
Adversarial Machine Learning and
Defenses for Automated and

Connected Vehicles

by

Dayu Zhang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2024

© Dayu Zhang 2024

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Dayu Zhang was the sole author for Chapters 1, 2, 3 and 5 which were written under
the supervision of Dr. Nasser L. Azad and were not written for publication. This thesis
consists in part of two manuscripts written for publication. Exceptions to sole authorship
of material are as follows:

Research Presented in Chapter 4 Dayu Zhang was the primary author of the
manuscripts under the supervision Dr. Nasser L. Azad with the funding provided by AVL
List GmbH. Dr. Sebastian Fischmeister was the the AVL project lead, as well as the
co-author by providing guidance and feedback on the manuscript. Stefan Marksteiner pro-
vided insights from AVL List GmbH and contributed to the manuscript through feedbacks.
Papers presented in Chapter 4 was submitted to the 2023 International Conference on In-
formatics in Control, Automation and Robotics (ICINCO) conference. Paper presented in
chapter 4 has been published.

Citations:

• Chapter 4: Zhang D, Azad N, Fischmeister S, Marksteiner S. Zeroth-Order Optimiza-
tion Attacks on Deep Reinforcement Learning-Based Lane Changing Algorithms for
Autonomous Vehicles. Proceedings of the 20th International Conference on Infor-
matics in Control, Automation and Robotics - Volume 1: ICINCO. 2023:665-673.
doi:10.5220/0012187700003543.

iii

Abstract

This thesis delves into the realm of adversarial machine learning within the context
of Connected and Automated Vehicles (CAVs), presenting a comprehensive study on the
vulnerabilities and defense mechanisms against adversarial attacks in two critical areas:
object detection and decision-making systems.

The research firstly introduces a novel adversarial patch generation technique targeting
the YOLOv5 object detection algorithm. It presents a comprehensive study in the different
transformations and parameters that change the effectiveness of the patch. The patch is
then implemented within the CARLA simulation environment to assess robustness under
varied real-world conditions, such as changing weather and lighting. With all the trans-
formation applied during generation, the patch is able to reduce the confidence of YOLO5
detecting the stop sign by 70% comparing to the original stop sign if the lighting condition
is good. However if the lighting condition is sub-optimal, for example, during a raining
weather, the patch only reduce the confidence by 38% due to the patch being harder to
be detected. Overall, the optimized patch still shows a greater effect on detection evasion
compares to a random noise patch on any environment conditions. Overall, this part of
the research showcase a novel way of generating adversarial patches and a new approach
of testing the patches in a open-source simulator, CARLA, for better autonomous vehicle
testing against adversarial attacks in the future.

Simultaneously, this thesis investigates the susceptibility of Deep Reinforcement Learn-
ing (DRL) algorithms, in particular, Deep Q-Network (DQN) and Deep Deterministic
Policy Gradient (DDPG) algorithms, to black-box adversarial attacks executed through
zeroth-order optimization methods like ZO-SignSGD in a lane-changing scenario. The
research first train the policies with finely turned hyper-parameters in the lane-changing
environment and achieving a high performance. With a good policy as a base, the black-
box attack successfully fooled both algorithms by optimally changing the state value to
force the policy going straight while maintaining a small perturbation size compare to the
original. While under attack, both DQN and DDPG are unable to perform, achieving an
average of reward 108 and 45 comparing to their original performance of 310 and 232 re-
spectively. A preliminary study on the effect of adversarial defense is also performed, which
shows resistance against the attack and achieving slightly increase in average reward. This
part of research uncovers significant vulnerabilities, demonstrating substantial performance
degradation in DRL when used in the decision making of an autonomous vehicle.

At last, the study underscores the importance of enhancing the security and resilience
of machine learning algorithms embedded in CAV systems. Through a dual-focus on

iv

offensive and defensive strategies, including the exploration of adversarial training, this
work contributes to the foundational understanding of adversarial threats in autonomous
driving and advocates for the integration of robust defense mechanisms to ensure the safety
and reliability of future autonomous transportation systems.

v

Acknowledgements

I would like to thank Dr. Nasser L. Azad for the guidence and help throughout the
entire research process.

I would also like to thank AVL List GmbH. and Natural Sciences and Engineering
Research Council of Canada (NSERC) for funding this project; Dr. Sebastian Fischmeister
for providing the knowledge and resources for this project; Stefan Marksteiner from AVL
List GmbH for providing support throughout the project.

vi

Table of Contents

Author’s Declaration ii

Statement of Contributions iii

Abstract iv

Acknowledgements vi

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 1

1.3 Thesis Structure . 4

2 Background and Related Works 6

2.1 Adversarial Examples in Machine Learning 6

2.2 Adversarial Attacks in Physical World . 9

2.3 Adversarial Attacks in Reinforcement Learning 12

2.4 Black-box Adversarial Attacks . 14

2.5 Gaps in Existing Research . 15

vii

3 White-box Adversarial Patch Generation and Testing in CARLA 16

3.1 Problem . 16

3.2 Tools and Software . 17

3.2.1 CARLA . 17

3.2.2 Open Source Data Collection Platform 20

3.3 Method . 21

3.3.1 Patch Generation . 21

3.3.2 CARLA . 22

3.4 Results . 24

3.5 Summary . 29

4 Black-box Adversarial Attacks and Defenses on DRL 34

4.1 Problem . 34

4.1.1 Environment . 34

4.1.2 Reward . 36

4.2 Policies . 37

4.2.1 DQN Policy . 37

4.2.2 DDPG Policy . 38

4.3 Zeroth Order Attack . 38

4.3.1 Attacker Model . 39

4.3.2 Zeroth Order SignSGD . 39

4.4 Approach & Evaluation . 41

4.4.1 Adversarial Training . 41

4.4.2 Initial Training . 41

4.4.3 Attacks . 44

4.4.4 Defenses . 45

4.4.5 Results . 47

4.5 Summary . 49

viii

5 Conclusion 51

5.1 Adversarial Patch in Carla . 51

5.2 Adversarial Attack on DRL . 52

5.3 Future Work . 53

References 54

ix

List of Figures

1.1 An example adversarial attack on the ImageNet classifier [27] to output
airliner instead of ice-cream. The perturbed image is indifferent to naked
eye compare to the original image. 2

2.1 Graphical Interpretation of FGSM. 8

2.2 Graphical Interpretation of PGD. 9

3.1 User Interface of the Unreal Engine of CARLA 18

3.2 Examples of transformation used for adversarial patch generation 25

3.3 Losses over iterations for one single patch generation 26

3.4 Final adversarial patch generated . 26

3.5 Different transformation configurations on the patch generation and its ef-
fectiveness on a static image outside of CARLA 30

3.6 Additional configurations on the patch generation and its effectiveness on a
static image outside of CARLA . 31

3.7 Stop sign with adversarial patch applied in CARLA 32

3.8 Stop sign with adversarial patch applied in different locations in CARLA . 33

4.1 An example render of the highway lane changing environment 35

4.2 Comparative effects of various parameters on the mean reward per episode. 42

4.3 Training with vectorization of 20 environments. 44

4.4 Loss convergence for successful perturbation for both Loss1 and Loss2. . . 45

4.5 Result of the perturbation. The ego vehicle hits another car. 45

x

4.6 Reward/Episode for adversarial training of DDPG. 47

4.7 Reward/Episode for adversarial training of DQN. 47

4.8 Example of the environment with 5 lanes and a vehicle density of 2. 48

xi

List of Tables

3.1 Different configurations on the patch generation and its effectiveness on a
static image outside of CARLA . 27

3.2 Different configurations on the patch generation and its effectiveness inside
CARLA . 28

3.3 Stop sign detection confidence in different locations in CARLA 28

4.1 Mean reward of adversarial training with attack skip chance. 46

4.2 Mean reward of each model with the maximum theoretical reward of 450. . 47

4.3 Lane and Vehicle Density effect on mean reward 49

xii

Chapter 1

Introduction

1.1 Motivation

The rapid advancement in Connected and Automated Vehicles (CAVs) underscores the crit-
ical need for robust and secure decision-making algorithms. This necessity is increasingly
evident with the deep integration of machine learning, particularly deep neural networks
(DNN), in various aspects of CAV technology. The groundbreaking work of Krizhevsky
et al. with AlexNet in 2012 marked a significant leap in image classification, catalyzing
the adoption of deep learning in machine vision applications [27]. Following this, notable
developments such as R-CNN by Girshick et al. in 2013 and the real-time object detection
system YOLO in 2015 further revolutionized the field [17, 47]. Around the same time,
Mnih et al. at Deepminds firstly combined deep learning techniques with reinforcement
learning (RL), enabling complex control policies to be learnt and generalized. These ad-
vancements have been pivotal in enhancing the capabilities of CAVs but have also exposed
them to new vulnerabilities, particularly to adversarial attacks.

1.2 Background

The concept of adversarial attacks in deep learning, first identified by Szegedy et al. in
2013, introduced a critical area of concern [52]. These attacks involve subtle yet impact-
ful perturbations to inputs that lead machine learning model to make incorrect decisions,
such as the example seen in figure 1.1. The imperceptibility of these perturbations to both
human observers and standard detection techniques poses a significant challenge. This

1

field of research soon became a topic of significant interest, as deep learning techniques
getting increasingly integrated into real-world applications, from image classification to
autonomous driving. In 2015, Goodfellow et al. further explored this concept, generalized
and showcased the degree of susceptibility of deep neural networks (DNNs) to adversarial
attacks by generating an adversarial example in merely one single step using Fast Gradient
Sign Method (FGSM), as well as defending against such attacks through adversarial train-
ing [18]. This work was followed by the introduction of the Carlini-Wagner (CW) attack in
2017, which crafted a more complex optimization method to generate adversarial examples
with minimal perturbations, further highlighting the vulnerability of DNNs to adversarial
attacks [7]. In 2018, Madry et al. introduced a powerful multi-step attack named Projected
Gradient Descent (PGD) that provides a more reliable way to find adversarial examples for
all DNNs. Furthermore, it demonstrated the capabilities of combining adversarial training
with a powerful attack like PGD to enhance the robustness of DNNs not only against PGD
itself, but other weaker attacks as well [35]. These developments showcased the potential of
these threats to compromise the safety of autonomous systems. However, they require the
attacker to have access to the gradient information of the target model, namely ”white-box
attacks”, which is not always the case in real-world scenarios.

Figure 1.1: An example adversarial attack on the ImageNet classifier [27] to output airliner
instead of ice-cream. The perturbed image is indifferent to naked eye compare to the
original image.

Not only presented in the field of machine vision, adversarial attacks have also been
explored in the context of reinforcement learning (RL) and control. Huang et al. in
2017 demonstrated the susceptibility of RL-based control algorithms to adversarial attacks,

2

highlighting the potential of these attacks to compromise the safety of autonomous systems
[21]. This vulnerability is particularly concerning in the context of AVs, where the safety
of the vehicle and its occupants is dependent on the robustness of the decision-making
algorithms.

All these vulnerabilities were initially only explored in the digital realm, but soon
found practical implications in the physical world. For instance, Evtimov et al. in 2017
demonstrated the feasibility of tricking DNN-based image classifiers with specially crafted
stickers on stop signs, a direct threat to the safety of AV systems [13]. Moreover, Athalye et
al.’s introduction of ”Expectation Over Transformation” in 2017, showcased the robustness
of physical adversarial attacks, highlighting the efficacy and feasibility of these threats in
the physical world [1]. These papers laid the fundamental groundwork for the exploration
of robust adversarial attacks for object detection systems, which are widely used in CAVs.
In 2019, adversarial patch were developed to attack object detection systems, which can
be printed on a piece of paper and placed in the physical world to fool the object detection
system, further demonstrating the feasibility of physical adversarial attacks [54, 28, 10].

At last while white-box attacks are more powerful, they are also more challenging
to execute. In contrast, ”black-box attacks” are more practical and easier to execute,
as they do not require explicit knowledge of the target model’s inner workings. In 2016,
Papernot et al. introduced the concept of ”transferability” in adversarial attacks, where one
attack trained specially for one network can also be effective on another network doing the
same task; demonstrating the feasibility of black-box attacks [39, 40]. Though still black-
box, these early attacks use substitute models to generate adversarial examples, which are
attacked by any of the white-box attacks mentioned above to generate adversarial examples
for the unknown neural networks. In the 2017 work of Chen et al., the concept of ”zeroth-
order optimization” was introduced, which query the neural network directly, enables the
execution of black-box attacks without the need for substitute models [9]. This direction
was further explored by Liu et al. in 2018, who demonstrated more efficient zeroth-order
optimization methods like ZO-SignSGD for executing black-box attacks [31]. In the case of
zeroth-order optimization, though the gradient information is not present, the attacker still
has access to the confidence or the score of the model output, thus allowing the attacker
to know where the optimization process is heading. Another direction of the black-box
attack is to use the ”decision-based” method, which only has access to the final decision of
the model, while both the gradient information and confidence are not available. In 2018,
Chen et al. introduced the Boundary Attack, where it starts with an adversarial example,
and then optimize it back into the original image as much as possible [3]. This attack is
particularly powerful as it can be executed in the physical world, where the attacker can
only observe the final decision of the model. All these black-box attacks are particularly

3

concerning in the context of CAVs, as they have much more realistic impact on the safety
of the vehicle and its occupants.

1.3 Thesis Structure

This thesis is divided in to two parts. Chapter 3 focuses on the efficacy of adversarial
attacks on state-of-the-art object detection systems in CAVs in simulated environments.
Chapter 4 devlves into the vulnerability of DRL-based decision-making control algorithms
in CAVs.

In the realm of image processing and simulation, chapter 3 researches the application of
adversarial examples targeting object detection algorithms such as YOLOv5. The research
proposes a methodology for generating adversarial attacks tailored to current object detec-
tion systems, considering the complex environments encountered by autonomous vehicles.
The research employs the Carla simulator for validation of perception modules in CAVs,
simulating a wide range of driving conditions, including different weather conditions, light-
ing variations, and camera movements. A key aspect of this methodology is the testing
of various configurations for generating and applying adversarial patches within the Carla
environment. This approach ensures that the adversarial examples are effective and ro-
bust across different scenarios, enhancing the resilience of CAV perception systems against
adversarial threats [12, 53, 33].

In the realm of control, chapter 4 concentrates on the susceptibility of highway lane-
changing algorithms, a fundamental component of AV systems, to black-box adversarial
attacks. These attacks are particularly concerning as they do not require explicit knowledge
of the system’s inner workings, such as gradient information, to be effective. The investi-
gation includes widely implemented DRL policies like Deep Q-Network (DQN) and Deep
Deterministic Policy Gradient (DDPG), employing zeroth-order optimization methods like
ZO-SignSGD for executing these attacks [36, 30, 31]. The experiments demonstrate the
potential of these methods to compromise decision-making processes in AVs, thereby un-
derscoring a critical security gap in current systems. Furthermore, the study explores the
development of adversarial training techniques as a defensive strategy. Adversarial training,
in the context of DRL, presents an opportunity to enhance the robustness of AV systems
against such attacks. This aspect of the research contributes to a deeper understanding
of the dynamics between adversarial attacks and defenses, emphasizing the importance of
incorporating security measures in the design and deployment of these technologies.

In conclusion, this thesis explores the vulnerabilities of CAVs to adversarial attacks in
the context of both control and perception. It not only highlights the existing gaps in

4

security but also proposes methods to identified and mitigate these risks in a simulated
environment. By exploring and addressing these challenges, this thesis hopes to contribute
to the development of safer and more reliable autonomous driving technologies, ensuring
their secure integration into transportation systems.

5

Chapter 2

Background and Related Works

2.1 Adversarial Examples in Machine Learning

In 2014, Christian Szegedy and his team’s groundbreaking paper, ”Intriguing properties of
neural networks,” unveiled two key findings that have had a profound impact on the field of
deep learning [52]. Firstly, the paper demonstrated that neural networks are susceptible to
adversarial examples—inputs that are almost indistinguishable from natural data but are
crafted to cause the network to make errors. These act of crafting such examples are later
called adversarial attacks. These adversarial inputs exploit the model’s learned features
in such a way that even a tiny, carefully constructed perturbation can lead to incorrect
outputs with high confidence. Szegedy and his colleagues employed a box-constrained L-
BFGS method to generate these adversarial examples, highlighting the ease with which
they could be created. The implications of this finding are significant, particularly for the
field of computer vision and related applications like autonomous driving, where ensuring
the reliability and security of neural network decisions is paramount. The paper not only
opened up a new avenue of research into adversarial machine learning but also raised
important questions about the fundamental nature of deep learning models.

Building upon Szegedy’s work, In 2015,The paper ”Explaining and Harnessing Ad-
versarial Examples” by Ian Goodfellow et al. is a seminal work that delves futher into
the adversarial examples in neural networks [18]. This research provides a more intu-
itive explanation for the existence of adversarial examples, attributing them primarily to
the linear behavior in high-dimensional spaces of deep neural networks, rather than the
non-linearities or overfitting, as previously thought.

6

To further demonstrate the ease of crafting such example, Goodfellow and his co-authors
introduce the concept of the Fast Gradient Sign Method (FGSM), a simple yet effective
technique for generating adversarial examples. This method involves taking the gradient
of the loss with respect to the input data, then adjusting the input data by a small step in
the direction of the gradient’s sign. This approach is grounded in the paper’s hypothesis
that the linear nature of models in high-dimensional spaces makes them vulnerable to such
perturbations.

A crucial insight from the paper is that adversarial examples can be generated even
with models that have high precision on their training and test data, indicating that
these perturbations are a fundamental characteristic of the models rather than a result
of overfitting. The paper also explores the intriguing property that adversarial examples
generated for one model are often effective on other models, even when they have different
architectures or were trained on different subsets of the data, hinting at a kind of universal
vulnerability among neural networks.

Furthermore, Goodfellow et al. propose that adversarial training, where models are
trained on a mixture of adversarial and clean examples, can serve as a regularization
method to improve the robustness of neural networks. This suggestion has significant
implications for enhancing the security and reliability of machine learning systems across
various applications, including those in critical areas like autonomous vehicles.

Data: x - Input image, y - True label for x, ϵ - Magnitude of the perturbation
Result: xadv - Adversarial image

Procedure FGSM(x)
begin

Initialize the model to be attacked;
Compute the loss: L = Loss(model(x), y);

Calculate the gradients of the loss w.r.t. the input image: ∇xL = ∂L
∂x
;

Generate the perturbation: perturbation = ϵ · sign(∇xL);
Create the adversarial example: xadv = x+ perturbation;
Clip xadv to ensure it remains a valid image:
xadv = clip(xadv,min value,max value);
return xadv

end
Algorithm 1: Fast Gradient Sign Method (FGSM)

The 2018 paper ”Towards Deep Learning Models Resistant to Adversarial Attacks” by
Aleksander Madry et al. represents an ongoing effort to enhance the robustness of neural
networks against adversarial attacks, building upon the foundational work by Szegedy et

7

Figure 2.1: Graphical Interpretation of FGSM.

al. in 2014 and Goodfellow et al. in 2015 [35]. Drawing from the earlier discovery by
Szegedy et al. that neural networks are prone to errors induced by nearly imperceptible
perturbations, Madry and his team advance the understanding of adversarial examples by
framing the problem within a robust optimization context.

Central to Madry et al.’s contribution is the formulation of a min-max optimization
problem, which seeks to minimize the worst-case loss over all possible adversarial pertur-
bations within a specified bound. This formulation captures the adversarial setting more
effectively by directly incorporating the adversarial objective into the training process,
thereby leading to models that inherently account for potential adversarial attacks.

The paper also emphasizes the use of Projected Gradient Descent (PGD) as a pow-
erful tool for generating adversarial examples within this robust optimization framework.
PGD represents an evolution of the adversarial example generation techniques previously
introduced, offering a more systematic and iterative approach to exploring the space of po-
tential adversarial perturbations. By integrating adversarial training—training on a mix
of adversarial and clean examples—into their robust optimization framework, the authors
demonstrate significant improvements in model resilience against adversarial attacks.

8

Data: x - Input image, y - True label for x, ϵ - Magnitude of the perturbation, α -
Step size, N - Number of iterations

Result: xadv - Adversarial image

Procedure PGD(x)
begin

x
(0)
adv = x;

for i = 0 to N − 1 do

Compute the loss: L = Loss(model(x
(i)
adv), y);

Calculate the gradients: ∇xadv
L = ∂L

∂x
(i)
adv

;

Generate the perturbation: ∆x = α · sign(∇xadv
L);

Create the adversarial example: x
(i+1)
adv = x

(i)
adv +∆x;

x
(i+1)
adv = clip(x

(i+1)
adv , x− ϵ, x+ ϵ);

x
(i+1)
adv = clip(x

(i+1)
adv ,min value,max value);

end

return x
(N)
adv

end
Algorithm 2: Projected Gradient Descent (PGD)

Figure 2.2: Graphical Interpretation of PGD.

2.2 Adversarial Attacks in Physical World

The initial discovery of adversarial examples found that the imperceptible perturbation
often constructed using the projected gradient method (PGD) or the fast gradient sign
method (FGSM) was able to fool image classification without fail [52][18]. However, such

9

attacks were found to be useless in the real world due to changes in camera angles and dis-
tances [34]. To further investigate the robustness of deep learning models against physical-
world attacks, Ivan Evtimov and his team employed a sophisticated method in creating
adversarial examples that could mislead a model when placed in the real world, particu-
larly focusing on scenarios applicable to autonomous vehicles, such as manipulating traffic
sign recognition systems [13].

The core of their methodology involved designing and printing perturbations that could
be applied to real-world objects (like stop signs) in the form of stickers or overlays. These
perturbations were crafted using an iterative optimization process that aimed to max-
imize the model’s misclassification rate while ensuring that the modifications remained
inconspicuous to human observers. This process was guided by an objective function that
considered not only the model’s confidence in incorrect classifications but also the physical
realizability of the perturbations under different conditions.

To ensure the effectiveness of these adversarial examples under various environmental
conditions, Evtimov et al. tested their approach in diverse settings, including different an-
gles, distances, and lighting conditions. This comprehensive testing was crucial for demon-
strating that the adversarial examples could consistently fool the deep learning models
in real-world scenarios, not just in carefully controlled laboratory conditions. Thus, the
adversarial example officially enters the physical environment, posing a threat to CAVs.

To create an even more robust attack, Athalye and his collaborators introduced an op-
timization technique known as Expectation Over Transformation (EOT), which is central
to their methodology [1]. EOT allows for the generation of adversarial examples that are
robust to a predefined set of transformations, thereby ensuring their effectiveness in a real-
world context where input data to machine learning models often undergo various changes.
The adversarial examples generated using EOT are designed to mislead the models not
just in a fixed state but across a range of conditions, making the attacks more practical
and challenging to defend against. This approach contrasts with traditional methods that
typically focus on static adversarial examples, which might lose their adversarial proper-
ties when even slight alterations are applied. By considering the transformations during
the adversarial example generation process, Athalye’s method effectively accounts for the
dynamic nature of real-world inputs.

This became the fundamental idea behind most future adversarial patches. Most no-
tably, the ShapeShifter attack on Faster R-CNN proposed by Shang-Tse Chen et al [10].
Compare to image classification deep learning models, Faster R-CNN is particularly dif-
ficult as it involves multiple stages, including region proposal, feature extraction, and
classification [49]. Each stage must be successfully navigated by the adversarial attack,

10

making it more complex than attacking a straightforward classification network. Due to
the nature of region proposals and the subsequent refinement processes, R-CNN models are
inherently robust to some variations in object appearance and position. An effective attack
must therefore generate perturbations that can survive this robustness. At the same time,
since Faster R-CNN focuses on localized regions within an image, any adversarial attack
must be carefully crafted to impact the specific regions used for object detection, rather
than the entire image. To tackle this problem, Chen’s methodology incorporates the EOT
framework, which allows it to account for various physical transformations (like changes
in angle, distance, and lighting) that an image might undergo before being processed by
the detector, ensuring the adversarial perturbations are effective even under different real-
world conditions. Compare to previous deep learning attacks, instead of perturbing the
entire image or object, Chen’s approach often uses an adversarial patch that can be placed
on the object. Making the attack easily realizable in the physical world.

Another popular object detection algorithm YOLO can also be attacked, as seen by
the patches made by Simen Thys et al. to evade human detection [54] In this work, Thys
and his colleagues attacked YOLOv2, also known as YOLO9000, which is an improved
version of the original YOLO (You Only Look Once) object detection system, designed to
be faster and more accurate [47, 48].

YOLO uses a single convolutional neural network (CNN) to predict multiple bounding
boxes and class probabilities for those boxes simultaneously[47]. The image is firstly divided
into a grid, and each grid cell is responsible for predicting bounding boxes and probabilities
for objects whose center falls within the cell. Each bounding box prediction includes
coordinates, size, and a confidence score, along with class probabilities. For each grid
cell, YOLO predicts multiple bounding boxes and class probabilities. The confidence score
reflects the accuracy of the bounding box and whether the box contains a specific class of
object. Compare to the original YOLO, YOLOv2 incorporates batch normalization in all
convolutional layers, which helps with model convergence and reduces the need for other
forms of regularization [48]. It also introduces anchor boxes (priors) to predict bounding
boxes, which helps the model learn to predict more accurate box sizes and aspect ratios,
compared to the grid-based approach in the original YOLO.

Thys and his team developed a patch that contains specially designed patterns that
disrupt the YOLOv2 detection algorithm [54]. When the patch is within the field of view
of the camera, the patterns interfere with the model’s ability to correctly interpret the
presence of a person. The adversarial patterns are optimized to exploit the weaknesses in
how YOLOv2 processes visual information. Since YOLOv2 makes its predictions based on
the entire image in one pass, an effectively designed adversarial patch can create significant
confusion for the model, leading to detection failures. By utilizing EOT, The patches are

11

designed to be effective in real-world conditions, meaning they can still fool the YOLOv2
model under different angles, distances, and lighting conditions. Recent developments
include making more natural patches and applications in fields like evading drone camera
object detections [20] [58].

2.3 Adversarial Attacks in Reinforcement Learning

Reinforcement Learning (RL) is a machine learning algorithm where an agent learns to
interact with an environment to maximize the reward. Given a state, the agent produces
an action, and based on this action, the environment provides a corresponding reward.
The agent then updates its policy based on the reward. The agent is trained by interacting
with the environment for several episodes. A classic example of RL is Q-learning invented
in 1989 [56]. Q-learning is a model-free reinforcement learning algorithm that seeks to
learn the quality of actions, denoting how good an action is in a given state, without
requiring a model of the environment. It operates on the principle of a Markov Decision
Process (MDP), which provides a mathematical framework for modeling decision-making
situations where outcomes are partly random and partly under the control of a decision-
maker. An MDP is characterized by a set of states, a set of available actions in each state,
transition probabilities that define the likelihood of moving from one state to another after
taking an action, and rewards that quantify the immediate gain of taking an action in
a state. In Q-learning, the agent uses the Q-function to estimate the expected utility of
taking a given action in a given state and following a certain policy thereafter. The Q-
function is iteratively updated using the Bellman equation, written as the equation ??,
which incorporates the immediate reward and the discounted future rewards. Over time,
this process converges to the optimal Q-function, which prescribes the best action to take
in each state to maximize the cumulative reward.

Q(s, a) = r(s, a) + γmax
a′

Q(s′, a′) (2.1)

where:

• Q(s, a) is the value of taking action a in state s

• r(s, a) is the immediate reward received after taking action a in state s.

• γ is the discount factor, a value between 0 and 1 that represents the difference in
importance between future rewards and present rewards. A value close to 0 makes

12

the agent short-sighted by only considering immediate rewards, while a value close
to 1 makes it more farsighted by considering future rewards more strongly.

• s′ is the new state after action a is taken.

• maxa′ Q(s′, a′) denotes the maximum expected future reward obtainable from the
new state s′

Following the booming development of deep learning, Deep Reinforcement Learning,
which is a combination of classic reinforment learning and deep learning architectures, be-
gan its development in the aim of creating a better control algorithm that is capable of
dealing with more complex environments. A major breakthrough come from Volodymyr
Mnih et al., where Mnih et al. introduced the first successful integration of deep neural
networks with reinforcement learning, leading to the development of the Deep Q-Network
(DQN) algorithm [36]. This approach allowed computers to learn optimal strategies di-
rectly from high-dimensional sensory inputs through end-to-end reinforcement learning,
which was a significant breakthrough at the time.

The DQN algorithm, as presented in the paper, was applied to playing Atari 2600
video games, demonstrating that a single neural network architecture, combined with RL,
could learn successful policies directly from raw pixel values to control the game. The
key innovations introduced in the paper include the use of a deep convolutional neural
network to approximate the Q-function, the employment of experience replay to break the
correlation between consecutive samples, and the utilization of a separate target network
to stabilize the learning process.

This work laid the foundation for numerous advancements in deep reinforcement learn-
ing, influencing a wide range of applications beyond gaming, from robotics to natural
language processing. It showcased the potential of deep learning models to tackle complex
control tasks by learning directly from high-dimensional, unstructured data.

On the other hand, DDPG, an actor-critic algorithm, effectively manages continuous
action spaces [30]. DDPG adapts the foundational concepts of Q-learning and the deter-
ministic policy gradient to work with deep function approximators, allowing it to handle
the high-dimensional, continuous action spaces inherent in many real-world problems such
as robotics, autonomous vehicles, and energy management. The paper highlights the use
of a replay buffer to store and reuse past experiences, mitigating the issues of data correla-
tion and non-stationary distributions, which are common in online learning environments.
Furthermore, it introduces the concept of target networks to stabilize the training of deep
function approximators, a technique that has become a standard in deep reinforcement

13

learning practices. Lillicrap’s work on DDPG is pivotal as it demonstrates the feasibility
of using deep learning approaches for complex control tasks that require precise, continuous
actions, rather than the discrete decisions showcased in Mnih’s Atari game environments.
This has significantly broadened the applicability of deep reinforcement learning, opening
new avenues for research and development in areas that demand nuanced control strategies.

Just like the filed of deep learning, th field of reinforcement learning is also at risk
of adversarial attack. In 2017, Huang et al. showed that the DQN agent is vulnerable
to the same attack applied to neural networks, such as the FGSM attack [21]. Similar
defenses, such as adversarial training, are also shown to be effective in the field of rein-
forcement learning [43]. Lately, more research has been done to increase the robustness of
reinforcement learning agents in the context of AV [19, 5].

2.4 Black-box Adversarial Attacks

The exploration of adversarial attacks has, for the most part, been rooted in first-order
optimization methods. These methods, while powerful, often necessitate the availability
of gradient information, making them impractical for real-world scenarios where such in-
formation may not always be accessible. The quest for gradient-free alternatives predates
the recent strides in deep learning and adversarial machine learning. Traditional methods
such as COBYLA and various Bayesian optimization techniques have been investigated
extensively. However, these methods have demonstrated scalability limitations in dealing
with modern, complex models that exhibit an ever-increasing dimensionality [44, 50].

Zeroth-order (ZO) optimization methods have emerged as a promising alternative, of-
fering efficiency in computational resources while maintaining a competitive convergence
rate [32]. A surge of interest in recent years has led to the development of several ZO
optimization techniques, including but not limited to Zeroth Order Stochastic Gradient
Descent (ZOSGD), ZO-SignSGD, and ZO-ADMM [32]. The appeal of these techniques
lies in their ability to operate without explicit gradient information, thus bridging the gap
between the theoretical world of optimization and the pragmatic constraints of real-world
applications.

In this thesis, we focus mainly on the ZO-SignSGD method. Unlike other methods
that use exact estimated gradient values, ZO-SignSGD utilizes the sign of the gradient to
update the model parameters. This feature provides both computational advantages and
practical feasibility, allowing the perturbation to converge in a relatively small amount of
iterations [31]. We venture into an underexplored area by employing ZO-SignSGD as a

14

tool to study adversarial attacks on DRL algorithms in AVs, potentially expanding the
understanding and application of black-box attacks in real-world scenarios.

2.5 Gaps in Existing Research

As discussed in the sections above, since the discovery of adversarial machine learning,
many researches have been conducted to uncover the security concerns and vulnerability
in a wide selection of machine learning algorithms such as image classification, object
detection and deep reinforcement learning. However, as the field of adversarial machine
learning is rather young, the focus of researches mostly are mostly in the field of computer
science to understand the implications and underlying mechanisms for adversarial machine
learning. Though autonomous vehicles has been increasingly utilizing deep learning based
methods, there is not as much researches in the context of autonomous vehicles.

Many autonomous vehicles utilize object detection as a part of their vision system to
fast and efficiently differentiates different objects on the roads. There have been many
researches about the physical robust adversarial patches as mentioned in the previous
sections, but they are hard to be tested for context of autonomous vehicles, as it is generally
unsafe and difficult to be testing such attack on a real vehicles. At the same time, there have
not been much researches published for generating, applying and testing the adversarial
patch attacks for the purpose of autonomous vehicle research in a simulated environment.
Therefore, it would be logical to create a tool to generate, apply and test the adversarial
patches for autonomous vehicles.

For deep reinforcement learning, despite the initial interest in adversarial attacks on
DRL, the amount of researches on this topic is waning, especially in the context of au-
tonomous vehicle. Though many researchers have been actively studying the application of
DRL in autonomous vehicle, not many papers are about the vulnerabilities in this scenario.
Adversarial attack, being a relatively new form of vulnerability, has almost no paper in
the realm of autonomous vehicle. As a result, it is essential to perform more research on
this topic for the purpose of creating a safer environment for autonomous vehicles.

15

Chapter 3

White-box Adversarial Patch
Generation and Testing in CARLA

3.1 Problem

Although adversarial examples are proven to pose a serious threat to CAVs in the real
world, rigorous testing of the perception module may not be practical due to the danger it
imposes and the amount of effort needed to craft and apply the example in the real world
under all the different environments. Therefore, very recently, efforts have been made
to use simulators such as the CARLA simulator to conduct adversarial machine learning
research [12] [53] [33]. These efforts show a promising future for the physical adversarial
attack to be tested and validated in the simulated environment to allow a faster and more
comprehensive validation of the perception modules in autonomous vehicles.

Through the effort of Xiruo Liu et al. from Intel, a data collection platform was
released for CARLA in 2022, but no research has yet been conducted with the platform
[33]. At the same time, a wide collection of object detection adversarial attacks was
substantially outdated and failed to work against the newer version of the algorithms as
their architecture changed significantly. The attacks were also often tested in a controlled
environment with limited camera movement, but real-life vehicles do not have such a
limitation, thus needing more validation, such as different weather, lighting conditions, and
camera movement. Therefore, this thesis first proposes an updated method to generate
adversarial attacks against the state-of-the-art object detection algorithm, YOLOv5 [23].
Then, implement such attack in a new workflow to test and validate the adversarial attack
with the consideration of real-life vehicle environment in CARLA.

16

3.2 Tools and Software

Over the years, many software have been developed by various companies or groups to help
accelerate the research progress of the autonomous vehicles. As the purpose of this research
is to validate the efficacy of adversarial attacks in a simulated environment, a photo-realistic
3D simulator is required. The CARLA simulator is the most popular simulator that serves
as an open source platform designed to facilitate research and development in autonomous
driving technologies [12]. It provides a realistic urban environment, complete with a va-
riety of vehicles, pedestrians, and various weather conditions, allowing the comprehensive
testing of driving models under different scenarios. With its extensible and customizable
nature, CARLA has become a vital tool for researchers in the field of autonomous vehicles,
enabling the rigorous evaluation of various machine learning algorithms, including those
for perception, control, and adversarial resilience.

3.2.1 CARLA

CARLA, as the most popular photo-realistic open source simulation software in the space
autonomous vehicle research, provides a whole suite of functionalities and API to help
engineers and scientists across the world to perform CAV researches without the need to
write a simulator from ground up. Built on the Unreal Engine for realistic simulations
and adhering to the OpenDRIVE standard (version 1.4) for road and urban environment
definitions, the simulator caters to a broad spectrum of autonomous driving applications,
such as policy learning and perception algorithm training [12].

Being open-source, CARLA provides great documentation and tutorials. It also pro-
vides good interface to other popular programs in the robotics and autonomous vehicle
field, such as Robot Operating System (ROS), MathWorks, SUMO, ANSYS etc. ROS is
the most commonly used open-source software framework for robotics development, which
includes autonomous vehicle development. The CARLA bridge allows a list of items to be
easily communicated to ROS and back, this includes:

• Delivers LIDAR and Semantic LIDAR sensor information, along with data from
Cameras (including depth, segmentation, rgb, and dvs), GNSS, Radar, and IMU.

• Supplies data on objects including their transformations, traffic light conditions,
visual markers, collisions, and lane intrusions.

• Enables the management of Autonomous Driving (AD) agents via steering adjust-
ments, acceleration, and braking controls.

17

Figure 3.1: User Interface of the Unreal Engine of CARLA

• Allows manipulation of CARLA simulation settings such as synchronous mode oper-
ation, simulation playback and pause, and customization of simulation parameters.

Because this research is only a preliminar investigation on the adversarial attacks
against DRL in CAV, this component is not used in this research. But having this func-
tionality would eventually allows more sophisticated control algorithm to be developed,
implemented and tested in CARLA. Making it easier to port to real life autonomous vehi-
cle control once the simulation is done in CARLA. For future work on DRL and adversarial
attack, the ROS bridge in CARLA would make accelerate the development time of the re-
search by eliminating the work needed to work out the communication tool between these
two software.

As seen in Figure 3.1, the unreal engine portion of CARLA allows more user control
of the environment. The 3D environment produced by unreal engine is rather realistic for

18

a simulator, allows this research to perform the adversarial patch attack. As with normal
unreal engine, the user can import 3D model assets, applying texture and adding material
with ease. The modifications done by CARLA to the unreal engine also allows the custom
assets to be packaged and used by other CARLA clients by importing the package for a
easier time on the transferring of assets.

The most important feature of CARLA is the ability of controlling it through its API.
Using the python API, CARLA is capable of doing everything related to autonomous
research, such as spawning a car and drive it. CARLA itself consists of server and client.
The server is the unreal engine simulation and the client is the code that user runs in
order to gather information or make changes to the simulation. In the CARLA simulation,
actors are entities that engage in activities and can influence other actors. This category
encompasses vehicles, pedestrians, as well as sensors, traffic signs, traffic lights, and the
spectator.

Vehicle actor is an actor that contains the most amount of parameters and physics,
which is expected from a autonomous vehicle simulator. The API can directly control
the vehicle by sending commands of throttle, steering or braking. It can also change the
gearing of the vehicle or the wheel physics to simulate different tires and road conditions.
The vehicle can also be set in auto driving mode control by the CARLA traffic manager
which is crucial for the precise and effective training and evaluation of autonomous driving
systems. The traffic manager offers various alternatives for mimicking traffic and particular
traffic situations.

Pedestrian actor is similar to the vehicle actor in the sense that their can be pro-
grammable. They can have a certain direction and speed. It is also possible to use a
built-in movement controller to control their movement by setting a goal and speed.

Sensors actor is another important aspect of CARLA. It allows the simulation of the
sensors that are used in real-life autonomous vehicles. The sensors it can spawn are the
following, but not limited to :

• Depth: Shows the depth of the objects in the environment in a grey-scale image

• RGB: Like real-life camera, shows a picture of environment

• Optical Flow: Shows the movement of the pixel in the camera.

• Semantic segmentation: Shows the ground truth tag of the objects in the camera
view

19

• Instance segmentation: Shows the ground truth tag and the object ID of the objects
in the camera view

• DVS: Dynamic Vision Sensor (DVS), operates in a fundamentally different manner
from traditional cameras. Rather than capturing images at regular intervals, it asyn-
chronously detects changes in light intensity, producing a continuous flow of events
that represent changes in pixel brightness.

• Lidar: A rotating LIDAR sensor produces a 4D point cloud, where each point in
the cloud includes coordinates and intensity information to accurately represent the
environment.

• Semantic LIDAR: A rotating LIDAR sensor creates a 3D point cloud, enriched with
additional details on instance and semantic segmentation for each point, to compre-
hensively model the environment.

The API itself also allows changes to the environment. As all objects in the environ-
ments are tagged, they can searched and toggled on or off during the simulation. The map
itself can also be changed, since CARLA has multiple built-in maps, from a busy urban
city center to a rural town with only small houses and few intersections. A major function
utilized in this research is the ability to change the texture of a building through its API.
By carefully inserting a object and change mutiple parameters, it is possible to change its
texture on the fly inside the simulator without having to manually change it in the Unreal
Engine interface.

3.2.2 Open Source Data Collection Platform

Due to the cost and danger of testing physical adversarial attacks in real life on autonomous
vehicles, many attempts have been made to use CARLA as an alternative platform to
conduct research on these attacks. Tong Wu et al. collected data in CARLA and performed
a black-box searching algorithm to generate adversarial texture on vehicles that evade
object detection [57]. Michael Threet et al. created a new way of inserting adversarial
patches into CARLA, but it is hard to replicate without knowing the inner works of the
rendering engine [53]. Xiruo Liu et al. provided an open source platform for data collection
for the purpose of benign adversarial machine learning research in CARLA [33].

20

3.3 Method

The thesis first generates a patch based on the idea of expectation over transformation and
backpropagates using the gradient of the YOLOv5 network. Then the patch is applied to
a custom stop sign in CARLA to allow the change of texture on the fly with CARLA API.
Finally, a predetermined scenario is generated and recorded using the platform created by
Xiruo Liu et al. [33]

3.3.1 Patch Generation

To generate the patch, the idea behind other robust physical patches is ”expectation over
transformation” (EOT) as seen in equation 3.1 presented in its original paper [1].

δ = Et∼T [d(f(t(x
′)), t(x))] (3.1)

This equation calculates expectation for the distance between the transformed adver-
sarial example output, f(t(x′)), and the transformed original output t(x) over a series of
transformation. It directly measures the robustness of the patch through this calculation,
constrains the optimization of the patched image and the original image to be similar to
the classifier while undergoing a series of transformation, making the adversarial patch
robust against transformations.

Though the original concept was used on a classifier, the same concept is used in
other adversarial patch generation for object detection [10] [54]. For this particular patch
generation, the patch goes through a wide range of transformations that to ensure its
robustness in the real world. The transformations include random rotation, random scaling,
random translation, random brightness, random contrast, random saturation, and random
hue. The patch is also constrained to be within the range of 0 and 1 to ensure the patch
is valid.

To prevent the stop sign from getting detected, the loss function focus on reduce the final
score of the grid calculated by YOLOv5, where it is the multiplication of the objectiveness
score and the class category confidence score. To further reduce the chance of detection,
the loss function also includes a total variation(TV) loss to ensure the patch is smooth and
not noisy. A noisy image is not only harder to print or displace in real life, the noisy details
are also often lost when viewed by cameras at distance. The final objective function that
includes the losses is shown in equation 3.2.

21

x′ = argmin
x′

Et∼T

[
1

N

N∑
i=1

MaxFSi(t(x
′)) + λTV(t(x′))

]
(3.2)

Where:

• MaxFSi(t(x
′)) is the maximum final score for the ith example in the batch after

transformation t.

• 1
N

∑N
i=1 averages the maximum final scores across the batch of N examples.

• TV(t(x′)) is the total variation(TV) loss for the transformed adversarial patch.

• λ is a hyperparameter to balance the two loss terms.

• Et∼T is the expectation over the transformations t sampled from T .

Using this objective function, the patch is generated through a number of iterations us-
ing the Adam optimizer. The patch is initialized as a random noise image and is optimized
to minimize the objective function, as seen in algorithm 3.

3.3.2 CARLA

CARLA Simulator is an open source simulator for autonomous driving research [12]. It
provides a realistic urban environment, complete with a variety of vehicles, pedestrians,
and various weather conditions, allowing the comprehensive testing of driving models un-
der different scenarios. With its extensible and customizable nature, CARLA has become
a vital tool for researchers in the field of autonomous vehicles, enabling the rigorous evalu-
ation of various machine learning algorithms, including those for perception, control, and
recently adversarial resilience.

Recently, Xiruo Liu et al. created a data collection platform for adversarial machine
learning research in CARLA [33]. The data collection platform allows the user to create
a scenario with a variety of parameters, including the number of vehicles, pedestrians,
weather, and lighting conditions. This platform also allows the user to insert a custom
object into the environment, which can be used to test the adversarial patch. The platform
then records the scenario and the data collected by the sensors in CARLA, including the
RGB image, depth image, and semantic segmentation image. This platform is used to test
the adversarial patch generated in the previous section.

22

Data: model, parameters including patch shape, learning rate, etc.
Result: Optimized adversarial patch
Initialization
begin

Initialize patch with random values Prepare optimization tools: optimizer,
scheduler, etc.

end
Procedure GeneratePatch(x)
begin

for each step in max iterations do
Create a new batch of transformations using the current patch
// Compute loss

Evaluate the model on the batch to compute objectness and confidence
final score = objectness*confidence
Calculate the total variation loss losses = final score + variation loss
// Update the patch

Backpropagate the combined loss to get patch gradients
Update the patch using the optimizer
// Post-processing

Clamp patch values to maintain valid pixel range
Adjust learning rate using the scheduler

end
Save the final optimized patch

end
Algorithm 3: Adversarial Patch Generation Loop

23

To insert the patch into CARLA, a custom model is imported into CARLA as a static
object. The model is a stop sign with a custom texture that is generated using the adver-
sarial patch. The model is then inserted into the environment using the CARLA API. The
model is then placed in front of the ego vehicle to ensure the ego vehicle will detect the stop
sign. The ego vehicle is then controlled by the data collection platform to drive towards
the stop sign. The platform then records the data collected by the sensors in CARLA,
including the RGB images. The images are then used to evaluate the effectiveness of the
adversarial patch by running the images through the YOLOv5 object detector.

3.4 Results

The pictures were first generated using the adversarial patch generation algorithm. As seen
in figure 3.2, the stop sign was firstly applied with the patch then transformed randomly
to ensure its robustness. An example of the losses over the iterations can be seen in figure
3.3. It is clear to see that both total variation loss and max score for the class stop sign are
decreasing over the iterations. The final patch applied on the stop sign can be seen in figure
3.4. This texture is then applied into a custom model of a stop sign that allows texture
change through the CARLA API. The image is then recorded using the data collection
platform created by Xiruo Liu et al. [33]. In CARLA, the simulator is ran through a
predetermined route and environment configuration such as weather, lighting, and camera
movement. The simulator is ran for 10 frames, then the images run through the YOLOv5
object detector to evaluate the effectiveness of the patch. A sample of such detection can
be seen in figure 3.7.

To ensure the robustness of the patch, different transformations have been applied
to the patched texture. This includes random rotation, random scaling, random trans-
lation, random brightness, random contrast, random saturation, and random hue. The
transformations were turned on and off to investigate their effect on the patch generation.
Other parameters such as the total variation loss and patch size are also investigated. The
patched image was then gone through the YOLOv5 detector to get a preliminary result
on the effectiveness of the patch before applied into CARLA. The results of the different
configurations can be seen in table 3.1. All the configurations and their static image de-
tection can be seen in figure 3.5 and figure 3.6. Random noise patch is also provided as
a reference. As seen in figure 3.5h, a random noise patch does not reduce or evade any
detection. From figure 3.5, it is easy to see that with no transformations, the detector can
still not detect the stop sign, the patch itself also does not resemble any recognizable shapes
as the optimizer mostly focus on lowering the total variation loss as soon as the detection

24

Figure 3.2: Examples of transformation used for adversarial patch generation

on this single image is evaded. It is also worth noting that though the transformations
and the starting noise of the patch are different, this untargeted attack is able to quite
consistently generate a patch that fools the detector to the closest item in the COCO data
set, which is a cake. With the total variation loss weight change seen in figure 3.6a and
figure 3.6b, we can also see a big drop in noisy colors seen in the patch generated while
still maintain an evasion of the detector. A smaller patch size also does not perform as
well as the original patch size, as seen in figure 3.6c, but figure 3.6d performs well in this
static image detection task.

25

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
TV Loss
Maximum Score

Figure 3.3: Losses over iterations for one single
patch generation

Figure 3.4: Final adversarial patch
generated

After patches are generated, they are imported into CARLA through the use the data
collection platform and tested in a sunny and rainy environment as seen in figure 3.7. The
results of the different configurations can be seen in table 3.2.The confidence are recorded
and averaged out over the 10 frames that are recorded by the data collection platform in
CARLA. If the stop sign is not detected by YOLOv5, the confidence recorded is 0.

As seen from the table 3.1, the more transformation we add the patch, the higher the
final loss is. As seen in equation 3.2, the final loss is the sum of the maximum final score and
the total variation loss. The maximum final score is the multiplication of the objectiveness
score and the stop sign class category confidence score. Though, it may seem that the
higher the loss, the worse performing the patch is; when there is no transformation at all,
it is way easier to reach a lower loss, but the patch is not robust at all. The patch is only
robust when there are transformations applied to it. The more transformations applied,
the more robust the patch is, as it can be seen in table 3.2. When all transformations are
applied, the patch is more robust in both sunny and rainy weathers compare to patches
generated with less transformations. For both weathers, an optimized patch got an average
confidence reduction of roughly 50% and 30% than a random noise patch. Furthermore,
comparing to a stop sign with no patch, the patch significantly reduce the confidence of the
stop sign detection by 70% and 38% in a sunny and rainy weather respectively. The patch
does not work as well in the rainy weather comparing to sunny weather, due to the worse
lighting condition, amount of fog and other artifacts presented in the rainy weather that

26

Table 3.1: Different configurations on the patch generation and its effectiveness on a static
image outside of CARLA

Max Score Total Variation loss Total Loss Top Confidence Label

All Transformations 0.1409 0.0152 0.1561 0.827 Cake
No Color Jitter 0.0593 0.0164 0.0756 0.634 Cake
No Color Jitter, Noise 0.0586 0.0184 0.077 0.825 Cake
No Color Jitter, Noise, Perspective 0.1055 0.0174 0.1229 0.813 Cake
No Color Jitter, Noise, Perspective, Rotation 0.0503 0.0185 0.0688 0.509 Snowboard
No Color Jitter,Noise, Perspective, Rotation, Resise 0.0006 0.0038 0.0045 0.664 Cell phone
No Transformations At All 0.0001 0.0064 0.0065 n/a

3 x Total Variation Loss Weight 0.1541 0.0381 0.1922 0.847 Cake
5 x Total Variation Loss Weight 0.1066 0.0474 0.154 0.678 Cake

32 x 32 Patch Size 0.7112 0.0097 0.7209 0.934 Stop Sign
64 x 64 Patch Size 0.4072 0.0187 0.4259 0.873 Cake

Random Noise n/a n/a n/a 0.92 Stop Sign

prevents the patch from being revealed completely and thus decrease the evasion power of
the patch. The patch also works better in the sunny weather due to the higher contrast
between the stop sign, the patch and the background, allowing the patch to be seen much
more easily by the YOLOv5 detector.

Total variation loss is also tuned to be more significant in the training processes to see
if it plays a role in the effectiveness of the patch. Because the total variation loss measures
the amount of variation of the colors in the patch, a bigger weight allows the patch to be
smoother, as the trainer emphasize more on the total variation of the patch. In table 3.1,
the increase weight in total variation loss, does not reflect a significant performance change
in the static image detection as both images successfully evades the detection by YOLOv5.
When imported into CARLA, due to the smoothness of the patch, the patch can be seen
at different angles and distance with much changes to its effectiveness. At three times of
the original weight, the patch performs better in both sunny and rainy weather, though
not by much. As the weight of the total variation loss increase more, the patch becomes
less effective.

The size of the patch is also investigated to see how much it affects the patch perfor-
mance. The original size of the patch is 100 x 100, then size of the patch is changed from
32 x 32 to 64 x 64 with all other parameters unchanged. As seen in table 3.1 and table 3.2,
both smaller patch sizes performed worse than the original. This is expected because less
area of the stop sign is covered up by the patch. At the same time, a smaller patch is also
harder to be seen by the detector at further distances, therefore allowing the stop sign to
be detected in more scenarios. As shown in table 3.2, when the patch is too small at 32
x 32, the detector can detect stop sign without any hurdles as if there is nothing on the

27

Table 3.2: Different configurations on the patch generation and its effectiveness inside
CARLA

avg. stop sign confidence (sunny) Median avg. stop sign confidence (rain) Median

All Transformations 0.203 0.000 0.489 0.489
No Color Jitter 0.257 0.487 0.518 0.615
No Color Jitter, Noise 0.211 0.257 0.423 0.466
No Color Jitter, Noise, Perspective 0.268 0.000 0.470 0.423
No Color Jitter, Noise, Perspective, Rotation 0.288 0.268 0.577 0.470
No Color Jitter, Noise, Perspective, Rotation, Resise 0.397 0.288 0.625 0.577
No Transformations At All 0.401 0.417 0.548 0.625

3 x Total Variation Loss Weight 0.193 0.000 0.420 0.420
5 x Total Variation Loss Weight 0.253 0.253 0.431 0.431

32 x 32 Patch Size 0.614 0.614 0.770 0.777
64 x 64 Patch Size 0.433 0.489 0.688 0.688

Random Noise 0.441 0.483 0.564 0.579
No Patch 0.657 0.658 0.791 0.791

stop sign. However, when the patch is doubled in size, the patch performs much better in
comparison.

Table 3.3: Stop sign detection confidence in different locations in CARLA

Location 1 2 3

Sun Rain Sun Rain Sun Rain

No Patch 0.657 0.791 0.696 0.699 0.613 0.615
Patch 0.203 0.489 0.585 0.542 0.572 0.557
Noise 0.441 0.564 0.610 0.666 0.594 0.598

The patch is also applied to additional locations seen in figure 3.8 compare to the first
location seen in figure 3.7. The results of the different locations can be seen in table 3.3.
The major difference in between the locations are the background and the lighting affected
by the relative location of the sun in the setup. In location 1, the sun is able to directly
shine on the stop sign, allowing the patch to be seen in its full brightness. In location 2,
the sun is on the side of the stop sign, partially lighting up the sign. While in location 3,
the sun is behind the stop and the behind completely block the sun. As a result, seen in
table 3.3, the patch performs the best in location 1, and the worst in location 3, where the
reduction of the confidence is the most significant in location 1 and the least in location
3. As the patch is already relatively dark in the sunny weather for both location 2 and 3,
the effect of the rain does not affect the patch as much as it does in location 1. It is still
worth noting that the patch is also able to perform better than a random noise patch in

28

all locations and weathers, though the difference is small in some cases, it still showcase
the relative effectiveness of the patch in different locations and weathers.

3.5 Summary

This study presented a novel approach to generating adversarial patches that effectively
evade detections by state-of-the-art object detection algorithms in CAVs, mainly focusing
on the YOLOv5 model. Through rigorous experimentation and optimization, including
varying patch sizes, transformations, and total variation loss weightings, we successfully
demonstrated the ability of these patches to reduce detection confidence significantly under
varied simulated environmental conditions. We also showcase the impact of patch size on
the confidence of the object detector under the same optimization and simulation condition.
The use of the CARLA simulator proved instrumental in providing a realistic and safe
testing environment for these adversarial attacks. The visibility and brightness of the
patch greatly affects the effectiveness of the patch on the stop sign, where it can only be
reliably tested in a simulator. Our findings highlight the ongoing need for robust testing
and validation of machine learning models used in CAVs, emphasizing the importance of
considering real-life variables such as weather and lighting. The results also underscore the
potential vulnerabilities in current CAV perception systems and pave the way for further
research into more resilient and secure machine learning applications in autonomous vehicle
technologies.

29

(a) All Transformations (b) No Transformations (c) No Color Jitter

(d) No Color Jitter, Noise
(e) No Color Jitter, Noise,
Perspective

(f) No Color Jitter, Noise,
Perspective, Rotation

(g) No Color Jitter, Noise,
Perspective, Rotation, Re-
size (h) Random Noise

Figure 3.5: Different transformation configurations on the patch generation and its effec-
tiveness on a static image outside of CARLA

30

(a) 3 x Total Variation Loss Weight (b) 5 x Total Variation Loss Weight

(c) 32 x 32 Patch Size (d) 64 x 64 Patch Size

Figure 3.6: Additional configurations on the patch generation and its effectiveness on a
static image outside of CARLA

31

(a) Sunny

(b) Rainy and Foggy

Figure 3.7: Stop sign with adversarial patch applied in CARLA

32

(a) Patch applied in location 2

(b) Patch applied in location 3

Figure 3.8: Stop sign with adversarial patch applied in different locations in CARLA

33

Chapter 4

Black-box Adversarial Attacks and
Defenses on DRL

4.1 Problem

This chapter focuses on applying, attacking, and defending a highway lane-changing deep
Q network (DQN) agent and a Deep Deterministic Policy Gradient (DDPG) agent. In this
chapter, we assume that the vehicle has been compromised without detection, allowing the
adversary to access and manipulate sensor data, thereby altering the states perceived by
the DRL agent. Given the increasing adoption of detection algorithms for common attacks,
adversarial machine-learning strategies are employed to maximize damage to DRL agents
whilst minimizing the chance of detection theoretically. These strategies introduce minimal
perturbations to maintain stealth and reduce the likelihood of detection during the attack.
It’s worth noting that this chapter does not delve into the specifics of the vehicle’s attack
surface or penetration method. To assure the performance of the unattacked agent, the
reinforcement learning algorithms are based on Stable Baselines 3, an online RL library
written in Python [45]. The training environment is based on the ’highway-env’ library to
allow faster deployment, hyperparameter tuning, and debugging, as seen in Figure 4.1 [29].

4.1.1 Environment

The environment is a lightweight highway lane-changing environment compatible with
the OpenAI gym interface [29]. The gym environment also allows it to interface with

34

Figure 4.1: An example render of the highway lane changing environment

the popular reinforcement learning training package, Stable Baselines 3, without much
additional tweaking. Environment vectorization provided with Stable Baselines 3 also
significantly expedites the training process by allowing multiprocessing of the DRL training.

The environment’s observation space tracks the vehicle’s kinematics on the highway.
That includes the position and velocity of the ego vehicle. It also records the relative
position and velocity of other vehicles on the highway. The observation space is normalized
relative to the ego vehicle. The position is normalized with the bound of [−100, 100], and
the velocity is normalized with the bound of [0, 20].

During initialization, all vehicles, including the ego vehicle, are randomly positioned
on the highway, ensuring a minimum separation between them. Vehicles, excluding the
ego vehicle, adhere to a randomly initialized Intelligent Driver Model and the Minimizing
Overall Braking Induced by Lane change (MOBIL) model [29].

For DQN, the environment’s action space is a high-level discrete action space with five
actions. The actions are defined as:

• Action 1: change lane to the left

• Action 2: idle (do nothing)

• Action 3: change lane to the right

• Action 4: accelerate

• Action 5: decelerate

Simple proportional controllers control the lower-level actions such as specific heading,
velocity, and acceleration when each action is chosen, so the reinforcement learning agent
only needs to make a high-level decision on which action to take.

35

4.1.2 Reward

The reward function rewards the agent for staying in the right lane at a faster speed while
penalizing the agent for collision. The reward function is defined as for DQN:

R(s, a) =RightLaneReward+

0.4 · v − vmin

vmax − vmin

+ collision
(4.1)

The collision reward is set to -1. So that the agent will seek to move faster while
avoiding a collision. RightLaneReward is set to 0.1 when the agent is traveling on the
right-most lane. Due to the limited action space capabilities of DQN, such reward function
is well suited for DQN.

For DDPG, the action is a continuous action space for the kinematics of the ego vehicle
with a dimension of 2. The first dimension is the acceleration of the ego vehicle, and the
second dimension is the steering angle of the ego vehicle. Both actions are normalized to
[−1, 1].

Since now the agent have the freedom of steering whenever it wants, the reward function
needs to prevent the agent from deviating too much from the middle of the lane as well
as changing the steering too rapidly. As a result, compare to the DQN reward function,
the DDPG reward adds two more terms to the reward function, lane centering reward and
abrupt action penalty. The reward function is defined as:

R(s, a) =RightLaneReward+

0.4 · v − vmin

vmax − vmin

+ collision+

laneCenteringReward+ abruptActionPenalty
(4.2)

where:

laneCenteringReward =0.01 · 1

1 + 4 ∗ (Distance from Center)2

abruptActionPenalty =0.019 ∗ abs(steering change)+

0.001 ∗ abs(accelerationchange)

(4.3)

As seen in Equation 4.3, the lane centering reward is inversely proportional to the
distance from the center of the lane. By penalizing the square of the lateral distance,

36

small deviations from the center are lightly penalized, while larger deviations result in
a significantly lower reward, thus strongly encouraging the vehicle to stay close to the
center of the lane. The abrupt action penalty is proportional to the change in steering
and acceleration. This encourages the policy to make smoother, more gradual steering
adjustments, which is desirable for comfort and safety. Overall, the reward function is
designed to encourage the agent to stay in the right lane, maintain a high speed, and avoid
collisions while penalizing the agent for deviating from the center of the lane and making
abrupt actions.

4.2 Policies

4.2.1 DQN Policy

The agent is trained with the DQN algorithm [36]. Similar to Q learning, the underlying
structure of the model is Markov Decision Process Equation 4.4.

Qnew(st, at) = Q(st, at)+

α(rt + γ ·max
a

Q(st+1, a)−

Q(st, at))

(4.4)

• Q(st, at): Q value of the current state and action

• α: learning rate

• rt: reward of the current state and action

• γ: discount factor

• s: state

• a: action

However, for deep Q learning, the Q function is approximated by a neural network. The
neural network is trained with the DQN algorithm. This algorithm uses a replay buffer
to store the experience of the agent. The replay buffer samples a batch of experiences to
train the neural network. The DQN loss function is defined as:

37

L(θ) = E(s,a,r,s′)∼U(D)·[(
r + γ ·max

a′
Q(s′, a′; θ−)−Q(s, a; θ)

)2
]

(4.5)

• θ: the parameters of the neural network

• θ−: the parameters of the target network

• D: the replay buffer

Like Q learning, the network loss is the reward plus the discounted maximum Q value
of the next state minus the current Q value. But in this case, the gradient descent method
minimizes the loss function. The network is trained with the Adam optimizer [26]. For a
more straightforward implementation, Stable Baseline 3 is used to train the model [45].

4.2.2 DDPG Policy

The agent is trained with the stable baseline library implementation of the DDPG algo-
rithm [30, 45]. In contrast to DQN, which only deals with discrete action spaces, DDPG
allows the handling of continuous action spaces, making it particularly suitable for AV,
where actions are often continuous, like acceleration and steering angle. Another main
difference is that DDPG combines the actor-critic approach with insights from Deep Q-
Networks (DQN). The actor in this setup is responsible for determining the best action
given the current state, while the critic evaluates the chosen action’s quality. As seen in
Equation 4.6, the actor updates in the direction that maximizes the Q value of the current
state and action. On the other hand, the critic is updated based on the Temporal Difference
(TD) error, which is the difference between the critic’s current estimate of the Q-value and
the improved estimate yielded by the latest action from the actor. This process, similar to
Q-learning, involves the use of a learning rate to balance the weight between the old and
new estimates:

∇θµJ ≈
∑

i ∇aQ(s, a|θQ)|s = si, a = µ(si)∇θµµ(s|θµ)|si
N

(4.6)

4.3 Zeroth Order Attack

This work uses the zeroth order optimization as an adversarial attack.

38

4.3.1 Attacker Model

The attacker model defines the attacker’s opportunity, intent, and capability to place
the work in context. The attacker has the opportunity to influence the system during
operation at the level of sensor outputs. The attacker’s short-term goal is to disrupt the
agent to the point that the agent will cause a collision on the road. The capabilities of the
attacker consist of the following: (1) the attacker can influence a sensor value up to a 10%
deviation of its actual value, (2) an attacker can influence sensor values immediately (i.e.,
from the start of the vehicle until a shutdown), continuously (i.e., no cool down periods),
and indefinitely (i.e., for as long as the attacker wants), and (3) the attacker can influence
any sensor, and all sensors at the same time (i.e., there no assumption that any single
sensor in the set provides an actual value).

4.3.2 Zeroth Order SignSGD

The ZO-SignSGD method is a gradient-free (zeroth order) optimization method that uses
the sign of the gradient to update the model [31].

The ZO-SignSGD method implemented is defined as:

Algorithm 4 shows the implementation of the ZO-SignSGD attack for lane changing.
The input variables, such as learning rate, initial value, and number of iterations, are
tweaked to ensure a fast convergence while minimizing the perturbation size. As a black box
optimization algorithm, the first step is to estimate the gradient. A gradient of a function
can be estimated by adding a small perturbation to the input data. For a high-dimension
function such as the neural network used in the DRL, the gradient must be computed by
summing all estimated gradients over perturbations of random directions. To achieve a
fast convergence of the algorithm, similar to the Fast Gradient Sign Method, only the sign
of the gradient is used. This also avoids the error introduced by the numerical value of
the estimated gradient. The perturbation is then calculated by multiplying the sign of the
gradient with the learning rate to minimize the objective function seen in Equation 4.10.
This process is repeated until it reaches the maximum number of iterations. The perturbed
observation is then used to get the action from the policy, thus, continuing into the next
step.

Using this algorithm, the specific objective for this attack is crafted with two losses
in mind. The first loss is the distance between the target action and the original action,
which can be seen in Equation 4.7. The same is true for both DQN and DDPG. “a” is the
constant that controls the weight of the loss.

39

Data: ZO-SignSGD
Input: learning rate {δk} , initial value x0, and number of iterations: T
def GradEstimate(x, µ, q, d):

for k = 1, 2, ..., q do
u = normalized(random number);

ĝk = ĝ + d(f(x+µu)−f(x))
µ

u;

end

def optimization(x):
for k=1, 2, ..., T do

ĝk = GradEstimate(xk);
xk+1 = xk − δk sign(ĝk);

end

def Main:
for i in range of timesteps do

while not done do
action = model.predict(observation);
env.step(action);
perturbed obs = optimization(observation);
observation = perturbed obs;

end

end
Algorithm 4: Implantation of ZO-SignSGD for Lane Keeping. Adversarial observation
is calculated for each step.

L1DQN = a · norm(Q(x+ δ, ytarget; θ)−
Q(x+ δ, y; θ))

(4.7)

L1DDPG =a · norm(action(x+ δ; θ)−
action(x; θ))

(4.8)

The second loss is the distortion caused by the perturbation, as seen in Equation 4.9.
This calculates the distance between the original observation and the perturbed observa-
tion.

L2 = norm((perturbed obs− original obs)2) (4.9)

40

Objective : min(L1 + L2) (4.10)

When crafting the perturbation, both losses are added together to minimize both during
the optimization. For a successful attack, both losses will converge and be minimized.
Figure 4.4 shows an example of this convergence. Since Zeroth Order SignSGD is not a
constrained optimization method, the perturbation is not guaranteed to be small. At the
same time, since it is a gradient-free stochastic optimization method, the attack can fail
to converge within the given number of iterations.

4.4 Approach & Evaluation

4.4.1 Adversarial Training

As seen in many adversarial machine learning papers, adversarial training is a method to
train a model to be robust to adversarial attacks [7, 43]. A general Procedure can be seen
in Algorithm 5.

Data: Adversarial-Training
for i = 1, 2, ..., timestep do

attack the observation Q(obs, a, θ);
obs’ = ZO SignSGD(Q(obs, a, θ));
a’ = Q(obs′, a, θ);
new obs, reward = env(a’,s);
Train policy as per DQN or DDPG algorithm;

end
Algorithm 5: Adversarial training of the policy.

The algorithm is based on the methods discussed in [43]. Though it may appear simple,
this algorithm has proven successful against the trained perturbation method for both deep
learning and DRL models.

4.4.2 Initial Training

The DQN algorithm is first trained for 20,000 time steps with the default hyperparameter
included in stable baseline 3. The model can learn the environment and achieve a mean

41

(a) The effect of the discount factor on the
mean reward per episode.

(b) The effect of the gradient steps on the
mean reward per episode.

(c) The effect of the batch size on the mean
reward per episode.

Figure 4.2: Comparative effects of various parameters on the mean reward per episode.

reward of 310.58 per episode. For most of the episodes, The policy can navigate the
highway for the entire episode without fail.

The DDPG model is trained for 120,000 time steps. A higher time step allows the
actor and critic to converge on this lane-changing task. Due to the continuous action space
control by the DDPG algorithm, the reward is not as stable as DQN. However, the model
can still achieve a mean reward of 232.78 per episode. Note that DDPG is trained with
noise added to the action space as part of the exploration strategy.

As DDPG is more complex and requires more training, environment vectorization is

42

performed to speed up the training process. The environment vectorization allows the
model to train with multiple environments at the same time, thus speeding up the training
process, as seen in Figure 4.3. The model is trained with up to 20 environments at the
same time. This allows the model to learn from different experiences at the same time,
thus speeding up the training process. This speed up also allows additional hyperparameter
tuning to be performed, such as the discount factor, gradient steps, and batch size. The
effect of these hyperparameters on the mean reward per episode can be seen in Figure 4.2.

Discount factor, gamma, is an important parameter that controls the importance of
future rewards, where gamma close to 1 encourages the agent to consider future rewards
more strongly, promoting policies that may sacrifice immediate rewards for greater long-
term returns. In this task, three different gamma values of 0.9, 0.95, and 0.99 are tested.
As seen in Figure 4.2a, for this specific setup, all three gamma values ended up in around
the same mean rewards. However, when the gamma is set to 0.99, the model is less stable
and has a higher variance in the mean reward per episode. This is likely due to the model
overestimating the future reward, causing the model to be less stable. Therefore, a gamma
of 0.95 is chosen for the final training.

The gradient steps parameter in Stable Baselines3, particularly for algorithms like
DDPG, controls the number of gradient updates that are performed after each rollout.
When gradient step is set to 1, regardless of how many steps were taken in the environ-
ment during the rollout, only one gradient update will be performed afterwards. This
means that after each rollout, the model’s parameters are updated just once. However
when it is set to -1, the number of gradient updates will match the number of steps taken
in the environment during the rollout. Shown in Figure 4.2b, the more gradient updates,
the better the model can learn from the environment, allowing the policy to achieve higher
mean rewards per episode. Thus, the gradient steps are set to -1 for the final training.

Batch size is the number of samples that are processed before the model is updated.
A larger batch size allows the model to learn from more experiences at the same time,
which can often allow more stable training process and faster convergence time. As seen in
Figure 4.2c, the larger the batch size, the better the model can learn from the environment,
allowing the policy to achieve higher mean rewards per episode for the majority of the
training process. Thus, the batch size is set to 128 for the final training.

The maximum reward obtainable by the agents per episode would be 450, assuming it
never crashes, is always on the right-most lane, and always travels at high speed. However,
such theoretical maximum reward is unobtainable as the agent must slow down to change
lanes and avoid crashes. At the same time, As long as other cars are in the right-most lane,
the agent is unlikely to obtain the full reward for the step. Getting a higher reward also

43

Figure 4.3: Training with vectorization of 20 environments.

requires the agent to have a constant heading going forward. This has proven to be difficult
to maintain for a DDPG agent where the policy has control of the steering. Therefore,
both agents performed relatively well in this task.

4.4.3 Attacks

The idea of the attack is to mimic a real-world scenario where the attacker has access
to the vehicle’s sensors, enabling them to craft perturbations to the observation space.
The perturbation is generated at every step with the consideration of perturbation sizes.
The maximum iteration per step for perturbation crafting is set to 100. However, most
successful perturbations are created within 50 iterations. An example of the loss for a
successful perturbation is shown in Figure 4.4. The perturbation converges under 100
iterations. As the iterations go on, the distortion becomes the focus of the optimization
program and, as a result, shrinks with iterations. The targeted action for the DDPG policy
is set to be [1, 0.5], meaning full throttle and turning right. For DQN, since the action
space is high level, the targeted attack is chosen to be “accelerate” (Action 3) to prevent
the ego vehicle from changing lanes at all. The attack successfully causes the model to
turn right most of the time, causing the mean reward per episode to plunge, as seen in 4.2.

The attack is unconstrained with the loss function defined in Equation 4.7. However,
the size of the perturbation is directly correlated to the parameters for ZO SignSGD. The
larger step each iteration of the gradient takes, the bigger the perturbations. Therefore, the
parameters are carefully tuned to allow the attack to converge quickly while maintaining
a reasonable perturbation size to enable a distortion to within 0.2, representing the 10%
deviation from its original value, while allowing the attack to be carried out within 100

44

0 10 20 30 40 50 60 70 80 90 100
Iteration

0

0.05

0.1

0.15

0.2

0.25

0.3

Lo
ss
es

Loss1
Loss2

Figure 4.4: Loss convergence for successful perturbation for both Loss1 and Loss2.

Figure 4.5: Result of the perturbation. The ego vehicle hits another car.

iterations. Small perturbations created by adversarial machine learning like this may help
the attack avoid possible detection. Since ZO SignSGD can minimize both Loss1 and Loss2
as defined in Equation 4.7 and 4.9, as the iteration grows, distortion can be minimized if
parameters are tuned in such a way. This trend already can already be seen in Figure 4.4.

4.4.4 Defenses

Employing the approach outlined in Algorithm 5, we further trained the DQN and DDPG
policies that were initially compromised by the adversarial attack for an extra 5,000 and
10,000 time steps, respectively, this time incorporating adversarial observations into the
learning process. The progression of the reward per episode during this adversarial training
phase can be visualized in Figure 4.6 and Figure 4.7.

Despite the initial attack, both policies exhibited a marginal increase in the reward
per episode following adversarial training, suggesting some degree of learned resilience
against adversarial manipulation. However, it is noteworthy that this increase was rather
insubstantial, particularly in the case of DQN. Moreover, despite maintaining identical
training parameters, the mean reward per episode for both policies during adversarial

45

Attack Skip Probablity Unattacked Mean Reward Attacked Mean Reward

0 109.65 56.79
0.3 164.42 34.03
0.5 145.00 41.44

Table 4.1: Mean reward of adversarial training with attack skip chance.

training was lower than that achieved during the initial training phase.

This decline in performance is likely to be attributed to overfitting to the perturbed
observations. The model’s parameters have essentially learned to respond specifically to
the adversarial patterns in the observations, thereby diminishing its performance under
normal conditions. This is particularly evident in Figure 4.7, where the reward per episode
shows a declining trend, a classic indicator of overfitting.

To further investigate this hypothesis on model performance during adversarial training,
we conducted a series of experiments with varying probabilities of omitting the attack at
each step. Specifically, we executed adversarial training sessions consisting of 50,000 steps,
setting the attack skip probability to 0, 0.3, and 0.5, respectively. The results, summarized
in Table 4.1, reveal a notable trend. With no attack skipping (a probability of 0), the
model exhibited lower performance in scenarios without attacks, achieving a mean reward
of 109.65, but demonstrated improved resilience in the presence of attacks, with a mean
reward of 56.79. In contrast, increasing the attack skip probability to 0.3 and 0.5 resulted
in enhanced performance in unattacked scenarios, with mean rewards of 164.42 and 145.00,
respectively. However, this improvement came at the cost of reduced effectiveness under
attack conditions, where the mean rewards decreased to 34.03 and 41.44, respectively.
These findings proves a potential overfitting of the model to the adversarial conditions when
the attack is consistently applied during training. By introducing a variable probability
of skipping the attack, it becomes possible to modulate the balance between the model’s
robustness to attacks and its overall performance in standard, non-adversarial conditions.
This adjustment mechanism can be instrumental in optimizing the model for a desired level
of resilience versus performance in applications where the threat landscape and operational
conditions may vary.

The trade-off between robustness and performance in adversarial settings is a well-
documented challenge in machine learning literature. A seminal 2019 paper elucidated
this issue by demonstrating worsened generalization performance of deep learning networks
under adversarial training [46]. More recently, in 2022, potential explanations for this
trade-off were proposed, such as the lower utility of robust features for generalization tasks

46

or the insufficiency of datasets for adversarial training [11]. This dilemma is manifested
in our experiment, wherein the adversarially trained policies underperformed compared to
their non-adversarially trained counterparts. This underscores the complexity of designing
reinforcement learning policies that are both robust to adversarial attacks and proficient
at their designated tasks.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Steps

0

10

20

30

40

50

60

70

M
ea

n
 E

p
is

od
e

R
ew

ar
d

Figure 4.6: Reward/Episode for adversarial
training of DDPG.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Steps

60

70

80

90

100

110

120

130

M
ea

n
 E

p
is

od
e

R
ew

ar
d

Figure 4.7: Reward/Episode for adversarial
training of DQN.

Policy

DQN DDPG

Scenarios Reward [% of theoretic max] Reward [% of theoretic max]

Initial Training 310.58 69.01% 232.78 51.73%
Under Attack 108.22 24.89 % 45.44 10.09 %

Adversarial Training 111.08 22.78 % 62.40 13.87 %
After Training (No Attack) 149.33 33.18 % 91.22 20.27 %

Table 4.2: Mean reward of each model with the maximum theoretical reward of 450.

4.4.5 Results

A table of mean rewards for each model is shown in Table 4.2. The highest obtainable
reward per episode is 450, with one reward per step if the agent reaches high speed, stays
in the right lane, and does not crash. The environment has completely random vehicle

47

Figure 4.8: Example of the environment with 5 lanes and a vehicle density of 2.

layouts every single time. Therefore the agent would not be able to obtain the total 450
rewards as it is often required to slow down, change lanes out of the right lane to avoid a
collision or maintain the high-speed reward.

The reward is calculated by finding the mean of rewards for 100 episodes. The envi-
ronment calculates the reward, as shown in Equation 4.1. For Initial Training and After
Training, no attacks are performed on the observation. The rewards are collected to show
the generalized performance of the model. For Under Attack and Adversarial Training,
the attack is performed on the observation to force the policy into performing only one
action, if the perturbation converges within the given number of iterations.

As seen in Table 4.2 in the scenario Initial Training, the agents performed relatively
well, setting up a good baseline performance of the policies. However, both policies fail
to perform as the attacks take place in Under Attack. Some marginal performance gain is
seen after the policies undergo Adversrial Training. But overall generalized performance
is suffering as seen in After Training.

The DDPG agent in this work is trained in three lanes as seen in Figure 4.1, but to test
the robustness of the policy, it is necessary to test it on unseen environments. Therefore,
the environment is tested on 4 and 5 lanes, as well as with a higher vehicle density. The
results are shown in Table 4.3. An example of the environment with 5 lanes and a vehicle
density of 2 is shown in Figure 4.8. As seen in Table 4.3, the DDPG policy is able to
generalize to the unseen environment. But, an reduction in the mean reward per episode is
also seen accross all scenarios. This policy in particular does not fare well in a high traffic
environment, due to a lack of training in such an environment. The DDPG policy is still
vulnerable to the attack, as seen in the Attacked scenario. The mean reward per episode
is significantly lower than the Unattacked scenario. This shows that the DDPG policy is
still vulnerable to the attack, even in the unseen environment.

48

Table 4.3: Lane and Vehicle Density effect on mean reward

Lane 3 4 5

Vehicle Density 1 2 1 2 1 2

Unattacked 272.32 95.00 157.23 55.36 200.65 98.58
Attacked 31.24 25.71 51.16 30.19 49.95 29.33

4.5 Summary

In this work, we harnessed the ZO-SignSGD method to craft perturbations capable of
triggering the failure of trained reinforcement learning models. Remarkably, these attacks
were successfully carried out on both DQN and DDPGmodels by introducing perturbations
to the observation space, even without access to the actual gradient information of the
models. While the untouched models achieved high rewards — approximately 310 and
250, respectively — the targeted attacks significantly disrupted the performance of the ego
vehicle, forcing it to follow the attacker’s actions and plummeting the reward to near zero.
This unique vulnerability underscores the vulnerabilities of reinforcement learning models
to adversarial attacks even when the attacker lacks detailed model information.

In response to these successful attacks, we trained the models using these adversarial
examples to enhance their robustness. Both models demonstrated an increased resilience,
improving their rewards in the face of adversarial observations. However, it’s important
to note that adversarial training proved to be a time-intensive process, and the resulting
models underperformed their original versions. This trade-off, where adversarial training
dampens a model’s generalization performance, mirrors findings observed in other machine
learning applications [11].

Our adversarial attacks, while effective, are not yet optimized. Future work could draw
inspiration from the adversarial attack strategies in the broader machine learning field,
potentially leading to stronger and more efficient attacks. This could involve, for instance,
targeting keyframes during the vehicles’ operation. Moreover, testing the transferability
of adversarial examples across different models could provide critical insights into the
vulnerability of autonomous vehicles, particularly since deep reinforcement learning models
often perform identical tasks. To prevent fast and catastrophic perturbations by attackers,
it will be crucial to test these examples in real-world scenarios.

As demonstrated in this thesis, adversarial training is not a panacea for these adver-
sarial threats. It may cause an unexpected loss of rewards if the model adapts too much

49

to the adversarial observation. Given the requirement for autonomous vehicles to function
flawlessly under all circumstances. Further investigation into other defensive measures is
imperative to build more robust and secure systems. These could include intrusion detec-
tion systems, model distillation, and model verification. Each of these could potentially
contribute to a more comprehensive solution, mitigating the risks of adversarial attacks.

50

Chapter 5

Conclusion

In this thesis, I firstly introduced an innovative method for crafting adversarial patches
that can successfully bypass the detection mechanisms of leading object detection systems
employed in Connected and Autonomous Vehicles (CAVs), with a particular emphasis
on the YOLOv5 framework. Through comprehensive experimentation, I meticulously ex-
plored various factors such as patch dimensions, transformations, and the influence of
total variation loss adjustments. Our experiments, conducted under a spectrum of simu-
lated environmental scenarios, convincingly showed that these patches could substantially
diminish the detection confidence levels. Additionally, this study delved into the effect of
patch size on the detection confidence, maintaining consistent optimization and simulation
parameters throughout the investigation.

5.1 Adversarial Patch in Carla

The employment of the Carla simulator was pivotal in this research, providing a realistic
yet controlled platform for conducting these adversarial trials, ensuring both safety and
fidelity in testing. I observed that factors like the patch’s visibility and luminosity play
a crucial role in its efficacy, particularly noted in the case of stop sign detection, where
reliable assessments were feasible solely within the simulated environment. These insights
underscore the imperative for rigorous and comprehensive testing protocols for machine
learning models in CAVs, taking into account the myriad of real-world conditions such as
varying weather patterns and lighting conditions.

This findings shed light on the existing susceptibilities within the perception frameworks
of contemporary CAV systems, setting the stage for ensuing inquiries into devising more

51

robust and secure machine learning solutions for autonomous vehicular technologies. This
research underscores the criticality of adaptive and resilient defense mechanisms in safe-
guarding against the evolving landscape of adversarial threats in the realm of autonomous
navigation.

5.2 Adversarial Attack on DRL

In next part of this thesis, I explored the efficacy of the ZO-SignSGD method in generat-
ing perturbations that compromise the integrity of trained reinforcement learning models,
specifically targeting DQN and DDPG frameworks. These adversarial attacks, executed by
altering the observation space, highlighted a critical vulnerability in reinforcement learn-
ing systems, significantly degrading performance without necessitating direct access to the
model’s gradient information. The original models, which performed optimally in standard
settings, saw their rewards drastically reduced to near-zero levels under adversarial condi-
tions, emphasizing the susceptibility of such models to even minimally informed attacks.

To counter these breaches, I incorporated adversarial examples into the training regi-
men, aiming to bolster the models’ resilience against similar future attacks. This adversar-
ial training, while enhancing robustness, introduced a trade-off by diminishing the models’
overall performance, a phenomenon consistent with broader machine learning observations.
Despite these efforts, the optimized state of this adversarial strategies remains unachieved,
suggesting a potential avenue for future research to refine these tactics for more potent and
efficient disruptions, especially in critical applications like autonomous vehicle navigation.

The outcomes underscore the complex challenge adversarial threats pose to reinforce-
ment learning-based systems, particularly in high-stakes environments. While adversarial
training offers a measure of defense, it falls short of a comprehensive solution, sometimes
at the expense of the model’s general effectiveness. This necessitates a broader exploration
of defensive strategies beyond adversarial training, such as advanced intrusion detection,
model distillation, and rigorous verification processes, to ensure the reliability and security
of systems in adversarial settings. The pursuit of such multifaceted defense mechanisms is
crucial for the advancement of robust, attack-resilient autonomous systems, safeguarding
them against the evolving landscape of adversarial threats.

52

5.3 Future Work

Both parts of the research uncovers the vulnerabilities in the neural network based algo-
rithms used in the autonomous vehicle, but in a very limited degree.

In the first research about the object detection algorithm in autonomous vehicle, though
the patch works fine under good lighting, the patch fails to work under more harsh envi-
ronments. To more vigorously test the capabilities of the vision system of an autonomous
vehicle, the patch generation algorithm could be enhanced. At the same time, though
YOLOv5 is a great object detection algorithm, it would be better if more object detection
algorithms can be brought in and test the effectiveness of the patch on all the different
algorithms. It would also be interesting to see the possibility of creating an universal patch
based off the transferability of adversarial attacks that would work on the majorities of the
object detection algorithms out there using a more rigorous patch generation algorithm.

For the second part of the research focusing on the vulnerabilities of DRL used in
autonomous vehicle, a number of the setup can be improved to delve deeper into the
danger of the attack and the defense against such attack. To begin, the research uses only
a simple 2D gym environment to train, attack and defend the DRL policies. A more realistic
simulation environment such as CARLA should be used to further test the practicality of
such attack. This research also only tested two of the most common DRL algorithms, DQN
and DDPG, while many other DRL algorithms are used for autonomous vehicle research.
Therefore, it is only logical to test more DRL algorithms against adversarial attacks and
see if they suffer from a similar vulnerability. Furthermore, other attacks can also be
performed and tested on DRL algorithms to get a more comprehensive idea of the DRL
vulnerability.

Most importantly, future research should improve on the defenses against adversarial
attacks, for object detection or DRL, by applying a better adversarial training regim or
through other means of defense to ensure a safe and secure environment for the future of
autonomous vehicles.

53

References

[1] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust
adversarial examples. CoRR, abs/1707.07397, 2017.

[2] Adith Boloor, Karthik Garimella, Xin He, Christopher Gill, Yevgeniy Vorobeychik,
and Xuan Zhang. Attacking vision-based perception in end-to-end autonomous driving
models. Journal of systems architecture, 110:101766–, 2020.

[3] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models, 2018.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. OpenAI Gym, 2016. arXiv 1606.01540.

[5] Prasanth Buddareddygari, Travis Zhang, Yezhou Yang, and Yi Ren. Targeted At-
tack on Deep RL-based Autonomous Driving with Learned Visual Patterns. In 2022
International Conference on Robotics and Automation (ICRA), pages 10571–10577,
2022.

[6] Yulong Cao, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park, Sara Rampazzi,
Qi Alfred Chen, Kevin Fu, and Z. Morley Mao. Adversarial Sensor Attack on LiDAR-
Based Perception in Autonomous Driving. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’19, page 2267–2281,
New York, NY, USA, 2019. Association for Computing Machinery.

[7] Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of Neural
Networks. In 2017 IEEE Symposium on Security and Privacy (SP), pages 39–57, 2017.

[8] Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jake
Varley, Alex Irpan, Benjamin Eysenbach, Ryan Julian, Chelsea Finn, and Sergey
Levine. Actionable Models: Unsupervised Offline Reinforcement Learning of Robotic
Skills, 2021. arXiv 2104.07749.

54

[9] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth
order optimization based black-box attacks to deep neural networks without training
substitute models. In Proceedings of the 10th ACM Workshop on Artificial Intelligence
and Security, CCS ’17. ACM, November 2017.

[10] Shang-Tse Chen, Cory Cornelius, Jason Martin, and Duen Horng Chau. Robust
physical adversarial attack on faster R-CNN object detector. CoRR, abs/1804.05810,
2018.

[11] Jacob Clarysse, Julia Hörrmann, and Fanny Yang. Why adversarial training can hurt
robust accuracy, 2022. arXiv 2203.02006.

[12] Alexey Dosovitskiy, Germán Ros, Felipe Codevilla, Antonio M. López, and Vladlen
Koltun. CARLA: an open urban driving simulator. CoRR, abs/1711.03938, 2017.

[13] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li, Atul
Prakash, Amir Rahmati, and Dawn Song. Robust physical-world attacks on machine
learning models. CoRR, abs/1707.08945, 2017.

[14] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Florian
Tramèr, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Physical adversarial ex-
amples for object detectors. CoRR, abs/1807.07769, 2018.

[15] Marc Fischer, Matthew Mirman, Steven Stalder, and Martin Vechev. Online Robust-
ness Training for Deep Reinforcement Learning, 2019.

[16] Ross B. Girshick. Fast R-CNN. CoRR, abs/1504.08083, 2015.

[17] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich fea-
ture hierarchies for accurate object detection and semantic segmentation. CoRR,
abs/1311.2524, 2013.

[18] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples, 2015.

[19] Xiangkun He, Haohan Yang, Zhongxu Hu, and Chen Lv. Robust Lane Change De-
cision Making for Autonomous Vehicles: An Observation Adversarial Reinforcement
Learning Approach. IEEE Transactions on Intelligent Vehicles, 8(1):184–193, 2023.

55

[20] Yu-Chih-Tuan Hu, Bo-Han Kung, Daniel Stanley Tan, Jun-Cheng Chen, Kai-Lung
Hua, and Wen-Huang Cheng. Naturalistic physical adversarial patch for object detec-
tors. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 7848–7857, October 2021.

[21] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Ad-
versarial Attacks on Neural Network Policies, 2017. arXiv 1702.02284.

[22] David Isele, Alireza Nakhaei, and Kikuo Fujimura. Safe Reinforcement Learning on
Autonomous Vehicles. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1–6, 2018.

[23] Glenn Jocher. YOLOv5 by Ultralytics. DOI: 10.5281/zenodo.3908559, May 2020.
Version 7.0. [Online]. Available: https://github.com/ultralytics/yolov5.

[24] Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jon-
schkowski, Chelsea Finn, Sergey Levine, and Karol Hausman. MT-Opt: Continuous
Multi-Task Robotic Reinforcement Learning at Scale, 2021. arXiv 2104.08212.

[25] Arne Kesting, Martin Treiber, and Dirk Helbing. General lane-changing model mobil
for car-following models. Transportation Research Record, 1999(1):86–94, 2007.

[26] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization,
2017. arXiv 1412.6980.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 25.
Curran Associates, Inc., 2012.

[28] Mark Lee and J. Zico Kolter. On physical adversarial patches for object detection.
CoRR, abs/1906.11897, 2019.

[29] Edouard Leurent. An Environment for Autonomous Driving Decision-Making, 2018.
GitHub.

[30] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning, 2019. arXiv 1509.02971.

[31] Sijia Liu, Pin-Yu Chen, Xiangyi Chen, and Mingyi Hong. signSGD via Zeroth-Order
Oracle. In International Conference on Learning Representations, 2019.

56

[32] Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O. Hero III, and
Pramod K. Varshney. A Primer on Zeroth-Order Optimization in Signal Processing
and Machine Learning: Principals, Recent Advances, and Applications. IEEE Signal
Processing Magazine, 37(5):43–54, 2020.

[33] Xiruo Liu, Shibani Singh, Cory Cornelius, Colin Busho, Mike Tan, Anindya Paul, and
Jason Martin. Synthetic dataset generation for adversarial machine learning research,
2022.

[34] Jiajun Lu, Hussein Sibai, Evan Fabry, and David A. Forsyth. NO need to worry
about adversarial examples in object detection in autonomous vehicles. CoRR,
abs/1707.03501, 2017.

[35] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards Deep Learning Models Resistant to Adversarial Attacks.
In International Conference on Learning Representations, 2018.

[36] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learn-
ing, 2013. arXiv 1312.5602.

[37] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-
level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[38] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a
simple and accurate method to fool deep neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2574–2582, 2016.

[39] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine
learning: from phenomena to black-box attacks using adversarial samples, 2016.

[40] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik,
and Ananthram Swami. Practical black-box attacks against machine learning, 2017.

[41] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami.
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks,
2016. arXiv 1511.04508.

57

[42] Nicolas Papernot, Patrick D. McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay
Celik, and Ananthram Swami. The limitations of deep learning in adversarial settings.
CoRR, abs/1511.07528, 2015.

[43] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish
Chowdhary. Robust Deep Reinforcement Learning with Adversarial Attacks, 2017.
arXiv 1712.03632.

[44] M. J. D. Powell. A Direct Search Optimization Method That Models the Objective and
Constraint Functions by Linear Interpolation, pages 51–67. Springer Netherlands,
Dordrecht, 1994.

[45] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus,
and Noah Dormann. Stable-Baselines3: Reliable Reinforcement Learning Implemen-
tations. Journal of Machine Learning Research, 22(268):1–8, 2021.

[46] Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John C. Duchi, and Percy Liang.
Adversarial Training Can Hurt Generalization, 2019. arXiv 1906.06032.

[47] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. CoRR, abs/1506.02640, 2015.

[48] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger. CoRR,
abs/1612.08242, 2016.

[49] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards
real-time object detection with region proposal networks. CoRR, abs/1506.01497,
2015.

[50] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas.
Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proceedings
of the IEEE, 104(1):148–175, 2016.

[51] Aman Sinha, Hongseok Namkoong, Riccardo Volpi, and John Duchi. Certifying
Some Distributional Robustness with Principled Adversarial Training, 2020. arXiv
1710.10571.

[52] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks, 2014. arXiv
1312.6199.

58

[53] Michael Threet, Colin Busho, Josh Harguess, Melanie Jutras, Nicole Lape, Sara Leary,
Keith Manville, Mike Tan, and Chris Ward. Physical adversarial attacks in simulated
environments. In 2021 IEEE Applied Imagery Pattern Recognition Workshop (AIPR),
pages 1–5, 2021.

[54] Simen Thys, Wiebe Van Ranst, and Toon Goedemé. Fooling automated surveillance
cameras: adversarial patches to attack person detection. CoRR, abs/1904.08653, 2019.

[55] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested traffic states in em-
pirical observations and microscopic simulations. Physical Review E, 62(2):1805–1824,
aug 2000.

[56] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8(3):279–292, May 1992.

[57] Tong Wu, Xuefei Ning, Wenshuo Li, Ranran Huang, Huazhong Yang, and Yu Wang.
Physical adversarial attack on vehicle detector in the carla simulator. CoRR,
abs/2007.16118, 2020.

[58] Yichuang Zhang, Yu Zhang, Jiahao Qi, Kangcheng Bin, Hao Wen, Xunqian Tong, and
Ping Zhong. Adversarial patch attack on multi-scale object detection for uav remote
sensing images. Remote Sensing, 14(21):5298, 2022.

59

	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Background
	Thesis Structure

	Background and Related Works
	Adversarial Examples in Machine Learning
	Adversarial Attacks in Physical World
	Adversarial Attacks in Reinforcement Learning
	Black-box Adversarial Attacks
	Gaps in Existing Research

	White-box Adversarial Patch Generation and Testing in CARLA
	Problem
	Tools and Software
	CARLA
	Open Source Data Collection Platform

	Method
	Patch Generation
	CARLA

	Results
	Summary

	Black-box Adversarial Attacks and Defenses on DRL
	Problem
	Environment
	Reward

	Policies
	DQN Policy
	DDPG Policy

	Zeroth Order Attack
	Attacker Model
	Zeroth Order SignSGD

	Approach & Evaluation
	Adversarial Training
	Initial Training
	Attacks
	Defenses
	Results

	Summary

	Conclusion
	Adversarial Patch in Carla
	Adversarial Attack on DRL
	Future Work

	References

