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Abstract

Sea ice is a vital factor in polar navigation, numerical weather prediction models, and
climate change studies. It significantly influences the global climate, northern communities,
and Earth’s ecosystems. The sea ice edge and marginal ice zone are important areas
for monitoring, as they affect ship navigation, human activities, and marine habitats.
Passive microwave instruments offer valuable tools for monitoring the Earth’s surface,
regardless of solar illumination. This advantage is particularly prominent in polar regions,
where harsh climate conditions, restricted accessibility, and polar darkness pose challenges
to data collection. This thesis is dedicated to the analysis of the sea ice edge and the
marginal ice zone obtained from passive microwave algorithms, with the aim of enhancing
our understanding of these influential regions.

The first research compares the sea ice edge derived from three passive microwave
algorithms against Canadian Ice Service charts over the Eastern Canadian Arctic. It also
introduces a novel measurement for edge displacement error. The findings demonstrate
differences in the performance of various algorithms across different seasons. During the
freeze-up period, there is an increase in edge displacement error values, attributed to thin
ice conditions. In April, the study observed the widest range of edge displacement error
values, which were linked to fluctuations in wind speed and air temperature.

The second study focuses on a 40-year trend analysis of the Arctic marginal ice zone
using the Bootstrap sea ice product, employing two definitions: one based on sea ice
concentration and the other based on sea ice concentration anomaly. Comparative analysis
shows consistent trends in marginal ice zone fraction, with the anomaly-based definition
exhibiting higher values during transitional periods. Furthermore, change point detection
analysis highlights an increase in marginal ice zone fraction after 2005 for the concentration-
based definition and after 2007 for the anomaly-based definition, suggesting the influence
of climate change on sea ice concentration and mobility.

In the third investigation, two sea ice products, passive microwave and synthetic aper-
ture radar, are utilized to delineate the marginal ice zone in the Greenland Sea using two
distinct definitions. The anomaly-based definition reveals a broader spatial marginal ice
zone region, capturing the variability in sea ice concentration resulting from ice growth.
This definition also maintains consistency across both sea ice products. Additionally, the
study underscores the consistency of synthetic aperture radar in detecting the marginal ice
zone (regardless of the definition) and its reduced sensitivity to the sea ice concentration
anomaly standard deviation threshold, compared to passive microwave data.
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Chapter 1

Introduction

Sea ice is a major component of the cryosphere that plays a vital role in the Earth’s climate
system by reflecting a significant portion of the incoming solar radiation back into space
and acting as a thermal barrier between the ocean and the atmosphere [5]. Although sea
ice appears to be a thin blanket covering the ocean surface, it can affect heat, moisture,
and momentum fluxes across the ocean-atmosphere interface [6]. Due to this complex in-
teraction between sea ice and critical components of the Earth’s climate system, sea ice
has attracted increasing attention in climate-related research. Based on recent satellite
observations, there has been a consistent decline in the extent of Arctic sea ice throughout
the period from 1979 to 2023. The most substantial reduction occurred in the month of
September, with a significant decrease of 12.2% or 4.67 million square kilometers, as re-
ported by NASA [7]. The ongoing retreat of Arctic sea ice has drawn increased attention
to the region, driven by its potential for economic and maritime development [8, 9, 10, 11].
Additionally, due to the retreat of Arctic ice, the "Northeast Passage" is expected to be-
come navigable for open water ships in September from 2021 to 2025, and from August
to October from 2025 to 2050 [12]. Another potential shipping route in the 21st century
is the "Northwest Passage", the most direct shipping route between the Atlantic and Pa-
cific Oceans, which provides companies with a shorter route and notable economic benefits
[13, 14]. Another notable aspect of attention is the increasing interest in extending the
shipping season for the transportation of goods and resources, such as iron ore from the
Mary River Mine [15]. Additionally, the Inuit people residing in the northern region rely
on the marine environment and Arctic marine mammals for their livelihoods [16], and they
also utilize the sea ice cover for hunting and transportation purposes.
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1.1 Motivation

Over recent decades, the Arctic sea ice cover has undergone substantial changes, impact-
ing global climate, marine ecosystems, and human activities. The motivation behind this
thesis arises from the importance of enhancing our comprehension of sea ice, specifically
focusing on the sea ice edge and marginal ice zone, both experiencing rapid alteration. To
elaborate further, this thesis is driven by the following motivations:

1. The first motivation revolves around the sea ice edge. Currently, there is a lack of
recent studies regarding the performance of passive microwave sea ice edge estima-
tion relative to ice charts, primarily in seasonal ice zones, which are becoming more
prevalent in the Arctic regions. Recognizing the role of passive microwave sea ice
concentration products 1 in the long-term planning of shipping routes, reanalysis
data production, climate monitoring, and forecasting purposes, there is an interest
in evaluating the extent to which the sea ice edge derived from different retrieval
algorithms agree with those derived from the daily ice charts in a primarily seasonal
ice zone. Moreover, there might be some scenarios in which two ice edges are situ-
ated at the same location but exhibit varying lengths, this can occur either with the
ice edges from the same product at different times or with different products at the
same time. To address these scenarios, we introduce a dimensionless measure that
considers both edge length and displacement.

2. The second motivation shifts our focus to the Arctic marginal ice zone. The com-
monly used definition of this area relies on specific sea ice concentration thresholds.
However, due to the diminishing extent of Arctic sea ice, the transition from thick
multi-year ice to thinner first-year ice, increased fragmentation of the thinner sea
ice, and the amplified influence of winds and waves, there is a possibility that sea
ice concentration anomalies in the Arctic may be changing, directly impacting the
boundaries and characteristics of the marginal ice zone. This prompts an investiga-
tion into whether a complementary definition for the Arctic marginal ice zone would
be helpful. Moreover, given the susceptibility of the Arctic marginal ice zone to the
impacts of climate change, it is important to examine whether significant shifts have
occurred within the 40-year time series of the Arctic marginal ice zone fraction.

1Products refer to the data that are made publicly available by organizations for download or use.
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3. The third motivation stems from the need to address a gap in comparing marginal
ice zones derived from different sea ice products and various definitions as currently
there is an absence of comparisons between marginal ice zone definitions across dif-
ferent sea ice products, such as passive microwave and synthetic aperture radar data.
Recognizing the importance of the marginal ice zone fraction in offering insight into
future climate conditions, there is an interest in assessing the capabilities of different
sea ice products and methodologies to represent the marginal ice zone fraction. This
assessment can serve as a helpful foundational basis for future studies.

1.2 Objectives

Based on the above motivations, this thesis aims to achieve the following three key objec-
tives:

1. Evaluating the performance of different passive microwave sea ice concentration re-
trieval algorithms in estimating ice edge against daily ice charts, and also introducing
a dimensionless measure to account for both edge length and displacement (see Chap-
ter 3)

2. Investigating the Arctic marginal ice zone definition by incorporating two definitions,
one based on sea ice concentration threshold and one based on sea ice concentration
anomaly, and also analyzing the marginal ice zone interannual variability over the
last 40 years using a passive microwave sea ice concentration retrieval algorithm (see
Chapter 4)

3. Analyzing the impact of using different sea ice concentration products and varying
marginal ice zone definitions on the estimation of the marginal ice zone fraction (see
Chapter 5)

1.3 Thesis Structure

The rest of this thesis is organized as follows. Chapter 2 is divided into five main sections:
sea ice, satellite remote sensing of sea ice, passive microwave radiometry, synthetic aper-
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ture radar, and sea ice chart. The first section provides background information regarding
sea ice and related parameters such as sea ice edge and marginal ice zone. The second
section describes the remote sensing of sea ice using satellite observation. The subsequent
sections delve into various methods for estimating sea ice, including passive microwave ra-
diometry, synthetic aperture radar, and sea ice chart. Chapter 3, 4, and 5 provide detailed
examinations of the first, second, and third objectives, respectively. Finally, a summary of
contributions and conclusions as well as future works are described in Chapter 6.
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Chapter 2

Background

This chapter begins by introducing fundamental concepts such as sea ice, ice edge, and the
marginal ice zone. The second section delves into the remote sensing of sea ice through
satellite observation, providing an overview of the methodology. The following part pro-
vides background information on passive microwave radiometry. Subsequently, various
passive microwave sea ice concentration retrieval algorithms are discussed, outlining the
different approaches used in estimating sea ice concentration. Additionally, this chapter
covers the use of the synthetic aperture radar method for retrieving sea ice concentration.
This section particularly emphasizes the utilization of convolutional neural networks for
the estimation of ice concentration. Finally, the chapter explores another method for ob-
taining sea ice information, which is through the use of ice charts.

2.1 Sea Ice

When seawater freezes, sea ice forms, a process that expels salt into the water as ice crys-
tals develop. This saline expulsion increases the underlying water salinity, causing it to
become denser and sink within the ocean, thereby influencing ocean circulation patterns
[17, 18]. Sea ice also plays a role in polar ecosystems; as it melts, the freshwater released
is rich in nutrients, fostering the growth of phytoplankton, which serves as the foundation
of marine food chains [19]. Additionally, sea ice has high albedo which means it absorbs
less solar energy than open water, impacting global energy balance [20]. Human activ-
ities, particularly in the Arctic, rely on sea ice for hunting, transportation, and various
commercial endeavors, including fishing, shipping, and tourism [21]. Sea ice has enormous
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implications for various sectors such as the weather forecasting community [22]. One of the
main parameters of sea ice is sea ice concentration (SIC) which is defined as the fraction
of the surface of interest (e.g., a grid cell from a satellite image) that is covered by sea ice.
SIC has a value between 0 and 1 (or 100%), where 0 indicates the open water (no sea ice)
and values of 1 (or 100%) indicate an entirely ice-covered area. A typical grid cell used in
such an analysis is 25 km × 25 km.

2.1.1 Sea Ice Edge

The sea ice edge is the boundary separating areas of open water from regions covered by
sea ice. In other words, it represents the transition zone where the relatively ice-free ocean
surface meets the sea ice or where ice begins to form. The position of the sea ice edge
fluctuates throughout the year and varies annually, responding to changes in environmen-
tal factors such as temperature, wind patterns, and ocean currents [23]. This boundary
holds significant importance across various domains. In climate-related studies, it serves
as an indicator of the Earth’s climate state and plays a key role in understanding climate
variability and change. Additionally, the sea ice edge is vital for navigation, as it marks the
boundary between navigable waters and hazardous icy conditions. Moreover, it is impor-
tant in ecological research, as it delineates the interface between two distinct environments
with different physical properties and ecosystems, influencing habitats, biodiversity, and
species distribution in polar regions [24, 25, 26].

The precise location of the ice edge is crucial for ensuring safe navigation in ice-affected
waters. Sea ice, with its typically higher albedo compared to ice-free ocean areas [27],
plays a significant role in reflecting sunlight and influencing regional climate dynamics.
Visible wavelength imagery obtained from satellites is a valuable tool for studying the sea
ice edge. However, these sensors face limitations, as approximately 70% of the time, clouds
and fog obstruct visibility, hindering the accurate detection of the ice edge [28]. Further-
more, visible imagery becomes impractical during the polar night due to the absence of
sunlight. An alternative approach involves utilizing microwave sensors, both active and
passive, operating within the microwave portion of the electromagnetic spectrum. These
sensors are unaffected by polar darkness and possess the capability to penetrate through
cloud cover, enabling the observation of the ice surface under almost all weather conditions.

The most common definition for the ice edge using passive microwave (PM) ice concen-
tration products is defining the 15% SIC contour, which was found to be spatially sharp
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[29] and, hence, a good proxy for the ice edge delineation. Ice edge displacement can refer
to either the difference in the position of the ice edge between two products or the dis-
tance by which the edge of the sea ice pack has been estimated to shift over a given time,
indicating retreat or growth. The assessment of the ice edge displacement often involves
employing diverse metrics to measure the accuracy of the estimated ice edge location. One
commonly used metric is the Integrated Ice Edge Error (IIEE) [30], designed to quantify
the disparity between the estimated and true ice edge positions, expressed in area units.
The IIEE is computed by summing the areas where discrepancies exist between the esti-
mated and true ice edges regarding whether the ice concentration surpasses or falls below
a specified threshold, typically set at 15%. Comprising two components, the IIEE is ex-
pressed as the sum of "O" and "U" (IIEE = O + U). Here, "O" denotes the region where
the local sea ice extent is overestimated by the model estimation, while "U" represents
the area where the local sea ice extent is underestimated by the model estimation. The
schematic representation for defining IIEE is depicted in Figure 2.1.

Figure 2.1: A schematic representation of defining the Integrated Ice Edge Error (IIEE)
metric. Panel "a" shows the estimated ice edge in orange grid cells. Panel "b" shows the
true ice edge in green grid cells. Panel "c" illustrates overestimated grid cells (hatched
blue) and underestimated grid cells (hatched red). IIEE reflects the summation of the
underestimated and overestimated grid cells.

2.1.2 Marginal Ice Zone

The MIZ is a transitional region between sea ice and open water, typically occurring at
the boundary between the consolidated sea ice cover and the open ocean. The MIZ is a
dynamic and ecologically important area, subject to seasonal and interannual variations.
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The spatial extent, temporal variability, wave-ice interactions, floe size distribution, and ice
dynamics within the MIZ are all important characteristics that are of interest for climate-
related research (e.g., [31, 32, 33, 34, 35]). The ecosystems within the ice, ocean water,
and seafloor are interconnected. Phytoplankton blooms in the MIZ spread a significant
distance away from the ice edge, making MIZ region an important feeding area as well
[36]. Recognizing that the characteristics of the MIZ can vary with the time of year, ge-
ographic location, and climatic conditions, understanding the characteristics of the MIZ
is valuable for predicting changes in polar environments and their implications on global
climate patterns.

The definition of the MIZ in studies varies depending on the specific aspects of interest.
Definitions of the MIZ can be categorized based on (1) ice concentration: operationally,
the MIZ is defined as the region within the sea ice where the SIC falls within the range
of 15% to 80% [31]. Sea ice in this range is assumed to be mobile and can be influenced
by ocean currents, (2) wave penetration: MIZ can be considered as the area where ocean
waves interact with sea ice, penetrate ice cover [37], and impact the ice thickness [38].
This definition centers on the pivotal role of ocean waves in shaping the extent of the MIZ
and determining the distribution of floe sizes. When the ice cover undergoes significant
fragmentation, its behavior differs from pack ice, (3) ice concentration anomaly: exploring
the question of whether subtle variations in grid cell concentration from passive microwave
products provide a consistent indicator of changes in ice characteristics over the Antarctic
sea ice, an alternative definition for the MIZ has been considered by applying a threshold
on SIC anomaly 1 [39]. In this study, the focus will be on definitions based on ice concen-
tration and ice concentration anomaly, as this research centers on MIZ derived from PM
SIC retrieval algorithms.

2.2 Satellite Remote Sensing of Sea Ice

When it comes to monitoring sea ice, due to the polar harsh climate conditions and limited
access, in-situ measurements are sparse and concerned with seasonality, as there are typ-
ically fewer measurements available during the winter [40]. Satellite remote sensing plays
a significant role in monitoring sea ice [40]. In polar regions, satellite-borne data in the
visible and infrared ranges are hampered by clouds, and in this regard, the low-frequency

1The deviation of SIC at a specific grid cell from its long-term average over a given time period.
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microwave portion of the electromagnetic spectrum is particularly useful [41, 42, 5]. PM
sensors can continuously observe the Earth’s surface, regardless of weather conditions and
solar illumination. Besides the frequent data acquisitions from PM sensors, they have a
wide swath 2, enabling them to cover a large area which is advantageous in sea ice tasks due
to the vast ice-covered areas [5]. Another means of estimating SIC using satellite imagery
is synthetic aperture radar (SAR), an active remote sensing technique. Unlike traditional
radar systems, which use a single antenna to transmit and receive radar signals, SAR em-
ploys a technique known as synthetic aperture to achieve high-resolution (3 m to 40 m)
radar images with improved spatial detail and image quality. SAR systems are deployed
on aircraft and satellites to observe and monitor the Earth’s surface under various weather
and lighting conditions. Ice charts represent another source of sea ice information, avail-
able at different temporal resolutions, such as daily, weekly, or monthly. These charts rely
on a combination of data sources, including meteorological data, visual ship observations,
airborne radar measurements, satellite images, and climatological information, to provide
a comprehensive view of ice conditions. Additional information on each of the methods for
retrieving SIC are provided separately in the following sections. These sections will explain
each method in detail, providing a comprehensive understanding of how SIC is estimated
using these approaches.

2.3 Passive Microwave Radiometry

According to Planck’s theory [44], an object that absorbs all incident radiation and emits
the same amount, according to its temperature, is a black body. Planck’s law [45] expresses
an equation in which the amount of radiation a black body emits is associated with its
physical temperature and frequency. In microwave region, the simplified version of Planck’s
law 3, the Rayleigh-Jean’s equation [46], can be written as

Bf =
2 × k × Tph × f 2

c2
, (2.1)

where Bf is the emitted radiation from a black body at a given frequency f ( W
m2.Hz ). k is

the Boltzmann’s constant (1.38 ×10−23 J/K). c and Tph stand for speed of light (m/s) and
the temperature of the emitting layer (K), respectively. Emitting layer is a depth below

2A sensor sees a certain portion of the Earth’s surface as the satellite revolves around the Earth. The
area imaged on the surface is called a swath [43].

3Based on the fact that the frequency of the microwave signal is small and their wavelength is large [46]
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the surface from where the emission comes. The depth of this layer in sea ice fluctuates
between a few millimeters and decimeters, contingent upon its physical constitution and
the microwave frequency. Typically, it is assumed that the radiating layer of the emitted
microwave aligns with the penetration depth of the signal [5].

An object in nature radiates less energy than a black body at the same temperature.
These objects are called gray bodies, and their emitted radiation at a given frequency is
denoted as Gf , and their equivalent temperature is generally referred to as the brightness
temperature (TB, in Kelvin). In other words [5]

Gf =
2 × k × TB × f 2

c2
. (2.2)

At any given frequency, emissivity (ε) is defined as [5]

ε = Gf

Bf

. (2.3)

Combining Equation 2.1, 2.2, and 2.3 gives [5]

TB = εTph. (2.4)

2.3.1 Passive Microwave Sensors

The next topic is the history of PM sensors used for the Earth observation system (EOS).
The first spaceborne microwave data was from the Nimbus-5 electrically scanning mi-
crowave radiometer (ESMR) in December 1972. With the Nimbus-7 scanning multichan-
nel microwave radiometer (SMMR) launch in 1978, polar regions were first observed using
multichannel passive microwave sensors. The SMMR was followed by a series of succes-
sive defense meteorological satellite program (DMSP) special sensor microwave/imager
(SSM/I) and special sensor microwave imager/sounder (SSMIS) in 1987 and 2003, respec-
tively. This relatively long history of polar remote sensing continues with the advanced mi-
crowave scanning radiometer (AMSR). AMSR has operated on three satellites: AMSR2 on
JAXA’s GCOM-W1 platform, advanced microwave scanning radiometer for EOS (AMSR-
E) on NASA’s Aqua platform, and AMSR on JAXA’s ADEOS-II platform. The microwave
radiation imager (MWRI) on the Chinese Feng-Yun satellite series was launched in 2008.
An overview of commonly used satellite microwave sensors in sea ice is indicated in Table
2.1. Additionally, Table 2.2 includes the dimensions of the observation footprint from com-
monly used channels in sea ice applications, sourced from SSM/I, AMSR-E, and AMSR2
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sensors.

Sensor Satellite platform Frequency (GHz) Operation period (year)
SMMR Nimbus7 6.6, 10.7, 18.0, 21.0, 37.0 1978-1987
SSM/I DMSP 19.4, 22.2, 37.0, 85.5 1987-present
SSMIS DMSP 19.4, 22.2, 37.0, 91.7 2003-present

AMSR-E Aqua 6.9, 10.7, 18.7, 23.8, 36.5, 89.0 2002-2011
AMSR ADEOS-II 6.9, 10.7, 18.7, 23.8, 36.5, 50.3, 52.8, 89.0 2002-2003
MWRI FY-3 series 19.4, 22.2, 37.0, 91.7 2008-present
AMSR2 COM-W1 6.9, 7.3, 10.7, 18.7, 23.8, 36.5, 89.0 2012-present

Table 2.1: An overview of commonly used passive microwave sensors in sea ice studies.

Sensor Frequency (GHz) 3-dB footprint size
(km × km)

SSM/I 19.4 43 × 69
22.2 50 × 40
37.0 28 × 37
85.5 13 × 15

AMSR-E 18.7 16 × 27
23.8 31 × 18
36.5 8 × 14
89.0 6 × 4

AMSR2 18.7 14 × 22
23.8 15 × 26
36.5 7 × 12
89.0 3 × 5

Table 2.2: An overview of 3-dB footprint size for each channel of commonly used passive
microwave sensors in sea ice studies.

2.3.2 Passive Microwave SIC Retrieval Algorithms

For over 40 years, PM sensors have been used to retrieve SIC using different translators,
called SIC retrieval algorithms, that translate the measured brightness temperatures to
SICs. Open water exhibits significantly lower radiation emission in the horizontal polar-
ization 4 (H-pol) compared to the vertical polarization (V-pol). This indicates that the
polarization difference (denoted as PD = TBV − TBH) for open water is greater than that

4Polarization refers to the alignment of an electromagnetic signal.
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observed for sea ice [47]. Most SIC retrieval algorithms rely on tie points, which are typ-
ical radiometric values corresponding to a given surface type. Tie points can vary both
temporally and spatially, especially when dealing with thin ice. In addition to brightness
temperature, polarization ratio (PR, Equation 2.5) and gradient ratio (GR, Equation 2.6)
are two parameters that are commonly used in SIC retrieval algorithms. The PR at a given
frequency (f) is defined as

PR(f) = TBfV − TBfH

TBfV + TBfH

, (2.5)

where V and H refer to V-pol and H-pol, respectively. The GR between two observations
from two frequencies (f1 and f2) at the same polarization (p) is written as

GR(f1f2p) =
TBf1p − TBf2p

TBf1p + TBf2p

. (2.6)

Emissivity represents a fundamental radiative characteristic of a material, while brightness
temperature varies based on both emissivity and the temperature of the emitting layer.
Consequently, using PR and GR are preferable over brightness temperature, given their
greater independence from the physical temperature [5].

Several known sources of uncertainty associated with PM SIC retrieval algorithms are:

(1) Variability in sea ice emissivity: sensitivity to sea ice emissivity depends on the
selection of input brightness temperatures at different frequencies and polarizations, as well
as the specific retrieval algorithm utilized to estimate SIC. This variability introduces the
potential for both underestimation and overestimation of SIC, depending on the algorithm
selected [48]. It is also demonstrated that SIC algorithms fail to accurately capture the
ice concentration variability, particularly in Arctic regions where SIC approaches 100%
[49, 50].

(2) Melt ponds: the penetration depth of microwave radiation into liquid water is
a few millimetres [46]. This shallow penetration depth makes it difficult for the sensor
to distinguish between ocean water and meltwater on the ice surface. As a result, SIC
algorithms may underestimate the actual ice concentration, particularly during the melt
season when melt ponds are prevalent [51]. In a study by Rose et al. [52], a comparison of
SIC derived from several PM retrieval algorithms, namely ARTIST sea ice (ASI), Enhanced
NASA team or NASA team 2 (NT2), and Bootstrap (BT), and MODIS 5 over the Canadian
archipelago on June 18, 2011, was undertaken. The study found that all PM retrieval
algorithms underestimated the SIC by approximately 20 to 30% in regions with melt ponds.

5Moderate-resolution imaging spectroradiometer.
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(3) Thin ice: in the presence of thin ice, SIC retrieval algorithms are known to underes-
timate the actual ice concentration [53, 54]. One possible explanation for this underestima-
tion is the relationship between brightness temperature and sea ice thickness (SIT), which
may be influenced by changes in the near-surface dielectric properties due to variations in
brine salinity with thickness and temperature [55]. The effect of SIT on SIC bias over the
areas of the Arctic that are known to have a 100% thin ice (using ENVISAT 6 ASAR 7

data) from 1 October to 12 December 2010 is carried out in a study by Ivanova et al. [56].
The ESA’s 8 SMOS 9 observations were utilized to determine the thickness of thin ice. The
study revealed that SIC is underestimated in thin ice and the bias is higher for the thinner
ice.

(4) Atmospheric contributions: water vapor, cloud liquid water, and wind roughening
of the ocean surface can lead to falsely increased observed brightness temperature (relative
to the actual brightness temperature). This can lead to overestimation of the actual SIC.
The effect of atmospheric contamination 10 is more pronounced over open water, than over
consolidated sea ice [48]. To mitigate the effect of atmospheric contamination, weather
filters are applied to the retrieved SICs. These threshold-based filters are empirically de-
termined to remove weather effects over the open water. To correct for water vapor, the
gradient ratios (Equation 2.6) of 19 and 22 GHz frequency are used [57]: GR(1922V) ≥
0.04 [58], and to correct for cloud liquid water and wind roughening of the ocean surface,
the gradient ratios of 19 and 37 GHz frequency are used [57]: GR(1937V) ≥ 0.045 [58].
According to these weather filters, SIC values for grid cells that meet either of the two
criteria are deemed to be water (set to zero). Despite different types of weather filters
being applied in SIC retrieval algorithms to mitigate atmospheric contamination, these
filters may eliminate the low SIC values (up to 30%), resulting in an underestimation of ice
concentration [48, 56]. Furthermore, a radiative transfer model can be employed to account
for the impact of weather conditions on the measured brightness temperatures. This has
also been used for lower frequency SIC retrieval algorithms [59]. Further elaboration on
the radiative transfer model approach will be provided in the next section.

Focusing on several algorithms across different frequency channels, the ASI [60], NT2
[61] (using higher frequency channels), and BT [62] (using lower frequency channels) are

6Environmental satellite.
7Advanced SAR.
8European space agency.
9Soil moisture and ocean salinity

10Atmospheric contamination refers to the sum of the biases caused by water vapor, cloud liquid water,
and wind roughening of the ocean surface [48].
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selected for this research. These algorithms are commonly [63, 64] used retrieval algorithms
in sea ice research studies [50, 65, 56, 66].

ARTIST Sea Ice (ASI) Algorithm

The Arctic Radiation and Turbulence Interaction STudy (ARTIST) sea ice (ASI) algorithm
[67] uses the polarization difference (PD) of brightness temperatures at nearly 90 GHz. In
the ASI algorithm, intermediate ice concentrations are calculated by interpolating the sea
ice concentration values between open water and 100% ice cover. This interpolation is
performed using a third-order polynomial equation, which is written as

SIC = 1.64 × 10−5PD3 − 0.0016PD2 + 0.0192PD + 0.9710. (2.7)

In order to eliminate spurious SICs over open water, Spreen et al. [58] employed the
lower-frequency channels as weather filters, a common method for compensating for the
sensitivity to atmospheric contamination. In this method, the SIC values for grid cells that
meet either of these below criteria are set to 0:

• GR(1922V) ≥ 0.040

• GR(1937V) ≥ 0.045

• SIC(BT = 0 (If the corresponding SIC from BT algorithm is zero)

In a study by Lu et al. [68], a radiative transfer model [69] is used to correct for
atmospheric contamination that occurs when employing the near 90 GHz frequency channel
(the algorithm is called ASI2). The scheme evaluates the correction offsets, δTB, per each
channel as

δTB = TBatm − TBref , (2.8)

TBcorr = TBobs − δTB, (2.9)

where TBatm and TBref represent simulated brightness temperatures with and without
atmospheric effects, respectively. TBcorr denotes the corrected brightness temperature,
and TBobs stands for the observed brightness temperature. TBatm and TBref can be found
as
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TBatm = TB(f, p,W,V,L = 0, SST,Tice, SIC), (2.10)

TBref = TB(f, p,W = 0, V = 0, L = 0, SSTref , Tice,ref , SIC), (2.11)

where f is frequency, p is polarization, W is 10-m wind speed (m/s), V is water vapour
(mm), L is cloud liquid water (mm), SST is sea surface temperature (K), Tice is ice tem-
perature (K). In order to calculate TBref , zero values were assigned to W , V , L, while
SSTref = 271.5 K and Tice,ref = 265 K. Using this method improved accuracy in SIC mea-
surement, particularly over open water, with negligible impact on areas with 100% SIC
has been reported [68].

Despite the high spatial resolution of the 89 GHz channels of AMSR-E, these chan-
nels are sensitive to atmospheric effects [5], which can lead to ambiguous SIC estimation.
Furthermore, since the polarization difference is in units of brightness temperature, this
algorithm may be sensitive to ice temperature variability. The ASI algorithm, however, is
known to have the least sensitivity to sea ice thickness compared to other SIC algorithms
implemented in Heygster et al. [54], which is a key strength. The ASI SIC product is
available from 2002 to 2011 (AMSR-E sensor) and from 2012 to 2022 (AMSR2 sensor)
with different grid resolutions (∼ 3 km and ∼ 6 km).

NASA-Team (NT) Algorithm

The NASA-Team (NT) algorithm [60], uses two main Equations: PR (Equation 2.5),
and GR (Equation 2.6). First, the algorithm calculates the PR(19) and plots it against
the GR(1937V). A schematic diagram illustrating this method is provided in Figure 2.2.
Based on the three brightness temperature clusters, tie points are derived to represent
100% concentrations of each surface type: first-year ice 11 (FYI), multi-year ice 12 (MYI),
and open water (OW). The position of a point relative to these tie points determines its
associated SIC value. For instance, points closer to OW correspond to lower SIC values,
while points closer to the line connecting MYI and FYI represent higher SIC values. These
three surfaces form the vertices of a triangle, and PR and GR values that fall between them
indicate a mixture of surface types. In the Arctic, the observed brightness temperature

11The ice that has not survived a melt season.
12The ice that has survived at least one melt season.

15



is a composite measure derived from the weighted contributions of three main surface
types: ice-free ocean, FYI, and MYI. Unique sets of tie points are established for each
hemisphere and sensor used in the data product (see [70] for a list of tie points). The
primary source of error in the NT algorithm can be attributed to ice surface effects such as
glazing and layering [71], which can impact the 19 GHz brightness temperature, resulting in
SIC underestimation. Lastly, the NT algorithm employs weather filters to remove spurious
SIC estimates. These weather filters are based on the GR for the 37V and 19V channels
and incorporate an additional GR using the 22V and 19V channels. The SIC values for
grid cells that meet either of these below criteria are set to 0:

• GR(1922V) ≥ 0.045

• GR(1937V) ≥ 0.05

This product is available from 1978 to 1987 (SMMR sensor), from 1987 to 2007 (SSM/I
sensor), and from 2008 to the present (SSMIS sensor) with a 25 km gridded resolution.

Enhanced NASA Team (NT2) Algorithm

The Enhanced NASA Team (NT2) algorithm [61] estimates SIC using lookup tables of
rotated GRs and polarization ratios PRs calculated from brightness temperatures measured
at 19, 37, and 85 GHz frequency channels. For each of the 12 representative atmospheric
profiles 13, GRs and PRs are computed over all possible ranges of SIC using a radiative
transfer model. These calculated GRs and PRs are arranged as look-up tables, with one
table for each atmospheric profile. For the Arctic, this process is carried out separately for
three different ice types: FYI, MYI, and thin ice. These different ice types exhibit different
characteristic emissivities, influencing the surface emission component of the brightness
temperatures used in calculating GRs and PRs. The ice concentration of a given grid cell is
found by choosing the concentration value that best matches the actual and estimated PRs
and GRs. A schematic diagram of this method is provided in Figure 2.3. This algorithm
utilizes the near-90 GHz frequency channel, which makes it easier to distinguish between
low ice concentrations and areas affected by surface effects associated with refreezing (snow
layering and glazing). However, surface effects from melt processes have not been addressed
in this algorithm [72].

13Atmospheric profiles refers to a set of simulated atmospheric conditions. These conditions are generated
using various pre-defined atmospheric variables, including water vapor, cloud liquid water, wind speed.
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Figure 2.2: A schematic diagram of the technique used in NT algorithm over the Arc-
tic. PR, GR, OW, FYI, and MYI denote the polarization ratio, gradient ratio, brightness
temperature of open water, brightness temperature of first-year ice, and brightness tem-
perature of multi-year ice, respectively.

Although the NT2 algorithm produces weather-corrected SIC, erroneous SIC estimates are
still possible. Thus, the SIC values for grid cells that meet either of these below criteria
are set to 0:

• GR(1922V) ≥ 0.045

• GR(1937V) ≥ 0.05

It is noted that this algorithm is susceptible to weather effects not represented by the 12
atmospheres [73]. This product is available from 2012 to 2022 (AMSR2 sensor) with a 12.5
km gridded resolution. Figure 2.4 and 2.5 are an illustration of how the weather filters
work over the Arctic in the first day of January 2021 and June 2021, respectively. The
AMSR2 brightness temperatures with a 12.5 km gridded resolution is obtained from the
United States National Snow and Ice Data Center (NSIDC) [74]. In both Figures 2.4 and
2.5, the SIC value for points outside the range delineated by the black square are adjusted
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to 0, representing open water, by the weather filters. It should noted that for both January
1 and June 1, there are some points (locations) near the boundary where the SIC values
are high (around 50%). Moreover, there are some points (locations) outside of the defined
box with nonzero SIC values (near 10 or 20%), however, they are ultimately set to zero in
this scheme.

Figure 2.3: A schematic diagram of the technique used in NT2 algorithm over the Arctic.
C-type, FYI, and MYI stand for ice with surface effects, first-year ice, and multi-year ice,
respectively. The blue circle is an illustration of the modeled value and the green star is
an illustration of the observed value.

Bootstrap (BT) Algorithm

The Bootstrap (BT) algorithm [71] estimates SIC using data from three PM channels of
19V, 37V, and 37H, which allows for the characterization and differentiation of two surface
types: sea ice (SIC is near 100%) and ice-free (SIC is zero) regions. The algorithm relies
on the clustering of 100% sea ice multichannel daily brightness temperatures to identify a
suitable tie point for 100% and 0% SIC. A schematic diagram of this method is provided
in Figure 2.6. By comparing the scatter plot of one passive microwave channel to another
(37V vs. 37H and 37V vs. 19V), two clusters can be identified. One cluster comprises data
points with a SIC of approximately 100% (forming a line AD), and the other comprises
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Figure 2.4: An example of GR(1922) vs. GR(1937) values (for AMSR2) for 01 January
2021 over the entire Arctic. By applying these weather filters, NT2 SIC values for points
that lie outside the black box set to zero.

Figure 2.5: An example of GR(1922) vs. GR(1937) values (for AMSR2) for 01 June 2021
over the entire Arctic. By applying these weather filters, NT2 SIC values for points that
lie outside the black box set to zero.
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data points with a SIC of around 0% (OW). The algorithm uses the linearity of these clus-
ters to estimate SIC for a given grid cell based on its brightness temperature values. For
instance, the SIC for an arbitrary ice surface (represented by point B) can be determined
by extending the line along OB until it intersects line AD, yielding point I, representing
the brightness temperature of 100% ice concentration, and a location near O representing
the brightness temperature of 0% ice concentration for this ice surface. The distance from
B to I (or O) is a measure of the SIC. It is worth mentioning, for open water and low ice
concentrations near the ice edge, the BT algorithm uses the 37V and 19V channels. This
channel combination is more sensitive to the ice-water boundary and is able to distinguish
low ice concentrations. For higher ice concentrations within the ice pack, away from the ice
edge, the BT algorithm uses the 37H and 37V channels. This channel combination is suited
for compact ice regions, as the scatter plot shows more distinct clustering of 100% ice tie
points, enabling accurate retrieval of high concentrations through linear interpolation [75].

To filter out weather effects (mainly wind, water vapor, and cloud liquid water effects)
over open water this algorithm applies a weather filter. In this scheme, SIC values are set
to 0% if the difference between the brightness temperatures of the 19 and 22 GHz channels
exceeds a predefined threshold. Also, a slanted line in the scatter plots of 37V and 19V
shows the SIC value for points fall below this line are considered zero. This product is
available from 1978 to 1987 (SMMR sensor), 1978 to 2007 (SSM/I sensor), and 2008 to
the present (SSMIS) sensor with a 25 km gridded resolution. Figure 2.7 and 2.8 provide
an illustration of how the weather filters operate over the Arctic in the first day of Jan-
uary 2021 and June 2021, respectively. The SSMIS brightness temperatures with a 25 km
gridded resolution were obtained from the NSIDC [76]. Fot both Figures 2.7 and 2.8, in
panel (a), a predefined threshold is depicted on the scatter plot of TB22-TB19V versus
TB19V, typically represented by a vertical line at 16 K for the Arctic [77]. Consequently,
SIC values for points with TB22-TB19V > 16 K are set to zero. Additionally, panel (b)
shows that SIC values for points lying below the slanted line (180 k < TB19V < 183 K)
are set to zero. Panel (c) presents a scatter plot where both criteria (shown in panels a
and b) are applied simultaneously.

SIC Uncertainty

Numerous algorithms and products have been developed utilizing the PM record. Val-
idation studies (e.g., [56]) have been conducted over the years. These studies typically
compare PM data with higher spatial resolution data from visible, infrared, or SAR prod-
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Figure 2.6: A schematic diagram of the technique used in BT algorithm. The line AD
represents consolidated ice while OW represents open water. The black dashed line IO
measures SIC for an arbitrary point B (represented by a green star).

ucts on various platforms, including satellites, aircraft, and occasionally ships. However,
these validation efforts have often been limited to small regions and short time spans. Nev-
ertheless, there has yet to be an effort to quantify the uncertainty in daily or monthly total
sea ice extent estimates derived from PM instruments. The total SIC uncertainty (εtot) is
given by two uncertainty components [78]

ε2tot = ε2alg + ε2smear, (2.12)

where εalg is the inherent uncertainty of the SIC algorithm including residual geophysical
noise 14, sensor noise, and ice surface emissivity variability and εsmear is the uncertainty due
to resampling from satellite swath to a grid (smearing uncertainty) and also the mismatch
between footprints size at different channels (see Table 2.2).

The εalg is different for each algorithm as they employ different frequency channels,
weather filters, brightness temperature corrections, and tie points, resulting in different
sensitivities to geophysical noise. For example, the NT algorithm uses the unique tie points

14Geophysical parameters such as water vapour, cloud liquid water, surface temperature variability, and
surface roughening by wind, all collectively referred to as geophysical noise.
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(a) (b)

(c)

Figure 2.7: An example of TB22V-TB19V vs. TB19v scatter plot and TB37V vs. TB19v
(for SSMIS) for 01 January 2021 over the entire Arctic. By applying these weather filters,
BT SIC values for points exceeding the black vertical line or lying below the black slanted
line are set to zero.

for each hemisphere, while in the BT algorithm, tie points change by date (dynamic) and
hemisphere. In this context, employing regional (dynamic) tie points is recommended
to optimize SIC algorithms for climate datasets. The dynamic approach ensures long-
term stability in the sea ice climate record and mitigates sensitivity to noise parameters
influenced by climatic trends. Dynamic tie points play an important role in accurately
quantifying SIC uncertainties and inherently compensate for sensor drift or inter-sensor
calibration differences. Thus, given that tie points are naturally changing geophysical pa-
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(c)

Figure 2.8: An example of TB22V-TB19V vs. TB19v scatter plot and TB37V vs. TB19v
(for SSMIS) for 01 June 2021 over the entire Arctic. By applying these weather filters, BT
SIC values for points exceeding the black vertical line or lying below the black slanted line
are set to zero.

rameters, adopting a dynamic approach is preferable over the traditional static method
[56]. Similarly the εsmear can also be different for different algorithms, due to use of dif-
ferent frequency channels. The footprint size for the channels utilized for SIC mapping
vary. For instance, for SSM/I the footprint size for the 19 GHz channels is 43 to 69 km
and 28 to 37 km for the 37 GHz channels (see Table 2.2). Typically, the SIC data are
depicted on a finer grid, usually 12.5 or 25 km, compared to the larger sensor footprint
sizes (ranging from 28 to 69 km). This leads to an affect known as smearing. Furthermore,
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when footprints of varying sizes are combined in the SIC retrieval algorithms (as inputs),
an additional smearing effect occurs, termed the footprint mismatch error.

2.4 Synthetic Aperture Radar

Synthetic aperture radar (SAR) data serves as an alternative data source to obtain SIC
information. SAR data can distinguish between different ice types and can provide high-
resolution images of sea ice cover, aiding in the accurate determination of sea ice con-
centration. Furthermore, SAR data can be used to identify ice features such as leads,
cracks, and ridges, which are paramount for navigation. This data is obtained from multi-
ple sensors that send a microwave signal to the Earth and subsequently record the signal
reflected back. This offers an advantage over PM data because it provides precise control
over the amplitude and frequency of the transmitted signal. Hence, SAR data can achieve
a superior spatial resolution compared to PM data. The interaction between the SAR
signal and the Earth depends on the signal’s wavelength, with the SAR signal having the
strongest interaction with objects that are similar in size to its wavelength. For instance,
C-band SAR data, characterized by a wavelength ranging from 7.5 to 3.8 centimetres (4-8
GHz), has been identified as the most appropriate choice for ocean and ice monitoring
[79] which is used in this thesis. SAR signals with this wavelength remain unaltered by
cloud cover and atmospheric interference, as these particles are significantly smaller than
the wavelength of the SAR signal. The backscatter behaviour of the SAR signal relies on
surface attributes like structure and roughness, the incidence angle, and the polarization
of the SAR signal [80]. SAR sensors possess the capability to manage the orientation of
the signal during transmission and reception, offering four distinct polarization options for
SAR images, which are detailed below:

• HH Polarization corresponds to a signal oriented horizontally during both transmis-
sion and reception.

• HV Polarization signifies that the signal is horizontally oriented during transmission
and vertically oriented during reception.

• VH Polarization denotes a signal that is vertically oriented during transmission and
horizontally oriented during reception.

• VV Polarization designates a signal oriented vertically during both transmission and
reception.
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(a) HH (b) HV

Figure 2.9: Sentinel-1 SAR scenes captured on 2021/11/02, over the Beaufort Sea (a) HH
Polarized, and (b) HV Polarized. These scenes are obtained from the Alaska Satellite
Facility (ASF). The central grid cell coordinate is approximately 127.23○ W, 72.12○ N. The
spatial resolution is 80 meter.

Figure 2.9 illustrates HH and HV polarized Sentinel-1 SAR images. It can be seen that
the images of HH and HV polarization exhibit dissimilar appearances and convey distinct
information due to their varying interactions with the Earth’s surface. HH polarization
was employed for its ability to capture a greater number of ice and water features in the
images, aiding the model in ascertaining ice concentration. In contrast, HV polarization
was chosen due to its relative insensitivity to variations in incidence angles when compared
to HH polarization [81]. While SAR images offer numerous advantages for estimating ice
concentration, they come with inherent limitations. Primarily, the interaction between the
SAR signal and ice and water is highly complicated. The general notion that smooth wa-
ter appears darker does not consistently hold true, as different incidence angles can cause
smooth open water to appear bright in specific regions [82]. Additionally, SIC images are
frequently susceptible to image noise, including speckle noise 15 and the presence of band-
ing artifacts 16. The banding effect is visible in the SAR image of HV polarization, as
illustrated in Figure 2.9. Finally, extracting SIC from SAR images poses a challenge due
to the limited information available from a single grid cell in a SAR image.

15Speckle noise refers to random variations in brightness or color that appear as grainy or speckled
patterns in images.

16Banding artifacts are patterns of stripes or bands that appear in images.
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2.4.1 Sea Ice Concentration Extraction

In the realm of SIC extraction from remote sensing imagery, deep learning has emerged
as a transformative technology, significantly enhancing the ability to analyze and interpret
vast amounts of data collected from SAR data [83, 84, 85, 86, 87]. This section delves into
how deep learning is applied for SIC extraction from SAR imagery, its advantages, chal-
lenges, and future prospects. Deep learning algorithms, particularly convolutional neural
networks (CNNs), have become instrumental in processing and analyzing remote sensing
data. These algorithms excel in handling the high-dimensional data obtained from various
sensors, enabling more accurate and efficient analysis than traditional methods. However,
there are some challenges and limitations to this method; Data Availability and Quality:
The effectiveness of deep learning models in remote sensing is heavily dependent on the
availability of high-quality, labeled datasets. Computational Requirements: Training deep
learning models requires significant computational resources, which can be a constraint for
many researchers. Interpretability: Deep learning models in remote sensing, like in other
fields, often act as "black boxes", making it challenging to understand how they derive
their conclusions. In this study, we employed CNN model to extract SIC from SAR im-
agery.

Convolutional Neural Network

CNNs have become a cornerstone in the field of deep learning, particularly in the analysis
of imagery. In remote sensing, CNNs are instrumental in processing and interpreting data
obtained from aerial and satellite sensors, offering unparalleled capabilities in understand-
ing spatial and temporal patterns on the Earth’s surface. A CNN is a type of deep neural
network designed to process data with a grid-like topology, such as images. It consists of
several layers, each designed to perform specific operations that transform the input data
into a more abstract and composite representation. The output of a convolutional layer is
the convolution operation between the input and a user-specified number of filters.

The key components of CNNs are Convolutional Layers: These layers apply a set of
learnable filters to the input. Each filter activates certain features at different spatial
locations, capturing patterns like edges, textures, and shapes. Pooling Layers: Pooling
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(usually max pooling) reduces the spatial size of the representation (depending on stride 17

number), decreasing the number of parameters and computation in the network, thereby
controlling overfitting. Fully Connected Layers: Towards the end, CNNs have fully con-
nected layers that use the features learned by the convolutional and pooling layers for
classifying the input into various categories. Activation Functions: CNNs use activation
functions like ReLU (Rectified Linear Unit) to introduce non-linear properties into the
network, enabling it to learn more complex patterns in the data.

A fully convolutional network (FCN) is a type of deep learning model that shares simi-
larities with a CNN due to its convolutional layers. However, it diverges from a traditional
CNN in that it lacks fully connected layers at its conclusion [88]. FCNs are predominantly
employed for tasks such as semantic segmentation, where each grid cell is assigned to a
specific class. The ability of FCNs to process image patches in a single inference step ren-
ders them suitable for tasks like assigning ice concentration labels on a per-grid cell basis.
The method being proposed utilizes an FCN that is structured on a U-net framework.
The U-net architecture is a form of FCN that incorporates both encoding and decoding
phases, supplemented by skip connections. The encoding phase of the U-net architecture
represents a downsampling process, during which the initial input is subjected to feature
extraction, yielding a condensed feature map. This dimensionality reduction is typically
achieved through pooling operations. Conversely, the decoding phase involves upsampling,
whereby the feature map produced during the encoding stage is reconstructed back to its
original size.

2.5 Sea Ice Chart

Ice charts are based on a combination of all available data on ice conditions, including
meteorological data, visual ship observations, airborne radar measurements, satellite im-
ages, and climatological information. These charts are generated at either the same spatial
resolution as the data or slightly coarser [5]. To produce daily ice charts, trained analysts
visually inspect all data available to estimate ice conditions. These conditions are used to
identify spatial regions that have relatively similar ice attributes, which are indicated by
drawing polygons on a map. In Figure 2.10 the Canadian Ice Service (CIS) daily ice chart
on February 03, 2014, over the eastern Canadian Arctic is displayed as an illustration.

17The number of pixels by which we move the filter across the input image.
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These daily ice charts are generated to facilitate operational activities such as shipping
throughout the freeze-up to break-up periods. Since shipping activities are minimal during
the consolidated ice season, the majority of charts generated during freeze-up and break-up
period. Utilizing ice charts during this period offers two significant advantages: firstly, the
freeze-up period is when PM SIC retrieval algorithms perform poorly due to the presence of
thin ice (e.g., [53]); secondly, the break-up period is when PM SIC retrieval algorithms do
not perform well due to the occurrence of surface melt (e.g., [89]). Daily ice charts (avail-
able at a different temporal frequency such as regional or weekly) are helpful in sea ice edge
monitoring during periods when sea ice edge location and length fluctuate frequently (e.g.,
freeze-up period, a period during which the ice changes quickly in response to changing in
air temperature and wind conditions). The daily ice charts can therefore provide insight
into these fluctuations. The accuracy of these products is related to different factors such
as the availability and resolution of source information as well as atmospheric conditions
(e.g., cloud coverage or daylight), and surface conditions (e.g., covered with snow or rain)
[90]. Details of the accuracy of a visually estimated ice concentration from these charts can
be found in a study by Cheng et al. [91]. It is known that ice charts provide an accurate ice
edge location [92, 93, 94]. The CIS daily ice charts (used in this study) are available from
2006 to the present. Prior to 2006, there was only the weekly regional ice chart available.

Egg Code

Each polygon within the ice chart is assigned an egg code (Figure 2.11), which follows the
international standard set by the World Meteorological Organization (WMO) for coding
ice-related information [2]. The egg code comprises details about the total ice concentra-
tion (C), the stage of ice development (S), and the predominant form of the ice floe (F),
all encapsulated within an oval shape. At the highest level of the egg code, the total ice
concentration (Ct) is specified, encompassing all stages of ice development. This total ice
concentration is further divided into three partial ice concentrations: CA, CB, and CC ,
forming the second row of the egg code. These partial concentrations reflect the presence
of the first, second, and third thickest ice, along with their respective stages of development
(SA, SB, and SC). This breakdown into partial concentrations is utilized when multiple
ice types coexist within the delineated polygon. Conversely, when only one type of ice is
present, no partial concentration is reported. Within each of these three ice types (CA, CB,
and CC), the predominant form of the ice floe is denoted by FA, FB, and FC , respectively.
In ice charts, the concentration of ice is expressed as a tenth of the total concentration
(1/10, 2/10, etc.). When the concentration falls below 1/10, it signifies open water, indi-

28



Figure 2.10: Daily ice chart from the Canadian Ice Service (CIS), showing ice conditions
over the eastern Canadian Arctic on February 03, 2014.

cating that there is some ice present, although less than 1/10 of the area is covered by ice.
This definition helps capture situations where ice is not completely absent but is present
in very small quantities.

2.6 Other Available Products

In addition to the previously mentioned SIC products, various other offerings from distinct
operational centers are also accessible for download. Specifically:

• MODIS & AMSR2 SIC [95]: Since October 2019, the University of Bremen has
been generating SIC data at a 1 km grid resolution derived from both MODIS (Ther-
mal infrared data) and ASI-AMSR2 (PM data) sources. Thermal infrared data offer
high spatial resolution (1 km), but are limited to cloud-free conditions. In contrast,
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Figure 2.11: The World Meteorological Organization (WMO) standard egg code used for
Canadian Ice Service (CIS) ice charting [2]. Ct is the total ice concentration value, CA,
CB, and CC are the first, second, and third thickest ice along with their respective stages
of development (SA, SB, and SC). FA, FB, and FC show the predominant form of the ice
floe in the mentioned three ice types.

AMSR2 data provide lower spatial resolution (5 km for the 89 GHz channels) but are
available regardless of cloud cover. The thermal infrared SIC is determined based on
local temperature anomaly [96] and enhancements detailed in Ludwig et al. [97]. The
merging process involves selecting a 5 × 5 km box, roughly equivalent to one AMSR2
footprint. Within this box, the thermal infrared SIC is adjusted to match the mean of
the PM SIC, while preserving their distribution. This ensures SIC consistency at the
transition between cloud-free and cloudy pixels. Cloud-covered areas lacking thermal
infrared SIC are filled with PM SIC, reducing the resolution to 5 km. Once merged,
daily means are calculated, resulting in a spatially continuous SIC product at 1 km
resolution (in some regions), five times finer than from AMSR2 PM observations [98].

• NSIDC SIC CDR [99]: The National Snow and Ice Data Center (NSIDC) is a
repository for cryosphere and related geophysical data from various NASA Earth-
observing satellite missions, airborne campaigns, and field observations. It offers a
Climate Data Record (CDR) of SIC, available on a daily and monthly basis from 25

30



October 1978 to the present, with a spatial resolution of 25 km. This dataset covers
both the Arctic and Antarctic regions. The CDR algorithm integrates SIC data from
two established algorithms: the NASA Team (NT) algorithm and Bootstrap (BT)
algorithm. It employs a rule-based approach to combine the outputs of these algo-
rithms, capitalizing on their individual strengths. Widely utilized for climate model
inputs, reanalyses, and environmental monitoring, the NSIDC CDR SIC dataset is
valued for its long-term consistency and comprehensive monitoring of polar sea ice
conditions (e.g., [100, 101, 66, 59]).

• ESA SIC CDR [102]: The Centre for Environmental Data Analysis (CEDA) is a
UK-based organization that provides access to the European Space Agency (ESA) Sea
Ice Climate Change Initiative (CCI) SIC product, which aims to provide long-term
climate records from satellite data.It uses the measurements from the SSM/I and
SSMIS over the polar regions (Arctic and Antarctic). This dataset is an enhanced-
resolution version of the EUMETSAT (European Organisation for the Exploitation
of Meteorological Satellites) Ocean and Sea Ice Satellite Application Facility Global
Sea Ice Concentration Climate Data Record (OSI SAF OSI-450-a CDR) over the
period 1991-2020.

• EUMETSAT SIC CDR [103]: The Ocean and Sea Ice Satellite Applications Fa-
cility (OSI SAF), operated by the European Organisation for the Exploitation of Me-
teorological Satellites (EUMETSAT), offers a range of SIC CDRs and interim CDRs
(ICDRs) vital for climate research and model assessment. Among these, OSI-450-a is
the most recent iteration of EUMETSAT OSI SAF Global SIC CDR, spanning from
1978 to 2020, derived from SMMR, SSM/I, and SSMIS satellite data. Complement-
ing this, OSI-430-a serves as the ICDR extending OSI-450-a from 2021 onward. Both
OSI-450-a and OSI-430-a furnish daily and monthly averaged SIC, alongside monthly
sea ice extent. These values represent the fractional percentage of ice cover per grid
cell, accompanied by corresponding per-cell uncertainty estimates. The reliability of
OSI SAF SIC products is underscored by extensive validation efforts, including di-
rect comparisons against meticulously curated 0% and 100% SIC reference datasets,
as well as assessments against US National Ice Center charts and the NSIDC sea
ice index. Widely adopted by climate modelers, numerical weather prediction, and
ocean/ice reanalysis applications, these EUMETSAT OSI SAF SIC CDRs and ICDRs
serve as key resources for understanding and forecasting climate dynamics.

• C3 Sea Ice Edge [104]: The Copernicus Climate Change Service (C3S) is a compo-
nent of the European Union’s Copernicus program, offering daily sea ice edge data
with a 12.5 km gridded resolution. The sea ice edge categorizes the sea surface into
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open water, open ice, and closed ice based on the amount of sea ice within each grid
cell. This data is available for both the Northern and Southern Hemispheres. The
SIC threshold of 30% is used to distinguish between open water and open ice, which
is different from the 15% threshold commonly used for sea ice extent. The dataset
relies on measurements from the series of SMMR, SSM/I, and SSMIS sensors. It
combines CDRs, designed to offer sufficient length, consistency, and continuity for
assessing climate variability and change, with ICDRs, providing regular temporal
extensions to the CDRs, with expected consistency but not extensively verified. The
CDRs of sea ice edge currently extend from 25 October 1978 to 31 December 2020.

• USNIC MIZ [105]: The U.S. National Ice Center (NIC) is a U.S. Navy, National
Oceanic and Atmospheric Administration (NOAA), and U.S. Coast Guard partner-
ship responsible for monitoring sea ice and providing operational ice analysis services.
The daily MIZ product is defined by the World Meteorological Organization (WMO)
as “the region of an ice cover which is affected by waves and swell penetrating into the
ice from the open ocean”. This data product is a U.S. National Ice Center (USNIC)
rendering of the MIZ as the band of ice in concentrations between 1/10 and 8/10, or
about 10% to 80% concentration. To define the MIZ the U.S. National Ice Center
Arctic and Antarctic Sea Ice Charts are used. This MIZ product is vector-based and
lack inherent resolution and is available from September 2004 for the Arctic.

The scarcity of the sea ice edge and MIZ products, compared to SIC products, is a
key motivating factor for this research. Acknowledging this shortage, this thesis aims to
generate sea ice edge and MIZ products to facilitate comprehensive analysis in climate
studies focusing on polar regions.
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Chapter 3

Sea Ice Edge Displacement Error

3.1 Introduction

The sea ice edge serves as the boundary between open water and sea ice, playing an im-
portant role in ship navigation as well as delineating the MIZ, a vital habitat for marine
mammals and seabirds [106]. To determine the edge contour, a specific SIC threshold,
typically set at 15%, is employed. The initial justification for this threshold stems from
early validation studies, which observed that the 15% concentration contour exhibited the
closest agreement with the ’true’ ice edge in high-resolution airborne or satellite data [107].
Also, as a consequence of satellite orbit characteristics, PM instruments encounter a cov-
erage gap, commonly referred to as the "pole hole", near the pole. The dimensions of this
gap have varied among different sensors. It is generally assumed that the gap, present in
all sensors, is ice-covered (>15% concentration). Consequently, the area of the pole hole is
incorporated into the total extent measurement [108]. Another practical rationale for uti-
lizing the 15% threshold is the implementation of post-processing "weather filters" by most
algorithms. These filters are designed to mitigate weather-related artifacts, yet in prac-
tice, they may erroneously remove some low-concentration ice [56]. By adhering to the 15%
threshold, the potential impact of the weather filter on extent estimates is minimized [108].

Accordingly, ice edges are defined as areas (e.g., grid cells) with a SIC of 15% or
higher. In a prior investigation, the sea ice edge derived from PM data using ASI and
BT algorithms was compared with pseudo-ship-observations based on the analysis of six
moderate-resolution imaging spectroradiometer (MODIS) images over the Arctic region.
The mean SIC at the edge determined from ship observations was found to be 10.5% for
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ASI and 23.6% for BT. Notably, ASI exhibited similar SIC values at the ice edge in both
summer and winter, while a significant difference was observed for the BT algorithm. This
disparity suggests that the ASI ice edge location on cloud-free days is less variable than
that determined by the BT algorithm, possibly indicating the latter’s greater sensitivity
to surface emissivity variations [109].

Microwave radiation emitted by the atmosphere has an impact on sea SIC retrieval
algorithms, particularly near the ice edge [56]. The ASI algorithm assumes that atmo-
spheric influence is a smooth function of the ice concentration and selects a third-order
polynomial for the SIC between 0% and 100% ice cover. On the other hand, the BT al-
gorithm adapts ice and water tie points seasonally (winter and summer) without regional
specificity, employing one set of tie points for the northern hemisphere and another for the
southern hemisphere. In contrast, the NT2 algorithm employs a radiative transfer model
to address atmospheric effects, considering 12 sets of representative atmospheric condi-
tions over both ice and open water. An evaluation of the NT2 SIC, utilizing synthetic
aperture radar (SAR) data from RADARSAT-1 and MODIS images in the Bering Sea
[92], revealed reasonable agreement between NT2 algorithm-derived ice edges and SAR
ice edge locations under various wind range and temperature conditions. The study en-
dorsed the use of manually derived ice edges from SAR for comparison with PM data
and highlighted NT2’s tendency to underestimate SIC for thin ice and overestimate it in
frazil 1 ice conditions relative to SAR. Additionally, an assessment of the NT2 sea ice
edge over the Arctic using the interactive multisensor snow and ice mapping system (IMS)
indicated higher uncertainty associated with ice edge location during the melt season [110].

Currently, there is a lack of recent studies examining the performance of PM-based sea
ice edge in comparison to ice charts, particularly in seasonal ice zones, which are becoming
increasingly prevalent in Arctic regions [111]. Given the significance of PM sea ice concen-
tration (SIC) products in long-term shipping route planning, reanalysis data production,
climate monitoring, and forecasting, this study aims to quantify the agreement between sea
ice edges derived from the ASI, NT2, and BT SIC retrieval algorithms and those obtained
from daily Canadian Ice Service (CIS) charts in predominantly seasonal ice zones over
the years 2013-2021. While the ASI algorithm offers finer spatial resolution compared to
many PM sea ice products, the NT2 algorithm addresses weaknesses in the original NASA
Team (NT) algorithm, particularly its sensitivity to emissivity variations, which is a key
advantage of the NT2 algorithm. The BT algorithm, has been used in climate-related

1Frazil ice comprises loose, randomly oriented ice crystals that are typically millimeter and sub-
millimeter in size with a variety of shapes.
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studies to provide a long-term, consistent, and comprehensive SIC dataset. These charac-
teristics lead us to choose these PM SIC retrieval algorithms to investigate the sea ice edge.

Regarding the evaluation of the ice edge displacement derived from two products, sev-
eral metrics have been explored. Some of the metrics employed include the integrated
ice-edge error [30], the root mean square ice edge displacement, the average ice edge dis-
placement, the ice edge displacement bias, and the Hausdorff distance [112]. Notably, there
is no agreement on the best measure [113] and these metrics focus solely on the displace-
ment of two compared edges without accounting for their respective lengths. This be-
comes important when two ice edges are situated at the same location yet possess different
lengths. Such situations can arise either when comparing ice edges from the same product
at different times or when comparing different products at the same time. To address
this limitation and consider both edge length and displacement, this research introduces
an edge-length-based dimensionless measure called edge displacement error (EDE). This
study aims to evaluate the performance of PM SIC products in sea ice edge estimation
by using the EDE and the weighted average Hausdorff distance (δwavg

H ), a recommended
metric in previous research [112].

3.2 Experimental Design

3.2.1 Study Area

The study area covers sea ice along Baffin Island and the Davis Strait (Figure 3.1, panel
a). This region has a high species richness of Arctic marine mammals, including narwhals,
beluga whales, bowhead whales, ringed seals, and bearded seals [114]. Pikialasorsuaq, a
large polynya in the northern part of Baffin Bay, serves as a critical breeding and feed-
ing habitat for seabirds, attracting millions of them during the summer for feeding [115].
Thus, this region can play an essential role in polar ecosystems. Local Inuit depend on
these Arctic marine mammals, and the marine environment for their livelihood [16], utiliz-
ing the ice cover as both a hunting platform and transportation route. At the same time,
shipping traffic in this region is increasing [9], driven by the Mary River mine’s demand
to extend the shipping season [15]. Sea ice loss and increased ship traffic may increase
noise pollution, and these trends may also threaten Arctic marine mammals’ populations.
This region corresponds to the eastern Canadian Arctic charting region for daily ice charts
produced by CIS. It is important to note that over the study area, the coverage of the ice
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(a) (b)

Figure 3.1: (a) The red outline shows the region of study, which is based on the maximum
extent of all available daily ice charts during the study period. (b) An example of the data
set coverage over the study area for a given day. Each date’s coverage is indicated by a
polygon with different colors. The study area’s size changes daily and month to month
due to changes in the area over which CIS is required to provide ice conditions, which
depends on shipping and other activities in the region. Notice that the largest charted
area in panel (b) is for October when the ice starts to freeze up, and there is still activity
over a large region of Baffin Bay. Datum is the world geodetic system 1984 (WGS84), and
the projection coordinate system is Lambert conformal conic.

chart data set varies, and therefore our study region varies daily, monthly, and annually.
An example of how the charted region changes over time is demonstrated in Figure 3.1,
panel b. Each date’s coverage is indicated by a polygon with different colors. The study
area’s size changes daily and monthly due to changes in the area over which CIS is required
to provide ice conditions, influenced by shipping and other regional activities. Notice the
largest charted area in Figure 3.1, panel b is for October, which is when the ice is starting
to freeze up, corresponding to heightened activity across a large expanse of Baffin Bay. In
contrast, the smallest charted area is in April when there is limited shipping activity. The
study period was selected as 2013-2021 to focus on recent changes. To evaluate the ice edge
in this region, monthly SICs from October to June were utilized for sea ice edge calculations.
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3.2.2 Dataset

Reanalysis Data

The climate variables required for this study are obtained from the European Centre for
Medium-Range Weather Forecasts (ECMWF) Reanalysis 5th Generation (ERA5) dataset,
accessible through the Copernicus climate data store [116]. ERA5 provides hourly data
spanning 24 hours, with a spatial resolution of 30 km, covering the time period from 1940
to the present. To calculate the 10-meter wind speed in meters per second (m/s), we derive
it by combining two original components: the 10-meter meridional component and the 10-
meter zonal component of wind. The ERA5 dataset compiles in-situ data from the WMO
Information System (WIS) Drifting Buoy dataset. The 10-meter meridional component
represents the horizontal air movement speed toward the north, measured at a height of 10
meters above the Earth’s surface. Conversely, the 10-meter zonal component of wind sig-
nifies the horizontal air movement speed toward the east. These two components are then
combined to produce a unified measure of horizontal 10-meter wind speed by calculating
the magnitude between the meridional and zonal components. The air temperature at a
2-meter height above the land or sea surface is measured in kelvin (K). ERA5 gathers and
consolidates temperature data from the WIS as well. To ensure calculation consistency,
the reanalysis data are re-gridded to the chart spatial resolution using bilinear interpolation.

PM SIC

In this study, the AMSR2 ASI SIC with a 6.25 km gridded resolution is obtained from
the University of Bremen, Germany [58]. The AMSR2 NT2 SIC with a 12.5 km gridded
resolution is acquired from the United States National Snow and Ice Data Center (NSIDC,
[117]). The SSMIS BT SIC with a 25 km gridded resolution is obtained from the NSIDC
[118]. To ensure calculation consistency, all SIC products are re-gridded to the chart spa-
tial resolution using bilinear interpolation.

Chart SIC

CIS daily ice charts are obtained from Environment and Climate Change Canada (ECCC).
The CIS daily ice charts are accessible in a format defined by the World Meteorological
Organization (WMO) known as Sea Ice Grid (SIGRID). The SIGRID-3 format comprises
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several files, including a shape file (.shp) accompanied by associated files (.dbf, .prj, .shx),
and a metadata file (.xml). These files are bundled together into a zip file (.zip) for
distribution. The shapefile serves as the central component, containing vector data that
represents various aspects of ice information, including ice polygons and their associated
attributes. To utilize this data effectively, vector files are initially converted into raster
files. The Geospatial Data Abstraction Library (GDAL) in Python is employed to rasterize
vector inputs. This procedure yields ice chart information at a grid cell level. The spatial
resolution selected for this process is 5 km. As an illustrative example, Figure 3.2 displays
the corresponding rasterized ice chart for February 03, 2014, covering the eastern Canadian
Arctic.

Figure 3.2: The rasterized CIS daily ice chart on February 03, 2014, over the eastern
Canadian Arctic. Regions without data are shown in light blue, while land is shown in
black.

Following the rasterization process 2, we updated the total ice concentration based on
the code tables for SIGRID-3 variables (Appendix 5 given in [1]). We used SA, SB, SC, CA,
CB, and CC to define the ice stage of development and the corresponding partial concen-
tration for each grid cell. Consequently, each grid cell had three partial ice concentrations
associated with three different stages of development in a single day. Lastly, we calculated
the daily mean value of each partial ice concentration for each stage of development for

2The process of converting spatial data, typically in vector format, into a raster format which is made
up of pixels.

38



the given grid cell. Based on the ice stage of development, we classified the ice type of the
ice-covered grid cells (where SIC is not zero) into two categories:
1- thin ice: ice with thickness ≤ 30 cm (the thickness of more than 30 cm is not considered
thin ice [56],
2 - thick ice: ice with thickness > 30 cm.
It is noted that the ice thickness range is assigned to each ice type based on the code
tables for SIGRID-3 variables (Appendix 5 given in [1]). Table 3.1 outlines the stage of
development associated with each ice category (thin and thick) considered for this study.
It should be noted that these categories are less reliable after the ice growth season has
been completed (according to our personal communication with CIS).
An illustration of SIC retrieved from the ASI, NT2, BT algorithms, rasterized ice chart,
and CIS daily ice chart on February 03, 2014, over the study area is shown in Figure 3.3.

Table 3.1: Ice categories based on the ice stage of development included in the CIS ice
charts. Adapted from the code tables for SIGRID-3 variables (Appendix 5 given in [1]).

Ice Category Development Stage Ice Thickness (cm)

Thin

New Ice

≤ 30
Nilas and Ice Rind

Young Ice
Grey Ice

Grey-White Ice

Thick

First Year Ice

> 30

Thin First Year Ice
Medium First Year Ice
Thick First Year Ice

Old Ice
Second Year Ice
Multi Year Ice

Glacier Ice
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(a) ASI (b) NT2

(c) BT (d) rasterized CIS daily ice chart

(e) CIS daily ice chart

Figure 3.3: An illustration of SIC retrieved from the ASI (panel a), NT2 (panel b), BT
(panel c) algorithms, rasterized CIS daily ice chart (panel d), and CIS daily ice chart (panel
e) on February 03, 2014, over the study area. In panels a to d, regions without data are
shown in light blue, while land is shown in black.
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3.2.3 Sea Ice Edge Estimation

Following the calculation of the daily SIC value for each PM product, we generated the
corresponding daily SIC based on the exact geolocation and date indicated on the CIS
charts. A common method for estimating the ice edge location [112] for each product is to
find grid cells with SICs exceeding 15% while their neighbours’ SICs are below 15%. For a
grid cell at i, j location and concentration of c, we consider it as the edge grid cell or e[i,j]
if

c[i, j] ≥ 15% AND min(c[i − 1, j], c[i + 1, j], c[i, j − 1], c[i, j + 1]) < 15%. (3.1)

After defining the edge grid cells using Equation 3.1, we applied the density-based
spatial clustering of applications with noise (DBSCAN) method [119] to delineate the
contour intersecting the MIZ. This is done to obtain a robust ice edge by eliminating
the isolated ice patches. It is worth noting that the BT algorithm scarcely needed the
clustering process, implying that the estimated edge is almost continuous due to its coarse
spatial resolution and limited detail on SIC and sea ice edge. Figure 3.4 represents how
the DBSCAN clustering method modifies the chart, ASI, NT2, and BT sea ice edges.

3.2.4 Edge Displacement Error

To assess the agreement between sea ice edge locations derived from the PM algorithms
(ASI, NT2, BT) and those from the ice charts, we employed a recommended metric by
Melsom et al. [112] known as the weighted average Hausdorff distance (δwavg

H , measured in
kilometer)

δwavg
H = 1

2
[ 1

Nch

Nch

∑
n=1

δnch +
1

NPM

NPM

∑
n=1

δnPM], (3.2)

where Nch and NPM are the number of edge grid cells derived from the chart and PM
product, respectively. δch and δPM are the distance from the chart edge grid cell to the
nearest edge grid cell derived from the PM product and the distance from the PM product
edge grid cell to the nearest edge grid cell derived from the ice chart. A more detailed
description, including a detailed comparison with other metrics, can be found in Melsom
et al. [112]. By employing Equation 3.2, we can calculate the distance between two sea ice
edges [112]. It is important to note that this approach only provides the distance between
two sea ice edges [112]. The sea ice edges, however, may have different edge lengths while
overlapping partially.
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(a) ASI-before clustering (b) ASI-after clustering

(c) NT2-before clustering (d) NT2-after clustering

(e) BT-before clustering (f) BT-after clustering

Figure 3.4: An example of how the DBSCAN clustering method works for the ASI, NT2,
and BT algorithms for the sea ice edge of December 2013 before clustering (panel a, c,
e) and after clustering (panel b, d, e). The regions without data are shown in light blue,
while land is shown in black.
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Acknowledging the variability in both the location and length of the ice edge over
time, we introduced the Edge Displacement Error (EDE). EDE is a dimensionless measure
defined as

EDE = δwavg
H

Lavg

, (3.3)

where Lavg is the average ice edge length (measured in kilometer) and can be expressed as

Lavg =
Lch +LPM

2
, (3.4)

where Lch and LPM are the ice edge length from the chart and PM product, respectively.
EDE can be any value equal to or greater than zero, where a zero EDE value indicates the
ideal scenario where the location and length of the two ice edges are perfectly matched.
In this study, the ice edge is defined as a grid cell set that satisfies the specified condition
outlined above (Equation 3.1). To find the ice edge length derived from the chart and
PM algorithm (Lch and LPM , respectively), it is necessary to consider the position of the
ice edge grid cell derived from the chart and PM algorithm (li,jch and li,jPM , respectively),
summing up the lengths of all grid cells [112]: Lch = ∑ li,jch , LPM = ∑ li,jPM , where i, j are the
position of ice edge grid cell derived from the chart and PM algorithm, respectively. For a
detailed description of the computation of li,jch and li,jPM refer to Melsom et al. [112].

Figure 3.5 represents how EDE and δwavg
H can be different in two scenarios, assuming

the grid cell size is 10 km:
a) sea ice edges are in straight lines or with a few turns (EDE = 0.21, δwavg

H = 13.87 km),
b) sea ice edges are in meandering patterns with numerous turns (EDE = 0.12, δwavg

H =
15.90 km).
The EDE value in the first scenario (Figure 3.5, panel a) is higher than in the second
scenario (Figure 3.5, panel b), while the δwavg

H in the first scenario is smaller than in the
second scenario. The discrepancies can be explained by the fact that in the first scenario,
the EDE and δwavg

H both can capture the edge displacement (regardless of the variation
in edge lengths) since the edge lengths are approximately equal. In the second scenario,
where sea ice edges meander, the edge lengths differ. Consequently, the δwavg

H (Equation
3.2) can only capture the distance between two edges. In this context, dividing δwavg

H by
the average edge length (Equation 3.4) yields the normalized edge displacement (Equation
3.3). The EDE measurement, in this scenario, reflects the discrepancy in edge length and
displacement.
Figure 3.6 illustrates the workflow of the described methodology.
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(a) (b)
Figure 3.5: A schematic representation of the chart and PM algorithm ice edge lines
(represented by green and yellow lines, respectively). Land grid cells are shown in brown.
i and j show the position of grid cells. This figure represents how EDE and δwavg

H can be
different in two scenarios, assuming the grid cell size is 10 km: a) sea ice edges are in
straight lines or with a few turns (EDE = 0.21, δwavg

H = 13.87 km), b) sea ice edges are in
meandering patterns with numerous turns (EDE = 0.12, δwavg

H = 15.90 km).
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3.3 Results

3.3.1 Seasonal Ice Cover

The annual cycle of sea ice growth and decay from the years 2013 to 2021 over the study
area is displayed in Figure 3.7. During these years, CIS daily ice charts provide coverage for
all months, with the exception of September 2014 and 2021, as indicated by blue hatches
in 3.7 as blue hatches. It is apparent that the ice grows and decays throughout the year.
The freeze-up period begins in October when thin ice begins to emerge. A peak in the
concentration of thin ice is observed at the end of the freeze-up period, just before the
beginning of winter in January. Subsequently, this thin ice gradually transforms into thick
ice, reaching a high concentration from January to March (winter season). During the
melt season from April to June, the total ice concentration decreases, with the possibility
of an increase in the relative concentration of thick ice. The summer season begins in July
and extends through September. Following the determination of the ice condition over the
study area, we calculated the corresponding daily sea ice edge for each PM product based
on the exact location and day indicated on the CIS charts for the months of October to
June over the years 2013-2021. On average, the chart SIC at the edge is 51.27%. Specifi-
cally, these values for winter, melt, and freeze-up seasons are 44.69%, 50.65%, and 58.47%,
respectively. Since the 15% threshold was used in Equation 3.1 to estimate the sea ice
edge, the chart mean SIC at the edge appears high, which is due to the polygonal nature
of the ice chart data, In this format, the ice chart polygons adjacent to the ice edge may
have total ice concentrations exceeding 15% (see Figure 3.3).

3.3.2 Chart and PM Sea Ice Edge

From the summary in Table 3.2, it is observed that the mean value of ASI SIC at the chart
ice edge is 10.59%, well below the 15% SIC threshold. Specifically, this value for the winter
season is 7.61% and increases to 16.16% and 8.00% in the melt season and freeze-up period,
respectively. The mean value of NT2 SIC at the chart ice edge is 17.97%, close to the 15%
threshold. This value for the winter season is 14.40% and increases to 24.27% and 15.26%
in the melt season and freeze-up period, respectively. The mean value of BT SIC at the
chart ice edge is 25.07, well above the 15% threshold. These values for winter, melt, and
freeze-up seasons are 24.63%, 25.28%, and 25.29%, respectively. A possible explanation for
these differences is due to the different spatial resolutions of the PM sensors. The SSMIS
sensor has footprints of 28 to 70 kilometers for channels used in the BT algorithm. AMSR2
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has a higher spatial resolution than SSMIS (3 to 26 km sensor footprints for channels used
in the ASI and NT2 algorithms). Both sensor footprints are larger than the resolution of
the data used to produce ice charts (e.g., primarily SAR). The mean SIC at the ice edge
seems to be dependent on PM sensor spatial resolutions, with less variability across seasons
for the larger footprint sensor.

Figure 3.7: Annual partial concentration for thin (top) and thick (bottom) ice derived
from the CIS ice charts in 2013-2021 over the ice-covered region of the study. The total
ice concentration is the sum of the thin and thick ice. The blue hatches indicate no chart
available for September 2014 and 2021 over the study area. The colors for seasons appear
on the top: orange for melt and green for freeze-up. The colors for seasons appear on the
bottom: blue for winter and red for summer.
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These statistics suggest that the PM SIC products tend to have a lower SIC at the ice
edge compared to the ice charts. These findings are consistent with the polygonal repre-
sentation used in ice charts, as discussed previously, and underscore the operational nature
of ice charts, which prioritize safety considerations. Accordingly, chart SIC values are ex-
pected to be higher than PM products at the edge [120]. Additionally, the ASI algorithm
exhibits the lowest standard deviation (SD) SIC at the chart ice edge (6.48%), suggesting
a consistent tendency for underestimation. The SD is calculated over all data, which are
initially averaged on a monthly basis over the years 2013-2021. The ASI mean SIC value
is well below 15%, suggesting that setting a SIC threshold of 10% may result in a sea ice
edge location that aligns more closely with the ice charts. Conversely, the BT mean SIC
value is well above 15% indicating that setting a SIC threshold of 20% could yield a sea
ice edge location that aligns more closely with the ice charts.

A potential source of this disagreement between different products lies in the difference
in resolution between PM SIC products and ice charts. A large sensor footprint limits the
precision of the ice edge location estimation. For instance, within the large footprint of the
SSMIS sensor, the observed brightness temperature may tend to blur the ice edge due to
the mixture of ice and water. Consequently, the estimated edge location tends to extend
outward. On the other hand, within the small footprint of the AMSR2 sensor, the ice edge
may result in a concentration below the 15% threshold, leading to an underestimation of
the edge location. Consequently, the estimated edge location tends to extend inward. Fig-
ure 3.8 provides an illustration of the monthly EDE and δwavg

H values over the study area in
all months of 2017 (panels 1 to 27). It can be seen that the ASI ice edge appears closer to
the consolidated ice region (inward); however, the BT ice edge often appears closer to open
water (outward) for almost all months of the study period. Furthermore, differences in the
algorithms also contribute to the disagreement between different products, with ASI being
more sensitive to ice temperature and atmospheric moisture, leading to underestimating
the ice edge location in the MIZ [94].
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(1) ASI-January 2017 (2) NT2-January 2017 (3) BT-January 2017

(4) ASI-February 2017 (5) NT2-February 2017 (6) BT-February 2017

(7) ASI-March 2017 (8) NT2-March 2017 (9) BT-March 2017

(10) ASI-April 2017 (11) NT2-April 2017 (12) BT-April 2017
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(13) ASI-May 2017 (14) NT2-May 2017 (15) BT-May 2017

(16) ASI-June 2017 (17) NT2-June 2017 (18) BT-June 2017

(19) ASI-October 2017 (20) NT2-October 2017 (21) BT-October 2017

(22) ASI-November 2017 (23) NT2-November 2017 (24) BT-November 2017

51



(25) ASI-December 2017 (26) NT2-December 2017 (27) BT-December 2017

Figure 3.8: An illustration of the monthly EDE and δwavg
H values over the study area in

2017 (panel 1-27). Ice edges determined by the CIS ice chart are in blue color contours, and
those from the ASI, NT2, and BT algorithms are in red color contours. Edge determination
is based on a 15% SIC threshold, and the ice edges are calculated based on the monthly
SIC values. The regions without data are shown in light blue, while the lands are black.

3.3.3 Edge Displacement Error

Table 3.2 provides a comparison of sea ice edges derived from the PM products with those
obtained from charts. Notably, the mean values of EDE and δwavg

H for the ASI, NT2, and
BT algorithms exhibit higher values in the melt season and freeze-up period compared
to the winter season. On average, the ASI algorithm shows the highest EDE and δwavg

H ,
while the BT algorithm demonstrates the lowest values. The spatial resolution limitation
hinders precise ice edge location determination using PM SIC products. For instance, the
accuracy of the ice edge location is constrained by the 25 km × 25 km spatial resolution of
the SSMIS SIC product. The NT2 and BT algorithms exhibit more consistency with each
other in terms of mean δHwavg and Lavg than the NT2 and ASI algorithms, indicating a
potential influence of sensor spatial resolution. The low EDE and δwavg

H standard deviation
(SD) values in the BT algorithm (0.10 and 34.18 km, respectively) suggest low variability
and close to the average values of EDE and δwavg

H . The winter season, characterized by
a high concentration of thick ice, exhibits the lowest mean EDE and δwavg

H values for all
three PM algorithms, reflecting a well-defined ice edge. Conversely, the freeze-up period,
marked by the emergence of thin ice (see Figure 3.7), displays the highest mean EDE and
δwavg
H values. In this period, small ice floes and filaments, combined with atmospheric and

ocean forces, contribute to a diffuse ice edge. Additionally, during the melt season (which
starts in April), waves and winds can break melting rotten ice, leading to a diffuse ice-water
boundary, potentially causing erroneous SIC and sea ice edge estimation, consistent with
findings in Pang et al. [109].
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Figure 3.9 presents box-whisker plots that visually depict the variation of δwavg
H , Lavg,

and EDE for the ASI, NT2, and BT algorithms across each month over the entire study
period and study area. In each monthly box-whisker plot, the line across the box represents
the median value, while a green triangle denotes the mean. The length of the box indi-
cates the interquartile range (IQR) of the corresponding measurement. Notably, October
exhibits the highest mean values of δwavg

H , Lavg, and EDE for all three PM algorithms. This
observation aligns with October marking the onset of the freeze-up period, characterized by
the appearance of thin ice in the study region (as discussed earlier). Additionally, monthly
variations are evident in δwavg

H , Lavg, and EDE values, with the ASI and BT algorithms
displaying the widest and narrowest spreads, respectively. Upon closer examination of the
box-whisker plots, it is apparent that the mean EDE value for October falls outside the
range represented by the box-whisker plots for both the NT2 and BT algorithms. This
deviation suggests that the monthly EDE distributions are highly skewed during October.

The box-whisker plot for monthly EDE Figure 3.9 shows the range of EDE is high
for April, indicating that normalizing δwavg

H with the total length provides an alternative
measure for the difference between the ice edge locations that is less susceptible to changes
in the charted area. In particular, the long positive whiskers observed in April indicate
significant deviations toward higher values than the mean. This indicates a greater range
of EDE values in April, reflecting the edge’s highly dynamic nature this month. This ob-
servation is consistent with the fact that in April, the wind speed is relatively high, air
temperature exhibits greater fluctuations compared to other months, and temperature is
nearing the freezing point (Figure 3.10). Off-ice winds can propagate ice filaments into the
ocean, creating a diffuse ice edge, which could lead to an erroneous SIC and sea ice edge,
as also confirmed by Pang et al. [109]. To explore a possible explanation for the different
behavior of April and October, observed in Figure 3.8, we examined Figure 3.9 panels 10
to 12 for April 2017 and panels 19 to 21 for October 2017. We noticed that in October (the
beginning of the freeze-up period), the ice edge exhibits meandering behavior and extends
further inward compared to April. Therefore, dividing δwavg

H by the ice edge length allows
the meandering patterns to be captured.
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(a) ASI-δwavg
H (b) NT2-δwavg

H (c) BT-δwavg
H

(d) ASI-Lavg (e) NT2-Lavg (f) BT-Lavg

(g) ASI-EDE (h) NT2-EDE (i) BT-EDE

Figure 3.9: A box-whisker plot visualization of the δwavg
H : (a) ASI, (b) NT2, (c) BT, Lavg:

(d) ASI, (e) NT2, (f) BT, and EDE (g) ASI, (h) NT2, (i) BT, in each month over the
whole study period and study area. Each measurement’s median and average values are
indicated by a line across the box and a green triangle, respectively. The box length
indicates the corresponding measurement’s interquartile range (IQR). The circles outside
the box indicate an outlier.
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Figure 3.10: A box-whisker plot visualization of the monthly wind speed (m/s) and 2-meter
air temperature over the whole study period and study area. Each measurement’s median
and average value are indicated by a line across the box and a green triangle, respectively.
The box length indicates the corresponding measurement’s interquartile range (IQR). The
circle outside the box indicates an outlier.

3.4 Discussion

The determination of the ice edge derived from PM algorithms is a function of the spatial
resolution of the sensor and the frequencies used by a given algorithm (because resolution
varies with frequency). The smearing uncertainty, as described in Equation 2.12, can affect
the presented results. For instance, in the case of BT algorithm, first, the footprint size
of the 19 GHz channels of SSMIS instruments (see Table 2.2) exceeds the grid resolution
used for presenting SIC product (25 × 25 km). Second, the BT algorithm combines 19 and
37 GHz frequency channels, with the footprint of the latter being smaller than that of the
former (see Table 2.2). Consequently, the coverage area of the Earth’s surface by these two
frequencies entering the BT algorithm differs. In regions of homogeneous surfaces (fully
sea ice covered or open water) these effects should have minimal impact. However, at the
sea-ice edge where spatial gradients are sharp and the footprint covers a heterogeneous
surfaces (mixture of open water and sea ice), these effects become more pronounced [59].
Lower resolution may cause the ice edge to appear blurred, potentially leading to an over-
estimation. Conversely, the blurring effect may compensate for the challenges in detecting
thin and melting ice near the ice edge, which is most prevalent near the ice edge [108]. It is
worth noting that algorithms utilizing higher frequency channels (near-90 GHz) are more
sensitive to geophysical noise but provide higher spatial resolution SIC products compared
to those using lower frequency channels (up to 37 GHz) [121]. However, near-90 GHz
data may be less sensitive to changes in physical properties in ice and snow due to their
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shallower penetration depth compared to lower frequencies [56]. Ultimately, the choice of
algorithms involves considerations of the trade-off between geophysical noise and spatial
resolution.

3.5 Conclusion

This paper has assessed the performance of three PM SIC products (the ASI, NT2, and
BT) in sea ice edge estimation with respect to the operational daily ice charts over the
eastern Canadian Arctic for 2013-2021. In order to analyze the ice edge estimation in
this region, the statistics are calculated from October to June, which corresponds to the
ice-covered season. Key findings reveal that the PM algorithms underestimate the chart
SIC at the edge. Our results indicate that normalizing the Hausdorff distance, δwavg

H ,
with the average length of the ice edge provides an alternative measure, EDE, that is less
sensitive to changes in the charted area. The ASI algorithm exhibited the highest EDE
on average, while the BT algorithm demonstrated the lowest EDE on average. These
discrepancies in performance could be attributed to the difference in frequency, footprint
size, and spatial resolution among the PM SIC products and ice charts. During the freeze-
up period, all PM algorithms exhibited higher mean EDE values due to the presence of
thin ice. Conversely, the lowest mean EDE values across all PM algorithms were observed
during winter, characterized by a well-defined ice edge resulting from high concentrations
of thick ice. A further observation was that the ASI ice edge appeared closer to ice than
the chart ice edge. The BT ice edge, however, often appeared closer to open water than
the chart ice edge due to the smear effect caused by the large sensor footprint. Considering
the importance of PM SIC products, this study can assist in implementing bias-corrected
PM product to be fused with ice charts or other SAR-based products.
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Chapter 4

Marginal Ice Zone Interannual
Variability

4.1 Introduction

The MIZ can be defined as the region between the consolidated ice cover and the open
ocean. It is often considered the area where ocean waves interact with sea ice, penetrate
ice cover [37], and impact the ice thickness [38]. A more practical definition of the MIZ
is defined as the region where the SIC is between 0.15 and 0.80 [31], where SIC is often
obtained using data from passive microwave sensors. Irrespective of the definition applied,
investigating the MIZ is vital as it supports a diverse range of life, from sea ice algae and
other primary producers to marine mammals and seabirds [106] and has implications for
human access to the Arctic [122]. The MIZ is highly dynamic and responsive to fluctuations
in cyclones [123], wind and ocean currents, making it a rapidly changing environment [124].
Due to its dynamic nature, the MIZ plays a significant role in modulating the exchange
of heat and gases between the atmosphere and ocean [32]. Furthermore, MIZ can impact
Arctic amplification, as it serves as a zone for Arctic cyclogenesis, which plays a big role
in northward meridional heat transport [125]. Therefore, improving our understanding of
Arctic climate change requires an enhanced understanding of MIZ spatial and temporal
variability.

Strong and Rigor [31] used several PM SIC products across the Arctic (1979-2011) and
indicated that the summer MIZ (July-September) expanded in width by 39%, while the
winter MIZ (December-February) decreased in width by 15%. The observed widening of
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the MIZ is reported to be closely associated with the decline of thick and multi-year sea
ice. MIZ widening facilitates ship access to the Arctic [126]. Utilizing various passive mi-
crowave SIC products, another study in the Arctic (1978-2018) reported a constant MIZ
extent trend that was attributed to a decrease in the perimeter as the MIZ moved north [32].
Several other studies tend to assume that the MIZ extent is increasing [127, 128, 129, 130].
Horvat [35] suggested using the marginal ice zone fraction (MIZF, the fraction of sea ice
cover that is MIZ) as an alternative to solely relying on sea ice area for evaluating how
changes in sea ice models affect past, present, and projected sea ice state. The strong
correlation between sea ice area and global mean temperature (unlike the MIZF) makes it
difficult to determine whether improvements in modeled sea ice are due to advancements in
sea ice models or other components of climate models. This makes MIZF a more plausible
method of assessing improvements in sea ice models. Considering the significance of passive
microwave SIC products in activities such as long-term shipping route planning, reanaly-
sis data production, climate monitoring, and forecasting, MIZF can potentially provide a
realistic understanding of future climate conditions.

As an alternative approach to delineating the MIZ without relying on a fixed threshold
(0.15 ≤ SIC < 0.80), the study by Vichi [39] introduced an innovative method involving
an indicator derived from the SIC anomaly. This indicator (denoted as σm

SIA and referred
to as σa in our study) signifies the deviation of SIC at a specific grid cell from its long-
term average over a given time period. Vichi concluded the indicator provides insight into
the variability of the Antarctic MIZ, while the SIC threshold-based approach suffices for
defining the Arctic MIZ; although this study did not explicitly examine the details of the
anomaly-based approach in the Arctic. The decline of Arctic sea ice extent [131, 132], the
replacement of thick and multi-year ice by thin and first-year ice [133, 134] and the more
fragmented thinner sea ice, coupled with stronger winds and waves than in the past [126]
highlight potential alteration in SIC anomaly. These observations, motivated us to explore
the efficacy of the SIC anomaly-based MIZ definition in capturing meaningful insights,
comparable to the established SIC threshold-based definitions, in the Arctic.

Given the vulnerability of the Arctic MIZ to the effects of climate change [135], there
is a compelling need to investigate when (or if) significant shifts occur within the 40-year
time series of the Arctic MIZF, which has not been examined previously. By understand-
ing historical shifts, more accurate models for forecasting future sea ice conditions can be
developed. This analysis affects not only human activities and ship navigation planning
but also other sectors such as marine habitat life [136]. Knowledge of these shift points
in the time series can provide data-driven insights into the timing and magnitude of envi-
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ronmental changes, which can guide conservation efforts and policies aimed at mitigating
climate change impacts. In this study, we used BT SIC, a long-term passive microwave SIC
product, to investigate Arctic MIZ interannual and seasonal variability and possible change
points over the last 40 years using two different MIZ definitions: SIC threshold-based, and
SIC anomaly-based.

4.2 Experimental Design

4.2.1 Dataset

The BT SIC [137] was chosen as the primary sea ice product because it provides a long-term,
consistent, and comprehensive SIC product. The BT ice edge also shows good agreement
with the daily Canadian Ice Service (CIS) ice charts over the eastern Canadian Arctic,
compared to other PM products [138]. To strengthen the observations, we incorporated
several PM sea ice products namely ASI, NT2, Ocean and Sea Ice Satellite Application
Facility-458 (OSI-458), covering the Arctic region from 2012 to 2020. This time frame
was chosen to ensure consistency in the comparison, as it represents an overlapping period
when all these products are available.

4.2.2 MIZ Fraction

The concept of marginal ice zone fraction (MIZF) is defined as [35]

MIZF = MIZA
SIA

, (4.1)

where MIZA represents the marginal ice zone area, which is the summation of each grid
cell area multiplied by its SIC, provided it is MIZ. SIA denotes the sea ice area, which is
the summation of each grid cell area multiplied by its SIC, provided it has at least 0.15
concentration.

4.2.3 SIC Threshold-based MIZ Fraction

To define the monthly MIZtF in each year, we first calculated the monthly mean SIC
values for a particular grid cell for a given year. Next, we determined the MIZ using the
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SIC criterion (MIZt) as 0.15 ≤ SIC < 0.80. Finally, we used Equation 4.1 to find the MIZtF.

4.2.4 SIC Anomaly-based MIZ Fraction

SIC Anomaly

The SIC anomaly refers to the deviation of SIC at a particular grid cell from its long-
term average, which is taken over a given month for the years 1983-2022. To calculate the
monthly SIC anomaly for a grid cell located at i, j (ami,j,d), the following equation was used

ami,j,d = SICm
i,j,d − SICm

i,j, (4.2)

where SICm
i,j,d is the SIC value at the grid cell with the location of i, j on each day d in a

given month m, and SICm
i,j is the long-term average SIC value for the same grid cell over

the same month. Choosing a monthly time window for climatology reduces short-term
fluctuations compared to daily process, providing a smoother dataset that can reflect long-
term SIC patterns and trends.

SIC Anomaly Variability

The standard deviation of the monthly SIC anomaly (σ) captures the SIC variability of a
given grid cell over a month. The monthly SIC anomaly for a given grid cell located at i, j
or σa

i,j over month m with n total days (d = 1 to n) can be calculated by taking the square
root of the variance, which is the mean of the squared daily SIC anomalies or ami,j,d [39].
Mathematically, σa

i,j can be expressed as

σa
i,j =
¿
ÁÁÀ 1

n

n

∑
d=1

(ami,j,d)2. (4.3)

SIC Anomaly Distribution

Following defining the σa
i,j, we calculated the median value of each grid cell over the Arctic

(1983-2022). Figure 4.1, panel a, shows the probability density function (PDF), empirical
cumulative distribution functions (ECDF), and fitted Pareto distribution cumulative dis-
tribution function (fitted CDF) for the median of SIC anomaly standard deviation (σa).
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To check the goodness-of-fit of the Pareto distribution, we used the Kolmogorov-Smirnov
(K-S) test, and the resulting p-value was smaller than the chosen significance level of 0.05.
Panel b and c in Figure 4.1 display the mean SIC and median σa spatial maps, respectively.
The PDF plot displays two distinct peaks: peak 1 is centered approximately at 0.02, and
peak 2 is situated around 0.15, with the trough between the peaks apparent around 0.11.
Based on Figure 4.1, regions with mean SIC values close to 1 correspond to the median σa

values below 0.11, hence these values correspond to regions of high ice concentration. Areas
where the mean SIC values are less than 1 are associated with median σa values exceeding
0.11. Consequently, we established a threshold of 0.11 to identify significant anomalies in
SIC for MIZ determination. To define the monthly MIZσF in each year, we first calculated
the σa

i,j (Equation 4.3). Then, we determined the MIZ using the SIC anomaly criterion
(MIZσ) as σa > 0.11.

4.2.5 Change Point Detection

To investigate if there are change points within the 40-year time series of the Arctic MIZF,
we employed the pruned exact linear time (PELT), a multiple change point detection
method, introduced by Killick et al. [139] and used in sea-ice related studies [140, 141].
The PELT algorithm initiates with a single segment encompassing the entire time series.
If the reduction in cost is less than a defined penalty value (>0), the penalized cost in-
creases, and the year under consideration is not identified as a change point. Conversely, if
the cost reduction surpasses the added penalty, the algorithm marks the year as a change
point. Subsequently, the dataset is divided at this change point. Among the remaining
candidate split points, PELT selects the one with the lowest cost, thus dividing the time
series into two new segments. This process iterates for the two newly created datasets,
both before and after the identified change point. If change points are detected in either
of these new segments, they are further divided. This recursive procedure continues until
no more change points are found within any part of the dataset. To implement the PELT
algorithm, we utilized the "ruptures" Python library with a built-in cost function based
on the radial basis function (RBF), which is a Gaussian kernel and is a good option when
we have no information about the underlying data [142]. The RBF cost function quanti-
fies the similarity between consecutive segments of the time series. If there is a shift or
alteration in the data distribution, it is reflected in a noticeable change in the similarity
scores between these segments. In contrast, when the data distribution remains stable, the
similarity scores between consecutive segments remain relatively constant. A significant
drop in similarity scores signals the presence of a potential change point. The statistical
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significance of the change points is assessed using Welch’s t-test (two-sided) with a signif-
icance level of 0.05.

Figure 4.1: The PDF, ECDF, and fitted Pareto distribution CDF of the median of SIC
anomaly standard deviation or σa (panel a), the mean SIC spatial map (panel b), and the
median σa spatial map (panel c). In panel a, the trough between peak 1 and 2 is indicated
by a red asterisk located at 0.11. The Bootstrap SIC data are over the Arctic (1983-2022).
The Freedman-Diaconis rule is used to find the number of histogram bins for the PDF
distribution. The outliers (defined by the interquartile range method [3]) and grid cells
with σa = 0 are excluded from the median σa spatial map. These regions are shown in
white, while the land is grey.
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4.3 Results

4.3.1 MIZ Interannual Variability

The trend, mean, and standard deviation (SD) for the Arctic sea ice extent, MIZtF, and
MIZσF are presented in Table 4.1. Also, the time series of the Arctic sea ice extent over
1983-2022 is shown in Figure 4.2. A declining trend has been observed in sea ice extent over
the last 40 years. For sea ice extent, September shows the fastest rate of decline (consistent
with other studies, e.g., [143, 144, 145]), the lowest mean and the highest SD values. The
trend of MIZtF in January, March, and April, is slightly negative, other months have a
positive trend, except for February where there is no trend. October shows the fastest rate
of increase in MIZtF. July and August show the highest mean values for MIZtF. August
and October show the highest SD values for MIZtF. The trend of MIZσF from January
to April is slightly negative with the remaining months showing a positive trend. August
shows the fastest rate of increase in MIZσF. July and October show the highest mean values
for MIZσF. November shows the highest SD values for MIZσF. It is noted that the MIZσF
SD value in November is three times greater than the MIZtF SD value (shows the largest
SD difference). The time series of the Arctic MIZtF and MIZσF over 1983-2022 is shown
in Figure 4.3 and 4.4, respectively. The green line shows the linear regression trend over 40
years. The MIZtF reached its maximum and minimum values in August 2012 (0.34) and
December 1987 (0.06), respectively. While the MIZσF reached its maximum and minimum
values in November 2021 (0.45) and December 1987 (0.01), respectively.

Focusing on the interannual variations of MIZF using the SIC threshold-based definition
(Figure 4.3) and the SIC anomaly-based definition (Figure 4.4) we noticed some months
with significantly different behaviour for these two MIZ definitions. We focused on two
noticeable ones: July (from 2011 to 2013) and November (from 2020 to 2022). For the
month of July, from 2011 to 2012, the MIZtF value shows a sharp increase, followed by
a sharp decrease from 2012 to 2013. This behaviour is the opposite for the MIZσF. The
year 2012 was an anomalously low year for sea ice extent in the Arctic (see July panel in
Figure 4.2), which could lead to low SIC fluctuations for months and regions with ice-free
conditions. To gain deeper insights into this, MIZ spatial maps are presented in Figure
4.6. Figure 4.5 presents the sub-regions of the Arctic. For the MIZt, in July 2012 the
East Siberian, Chukchi, and the Beaufort Seas, were flagged as MIZ, but were not flagged
in July 2011 and 2013. In contrast, MIZσ shows a more fragmented MIZ region in the
Beaufort, Chukchi, and East Siberian Seas compared to MIZt in July 2012. For MIZσ, the
primary sub-regions contributing to the negative shift in July 2012 are Hudson Bay, Baffin
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Bay, Greenland and Barents Seas, which are flagged as MIZ and in July 2011 and 2013 (not
in July 2012). These observed differences between MIZtF and MIZσF align with the fact
that the sea ice in the East Siberian, Beaufort, and Chukchi Seas is thicker than that in
Hudson Bay, Baffin Bay, Greenland, and Barents Seas, which is thinner and more seasonal
[143]. Differences between MIZt and MIZσ can also be seen in the Canadian Archipelago,
which has experienced a transition to thinner ice and more mobile ice, due to ongoing
warming [146]. These results should be further investigated in relation to ice charts. Melt
conditions lead to fluctuations in brightness temperatures, in particular during melt onset,
which occurs in June and July in this region [147, 111]. These fluctuations are reflected in
SIC estimates from passive microwave sensors.

Figure 4.5: Sub-regions of the Arctic (based on the National Snow and Ice Data Center).
The projection coordinate system is Polar Stereographic. The land is shown in grey.

For November, the MIZtF value, shows a slight decrease from 2020 to 2021 and a decline
from 2021 to 2022. While the MIZσF value shows a significant increase from November
2020 to 2021, followed by a steep decline from 2021 to 2022. To better understand this,
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Figure 4.6: MIZt spatial map in July 2011 (panel a), 2012 (panel b), and 2013 (panel c)
and MIZσ spatial map in July 2011 (panel d), 2012 (panel e), and 2013 (panel f). The
MIZt grid cells are defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells
are defined using the criterion of σa > 0.11. The land is shown in grey.

we examined the MIZ spatial maps, presented in Figure 4.7. For MIZt, there is a slight
difference between the region identified as MIZ from 2020-2022 mainly associated with the
Chukchi Sea, Baffin Bay and part of Hudson Bay. For MIZσ, the primary sub-regions vary-
ing across these three years include the Beaufort, Chukchi, East Siberian and Laptev Seas,
Baffin, and Hudson Bay. Significant differences between the two MIZ definitions are found
in 2021 across the East Siberian, Laptev, Kara and Barents Seas. The observed disparities
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Figure 4.7: MIZt mean SIC spatial map (first row) and MIZσ mean SIC spatial map
(second row) in November 2020 (left panel), 2021 (middle panel), and 2022 (right panel).
The MIZt grid cells are defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid
cells are defined using the criterion of σa > 0.11. The land is shown in grey.

between MIZt and MIZσ align with the findings reported in the Sea Ice Outlook, stating
that in 2021, the Chukchi and Barents Seas underwent an early freeze-up in November,
with the Chukchi Sea reaching its largest sea ice extent in 20 years and in November 2021.
While in 2021, Hudson Bay exhibited significantly delayed freeze-up events compared to
the average [148].
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To explore the seasonal and regional disparities between the two MIZ definitions, we
analyzed the MIZt and MIZσ spatial maps for the Arctic in all months over 40 years. The
corresponding figures have been included in the Appendix (Figures 1 to 40). Our analysis
reveals that during the break-up (July and August) there is an increase in regions iden-
tified as MIZ using the SIC threshold-based definition than the anomaly-based definition,
which may be attributed to the sensitivity of the threshold definition to the melting pro-
cess. Whereas during the freeze-up (October and November) there is an increase in areas
classified as MIZ based on SIC anomaly definition, particularly near the ice edge. This
discrepancy is particularly marked in regions such as the Beaufort Sea, East Siberian Sea,
Laptev Sea, and Greenland Sea.

4.3.2 MIZ Change Point Analysis

The change points in the monthly MIZt and MIZσ time series are detected using the PELT
test. For MIZtF (Figure 4.3), a change point was detected in October corresponding to the
year 2005. Other months did not show a significant change point year. To investigate this
observation, Figure 4.8 illustrates the MIZt map in October before and after the change
point (panel a and b, respectively). The most noticeable change after 2005 is an increase
in the regions flagged as MIZ for the Amundsen Gulf, Beaufort, Chukchi, East Siberian
and Laptev Seas. According to a recent study (over the period of 1990-2019), there was
a shift in SIC in 2005 over the East Siberian and Laptev Seas [136]. This can result in a
large sea ice-covered area with intermediate SIC leading to an increase in the MIZt in this
year.

For the MIZσF (Figure 4.4), the change point year for August was detected in the year
2007. Other months did not show a change point year. To investigate this observation,
Figure 4.9 illustrates the MIZσ map in June before and after the change point (panel a
and b, respectively). The most noticeable change after 2007 is an increase in the regions
flagged as MIZ for the Beaufort, Chukchi, and East Siberian seas. A shift in SIC in the
Beaufort and Chukchi Seas and a strong increase in ice velocity with the strengthening of
the rotation of the Beaufort Gyre have been noted for 2007, along with a decrease in sea
ice residence time for the East Siberian Sea (study over the period of 1990-2019 [136]).
These events, in particular a more mobile ice pack, can result in a large sea ice anomaly
leading to an increase in the MIZσ in this year.
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Figure 4.8: MIZt map in October before the change point year (panel a) and after the
change point (panel b). The change point year (2005) is detected using the PELT method
which was statistically significant at a 0.05 level using Welch’s t-test. The MIZt grid cells
are defined using the criterion of 0.15 ≤ SIC < 0.80. The land is shown in grey.

4.3.3 MIZ Seasonal Cycle

To visualize the MIZ seasonal cycle, a box-whisker plot of MIZF over the Arctic (1983-
2022) is shown in Figure 4.10. August shows the highest mean value for MIZtF (0.23).
While for MIZσF, July and October show the highest mean value. A consistent MIZF
trend is observed for both definitions from January to May. Possibly because, as the ice
grows, both the SIA and the MIZA increase, and this results in a constant MIZF (Equation
4.1). Subsequent to May, MIZtF experiences growth, peaking in August (consistent with a
study by Rolph et al. [32]). The MIZtF retreats in September and stays almost the same
in October. Thereafter, MIZtF decreases until December. However, the MIZσF displays a
substantial increase from May to July, reaching its first peak, and then gradually recedes
until December, with the exception of an increase in October where it reaches its second
peak. The most notable difference in mean MIZF values between MIZtF and MIZσF is
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Figure 4.9: MIZσ map in August before the change point year (panel a) and after the
change point (panel b). The change point year (2007) is detected using the PELT method
which was statistically significant at a 0.05 level using Welch’s t-test. The MIZσ grid cells
are defined using the criterion of σa > 0.11. The land is shown in grey.

evident in October. Given that October is within the freeze-up period, the associated SIC
fluctuations linked to ice growth and consolidation can be captured by the MIZσ. Indeed,
the average value of MIZtF remained constant in October when compared to September.
This indicates that both MIZA and SIA (Equation 4.1) were changing at a consistent rate
in October. On the other hand, for MIZσF, the variations in SIC could result in a change
in MIZA that exceeds the change in SIA (Equation 4.1). Consequently, this can result
in an increase in the mean value of MIZσF in October. Additionally, for several months
(July, August and November), the interquartile range (box length) is larger for the MIZσF
than the MIZtF, which demonstrates the capability of MIZσ in capturing transition periods
characterized by substantial fluctuations in SIC.
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Figure 4.10: A box-whisker plot visualization of the seasonal cycle of MIZtF (red box) and
MIZσF (blue box) over the Arctic (1983-2022). The MIZt grid cells are defined using the
criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the criterion of σa >
0.11. The MIZF average values are indicated by a triangle. The box length indicates the
MIZF interquartile range.

4.3.4 Effect of PM Products on MIZσ

In order to investigate the influence of the choice of PM SIC product on the MIZσF val-
ues, we provided the PDF, ECDF, and fitted Pareto distribution CDF of the median of
SIC anomaly standard deviation or σa (panel a), the mean SIC spatial map (panel b),
and the median σa spatial map (panel c) for SIC estimated from the ASI, NT2, OSI-
458, and BT algorithms over the Arctic (2012-2020) are displayed in Figures 4.11, 4.12,
4.13, and 4.14, respectively. The ASI product’s multiple peaks suggest a different range of
SIC variability within the data. In contrast, the NT2 and BT products display two dis-
tinct peaks, possibly representing the boundary between ice-covered and open water areas.
OSI-458’s less pronounced second peak could suggest a more gradual transition from ice
to open water. These differences highlight the inherent differences in the PM SIC retrieval
algorithms which stem from the use of different frequencies, weather filters, corrections
for brightness temperature, or dynamic tie points, all contributing to the estimated SIC
variations. Additionally, the choice of spatial resolution for calculating SIC can lead to
further discrepancies among the products. Consequently, different SIC products produce
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distinct MIZtF values, mainly due to the variations in SIC. These discrepancies also lead
to different MIZσF values, mainly due to the difference in SIC anomaly, which in turn gives
distinct PDF distributions characterized by differing thresholds of σa.

Figure 4.11: The PDF, ECDF, and fitted Pareto distribution CDF of the median of SIC
anomaly standard deviation or σa (panel a), the mean SIC spatial map (panel b), and the
median σa spatial map (panel c). The Arctic Radiation and Turbulence Interaction Study
(ASI) sea ice SIC data are over the Arctic (2012-2020). The Freedman-Diaconis rule is
used to find the number of histogram bins for the PDF distribution. The outliers (defined
by the interquartile range method [3]) and grid cells with σa = 0 are excluded from the
median σa spatial map. The corresponding grid cells are also excluded from the mean SIC
spatial map. These regions are shown in white, while the land is grey.
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Figure 4.12: The PDF, ECDF, and fitted Pareto distribution CDF of the median of SIC
anomaly standard deviation or σa (panel a), the mean SIC spatial map (panel b), and
the median σa spatial map (panel c). The enhanced NASA Team 2 (NT2) SIC data are
over the Arctic (2012-2020). The Freedman-Diaconis rule is used to find the number of
histogram bins for the PDF distribution. The outliers (defined by the interquartile range
method [3]) and grid cells with σa = 0 are excluded from the median σa spatial map. The
corresponding grid cells are also excluded from the mean SIC spatial map. These regions
are shown in white, while the land is grey.
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Figure 4.13: The PDF, ECDF, and fitted Pareto distribution CDF of the median of SIC
anomaly standard deviation or σa (panel a), the mean SIC spatial map (panel b), and the
median σa spatial map (panel c). The Ocean and Sea Ice Satellite Application Facility-458
(OSI-458) SIC data are over the Arctic (2012-2020). The Freedman-Diaconis rule is used
to find the number of histogram bins for the PDF distribution. The outliers (defined by the
interquartile range method [3]) and grid cells with σa = 0 are excluded from the median
σa spatial map. The corresponding grid cells are also excluded from the mean SIC spatial
map. These regions are shown in white, while the land is grey.
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Figure 4.14: The PDF, ECDF, and fitted Pareto distribution CDF of the median of SIC
anomaly standard deviation or σa (panel a), the mean SIC spatial map (panel b), and
the median σa spatial map (panel c). The Bootstrap (BT) SIC data are over the Arctic
(2012-2020). The Freedman-Diaconis rule is used to find the number of histogram bins
for the PDF distribution. The outliers (defined by the interquartile range method [3]) and
grid cells with σa = 0 are excluded from the median σa spatial map. The corresponding
grid cells are also excluded from the mean SIC spatial map. These regions are shown in
white, while the land is grey.
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4.4 Discussion

In contrast to the consistent downward trend observed in Arctic sea ice extent across all
months from 1983 to 2022, the trends in MIZtF and MIZσF are more variable. Over the
study period, the Arctic MIZt reached its maximum fraction in July 2012, while its mini-
mum fraction was recorded in March 2010. On the other hand, the Arctic MIZσ attained its
highest fraction in August 2016, contrasting with its lowest fraction observed in December
1987. August also showed the fastest rate of increase of MIZσF. Concerning monitoring
Arctic sea ice extent, September stands out as a pivotal month, given that it consistently
displays the lowest annual sea ice extent. For a comprehensive analysis of MIZ, however,
July, August and October can offer information about the changes in ice-covered areas that
cannot be obtained solely by focusing on the month with the minimum sea ice extent.

The SIC threshold-based definition of MIZ provides a practical means of identifying the
transition between consolidated ice and open water. This definition proves useful in many
applications, for example, SIC serves as an input in higher-level geophysical products, such
as Level 4 sea surface temperature, and ice velocity drift products. However, there might
be merit in the MIZσ use of the SIC anomaly in these products as well. MIZF can also
be used to study habitat changes for marine mammals and seabirds, which could be more
sensitive to fluctuations in SIC than the SIC value. Moreover, the SIC anomaly-based
definition captures unusual or extreme fluctuations (e.g., rapid ice retreat/advance, cy-
clones) more effectively than absolute SIC values. For example, there was a strong Arctic
cyclone recorded in August 2016 [4], the impact of which was captured in MIZσ (Fig-
ure 4.15). The impact of a particular cyclone on sea ice cover depends on the location
of the event (e.g., proximity to the coast, ice edge) in addition to the characteristics of
the sea ice [149]. Monitoring the location of these and similar events that lead to fluctua-
tions in SIC is necessary, especially for planning safe navigation routes in the Arctic region.

Although the two MIZ definitions yield comparable seasonal trends in MIZF, MIZσ

captures transition periods, such as freeze-up and break-up seasons. These periods are
characterized by heightened SIC fluctuations, for example, owing to the presence of thin
or fragmented ice, and fluctuations in other variables such as air temperature and solar
radiation. As observed, the regions exhibiting significant contrast between the two MIZ
definitions are those dominated by thin seasonal ice, in comparison to regions dominated
by thick multi-year ice. With the Arctic sea ice thinning [150], the associated increased
SIC variability, the strengthening effect of air temperature on sea ice [151], greater sensi-
tivity of the pack ice to wind forcing [152], and the extension of melt season [153], tracking
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SIC anomaly becomes increasingly pertinent. Thin ice and its variable concentration val-
ues could lead to a different PDF distribution for the median σa, necessitating updates
to the σa threshold. In light of the Arctic’s increasingly dynamic ice conditions, the SIC
anomaly-based MIZ definition offers an additional approach to characterizing a climatically
key region beyond the sea ice extent or the SIC threshold-based MIZ definition.

Figure 4.15: MIZt spatial map (panel a) and MIZσ map (panel b) in August 2016. The
MIZt grid cells are defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells
are defined using the criterion of σa > 0.11. The strong Arctic cyclone affected sea ice in
the Laptev Sea and Central Arctic Ocean [4]. The land is shown in grey.

4.5 Conclusion

In this study, we used BT SIC product to detect the trend and change point of the Arctic
MIZ (1983-2022) using two MIZ definitions: MIZt and MIZσ. Our observations indicate
that over the last 40 years, the Arctic MIZt reached its maximum fraction in August 2012,
while its minimum fraction was recorded in December 1987. The Arctic MIZσ attained
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its highest fraction in November 2021, contrasting with its lowest fraction observed in De-
cember 1987. While the two MIZ definitions yield comparable seasonal trends in MIZF,
MIZσF values are highest in transition periods (e.g., freeze-up and break-up) in comparison
with MIZt, which peaks in August. We also observed consistently higher MIZF values for
the MIZσ than for MIZt across all seasons. Remarkably, October and August show the
fastest rate of increase in MIZtF and MIZσF, mirroring the accelerated decline in sea ice
extent during the same months. Using the PELT change point method, we observed that
for MIZtF in October, the change point year happened in 2005. For MIZσF in August, the
change point year occurred in 2007. For both MIZ definitions, the MIZ region is increased
for the period after the change point year and other months did not show a significant
change point year. These change point years might be linked with shifts in sea ice concen-
tration and sea ice velocity [136] for MIZt and MIZσ, respectively. This knowledge aids in
the improvement of seasonal ice forecasts, safer navigation, resilient coastal communities,
and marine habitat protection. In a forthcoming study, we will compare these two MIZ
definitions using synthetic aperture radar imagery and provide information on the advan-
tages and disadvantages of each definition.
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Chapter 5

Marginal Ice Zone Comparison With
SAR Data

5.1 Introduction

Building upon the insights from the previous study (Chapter 4), our interest led us to fur-
ther explore the utilization of the anomaly-based definition of the MIZ rather than relying
on a predetermined SIC threshold. To this end, an alternative source of SIC is required
to evaluate the consistency of these definitions. Utilizing SAR data, which employs an
active remote sensing technique, is suitable for this assessment. SAR data offers advan-
tages such as fine resolution (in contrast to PM data) and the ability to penetrate cloud
cover (unlike optical and thermal infrared data), making it a viable option. The deploy-
ment of SAR data for deriving SIC estimates presents notable benefits, yet the process
is inherently challenging due to complex interactions among the SAR signal, water, and
ice. The backscatter of SAR signals is influenced by various factors, including imaging
geometry, surface conditions, and the presence of different ice types. Recent studies have
underscored the effectiveness of convolutional neural networks (CNNs) in estimating SIC
from SAR data.

The use of CNN for SIC estimation from SAR images was pioneered in a study by
Wang et al. [154], where the need for separate feature extraction or post-segmentation
processing was eliminated by their methodology. This approach yielded SIC maps with
an absolute average error of under 10% in comparison to ice charts interpreted manually.
Following this, further research employing a fully convolutional network specifically de-
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signed for SIC estimation from SAR imagery demonstrated a slight increase in accuracy
and computational efficiency over the traditional CNN methods [83]. To overcome the
limited availability of training data, particularly for infrequently observed conditions, a
study explored the importance of including samples of intermediate SIC, specifically from
the MIZ, in the training dataset. Despite potential inaccuracies in MIZ data, the results
indicated that incorporating these samples enhances the performance of the CNN. Further
experiments involved increasing the number of MIZ samples, demonstrating that better
representation in the test data is achieved when more samples from similar regions are
included (an improvement in the classification accuracy of the MIZ from 0.66 to 0.74)
[155]. In a recent investigation, a U-net model was employed to predict SIC across various
sub-regions in the Arctic. This model utilized Sentinel-1 SAR data (HH and HV), Dual-pol
Advanced Microwave Scanning Radiometer 2 brightness temperature data at 18.7 and 36.5
GHz, atmospheric variables (10-m wind speed, 2-m air temperature, total column water
vapor, total column cloud liquid water), geolocation information (latitude and longitude)
for each grid cell, scene acquisition month, and ice chart-derived label maps. The findings
demonstrated a promising accuracy of 92% for the predicted SIC [156].

Emphasizing the superior performance of CNNs in SIC estimation and recognizing the
importance of establishing a robust criterion for identifying the MIZ, this study marks
the exploration of MIZ comparisons utilizing SAR data and deep learning methods. Our
methodology involves the application of a CNN-based model to extract SAR SIC. The com-
parison is made between two MIZ definitions: SIC threshold-based and SIC anomaly-based,
with each derived from both PM and SAR data. In the previous study investigating the
Arctic MIZ over the last 40 years (see Chapter 4), it was observed that the SIC anomaly-
based MIZF values peak during the transition periods such as freeze-up (due to the SIC
fluctuations linked to ice growth) and this can be captured by the MIZ anomaly definition.
A disparity in the MIZ over the Greenland Sea during November 2021 based on the two
MIZ definitions was reported in this study. However, this observation was not compared
with an alternative SIC data source. By focusing on this specific month and region and
applying SAR data alongside that from PM, we aimed to gain insights into the capability
of different SIC products and methodologies to represent the rapidly evolving state of the
MIZ during freeze-up.
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5.2 Experimental Design

5.2.1 Dataset

PM Data

Following the MIZ analysis in Chapter 4, which revealed significant differences in MIZ
obtained from two different definitions, in particular in November 2020 to 2022 (see Figure
5.1), we chose here to focus on a more in-depth analysis of November 2021. With the ob-
jective of detecting MIZ using SAR data, our attention is directed towards the Greenland
Sea for the month of November 2021. The Greenland Sea is frequently observed using
Sentinel-1 data and has been studied by Strong and Rigor [31], who used several PM SIC
products in the Arctic (1979–2011) and indicated that the Arctic summer MIZ expanded
in width by 39%, while the Arctic winter MIZ decreased in width by 15%. The observed
widening of the MIZ is reported to be closely associated with the decline of thick and
multi-year sea ice. In the present study, we used BT SIC in our analysis, with a 25 km
gridded resolution from the United States National Snow and Ice Data Center [157].

Sentinel-1 SAR Data

To extract SIC from SAR data we follow the well-established approach of using a convolu-
tional neural network. For model training, we employed the publicly available AI4Arctic
Sea Ice Challenge dataset [158]. The SAR data used in this study corresponds to two-
channel dual-polarized (HH and HV) Sentinel-1 (C-band, 5.410 GHz), Ground Range De-
tected Medium spatial resolution images acquired in the Extra-Wide mode. Thermal noise
correction and calibration (for σ0) for the Sentinel-1 SAR scenes in the dataset was per-
formed using the NERSC algorithm [159]. The total number of scenes was 533, where the
available scenes covering the Greenland Sea were 110. To enhance data handling efficiency,
the original SAR data with a 40 m grid cell spacing (∼ 10,000 × 10,000 grid cells) has
undergone downsampling to 80 m (∼ 5,000 × 5,000 grid cells) using a 2×2 averaging ker-
nel. Each scene is normalized based on the statistical information for the entire dataset.
The corresponding rasterized ice charts SIC used for the labels during the training were
produced by the Greenland Ice Service at the Danish Meteorological Institute [158]. To
execute the inference process, we acquired Sentinel-1 SAR scenes from the Alaska Satel-
lite Facility (ASF, [160]), with specifications identical to those of the training scenes. For
November 2021 there were 270 scenes available for the Greenland Sea. Subsequently, we
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Figure 5.1: MIZt and MIZσ spatial map over the Arctic in November 2021. The MIZt grid
cells are defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined
using the criterion of σa > 0.11. The land is shown in grey.

performed pre-processing using the same procedures applied to the training scenes. A map
illustrating the number of days for which SAR scenes are available for each grid cell over
the region is shown in Figure 5.2. Notably, this map indicates that in the region under
investigation for MIZ occurrences, SAR data is available for well over three-quarters of the
days in a month. This extensive coverage can contribute to ensuring the reliability of the
results and the validity of the interpretation.
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Figure 5.2: (a) The study region consists of the Greenland Sea, (b) Number of days
Sentinel-1 SAR data (obtained from the Alaska Satellite Facility) is available over the
Greenland Sea in November 2021 at each geographic location. The land is shown in grey.

SMOS Sea Ice Thickness

For the purpose of strengthening the observations, we employed the soil moisture and ocean
salinity (SMOS) sea ice thickness (SIT) data, with a 12.5 km gridded resolution from the
ESA 1 [161]. To maintain calculation consistency, the SMOS SIT is re-gridded to the BT
spatial resolution using bilinear interpolation. The microwave imaging radiometer using
aperture synthesis (MIRAS) instrument is a PM radiometer (L-Band, 1.4 GHz) onboard
the SMOS satellite which can capture sea ice thickness. SMOS data have been accessible
since 2010, with the mission’s operational timeline extended until at least the end of 2025.
The maximum retrievable ice thickness is contingent on sea ice salinity and temperature,
exhibiting variability across regions and seasons. Consequently, it is useful to complement
the SIT data with its associated uncertainty. Data with an uncertainty exceeding 1 meter
should be utilized cautiously [162]. Notably, SMOS SIT is not available for latitudes south
of 50○N and during the months of May to September.

1European Space Agency.
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5.2.2 Model Architecture

In this research, we employed a U-net model [163] for the estimation of SAR SIC. The
baseline architecture of the U-net model is depicted in Figure 5.3. In this study, we modi-
fied the architecture by incorporating 32 filters in the first two blocks and 64 filters for the
remaining blocks. The U-net incorporated a rectified linear unit (ReLU) activation func-
tion to introduce nonlinearity between layers. Image upsampling was achieved through a
transpose convolution operation with a stride rate of 1 and a zero value. Stochastic gradi-
ent descent served as the chosen optimizer for the U-net, trained with a starting learning
rate of 0.001. Following the initial setup, a cosine learning rate schedule with restarts
[164] was employed to adjust the learning rate during training. This model architecture
was selected for its efficiency and the quality of predictions for SIC [156] and has been
trained from scratch using two inputs (HH and HV SAR channels). The "Kaiming He ini-
tialization" method [165] was employed to initialize the weights of the network. Following
the AI4Arctic Sea Ice Challenge protocol [158], we used 495 scenes for training, 18 scenes
for validation (which were randomly chosen from the 513 total scenes), and 20 scenes for
testing. The model was trained until it reached convergence, meaning the training loss
stabilized and showed minimal changes. The training process required approximately six
hours to complete. The R-squared values at convergence (at epoch 85) were 0.91 for the
training set and 0.89 for the test set, respectively. All experiments are conducted on the
Narval cluster of Compute Canada [166] using an NVIDIA A100-SXM4-40GB GPU and
128GB of memory, with the PyTorch 1.12 library. An illustration of the model output is
presented in Figure 5.4.
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Figure 5.3: The U-net model architecture employed for extracting SIC from SAR data.

5.2.3 Spatial and Temporal Mapping of SAR SIC

To address the spatial resolution disparity between the SIC from PM and SIC from SAR,
we matched them by presenting them at the same spatial resolution prior to conducting
calculations. This involved averaging the SAR SIC over an area equivalent to the PM
footprint and that can be modeled as an ellipse with a minor axis of 28 km and a major
axis of 70 km, approximating a circular shape with a diameter of 49 km. Subsequently,
we determined the average SIC for all grid cells within this spatial resolution. Finally, to
ensure calculation consistency, SAR SIC is re-gridded to the PM spatial resolution using
bilinear interpolation. Figure 5.5 illustrates the daily SIC map for PM, SAR (averaged over
the PM footprint before land-masking), and SAR (re-gridded to PM spatial resolution).

5.2.4 MIZ Definitions

SIC Threshold-based MIZ Fraction (MIZtF)

To define the monthly MIZt, we first calculated the monthly mean SIC values for a partic-
ular grid cell over a month. Next, we determined the MIZ using the SIC criterion (MIZt)
as 0.15 ≤ SIC < 0.80. The SIC threshold-based MIZ Fraction (MIZtF) can be obtained by
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Figure 5.4: (a) Schematic representation of Sentinel-1 SAR scene geographic location,
(b) HH Polarized Sentinel-1 SAR scene acquired 2021/11/03 over the Greenland Sea, (c)
HV Polarized Sentinel-1 SAR scene acquired 2021/11/03 over the Greenland Sea, and (d)
model output SIC for the corresponding Greenland Sea Sentinel-1 SAR scene.

dividing the MIZ area (considering MIZt) by the sea ice area.
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Figure 5.5: (a) Bootstrap daily SIC map, (b) SAR daily SIC map (averaged over the Boot-
strap footprint before land-masking), and (c) SAR daily SIC map (re-gridded to Bootstrap
spatial resolution) over the Greenland Sea on 2021/11/03. The land is shown in grey.

SIC Anomaly-based MIZ Fraction (MIZσF)

SIC anomaly is defined as the deviation of SIC at a particular grid cell from its long-term
average taken over November 2021. The monthly SIC anomaly for a grid cell located at
i, j, is calculated as ami,j,d = SICm

i,j,d−SICm
i,j [167], where SICm

i,j,d is the SIC value at the grid
cell with the location of i, j on each day d in a given month m (in this study November
2021), and SICm

i,j is the average SIC value for the same grid cell over November 2021. The
standard deviation of the monthly SIC anomaly (σ) captures the SIC variability of a given
grid cell over a month. The monthly SIC anomaly for a given grid cell located at i, j or σa

i,j

over month m with n total days (d = 1 to n) can be calculated by taking the square root
of the variance, which is the mean of the squared daily SIC anomalies or ami,j,d [39]. σa

i,j

can be defined as σa
i,j =
√

1
n ∑

n
d=1(ami,j,d)2 [167]. Following defining the σa

i,j, one can compute
the median value of each grid cell over November 2021 for both sub-regions. Plotting the
probability density function (PDF) allows for the identification of distinct regions based
on the median σa behaviour. Subsequently, a threshold can be applied to delineate these
regions. Drawing inspiration from the methodology of [167], who established a threshold
of 0.11 from the PM SIC PDF plot covering the entire Arctic over 40 years, we have opted
to apply the same threshold of 0.11 to the standard deviation of SIC anomaly (alternative
thresholds are considered in Section 5.3.3). The SIC anomaly-based MIZ fraction (MIZσF)
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can then be obtained by dividing the MIZ area (considering MIZσ) by the sea ice area.

5.3 Results

5.3.1 Difference in SIC Products

For PM product, the monthly SIC map (Figure 5.6 panel a) shows a clear delineation of
open water and consolidated ice in regions where the SIC varies from low to intermediate
SIC (at the ice edge boundary). The median σa map (Figure 5.6 panel b) signifies areas
with variable SIC, likely to be experiencing transitional states associated with freeze-up
(ice growth). The fact that MIZtF has a lower value (0.16) than MIZσF (0.59) suggests
that the former is less sensitive to the ice condition (over the transition period), poten-
tially excluding regions that the latter would classify as MIZ (Figure 5.6 panel c). For SAR
product, the monthly SIC map (Figure 5.7 panel a) reveals a less pronounced distinction
between open water and consolidated ice regions when compared to the PM SIC map.
Additionally, looking at the SAR median σa maps (Figure 5.7 panel b), we observe that a
central region is not consistently identified with high values, unlike the PM product. Upon
examining SMOS sea ice thickness data, we deduce that this discrepancy likely arises from
the presence of thin ice in early November, as ice begins to form. The PM data might in-
accurately classify this area as open water [53, 54], whereas SAR data can discern thin ice,
which typically exhibits regions with features such as ice filaments and ice eddies, which
can be identified with a CNN. In Figure 5.8, daily SMOS SIT and SIT uncertainty maps
for several days in November 2021 are presented. The visuals illustrate the growth and
formation of ice in the specified region, with noticeable thickening towards the end of the
month. The SIT uncertainty maps demonstrate areas where SIT data might be less reliable
due to various factors that affect the precision of satellite measurements, such as changes
in ice temperature, salinity, or the transition from thin to thicker ice. These factors can
introduce complexities in the signal received by the SMOS satellite, thus increasing the
uncertainty in SIT estimates [168].

Comparing SAR product, processing with CNNs, to PM algorithms highlights key dis-
tinctions. SAR SIC leverages machine learning, trained on diverse ice condition datasets,
allowing it to detect intricate patterns and features in SAR data. This approach con-
trasts with the PM algorithm’s empirical method, which relies on physical microwave
emissions and brightness temperature to estimate SIC. While SAR-CNN can discern a
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Figure 5.6: (a) BT mean SIC map, (b) BT median σa map, and (c) MIZt and MIZσ spatial
map for BT over the Greenland Sea in November 2021. The MIZt grid cells (denoted by
orange circles) are defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells
(denoted by blue circles) are defined using the criterion of σa > 0.11. Overlapping areas
between both MIZ definitions are depicted as black circles. The land is shown in grey.

broader range of ice conditions and provide detailed MIZ delineation, the PM algorithm,
being less parameter-intensive, might not adapt as well to varied ice scenarios, especially in
mixed or thin ice areas. Thus, the SAR-CNN’s data-driven model offers more complexity
in detection than the faster PM approach, illustrating the fundamental difference between
machine learning and empirical methodologies in ice detection. At the same time, in many
regions, the SAR image acquisition frequency from SAR is not sufficient to use the anomaly
definition.

5.3.2 Difference in MIZ Definitions

Figure 5.9 highlights the disparities in MIZF values derived from the two different defini-
tions of the MIZ. The comparison indicates that regions identified by the SIC threshold-
based definition from two distinct products have minimal overlap. Conversely, MIZ regions
determined by the anomaly-based definition show a significant overlap. The anomaly-based
definition typically yields higher MIZF values, identifying a broader spatial distribution of
SIC anomalies. On the other hand, the threshold-based definition tends to outline a more
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Figure 5.7: (a) SAR mean SIC map, (b) SAR median σa map, and (c) MIZt and MIZσ

spatial map for SAR over the Greenland Sea in November 2021. The MIZt grid cells
(denoted by orange circles) are defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ

grid cells (denoted by blue circles) are defined using the criterion of σa > 0.11. Overlapping
areas between both MIZ definitions are depicted as black circles. The land is shown in
grey.

narrowly defined MIZ, beneficial for pinpointing the precise transitional area from open
water to pack ice. However, an anomaly-based threshold could potentially broaden the MIZ
boundary, encompassing areas with highly variable ice conditions and possibly reflecting
zones of ice formation. This approach captures the MIZ’s variability and dynamics more
comprehensively, including in regions where the ice is forming or changing.

5.3.3 Difference in σa Threshold

To investigate the impact of varying threshold levels of σa on MIZσF determined by the
anomaly-based approach, Figure 5.10 showcases the analysis across three distinct σa thresh-
olds: 0.15, 0.18, and 0.22. These thresholds were utilized to delineate the MIZσ using data
from both PM and SAR products. It can be seen that at a threshold of 0.15 (panel a), both
PM and SAR products show a significant amount of overlap in the identification of the
MIZσ. The MIZσF values are relatively close, with PM MIZσF at 0.49 and SAR MIZσF at
0.47. This suggests that both products are in relatively good agreement when the threshold
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Figure 5.8: Daily SMOS sea ice thickness (SIT) and SIT uncertainty maps for 2021-11-
05 (panel a and b), 2021-11-10 (panel c and d), and 2021-11-30 (panel e and f) over the
Greenland Sea. The land is shown in grey.

is set to 0.15. As the threshold increases to 0.18, there is still a notable overlap between PM
MIZσF and SAR MIZσF, but the MIZσF values start to diverge more significantly, with
PM MIZσF decreasing to 0.33 and SAR MIZσF slightly decreasing to 0.42. This indicates
that the PM product is beginning to exclude some areas from the MIZσ that the SAR
product still includes. With the highest threshold of 0.22, the difference between these two
products becomes more pronounced. The PM MIZσF drops remarkably to 0.07, indicating
that many areas previously identified as MIZσ by the PM product at lower thresholds are
no longer included. In contrast, the SAR MIZσF remains higher at 0.29, suggesting that
the SAR data continues to identify a larger area as MIZσ at this higher threshold.
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Figure 5.9: MIZt (panel a) and MIZσ (panel b) spatial map for BT and SAR over the
Greenland Sea in November 2021. The MIZt grid cells (denoted by red circles) are defined
using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells (denoted by green circles) are
defined using the criterion of σa > 0.11. Overlapping areas between both MIZ definitions
are depicted as black circles. The land is shown in grey.

5.4 Conclusion

In this study, two MIZ definitions using PM and SAR SIC products, are investigated for
November 2021 over the Greenland Sea. Our discussion has shed light on the factors con-
tributing to variations in the MIZF. These variations are influenced by two key factors:
the choice of SIC products and the selection of MIZ definitions. The anomaly-based def-
inition of MIZ tends to yield a spatially extensive MIZ region, capturing more of the sea
ice concentration variability due to ice growth. The anomaly-based definition of MIZ is
also more consistent over the two products. We also found that when the threshold for
the standard deviation of SIC anomaly increases, the MIZσF derived from PM product
decreases more dramatically than the MIZσF from the SAR product. This could imply
that the PM product’s sensitivity to changes in SIC anomalies decreases as the threshold
is raised, whereas the SAR product consistently detects the MIZσ over a large spatial area,
showing less susceptibility to the chosen thresholds in comparison to the PM data. The
implications of this study suggest that the selection of MIZ definition should be carefully

95



Figure 5.10: MIZσ spatial map for BT and SAR over the Greenland Sea in November 2021.
The MIZσ grid cells are defined using the criterion of σa > 0.15 (panel a), σa > 0.18 (panel
b), and σa > 0.22 (panel c). The land is shown in grey.

considered based on the intended practical or research application. The insights obtained
from this analysis offer a valuable reference point for future explorations and can serve as a
guide for operational applications, scientific inquiry, and environmental monitoring within
polar regions.
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Chapter 6

Conclusions

In Chapter 3, three passive microwave algorithms (ASI, NT2, BT) were compared in the
eastern Canadian Arctic to examine sea ice edge displacement error (EDE), which is a
dimensionless measure used to assess the difference between the PM-based ice edge and
the chart-based ice edge locations and lengths of sea ice edges over time. ASI had the
highest EDE, while BT had the lowest. Ice edge in October (beginning of freeze-up pe-
riod) exhibits significant meandering. April showed the highest EDE variability due to
fluctuating winds and temperatures. In Chapter 4, a 40-year analysis of the MIZ using
two definitions was investigated, one based on SIC threshold (MIZt) and the other based
on a SIC anomaly (MIZσ). The MIZσF consistently peaked during freeze-up and break-up,
reflecting higher values across all seasons. Post mid-2000s, both MIZtF and MIZσF signifi-
cantly increased, suggesting potential climate change impacts in the Arctic. In Chapter 5,
the investigation into MIZ detection in the Greenland Sea using PM and SAR SIC data re-
vealed the spatially extensive delineation of the MIZ through the anomaly-based definition.
Furthermore, this delineation exhibited consistency across different data products. Higher
SIC anomaly thresholds showed a sharper decrease in PM data’s MIZσF compared to SAR
data, highlighting SAR’s spatially broad MIZ detection and its reduced susceptibility to
changes in thresholds. In conclusion, this thesis enhances our understanding of Arctic sea
ice conditions through a comparative analysis of sea ice edge displacement error, shedding
light on PM algorithm performance. The 40-year trend and change point analysis using
BT SIC data broadens our knowledge on MIZ fluctuations and climate change impacts.
Additionally, the comparison of different definitions for the MIZ serves as a guide for future
scientific investigation.

97



6.1 Concluding Remarks

The primary contributions of this work are as follows

• In Chapter 3, sea ice edge derived from three PM algorithms, ASI, NT2, and BT, are
compared to those derived from the daily Canadian Ice Service charts over a primarily
seasonal ice zone in the eastern Canadian Arctic for 2013-2021. In order to determine
the ice edge error, we introduced an edge-length-based displacement measure called
the EDE, a dimensionless measurement obtained by dividing the weighted average
Hausdorff distance by the ice edge length, where the weighted average Hausdorff
distance is derived from a given PM product and the ice chart, while the ice edge
length is determined by the average of the ice edge lengths from both the chart
and the PM algorithm. We found that the ASI algorithm has the highest EDE on
average, while the BT algorithm has the lowest one. In the freeze-up period, the PM
algorithms have the highest mean EDE value relative to other months due to the
appearance of thin ice. A greater range of EDE values was observed in April than
in other months. It is concluded that EDE, with less sensitivity to changes in the
charted area, is a reliable method for assessing the ice edge from PM SIC algorithms
relative to the ice charts, as it is not affected by the fluctuations in the coverage area
of the ice chart. The EDE helps to provide a consistent and meaningful comparison
of edge displacement across various scenarios and products.

• In Chapter 4, we used BT SIC to detect the trend and change point of the Arctic MIZ
over 40 years (1983-2022) using two different MIZ definitions: SIC threshold-based
(MIZt) and SIC anomaly-based (MIZσ). This study marks the first examination of
an anomaly based MIZ definition in the Arctic, to assess its potential usefulness as a
complementary definition to existing definitions. While the two MIZ definitions yield
comparable seasonal trends in MIZF, the MIZσF values peak during the transition
periods (e.g., freeze-up and break-up), while the MIZtF values peak in August. The
analysis also uncovers consistently higher MIZF values for the MIZσ than for MIZt

across all seasons. Moreover, October and August show the fastest rate of increase in
MIZtF and MIZσF, reflecting the coinciding rapid decrease in sea ice extent during
those particular months. Employing the PELT, a multiple change point detection
method, highlights a significant increase in the MIZtF in October (after 2005) and
MIZσF in August (after 2007). This can be indicative of the recent climate change
impacts in the Arctic region that may be linked with shifts in SIC and sea ice mo-
bility for MIZt and MIZσ, respectively. It is concluded that the SIC anomaly-based
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definition can be considered as a complementary definition to delineate the MIZ over
the Arctic.

• In Chapter 5, we used PM and SAR SIC in the Greenland Sea in November 2021 to
detect the MIZ using two different MIZ definitions: SIC threshold-based (MIZt) and
SIC anomaly-based (MIZσ). This study marks the comparison of two sea ice prod-
ucts employing the SIC anomaly-based definition of the MIZ. Our findings reveal that
the SIC anomaly-based definition delineates an extensive MIZ region, capturing the
variation in SIC attributed to the sea ice growth. This definition also demonstrated
greater consistency across the two different SIC data products. We also found that
increasing the threshold for the SIC anomaly standard deviation results in a steeper
decline in MIZσF from PM data than from SAR data, suggesting SAR’s more con-
sistent MIZσ detection and less sensitivity to varying thresholds, compared to PM
data. We concluded that the SIC anomaly-based definition of MIZ effectively iden-
tifies areas where SIC fluctuates during transitional periods like freeze-up due to the
emergence of thin ice. This method proves efficient in detecting spatially (charac-
terized by high SIC anomaly) and temporally (represented by shifts in ice transition
times) significant regions, thereby showcasing its utility as a complementary approach
alongside the traditional SIC threshold-based definition.

6.2 Research Impacts

In light of the upcoming Copernicus imaging microwave radiometer (CIMR) mission, pro-
posed to launch as early as 2028, the findings of this study hold significant relevance to the
mission’s anticipated outcomes. CIMR, designed as a multi-frequency mission, will measure
1.4 GHz at 55 km, 6.9 and 10.6 GHz at ∼ 15 km and 18.7 GHz at ∼ 5 km spatial resolution
[169]. This capability promises to furnish users with sea ice parameters at a notably high
spatial resolution of about 5 km, surpassing the limitations posed by near-90 GHz solu-
tions affected by atmospheric conditions. Leveraging these SIC products, alongside the
methodology discussed for EDE measurement and MIZ analysis, presents an intriguing av-
enue for comparison and potential advancement in operational applications. Furthermore,
such endeavors could potentially contribute to the refinement of operational products and
methodologies at operational centers (see Section 2.6 for a discussion) through data fusion
techniques, such as integrating PM data with SAR-based products like ice charts. Such
fusion efforts could aid in bias correction of PM products, as well as the evaluation and
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initialization of climate model outputs.

Considering the anomaly-based definition of the MIZ, its applications extend to the
initialization and validation of sea ice models. Notably, Posey et al. [170] utilized MIZ
contours to assess the performance of the US Navy ice forecast model. Additionally, given
the association between MIZ boundaries and the ice edge boundary, defining the MIZ
could directly impact the ice edge identification purposes. For instance, the "Argo float
program" in 2016 utilized Antarctic MIZ products to investigate instances where floats
ceased reporting, presumably encountering the ice edge [171]. Beyond its immediate ap-
plications, employing the anomaly-based definition allows for a broader characterization of
climatically crucial regions beyond the sea ice extent or SIC. This expanded perspective
could be of interest to researchers in various fields. Moreover, the temporal variability
captured by this definition, with different ice transition periods exhibiting varying SIC
anomalies (e.g., higher anomalies during break-up and freeze-up periods), suggests its ca-
pability to serve in temporal classification tasks (e.g., [172]).

Furthermore, in reference to the forthcoming SAR mission NISAR (NASA-Indian Space
Research Organisation (ISRO) Synthetic Aperture Radar), planned to launch in early 2024
[173], a recent study has highlighted the enhanced capability of detecting newly formed ice
at L-band NISAR compared to C-band SAR [174]. Hence, there is potential for this study
to be expanded to explore MIZ incorporating data from this mission in the future. Our
findings also underscore discrepancies in MIZ delineation between SAR and PM data, even
when employing the traditional threshold-based definition. These disparities hold signifi-
cance for various downstream applications reliant on MIZ extent monitoring (e.g., sea ice
thickness estimation, sea ice velocity determination, and the Argo float program). These
applications depend on the accurate identification of MIZ in their screening processes to
determine the necessity of data retrieval at specific locations.

6.3 Research Limitations

Several limitations were encountered during this research. The first contribution (Chapter
3) faced challenges in reference data for the ice edge due to data variability. For instance, ice
charts, utilized as reference data, lack daily availability over a long time series and for the
entire Arctic region. Moreover, alternative data sources like SAR products pose challenges
due to their re-visit time, potentially failing to cover the same locations daily. Furthermore,
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lack of spatial autocorrelation across different SIC products posed another limitation in this
study. The disparity in spatial resolution directly influenced the methodology, requiring
the use of clustering methods to remove isolated ice patches for high-resolution products.
Conversely, coarse spatial resolution products offered limited detail on SIC, affecting the
sea ice edge estimation. In the second contribution (Chapter 4), leveraging the extensive
data availability of PM data was useful. However, a significant challenge emerged in ac-
cessing data for analyzing long-term trends using atmospheric variables from reanalysis
data. This challenge arises from the dependency of reanalysis data (like ERA5) on SIC
from PM data as a lower boundary condition, complicating the examination of long-term
trends in atmospheric variables.

For the third contribution (Chapter 5), the methodology employed was based on the
definition of SIC anomaly, which necessitates daily SIC values for specific grid cells over a
defined period (e.g., a month). However, finding an independent source of SIC data with
PM SIC products presented challenges. In this research, SAR products were utilized as
an alternative SIC products. The constraint lies in the revisit time associated with SAR
products, making it difficult to find regions consistently covered on a daily basis for an
entire month. Consequently, the question arise regarding the adequacy of the number of
observation days needed to capture meaningful anomalies. This dilemma is compounded
by the spatio-temporal nature of the problem, as anomalies can manifest on various time
scales (from short-term fluctuations to longer-term trends) and some regions might show
higher anomaly. Note that the grid cells exhibiting higher variability may necessitate more
frequent observations to accurately capture meaningful anomalies. Moreover, no dataset
is immune to noise or errors, further complicating the analysis. Increasing the number of
observation days can help alleviate the impact of noise and yield a more robust anomaly
estimate. However, in scenarios where data availability is limited for the region of study,
conducting sensitivity analyses by varying the number of observation days and assessing
their impact on the results becomes important. This approach aids in identifying the op-
timal balance between the required number of observation days per grid cell over a given
time frame and the reliability of the results, all while considering computational efficiency.
This aspect was not investigated in the study since data availability for the study region
was not constrained.
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6.4 Future Works

The research conducted in this work has contributed to the evaluation of the sea ice edge
as identified by various passive microwave retrieval algorithms and has introduced a mea-
surement approach for estimating ice edge displacement. Additionally, in this thesis, two
definitions of MIZ were investigated for SIC measured from two different sensors. There
are several areas that warrant further investigation and can be explored in future work:

• Incorporating Additional Data Sources for Ice Edge Comparison: Within
Chapter 3, incorporating the ice edge data obtained from different products (dis-
cussed in Section 2.6) can help in assessing the accuracy and reliability of ice edge
delineation from different remote-sensing sea ice products. This approach facilitates
the identification of which product is best suited for sea ice-related assessments.

• Comprehensive Ice Edge Displacement Analysis: In Chapter 3, future in-
vestigations could concentrate on implementing the suggested ice edge displacement
measurement in other regions where the ice edge holds significance, such as the Beau-
fort Sea. This analysis would serve to validate the feasibility of the new measurement
approach, potentially yielding a comprehensive sea ice edge displacement analysis.

• Long-Term Trend Analysis: Regarding chapter 3, extending the temporal cov-
erage of the study might enable the examination of long-term trends in ice edge
variation. This would be particularly valuable in the context of climate change and
its impact on sea ice variability over time.

• Utilizing Different PM SIC Products: In Chapter 4, an alternative PM SIC
products such as OSISAF (commonly referred to as a hybrid algorithm) or those
products discussed in Section 2.6 could be incorporated. Such inclusion has the po-
tential to yield divergent conclusions and illuminate additional facets of PM algorithm
utilization.

• Analyze Underlying Variables: Concerning Chapter 4, future research can look
into the long term time series of the geophysical variables such as wind speed over
the ocean that affect the MIZ variability. This would provide a more solid foundation
for evaluating the effectiveness of the MIZ definitions used in this thesis.

• Expand the Region of Study: In the examination of MIZ definitions for the
comparative study outlined in Chapter 5, the focus of the research was limited to a
specific Arctic sub-region. Enhancing the scope of the study to encompass a more
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diverse array of locations has the potential to offer a more thorough understanding
of the MIZ and its variations across various Arctic regions.

• Consider Seasonal Variability: Within Chapter 5, investigating how the MIZ,
derived from different definitions, varies with the seasons can lead to more accurate
predictions and understanding of the ice variability. This could also involve examining
the impact of seasonal changes on marine ecosystems and human activities in the
Arctic.
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Figure 1: MIZt and MIZσ spatial map for all months in 1983. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 2: MIZt and MIZσ spatial map for all months in 1984. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 3: MIZt and MIZσ spatial map for all months in 1985. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 4: MIZt and MIZσ spatial map for all months in 1986. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 5: MIZt and MIZσ spatial map for all months in 1987. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 6: MIZt and MIZσ spatial map for all months in 1988. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 7: MIZt and MIZσ spatial map for all months in 1989. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 8: MIZt and MIZσ spatial map for all months in 1990. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 9: MIZt and MIZσ spatial map for all months in 1991. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 10: MIZt and MIZσ spatial map for all months in 1992. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 11: MIZt and MIZσ spatial map for all months in 1993. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 12: MIZt and MIZσ spatial map for all months in 1994. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 13: MIZt and MIZσ spatial map for all months in 1995. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 14: MIZt and MIZσ spatial map for all months in 1996. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 15: MIZt and MIZσ spatial map for all months in 1997. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 16: MIZt and MIZσ spatial map for all months in 1998. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 17: MIZt and MIZσ spatial map for all months in 1999. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 18: MIZt and MIZσ spatial map for all months in 2000. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 19: MIZt and MIZσ spatial map for all months in 2001. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 20: MIZt and MIZσ spatial map for all months in 2002. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 21: MIZt and MIZσ spatial map for all months in 2003. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 22: MIZt and MIZσ spatial map for all months in 2004. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 23: MIZt and MIZσ spatial map for all months in 2005. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 24: MIZt and MIZσ spatial map for all months in 2006. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 25: MIZt and MIZσ spatial map for all months in 2007. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 26: MIZt and MIZσ spatial map for all months in 2008. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 27: MIZt and MIZσ spatial map for all months in 2009. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 28: MIZt and MIZσ spatial map for all months in 2010. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 29: MIZt and MIZσ spatial map for all months in 2011. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 30: MIZt and MIZσ spatial map for all months in 2012. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 31: MIZt and MIZσ spatial map for all months in 2013. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 32: MIZt and MIZσ spatial map for all months in 2014. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 33: MIZt and MIZσ spatial map for all months in 2015. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.

148



Figure 34: MIZt and MIZσ spatial map for all months in 2016. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 35: MIZt and MIZσ spatial map for all months in 2017. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 36: MIZt and MIZσ spatial map for all months in 2018. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 37: MIZt and MIZσ spatial map for all months in 2019. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 38: MIZt and MIZσ spatial map for all months in 2020. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 39: MIZt and MIZσ spatial map for all months in 2021. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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Figure 40: MIZt and MIZσ spatial map for all months in 2022. The MIZt grid cells are
defined using the criterion of 0.15 ≤ SIC < 0.80. The MIZσ grid cells are defined using the
criterion of σa > 0.11. The land is shown in grey.
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