
ProofFrog: A Tool For Verifying
Game-Hopping Proofs

by

Ross Evans

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2024

© Ross Evans 2024

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Cryptographic proofs allow researchers to provide theoretical guarantees on the security
that their constructions provide. A proof of security can completely eliminate a class of
attacks by potential adversaries. Human fallibility, however, means that even a proof
reviewed by experts may still hide flaws or outright errors. Proof assistants are software
tools built for the purpose of formally verifying each step in a proof, and as such have the
potential to prevent erroneous proofs from being published and insecure constructions from
being implemented. Unfortunately, existing tooling for verifying cryptographic proofs has
found limited adoption in the cryptographic community, in part due to concerns with ease
of use.

This thesis presents ProofFrog: a new tool for verifying cryptographic game-hopping
proofs. ProofFrog is designed with the average cryptographer in mind, using an imperative
syntax for specifying games and a syntax for proofs that closely models pen-and-paper
arguments. As opposed to other proof assistant tools which largely operate by manipulating
logical formulae, ProofFrog manipulates abstract syntax trees (ASTs) into a canonical form
to establish indistinguishable or equivalent behaviour for pairs of games in a user-provided
sequence. We detail the domain-specific language developed for use with the ProofFrog
proof engine as well as present a sequence of worked examples that demonstrate ProofFrog’s
capacity for verifying proofs and the exact transformations it applies to canonicalize ASTs.
A tool like ProofFrog that prioritizes ease of use can lower the barrier of entry to using
computer-verified proofs and aid in catching insecure constructions before they are made
public.

iii

Acknowledgements

There are many people who have helped me throughout my academic career so far.
First and foremost, I would like to thank my supervisor Dr. Douglas Stebila. Douglas’s
kindness, support, guidance, and intellect have all helped me immensely in my development
as a researcher. I would also particularly like to thank Douglas for being accommodating
as I pursued teaching opportunities throughout my degree. I could not have asked for a
better supervisor. In addition, I would like to thank my readers Dr. Mohammad Hajiabadi
and Dr. Ondřej Lhoták for their time and feedback. Furthermore, I would like to thank
Dr. Matthew McKague for some helpful discussions that shaped this tool’s development in
its early stages, and Karolin Varner for interesting discussions on Python, cryptographic
proofs, and presentation skills.

I would also like to thank my friends; their significance to me is more than I could put
into words. To the roomies: Kiran, Kevin, Mesha, and Carlo, for so much laughter and
support. To Josh and Mary, for reminding me that there’s life outside academia. And to
my grad school friends: Kris, Zahra, and Ed for the many trips to the CnD, and the few
trips to Lazeez, throughout this journey. Thanks in addition to Dr. Brad Lushman for the
many conversations about careers, teaching, and Nintendo.

I would like to thank my family for their longstanding support as my plans have changed
a multitude of times over the years.

Finally, I would like to thank Gillian for all of her love and support throughout my
degree. You have been here every step of the way and I could not imagine having done this
without you. Your presence brightens the darkest of my days and for that I am eternally
grateful. I love you.

iv

Dedication

This thesis is dedicated to Dooley: the best dog a boy could ever ask for.

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Figures ix

1 Introduction 1

1.1 Computer-Aided Cryptography . 2

1.2 Contributions . 3

2 Cryptographic Proofs 6

3 Domain-Specific Language for Cryptographic Proofs 10

3.1 Primitive Files and Scheme Files . 11

3.2 Game Files . 11

3.3 Proof Files . 12

vi

4 Building Up ProofFrog 13

4.1 CPA$ Security Implies CPA Security . 13

4.1.1 Definitions . 14

4.1.2 Theorem and Proof . 16

4.1.3 ProofFrog Encoding . 18

4.1.4 Validating Indistinguishability . 24

4.1.5 Verifying Interchangeability . 24

4.1.6 Creating the Inlined Game . 25

4.1.7 Standardizing Variables Names . 27

4.2 Double Symmetric Encryption and One-Time Uniform Ciphertexts 29

4.2.1 Definitions . 29

4.2.2 Theorem and Proof . 30

4.2.3 ProofFrog Encoding . 33

4.2.4 Initial ASTs . 36

4.2.5 Tuple Expansion . 38

4.2.6 Copy Propagation . 39

4.2.7 Statement Ordering and Dead Code Elimination 40

4.3 Constructing a Length-Tripling PRG . 44

4.3.1 Definition . 44

4.3.2 Theorem and Proof . 45

4.3.3 ProofFrog Encoding . 49

4.3.4 Simplifying Slices . 53

4.3.5 Symbolic Computation . 55

4.4 One-time Secrecy Implies CPA Security for Public-Key Encryption Schemes 58

4.4.1 Definitions . 58

4.4.2 Theorem and Proof . 60

4.4.3 ProofFrog Encoding . 62

vii

4.4.4 Induction . 66

4.4.5 Duplicated Fields . 67

4.4.6 Assumptions with Z3 . 69

4.4.7 Branch Elimination . 70

4.4.8 Unnecessary Fields . 72

4.4.9 Return Canonicalization . 72

4.4.10 Branch Collapsing . 73

4.4.11 Condition Equivalence . 75

4.5 Encrypt-then-MAC is CCA Secure . 78

4.5.1 Definitions . 78

4.5.2 Theorem and Proof . 81

4.5.3 ProofFrog Encoding . 88

4.5.4 Simplify Not Operations . 96

4.5.5 Tuple Copies . 98

4.5.6 Unreachable Code . 99

5 Conclusion 102

5.1 Future Work . 102

References 106

APPENDICES 109

A ProofFrog Grammar 110

A.1 Primitive Grammar . 110

A.2 Scheme Grammar . 110

A.3 Game Grammar . 111

A.4 Proof Grammar . 111

A.5 Shared Grammar . 112

viii

List of Figures

4.1 ProofFrog syntax for a symmetric encryption scheme primitive. 19

4.2 ProofFrog syntax for the pair of games modelling CPA security of a sym-
metric encryption scheme. 20

4.3 ProofFrog syntax for the pair of games modelling CPA$ security of a sym-
metric encryption scheme. 21

4.4 Reductions used to prove Theorem 1. 22

4.5 Proof file to prove Theorem 1. 23

4.6 A flowchart of ProofFrog engine functionality necessary to prove Theorem 1. 28

4.7 ProofFrog syntax for a double symmetric encryption scheme. 34

4.8 ProofFrog syntax for the pair of games modelling the one-time uniform ci-
phertexts property of a symmetric encryption scheme. 35

4.9 Reduction used in the proof of Theorem 2. 35

4.10 Proof file for Theorem 2. 36

4.11 A flowchart of ProofFrog engine functionality necessary to prove Theorem 2. 43

4.12 ProofFrog syntax for a PRG primitive. 50

4.13 ProofFrog syntax for a length-tripling PRG scheme. 50

4.14 ProofFrog syntax for the pair of games modelling PRG security. 51

4.15 ProofFrog syntax for a pair of games modelling interchangeability between
two methods of sampling bitstrings. 51

4.16 Reductions used to prove Theorem 3. 52

4.17 Proof file for Theorem 3. 53

ix

4.18 A flowchart of ProofFrog engine functionality necessary to prove Theorem 3. 57

4.19 ProofFrog syntax for a public-key encryption scheme. 62

4.20 ProofFrog syntax for the pair of games modelling one-time secrecy for public-
key encryption schemes. 63

4.21 ProofFrog syntax for the pair of games modelling CPA security for public-
key encryption schemes. 64

4.22 Reduction used in the proof of Theorem 4. 65

4.23 Proof file for Theorem 4. 66

4.24 A flowchart of ProofFrog engine functionality necessary to prove Theorem 4. 77

4.25 ProofFrog syntax for the pair of games modelling CCA security for a sym-
metric encryption scheme. 89

4.26 ProofFrog syntax for a MAC scheme. 90

4.27 ProofFrog syntax for the pair of games modelling unforgeability for a MAC
scheme. 91

4.28 ProofFrog syntax for the Encrypt-then-MAC construction. 92

4.29 The first reduction used in the proof of Theorem 5. 93

4.30 The second reduction used in the proof of Theorem 5. 94

4.31 The third reduction used in the proof of Theorem 5. 95

4.32 Proof file for Theorem 5. 96

4.33 A flowchart of ProofFrog engine functionality necessary to prove Theorem 5. 101

x

Chapter 1

Introduction

Secure cryptography has become an integral part of daily life. The average internet user
implicitly trusts that their online activities are conducted in a confidential manner. This
confidentiality, however, can be compromised in a multitude of ways spanning from an in-
accurate implementation of a cryptographic construction to flaws in the underlying math-
ematics of the construction itself. The provable security methodology attempts to make
theoretical guarantees regarding how difficult it would be for an adversary to compromise
a particular construction. These guarantees usually require assuming that some particular
problem is computationally expensive to solve and then demonstrating that compromising
the construction is only negligibly easier than just performing the expensive computa-
tion. This methodology does not consider real world implementations of constructions; its
sole purpose is to ensure that in an abstract model of computation, the adversary has no
efficient strategy to compromise the construction.

Unfortunately, security proofs can be both tedious and error-prone. There are many
examples of proofs that were reviewed and published only for flaws in the proof to be
found much later [13]. An erroneous proof can have dire consequences if the construction
is widely used. Additionally, erroneous proofs can erode confidence in the cryptographic
community as a whole. It is therefore in the best interests of researchers to ensure that
their proofs are correct; one promising area of research to ensure correctness of security
proofs is via the use of proof assistants. These tools allow a user to specify a proof and have
the steps formally checked by a computer. A certificate of correctness from such a proof
assistant can give cryptographers greater confidence in the security of their constructions
than a manual review from a human would, so long as the proof assistant itself is trusted
to be correct.

1

1.1 Computer-Aided Cryptography

There are a variety of tools used in the cryptographic community for formal verification
with each targeting different objectives. A systematization of knowledge paper sorts ex-
isting tools into three groups: those that focus on verifying implementation-level security,
those that focus on verifying functional correctness and efficiency of implementations, and
those that focus on verifying design-level security [3]. The first group of tools, which
focus on implementation-level security, are primarily concerned with protecting against
side-channel attacks, which attempt to compromise security by targeting computational
side effects such as timing behaviour and memory access patterns. In an insecure im-
plementation, an adversary may be able to observe computational side effects and then
correlate them with some underlying secret data and hence compromise the construction.
The second group of tools, which focus on functional correctness and efficiency, attempt
to ensure that implementations of cryptographic constructions match their design specifi-
cations. This work is necessary as cryptographic code is rarely a direct translation of the
design specification; because of cryptographic code’s prevalence in modern computing, it
is often heavily optimized and written in low-level, memory-unsafe languages. The third
group of tools, which focus on verifying design-level security, concentrate on checking the
validity of the security proofs previously mentioned.

The design-level security category is further broken down in the paper into tools that
work in the symbolic model, and tools that work in the computational model. In the
symbolic model, cryptographic protocols operate on abstract, atomic data called terms.
The definitions of cryptographic primitives relate terms to define an equational theory,
where the adversary is required to derive new terms solely from these equational theories.
ProVerif [7] and Tamarin [15] are both tools operating in the symbolic model that have
been used to analyze real-world protocols. In contrast, the computational model treats
data as bitstrings and treats adversaries as probabilistic Turing machines. Most tools in
the computational model aim to verify game-hopping proofs, which is a formalism that
defines security properties via games played between a challenger and an adversary, where
the security property is satisfied so long as no probabilistic polynomial-time adversary can
achieve a win condition with a non-negligible probability. A game-hopping proof uses a
sequence of games and “hops” from one game to the next by making small changes to the
game’s definition, where each change alters the output distribution by a negligible (possibly
zero) amount. This technique can help bound the probability of an adversary winning the
initial game by gradually changing the game into an “unwinnable” game or one in which
the adversary’s probability of success is easy to calculate.

There are a variety of tools that exist for the verification of game-hopping proofs. Two

2

of the most popular are EasyCrypt [4] and CryptoVerif [6]. EasyCrypt utilizes an im-
perative language for specifying games and a formula language for specifying probabilistic
relational Hoare logic judgments which define security properties. To actually write a proof
in EasyCrypt requires use of their tactic language which allows one to manipulate game
syntax and apply logical rules to manipulate the formula being proved. These proofs are
developed interactively within the Proof General interface, which can show the user the
effect each tactic has when applied to the current formula, as well as display any subgoals
remaining to be proved (which may happen if a proof by cases is used) [2]. As such, the
proof itself functions somewhat like a final transcript of the cryptographer’s session inter-
acting with Proof General, where any mistakes or missteps have been erased. EasyCrypt
itself is very expressive; it allows a user to prove very general statements, but at the cost
of complexity. The tactic language applies manipulations at a fine level of detail, where
even simple axioms, like associativity of group operations, must be explicitly applied each
time they are used. In addition, EasyCrypt proofs can also be difficult to read, since it
can be unclear what formula each tactic is being applied to unless one steps through the
proof interactively in Proof General. CryptoVerif leans in the opposite direction: rather
than focusing on expressiveness, it focuses on automatability. It allows users to specify
games via a process calculus syntax that is akin to that of functional programming lan-
guages. Proofs can often be discovered automatically via the underlying proof engine, but
it also supports an interactive mode where a user can explicitly specify which game trans-
formations they want applied if the proof engine fails to automatically discover a proof.
Similarly to EasyCrypt, security properties are also expressed as logical formulae, except
in CryptoVerif these formulae are internal rather than user-defined, and are verified by an
internal equational prover rather than manually by the user.

1.2 Contributions

This thesis introduces ProofFrog1: a new tool for verifying game-hopping cryptographic
proofs. ProofFrog takes a novel approach in that it focuses purely on high-level manipu-
lations of games as abstract syntax trees (ASTs) instead of working at the level of logical
formulae. An AST is a data structure commonly used when developing interpreters and
compilers. Parsing a program’s source code yields a parse tree which is a direct representa-
tion of the program according to its grammar. A compiler developer will then typically strip
unnecessary information collected during parsing to yield an AST (for example, semicolons
in many C-like languages are only necessary for parsing and do not affect the behaviour

1The implementation of ProofFrog is available at https://github.com/ProofFrog/ProofFrog

3

https://github.com/ProofFrog/ProofFrog

of the program). ASTs often also store additional context for programs that may be gen-
erated as a compiler checks for correctness or performs optimizations. The idea of using
ASTs to reason about cryptographic game-hopping proofs and some of the transforma-
tions used in manipulating ASTs were first prototyped in pygamehop, which was a tool
for specifying game-hopping proofs in a subset of python that ceased development in 2022
[14]. Treating games as ASTs allows us to leverage techniques from compiler design and
static analysis to prove output equivalence of games; thereby allowing us to demonstrate
the validity of hops in a game sequence. The main technique used in our engine is to take
pairs of game ASTs and perform a variety of transformations in an attempt to coerce each
AST into a canonical form. If each pair of ASTs in a game hop can be made equivalent,
then our proof engine can assert the validity of the hop. ProofFrog also targets ease of use:
although it implements a domain-specific language that a user must learn, the language
has an imperative C-like syntax that should be comfortable for the average cryptographer.
Furthermore, it performs transformations to the ASTs with little user guidance, which
makes writing a proof in many cases as simple as just specifying the hops. Finally, the
proof syntax attempts to mimic closely to that of a typical pen-and-paper proof.

Although ProofFrog utilizes game-hopping proofs, it does not solely reside inside of
the computational model. While ProofFrog does support the use of bitstrings to repre-
sent data in cryptographic primitives, it also has the ability to manipulate abstract data
without a specified representation, like in the symbolic model. Furthermore, it can rep-
resent cryptographic primitives both as probabilistic algorithms like in the computational
model, and as black-boxes like in the symbolic model. An author can utilize either of these
two representations simply by changing the details of their proof. An author can choose to
write their proof by specifying games that operate on bitstrings and defining algorithms for
cryptographic primitives, or they can choose to write their proof by specifying games that
operate on abstract types along with abstract primitives. ProofFrog occupies an interesting
space, in that it borrows elements from both the symbolic model and the computational
model, while focusing on ease of use and automatability.

ProofFrog’s strategy—determining that two games are output equivalent—is an unde-
cidable problem in the general case. As such, ProofFrog instead attempts to solve a subset
of manageable cases that will expand as the tool is further developed. It is also limited in
its scope as compared to other tools: it has no ability to express or prove arbitrary mathe-
matical statements like is possible in EasyCrypt. Rather, ProofFrog attempts to automate
some of the repetitive arguments found in cryptographic proofs that are both mechanically
verifiable yet subtle enough for a cryptographer to potentially make errors. There will un-
doubtedly be many proofs that ProofFrog will be unable to verify in its current form and
that is to be expected. The hope is that the simplicity of using ProofFrog when compared

4

to existing tools will encourage a wider adoption of proof assistant technology in a field
where correctness is paramount. Future development of ProofFrog could utilize it as a
platform to implement a variety of helpful features for cryptographers, such as the ability
to perform type-checking of proofs even without verification, or the ability to export proofs
automatically to LaTeX diagrams that could be included in publications.

The remainder of the thesis proceeds as follows. Chapter 2 presents relevant background
and notation for cryptographic proofs. Chapter 3 presents details of ProofFrog’s domain-
specific language as well as some of the criteria that went into its development. The bulk
of the thesis is written in Chapter 4. It presents a sequence of worked examples that
highlight a variety of different proof techniques that ProofFrog supports. The examples
are presented in the same order in which they were implemented for the proof engine, with
increasing complexity. Accompanying each example is a diagram showing the functionality
of the engine developed up to that point. Finally, Chapter 5 discusses potential avenues
for future work on ProofFrog.

5

Chapter 2

Cryptographic Proofs

Modern cryptographic proofs attempt to establish the security of a construction under
precise assumptions and conditions. In doing so, an author will provide a security defi-
nition, which details the goal of an adversary as well as their computational capabilities.
To demonstrate that a particular construction satisfies a particular security definition, the
author must prove that all efficient adversaries can only succeed with a negligibly higher
probability than desired.

There are many techniques that one can utilize to prove security definitions, but this
thesis will focus specifically on security definitions expressed as pairs of indistinguishable
games and proofs using the game-hopping proof technique. We present the details of our
formalism first, and then connect this to the broader literature at the end of the chapter.
In our approach, we consider games to be packages of code that provide oracle methods to
an adversary A, which is simply a program that can call the provided oracle methods and
outputs a bit b ∈ {0, 1}. A pair of games GL, GR given in a security definition will differ
in their behaviour, and the adversary’s goal is to determine whether they are interacting
with GL or GR. We use the notation G ◦ A to denote the composition of an adversary
with a game, where composition simply means using the code of G’s oracles to answer A’s
queries. In such a case, we call G the “challenger” to the adversary A. We use the notation
Pr[G ◦A→ b′] to denote the probability that the adversary outputs the bit b′ when given
access to G’s oracles. We can then precisely define what it means for a pair of games to
be indistinguishable.

Definition 1. The distinguishing advantage of an adversary A for two games GL and
GR is defined as:

Adv(A, GL, GR) = Pr[GL ◦ A → 1]− Pr[GR ◦ A → 1]

6

Definition 2. Two games GL and GR are interchangeable (with notation GL ≡ GR) if
and only if for every adversary A:

Adv(A, GL, GR) = 0

Definition 3. A function f(λ) is negligible if for every polynomial p there exists an N
such that for all λ > N , f(λ) < 1

p(λ)

Definition 4. Two games GL and GR are indistinguishable (with notation GL
∼∼∼ GR)

if and only if for all probabilistic polynomial-time adversaries A, Adv(A, GL, GR) is neg-
ligible. Both the running time of A and the distinguishing advantage are calculated with
respect to a security parameter λ which is provided as input to the adversary A and the
games GL and GR in unary.

The game-hopping proof technique then allows an author to prove indistinguishability
of two games GL and GR in a security definition by first providing a sequence of games
GL, G0, G1, G2, ..., GR, and then proving each adjacent pair of games in the sequence
to be either interchangeable or indistinguishable. By the fact that both interchangeability
and indistinguishability are transitive, and the fact that interchangeability implies indistin-
guishability, proving each adjacent pair of games to be indistinguishable suffices to prove
that GL and GR are indistinguishable.

Proving interchangeability of games requires showing that the oracles behave the same
under all possible inputs. Such arguments can often be made using logical and syntactic
features of the code. For example, if two games have identical code apart from one defining
a variable that is never used, it is easy to argue that the two games are interchangeable. On
the other hand, proving indistinguishability for a pair of games can be more challenging.
One useful strategy is to apply a reduction. Reductions act simultaneously as both games
and adversaries, and they allow an author to leverage the indistinguishability of simpler
primitives in more complicated proofs. As an example, assume that we wish to demonstrate
that GL

∼∼∼ GR, with the assumption that HL
∼∼∼ HR. To utilize a reduction, the author

would write a game R such that GL ≡ HL ◦ R. That is, R must utilize the oracles
provided by HL to exactly mimic the behaviour of GL. Then, we note that by associativity
of composition, for an adversary A, we have that (HL ◦ R) ◦ A is the same program as
HL ◦ (R ◦ A). That is, we can consider (HL ◦ R) to be a game providing oracles to the
adversary A, or we can considerHL to be a game providing oracles to the adversary (R◦A).
By the indistinguishability of HL, we have that Adv(R ◦A, HL, HR) is negligible, allowing
us to hop to HR ◦ (R ◦A). Applying associativity again yields (HR ◦R) ◦A. This sequence
of manipulations let us show that GL ≡ (HL ◦ R) ∼∼∼ (HR ◦ R). If (HR ◦ R) ≡ GR then

7

the proof is done, otherwise the author would write further games applying reductions or
interchangeability arguments to reach GR.

Game-hopping as a proof technique and the precise details of the accompanying for-
malism have been presented in a variety of ways. Shoup, in a noteworthy tutorial paper,
presented game-hopping as a method to simplify cryptographic proofs, where the games
themselves are probability spaces operating on random variables [19]. Unlike our descrip-
tion of games as packages of code, this paper does not enforce any explicit syntax for the
description of the games, rather just using a combination of mathematical notation and
exposition to explain the argument. Shoup describes three types of hops between games:

1. Transitions based on indistinguishability, which we have previously described.

2. Bridging steps, which rewrite the game while preserving the output distributions.
This is equivalent to our concept of interchangeability.

3. Transitions based on failure events, which are also sometimes referred to as “identical-
until-bad” arguments. This type of argument demonstrates indistinguishability by
first showing that the output distributions of two games are the same unless some
bad variable gets set to true, and then showing that the probability bad gets set to
true is negligible. ProofFrog does not natively support this type of argument, and
so we will not use it for any of our proofs.

In another popular approach, Bellare and Rogaway explicitly treated games as programs
with oracles written as procedures [5]. They presented arguments using both pseudocode
and a formalized programming language for games, with the suggestion that such a formal-
ized language could prove helpful in the automated verification of game-hopping proofs.
Recently, Brzuska et al. have introduced the notion of the state-separable proof [9]. This
formalism suggests taking games and splitting them into individual packages which con-
tain collections of oracles and associated state. The main purpose behind decomposing
games in this manner is that with clearly defined state boundaries, operations on games
such as reductions can be expressed using solely algebraic manipulations. It can also make
generic some arguments that would otherwise need to be repeated for each proof. This
formalism is also used extensively in Mike Rosulek’s textbook The Joy of Cryptography,
from which this thesis will verify a number of examples [18]. The arguments made in this
thesis are ultimately based in the state-separable proof formalism, however we will refrain
from delving too deeply into the algebraic notation that is used in the original paper.

The formalism used by Brzuska et al., Rosulek, and this thesis requires all security
definitions to be written in terms of pairs of indistinguishable games. However, not all

8

works in the broader literature follow this approach. For example, in Katz and Lindell’s
Introduction to Modern Cryptography, security definitions are written by providing the
definition of a single game where the adversary is trying to achieve some win condition [12].
The construction is secure if and only if the adversary can only win with a negligibly higher
probability than desired. Despite the apparent differences between these approaches, one
can convert a security definition based on a win condition into a security definition based on
indistinguishability. For example, some security definitions may be described as “hidden-
bit” games, in which the challenger uniformly randomly generates a bit, the adversary
queries oracles that in some way depend on this bit, and then the adversary wins if they can
correctly determine which bit the challenger generated. There is a simple transformation
from this type of security definition into one written in terms of indistinguishability: simply
write a pair of games where one always sets the bit to 0 and the other always sets the bit
to 1. If an adversary can distinguish between these two games with a probability that is
non-negligibly greater than 1

2
, then the same strategy can also be used to determine the bit

in the “hidden-bit” formulation, and vice versa. This transformation demonstrates that
the two security definitions are actually equivalent.

Hidden-bit games are just one example of a possible win condition that happens to
be particularly amenable for transforming into an indistinguishability format. Another
common type of win condition requires the adversary to solve a search problem. For
example, constructions that provide authentication should not be forgeable, therefore a
security definition for such a construction will define the adversary A to have won the
game G if they can produce a valid forgery. We can also write an equivalent security
definition utilizing indistinguishability like so: define two games Greal and Gfake that behave
like G but also each provide an oracle CheckForgery, which takes as input A’s attempted
forgery. The Greal game will actually perform the check, returning true if the forgery was
successful and false otherwise. The Gfake game will always just return false to indicate
that the forgery failed. The adversary can distinguish between these two games with a
non-negligible probability if and only if they can perform a valid forgery, which results in
an indistinguishability security definition that is equivalent to the win condition security
definition. In general, this transformation is applicable for any type of win condition
security definition for a gameG and a win condition w. We can simply write two gamesGreal

and Gfake identical to G apart from a CheckWin oracle, where Greal checks if w is satisfied
and Gfake always returns false. Just as before, the adversary can only distinguish between
Greal and Gfake by achieving the win-condition. This generic transformation demonstrates
that security definitions written in terms of pairs of indistinguishable games are no less
powerful than security definitions written in terms of win conditions.

9

Chapter 3

Domain-Specific Language for
Cryptographic Proofs

The first step in the development of ProofFrog was to create a domain-specific language
in which users can represent games, cryptographic constructions, and proofs. While im-
plementing the proof engine, we considered leveraging the syntax and parser of an already
existing language like Python to enhance usability. But, we found that most proofs require
additional context beyond the syntax provided by existing languages. In order to supply
a proof with enough context while utilizing an existing language would require the user to
learn how to write additional annotations to their source code specifically for ProofFrog.
Furthermore, the ASTs of existing languages are often large with support for a variety of
different programming paradigms and many types of syntactic sugar. The main strategy
employed by the proof engine is AST comparison, and as such, the fewer different ways
there are to write the same piece of code, the better. This wide diversity of syntax made it
difficult to narrow down the acceptable syntax for proofs, and it could potentially restrict
authors from programming in a particular style if it was unsupported by the proof engine.
Given these constraints, we thought a domain-specific language would be the easiest for
both the proof engine and for the users. This approach ensures that ProofFrog has all the
information necessary for verifying a proof just by building the AST. Furthermore, users
are not required to learn additional unintuitive syntax that is tacked onto a preexisting
language.

There were a few design criteria we aimed for when writing the grammar for ProofFrog’s
domain-specific language. First, we initially decided that the grammar itself should be
based on the C family of languages. It can easily be assumed that the average cryptographer
will have at one point learned a language in the C family, which makes the syntax for writing

10

proofs easy to pick up and understand. Secondly, we tried to avoid a large divergence
between the syntax used for specifying games and constructions versus the syntax used
for expressing the proofs, so as to reduce the mental load when switching between writing
definitions and writing proofs. Finally, we aimed for the proof syntax to mimic how a
pen-and-paper proof would be written: namely, the user should be able to define some
variables, list some assumptions, state the security property they wish to prove, and then
provide a sequence of games that proves the property. The grammar itself was written in
ANTLR 4, which allowed for rapid prototyping and development [17].

ProofFrog supports four different types of files: primitive files, scheme files, game files,
and proof files. Proof files are the only type of file that ProofFrog actually verifies; the
remaining exist to provide definitions of security definitions and schemes to be used in
proofs. Examples for the syntax of each file will be presented as necessary in Chapter 4;
for now, we simply describe the purpose of each file and a few key features of their syntax.
The full grammar for each of the file types, in ANTLR 4 syntax, is provided in Appendix A.

3.1 Primitive Files and Scheme Files

Primitive files and scheme files both serve a related purpose: they describe the sets and
functions that are associated with a particular mathematical object. The key difference is
that primitives model abstract constructions whereas schemes are concrete. Primitive files
allow a user to provide just method signatures for each function the object defines, whereas
scheme files require defining each function with both a signature and an implementation.
Each scheme models a particular type of primitive: for example, one might define a public
key encryption scheme primitive and an accompanying RSA scheme. In this way, primitives
and schemes map closely to the concepts of abstract and concrete classes in traditional
object-oriented programming.

3.2 Game Files

Game files allow the user to specify security definitions in the form of a pair of games
that must be proved indistinguishable. Each function listed in a game is provided im-
plicitly to the adversary in the form of an oracle. Games may also contain private state
that is maintained between oracle calls. Finally, each game has the option to specify an
Initialize method which is assumed to be implicitly called before the adversary program
starts. Initialize also has the ability to return information to the adversary that they

11

may use during the attack (for example, adversaries should be provided the public key
when attacking public key encryption).

3.3 Proof Files

Proof files allow the user to specify any reductions or intermediate games that may be used
in the proof, after which the user must define statements in four sections: the let section,
the assume section, the theorem section, and a sequence of games. The let section details
the variables, primitives, and schemes to be used in the assumptions, theorem, and proof.
The assume section allows the user to specify indistinguishability assumptions for schemes
defined in the let section. The theorem section states which security definition is going to
be proved for which scheme. Finally, the games section lists a sequence of games, starting
with one of the games from the pair specified in the theorem and ending with the other
game. Each game in the sequence is checked to be either interchangeable with the next
game, or to be indistinguishable with the next game. Indistinguishability only occurs if the
author writes a reduction to utilize a previously specified indistinguishability assumption.

12

Chapter 4

Building Up ProofFrog

This chapter will detail the capabilities of ProofFrog as it was initially developed. To do
so, we will present a sequence of worked examples that ProofFrog can verify, starting with
basic examples and moving to those that necessitate more complex strategies. In each
section we will detail the steps of the proof, how the definitions and proof steps map into
our domain specific language, and finally the transformations that ProofFrog must apply
to each game’s AST in order to verify the result. The proofs and definitions (aside from
a couple in Section 4.2) are adapted from Rosulek’s textbook The Joy of Cryptography,
with minimal changes [18]. The text served as a useful collection of proofs with which to
validate ProofFrog against, since each security definition and proof it models is written in
the state-separable proof framework using pairs of indistinguishable games.

4.1 CPA$ Security Implies CPA Security

The first proof this chapter will start with focuses on the properties of symmetric encryp-
tion schemes, which is a type of construction used for securing communication of messages
between two parties with a shared secret. Symmetric encryption schemes are a fundamen-
tal tool and are often the first definition introduced when learning cryptography. The proof
detailed in this chapter, that CPA$ security implies CPA security, is one that compares
related security definitions for a symmetric encryption scheme so as to better understand
their relative strength. Beyond the fact that understanding the strength of security def-
initions is inherently useful, this proof is also a good choice for first discussion due to
its simplicity. The proof essentially is a straightforward application of the general game-
hopping technique that was previously described, i.e, using a sequence of games that are

13

interchangeable or indistinguishable, and using reductions to leverage prior indistinguisha-
bility assumptions. As such, it was a natural proof with which to begin the development
of the ProofFrog engine and will allow us to detail the basic steps taken in ProofFrog’s
game canonicalization strategy.

4.1.1 Definitions

Definition 5 (Definition 2.1 from [18]). A symmetric-key encryption scheme consists of a
key space K, a message space M, a ciphertext space C, and the following algorithms:

• KeyGen: a randomized algorithm that outputs a key k ∈ K.

• Enc: a (possibly randomized) algorithm that takes a key k ∈ K and a plaintext m ∈ M
as input, and outputs a ciphertext c ∈ C.

• Dec: a deterministic algorithm that takes a key k ∈ K and ciphertext c ∈ C as input,
and outputs a plaintext m ∈ M, or the symbol None to indicate failure to decrypt.

When referring to the entire scheme by a single variable Σ, the components are denoted by
Σ.KeyGen, Σ.Enc, Σ.Dec, Σ.K, Σ.M, and Σ.C

The next definition will provide a pair of games for a security definition. Both games
maintain a secret key as part of their state and provide an oracle named CTXT to which
the adversary can pass a message m. The real game encrypts the provided message with
the key and returns the ciphertext, whereas the random game responds with a randomly
sampled ciphertext. These games will be modelled via pseudocode. The game’s name
appears as the header in bold. Statements after the header occur as part of the game’s
initialization. If a line is underlined, that indicates it is an oracle: the name of the oracle is
provided, with arguments indicated in parentheses, and all code belonging to the oracle is
indented. The pseudocode notation should be largely intuitive: for now, simply note that
we use := to indicate assignment and ← to indicate sampling uniformly randomly from a
set.

Definition 6 (Definition 7.2 from [18]). A symmetric encryption scheme Σ is CPA$ secure
if and only if CPA$Σ

real
∼∼∼ CPA$Σ

rand where:

14

CPA$Σ
real

k := Σ.KeyGen()

CTXT(m ∈ Σ.M):

c := Σ.Enc(k,m)

return c

CPA$Σ
rand

CTXT(m ∈ Σ.M):

c← Σ.C

return c

Intuitively, CPA$ security captures the notion that encrypted messages “look random”,
in that, without knowledge of the secret key of the challenger, the adversary should not be
able to distinguish ciphertexts generated by encrypting messages from ciphertexts that are
chosen uniformly randomly. For CPA$ security to hold, this property must be true even
when the adversary can encrypt as many messages as they would like containing whatever
content they choose. The initialism CPA comes from “chosen plaintext attack”, since the
adversary is supplying the messages to the challenger. We will now present a definition
for CPA security, in which both games also maintain a secret key but provide a different
oracle called Eavesdrop to the adversary. In each game the Eavesdrop oracle accepts two
messages; the games differ in which message is encrypted with the secret key. The name
“Eavesdrop” comes from the imagined scenario in which the adversary is eavesdropping on
a channel where ciphertexts are being transmitted.

Definition 7 (Definition 7.1 from [18]). A symmetric encryption scheme Σ is CPA secure
if and only if CPAΣ

L
∼∼∼ CPAΣ

R where:

CPAΣ
L

k := Σ.KeyGen()

Eavesdrop(mL,mR ∈ Σ.M):

c := Σ.Enc(k,mL)

return c

CPAΣ
R

k := Σ.KeyGen()

Eavesdrop(mL,mR ∈ Σ.M):

c := Σ.Enc(k,mR)

return c

CPA security models that ciphertexts do not leak information about plaintexts. If a
scheme is CPA secure, then the distinguishing advantage between the two games is neg-
ligible, and so an adversary cannot determine which plaintext the outputted ciphertext
corresponds to after calling the Eavesdrop oracle. As before, the adversary can repeat

15

this experiment as many times as they would like with whichever messages they choose.
Intuitively, if all ciphertexts generated by a symmetric encryption scheme “look random”,
then one would expect that ciphertexts also do not leak any information about their cor-
responding plaintexts. This intuition can be formalized in the following theorem.

4.1.2 Theorem and Proof

Theorem 1 (Claim 7.3 from [18]). If a symmetric encryption scheme Σ is CPA$ secure
then it is also CPA secure.

Proof. To prove that Σ is CPA secure, we must show a sequence of games from CPAΣ
L to

CPAΣ
R where each pair of adjacent games in the game hop sequence is either interchange-

able or indistinguishable. To begin, we will present a short overview of the game hops to
expect:

1. CPAΣ
L

• We write a reduction RΣ
1 that uses the CTXT oracle provided by the real CPA$ game

to perfectly mimic the behaviour of the left CPA game. This is an interchangeable
hop.

2. CPA$Σ
real ◦RΣ

1

• The premise of the proof assumes that either CPA$ game can be substituted for the
other. This is an indistinguishable hop.

3. CPA$Σ
rand ◦RΣ

1

• We write a new reduction RΣ
2 that passes mR as an argument to the CTXT oracle

instead of mL, which will not matter when composed with the random game. This
is an interchangeable hop.

4. CPA$Σ
rand ◦RΣ

2

• Once again, we can substitute either CPA$ game for the other. This is an inter-
changeable hop.

5. CPA$Σ
real ◦RΣ

2

16

• The previous game exactly mimics the behaviour of the right CPA game. This is an
interchangeable hop.

6. CPAΣ
R

Now, we show each game hop in full detail. The first hop will utilize a reduction:
CPAΣ

L ≡ CPA$Σ
real ◦RΣ

1

CPA$Σ
real

k := Σ.KeyGen()

CTXT(m ∈ Σ.M):

c := Σ.Enc(k,m)

return c

RΣ
1

Eavesdrop(mL,mR ∈ Σ.M):

c := challenger.CTXT(mL)

return c

The reduction simply uses the CTXT oracle provided by CPA$Σ
real. The two games

CPAΣ
L and CPA$Σ

real ◦RΣ
1 are interchangeable because the Eavesdrop oracle behaves iden-

tically for both games: it just returns the encryption of mL. The second hop utilizes the
assumption that Σ is CPA$ secure and so we can replace the real version of the CPA game
that encrypts messages with the random version that returns random ciphertexts. Hence,
we have that CPA$Σ

real ◦RΣ
1
∼∼∼ CPA$Σ

rand ◦RΣ
1 .

CPA$Σ
rand

CTXT(m ∈ Σ.M):

c← Σ.C

return c

RΣ
1

Eavesdrop(mL,mR ∈ Σ.M):

c := challenger.CTXT(mL)

return c

The third hop notes that the argument m is unused in the CTXT oracle. We then can
write a new reduction RΣ

2 that passes mR to CTXT instead of mL. Note that this hop is
actually one which is interchangeable despite using reductions. The interchangeability is
because the behaviour of a program remains the same if you change an unused argument.
This hop demonstrates that CPA$Σ

rand ◦RΣ
1 ≡ CPA$Σ

rand ◦RΣ
2

17

CPA$Σ
rand

CTXT(m ∈ Σ.M):

c← Σ.C

return c

RΣ
2

Eavesdrop(mL,mR ∈ Σ.M):

c := challenger.CTXT(mR)

return c

The fourth hop once again applies the assumption that Σ is CPA$ secure. This assump-
tion allows us to revert back to using real ciphertexts instead of random ciphertexts in the
challenger’s CTXT oracle. This hop demonstrates that CPA$Σ

rand ◦RΣ
2
∼∼∼ CPA$Σ

real ◦RΣ
2 .

CPA$Σ
real

k := Σ.KeyGen()

CTXT(m ∈ Σ.M):

c := Σ.Enc(k,m)

return c

RΣ
2

Eavesdrop(mL,mR ∈ Σ.M):

c := challenger.CTXT(mR)

return c

And finally, since the behaviour of this reduction is just to return the encryption of
mR, CPA$Σ

rand ◦RΣ
2 ≡ CPAΣ

R. Hence, if Σ is CPA$ secure, then

CPAΣ
L ≡ CPA$Σ

real ◦RΣ
1
∼∼∼ CPA$Σ

rand ◦RΣ
1 ≡ CPA$Σ

rand ◦RΣ
2
∼∼∼ CPA$Σ

real ◦RΣ
2 ≡ CPAΣ

R

By transitivity, CPAΣ
L
∼∼∼ CPAΣ

R and so Σ is CPA secure.

4.1.3 ProofFrog Encoding

To write this proof in ProofFrog requires first implementing all relevant definitions in the
domain-specific language and then writing a proof file listing out the sequence of games.
The symmetric encryption scheme definition can be found in Figure 4.1. In the definition,
we provide the method signatures expected for symmetric encryption schemes, and store
the sets with which the primitive is constructed. Storing the sets allows them to be
accessible later on and used for typing of variables in games. The game files to model both
CPA and CPA$ security are found in Figure 4.2 and Figure 4.3 respectively. With all of
these defined, our proof file consists first of writing the reductions RΣ

1 and RΣ
2 , which is

18

detailed in Figure 4.4. Syntactically, reductions have the same bodies as games. In the
declaration of a reduction, however, one must also specify what challenger the reduction
acts as an adversary for (listed after compose) and what type of adversary is querying
the reduction (list after against). This extra information would allow a type checker to
ensure that the reduction is calling valid challenger oracles and that the oracles defined
by the reduction have the correct signatures for the adversary to call. Having written the
reductions, the proof file is concluded by completing the four sections of a proof as written
in Figure 4.5.

Primitive SymEnc(Set MessageSpace, Set CiphertextSpace, Set KeySpace) {

Set Message = MessageSpace;

Set Ciphertext = CiphertextSpace;

Set Key = KeySpace;

Key KeyGen();

Ciphertext Enc(Key k, Message m);

Message Dec(Key k, Ciphertext c);

}

Figure 4.1: ProofFrog syntax for a symmetric encryption scheme primitive.

19

Game Left(SymEnc E) {

E.Key k;

Void Initialize() {

k = E.KeyGen();

}

E.Ciphertext Eavesdrop(E.Message mL, E.Message mR) {

return E.Enc(k, mL);

}

}

Game Right(SymEnc E) {

E.Key k;

Void Initialize() {

k = E.KeyGen();

}

E.Ciphertext Eavesdrop(E.Message mL, E.Message mR) {

return E.Enc(k, mR);

}

}

export as CPA;

Figure 4.2: ProofFrog syntax for the pair of games modelling CPA security of a symmetric
encryption scheme.

20

Game Real(SymEnc E) {

E.Key k;

Void Initialize() {

k = E.KeyGen();

}

E.Ciphertext CTXT(E.Message m) {

return E.Enc(k, m);

}

}

Game Random(SymEnc E) {

E.Key k;

Void Initialize() {

k = E.KeyGen();

}

E.Ciphertext CTXT(E.Message m) {

E.Ciphertext c <- E.Ciphertext;

return c;

}

}

export as CPA$;

Figure 4.3: ProofFrog syntax for the pair of games modelling CPA$ security of a symmetric
encryption scheme.

21

Reduction R1(SymEnc E) compose CPA$(E) against CPA(E).Adversary {

E.Ciphertext Eavesdrop(E.Message mL, E.Message mR) {

return challenger.CTXT(mL);

}

}

Reduction R2(SymEnc E) compose CPA$(E) against CPA(E).Adversary {

E.Ciphertext Eavesdrop(E.Message mL, E.Message mR) {

return challenger.CTXT(mR);

}

}

Figure 4.4: Reductions used to prove Theorem 1.

22

proof:

let:

Set M;

Set C;

Set K;

SymEnc SE = SymEnc(M, C, K);

assume:

CPA$(SE);

theorem:

CPA(SE);

games:

CPA(SE).Left against CPA(SE).Adversary; // Game 1

// Game 1 -> Game 2, by interchangeability.

CPA$(SE).Real compose R1(SE) against CPA(SE).Adversary; // Game 2

// Game 2 -> Game 3, by indistinguishability

CPA$(SE).Random compose R1(SE) against CPA(SE).Adversary; // Game 3

// Game 3 -> Game 4, by interchangeability

CPA$(SE).Random compose R2(SE) against CPA(SE).Adversary; // Game 4

// Game 4 -> Game 5, by indistinguishability

CPA$(SE).Real compose R2(SE) against CPA(SE).Adversary; // Game 5

// Game 5 -> Game 6, by interchangeability

CPA(SE).Right against CPA(SE).Adversary; // Game 6

Figure 4.5: Proof file to prove Theorem 1.

For this proof, we use arbitrary sets M, C, and K to denote the MessageSpace,
CiphertextSpace and KeySpace of SE since the proof works independently of the sets
that the symmetric encryption scheme uses. These games model computation on abstract
data from arbitrary sets and as such are an example of a proof influenced by the symoblic
model; we are using abstract data for our messages rather than explicitly defining messages
as bitstrings. After indicating the assumption that SE satisfies CPA$ security and that the
proof is for CPA security of SE, the list of games is specified in the same order as in the
given pen-and-paper proof. One purposeful aspect of ProofFrog’s design is that this list
matches one-to-one with the the pen-and-paper proof given: the intent is that matching
ProofFrog syntax so closely to the pen-and-paper proof will make it easy for the average
cryptographer to use.

23

4.1.4 Validating Indistinguishability

Verifying this proof requires two main functionalities: checking that indistinguishability
assumptions are used correctly, and performing composition of games with reductions
to check interchangeability. To detect if an indistinguishability assumption is used in a
particular hop, we simply check whether the following four criteria are true:

1. Both steps in the hop use a reduction.

2. The steps are identical apart from changing which game the reduction is composed
with.

3. The game the reduction is composed with is changed to its corresponding pair in the
security definition.

4. The security definition pair appears with identical parameters in the assumptions

section of the proof.

If all of these criteria are true, then this step is valid by indistinguishability. For exam-
ple, the second hop, from CPA$(SE).Real compose R1(SE) to CPA$(SE).Random compose

R1(SE) satisfies all four of these criteria, and hence is a valid hop by indistinguishability.
On the other hand, if anything else changes in the step, e.g, the reduction being used,
the reduction’s parameters, the challenger’s parameters, etc., or, if the security defini-
tion does not appear in the assumptions section, then this step cannot be assumed by
indistinguishability and must be checked for interchangeability. For example, the hop
from CPA$(SE).Random compose R1(SE) to CPA$(SE).Random compose R2(SE) must be
checked as interchangeable because the reduction being applied is not the same in each
step.

4.1.5 Verifying Interchangeability

Validating the interchangeability steps is more challenging as the engine must transform
steps involving reductions into single games. Recall that the strategy ProofFrog uses to
check interchangeability is to simplify game ASTs into a canonical form and then check
equality at the AST level. Validating a hop like CPA(SE).Left to CPA$(SE).Real compose

R1(SE) requires taking the definitions of CPA$(SE).Real and R1(SE) and composing them
into a single game.

24

The first step is undertaken by the InstantiationTransformer. Its purpose is to
create copies of definitions that are parameterized and replace references to these param-
eters with values that are defined in the proof’s let section. As an example, consider the
definition SymEnc SE = SymEnc(M, C, K). ProofFrog will associate with the value SE a
copy of the SymEnc primitive AST, where any references to Message or MessageSpace are
replaced with M, any references to Ciphertext or CiphertextSpace are replaced with C,
etc. The InstantiationTransformer is also applied for game and reduction definitions:
the value CPA(SE).Left is associated with the CPA left game AST where types like E.Key
are replaced with K. Function calls like E.KeyGen and E.Enc are rewritten as SE.KeyGen
and SE.Enc. When all references to parameters have been rewritten in terms of variables
defined in the let section, these definition copies have their parameters removed. The
InstantiationTransformer helps ensure consistency in parameterized variables across
ASTs: for example, two games may both be parameterized with a SymEnc parameter
named E, but if the steps instantiate the games with two different schemes, then it would
be a mistake to compare the ASTs as equal just because the parameter name is the same.
Rewriting all parameters in terms of variables defined in the let section ensures that this
mistake is avoided.

4.1.6 Creating the Inlined Game

The InstantiationTransformer alone is enough to prepare a game AST representing
CPA(SE).Left. The task of composing CPA$(SE).Real and R1(SE) into a single game,
which we call the inlined game, remains. To do so, we use the AST associated with R1(SE)

as a base to modify, since R1(SE) already defines the oracles that the adversary would
expect when playing against a single game.

The first step is to combine states together: each field included in the AST associated
with CPA$(SE).Real and the AST associated with R1(SE) should be included in the inline
game. Variable renaming is undertaken to ensure no conflicts: if both the reduction and the
challenger have a field k, it could be ambiguous which field is being referred to in the inlined
game. To avoid conflicts, each field f from the challenger is renamed to challenger@f,
and any references to the field in the challenger AST are rewritten accordingly before
composition. The @ symbol is not allowed during parsing of variable names, so these
names are guaranteed to be conflict-free.

The second step is to combine Initialize methods together. Because the reduc-
tion also acts as an adversary, it has the possibility of receiving state from the challenger
in the form of a parameter to its Initialize method. The inlined game, being just

25

a game and not an adversary, should have no parameters in its Initialize method.
To combine the challenger’s and the reduction’s Initialize methods together, Proof-
Frog will automatically insert a call to challenger.Initialize() as the first statement
in the reduction’s Initialize method. If the reduction’s Initialize method takes in
a parameter, ProofFrog will also create a local variable to capture the return value of
challenger.Initialize() with the same name as the parameter, which ensures that
the remaining statements function as expected. This transformation to the reduction’s
Initialize method ensures that when ProofFrog begins inlining challenger method calls,
the inlined game will consist of an Initialize method with no parameters, and method
signatures that match those expected by the adversary.

Finally, to actually create the inlined game AST, ProofFrog must remove any calls
to challenger oracles inside the reduction. ProofFrog uses a method inlining strat-
egy to achieve this. The InlineTransformer searches each method in the reduc-
tion to find the first function call expression to a challenger oracle. It then uses the
InstantiationTransformer to create a copy of the challenger oracle’s AST where the
parameters have been replaced with the arguments provided to the call. Additionally, the
InlineTransformer performs renaming of local variables in the challenger oracle’s AST
by prefixing them with the oracle name and the @ symbol, so as to avoid conflicts when
inlining the code into the reduction’s method. If the reduction calls the oracle solely for
its side effects, then the transformation is completed by replacing the function call with
the statements from the modified oracle AST. On the other hand, if the result of the chal-
lenger oracle call is saved to a local variable, then the InlineTransformer will replace the
challenger function call expression in the reduction’s method with the expression found in
the return statement of the oracle body, and then remove the associated return statement
from the oracle before inserting the prior statements into the reduction. For simplicity,
ProofFrog assumes that return statements are only placed as the final statement for any
challenger oracles. The InlineTransformer repeats this process of inlining oracle calls
until there are none left in any methods of the inlined game AST. This yields the following
AST for CPA$(SE).Real compose R1(SE):

Game Inlined() {

K challenger@k;

Void Initialize() {

challenger@k = SE.KeyGen();

}

C Eavesdrop(M mL, M mR) {

return SE.Enc(challenger@k, mL);

26

}

}

4.1.7 Standardizing Variables Names

After completing each of these steps—combining the states of the challenger and the reduc-
tion, combining the Initialize methods, and inlining any challenger calls—the inlined
game AST is now a complete representation of the behaviour of CPA$(SE).Real compose

R1(SE), written as a single game. However, the inlined game AST and the AST for
CPA(SE).Left still do not compare as identical, because variable names are mismatched.
The inlined game uses the variable name challenger@k whereas CPA(SE).Left simply uses
k. To address this issue, ProofFrog normalizes the names of the fields for all games and
the names of the variables for all oracles contained within each game. Each field’s name is
converted to fieldx, where x is an index representing the order of occurrence when travers-
ing the oracles of the game AST. Variables are renamed similarly. This canonicalization
of variables is enough for CPA(SE).Left and the inlined game AST to match identically,
validating this proof step.

In summary, the transformations described above are sufficient to validate each in-
terchangeable game-hop in the proof. Note that in the hop from game three to game
four, where the argument mL is replaced with mR: this hop is easily handled by the
InlineTransformer. Substitution of the variable name is a no-op because there are no
occurrences of the argument m in the random CTXT oracle body, and inlining then sub-
stitutes the same random sample statement for both methods. The other steps using indis-
tinguishability arguments are handled by simply checking that the assumption is properly
asserted, as previously described. There are, of course, many more advanced proofs that
are too complex for these simple strategies to validate. However, this proof, that CPA$
security implies CPA security, is provable under these transformations, and provides an
interesting use case in the form of security definition strength comparison.

In Figure 4.6, we present a flowchart diagram of the high-level steps taken by Proof-
Frog’s engine as it stands after the building blocks added in this initial worked example.
As this chapter progresses through further worked examples, we will update this diagram
with the new functionality required to validate each proof, culminating with a final diagram
illustrating the functionality of the engine in full.

27

Figure 4.6: A flowchart of ProofFrog engine functionality necessary to prove Theorem 1.

28

4.2 Double Symmetric Encryption and One-Time

Uniform Ciphertexts

The previous proof demonstrated how interchangeability can in some cases be established
simply from method inlining. However, two oracles can be interchangeable while also
having different ASTs after inlining. For example, one AST may have statements that are
in a different ordering than the other, or one may have statements that are redundant and
do not appear in the other. These differences would not affect the behaviour of the oracles
and yet would result in different ASTs. This section will detail a proof where statement re-
ordering, dead-code elimination, and some other source code transformations are necessary
to yield two identical ASTs. The proof is of a different nature than the previous example;
whereas the last proof focused on comparing two security definitions, this proof will focus
on analyzing the security properties of a new symmetric encryption scheme created from
two other symmetric encryption schemes. In addition to being another type of proof the
average cryptographer may wish to reason about, this example will allow us to present
a ProofFrog scheme file and some of the engine’s more advanced game canonicalization
transformations.

4.2.1 Definitions

Definition 8. A double symmetric encryption scheme is a symmetric encryption scheme
composed from two other symmetric encryption schemes, S and T , where S.C = T.M, and:

KeyGen() = (S.KeyGen(), T.KeyGen())

Enc((kS, kT),m) = T.Enc(kT , S.Enc(kS,m))

Dec((kS, kT), c) = S.Dec(kS, T.Dec(kT , c))

For this proof we will also introduce a new security definition, the one-time uniform
ciphertexts property.

Definition 9 (Definition 2.5 from [18]). A symmetric encryption scheme Σ has one-time
uniform ciphertexts if and only if OTUCΣ

real
∼∼∼ OTUCΣ

rand, where:

29

OTUCΣ
real

CTXT(m ∈ Σ.M):

k := Σ.KeyGen()

c := Σ.Enc(k,m)

return c

OTUCΣ
rand

CTXT(m ∈ Σ.M):

c← Σ.C

return c

The one-time uniform ciphertexts property is much like that of CPA$ security, the
difference being that the secret key is scoped locally to the CTXT oracle, and is there-
fore regenerated for each adversary call. The regeneration prevents the adversary from
performing attacks that rely on observing relationships between multiple ciphertexts en-
crypted with the same key. Because the types of attacks an adversary can perform are more
limited, the one-time uniform ciphertexts property is weaker than that of CPA$ security.
One can also ask, under what conditions would a double symmetric encryption scheme sat-
isfy the one-time uniform ciphertexts property? The answer, interestingly, depends only
on the security property of T , and not that of S.

4.2.2 Theorem and Proof

Theorem 2. Assume Σ is a double symmetric encryption scheme composed from two
symmetric encryption schemes S and T . If T has one-time uniform ciphertexts, then so
does Σ.

A similar result can be proved for CPA$ security, where a double symmetric encryption
scheme is CPA$ secure (and hence CPA secure) if T is CPA$ secure. However, the proof
of that result only requires dead-code elimination and not statement reordering. Hence,
the one-time uniform ciphertexts property, despite being weaker, is a better example to
demonstrate ProofFrog’s capabilities.

Proof. To prove that Σ has one-time uniform ciphertexts, we must show that OTUCΣ
real
∼∼∼

OTUCΣ
rand. We again provide an overview of the sequence of games before elaborating in

full.

1. OTUCΣ
real

30

• We write a reduction RΣ
1 that uses the oracles provided by the real one-time uniform

ciphertexts game for T to perfectly mimic the behaviour of the real one-time uniform
ciphertexts game for Σ. This is an interchangeable hop.

2. OTUCT
real ◦RΣ

1

• The premise of the proof assumes that the real one-time uniform ciphertexts game
for T can be replaced with the random game. This is an indistinguishable hop.

3. OTUCT
rand ◦RΣ

1

• We inline the call to the challenger’s CTXT oracle to form an intermediate game
used for explanation. This is an interchangeable hop.

4. GΣ
1

• We argue that apart from some redundant statements, the random game and the
intermediate game are identical. This is an interchangeable hop.

5. OTUCΣ
rand

We now detail each hop in full. The starting game is OTUCΣ
real. It is shown below

with the definitions of Σ’s key generation and encryption algorithms already inlined.

OTUCΣ
real

CTXT(m ∈ Σ.M):

kS := S.KeyGen()

kT := T .KeyGen()

c1 := S.Enc(kS ,m)

c2 := T.Enc(kT , c1)

return c2

Next, we note that the T .KeyGen() statement and the T .Enc(kT , c1) statement, when
paired together, form the code of the real one-time uniform ciphertexts game for T . This
allows us to utilize a reduction and show that OTUCΣ

real ≡ OTUCT
real ◦RΣ

1

31

OTUCT
real

CTXT(m ∈ T .M):

k := T .KeyGen()

c := T.Enc(k,m)

return c

RΣ
1

CTXT(m ∈ Σ.M):

kS := S.KeyGen()

c1 := S.Enc(kS ,m)

c2 := challenger.CTXT(c1)

return c2

Note that inlining the challenger.CTXT call, renaming variables, and re-ordering state-
ments yields OTUCΣ

real, so these two games are indeed interchangeable. Then, via the
assumption that T has one-time uniform ciphertexts, we can replace the real one-time
uniform ciphertexts game for T with the random one-time uniform ciphertexts game for
T , and hop indistinguishably to OTUCT

rand ◦RΣ
1 .

OTUCT
rand

CTXT(m ∈ T .M):

c← T.C

return c

RΣ
1

CTXT(m ∈ Σ.M):

kS := S.KeyGen()

c1 := S.Enc(kS ,m)

c2 := challenger.CTXT(c1)

return c2

We can inline the game and reduction together to get the following intermediate game
namedGΣ

1 . Since the only transformation made is inlining, we have thatOTUCT
rand◦RΣ

1 ≡
GΣ

1 .

GΣ
1

CTXT(m ∈ Σ.M):

kS := S.KeyGen()

c1 := S.Enc(kS ,m)

c2 ← T .C

return c2

And then, we simply note that the first two statements assigning to kS and c1 are not used
in the return value of CTXT. The behaviour of this oracle is just to return a value selected

32

uniformly randomly from T ’s ciphertext space. And, since T .C = Σ.C, GΣ
1 just samples

uniformly randomly from Σ’s ciphertext space, which is the exact behaviour of OTUCΣ
rand.

Hence, we have that

OTUCΣ
real ≡ OTUCT

real ◦RΣ
1
∼∼∼ OTUCT

rand ◦RΣ
1 ≡ GΣ

1 ≡ OTUCΣ
rand

and so Σ has one-time uniform ciphertexts.

4.2.3 ProofFrog Encoding

This proof’s definition in ProofFrog is not too novel as compared to the previous section.
The main difference is that we must also define a scheme file for the double symmetric en-
cryption scheme (Figure 4.7), which we have not yet presented an example of. The extends
syntax for the scheme file indicates which primitive this scheme models and therefore which
sets and method signatures the scheme needs to provide. This scheme also demonstrates
the requires clause, which allows a user to place constraints on a scheme’s parameteriza-
tion, in the form of a boolean expression, which would be validated by a type checker during
instantiation. Other than that, we simply must provide our one-time uniform ciphertexts
security definition (Figure 4.8), reduction (Figure 4.9), and proof steps (Figure 4.10) to
complete the proof.

33

Scheme DoubleSymEnc(SymEnc S, SymEnc T) extends SymEnc {

requires S.Ciphertext == T.Message;

Set Message = S.Message;

Set Ciphertext = T.Ciphertext;

Set Key = S.Key * T.Key;

Key KeyGen() {

S.Key key1 = S.KeyGen();

T.Key key2 = T.KeyGen();

return [key1, key2];

}

Ciphertext Enc(Key k, Message m) {

S.Ciphertext c1 = S.Enc(k[0], m);

T.Ciphertext c2 = T.Enc(k[1], c1);

return c2;

}

Message Dec(Ciphertext c) {

S.Ciphertext c2 = T.Dec(k[1], c);

S.Message m = S.Dec(k[0], c2);

return m;

}

}

Figure 4.7: ProofFrog syntax for a double symmetric encryption scheme.

34

Game Real(SymEnc E) {

E.Ciphertext CTXT(E.Message m) {

E.Key k = E.KeyGen();

E.Ciphertext c = E.Enc(k, m);

return c;

}

}

Game Random(SymEnc E) {

E.Ciphertext CTXT(E.Message m) {

E.Ciphertext c <- E.Ciphertext;

return c;

}

}

export as OTUC;

Figure 4.8: ProofFrog syntax for the pair of games modelling the one-time uniform cipher-
texts property of a symmetric encryption scheme.

Reduction R(DoubleSymEnc D, SymEnc S, SymEnc T)

compose OTUC(T) against OTUC(D).Adversary {

D.Ciphertext CTXT(D.Message m) {

S.Key k1 = S.KeyGen();

S.Ciphertext c1 = S.Enc(k1, m);

T.Ciphertext c2 = challenger.CTXT(c1);

return c2;

}

}

Figure 4.9: Reduction used in the proof of Theorem 2.

35

proof:

let:

Set M;

Set K1;

Set K2;

Set I;

Set C;

SymEnc S = SymEnc(M, I, K1);

SymEnc T = SymEnc(I, C, K2);

DoubleSymEnc D = GeneralDoubleSymEnc(S, T);

assume:

OTUC(T);

theorem:

OTUC(D);

games:

OTUC(D).Real against OTUC(D).Adversary; // Game 1

// Game 1 -> Game 2, by interchangeability

OTUC(T).Real compose R(D, S, T) against OTUC(D).Adversary; // Game 2

// Game 2 -> Game 3, by indistinguishability

OTUC(T).Random compose R(D, S, T) against OTUC(D).Adversary; // Game 3

// Game 3 -> Game 4, by interchangeability

OTUC(D).Random against OTUC(D).Adversary; // Game 4

Figure 4.10: Proof file for Theorem 2.

4.2.4 Initial ASTs

We now aim to detail the transformations undertaken by ProofFrog in order to verify
this proof. We shall begin with the first hop, from OTUC(D).Real to OTUC(T).Real

compose R(D, S, T). Simply applying the steps from the previous section: i.e, instan-
tiating games and creating an inlined game for the reduction, is not sufficient to establish
AST equivalence. The instantiation of OTUC(D).Real causes the method calls D.KeyGen()
and D.Enc() to be replaced with those provided in the scheme definition. Doing so yields
the following AST:

Game Real() {

C CTXT(M m) {

36

K1 D.KeyGen@key1 = S.KeyGen();

K2 D.KeyGen@key2 = T.KeyGen();

K1 * K2 k = [D.KeyGen@key1, D.KeyGen@key2];

I D.Enc@c1 = S.Enc(k[0], m);

C D.Enc@c2 = T.Enc(k[1], D.Enc@c1);

C c = D.Enc@c2;

return c;

}

}

Whereas, the AST created from instantiating and inlining OTUC(T).Real compose R(D,

S, T) is the following:

Game Inlined() {

C CTXT(M m) {

K1 k1 = S.KeyGen();

I c1 = S.Enc(k1, m);

K2 challenger.CTXT@k = T.KeyGen();

C challenger.CTXT@c = T.Enc(challenger.CTXT@k, c1);

C c2 = challenger.CTXT@c;

return c2;

}

}

These games are mathematically interchangeable, they differ only in the timing of when
the keys are generated, and that the Real game creates an unnecessary tuple. Neither of
these changes result in any difference in the return value. However, given just instantiation
and inlining, there is no way to verify this proof. The nature of the reduction forces the
ordering of function calls to be S.KeyGen(), S.Enc(), T.KeyGen(), T.Enc(), whereas
the real game will always generate all keys first before performing any encryption. Since
there is no way a user could write this proof so that ProofFrog would accept it via just in-
stantiation and inlining, the only solution is to improve ProofFrog’s game canonicalization
abilities. ProofFrog has some further simplifications it can apply to each of these games
to yield the same AST. First, the tuple k in the real game is unnecessary: we can rewrite
k[0] and k[1] in terms of D.KeyGen@key1 and D.KeyGen@key2. Second, it can remove
duplicate variables like c in the real game, and c2 in the inlined game. Third, it can
perform reordering of statements so that keys are always generated before any encryption.
These simplifications are enough to verify each of the three hops in the proof.

37

4.2.5 Tuple Expansion

The ExpandTupleTransformer is the transformer in ProofFrog that takes tuples and
rewrites them in terms of individual variables. For example, a tuple like Int * Int t

= [a, b] would be rewritten into Int t@0 = a; Int t@1 = b; For a particular tuple to
be eligible for expansion, it must satisfy two conditions:

1. Whenever an element of the tuple is read or written to, the index used must be a
constant integer.

2. Whenever the tuple itself is assigned, the value must also be a tuple AST node.

If either of these are violated, the tuple cannot be expanded. If the first condition is
violated then one cannot statically determine which variable to read from or write to. And
if the second condition is violated (for example, if the tuple is assigned to the result of a
function call), then one cannot determine what values t@0 and t@1 should be set to.

For each tuple that is considered eligible, the ExpandTupleTransformer will perform
the following transformations:

1. Rewrite t = [v0, v1, ..., vn] into n+1 statements: t@0 = v0; t@1 = v1; ...

t@n = vn;.

2. Rewrite t[i] where i is a constant integer into t@i

3. Rewrite any usages of t itself into [t@0, t@1, ..., t@n].

Each of these transformations will apply for the entirety of t’s scope. This yields a new
AST that has identical semantics to the original, except t has been removed. Applying
the ExpandTupleTransformer to the real game yields:

Game Real() {

C CTXT(M m) {

K1 D.KeyGen@key1 = S.KeyGen();

K2 D.KeyGen@key2 = T.KeyGen();

K1 k@0 = D.KeyGen@key1;

K2 k@1 = D.KeyGen@key2;

I D.Enc@c1 = S.Enc(k@0, m);

C D.Enc@c2 = T.Enc(k@1, D.Enc@c1);

38

C c = D.Enc@c2;

return c;

}

}

This form is amenable to further transformations: namely k@0, k@1, and c are all du-
plicates of previously defined variables. Removing such duplicates helps to further simplify
the game ASTs.

4.2.6 Copy Propagation

Copy propagation is a technique used in compiler optimizations. In many cases, compiler
transformations can introduce variables which are direct copies of others, like K1 k@0

= D.KeyGen@key1, for example. Copy propagation is the act of removing such direct
copies and replacing them with the original definition where possible [1, Chapter 9.1.5].
Traditionally copy propagation helps prevent redundant computation at run-time, but for
ProofFrog it will instead be repurposed for simplifying ASTs directly after ProofFrog’s
other transformations introduce duplicated variables. The RedundantCopyTransformer

searches in code blocks for direct copies: those which define a new variable (say, b) from
an already existing variable (say, a) in the same scope. If the original variable a is never
again used for the duration of its scope, then b “took over” the value of a from that point
onwards. As a result, ProofFrog can remove the assignment to the variable b and rename
any of its usages to a. This transformation preserves the semantics of the code, while
removing an unnecessary duplicated variable. Applying the transformation to the real
game yields the following AST:

Game Real() {

C CTXT(M m) {

K1 D.KeyGen@key1 = S.KeyGen();

K2 D.KeyGen@key2 = T.KeyGen();

I D.Enc@c1 = S.Enc(D.KeyGen@key1, m);

C D.Enc@c2 = T.Enc(D.KeyGen@key2, D.Enc@c1);

return D.Enc@c2;

}

}

And applying the transformation to the inlined game yields:

39

Game Inlined() {

C CTXT(M m) {

K1 k1 = S.KeyGen();

I c1 = S.Enc(k1, m);

K2 challenger.CTXT@k = T.KeyGen();

C challenger.CTXT@c = T.Enc(challenger.CTXT@k, c1);

return challenger.CTXT@c;

}

}

These ASTs are significantly closer to each other than before: it is clear that both are
computing the same values just with different statement orderings and different variable
names. Canonicalizing the statement orderings and renaming variables as done previously
is sufficient to produce two identical ASTs and verify the first hop of the proof.

4.2.7 Statement Ordering and Dead Code Elimination

Previously, we had described the final transformation necessary to canonicalize the ASTs
as “reordering statements so that keys are always generated before any encryptions“. Al-
though such a reordering would suffice to verify this proof hop, it does not describe a general
strategy to ensure two interchangeable ASTs have identical orderings of statements. Proof-
Frog’s strategy to ensure that interchangeable ASTs have identical statement orderings is
achieved via creating a dependency graph for each block followed by a topological sorting
of the statements. While the topological sort cannot guarantee a canonical ordering of
statements for every block, it has proven effective for the suite of proofs it has been tested
upon. ProofFrog will consider a statement s in a block to depend on a prior statement t
if any of the following conditions are satisfied:

• If s is a return statement or contains a return statement in a nested block and t is
a return statement or contains a return statement in a nested block, then s depends
on t.

• If s is a return statement or contains a return statement in a nested block and t

assign to a field, then s depends on t.

• If s references a variable a and t also references a, then s depends on t.

40

The first point is a dependence as reordering statements which contain returns (if-
statements, for example), could result in a different return value if both statements evaluate
to true. The second point is a dependence because returning before assigning to fields
could alter the results of later oracle calls. Finally, the third point is a dependence as
reordering statements could change the values of variables and hence the output of an
oracle.

The dependency graph is then utilized in Algorithm 1 to sort the statements inside
a block. First, a depth-first traversal of the dependency graph starting from the return

statement is used to create a list of statements. Assuming that the two games contain an
identical list of statements up to variable renaming, then the traversal will produce the
same ordering of statements for both games. We then use Kahn’s algorithm to topologically
sort the list of statements created by the traversal according to the dependency graph [11].
This approach yields a canonical ordering of statements for any block that contains a return
statement.

There are some limitations with this approach, mainly, if the block does not end with
a return statement, then there is no clear statement from which the traversal should orig-
inate. A block like { a = 1; b = 2; }, which depends on variables declared outside
of the block, can only be canonically reordered with further context that a block-level
analysis cannot provide. Furthermore, it is possible that statements may differ while
still being interchangeable: for example, a game that contains the statement return a

+ b will have a different traversal than one with the statement return b + a. Differ-
ent traversals will result in different statement orderings which would prevent the ASTs
from becoming identical, even though the behaviour of each statement is the same. Hence,
statements still require canonicalization on an individual level or else the sorting procedure
is ineffective. Nevertheless, this sorting approach suffices for all proofs that were imple-
mented as part of ProofFrog’s test suite. Applying the sorting procedure to both games
followed by variable renaming yields two identical ASTs for hopping from OTUC(D).Real

to OTUC(T).Real compose R(D, S, T). The second hop applies indistinguishability and
requires no further transformations. The final hop, from OTUC(T).Random compose R(D,

S, T) to OTUC(D).Random requires dead-code elimination, which actually occurs as a side-
effect of the sorting procedure. Any statements that do not have an effect on the return
value of the oracle do not appear in the depth-first traversal, and hence do not appear in
the list of statements provided to Kahn’s algorithm, which results in their removal after
sorting.

In totality, this proof concerning double symmetric encryption schemes can be veri-
fied by using both the strategies described previously such as instantiation, inlining, and
variable renaming combined with the new strategies of tuple expansion, copy propagation,

41

Algorithm 1 Topological Sort

Require: The block’s final statement is a return statement
1: visited statements = empty stack

2: Generate dependency graph G for the block
3: Perform depth first traversal according to G starting with the return statement. Push

to visited statements for each statement visited.
4: kahn queue = empty queue

5: sorted statements = empty list

6: while visited statements is not empty do
7: Pop s from visited statements

8: if s has no dependencies in G then
9: Enqueue statement to kahn queue

10: end if
11: end while
12: while kahn queue is not empty do
13: Dequeue s from kahn queue and append to sorted statements

14: for each statement r that depends on s in G do
15: Remove r’s dependence on s in G
16: if r has no dependencies then
17: Enqueue r to kahn queue

18: end if
19: end for
20: end while
21: return sorted statements

42

and statement sorting. Figure 4.11 shows an updated flowchart diagram of the steps taken
by ProofFrog. Note that ProofFrog will apply each transformation step repeatedly for all
proofs that it verifies, stopping when no transformation can simplify the AST any further.
Transformations must be specifically designed with this repeated simplification in mind,
otherwise there is a risk that subsequent transformations may revert each other’s changes,
resulting in an infinite loop.

Figure 4.11: A flowchart of ProofFrog engine functionality necessary to prove Theorem 2.

43

4.3 Constructing a Length-Tripling PRG

The previous two proofs focused on proving properties of symmetric encryption schemes.
Although encryption schemes are important, they are not the sole construction useful for
cryptographic proofs. The game hopping technique can also be leveraged to prove state-
ments about simpler constructions often used in cryptography like pseudorandom genera-
tors, pseudorandom functions, and others. This section will focus on a proof concerning
the construction of a new secure pseudorandom generator from an existing secure pseudo-
random generator. In doing so we aim to illustrate ProofFrog’s capacity to handle proofs
beyond just those for encryption schemes, some new transformations to support the use of
bitstrings, and some symbolic computation features built into the proof engine.

4.3.1 Definition

We provide the definition of a pseudorandom generator, which is a construction that can
take a shorter bitstring as a “seed” and from that seed produce a longer bitstring, which
appears to be sampled uniformly randomly from the larger space. A pseudorandom gen-
erator is secure so long as an adversary can not distinguish randomly sampled bitstrings
from the pseudorandom generator’s outputs.

Definition 10 (Definition 5.1 from [18]). Let G : {0, 1}λ → {0, 1}λ+l be a deterministic
function with l > 0. G is a secure pseudorandom generator (PRG) if and only if
PRGG

real
∼∼∼ PRGG

rand where:

PRGG
real

Query():

s← {0, 1}λ

return G(s)

PRGG
rand

Query():

r ← {0, 1}λ+l

return r

The quantity l is called the “stretch” of the PRG. In the case where l = λ, we call G a
length-doubling PRG. In the case where l = 2λ, we call G a length-tripling PRG, and so
on. Note that G is treated as a black box function from {0, 1}λ to {0, 1}λ+l. G’s internal
definition does not matter so long as it satisfies the indistinguishability property for secure
pseudorandom generators (namely, that PRGG

real
∼∼∼ PRGG

rand). In addition, this definition
of a secure PRG differs slightly from non cryptographically secure pseudorandom number

44

generators provided in typical programming language standard libraries, which are given
an initial seed and can then generate a sequence of numbers at a user’s request without
any further input. In contrast, our definition of a PRG produces exactly one deterministic
output for each input. The deterministic nature of the PRG is why the security game
generates the seed itself rather than accepting a seed from the adversary. If the adversary
A could provide the seed s to the security game then A could trivially distinguish between
the real and random games by just computing G(s) and comparing it to the output of
Query(s). Obscuring the seed from A is therefore necessary to ensure that the security
definition is actually satisfiable.

4.3.2 Theorem and Proof

We now provide a definition of a length-tripling PRG built from a length-doubling PRG
and prove its security.

Theorem 3 (Claim 5.5 from [18]). Assume G : {0, 1}λ → {0, 1}2λ is a secure length-
doubling PRG. Then H, as defined below, is a secure length-tripling PRG.

H(s ∈ {0, 1}λ):

x∥y := G(s)

u∥v := G(y)

return x∥u∥v

The ∥ operator in H indicates concatenation of bitstrings. Since G(s) yields a bitstring
of length 2λ, x would consist of the first λ bits of G(s) and y the remaining λ bits. The
same notation applies to u∥v. Note that the behaviour of H is defined by the provided
pseudocode whereas the behaviour of G is left as a black box.

Proof. We must show that PRGH
real
∼∼∼ PRGH

rand. We begin with a brief overview of the
games:

1. PRGH
real

• We rewrite the first use of G via a reduction to G’s real security game. This is an
interchangeable hop.

2. PRGG
real ◦RH

1

45

• We use the assumed security of G to replace the real game with the random game.
This is an indistinguishable hop.

3. PRGG
rand ◦RH

1

• We inline the game and reduction together to form an intermediate game for expla-
nation. This is an interchangeable hop.

4. GH
1

• We argue that sampling a bitstring of length 2λ is equivalent to sampling two bit-
strings of length λ independently. This is an interchangeable hop.

5. GH
2

• We rewrite the second use of G via a reduction to G’s real security game. This is an
interchangeable hop.

6. PRGG
real ◦RH

2

• We use the assumed security of G to replace the real game with the random game.
This is an indistinguishable hop.

7. PRGG
rand ◦RH

2

• We inline the game and reduction together to form an intermediate game for expla-
nation. This is an interchangeable hop.

8. GH
3

• We note that all three bitstrings we concatenate together at this point are sampled
uniformly randomly, which is equivalent to sampling one bitstring of length 3λ. This
is an interchangeable hop.

9. PRGH
rand

We now discuss each of these steps in detail. For the first game, substituting the
definition of H into the real PRG game definition yields the following:

46

PRGH
real

Query():

s← {0, 1}λ

x∥y := G(s)

u∥v := G(y)

return x∥u∥v

We then note that the first two lines are identical to those of PRGG
real. We can therefore

use a reduction to factor out the first call to G(s) in terms of G’s real PRG security game.
This reduction is an interchangeable hop demonstrating that PRGH

real ≡ PRGG
real ◦RH

1

PRGG
real

Query():

s← {0, 1}λ

return G(s)

RH
1

Query():

x∥y := challenger.Query()

u∥v := G(y)

return x∥u∥v

Then, because G is assumed to be a secure PRG, we can leverage this assumption to
replace the real version of the G’s security game with the random version. This is an
indistinguishability hop proving that PRGG

real ◦RH
1
∼∼∼ PRGG

rand ◦RH
1

PRGG
rand

Query():

r ← {0, 1}λ+λ

return r

RH
1

Query():

x∥y := challenger.Query()

u∥v := G(y)

return x∥u∥v

We can then perform inlining of the Query call to yield an intermediate game GH
1 . We

also simplify λ + λ to 2λ. This demonstrates interchangeability of the previous reduction
with this intermediate game: PRGG

rand ◦RH
1 ≡ GH

1 .

47

GH
1

Query():

x∥y ← {0, 1}2λ

u∥v := G(y)

return x∥u∥v

At this point, we would like to again utilize the security of G to rewrite u∥v as being
randomly sampled. But, in order to do so, the argument to G (which is y in this case) must
be a value sampled from {0, 1}λ. At the moment, y represents the final λ bits after sampling
from {0, 1}2λ. To support a reduction to the security of G, we can first perform another
interchangeable hop to a different intermediate game GH

2 . This new game will simply
sample x and y independently: since sampling two bitstrings of length λ independently is
semantically identical to sampling a bitstring of length 2λ and then subdividing it. We
then have that GH

1 ≡ GH
2 . This step is fairly obvious to humans and would not typically

require so much elaboration, however, the development of a proof engine requires even
obvious steps to be carefully written for machine understanding.

GH
2

Query():

x← {0, 1}λ

y ← {0, 1}λ

u∥v := G(y)

return x∥u∥v

Since y ← {0, 1}λ now matches the statement s← {0, 1}λ modulo variable naming, we
have that the definition of u∥v can be rewritten in terms of a reduction to the real version
of G’s security game. This is an interchangeable hop: GH

2 ≡ PRGG
real ◦RH

2 .

PRGG
real

Query():

s← {0, 1}λ

return G(s)

RH
2

Query():

x← {0, 1}λ

u∥v := challenger.Query()

return x∥u∥v

48

Just as before, we can use the fact thatG is assumed to be a secure PRG, and replace the
real version of G’s security game with the random version. This is an indistinguishability
hop proving that PRGG

real ◦RH
2
∼∼∼ PRGG

rand ◦RH
2 .

PRGG
rand

Query():

r ← {0, 1}λ+λ

return r

RH
2

Query():

x← {0, 1}λ

u∥v := challenger.Query()

return x∥u∥v

We can once again simplify λ + λ to 2λ and inline to get the final intermediate game:
GH

3 . This is interchangeable with the previous game: PRGG
rand ◦RH

2 ≡ GH
3 .

GH
3

Query():

x← {0, 1}λ

u∥v ← {0, 1}2λ

return x∥u∥v

Finally, we note that sampling a bitstring of length λ and concatenating it with a
sampled bitstring of length 2λ produces the same result as sampling a bitstring of length
3λ. And, because the behaviour of PRGH

rand is to return a randomly sampled bitstring
of length 3λ, we have that GH

3 ≡ PRGH
real. This final hop completes the sequence and

demonstrates that PRGH
real
∼∼∼ PRGH

rand, and so H is a secure PRG.

4.3.3 ProofFrog Encoding

Writing this proof in ProofFrog consists of the usual steps. First, we write a primitive file to
model PRGs (Figure 4.12). Second, we write a scheme file to implement the length-tripling
PRG construction (Figure 4.13). The ProofFrog language does not support multiple vari-
able declarations in a single line, so when calling G.evaluate(s), we extract the first λ bits

49

into x and the remaining λ bits into y via a slice syntax akin to Python’s. Third, we write
the PRG security definition as a pair of games in Figure 4.14. In the pen-and-paper proof
we often alternated between two equivalent syntaxes: sometimes sampling two bitstrings
of length l1 and l2 and concatenating them, other times sampling one bitstring of length
l1+ l2. We make these transitions by using reductions to and from a pair of bitstring sam-
pling games in Figure 4.15. The underlying mechanics of this work the same as any other
reduction; it is simply a special case of using a reduction to show interchangeability instead
of indistinguishability. The use of a reduction is a slight workaround; in an ideal world
the proof engine would be able to recognize that bitstrings can be sampled independently
without the use of these extra steps. But for now, this workaround makes verification
simpler for the proof engine at the expense of the author doing some extra work. Finally,
we list the reductions used in Figure 4.16, and the proof file in Figure 4.17.

Primitive PRG(Int lambda, Int stretch) {

Int lambda = lambda;

Int stretch = stretch;

BitString<lambda + stretch> Evaluate(BitString<lambda> x);

}

Figure 4.12: ProofFrog syntax for a PRG primitive.

Scheme TriplingPRG(PRG G) extends PRG {

requires G.lambda == G.stretch;

Int lambda = G.lambda;

Int stretch = 2 * G.lambda;

BitString<lambda + stretch> Evaluate(BitString<lambda> s) {

BitString<2 * lambda> result1 = G.Evaluate(s);

BitString<lambda> x = result1[0 : lambda];

BitString<lambda> y = result1[lambda : 2*lambda];

BitString<2 * lambda> result2 = G.Evaluate(y);

return x || result2;

}

}

Figure 4.13: ProofFrog syntax for a length-tripling PRG scheme.

50

Game Real(PRG G) {

BitString<G.lambda + G.stretch> Query() {

BitString<G.lambda> s <- BitString<G.lambda>;

return G.Evaluate(s);

}

}

Game Random(PRG G) {

BitString<G.lambda + G.stretch> Query() {

BitString<G.lambda + G.stretch> r <- BitString<G.lambda + G.stretch>;

return r;

}

}

export as IND; // Short for indistinguishable

Figure 4.14: ProofFrog syntax for the pair of games modelling PRG security.

Game Concatenate(Int len1, Int len2) {

BitString<len1 + len2> Query() {

BitString<len1> x <- BitString<len1>;

BitString<len2> y <- BitString<len2>;

return x || y;

}

}

Game SampleDirectly(Int len1, Int len2) {

BitString<len1 + len2> Query() {

BitString<len1 + len2> value <- BitString<len1 + len2>;

return value;

}

}

export as BitStringSampling;

Figure 4.15: ProofFrog syntax for a pair of games modelling interchangeability between
two methods of sampling bitstrings.

51

Reduction R1(PRG G, TriplingPRG T)

compose IND(G) against IND(T).Adversary {

BitString<T.lambda + T.stretch> Query() {

BitString<2 * T.lambda> result1 = challenger.Query();

BitString<T.lambda> x = result1[0 : T.lambda];

BitString<T.lambda> y = result1[lambda : 2*T.lambda];

BitString<2 * T.lambda> result2 = G.evaluate(y);

return x || result2;

}

}

Reduction R2(TriplingPRG T)

compose BitStringSampling(T.lambda, T.lambda) against IND(T).Adversary {

BitString<T.lambda + T.stretch> Query() {

BitString<2 * T.lambda> result1 = challenger.Query();

BitString<T.lambda> x = result1[0 : T.lambda];

BitString<T.lambda> y = result1[lambda : 2*T.lambda];

BitString<2 * T.lambda> result2 = G.evaluate(y);

return x || result2;

}

}

Reduction R3(PRG G, TriplingPRG T)

compose IND(G) against IND(T).Adversary {

BitString<T.lambda + T.stretch> Query() {

BitString<T.lambda> x <- BitString<lambda>;

BitString<2 * T.lambda> result2 = challenger.Query();

return x || result2;

}

}

Reduction R4(TriplingPRG T)

compose BitStringSampling(T.lambda, 2 * T.lambda) against IND(T).Adversary {

BitString<T.lambda + T.stretch> Query() {

return challenger.Query();

}

}

Figure 4.16: Reductions used to prove Theorem 3.

52

proof:

let:

Int lambda;

PRG G = PRG(lambda, lambda);

TriplingPRG T = TriplingPRG(G);

assume:

IND(G);

BitStringSampling(lambda, lambda);

BitStringSampling(lambda, 2 * lambda);

theorem:

IND(T);

games:

IND(T).Real against IND(T).Adversary; // Game 1

IND(G).Real compose R1(G, T) against IND(T).Adversary; // Game 2

IND(G).Random compose R1(G, T) against IND(T).Adversary; // Game 3

BitStringSampling(lambda, lambda).SampleDirectly

compose R2(T, lambda) against IND(T).Adversary; // Game 4

BitStringSampling(lambda, lambda).Concatenate

compose R2(T, lambda) against IND(T).Adversary; // Game 5

IND(G).Real compose R3(G, T) against IND(T).Adversary; // Game 6

IND(G).Random compose R3(G, T) against IND(T).Adversary; // Game 7

BitStringSampling(lambda, 2 * lambda).Concatenate

compose R4(T) against IND(T).Adversary; // Game 8

BitStringSampling(lambda, 2 * lambda).SampleDirectly

compose R4(T) against IND(T).Adversary; // Game 9

IND(T).Random against IND(T).Adversary; // Game 10

Figure 4.17: Proof file for Theorem 3.

4.3.4 Simplifying Slices

The proof’s first four hops are actually able to verify just using the previous strategies of in-
lining, instantiation, copy propagation, statement reordering, and variable renaming. How-
ever, on hop five, ProofFrog cannot verify the jump from BitStringSampling(lambda,

lambda).Concatenate compose R2(T, lambda) to IND(G).Real compose R3(G, T).
The second AST corresponding to the IND(G).Real compose R3(G, T) game simplifies
to:

53

Game Inlined() {

BitString<lambda + 2 * lambda> Query() {

BitString<lambda> x <- BitString<lambda>;

BitString<lambda> challenger.Query@s <- BitString<lambda>;

BitString<2 * lambda> result2 = G.evaluate(challenger.Query@s);

return x || result2;

}

}

Aside from variable renaming, this game AST corresponds exactly to GH
2 as written in

the pen-and-paper proof. But, the first game AST, for BitStringSampling(lambda,

lambda).Concatenate compose R2(T, lambda), is only able to simplify to:

Game Inlined() {

BitString<lambda + 2 * lambda> Query() {

BitString<lambda> challenger.Query@x <- BitString<lambda>;

BitString<lambda> challenger.Query@y <- BitString<lambda>;

BitString<2 * lambda> result1 = challenger.Query@x || challenger.Query@y;

BitString<lambda> x = result1[0 : lambda];

BitString<lambda> y = result1[lambda : 2 * lambda];

BitString<2 * lambda> result2 = G.evaluate(y);

return x || result2;

}

}

One can clearly see that the values x and y are copies of challenger.Query@x and
challenger.Query@y. result1 is just a concatenation of the two variables together, fol-
lowed by the declarations of x and y extracting exactly those values which were previously
concatenated. To transform the first AST into the second AST, we essentially require a
more advanced form of copy propagation that can handle intermediate concatenations.

To achieve this, the SimplifySliceTransformer was added to the list of standard
manipulations applied to all ASTs. It searches for assignments to variables that are the
concatenation of two bitstrings (say r = a || b). Then, the transformer searches subse-
quent statements in that block for a statement satisfying a few conditions:

• The statement must create a new variable (say x) as the result of a slice of r.

54

• The statement must slice out exactly one of the previously defined variables (either
a or b) from the r.

• No changes should have been made to the original variable (a or b) or the concate-
nated variable r between the creation of r and the the creation of x.

If all of these conditions are satisfied, then ProofFrog will instead assign x directly to the
value that was sliced out of it, whether that is a or b. In the case of the hop in question: this
transformation leads to x being assigned directly to challenger.Query@x, and y assigned
directly to challenger.Query@y. After performing such a transformation, result1 is no
longer used; the variable declaration is considered dead code and is eliminated during
statement re-ordering. The variables x and y are eliminated via a copy propagation pass.
The ASTs are then identical up to variable renaming. The SimplifySpliceTransformer,
in combination with the previously described transformations, suffices to prove this hop.

4.3.5 Symbolic Computation

ProofFrog also faces another stumbling block when attempting to hop from game
7, IND(G).Random compose R3(G, T), to game 8, BitStringSampling(lambda, 2 *

lambda).Concatenate compose R4(T). This step is essentially just trying to codify the
transition from GH

3 to PRGH
rand: sampling a bitstring of length λ and concatenating it

with a bitstring of length 2λ is equivalent to sampling a bitstring of length 3λ. This
step does not verify because the ASTs are not equivalent after transformation. The
value r used in G’s Query method has type BitString<G.lambda + G.stretch>, which
after instantiation becomes BitString<lambda + lambda>. The corresponding value y

in the BitStringSampling Query method has type BitString<len2>, which becomes
BitString<2 * lambda> after concatenation (recall from Figure 4.15 that len2 is one of
the parameters to the BitStringSampling game). As a result, the game canonicalization
procedure fails; everything else is identical between the two games, the only difference is
in the way the type parameterization is written. This is, strictly speaking, just a result of
the way the proof was written. In fact, the proof can be verified with just a few changes on
the user side: rewrite the stretch field in the TriplingPRG scheme definition as G.lambda
+ G.lambda, and rewrite the assumption involving the BitStringSampling game to have
the parameter lambda + lambda instead of 2 * lambda. Making these changes results in
the proof succeeding where it did not before. The fact that the proof failed did not indicate
that it was invalid, merely that ProofFrog did not have the capability to verify it. However,
having to cater the syntax of one’s proof to such exact specifications makes for an arduous

55

user experience. It is better for ProofFrog to be able to recognize that BitString<lambda
+ lambda> and BitString<2 * lambda> represent the same type and subsequently ver-
ify the proof, rather than forcing the user to make changes to definitions that are already
equivalent. To ensure this was the case, we implemented elements of symbolic computation
using the SymPy library.

SymPy is a library developed for symbolic computation and computer algebra in Python
[16]. Although it is a powerful piece of software covering many branches of mathematics,
in ProofFrog, SymPy is used exclusively for simplifying mathematical expressions. The
SymbolicComputationTransformer has the role of utilizing SymPy to simplify eligible
expressions in ProofFrog. For an expression to be eligible, it must be an addition, sub-
traction, multiplication, or division operation applied to two values. These values must
either be integers, or variables with an integer type. For each variable encountered with
an integer type, ProofFrog will create a corresponding SymPy symbol. Then, when an
expression like lambda + lambda is encountered, the same SymPy symbol is produced for
both variables, which allows SymPy to simplify to a value of type 2 * lambda. Variables
with differing names will produce differing symbols which SymPy will not collapse. If an
eligible expression can be simplified, we then manually convert the SymPy AST into the
equivalent ProofFrog AST, and replace the expression node with a simplified node. This
transformation allows ProofFrog to simplify the type parameterization for both games in
the hop to BitString<2 * lambda> instead of BitString<lambda + lambda>. Since this
was the only difference between the two ASTs, the hop, as well as the rest of the proof, can
now be verified. In Figure 4.18 we present a new flowchart for ProofFrog’s functionality,
with the added transformations included.

56

Figure 4.18: A flowchart of ProofFrog engine functionality necessary to prove Theorem 3.

57

4.4 One-time Secrecy Implies CPA Security for

Public-Key Encryption Schemes

All of the previous proofs have utilized the game-hopping technique with a constant number
of games. However, some cryptographic proofs require use of a “hybrid argument”, in which
the number of games may rely on the adversary’s interaction with the challenger. This
section will detail a proof for a property of public-key encryption schemes that utilizes a
hybrid argument. In doing so we will also explore many other ProofFrog features that were
developed for transforming more complex programs. These features include simplifications
applied to branches, allowing the user to specify assumptions that bound possible values of
fields, integration with the Z3 theorem prover, and recognizing when fields are unnecessary
or identical.

4.4.1 Definitions

Some previous examples utilized symmetric encryption schemes. Public-key encryption
schemes are another often studied cryptographic construction. In contrast to symmet-
ric encryption schemes, public-key encryption schemes do not require the communicating
parties to establish a shared secret prior to communication.

Definition 11 (Definition 15.0 from [18]). A public-key encryption scheme consists of a
public key space P, a secret key space S, a message space M, a ciphertext space C, and the
following algorithms:

• KeyGen: a randomized algorithm that outputs a pair (pk, sk) ∈ P× S

• Enc: a (possibly randomized) algorithm that takes a public key pk ∈ P and a plaintext
m ∈ M as input, and outputs a ciphertext c ∈ C.

• Dec: a deterministic algorithm that takes a secret key sk ∈ S and ciphertext c ∈ C
as input, and outputs a plaintext m ∈ M, or the symbol None to indicate failure to
decrypt.

Public-key encryption schemes assume that anyone can encrypt messages using the
public key, but only the individual who possesses the secret key may decrypt ciphertexts.
As a result, security definitions for public-key encryption schemes mirror those defined for
symmetric encryption schemes, except that the adversary is provided the public key. For
example, CPA security for public-key encryption schemes is defined identically apart from
this one change.

58

Definition 12 (Definition 15.1 from [18]). A public-key encryption scheme Σ is CPA
secure if and only if CPA-PKΣ

L
∼∼∼ CPA-PKΣ

R, where:

CPA-PKΣ
L

(pk, sk)← Σ.KeyGen()
Give pk to adversary

Eavesdrop(mL,mR ∈ Σ.M):

c := Σ.Enc(pk,mL)

return c

CPA-PKΣ
R

(pk, sk)← Σ.KeyGen()
Give pk to adversary

Eavesdrop(mL,mR ∈ Σ.M):

c := Σ.Enc(pk,mR)

return c

Previously we modelled some different types of security definitions by changing the
scoping of the key generation: for example, the one-time uniform ciphertexts property
required regenerating the key with each oracle call so that the adversary could not observe
relationships between ciphertexts encrypted with the same key. However, with public-key
encryption schemes, the key cannot be regenerated when the oracle is called because it
weakens the attack possibilities; to encompass all possible strategies, the adversary should
be able to use the public key to encrypt as that may influence the messages they would like
to pass to the Eavesdrop oracle. There is a solution which allows the adversary to use the
public key before calling the oracle while also ensuring that the adversary cannot observe
relationships between ciphertexts encrypted with the same key: simply generate the key
during initialization, and return nothing if the adversary attempts to use the oracle more
than once. An example is given in the form of the one-time secrecy definition, which is
like CPA security except that an adversary may only observe one ciphertext.

Definition 13 (Definition 15.4 from [18]). A public-key encryption scheme Σ has one-time
secrecy if and only if OTS-PKΣ

L
∼∼∼ OTS-PKΣ

R, where:

59

OTS-PKΣ
L

count := 0
(pk, sk)← Σ.KeyGen()
Give pk to adversary

Eavesdrop(mL,mR ∈ Σ.M):

count := count + 1

if count > 1: return None

c := Σ.Enc(pk,mL)

return c

OTS-PKΣ
R

count := 0
(pk, sk)← Σ.KeyGen()
Give pk to adversary

Eavesdrop(mL,mR ∈ Σ.M):

count := count + 1

if count > 1: return None

c := Σ.Enc(pk,mR)

return c

4.4.2 Theorem and Proof

The following theorem relates the previous two security definitions. It also marks an
interesting contrast in that the result applies only for public-key encryption schemes and
not for symmetric encryption schemes.

Theorem 4 (Claim 15.5 from [18]). Let Σ be a public-key encryption scheme. If Σ has
one-time secrecy, then Σ is CPA secure.

Proof. As previously mentioned, this proof uses a hybrid argument. The number of games
in the proof will depend on the number of calls that the adversary makes to the Eavesdrop
oracle, which we will denote as q. Because the adversary must run in polynomial time
with respect to the security parameter, q is also polynomial with respect to the security
parameter. For each i ∈ {1, 2, ..., q}, define the following reduction RΣ

i :

60

RΣ
i

Receive pk from challenger
count := 0
Give pk to adversary

Eavesdrop(mL,mR ∈ Σ.M):

count := count + 1

if count < i:

return Σ.Enc(pk,mR)

else if count
?
= i:

return challenger.Eavesdrop(mL,mR)

else:

return Σ.Enc(pk,mL)

Then, we can construct a sequence of games:

1. CPA-PKΣ
L ≡ OTS-PKΣ

L ◦RΣ
1 , because in each version of the reduction game, count

is always at least 1. In the first call, Eavesdrop will encrypt the left message via the
call to OTS-PKΣ

L ’s Eavesdrop oracle, and for all subsequent calls, the left message
will be encrypted directly by the else branch.

2. For each i ∈ {1, 2, ..., q}: OTS-PKΣ
L ◦RΣ

i
∼∼∼ OTS-PKΣ

R ◦RΣ
i , since Σ is assumed to

have one-time secrecy.

3. For each i ∈ {1, 2, ..., q − 1}: OTS-PKΣ
R ◦RΣ

i ≡ OTS-PKΣ
L ◦RΣ

i+1 because the first
i calls encrypt the right message, and the remaining calls encrypt the left message.
The difference is just that in the first game, the i-th call encrypts the left message by
calling the challenger oracle, whereas in the second game, the i-th call is encrypted
directly by the reduction. And in the first game, the (i+1)-th call is handled by the
else branch encrypting the left message, whereas in the second game, the (i + 1)-th
call is handled by the challenger oracle encrypting the left message.

4. OTS-PKΣ
R ◦ RΣ

q ≡ CPA-PKΣ
R, because count is always at most q, the oracle will

encrypt the right message directly for the first q− 1 calls, and encrypt it via the call
to OTS-PKΣ

R’s Eavesdrop oracle for the q-th call.

61

Because q is polynomial in terms of the security parameter, we have applied indis-
tinguishability of the one-time secrecy of Σ a polynomial number of times. The advan-
tage of an adversary in distinguishing the one-time-secrecy games is negligible with re-
spect to the security parameter. A polynomial quantity times a negligible quantity is
still negligible, and so a negligible advantage has been built up by these q hops. Hence,
CPA-PKΣ

L
∼∼∼ CPA-PKΣ

R and Σ is CPA secure.

4.4.3 ProofFrog Encoding

To encode this proof requires a new primitive for public-key encryption schemes (Fig-
ure 4.19). We must also specify game pair definitions for both one-time secrecy (Fig-
ure 4.20) and CPA security (Figure 4.21). The definition of one-time secrecy utilizes an
optional type modifier. Given a type T, a value of type T? is either of type T or is the special
symbol None. The None value is used in the one-time secrecy game as a return value if the
adversary calls the Eavesdrop oracle more than once. Finally, we specify the reduction
used in the hybrid argument (Figure 4.22), and the proof steps (Figure 4.23). The proof
steps have new syntax in the form of an induction block (used for the variable hybrid
proof), and some assume statements. The functionality of these new pieces of syntax is
explained in full detail in later subsections.

Primitive PubKeyEnc(Set MessageSpace, Set CiphertextSpace,

Set PKeySpace, Set SKeySpace) {

Set Message = MessageSpace;

Set Ciphertext = CiphertextSpace;

Set PublicKey = PKeySpace;

Set SecretKey = SKeySpace;

PublicKey * SecretKey KeyGen();

Ciphertext Enc(PublicKey pk, Message m);

Message Dec(SecretKey sk, Message m);

}

Figure 4.19: ProofFrog syntax for a public-key encryption scheme.

62

Game Left(PubKeyEnc E) {

E.PublicKey pk;

Int count;

E.PublicKey Initialize() {

E.PublicKey * E.SecretKey k = E.KeyGen();

pk = k[0];

count = 0;

return pk;

}

E.Ciphertext? Eavesdrop(E.Message mL, E.Message mR) {

E.Ciphertext? result = None;

count = count + 1;

if (count == 1) { result = E.Enc(pk, mL); }

return result;

}

}

Game Right(PubKeyEnc E) {

E.PublicKey pk;

Int count;

E.PublicKey Initialize() {

E.PublicKey * E.SecretKey k = E.KeyGen();

pk = k[0];

count = 0;

return pk;

}

E.Ciphertext? Eavesdrop(E.Message mL, E.Message mR) {

E.Ciphertext? result = None;

count = count + 1;

if (count == 1) { result = E.Enc(pk, mR); }

return result;

}

}

export as OTS;

Figure 4.20: ProofFrog syntax for the pair of games modelling one-time secrecy for public-
key encryption schemes.

63

Game Left(PubKeyEnc E) {

E.PublicKey pk;

E.PublicKey Initialize() {

E.PublicKey * E.SecretKey k = E.KeyGen();

pk = k[0];

return pk;

}

E.Ciphertext Eavesdrop(E.Message mL, E.Message mR) {

return E.Enc(pk, mL);

}

}

Game Right(PubKeyEnc E) {

E.PublicKey pk;

E.PublicKey Initialize() {

E.PublicKey * E.SecretKey k = E.KeyGen();

pk = k[0];

return pk;

}

E.Ciphertext Eavesdrop(E.Message mL, E.Message mR) {

return E.Enc(pk, mR);

}

}

export as CPA;

Figure 4.21: ProofFrog syntax for the pair of games modelling CPA security for public-key
encryption schemes.

64

Reduction R(PubKeyEnc E, Int i) compose OTS(E) against CPA(E).Adversary {

Int count;

E.PublicKey pk;

E.PublicKey Initialize(E.PublicKey one_time_pk) {

pk = one_time_pk;

count = 0;

return pk;

}

E.Ciphertext Eavesdrop(E.Message mL, E.Message mR) {

count = count + 1;

if (count < i) {

return E.Enc(pk, mR);

} else if (count == i) {

return challenger.Eavesdrop(mL, mR);

} else {

return E.Enc(pk, mL);

}

}

}

Figure 4.22: Reduction used in the proof of Theorem 4.

65

proof:

let:

Set MessageSpace;

Set CiphertextSpace;

Set PubKeySpace;

Set SecretKeySpace;

Int q;

PubKeyEnc E = PubKeyEnc(

MessageSpace, CiphertextSpace, PubKeySpace, SecretKeySpace

);

assume:

OTS(E);

theorem:

CPA(E);

games:

CPA(E).Left against CPA(E).Adversary;

assume R(E, 1).count >= 1;

assume OTS(E).Left.count == 1;

induction(i from 1 to q) {

OTS(E).Left compose R(E, i) against CPA(E).Adversary;

OTS(E).Right compose R(E, i) against CPA(E).Adversary;

assume OTS(E).Left.count == 1;

assume OTS(E).Right.count == 1;

}

assume R(E, q).count < q + 1;

assume OTS(E).Right.count == 1;

CPA(E).Right against CPA(E).Adversary;

Figure 4.23: Proof file for Theorem 4.

4.4.4 Induction

In prior examples, ProofFrog would simply check each pair of games listed in the sequence
for interchangeability or indistinguishability. This approach is no longer possible with the
introduction of the induction block, utilized for proving hybrid arguments. In order to
verify the hybrid argument, ProofFrog will take a number of steps whenever it encounters
an induction block. First, it will verify the base case of the induction. To do so, Proof-

66

Frog will create an AST corresponding to the first game in the block where the induction
variable (i, in this case) is substituted with its starting value (1, in this case). This AST,
after applying the standard canonicalization procedures, must be interchangeable with the
AST created from the game listed immediately prior to the induction. Second, ProofFrog
will check that each pair of games listed inside the induction block are indistinguishable
or interchangeable. For these checks, the induction variable is left untouched when instan-
tiating the games, since the hop should verify for a general i value. Third, ProofFrog will
check the inductive step: it will ensure that the last game in the block is interchangeable
with the first game in the block instantiated with i + 1 for the induction variable. Finally,
ProofFrog will check the ending case of the induction. To do so ProofFrog will create an
AST corresponding to the last game in the block where the induction variable is substi-
tuted with its ending value (q, in this case). This AST must be interchangeable with the
AST created from the game listed immediately after the induction. Verifying each of these
hops is what allows ProofFrog to ensure the correctness of a hybrid argument.

4.4.5 Duplicated Fields

In addition to the new hybrid argument, this proof also uses the ability for the challenger to
pass some information to the adversary via a return statement in the Initialize method.
In this case, it is the public key which is provided to the adversary. To illustrate why this
poses a problem, see the AST for the inlined game corresponding to the induction base
case:

1 Game Inlined() {

2 PubKeySpace challenger@pk;

3 Int challenger@count;

4 Int count;

5 PubKeySpace pk;

6 PubKeySpace Initialize() {

7 PubKeySpace * SecretKeySpace challenger.Initialize@k = E.KeyGen();

8 challenger@pk = challenger.Initialize@k[0];

9 challenger@count = 0;

10 pk = challenger@pk;

11 count = 0;

12 return pk;

13 }

14 CiphertextSpace Eavesdrop(MessageSpace mL, MessageSpace mR) {

67

15 count = count + 1;

16 if (count < 1) {

17 return E.Enc(pk, mR);

18 } else if (count == 1) {

19 CiphertextSpace? challenger.Eavesdrop@result = None;

20 challenger@count = challenger@count + 1;

21 if (challenger@count == 1) {

22 challenger.Eavesdrop@result = E.Enc(challenger@pk, mL);

23 }

24 return challenger.Eavesdrop@result;

25 } else {

26 return E.Enc(pk, mL);

27 }

28 }

29 }

The Initialize method has been inlined and now contains the initialization for both
the challenger and the reduction. The pk value which was initially set to the argu-
ment one time pk is now instead set directly to the challenger@pk value which was
returned in the challenger’s Initialize method. From observation, one can see that pk
and challenger@pk are identical values: they are both set to the same value, and never
changed. However, the inlined game references both: it uses pk to encrypt in lines 18 and
27, whereas it uses challenger@pk to encrypt in line 23 (this is as a result of this state-
ment having been inlined from the challenger.Eavesdrop oracle call). The duplicate
fields will cause a problem with canonicalization, as CPA(E).Left only uses a single pk

field to perform all of its encryption. As such, ProofFrog requires the ability to detect and
unify duplicated fields: those which maintain the same value throughout the entire game’s
lifetime.

To detect duplicated fields, ProofFrog will begin under the assumption that all pairs of
fields (f1, f2) with the same type are duplicates. It will then iterate through each block
attempting to pair statements that modify either f1 or f2 with a subsequent statement
assigning the other field the same value. Assume without loss of generality that ProofFrog
encounters the statement f1 = e;, where e is some expression. ProofFrog will iterate
through subsequent statements for one of two conditions:

1. f2 = f1;, where neither f2 nor f1 have been used in any intermediate statements
between f1 = e; and f2 = f1;.

68

2. f2 = e;, where e does not contain a function call, neither f2 nor f1 have been used,
and none of the variables in e have been modified in any intermediate statements
between f1 = e; and f2 = e;.

If neither of these conditions can be satisfied, then f1 and f2 are deemed not duplicates,
and the next pair is inspected. On the other hand, if these conditions are satisfied each
time f1 or f2 is modified, then f1 and f2 are duplicates, and each subsequent statement
that was found is denoted as a “matched statement”. ProofFrog then transforms the AST
by removing f2’s definition in the game’s list of fields, replacing all uses of f2 with f1,
and removing all matched statements from the AST. Applying this transformation to the
inlined game causes all uses of pk to be rewritten in terms of challenger@pk, which brings
the games one step closer to canonicalization.

4.4.6 Assumptions with Z3

The primary issue remaining that prevents the first two game ASTs from being equated is
the vast difference in the two Eavesdrop methods. CPA(E).Left has a one-line Eavesdrop
method, which just returns the encryption of the left message. OTS(E).Left compose

R(E, 1), which was shown above, has many branches concerning the values of the count

and challenger@count fields. One can observe that count will always be at least one
and hence the first branch, encrypting the right message, is dead code. Furthermore,
since count monotonically increases, count == 1 will only ever be triggered for one call
of the oracle, which implies that in all cases, challenger@count == 1, and the second
branch simplifies to just returning the encryption of the left message. Since both relevant
branches just return the encryption of the left message, the behaviour is the same as that of
CPA(E).Left. However, statically determining the possible values that fields may take on
throughout the game’s lifetime is challenging, in great part due to the undecidability of the
problem. Rather than attempting to hard-code recognition of such cases, we instead took
the approach of allowing proof authors to specify assumptions between hops that could
be used during canonicalization. For this hop, it takes the form of the statements assume
R(E, 1).count >= 1 and assume OTS(E).Left.count == 1. These assumptions state
the true observations one can make to ascertain that the behaviours of the two oracles are
the same. Allowing user-specification of assumptions does add some risk, as it is possible for
a user to specify a false assumption and cause ProofFrog to come to an invalid conclusion.
Any proofs that utilize user-specified assumptions would require a reader to check each
assumption used and come to their own conclusion about the assumption’s correctness.

69

To actually leverage these stated assumptions, ProofFrog delegates to Z3. Z3 is a
satisfiability modulo theories (SMT) solver used extensively for static analysis of programs
and can in many cases determine whether logical formulae are satisfiable or unsatisfiable
[10]. The assumption simplification process begins by taking each assumption statement
listed and converting it into a Z3 formula. Type checking is performed to ensure that only
constructs that Z3 supports, like booleans and integers, are encoded. Then, the transformer
will search the program for any operation using an operator in the set {==, !=, <=, <,

>, >=, &&, ||, !}. If this operation is identical to a provided assumption, then the value
can be directly replaced with true. For example, we specify in the proof the assumption
that OTS(E).Left.count == 1. The variable OTS(E).Left.count is transformed when
inlining into the variable challenger@count. Then, when the transformer encounters the
condition challenger@count == 1, by user assumption it will be replaced with true. If
an operation o is not exactly identical with the user-stated assumption a, then ProofFrog
will use Z3.

When evaluating a formula Z3 will produce one of three results: a satisfying assignment
to the variables, a certificate that the formula is unsatisfiable, or unknown. There are two
cases in which we can simplify an operation o by using an assumption a. First, if a =⇒ o
is a tautology, then since a is assumed to be true, we must have that o is true as well.
Second, if a ∧ o is a contradiction (unsatisfiable, in Z3 parlance) then since a is assumed
to be true, we must have that o is false. Since Z3 does not have the ability to evaluate
tautologies, we can instead use Z3 to evaluate ¬(a =⇒ o). If this formula is unsatisfiable,
we can directly replace o with true. Otherwise, we can evaluate a ∧ o, and replace o with
false if Z3 deems the formula unsatisfiable. The use of Z3 allows us to replace some
conditionals directly with boolean values. In the particular case of this proof, it allows us
to transform statements like challenger@count == 1 into true and count < 1 to false,
which will then be further simplified in later passes.

4.4.7 Branch Elimination

After handling duplicated fields and applying the assumptions from Z3, the Eavesdrop

oracle for OTS(E).Left compose R(E, 1) has been simplified to the following:

CiphertextSpace Eavesdrop(MessageSpace mL, MessageSpace mR) {

count = count + 1;

if (false) {

return E.Enc(challenger@pk, mR);

} else if (count == 1) {

70

CiphertextSpace? challenger.Eavesdrop@result = None;

challenger@count = challenger@count + 1;

if (true) {

challenger.Eavesdrop@result = E.Enc(challenger@pk, mL);

}

return challenger.Eavesdrop@result;

} else {

return E.Enc(challenger@pk, mL);

}

}

At this point, the BranchEliminationTransformer has the task of taking if-statements
where the truth values of the conditions are explicitly known, and simplifying them. For
example:

• A branch where the condition is false can have that condition and associated block
removed. If this is the only condition, the if-statement can be removed entirely.

• A branch where the condition is true can have all subsequent else-if and else blocks
removed.

• If the first condition in an if-statement is true, then the if-statement in its entirety
can be replaced with the contents of the if-statement’s first block.

• If all prior conditions have been determined to be false, and only an else block
remains, the if-statement can be replaced with the contents of the else block.

Performing these transformations simplifies the Eavesdrop method further to:

CiphertextSpace Eavesdrop(MessageSpace mL, MessageSpace mR) {

count = count + 1;

if (count == 1) {

CiphertextSpace? challenger.Eavesdrop@result = None;

challenger@count = challenger@count + 1;

challenger.Eavesdrop@result = E.Enc(challenger@pk, mL);

return challenger.Eavesdrop@result;

} else {

return E.Enc(challenger@pk, mL);

}

}

71

4.4.8 Unnecessary Fields

We now note that the simplifications applied so far have made challenger@count a re-
dundant field. It is set to 0 initially and incremented in one oracle call, but its value
cannot affect the value of any oracle’s return statement. As a result, we can remove the
field and any statements that reference the field without changing the game’s overall be-
haviour. The UnnecessaryFieldVisitor and RemoveFieldTransformer are what achieve
this behaviour. The purpose of the UnnecessaryFieldVisitor is to return a list of all
fields which do not affect the behaviour of any oracle. To do so, it performs a traversal of
the dependency graph as previously described when sorting statements. The generation
of the dependency graph is modified slightly for this purpose. Previously, return state-
ments depended on all prior statements that modified fields, because even if a field did
not affect the value of a return statement in one oracle, removing a field modification may
change the return value of another oracle. In this case, however, we are not just sorting
the statements of each oracle on an individual basis, rather, we are attempting to deter-
mine if a field does not affect the return value of any oracle. As such, we only want to
consider a dependency between a field and a return statement if the value of the return
statement depends on the value of the field. If a field does not occur in the traversal of the
dependency graph for all return statements in all oracles, then that field is deemed unnec-
essary. The RemoveFieldTransformer, when given a list of fields, will remove each field
from the game’s AST, and any statements that the field occurs in. In the case of nested
statements like if-statements, the transformer will remove at the highest level of specificity
possible. For example, if the field is part of a condition, that condition and associated block
are removed. Whereas, if the field only appears in one of the if-statement’s blocks, then
just that statement from that block will be removed. Performing these transformations
is enough to remove the challenger@count field and bring the two ASTs one step closer
to canonicalization. At this point, the count field is still considered necessary because
it determines which branch is returned from in the Eavesdrop method. But, after a few
further simplifications, it too will be removed to achieve equality between the two ASTs.

4.4.9 Return Canonicalization

Having removed the challenger@count variable, the Eavesdrop method now has the
following body:

count = count + 1;

if (count == 1) {

72

CiphertextSpace? challenger.Eavesdrop@result = None;

challenger.Eavesdrop@result = E.Enc(challenger@pk, mL);

return challenger.Eavesdrop@result;

} else {

return E.Enc(challenger@pk, mL);

}

Both of the branches now clearly return E.Enc(challenger@pk, mL), but the first
branch does so with a local variable that is overwritten, and the second just returns the
value of the function call directly. To canonicalize these to the same format, we simply ap-
ply a transformation that prioritizes returning expressions over returning variables. That
is, if a return statement returns a variable, the transformer will scan previous statements
to find the last time that variable was assigned. If the value can be statically deter-
mined (e.g, if the variable was not conditionally modified), we remove the last statement
that assigns to the variable, and instead return that value directly. In this case, it al-
lows us to return E.Enc(challenger@pk, mL) in the first block, and the line which sets
challenger.Eavesdrop@result = None is removed later in a dead-code elimination pass.
This results in both blocks having the exact same code: return E.Enc(challenger@pk,

mL);

4.4.10 Branch Collapsing

Now that both blocks have the exact same code, we can discuss simplifications that can
be applied to duplicated blocks of code. If an if-statement has multiple conditions that
execute the same block of code, we can perform some transformations to the statement to
ensure that a repeated block of code only appears once in the AST. This is achieved in
ProofFrog via the SimplifyIfTransformer, which applies the following manipulations:

• Two adjacent if or else-if conditions with the same block can be collapsed into one
block, where the new condition is the logical disjunction of the previous two condi-
tions.

• If an if/else-if condition is adjacent to an else block which executes the same block
of code, then that if/else-if condition and its associated block can be removed, and
collapsed into the else block.

• If all conditions within an if-statement execute the same block of code b, and the
if-statement contains an else clause, then the entire statement can be transformed
into if (true) { b }.

73

Each of these manipulations only apply so long as the boolean conditions in question do not
contain function calls. If a condition contains a function call, then it may have side effects,
and hence collapsing multiple blocks together could change the meaning of the program.
Assuming that the conditions do not contain function calls, then the first transformation
preserves semantics because the block will be executed if either of the two conditions
are satisfied. The second transformation preserves semantics because in both cases, the
block will be executed if all prior conditions are evaluated to be false. Finally, the third
transformation preserves semantics because in either representation, the if-statement will
always execute the block b. Prior transformations yielded the following if-statement in the
Eavesdrop method:

count = count + 1;

if (count == 1) {

return E.Enc(challenger@pk, mL);

} else {

return E.Enc(challenger@pk, mL);

}

When the SimplifyIfTransformer is applied to this if-statement, it collapses the
first block into the else block, and then replaces the entire statement with if (true)

{ return E.Enc(chllanerge@pk, mL); }. It then simply takes two further passes for
ProofFrog to verify this hop: first, the BranchEliminationTransformer will remove
the if (true) condition and replace it with just the return statement. And then, the
UnnecessaryFieldVisitor will identify that count has no effect on the return value of
any oracle, and as such can be removed. This leaves both CPA(E).Left and OTS(E).Left

compose R(E, 1) with the same AST up to variable renaming:

Game Inlined() {

PubKeySpace challenger@pk;

PubKeySpace Initialize() {

PubKeySpace * SecretKeySpace challenger.Initialize@k = E.KeyGen();

challenger@pk = challenger.Initialize@k[0];

return pk;

}

CiphertextSpace Eavesdrop(MessageSpace mL, MessageSpace mR) {

return E.Enc(pk, mL);

}

}

74

All of these transformations, along with those described in previous sections, suffice to
prove the first hop. As previously mentioned, this proof consists of four steps: the starting
case for the induction, the hops inside the induction, the inductive step showing that
i =⇒ i+ 1, and the ending case. The hop inside the induction is OTS(E).Left compose

R(E, i) to OTS(E).Right compose R(E, i), which is valid by our indistinguishability
assumption for the OTS game. The transformations described so far also suffice to prove the
ending step of the induction step: that OTS(E).Right compose R(E, q) is interchangeable
with CPA(E).Right. However, there is one last sticking point with the inductive step that
requires another proof engine feature to verify.

4.4.11 Condition Equivalence

To verify the inductive step, ProofFrog must establish interchangeability of OTS(E).Right
compose R(E, i) and OTS(E).Left compose R(E, i+1). These two games are inter-
changeable: in both of them, the first i calls encrypt the right message, and the remaining
calls encrypt the left message. The difference is simply that in OTS(E).right compose

R(E, i), the i-th call is handled by the challenger, and encrypts the right message, whereas
in OTS(E).Left compose R(E, i+1), the i-th call is handled by the reduction encrypt-
ing the right message. These slight differences yield two different results after performing
canonicalization. In the first AST, the block encrypting right messages is collapsed with
the block making the challenger calls, yielding the following Eavesdrop method:

CiphertextSpace Eavesdrop(MessageSpace mL, MessageSpace mR) {

count = count + 1;

if (count < i || count == i) {

return E.Enc(challenger@pk, mR);

} else {

return E.Enc(challenger@pk, mL);

}

}

In the second AST, the challenger call encrypts the left message, and so is instead
collapsed into the else block:

CiphertextSpace Eavesdrop(MessageSpace mL, MessageSpace mR) {

count = count + 1;

if (count < i + 1) {

75

return E.Enc(challenger@pk, mR);

} else {

return E.Enc(challenger@pk, mL);

}

}

Excluding the difference in the if-statement’s condition, these ASTs are identical up
to variable renaming. Since i is an integer, these conditions are semantically equivalent,
but the hop will be rejected because the ASTs are not identical. Canonicalizing conditions
is challenging; a set of just boolean conditions could be converted into a normal form,
but that does not consider ordering of clauses which would still be necessary for an AST-
level comparison. Furthermore, a normal form for booleans still does not handle cases
like the Eavesdrop method where the same condition is written in two different ways.
For if-statements, we therefore chose to pursue an alternative strategy beyond just AST
comparison. Previously, if AST-level comparison failed, ProofFrog would simply reject the
hop altogether. Now, instead, ProofFrog will first check if the ASTs are identical excluding
conditions in if-statements. If there are further changes, the hop will be rejected as usual.
However, if the changes are localized exclusively to the conditions in if-statements, then
ProofFrog will attempt to use Z3 to check equivalence between any if-statements with
differing conditions. To do so, it will attempt to create Z3 formulas for each pair of
differing conditions c1 and c2. As before, if either condition uses types unsupported by Z3,
then the attempt will immediately abort and the hop (and hence the overall proof) will be
rejected. If Z3 formulas can be created for the conditions c1 and c2, then ProofFrog will
use Z3 to evaluate the formula ¬(c1 == c2). If this formula is deemed unsatisfiable, then
we can conclude that c1 and c2 are actually equivalent, and move on to the next condition.
Otherwise, if the formula is satisfiable, or Z3 deems the satisfiability unknown, then the
hop is rejected. If all conditions are deemed equivalent by Z3, then we conclude the hop
is valid, even though the ASTs are not strictly equivalent. This extra logic surrounding
equivalence of conditions is sufficient to verify the inductive step in this proof.

This section has described the verification of Theorem 4. In doing so, we introduced
a number of new features to ProofFrog. In addition to adding a variety of new AST
transformations to the proof engine, we also added broader functionality for verifying hops
in the form of support for hybrid arguments via the induction block, and checking for
conditional equivalence with Z3 when canonicalization fails to yield two equivalent ASTs.
A new flowchart indicating all the functionality of ProofFrog up to this point is illustrated
in Figure 4.24.

76

Figure 4.24: A flowchart of ProofFrog engine functionality necessary to prove Theorem 4.

77

4.5 Encrypt-then-MAC is CCA Secure

Each proof presented in previous examples utilized reductions that applied to the same
primitive. For example, for proofs involving symmetric or public-key encryption schemes,
we used reductions to other symmetric or public-key encryption scheme security definitions.
For the length-tripling PRG, we used reductions to the security of another PRG. The
upcoming worked example deviates, in that it utilizes the security of one primitive to
reason about the security of another. For this proof, we will also present a stronger notion
of security for symmetric encryption schemes than previously seen before, as well as a new
cryptographic primitive that can be used to achieve this stronger notion of security. This
example requires some minor new additions to the proof engine to achieve verification,
but beyond these additions, the proof can be verified mostly from the transformations
previously described. In previous sections, the focus was primarily on the new features
being introduced to the proof engine. This section, in contrast, aims to demonstrate how
the transformations developed for ProofFrog so far are applicable to new proofs they were
not explicitly designed for. In addition, this example applies reasoning across multiple
oracles whereas all previous examples used solely one oracle.

4.5.1 Definitions

Previously, we described CPA security as a way to determine if an adversary can break some
scheme (e.g, determine between left and right messages being encrypted) when given access
to multiple ciphertexts encrypted with the same key. However, this is not the strongest
adversary we can conceive of; namely, we can also consider an adversary that has the ability
to decrypt arbitrary ciphertexts (excluding ciphertexts returned from the Eavesdrop oracle,
as decrypting those would allow the adversary to immediately distinguish which game they
are playing against). If the adversary still is not able to determine whether left messages
or right messages are being encrypted when given access to this decryption oracle, then the
scheme is called CCA secure (CCA standing for chosen ciphertext attack). Although in a
real-world situation it is unlikely for an adversary to be able to decrypt any ciphertext (as
it is assumed they do not possess the secret key), this definition also encompasses weaker
attacks which have been utilized successfully to exploit non CCA secure schemes. The
classic example is the Bleichenbacher attack against SSL, which utilizes server responses to
determine whether a given ciphertext corresponds to a well-formed message, and from that
information retrieves a secret key [8]. The games provided in the CCA security definition
maintain a private secret key and a private set of ciphertexts that have been returned.
They each provide two oracles to the adversary. One oracle is the Eavesdrop oracle, which

78

accepts two messages mL and mR from the adversary, encrypts one of the messages, adds
the corresponding ciphertext to its set of ciphertexts, and returns the ciphertext. The
other is the Decrypt oracle, which accepts a ciphertext from the adversary, and returns
the decrypted message so long as the ciphertext does not correspond to a message given to
Eavesdrop. The two games in the CCA security definition only differ in that one always
encrypts mL, and the other always encrypts mR.

Definition 14 (Definition 9.1 from [18]). A symmetric encryption scheme Σ is CCA secure
if and only if CCAΣ

L
∼∼∼ CCAΣ

R where:

CCAΣ
L

k := Σ.KeyGen()
S := ∅

Eavesdrop(mL,mR ∈ Σ.M):

c := Σ.Enc(k,mL)

S := S ∪ {c}
return c

Decrypt(c ∈ Σ.C):

if c ∈ S return None

return Σ.Dec(k, c)

CCAΣ
R

k := Σ.KeyGen()
S := ∅

Eavesdrop(mL,mR ∈ Σ.M):

c := Σ.Enc(k,mR)

S := S ∪ {c}
return c

Decrypt(c ∈ Σ.C):

if c ∈ S return None

return Σ.Dec(k, c)

One way to achieve CCA security is to use a MAC, which is defined below.

Definition 15 (Definition 10.1 from [18]). A message authentication code (MAC) scheme
consists of a key space K, a message spaceM, a tag space T , and the following algorithms:

• KeyGen: a randomized algorithm that outputs a key k ∈ K.

• MAC: a deterministic algorithm that takes a key k and a message m ∈M as input,
and outputs a tag t.

For a MAC to be worthwhile, it should be difficult to forge a tag for a message without
access to the secret key. We can formalize this notion like usual, with a pair of security
games. The real security game maintains a secret key for the MAC, and provides two

79

oracles to the adversary: GetTag and CheckTag. GetTag accepts a message from the
adversary and returns a corresponding tag computed from the message and the secret key.
CheckTag accepts a message and a tag from the adversary and returns a boolean indicating
whether the provided tag corresponds to the provided message. The random game also
maintains a secret key for the MAC, as well as a set of message-tag pairs. Its GetTag
oracle similarly returns a tag for a message but stores the message-tag pair in its set prior
to returning. Its CheckTag oracle simply returns true if the message-tag pair has been
previously returned from GetTag, and false otherwise.

Definition 16 (Definition 10.2 from [18]). Let M be a MAC scheme. We say that M is
unforgeable if MACM

real
∼∼∼MACM

rand where:

MACM
real

k := M .KeyGen()

GetTag(m ∈M.M):

return M .MAC(k,m)

CheckTag(m ∈M.M, t ∈M.T):

return t
?
= M .MAC(k,m)

MACM
rand

k := M .KeyGen()
S := ∅

GetTag(m ∈M.M):

t := M .MAC(k,m)

S := S ∪ {(m, t)}
return t

CheckTag(m ∈M.M, t ∈M.T):

return (m, t)
?
∈ S

Recall that in this thesis, we model security definitions via pairs of games where the
adversary’s goal is to determine which game they are composed with. In a more traditional
treatment of the material, the unforgeability security definition would be modelled by a
challenger providing a GetTag oracle to the adversary, where the adversary wins if they
can forge a valid tag for a message m without passing m to the GetTag oracle. Both
the traditional unforgeability security definition and the unforgeability security definition
based on indistinguishability are equivalent. Consider how an adversary could distinguish
between the two games; the output distribution of the GetTag oracle is clearly identical
in both. Therefore, in order to distinguish between the two games, an adversary would
need to find a difference in the output of the CheckTag oracle, which can only be done
by forging a tag for a message m without passing m to the GetTag oracle. The real

80

game would return true for such a forgery, whereas the random game would return false,
since the pair (m, t) would not appear in S. Therefore, any strategy that an adversary
can use to win the traditional unforgeability security definition can also be used to break
indistinguishability, and vice versa; hence, the two definitions are equivalent.

Finally, we can construct a CCA secure symmetric encryption scheme by tagging each
ciphertext that we produce with a MAC. If the MAC is secure, then this ensures that the
decryption oracle yields no extra information, since an adversary cannot forge a valid tag
for any ciphertext not returned from the Eavesdrop oracle.

Definition 17 (Construction 10.9 from [18]). Let Σ be a symmetric encryption scheme
and M a MAC scheme where Σ.C ⊆M.M. EtM (Encrypt-then-MAC) is a symmetric
encryption scheme where K = Σ.K ∗M.K, M = Σ.M, C = Σ.C ∗M.T defined by:

KeyGen() = (Σ.KeyGen(),M.KeyGen())

Enc((ke, km),m) = (c := Σ.Enc(ke,m), t := M.MAC(km, c))

Dec((ke, km), (c, t)) =

{
Σ.Dec(ke, c) t = M.MAC(km, c)

None otherwise

4.5.2 Theorem and Proof

Theorem 5 (Claim 10.10 from [18]). If Σ is CPA secure and M is a secure MAC, then
EtM is CCA secure.

For this proof, we will present an abridged version, where we only give the steps up to
the replacement of the left message with the right message. All steps after this exchange
occur exactly in reverse to the first half of the proof. As usual, we first provide an overview
of the sequences of hops.

1. CCAEtM
L

• We rewrite the uses of the MAC scheme in the CCA game as calls to oracles of the
real MAC game. This is an interchangeable hop.

2. MACM
real ◦REtM

1

• We exchange the real MAC unforgeability game with the random MAC unforgeability
game, thanks to the assumed unforgeability of M . This is an indistinguishable hop.

81

3. MACM
rand ◦REtM

1

• We inline the reduction calls to form an intermediate game for explanation. This is
an interchangeable hop.

4. GEtM
1

• We argue that two values are identical, and that some decryption code is unreachable.
This is an interchangeable hop.

5. GEtM
2

• We write the encryption of the left message in terms of a call to the left CPA game.
This is an interchangeable hop.

6. CPAΣ
L ◦REtM

2

• We exchange the left CPA game with the right CPA game thanks to the assumed
CPA security of Σ. This is an indistinguishable hop.

7. CPAΣ
R ◦REtM

2

From this point, we proceed through the steps of the proof backwards, hopping to
identical versions of GEtM

2 ,GEtM
1 ,MACM

rand ◦REtM
1 and MACM

real ◦REtM
1 except where mL

has been replaced with mR. We finally conclude by hopping to CCAEtM
R .

To discuss each hop in more detail, we begin by showing CCAEtM
L where the EtM

definitions are inlined into the CCA game:

82

CCAEtM
L

kΣ := Σ.KeyGen()
kM := M .KeyGen()
S := ∅

Eavesdrop(mL,mR ∈ Σ.M):

c := Σ.Enc(kΣ,mL)

t := M .MAC(kM , c)

S := S ∪ {(c, t)}
return (c, t)

Decrypt((c, t) : c ∈ Σ.C, t ∈M.T)

if (c, t) ∈ S return None

if t ̸= M.MAC(kM , c): return None

return Σ.Dec(kΣ, c)

Next, we note that we can compute the value M .MAC(kM , c) and check if t ̸=
M .MAC(kM , c) by calling the CheckTag and GetTag oracles in the real MAC game.
Hence, we write a reduction to do so, and use an interchangeable hop to demonstrate
that CCAEtM

L ≡MACM
real ◦REtM

1

83

MACM
real

k := M .KeyGen()

GetTag(m ∈M.M):

return M .MAC(k,m)

CheckTag(m ∈M.M, t ∈M.T):

return t
?
= M .MAC(k,m)

REtM
1

kΣ := Σ.KeyGen()
S := ∅

Eavesdrop(mL,mR ∈ Σ.M):

c := Σ.Enc(kΣ,mL)

t := challenger.GetTag(c)

S := S ∪ {(c, t)}
return (c, t)

Decrypt((c, t) : c ∈ Σ.C, t ∈M.T)

if (c, t) ∈ S return None

if not challenger.CheckTag(c, t) return None

return Σ.Dec(kΣ, c)

Now, thanks to the assumed unforgeability of M , we can replace the real unforgeability
game for M with the random version. This is an indistinguishability hop demonstrating
that MACM

real ◦REtM
1
∼∼∼MACM

rand ◦REtM
1

84

MACM
rand

k := M .KeyGen()
S := ∅

GetTag(m ∈M.M):

t := M .MAC(k,m)

S := S ∪ {(m, t)}
return t

CheckTag(m ∈M.M, t ∈M.T):

return (m, t)
?
∈ S

REtM
1

kΣ := Σ.KeyGen()
S := ∅

Eavesdrop(mL,mR ∈ Σ.M):

c := Σ.Enc(kΣ,mL)

t := challenger.GetTag(c)

S := S ∪ {(c, t)}
return (c, t)

Decrypt((c, t) : c ∈ Σ.C, t ∈M.T)

if (c, t) ∈ S return None

if not challenger.CheckTag(c, t) return None

return Σ.Dec(kΣ, c)

Next, we simply write an intermediate game GEtM
1 which inlines the previous reduction

into one single game. Since both games have a set variable named S, when inlining, we
will label the challenger set as S1 and the reduction set as S2. This is an interchangeable
step showing that MACM

rand ◦REtM
1 ≡ GEtM

1 .

85

GEtM
1

kΣ := Σ.KeyGen()
S1 := ∅
kM := M .KeyGen()
S2 := ∅

Eavesdrop(mL,mR ∈ Σ.M):

c := Σ.Enc(kΣ,mL)

t := M .MAC(kM , c)

S2 := S2 ∪ {(c, t)}
S1 := S1 ∪ {(c, t)}
return (c, t)

Decrypt((c, t) : c ∈ Σ.C, t ∈M.T)

if (c, t) ∈ S1 return None

if (c, t) ̸∈ S2 return None

return Σ.Dec(kΣ, c)

We then can observe that throughout the entire game, S1 and S2 take on the same
value. The game can be rewritten by unifying these two values back into a single set S.
In doing so, the decryption oracle will return None regardless of whether (c, t) is in S or
not. Therefore, the entire decryption oracle can be also be rewritten to just return None.
Both of these changes do not affect the output of any oracles, so this hop demonstrates
interchangeability: GEtM

1 ≡ GEtM
2

86

GEtM
2

kΣ := Σ.KeyGen()
kM := M .KeyGen()
S := ∅

Eavesdrop(mL,mR ∈ Σ.M):

c := Σ.Enc(kΣ,mL)

t := M .MAC(kM , c)

S := S ∪ {(c, t)}
return (c, t)

Decrypt((c, t) : c ∈ Σ.C, t ∈M.T)

return None

Having removed the call to Σ.Dec, we can now rewrite the Σ.Enc call in terms of a
reduction to the left CPA game for Σ. That is, we use an interchangeable hop, and show
that GEtM

2 ≡ CPAΣ
L ◦REtM

2

CPAΣ
L

k := Σ.KeyGen()

Eavesdrop(mL,mR ∈ Σ.M):

c := Σ.Enc(k,mL)

return c

REtM
2

kM := M .KeyGen()
S := ∅

Eavesdrop(mL,mR ∈ Σ.M):

c := challenger.Eavesdrop(mL, mR)

t := M .MAC(kM , c)

S := S ∪ {(c, t)}
return (c, t)

Decrypt((c, t) : c ∈ Σ.C, t ∈M.T)

return None

And from here, we can use the assumed CPA security of Σ to replace the left CPA game
with the right CPA game, yielding CPAΣ

L ◦REtM
2
∼∼∼ CPAΣ

R ◦REtM
2 . Having replaced mL

87

with mR, we can apply the steps of the proof in reverse in order to hop to CCAR. That
is, we first write an intermediate game which inlines the reduction used in CPAΣ

R ◦REtM
2 .

Then, we split the variable S back into S1 and S2, and add the logic for decryption back in.
This allows us to write a reduction to the random MAC game for M , which can then be
swapped indistinguishably with the real MAC game for M by the assumed unforgeability
of M . Finally, this reduction using a real MAC can be inlined to produce the exact game
CCAR. This sequence of hops yields that CCAL

∼∼∼ CCAR and so EtM is a CCA secure
symmetric encryption scheme.

4.5.3 ProofFrog Encoding

This proof relies on some constructions for which the ProofFrog encoding has already
been discussed: namely, symmetric encryption schemes and the CPA security definition.
We present the ProofFrog files for the new definitions in the same order as presented
earlier. First, we provide the model for CCA security in Figure 4.25. Next, we provide the
definition of a MAC primitive in Figure 4.26. We also provide the pair of games for MAC
unforgeability in Figure 4.27. The scheme file for the Encrypt-then-MAC construction
is given in Figure 4.28. Finally, we list the reductions used in the proof in Figure 4.29,
Figure 4.30, and Figure 4.31, and the proof file itself in Figure 4.32.

These examples also present parameterized sets which are a ProofFrog type that has
not yet been mentioned. Sets are treated as collections of distinct values. ProofFrog
supports notation for checking membership (x in S), checking whether one set is a subset
of another (S subsetof T), creating unions of two sets (S union T), creating intersections
of two sets (S intersect T), and getting the set difference of two sets (S \ T).

88

Game Left(SymEnc E) {

E.Key k;

Set<E.Ciphertext> S;

Void Initialize() {

k = E.KeyGen();

}

E.Ciphertext Eavesdrop(E.Message mL, E.Message mR) {

E.Ciphertext c = E.Enc(k, mL);

S = S union c;

return c;

}

E.Message? Decrypt(E.Ciphertext c) {

if (c in S) { return None; }

return E.Dec(k, c);

}

}

Game Right(SymEnc E) {

E.Key k;

Set<E.Ciphertext> S;

Void Initialize() {

k = E.KeyGen();

}

E.Ciphertext Eavesdrop(E.Message mL, E.Message mR) {

E.Ciphertext c = E.Enc(k, mR);

S = S union c;

return c;

}

E.Message? Decrypt(E.Ciphertext c) {

if (c in S) { return None; }

return E.Dec(k, c);

}

}

export as CCA;

Figure 4.25: ProofFrog syntax for the pair of games modelling CCA security for a sym-
metric encryption scheme.

89

Primitive MAC(Set MessageSpace, Set TagSpace, Set KeySpace) {

Set Message = MessageSpace;

Set Tag = TagSpace;

Set Key = KeySpace;

Key KeyGen();

Tag MAC(Key k, Message m);

}

Figure 4.26: ProofFrog syntax for a MAC scheme.

90

Game Real(MAC M) {

M.Key k;

Void Initialize() {

k = M.KeyGen();

}

M.Tag GetTag(M.Message m) {

return M.MAC(k, m);

}

Bool CheckTag(M.Message m, M.Tag t) {

return t == E.MAC(k, m);

}

}

Game Random(MAC M) {

E.Key k;

Set<E.Message * E.Tag> S;

Void Initialize() {

k = M.KeyGen();

}

M.Tag GetTag(M.Message m) {

M.Tag t = M.MAC(k, m);

S = S union [m, t];

return t;

}

Bool CheckTag(M.Message m, M.Tag t) {

return [m, t] in S;

}

}

export as Unforgeablility;

Figure 4.27: ProofFrog syntax for the pair of games modelling unforgeability for a MAC
scheme.

91

Scheme EncryptThenMAC(SymEnc E, MAC M) extends SymEnc {

requires E.Ciphertext subsetof M.Message;

Set Key = E.Key * M.Key;

Set Message = E.Message;

Set Ciphertext = E.Ciphertext * M.Tag;

Key KeyGen() {

E.Key ke = E.KeyGen();

M.Key me = M.KeyGen();

return [ke, me];

}

Ciphertext Enc(Key k, Message m) {

E.Ciphertext c = E.Enc(k[0], m);

M.Tag t = M.MAC(k[1], c);

return [c, t];

}

Message? Dec(Key k, Ciphertext c) {

if (c[1] != M.MAC(k[1], c[0])) {

return None;

}

return E.Dec(k[0], c[0]);

}

}

Figure 4.28: ProofFrog syntax for the Encrypt-then-MAC construction.

92

Reduction R1(SymEnc E, MAC M, EncryptThenMAC EtM)

compose Unforgeability(M) against CCA(EtM).Adversary {

E.Key ke;

Set<E.Ciphertext * M.Tag> S;

Void Initialize() {

ke = E.KeyGen();

}

EtM.Ciphertext Eavesdrop(EtM.Message mL, EtM.Message mR) {

E.Ciphertext c = E.Enc(ke, mL);

M.Tag t = challenger.GetTag(c);

S = S union [c, t];

return [c, t];

}

EtM.Message? Decrypt(EtM.Ciphertext c) {

if (c in S) {

return None;

}

if (!challenger.CheckTag(c[0], c[1])) {

return None;

}

return E.Dec(ke, c[0]);

}

}

Figure 4.29: The first reduction used in the proof of Theorem 5.

93

Reduction R2(SymEnc E, MAC M, EncryptThenMAC EtM)

compose CPA(E) against CCA(EtM).Adversary {

M.Key km;

Set<E.Ciphertext * M.Tag> S;

Void Initialize() {

km = M.KeyGen();

}

EtM.Ciphertext Eavesdrop(EtM.Message mL, EtM.Message mR) {

E.Ciphertext c = challenger.Eavesdrop(mL, mR);

M.Tag t = M.MAC(km, c);

S = S union [c, t];

return [c, t];

}

EtM.Message? Decrypt(EtM.Ciphertext c) {

if (c in S) {

return None;

}

if (!(c in S)) {

return None;

}

}

}

Figure 4.30: The second reduction used in the proof of Theorem 5.

94

Reduction R3(SymEnc E, MAC M, EncryptThenMAC EtM)

compose Unforgeability(M) against CCA(EtM).Adversary {

E.Key ke;

Set<E.Ciphertext * M.Tag> S;

Void Initialize() {

ke = E.KeyGen();

}

EtM.Ciphertext Eavesdrop(EtM.Message mL, EtM.Message mR) {

E.Ciphertext c = E.Enc(ke, mR);

M.Tag t = challenger.GetTag(c);

S = S union [c, t];

return [c, t];

}

EtM.Message? Decrypt(EtM.Ciphertext c) {

if (c in S) {

return None;

}

if (!challenger.CheckTag(c[0], c[1])) {

return None;

}

return E.Dec(ke, c[0]);

}

}

Figure 4.31: The third reduction used in the proof of Theorem 5.

95

proof:

let:

Set SymEncKeySpace;

Set MACKeySpace;

Set MessageSpace;

Set CiphertextSpace;

Set TagSpace;

SymEnc E = SymEnc(MessageSpace, CiphertextSpace, SymEncKeySpace);

MAC M = MAC(CiphertextSpace, TagSpace, MACKeySpace);

EncryptThenMAC EtM = EncryptThenMAC(E, M);

assume:

CPA(E);

Unforgeability(M);

theorem:

CCA(EtM);

games:

CCA(EtM).Left against CCA(EtM).Adversary;

Unforgeability(M).Real compose R1(E, M, EtM) against CCA(EtM).Adversary;

Unforgeability(M).Random compose R1(E, M, EtM) against CCA(EtM).Adversary;

CPA(E).Left compose R2(E, M, EtM) against CCA(EtM).Adversary;

CPA(E).Right compose R2(E, M, EtM) against CCA(EtM).Adversary;

Unforgeability(M).Random compose R3(E, M, EtM) against CCA(EtM).Adversary;

Unforgeability(M).Real compose R3(E, M, EtM) against CCA(EtM).Adversary;

CCA(EtM).Right against CCA(EtM).Adversary;

Figure 4.32: Proof file for Theorem 5.

4.5.4 Simplify Not Operations

As previously mentioned, this proof is largely able to be verified utilizing our set of pre-
existing transformations. The first hop, from CCA(EtM) to Unforgeability(M).Real

compose R1(E, M, EtM), utilizes instantiation and inlining to create an inlined game for
the reduction. ProofFrog applies tuple expansion to the key tuple generated by EtM.KeyGen
so that the two games both have independent ke and km fields. It also uses copy propaga-
tion to remove some extra variables created by the tuple expansion and inlining procedures,
as well as using topological sorting to yield a canonical line ordering for the Eavesdrop

96

method. After applying all of the simplifications, the games are near identical. The inlined
game is shown below:

Game Inlined() {

MACKeySpace challenger@k;

SymEncKeySpace ke;

Set<CiphertextSpace * TagSpace> S;

Void Initialize() {

challenger@k = M.KeyGen();

ke = E.KeyGen();

}

CiphertextSpace * TagSpace Eavesdrop(MessageSpace mL, MessageSpace mR) {

CiphertextSpace c = E.Enc(ke, mL);

TagSpace t = M.MAC(challenger@k, c);

S = S union [c, t];

return [c, t];

}

MessageSpace? Decrypt(CiphertextSpace * TagSpace c) {

if (c in S) {

return None;

}

if (!(c[1] == M.MAC(challenger@k, c[0]))) {

return None;

}

return E.Dec(ke, c[0]);

}

}

The only difference (ignoring variable naming) between this and the AST created for
CCA(EtM).Left is in the Decrypt oracle. The CCA(EtM).Left oracle has the condition
c[1] != M.MAC(k@1, c[0]), whereas the inlined game uses the condition !(c[1] ==

M.MAC(challenger@k, c[0])), as a byproduct of inlining the challenger.CheckTag call
into R1. To canonicalize these two ASTs, we simply write a transformer that takes expres-
sions of the form !(A == B) and rewrites them into A != B. After applying variable renam-
ing, this one small transformation, in addition to all of the pre-existing transformations,
allows us to verify the first hop of the proof. The second hop is verified as a use of an in-
distinguishability assumption. The third hop, from Unforgeability(M).Random compose

97

R1(E, M, EtM) to CPA(E).Left compose R2(E, M, EtM), does require some additional
functionality.

4.5.5 Tuple Copies

First, consider the inlined game for Unforgeability(M).Random compose R1(E, M,

EtM). Both games in this reduction define a set S, so the inlined game has both an S

field and a challenger@S field. Just as in GH
1 , these two sets take on the same value

throughout their entire lifetime. ProofFrog is able to recognize this using the previously
developed transformation for detecting duplicated fields, and is able to rewrite the game
using just the S field. After applying this transformation to remove duplicated fields, and
copy propagation, we have the following Decrypt oracle for Unforgeability(M).Random
compose R2(E, M. EtM):

MessageSpace? Decrypt(CiphertextSpace * TagSpace c) {

if (c in S) {

return None;

}

if (!([c[0], c[1]] in S)) {

return None;

}

return E.Dec(ke, c[0]);

}

This oracle AST differs from the Decrypt oracle in R2 in two crucial ways: first, that
we use [c[0], c[1]] instead of just c, and second, that this method still has a call to
E.Dec which must be removed. The first issue arises as a side effect of inlining: the
CheckTag method expects a ciphertext and a tag, but in the random version of the MAC
Unforgeability game, it just puts these two values back into a tuple again. Since the
Decrypt oracle calls CheckTag with c[0] and c[1], inlining gives us [c[0], c[1]], which
can clearly be simplified to just c. To bring the ASTs one step closer to canonicalization,
we can write another simple transformer that just takes tuples of the form [a[0], a[1],

..., a[n]] and rewrite them as just a. Both ASTs now have matching checks to Decrypt
which return None if c in S or if !(c in S). To achieve two identical Decrypt oracles just
requires removing the final E.Dec call as it is unreachable code.

98

4.5.6 Unreachable Code

To determine that E.Dec is unreachable requires a slightly more complicated approach
than the previous two transformers described in this section. The algorithm is described
in Algorithm 2. Like some other previously described transformers, it uses Z3 to evaluate
satisfiability of logical formulae.

The goal is to determine at which point in a block a return statement will definitely
have been reached. Essentially, the formula f is a disjunction of all conditions so far that
would have caused a return. If we ever encounter an if-statement with an else branch
where all blocks have an unconditional return, then we know that all statements after this
point are unreachable. Otherwise, we take the current if or else-if condition and convert
it into a Z3 formula for use. Previously, we had mentioned that our ProofFrog AST to
Z3 formula conversion will only produce a result if the operation is typed appropriately:
the AST must use operations and types that have a one-to-one mapping in Z3. In this
case, however, we know that each condition in an if-statement returns a boolean. So even
though we cannot encode the individual parts of a condition like c in S in Z3 when using
an abstract ciphertext type for c, we can still map the result of the operation c in S as
a whole to a boolean in Z3. As such, each condition can be mapped to a Z3 formula, and
if that condition being true would result in an unconditional return, then we add it to f ’s
ongoing disjunction. The list l is used to keep track of the prior conditions in an if/else-if
statement: for the current condition c in a chain of if/else-if conditions to cause a return,
we must have that c is true while all prior conditions were false.

Finally, the var version map assigns a version number to each variable, which our Z3
formula conversion uses when mapping values like c in S to Z3 booleans. If we encounter
c in S followed by !(c in S), then these should map into a Z3 boolean and the negation
of that same Z3 boolean. On the other hand, if c or S have been assigned to in between
these two expressions, then we cannot guarantee that the operation c in S would have
the same value in each expression, hence we must map them to different Z3 variables.
We ensure that after processing each statement the var version map is updated for any
variables that may have changed by incrementing each assigned variable’s version number.
This ensures that future conversions from AST to Z3 formula will use different Z3 variables
as necessary. Then, to determine if the formula is a tautology, we use Z3 to evaluate if the
negation is unsatisfiable. If ¬f is unsatisfiable, then some condition would have caused a
return, and all statements afterwards are unreachable.

This transformation suffices to determine that the E.Dec call is unreachable code,
and to verify interchangeability of the third hop: that Unforgeability(M).Random

compose R1(E, M, EtM) is interchangeable with CPA(E).Left compose R2(E, M, EtM).

99

Algorithm 2 Remove Unreachable Code

1: Assign f to an empty Z3 formula
2: Collect all variable names used in the block
3: Initialize var version map as a map from variable names to integers, all set to 0
4: for each statement s in block’s statements do
5: if s is not an if-statement then
6: Increment versions of each variable assigned to in s in the var version map

7: continue
8: end if
9: if s contains an else branch and all blocks have unconditional returns then
10: return all statements up to and including s

11: end if
12: l := empty list of Z3 formulas
13: for each condition c in s’s conditions do
14: Convert c into a Z3 formula c using the var version map

15: if c’s associated block contains an unconditional return then
16: f := f ∨ (¬l0 ∧ ¬l1 ∧ ... ∧ ¬ln ∧ c), where n is the length of l
17: end if
18: Push c onto l
19: end for
20: Increment versions of each variable assigned to in s in the var version map

21: if Z3 deems ¬f unsatisfiable then
22: return all statements up to and including s

23: end if
24: end for
25: return unchanged block

The fourth hop is an indistinguishability hop to replace mL with mR, and from there the
proof proceeds in reverse. All further hops are verifiable with the strategies described so
far. This example concludes our demonstration of the features of the proof engine. We
present a final diagram showing all the transformations that ProofFrog uses in Figure 4.33.

100

Figure 4.33: A flowchart of ProofFrog engine functionality necessary to prove Theorem 5.

101

Chapter 5

Conclusion

This thesis has presented ProofFrog: a new tool for verifying cryptographic game-hopping
proofs. We have discussed in detail the tool’s novel approach to proof verification via
game AST canonicalization. We have demonstrated the efficacy of ProofFrog by encoding
and proving a variety of theorems from The Joy of Cryptography [18], where each example
demonstrated different features of the proof engine. ProofFrog also has the ability to prove
a variety of other statements which were not presented for brevity, and because these proofs
did not necessitate new functionality in the proof engine. Examples of such proofs include
a proof that the one-time uniform ciphertexts property for symmetric encryption schemes
implies the one-time secrecy property [18, Theorem 2.15], a proof demonstrating one-time
secrecy of a construction using a secure PRG for symmetric encryption [18, Claim 5.4], a
proof that a hybrid encryption construction is CPA secure [18, Claim 15.9], and others.

5.1 Future Work

One limitation of ProofFrog is that it requires trust from users. ProofFrog does have the
ability to output each individual transformation that it performs, so that if a user does
not trust ProofFrog claiming that a particular proof is valid, then the user can manually
check each step for validity. But, manually checking each step for validity does to some
extent defeat ProofFrog’s purpose, which is to eliminate human review of proofs as much
as possible. In an ideal world, any assertion that ProofFrog makes with regards to a
proof’s validity would be immediately accepted as fact. We did take care to ensure that
ProofFrog only accepts valid proofs: numerous unit and functional tests were developed
for the application to ensure correctness of AST transformations. Unfortunately, however,

102

a formal calculus for the transformations ProofFrog uses and an accompanying proof of
correctness was outside the scope of the project. As such, a user-base interested in formal
verification may be wary of adopting an unproven engine. However, it is important to note
that some other trusted proof assistants like CryptoVerif and EasyCrypt, while having
formal calculi defined, also do not have formally checked implementations, so ProofFrog is
not alone in requiring user trust. Nevertheless, a potential improvement to ProofFrog that
would bolster confidence in the tool would be the ability to export the steps it takes to
other proof assistant tools that work at a lower level of manipulating logical formulae, like
EasyCrypt, for example. In doing so, the ProofFrog domain-specific language could also
function as a higher level interface to proof assistants that are more widely trusted.

Another potential future avenue for work would be to expand the variety of examples
that ProofFrog has been tested on. Aside from the example involving the double symmetric
encryption scheme, each proof that ProofFrog has been able to verify was sampled from
The Joy of Cryptography [18]. These proofs are noteworthy; the majority of these examples
would likely be found in any other introductory cryptography textbook. However, there
is of course a substantial gap between the complexity of proofs in textbooks versus those
presented in research papers. It would be worthwhile to investigate whether the transfor-
mations developed for ProofFrog so far are sufficient for the majority of arguments made
by an average cryptographer.

There are some constructions that could benefit the average cryptographer, but were
not implemented in ProofFrog due to either complexity or time constraints. Pseudorandom
functions (PRFs) are a common construction that could be useful in some proofs: security
of a PRF allows a user to swap a real game that evaluates the PRF with a random game
which uses a map that lazily samples and memoizes responses for later use. Arguments
in cryptographic proofs often proceed by assuming that a PRF is secure, showing that
inputs to the PRF do not repeat (or repeat with negligible probability), and from that one
can conclude that each output is indistinguishable from just random sampling. Although
ProofFrog’s grammar does allow one to represent the definition of a PRF and model a
security game using a map type, the engine currently struggles with making meaningful
transformations to PRFs due to the long-lasting state persisting across oracle calls. This is a
weakness of ProofFrog when compared to existing tools such as EasyCrypt and CryptoVerif.
EasyCrypt supports the creation of PRFs via its map type provided in the standard library.
A common example of a symmetric encryption scheme constructed from a PRF, and a proof
that the scheme is CPA-secure, is found in Stoughton’s EasyTeach repository [20]. The
proof utilizes EasyCrypt’s ability to reason probabilistically about failure events and the
memory spaces that games would undertake, which ProofFrog currently does not support.
CryptoVerif also supports PRFs by leveraging its novel calculus which preserves values

103

of all variables across oracle calls. This preservation allows CryptoVerif to rewrite PRF
lookups as searches across previous values of the program. If an input was previously
provided to the PRF then it can fetch the corresponding response from that previous call,
otherwise it can simply return a new randomly sampled value. The search across previously
defined values can then sometimes be proven automatically false by the equational prover,
which allows for simplification to purely random sampling. Analyzing the probability of
failure events like in EasyCrypt strays from ProofFrog’s design philosophy, therefore better
support for PRFs in ProofFrog would likely require implementing stronger reasoning about
the possible values variables can undertake. Because ProofFrog models PRFs via user-
defined mutation to maps, determining the values of variables across oracle calls is more
challenging than CryptoVerif’s semantics where keeping track of the map’s responses is
done implicitly.

Another potential improvement could be to expand the number of built-in types to
allow easier modelling of group elements and group operations, which are commonly used
in the theory-heavy area of public-key cryptography. As of right now, a user would need
to write a primitive to represent group elements, and then write manual reductions for
each simple property of the group they would like to use. This is not too dissimilar
from other cryptographic proof assistant tools. EasyCrypt provides a number of algebraic
structures as part of its core library, including groups, rings, and fields. These are defined
by specifying an abstract type that group elements belong to, specifying operations as
functions across these types, and providing axioms and lemmas with which to manipulate
these elements. EasyCrypt proofs involving these elements will require each axiom to be
specifically applied on use, which is comparable to ProofFrog in its current state. However,
the syntax for EasyCrypt is easier as applying an axiom just consists of writing that axiom’s
name as a tactic, whereas in ProofFrog, one would need to write a whole new reduction
each time an axiom is applied. CryptoVerif similarly allows a user to define group elements
by specifying abstract types and axioms of group operations via logical formulae that are
then used by the equational prover. To bring ProofFrog up to par with these tools would
likely require some additional language features that target simplification of group elements
according to some pre-defined axioms.

Finally, there are a variety of tools that could be built on top of ProofFrog’s domain-
specific language that could benefit cryptographers. Despite type annotations existing
inside of the language’s grammar, a type checker has not yet been implemented, in part
because a precise semantics for the ProofFrog language has not been specified. A type
checker could act as a sanity check for cryptographers, ensuring that the reductions and
games they write are actually well-formed. If a cryptographer has gone to the lengths
of writing their proof inside of ProofFrog, it would also be a nicety if ProofFrog could

104

automatically typeset the games by exporting to LaTeX, which would eliminate a tedious
step of paper writing. It could also potentially export diagrams to layout the high-level
steps of the proof; standardized proof diagrams could make papers more readable as one
could easily grasp the high-level ideas of a proof at a glance. Finally, it could prove nice
as a teaching tool to implement an interpreter that can actually execute the game ASTs
as programs. This could allow one to write adversaries and demonstrate experimentally
whether the adversary can distinguish which game they are composed with. Each of these
tools could prove useful for cryptographers even if a user is not interested in the verification
aspects of ProofFrog, or if their proof is too complex for ProofFrog to verify.

105

References

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,
and Tools (2nd Edition). Addison Wesley, August 2006.

[2] David Aspinall. Proof General: A generic tool for proof development. In Proceedings
of the 6th International Conference on Tools and Algorithms for Construction and
Analysis of Systems: Held as Part of the European Joint Conferences on the Theory
and Practice of Software, ETAPS 2000, TACAS ’00, page 38–42, Berlin, Heidelberg,
2000. Springer-Verlag.

[3] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cre-
mers, Kevin Liao, and Bryan Parno. SoK: Computer-aided cryptography. In 2021
IEEE Symposium on Security and Privacy, pages 777–795, San Francisco, CA, USA,
May 24–27, 2021. IEEE Computer Society Press.

[4] Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin.
Computer-aided security proofs for the working cryptographer. In Phillip Rogaway, ed-
itor, Advances in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in Com-
puter Science, pages 71–90, Santa Barbara, CA, USA, August 14–18, 2011. Springer,
Heidelberg, Germany.

[5] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework
for code-based game-playing proofs. In Serge Vaudenay, editor, Advances in Cryptology
– EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 409–
426, St. Petersburg, Russia, May 28 – June 1, 2006. Springer, Heidelberg, Germany.

[6] Bruno Blanchet. A computationally sound mechanized prover for security protocols.
In 2006 IEEE Symposium on Security and Privacy, pages 140–154, Berkeley, CA,
USA, May 21–24, 2006. IEEE Computer Society Press.

106

[7] Bruno Blanchet. Modeling and verifying security protocols with the applied pi calculus
and ProVerif. Foundations and Trends in Privacy and Security, 1:1–135, 10 2016.

[8] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS #1. In Hugo Krawczyk, editor, Advances in Cryptology –
CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages 1–12, Santa
Barbara, CA, USA, August 23–27, 1998. Springer, Heidelberg, Germany.

[9] Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Kohbrok, and
Markulf Kohlweiss. State separation for code-based game-playing proofs. In Thomas
Peyrin and Steven Galbraith, editors, Advances in Cryptology – ASIACRYPT 2018,
Part III, volume 11274 of Lecture Notes in Computer Science, pages 222–249, Bris-
bane, Queensland, Australia, December 2–6, 2018. Springer, Heidelberg, Germany.

[10] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: an efficient SMT solver. In
C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, 14th International Conference, TACAS 2008, Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, volume 4963 of Lec-
ture Notes in Computer Science, pages 337–340. Springer, 2008.

[11] Arthur B. Kahn. Topological sorting of large networks. Commun. ACM, 5:558–562,
1962.

[12] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. CRC Press,
third edition, 2020.

[13] Neal Koblitz and Alfred Menezes. Critical perspectives on provable security: Fif-
teen years of “another look” papers. Advances in Mathematics of Communications,
13(4):517–558, 2019.

[14] Matthew McKague and Douglas Stebila. pygamehop. https://github.com/

dstebila/pygamehop.

[15] Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The Tamarin prover
for the symbolic analysis of security protocols. In Natasha Sharygina and Helmut
Veith, editors, Computer Aided Verification, pages 696–701, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

107

https://github.com/dstebila/pygamehop
https://github.com/dstebila/pygamehop

[16] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čert́ık, Sergey B.
Kirpichev, Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sar-
taj Singh, Thilina Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller,
Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian Pedregosa,
Matthew J. Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh Saboo, Isuru Fernando,
Sumith Kulal, Robert Cimrman, and Anthony Scopatz. SymPy: symbolic computing
in Python. PeerJ Computer Science, 3:e103, January 2017.

[17] Terence Parr, Sam Harwell, and Kathleen Fisher. Adaptive LL(*) parsing: the power
of dynamic analysis. SIGPLAN Not., 49(10):579–598, October 2014.

[18] Mike Rosulek. The Joy of Cryptography. https://joyofcryptography.com.

[19] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs.
Cryptology ePrint Archive, Report 2004/332, 2004. https://eprint.iacr.org/

2004/332.

[20] Alley Stoughton. EasyTeach. https://github.com/alleystoughton/EasyTeach.

108

https://joyofcryptography.com
https://eprint.iacr.org/2004/332
https://eprint.iacr.org/2004/332
https://github.com/alleystoughton/EasyTeach

APPENDICES

109

Appendix A

ProofFrog Grammar

This appendix provides the grammar for each type of file that can be written in ProofFrog.
Slight modifications have been made for increased legibility. In each grammar, parsing
begins from the rule labelled program. In addition, each grammar depends on the Shared
grammar, which as named, contains rules that are shared among multiple types of files.

A.1 Primitive Grammar

grammar Primitive;

import Shared;

program: PRIMITIVE ID '(' paramList? ')' '{' primitiveBody '}' EOF;

primitiveBody: ((initializedField|methodSignature) ';')+;

A.2 Scheme Grammar

grammar Scheme;

import Shared;

program: moduleImport* scheme EOF;

scheme: SCHEME ID '(' paramList? ')' EXTENDS ID '{' schemeBody '}';

schemeBody: (REQUIRES expression ';')* (field ';' | method)+;

110

REQUIRES: 'requires';

SCHEME: 'Scheme';

EXTENDS: 'extends';

A.3 Game Grammar

grammar Game;

import Shared;

program: moduleImport* game game gameExport EOF;

gameExport: EXPORT AS ID ';';

EXPORT: 'export';

A.4 Proof Grammar

grammar Proof;

import Shared;

program: moduleImport* proofHelpers proof EOF;

proofHelpers: (reduction | game)*;

reduction: REDUCTION ID '(' paramList? ')'

COMPOSE parameterizedGame AGAINST gameAdversary '{' gameBody '}';

proof: PROOF ':' (LET ':' lets)? (ASSUME ':' assumptions)?

THEOREM ':' theorem GAMES ':' gameList;

lets: (field ';')*;

assumptions: (parameterizedGame ';')* (CALLS ('<='|'<') expression ';')?;

theorem: parameterizedGame ';';

gameList: gameStep ';' (gameStep ';'|induction|stepAssumption)*;

gameStep: concreteGame COMPOSE parameterizedGame AGAINST gameAdversary

| (concreteGame|parameterizedGame) AGAINST gameAdversary

;

induction: INDUCTION '(' ID FROM integerExpression TO integerExpression ')'

'{' gameList '}';

111

stepAssumption: ASSUME expression ';';

gameField: (concreteGame | parameterizedGame) '.' ID;

concreteGame: parameterizedGame '.' ID;

gameAdversary: parameterizedGame '.' ADVERSARY;

REDUCTION: 'Reduction';

AGAINST: 'against';

ADVERSARY: 'Adversary';

COMPOSE: 'compose';

PROOF: 'proof';

ASSUME: 'assume';

THEOREM: 'theorem';

GAMES: 'games';

LET: 'let';

CALLS: 'calls';

INDUCTION: 'induction';

FROM: 'from';

A.5 Shared Grammar

grammar Shared;

game: GAME ID '(' paramList? ')' '{' gameBody '}';

gameBody: (field ';')* method+

| (field ';')* method* gamePhase+;

gamePhase: PHASE '{' (method)+ ORACLES ':' '[' id (',' id)* ']' ';' '}';

field: variable ('=' expression)?;

initializedField: variable '=' expression;

method: methodSignature block;

block: '{' statement* '}';

statement: type id ';'

| type lvalue '=' expression ';'

| type lvalue '<-' expression ';'

| lvalue '=' expression ';'

| lvalue '<-' expression ';'

| expression '(' argList? ')' ';'

112

| RETURN expression ';'

| IF '(' expression ')' block (ELSE IF '(' expression ')' block)*

(ELSE block)?

| FOR '(' INTTYPE id '=' expression TO expression ')' block

| FOR '(' type id IN expression ')' block

;

lvalue: (id | parameterizedGame) ('.' id | '[' integerExpression ']')*;

methodSignature: type id '(' paramList? ')';

paramList: variable (',' variable)*;

expression:

expression '(' argList? ')' #fnCallExp

| expression '[' integerExpression ':' integerExpression ']' #sliceExp

| '!' expression #notExp

| '|' expression '|' #sizeExp

| expression '*' expression #multiplyExp

| expression '/' expression #divideExp

| expression '+' expression #addExp

| expression '-' expression #minusExp

| expression '==' expression #equalsExp

| expression '!=' expression #notequalsExp

| expression '>' expression #gtExp

| expression '<' expression #ltExp

| expression '>=' expression #geqExp

| expression '<=' expression #leqExp

| expression IN expression #inExp

| expression SUBSETOF expression #subsetsExp

| expression '&&' expression #andExp

| expression '||' expression #orExp

| expression UNION expression #unionExp

| expression INTERSECT expression #intersectExp

| expression '\\' expression #setMinusExp

| lvalue # lvalueExp

| '[' (expression (',' expression)*)? ']' #createTupleExp

| '{' (expression (',' expression)*)? '}' #createSetExp

| type #typeExp

113

| BINARYNUM #binaryNumExp

| INT #intExp

| bool #boolExp

| NONE #noneExp

| '(' expression ')' #parenExp

;

argList: expression (',' expression)*;

variable: type id;

parameterizedGame: ID '(' argList? ')';

type: type '?' #optionalType

| set #setType

| BOOL #boolType

| VOID #voidType

| MAP '<' type ',' type '>' #mapType

| ARRAY '<' type ',' integerExpression '>' #arrayType

| INTTYPE #intType

| type ('*' type)+ #productType

| bitstring #bitStringType

| lvalue # lvalueType

;

integerExpression

: integerExpression '*' integerExpression

| integerExpression '/' integerExpression

| integerExpression '+' integerExpression

| integerExpression '-' integerExpression

| lvalue

| INT

| BINARYNUM

;

bitstring: BITSTRING '<' integerExpression '>' | BITSTRING;

set: SET '<' type '>' | SET;

bool: TRUE | FALSE;

moduleImport: IMPORT FILESTRING (AS ID)? ';';

id: ID | IN;

SET: 'Set';

BOOL: 'Bool';

VOID: 'Void';

114

INTTYPE: 'Int';

MAP: 'Map';

RETURN: 'return';

IMPORT: 'import';

BITSTRING: 'BitString';

ARRAY: 'Array';

PRIMITIVE: 'Primitive';

SUBSETOF: 'subsetof';

IF: 'if';

FOR: 'for';

TO: 'to';

IN: 'in';

UNION: 'union';

INTERSECT: 'intersect';

GAME: 'Game';

AS: 'as';

PHASE: 'Phase';

ORACLES: 'oracles';

ELSE: 'else';

NONE: 'None';

TRUE: 'true';

FALSE: 'false';

BINARYNUM: '0b'[01]+ ;

INT: [0-9]+ ;

ID: [a-zA-Z_$][a-zA-Z_0-9$]* ;

WS: [\t\r\n]+ -> skip ;

LINE_COMMENT : '//' .*? '\r'? '\n' -> skip ;

FILESTRING: '\''[0-9a-zA-Z_$/.=><]+'\'' ;

115

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	Introduction
	Computer-Aided Cryptography
	Contributions

	Cryptographic Proofs
	Domain-Specific Language for Cryptographic Proofs
	Primitive Files and Scheme Files
	Game Files
	Proof Files

	Building Up ProofFrog
	CPA$ Security Implies CPA Security
	Definitions
	Theorem and Proof
	ProofFrog Encoding
	Validating Indistinguishability
	Verifying Interchangeability
	Creating the Inlined Game
	Standardizing Variables Names

	Double Symmetric Encryption and One-Time Uniform Ciphertexts
	Definitions
	Theorem and Proof
	ProofFrog Encoding
	Initial ASTs
	Tuple Expansion
	Copy Propagation
	Statement Ordering and Dead Code Elimination

	Constructing a Length-Tripling PRG
	Definition
	Theorem and Proof
	ProofFrog Encoding
	Simplifying Slices
	Symbolic Computation

	One-time Secrecy Implies CPA Security for Public-Key Encryption Schemes
	Definitions
	Theorem and Proof
	ProofFrog Encoding
	Induction
	Duplicated Fields
	Assumptions with Z3
	Branch Elimination
	Unnecessary Fields
	Return Canonicalization
	Branch Collapsing
	Condition Equivalence

	Encrypt-then-MAC is CCA Secure
	Definitions
	Theorem and Proof
	ProofFrog Encoding
	Simplify Not Operations
	Tuple Copies
	Unreachable Code

	Conclusion
	Future Work

	References
	APPENDICES
	ProofFrog Grammar
	Primitive Grammar
	Scheme Grammar
	Game Grammar
	Proof Grammar
	Shared Grammar

