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Abstract 

Changes in the water cycle influence the energy balance of the Earth. The water cycle is 

represented using the water balance equation, in which Evapotranspiration (ET) is a vital 

parameter. One of the main drivers of the change in ET within a specific area is the change in land 

cover. This study focuses on estimating ET across the Upper Gundar River Basin located in the 

state of Tamil Nadu, India. Notable features of this landscape include agriculture throughout the 

year supported using an extensive network of tanks and borewells, and the presence of Prosopis 

juliflora, a widely prevalent invasive species known to consume groundwater and moisture. Due 

to the lack of spatial variability in point ET measurements, ET models using remote sensing 

imagery as the main forcing data have been widely used to assess the spatial variability and 

temporal variability based on the principle of surface energy balance. These models are 

collectively referred to as Surface Energy Balance (SEB) models. The model used in our study is 

the Surface Energy Balance Algorithm for Land (SEBAL) model to estimate ET for two periods of 

the year, indicating mid-summer and the end of the northeast monsoon for the years 2006, 2014 

and 2021. Since land cover changes drive ET, land cover classification and seasonal change 

detection are also performed for the same time periods. Imagery from Landsat satellites is used, 

and one image is chosen to represent the specific season. The major land cover classes chosen in 

our study are water, pre-growth, agriculture, Prosopis juliflora (prosopis), barren land, and 

exposed soil. Along with the Landsat imagery, to run SEBAL, Aster DEM is used along with in-situ 

weather data and GLDAS data.  
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Over 90% levels of overall accuracy were achieved for all year-season combinations for the land 

cover classification. Using SEBAL, Actual Evapotranspiration (ETa) for all the classes is calculated 

except the water classes. Due to the lack of in-situ measurements, an intermodal comparison 

was performed with the EEFlux product available at the same resolution derived using the 

METRIC algorithm using land cover classes as units of comparison. The comparisons are carried 

out using correlation coefficient (r), root mean squared error (RMSE), and mean values. Highest 

mean values were observed for either the agriculture or prosopis class, and the lowest mean 

value was exhibited by the exposed soil class on all occasions. Within all summers, considering 

all the years, the average correlation coefficient and RMSE were 0.8, 1.2 mm/day, and for 

monsoon, the averages were 0.5 and 0.85 mm/day, indicating increased proximity during the 

monsoon season between SEBAL and EEFlux. Similarly, the range of mean values between classes 

in summer is 2.12 mm/day, 1.36 mm/day in the monsoon. In terms of the energy fluxes used to 

determine ETa, a decrease in monsoon is observed for soil heat flux (G), instantaneous net radiant 

energy (Rn_inst), and net radiation in a day (Rn_24). For sensible heat flux (H), classes with 

vegetation tend to have lower values in comparison to the classes without vegetation. Finally, 

average water outflux is calculated encompassing all classes by multiplying the area of a class 

with mean ETa, and the values observed in summer and monsoon alternatively for the years 2006, 

2014, and 2021 in m3/day are 5,142,212, 3,534,906, 2,954,897, 4,046,322, 5,369,191, 4,512,596. 
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1 Introduction  

1.1 Motivation  

Water is an important natural resource, driving the sustenance of all forms of life on earth. The 

flow of water through the earth systems is called the water cycle. Evaporation, condensation, 

groundwater flow, infiltration, percolation, precipitation, run-off, sublimation, and transpiration 

are some of the physicochemical components of the global water cycle along with anthropogenic 

interactions such as building water storage structures, or extractive processes like groundwater 

pumping etc (Allan et al., 2020; Abbott et al., 2019). To understand the global water cycle, precise 

quantification of global water fluxes and storage is required (Vargas Godoy et al., 2021). 

Traditionally, the global water balance has been represented through combining precipitation, 

runoff, evaporation, and transpiration to a change in water storage. Under a warming climate, 

the water cycle is expected to intensify in the form of increased precipitation and evaporation 

(Huntington, 2006; Lal, 2001).  

When it comes to potable water, the global hydrological cycle’s renewal processes control the 

amount of water that is available. Due to the predicted rise in temperatures in the future, 

countries in south Asia are likely to face acute water stress. Along with climate change, the 

increasing population will lead to increased per-capita demand and competition for water 

resources across industrial, agricultural, and domestic activities (Lal,2001).  
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Rivers have been the major sources of water for anthropogenic consumption since time 

immemorial. Historically, the birth and evolution of human civilizations occurred in regions close 

to rivers. India is a country with an extensive network of rivers with 37 major rivers spread across 

the landmass (Alagh, Pangare, & Gujja, 2006). This gives rise to a wide number of river basins, 

which house significant populations reliant on the resources present in the landscape for their 

daily livelihood. In the broader context, in the 21st century, in India, where there is a growing 

population, management of water resources plays a crucial role in ensuring adequate access to 

water for a variety of domestic and industrial activities. With growing industrialization, the water 

demand is set to increase in the forthcoming years. Along with industrialization, to feed the 

growing population, the agricultural water demand is expected to increase (Ahmad et al., 2006).  

In this study, we focus on the Gundar River Basin located in the state of Tamil Nadu, India. Tamil 

Nadu has 17 major river basins. Most of the water resources prevalent in the river basins are 

diverted to agriculture, estimated to consume about 75% which is very similar to the global 

average of 70% making agriculture one of the top consumers of fresh water (Ahmad et al., 2006; 

Palanisami et al., 2011). But most of the river basins are water stressed and interlinking of rivers 

is a widely popular solution proposed to tackle the issue in hand (Dhawan, 2017). Amidst the 

water demand from agricultural, industrial, and domestic activities, there is also competition for 

surface water resources between the neighboring states (Palanisami et al., 2011). Thus, efficient 

planning and allocation of water resources are quintessential to maintaining the equilibrium 

between water demand and supply within river basins. In the broader context, India in the 21st 

century has a growing population and management of water resources plays a crucial role in 
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ensuring adequate access to water for a variety of domestic and industrial activities. With 

growing industrialization, the water demand is set to increase in the forthcoming years. Along 

with industrialization, to feed the growing population, the agricultural water demand is expected 

to increase (Ahmad et al., 2006).  

Evapotranspiration (ET) defined at the plant-soil interface is the sum of evaporation from the 

land surface and transpiration from the stomatal pores present in the plant (Papadavid et al., 

2017). Various atmospheric, soil, and biophysical processes influence ET at this interface, thereby 

playing a pivotal role in determining the land-atmosphere energy balance and boundary layer 

dynamics (Kundu et al., 2018; Schaller & Fan, 2009). In terrestrial water budgets, 

evapotranspiration (ET) is the second-largest term after precipitation (Glenn et al., 2017). Hence, 

long-term ET estimates can be considered as a reliable indicator for gauging the intensity of the 

water cycle (Huntington, 2006).  

The absence of reliable ET estimates poses challenges in understanding the critical earth system 

interactions and developing effective adaptation strategies for food and water security (Soni & 

Syed, 2021). ET rates directly influence crop water requirements, thereby impacting the planning 

and allocation of water resources. Thus, anticipating changes in ET rates within the cropping 

period provides vital information for crop planning. In India, the contribution of surface water 

and groundwater resources for irrigation has been crucial to achieving food self-sufficiency. 

However, meeting future water demands necessitates not only exploring alternative water 

storage sources but also establishing robust frameworks to ensure judicious water usage. This 
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underscores the importance of obtaining large-scale, basin-wide estimates of ET to fulfill crop 

water requirements and conserve terrestrial water sources (Pathak et al., 2014). Accurate and 

basin-wide ET estimates are also essential for optimizing agricultural production, predicting 

floods and droughts, managing land use, and allocating water resources efficiently (Soni & Syed, 

2021).  

In recent years, it has been observed that climate change and human-induced Land Use and Land 

Cover (LULC) change have both had an increasing impact on ET (Li et al., 2017). Additionally, the 

influence of changing land use and land cover on other hydrological processes like soil moisture 

storage and groundwater recharge is widely acknowledged (Zhang & Schilling, 2006). In the 

context of this study, understanding the impacts of land use and land cover (LULC) change on 

evapotranspiration (ET) becomes crucial, as it is a key component that influences ecosystem 

services, water resource management leading to effective land use planning (Li et al., 2017). On 

a regional scale, LULC change primarily affects ET through changes in vegetation, agricultural 

activities, and urbanization (Li et al., 2017). Different land cover types exhibit distinct hydrological 

characteristics, with vegetative areas transpiring throughout the year, while agricultural lands 

transpire mainly during the cropping period. Barren land and urban areas generally have lower 

ET rates compared to land cover types with vegetation (Zhang & Schilling, 2006). 

In India, ensuring food security post-independence saw the Green Revolution, which significantly 

contributed to self-sustenance. While this led to remarkable agricultural yield improvements, it 

also resulted in declining water tables in several parts of the country (Dhawan, 2017). Since this 
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process involved the conversion of forest land into agricultural land, considerable shifts in rainfall 

patterns and surface temperatures were observed. This emphasizes the potential impact of LULC 

change on ET rates, as higher rates are observed in warmer weather compared to cooler 

conditions (Singh & Singh, 2023).  

Variations in ET across space, time, and land cover classes are critical indicators of water use 

sufficiency, dependability, and equity (Papadavid et al., 2017). ET is determined by 

meteorological variables, and alterations in these variables due to climate change will exert a 

notable influence on ET values (Darshana et al., 2013; Papadavid et al., 2017). These shifts could 

potentially affect agricultural water requirements (Papadavid et al., 2017).  

Conventional estimates of ET typically rely on weather data collected at daily intervals. Some of 

the methods that are widely used in estimating ET are: FAO-56 Penman-Monteith, the FAO-24 

Radiation, FAO-24 Blaney Criddle, 1985 Hargreaves, Priestley-Taylor, 1957 Makkink, and 1961 

Turc (Gao et al., 2017). In-situ estimates of ET are primarily obtained through laborious and 

expensive methods such as lysimeters and eddy covariance measurements (Huntington, 2006; 

Kundu et al., 2018). However, these point estimates fall short in capturing the spatial variability, 

which is particularly significant in diverse landscapes like river basins encompassing various land 

cover classes (Ahmad et al., 2006; Li & Lyons, 1999).  

The use of remotely sensed data for ET estimation has gained increased popularity in recent 

years, marking considerable progress in this field (Jana et al., 2016). Various hydrological, 

environmental, and agricultural studies demand continuous ET measurements at different scales, 
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as it serves as a crucial indicator of interactions at the plant-soil interface (Bala et al., 2016). Thus, 

accurate ET estimates are essential for conducting a comprehensive analysis of water balance 

components at a basin scale. Remote sensing data, available in various intervals (continuous, 

periodic), facilitates a deeper understanding of the hydrological attributes of the basin (Pal et al., 

2018). In the realm of remote sensing and climate modeling, a 1° grid may encompass a range of 

land cover types, making a single point measurement within the grid less representative. 

Therefore, fine-scale measurements, such as those obtained at Landsat's 30-meter scale, are 

preferred. Since estimating ET for large areas involves multiple parameters, such as surface 

temperature, vegetation indices, and surface albedo, remote sensing emerges as the most 

reliable technique for obtaining these parameters consistently. Moreover, it is also cost-effective 

with many data sets available as, primarily relying on open-source data (Li & Lyons, 1999; Glenn 

et al., 2007). Accurate ET estimates are indispensable for various management tasks at local to 

regional scales, including weather forecasting, irrigation scheduling, watershed management, 

and anticipating the long-term impacts of land use change and global climate change (Glenn et 

al., 2007). 

The National Water Mission report (2017) designates the Gundar river basin (GRB) as a major 

river basin in the state of Tamil Nadu, India, covering an area of 5690 sq. km. Supporting a 

population of 1.9 million, the basin plays a vital role in the livelihoods of the region's inhabitants. 

The river stretches approximately 150 km, supplying water for domestic, agricultural, and 

industrial purposes. As such, maintaining a continuous and ample water supply is crucial for 
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sustaining industries and agriculture, necessitating a comprehensive understanding of the basin's 

water balance. 

Agriculture is pervasive across the region, with a diverse range of crops including paddy, chillies, 

coconut, cotton, sugarcane, and millets. Notably, paddy constitutes around 70% of the gross 

irrigated area in the basin. Along with the crop water requirements, the water demand of the 

basin is dependent on factors such as land holdings, land cover patterns, irrigation practices, and 

industrial employment (National Water Mission, 2017). 

The basin is characterized by a network of water storage tank cascades that shape its hydrology. 

In arid and semi-arid regions, where rainfall is limited and significantly lower than evaporative 

demand, local water storage structures and groundwater are essential for irrigation (Ahmad et 

al., 2006). Consequently, the presence of these water storage structures is expected to alter the 

hydrological cycle in the basin, a pattern observed among farmers in the GRB. 

A distinctive feature of the basin is the widespread presence of the invasive species, Prosopis 

juliflora (prosopis), known for its drought tolerance and rapid growth. Throughout this study, it 

will be referred to simply as "prosopis”.  

This species is known to consume groundwater and moisture, particularly in barren areas, and is 

found in both small and large patches (Shiferaw et al., 2021; Vanthof & Kelly, 2017). Its impact 

on the hydrology of the region is unknown and this study would serve as a starting step in that 

process. 
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Prosopis manifests itself in the form of trees. Such trees are observed growing inside the tanks 

and on the tank bunds, with larger patches spanning multiple acres seen in barren lands. The 

presence of tanks significantly influences agriculture and the sustenance of prosopis. Tanks serve 

as sources of surface water and recharge spots for groundwater, making them ideal for the 

growth of prosopis. Hence, examining ET rates in proximity to tanks and regions of high prosopis 

growth becomes imperative. 

On one hand, prosopis is known to impact agriculture by inhibiting the flow of tank water to the 

fields and depleting the groundwater table by consuming water for its survival. On the other 

hand, people rely on firewood and charcoal generated from prosopis as an important source of 

income (Sato, 2013). This stresses the importance of the species in the landscape and the 

complexity of its interactions with the landscape. Understanding the spatio-temporal 

characteristics of propopis in the region would pave way for a deeper understanding of the 

behavior of the species.  

With ET being a dominant component in the overall water balance, precise measurements are 

essential for water resource planning and allocation (Ahmad et al., 2006). Obtaining fine-scale ET 

estimates throughout the basin is paramount, as ET primarily dictates agricultural water demand. 

Combining the land cover maps with ET maps would allow us to quantify the changes that have 

happened between the years with respect to ET patterns which can be used as a reference to 

plan for optimal water resources management in the region and in identifying regions of 
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importance decided based on the magnitude of ET. This is along the lines of developing a robust 

framework resulting in optimal and sustainable practices in agriculture to minimize water losses.  

1.2 Overall aim and objectives 

The overall aim of this thesis is to quantify the representative net water transport via 

evapotranspiration across specific land cover classes during mid-summer and the end of 

monsoon in 2006, 2014, and 2021. To achieve this aim, three specific objectives are set: 

• Conduct land cover classification and seasonal change detection analysis for the years 

2006, 2014, and 2021 

• Utilize the Surface Energy Balance Algorithm for Land (SEBAL) , a remote sensing-based 

method, to estimate actual evapotranspiration (ETa) at a pixel level using selected images 

from the years 2006, 2014, and 2021 

• Perform a comparative assessment between SEBAL and the EEFlux ET product available 

at the same resolution derived using the METRIC algorithm 
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2 Literature review  

2.1 Gundar River Basin 

2.1.1 Overview 

Gundar River Basin (GRB) is one of the major river basins of Tamil Nadu, India, with a drainage 

area of 5690 sq. km. The location of the basin is between Latitude 9°05’ – 10° 03’ and Longitude 

77°35’ – 78°35’. The basin is inundated seasonally by the Northeast Monsoon, impacting parts of 

Madurai, Sivagangai, Virudhunagar, Ramanathapuram, and Thoothukudi districts, where almost 

two million people live. The gross irrigated area of the GRB is 105,841 Ha, with paddy fields 

accounting for around 66 per cent of the land cover. The river has five tributaries consisting of 

forty-two check dams constructed across them. The check dams divert the water to irrigate an 

area of 14,388 ha through the small reservoirs (tanks) in the basin. 2,276 tanks serve an irrigation 

area of around 7,200 ha (National Water Mission, 2017). 

 

Figure 2.1 Paddy fields in the Gundar river basin (Photo credit: Akash Senthilkumaran, 2022) 
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Figure 2.2 Land use map of the Gundar River Basin, 2004 (Source: National Water Mission, 

2017) 

The northwestern parts of the basin are occupied by the Varshanadu hills, with peaks exceeding 

1000m from the mean sea level. The northeastern parts are home to Nagamalai hills, the 

elevation of which ranges between 200m to 400m above the mean sea level. Most parts of the 

basin are relatively low lying, and in an overall sense, the river basin has a gentle slope towards 

the Indian Ocean. The origin of the Gundar river is found at the Varshanadu hills, and it has five 

tributaries - Goundanadhi, Gridhamal river, Kanalodai, Paralaiaru, and Therkkar river. The river is 

non-perennial in nature (National Water Mission report, 2017). 
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2.1.2 Tanks in the Gundar River Basin and their Importance 

In India’s semi-arid regions, approximately 120,000 small-scale tanks cover around 4.12 million 

hectares of land (Palanisami & Thangavel, 2020). These tanks serve various purposes, including 

irrigation, recreation, livestock, and domestic use. Primarily located in Tamil Nadu, Karnataka, 

and Andhra Pradesh, they account for roughly 60% of India's tank-irrigated area. Tamil Nadu 

alone houses approximately 38,949 tanks, classified as Public Works Department (PWD) tanks 

with a command area exceeding 40 hectares and Panchayat Union (PU) tanks with a command 

area of less than 40 hectares (National Water Mission report, 2017; Palanisami & Thangavel, 

2020). Tanks are categorized based on their water sources: partially filled tanks, known as system 

tanks, rely on rivers and reservoirs, while those solely dependent on rainfall are termed non-

system tanks. Typically, these tanks begin to fill after the Northeast Monsoon sets in (Palanisami 

& Thangavel, 2020). 

In the GRB, a distinctive feature stands out among the tanks: tank cascades. These are 

interconnected water storage structures forming networks that allow water to flow from 

upstream tanks to downstream ones through gravity (Srivastava & Chinnasamy, 2021). Farmers 

often claim the historical presence of these structures, purportedly constructed to combat 

seasonal water scarcity by storing and aiding groundwater recharge. Consequently, these 

cascades wield significant influence over the river basin's hydrology.  
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Figure 2.3 Mudukkangulam tank located inside the river basin (Photo credit: Akash 
Senthilkumaran, 2022) 

Storage of tank water occurs solely during the rainy season, with both tank management and 

climatic conditions exerting notable impacts on water volume (Sato & Duraiyappan, 2011). Over 

the years, the GRB has witnessed substantial changes in agricultural practices, leading to land use 

and land cover (LULC) changes that emphasize the critical need to optimize water usage and 

maintain tanks—upon which the region heavily relies (National Water Mission report, 2017; 

Twisa & Buchroithner, 2019).  

2.1.3 Agricultural patterns  

The river basin is a dry, semi-arid region largely reliant on monsoon rainfall to replenish water 

resources (National Water Mission report, 2017; Sato, 2013). As per the Koppen-Geiger scheme, 

the region can be classified as having an equatorial winter dry climate (Aw) (Kottek et al., 2006).  

Paddy is the predominant crop cultivated in this region. Other crops grown in this region include 
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chillies, sugarcane, coconut, and market garden vegetables. Irrigation heavily relied on tank 

cascades due to water stored in the tanks. A tank irrigation system involves agricultural fields and 

linked tanks, drawing water from rainfall in the catchment area and canals connected to rivers 

(Sato & Duraiyappan, 2011). 

Since the 1990s, there has been a surge in cash crop cultivation in the upper basin, prompting 

the drilling of new wells and the deepening of existing ones. However, a similar trend in 

cultivation has not emerged in the lower basin, where farmers have not updated or installed new 

wells. Hence, the upper basin witnessed the introduction of new wells and the deepening of 

existing ones, leading to an income gap between farmers in the upper and lower basins (Sato & 

Duraiyappan, 2011). 

2.1.4 Vegetation patterns in the basin            

The income disparities between upper and lower regions within the basin resulted in the 

abandonment of arable lands in the latter due to diminished prospects for growing cash crops. 

Consequently, these lands became invaded and proliferated with Prosopis juliflora (Prosopis) 

(Sato, 2013). In response to meager monsoon rainfall affecting seasonal agriculture, Tamil Nadu 

introduced Prosopis in the early 1960s to provide an alternative income source, primarily through 

charcoal and firewood. Prosopis juliflora's notable trait is its capacity to thrive in dry conditions, 

leading to its widespread growth across the basin. It appears in various forms: small plants on 

barren lands, alongside other vegetation in villages, and as extensive patches covering acres of 

adjacent dry barren lands. 
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Figure 2.4 Small prosopis trees and a pile of burnt prosopis used to produce charcoal (Photo 
credit: Akash Senthilkumaran, 2022) 

 

Figure 2.5 Large prosopis patches found growing in vast swathes of barren land (Photo credit: 
Akash Senthilkumaran, 2022) 
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2.1.5 Monsoon precipitation 

India relies heavily on monsoon-induced precipitation, experiencing two main monsoon seasons: 

the Northeast monsoon and the Southwest monsoon. The Southwest monsoon, also called the 

Indian Summer Monsoon (ISM), contributes to 75-80% of the country’s annual rainfall, while the 

Northeast Monsoon covers the rest. The ISM largely affects eastern, northern, and western India, 

with the Northeast monsoon influencing the remaining areas (Misra & Bhardwaj, 2019; 

Maharana & Dimri, 2019). Typical monsoon climatic conditions, in comparison to summer, 

involve lower temperatures, higher precipitation rates, and fewer sunshine hours. Both 

monsoons significantly impact India's economy and hydro-climatological features. Research by 

Gadgil and Gadgil (2006) emphasized the monsoon's influence on GDP and agriculture from 1951 

to 2000, noting that failed monsoons adversely affect food grain production, while surplus 

precipitation has a smaller impact on the nation's food grain production and GDP. 

Tamil Nadu, the eleventh-largest state in India with a population of nearly 72 million, 80% literacy 

rate, and a population density of 555 people per square kilometer, experiences a tropical climate 

with distinct summer and winter temperatures. The summer months (April-June) witness 

temperatures above 40°C, whereas November-February marks lower temperatures, usually 

around 20°C (Varadan et al., 2017). The state's primary rainy season is the Northeast Monsoon, 

contributing significantly to its annual precipitation. Inland districts receive around 40% of their 

yearly rainfall from the Northeast Monsoon, while coastal districts receive approximately 60% of 

their overall share (Samui, Balasubramanian, & Kamble, 2013). Any deviation from average 
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rainfall during the southwest or Northeast Monsoons greatly affects agriculture and puts strain 

on Tamil Nadu's key irrigation sources—tanks, canals, and wells (Samui et al., 2013). 

Tamil Nadu's physiography comprises seven agroclimatic zones: North-Eastern, North-Western, 

Western, High Altitude, Cauvery Delta, Southern, and High Rainfall Zones. The city of Madurai, 

situated closest to the GRB (Figure 3.2), falls under the Southern Zone, along with Thoothukudi, 

Virudhunagar, Tirunelveli, Ramanathapuram, Theni, Dindigul, and Sivagangai districts, five of 

which are part of the GRB. The region experiences four distinct seasons of precipitation annually: 

winter (January–February), Summer (March–May), Southwest monsoon (June–September), and 

Northeast monsoon (October–December). Based on weather records from 1969 to 2010, this 

zone stands as the driest in Tamil Nadu, receiving about half of its annual rainfall from the 

Northeast Monsoon (Varadan et al., 2017).   

2.2 Evapotranspiration (ET) 

2.2.1 Overview 

The transfer of water from the land surface to the atmosphere constitutes terrestrial 

evapotranspiration (ET). ET also reflects the atmosphere's water demand for surface water 

sources which is fulfilled by the soil's transport of water obtained through precipitation, 

irrigation, and groundwater recharge processes. Throughout this process, water undergoes a 

phase change from liquid to gas, by absorbing energy, thus leading to the cooling of land surface. 

Evapotranspiration is a combination of evaporation and transpiration (Figure 2.6) (Krishna, 2019). 
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Figure 2.6 Schematic representation of Evapotranspiration (ET) at the plant-soil interface 
(Source: NASA SVS, 2012)  

Evaporation is the process of conversion of liquid water into water vapor and primarily occurs 

land surfaces and transpiration involves the same happening in plants. Transpiration is the part 

of ET involving plant interaction with the atmospheric water cycle. Water moves from soil 

through plants to crop root cells based on potential gradients. It transpires into the atmosphere 

from various plant parts like leaves, stems, flowers, or roots. On the other hand, evaporation 

depends on solar radiation reaching the soil surface, influenced by canopy orientation. Initially, 

soil evaporation is the primary source of moisture loss in early crop growth. However, once the 

crop is fully grown, transpiration dominates. Different crops contribute differently to ET: nearly 

all is from evaporation at sowing, but over 90% is from transpiration at full crop cover (Krishna, 

2019; Allen et al., 1998). 
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2.2.2 Types of Evapotranspiration 

Reference evapotranspiration (ETo) and potential evapotranspiration (PET) are both estimates of 

the atmospheric water demand. Thornthwaite (1948) introduced PET, defining it as the water 

that evaporates from areas with enough moisture-covered vegetation. It includes water 

evaporating from soil and plants, moving water from Earth back into the atmosphere, opposite 

to precipitation.  

In 1963, the World Meteorological Organization defined PET as “the amount of water vapor 

emitted by a pure water surface, per unit area and time, under current atmospheric conditions” 

(World Meteorological Organization, 1963). Jensen (1968) later saw PET as “the rate of 

evapotranspiration for a given crop at a given stage of growth when water is not limiting and 

other factors such as insects, diseases, and nutrients have not materially restricted plant 

development”. However, this definition faced challenges due to the lack of global crop data, 

which restricted its applicability across different environments and regions worldwide (Xiang et 

al., 2020).  

To alleviate the need to calibrate for different crops growing in different parts of the world, (Allen 

et al., 1998) defined the term “reference crop evapotranspiration” aka “reference 

evapotranspiration” and defined it as the “the rate of evapotranspiration from a hypothetic crop 

with an assumed crop height (12 cm) and a fixed surface resistance (70 s/m) and albedo (0.23) 

which would closely resemble evapotranspiration from an extensive surface of green grass cover 

of uniform height, actively growing, completely shading the ground and not short of water”. This 
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is termed as the FAO56 ETo. Using a reference surface, such as with a constant surface resistance, 

helps stabilize fluctuating climatic variables. Meteorological factors like wind speed, humidity, air 

temperature, and radiation influence reference evapotranspiration (Allen et al., 1998). The 

American Society of Civil Engineers (ASCE) modified this definition, including alfalfa with a height 

of 0.5m as the reference crop, termed the ASCE ETo (Xiang et al., 2020). 

Since ETo aims to differentiate plant ET across broad regions, the definition is clearer than that of 

PET. ETo signifies the atmosphere's evaporative demand, varying by time and location and relying 

solely on climate parameters mentioned earlier. Soil and crop characteristics do not influence ETo 

estimation (Allen et al., 1998).  

ETc, crop evapotranspiration under standard conditions, is derived by multiplying ETo by Kc, the 

crop coefficient. Kc accounts for crop-specific traits distinguishing field crops from the reference 

crop. ETc differs from ETo in similar climates due to changes in stomatal characteristics, 

aerodynamic properties, surface albedo, and leaf anatomy (Allen et al., 1998).  

The FAO56 modified PM ETo equation (Allen et al., 1998) stands as the gold standard for 

estimating ETo due to its strong theoretical base and detailed model description. The equation is 

given below (Equation 2.1):  

𝐸𝑇0 =
0.408𝛥(𝑅𝑛 − 𝐺) + 𝛾𝑢2(𝑒𝑆 − 𝑒𝑎) ×

900
(𝑇 + 273)

𝛥 + 𝛾(1 + 0.34𝑢2)
 

 

2.1 
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Where, Rn stands for net radiation at the crop surface, G for soil heat flux, T for air temperature 

in ºC at 2m height above the ground surface, u2 wind speed at a height of 2m above the ground, 

es for saturation vapor pressure in kPa, ea for actual vapor pressure in kPa, Δ for slope of vapour 

pressure curve in kPa °C-1, γ psychrometric constant in kPa °C-1. To compute ETo values in data 

scarce regions, alternative methods like Priestly-Taylor, Turc, and Hargreaves can be used with 

minimal number of parameters (Bhimala, Patra, S, & Goroshi, 2023).   

ETa, actual evapotranspiration is the estimate that represents the true physical quantity of 

evapotranspiration at the surface (Allen et al., 1998). Rainfall, soil moisture, surface net solar 

radiation, temperature, humidity, wind speed, vegetation type, leaf area, stomatal conductance, 

and atmospheric CO2 can be considered as the main factors that determine actual 

evapotranspiration. But the strength of influence of these factors are also dependent on regional 

conditions, seasonal variations in climate and large-scale atmospheric circulations too. (Bhimala 

et al., 2023). The uncertainty in estimating these factors precisely makes the estimation of ETa 

extremely challenging. In terms of a river basin, basin wide estimates of ETa would represent the 

actual water loss in the landscape which becomes more significant in cropped areas to estimate 

agricultural water losses helping in water resource planning.  

2.2.3 Evapotranspiration Trends in India and Tamil Nadu 

With extensive evidence of global warming, both reference evapotranspiration (ETo) and actual 

evapotranspiration (ETa) are expected to undergo significant impacts. The Indian subcontinent is 

highly susceptible to climate change. This eventually influences the water balance at varying 
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scales, leading to significant impacts on the agrarian economy (Bandyopadhyay et al., 2009). 

Therefore, analyzing the distinct impacts on river basins becomes essential, instead of 

generalizing the phenomenon. Evapotranspiration (ET), a nonlinear occurrence, relies on 

parameters like temperature, wind speed, radiation, humidity, crop type, and growth stage 

indicating a direct link between climate change and ET impacts (Bandyopadhyay et al., 2009).  

Chattopadhyay & Hulme (1997) analyzed data from ten stations across India between 1976 and 

1990 and reported a decreasing ETo trend. Additionally, Goyal (2004) suggested a modest rise in 

ETo due to climate change in Rajasthan, an arid region, based on their analysis between 1971 and 

2002, supporting the impact of global warming. Bandyopadhyay et al. (2009) also examined ETo 

trends between 1971 and 2002 and noted a substantial decrease attributed to reduced wind 

speed and increased humidity nationwide. 

The process of ET involves phase transition of water and decreasing water vapor concentration 

in the atmosphere, involving both energy and mass transfer (Madhu et al., 2015). However, 

during drought years, ET could adversely affect plant growth due to existing water stress 

conditions. Analysis between 1901 and 2007 by (Madhu et al., 2015) showcased significant ET 

increases linked to temperature variation over the region, especially in drought years. 

India's highly variable climate and vegetation dynamics have been primarily associated with 

temperature fluctuations and rainfall impacting ET variability. Enhancing understanding of ET 

dynamics and their correlation with climate variables remains a pivotal aspect for future 

projections (Goroshi et al., 2017). (Goroshi et al., 2017) indicated varying ET trends across seasons 
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and regions in India, reflecting increasing trends in certain seasons and locations while showing 

declines in others. 

The estimation of crop water requirements is influenced by local conditions and crop 

characteristics. Furthermore, the scarcity and inadequate maintenance of weather stations in 

Tamil Nadu pose challenges, leading to data gaps affecting ETo estimation, given its reliance on 

crucial variables (Mohan, 1991). Mohan's (1991) early study evaluating different ETo estimation 

methods across weather stations noted varying but closely related values, with the Blaney-

Criddle method exhibiting the highest correlation. 

In the Kumbakonam region, crucial for rice cultivation in Tamil Nadu, agriculture relies 

significantly on the Cauvery River. Hari et al. (2021) compared crop ET estimates derived at a field 

scale using a linear regression model created using predefined crop coefficient values (Kc) and 

NDVI for paddy at five locations located inside the region from 2016-2019 with estimates from 

METRIC derived using satellite imagery. A good level of correspondence between the methods 

was observed with an R2 value of 0.72 and an RMSE of 0.67 mm/day. 

In continuation with the existing studies done in state of Tamil Nadu, this study which focusses 

on the Gundar River Basin, a unique landscape present in the state would further add to the steps 

taken to understand the spatial and temporal variations of ET within the state.   



24 

 

2.2.4 Remote sensing of Evapotranspiration 

Over the past two to three decades, satellite retrieval of ET has gained popularity as a method 

and subject of study due to its high cost-effectiveness, large and repeatable coverage, and 

generally good accuracy (Zhang et al., 2016).  Some of the popular methods for which remote 

sensing has been utilized to provide for forcing data are: Surface energy balance (SEB) methods, 

Penman-Monteith methods, Priestley-Taylor Methods, Water-Carbon linkage methods, Water 

balance methods, MEP methods, Empirical methods, Ts – VI methods (Glenn et al., 2007; Zhang 

et al., 2016) The evolution of these methods over the years is described in Figure 2.7.  

 

Figure 2.7 Evolution of ET methods involving the use of remote sensing data (Source: Zhang et 
al., 2016) 

This study focusses on using methods based on the surface energy balance as they are more 

comprehensive in terms of involving multiple variables to estimate ET whereas the other 

methods work on using variables based on a few established relationships.  
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Since their development in the 1970s, surface energy balance (SEB) methods have been applied 

in various studies to estimate evapotranspiration (ET) in different global regions. These methods 

focus on estimating the latent heat of evapotranspiration (λET) after computing other flux 

components related to the surface energy balance, including the net radiation flux at the surface 

(Rn), soil heat flux (G), and sensible heat flux (H). These components are described in detail in 

Section 4.2.1 (Glenn et al., 2007; Zhang et al., 2016).  

SEB models are divided into two classes – one source and two source models. The difference 

comes with respect to the treatment of the land surface chiefly parameterized using the term 

radiometric- convective resistance (rr). In remote sensing-based ET models, rr is estimated by 

treating the land surface like an electric circuit with the rate of heat transfer between two points 

above the land surface dependent on the potential difference (the temperature gradient) and 

resistance terms that are dependent on the internal properties of vegetation, land, and the 

atmosphere. Different approaches to the resistance networks allow us to derive various 

resistance network designs and to estimate rr. As shown in Figure 2.8, the surface is treated as 

one single entity in one source models (2.8a) and is divided into two layers – soil surface and 

canopy in two source models (Zhang et al., 2016).  

  

 



26 

 

 

Figure 2.8 Aerodynamic resistance in one source (2.8a) and two source models (2.8b) (Source: 
Zhang et al., 2016) 

In Figure 2.8, Ta refers to air temperature, rs refers to the bulk surface resistance of the flow of 

water vapour through the plant-soil interface and ra refers to aerodynamic resistance, the 

resistance term pertaining to the flow of heat and water vapour from the evaporating surface 

into the air. In a two-layer model, ra
S, rs

S refers to the same components pertaining to the soil 

surface and ra
C, rs

C relate to the canopy. ra and rs are combined to estimate rr (Allen et al., 1998; 

Zhang et al., 2016). 

In one-source models, independent contributions from the soil and canopy are not considered 

when computing rr, while two-source models account for these contributions, as illustrated in 

Figure 2.8. Additionally, in one-source models, it is assumed that rr equals ra. This assumption 

makes one-source models relatively less complex and, as a result, they are widely used in remote 

sensing studies to estimate actual evapotranspiration (Zhang et al., 2016).  
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The early one-source SEB models were used for local and micro scale applications due to their 

dependence on local calibration, local reference surface fluxes or other data, lack of 

spatiotemporal scalability, and other factors (Zhang et al., 2016).Bastiaanssen et al. (1998) 

created the Surface Energy Balance Algorithm for Land (SEBAL) algorithm to overcome these 

restrictions. With only field data on shortwave atmospheric transmittance, surface temperature, 

and vegetation height needed, the SEBAL model can handle thermal infrared images at various 

spatial resolutions. It also estimates the spatial variation of most important hydrometeorological 

parameters by integrating empirical and physical parameterizations using inputs from satellite 

data and local weather data (Kamaraj & Rangarajan, 2022). Thus, SEBAL is a promising candidate 

to estimate large-scale ETa estimates and is a commonly used parsimonious model to determine 

ET.  

A variety of other one source models have been used in the literature to estimate ET from 

satellite imagery. Some of them are the Mapping Evapotranspiration at High Resolution with 

Internalized Calibration (METRIC), the Simplified Surface Energy Balance Index (SSEBI), and the 

Surface Energy Balance System Model (SEBSM), Simplified Surface Energy Balance (SSEB) (Glenn 

et al., 2007; Zhang et al., 2016). Numerous studies have successfully used SEBAL to understand 

the ET changes making it a widely used and validated technique to be applied (Kundu et al., 2018; 

Chemura et al., 2020; Munawir et al., 2022).  

SEBAL has been applied to various Indian landscapes to estimate ETa.  Ahmad et al. (2006) utilized 

SEBAL with MODIS imagery to assess ETa and map water usage patterns among vegetation in the 
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Krishna River basin, India. Jana et al. (2016) utilized Landsat 5 imagery and SEBAL to estimate ETa 

in Doon Valley, Uttarakhand, India. They found acceptable ETa ranges from SEBAL, correlating 

well with Penman-Monteith ETo and ETc obtained using data from the meteorological station 

located within the region of interest. Values were compared with surface temperature and 

vegetation indices to study land cover class variations. Bala et al. (2016) investigated SEBAL's 

application over an agricultural farm at the Indian Agricultural Research Institute (IARI) using 

Landsat7-ETM+ imagery. Validation against in-ground lysimeter measurements demonstrated 

consistency with SEBAL's ETa values. The analysis of 7 different acquisition dates resulted in RMSE 

of 0.505 mm/day, MAE of 0.189 mm/day, and an R2 of 0.91, highlighting SEBAL's utility in cropped 

regions. 

Kamali & Nazari (2018) estimated maize water requirements in Iran's Mazandaran province using 

Landsat 8 imagery during the maize growth period. Evapotranspiration maps, with RMSE values 

of 0.74, 1.38, and 0.73mm/day, were compared with FAO56 Penman-Monteith, National Water 

Document (NWD), and Reference Book (RB) values used in Iran for crop characteristics. Good 

agreement between SEBAL and these references led to estimating Kc for maize crops, reaffirming 

SEBAL's reliability for obtaining crop Kc values. Rahimzadegan & Janani (2019) assessed SEBAL's 

efficiency in a 100-hectare pistachio farm in Semnan province, Iran, using 29 Landsat 8 images 

between 2013 and 2017. Validation against estimates from Intelligent Meteorological instrument 

(iMETos-Pessl) resulted in an R2 of 0.8 and an RMSE of 2.5 mm per day, endorsing SEBAL's 

capacity in estimating ETa over agricultural tracts.  
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SEBAL has not been used to estimate ETa in the GRB: this study aims to be the first of its kind to 

do so. To help direct future model advancements, studies comparing various SEB models are 

required to determine the advantages and shortcomings of each model (Bhattarai et al., 2016). 

This study aims to conduct a multi-model comparison between SEBAL and METRIC across various 

land cover classes during mid-summer and the end of the monsoon season.                   

2.3 Land cover classification  

2.3.1 Overview 

Investigations into Land Use and Land Cover (LULC) changes have gained significance in recent 

years for monitoring environmental shifts and managing natural resources. These changes, 

stemming from human activities and natural phenomena, profoundly impact a region's landscape 

and its natural and human-made resources (Tian et al., 2014). LULC changes significantly 

influence food production, climate change, and biogeochemical cycles, recognized as key drivers 

of global environmental transformations since the mid-1970s (John et al., 2019). In addition, they 

play a major role in determining the evapotranspiration estimates, owing to the varying 

interactions between the surface and the atmosphere, leading to distinct differences in values 

among different land cover classes (Ayad Ali Faris Beg et al., 2016; Jana et al., 2016; Karishma et 

al., 2022; Li & Zhao, 2010; Ning et al., 2017). The differences become more pronounced when 

estimating different fluxes within the process of determining ET using surface energy balance 

(SEB) models. Especially, in the context of our study, LULC changes serve as drivers of seasonal 

evapotranspiration ET variations.   
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While often used interchangeably, "land use" and "land cover" represent distinct concepts in 

literature. Land use refers to human activities sustaining livelihoods, while land cover represents 

physical entities on the land surface, encompassing features like water bodies, forests, built-up 

areas, and wetlands. The classification of land cover involves delineating different classes by 

analyzing their spectral behavior, evolving from visual interpretation methods in the 1950s to 

modern computer-based algorithms (Alshari & Gawali, 2021). 

Change detection in land cover classification identifies variations in a region's condition 

pertaining to different land cover types within a specified timeline. An accuracy assessment, 

critical for realistic change detection, involves comparing classified pixels with ground truth 

representations (Twisa & Buchroithner, 2019). The assessment results are interpreted by 

generating an error matrix, a cross-tabulation involving pixels from land cover classes of interest. 

To determine accuracy, common metrics such as user accuracy (UA), producer accuracy (PA), and 

overall accuracy (OA) are employed. UA measures the percentage of a category mistakenly 

included in another category on the ground (commission error), while PA measures the fraction 

of pixels excluded from a reference class (omission error). OA represents the likelihood that a 

pixel will be accurately categorized by the theme map (Chemura et al., 2020). 

2.3.2 Land cover and surface hydrology  

Over the past decades, significant changes due to deforestation, urbanization, and changes in 

agricultural practices have notably affected hydrological processes. These changes impact water 

resources by modifying evapotranspiration, interception, and infiltration rates. Particularly, the 
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expansion of built-up areas significantly alters hydrological processes such as stream flow, peak 

flow, runoff patterns, and water quality (Kamaraj & Rangarajan, 2022). Thus, when large 

landscapes like river basins are considered, examining the impact of LULC change on various 

water balance components becomes paramount but is challenging due to the scale and the 

subsequent availability of scientific tools necessary for the same (Samal & Gedam, 2021). 

Various factors, including changes in water channels, land use changes, artificial river 

impoundments, and global climate change, contribute to variations in discharge patterns in 

major river basins. These modifications often occur in diverse combinations, making it complex 

to isolate their effects on hydrological components. Effective management of large-scale land 

use changes is crucial at the watershed level to prevent adverse impacts on regional ecological 

balance. Developing and applying a functional model is essential to comprehend the impact of 

land use changes on the hydrological system and predict potential outcomes (Samal & Gedam, 

2021). Analyzing and monitoring regional and temporal shifts in LULC are vital for scientists, 

conservationists, agriculturalists, lawmakers, and urban planners (Kamaraj & Rangarajan, 2022). 

2.3.3 Remote sensing and land cover classification using Landsat imagery 

The first Landsat satellite was launched in 1972, and the mission has remained operational since 

then, except for a scanline error in Landsat 7 on May 21, 2003.  The Landsat archive contains over 

10.2 million images obtained using different satellites, starting from Landsat 1-5 MSS to Landsat 

8-9 OLI/TIRS (Crawford et al., 2023). This vast collection of detailed and continuous data plays a 

crucial role in understanding LULC trends. Landsat images are organized into scenes, specifying 
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paths and rows relative to the satellite's position above Earth's surface. Notably, Landsat provides 

expansive coverage and historical data availability at no charge. The spatial resolution has 

progressed over time, from 60 meters in Landsat 1-3 Multispectral Scanner (MSS) to 30 meters 

(visible bands) and 15 meters (panchromatic) in Landsat 8 Operational Land Imager (OLI) (Phiri & 

Morgenroth, 2017). Table 2.1 describes the major Landsat satellites and their respective 

radiometric information: 

Table 2.1 System characteristics of the major Landsat family of satellites (Source: Williams et 
al., 2017) 

 

 

Figure 2.9 Evolution of Landsat classification methods over the years (Source: Phiri & 
Morgenroth, 2017) 
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The two primary pixel-based classification methods are supervised and unsupervised. Supervised 

algorithms involve training data to provide prior knowledge to the model. This is achieved by 

sampling pixels representing specific land cover classes and using their values to set thresholds 

for identifying similar pixels. Unsupervised methods, in contrast, do not rely on prior knowledge. 

They group similar pixels based on spectral values without predefined training (Phiri & 

Morgenroth, 2017). Some of the methods and their evolution over the years is described in Figure 

2.10.  

Various supervised algorithms (e.g., support vector machine (SVM), random forest (RF), spectral 

angle mapper (SAM), Mahalanobis distance (MD), radial basis function (RBF), decision tree (DT)) 

and unsupervised methods (e.g., cluster algorithm, fuzzy c-means algorithms, K-means 

algorithm, ISODATA) have been used for LULC classification. Accuracy levels vary among different 

machine learning techniques depending on the application. Notably, compared to other 

conventional classifiers, non-linear classifiers such as ANN, SVM, and RF often demonstrate 

higher accuracy (Talukdar et al., 2020).  
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3 Study area and datasets  

3.1 Study area description – Upper Gundar River Basin  

The study area focuses on a segment of the Gundar river basin, specifically the upper Gundar 

river basin which covers around 2640 km². Its altitude ranges from 19 to 1184 meters above sea 

level, with mountain peaks in the northern region (Figure 3.1).  

 

Figure 3.1 Study area map – Upper Gundar Basin 
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3.2 Datasets  

3.2.1 Landsat data  

The study utilizes various Landsat data sets, including Landsat 4-5 TM Collection 2 Level 1 data, 

Landsat 4-5 TM Collection 2 Level 2 data, Landsat 8-9 OLI/TIRS Collection 2 Level 1 data, and 

Landsat 8-9 OLI/TIRS Collection 2 Level 2 data. Collection 2 Level 1 data comprises unsigned 16-

bit integer digital numbers (DNs), integral for obtaining spectral components relevant to the 

SEBAL methodology. Collection 2 Level 2 products offer surface reflectance data derived from 

the Level 1 datasets and are utilized for land cover classification analysis (Crawford et al., 2023). 

The satellites have a 16-day repeat cycle and the length of the scenes are roughly 170 km by 183 

km. Access to Landsat data is facilitated through the Earth Explorer archive 

(https://earthexplorer.usgs.gov/), organized via a path-row framework (Crawford et al., 2023). 

The study focuses on the scene with path number 143 and row number 53. For a given year, the 

initial image is chosen during the summer season (March to May) in this region, while another 

image is selected towards the conclusion of the northeast monsoon season (mid-December to 

early January), to examine seasonal variations within the year. These chosen images are 

considered representative of the mid-summer and the end of the northeast monsoon season. It 

is important to acknowledge that cloud cover significantly influenced the selection process, and 

the analysis chose the best available scenes with cloud cover below 20% (Table 3.1). 

https://earthexplorer.usgs.gov/
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Table 3.1 Image details used for analysis 

Image acquisition date Season Landsat number 

April 03, 2006 Summer Landsat 5 

December 15, 2006 Northeast Monsoon Landsat 5 

April 09, 2014 Summer Landsat 8 

January 06, 2015 Northeast Monsoon Landsat 8 

April 28, 2021 Summer Landsat 8 

December 24, 2021 Northeast Monsoon Landsat 8 

3.2.2 Topographic Data – Aster DEM  

Topographic data is integral for the execution of SEBAL. This study relies on version 3 of the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation 

model (ASTER GDEM), available from the Earth Science Data Systems (ESDS) Program's website: 

https://search.earthdata.nasa.gov/search. This dataset is presented in 1° tiles and comes in tiff 

format, offering a spatial resolution of 30m. It encompasses a single band providing elevation 

data relative to mean sea level. Version 3 has undergone rigorous quality checks, including 

reprocessing and manual inspection of image tiles, ensuring a highly accurate dataset. Any gaps 

in the data have been filled using SRTM data, while high latitude values have been supplemented 

with national datasets and interpolation techniques (Abrams et al., 2022). In this thesis, it is 

referred to as Aster DEM.  

https://search.earthdata.nasa.gov/search
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3.2.3 In-situ Weather Data  

The weather data necessary for the analysis are acquired from the Water Resources Department, 

Groundwater Division, operating under the aegis of the Government of Tamil Nadu. Within the 

provided Landsat scene, weather information is available for five locations shown and tabulated 

below (Figure 3.5 and Table 3.2). While some stations are situated closer to the study area, it can 

be found that Kundrakudi and Vembakottai are located farther away. In terms of elevation, they 

range between 60m and 102m, indicating a relatively flat terrain when all stations are considered. 

Figure 3.2 Upper Gundar basin and the neighboring weather stations 
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Table 3.2 Reference weather stations used in the study 

Station Coordinates (latitude, 
longitude) 

Elevation (m) 

Kavalur 9.57°N, 77.90°E 99 

Savasapuram 9.48°N, 78.14°E 81 

Parthibanur regulator (PBR) 9.63°N, 78.47°E 60 

Vembakottai 9.33°N, 77.75°E 78 

Kundrakudi 10.11°N, 78.70°E 102 

Weather data is provided by the department twice a day, at 8:30 am and 5:30 pm. The 8:30 am 

data comprises observations from 5:30 pm the previous day to 8:30 am on the current day, while 

the 5:30 pm data encompasses records between 8:30 am and 5:30 pm of the same day. This 

dataset includes minimum and maximum temperatures, mean relative humidity, wind speed, 

rainfall, wet bulb temperature, and dry bulb temperature. The number of sunshine hours per day 

is recorded from 5 am to 7 pm at hourly intervals. However, there is often a lack of data for 

different variables due to instrument repairs. Wind speed data is excluded from the analysis due 

to the ambiguity in the measurements and potential uncertainties associated with the 

instruments.  

3.2.4 Global Land Data Assimilation System (GLDAS) 

Accurate estimations of terrestrial water and energy storages are crucial for diverse geoscience 

studies and for predicting climate change, weather patterns, biological/agricultural production, 

and flooding. The Global Land Data Assimilation System (GLDAS), developed collaboratively by 
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scientists at the National Oceanic and Atmospheric Administration (NOAA) National Centers for 

Environmental Prediction and the National Aeronautics and Space Administration (NASA) 

Goddard Space Flight Center (GSFC), employs data assimilation techniques to derive realistic land 

surface states. These states provide critical values like temperature, wind speed, pressure, and 

specific humidity (Rodell et al., 2004).  

GLDAS has shown effectiveness in studies related to Tamil Nadu, notably in the study by 

Chinnasamy & Agoramoorthy (2015) aiming to quantify increased irrigation's impact on 

groundwater levels using soil moisture estimates from GLDAS and the GRACE dataset. It 

successfully determined fine-scale groundwater depletion rates and can help policymakers in 

water resource management strategies. Moreover, Janani et al., (2023) utilized GLDAS for a 

basin-scale study in the Lower Bhavani Basin, Tamil Nadu, between 2003 and 2022, estimating 

yearly and seasonal trends and variability of soil moisture. Similarly, KP et al., (2021) combined 

TRMM, GLDAS, and MODIS datasets to analyze agricultural drought intensities in Tamil Nadu. 

They proposed using a blend of remote sensing-based indices as effective proxies to gauge 

vegetative stress. Additionally, Chanu et al., (2020) studied groundwater trends in three districts 

of Tamil Nadu using TRMM, GRACE, and GLDAS datasets, observing good agreement in 

groundwater storage changes. Therefore, these studies provide some confidence in utilizing 

GLDAS data within our study area, located in the state of Tamil Nadu. 

In terms of its applications involving SEBAL, Saboori et al., (2022) fused GLDAS with SEBAL for 

daily actual ET estimations and validated GLDAS effectively against the SEBAL model using 
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Landsat images and Eddy Covariance tower measurements. Similarly, Lima & Ribeiro (2018) 

utilized GLDAS with SEBAL to study the spatial and seasonal ETa patterns in the Paraibuna 

watershed, southeast Brazil. By discussing a few applications of the usage of the GLDAS data, its 

effective utility in areas lacking ground meteorological data is highlighted.  

For this study, we utilized the GLDAS Noah Land Surface Model L4 3-hourly 0.25 x 0.25-degree 

V2.1 (GLDAS_NOAH025_3H). This product offers global spatial coverage and a spatial resolution 

of 0.25° x 0.25°. Temporal coverage extends from 2000 to the present, with data available at 3-

hour intervals. Consequently, eight files are generated daily, with timestamps referenced to 

Greenwich Mean Time (GMT). It is important to note that Indian Standard Time (IST) is 5 hours 

and 30 minutes ahead of GMT. Therefore, for a specific day, the first file corresponds to 12:00 

AM GMT and 5:30 PM IST. The data is provided in the netCDF format (Beaudoing & Rodell 2020).  

It is freely accessible from the NASA Goddard Earth Sciences Data and Information Services 

Center (GES DISC) website: https://disc.gsfc.nasa.gov/. The data was downloaded using the bash 

command from Ubuntu 20.04.6 LTS version. Throughout this document, the product is referred 

to as GLDAS or GLDAS data. 

3.2.5 ESA WorldCover 10 m 2020 v100 

The WorldCover 10m 2020 v100 is a high-resolution land cover product created at 10m 

resolution, utilizing data obtained from the Sentinel-1 and Sentinel-2 satellites. It comprises 11 

classes derived according to the Land Cover Classification System prescribed by the UN-FAO. A 
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consortium, headed by VITO Remote Sensing, has developed the WorldCover product in 

collaboration with organizations like, CS SI, Brockmann Consult, IIASA, Gamma Remote Sensing 

AG and Wageningen University (Zanaga et al., 2021). 
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4 Methodology  

4.1 Land cover classification - Random Forest algorithm 

Random forest (RF) algorithms have been widely adopted in land cover classification studies 

(Amini et al., 2022; Nguyen et al., 2018; Phan et al., 2020). RF effectively handles outliers and 

noisy datasets and can perform well with high-dimensional and multi-source datasets, achieving 

higher accuracy than other classifiers like SVM, kNN, or MLC. According to a meta-analysis of 349 

Google Earth Engine (GEE) peer-reviewed studies published in the last decade, the RF algorithm 

has been the most frequently used classification algorithm for satellite images (Phan et al., 2020). 

RF is an extension of decision tree techniques and operates based on bootstrapping and 

bootstrap aggregation (or bagging). The concept involves using multiple iterations of a predictor 

or classifier to obtain a final choice through a plurality vote among the predictors. Bagging shows 

an increase in accuracy with more predictors until it begins to decline. Trees are developed by 

bootstrapping the sample, involving subsetting random samples with replacement in the training 

data. Not all samples are used to grow the tree, and the discarded samples within the 

bootstrapped sample are considered as out-of-bag (OOB) data. During tree construction, only a 

randomly chosen set of input features is evaluated in each node. The OOB data are used to 

calculate the classification error rate and the significance of the input variables (features) as new 

trees are added to the forest. Once the forest is complete, a majority vote among all trees in the 

forest is used to classify a case, like the concept of bootstrap aggregating (Kulkarni & Lowe, 2016; 

Nguyen et al., 2018). 
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The two main parameters required for running the algorithm are ntree (number of trees) and 

mtry (variable split at each node). The mtry parameter is typically set to the square root of the 

total number of input variables. Reducing the number of variables used in a split using the value 

suggested above not only decreases the algorithm's computational complexity but also reduces 

the correlation between the trees without compromising the performance of the algorithm. The 

RF split procedure aims to decorrelate the trees, making the classification outcome less 

unpredictable and more dependable (Kulkarni & Lowe, 2016; Nguyen et al., 2018). 

With respect to our study, surface reflectance data from Collection 2 Level 2 Tier 1 images 

obtained for the six different dates are subjected to land cover classification using the random 

forest algorithm implemented through the google earth engine platform. The ntree parameter is 

set to 100 and mtry is set to 3. To train the classifier, reference polygons were generated to 

delineate distinct classes across the study area. The tools used for creating these polygons 

included various false color composites derived from Landsat imagery, Google Earth, and the 

images captured during a field visit in 2022.  A total of 1000 points were sampled for the water 

classes, while 4000 points were sampled for the rest of the classes. A smaller number of points 

were chosen for the water classes due to their reduced coverage in the landscape compared to 

other land cover classes. 

It was also made sure that points from all the polygons were chosen to represent the specific 

class. A 70-30 split was utilized to allocate training and validation samples, following a study 

conducted in the Munneru River Basin, located in the neighboring state of Andhra Pradesh, India 
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(Loukika, Keesara, & Sridhar, 2021). Later, the overall, producer and user accuracies are obtained 

validating the use of the map. All the bands in the visible and infrared ranges along with the band 

values from Aster DEM were used for the analysis. The Landsat spectral bands are processed by 

multiplying the scale factor and adding the offset as prescribed by (Crawford et al., 2023). Before 

classification, clouds, cloud shadow areas are masked out using the quality assessment (QA) band 

in the Landsat imagery and regions above 200m from MSL are masked out using Aster DEM. Also, 

we observed the built-up class interfering with the exposed soil class and barren land class, so 

we incorporated the built-up area layer from the Sentinel-2A from 2020 land cover product 

additionally to mask out the built-up areas present in the image (Zanaga et al., 2021).  

Table 4.1 provides a comprehensive listing of the classes used in this study along with their 

descriptions. These classifications are established through a combination of user expertise and 

spectral characteristics.  

Table 4.1 Land cover classes and description 

Class Description 
Water Bodies of water – mainly tanks 

Exposed soil - type 1 Land areas with exposed and dry soil 

Barren land 
Land characterized by dry soil and presence of small 

prosopis plants 

Pre growth Land that has been either tilled or harvested 

Agro Green agricultural land 

Prosopis Prosopis juliflora vegetation 

Turbid water Bodies of turbid water – mainly tanks 

Exposed soil - type 2 Like exposed soil  - type 1 
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It is important to highlight that the class Exposed Soil - Type 2 is exclusively considered in the 

dataset for the month of April in 2006. Given the proximity of barren land and exposed soil in this 

geographical area, there exists the possibility of their mutual misclassification, constituting a 

potential caveat in the analysis.  

The same caveat is also applicable to agro and prosopis classes but with the given tools at the 

disposal, best efforts are taken to delineate them. The different image acquisition dates and the 

cloud cover percentages within the Landsat scene are described in Table 4.2.  

Table 4.2 Image acquisition details for the analysis 

Image acquisition date Season Cloud Cover (%) 

April 03, 2006 Summer 5 

December 15, 2006 Northeast Monsoon 13 

April 09, 2014 Summer 4 

January 06, 2015 Northeast Monsoon 18 

April 28, 2021 Summer 10 

December 24, 2021 Northeast Monsoon 2 

 

4.2 Actual Evapotranspiration estimation  

4.2.1 Surface Energy Balance Algorithm for Land (SEBAL) 

The Surface Energy Balance Algorithm for Land (SEBAL) operates on the fundamental principle of 

energy balance, analyzed at the pixel level. Instantaneous latent heat of evapotranspiration (λET) 

is obtained as a residue from the balance between net radiation flux at the surface (Rn), ground 

heat flux (G), and sensible heat flux to air (H) as shown in Equation 4.1 (Bastiaanssen et al., 1998)  
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λET = 𝑅𝑛 - G - H 4.1 

Subtracting all outgoing radiant fluxes from all incoming radiant fluxes yields Rn (Equation Error! R

eference source not found.) (Waters et al., 2002): 

𝑅𝑛 = (1 − 𝛼)𝑅𝑠↓ +  𝑅𝐿↓ − 𝑅𝐿↑ − (1 − 𝜀0)𝑅𝐿↓ 4.2 

Where; ε0 represents surface thermal emissivity, α stands for the surface albedo, Rs↓ is the 

incoming shortwave radiation, RL↓ is the incoming longwave radiation, RL↑ is the outgoing 

longwave radiation.  

Rs↓ which is the incoming solar radiation is calculated from: 

𝑅𝑠↓ =  𝐺𝑠𝑐 ∗ 𝑐𝑜𝑠 𝜃 ∗  𝑑𝑟 ∗  𝜏𝑠𝑤 4.3 

where Gsc is the solar constant 1367(W/m2), θ is solar incidence angle, dr is the inverse of the 

squared relative distance between the sun and the earth. ꚍsw is the atmospheric transmissivity 

calculated using the elevation above the mean sea level represented by z (Waters et al., 2002):  

𝜏𝑠𝑤 = 0.75 + 2 ∗  10−5 ∗ 𝑧 4.4 

The outgoing longwave radiation, RL↑ in Equation 4.2 is calculated by determining select 

vegetation indices, two types of surface emissivities, corrected thermal radiance (Rc) and surface 

temperature (Ts). The vegetation indices, Normalized Difference Vegetation Index (NDVI), Soil 

Adjusted Vegetation Index (SAVI) and Leaf Area Index (LAI), are calculated from the following 

(Waters et al., 2002): 
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𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅) 

(𝑁𝐼𝑅 + 𝑅)
  

4.5 

  

𝑆𝐴𝑉𝐼 =
(1 + 𝐿) (𝑁𝐼𝑅 − 𝑅)

(𝐿 + 𝑁𝐼𝑅 + 𝑅)
 

4.6 

  

𝐿𝐴𝐼 =
− 𝑙𝑛 (

0.69 − 𝑆𝐴𝑉𝐼
0.59

)

0.91
  

4.7 

where NIR and R denote the reflectivity in the Near Infrared and Red bands in Landsat imagery, 

respectively. The constant 'L' is integral in computing SAVI, commonly set to 0.5 as per (Allen et 

al., 1998). εNB is the first emissivity component denoting the thermal emission behavior of the 

surface within the narrow thermal band of Landsat imagery (10.4 to 12.5 μm). The next 

component, ε0 represents the surface behavior across the broader thermal spectrum (6 to 14 

μm), calculated using the following equations (Waters et al., 2002): 

𝜀𝑁𝐵  =  0.97 +  0.0033 𝐿𝐴𝐼 4.8 

  
𝜀0  =  0.95 +  0.01 𝐿𝐴𝐼 4.9 

If LAI is greater than 3, εNB and ε0 are set to 0.98. Rc is obtained before calculating Ts through 

Equation 4.10 (Waters et al., 2002) :  

𝑅𝐶 =
𝐿6 − 𝑅𝑃

𝜏𝑁𝐵

− (1 − 𝜀𝑁𝐵
)𝑅𝑠𝑘𝑦 

4.10 

where L6 is the spectral radiance of the thermal band in the Landsat imagery, Rp is the path 

radiance in the narrow 10.4 – 12.5 μm band, Rsky downward thermal radiation for a clear sky 

pertaining to the narrow band and ꚍNB is the transmissvity of air in the narrow 10.4 – 12.5 μm 
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band. It is recommended to set ꚍNB to 1 in the absence of an accurate value (Waters et al., 2002). 

Rsky is estimated using the equation of Wukelic et al., 1989:  

𝑅𝑠𝑘𝑦 = 1.807 ∗ 10−10 ∗  𝑇𝑎 ∗ ( 1 − 0.26 𝑒(−7.77 ∗ 10−4 ∗ (273.15 − 𝑇𝑎)2) ) 4.11 

where Ta represents the near-surface air temperature during the time of Landsat overpass, 

measured in Kelvin (K). As the next step, Ts is obtained using Equation 4.12:  

𝑇𝑠 =
𝐾2

𝑙𝑛 (
𝜀𝑁𝐵 𝐾1

𝑅𝑐
+ 1)

 
4.12 

K1 and K2 are constants pertaining to the Landsat imagery present as metadata. Finally, RL↑ is 

calculated using the Stefan – Boltzmann equation (Waters et al., 2002):  

𝑅𝐿↑ =  𝜀0 ∗  𝜎 ∗   𝑇𝑠
4 4.13 

where ε0 stands for the dimensionless 'broad-band' surface emissivity, σ denotes the Stefan-

Boltzmann constant (5.67 × 10-8 W/m2/K4), and Ts represents the surface temperature measured 

in Kelvin (K). 

The next major component in the radiation balance (equation 4.2), RL↓ the incoming longwave 

radiation is determined using the Stefan-Boltzmann equation again.  

𝑅𝐿↓ =  𝜀𝑎 ∗  𝜎 ∗   𝑇𝑎
4 4.14 

where εa is the atmospheric emissivity (dimensionless), and Ta denotes the near-surface air 

temperature measured in Kelvin (K). εa is estimated through Equation 4.15.  
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𝜀𝑎 = 0.85 ∗ (− 𝑙𝑛 𝜏𝑠𝑤)0.09 4.15 

where ꚍsw stands for the atmospheric transmissivity as discussed above. 

Soil heat flux (G) is the next major component as a part of the radiation balance equation 

(equation 4.1). The rate at which heat is absorbed by plants and soil by conduction is known as 

the soil heat flux. SEBAL uses the empirical equation that Bastiaanssen (2000) established to 

obtain the ratio G/Rn (Equation 4.16): 

𝐺 

𝑅𝑛
=  

𝑇𝑠

𝛼
(0.0038𝛼 +  0.0074𝛼2)(1 −  0.98𝑁𝐷𝑉𝐼4) 

4.16 

where, Ts represents the surface temperature (ºC), and α denotes the surface albedo. The 

calculation of G involves multiplying the derived G/Rn ratio by the computed value of Rn.   

Finally, the sensible heat flux, (H in equation 4.1) is the most complicated component of the 

radiation balance to compute. The rate at which heat is lost to the air by convection and 

conduction as a result of a temperature differential is known as sensible heat flux (Waters et al., 

2002; Zamani Losgedaragh & Rahimzadegan, 2018). It is estimated using from: 

𝐻 =  
(𝜌𝑎𝑖𝑟 ∗  𝐶𝑝 ∗ 𝑑𝑇)  

𝑟𝑎ℎ
 

4.17 

where ρair represents air density (in kg/m³), Cp denotes the specific heat of air (1004 J/kg/K), dT 

(K) signifies the temperature difference (T1 – T2) between two heights (z1 and z2), and rah stands 

for the aerodynamic resistance to heat transfer (measured in s/m) (Waters et al., 2002).  
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 The presence of two unknowns - dT and rah  makes it difficult to solve Equation 4.17 (Zamani 

Losgedaragh & Rahimzadegan, 2018). To simplify this process, the SEBAL makes use of two 

classes of anchor pixels (cold and hot) to fix the boundary conditions along with the wind speed 

at a defined height above the surface to determine H and dT. The anchor pixels must be situated 

within the study area to ensure reliable estimates of H and dT. Hot anchor pixels correspond to 

dry and uncultivated agricultural regions where the ET is close to 0.  

Cold pixels represent agricultural regions that are well irrigated and fully vegetated. dT is 

estimated by acknowledging a major presumption of SEBAL which is the linear relationship 

between dT and Ts  (Waters et al ., 2002).  

When calculating sensible heat flux (H), atmospheric stability conditions are crucial since they 

greatly impact rah (Waters et al., 2002). The parameters rah and dT are iteratively calculated, 

incorporating corrections based on the Monin-Obukhov theory to account for the effects of 

buoyancy originating from surface heating. The Monin-Obukhov length (L) is utilized for this 

purpose, serving as an indicator of the stability conditions. The first step of this iterative process 

involves the usage of rah and frictional velocity (u*) measured at the closest weather station as 

the baseline inputs (Zamani Losgedaragh & Rahimzadegan, 2018). Corrections are incorporated 

based on the neutrality condition determined by L, as described in Equation 4.18.  

𝐿 =
−𝜌𝐶𝑃𝑢∗

3𝑇𝑠

𝑘𝑔𝐻
 

4.18 
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Here, ρ represents the density of air (in kg/m³), Cp denotes the specific heat of air (1004 J/kg/K), 

u* signifies the friction velocity (in m/s), Ts stands for the surface temperature (in Kelvin), g 

represents the gravitational constant (9.81 m/s²), and H represents the sensible heat flux.  

In terms of atmospheric conditions, L < 0 represents unstable conditions, L = 0 represents neutral 

conditions, and L > 0 represents stable conditions. "With the inclusion of correction factors as 

outlined in (Waters et al., 2002) based on L values, the process continues until the convergence 

of rah and dT (Waters et al., 2002; Zamani Losgedaragh & Rahimzadegan, 2018). They are finally 

calculated thus:  

𝑟𝑎ℎ =
𝑙𝑛

𝑧2

𝑧1
− 𝜓ℎ𝑧2

+  𝜓ℎ𝑧1

𝑢∗𝑘
    

4.19 

 

𝑢∗ =  
𝑘 𝑢200

𝑙𝑛
200
𝑧𝑜𝑚

− 𝜓𝑚200
 
 

4.20 

where,  ψm(200) represents the stability correction for momentum at a height of 200 meters, ψh(z1) 

and ψh(z2) denote the stability corrections for heat transport at heights of z1 and z2 meters, 

respectively. Additionally, k represents Von-Karman’s constant which is set to 0.41 as per (Allen 

et al., 1998), u200 signifies the wind speed at a height of 200m, and zom represents the momentum 

roughness length. zom quantifies the combined impact of skin friction and form drag in the air 

layer interacting with the surface. After applying the stability corrections, the sensible heat flux 

(H) is estimated using Equation 4.17, and the latent heat flux (λET) is obtained using Equation 4.1. 

Figures 4.1 and 4.2 conceptualize the logic of the estimation of H and λET respectively using 

flowcharts. λET is depicted as LE in Figure 4.1.  



52 

 

 

Figure 4.1 Iterative process to estimate H (Source: Waters et al., 2002). 
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Figure 4.2 SEBAL Flowchart (Source: Bezerra et al., 2015) 
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4.2.1.1 pySEBAL - Model description  

pySEBAL refers to the implementation of the SEBAL model in Python conceptualized and 

developed at IHE Delft by the Water Accounting group. The inputs required for the execution of 

the model to estimate actual evapotranspiration include spectral information, weather data, and 

topographic data. The code, developed as PySEBAL version 3.8, is open source and available on 

the GitHub repository. The estimation of hot and cold pixels is specific to one scene and is 

automated by incorporating thresholds based on percentiles using NDVI and Ts. While hot pixels 

are typically chosen from dry surfaces, cool pixels are chosen from water bodies or agricultural 

areas with well-developed vegetation. Hot pixels are identified based on the distribution of NDVI, 

and the 1st and 3rd percentiles are used as the respective lower and upper bounds. Ts is used to 

determine the cold pixels, and the lower and upper bounds are 2nd and 5th percentiles, 

respectively. The model is parsimonious in the sense that it requires minimal user input. The 

implementation currently supports Landsat, MODIS, Proba-V, and VIIRS satellites (Karimi et al., 

2019; Pareeth & Karimi, 2023). 

In pySEBAL, after calculating λET using Equation 4.1, the instantaneous evaporative fraction 

(EFinst) is estimated using the equation of Pareeth & Karimi (2023):  

𝐸𝐹𝑖𝑛𝑠𝑡 =
𝜆𝐸𝑇

𝑅𝑛 − 𝐺
 

4.25 

To account for the increase in the ET rates during the afternoon, pySEBAL incorporates an 

advection factor Ω derived from Pareeth & Karimi (2023): 
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𝛺 = 1 + 0.985 ∗ (𝑒𝑥𝑝[(𝑒𝑠𝑎𝑡 −  𝑒𝑎𝑐𝑡) ∗ 0.08] − 1) ∗  𝐸𝐹𝑖𝑛𝑠𝑡 4.26 

where, esat stands for saturated vapor pressure and eact stands for actual vapor pressure, Rn 

stands for the instantaneous net radiation and G for instantaneous soil heat flux obtained in 

Equations 4.16 and 4.17 respectively. Finally, ET24, the daily ET estimate in (mm/day) is obtained 

using Equation 4.27 (Pareeth & Karimi, 2023):  

𝐸𝑇24 =  𝛺 ∗ 𝐸𝐹𝑖𝑛𝑠𝑡 ∗ 𝑅𝑛24
  4.27 

where Rn24 represents the net radiation in a day. 

4.2.2 Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC) 

METRIC and SEBAL both operate on the same principle of estimating λET at the individual pixel 

level. They are similar in terms of computational aspects and differ only in certain relationships 

(Kamyab et al., 2022). Unlike SEBAL, which calculates τsw using the elevation above mean sea 

level, METRIC estimates τsw using air pressure and the water content of the atmosphere (Zamani 

Losgedaragh & Rahimzadegan, 2018).  

𝜏𝑠𝑤 = 0.35 + 0.627 ∗ 𝑒𝑥𝑝[
−0.00146𝑝

𝑘𝑡𝑐𝑜𝑠𝜃ℎ𝑜𝑟
−  0.75 ∗ (

𝑤

𝑐𝑜𝑠𝜃ℎ𝑜𝑟
)0.4] 

4.21 

Here, p stands for atmospheric pressure (kPa), ϴhor stands for solar zenith angle, kt is a 

dimensionless quantity representing the turbidity coefficient of the atmosphere and w (in mm) 

stands for atmospheric water content. Through Equations 4.22 – 4.23, p and w is determined as: 

𝑝 = 101.3 ∗ (
293 − 0.0065𝑧

293
)5.26 

4.22 
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𝑤 = 0.14𝑒𝑎𝑃𝑎𝑖𝑟 + 2.1 4.23 

Here, z is the elevation above the mean sea level, ea is the vapor pressure close to surface (kPa) 

and Pair is the air pressure (kPa). In METRIC, the soil heat flux component, G/Rn is calculated using 

Equation 4.24.  

𝐺

𝑅𝑛
= {

1.80(𝑇𝑠 − 273.15)

𝑅𝑛
+ 0.084, 𝐿𝐴𝐼 < 0.5

0.18𝑒−0.521𝐿𝐴𝐼 + 0.05, 𝐿𝐴𝐼 ≥ 0.5

 

4.24 

 

G is then calculated by multiplying it with the previously obtained Rn values. Unlike 

SEBAL, which assumes a zero value for H at the cold pixels, METRIC requires the alfalfa 

based reference evapotranspiration values (ETr) for estimating H at these pixels. 

Additionally, to determine daily actual evapotranspiration (ET24), SEBAL utilizes the 

instantaneous evaporative fraction (EF_inst), while METRIC uses the component known 

as the reference ET fraction (ETrF) (Allen et al., 2011). 

  

4.2.2.1 EEFlux model implementation  

Earth Engine Evapotranspiration Flux (EEFlux) is a jointly developed by Google, the University of 

Idaho, Desert Research Institute, and the University of Nebraska – Lincoln. EEFlux is implemented 

using the METRIC algorithm within the Google Earth Engine platform, that contains a 

comprehensive historical record of Landsat imagery dating back to 1984. Weather data inputs 

are sourced from the North American Land Data Assimilation System (NLDAS) for the CONUS 
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region, while the Climate Forecast System Version 2 (CFSV2) gridded dataset is utilized for the 

rest of the world. The digital elevation map utilized is from the Shuttle Radar Topography Mission 

(SRTM), available at a resolution of 30 meters.  

ETa maps can be accessed via the EEFlux portal (https://EEFlux-level1.appspot.com/) by 

specifying the date and reference coordinates. The portal then generates a TIFF file 

corresponding to the Landsat scene identified by the provided coordinates. In this study, data for 

the Landsat scene with path number 143 and row number 53 are obtained (Allen et al., 2015).  

4.2.3 Data Preprocessing and Model Implementation Scenarios 

The primary input for the model is Landsat data. To implement pySEBAL, Landsat Collection 2 

Level 1 data scenes for the specified date are downloaded from the Earth Explorer archive. In 

addition to Landsat imagery, the meteorological forcing data for pySEBAL is crucial. The required 

parameters for pySEBAL implementation include averages of surface solar radiation, 

temperature, wind speed, and relative humidity. The equivalent variables present in the GLDAS 

product, and their descriptions are outlined in the Table 4.3 given below:  

Table 4.3 GLDAS forcing meteorological variables. 

Parameter Description Unit 

Swdown_f_tavg  Downward short-wave radiation W/m2 

Qair_f_inst   Specific humidity kg/kg 

Psurf_f_inst  Pressure Pa 

Wind_f_inst  Wind speed m/s 

Tair_f_inst  Temperature K 
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Temperature, wind speed, and downward shortwave radiation flux are directly obtained from 

the GLDAS dataset. However, relative humidity cannot be directly extracted. But, the model's 

outputs of air temperature, air pressure, and specific humidity can be used to calculate it 

described in Equations 4.1 to 4.3 given below (Pareeth & Karimi, 2023).  

𝑒𝑎 =  
𝑄𝑎𝑖𝑟 ∗  𝑃𝑠𝑢𝑟𝑓

(0.378 ∗ 𝑄𝑎𝑖𝑟 + 0.622)
 

4.25  

 

𝑒𝑠 = 6.112 ∗ 𝑒𝑥𝑝 
(17.67 ∗  𝑇𝑎𝑖𝑟)

(𝑇𝑎𝑖𝑟 + 243.5)
 

4.26  

 

𝑅𝐻 =  
𝑒𝑎

𝑒𝑠
∗ 100 4.27  

Where, es represents the saturation vapor pressure, T𝑎𝑖𝑟 denotes the air temperature in Celsius, 

ea signifies actual vapor pressure, Qair stands for specific humidity (dimensionless), 𝑃𝑠𝑢𝑟𝑓 indicates 

pressure in millibars, and RH represents relative humidity as a percentage. Temperature is 

converted to ºC by subtracting 273.15 from the absolute temperature (K).  

The implementation of pySEBAL requires data at two levels – instantaneous (during the time of 

Landsat overpass – 11.30 AM) and daily. It is important to note that the input data is in a raster 

format rather than points. Due to the unavailability of instantaneous in-situ data, GLDAS data is 

utilized. As discussed in section 3.2.4, there are 8 GLDAS data points for each day, with the first 

file corresponding to 12:00 AM GMT (05:30 AM IST). Since the files are available at three-hour 

intervals, the third file of the day aligns directly with the time of satellite overpass at 11:30 AM. 

Hence, it is used to fulfill the instantaneous data requirement for all variables. 
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For meeting the daily data requirement, both GLDAS and in-situ data are utilized, and the model 

is executed alongside the Aster DEM, resulting in two scenarios in turn leading to two sets of 

outputs. In our study we consider two scenarios generated using SEBAL and the third scenario 

considered pertains to the EElux estimates of actual evapotranspiration.  

Scenario 1 – GLDAS daily rasters + GLDAS instantaneous rasters (at overpass) + Aster DEM  

Scenario 2 – In-situ interpolated rasters + GLDAS instantaneous rasters (at overpass) + Aster DEM  

Scenario 3 - EEFlux ETa estimates 

In scenario 1, as detailed in section 3.2.3, GLDAS files corresponding to the timeline for average 

temperature and relative humidity (08:30 AM and 05:30 PM) and the number of sunshine hours 

(05:00 AM to 7:00 PM) are acquired and averaged. They are labeled as "GLDAS daily rasters" in 

the definition above. In scenario 2, in-situ data collected throughout the day, starting from 08:30 

AM and obtained at 05:30 PM, are utilized for temperature and relative humidity. Surface solar 

radiation is derived from the number of sunshine hours using the conversions outlined in Allen 

et al. (1998). To ensure consistency with the GLDAS data, a simple inverse distance weighted 

approach is employed to interpolate the in-situ data, with the spatial resolution set to 0.25° x 

0.25° for both scenarios. These rasters collectively are labeled as "In-situ interpolated rasters". 

The GLDAS rasters pertaining to 11.30 AM IST, which is the time of the satellite overpass, are 

termed as the "GLDAS instantaneous rasters". 
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4.2.4 Structure of the Results section 

The results are divided into five sections: 

Section 5.1 – Land cover classification and analysis: This section explores the seasonal variations 

within a year (2006, 2014, 2021) between different seasons while also presenting accuracy 

metrics. The methodology is described using a flowchart in Figure 4.3.  

 

Figure 4.3 Methodology - Land cover classification and seasonal change detection 
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Section 5.2 – Comparative Analysis of Monthly Weather Data: In-Situ vs. GLDAS: This section 

presents a comparison between in-situ weather data and GLDAS weather data during the month 

of Landsat image acquisition across different years. Weather parameters such as average 

temperature, solar radiation, relative humidity, and reference evapotranspiration are compared.  

The comparison is conducted for 6 months, with 2 months each in the years considered (2006, 

2014, 2021). The comparison includes all weather stations, and the corresponding values in the 

GLDAS grid where the stations are located are utilized. The comparison is evaluated using the 

correlation coefficient, indicating the strength of agreement or association. It must be noted that 

the Penman-Monteith equation is utilized to calculate ETo for the in-situ data, while the field 

'Evap_tavg' representing evapotranspiration in the GLDAS data is employed. As the GLDAS data 

is available in kg/m²/s, a conversion factor of 86,400 is multiplied to make it consistent with the 

in-situ ETo estimate, which is presented in mm/day. The parameters utilized to estimate ETo, 

namely average temperature, relative humidity, and solar radiation, are compared in this section 

to study their correspondence. Wind speed is excluded from the comparison due to a lack of 

data.  

Section 5.3 - Interseason Comparison of Evapotranspiration Estimates Using SEBAL and EEFlux: 

ETa maps generated using pySEBAL for all the scenarios are visualized. By overlaying classified 

land cover maps obtained earlier with scenario 1, scenario 2, scenario 3 maps, ETa estimates 

pertaining to different land cover classes are arrived and plotted using box plots. The strength of 

the relationships between the three sets of outputs (scenario 1, scenario 2, scenario 3) taken two 
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at a time are quantified using the correlation coefficient, and the extent of the relationships is 

outlined using the root mean squared error metric (RMSE). This is followed by the analysis of 

mean estimates pertaining to the different land cover classes across the three scenarios. The 

metrics are outlined separately for mid-summer and the end of the Northeast Monsoon, followed 

by a comparison between the seasons within a year. The methodology for this section is 

described using a flowchart in Figure 4.4. 

 

Figure 4.4 Methodology Interseason Comparison of Evapotranspiration Estimates Using 
SEBAL and EEFlux 
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Section 5.4 – Seasonal Variations in Actual Evapotranspiration Across Different Land Cover 

Classes: This section presents the seasonal variations of ETa estimates across different land cover 

classes, using the components of the energy balance such as soil heat flux and sensible heat flux 

for explaining the seasonal variations. It also explores the reasons behind the seasonal variations 

and the causes for the uncertainty. 

Section 5.5 – Estimating Water Outflux Variability Across Seasons and Years Across Different 

Land Cover Classes: The last step in the results section quantifies the water outflux (m³/day) in 

the landscape across different year-season combinations. Patterns within the different years and 

between the seasons across different land cover classes will be discussed. 
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5 Results 

5.1 Land cover classification and analysis  

Land cover maps were generated using the supervised random forest algorithm. Seasonal change 

detection is performed within a year between the two selected seasons: summer and monsoon. 

This section is divided into three subsections corresponding to the three different years analyzed: 

2006, 2014, and 2021.  

Cloud mask layers were individually created for both images and applied to both the images 

corresponding to the summer and monsoon seasons within the year. These masks, along with 

the built-up area and elevation masks discussed in section 4.1, were incorporated into the 

analysis. This approach enables a change analysis of land cover classes within a year. In the 

accuracy metrics table, 'PA' denotes Producer Accuracy, 'UA' stands for User Accuracy, and the 

overall accuracy is provided at the end.  

For each year, the percentage of the area covered by specific land cover classes is calculated 

during both seasons and compared to detect seasonal changes within a year. It is important to 

note that the percentage of the area is calculated based on the non-masked region within the 

study area, serving as the denominator.  

Providing an overview of the land cover distribution, the upper regions of the study area serve 

as agricultural hubs, and they experience substantial growth during the monsoon season. 

Agriculture happens throughout the year across the study area, but with high levels of activity 
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during the monsoon. Despite the monsoon being a primary water source for irrigation, the 

presence of borewells and pumps in the study area enables cultivation cycles throughout the 

year.  

The central portions as well as the areas in the west and northernmost regions of the study area, 

are characterized by lands with exposed soil. Some remain in their natural state, while others 

transition into agricultural lands during various months, predominantly during the monsoon. The 

barren land class can resemble the exposed soil in some cases and is found to have small prosopis 

plants growing within it.  

Areas with prosopis and other dry species are often cleared with minimal vegetation remaining, 

as complete removal of those species is not possible. While scattered across the river basin, these 

barren lands are predominantly located in the western parts of the study area. Given the 

presence of agricultural lands in all regions of the basin, the pre-growth land cover class, 

indicating tilled or harvested lands, is prevalent across the entire basin but is concentrated 

primarily in the western parts of the study area. Prosopis patches are predominantly situated in 

the southern parts of the study area, growing in proximity to the tanks. Water storage primarily 

occurs through tanks, as discussed earlier, and spectral variations within the study area 

necessitate two distinct classes – water and turbid water. 
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5.1.1 Seasonal land cover analysis - 2006  

 

Figure 5.5.1 Land cover classification maps (a, b) for summer and Northeast Monsoon, 
seasonal comparison of land cover classes (c) in 2006, and percentage change (d) in the Upper 

Gundar River Basin, Tamil Nadu 

Table 5.1 Accuracy metrics 2006 

Season Summer NE monsoon 

Class PA UA PA UA 

Water 99% 99% 99% 99% 

Exposed soil - type 1 96% 96% 97% 98% 

Barren land 96% 91% 96% 95% 

Pre growth 93% 96% 96% 97% 

Agro 98% 97% 97% 99% 

Prosopis 97% 97% 99% 96% 

Turbid water 98% 99% 99% 98% 

Exposed soil - type 2 95% 95% - - 

Overall accuracy 96% 97% 
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The primary challenge encountered in the seasonal analysis within the year is the presence of 

clouds in various parts of the images, resulting in the exclusion of certain areas from the 

classification process. High values for both producer and user accuracy are observed across all 

classes, with instances of water classes achieving a near 100% accuracy level. This could be 

attributed to the ease of identification and distinct appearance of water classes in the various 

false-color composites used during analysis (Table 5.1).  

The increase in agriculture is seen in the northern parts of the images where a lot of green areas 

seem to have popped up during the monsoon season. Small patches can also be seen across the 

basin (Figure 5.1a-b). Incremental changes of 0.69% and 2.42% are evident in the water classes, 

and the rise can be attributed to the Northeast Monsoon – the primary source of rainfall in the 

region that replenishes the tanks. Notably, blue regions signifying water become more prominent 

in the lower section of the study area, which is home to a substantial number of tanks, as 

discussed in previous sections (Figure 5.1b). 

A substantial decrease of 18.60% is noticeable in the exposed soil class, corresponding with the 

increased agricultural activity during the monsoon season, where these lands are frequently 

utilized for cropping. The barren land class shows a slight increase of 0.96%, ensuring consistency 

in the analysis but the rise can be possibly indicating their misclassification due to their proximity 

to the exposed soil class and the pre-growth class. A marginal decline of 1.46% is evident in the 

pre-growth class (Figure 5.1c-d).  
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Most notably, a substantial surge of 10.98% is observed in the agriculture class, reflecting the 

heightened agricultural practices during this period. The increase in the prosopis class in this case 

can similarly be attributed to increased rainfall during the monsoon providing water for the 

growth of the plant (Figure 5.1c-d). 

Mapping prosopis proves to be a challenging task, given its spectral similarity to agricultural 

classes. While discrimination could be more effective in summer, the surge in agriculture during 

the monsoon season can lead to the misclassification of prosopis pixels as representing 

agriculture or general vegetation (Figure 5.1c-d).  
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5.1.2 Seasonal land cover analysis - 2014 

 

Figure 5.5.2 Land cover classification maps (a, b) for summer (2014 Apr) and Northeast 
Monsoon (2015 Jan), seasonal comparison of land cover classes (c), and percentage change 

(d) in the Upper Gundar River Basin, Tamil Nadu 

Table 5.2 Accuracy metrics 2014 

Season Summer NE monsoon 

Class PA UA PA UA 

Water - - 98% 100% 

Exposed soil - type 1 97% 98% 97% 98% 

Barren land 95% 95% 98% 96% 

Pre growth 95% 95% - - 

Agro 94% 94% 94% 98% 

Prosopis 98% 98% 98% 95% 

Turbid water - - - - 

Overall accuracy 96% 97% 
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In the month of April this year, the images revealed minimal to no presence of water bodies, a 

phenomenon attributable to the shifting monsoon and groundwater flow patterns (Figure 5.2a). 

Also, in January, the pre-growth class was seldom observed, and the tanks in the lower reaches 

of the river basin remained unidentified due to the dense cloud cover within the image, in those 

parts (Figure 5.2b). Hence, these classes are excluded from our analysis for this particular year. 

Moreover, the images available during the end of the monsoon season exhibited high 

percentages of clouds and cloud shadows in the lower regions of the area, posing challenges for 

seasonal change detection. 

In terms of spatial distribution, agriculture seems to be popping up more during January in the 

upper parts of the river basin, which is an expected outcome (Figure 5.2b). Consequently, this 

section of the analysis primarily focuses on investigating discernible patterns within the given 

images, considering the limitations posed by cloud cover. While a comprehensive change 

detection process for all classes is unfeasible, notable observations include a substantial increase 

in agriculture and a corresponding decrease in the exposed soil class (Figure 5.2c-d).  
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5.1.3 Seasonal land cover analysis - 2021 

 

Figure 5.5.3 Land cover classification maps (a, b) for summer and Northeast Monsoon, 
seasonal comparison of land cover classes (c) in 2021, and percentage change (d) in the Upper 

Gundar River Basin, Tamil Nadu 

Table 5.3 Accuracy metrics 2021 

Season Summer NE monsoon 

Class PA UA PA UA 

Water 99% 100% 99% 100% 

Exposed soil - type 1 99% 100% 99% 98% 

Barren land 97% 96% 99% 98% 

Pre growth 98% 98% 98% 99% 

Agro 99% 99% 98% 99% 

Prosopis 98% 98% 100% 98% 

Turbid water 99% 100% 99% 100% 

Overall accuracy 99% 99% 
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With these images displaying a relatively higher degree of freedom from cloud cover compared 

to previous datasets, a robust seasonal analysis becomes feasible. Observable trends include 

increases in water classes (2.54% and 0.11%) as seen in Figure 5.3d, indicating the filling of tanks 

in both upper and lower parts of the basin (Figure 5.3b). Consistent with the patterns presented 

above, a substantial decrease of 17.01% in exposed soil classes and a slight reduction in barren 

land classes are evident (Figure 5.3d). 

These changes align with increases in pre-growth and agriculture classes (6.68% and 19.75%), 

again pointing towards the increased levels of agricultural activities during the monsoon season. 

The decrease in prosopis by 9.24% this year may be associated with its overlap with the 

agriculture class and the practice of cutting down prosopis trees for economic purposes and 

sustenance (refer to Figure 5.3d).  

In conclusion, despite seasonal variations in the landscape and the presence of clouds and cloud 

shadow regions in different parts of the images during various seasons, significant increases in 

agriculture classes – 10.98%, 22.44%, and 19.75% – corresponding with notable decreases in the 

exposed soil class during the monsoons of all the years, substantiate the prevalence of high 

agricultural activity during this season.  
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5.2 Comparative Analysis of Monthly Weather Data: In-Situ vs. GLDAS 

 In this section, average temperature, solar radiation, relative humidity, and reference 

evapotranspiration are labeled as 'Avg temp', 'Solar rad', 'Rh', and 'ETo', respectively, and are 

compared using scatter plots and correlation coefficients. In this section, it is noted that April 

corresponds to mid-summer, while December and January indicate the end of the Northeast 

Monsoon period. For convenience, one plot (Figure 5.4) corresponding to the April 2006 season 

and one table (Table 5.4) containing correlation coefficients for various weather parameters 

across the six year-month combinations are presented.  

 

Figure 5.4 Scatter plots containing comparisons average temperature(°C), relative humidity, 
solar radiation (MJ m-2 day-1), reference evapotranspiration (starting from left in a clockwise 
manner) for stations A) Kavalur B) PBR C) Vembakottai D) Kundrakudi  
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Table 5.4 Correlation Coefficients Between In-Situ and GLDAS Data for Meteorological 
Variables 

Year - Season Station Avg temp Solar rad Rh ETo
 

2006 - April Kavalur -0.01 0.46 0.74 -0.53 
2006 - April PBR 0.61 0.36 0.64 -0.71 
2006 - April Kundrakudi 0.43 0.23 0.15 -0.45 
2006 - April Vembakottai 0.58 0.46 0.61 -0.72 

2006 - December Kavalur 0.19 0.83 0.73 0.48 
2006 - December PBR 0.2 0.74 0.44 0.43 
2006 - December Kundrakudi 0.18 0.58 -0.04 0.48 
2006 - December Vembakottai 0.28 0.77 0.48 0.27 

2014 - April Kavalur 0.28 0.71 0.69 -0.23 
2014 - April PBR 0.46 0.8 0.38 -0.47 
2014 - April Kundrakudi 0.43 0.68 0.26 -0.55 
2014 - April Vembakottai 0 0.03 0 -0.24 
2014 - April Savaspuram 0.38 0.78 0.57 -0.45 

2015 - January Kavalur 0.6 0.81 0.58 0.12 
2015 - January PBR 0.73 0.54 0.53 -0.04 
2015 - January Kundrakudi -0.1 0.78 0.37 0.28 
2015 - January Vembakottai 0.26 0.1 -0.09 0.18 
2015 - January Savaspuram 0.37 0.76 0.57 0.06 

2021 - April Kavalur 0.88 0.85 0.57 -0.19 
2021 - April PBR 0.74 0.72 0.47 -0.01 
2021 - April Kundrakudi 0.77 0.76 0.04 -0.06 
2021 - April Vembakottai 0.68 0.72 0.29 0.15 
2021 - April Savaspuram 0.83 0.75 0.63 -0.17 

2021 - December Kavalur 0.62 0.9 0.84 0.34 
2021 - December PBR 0.63 0.37 0.64 -0.15 
2021 - December Kundrakudi 0.5 0.79 0.62 0.21 
2021 - December Vembakottai 0.36 0.56 0.79 0.22 
2021 - December Savaspuram 0.76 0.56 0.78 0.03 

It has to be noted that cells with values more than 0.7 are marked in green across average 

temperature, solar radiation, relative humidity. Based on the plots (Figure 5.4) and Table 5.4 

corresponding to April 2006, it is evident that all stations, except Kavalur, demonstrate positive 

relationships with the GLDAS data across the different variables.  
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However, outliers are observed within all stations and across all variables, which may be 

attributed to missing data or errors in data collection, particularly noticeable in the Kundrakudi 

station. For solar radiation, all stations exhibit positive relationships, albeit with correlation 

values below 0.5. In terms of relative humidity, Kundrakudi stands as an exception, while other 

stations exhibit higher correlation values. Additionally, all stations show strong negative 

correlations in reference evapotranspiration (ETo) estimates. Similar observations are made for 

other year-month combinations. Most cases show positive correlations for relative humidity 

and temperature, with varying magnitudes ranging from values close to 0 and 1. It should also 

be noted that there is no data available for the Savaspuram station in April 2006 and December 

2006, as well as for Vembakottai station in April 2014 for average temperature and relative 

humidity.  

Solar radiation exhibits positive values across all scenarios. The cases pertaining to average 

temperature, relative humidity and solar radiation across years exhibiting values greater than 

0.7 are highlighted in green. However, a pattern emerges with respect to reference 

evapotranspiration estimates, with a predominant negative relationship (marked in red) 

observed in April and a mostly positive relationship (marked in light green) in 

December/January for all years considered. It is important to reiterate that April signifies 

summer, while December or January refer to the end of the monsoon season. The key 

takeaways from this section suggest that the datasets are comparable, and GLDAS, based on 

climate models, is compatible in this region. However, outliers are present, indicating potential 

discrepancies in the data.  
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5.3 Interseason Comparison of Evapotranspiration Estimates Using SEBAL and 

EEFlux 

In this section, we will conduct an interseason comparison of ETa outputs within a year, focusing 

on different seasons and examining one year at a time. The primary unit for comparison will be 

the land cover class. During comparisons, the agro and prosopis classes are commonly referred 

to as the ‘vegetation classes,’ while the remaining classes are termed as the ‘non-vegetation 

classes.’ Within a given season, intermodal comparisons are conducted for each land cover class 

by considering two scenarios at a time. These comparisons are quantified using the correlation 

coefficient and root mean squared error (RMSE) in mm/day. With 3 scenarios in total, this 

analysis results in three groups, each consisting of two sets of values. The scenarios correspond 

to the ones discussed in section 4.2.4.  

Later, the trends and patterns in ETa mean values among the land cover classes per image across 

the three scenarios will be discussed. For the ease of the reader, descriptions of the scenarios 

and groups are tabulated below in Tables 5.5 and 5.6. 

Table 5.5 Scenarios for ETa mean comparisons 

Scenario Description 

Scenario 1 GLDAS weather rasters + GLDAS raster (at overpass) + Aster DEM 

Scenario 2 In-situ interpolated rasters + GLDAS raster (at overpass) + Aster DEM 

Scenario 3 EEFlux portal ETa estimates  
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  Table 5.6 Groups for intermodal comparisons 

Group Description 

Group 1 (G1) Scenario 1 vs Scenario 2 

Group 2 (G2) Scenario 2 vs Scenario 3 

Group 3 (G3) Scenario 3 vs Scenario 1 

To recap, scenario 1 involves ETa outputs produced using SEBAL with GLDAS data as 

meteorological forcing. Scenario 2 comprises outputs generated using SEBAL with interpolated 

in-situ weather data as the meteorological forcing, while scenario 3 consists of outputs from the 

EEFlux portal generated using the METRIC algorithm. Box plots are generated for various land 

cover classes corresponding to all three scenarios mentioned above. The content in this section 

and the naming conventions used in the maps and figures presented within are detailed below.  

It should be noted that in terms of the scenarios, scenario 2 is considered as the most important 

scenario as in-situ data is considered more representative of actual conditions compared to the 

GLDAS model data. Extending this to the groups, G2 is considered as the most important group 

because values obtained using in-situ data are compared with outputs from EEFlux, which 

represents a completely independent dataset. Scenario 1 and scenario 2 are closely related as 

they both utilize the same dataset to fulfill the instantaneous data requirement.  

Maps: Every year is presented with a map containing 6 panels. It is split vertically, with the three 

panels on the left pertaining to the summer season and the three on the right pertaining to the 

monsoon season.  
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Within a season, the first panel corresponds to scenario 1 labeled ‘Gldas SEBAL’, the second panel 

to scenario 2 labeled 'Insitu-interp SEBAL’, and the third panel to scenario 3, labeled ‘METRIC’. 

Figures: In this section, two figures are presented for every year, each consisting of a box plot 

where the unit of comparison is a land cover class. For each land cover class, three box plots are 

generated corresponding to the three scenarios mentioned above. They are labelled as 

ETa_gldas, ETa_insitu, and ETa_metric, respectively. The box plots are color-coded, and a legend 

is provided as a supplement.  

Tables: Additionally, intermodal comparisons are conducted for each land cover class by 

considering two scenarios at a time, with the results outlined per group as per Table 5.5. These 

comparisons are presented in tables alongside the box plot for the reader’s convenience. They 

are color-coded, and a legend is provided for clarity.  

First, the results for the year 2006 are presented, including maps, plots, and tables, along with 

corresponding observations. Subsequently, specific maps, figures, and tables for 2014 and 2021 

are provided. Consolidated observations and conclusions are reported based on the combined 

analysis of all three years, considering the shared patterns observed between the seasons within 

the different years. 
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Figure 5.5 Actual Evapotranspiration maps (mm/day), 2006 
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Figure 5.6 ETa comparison across scenarios and land cover classes, 2006 Summer 

Figure 5.7 ETa comparison across scenarios and land cover classes, 2006 Monsoon 
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Strong levels of agreement, as indicated by the correlation coefficient, are found in G1 for all land 

cover classes. This high correlation can be attributed to the determination of instantaneous heat 

fluxes and subsequently instantaneous evaporative fraction (EF_inst) described in Equations 

4.25-4.27 using instantaneous data, which is common between scenario 1 and scenario 2. The 

difference between the two scenarios is primarily reflected in the final computation stage where 

net radiation in a day (Rn_24) is multiplied with EF_inst, making Rn_24 the most important 

meteorological parameter in the daily data, as confirmed earlier. This explains why the 

correlation value is close to 1 and highlighting the importance of Rn_24 in determining the final 

ETa estimate.   

Similar levels are observed between the other two groups, G2 and G3, in both seasons (Figures 

5.6-5.7). During summer, the lowest RMSE values for the non-vegetation classes (barren, exposed 

soil, pre-growth) are observed in G1, while for vegetation classes (agro and prosopis), they are 

observed in G2 (Figure 5.6). For the monsoon season, except for the pre-growth class, the lowest 

RMSE values for the classes are observed in G2, with the RMSE value for pre-growth in G2 

exceeding that of G1 by 0.03 mm/day (Figure 5.7). For all classes, the highest RMSE values are 

observed in G3 in both seasons (Figures 5.6-5.7). 

Lower RMSE values imply a higher degree of concordance between the datasets, while the 

highest value signifies a greater magnitude of divergence. It is shown that the in-situ interpolated 

SEBAL values lie in proximity with the outputs from EEflux seen in G2 (Figures 5.6-5.7). 
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In this study, we consider G2 as the most important group for analysis as the in-situ-interpolated 

values are compared with the values generated from METRIC. In G2, in summer, the lowest value 

pertains to the exposed soil class with 1.18 mm/day, while the highest corresponds to the agro 

class with 1.51 mm/day (Figure 5.6). In the monsoon, the lowest value pertains to the exposed 

soil class, and the highest to the prosopis class (Figure 5.7). 

When RMSE is averaged across all classes in G2, we get a value of 1.30 mm/day in summer and 

0.86 mm/day in monsoon. When the correlation coefficient is averaged, the value is 0.84 in 

summer and 0.47 in the monsoon season (Figure 5.6-5.7). 

The decrease in correlation coefficient in the monsoon indicates a decrease in the linear 

relationship between the datasets. However, a decrease in RMSE indicates the convergence of 

the predictions during the wet season between the datasets. From Figures 5.6-5.7, in terms of 

mean values across the different scenarios, both in summer and monsoon, the highest values are 

observed in scenario 1 (colored in blue), pertaining to SEBAL outputs from the GLDAS data. In 

summer, scenario 2 (colored in brown) exhibits higher values compared to scenario 3 (colored in 

green) whereas in the monsoon season, the values are closer. 

Focusing on scenario 2, our focus group, in both seasons, it can be observed that the non-

vegetation classes collectively display lesser values compared to vegetation classes, and the 

lowest value is always exhibited by the exposed soil class, consistent with the class definition as 

it is expected to be the driest class among those selected for our analysis. 
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Figure 5.8 Actual Evapotranspiration maps (mm/day), 2014 
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Figure 5.9 ETa comparison metrics across scenarios and land cover classes, 2014 Summer 

 

Figure 5.10 ETa comparison metrics across scenarios and land cover classes, 2014 Monsoon 
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 Figure 5.11 Actual Evapotranspiration maps (mm/day), 2021 
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Figure 5.12 ETa comparison across scenarios and classes, 2021 Summer 

 

Figure 5.13 ETa comparison across scenarios and classes, 2021 Monsoon 



87 

 

In 2014, the summer season follows the same patterns as the 2006 summer, with the non-

vegetation classes exhibiting the least values in G1 and the vegetation classes in G2 when 

considering RMSE (Figure 5.6 & Figure 5.9). The remaining combinations (2014 Monsoon, 2021 

Summer, and 2021 Monsoon) exhibit similar RMSE patterns, with all classes showing the least 

RMSE in G2 and the highest in G3 (Figure 5.10, Figure 5.12, and Figure 5.13). 

Within each year between the seasons, in 2014 and 2021, similar to 2006, a decrease in both 

correlation coefficient and RMSE is observed for all classes across all groups (Figures 5.6-5.7, 

Figures 5.9-5.10, and Figures 5.12-5.13).  

When considering RMSE in G2, the most important group across classes, the exposed soil tends 

to exhibit the least values in 2014 summer and 2021 summer, similar to the patterns observed in 

2006 summer and 2006 monsoon. In terms of the highest RMSE in G2, the prosopis class exhibits 

the highest variability in all occasions except for 2006 summer and 2021 summer. Therefore, it 

can be concluded that in terms of variability between the in-situ interpolated SEBAL values and 

EEFlux values, the exposed soil and prosopis classes demonstrate the least and highest variability, 

respectively (Figures 5.6-5.7, Figures 5.9-5.10, and Figures 5.12-5.13). 

When G2 is considered and after averaging RMSE and correlation coefficient, as observed in 

2006, higher values are observed for both metrics in summer compared to the monsoon season, 

as tabulated in Table 5.7. This again demonstrates the increased proximity and reduced variability 

between the in-situ interpolated outputs and EEFlux outputs in the monsoon compared to 

summer.  
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Table 5.7 Averages of correlation coefficient (r) and RMSE across land cover classes in 
different seasons and years  

Year - Season Average r Average RMSE (mm/day) 

2006 Summer 0.84 1.30 

2006 Monsoon 0.47 0.86 

2014 Summer 0.77 1.29 

2014 Monsoon 0.51 0.90 

2021 Summer 0.78 1.03 

2021 Monsoon 0.51 0.79 

In terms of mean values across all years and seasons, scenario 1 consistently exhibits the highest 

value among all scenarios. Throughout the summer season in all years, the means of scenario 3 

tend to be lower than those of scenario 2, while in the monsoon, they remain similar. This 

observation aligns with the findings presented in Table 5.7, where RMSE values are lower in the 

monsoon compared to summer in G2. Regarding the classes, once again, the pattern of the 

exposed soil class exhibiting the lowest mean value and either of the vegetation classes exhibiting 

the highest value remains consistent for the remaining years as well (Figures 5.6-5.7, Figures 5.9-

5.10, and Figures 5.12-5.13). 

Since EEFlux is a widely used and well-developed dataset created through a joint effort spanning 

multiple organizations, this analysis highlights that in-situ interpolated SEBAL values exhibit good 

consistency, with RMSE values close to 1 mm/day during summer and even better performance 

in the monsoon season with values less than 1 mm/day (Table 5.7). This indicates the usefulness 

of this project. However, the absence of site measurements using lysimeters and flux towers 

presents a limitation. Validation with proper field data would provide further insight into the 

utility of these datasets (Allen et al., 2015). 
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5.4 Seasonal Variations in Actual Evapotranspiration Across Different Land 

Cover Classes 

This section describes the seasonal variations using the mean value as a reference for all land 

cover classes, focusing on scenario 2 containing ETa estimates from SEBAL forced using in-situ 

interpolated data. Through this section, we also explore the influence of the different 

components of the energy balance equation that are used to determine instantaneous latent 

heat flux (LE) and, in turn, actual evapotranspiration, as described in Equations 4.1, 4.25, and 

4.27. Two figures are included: Figure 5.14, consisting of five panels with each panel containing 

box plots corresponding to one land cover class across all year-season combinations; and Figure 

5.15, containing six tables corresponding to the year-season combinations analyzed in the 

previous section.  

Each table includes data on instantaneous soil heat flux (G), instantaneous sensible heat flux (H), 

instantaneous latent heat flux (LE), instantaneous net radiant energy (Rn_inst), net radiation in a 

day (Rn_24), and instantaneous evaporative fraction (EF_inst). The units for all energy fluxes are 

(W/m²), and EF_inst is a dimensionless quantity. The significance of Rn_24 is observed in 

Equation 4.27, where it is multiplied with EF_inst and the advection factor (Ω) to determine daily 

actual evapotranspiration (ET24) in mm/day.  In this section, the region considered for analysis is 

the part of study area that is masked by 6 cloud and cloud shadow layers pertaining to all images 

chosen in this study, along with built-up area masks and digital elevation masks. 
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Figure 5.14 Seasonal variations of actual evapotranspiration across land cover classes 

Table 5.8 Seasonal variations of energy fluxes in (W/m2) across land cover classes 
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From Figure 5.14, a decrease in mean ETa values during the monsoon season compared to the 

summer is observed for the years 2006 and 2021 when considering vegetation classes (agro and 

prosopis). Mean values remain similar in 2014. In non-vegetation classes, a comparison of the 

pre-growth class cannot be made for all years as it is absent during the monsoon season of 2014. 

In other years, a decrease in the mean is observed in 2006 within the year, while a slight increase 

is noted in 2014. Regarding other non-vegetation classes (exposed soil and barren), a similar 

pattern of a decrease in mean values is observed in 2006 and 2021, but a reversal is seen in 2014. 

These changes can be explained by examining the different energy fluxes. Between vegetation 

and non-vegetation classes, across all year-season combinations, the difference observed in soil 

heat flux (G) values within a season is close to 10W/m², indicating that there is not a remarkable 

difference between the classes concerning G. This is because soil heat flux is primarily influenced 

by surface temperature (Ts) more than albedo and NDVI, which are part of the equation used to 

determine G (Equation 4.16). In the monsoon season, a reduction in G is observed due to lower 

surface temperatures and increased soil moisture levels resulting from more precipitation 

compared to summer (Figure 5.15).  

With respect to the radiation components Rn_inst and Rn_24, notable differences are observed 

between the vegetation and non-vegetation classes. Within a year-season, when studying the 

range (maximum value – minimum value) of Rn_inst, values greater than 50 W/m² are observed 

in all cases except the 2014 monsoon season. When Rn_24 is considered, the values are lower 

between the vegetation and non-vegetation classes since it is averaged throughout the day, with 
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a difference range between 12-21W/m² across the year seasons. This difference is attributed to 

the increased absorption of radiation fluxes by surfaces with vegetation compared to surfaces 

devoid of any vegetation, as observed in (Li & Zhao, 2010). A decline in both components is seen 

in the monsoon season compared to summer, which is typical during the monsoon season in this 

part of India. 

The most complicated and challenging energy flux in SEBAL is the sensible heat flux (H), reliant 

on various parameters, corrections, and assumptions as discussed in the theoretical section 4.2.1 

above. pySEBAL involves the automated selection of hot and cold pixels using percentiles of Ts 

and NDVI, which play a crucial role in the final estimate of H as described in section 4.2.2. Unlike 

soil heat flux (G), net radiation components Rn_inst and Rn_24, where a decrease is observed 

during the monsoon season, seasonal patterns or variations are not observed in sensible heat 

flux (H) (Figure 5.15). This is because H is dependent on the combined influence of the near-

surface temperature difference between two vertical levels (dT) and aerodynamic resistance to 

heat transport (rah) (Equation 4.17), with both components involving an elaborate calculation 

procedure as shown in Figures 4.1-4.2 (Bezerra et al., 2015). 

But within the different land cover classes, non-vegetation classes consistently showcase higher 

H values compared to vegetation classes. This tendency can be attributed to the relatively cooler 

plant-soil interface in agriculture, obtained because of watering. In the case of prosopis, its 

utilization of groundwater and atmospheric moisture could lead to a more humid plant-soil 

interface, thereby minimizing disparities between surface and air temperature (dT) (Shiferaw et 
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al., 2021) Consequently, this phenomenon leads to lower estimates of H for the vegetation 

classes compared to the non-vegetation classes (Figure 5.15). 

Ultimately, the combination of all fluxes decides EF_inst, which along with Rn_24 and the 

advection factor, dictates the final ET estimate (Equations 4.26 - 4.27). Across all the year-season 

combinations, the vegetation classes have higher EF_inst values compared to the non-vegetation 

classes within a chosen year-season (Figure 5.15). However, the patterns of mean ETa values do 

not necessarily reflect in EF_inst as Rn_24 is also needed to calculate the final ETa estimate.  

When comparing the summer season mean ETa estimates across all land cover classes between 

2006, 2014, and 2021, a sharp drop is observed in 2014 following a rise in 2021, starting from 

2006. For the monsoon season, though, the estimates across all classes do not exhibit such a 

sharp variation as seen in the summer season. Mild increasing trends are observed for the agro 

and prosopis classes (Figure 5.14). 

Through the findings, we can conclude that the seasonal changes in the climatology of the 

landscape during the monsoon, reflected by lower surface temperatures, reduced radiation, 

higher precipitation, and the difference in land cover types, influence the actual 

evapotranspiration estimates.  
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5.5 Estimating Water Outflux Variability Across Seasons and Years Across 

Different Land Cover Classes 

This section presents the average net water outflux (in m³/day) across different land cover classes 

throughout the landscape, as depicted in Figure 5.18. The water outflux estimate is derived by 

multiplying the area covered by each land cover class within a day by the corresponding mean 

ETa value for that class on the same date. The normalization procedures applied to the landscape, 

including masking various layers as outlined in the previous section, remain consistent in this 

context. Figures 5.16 to 5.18 below illustrate variations in mean ETa values, changes in the study 

area, and the resultant water outflux between seasons and across different years for all land 

cover classes obtained by combining area with ETa estimates pertaining to one class. In the 

figures, the following labels are used: AG for agriculture class (green), BA for barren land (red), 

ES for exposed soil (gold), PG for pre-growth (purple), and PS for prosopis (blue). 

 

Figure 5.15 ETa in (mm/day) across land cover classes over seasons and years 
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Figure 5.16 Area encompassed in (km2) across land cover classes over seasons and years 

 

 

Figure 5.17 Average water outflux in (m3/day) across land cover classes over seasons and 
years. Note: To obtain the actual values on the y-axis, multiply the values by 106 
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The most important pattern observed in the land cover analysis (section 5.1 and Figure 5.17), 

where there is a concurrent decrease in the exposed soil class along with an increase in the 

agriculture class during the monsoon, is reflected here even after aggregating the 

evapotranspiration component to obtain the water outflux, over 2006 and 2021 (Figures 5.16-

5.18). However, the difference (decline) in the value in the exposed soil class is less apparent in 

2014 due to the combined effects of ETa means and the decline in area (Figure 5.18).  

A clear decline in the outflux rates in monsoon is observed in 2006 and 2021, along with an 

increase in 2014, for both the barren land and prosopis classes. For the barren land class, it is 

inferred that the decline and the increase in corresponding years is related to the ETa estimates 

to a large extent, as there is not a significant change in area observed between seasons within a 

year in the years considered for analysis. The decrease in monsoon for the pre growth class in 

2006 relates to the corresponding decreases in ETa and the area and the increase in 2021 can be 

attributed to increased mean ETa and the increase in area during 2021 (Figures 5.16-5.18).  

In the case of prosopis, despite an increase in area in monsoon, the decrease in ETa has resulted 

in lesser outflux values during 2006 whereas a decline in area and ETa in 2021 is associated with 

a decline in the net water outflux in 2021. Increase in both the values in 2014 has resulted in an 

increase in water outflux in 2014 monsoon (Figures 5.16-5.18). 

In an overall sense, when summer seasons are exclusively compared, for all the land cover 

classes, starting at 2006, a consistent pattern of a decline 2014 followed by an increase in 2021 

is seen (Figure 5.18).  



97 

 

When monsoon is considered, an increasing pattern is observed for agriculture between 2006 

and 2014. For both barren land and exposed soil classes, starting at 2006, an increase in 2014 

and a decrease in 2021 is seen. For prosopis, another major class of concern, a stable range is 

found between the monsoon seasons in 2006, 2014 and 2021 which is an important finding in 

our study (Figure 5.18).  

Table 5.9 Total Water Outflux in m3/day across the years and seasons 

 

Table 5.8 presents the total water outflux occurring in the landscape, obtained by adding uo the 

water outflux from all individual land cover classes per season and year (Figure 5.18). From the 

table, an increase in the monsoon season is noted in 2014, whereas a decline in the monsoon 

season is observed for the rest of the years.  

It should be noted that these estimates represent a single day during the satellite overpass. They 

could be regarded as reasonable estimates for water budgeting purposes during mid-summer 

and the end of the northeast monsoon. As discussed earlier in the thesis, one image represents 

mid-summer and one the end of the northeast monsoon. However, to quantify the ETa outflux 
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for a whole season, more images would be needed to account for variations in meteorology and 

landcover changes which control actual evapotranspiration. 
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6 Discussion  

The Gundar River Basin is a unique landscape, home to a diverse set of land cover types. 

Evapotranspiration (ET) is an important hydrological variable and to the best of our knowledge, 

this study represents the first comprehensive effort to measure basin-wide ET and assess its 

variability across different land cover classes and seasons within a year in this landscape, 

providing insights into the seasonal behaviour of ET and the corresponding influence of different 

land cover classes on the final estimate. Given the interconnectedness of various land cover types 

in the water balance of the region, assessing ET over different land cover types becomes highly 

important. By combining results from the land cover classification analysis and ET estimations 

using SEBAL, a comprehensive understanding of water loss through ET within the landscape is 

obtained. In regions like these, where agriculture is prevalent throughout the year, ET estimates 

are crucial for managing water resources in an effective manner which involves a wide variety of 

stakeholders.  

Despite seasonal variations and the presence of clouds and cloud shadow regions, noticeable 

patterns were observed across all land cover classes, particularly water classes, exposed soil, and 

agriculture. Consistent patterns were observed in the seasonal change detection, indicating the 

conversion of dry agricultural land (referred to as the exposed soil class in our analysis) from 

summer into wet agricultural land during the monsoon season for all the years. The increase in 

area and appearance of pixels indicating water classes during the monsoon season further 

indicates the effectiveness of the land cover maps in simulating real-time conditions.  
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It has to be noted that, despite the presence of numerous tanks, not all of them get filled during 

the monsoon season due to poor maintenance and also possibly due to the hydrological 

dynamics present in the region, influenced by activities like agriculture, groundwater extraction 

etc. Utilizing the ESA World Cover 10m, 2020 global land cover product to mask out built-up areas 

proved effective for seasonal land cover change detection since built-up areas often contain 

diverse components and can be challenging to differentiate from other classes. The use of a 

consolidated two-layer cloud mask for seasonal analysis, along with a six-layer cloud mask, has 

proven beneficial for a comprehensive analysis within seasons and across years, particularly for 

assessing the variability of ETa.  

GLDAS data are used currently to fulfill the instantaneous data requirement due to the lack of 

availability of instantaneous in-situ data during satellite overpasses. Exploring and comparing the 

use of other gridded products could provide insights into the difference in performances when 

used as a forcing parameter in pySEBAL.  

Correlation coefficients and RMSE values across all the year-season combinations in G2 show 

lower values during the monsoon season compared to the summer season. Additionally, our 

findings regarding the range of ETa mean values with the different land cover classes align with 

those reported in previous studies (Ayad Ali Faris Beg et al., 2016; Jana et al., 2016; Karishma et 

al., 2022; Li & Zhao, 2010; Ning et al., 2017) exhibiting pySEBAL's ability to demarcate classes 

where the non-vegetation classes exhibit lower ETa mean when compared to the vegetation class.  
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The differences between the extreme mean values (between the exposed soil and either of the 

vegetation classes) range from 0.97 mm/day during the 2014 monsoon to 2.4 mm/day in the 

2006 summer, with four year-season combinations crossing 2 mm/day overall. Regarding heat 

flux components, Ts dictates soil heat flux values, with reductions during the monsoon season 

due to lower temperatures. Sensible heat flux (H), influenced by rah and dT, introduces 

uncertainties in ETa estimation, particularly notable as it involves multiple parameterizations and 

corrections. Vegetation classes generally exhibit lower H values compared to non-vegetation 

classes. A similar pattern is also observed for the components - instantaneous net radiant energy 

(Rn_inst) and net radiation in a day (Rn_24).  

Regarding the estimation of water outflux for the entire landscape, a decrease was observed 

during the monsoon seasons of 2006 and 2021, while an increase was noted in 2014. One 

plausible explanation could be a drought year, as indicated by the reduced area encompassed by 

water classes compared to previous years. Comparing the water outflux values during the 

summer seasons across the years, a consistent pattern emerged: a decrease in 2014 followed by 

an increase in 2021, starting from 2006, across all land cover classes. Interestingly, when 

comparing the monsoon seasons between the years, the most important finding was that the 

water outflux remained relatively stable for the prosopis class, with minimal variability observed 

between the years.  
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6.1 Limitations 

Limitations include the 16-day Landsat image cycle, which may result in data loss due to cloud 

cover. Additionally, the use of image composites introduces uncertainties in accuracy, as 

composites may not fully represent the actual spectral behavior of the study area. However, 

evaluating the sensitivity of different composites presents an opportunity to assess their 

usefulness. As a workaround, consolidated cloud masks were used in this study, although this 

approach may result in loss of area coverage.  

Lack of instantaneous in-situ data is another constraint. Assumptions in the SEBAL model, such 

as constant EF_inst throughout the day and a linear relationship between Ts and dT for estimating 

the sensible heat flux (H), need to be acknowledged. In terms of processing, pySEBAL relies on a 

single Landsat scene. If the study area spans multiple scenes, each scene must be processed 

separately, and then the values for the study area are combined. This approach may present 

challenges, particularly when estimating H, which requires the selection of anchor pixels.  

6.2 Future Work 

Future work could involve obtaining seasonal and yearly ET estimates using multiple images, 

utilizing datasets with fused synthetic images to avoid cloud interference like planet fusion data 

(Planet Fusion Team, 2021), mapping prosopis more thoroughly using higher resolution imagery, 

and localized calibration of parameters for determining sensible heat flux.  
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As mentioned in section 2.2.4, usage of other SEB models like SSEBI, SEBSM and SSEB can also be 

explored. Additionally, validation through field lysimeters and flux towers would enhance the 

study's value, especially when examining seasonal changes and behavior. 
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7 Conclusion 

Section 5.1 discusses the land cover analysis, which achieved high overall accuracy levels 

exceeding 90% using the random forest algorithm across all six images. This emphasizes the 

capability of the random forest algorithm in differentiating land cover classes, as discussed in the 

literature review. Section 5.2 compares in-situ data with GLDAS data ensuring the compatibility 

of the GLDAS dataset, and depicting the usefulness of the GLDAS data in the analysis. Section 5.3 

presents a comprehensive analysis that involves estimation of ETa using two scenarios using 

pySEBAL and the comparison with the EEFlux data which is an independent dataset using 

correlation coefficient and RMSE. Section 5.4 elucidates the role of different energy fluxes and 

their influence on final ET estimates, while Section 5.5 highlights the combined role of areas 

encompassed by different land cover classes and mean ETa values between seasons. 

The seasonal land cover analysis highlighted the predominant patterns present in the region, 

including an increase in agriculture and the filling up of water bodies during the monsoon  season. 

The proximity observed between SEBAL and EEFlux based outputs, especially during the 

monsoon season, demonstrates the successful implementation of the SEBAL model in our study 

area and its comparability with equivalent products. The next step would involve validation with 

in-situ measurements. A more comprehensive understanding of energy fluxes can be obtained 

through a time-series analysis involving multiple images, for which this study is a valuable 

reference. Estimating water outflux could help in zonal planning, considering that different zones 
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have varying resources and budgets. For instance, a district could be considered as a zone in the 

Indian context. 

This research presents a framework for analyzing evapotranspiration in large, heterogeneous 

landscapes like river basins, encompassing various land cover classes undergoing seasonal 

changes. In conclusion, this study provides a multi-step scientific framework for estimating ET in 

data-scarce, heterogeneous, and semi-arid regions where water management and planning 

efforts are crucial. In the study area, the importance of tank maintenance, strategic handling of 

prosopis due to its implications on the local economy, and zonal planning becomes crucial to 

support the variety of activities, especially year-round agriculture. 

  



106 

 

References 

1. Abbott, B. W., Bishop, K., Zarnetske, J. P., Minaudo, C., Chapin, F. S., Krause, S., ... & 

Pinay, G. (2019). Human domination of the global water cycle absent from depictions 

and perceptions. Nature Geoscience, 12(7), 533-540.  

2. Abrams, M., Yamaguchi, Y., & Crippen, R. (2022). Aster Global Dem (GDEM) Version 

3. The International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, 43, 593-598. 

3. Ahmad, M.-D., Biggs, T., Turral, H., & Scott, C. A. (2006). Application of SEBAL approach 

and MODIS time-series to map vegetation water use patterns in the data scarce Krishna 

River basin of India. Water Science and Technology, 53(10), 83–90. 

https://doi.org/10.2166/wst.2006.301 

4. Allan, R. P., Barlow, M., Byrne, M. P., Cherchi, A., Douville, H., Fowler, H. J., ... & Zolina, 

O. (2020). Advances in understanding large-scale responses of the water cycle to climate 

change. Annals of the New York Academy of Sciences, 1472(1), 49-75  

5. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-

Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 

56. Fao, Rome, 300(9), D05109. 

6. Allen, R., Irmak, A., Trezza, R., Hendrickx, J. M., Bastiaanssen, W., & Kjaersgaard, J. 

(2011). Satellite-based ET estimation in agriculture using SEBAL and 

METRIC. Hydrological processes, 25(26), 4011-4027. 

https://doi.org/10.2166/wst.2006.301


107 

 

7. Allen, R., Morton, C., Kamble, B., Kilic, A., Huntington, J., Thau, D., Erickson, T., Moore, 

R., Trezza, R., Ratcliffe, I., & Robison, C. (2015). EEFlux: A Landsat-based 

Evapotranspiration mapping tool on the Google Earth Engine. 

8. Amini, S., Saber, M., Rabiei-Dastjerdi, H., & Homayouni, S. (2022). Urban Land Use and 

Land Cover Change Analysis Using Random Forest Classification of Landsat Time Series. 

Remote Sensing, 14(11), 2654. https://doi.org/10.3390/rs14112654 

9. Ayad Ali Faris Beg, Ahmed H. Al-Sulttani, Adrian Ochtyra, Anna Jarocińska, & Adriana 

Marcinkowska. (2016). Estimation of Evapotranspiration Using SEBAL Algorithm and 

Landsat-8 Data—A Case Study: Tatra Mountains Region. Journal of Geological Resource 

and Engineering, 4(6). https://doi.org/10.17265/2328-2193/2016.06.002 

10. Bala, A., Rawat, K. S., Misra, A. K., & Srivastava, A. (2016). Assessment and validation of 

evapotranspiration using SEBAL algorithm and Lysimeter data of IARI agricultural farm, 

India. Geocarto International, 31(7), 739–764. 

https://doi.org/10.1080/10106049.2015.1076062 

11. Bandyopadhyay, A., Bhadra, A., Raghuwanshi, N. S., & Singh, R. (2009). Temporal trends 

in estimates of reference evapotranspiration over India. Journal of Hydrologic 

Engineering, 14(5), 508-515. 

12. Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A 

remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. 

Journal of Hydrology, 212–213, 198–212. https://doi.org/10.1016/S0022-

1694(98)00253-4 

https://doi.org/10.3390/rs14112654
https://doi.org/10.1080/10106049.2015.1076062


108 

 

13. Beaudoing, H. and M. Rodell, NASA/GSFC/HSL (2020), GLDAS Noah Land Surface Model 

L4 3 hourly 0.25 x 0.25 degree V2.1, Greenbelt, Maryland, USA, Goddard Earth Sciences 

Data and Information Services Center (GES DISC), Accessed: [Data Access 

Date], 10.5067/E7TYRXPJKWOQ 

14. Bezerra, B. G., da Silva, B. B., dos Santos, C. A., & Bezerra, J. R. (2015). Actual 

evapotranspiration estimation using remote sensing: comparison of SEBAL and SSEB 

approaches. Advances in Remote Sensing, 4(03), 234. 

15. Bhattarai, N., Shaw, S. B., Quackenbush, L. J., Im, J., & Niraula, R. (2016). Evaluating five 

remote sensing based single-source surface energy balance models for estimating daily 

evapotranspiration in a humid subtropical climate. International Journal of Applied 

Earth Observation and Geoinformation, 49, 75–86. 

https://doi.org/10.1016/j.jag.2016.01.010 

16. Bhimala, K. R., Patra, G. K., & Goroshi, S. (2023). Annual and seasonal trends in actual 

evapotranspiration over different meteorological sub-divisions in India using satellite-

based data. Theoretical and Applied Climatology, 152(3-4), 999-1017. 

17. Chanu, C. S., Munagapati, H., Tiwari, V. M., Kumar, A., & Elango, L. (2020). Use of GRACE 

time-series data for estimating groundwater storage at small scale. Journal of Earth 

System Science, 129(1), 215. https://doi.org/10.1007/s12040-020-01465-2 

18. Chattopadhyay, N., & Hulme, M. (1997). Evaporation and potential evapotranspiration 

in India under conditions of recent and future climate change. Agricultural and Forest 

Meteorology, 87(1), 55–73. https://doi.org/10.1016/S0168-1923(97)00006-3 

https://doi.org/10.5067/E7TYRXPJKWOQ
https://doi.org/10.1016/j.jag.2016.01.010
https://doi.org/10.1007/s12040-020-01465-2
https://doi.org/10.1016/S0168-1923(97)00006-3


109 

 

19. Chemura, A., Rwasoka, D., Mutanga, O., Dube, T., & Mushore, T. (2020). The impact of 

land-use/land cover changes on water balance of the heterogeneous Buzi sub-

catchment, Zimbabwe. Remote Sensing Applications: Society and Environment, 18, 

100292. https://doi.org/10.1016/j.rsase.2020.100292 

20. Chinnasamy, P., & Agoramoorthy, G. (2015). Groundwater Storage and Depletion Trends 

in Tamil Nadu State, India. Water Resources Management, 29(7), 2139–2152. 

https://doi.org/10.1007/s11269-015-0932-z 

21. Crawford, C.J., Roy, D.P., Arab, S., Barnes, C., Vermote, E., Hulley, G., Gerace, A., Choate, 

M., Engebretson, C., et al. 2023. “The 50-Year Landsat Collection 2 Archive.” Science of 

Remote Sensing (2023)  https://doi.org/10.1016/j.srs.2023.100103. 

22. Darshana, Pandey, A., & Pandey, R. P. (2013). Analysing trends in reference 

evapotranspiration and weather variables in the Tons River Basin in Central India. 

Stochastic Environmental Research and Risk Assessment, 27(6), 1407–1421. 

https://doi.org/10.1007/s00477-012-0677-7 

23. Dhawan, V. (2017). Water and agriculture in India. In Background paper for the South 

Asia expert panel during the Global Forum for Food and Agriculture (Vol. 28, pp. 80-85) 

Fr. 5.00. WMO No. 156,Technical Note No. 63. . 

24. Gadgil, S., & Gadgil, S. (2006). The Indian monsoon, GDP and agriculture. Economic and 

political weekly, 4887-4895. 

https://doi.org/10.1016/j.rsase.2020.100292
https://doi.org/10.1007/s11269-015-0932-z
https://doi.org/10.1016/j.srs.2023.100103


110 

 

25. Gao, F., Feng, G., Ouyang, Y., Wang, H., Fisher, D., Adeli, A., & Jenkins, J. (2017). 

Evaluation of reference evapotranspiration methods in arid, semiarid, and humid 

regions. JAWRA Journal of the American Water Resources Association, 53(4), 791-808.. 

26. Glenn, E. P., Huete, A. R., Nagler, P. L., Hirschboeck, K. K., & Brown, P. (2007). Integrating 

Remote Sensing and Ground Methods to Estimate Evapotranspiration. Critical Reviews 

in Plant Sciences, 26(3), 139–168. https://doi.org/10.1080/07352680701402503 

27. Goroshi, S., Pradhan, R., Singh, R. P., Singh, K. K., & Parihar, J. S. (2017). Trend analysis of 

evapotranspiration over India: Observed from long-term satellite measurements. 

Journal of Earth System Science, 126(8), 113. https://doi.org/10.1007/s12040-017-

08912 

28. Goyal, R. K. (2004). Sensitivity of evapotranspiration to global warming: a case study of 

arid zone of Rajasthan (India). Agricultural water management, 69(1), 1-11. 

29. Gujja, B., Alagh, Y. K., Pangare, G., & Gujja, B. (2006). Interlinking of Rivers in India. New 

Delhi: Academic Foundation, in collaboration with the National Civil Society Committee 

on Interlinking of Rivers in India (NCSCILR). 

30. Hari, M., Tyagi, B., Huddar, M. S. K., & Harish, A. (2021). Satellite-based regional-scale 

evapotranspiration estimation mapping of the rice bowl of Tamil Nadu: A little water to 

spare *. Irrigation and Drainage, 70(4), 958–975. https://doi.org/10.1002/ird.2553 

31. Huntington, T. G. (2006). Evidence for intensification of the global water cycle: Review 

and synthesis. Journal of Hydrology, 319(1–4), 83–95. 

https://doi.org/10.1016/j.jhydrol.2005.07.003 

https://doi.org/10.1080/07352680701402503
https://doi.org/10.1007/s12040-017-08912
https://doi.org/10.1007/s12040-017-08912
https://doi.org/10.1002/ird.2553
https://doi.org/10.1016/j.jhydrol.2005.07.003


111 

 

32. Jana, C., Rawat, M., Sena, D. R., Alam, N. M., Mandal, U., Kaushal, R., & Mishra, P. K. 

(2016). Application of SEBAL model to estimate Evapotranspiration in Doon Valley, India. 

33. Janani, N., Kannan, B., Nagarajan, K., Thiyagarajan, G., & Duraisamy, M. R. (2023). Trend 

analysis and variability of satellite-based soil moisture data for the Lower Bhavani basin, 

Tamil Nadu using Google Earth Engine. Journal of Applied and Natural Science, 15(2), 

555-559. 

34. Jensen, M. E. (1967). Empirical methods of estimating or predicting evapotranspiration 

using radiation. 

35. Jensen, M. E. (1968). Water consumption by agricultural plants (Chapter 1). 

36. John, J., Chithra, N. R., & Thampi, S. G. (2019). Prediction of land use/cover change in 

the Bharathapuzha river basin, India using geospatial techniques. Environmental 

Monitoring and Assessment, 191(6), 354. https://doi.org/10.1007/s10661-019-7482-4 

37. Kamali, M. I., & Nazari, R. (2018). Determination of maize water requirement using 

remote sensing data and SEBAL algorithm. Agricultural Water Management, 209, 197–

205. https://doi.org/10.1016/j.agwat.2018.07.035 

38. Kamaraj, M., & Rangarajan, S. (2022). Predicting the future land use and land cover 

changes for Bhavani basin, Tamil Nadu, India, using QGIS MOLUSCE plugin. 

Environmental Science and Pollution Research, 29(57), 86337–86348. 

https://doi.org/10.1007/s11356-021-17904-6 

39. Kamyab, A. D., Mokhtari, S., & Jafarinia, R. (2022). A comparative study in quantification 

of maize evapotranspiration for Iranian maize farm using SEBAL and METRIC-1 EEFLux 

https://doi.org/10.1007/s10661-019-7482-4
https://doi.org/10.1016/j.agwat.2018.07.035


112 

 

algorithms. Acta Geophysica, 70(1), 319–332. https://doi.org/10.1007/s11600-021-

00704-4 

40. Karimi, P., Pareeth, S., & Michailovsky, C. (2019). Rapid assessment of the water 

accounts in Urmia Lake basin. Project Report. 

41. Karishma, C. G., Kannan, B., Nagarajan, K., Panneerselvam, S., & Pazhanivelan, S. (2022). 

Spatial and temporal estimation of actual evapotranspiration of lower Bhavani basin, 

Tamil Nadu using Surface Energy Balance Algorithm for Land Model. Journal of Applied 

and Natural Science, 14(2), 566-574. 

42. Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-

Geiger climate classification updated. 

43. KP, R., Kannan, B., PJ, P., & GR, M. (2021). Agricultural drought monitoring in Tamil Nadu 

in India using Satellite-based multi vegetation indices. Journal of Applied and Natural 

Science, 13(2), 414-423. 

44. Krishna, P. R. A. (2019). Evapotranspiration and agriculture-A review. AGRICULTURAL 

REVIEWS, 40(1). 

45. Kulkarni, A. D., & Lowe, B. (n.d.). Random Forest Algorithm for Land Cover Classification. 

International Journal on Recent and Innovation Trends in Computing and 

Communication, 4(3). 

46. Kundu, S., Mondal, A., Khare, D., Hain, C., & Lakshmi, V. (2018). Projecting Climate and 

Land Use Change Impacts on Actual Evapotranspiration for the Narmada River Basin in 

https://doi.org/10.1007/s11600-021-00704-4
https://doi.org/10.1007/s11600-021-00704-4


113 

 

Central India in the Future. Remote Sensing, 10(4), 578. 

https://doi.org/10.3390/rs10040578 

47. Lal, M. (2001). Climatic Change—Implications for India’s Water Resources. Journal of 

Social and Economic Development 

48. Li, F., & Lyons, T. J. (1999). Estimation of regional evapotranspiration through remote 

sensing. Journal of Applied Meteorology and Climatology, 38(11), 1644-1654. 

49. Li, G., Zhang, F., Jing, Y., Liu, Y., & Sun, G. (2017). Response of evapotranspiration to 

changes in land use and land cover and climate in China during 2001–2013. Science of 

the Total Environment, 596, 256-265. 

50. Li, S., & Zhao, W. (2010). Satellite-based actual evapotranspiration estimation in the 

middle reach of the Heihe River Basin using the SEBAL method. Hydrological Processes, 

24(23), 3337–3344. https://doi.org/10.1002/hyp.7748 

51. Loukika, K. N., Keesara, V. R., & Sridhar, V. (2021). Analysis of land use and land cover 

using machine learning algorithms on google earth engine for Munneru River Basin, 

India. Sustainability, 13(24), 13758. 

52. Madhu, S., Kumar, T. V. L., Barbosa, H., Rao, K. K., & Bhaskar, V. V. (2015). Trend analysis 

of evapotranspiration and its response to droughts over India. Theoretical and Applied 

Climatology, 121(1–2), 41–51. https://doi.org/10.1007/s00704-014-1210-3 

53. Maharana, P., & Dimri, A. P. (2019). The Indian Monsoon: past, present and future. 

Proceedings of the Indian National Science Academy, 85(2), 403-420 

https://doi.org/10.3390/rs10040578
https://doi.org/10.1002/hyp.7748
https://doi.org/10.1007/s00704-014-1210-3


114 

 

54. Misra, & Bhardwaj, A. (2019). Defining the Northeast Monsoon of India. Monthly 

Weather Review, 147(3), 791–807. https://doi.org/10.1175/MWR-D-18-0287.1 

55. Mohan, S. (1991). Intercomparison of evapotranspiration estimates. Hydrological 

Sciences Journal, 36(5), 447–460. https://doi.org/10.1080/02626669109492530 

56. Munawir, A., June, T., Kusmana, C., & Setiawan, Y. (2022). SEBAL Model to Estimate 

Biophysics and Energy Flux Variable: Availability of Evapotranspiration Distribution Using 

Remote Sensing in Lore Lindu National Park. IOP Conference Series: Earth and 

Environmental Science, 950(1), 012022. https://doi.org/10.1088/1755-

1315/950/1/012022 

57. National Water Mission. (2017, July 21). Gundar Basin. National Water Mission. 

http://nwm.gov.in/sites/default/files/Gundar_Basin-21-07-2017.pdf 

58. Nguyen, H. T. T., Doan, T. M., & Radeloff, V. (2018). APPLYING RANDOM FOREST 

CLASSIFICATION TO MAP LAND USE/LAND COVER USING LANDSAT 8 OLI. The 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information 

Sciences, XLII-3/W4, 363–367. https://doi.org/10.5194/isprs-archives-XLII-3-W4-363-

2018 

59. Ning, J., Gao, Z., & Xu, F. (2017). Effects of land cover change on evapotranspiration in 

the Yellow River Delta analyzed with the SEBAL model. Journal of Applied Remote 

Sensing, 11(1), 016009. https://doi.org/10.1117/1.JRS.11.016009 

60. Pal, L., Kumar, A., Ojha, C. S. P., & Chandniha, S. K. (2018). Sebal Based 

Evapotranspiration Estimation for Upper Tapi Basin (India). IGARSS 2018 - 2018 IEEE 

https://doi.org/10.1175/MWR-D-18-0287.1
https://doi.org/10.1080/02626669109492530
https://doi.org/10.1088/1755-1315/950/1/012022
https://doi.org/10.1088/1755-1315/950/1/012022
https://doi.org/10.5194/isprs-archives-XLII-3-W4-363-2018
https://doi.org/10.5194/isprs-archives-XLII-3-W4-363-2018
https://doi.org/10.1117/1.JRS.11.016009


115 

 

International Geoscience and Remote Sensing Symposium, 7380–7382. 

https://doi.org/10.1109/IGARSS.2018.8518982 

61. Palanisami, K., Ranganathan, C. R., Vidhyavathi, A., Rajkumar, M., & Ajjan, N. (2011). 

Performance of agriculture in river basins of Tamil Nadu in the last three decades–A 

total factor productivity approach. A Project Sponsored by Planning Commission, 

Government of India. Centre for Agricultural and Rural Development Studies, Tamil 

Nadu Agricultural University, 1-171. 

62. Papadavid, G., Neocleous, D., Kountios, G., Markou, M., Michailidis, A., Ragkos, A., & 

Hadjimitsis, D. (2017). Using SEBAL to Investigate How Variations in Climate Impact on 

Crop Evapotranspiration. Journal of Imaging, 3(3), 30. 

https://doi.org/10.3390/jimaging3030030 

63. Pareeth, S., & Karimi, P. (2023). Evapotranspiration estimation using Surface Energy 

Balance Model and medium resolution satellite data: An operational approach for 

continuous monitoring. Scientific Reports, 13(1), 12026. 

https://doi.org/10.1038/s41598-023-38563-2 

64. Pathak, H., Pramanik, P., Khanna, M., & Kumar, A. (2014). Climate change and water 

availability in Indian agriculture: Impacts and adaptation. The Indian Journal of 

Agricultural Sciences, 84(6). https://doi.org/10.56093/ijas.v84i6.41421 

65. Phan, T. N., Kuch, V., & Lehnert, L. W. (2020). Land Cover Classification using Google 

Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote 

Sensing, 12(15), 2411. https://doi.org/10.3390/rs12152411 

https://doi.org/10.3390/jimaging3030030
https://doi.org/10.1038/s41598-023-38563-2
https://doi.org/10.56093/ijas.v84i6.41421
https://doi.org/10.3390/rs12152411


116 

 

66. Phiri, D., & Morgenroth, J. (2017). Developments in Landsat Land Cover Classification 

Methods: A Review. Remote Sensing, 9(9), 967. https://doi.org/10.3390/rs9090967 

67. Rahimzadegan, M., & Janani, A. (2019). Estimating evapotranspiration of pistachio crop 

based on SEBAL algorithm using Landsat 8 satellite imagery. Agricultural Water 

Management, 217, 383–390. https://doi.org/10.1016/j.agwat.2019.03.018 

68. Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C.-J., Arsenault, 

K., Cosgrove, B., Radakovich, J., Bosilovich, M., Entin, J. K., Walker, J. P., Lohmann, D., & 

Toll, D. (2004). The Global Land Data Assimilation System. Bulletin of the American 

Meteorological Society, 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381 

69. Saboori, M., Mousivand, Y., Cristóbal, J., Shah-Hosseini, R., & Mokhtari, A. (2022). An 

Automated and Improved Methodology to Retrieve Long-time Series of 

Evapotranspiration Based on Remote Sensing and Reanalysis Data. Remote Sensing, 

14(24), 6253. https://doi.org/10.3390/rs14246253 

70. Samui, R. P., Balasubramanian, R., & Kamble, M. V. (2013). Northeast monsoon rainfall 

and agricultural production in Tamil Nadu and Andhra Pradesh: II - Dry and wet spell and 

its impact on cropping pattern. MAUSAM, 64(3), 489–500. 

https://doi.org/10.54302/mausam.v64i3.731 

71. Sato, T. (2013). Beyond water-intensive agriculture: Expansion of Prosopis juliflora and 

its growing economic use in Tamil Nadu, India. Land use policy, 35, 283-292. 

https://doi.org/10.3390/rs9090967
https://doi.org/10.1016/j.agwat.2019.03.018
https://doi.org/10.1175/BAMS-85-3-381
https://doi.org/10.3390/rs14246253
https://doi.org/10.54302/mausam.v64i3.731


117 

 

72. Sato, T., & Duraiyappan, P. R. (2011). The effects of expansion of private wells on rural 

livelihood in tank intensive watersheds: A case study in upper Gundar River Basin, Tamil 

Nadu. Japanese Journal of Southeast Asian Studies, 49(1), 124-150. 

73. Schaller, M. F., & Fan, Y. (2009). River basins as groundwater exporters and importers: 

Implications for water cycle and climate modeling. Journal of Geophysical Research, 

114(D4), D04103. https://doi.org/10.1029/2008JD010636 

74. Shiferaw, H., Alamirew, T., Dzikiti, S., Bewket, W., Zeleke, G., & Schaffner, U. (2021). 

Water use of Prosopis juliflora and its impacts on catchment water budget and rural 

livelihoods in Afar Region, Ethiopia. Scientific reports, 11(1), 2688. 

75. Singh, G., & Singh, S. K. (2023). Evapotranspiration Over the Indian Region: Implications 

of Climate Change and Land Use/Land Cover Change. Nature Environment and Pollution 

Technology, 22(1), 211-219. 

76. Soni, A., & Syed, T. H. (2021). Analysis of variations and controls of evapotranspiration 

over major Indian River Basins (1982–2014). Science of The Total Environment, 754, 

141892. https://doi.org/10.1016/j.scitotenv.2020.141892 

77. Srivastava, A., & Chinnasamy, P. (2021). Water management using traditional tank 

cascade systems: A case study of semi-arid region of Southern India. SN Applied 

Sciences, 3(3), 281. https://doi.org/10.1007/s42452-021-04232-0 

78. Talukdar, S., Singha, P., Mahato, S., Shahfahad, Pal, S., Liou, Y.-A., & Rahman, A. (2020). 

Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite 

https://doi.org/10.1016/j.scitotenv.2020.141892
https://doi.org/10.1007/s42452-021-04232-0


118 

 

Observations—A Review. Remote Sensing, 12(7), 1135. 

https://doi.org/10.3390/rs12071135 

79. Tan, L., Zheng, K., Zhao, Q., & Wu, Y. (2021). Evapotranspiration Estimation Using 

Remote Sensing Technology Based on a SEBAL Model in the Upper Reaches of the 

Huaihe River Basin. Atmosphere, 12(12), 1599. https://doi.org/10.3390/atmos12121599 

80. Team, P. F. (2021). Planet Fusion Monitoring Technical Specification, Version 1.0. 0-beta. 3, San 

Francisco, CA. 

81. Thangavel, M. (2020). Kuppannan Palanisami. Sustainable Development in India: 

Groundwater Irrigation, Energy Use, and Food Production. 

82. Thornthwaite, C. W. (1948). An approach toward a rational classification of 

climate. Geographical review, 38(1), 55-94. 

83. Tian, H., Banger, K., Bo, T., & Dadhwal, V. K. (2014). History of land use in India during 

1880–2010: Large-scale land transformations reconstructed from satellite data and 

historical archives. Global and Planetary Change, 121, 78–88. 

https://doi.org/10.1016/j.gloplacha.2014.07.005 

84. Twisa, S., & Buchroithner, M. F. (2019). Land-Use and Land-Cover (LULC) Change 

Detection in Wami River Basin, Tanzania. Land, 8(9), 136. 

https://doi.org/10.3390/land8090136 

85. V. R. Vanthof and R. E. J. Kelly, "Mapping prosopis juliflora invasion within rainwater 

harvesting structures in India using Google Earth Engine," 2017 IEEE International 

Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 2017, pp. 

1115-1118, doi: 10.1109/IGARSS.2017.8127152. 

https://doi.org/10.3390/rs12071135
https://doi.org/10.3390/atmos12121599
https://doi.org/10.1016/j.gloplacha.2014.07.005
https://doi.org/10.3390/land8090136


119 

 

86. Varadan, R. J., Kumar, P., Jha, G. K., Pal, S., & Singh, R. (2017). An exploratory study on 

occurrence and impact of climate change on agriculture in Tamil Nadu, India. 

Theoretical and Applied Climatology, 127(3–4), 993–1010. 

https://doi.org/10.1007/s00704-015-1682-9 

87. Vargas Godoy, Markonis, Y., Hanel, M., Kyselý, J., & Papalexiou, S. M. (2021). The Global 

Water Cycle Budget: A Chronological Review. Surveys in Geophysics, 42(5), 1075–1107. 

https://doi.org/10.1007/s10712-021-09652-6  

88. Waters, R., Allen, R., Bastiaanssen, W., Tasumi, M., Trezza, R., 2002. Surface Energy 

Balance Algorithms for land, Idaho Implementation, Advanced Training and User’s 

Manual. NASA, USA. 

89. Williams, M. D., Hawley, C., Madden, M., & Shepherd, J. M. (2017). Mapping the spatio-

temporal evolution of irrigation in the Coastal Plain of Georgia, USA. Photogrammetric 

Engineering & Remote Sensing, 83(1), 57-67. 

90. WMO, 1963. Sites for wind-power installations. Geneva, 1964, 28 illus., 4 tables, Swiss 

91. Wukelic, G. E., Gibbons, D. E., Martucci, L. M., & Foote, H. P. (1989). Radiometric 

calibration of Landsat Thematic Mapper thermal band. Remote Sensing of Environment, 

28, 339–347. https://doi.org/10.1016/0034-4257(89)90125-9 

92. Zamani Losgedaragh, S., & Rahimzadegan, M. (2018). Evaluation of SEBS, SEBAL, and 

METRIC models in estimation of the evaporation from the freshwater lakes (Case study: 

Amirkabir dam, Iran). Journal of Hydrology, 561, 523–531. 

https://doi.org/10.1016/j.jhydrol.2018.04.025 

https://doi.org/10.1007/s00704-015-1682-9
https://doi.org/10.1016/0034-4257(89)90125-9
https://doi.org/10.1016/j.jhydrol.2018.04.025


120 

 

93. Zanaga, D., Van De Kerchove, R., De Keersmaecker, W., Souverijns, N., Brockmann, C., 

Quast, R., Wevers, J., Grosu, A., Paccini, A., Vergnaud, S., Cartus, O., Santoro, M., Fritz, 

S., Georgieva, I., Lesiv, M., Carter, S., Herold, M., Li, Linlin, Tsendbazar, N.E., Ramoino, F., 

Arino, O., 2021. ESA WorldCover 10 m 2020 v100. (doi:10.5281/zenodo.5571936) 

94. Zhang, K., Kimball, J. S., & Running, S. W. (2016). A review of remote sensing based 

actual evapotranspiration estimation. WIREs Water, 3(6), 834–853. 

https://doi.org/10.1002/wat2.1168 

95. Zhang, Y.-K., & Schilling, K. E. (2006). Effects of land cover on water table, soil moisture, 

evapotranspiration, and groundwater recharge: A Field observation and analysis. 

Journal of Hydrology, 319(1–4), 328–338. https://doi.org/10.1016/j.jhydrol.2005.06.044 

https://doi.org/10.5281/zenodo.5571936
https://doi.org/10.1016/j.jhydrol.2005.06.044

