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Abstract

Breast cancer is the second most common type of cancer in women in Canada and the
United States, representing over 25% of all new female cancer cases. The prevalence of
breast cancer continues to grow, affecting about 300,000 females in the United States in
2023. However, there are different levels of severity of breast cancer requiring different
treatment strategies, and hence, grading breast cancer and estimating treatment prognosis
have become vital clinical tasks in breast cancer.

Recently, a new form of magnetic resonance imaging (MRI) called synthetic correlated
diffusion imaging (CDI®) imaging was introduced to address the physical hardware lim-
itations and showed considerable promise for clinical decision support for cancers such
as prostate cancer when compared to current gold-standard MRI techniques. However,
the efficacy for CDI® for other forms of cancers such as breast cancer has not been as
well-explored.

This thesis explores and designs novel deep learning architectures for enhancing two
breast cancer clinical task performance (pathologic complete response prediction and Scarff-
Bloom-Richardson grade classification) with optimized CDI®. A volumetric convolutional
neural network is leveraged to learn volumetric deep radiomic features from a pre-treatment
cohort, constructing a predictor based on the learned features for grade and post-treatment
response prediction. The optimization of parameters for computing CDI® for breast cancer
is also conducted through improving tumour delineation.

The proposed approach was evaluated using the ACRIN-6698 study and compared
against current gold-standard MRI modalities. For grade prediction, using optimized CDI®
achieved a leave-one-out cross-validation accuracy of 95.79%, which is over 16% above the
next best gold-standard MRI modality and over 6% above using the unoptimized CDI®.
Additionally, using optimized CDI® for post-treatment response prediction resulted in a
leave-one-out cross-validation accuracy of 93.28%, which is over 8.5% above the next best
gold-standard MRI modality and over 5.5% above using the unoptimized CDI®.

The proposed approach demonstrates how using optimized CDI® can be used to enhance
the performance of breast cancer clinical tasks, indicating its potential as a valuable tool
for oncologists to enhance patient treatment within the breast cancer domain and beyond.
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Chapter 1

Introduction

Breast cancer is the second most common type of cancer in females in Canada and the
United States, representing over 25% of all new female cancer cases [3]. As such, there
has been immense research and progress on improving screening techniques and processes
to proactively detect the presence of breast cancer in individuals at risk [1]. However, it
is estimated that 2,261,419 new cases of breast cancer were diagnosed across the world in
2020 [3] and predicted that 43,700 American women will die from breast cancer in 2023 [5].

1.1 Breast Cancer Screening and Diagnosis

While breast cancer can indeed be a serious condition, it is crucial to understand that
not all cases are fatal, with some being more severe than others. When patients are first
diagnosed with breast cancer, they are categorized into two main types: in situ and invasive
breast cancer []. In situ is a less severe form of breast cancer that is a precursor to invasive
breast cancer. The latter type, invasive breast cancer, represents approximately 80% of
diagnosed cases and signifies that the cancer has already or can spread into the nearby
tissue areas [5, 3.

For breast cancer clinical support tasks, pathologists typically consult the patient’s
magnetic resonance imaging (MRI) images. Current gold-standard MRI modalities include
diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC), and T2-weighted
(T2w) [6]. DWI is a form of MRI that measures the motion of water molecules within the
tissue with the b values (0, 100, 600, 800) denoting the specific configuration of the scanner
such as gradient strength with 0 indicating no diffusion sensitivity and a greater sensitivity



ADC CDIs

DWI (b=800)

T2w

Figure 1.1: Example slice illustrating visual differences between ADC, CDI*, DWI, and
T2w at pre-treatment for a patient who has SBR Grade II (Intermediate).

as b increases [7]. ADC is the value obtained by taking the slope of the curve created
with the different b values with lower ADC indicating regions with restricted diffusion or
potentially cancerous tissue [3]. T2w is a type of contrast MRI image that enhances water
signals [9]. Recently, synthetic correlated diffusion imaging (CDI®) was introduced as a
promising imaging modality for clinical decision support for prostate cancer [10]. CDI®
introduces synthetic signals by extrapolating MRI data to introduce more data points
by analyzing the direction of diffusion in the cancerous tissue. An illustrative example
highlighting the visual differences between the imaging modalities of ADC, CDI*, DWI
(b=800), and T2w for a patient case is shown Figure 1.1.

Patients with invasive breast cancer also often receive a breast cancer grade that rep-
resents the similarity of the cancer cells to normal cells under the microscope [ 1, 12, 13].
The three breast cancer grades (low, intermediate, and high) describe the speed of growth
and likelihood of a good prognosis [14, 15, 11]. Low grade (grade 1) cancer has the best
prognosis with slow growth and spread of the cancer, while high grade (grade 3) cancer
has the worst prognosis with the greatest difference between cancer and normal cells and
represent cancer that is fast-growing with quick spread to other cells. As such, the stage
and grade of breast cancer are vital factors used to determine the severity of breast cancer
and discern the best treatment strategy as the stage and grade have been shown to relate
to the success of various treatment strategies [10].



1.2 Scarff-Bloom-Richardson Grade Classification

Specifically, the gold-standard Scarff-Bloom-Richardson (SBR) grade (with example CDI®
shown in Figure 1.2) has been shown to consistently indicate a patient’s response to
chemotherapy [17].

Unfortunately, the gold-standard method of grading the breast cancer is currently de-
termined by a pathologist looking at a tissue sample from the cancer tumour under a
microscope. As such, the current method to determine the grade requires removal of some
cancer cells from the patient which can lead to stress and discomfort along with high
medical costs [7].

Previous studies have examined the merit of pairing computer vision techniques for
breast cancer grade prediction using radiomics [18], statistical tests [3], elasticity ratios [19],
multitask learning models [20], and deep learning [21]. A comprehensive review of ra-
diomics discussed the high potential of tumor grade prediction using radiomics on breast
imaging [18] and Burnside et al. [22] demonstrated that computer-extracted image phe-
notypes on MRI could accurately predict the breast cancer stage. However, Surov et al.
concluded that diffusion-weighted imaging used with the Mann-Whitney U test was inapt
at predicting breast cancer tumour grades [8]. On the other hand, deep learning methods
to identify metastatic breast cancer [1] and breast cancer grade [21] have presented high
accuracies of over 80% with a review on invasive breast cancer supporting the importance
of leveraging artificial intelligence on grade prediction [16].

Grade | Grade Il Grade Il

g 5 C 0N

Figure 1.2: Example breast CDI® images for the different SBR grades.



1.3 Pathologic Complete Response Prediction

Following grading, surgery is commonly administered to prevent breast cancer from further
developing and to remove cancerous tissue [5]. However, some non-metastatic breast cancer
tumors are inoperable [23]. Recently, a type of treatment termed neoadjuvant chemother-
apy has risen in usage as it can shrink a large tumor before surgery (so that the tumor
can become operable) [23] and it may also result in a pathologic complete response (pCR)
which is the absence of active cancer cells present in surgery [24]. Example breast CDI®
images with and without pCR is shown in Figure 1.3. However, neoadjuvant chemotherapy
is expensive, time-consuming, and may expose patients to radiation as well as lead to other
significant side effects such as reduced fertility [25].

Class: No pCR (0) Class: pCR (1)

Figure 1.3: Example breast CDI® images with and without pCR.

The current process to recommend neoadjuvant chemotherapy is based on the expert
judgment of the medical oncologist and/or radiation oncologist of whether the patient will
live longer and benefit from the treatment [26]. With potential biases and high uncertainty
in human clinical judgment [27], there is potential for some erroneous recommendations
leading to some patients later developing preventable detrimental advanced cancer or being
exposed to unnecessary radiation.



In the past, a variety of different modalities and methods were investigated to predict
pathologic complete response with patient features such as using a nonparametric Mann-
Whitney test for DWI and MRS [28], logistic regression models on MRI images [29], hard
threshold parameter values [30], AdaBoost classifier with qCT features [31], and an assort-
ment of machine learning models with qCT features [32]. Furthermore, previous studies
have also examined the usage of deep learning and volumetric data with breast cancer.
Convolutional neural network algorithms were studied to predict post-NAC axillary re-
sponse with breast MRI images [33], a three-layer 3D CNN architecture was trained to
detect breast cancer using a dataset of 5547 images with an AUC of 0.85 [31], and convo-
lutional neural networks with 3D MRI images were used to predict pCR to neoadjuvant
chemotherapy in breast cancer [35].

1.4 Thesis Contributions

This thesis explores and designs novel deep learning architectures for enhancing the per-
formance for two breast cancer clinical tasks (pathologic complete response prediction and
Scarff-Bloom-Richardson grade classification) employing a newly introduced MRI modality
called CDI®. It also examines the optimization of parameters for computing CDI® specif-
ically for breast cancer to further enhance task performance. A volumetric convolutional
neural network is leveraged to learn volumetric deep radiomic features from a pre-treatment
cohort, constructing a predictor based on the learned features for SBR grade and pCR pre-
diction. Subsequently, there are two main contributions:

1. Dataset: The computation and optimization of exponents used to generate CDI® for
breast cancer. The process to create the dataset is described in Chapter 3.

2. Workflow: The proposed workflow for learning volumetric deep radiomic features
from a pre-treatment cohort, with a predictor for SBR grade and pCR prediction
(shown in Figure 1.4). The setup, results, and analysis for pCR prediction and SBR
grade classification are described in Chapter 4 and Chapter 5, respectively.

In this thesis, a review of relevant background concepts is provided in Chapter 2. The
description of the computation of CDI® images for the patients is detailed in Chapter 3.
Problem formulation, experimental setup, experimental results, and summary using the
proposed workflow for pCR prediction and SBR grade are described in Chapter 4 and
Chapter 5 respectively. Optimizing CDI® for breast cancer tumour delineation is described



in Chapter 6 and clinical support enhancement for breast cancer with optimized CDI® is
presented in Chapter 7. Finally, conclusions, limitations, and future work are discussed in

Chapter 8.
s S
8 %
A' Compute Preprocess Train
A /\/ cDI® Image
v a, o
A
A' ‘v
cDiE Standardized CDI®
Av 224 X 224 X 25
S
hxwxd
C
| l
c c
Each Residual Block
- o
3x
6x Volumetric Grade | & 11/ Grade lll
3% 4x Deep Radiomic Predicted Grade
Features Predict OR
TXTXT 3x3x3 Emm— —
64 64 3x3x3 2x3x3 True / False
128 256 3x3x3 h R Predicted pCR
512 ]j
Volumetric Deep Radiomic Feature Extractor Grade Predictor
OR

pPCR Predictor

Figure 1.4: Proposed clinical support workflow for breast cancer using volumetric deep
radiomic features from CDI®.



Chapter 2

Background

This chapter provides a review of relevant background concepts, along with the patient
data study. Section 2.1 describes the ACRIN 6698/I-SPY2 study. The data from the
ACRIN 6698/I-SPY2 study is used in this thesis. Section 2.2 discusses the three different
gold-standard MRI modalities studied in this thesis: diffusion-weighted imaging (DWI),
apparent diffusion coefficient (ADC), and T2-weighted (T2w). Section 2.3 then presents
synthetic correlated diffusion imaging (CDI®) and how it has been applied to prostate
cancer (PCa). Section 2.4 introduces the Residual Network (ResNet) model and Section
2.5 presents a description of Project Medical Open Network for AT (MONALI).

2.1 ACRIN 6698/I-SPY?2 Study

The pre-treatment (T0) patient cohort in the ACRIN study was used as the patient cohort
in this thesis [30, 37, 38, 39]. The timepoint TO was selected as patients at this stage
had not received any neoadjuvant chemotherapy and thus, the images would be most
representative of the ones that pathologists would evaluate to determine SBR grade and
decide if the patient should receive neoadjuvant chemotherapy.

The American College of Radiology Imaging Network (ACRIN) 6698/I-SPY2 study
contains MRI images across 10 different institutions for patients at four different time-
points in their treatment [30, 37, 38, 39]. The study provides the three main current
gold-standard MRI modalities used in clinical practice: DWI acquisitions, T2w acquisi-
tions, and ADC maps. The study also includes detailed annotation metadata (the lesion
type, genetic subtype, longest diameter on the MRI (MRLD), the Scarff-Bloom-Richardson



(SBR) grade, and the post-treatment breast cancer pathologic complete response (pCR)
to neoadjuvant chemotherapy). Manual DWI whole-tumor segmentations were identified
using post-contrast DCE subtraction images and then localizing the regions on the ADC

map [ Y ) Y ]'

Patients in the ACRIN 6698/I-SPY2 study were imaged using either a 1.5 or 3.0 Tesla
scanner with a dedicated breast radiofrequency coil and the scanner configuration was static
for all images taken for a given patient. Imaging was done with the patient in the prone
position and both the T2w sequence and DWI (b=0, 100, 600, 800 s/mm? 3-direction)
were performed axially with full bilateral coverage. The pixel spacing for the acquisitions
ranged from 0.83 mm to 2.08 mm with a median of 1.29 mm, with both slice thickness and
spacing between slices ranged from 4.0 to 5.0 mm with a median of 4.0. ADC maps were
then calculated based on the DWI data as a linear fit with ADC values below 0 or voxels
below threshold set to 0 to suppress background pixels [36, 37, 38, 39].

Specific MRI acquisition parameters were used to obtain the T2w and DWI images for
each patient in the ACRIN 6698/I-SPY2 study. Specifically, the reconstruction matrix was
512 by 512 for T2w and 256 by 256 for DWI with an in-plane resolution of less than or
equal to 1.4 mm for T2w and from 1.7 to 2.8 mm for DWI. T2w was performed with active
fat-sat recommended while DWI had a fat-suppression parameter value of active fat-sat.
The flip angle for both T2w and DWI was 90 degrees with a slice thickness of less than or
equal to 4 mm for T2w and between 4 to 5 mm for DWI. The number of slices for both
MRI images was variable with complete bilateral coverage for T2w and bilateral coverage
with adjustments to keep within a single acquisition for DWI. T2w also had a slice gap of
less than or equal to 1.0 mm whereas there was no gap for DWI. The sequence acquisition
time was less than or equal to 7 minutes for T2w images and between 4 to 6 minutes for
DWTI with no total post-contrast imaging duration. Four standardized b-values were used
for DWTI acquisitions at 0 s/mm?, 100 s/mm?, 600 s/mm?, and 800 s/mm? [36, 37, 38, 39].
More details about the parameter values used to acquire T2w and DWI images are shown
in Table 2.1 [30, 37, 38, 39].

The demographics of the dataset, filtered for patients with non-null pCR values, are
shown in Table 2.2. It can be seen that the White race dominates the data, comprising of
70.8% of the patients in the dataset, illustrating a severe race bias towards White patients.
Additionally, Figure 2.1 (top), it can be seen that the majority of the patients are between
30 to 70 years old (95.7%), indicating that very young patients (< 29) and very old patients
(> 70) could be underrepresented in the dataset. On the other hand, the genetic subtype in
the dataset is more fairly distributed with each subtype represented in at least 10% of the
patients whereas the lesion type is more biased towards multiple masses and single mass
as seen in Figure 2.2, upper left and right respectively. In addition, the longest diameter

8



Table 2.1: Table of MRI acquisition parameters used

copied from |

I Y ) ]‘

to obtain T2w and DWI images

Parameter T2-weighted DWI
Sequence type FSE or STIR DW SE-EPI
2D or 3D sequence 2D 2D

Slice orientation Axial or sagittal Axial
Laterality Bilateral Bilateral
Frequency direction A/P A/P

Phase direction R/L (axial) R/L

S/I1 (sagittal)

FOV - frequency

260-360 mm (axial)

180-220 mm (sagittal)

260-360 mm @

FOV - phase 300-360 mm (axial) 300-360 mm @
180-220 mm (sagittal)

Matrix - frequency 256-512 128-192

(acquired)

Matrix - phase (acquired) | >256 128-192

Reconstruction Matrix 512x 512 256 x 256

In-plane resolution <1.4 mm 1.7 - 2.8 mm

Fat-suppression Active fat-sat Active fat-sat
recommended

TR 2000-10000 ms >4,000 ms

TE 70-140 ms Minimum
(STIR 70 ms) (50-100ms)

Echo Train Length <16 N/A

TI (STIR sequence) 170 ms (1.5T) N/A
230 ms (3.0T)

Flip Angle 90 degrees 90 degrees

Readout Bandwidth N/A N/A

(per pixel)

b values N/A 0,100, 600,800 s/mm?

Slice thickness (acquired) | <4 mm 4-5 mm

# of slices

Variable; complete
bilateral coverage

Variable; bilateral
coverage; adjust to keep
w/in single acquisition

Slice Gap <1.0 mm No gap

Parallel imaging factor <2 >2

# of excitations/averages | <2 >2

k-space ordering N/A N/A

Sequence < 7 minutes 4-6 minutes
acquisition time (multi-b seq ~ 5 min)
Total post-contrast N/A N/A

imaging duration




Table 2.2: Summary of race demographic in the dataset.

Race Percentage
White 70.8%
Black 10.7%
Asian 6.3%
Unknown 11.1%
Multiple Races 0.4%
Native Hawaiian or other Pacific Islander 0.4%
American Indian or Alaska Native 0.4%

on the MRI (MRLD) is also biased towards the range of 2 to 4 cm with less representation
from patients in the other diameter ranges as seen in Figure 2.1 (bottom).

The grade distribution and pCR division for patients filtered with non-null pCR values
are shown in bottom half of Fig. 2.2, indicating an uneven distribution in SBR grade,
significantly skewed towards Grade III (High) and shows that more patients with no pCR
(67.6%) compared to those who achieved pCR after neoadjuvant chemotherapy (32.4%).

2.2 Current Gold-Standard MRI Modalities

Magnetic resonance imaging (MRI) is a non-invasive diagnostic imaging method that
uses magnetic fields and radio waves to generate detailed images of body organs and tis-
sues [10, 41]. For repeated imaging, MRI is considered a safer alternative to X-ray and
computed tomography (CT) scans as it uses non-ionizing radiation as opposed to ioniz-
ing radiation [11, 12]. In this thesis, the performance with CDI® is compared to that of
three different gold-standard MRI modalities: diffusion-weighted imaging (DWTI), apparent
diffusion coefficient (ADC), and T2-weighted (T2w).

2.2.1 Diffusion-weighted Imaging (DWI)

Diffusion is the movement of water through tissue and is influenced by tissue density [10].
DWTI is a form of MRI that measures the Brownian movement of water molecules within
biological tissue using b values (0, 100, 600, 800), where each value signifies the strength
of the diffusion sensitizing gradient [13]. A b value of 0 indicates no diffusion sensitivity,
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Figure 2.1: Distribution of the age (top) and longest diameter on the MRI (MRLD) in cm
(bottom) for patients in the dataset.

and sensitivity increases with higher b values [10, 41, 15]. Introduced in the late 1980s,
DWTI has become pivotal in diagnosing and characterizing various medical conditions [1(].
It plays a crucial role in the early identification of ischemic strokes, as well as in evaluating
tumors and neurodegenerative diseases [17]. Figure 2.3 highlights the principle of DWI.
In normal tissue (left panel of Figure 2.3), water is able to move freely which leads to a
low DWI signal. On the other hand, in cancer tissue (right panel of Figure 2.3), the high
cellularity restricts the movement of water which leads to a high DWI signal [15].

2.2.2 Apparent Diffusion Coefficient (ADC)

The quantitative measure derived from DWT is known as the apparent diffusion coefficient
(ADC) [13]. ADC is obtained by taking the slope of the curve created with the different
b values in DWI [13]. Hence ADC reflects the degree of water diffusion within the tissue,
with lower ADC indicating regions with restricted diffusion or potentially cancerous tissue
(as seen in Figure 2.3).
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Figure 2.2: Patient distribution of genetic subtype (a), lesion type (b), SBR grade (c) and
pCR status (d) in the dataset.
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Figure 2.3: Conceptual illustration of the principle of DWT copied from [15].
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Table 2.3: Table of the relationship between signal intensity and tissue type for T2w images
copied from [52].

Signal intensity Tissues

Dark Air, mineral-rich tissue (cortical bone, stones), fast-flowing blood

Low Collagenous tissue (ligaments, tendons, scars), bone islands

Low to High bound water tissues (liver, pancreas, adrenals, hyaline cartilage, muscle)

intermediate

Intermediate to Fat, fatty bone marrow

bright

Bright High free water tissue (kidneys, gonads, edema, fluids [urine, bile], simple cysts, bladder,
gallbladder, spleen, CSF). Proteinaceous tissue, blood products (oxyhemoglobin, extracellular
methemoglobin)

2.2.3 T2-weighted (T2w)

T2-weighted (T2w) is a form of MRI that leverages transverse magnetization to distinguish
between anatomical structures with different water content [19]. T2w focuses on the T2
relaxation time of tissues, which is the time it takes for protons in a tissue to lose their
transverse magnetization [50]. Tissues affected by pathological processes typically exhibit
higher water content than their normal counterparts [51]. Consequently, areas affected
by conditions, accentuated by fluids like cerebrospinal fluid or vitreous humor, appear as
bright regions on T2w images [52]. A tabular summary of the signal intensities for different
tissues on T2w images is provided in Table 2.3.

2.3 Synthetic Correlated Diffusion-weighted Imaging

Correlated diffusion imaging (CDI) analyzes the direction of diffusion in the cancerous
tissue [53] whereas synthetic correlated diffusion imaging (CDI®) introduces synthetic sig-
nals by extrapolating MRI data to introduce more data points [10]. The methodology to
compute CDI® is shown in Figure 2.4 from [10]. The process begins with multiple native
DWTI signals obtained for different b values. These signals are then passed into a signal
synthesizer which produces synthetic signals. The native signals are then mixed with the
synthetic signals to obtain a final signal (CDI®) [10].

When applied to prostate cancer (PCa) delineation, [10] showed promising preliminary
results for CDI® compared to current MRI techniques. In their extensive study [10], the
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Figure 2.4: Process to compute CDI® copied from [10].

authors explored the correlation between PCa presence and CDI®. Using a cohort of 200
patient cases, the authors assessed the performance of CDI® in delineating PCa against
established MRI techniques (T2-weighted (T2w), diffusion-weighted imaging (DWI), and
dynamic contrast-enhanced imaging (DCE)) [10]. Statistical analyses indicated that CDI®
hyperintensity served as a strong indicator of PCa presence, surpassing the delineation
capabilities of T2w, DWI, and DCE [10].

2.4 Residual Network Model

A Residual Network (ResNet) is a deep learning architecture designed to address the chal-
lenge of training very deep neural networks [71]. ResNet uses the residual learning concept
and introduces residual blocks, which contain shortcut connections that skip one or more
layers. As a result, the model does not need to learn the direct mapping from input to
output, but instead learns the residual mappings. As seen in Figure 2.5, the identity map-
ping is executed by the shortcut connections and the results are simply combined with
the outputs of the stacked layers. Hence, the inclusion of identity shortcut connections
does not bring about any additional parameters or significantly increase computational
complexity. By having shortcut connections, the gradient can flow more easily through the
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Figure 2.5: The building block in residual learning from [54].

network during backpropagation, making training and optimization more efficient and less
complex compared to other networks like VGG net [51].

2.5 Project MONAI

Project Medical Open Network for AI (MONAI) is an open-source library containing
PyTorch-based frameworks for employing deep learning in medical imaging [55]. Specif-
ically, the library contains three different workflow tools: MONAI label (image labelling
and learning), MONALI core (model training resources), and MONAI deploy (application
packaging and deployment) [55]. In this thesis, the pretrained ResNet-34 model in MONAI
core is used [50]. This pretrained model was trained on a large-scale 3D medical dataset
3DSeg-8, a consolidated dataset of images from eight publicly available 3D segmentation
datasets containing both MRI and CT imaging modalities [50].

2.6 Summary

This chapter describes the relevant background about the patient data used throughout
the thesis (from the ACRIN study) along with the three gold-standard MRI modalities:
DWI, ADC, and T2w. This chapter also reviews CDI® for better understanding of the
computation and optimization of the CDI® images in the next chapter. ResNet and MONAI
are also introduced in this chapter as they are used in the proposed workflow for the clinical
tasks of pCR prediction and SBR grade classification in subsequent chapters.
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Chapter 3

Synthetic Correlated Diffusion
Imaging (CDI®) for Breast Cancer

In this chapter, the problem motivating the use of CDI® is provided in Section 3.1. The
methodology to compute CDI® is provided in Section 3.2 and to create the multiparametric
MRI is described in Section 3.3. Section 3.4 provides a brief summary of the chapter.

3.1 Problem Formulation

A new form of magnetic resonance imaging (MRI) called synthetic correlated diffusion
(CDI®) imaging was recently introduced and showed considered promise for clinical decision
support for cancers such as prostate cancer when compared to current gold-standard MRI
techniques such as T2-weighted (T2w) imaging, diffusion-weighted imaging (DWI), and
dynamic contrast-enhanced (DCE) imaging [10]. However, the efficacy for CDI® for other
forms of cancer such as breast cancer has not been as well-explored nor have CDI® data
been previously made publicly available. Motivated to advance efforts in the development
of computer-aided clinical decision support for breast cancer using CDI®, this chapter
investigates computing CDI® for breast cancer.

3.2 Methodology

The pre-treatment cohort from the ACRIN study is used, with filtering for patients with
non-null pCR values.
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As described in [10], computing CDI® involves the acquisition of multiple native DWI
signals with different b-values. These native signals are then passed into a signal synthesizer
to produce synthetic signals. The synthetic signal acquisitions relies on defining S, the
specific synthetic signals to acquire. Unlike [10], to create CDI® for breast cancer, S was
defined as [0, 1000, 2000, 3000, 4000, 5000] to account for the lower signal intensity for
breast cancer images.

Finally, the native and synthetic signals produced via a signal synthesizer are mixed
together to obtain a final CDI® signal [10]. The calibrated signal mixing function uses p,
which represents the coefficients that control the contribution of different gradient pulse
strengths and timings to produce the CDI® signal. The initial p values were defined as [1,
1, 1, 1, 1, 1], which were the base p values from [10].

Examples of the computed CDI® is shown in Figure 3.1.

3.3 Multiparametric MRI Creation with CDIs

In literature, multiparametric MRIs have recently gained popularity as they have been
shown to greatly benefit breast cancer clinical task enhancement with deep learning [57].
Multiparametric MRIs are created by fusing two or more MRI modalities together with
the combination achieving better performance than each MRI modality on its own [58].

For this thesis, the CDI® signals are fused with DWI to create a multiparametric MRI
for each patient, represented by the term mpMRI®®. As seen in Figure 3.2, the multipara-
metric MRI leverages the structural information from DWI while keeping the important
signals from CDI®.

3.4 Summary

In this chapter, the process to compute CDI® and mpMRI®* are described. Sample images
for both the raw CDI® and the mpMRI®® are also provided. The next chapter (Chapter
4) examines leveraging mpMRI®® for improving pCR for breast cancer.
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Figure 3.1: Example breast CDI®.
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(h)

Figure 3.2: Sample CDI® (a, d, i), DWI (b, e, h), and the combined mpMRI®® (c, f, i) for
three different patients.
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Chapter 4

Breast Cancer Pathologic Complete
Response Prediction with CDI®

This chapter discusses the proposed workflow for learning volumetric deep radiomic features
from a pre-treatment cohort for pCR prediction with the problem formulation presented in
Section 4.1. The experimental setup and results are described in Section 4.2 and Section
4.3, respectively. Section 4.4 provides a brief summary of the chapter.

4.1 Problem Formulation

Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strat-
egy for breast cancer, attributed to its efficacy in shrinking large tumors and leading to
pathologic complete response. However, the current process to recommend neoadjuvant
chemotherapy relies on the subjective evaluation of medical experts which contain inherent
biases and significant uncertainty. Innovations in the field of cancer regarding computer
vision and medical imaging have revealed promising methods for predicting pCR. Inspired
by the positive outcomes of using CDI® for prostate cancer delineation, this chapter inves-
tigates using CDI® to enhance breast cancer pathologic complete response prediction.

4.2 Experimental Setup

Patients from the ACRIN study was used and patients with null pCR values were filtered
from the dataset, with a total of 253 remaining patients. To compare the performance of
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mpMRI®* with current gold-standard MRI modalities used in clinical practice, diffusion-
weighted imaging (DWI) acquisitions, T2-weighted (T2w) acquisitions, and apparent diffu-
sion coefficient (ADC) maps were also obtained from the ACRIN study. CDI® acquisitions
were computed for a given patient, as described in Chapter 3. These imaging acquisitions
are then standardized into 224x224x25 volumetric data cubes to achieve dimensionality
consistency for machine learning purposes.

Next, motivated by the advances in deep learning as well as the volumetric nature of
CDP® data, a 34-layer volumetric residual convolutional neural network architecture was
constructed and leveraged to learn volumetric deep radiomic features from the standardized
volumetric data cubes [59]. The aim with leveraging volumetric deep learning at this
stage is to, rather than design hand-crafted radiomic features, directly learn volumetric
deep radiomic features from patient data that characterizes the intrinsic properties of
breast cancer tissue as captured by CDI® that are relevant as it relates to patient pCR to
neoadjuvant chemotherapy after pre-treatment imaging. This volumetric neural network
can then be used to produce deep radiomic features for each patient based on their patient
image data cubes. Finally, a pCR predictor comprising of a fully-connected neural network
architecture is then learnt based on the extracted deep radiomic feature and patient post-
treatment pCR data, and subsequently used to predict patient pCR post-treatment to
neoadjuvant chemotherapy.

To evaluate the efficacy of the proposed approach, we conducted leave-one-out cross-
validation (LOOCV) on the patient cohort with accuracy being the performance metric of
interest. For comparison consistency, a separate volumetric deep radiomic feature extractor
and pCR predictor (with the same network architectures as for mpMRI® as described
in the Method section) was used to learn a set of volumetric deep radiomic features from
each gold-standard MRI modality (DWI, T2w, and ADC). Notably, we also leveraged
DWTI acquisitions in two different ways: 1) individual sets of features are learnt from DWI
acquisitions of each b-value (b=0, 100, 600, 800), and 2) an individual set of features are
also learnt from the combined stack of DWI acquisitions (namely, the b-values are treated
as another channel in the input).

4.3 Experimental Results

As seen in Table 4.1, with the exception of ADC, leveraging volumetric deep radiomic
features from each of the imaging modalities achieved pCR predictive accuracy over 80%
with the highest accuracy obtained from the multiparametric MRI with CDI®, mpMRI®s.
With an improvement in accuracy of over 3% compared to the next highest modality
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DwWI (b = 800)

Figure 4.1: Example slice illustrating visual differences between ADC, mpMRI®d® DWI,
and T2w before neoadjuvant chemotherapy for a patient who experienced pCR. In this
patient case, pCR prediction was correct for CDI®* and DWI b = 800 but not the other

modalities.

Table 4.1: pCR prediction accuracy using LOOCYV for different imaging modalities.

Imaging Modality Accuracy (%)
mpMRIcdis 87.75
ADC 79.84
T2w 83.79
DWI (b=0, 100, 600, 800) 84.19
DWI (b=0) 84.19
DWI (b=100) 82.21
DWT (b=600) 84.19
DWI (b=800) 84.58

(i.e., DWI b = 800), mpMRI®¥ outperforms the gold-standard imaging modalities. An
illustrative example highlighting the visual differences between the imaging modalities of
ADC, mpMRI®¥ DWI b = 800, and T2w for a patient case where pCR prediction was
correct for mpMRI® and DWT (b=800) but not the other modalities is shown Figure 4.1.

4.4 Summary

In this chapter, the efficacy of leveraging volumetric deep radiomic features to predict
pCR for breast cancer patients considering neoadjuvant chemotherapy was investigated.
Evaluation using a pre-treatment cohort showed that the proposed approach can increase
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the pCR prediction performance compared to gold-standard MRI modalities. Specifically,
the volumetric deep radiomic features learnt with mpMRI® enabled a pCR prediction
accuracy of 87.75%, which is over 3% above the next best gold-standard MRI modality.

Given the promising results, the next chapter examines leveraging mpMRI®Ys for SBR
grade classification.
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Chapter 5

Breast Cancer
Scarff-Bloom-Richardson Grade
Classification with CDI®

This chapter reviews using the proposed workflow for learning volumetric deep radiomic
features from a pre-treatment cohort for SBR grade prediction. Section 5.1 formulates the
problem for SBR grade prediction. Section 5.2 sets up the experimental design and Section
5.3 presents the experimental results. Finally, Section 5.4 summarizes the chapter.

5.1 Problem Formulation

Grading is a crucial factor in breast cancer treatment planning, but the current method
to grade breast cancer tumors involves tissue extraction from the patient which causes
patient stress and discomfort [60], along with high medical fees [(1]. In addition, the
current method to determine the cancer grade is based on a human pathologist’s opinion
[12]. With potential biases and high uncertainty in clinical judgement, it is possible for
the patient to receive an incorrect grade leading to an unsuitable treatment strategy [27].
Recent advancements in computer vision and imaging in the cancer domain have shown
promise of noninvasive ways to diagnose and evaluate cancer tumours with high accuracy.
Hence, a need exists to noninvasively identify breast cancer grades in an accurate and quick
manner.
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5.2 Experimental Setup

The TO patient cohort in the ACRIN study was used as the patient cohort in this study [30,

, 38, 39]. 252 patient cases remained when patients who had any incomplete data were
removed. As seen in Table 5.1, there is an uneven distribution of patients between the
three grades and hence, SBR grade I and II were combined into one category.

Table 5.1: SBR grade distribution in the patient cohort.

SBR Grade Number of Patients
Grade I (Low) 5

Grade II (Intermediate) 72

Grade IIT (High) 175

DWI, ADC, and T2w were obtained directly from the ACRIN study for the patients.
The multiparametric MRI is created using the CDI® computed from the DWI images as
described in Chapter 3. For SBR grade classification, the ResNet model is initialized with
the model weights from Chapter 4, which were obtained by training for pCR prediction.
To achieve dimensional consistency for machine learning, the images are standardized into
224x224x25 volumetric data cubes for each patient.

Notably, the ResNet model is a 34-layer volumetric residual convolutional neural net-
work architecture leveraged to learn volumetric deep radiomic features from the standard-
ized volumetric data cubes. The aim with leveraging volumetric deep learning at this stage
is to, rather than design hand-crafted radiomic features, directly learn volumetric deep
radiomic features from patient data that characterizes the intrinsic properties of breast
cancer tissue that are relevant as it relates to SBR grading. This volumetric neural net-
work can then be used to produce deep radiomic features for each patient based on their
data cubes. Finally, a grading classifier comprising of a fully-connected neural network
architecture is then learnt based on the extracted deep radiomic feature and SBR grading
data, and subsequently used to predict the patient SBR grade. For comparison consistency,
a separate volumetric deep radiomic feature extractor and grade predictor (with the same
network architectures) was used to learn a set of volumetric deep radiomic features from
each modality.

To evaluate the efficacy of the proposed approach, leave-one-out cross-validation (LOOCYV)
was conducted on the patient cohort with accuracy being the performance metric of in-
terest. Other measured quantitative metrics include sensitivity, and specificity. Sample
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illustrative examples highlighting the visual differences between the imaging modalities
for patients where the grade prediction was correct for the mpMRIY® but not the other
gold-standard modalities are also included.

5.3 Experimental Results

As seen in Table 5.2, leveraging volumetric deep radiomic features for mpMRI®® achieves
the highest grade predictive accuracy of 87.7% with both sensitivity and specificity values
over 80%. Furthermore, mpMRI*¥ outperforms the gold-standard imaging modalities
with an improvement of over 10% on the next highest modality (T2w). With the highest
gold-standard MRI modality only achieving a prediction accuracy of 76.59%, over 10%
lower than mpMRI®Y, the proposed approach with mpMRI®¥ can increase the grade
prediction performance compared to gold-standard MRI modalities. Notably, mpMRIcd
exhibits lower sensitivity compared to other modalities, indicating that it has a lower
ability to accurately classify patients as SBR grade III. On the other hand, while the other
modalities demonstrate higher sensitivity, they suffer from significantly lower specificity,
leading to inaccurate identification of patients as SBR grade I/II. For this clinical task,
both sensitivity and specificity are paramount to ensure appropriate treatment allocation.
This ensures that patients with more aggressive cancer tumors receive necessary treatment
while minimizing unnecessary treatments and potential side effects for those with less severe
tumors [62]. Hence, mpMRI®® has a better overall performance compared to the other
modalities. An illustrative example highlighting the visual differences between the imaging
modalities of ADC, mpMRI*¥, DWI b = 800, and T2w for a patient case where grade
prediction was correct for mpMRI®Y but not the other modalities is shown Figure 5.1.

Table 5.2: SBR grade prediction accuracy using LOOCYV for different imaging modalities.

Modality Accuracy Sensitivity Specificity
mpMRI®s  87.70% 90.29% 81.82%

T2w 76.59% 99.43% 24.68%
ADC 69.44% 100.00% 0.00%
DWI 69.44% 95.43% 10.39%

27



CDIs

DWI (b = 800)

Figure 5.1: An example slice illustrating visual differences between ADC, mpMRI®¥ DWI,
and T2w at pre-treatment for a patient who has SBR Grade II (Intermediate). In this
patient case, grade prediction was correct for mpMRI®Y® but not the other modalities.

5.4 Summary

In this chapter, the volumetric deep radiomics approach for predicting SBR grade based
on volumetric mpMRI*¥® data was compared to that based on other gold-standard MRI
modalities. The multiparametric MRI with CDI® achieved a categorized grade prediction
accuracy of 87.70%. With the highest gold-standard MRI modality only achieving a pre-
diction accuracy of 76.59%, over 10% lower than mpMRI®¥, the proposed approach with
mpMRI®¥® can increase the grade prediction performance compared to gold-standard MRI
modalities. Given the promising results, the next few chapters focuses on CDI® coefficient
optimization and using optimized CDI® to enhance clinical support for breast cancer.
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Chapter 6

CDI® Optimization for Breast Cancer
Tumour Delineation

This chapter provides the description of the computation and optimization of CDI® images
for the patients. Specifically, the problem formulation, experimental setup, and experimen-
tal results are described in Section 6.1, Section 6.2, and Section 6.3, respectively. Section
6.4 provides a brief summary of the chapter.

6.1 Problem Formulation

Though CDI® served as a strong indicator for PCa presence in tissue [10], there exists a
few challenges for implementing CDI® for BCa.

As defined in [10], there are two key components for computing CDI®: (1) the calibrated
signal mixing function and (2) synthetic signal acquisitions which are mixed with native
signal acquisitions. The first component uses p, which are coefficients that control the
contribution of different gradient pulse strengths and timings to produce the CDI® signal.
The second component relies on defining S , the specific synthetic signals to acquire.

However, the challenge of what values to use for p and S are non-trivial as these values
largely impact the quality of the CDI® signal. Selecting optimal parameters by hand is not
only labor-intensive but also time-intensive, making it advantageous to identify a strategy
for optimizing these parameters for the specific task. Notably, it is also important that p
does not have values that are too large as the mixing function used in computing CDI®
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combines signals multiplicatively and overflow errors would occur if the p values are too
high.

In [10], the authors used p = 1 as their baseline form and also attempted to tune
the coefficients p by maximizing the area under the receiver operating characteristic curve
(AUC) using a Nelder-Mead simplex optimization strategy. For their synthetic signal
acquisitions, they chose {1000 s/mm?’, ..., 7000 s/mm°} (at 1000s/mm* intervals) with a
native signal acquisition at b = 50s/ mm?. In the context of BCa, the initial native signal
capture occurs at b = 0s/ mm2, and these signals are not as intense as those in PCa.

Another challenge arises for optimizing these parameters; optimization of these param-
eters with AUC relies distinguishing between healthy and cancerous tissue. Unlike [10],
the dataset used in this thesis only has the tumour mask and does not have the respective
organ mask (mask of the breast) in the MRI images.

6.2 Experimental Setup

In terms of optimization setups, two main configurations were examined based on [10] and
the specific task of BCa. Bounds of [-10, 10] were also added for p in the optimization to
avoid overflow errors when computing CDI®.

1. PCa Structure:

e initial p = [1.6160,1.5209, 1.2006, 0.8362, 1.1630, 0.8666, 1.1424, —0.4635], the
optimized p values from [10] (showing rounded values for brevity)

e 5= [50, 1000, 2000, 3000, 4000, 5000, 6000, 7000]
2. BCa Structure (adjusted form of based on signal intensity and BCa use case):

e initial p = [1,1,1,1,1,1], the base p values from [10]
o S = [0, 1000, 2000, 3000, 4000, 5000]

Optimization for both the two main configurations were conducted on the the processed
MRI images. The processed images are standardized forms of the raw images that reduce
each MRI volume to 25 slices, the minimum number of slices across all patients, and resize
each image to 224 x 224.

The results from these two setups were compared to the unoptimized form that uses
the base p = [1,1,1,1,1,1] values and S = [0, 1000, 2000, 3000, 4000, 5000].
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DWI Image Breast Mask

Figure 6.1: Sample breast mask generated from the DWI image.

ADC Image Breast Mask

Figure 6.2: Sample breast mask generated from the ADC image.

To compute the breast mask, thresholding on the images were leveraged along with
manual inspection of the resulting breast segmentation mask for quality. Since the signals
for ADC and DWTI are different, thresholding on both types of images were calculated to
generate two types of breast masks. Notably the MRI modality T2w was not considered as
there was no tumour mask for T2w images, which are configured significantly differently
from DWI images. Example of breast images created from ADC and DWI are shown in
Figure 6.2 and 6.1 respectively.

Similar to [10], the Nelder-Mead simplex optimization strategy was used to maximize
the area under the receiver operating characteristic curve (AUC) for ability to delineate
between healthy and cancerous breast tissue [63]. Though the Nelder-Mead simplex opti-
mization strategy is not guaranteed to find the global minimum and may falsely converge

31



Table 6.1: PCa structure optimized parameters.

Configurations Optimized p Values

S 50 1000 2000 3000 4000 5000 6000 7000
Initial Values 1.6160 1.5209 1.2006 0.8362 1.1630 0.8666 1.1424 -0.4635
ADC 4.1718 10.0000 0.4269 2.1377 1.8285 -1.3247 -4.3591 3.5843
DWI 3.5165 3.1218 1.7395 0.9957 0.6072 0.8040 -1.1245 -0.6547

Table 6.2: BCa structure optimized parameters.

Configurations Optimized p Values

S 0 1000 2000 3000 4000 5000
Initial Values 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ADC 9.8405 9.9514 -0.8604 -1.2513 4.7429 -0.0038
DWI 9.4760 0.0165 -0.7469 8.0292 0.8005 -4.9182

at another point, it is computationally compact and highly opportunistic, leading to its
widespread popularity and use [63].

Both quantitative and qualitative evaluation is conducted. Quantitatively, the AUC
values using the gold-standard MRI modalities of ADC and DWI b = 800 are compared
against that of CDI®. Qualitatively, histogram analysis is provided of ADC, DWI b =
800, and CDI® values for healthy tissue and cancerous tissue. Lastly, some sample patient
images for the various modalities are also shown to highlight their visual differences.

6.3 Experimental Results

6.3.1 Exponent Values

The optimized p values for the various optimization structures are provided below in Ta-
ble 6.1 and 6.2 for the PCa and BCa (adjusted form from PCa based on signal intensity)
structure, respectively. As seen, there is a significant difference in the optimized p values
based on the type of breast mask used and whether optimization was conducted on the raw
images themselves or the processed images. The optimized p values are also very different
between the PCa and BCa optimization structure, even for the same S value.
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Table 6.3: AUC values for the various modalities to separate healthy and tumour tissue
with the best result bolded.

Modality AUC
ADC 0.8323
DWI 0.9426
Unoptimized CDI® 0.9224
Optimized PCa (ADC) CDI* 0.9469
Optimized PCa (DWI) CDI®* 0.9470
Optimized BCa (ADC) CDI* 0.9455
Optimized BCa (DWI) CDI® 0.9437

6.3.2 AUC Values

Table 6.3 shows the AUC values for the various modalities to separate healthy and tumour
tissue. Interestingly, the best AUC value on the processed images is achieved by the
optimized PCa - DWI CDI® modality. On the other hand, the second highest AUC value
for processed AUC is obtained by optimized PCa - ADC CDI®. Notably, the DWI modality
achieves a 0.0044 decrease from the best processed AUC value.

6.3.3 Histogram Results

To study the distribution of ADC, DWI, CDI®, and the optimized forms for CDI® for
healthy tissue and tumour tissue, histogram analysis was conducted. Figure 6.3 and 6.4
shows the histogram analysis for the MRI modalities (ADC, DWI, and unoptimized CDI®)
values for healthy tissue and tumour tissue using the ADC breast mask and DWI breast
mask, respectively. Figure 6.5, and 6.6 shows the histogram analysis for the PCa and BCa
optimized values for CDI® values for healthy tissue and tumour tissue. These histograms
use the respective breast mask that was used for optimization, e.g., PCa optimized CDI®
based on processed DWI is analyzed using the DWI breast mask.

6.3.4 Visual Comparison

This subsection shows the visual comparison of the various modalities studied in this sec-
tion. Figure 6.7 shows the visual comparison of the tumour mask and the MRI modalities
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Figure 6.3: Histogram analysis for the MRI modalities (ADC, DWI, and unoptimized
CDP®) values for healthy tissue (green) and tumour tissue (orange) using the ADC breast
mask.
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Figure 6.4: Histogram analysis for the MRI modalities (ADC, DWI, and unoptimized
CDPI®) values for healthy tissue (green) and tumour tissue (orange) using the DWI breast
mask.
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Figure 6.5: Histogram analysis for the PCa optimized values for CDI® values for healthy
tissue (green) and tumour tissue (orange) plotted with a log scale.
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Figure 6.6: Histogram analysis for the BCa optimized values for CDI® values for healthy
tissue (green) and tumour tissue (orange) plotted with a log scale.
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Tumour

CDlIs mpMRIlcdis

Figure 6.7: Visual comparison of the tumour mask, the MRI modalities (ADC, DWI, and
unoptimized CDI®), and mpMRIc%s,

(ADC, DWI, and unoptimized CDI®). As seen in Figure 6.7, CDI® is able to capture the
tumour region with the least amount of noise compared to the other modalities but does
not contain any structural information about the corresponding breast.

Figure 6.8, and 6.9 show the visual comparison for the different optimized PCa and
BCa parameters for CDI® respectively. Notably, the CDI® images do not contain any
breast structural information, but shows the impact of selecting different p values as some
CDP® images have more noise compared to others and some are better able to highlight the
tumour region.
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Figure 6.8: Visual comparison of the different optimized PCa parameters for CDI® and the
associated mpMRI®%s,

CDls (ADC) CDIs (DWI) mpMRlicdis (ADC) mpMRicdis (DWI)

..

Figure 6.9: Visual comparison of the different optimized BCa parameters for CDI® and the
associated mpMRI®s,
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6.4 Summary

CDI® has recently been introduced as a strong indicator for PCa presence in tissue, moti-
vating its application to other cancer domains like BCa. However, computing CDI® requires
two main components: p and S values to capture the contribution coefficients and specific
synthetic signals to acquire, respectively.

Optimization for p values using two different sets of S values (one for the original PCa
setup, and one adapted for BCa) showed that the CDI® signal achieved a 0.0044 increase
in AUC for processed images over the best gold-standard MRI modality (DWT). Notably,
the optimized CDI® modality achieves AUC values over 0.02 higher than the unoptimized
CDT® value, demonstrating the importance of optimizing the CDI® exponents for the specific
cancer application.

In addition to separating healthy and tumour tissue for breast, another important
clinical BCa task is SBR grade classification. Although promising results were achieved
using CDI® for tissue separation, speculation arises about whether using optimized CDI®
would also provide enhancement for clinical support for breast cancer. This question is
explored in the next chapter, Chapter 7.
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Chapter 7

Clinical Support Enhancement for
Breast Cancer with Optimized CDI®

7.1 Problem Formulation

In previous chapters, leveraging volumetric deep radiomic features from synthetic corre-
lated diffusion imaging (CDI®) fused with DWI for breast cancer grade prediction showed
promise compared to other MRI modalities, achieving a pCR prediction accuracy of 87.70%
(Chapter 4) and a SBR grade classification accuracy of 87.75% (Chapter 5).

However, modifications to CDI® for breast cancer were minimal, lacking proper tuning
of the coefficients. Inspired by the positive outcomes of optimizing CDI® for prostate cancer
delineation [10] and the positive improvements from the previous chapter (Chapter 6) for
breast cancer tumour delineation, this chapter investigates the application of optimized
CDEI to enhance the two studied clinical support tasks (pCR prediction and SBR, grade
classification).

7.2 Pathologic Complete Response Prediction

The data used is from the ACRIN study filtered for non-null pCR values, with a total of 253
patients remaining. As the classes were imbalanced (class 0:1 is 67.6%:32.4%), a weighted
random sampler was added to the training sampler along with an AdamW optimizer. In
addition, a cosine annealing learning rate scheduler was also implemented during training.

41



The optimized CDI® signals from Chapter 6 were fused with DWI to create a multipara-
metric MRI, mpMRI®¥_ Finally, all patient volumes were then standardized to 224x224x25
volumetric data cubes for dimensional consistency.

The 34-layer pre-trained volumetric residual convolutional neural network framework
from MONAI was used to obtain deep radiomic features. The weights from MONAI were
obtained from training on eight different 3D MRI and CT segmentation datasets [50].
The radiomic features were subsequently inputted into a fully-connected neural network
predictor, designed to classify breast cancer into no pCR or pCR.

For training, a learning rate of 0.001 was also used. All the model layers were trained
with no freezing and leave-one-out cross-validation was used to compare the performance.
Though the previous paper only reported the average accuracy, we also provide the average
sensitivity, specificity, and F1 score.

Table 7.1 shows the results from using the unoptimized and optimized CDI® with DWI
to create a multiparametric MRI. As shown, the accuracy using the optimized CDI® was
93.28%, over 5.5% higher than that previously reported (87.75%). Though the sensitivity
and specificity metrics were not previously reported, using optimized CDI® achieved over
90% for both sensitivity and specificity. Notably the F1 score using optimized CDI® was
also high at 90.17%. An example highlighting the visual differences between the imaging
modalities of the unoptimized CDI®* and optimized CDI®* are shown in Figure 7.1. Also
provided in Figure 7.1 are the associated tumour mask and DWI for the specific patient
slice.

Table 7.1: Results using mpMRI®¥ with unoptimized and optimized CDI® with the best
result bolded.

mpMRI®*¥ Version Accuracy Sensitivity Specificity F1 score
Unoptimized CDI® 87.75% N/A N/A N/A
Optimized PCa (ADC) 91.30% 93.90% 90.06% 87.50%
Optimized PCa (DWI) 32.81% 100.00% 0.58% 49.10%
Optimized BCa (ADC) 93.28% 95.12% 92.40% 90.17%
Optimized BCa (DWI) 82.21% 97.56% 74.85% 78.05%
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(a) (b)
(c) (d)

Figure 7.1: An example slice illustrating visual differences between (a) Unoptimized CDI®,
(b) Optimized CDI®, (c) the associated DWI image, and (d) the associated tumour mask
at pre-treatment for a patient who obtained pCR. For this patient, the pCR prediction
was correct using the optimized CDI® signal fused with DWI.
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Table 7.2: SBR grade distribution in the patient cohort.

SBR Grade Number of Patients
Grade I (Low) 10
Grade II (Intermediate) 99
Grade IIT (High) 200

7.3 Scarff-Bloom-Richardson Grade Classification

The data used in this study was the ACRIN study filtered for non-null SBR grade values,
with a total of 309 patients remaining. Similar to Chapter 5, SBR grade I and II were

combined into one category due to the imbalanced distribution between the three grades
(as shown in Table 7.2).

The optimized CDI® signals from Chapter 6 were fused with DWI to create a mul-
tiparametric MRI. To achieve dimensional consistency for machine learning, all volumes
were then standardized into 224x224x25 volumetric data cubes for each patient.

The workflow used is the previously introduced deep radiomic clinical support workflow
from Chapter 1. The pretrained 34-layer volumetric residual convolutional neural network
architecture was initialized with the weights from MONALI [55] which were derived by train-
ing on the extensive 3D medical dataset, 3DSeg-8. This comprehensive dataset comprises
images from eight different 3D segmentation datasets, encompassing both MRI and CT
images [50]. The neural network is trained to extract deep radiomic features features which
are then fed into a fully-connected neural network grade predictor to predict breast cancer
grade (Grade I/Grade II and Grade III).

For training, a learning rate of 0.001 was used along with a weighted random sampler,
AdamW optimizer, cross-entropy loss function and cosine annealing learning rate scheduler.
All the model layers were also trained with no freezing. Leave-one-out cross-validation
was conducted to obtain the results with the average accuracy, sensitivity, and specificity
recorded.

As seen in Table 7.3, using the optimized CDI® obtained a leave-one-out cross-validation
of 95.79%, over 8% higher than that previously reported (87.70%). Optimizing CDI® also
achieved higher sensitivity and specificity, with all values above 90%. Figure 7.2 shows an
illustrative example highlighting the visual differences between an unoptimized CDI® signal
and an optimized CDI® signal, along with the corresponding tumour mask and DWI.
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(d)

Figure 7.2: An example slice illustrating visual differences between (a) Unoptimized CDI®,
(b) Optimized CDI®, (c¢) the associated DWI, and (d) the associated tumour mask for a
patient who has SBR Grade III (High). In this patient case, grade prediction was correct
using the optimized CDI® signal fused with DWI.
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Table 7.3: Results using mpMRI®¥ with unoptimized and optimized CDI® with the best
results bolded.

mpMRI®¥s Version Accuracy Sensitivity Specificity F1 score
Unoptimized CDI® 87.70% 90.29% 81.82% N/A
Optimized PCa (ADC) 90.61% 87.00% 97.25% 92.31%
Optimized PCa (DWI) 95.79% 96.50% 94.50% 96.74%
Optimized BCa (ADC) 64.72% 100.00% 0.00% 78.59%
Optimized BCa (DWI) 64.72% 100.00% 0.00% 78.59%

7.4 Summary

Given these promising results, the proposed noninvasive method that predicts pCR and
classifies SBR grade would enhance patient treatment with minimal side effects (as it uses
MRI modalities that are normally obtained in the course of the diagnosis). These results
also highlight the importance of tuning CDI® for the specific cancer domain as the optimized
CDTI® modality obtains superior performance compared to unoptimized CDI®.
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Chapter 8

Conclusion

This chapter presents a summary of the thesis and contributions in Section 8.1 with the
limitations and future work discussed in Section 8.2 and Section 8.3, respectively.

8.1 Summary of Thesis

In this thesis, the exploration and design of novel deep learning architectures for breast
cancer was conducted to enhance two important breast cancer clinical tasks: pathologic
complete response (pCR) prediction and Scarff-Bloom-Richardson (SBR) grade classifi-
cation using a newly introduced MRI modality, CDI®*. Using a volumetric convolutional
neural network architecture to learn volumetric deep radiomic features with a predictor
that leverages the learned features, a proposed workflow is designed for pCR prediction and
SBR grade classification. Further, the computation and optimization of CDI® for improving
breast cancer clinical task performance is also studied in this thesis.

The performance with optimized (mpMRI®¥®) is compared with the unoptimized
mpMRI®S and the current gold-standard MRI modalities (DWI, ADC, and T2w). Op-
timized mpMRI®Y was shown to achieve superior results over the current gold-standard
MRI modalities and the unoptimized mpMRI®¥. For grade prediction, using optimized
CDI® achieved a leave-one-out cross-validation accuracy of 95.79%, which is over 16%
above the next best gold-standard MRI modality and over 6% above using the unopti-
mized CDI®*. Additionally, using optimized CDI® for post-treatment response prediction
resulted in a leave-one-out cross-validation accuracy of 93.28%, which is over 8.5% above
the next best gold-standard MRI modality and over 5.5% above using the unoptimized
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CDI®. This improvement would greatly reduce overtreatment and ensure that patients
who could substantially benefit from this treatment approach receive the care they need.

This thesis highlights the importance of leveraging CDI® for cancer clinical tasks and
tuning the parameters for the specific cancer domain. The proposed approach demonstrates
how using optimized CDI® can be used to enhance the performance of breast cancer clinical
tasks, indicating its potential as a valuable tool for oncologists to enhance patient treatment
within the breast cancer domain and beyond.

8.2 Limitations

Although these results are promising, the optimization of CDI®* was conducted using basic
threshold-derived breast masks from the DWI images and were not verified by experienced
radiologists. Moreover, the performance improvement of CDI® over the best gold-standard
imaging modality is marginal and could differ for another dataset. Though the Nelder-
Mead optimization strategy is widely used, there is still the possibility that the chosen
optimization coefficients were not globally optimal and there exists better coefficients which
could be used. Lastly, since tumour masks were not provided for T2w images, the AUC
performance could not be computed for the T2w modality, another gold-standard imaging
modality, which may be able to better separate healthy and tumour tissue for breast.

8.3 Future Work

8.3.1 Breast Cancer Task Improvement

To further improve results, future work includes trying different feature extractors in the
proposed clinical support workflow such as ResNet with more or less layers and new net-
works such as EfficientNet [64] or AttendNext [05]. Multimodal methods that combine
both visual information (images) and textual information (patient metadata) should also
be investigated further to further improve results.

8.3.2 Optimization Strategy Enhancement

This thesis primarily used the Nelder-Mead optimization strategy with the objective of
tumour delineation. The optimization of the coefficients were conducted separately from
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the training of the feature extractor. However, future work could examine combining the
optimization with the training to generate better coefficients for the specific clinical task
and hence, increase the performance on the particular clinical task.

8.3.3 Application to Other Domains

Another area of exploration is the application of CDI® for other cancer domains, such as
brain cancer, to enhance clinical support. In addition, even though Wong et al. explores
computing and optimizing CDI® for prostate cancer [10], there is a gap in analyzing the
impact of using CDI® for specific clinical tasks in prostate cancer such as predicting clinical
significance from a patient’s MRI.
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