix

affective music
recommender
system

23 Rincon et al.
[2017]

Human PAD song selection DJ agent calculates
the social emotion
of audience and de-
cides the next song
to achieve goal of
happiness

ANN JaCalIVE
frame-
work

DJ agent-human
agents simulation

24 Pimentel and
Cravo [2009]

Agent positive, negative task specific ac-
tions

based on somatic
marker, chose action

Somatic Marker hy-
pothesis

NA Simulation of The
Iowa Gambling
Task (IGT), The
Restaurant World
(RW) task

25 Johansson
and
Dell’Acqua
[2012]

Agent sadness, happi-
ness, fear

path finding based on emotion,
plan path finding

formula based NA path maneuver-
ing simulation for
NPC

26 Chen et al.
[2022a]

Human VAD response dialogue based on emotion,
chat

Transformer-based Pytorch empathetic
response in cus-
tomer service

27 Sharma et al.
[2023]

Human anger, fear, sad,
disgust, happy,
surprise

movie selection based on user emo-
tion, recommend
movie

Similarity, SVD,
collaborative filter-
ing

Python movie recom-
mender system

28 Denecke et
al. [2020]

Human fear, anger, grief dialog generation depending on the user
emotion, activities or
mindfulness exercises
are suggested

Similarity OSCOVA SERMO, a mo-
bile application
with integrated
chatbot
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Table 2.4: Summary of model implementation characteristics for Appraisal and Coping
model type

# Paper Whose
emo-
tion?

Emotions Decision or be-
havior

Summary of
emotion-decision
link

Computational
Approach

Code System
and/or Simu-
lation

1 Liu and Ando
[2008]

Agent hopeful, elated,
surprised, anx-
ious, disap-
pointed, painful

expressions, voice
and posture

based on emotional
appraisal, and antici-
pation, change action

Emotion Appraisal
Module (EAM) and
Growing Network
(G-Net) module

brainCAD Semi-embodied
system (qViki)

2 Esau et al.
[2006]; N.
Esau, L. Klein-
johann, and B.
Kleinjohann
[2007]

Both happiness, sad-
ness, anger, fear,
neutral

head movements,
facial expres-
sions and natural
speech output

based on emotional
state of human,
agent’s emotions and
drives influence its
behavior

Formula based NA Robot head
MEXI system

3 Antos and Pf-
effer [2011]

Agent hope, fear, bore-
dom

update priority of
goals

based on the emotion,
update the priority of
goals

emotional opera-
tors

NA Simulations of
restless bandits
and forgaging
domain

4 Lim et al.
[2012]

Agent hope, fear,
arousal

actions related to
energy and well-
being

based on emotions,
take adaptive action

FAtiMA-PSI model ORIENT
(Java)

Simulation of
NPC

5 Sharpanskykh
and Treur
[2013];
Sharpanskykh
and Zia [2014];
A. Sharpan-
skykh and K.
Zia [2012];
Sharpanskykh
and Treur
[2010]; A.
Sharpanskykh
and J. Treur
[2013]

Agent hope, fear exit action of
group of agents

based on neighbor-
hood’s preparation to
emotional responses
for each option, exit
route is determined

Hebbian learning
principle, formula
based

LEADSTO,
Netlogo

Simulation -
multi-agent
evacuation sce-
nario

6 Becker et al.
[2007]

Agent PAD reactive, deliber-
ative situation-
focused coping
behavior

based on appraised
emotion, coping be-
haviors are considered

Appraisal, Coping,
BDI

NA Simulation of
virtual human
Max

7 Pontier and
Siddiqui
[2009]; Hoorn
et al. [2008]; J.
F. Hoorn, M.
Pontier, and
G. F. Siddiqui
[2012]; Pontier
et al. [2012]

Agent valence hug, attack,
change, avoid,
Pontier et al.
[2012] - moral
decisions

based on highest
expected emotional
satisfaction, action is
chosen

Silicon Coppélia
(EMA, CoMERG,
I-PEFiCADM)

Haptek
player,
Javascript

affective virtual
agent system
playing tic-tac-
toe, Pontier
et al. [2012]
has Trolley
and Footbridge
dilemma simu-
lation

8 Gluz and
Jaques
[2014b,a]

Agent OCC joy, fear affective reac-
tions

based on appraisal,
chose action

BDI, Appraisal,
BDN

AgentSpeak
- agent
pro-
gram-
ming
language

vacuum cleaner
robot system

9 Belkaid et al.
[2017]

Agent boredom, frustra-
tion

control a robotic
system in a visual
search task

emotional metacon-
trol intervenes to bias
the robot visual at-
tention during active
object recognition

ANN, Appraisal robotic
platform

robotic system
in a visual
search task

10 M. Belkaid, N.
Cuperlier, and
P. Gaussier
[2015]; M.
Belkaid, N.
Cuperlier and
P. Gaussier
[2018]

Agent pleasure, pain,
motivation

perception of sur-
rounding space

emotional modulation
of the peripersonal
space

dynamic neural
field (DNF)

Webots,
Promethe
NN sim-
ulator

simulate robot
approach mo-
tivation and
perception of
reachability

11 Faghihi et al.
[2009], Faghihi
et al. [2008],
Faghihi et al.
[2011]

Agent valence selecting behavior
from memory

based on the emotion,
reactive or delibera-
tive action is taken

Emotional codelets
in CTS architecture

NA Robot-
astronaut
simulation
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Table 2.5: Summary of model implementation characteristics for Appraisal and Coping
model type (contd.)

# Paper Whose
emo-
tion?

Emotions Decision or be-
havior

Summary of
emotion-decision
link

Computational
Approach

Code System and/or
Simulation

12 Zhang et al.
[2006]

Agent frustration/sorrow,
fear/dread,
joy/happiness

navigation based on emotion,
avoid obstacle or go
to goal

formula based NA Robot navigation
simulations

13 Daglarli et al.
[2009]

Agent distress, relief,
aggressive, enjoy

wander, head on,
avoid obstacle,
goal

emotions determine
sequences of behav-
iors

HMM, Q-SOM neu-
ral network

Matlab autonomous mo-
bile robot simula-
tion

14 De Carolis et
al. [2017]

Both human: VA based
(anger, sadness,
happiness, neu-
tral), agent:
OCC based

console, encour-
age, congratulate,
joke, calm down

based on human
emotion, robot
emotions are ap-
praised and chose
dialogue/expression

Dynamic Belief
Networks

NAO
robot

Assistive social
robot system

15 Punithan
and Zhang
[2018]

Agent happiness, sad-
ness

maze navigation
actions

emotion and reward
threshold based action
and emotion loop

reward based NA maze traversal
simulation

16 Belhaj et al.
[2016]

Agent joy, distress,
hope, fear, sorry
for, undefined

Walk, random
walk, rest, ask
for help self and
other, no action

based on emotion,
coping behavior is
chosen

Appraisal and Cop-
ing

NA RoboCupRescue
(RCR) simulation
agent in emer-
gency situations

17 Kim et al.
[2004]

Agent happiness, sad-
ness, anger, fear,
neutral

73 behaviors in 10
behavior sets

agent’s emotion influ-
ences the learning rate

reward based learn-
ing

OpenGL synthetic charac-
ter in the 3D vir-
tual world simu-
lation

18 Donaldson et
al. [2004]

Agent hunger, thirst,
fear - 3 values
(desirability,
potentiality, in-
tensity)

moving, thinking,
panicking in path
planning

based on intensity
and threshold of emo-
tional state, behavior
changes

emotional A*, Ap-
praisal

Python map and maze
traversal simula-
tion

19 Jauffret et al.
[2013]

Agent frustration navigation based on frustration,
change strategy to call
for help

formula based pre-
diction error

simulation
software

robot navigation
simulation

20 Kiryazov et
al. [2013]

Agent Arousal involuntary
(homeostasis)
and delibera-
tive (motivation
based work or
charge)

arousal impulse af-
fects the speed move-
ment and facial ex-
pression

formula-based,
WASABI EE

iCub
robot

service robot sys-
tem and simula-
tion

21 Xie et al.
[2019]

Agent fear, desire inten-
sity

crossing a high-
way or waiting

fear and desire en-
coded into the agents
decision-making for-
mula for crossing
highway or waiting

regression tree NA autonomous vehi-
cle traffic simula-
tion

22 Cabrera-
Paniagua et
al. [2023]

Agent anger, joy, fear selecting travel
route

emotion used in util-
ity of route

formula based NA simulation of
flexible passenger
transportation

23 Yongsatianchot
and Marsella
[2022]

Agent emotional stress evacuating or
staying home, al-
tering ones belief
and altering ones
goals

based on emotional
stress, change belief or
goals

Coping in POMDP NA evacuation simu-
lation

24 Prasad and
Thomas
[2022]

Agent fear response to an at-
tack

based on fear, select
action

formula based SPARQL cyber security
scenario simula-
tion

25 Qie et al.
[2022]

Agent utility value as
emotion

negotiation emotional value of the
offer affects counter-
offer

Weber-Fechner law,
cloud similarity,
formula based

NA Buyer and seller
agent negotiation
simulation

26 Zhai et al.
[2022]

Agent fear, happiness,
delight, intimacy

path selection number of velocity
space samples de-
pends on current
emotional level of the
robot

Particle swam op-
timization, formula
based

Gazebo
simula-
tor, Rviz
visual-
ization
interface

simulation of
robot path travel

27 Tzeng et al.
[2021]

Both valence comply or violate
a norm

based on valence,
comply or violate
norm

BDI, Appraisal Python simulation of
agent at grocery
store

28 Maroto-
Gómez et al.
[2023]

Both six basic emo-
tions

emotional re-
sponses

based on emotion, in-
teract

formula based NA social robot Mini
system interact-
ing with human

29 Lu et al.
[2021]

Human neutrality, plea-
sure, angry, sad

sleep, eat, work,
entertainment

based on user emo-
tional preference, se-
lect options of service

similarity based
matching

Matlab simulation of ser-
vice robot
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Table 2.6: Summary of model implementation characteristics for Decision-theoretic
model type

# Paper Whose
emo-
tion?

Emotions Decision or
behavior

Summary of
emotion-decision
link

Computational
Approach

Code System and/or
Simulation

1 Biancardi et
al. [2019]

Human warmth dialog and
non-verbal be-
haviors

based on warmth of
human, adapt the dia-
log and non-verbal be-
haviors

RL (Q-Learning) SAIBA
compliant
Greta/
Virtual
Interactive
Behavior
platform

Virtual guide sys-
tem

2 Liu et al.
[2008]; C.
Liu, K. Conn,
N. Sarkar,
and W. Stone
[2007]; Conn
et al. [2008]

Human anxiety, engage-
ment, and liking

robot mo-
tion,speed,shots,
background mu-
sic

based on the affective
states of a child with
ASD adapt its behav-
iors

RL (QV-learning) Simulink
software

Robot Basketball
system for chil-
dren with Autism

3 Homolová et
al. [2018]

Human positive (least to
most)

accept or reject
an offer

Based on expected
emotion as reward,
choose action

MDP Matlab Simulation of Ul-
timatum Game

4 Zhang and
Liu [2009]; H.
Zhang and S.
Liu [2009]

Agent positive, negative navigation based on expected re-
ward, navigate

RL (ACLDM
model)

NA Robot navigation
simulations

5 Tripathi et al.
[2019]; A. Tri-
pathi, T. Ash-
win, and R.
M. R. Gud-
deti [2018]

Human 3D vector (joy,
sadness, fear)

video recom-
mendation

based on the affec-
tive intensity of the
present video and user
actions, next video is
recommended

RL (SARSA,
Q-learning) and
Deep bidirectional
RNN

NA Video recom-
mender system

6 Rach et al.
[2021]

Agent valence, arousal claim, argue,
concede

select most appropri-
ate emotional tone
in dialogue, based on
emotion

RL (ϵ − greedy) EVA 2.0 multi-agent dia-
logue simulation

7 Tsankova
[2002]

Agent fear, frustration navigation based on emotion,
navigate avoiding
obstacle

RL (Q-learning) Matlab Autonomous mo-
bile robot simula-
tion

8 Huang et al.
[2020]

Agent valence, novelty
and motivational
relevance

navigation based on emotional re-
ward, take action

RL model-based
(MB) and model-
free (MF)

V-REP
robot sim-
ulator

static and ran-
dom goal reach-
ing task with mo-
bile robot

9 Chen and
Wang [2019]

Agent empathy and
counter-empathy

hunt indepen-
dently or in
teams in SG,
cooperation,
defect in PD,
accept reject in
UG

random action at
times or based on
empathetic utility,
take specific action

Adaptive Em-
pathic Learning,
Q-learning

NA multi-agent
game simulation
(Survival Game
SG, Prisoners’
dilemma PD,
Ultimatum Game
UG)

10 Chen et al.
[2022b]

Agent empathy cooperation,
defect in PD
and 3-agent
dilemma, ac-
cept reject in
UG

based on empathetic
and affective utility,
take action

RL(Q-learning),
Gradient Ascent,
prospect theory

NA multi-agent game
simulation (Pris-
oners’ dilemma
PD, Ultimatum
Game UG, 3-
agent dilemma)

11 Moussa and
Magnenat-
Thalmann
[2013]

Both 2 well-being emo-
tions, 8 blame
and praise emo-
tions, and 4 em-
pathic emotions

game play
speech action
selection

strongest emotion in-
fluences action selec-
tion

RL (Q-learning),
Appraisal

Java, hu-
manoid
robot

humanoid robot
system playing
tic-tac-toe with
human

12 Chao et al.
[2016]

Agent 4D vector (hope,
joy, fear, sad) and
intensity

navigation based on emotional
state and reward,
change action

RL, Q learning,
Appraisal

NA agent maze navi-
gation simulation

13 Schermerhorn
and Scheutz
[2009]

Agent positive, negative whether to ask
someone for di-
rections

based on affective util-
ity, choose action

POMDP, pattern
matching

NA preliminary robot
simulation

14 Hoefinghoff
et al. [2013];
Hoefinghoff
and Pauli
[2013]

Agent frustration action selection frustration level is
used as a threshold
for the selection of
actions

formula based NA Iowa gambling
task simulation

15 Matsuda et al.
[2011]; Horio
and Matsuda
[2010]

Agent fear cooperative be-
haviors

based on emotional
judgement, take ac-
tion

RL and Emotion
learning (DRE),
Monte Carlo

NA multi-agent sim-
ulation of grid
world
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Table 2.7: Summary of model implementation characteristics for Decision-theoretic
model type (contd.)

# Paper Whose
emo-
tion?

Emotions Decision or be-
havior

Summary of
emotion-decision
link

Computational
Approach

Code System and/or
Simulation

16 Gadanho and
Hallam [2001]

Agent happiness, sad-
ness, fear, anger

avoid obstacles,
seek light, wall
following

emotional intensity
changes, influence
behavior changes

RL (Q-learning) Khepera
robot
simulator

robot survival
task simulation

17 Kuremoto et
al. [2013]

Agent Pleasure, Arousal select movement di-
rection

emotion into action
selection

RL (Q learning) NA simulation of
2-hunter-1- prey
problem

18 Salichs and
Malfaz [2012]

Agent happiness, sad-
ness, fear

actions for food,
water/medicine,
world, other agent

emotion for learning
action selection

RL (Q-learning),
Appraisal

NA simulation of role
playing game
CoffeeMud

19 Castro-
González et
al. [2013]

Agent fear escaping, play, idle,
go to player, near-
off, dance, listen-
ing, stop, plugged,
remain, charged

learned fear behaviors Appraisal, Q-
learning

Maggie
robot

social robot sys-
tem interaction

20 Gomes et al.
[2019]

Agent happy, neu-
tral, unhappy
(on ordered
pair excitation-
discouragement,
satisfaction-
disappointment)

walk, flipping, run,
look to left, look to
right, pick up

based on emotional
impulse, change be-
havior

RL, Asyn-
chronous Ad-
vantage Actor-
Critic (A3C)

NA maze simulation

21 Feldmaier
and Diepold
[2014]

Agent 2D valence,
arousal

shortest path to
goal

core affect used to
bias the reward func-
tion to guide the deci-
sions of an agent

RL, Dyna
Q-learning, Ap-
praisal

NA maze traversal
simulation

22 Jiang and
Wang [2019]

Agent regret choose between
agent’s own de-
tection results or
requesting human
service

based on cost of
choices, regret influ-
ences decision-making

regret decision
model

NA human-multi-
robot path
planning simula-
tion

23 Lu et al.
[2016]

Agent novelty, hap-
piness index,
control

learning speed, ex-
ploration

intrinsic emotional
motivation based on
novelty, happiness
index, control, influ-
ences exploration and
learning

RL (model-
based VI)

NA rat in maze simu-
lation

24 Nasir [2018] Both happy, sad, neu-
tral, angry

pursue drive,
change emotion, be
idle

emotion state of hu-
man and robot consid-
ered in optimal policy
for convincing human
for task completion

MDP NA socially assistive
robot simulation

25 Ficocelli et al.
[2015]

Both Agent (happy,
neutral, sad,
angry), Human
(3D body pose
based)

verbal (speech) and
nonverbal (intona-
tion, facial expres-
sions, and gestures)
actions

Human affect affects
drives, which affects
robot emotions, using
which the verbal and
non verbal actions are
output

RL (Q-learning) C++ socially assistive
robot-human in-
teraction system
to create the par-
ticipant’s activity
schedule for the
day

26 Zhou and
Coggins
[2002]

Agent emotion variables
hand coded?

feeding, drinking,
playing

based on emotional
values, select behavior

RL (Q-learning) Khepera
robot

robot feeding and
drinking task sys-
tem

27 Yu et al.
[2015, 2013]

Agent positive
(joy),negative
(fear, sadness,
anger)

cooperate, defect based on emotion as
intrinsic reward, se-
lect action, update
strategy and utility
values

Multiagent RL NA Social dilemma
game simulation

28 Bagheri et al.
[2021]

Agent anger, sadness,
surprise, happi-
ness, fear, and
disgust

empathic behavior emotion as reward
marker for action

RL (Q-learning) NA Human robot in-
teraction system
for game playing

29 Barthet et al.
[2021, 2022]

Agent arousal select game state based on arousal, se-
lect game state

RL, K-NN NA rally-driving
game simulation

30 Wang et al.
[2022]

Human smile, not-smile empathetic behav-
ior

based on emotional
feedback, change pol-
icy

RL (Q-learning) NA human-robot in-
teraction simula-
tion

31 Mashayekhi et
al. [2022]

Agent guilt, conflict prosocial actions based on guilt, take
prosocial actions

RL NA multi-agent nor-
mative society
simulation

32 Sequeira et al.
[2014]

Agent novelty, valence,
goal relevance,
control

forgaging actions emotional appraisals
incorporated as re-
ward feature

RL, POMDP,
Appraisal

NA six forgaging sim-
ulations
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Table 2.8: Summary of model implementation characteristics for Parametric model type

# Paper Whose
emo-
tion?

Emotions Decision or be-
havior

Summary of
emotion-decision
link

Computational
Approach

Code System and/or
Simulation

1 Duell and
Treur [2012]

Agent positive, negative joint decision op-
tion selection

based on feelings and
intentions, select joint
decision option

Differential equa-
tions in temporal-
causal network

LEADSTO Multi-agent simu-
lation

2 Hoey et al.
[2016]; As-
ghar and
Hoey [2015];
Hoey et al.
[2018]

Both 3D EPA Socially interac-
tive behavior

based on the incoher-
ence between funda-
mental sentiments and
transient impressions,
take adaptive action

POMDP Python Simulations

3 Hesp et al.
[2021]

Agent valence action selection affect influences
agent’s confidence in
action selection

Deep active infer-
ence, MDP

Matlab T-maze agent
simulation

4 Johansson
and
Dell’Acqua
[2009]

Agent sadness, fatigue,
anger, fear happi-
ness

walk towards
food, stand still,
escape, explore,
eat food, go to
enemy, attack
enemy, go to
health pack

based on emotion,
change behavior pa-
rameters that affect
action

formula based NA Simulation of
food search-
ing agent while
avoiding enemy
agent scenarios

5 Han et al.
[2008]

Agent positive, negative location choice
for a shopping
activity

based on the emo-
tional value of utili-
ties, select the loca-
tion choice

Probabilistic utility
based formulas

NA multi-agent simu-
lation of choos-
ing shopping lo-
cations

6 Broekens et
al. [2007]

Agent valence exploration vs ex-
ploitation

positive affect influ-
ences exploitation and
negative affect influ-
ences exploration

RL, MDP, Boltz-
mann distribution

NA Alternating-Goal
and Candy task
simulation

7 Huang et al.
[2018b]

Agent valence robotic arm
reaching behavior

based on emotional re-
ward, take action

RNN with Hebbian,
Oja update rules

OpenSim
soft-
ware,
Jaco
robotic
arm

Simulation and
system for mus-
culoskeleton
robotic arm tar-
get reaching task

8 Morgado
and Gaspar
[2005]; L.
Morgado and
G. Gaspar
[2005]; L.
Morgado
and, G. Gas-
par [2007]

Agent joy, anger, fear,
sadness

path to the target based on emotional
dispositions, cognitive
processes are affected

Agent Flow Model,
A* planner

NA simulation of res-
cue agent

9 Lee-Johnson
and Carnegie
[2009]; C. P.
Lee-Johnson
and D. A.
Carnegie
[2007]

Agent fear, anger, sur-
prise, happiness,
sadness

path planning
and reactive, de-
liberative process

emotion-modulated
path planning

formula based, A* Matlab,
C

MARVIN robot
path planning
simulation

10 Hogewoning
et al. [2007]

Agent valence exploration vs ex-
ploitation

Artificial affect is
used to directly con-
trol the amount of
exploration by cou-
pling valence to the
β in the Boltzmann
distribution used in
action-selection

SOAR-RL (Q-
learning), Hybrid-
χ2 Method
(Schweighofer-
Doya, and
Broekens-Verbeek
method)

NA Cue-inversion
and Candy task
simulation

11 Wu et al.
[2022]

Agent positive, negative negotiation be-
havior, change of
offer

based on valence,
choose to explore or
exploit

Weber-Fechner’s
law, Q-learning

NA supply chain
buyer, seller
agent simulation

12 Jiang et al.
[2022]

Agent regret driver lane
change decision
under collision
risk

risk bias influences
lane change

PRED model NA lane change simu-
lation

13 Zhang and
Zeng [2023]

Agent positive, negative turn left or right emotional signals
modulate or inhibit
action selection

operant condition-
ing, memristor and
rolls emotion model

Analog
circuit

robot navigation
out of maze sim-
ulation
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Chapter 3

Affect Control Theory

Affect Control Theory (ACT) is a socio-psychological model, that proposes social percep-
tions, actions, and emotional experiences of humans are governed by a psychological need
to minimize incoherence between culturally shared, context-free sentiments about social
situations, and context-dependent sentiments resulting from the dynamic behaviors of in-
teractants in those situations [Heise, 2007]. This can be a powerful framework in designing
and developing SIA, that can take a social identity itself, consider the culture and context
it is in, while interacting with humans, and emotionally align its behavior. In this chap-
ter, we first give background on affective semantic space used by ACT in section 3.1 and
then give details on social interaction grammar of ACT, deflection, transient impression
formation and optimal behavior computation in rest of the sections.

3.1 Affective Semantic Space

Context-free and contextual sentiments (termed “fundamental sentiments” and “transient
impressions”, respectively) can be reduced to a real three-dimensional vector in an affective
space. As found through cross-cultural studies of human sentiments, these three dimensions
represent evaluation (how good vs. bad something is), potency (strong vs. weak) and
activity (active vs. inactive) [Osgood et al., 1957b]. The three-dimensional vector in the
affective semantic space is referred to as an EPA (Evaluation Potency Activity) profile.
Reducing sentiment to such a simple measure is found to account for over half of the
variance in sentiment across cultures, and is therefore hypothesized to be an organizing
principle of human socio-emotional experience [Osgood et al., 1975]. Affect control theorists
have compiled datasets of thousands of words along with average EPA ratings and variances
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obtained from survey participants [Heise, 2010].1 For example, most English speakers agree
that professors are about as nice (E) as students, however more powerful (P) and less active
(A). The corresponding EPA profiles are (1.61 1.58 0.35) for professor and (1.49 0.31 0.75)
for student.2 Note that the profile attached to an identity indicates the sentiments as
opposed to the function of the identity. In general, within-cultural agreement about EPA
meanings of social concepts is high across subgroups of society, and cultural-average ratings
from as little as a few dozen survey participants have shown to be stable over extended
periods of time [Heise, 2010].

Figure 3.1: 3D affective semantic space of concepts called EPA (Evaluation Potency Ac-
tivity) profile. The values of a dimension indicate its intensity on a scale ranging from -4.3
to 4.3 values.

3.2 Social Interaction

ACT models the formation of transient impressions from interaction events with a mini-
malist grammar of the form ‘Setting-Actor-Behavior-Object’ (S − A − B − O). Each of
these have an EPA profile: ‘Setting’ refers to the location context (e.g. ‘hospital’) or social
event context (e.g. ‘wedding’), while ‘Actor’ and ‘Object’ (as the linguistic ‘object’ of the
behavior) refer to the identities (e.g. ‘doctor’ and ‘patient’). The incoherence between out

1The EPA profiles in this thesis are from the Indiana 2002-4 dataset [Francis and Heise, 2006]. Code
and datasets can be found at affectcontroltheory.org and at bayesact.ca.

2The values range by convention from -4.3 to +4.3 [Heise, 2010].
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of context sentiments for each element in the grammar, and in context impressions when
the four elements are perceived together can be used as an optimization loss to compute
the best (most emotionally coherent) behaviors and identities. That is, ACT can answer
questions of the form ‘what should a doctor do to a patient in a hospital?’ (‘confer with’)
or ‘who would harass a policeman in a protest’ (a ‘delinquent’).3 The answers to these
questions are the identity and behavior that reduce emotional incoherence the most.

3.3 Deflection

According to ACT grammar [Robinson et al., 2006], the fundamental sentiment vector f
(represented by over-bar) is represented as follows:

f = (Āe, Āp, Āa, B̄e, B̄p, B̄a, Ōe, Ōp, Ōa) (3.1)

and the transient impression vector τ (represented by caret) evoked by an event is given
by:

τ = (Âe, Âp, Âa, B̂e, B̂p, B̂a, Ôe, Ôp, Ôa) (3.2)

Here A, B, and O represent the actor, behavior, and object respectively, and the sub-
scripts e, p, and a represent the evaluation, potency, and activity respectively.

In ACT, sum of squared Euclidean distances between fundamental sentiments and
transient impressions is called deflection D:

Di = (fi − τi)
2 (3.3)

Here, Di are deflections for actor (A), behavior (B), and object (O) on the response
dimensions of evaluation (e), potency (p), and activity (a). That is, i indexes over Ae, Ap,
Aa, Be, Bp, Ba, Oe, Op, Oa (and also over Se, Sp, Sa when settings are being considered).
Deflection arises when impressions produced by an event differ from fundamental senti-
ments. Deflection that cannot be resolved produces psychological stress, which is a serious
condition that can undermine one’s health. Deflection is related to unlikelihood: the more
deflection an event produces, the more that event seems stranger, more surprising, more
unique and even inconceivable. Consider for example, a professor who yells at a student.
Most observers would agree that this professor appears considerably less nice (e), a bit
less potent (p), and certainly more active (a) than the cultural average fundamentals of

3These optimal behaviors and identities use ACT and the Indiana 2002-2004 dataset.
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a professor. ACT treats the dynamics of emotional states and behaviors as continuous
trajectories in affective space. Deflection minimization is the prescribed mechanism, but
if deflection gets too high, it can result in re-identification of actor and/or object.

3.4 Transient impression formation

The transients existing after an event can be predicted from the transients that precede the
event by the equation given by τ = tM , where M is the matrix of prediction coefficients
estimated in impression-formation research, with one column for each post-event transient
being predicted. For example, Matrix M is 20 x 9, consisting of coefficients estimated
from U.S male data on ABO. Vector t contains pre-event transients along with interaction
terms that have been found to have predictive value in empirical analyses. Vector t given
below is 1 x 20, hence τ is 1 x 9. (Refer to [Heise, 2007])

t = (1, Āe, Āp, Āa, B̄e, B̄p, B̄a, Ōe, Ōp, Ōa,

ĀeB̄e, ĀeŌp, ĀpB̄p, ĀaB̄a, B̄eŌe,

B̄eŌp, B̄pŌe, B̄pŌp, ĀeB̄eŌe, ĀeB̄eŌp)

(3.4)

Note that ‘Setting’ is not considered here for simplicity. To show an example of how M and
t affects the calculation of τ , the following equation shows the post-event Actor’s evaluation
dimension estimated using the impression equations (considering non-zero values of first
column of M which related to Âe):

Âe = −0.26 + 0.41Āe + 0.42B̄e − 0.02B̄p − 0.10B̄a + 0.03Ōe

+0.06Ōp + 0.05ĀeB̄e + 0.03ĀeŌp + 0.12B̄eŌe

−0.05B̄eŌp − 0.05B̄pŌe + 0.03ĀeB̄eŌe − 0.02ĀeB̄eŌp

(3.5)

The coefficients in the above equation indicate the factors and the degree to which they
contribute towards the post-event evaluation of the actor. For example, the positive coef-
ficient on pre-event evaluation of actor Āe, means that the good actors are evaluated more
positively (in E) and bad actors are evaluated more negatively (in E), with a factor of 0.41.
The positive coefficient on combination terms like pre-event behavior and object evaluation
B̄eŌe means that the actors are evaluated more positively (in E) if they are observed doing
good things to good people, or bad things to bad people, but more negatively (in E) if
they are observed doing bad things to good people or good things to bad people, with a
factor of 0.12. Similarly, the other dimensions can be calculated for Â, B̂ and Ô giving τ
value as mentioned in eq. (3.2).
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3.5 Optimal Behavior

Action selection in an interaction would be based on any institutionally-appropriate, fea-
sible, and sentiment-affirming behavior. For example, in a medical setting, there would be
a doctor-patient interaction, where doctor’s identity is generally considered as quite good
and potent and somewhat active with an EPA profile as(1.90 0.69 0.05), whereas a patient
identity is considered a bit good, less powerful and quite weak with an EPA profile as (0.90
-0.69 -1.05). The sentiment-affirming behavior for a doctor would be to treat or instruct
the patient, so that his impression is maintained as good. If he does acts of yelling, cruelty
etc., his impression will be bad and will cause deflection and conflict. An event seems more
unlikely, uncanny, or unique as deflections (D) are larger. In ACT, the EPA profile for
the optimal behavior is regarded as the one that minimizes the unlikeliness of an event,
defined below. Note that i indexes over Ae, Ap, Aa, Be, Bp, Ba, Oe, Op, Oa (and also over
Se, Sp, Sa when settings are being considered).

k +
Oa∑

i=Ae

wiDi (3.6)

where k is a constant and w stands for summation weights. From eq. (3.6) and (3.3), we
have

k +
Oa∑

i=Ae

wi(fi − τi)
2 (3.7)

Minimizing unlikeliness or maximizing normality is obtained by setting partial derivatives
of the above equation to zero and solving for behavior terms, giving us the suggested
optimal behavior (for details refer [Heise, 2007]).

A software tool that implements ACT in Java is Interact4. It has a dictionary of various
datasets across six nations, ranging from 1977 to 2007, and consists of EPA profile ratings
for words (actor, behavior, object and settings), rated by male and female raters. This is
useful in cross-cultural and historical analysis. In addition, it also displays interactant’s
facial expressions. Some sample interactions using Interact tool are shown in Table 3.1.

A recent extension of ACT, called Bayesian Affect Control Theory (BayesACT) [Hoey
et al., 2016; Schröder et al., 2016; Hoey et al., 2021], puts uncertainty at center stage
by explicitly modeling variance in emotional sentiments about identities and contexts.

4Available for download at https://affectcontroltheory.org/resources-for-researchers/tools-and-
software/interact/
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Table 3.1: Sample ACT interactions

Emotion Actor Behavior Emotion Object Deflection Socially aligned

calm doctor instructs fearful patient 1.3 Y

angry doctor instructs fearful patient 3.1 N

calm doctor yells at fearful patient 6.8 N

angry doctor yells at fearful robber 0.7 Y

BayesACT generalises ACT by maintaining multiple hypotheses of behaviors and identi-
ties simultaneously as a probability distribution. It uses a Partially Observable Markov
Decision Process (POMDP) [Åström, 1965] to combine uncertainty at multiple levels with
decision-making. BayesACT accounts for the dynamic fluctuation of identity meanings
for self and the other during interactions, elucidates how people infer and adjust mean-
ings through social experience, and shows how stable patterns of interaction can emerge
from individuals’ uncertain perceptions of identities. For a more complete presentation of
BayesACT, and a more detailed analysis of the ‘doctor’ example, see [Hoey et al., 2021].

For long-term adoption of ACT in human-agent social interaction, there is a need to
design, simulate and validate social agents in real-world settings. In this thesis, we first
implement an ACT agent as a brain-inspired neural model and simulate a doctor-patient
interaction and a few game-play scenarios. Since ACT is originally text based, we attempt
a visual predictive system that can infer social event context and perceived affect in a given
scene. We model ACT in a care giving application where pet-robots assist older adults and
persons with dementia. Predicting identities and behavior is out of scope of this thesis.
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Chapter 4

Biologically-inspired model of ACT

“What I cannot create, I do not understand”

- Richard Feynman

Social neuroscience has primarily focused on a sense of self identity and how a person’s
mind creates a perception of another person, whereas affective neuroscience has focused
mainly on mapping emotions in the brain [Barrett and Satpute, 2013]. Social interaction in
humans involve emotions and decision-making in a given context. We can develop socially
intelligent agents in a non-biological fashion to replicate behavior of certain individuals,
or a group. But it may not replicate the human brain processes involved in simulating
such behavior. This is analogous to producing a flying behavior. We can get inspired by
birds and build a plane that can fly, based on physics and engineering, but without having
exact same wings and flying mechanism of birds. On the other hand, if we were to build a
bird-like flying agent and implement bird-like processes of flying behavior, we could do it in
a biologically-inspired fashion. This chapter is an attempt to provide an SIA with a brain-
inspired model of emotion and decision-making, and to combine social and affective domain
perspectives, as a step towards dissolving their artificial boundaries. Human processing
may have lot of variation, and we are still discovering human brain and its mechanisms.
Building a biologically-plausible model may help understand some human processes better.
This could potentially be implemented in an artificial brain someday. In this chapter, we
implement Affect Control Theory (ACT) as a brain-inspired model, towards gaining deeper
understanding of the neural mechanisms of emotions in decision-making.

In section 4.1, we first give some background on human brain and neural communi-
cation. In section 4.2, we outline brain components that may be involved in affective
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decision-making, and then give a brief perspective of emotions in the brain in section 4.3.
Section 4.4 introduces brain simulation library called Nengo and its modules. In section
4.5, we present a brain-inspired neural model of ACT using Nengo. We demonstrate a few
social interaction simulation scenarios in section 4.6 and present the results in section 4.7.
Conclusion and future work is provided in section 4.8.

4.1 Human Brain and Neural Communication

The human brain is an amazing part of the body that orchestrates our overall functioning
in an energy efficient manner. At a very high level, the brain under our skull is made
up of cortical sheet, sub-cortical areas (including basal ganglia, thalamus, brain stem and
other nuclei) and cerebellum [Barrett, 2017; Eliasmith, 2013]. The human brain con-
sists of approximately 100 billion neuron cells [Eliasmith, 2013]. To understand how the
brain works, it is important to understand the communication between neurons, which are
electro-chemical in nature.

Figure 4.1: A neuron structure, from [Barrett, 2017]

A structure of a single neuron as depicted in [Barrett, 2017] is shown here in Figure
4.1. A neuron cell body (called soma) consists of branch-like structures called dendrites on
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one end and a root called axon terminal on the other end. The gap between one neuron
and another is called synapse. If the current in a neuron cell body exceeds some thresh-
old, a voltage ‘spike’ is generated, such that an electrical signal is passed from one neuron
to the adjacent neuron via axon of the source neuron, releasing chemicals (called neuro-
transmitters) into synapse. These are picked up by dendrite receptors (special proteins) of
the following neuron. Neurotransmitters can excite or inhibit the receiving neuron. The
current in the receiving dendrite is called as postsynaptic current (PSC), which changes
the firing rate of neurons. In this way, multiple neurons can fire and influence many other
neurons, causing information signal flow in the brain. The neurons are heterogeneous in
nature, such that responses for the same current injected to the same kind of neurons can
be different [Eliasmith, 2013].

4.2 Cortex-Basal Ganglia-Thalamus loop

The cortex has neurons, that are believed to map representation of brain states to basal
ganglia. The output of basal ganglia is the selection of an action with highest utility,
which disinhibits appropriate thalamus areas, resulting in the relay of information back
to the cortex. This is called the cortex-basal ganglia-thalamus loop. A model of an
action selection in basal ganglia was presented by [Gurney et al., 2001], and converted to a
computational model in [Eliasmith, 2013] as shown in Figure 4.2. The matrix Mb specifies
a known context, which when computed as a product with current cortical state, provides
a similarity measure to the known contexts. The output of basal ganglia goes through
thalamus, back to cortex with matrix Mc, which specifies appropriate cortical state as
the consequence of the selected action. Some evidence suggests that single actions can be
selected without basal ganglia, but chains of actions seem to involve basal ganglia [Aldridge
et al., 1993]. In this chapter, we consider the role and influence of basal ganglia in decision
making and action selection.

4.3 Emotions in the brain

There have been various studies to find fingerprints of emotions in the brain. A classic
belief is that the sub-cortical region called amygdala is related to fear processing. But
evidences have shown that its activity can be related to emotional as well as non-emotional
events such as feeling of pain, learning something novel, or meeting new people. Modern
neuroscience suggests that no single brain area is dedicated to emotion. When current world
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Figure 4.2: The cortex-basal ganglia-thalamus loop, from [Eliasmith, 2013]

context and body state causes brain to predict the next state and action, based on past
experiences, the changes that take place in the body may be labelled as a particular emotion
by the perceiver, based on the culture and conditioning. This is brain’s construction of an
instance of emotion [Barrett, 2017]. In this chapter, we consider emotional meanings of
concepts as part of cortical representation.

4.4 Nengo

Nengo [Bekolay et al., 2014] is a python based neural simulator, that follows Neural Engi-
neering Framework (NEF) [Eliasmith and Anderson, 2004]. NEF outlines three principles
of representation, transformation and dynamics, that enable construction of large-scale
neural models. Representation means that population of neurons represent information
with time-varying vectors of real numbers. The corresponding Nengo object is called an
‘Ensemble’. Transformation between two neuron populations is set as synaptic connec-
tion weights of a function between them. This is computed as product of decoding weights
for that function in the first population, encoding weights for that function in the sec-
ond population and any linear transformation. The corresponding Nengo object is called
a ‘Connection’. Dynamics is when recurrent connections are introduced for persistent
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activity in the neural systems. The corresponding Nengo object could be some of the
‘Networks’, or if Ensemble is connected to itself. Other Nengo objects which are useful
are: ‘Probe’, which gathers simulation data for analysis, ‘Model’ that encapsulates a
Nengo model, ‘Node’ represents sensory and/or motor outputs. All the Nengo objects
defined above were used in implementing our neural model. The Nengo interface used for
demonstrating examples in this chapter is shown in Figure 4.3. Here, the vision compo-
nents are a vector representation of perceived input, mapped in the cortex. We used five
vision inputs from a stimulus (called as ‘stim’) related to ACT, for the demonstration of
social interaction scenarios, which will be discussed in the following section.

Figure 4.3: Nengo GUI

4.5 Neural Model of ACT agent

The novel contribution of this chapter is to take the underlying mathematics of ACT as
discussed in Chapter 3 and implement it using the spiking neurons. The goal here is to
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show that the calculations required by ACT can be implemented by spiking neurons, using
anatomical structure that fits the cortex, basal ganglia, and thalamus. In particular, it
is striking that the overall form of the theory maps very well onto a neural model of the
cortex-basal ganglia-thalamus loop that has been previously used to model a variety of
tasks [Eliasmith et al., 2012].

The core part of the algorithm that is modelled here and its relation to the neural
model of the brain is shown in Figure 4.4. In this work, the mechanisms for maintaining
and tracking the EPA values of the current situation is not modelled; rather, focus is on
the calculation of deflection and hence unlikeliness, given the event perception from an
object’s (AI agent) perspective and time t. That is, given the EPA values of the current
situation, the question is: what action should be performed by the object of the event?

This maps well onto the traditional roles of the cortex, basal ganglia, and thalamus.
Neurons in the cortex (1 in Figure 4.4) will represent the EPA values of the interaction, viz.
Modifier for Actor (Modactor), Identity of the Actor (Iactor), Behavior of the Actor (Bactor),
Modifier for Object (Modobject), Identity of the Object (Iobject). Setting is not considered
here for simplicity. The connections between cortical neurons and basal ganglia neurons (2)
will compute eq. (3.7), the basal ganglia (3) will find the action with the largest deflection
minimizing utility value, and the thalamus (4) will activate that particular action.

Figure 4.4: Neural implementation of ACT

While the overall mathematical function of this system is easy to describe and imple-
ment, it will be shown how spiking neurons can perform these operations. In particular,
here Neural Engineering Framework (NEF; [Eliasmith and Anderson, 2004]) is used, which
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is a general method for finding how to connect simulated neurons so as to get the best
approximation of any given algorithm. In general, the idea here is that the activity of
groups of neurons can be thought of as representing vectors, and the connections between
groups of neurons can be thought of as computing functions on those vectors. If we know
the set of functions that we want to compute then we can perform a sequence of local op-
timizations (one for each set of connection weights) that will find the best approximation
of the algorithm, given whatever type of neurons we want to use (including spiking and
non-spiking neuron models).

For the basal ganglia and thalamus, we can make use of already-existing models of how
to use the NEF to implement exactly the function that is desired here: a system that takes
in a set of values from eq. (3.7) and determines which one is the largest utility, say U ,
outputting that information to the thalamus. This has been previously shown to both map
on well to the anatomy of the basal ganglia and to exhibit realistic reaction times [Stewart
et al., 2010]. This system has been used in many previous models, including models of the
bandit task [Stewart et al., 2012] and the large functional brain model Spaun [Eliasmith
et al., 2012]. The same is used here without adjusting any parameters. Also, an inhibitory
“context” input is used, that provides a large negative value for any actions that should
not be considered.

While the basal ganglia and thalamus model take care of computing which of the action
values has the largest deflection minimizing utility U (i.e. which action should be taken),
this still leaves the question of how to have neurons calculate the eq. (3.7) values for each
action, given the basic EPA values.

Since this is simply a function, it is possible to train a neural network to approximate
that function. However, the general challenge of neural networks is that if the function
being approximated is too complicated, we will need a very large neural network to do
this (either very deep or very broad, or both). Importantly, the networks generated using
the Neural Engineering Framework have been analyzed in terms of the class of functions
that they are good at approximating when using a Leaky Integrate-and-Fire neuron model
with the default distribution of tuning curves [Eliasmith and Anderson, 2004]. This anal-
ysis indicates that these neurons are best at approximating functions that consist of linear
combinations of low-degree polynomials. Crucially, this is exactly the form of the calcu-
lation being done here (see eq. (3.5)). This means that we can use small numbers of
neurons (here we use 1500) with the same parameter settings as has been used in the other
biological models to approximate this function.

An example of the overall behavior of the resulting model is shown in Figure 4.5. The
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Figure 4.5: Example of behavior of NeuroACT

input is the EPA values for each of the 5 relevant terms. In this case, the situation is

[calm][doctor][instructs][fearful][patient]

and the corresponding input EPA values are [1.97 1.32 -1.4][1.9 0.69 0.05][1.85 1.65 0.3][-
1.64 -0.94 -1.15][0.9 -0.69 -1.05]. These values are fed into the convergence neurons. These
connections are completely random, meaning that any particular input will produce some
random pattern of neural activity that is unique to that input. From that activity, the
connection weights from the convergence neurons to the basal ganglia compute the eq.
(3.7) function for all of the different actions in parallel. For simplicity, here we only plot
three of those actions: ‘obey’, ‘disobey’ and ‘yell at’. Finally, the basal ganglia model finds
the largest of these activity values (i.e., ‘obey’) and directs that result to the thalamus, so
the object of the event, which is the patient in this case, can perform for better interaction.
This is also the optimal behavior according to the mathematical model.
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4.6 NeuroACT Simulation

To simulate NeuroACT model for social interaction involving affect, decision-making and
behavior, a single play of prisoner’s dilemma game scenario was used. Of the two players
involved; one represents a simulated human player agent (Actor) and the other represents
NeuroACT AI agent (Object). In the play round, each player can decide to either give two
coins to the other player (cooperation strategy) or take one coin (defection strategy) from
a common pile. Players can maximize their individual returns by defecting, or they can
jointly maximize their scores through mutual cooperation. In simulation scenarios, the AI
agent perceives the emotional state, identity and behavior of the human agent, and outputs
the optimal behavior it would choose (‘give’ or ‘take’) based on the ACT prescription of
deflection-minimization. Given that the human player has acted, the simulation outputs
what action the AI agent takes in that situation. The decision-making dynamics over
the time scale are demonstrated, such that if the perceived emotion of the human agent
changes during the play round, the AI agent changes its strategy as well. Change in
behavior can also result if the perceived identity of the actor and/or object changes. For
first two simulations, identity of both the players was kept as ‘stranger’, but for the third
simulation, the identity was changed from ‘stranger’ to a ‘friend’. EPA profiles used for
identity, modifiers and behaviors are as below:

[happy] : [2.92, 2.43, 1.96]

[angry] : [−1.45,−0.30, 1.13]

[stranger] : [0.02,−0.09,−0.23]

[friend] : [2.75, 1.88, 1.38]

[gives to] : [1.60, 1.47, 1.55]

[takes from] : [−1.40, 1.62, 1.50]

Inhibition: The dictionary of EPA profiles was used from Indiana 2002-4 dataset, which
consists of 500 behaviors related to various contexts, out of which we chose 2 behaviors for
the game context viz., ‘gives to’ based on phrase ‘sell something to’ and ‘takes from’ based
on phrase ‘capture’ for the simulation. If there was no mechanism of inhibitory neurons,
AI agent would have selected a deflection-minimizing behavior out of 500 options, but in
our case, it selects between ‘give’ or ‘take’ behavior only and others get inhibited.

To demonstrate the behavior of the model and show its ability to use neurons to perform
similar calculations as found in the standard Affect Control Theory, we provide cortical in-
put of 5 sets of EPA values representing a particular situation. Since neurons require time
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to respond, we hold this input constant for 0.5 seconds and then present a new situation.
In particular, we manually adjust the recognized emotion from ‘happy’ to ‘angry’, as this
causes ACT to produce a different action. It should be noted that, in this example, the
‘object’ is meant to correspond to the NeuroACT AI agent itself.

Scenario 1: Human agent cooperates with AI agent, with change in emotion

Perception at time t ≤ 0.5:

[happy][stranger][gives to][happy][stranger]

Perception at time t>0.5:

[angry ][stranger][gives to][happy][stranger]

Scenario 2: Human agent defects with AI agent, with change in emotion

Perception at time t ≤ 0.5:

[happy][stranger][takes from][happy][stranger]

Perception at time t>0.5:

[angry ][stranger][takes from][happy][stranger]

Scenario 3: Human agent defects with AI agent, with change in emotion and
identity

Perception at time t ≤ 0.5:

[angry][stranger][takes from][angry][stranger]

Perception at time t>0.5:

[happy ][friend ][takes from][happy ][friend ]

4.7 Results

Results for the simulation runs for scenarios 1 and 2 are shown in Figure 4.6 and 4.7
respectively. In both scenarios, the resultant behavior changes from ‘give’ to ‘take’ on
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Figure 4.6: Human agent cooperates with AI
agent, with change in emotion

Figure 4.7: Human agent defects with AI
agent, with change in emotion

perceiving the emotion of the human agent that changes from ‘happy’ to ‘angry’, given the
affective dynamics. In scenario 1 (Figure 4.6), the change in behavior seems slower and
more deliberate than in scenario 2 (Figure 4.7), where the change is faster and somewhat
automatic. This may be due to the actor’s behavior being more positive in scenario 1 as
compared to scenario 2. In scenario 3 (shown in Figure 4.8), the identity of both human
and AI agent are perceived as ‘stranger’ in an angry state, and the human defects with the
agent. In this case agent also decides to defect. But when the perception changes from an
angry ‘stranger’ to a happy ‘friend’, the agent decides to cooperate. Code for this work is
available at https://github.com/aarti9/neuroact

NeuroACT shows how affect influences decision-making and behavior. The behavior
chosen by the model matches with its non-neural counterpart in choosing the optimal
behavior as prescribed by ACT. The ability of the neural model to handle time dimension
is important for the temporal order of information processing similar to human brain circuit
[Gupta and Merchant, 2017].
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Figure 4.8: Human agent defects with AI agent, with change in emotion and identity

4.8 Conclusion and Future Work

Social interaction is a challenging area to replicate in brain simulations. NeuroACT is
a novel contribution implementing affective social interaction in spiking neurons. It is a
generalized and extensible neural model of ACT, capable of providing an AI agent with
the ability to interact with the other AI agents or humans. Input is an interaction percep-
tion and output is an optimal behavior selection. This is a step towards making socially
intelligent AI agents.

A specific doctor-patient interaction is demonstrated as an example for the model.
Simulation of a single play in prisoner’s dilemma game is provided. This can be iterated
as well, taking into account that in the next round of play, the actor and the object
change. NeuroACT can be used to model any other interaction. Future enhancements can
include settings for additional context, such as location or social event. The model can be
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expanded using similar methods to predict the emotion and generate re-identification of the
actor and the object post-interaction. This system can be enhanced by incorporating some
sensorimotor signals to integrate with physical robots. Some other improvements could
be considered involving a working memory component for the agent to utilize experience
from the previous interactions. The input to the model is a generic input, which can
incorporate visual, textual, or auditory forms, as all would eventually translate into verbal
concepts. Advances in neuroimaging techniques like hyperscanning to study the inter-brain
synchronization [Liu et al., 2018] in social interaction may give more insight into the neural
mechanisms at play.
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Chapter 5

Social Context Understanding

“It’s not the events of our lives that shape us but our beliefs as to what those
events mean.”

- Tony Robbins

Figure 5.1: Sample frames from VGAF dataset [Sharma et al., 2021] video clips with social
event search keyword and perceived affect label.

Social situation and relationship amongst people impacts the perception of inferred
affect [Dhall et al., 2015b]. Social event context can be helpful for affective AI systems in
making context-sensitive decisions [Marpaung and Gonzalez, 2017]. If AI agents have to co-
exist with humans, it is imperative for the agents to understand the human social context.
In this work, we aim to develop a visual system for the SIA to be able to predict social
event context and perceived affect in a social scene. This can be leveraged by NeuroACT
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and other ACT-type models and be used for other applications. Computer vision research
in affective computing has seen a lot of advances, from early research on facial expression
recognition to recent context-aware emotion perception. Group affect recognition [Baveye
et al., 2015; Dhall et al., 2012, 2015a; Guo et al., 2018; Huang et al., 2018a; Quach et al.,
2018; Tan et al., 2017] and group social event detection [Ahmad et al., 2016; Bossard et al.,
2013; Wang et al., 2016; Won et al., 2017; Xiong et al., 2015] have also gained attention
and are active areas of research.

Social event and affect prediction in a group setting is a challenging task, as not only the
specific detail of individual’s action matters, but also the overall context and affect play an
important role for overall scene understanding. Many early studies in affective computing
were focused on emotion detection using only facial expressions, but the importance of
understanding the context has been underlined in many psychological studies [Barrett et
al., 2011, 2019; Martinez, 2019]. Context may involve various facets such as location,
social events, culture, politics, social identities of people, etc. Here, we focus on social
event context as a step towards deeper, more human-like, understanding of a scene. Social
event contexts such as a group setting can have various correlated facial expressions and
actions. For instance, people in a wedding or a sports victory scene may be crying, but
they may be tears of joy. Considering only facial expressions or only actions may make it
non-trivial to predict the correct event and the perceived affect. Many group videos can
be perceived as multiple categories of context as well. Family group members may meet
casually, but end up fighting or quarrelling over some issue. A wrestler in a sport may
shake hands with the opponent at the beginning of a match and in the end hug him/her
as a courtesy gesture.

Contextual and affective information, if tapped into, can give insights and guide ar-
tificial intelligence towards being more human-like in nature. A dataset that captures
group affect label information in videos of different social events is the Video Group AF-
fect (VGAF) dataset [Sharma et al., 2021]. The dataset has three classes (positive, neutral
and negative) for perceived group affect, which are referred as ‘affect label(s)’. Fig. 5.1
shows few sample video frames from the VGAF dataset with social events such as Cel-
ebration/Party, Meeting and Protest. Social event context here includes overall scene as
well as human activity in a group setting. Videos are also labelled as positive, neutral and
negative respectively. Applications of prediction tasks on this dataset include inferring
social event and perceived affect from the scene for SIA, video captioning, automatic video
annotation, video search and retrieval, visual question answer (VQA), surveillance, event
based affective forecasting, and the ability to give agents the capability to understand the
scene, make better decisions and behave appropriately according to the situation.

For social scene videos, we needed a method to capture the spatial as well as the
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temporal aspect of the scene, along with short-term and long-term dependencies. One
such method is the transformer network [Vaswani et al., 2017]. Transformer based models
have outperformed in many tasks in NLP and computer vision, showing improvements over
traditional convolution-only models. They have been successful in image related tasks and
are extendable to videos with capabilities for handling multi-modal information. In this
chapter, the focus is on multi-task learning for social event classification in group videos
using a transformer network, involving spatial and temporal transformer encoders only.
Perceived group affect information is also utilized and shown improvements to the base
model. The contributions are as follows:

• We introduce ten social event category labels for the VGAF dataset [Sharma et al.,
2021] clips. The dataset originally had perceived group affect labels only.

• We use a spatio-temporal transformer network for social event and perceived affect
classification task on the dataset and show that it out-performs a convolution-only
network and another spatio-temporal transformer-only network.

• We propose multi-task joint learning of social event and perceived group affect in
videos, based on two strategies:

1. Affect information as a regularizer with spatio-temporal transformer only, and

2. Affect information with spatio-temporal transformer and a convolution classifier

• From experimental evaluations, we show that the use of affect improves social event
classification. We also show that a spatio-temporal transformer based model outper-
forms the state-of-the-art for group affect prediction on the VGAF dataset using the
visual modality only.

This chapter is organized as follows: Section 5.1 gives some background information.
Section 5.2 gives details about the dataset. Section 5.3 introduces proposed overall archi-
tecture and variations in models. Section 5.4 provides details about experiments. Section
5.5 presents results and discussion. Section 5.6 gives ethical impact of this work. Section
5.7 provides a conclusion and future work.

5.1 Background

We provide background on social event and group affect prediction. We also discuss video
vision transformers which is a motivation for our proposed method.
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5.1.1 Social Event Prediction

Automatic social event detection is explored in computer vision for many different appli-
cations. One of the early works on automatic social event detection was done by Bossard
et al. [Bossard et al., 2013], where they proposed a dataset (PEC) comprising of 61,364
photo collections from 14 different categories and used hidden Markov based model to
recognize events in the collection. In contrast to this work, Wang et al. [Wang et al.,
2016] identified an event from an image to indicate the importance of each image for the
application of creating a photo album. Further, a method proposed by Xiong et al. [Xiong
et al., 2015] also accounted for the interactions of humans and objects to recognize events.
The proposed approach is validated on the WIDER dataset which contains 60,000 images
from 40 different event categories. In another study, Huang et al. [Huang et al., 2010]
proposed a method for emotion recognition only on the textual data. The study focused
on the relation between emotion and event which give rise to a particular emotion. Events
can be recognized from the data of different modalities, however, there is often a media gap
between various modalities of the data [Zhou et al., 2020]. Having temporal data seems
beneficial for social event recognition.

Social event related research and datasets which are compared to VGAF are mostly
image based such as EiMM [Mattivi et al., 2011], SED [Reuter et al., 2013], CUFED [Wang
et al., 2016], PEC [Bossard et al., 2013], USED [Ahmad et al., 2016], WIDER [Xiong et al.,
2015]. Video based datasets related to social events have been mainly used for surveillance
and violence detection such as VSD [Constantin et al., 2020], ViF [Hassner et al., 2012],
complex events [Jiang et al., 2011] or only specific event [Conigliaro et al., 2015]. To the
best of our knowledge, VGAF is the only unconstrained video dataset that has a variety
of different social events along with labelled affect information.

5.1.2 Group Affect Prediction

Group affect recognition in a visual scene poses some interesting challenges as a lot of
interactions happen together. In social psychology, group affect was analyzed from a
top-down and bottom-up perspective in [Barsade and Gibson, 1998; Kelly and Barsade,
2001], both playing an important role in contributing to the detection of collective affective
state. One of the initial works on automatic group-level affect combining the top-down and
bottom-up approaches can be found in [Dhall et al., 2012]. The focus was on the happiness
intensity estimation in images of group of people based on social context using ‘in the wild’
database called HAPpy PEople Images (HAPPEI). The two approaches in the context of
attention mechanism applied to image captioning and visual question answering tasks is
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studied in [Anderson et al., 2018]. To analyze the overall affect of a group of people, the
common practice is to combine the facial and background features [Abbas and Chalup,
2017], [Rassadin et al., 2017]. Some other works on video based group affect can be found
in [Baveye et al., 2015], [Mittal et al., 2021]. In this chapter, the focus is to use the group
affect information and check if it improves the social event recognition. VGAF [Sharma et
al., 2021] is a relevant group dataset, having videos of different social events, labelled with
positive, negative and neutral group affective categories.

5.1.3 Video Vision Transformers

Transformer network based on self-attention proposed in [Vaswani et al., 2017] has proven
success in machine-translation and has been adopted in other NLP and computer vision
tasks as well. Videos can be represented as a sequence of image frames, similar to a sen-
tence being a sequence of words. To understand a video scene better, it is important to
capture long-range temporal and contextual information along with short-range local infor-
mation. Convolution based networks tend to focus more on localization, while transformer
based networks can pay attention to overall context as well. Many video related tasks that
use transformers include group activity recognition [Gavrilyuk et al., 2020], video classi-
fication [Chen et al., 2018], [Girdhar et al., 2019]. [Wang et al., 2020]. An image model
called “Vision Transformer” (ViT) [Dosovitskiy et al., 2020] had introduced a process to
extract patches from an image and embed them with positional information into spatial
transformer. Later works such as ViViT [Arnab et al., 2021], TimeSformer [Bertasius et
al., 2021], STAM [Sharir et al., 2021] adopted similar process to video by extending the
self-attention mechanism from 2D image to the spatio-temporal dimension, considering
video as a sequence of patches extracted from the individual frames. As in ViT, each
patch is linearly mapped into an embedding and augmented with positional information.
This makes it possible to interpret the resulting sequence of vectors as token embeddings
which can be fed to a Transformer encoder, analogously to the token features computed
from words in NLP.

Most of the research in social event and group affect prediction focuses on the individual
task using images only, like[Bossard et al., 2013] for event and [Dhall et al., 2015b; Kosti et
al., 2017] for affect. Hence, there is a scope to explore the relation between social event and
affect prediction. The recent success of different video based transformer methods inspired
us to explore the effectiveness of the same on VGAF dataset. To the best of our knowledge,
this is the only video classification work based on social event context and affect in group
videos, and that shows some correlation of affect and social event concepts.
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5.2 Dataset

We used the Video Group AFect (VGAF) dataset [Sharma et al., 2021], which is one
of the first video datasets in the wild, containing videos of different social events, and
labelled with ‘Positive’, ‘Neutral’ and ‘Negative’ labels for perceived group-level affect
(‘affect labels’ ). The videos were collected from YouTube using specific event keywords,
having a ‘Creative Commons CC BY’ license. The dataset consists of 4,183 video clips
of 5 second duration each. The clips are derived from 326 original YouTube videos after
segmentation [Sharma et al., 2021]. In this work, the event keywords that were used for
video search, were combined into 10 classes of ‘Quarrelling’, ‘Meeting’, ‘Sports’, ‘Funeral’,
‘Show’, ‘Group Activities’, ‘Protest’, ‘Casual Family Friends Gathering’ (‘Casual FFG’
used as short form), ‘Celebration Party’ (‘Celebration’ used as short form), ‘Fighting’.
Details of the search keywords and the social event categories are given in Table 5.1.
Event categorization was done by a team of three researchers (AM, GS, RK), who also
verified each video and the assigned event category label. Most of them had consensus.
In case of few disagreements, consensus was arrived at by discussing the rationale behind
each rater’s categorization.

Table 5.1: Social event categorization based on keywords used in search queries of the
VGAF dataset [Sharma et al., 2021].

Social event Keywords
Casual Family Friends
Gathering

Family get-together, Friends conversation, Festivals

Celebration Party Birthday party, Celebration, Crowd cheering, Match winning,
Wedding

Fighting Friends fighting, Street fight, Boxing, Crowd fighting, Fighting
Funeral Condolence meeting, Funeral

Group Activities
Community service, Group performance, People on street,
Religious gathering, Classes, Group dance, Group task,
March-past

Meeting
Event announcement, Group discussion, Interview, Meeting,
Conversation, Discussion, Press conference, Seminar, Speech

Protest Stone pelting, Violent Protest, Protest
Quarrelling Argument over discussion, Argument
Show Concert, Live shows, TV shows, Talk shows
Sports People watching match, Wrestling
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5.3 Network Architecture

We propose a spatio-temporal transformer architecture for video understanding, based on
the factorised encoder model as discussed in ViViT [Arnab et al., 2021] and STAM model
[Sharir et al., 2021]. We named it as VideoTransformeR or ‘ViTR’. We further modified
it to do Multi-Task Learning (MTL), utilizing affective information. We adopted two
different strategies to achieve MTL, which are discussed in section 5.3.2. Our intuition
was to utilize affect information as an influence on the social event to disambiguate social
event scenes. The architecture using affect as an indirect influence is given in strategy 1,
which is Affect as a Regularizer ( ‘ViTR-AR’) and that using affect as a direct influence
is given in strategy 2, which is Affect Dependent (‘ViTR-AD’). For schematic of these
network architectures refer Fig. 5.2.

Figure 5.2: Illustration of network architectures for a. ViTR, b. ViTR-AR and c.
ViTR-AD models.

5.3.1 Base Transformer

The base transformer ‘ViTR’, depicted in Fig. 5.2 a. consists of spatial and temporal
transformer encoder, similar to the idea in Model 2 of ViViT [Arnab et al., 2021] and
STAM [Sharir et al., 2021]. The video clip is divided into frames, preserving the temporal
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sequence. The frames are linearly projected into frame tokens and become an input to the
spatial encoder. The spatial encoder incorporates interactions between tokens extracted
from the same temporal frame. The frame-level representations from all spatial encoders
are forwarded through a temporal encoder, which consists of temporal transformer layers.
This takes care of interactions between tokens from different temporal frames. Finally, the
output token from this temporal encoder helps with the overall video classification. This
base network is used for either social event or affect classification.

5.3.2 Multi-Task Learning Variations

We were interested in utilizing affect information and understanding the impact on social
event prediction. To this end, we jointly trained the base network on affect and event labels
using multi-task learning. We modify our base architecture by applying two strategies, as
discussed in the following sub-sections and depicted in Fig. 5.2 b. and c.

Strategy 1: In this architecture ‘ViTR-AR’, illustrated in Fig. 5.2 b., two modifica-
tions were made to the base network. First, the output class token was used to predict
affect using single layer perceptron (affect head). Second, the mean of output frame tokens
was taken, which remained unused in our base network, and passed that to the event head,
which predicts the social event. Here, affect and event classification share the base network
and were trained in parallel, there is no direct dependency of affect on event or vice versa.
Affect acts as a regularizer via loss function.

Strategy 2: In strategy 1, event and affect classification are done by separate classifi-
cation heads and one does not directly depend on other. In strategy 2 (‘ViTR-AD’), affect
information is used in a hierarchical fashion for social event classification. Here we use
a convolution network and classifier as an extra output network. Convolution classifier
is a simple network, which takes two inputs (affect class and output frame tokens), and
predicts event class as seen in Fig. 5.2 c. While training, we use the ground truth affect
class as a feature to train the social event class. At the time of inference, we first predict
the affect class and concatenate the predicted affect class along with output frame tokens
to the convolution classifier network. Here, the predicted event directly depends on the
predicted affect.

The cross-entropy loss function used in the experiments1 for a given input x (unnor-
malized raw value i.e. logits), ground truth target class index y, number of classes C, is

1https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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given as:

L(x, y) = − log

(
exp(xy)∑C
i=1 exp(xi)

)
= −xy + log

(
C∑
i=1

exp(xi)

)
(5.1)

Loss function used for multi-task learning in both the strategies is chosen as a combined
loss of affect and event loss calculations as below:

Ltotal = Laffect + Levent

Here Ltotal is the total loss, which is calculated as a sum of Laffect (cross-entropy loss func-
tion between predicted and target affect) and Levent (cross-entropy loss function between
predicted and target social event).

5.4 Experiments

All experiments were performed on a compute cluster with P100 and V100 machines.
Pre-trained models were used to initialise weights and hence no data augmentation was
used. Along with our three transformer based models (ViTR, ViTR-AR and ViTR-AD)2,
we also trained and tested a convolution-only action-based model ‘R(2+1)D’, where we
used Resnet50 as the backbone, pre-trained on Kinetics 700 [Kataoka et al., 2020]3 and
froze first three layers and retrained on our dataset. We also trained and tested on trans-
former based model ‘TimeSformer’ [Bertasius et al., 2021], with their base version and
High Resolution (HR) version of pre-trained weights. Code for this work is available at
https://github.com/aarti9/VideoSocialContext

5.4.1 Train-Val-Test split

The dataset split for social event categories and affect categories is given in Table 5.2 and
Table 5.3 respectively. A total of 2661 training (Train), 766 validation (Val) and 756 testing
(Test) clips were used for both event and affect classification tasks. The split used in this
work, is the same as used in the [Sharma et al., 2021]. It is to be noted that there is no
overlap of video clips among these splits after segmentation.

2Backbone code and pre-trained weights were used from https://github.com/Alibaba-MIIL/STAM
3The R(2+1)D backbone code and pre-trained weights was used from

https://github.com/kenshohara/3D-ResNets-PyTorch
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Table 5.2: Dataset split for social event categories.

Category Train Val Test Total

Quarrelling 608 119 112 839

Meeting 310 206 42 558

Sports 55 49 11 115

Funeral 142 3 55 201

Show 356 124 194 674

Group Activities 305 81 47 433

Protest 330 54 46 430

Casual FFG 224 62 108 394

Celebration Party 176 48 30 253

Fighting 155 20 111 286

Total 2661 766 756 4183

Table 5.3: Dataset split for affect categories.

Category Train Val Test Total

Positive 802 302 217 1321

Neutral 923 280 309 1512

Negative 936 184 230 1350

Total 2661 766 756 4183

For all the experiments, training was done taking only Train data, and then Train and
Val data combined to see the effect of data increase. For the experiments done on Train
+ Val data, same hyperparameters were used as in the case of Train only. Test accuracy
is reported on Test data only.

5.4.2 Experimental Setup

For the experiments, we used features from 16 frames per clip, each frame being of di-
mensions 224 x 224 in color after normalization. This was based on [Sharma et al., 2021],
where it was found that out of 8, 16, 32 frames, 16 was the optimal one for affect prediction.
Also, our backbone pre-trained model is STAM [Sharir et al., 2021], which has 16 and 64
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frames as best performing ones. The loss function was cross-entropy, batch size was 2 (due
to memory constraints), optimizer was Stochastic Gradient Descent, with a learning rate
of 0.0002, momentum was 0.9 and weight decay was 1e-9. Each model was trained for 20
epochs. The model parameters were 119M.

5.5 Results and Discussion

5.5.1 Quantitative Results

The experimental evaluations for the social event models are presented in Table 5.4. The
top-1 test accuracy achieved for the R(2+1)D model was the lowest amongst all models
in comparison, reaching around 30.42% when trained on Train + Val dataset. The two
TimeSformer models performed better than R(2+1)D, achieving up to 47.48% accuracy.
The ViTR models performed better than both R(2+1)D and TimeSformer models, when
trained on Train dataset. The base ViTR model was comparable to the base TimeSformer
model when trained on Train + Val set, but ViTR-AR and ViTR-AD outperformed both
R(2+1)D and TimeSformer, achieving 48.15% and 50.13% accuracy respectively. Within
our proposed models, ViTR-AR and ViTR-AD performed better than the base ViTR over-
all and ViTR-AD had the highest accuracy amongst all models tested. The improvements
in accuracy hint a possibility of affective knowledge being helpful for social event learning.
The affect information in ViTR-AR model helps regularize training, making it more stable.
Overall, transformer-based models performed better than the convolution-only model, as
transformer networks are able to capture longer-range temporal information along with
local spatial information.

Table 5.4: Experimental results for Social event prediction.

Model Train Train + Val
Val Acc. Test Acc. Test Acc.

R(2+1)D [Kataoka et al., 2020] 54.18 25.40 30.42

TimeSformer [Bertasius et al., 2021] 56.92 42.46 45.63

TimeSformerHR [Bertasius et al., 2021] 56.79 40.74 47.48

ViTR 61.23 44.97 45.50

ViTR-AR 60.97 46.56 48.15

ViTR-AD 56.92 47.09 50.13
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The classwise accuracies for models trained on Train + Val set, can be found in Table
5.5 and the confusion matrices for the three models on social event prediction can be found
in Fig. 5.3. Some observations are noted below:

Table 5.5: Classwise accuracies (in %) for social event prediction.
Here, TS = TimeSformer, TSHR = TimeSformerHR, Q = Quarrelling, M = Meeting, SP =
Sports, FL = Funeral, SH = Show, GA = Group Activities, P = Protest, FFG = Casual-FFG,
C = Celebration Party, F = Fighting.

Model Q M SP FL SH GA P FFG C F Overall

R(2+1)D 29.46 66.67 - 16.36 54.12 61.70 58.69 7.41 - - 30.42

TS 36.61 73.81 90.91 12.73 54.64 51.06 43.48 62.96 50 20.72 45.63

TSHR 45.53 59.52 72.72 16.36 57.21 48.93 45.65 54.62 36.67 36.93 47.48

ViTR 23.21 80.95 27.27 30.91 60.31 46.81 45.65 50.93 66.67 26.13 45.50

ViTR-AR 26.79 78.57 27.27 23.64 69.07 48.94 45.65 49.07 53.33 34.23 48.15

ViTR-AD 25.00 76.19 18.18 27.27 65.98 48.94 34.78 61.11 63.33 45.05 50.13

Figure 5.3: Confusion Matrix for social event prediction for all three ViTR models.

• ViTR-AR and ViTR-AD models have better overall accuracy for social event pre-
diction than the base ViTR model. Using affect to predict event helped the model
perform better. Table 5.5 shows that the ViTR-AR model has high classwise accu-
racy compared to ViTR-AD, possibly due to the latter using inferred affect (which
may not be exact as the ground truth) to predict event, while the former uses affect
in regularizing only.
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• There seems confusion in the models for ‘Quarrelling’ and ‘Meeting’ as many labeled
as quarrelling are predicted as meeting. This may be due to single modality of
visual input being considered. Incorporating language and audio modalities may
help the models to align better. Then again, meetings are often not that different
from quarrelling!

• For the ‘Sports’ category, due to minimal data, the variability in the prediction
accuracy becomes very high across all the models.

• The challenges in distinguishing some categories like ‘Quarrelling’ with ‘Protest’ and
‘Fighting’ is seen in the confusion matrix. This might be due to the similarity in
these classes.

Table 5.6: Experimental results for Affect prediction.3

Model Train Train + Val
Val. Acc. Test Acc. Test Acc.

LSTM-based [Sharma et al., 2019] 51.43 44.84 -

VGAFNet [Sharma et al., 2021] 59.00 53.83 57.01

ViTR 61.88 63.10 61.91

ViTR-AR - 62.57 63.23

ViTR-AD - 60.85 58.73
3 ViTR-AR and ViTR-AD results use inferences from the same jointly trained model
from Table 5.4.

We also tested the ViTR model on affect prediction (Table 5.6) and achieved top-1 test
accuracy of 63.23% for ViTR-AR model when trained on Train + Val set. The state of art
on this dataset, using full frame features (same as ours), is 53.83% and 57.01% on Train
and Train + Val dataset respectively. ViTR models show improvements and provide a new
state-of-the-art for group affect prediction on VGAF.

5.5.2 Qualitative Results

In Fig. 5.7, we show a few clips of correct and incorrect predictions made by ViTR-AR and
ViTR-AD models. As seen, the first clip shows a casual friends gathering and the second
clip is a gym class where people are doing a group activity. Both were predicted correctly.
The third video clip has actual label as ‘Fighting’, but predicted label was ‘Sports’. The
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Figure 5.4: Actual and predicted social event label - Casual Friends Family Gathering.
Actual and predicted affect label - Positive

Figure 5.5: Actual and predicted social event label - Group Activities. Actual and
predicted affect label - Neutral

Figure 5.6: Actual social event label - Fighting, predicted social event label - Sports .
Actual and predicted affect label - Negative

Figure 5.7: Social event and affect prediction for some clips using ViTR-AR and ViTR-AD
models. (a) and (b) are correct social event predictions, (c) is an incorrect social event
prediction. All three clips have correct affect prediction.
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scene shows a sports ground in the background, but in the forefront, a few people are
fighting with each other. It is challenging if there are mixed contexts in the scene, one
could label it either ways, based on what one attends to whilst one predicts. All three clips
were correctly predicted for affect label, i.e. ‘Positive’, ‘Neutral’, ‘Negative’ respectively.

5.5.3 Limitations

The size of the dataset is small and could benefit from increasing the class-wise video clips
and also making it more balanced. The unconstrained nature of the videos do help in
making models less biased, but also poses challenges with noise in the background. Also,
collecting data for crowd analysis research is a challenge due to ethical concerns. When it
comes to social context and affect, there is so much variation in perception and experience,
that it is challenging for AI to take into account all the factors. More in-depth research into
understanding human factors contributing to the scene analysis will help in advancing the
research field. This work could be useful for robots in group settings with humans, devices
for people with vision issues, automatic video captioning or annotation, etc. Depending on
the devices used, computational processing constraints may become a limitation for some
on-device training. Although our main goal is to jointly learn and predict event and affect,
we have provided single task results as well for our methods. From methods perspective,
we provided comparison to convolution-only and another transformer method, but there
could be other networks which can be trained on this dataset.

5.6 Ethical Impact

All the videos of the dataset have creative commons license and do not contain any person-
ally identifiable information. The findings of this work have no explicit potential negative
applications. However, use of the proposed method may lead to biased predictions as the
dataset is small and some categories may be insufficiently balanced. The dataset includes
videos of different social events from varying contexts in the wild. Detection of a social
event and perceived affect may be misused to increase negative impacts to society. For
example, if a system detects protests, some political parties may manipulate the scene for
their benefit. Some scenes maybe difficult to classify in one category, which may result in
misclassification.
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5.7 Conclusion and Future Work

In this work, we introduced ten social event category labels for the VGAF dataset and pro-
posed spatio-temporal transformer based networks for video classification to predict social
event context and perceived group affect. The experimental results show that transformers
perform better than pure convolution-based models for social event and affect prediction
on the VGAF dataset. We performed multi-task learning to jointly predict social event
and group affect and showed that affect prediction improves the social event prediction
accuracy. Although the models show promise on the current VGAF dataset, increasing
data for training by augmentation may help. We only considered holistic visual features in
this work. In future work, some more cues like speech, language, sound, location informa-
tion, objects in the scene may be helpful to improve the models. We believe that detecting
social event context in videos is a step towards overall scene understanding for artificial
intelligent agents, making them socially intelligent.

73



Chapter 6

Application

“Robotics and other combinations will make the world pretty fantastic com-
pared with today.”

- Bill Gates

A Socially Intelligent Agent can take form of a computer system, vitual agent or a robot.
It can be used for various applications and domains such as healthcare, finance, education,
retail etc. A unique quality of a human being is to be able to adapt and switch between
different contexts and yet perform tasks efficiently. There is still lot of research to be done
for an SIA to have such a quality. For now, in each of the applications that an SIA is
developed for, there is a need to carefully design the agent such that it understands the
context, identities at play and appropriate decisions and behaviors for that situation. ACT
and its variations of BayesACT and NeuroACT provide such a model useful in prescribing
appropriate behavior, while inhibiting inappropriate behaviors. In this chapter, we present
a study of an SIA application in the form of a social robot that can be used as a socially
assistive agent in a healthcare setting.

6.1 ACT Simulation for Social Robot

Socially assistive robots are devices designed to aid users through social interaction and
companionship. Social robotics promise to support cognitive health and aging in place for
older adults with and without dementia, as well as their care partners. However, while new
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and more advanced social robots are entering the commercial market, there are still major
barriers to their adoption, including a lack of emotional alignment between users and their
robots. ACT allows for the computational modeling of emotional alignment between the
user and the socially assistive robot to be interpreted using a single, shared framework.

As part of an ACT simulation study for social robots, I collaborated with researchers
at University of British Columbia, who conducted a Canadian online survey 1 , captur-
ing attitudes, emotions, and perspectives surrounding pet-like robots among older adults
(n=171), care partners (n=28), and persons living with dementia (n=7) [Dosso et al.,
2022a,b]. Still images of three commercially available pet-like social robots (Fig. 6.1) and
a short description were presented in the online survey: Sony’s AIBO [Pransky, 2001],
Hasbro’s Joy for All Cat, also called JustoCat [Brecher, 2020], and MiRo-E [Prescott et
al., 2017]. AIBO is a dog-like social robot. JustoCat is cat-like social robot with realistic
looking fur and facial expressions. MiRo-E does not resemble any one animal but has
features from many different animals. Participants were asked to rate these robots and
themselves on a scale from -10 to +10 on the three ACT dimensions of EPA. These ratings
were scaled to be consistent with EPA standards (-4.3 to 4.3). Overall study design, ethics
approvals, recruitment for survey participants, data analysis for aspects other than ACT
was done by other collaborators. My contribution was primarily around ACT modelling
for a hypothetical scenario of ‘robot assists person’, deflection calculations for each partici-
pant, using the participant’s sentiment ratings for self (the person) and each of the robot’s
identity. I was also involved in data analysis related to sentiments/ACT, writing about
ACT and review of the manuscript.

Figure 6.1: Robots used in the study. (a) AIBO; (b) Joy for All Cat; (c) MiRo-E.

1This work was conducted in accordance with the Declaration of Helsinki and was approved by the Uni-
versity of British Columbia Behavioral Research Ethics Board (approval number H19-03308). Participants
provided written informed consent before accessing the online survey.
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6.2 ACT modelling

6.2.1 EPA profiles

To model the emotional relationship between person and robot, using ACT, we created
sentiment profiles for each of the three socially assistive pet-like robots (Fig. 6.2). A
repeated-measures ANOVA was conducted with Robot (AIBO, JustoCat, MiRo) and Sen-
timent (Evaluation, Potency, Activity) as within-subjects factors, Group (Care Partner,
Healthy Older Adult, Person Living with Dementia) as a between-subjects factor, and
sentiment scores as the dependent variable. We found a significant main effect of Sen-
timent (F(2, 234)=3.76, p=.025, η2 = .031), with Evaluation (E) scores (i.e. “good-
ness”) being the highest-rated among EPA. We also found a Robot x Sentiment interaction
(F (4, 468) = 13.65, p < .001, η2 = .102); the robots had significantly different sentiment
profiles from one another, suggesting that participants viewed them as unique identities.
JustoCat was considered the most positive amongst the three robots. There
were no other main effects nor interactions; notably, participants did not rate the robots
in a way that was significantly different across groups.

Figure 6.2: Sentiments associated with the three socially assistive robots. Means plus
standard errors are shown.
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6.2.2 EPA distance and robot judgement

Figure 6.3: Relationship between responses to three statements about the social robots (I
would enjoy. . . , I would use. . . , I would find useful. . . ) and respondents’ self-robot EPA
distance. Means and standard errors are shown.

We calculated the EPA distance for each rater from the identity associated with each
robot (Re, Rp, Ra) to their rating of their self identity (SIe, SIp, SIa), by using the formula

EPAdistance = (Re − SIe)
2 + (Rp − SIp)

2 + (Ra − SIa)
2 (6.1)

In this formula, S is the rater’s ratings of themself, R is the rater’s ratings of the robot,
and e, p, and a are the three ACT dimensions. A larger EPA distance indicates a greater
discrepancy between the rater’s identity and their perception of the social robot’s identity.

We looked at the EPA distances between each rater’s identity (their ratings of them-
selves on the three EPA dimensions) and their ratings of each robot (Fig.6.3). We asked:
does EPA distance (i.e., congruency between one’s own identity and one’s perception of
the robot) correspond to differences in one’s expectations and intentions around robot use?
We performed a series of linear regressions to evaluate whether self-robot EPA distance for
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a particular robot was a significant predictor of agreement with positive statements about
that robot. For example, does a greater congruency between the rater’s own identity and
their perception of JustoCat’s identity predict higher agreement with the statement “I
think I would find JustoCat enjoyable”? We found that EPA distance significantly pre-
dicted agreement with all three statements for all three robots (all p < .001). EPA distance
between self and robot explained between 4.9% and 27.4% of the variance in agreement
with robot statements (all R2 > .048, R2 < .275). In other words, participants whose
identities were similar to those of the robots were more likely to indicate that they would
find the robots enjoyable, use them during the next few days, and find them useful than
those whose identities were dissimilar. The highest proportions of variance explained was
for the three statements “I would think I would find AIBO/JustoCat/Miro enjoyable”

6.2.3 Deflection and robot usefulness

Finally, we used ACT to model an interaction ‘robot assists person’. We used EPA values
of behavior “assists” as (2.20 1.64 0.75) from ‘Indiana 2002-4’ dataset [Francis and Heise,
2006] and ACT’s impression formation equations to calculate the deflection D as mentioned
in eq. (3.3) associated with each rater and each robot, that would be predicted if the robot
(actor) were to engage in the behavior of ‘assisting’ a person (object). Using a series of
linear regressions, we found that a smaller deflection associated with the action “assists”
predicted agreement with the statement “I think that [robot] would be useful for me” (refer
Fig. 6.4). The sample size of the participants was not balanced for each of the participant
groups, which is one of the limitations of this study.

6.3 Conclusion and Future Work

Turning to the emotion modeling data, ratings of the three robots produced three sentiment
profiles that were quite different from one another, suggesting that participants viewed
them as having unique identities. The calculated EPA distance between a rater’s judgments
of themself and their judgments of a robot was very strongly linked to an anticipation that
the robot would be enjoyable and useful. This is promising evidence that the ACT measures
used in this work were able to capture dimensions of participants’ identities that predict
their real-world behavior and experiences with robots. Similarly, when our model indicated
that the concept “robot assists person” was highly congruent for a particular respondent
and robot, that respondent was more likely to agree that the robot would be useful –
another piece of evidence validating ACT as a promising model of human-robot emotional
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Figure 6.4: Relationship between agreeing that a robot would be useful and ACT deflection
for the concept of being assisted by the robot. Means and standard errors shown.

alignment. Taken together, this work examined perceptions of social robots among a
sample of older adults across a range of lived experiences. This can help in choosing an
agent amongst different options available to the user. Furthermore, we demonstrated that
computational modeling of emotional alignment between humans and robots was possible
for this type of sample.

Future work can include same application of a socially assistive agent, but with an
actual robot. Any human-agent interaction can be modelled with ACT and validated
with a user study. The EPA ratings for identities, emotions, behaviors, settings can be
collected from target user groups of an application, and can be used by the SIA to in-
teract well with that group. Ethical concerns like target user privacy, user’s mental state
while interacting, user’s background, user’s expectations from the agent, user’s preference
for salutation/identification by the agent, etc., need to be considered when designing or
deploying such applications.
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Chapter 7

Conclusion

“The more socially intelligent you are, the happier and more robust and
more enjoyable your relationships will be.”

- Daniel Goleman

7.1 Socially Intelligent Agent

Social interaction is an important part of day-to-day life in human beings. Affect and
emotions play a key role in decision-making and behavior. The nuances of an interaction
between individuals can create harmony between individuals or create discord.

This thesis aims towards building Socially Intelligent Agent (SIA), that can align with
humans emotionally and can be useful in domains such as healthcare, home, business,
academics and many more, where AI agent needs to interact with humans, while making
a meaningful connection, and providing humans with a good interaction experience. It
focuses on emotions and context in decision-making for SIA. It does a systematic review
of computational models of emotions in decision-making and synthesizes data into four
types. It then uses one such model called Affect Control Theory (ACT), implements it in
a brain-inspired neural model called NeuroACT and simulates social interaction scenarios.
It builds visual perception components for SIA for social scene understanding, to infer
social context and perceived affect, with an aim to behave in an emotionally aligned and
coherent manner. Lastly, it models ACT for SIA in a real-world scenario.
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A next step towards building SIA (who has an identity defined), would be to use
contextual information in a visual scene, detect the interacting identities and their behavior
and select an appropriate behavior using ACT. There can be various extensions to each
of the research contributions in this thesis. The NeuroACT can include visual processing
modules once available in the library and the output of the model can be connected to some
motor system of an AI agent for action to be taken. Advances in neuroscience can help
in evolving the model of decision-making further. The advantage of brain-inspired Nengo
models are that they can be used on a neuromorphic hardware, which are considered
to be efficient in processing [DeWolf et al., 2020]. The vision classification model ViTR
and its variants can be improved, speech and language modalities may be experimented
with if improves accuracy. It can incorporate identities and behavior prediction classifiers.
Finally, ACT can be modelled into different real-world scenarios for different target groups
and validation study can be conducted.

7.2 Limitations of ACT

Although ACT is a strong framework for social interaction, the datasets for EPA ratings are
average population ratings based on survey data collected from people from few different
countries in the past. The affective ratings of social identities are highly dependent on the
dataset used (population surveyed) and they are averages in ACT, making any bi-modal
distributions give highly skewed answers. BayesACT [Hoey et al., 2016; Schröder et al.,
2016; Hoey et al., 2021] would potentially solve both these problems by (1) including a
learning mechanism for social identities as a free energy minimization process; and (2)
allowing affective meanings to be encoded as probability distributions, not as points. As
times change, the society structure, social norms, meaning of concepts also evolve. An
application using ACT model needs to be able to evolve with time. The ratings for each
concept in the EPA dictionaries are text based only. An attempt is made in this thesis to
have visual classifier to infer social context and perceived affect in a scene. We still need
to convert it into text form to be able to use ACT grammar. Inference for identities and
behavior need to be done for ACT interaction to work for SIA.

7.3 Ethical Impact of SIAs

Developing Socially Intelligent Agents can benefit society by incorporating more AI agents
for social good, in assistive and adaptive way. But it also brings forth potential of misuse
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by humans for humans. Social engineering [Postnikoff, 2020] is one form of attack where
human data can be collected and used through agents that pretend to be some believable
identity. SIAs can be used to manipulate humans in social interaction. They can be
programmed to take decisions that may not adhere to the social norms and may not be
moral and ethical for society. As AI adoption increases, we need to be aware of the risks
and ensure appropriate steps are taken to safeguard privacy and safety of everyone. Some
design considerations for SIA are discussed in [Malhotra and Hoey, 2021].

Despite of the risk of misuse of SIA, building agents that are socially intelligent would
be less dangerous than building agents that are only rational. A rational agent here means
a non socially intelligent agent, even if it incorporates altruism as utility function, that
penalizes the agent for being selfish. It may be challenging to quantify the amount of
altruism that an agent should have, and also tricky to know who to be altruistic and who
not to be with. As an illustration, in Prisoner’s dilemma game, the optimal action for a
rational agent is to defect, but a socially intelligent agent will consider the social identity
of self and the other, say a ‘friend’ or a ‘stranger’, and take an appropriate action. This
may lead to better cooperation. In a real-world social interaction, an SIA can be developed
to not only understand the task at hand, but also understand the context, emotions of the
humans, social norms and prescriptions, and behave appropriately in any situation, while
learning and adapting to the environment.

7.4 Closing Thoughts

Designing and developing SIA that is emotionally aligned and adaptive with humans, while
understanding the context in any situation, and adhering to social norms, can benefit
society at large. The research presented in this thesis is a step towards that direction.
Role of emotions and context are considered in decision-making by using ACT model for
SIA. The insights gained in this thesis may encourage AI and affective computing research
to develop agents that can simulate human affective and decision-making mechanisms, and
in the process understand humans better.
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Minker. EVA 2.0: Emotional and rational multimodal argumentation between virtual
agents. it-Information Technology, 63(1):17–30, 2021.

Khamael Raqim Raheem and Israa Hadi Ali. Survey: Affective recommender systems
techniques. In IOP Conference Series: Materials Science and Engineering, volume 928,
page 032042. IOP Publishing, 2020.

102



Alexandr Rassadin, Alexey Gruzdev, and Andrey Savchenko. Group-level emotion recog-
nition using transfer learning from face identification. In ACM International Conference
on Multimodal Interaction, pages 544–548, 2017.

Timo Reuter, Symeon Papadopoulos, Giorgos Petkos, Vasileios Mezaris, Yiannis Kompat-
siaris, Philipp Cimiano, Christopher De Vries, and Shlomo Geva. Social event detection
at mediaeval 2013: Challenges, datasets, and evaluation. In Proceedings of the Medi-
aEval 2013 Multimedia Benchmark Workshop Barcelona, Spain, October 18-19, 2013,
2013.

James K Rilling and Alan G Sanfey. The neuroscience of social decision-making. Annual
review of psychology, 62:23–48, 2011.

JA Rincon, Fernando de la Prieta, Damiano Zanardini, Vicente Julian, and Carlos Carras-
cosa. Influencing over people with a social emotional model. Neurocomputing, 231:47–54,
2017.

Dawn T Robinson, Lynn Smith-Lovin, and Allison K Wisecup. Affect control theory. In
Handbook of the sociology of emotions, pages 179–202. Springer, 2006.

Luis-Felipe Rodriguez, Felix Ramos, and Yingxu Wang. Cognitive computational mod-
els of emotions. In IEEE 10th International Conference on Cognitive Informatics and
Cognitive Computing (ICCI-CC’11), pages 75–84. IEEE, 2011.

Shaghayegh Roohi, Jari Takatalo, Christian Guckelsberger, and Perttu Hämäläinen. Re-
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Appendix A

Systematic Review Search Queries

We provide search queries used for systematic review of computational models of emotion
and decision-making or behavior. Query details and search results from four databases
(Scopus, PsycINFO, ACM and IEEE) are given in sections A.1, A.4, A.3 and A.2 respec-
tively. Total results obtained from searches in October 2021 are 2167 (Scopus) + 894
(PsycINFO) + 830 (ACM) + 1469 (IEEE)= 5360. The same queries were used to update
the search in June 2023.

A.1 Scopus

Table A.1: Scopus queries and results (October 20th, 2021, 11am)

Search Query Field Results
#1 “Affect” OR “affective” OR emotion* OR feel* OR sentiment* Title, abstract, keywords 2,982,985
#2 anticipat* OR behavior* OR behaviour* OR select* OR adapt* OR decision* OR “deci-

sion mak*” OR decid* OR react* OR reason*
Title, abstract, keywords 20,310,461

#3 #1 W/5 #2 Title, abstract, keywords 223,803
#4 “adaptive agent*” OR “artificial agent*” OR “intelligent agent*” OR “AI agent*” OR

“multi agent*” OR multiagent* OR “affective agent*” OR “cognitive agent*” OR “social
agent*” OR “virtual agent*” OR “autonomous agent*” OR “sentient agent*” OR “rec-
ommendation agent*” OR “recommendation system*” OR “reccommender system*”

Title, abstract, keywords 163,865

#5 “artificial intelligence” OR “artificially intelligent” OR “computational intelligence” OR
“artificial affect” OR “affective comput*” OR “fuzzy system*”

Title, abstract, keywords 457,714

#6 agent* OR “computational model*” OR “computational method*” OR robot* Title, abstract, keywords 6,268,782
#7 #5 AND #6 Title, abstract, keywords 60,316
#8 #4 OR #7 Title, abstract, keywords 208,126
#9 #3 AND #8 Title, abstract, keywords 2211
#10 #9 AND limit to English 2167
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A.2 ACM Digital Library

Table A.2: ACM queries and results (October 27th, 2021, 5pm)

Search Query (using the Edit Query box) Results
#1 Title:(”Affect” OR ”affective” OR emotion* OR feel* OR sentiment*) OR Abstract:(”Affect” OR ”affec-

tive” OR emotion* OR feel* OR sentiment*) OR Keyword:(”Affect” OR ”affective” OR emotion* OR feel*
OR sentiment*)

33,481

#2 Title:(anticipat* OR behavior* OR behaviour* OR select* OR adapt* OR decision* OR decid* OR react*
OR reason*) OR Abstract:(anticipat* OR behavior* OR behaviour* OR select* OR adapt* OR decision*
OR decid* OR react* OR reason*) OR Keyword:(anticipat* OR behavior* OR behaviour* OR select* OR
adapt* OR decision* OR decid* OR react* OR reason*)

180,069

#3 Title:(”adaptive agent” OR ”artificial agent” OR ”intelligent agent” OR ”AI agent” OR ”multi agent”
OR multiagent OR ”affective agent” OR ”cognitive agent” OR ”social agent” OR ”virtual agent” OR
”adaptive agents” OR ”artificial agents” OR ”intelligent agents” OR ”AI agents” OR ”multi agents” OR
multiagents OR ”affective agents” OR ”cognitive agents” OR ”social agents” OR ”virtual agents” OR
”sentient systems” OR ”autonomous agent” OR ”recommendation system” OR ”recommender system” OR
”autonomous agents” OR ”recommendation systems” OR ”recommender systems” OR ”expert systems”
OR ”expert system”) OR Abstract:(”adaptive agent” OR ”artificial agent” OR ”intelligent agent” OR ”AI
agent” OR ”multi agent” OR multiagent OR ”affective agent” OR ”cognitive agent” OR ”social agent”
OR ”virtual agent” OR ”adaptive agents” OR ”artificial agents” OR ”intelligent agents” OR ”AI agents”
OR ”multi agents” OR multiagents OR ”affective agents” OR ”cognitive agents” OR ”social agents” OR
”virtual agents” OR ”sentient systems” OR ”autonomous agent” OR ”recommendation system” OR ”rec-
ommender system” OR ”autonomous agents” OR ”recommendation systems” OR ”recommender systems”
OR ”expert systems” OR ”expert system”) OR Keyword:(”adaptive agent” OR ”artificial agent” OR ”in-
telligent agent” OR ”AI agent” OR ”multi agent” OR multiagent OR ”affective agent” OR ”cognitive
agent” OR ”social agent” OR ”virtual agent” OR ”adaptive agents” OR ”artificial agents” OR ”intelligent
agents” OR ”AI agents” OR ”multi agents” OR multiagents OR ”affective agents” OR ”cognitive agents”
OR ”social agents” OR ”virtual agents” OR ”sentient systems” OR ”autonomous agent” OR ”recommen-
dation system” OR ”recommender system” OR ”autonomous agents” OR ”recommendation systems” OR
”recommender systems” OR ”expert systems” OR ”expert system”)

14,188

#4 Title:(”artificial intelligence” OR ”artificially intelligent” OR ”computational intelligence” OR ”affective
computing”) OR Abstract:(”artificial intelligence” OR ”artificially intelligent” OR ”computational intel-
ligence” OR ”affective computing”) OR Keyword:(”artificial intelligence” OR ”artificially intelligent” OR
”computational intelligence” OR ”affective computing”)

6,180

#5 Title:(agent* OR robot* OR ”computational model” OR ”computational models” OR ”computational
modeling” OR ”computational modelling”) OR Abstract:(agent* OR robot* OR ”computational model”
OR ”computational models” OR ”computational modeling” OR ”computational modelling”) OR Key-
word:(agent* OR robot* OR ”computational model” OR ”computational models” OR ”computational
modeling” OR ”computational modelling”)

48,594

#6 #4 AND #5 1,357
#7 #3 OR #6 15,181
#1 #1 AND #2 AND #7 830
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A.3 PsycINFO

Table A.3: PsycINFO queries and results (October 20th, 2021, 1:30pm)

Search Query Field Results
#1 ”Affect” OR ”affective” OR emotion* OR feel* OR sentiment* Keywords
#2 ”Affect” OR ”affective” OR emotion* OR feel* OR sentiment* Title
#3 ”Affect” OR ”affective” OR emotion* OR feel* OR sentiment* Abstract
#4 {Emotions} OR {Contempt} OR {Desire} OR {Emotional Content} OR {Emotional Disturbances} OR

{Emotional Health} OR {Emotional Processing} OR {Emotional Regulation} OR {Emotional States} OR
{Emotional Style} OR {Emotional Support} OR {Expressed Emotion} OR {Forgiveness} OR {Negative
Emotions} OR {Positive Emotions}

Index Terms

#5 #1 OR #2 OR #3 OR #4 769,948
#6 anticipat* OR behavior* OR behaviour* OR select* OR adapt* OR decision* OR decid* OR react* OR

reason* OR ”decision science*” OR action*
Keywords

#7 anticipat* OR behavior* OR behaviour* OR select* OR adapt* OR decision* OR decid* OR react* OR
reason* OR ”decision science*” OR action*

Title

#8 anticipat* OR behavior* OR behaviour* OR select* OR adapt* OR decision* OR decid* OR react* OR
reason* OR ”decision science*” OR action*

Abstract

#9 Behavior OR Decision Making OR Choice Behavior OR Approach Behavior OR Behavior Change OR
Performance OR Planned Behavior OR Reasoned Action OR Responses OR Behavior Analysis

Index Terms

#10 #6 OR #7 OR #8 OR #9 2,192,290
#11 ”artificial intelligence” OR ”artificially intelligent” OR ”computational intelligence” OR ”artificial affect”

OR ”affective comput*” OR ”fuzzy system*” OR ”dynamic computational model*” OR ”drift diffusion
model*” OR ”predictive model*” OR ”predictive process*” OR ”iterative reprocessing” OR ”Bayesian
statistics” OR ”Bayesian model*”

Keywords

#12 ”artificial intelligence” OR ”artificially intelligent” OR ”computational intelligence” OR ”artificial affect”
OR ”affective comput*” OR ”fuzzy system*” OR ”dynamic computational model*” OR ”drift diffusion
model*” OR ”predictive model*” OR ”predictive process*” OR ”iterative reprocessing” OR ”Bayesian
statistics” OR ”Bayesian model*”

Title

#13 ”artificial intelligence” OR ”artificially intelligent” OR ”computational intelligence” OR ”artificial affect”
OR ”affective comput*” OR ”fuzzy system*” OR ”dynamic computational model*” OR ”drift diffusion
model*” OR ”predictive model*” OR ”predictive process*” OR ”iterative reprocessing” OR ”Bayesian
statistics” OR ”Bayesian model*”

Abstract

#14 {Affective Computing} OR {Artificial Intelligence} OR {Expert Systems} OR {Artificial Neural Networks}
OR {Cognitive Computing} OR {Knowledge Engineering} OR {Knowledge Representation} OR {Machine
Learning} OR {Fuzzy Logic} OR {Intelligent Agents}

Index Terms

#15 #11 OR #12 OR #13 OR #14 36,852
#16 agent* OR robot* OR ”computational model*” OR ”computational method*” Keywords
#17 agent* OR robot* OR ”computational model*” OR ”computational method*” Title
#18 agent* OR robot* OR ”computational model*” OR ”computational method*” Abstract
#19 {Computational Modeling} OR {Human Machine Systems} OR {Human Machine Systems Design} OR

{Human Robot Interaction} OR {Computer Simulation} OR {Computational Neuroscience}
Index Terms

#20 #16 OR #17 OR #18 OR #19 99,418
#21 #15 AND #20 8,309
#22 ”adaptive agent*” OR ”artificial agent*” OR “intelligent agent*” OR ”AI agent*” OR ”multi agent*”

OR multiagent* OR ”affective agent*” OR ”cognitive agent*” OR ”social agent*” OR ”virtual agent*”
OR ”sentient agent*” OR ”autonomous agent*” OR ”sentient agent*” OR ”recommendation agent*” OR
”recommendation system*” OR ”recommender system*”

Keywords

#23 ”adaptive agent*” OR ”artificial agent*” OR “intelligent agent*” OR ”AI agent*” OR ”multi agent*”
OR multiagent* OR ”affective agent*” OR ”cognitive agent*” OR ”social agent*” OR ”virtual agent*”
OR ”sentient agent*” OR ”autonomous agent*” OR ”sentient agent*” OR ”recommendation agent*” OR
”recommendation system*” OR ”recommender system*”

Title

#24 ”adaptive agent*” OR ”artificial agent*” OR “intelligent agent*” OR ”AI agent*” OR ”multi agent*”
OR multiagent* OR ”affective agent*” OR ”cognitive agent*” OR ”social agent*” OR ”virtual agent*”
OR ”sentient agent*” OR ”autonomous agent*” OR ”sentient agent*” OR ”recommendation agent*” OR
”recommendation system*” OR ”recommender system*”

Abstract

#25 {Social Robotics} Index Terms
#26 #22 OR #23 OR #24 OR #25 5,466
#27 #21 OR #26 11,629
#28 #5 AND #10 AND #27 894
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A.4 IEEE Xplore Digital Library

Table A.4: IEEE Xplore Digital Library queries and results (October 20th, 2021, 11:30am)

Search Query Field Results
#1 ”Affect” OR ”affective” OR feeling OR feel OR emotion* OR sentiment OR sentimental All metadata 98,522
#2 Anticipat* OR behavior OR behavioral OR select* OR adapt* OR decision OR ”decision

making” OR ”decision maker” OR ”decision makers” OR decide OR react* OR reason*
All metadata 1,361,090

#3 #1 NEAR/10 #2 All metadata 11,954
#4 adaptive OR artificial OR intelligent OR intelligence OR AI OR affective OR cognitive

OR social OR virtual OR recommender OR recommendation OR sentient OR autonomous
All metadata 1,218,823

#5 agent OR robot OR ”computational model*” OR ”computational method” OR ”compu-
tational methods”

All metadata 455,779

#6 #4 NEAR/10 #5 All metadata 140,943
#7 #3 AND #7 All metadata 1469
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