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Abstract

Microarchitectural events have been the subject of previous investigations for malware
detection. While some studies assert the effectiveness of utilizing hardware events in de-
tecting malware, others contend that they may not be beneficial for this purpose. We argue
and empirically show that the efficacy of using hardware events for malware detection re-
lies on accurately selecting hardware events during detector training. Through rigorous
analysis, we demonstrate that the conventional approach of selecting a single subset of
hardware events for training a malware detection model is insufficient for creating a robust
system capable of effectively handling all types of malware, even when using a ensemble
of powerful classifiers. Accordingly, we propose the use of multiple subsets of hardware
events, each dedicated to training a distinct malware detection model. Since only a single
subset of events can be monitored at any given time, we adopt a game-theoretic approach
to determine the optimal strategy for selecting the subset of hardware events to be moni-
tored. In addition to the theoretical analysis of our approach, we empirically demonstrate
its effectiveness by comparing it to other baselines.
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Chapter 1

Introduction

In today’s world, security concerns have become paramount, and the evolution of machine
learning (ML) models has resulted in the proliferation of ML-based malware detection
frameworks. Designing a robust malware detection system has consistently been an active
field of research since the inception of the first computer malware. In this busy field,
the use of hardware events for malware detection has been extensively studied in prior
work [57, 88, 29, 16, 14, 86].

The fundamental concept behind using hardware events for malware detection lies in
the recognition that running programs exhibit phase behavior. The execution dynamics
of a program can generate specific hardware events with unique frequencies and patterns
corresponding to its various phases. Additionally, execution phases and their behavioral
characteristics are typically distinctive for each program. Therefore, monitoring hardware
events and their patterns can be employed to characterize and identify malicious program
behaviors.

At a high level, the majority of previous works leveraging hardware events for malware
detection typically follow three main steps: (1) data collection, (2) feature selection, and
(3) model construction. Starting with (1), a dataset is compiled, comprising executable
binaries of both malware and benignware. These binaries are then profiled, often through
multiple executions, to generate hardware event traces for a predefined set of hardware
events. Moving to (2), feature-selection algorithms analyze these traces to identify the
most significant hardware events that should be monitored. This step is essential since
modern processors can only monitor a fixed number of hardware events simultaneously.
Finally, in (3), various machine learning algorithms are employed to construct a model
based on the selected hardware events.
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While some research highlights the effectiveness of leveraging hardware performance
counters for detecting malware, there are opposing viewpoints suggesting their limita-
tions [88, 26] for this purpose. Building on insights form prior works, we argue and empir-
ically demonstrate that the effectiveness of malware detection using hardware event data
depends on the selection of the subset of hardware events to monitor. Our findings lead
us to the conclusion that the conventional practice of selecting a single subset of hardware
events for monitoring lacks robustness against persistent and stealthy attackers.

To address this problem, we advocate a departure from the conventional approach.
Instead, we propose the use of multiple subsets of hardware events, each employed to train
a distinct malware detection model. As only a single subset of events can be monitored at
any given time, we employ a game-theoretic approach to determine the optimal strategy
for selecting the subset of hardware events to be monitored. We formulate the problem of
selecting between subsets of hardware events as a Stackelberg game and provide a formal
analysis of the equilibrium strategies in the game. In addition to the theoretical analysis
of our approach, we empirically demonstrate its effectiveness by comparing it to other
baselines.
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Chapter 2

Background

In this section, we provide a brief overview of hardware events and hardware performance
counters. Subsequently, we outline the application of hardware events in malware detection
frameworks and discuss their limitations.

2.1 Hardware Performance Counters

Hardware Performance Counters (HPCs) [59, 81, 87], also referred to as performance
counters, are specialized registers found in the majority of modern processors. These
counters can be configured to track the occurrence of various hardware events, commonly
known as microarchitectural events. Modern processors offer a multitude of these hardware
events, such as the execution of load or store instructions, cache hits or misses, and branch
(mis)predictions. However, it is noteworthy that most architectures typically provide only
a limited number of HPCs, ranging from 2 to 8.

Microarchitectural events can be obtained at different frequencies and various levels
of granularity, ranging from arbitrary code blocks to functions, libraries, and processes.
Several tools and methods are available to monitor such events, including, but not limited
to, dynamic or static binary instrumentation tools (e.g., Pin [54], DynamoRIO [20], and Val-
grind [61]), low-level register accesses, Intel Performance Counter Monitor, perf-tools [28],
LIKWID [79], and PAPI [59].

Monitoring HPCmeasurements can be accomplished using an interrupt-driven sampling
approach. This feature is typically enabled in most modern processors through Performance
Monitoring Interrupt (PMI), which generates an interrupt once a given number of events
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occur in the system. For instance, HPC measurements may be sampled when the number
of retired instructions exceeds a specified threshold.

It is crucial to note that measurement data may exhibit non-deterministic charac-
teristics even during deterministic code execution. Sources of non-determinism include
interference on shared resources from other running processes, out-of-order execution, and
branch (mis)predictions.

2.2 HW Events & Malware Detection

Previous research extensively explores the application of hardware events in various do-
mains, including workload profiling, power modeling, compiler optimization, and real-time
power estimation, as well as thread scheduling [11, 60, 23, 13, 77]. Additionally, the
utilization of hardware events for malware detection has been a subject of thorough inves-
tigation [88, 29, 16, 14, 86]. This approach aims to characterize and identify both normal
and abnormal program behaviors based on hardware events and their patterns observed
during program execution.

The fundamental concept underlying the use of hardware events for malware detection
is the recognition that running programs exhibit phase behavior. The execution dynamics
of a program can generate specific hardware events with unique frequencies and patterns
corresponding to its various phases. Furthermore, execution phases and their behavioral
characteristics are typically distinctive for each program. Hence, the monitoring of hard-
ware events and their patterns can be employed to characterize and identify malicious
program behaviors.

At a high level, the majority of prior works on leveraging hardware events for malware
detection typically follow three main steps: (1) data collection, (2) feature selection, and
(3) model construction. Starting with (1), a dataset is compiled, comprising executable
binaries of both malware and benignware. These binaries are then profiled, often through
multiple executions, to generate hardware event traces for a predefined set of hardware
events. Moving to (2), feature-selection algorithms analyze these traces to identify the
most significant hardware events that should be monitored. This step is essential since,
as mentioned before, modern processors can only monitor a fixed number of hardware
events simultaneously. Finally, in (3), various machine learning algorithms are employed
to construct a model based on the selected hardware events. Table 1 and Table 2 in
Appendix .1 provide a summary of related work, outlining their approaches in these three
steps.
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Regarding the use of hardware events in malware detection, there are some notable
limitations in the prior works. Here, we briefly outline some of these limitations.

Verification of malware execution. Ensuring an accurate execution of malware
samples is challenging. Merely running a malware binary file does not guarantee that the
malware operates at its full capacity. Many malware types check for specific conditions
before launching their intended attacks, and if any of these conditions are not met, the
malware binary might exit. Moreover, issues such as missing dependencies can impact the
execution of malware samples.

Virtualized environments. Although running malware on a bare-metal system could
offer a more accurate profiled data, it is often unfeasible to execute malware directly on
a system. To address this issue, prior work has employed virtualized environments, such
as VirtualBox [35]. While virtualized environments provide a safe and sandboxed space
for executing malicious files, they could interfere with the intended execution of malware,
leading to noisy hardware event data [33]. In fact, in some cases, hardware events measured
within a virtual machine could substantially differ from those obtained on a bare-metal
system [88].

Time series-based analysis. Accurate analysis of hardware event data is crucial due
to its multivariate time series nature. Selecting the top hardware events requires employing
feature selection methods specifically designed for multivariate time series data. Some prior
works manually choose hardware events [57, 35], while others utilize dimension reduction
methods such as Principal Component Analysis (PCA) [45, 74, 88]. However, capturing
the time-series nature of samples with PCA may present challenges, leading to noticeable
variations in the selection of hardware events across different studies (refer to Table 2).

Closely tied to feature selection is model training. When training a machine learning
model on hardware event data, a time series-based approach is crucial to capture temporal
patterns. Previous studies have often used models not explicitly designed for time series
data, such as decision trees, SVM, Bayes Net, and KNN [45, 74, 29, 57].
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Chapter 3

Methodology

In this section, we describe our approach in collecting malware and benignware samples.
We further discuss our execution environment and setup. At the end, we outline our feature
selection and classification methods based on time series data.

3.1 Malware and Benignware Samples

For our malware samples, we focus on Linux-based binaries. We collect a total of 190
binaries for our study from various sources and malware databases. Examples include
MalwareBazaar [4], VirusSamples [7], and GonnaCry [3]. These binaries represent diverse
malware families, encompassing ransomware, viruses, rootkits, and backdoor malware.
We specifically select binaries that exhibit observable activity during execution, such as
printing logs, establishing connections to remote servers, or activating the filesystem. As
for our benignware, we compile 50 binaries from benchmarks such as LMbench[58] and
MiBench[38], along with frequently used Linux applications like text editors, browsers, and
lightweight Linux binaries, such as chmod, grep, and rm.

3.2 Execution Environment

We execute each binary file within a Linux container (LXC). Containers are chosen over
virtual machines (VMs) due to prior research demonstrating significant performance degra-
dation when using VMs in comparison to Linux containers (see, for example, [33]). A new
container is initialized for each malware run.
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For our data collection, we focus on 23 different hardware events carefully selected to
cover most features used in prior published research. We use perf tools to monitor these
hardware events at 10ms intervals during a one-minute execution of each binary sample.
To collect data for all 23 hardware events, we run each binary four times. This process
generates a single timestamped trace data for each malware and benignware.

We run our experiments on an AMD Ryzen Threadripper 3945WX processor, which,
like many modern AMD processors, allows concurrent access to a maximum of 6 hardware
event counters. To replicate a standard computer environment, we create shared directories
populated with random files, serving as potential malware targets. Additionally, we grant
network access to the container to allow binaries to establish remote connections.

3.3 Feature Selection

Due to the limited number of hardware performance counters (HPCs) in modern pro-
cessors, only a small number of hardware events (e.g., 4 or 8) can be monitored at any
given time. Consequently, it becomes necessary to choose a subset of hardware events for
monitoring. This selection process can be achieved using feature selection methods from
machine learning. These methods involve choosing the most relevant subset of features
from all available features that can effectively represent the original data.

In this study, we interpret our collected hardware event traces as multivariate time
series (MTS) data, where each monitored hardware event serves as a statistical variable.
For MTS-based feature selection, we utilize the fsMTS package [66]. Extracting stable
features for high-dimensional data with low sample size is known to be challenging [12, 47].

To enhance the robustness of the feature selection process, ensemble techniques are
shown to be promising [70]. As a result, we use fsMTS’s ensemble feature selection
method [67] with the majority voting rule to combine several different feature selection
algorithms. These algorithms include those based on independent autoregressive lags [68],
mutual information [52], cross-correlation [62], random forests [65], least-angle regres-
sion [36], graphical lasso [34], and partial spectral coherence [27]. Using this approach,
we select the top 6 hardware events for each malware sample.

3.4 Machine Learning Model

To detect malware from benignware, we train a machine learning model on our dataset
using the sktime library [53]. This open-source Python library is specifically designed for
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time series data analysis and forecasting. For our classifier, we employ sktime’s imple-
mentation of the bootstrap aggregating (bagging) classifier [18]. Bagging is an ensemble
learning method that combines multiple classifiers to improve overall predictive perfor-
mance.

The bagging classifier takes a base classifier as input and creates multiple copies of the
classifier. Each copy is then trained on a randomly sampled subset of the training data.
Once all base classifiers are trained, their predictions are aggregated to form the final
ensemble prediction, typically achieved through majority voting. This approach reduces
overfitting and enhances the model’s robustness by minimizing prediction variance.

In our study, for the base classifier, we utilize sktime’s ROCKET (randomized convolu-
tional kernel transform) classifier [30]. ROCKET is a fast kernel-based linear classification
method for time series data that achieves high classification accuracy by generating a large
number of random convolutional kernels.

8



Chapter 4

Hardware Events Selection

In this section, we argue and empirically demonstrate that the effectiveness of malware
detection using hardware event data depends on the selection of the subset of hardware
events to monitor. To accomplish this, we begin by clustering our malware samples based
on their similarities, specifically focusing on their top six representative hardware events.
For each cluster, we identify the most frequently occurring events and utilize them to
construct a distinct malware detection model. Simultaneously, we determine the overall top
six hardware events across all malware samples and use them to create a unified malware
detection model. Subsequently, we compare the predictive performance of these models
across different clusters. Our findings lead us to the conclusion that the conventional
practice of selecting a single subset of hardware events for monitoring lacks robustness
against persistent and stealthy attackers.

4.1 Clustering Malware

As discussed earlier in §3.3, we utilize an ensemble feature selection method to identify
the top six hardware events for each malware sample. The top hardware events may vary
among different malware samples. To underscore these variations, we employ clustering
techniques to group malware samples based on their similarities in terms of their top
selected features. To implement this, we represent each malware sample as a categorical
data point, employing a one-hot encoding of its top six features. Subsequently, we employ
the k-modes clustering algorithm [42] to group our malware samples.

The k-modes clustering is an unsupervised technique designed for grouping categorical
data, akin to how k-means clusters numerical data. For a specified value of k clusters, the
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Figure 4.1: Avg. dissimilarities for clustering malware samples

clustering process involves the following iterative steps. Initially, k samples are randomly
chosen to act as the initial cluster centroids. Dissimilarities between each sample and
the cluster centroids are then computed based on a given dissimilarity measure. Each
sample is subsequently assigned to its closest cluster. After this assignment, new cluster
modes are defined by identifying the most frequent category for each attribute within each
cluster. This process of calculating dissimilarities, reassigning observations to clusters, and
updating cluster modes is iteratively repeated until the maximum number of iterations is
reached or no further reassignments are necessary.

The dissimilarity metric in kmodes is determined as follows: If x and y represent two
categorical data objects defined by m features or attributes, the dissimilarity metric is
calculated as such:

d(x, y) =
m∑
j=1

δ (xj, yj)

δ (xj, yj) =

{
0 if xj = yj

1 if xj ̸= yj

We execute k-modes with k = 1, 2, . . . , 25 for 200 iterations each. For every k, we
compute the dissimilarity between each sample and the mode of the final cluster to which
it is assigned. The (normalized) average of these dissimilarities is depicted in Figure 4.1.
As anticipated, the average dissimilarity diminishes with an increase in the number of
clusters. For the subsequent analyses in this paper, we select 15 clusters without loss of
generality; our results and conclusions generalize to other numbers of clusters.
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4.2 Constructing Malware Detection Models

To investigate the impact of hardware event selection on the predictive performance of
malware detection models, we create multiple malware detection models using various
subsets of hardware events.

4.2.1 Cluster-based Models

Employing 15 clusters results in 15 distinct subsets of hardware events, each representing
the top six features of a specific cluster. For each subset, we construct a unique malware
detection model in the form of a machine learning classifier. For model verification and
testing, we split our dataset into training and testing sets using random sampling without
replacement. Specifically, 70% of the samples are utilized for training, while the remaining
30% are allocated to the testing set. To maintain an unbiased division, we allocate 70%
of both malware and benignware samples for training, and 30% for testing. Additionally,
to ensure the inclusion of every malware cluster in both the training and testing phases,
we independently sample from each cluster to create our training and testing sets. For the
evaluation of the model’s performance on malware within each specific cluster, we conduct
separate tests for each cluster.

4.2.2 Unified Model

We determine the overall top six features based on their frequency of appearance across
all malware samples, akin to the centroid of the single cluster produced by the k-modes
algorithm with k = 1. These features serve as the basis for training a single machine
learning classifier. For model verification and testing, we follow the same data splitting
approach mentioned earlier for cluster-based models.

4.3 Predictive Performance of Models

To evaluate the performance of various models, this subsection primarily focuses on the
recall and F1-score metrics.
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Figure 4.3: F1-score of the models for samples in each cluster.
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The recall metric measures the proportion of actual positives that were correctly iden-
tified and is calculated as follows:

Recall =
True Positives

True Positive + False Negative
.

In contrast, the precision metric assesses the fraction of all positives that were correctly
identified:

Precision =
True Positives

True Positives + False Positives
.

The F1-score provides a balanced evaluation of the model performance by incorporating
both precision and recall:

F1-score = 2× Precision× Recall

Precision + Recall
.

Figure 4.2 and Figure 4.3 illustrate the recall and F1-score values of our models re-
stricted to samples from each cluster1. The red bars in these figures represent the unified
model, presenting its recall and F1-score metrics across different clusters. Meanwhile, the
blue bars correspond to per-cluster models, displaying the recall and F1-score of each model
concerning the specific cluster whose top features are utilized for constructing the model.

The unified model exhibits a broad range of recall and F1-score values across clusters.
For example, the model’s recall values for samples in clusters 5 and 12 are less than 50%,
while the recall value for samples in cluster 11 is 90%. Similarly, the model’s F1-score values
for samples in clusters 12 and 14 are less than 50%, while the F1-score value for samples in
cluster 11 is close to 90%. In contrast, the recall and F1-score values of per-cluster models
for their corresponding classes are almost consistently higher2, ranging approximately from
70% to 100% for recall and 70% to 95% for F1-score. This is expected as each model is
trained on the representative hardware events of samples within each cluster.

Our results highlight the critical importance of selecting the “right” subset of hard-
ware events for constructing effective malware detection systems. It is evident that the
conventional practice of selecting a single subset of hardware events and using it to train
a malware detection model does not result in a robust malware detection system capable

1Note that for F1-score, all benignware samples are included with each cluster to measure false positives.
2There is one exception. The recall value of the model trained on top features of cluster 15 for samples

of cluster 15 is the same as the recall value of the unified model for the same samples, and the F1-score
value of the model is 3% lower than that of the unified model. This can be attributed to the fact that the
top features of cluster 15 bear a high resemblance to the overall top features of the unified model.
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of effectively handling all types of malware. This is true even when the malware detec-
tion model is an ensemble of powerful classifiers. Building on this insight, we propose a
departure from the conventional approach. Instead, we advocate for the use of multiple
subsets of hardware events. We use each subset to train a different malware detection
model. Since only a single subset of events can be monitored at any given time, in the
next section, we leverage a game-theoretic approach to determine the optimal strategy for
selecting the subset of hardware events that should be monitored.

Our results underscore the critical importance of carefully selecting the “right” subset
of hardware events when constructing effective malware detection systems. It becomes
evident that the common practice of choosing a single subset of hardware events for training
a malware detection model falls short in creating a robust system capable of effectively
handling all types of malware, even when employing an ensemble of powerful classifiers.

Building upon this insight, we advocate a departure from the conventional approach.
Instead, we propose the use of multiple subsets of hardware events, each employed to train
a distinct malware detection model. As only a single subset of events can be monitored
at any given time, the next section employs a game-theoretic approach to determine the
optimal strategy for selecting the subset of hardware events to be monitored.

Remarks. It is crucial to note that our proposed approach is orthogonal to ensemble
learning methods (e.g., [75]). Indeed, as discussed in §3, all malware detection models
in this paper utilize an ensemble of powerful ML classifiers. However, in each ensemble,
all classifiers use the same subset of hardware events. Our proposed strategy involves
deploying multiple models, each trained on a distinct subset of hardware events, offering a
complementary perspective to ensemble methods.
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Chapter 5

Malware Detection Game

In this section, we formulate the problem of selecting between subsets of hardware events
as a Stackelberg game. We then provide an analysis of the equilibrium strategies in the
game. In the text, our hardware event-based malware detection model is referred to as
Salus.

5.1 System Settings and Assumptions

The input to Salus consists of a finite set of trained malware detection models. Each model
is associated with a specific subset of hardware events. As discussed earlier, due to the
limited number of HPCs, only a single model can be deployed at any given time. The
primary challenge is to find an optimal strategy for choosing between malware detection
models.

To address this challenge, we adopt a game-theoretic approach, modeling the interac-
tions between Salus and attackers (e.g., hackers or malware developers) as a security game.
In our model, Salus chooses a malware detection model to be deployed, while a potential
attacker chooses a specific malware to run on the system.

We make few key assumptions in our model. First, we assume that attackers are
strategic, meaning they adapt their attack strategy based on their observations of Salus’s
actions. Second, we assume that attackers are persistent and have complete visibility into
Salus’s actions over time before deciding on their attack strategy. While these assumptions
grant significant power to attackers and may not universally apply in practical scenarios,
they allow us to optimize Salus’s strategy for a worst-case scenario.
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We additionally assume that the system faces many non-colluding attackers. We model
each attack as a separate game with a single attacker. All attackers share a common
objective–to inflict maximum damage. We model this by a fixed utility function for all
attackers, enabling Salus’s optimal strategy to generalize across all potential attacks.

5.2 Stackelberg Model

When confronted with persistent and stealthy attackers, opting for a malware detection
model with highest predictive performance on historical data becomes suboptimal. Such
a strategy is vulnerable because attackers can adapt their behavior to exploit the chosen
model. In fact, deterministically selecting a specific malware detection model is an easily
exploitable strategy, as attackers can deploy malware that evades detection by that par-
ticular model. Therefore, to optimize its defense strategy and counter adaptive attackers,
Salus must introduce randomization when selecting between malware detection models.

To determine an optimal randomized strategy, we formulate the security game between
Salus and a potential attacker using the Stackelberg model (also known as the leadership
or commitment model). The Stackelberg model, introduced by von Stackelberg [83] in the
context of Cournot’s duopoly model [25], involves a game played sequentially between two
players: the leader and the follower. The leader plays first by committing to a mixed
strategy1, and the follower observes the distribution of the leader’s actions before choosing
a strategy in response.

5.3 Game Formulation

In our setting, Salus assumes the role of the leader, responsible for selecting a malware
detection model to deploy, while a potential attacker acts as the follower, choosing a
malware in response to the leader’s strategy. Although a malware could theoretically be
selected from a continuum of codes, for simplicity, we model the game as a finite one. We
assume that there exists only a finite set of behavioral malware classes (determined, for
example, by their representative top hardware events, as discussed in §3.3), denoted by set
M , from which an attacker makes their selection. On the Salus side, the set of available
actions is denoted by D, representing all trained detection models.

1A mixed strategy is a probability distribution over all available actions.
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5.4 Utility Models

We estimate the (dis)utility of Salus as the leader for choosing detection model d ∈ D
when an attacker chooses malware m ∈M as follows:

Ul(d,m) = RTPpd(m)− CFN(1− pd(m))

where RTP represents the reward of true positives (i.e., the reward of detecting a malware),
CFN represents the cost of false negatives (i.e., the cost of misclassifying a malware), and
pd(m) is the probability that model d detects malware m.

We further estimate the utility of the follower (i.e., an attacker) for choosing malware
m ∈M in response to Salus choosing d as follows:

Uf (d,m) = RFN(1− pd(m))− CTPpd(m),

where RFN is the reward of false positives (i.e., the reward of evading the detection model)
and CTP is the cost of true positives (i.e., the cost of being detected by the model).

Remarks. We note that pd(·)’s are parameters of the utility functions that depend on
the detection models. These parameters can be estimated by constructing the detection
models and testing them on historical data. On the other hand, RTP , CFN , RFN , and CTP

are model-agnostic parameters, and estimating them requires domain-specific knowledge.
In the following chapter, we instantiate the model-dependent parameters of our utility
functions using data from our experiments. Additionally, we conduct sensitivity analysis
on the model-agnostic parameters to demonstrate how our results change with variations
in these parameters.

It is important to note that the utility models presented in this section are not intended
to be universally applicable to all real-world scenarios. Instead, they serve to illustrate the
construction of a realistic utility model tailored to represent a precision/recall perspective
towards detection models. When applying our framework to different real-world scenar-
ios, adjustments and customizations to the utility model may be necessary to accurately
represent other perspectives.

5.5 Mixed Strategies and Expected Utilities

The set of mixed strategies (also known as randomized strategies) for the leader is denoted
by Sl = ∆(D), where ∆(D) represents the set of all probability distributions over the set
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D. By sl(d), we denote the probability that detection model d is employed under the mixed
strategy sl. A pure strategy is a mixed strategy that puts probability 1 on a single action.
Similarly, we can define the set of mixed strategies for the follower, Sf = ∆(M). We can
then overload Ul (and Uf ) to capture the expected utility of the leader (and the follower)
when the arguments are mixed strategies:

Ul(sl, sf ) ≜
∑
d∈D

∑
m∈M

sl(d)sf (m)Ul(d,m).

In the context of our formalized notation, the execution of our security game follows
a structured sequence. Initially, Salus chooses a distribution over detection models (sl ∈
Sl). Subsequently, an attacker observes the Salus’s selected strategy (sl) and responds by
choosing a strategy (sf ∈ Sf ). The game proceeds to randomly sample an action profile
(d,m) based on the selected strategies, where d ∼ sl and m ∼ sf . Finally, both Salus and
the attacker receive their utility (Ul(d,M) and Uf (d,M)).

5.6 Stackelberg Equilibrium

Salus’s (dis)utility depends not only on its own defense strategy but also on the attack
strategy. The same holds for an attacker’s utility. In game theory, a strategy is considered
a player’s best-response to the other players’ strategy when it maximizes the expected
utility of the player. In our setting, the set of Salus’s best-responses, BRl, to an attacker’s
strategy sf is represented by:

BRl(sf ) ≜ {d ∈ D | Ul(d, sf ) ≥ Ul(d
′, sf ) ∀d′ ∈ D}.

Similarly, we can define BRf (sl).

In a Stackelberg game, a pair of strategies for the leader and the follower form a
Stackelberg equilibrium if they are best-responses to each other. Following the security
games literature, we adopt a common refinement to the Stackelberg game called the Strong
Stackelberg Equilibrium (SSE) [19]: A pair of strategies (s∗l , s

∗
f ) form an SSE if they satisfy

all the following conditions:

• The leader plays a best-response:

Ul(s
∗
l , BRf (s

∗
l )) ≥ Ul(s

′
l, BRf (s

′
l)) ∀s′l ∈ Sl.
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• The follower plays a best-response:

Uf (s
∗
l , s

∗
f ) ≥ Uf (s

∗
l , s

′
f ) ∀s′f ∈ Sf .

• The follower breaks ties in favor of the leader:

Ul(s
∗
l , s

∗
f ) ≥ Ul(s

∗
l , sf ) ∀sf ∈ BRf (s

∗
l ).

The first two conditions are crucial for establishing an equilibrium, and they are com-
mon to both the Stackelberg equilibrium and SSE. The third condition requires that if the
follower faces indifference between multiple strategies, they opt for the one that maximizes
the leader’s utility. While this condition might appear inconsistent with the follower’s
objective in the context of security games, it remains justifiable, as the leader can almost
always select a strategy very close to the equilibrium strategy to make the follower strictly
prefer the desired SSE strategy [84].

Compared to some other refinements of the Stackelberg equilibrium with different tie-
breaking rules, an SSE always exists in all Stackelberg games, making it an attractive
solution concept. Additionally, to find an SSE, it is enough to only consider a pure strategy
for the follower [24]. This is because if the follower randomizes between multiple pure
strategies in response to the leader’s strategy, then all those pure strategies must yield the
same utility to the follower and also to the leader (due to the tie-breaking rule). Therefore,
we can just focus on one of those pure strategies as all of them produce the same outcome.
We use this fact in the next subsection when we formulate the game to find its SSE.
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5.7 Finding an SSE

To find an SSE, the game can be formulated as the following mixed-integer linear program
(MILP) [43]:

Max. ul, (5.1)

s.t. pd ∈ [0, 1] ∀d ∈ D,∑
d∈D

pd = 1,

qm ∈ {0, 1} ∀m ∈M,∑
m∈M

qm = 1,

0 ≤ uf −
∑
d∈D

Uf (d,m)pd ≤ L(1− qm) ∀m ∈M,

ul −
∑
d∈D

Ul(d,m)pd ≤ L(1− qm) ∀m ∈M,

where L is a constant number with an arbitrary large value. In this formulation, the vari-
ables pd determine the mixed strategy of the leader. The first and second constraints ensure
that these variables define a probability distribution over all detection models available to
Salus. Similarly, the variables qm determine the pure strategy of the follower. The third
and fourth constraints ensure that only a single qm is set to one, indicating the optimal
pure strategy of the follower.

In addition to pd’s and qm’s, (5.1) introduces two other variables: ul and uf to capture
the expected utility of the leader and follower, respectively. For the follower, this is enforced
by the fifth constraint. When qm = 1, uf must be both weakly greater and weakly less than∑

d∈D Uf (d,m)pd, which means it has to be equal to
∑

d∈D Uf (d,m)pd. When qm = 0, uf

only has to be weakly greater than
∑

d∈D Uf (d,m)pd. The last constraint serves a similar
role for the leader’s expected utility. Since ul is being maximized in the objective, there is
no need for a lower bound.

Solving the MILP in (5.1) finds the optimal (mixed) strategy of Salus assuming that
the attacker best-responds.

20



Chapter 6

Evaluation

To evaluate the effectiveness of our proposed method, we employ two assessment tech-
niques. Initially, a sensitivity analysis is conducted to explore the impact of adjusting
the solution’s parameters on the final outcome. Following this, we compare the proposed
solution with baseline strategies.

In our experimental configuration, we utilize the Mixed-Integer Linear Programming
(MILP) solver to resolve our game model. After determining the defender’s strategy using
the solver, we iterate the game for 100 rounds. In each iteration, the leader selects a
malware detection model, while simultaneously, the attacker chooses a specific malware.
At the end of each round, the defender’s utility is computed. Finally, we calculate the
average utility for the defender.

6.1 Sensitivity

In this section, we analyze the effects of variations in the reward-to-cost ratios for both
the attacker and defender on the outcomes of the study. To assess this, we systematically
modified the reward and cost parameters of the defender and the attacker. Subsequently,
we examined the defender’s utility across multiple cases to gauge the sensitivity to these
ratio changes. We performed the sensitivity analysis in two cases:

In the initial case, we altered the reward and cost parameters of the attacker, denoted
as RFN and CTP in the attacker’s utility model, while holding the defender’s reward-to-
cost ratio constant. This facilitated an examination of the impact on the defender’s utility
stemming from adjustments in RFN and CTP .
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Figure 6.1: Defender’s Normalized Expected Utility with varying reward to cost ratio (a)
RTP/CFN and (b) RFN / CTP .

In the second case, we modified the reward and cost parameters of the defender, rep-
resented by RTP and CFN in the defender’s utility model. While maintaining a constant
attacker’s reward-to-cost ratio. This allowed us to observe and analyze the influence of
variations in the defender’s utility resulting from changes in RTP and CFN .

Figure 6.1(b) illustrates the impact of varying the RFN to CTP ratio on the defender’s
utility. Notably, adjusting this ratio has minimal effect on the defender’s utility. This lack
of sensitivity is advantageous, considering the inherent challenge of accurately modeling
the attacker’s utility without comprehensive information. The limited changes in utility
are favorable for system design, offering stability even when dealing with uncertainties in
the attacker’s model.

Figure 6.1(a) illustrates the scenario where we vary the defender’s reward-to-cost ratio:
RFN and CTP . As depicted in the data presented in Figure 6.1(a), when the reward and
cost values align, the defender experiences a utility close to zero. In addition, as the reward
for detecting the attackers’ attacks increases, the defender achieves a higher utility.

We analyzed the defenders’ strategy vector across different reward-to-cost ratios (RTP/CFN)
and observed a consistent pattern: the defender’s mixed strategy remained unchanged de-
spite variations in these ratios. Moreover, when adjustments were made to the attacker’s
reward-to-cost ratio (RFN/ CTP ), the stability of the defender’s mixed strategy was evi-
dent. These observations highlight a robust insensitivity to variations for game parameters
in the defenders strategy. This suggests that the optimal defender strategy can be reliably
determined irrespective of specific values assigned to game parameters. In the context of
our specific game model, the MILP solver consistently employed mixed strategies between
two models, Model-3 and Model-5. The top features of these two models considering the
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common events between the two model are : branches, branch-misses, branch-loads,
branch-load-misses, dTLB-load-misses, l2-dtlb-misses, l1-dtlb-misses,
ls-mab-alloc-stores, L1-dcache-loads and l2-cache-accesses-from-dc-misses.

6.2 Comparing with baselines

In order to evaluate the efficacy of our proposed solution, we conduct a comprehensive
comparison with a variety of baseline strategies that the defender might potentially employ.
The objective of this comparative analysis is to ascertain whether our proposed solution
outperforms the baseline strategies in terms of utility for the defender.

In the following discussion, we delve into the details of each baseline strategy that forms
part of our comparative analysis. This clarification involves a comprehensive exploration
of the underlying principles, mechanisms, and considerations associated with each baseline
strategy. By elucidating the intricacies of these baseline strategies, we aim to establish a
clear understanding of their functionalities and, in turn, facilitate a robust comparative
assessment against our proposed solution.

This detailed investigation and comparison contribute to a sophisticated evaluation of
the proposed solution’s effectiveness, offering valuable insights into its potential advantages
and areas of improvement when faced with various strategies that represent the defender’s
alternative courses of action. In the following, each baseline strategy that we employed is
elucidated.

• Uniform Randomization: In the Uniform Randomization Strategy, the defender em-
ploys a tactic where they deliberately randomize their choice among all available pure
strategies. This approach involves assigning equal probabilities to each pure strategy,
essentially distributing the defender’s choices uniformly across the entire set of strategies.

• Best average detection rate

Best average detection rate refers to a strategy employed by the defender in a decision-
making scenario. In this context, the defender utilizes a pure strategy denoted as s

′
,

and the criterion for selecting this strategy is based on achieving the highest average
detection rate. In the following formula, the variable M denotes the set of malware
samples, and pd(m) signifies the probability associated with the detection of a particular
malware sample.
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Mathematically, this strategy is formulated as follows:

s
′ ∈ argmax

i

(
1

|M |
∑
m∈M

pd(m)

)

• Randomized best average detection rate In the Best average detection method,
the objective is to identify the strategy that maximizes the average detection rate. with
extending, the Randomized best average detection rate method involves a randomization
process, wherein the defender’s strategy is selected from a set of the m strategies with
the best average detection rates. In this experimental setup, we employed the values of
m = 2 and m = 5 for the comparative analyses.

• Deterministic best response:

In this approach, the defender, following the deterministic best response strategy, re-
sponds to the attacker’s actions by choosing a single strategy. Unlike the preceding
strategies, the deterministic best response strategy integrates the actions of the attacker
into its decision-making process. Algorithm 1 gives the procedure for finding s∗, the
attacker’s best response v∗ to s∗, and the utilities for each player.

Algorithm 1 Deterministic Best Response

1: ∆BRa(s) := attackers best response ∀s ∈ S
2: for s ∈ S do
3: BRa(s)← argmax

v∈V
ua(s, v)

4: s∗ ← argmaxud(s, BRa(s)) ▷ defender best response
5: v∗ ← BRa(s

∗) ▷ attacker best response to s∗

6: end for
7: return ud(s

∗, v∗), ua(s
∗, v∗) ▷ utilities for players

6.3 Comparing baselines results

In this section, we assess the employed method, which utilizes the MILP (Mixed-Integer
Linear Programming) solver. We compare it with several baseline strategies, including
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Uniform Randomization (UR), Best Average Detection Rate (BDR), Randomized Best
Average Detection Rate with m = 2 (RBDR-2), and m = 5 (RBDR-5) and Deterministic
Best Response as (DBR).

Figure 6.2 shows the comparison of the MILP solution with the baselines. In these
experiments, the ratio of the attacker’s reward to cost remained constant, while the de-
fender’s parameters were systematically adjusted, corresponding to varying reward-to-cost
ratios.

The x-axis in Figure 6.2 illustrates various reward-to-cost ratios, while the y-axis depicts
the expected utility of the defender corresponding to each strategy. As illustrated in the
plot, the MILP-based solution outperforms all baseline strategies across various reward-to-
cost ratios (0.25, 0.5, 1, 2, 4). As evident from the plots in Figure 6.2, when the reward-
to-cost ratio exceeds 1, the defender’s expected utility becomes positive, while all baseline
strategies maintain negative values. An additional inference drawn from the graphical
representations is that randomizing the best average detection rate with a parameterm = 5
(RBDR-5) yields superior results compared to the strategies with m = 2 (RBDR-2) or the
original strategy (BDR).

Furthermore, our evaluation involved a comparison between MILP solutions and base-
line strategies while varying the defender’s strategy space, specifically focusing on other
cluster sizes (10, 20, 25). This experiment aimed to assess the performance across various
cluster sizes and analyze how the MILP solutions compared to the baselines under these
changing conditions.

As illustrated in Figure 6.3, it is apparent that irrespective of the cluster size under
consideration, the MILP solution consistently outperforms all baseline strategies. This
observation implies that the MILP solution consistently delivers optimal outcomes across
diverse scenarios, showcasing robustness and independence from variations in the defender’s
parameters or strategy space.

Figure 6.4 demonstrates the predictions generated by the models chosen through the
MILP solver for each individual malware sample. The MILP solver combines information
from two models, specifically model 3 and model 5, as evident in the visual representation.
The horizontal line in the figure represents the threshold for distinguishing between mal-
ware and benignware. Probabilities above this line are classified as malware predictions.
Notably, the figure reveals instances where model 5 outperforms model 3 in predicting
malware for certain samples.

Upon solving the game with the MILP solver, the optimal response for the attacker
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Figure 6.2: Evaluating the defender’s expected utility across various baselines while altering
the reward-to-cost ratio.

is to select malware sample 170. This choice is substantiated by the positive predictions
from both models for this particular sample, as illustrated in Figure 6.4. Consequently,
the defender receives a positive utility.

However, Figure 6.5 illustrates the models selected by the RBDR-2 baseline strategy.
This strategy opts for models 3 and 11, blending a defender strategy between these two
models. Despite the RBDR-2 selecting the top two models with the highest prediction
rates, it results in a negative utility for the defender. The negative utility arises from the
attacker’s optimal response to this strategy, which is to choose malware 20. Accordingly,
both selected models fail to detect this specific malware, leading to a negative outcome for
the defender.
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Figure 6.4: MILP solvers models
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6.4 Computational time

Cluster models Computational time

10 8.463 s
15 12.231 s
20 22.320 s
25 28.866 s

Table 6.1: MILP solvers computational time per cluster

Table 6.1 displays the computation times for determining the optimal strategy using
the MILP solver in cvxpy across various clusters. As observed in the table, augmenting
the strategy space, such as with cluster models, results in an increase in computational
time required to determine the optimal solution.

Cluster models classifiers Avg inference time per sample

15 0.5687 s

Table 6.2: Average inference time over all malware samples for cluster models classifiers.

In Table 6.2, the average inference time is presented for obtaining predictions across all
15 trained classifiers for the entirety of malware samples. The inference times were recorded
using a T4 GPU accessible on Google Colab, equipped with the following specifications: a
system RAM of 12.7 GB, GPU RAM of 15.0 GB, and a disk capacity of 201.2 GB.
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Chapter 7

Conclusions

The exploration of hardware events in the realm of malware detection has been a sub-
ject of extensive research, yielding diverse perspectives on their effectiveness. This study
contributes to this body of knowledge by showcasing that the success of malware detec-
tion critically depends on the precise selection of hardware events during the training of
detectors.

Moreover, we underscored the inadequacy of the traditional approach, which involves
choosing a singular subset of hardware events for training a malware detection model. This
limited strategy falls short in constructing a resilient detection system capable of effectively
addressing the diverse forms of malware. In response to this challenge, we advocated for
the adoption of multiple subsets of hardware events to create distinct malware detection
models.

Given the constraint that only one subset of events can be monitored at any given
time, our approach embraced a game-theoretic perspective. This strategic framework was
employed to determine the optimal strategy for selecting the most relevant subset, ensuring
an adaptive and dynamic approach to malware detection.

Furthermore, the empirical validation of our proposed methodology was substantiated
through a comparative analysis with other baseline approaches. This empirical evidence
serves to affirm the efficacy of our multifaceted approach in enhancing the robustness and
adaptability of malware detection systems.
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Chapter 8

Related Work

Within this section, we commence on a comprehensive exploration of related works, struc-
tured around three key criteria. Firstly, our inquiry extends into the diverse applications
of Stackelberg security games across multifarious fields. Here, we aim to unravel the varied
contexts in which these strategic games have been applied, shedding light on their adaptive
and versatile nature in optimizing security approaches.

Following this, our attention turns to a detailed examination of previous studies in
the specialized realm of hardware event-based malware detection. By delving into these
investigations, we seek to discern the nuanced approaches, methodologies, and findings
that have contributed to the evolution of this specific domain. This literature provides
a foundation for understanding the intricacies and advancements within hardware event-
based malware detection.

Concluding our exploration, we shift our focus to malware detection studies that di-
verge from the reliance on hardware events. This encompasses a broader spectrum of
methodologies, showcasing the diversity in approaches to identifying and mitigating mal-
ware threats. By considering alternative methods, we aim to capture the comprehensive
landscape of contemporary research in malware detection, offering insights into the efficacy
and innovation present in varied detection strategies.

8.1 Stackelberg security games

Stackelberg games emerge as a cornerstone in the realm of fortifying defense strategies
across a spectrum of security domains. Their significance lies in providing profound insights
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that empower security authorities to fine-tune resource allocation and decision-making pro-
cesses with a heightened level of strategic acumen and efficiency. By adopting a Stackelberg
game framework, security entities gain a strategic advantage, allowing them to not only
anticipate but also proactively shape the dynamics of security scenarios.

These games offer valuable insights, empowering security authorities to optimize re-
source allocation and decision-making.

One of the initial instances where Stackelberg security games found application was in
the realm of infrastructure security. This is particularly relevant considering the worldwide
concern for security at vital economic or political locations, driven by the looming threat
of terrorism. In addition, limited security resources result in incomplete coverage, allowing
adversaries to exploit patterns and plan attacks around existing patrols.

ARMOR describes the transition of advanced multi-agent algorithms into a deployed
application called ARMOR (Assistant for Randomized Monitoring over Routes).The au-
thors address the patrolling/monitoring problem by framing it as a Bayesian Stackelberg
game, enabling appropriate weighting of actions and handling uncertainty about adversary
types. Additionally they implement A mixed-initiative interface allowing occasional user
adjustments or overrides based on local constraints. ARMOR has been operational at
the Los Angeles International Airport (LAX) since August 2007, randomizing checkpoints
on airport roadways and canine patrol routes within terminals.showcasing the practical
application of Stackelberg models [69].

Beyond traditional security applications, the influence of Stackelberg games extends to
unconventional domains, particularly within the environmental landscape. In this context,
the strategic principles of Stackelberg games are harnessed to address challenges related to
environmental protection, resource management, and ecological sustainability.

Poaching holds a significant threat to the conservation of crucial species and entire
ecosystems. While foot patrols are commonly used in many countries to counter poach-
ing, these patrols often do not optimize the limited resources available. To address this
issue, prior research introduced PAWS [32] (Protection Assistant for Wildlife Security), an
innovative application grounded in game theory, specifically ”security games,” designed to
enhance the efficiency of patrolling resources. PAWS [32], a wildlife protection assistant
system, has undergone extensive evaluation in Malaysia and the Queen Elizabeth National
Park in Uganda.

In this study, the evolution journey, from initial tests in Africa in Spring 2014 to ongoing
deployment in Southeast Asia, is outlined, along with plans for future global deployment.
Collaborating closely with NGOs Panthera and Rimba, and incorporating feedback from
professional patrolling teams, has been integral to refining and enhancing PAWS.
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Technical advancements facilitating PAWS’s regular deployment include addressing
complex topographic features, handling uncertainties in species distribution, ensuring scal-
ability for patrolling expansive conservation areas, and managing intricate patrol scheduling
constraints. Elevation information and land features are incorporated using a hierarchi-
cal modeling approach to construct a virtual ”street map” of the conservation area. This
street map facilitates efficient scaling while offering detailed guidance, connecting the en-
tire conservation area through easily navigable route segments like ridgelines, streams, and
riverbanks – features commonly used by animals, poachers, and patrollers alike.

To address uncertainties and ensure scalability, a novel algorithm is introduced, inte-
grating minimax regret for handling payoff uncertainty and the cutting plane framework
for scalability. Additionally, the algorithm is equipped to handle constraints such as patrol
time limits and starting and ending at the base camp.

In the ever-evolving landscape of cybersecurity, scholars and experts have delved into
innovative approaches to fortify digital defenses. Notably, within this realm, researchers
have actively investigated the integration of security game models to enhance two critical
aspects of cybersecurity: deep packet inspection and the strategic deployment of honeypots.

Within the realm of cybersecurity, investigators have delved into the utilization of se-
curity game models. Deep packet inspection, a pivotal component in network security,
involves scrutinizing the content of data packets traversing a network. By leveraging secu-
rity game models, as elucidated by Van Vek et al. in their seminal work [82], cybersecurity
practitioners can infuse a strategic and game-theoretic dimension into the analysis of these
packets. This approach facilitates a more nuanced understanding of potential threats, en-
abling a proactive response to evolving cyber threats. By framing the interaction between
defenders and attackers as a game.

In a parallel exploration, the application of security game models extends to the realm of
honeypots, as expounded by Durkota et al. in their research [31]. Honeypots are decoy sys-
tems designed to attract and deceive malicious actors, allowing cybersecurity professionals
to study their tactics and gather valuable intelligence. Security game models bring a strate-
gic perspective to the utilization of honeypots, optimizing their deployment and operation.
By viewing the interaction between attackers and honeypots as a game, researchers can
devise optimal strategies for placing honeypots strategically within a network, maximizing
their effectiveness in luring and identifying potential threats.

In summary, the incorporation of security game models into the cybersecurity domain
represents a forward-thinking approach to addressing the dynamic and sophisticated nature
of cyber threats. By applying these models to deep packet inspection and the deployment
of honeypots, researchers aim to elevate the efficacy of security measures, fostering a more
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proactive and strategic defense against the ever-evolving landscape of cyber threats.

Stackelberg games have been also used for malware detection [55]. In this study, mac-
queen et al. propose a novel method for determining an optimal randomization strategy
across feasible sets of malware detection tools, considering costs for both attackers and de-
fenders. They demonstrate that their best-responding randomization approach surpasses
deterministic strategies and naive randomization methods. The defender’s costs incorpo-
rate both objective factors (e.g., false positive rates from past studies and the VirusTotal
dataset) and subjective factors (e.g., vulnerability severity ratings from the National Vul-
nerability Dataset). Notably, their model allows customization to reflect specific domain
costs, preferences, and tool availability.

However in their approach the authors mention that estimating the attacker’s utility is
more challenging, and the approach accommodates partial information without requiring
full knowledge. The defender can adopt a conservative approach by assigning the attacker
a utility equal to the severity of each attack. In this study they explicitly consider strategic
attacker behavior while optimizing the tradeoff between costs and benefits in the malware
detection domain.

Our research represents a pioneering application of Stackelberg games within the realm
of hardware cybersecurity. In essence, Stackelberg games, a strategic modeling framework,
traditionally involve a leader and a follower, each making sequential decisions to optimize
their respective objectives.

8.2 Hardware event-based malware detection

Extensive research efforts have been devoted to investigating malware detection through
the analysis of hardware events. Among the notable contributions in this domain is the
work of Sayadi et al. [75], where the application of ensemble methods takes center stage. In
their comprehensive study, the authors advocate for an ensemble learning approach, a tech-
nique that involves the integration of multiple classifiers to enhance the overall predictive
performance.

The notable feature of Sayadi et al.’s approach lies in the concerted training of all
classifiers on the same subset of hardware events. This strategic choice emphasizes the
importance of a unified and cohesive training foundation, wherein each classifier gains
insights from a consistent set of hardware-related data points.

The utilization of ensemble methods in the context of hardware event-based malware
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detection reflects a growing recognition of the effectiveness of collaborative and integrative
approaches.

Moreover, researchers have delved into the targeted examination of distinct malware
categories, exemplified by Alam et al. in their work [10]. In this study, the focus is di-
rected towards ransomware, a malicious software type notorious for its disruptive capabil-
ities. The researchers employ a sophisticated approach, leveraging a Deep Neural Network
architecture coupled with Fast Fourier Transformation. This strategic combination not
only showcases the versatility of modern machine learning techniques but also underscores
the commitment to crafting an efficient and robust ransomware detection system. The
utilization of advanced methodologies, as demonstrated in this research, contributes to
the ongoing efforts to enhance cybersecurity measures by addressing the unique challenges
posed by specific malware types, such as ransomware.

Another noteworthy contribution to the field is the research conducted by He et al.
[40], which delves into the complexities of zero-day malware attacks. These particular cyber
threats pose a significant challenge as they are unleashed before robust defense mechanisms
have been established, leaving systems vulnerable to exploitation. By leveraging advanced
algorithms and predictive models, they strive to develop proactive measures capable of
identifying and mitigating the impact of such emerging threats.

Our approach diverges from the aforementioned works as we advocate for a novel strat-
egy: employing multiple subsets of hardware events for training detection models. Unlike
previous studies that predominantly rely on a fixed set of hardware events, our methodol-
ogy introduces diversity and adaptability into the training process, recognizing the dynamic
nature of cyber threats.

Furthermore, our commitment to designing a robust detection framework extends be-
yond conventional methodologies. We incorporate tools from game theory, introducing a
strategic dimension to the development of our models. By leveraging insights from game
theory, we aim to optimize decision-making processes and enhance the overall efficacy of our
detection system. This distinctive combination of utilizing diverse hardware event subsets
and integrating game theory principles underscores our approach to advancing malware
detection capabilities.

8.3 Beyond hardware events

The identification of malware has extended to the analysis of software and system call
events. This novel approach involves vigilant monitoring of system calls and thoughtfully
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selecting the most insightful events to fortify a resilient malware detection framework, as
elucidated in the study by Canzanese et al. [22].

Furthermore, certain studies delve into the intricacies of particular malware categories,
such as Android gaming malware, as demonstrated in the research by Jaiswal et al. [44]. In
their study, they conducted a comprehensive system call analysis of Android applications,
shedding light on the behavior and patterns of such malware within the Android ecosystem.

In a distinct methodology presented by Nikolopoulos et al. [63], the authors advocate
for a graph-based technique to delineate malware behavior. This innovative method en-
tails constructing a directed acyclic graph from system-call traces to adeptly capture and
illustrate malware activities.

In contrast, our research stands apart from these endeavors. We propose an orthogo-
nal approach that introduces game-theoretic principles into software event-based malware
detection systems. This integration opens up exciting avenues for future exploration and
refinement in the realm of cybersecurity.
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Michal Pěchouček. Game-theoretic resource allocation for malicious packet detection
in computer networks. In Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), volume 2, pages 905–912, 2012.

[83] Heinrich Freiherr von Stackelberg. Marktform und Gleichgewicht. Springer, 1934.

[84] Bernhard Von Stengel and Shmuel Zamir. Leadership with commitment to mixed
strategies. Technical report, London School of Economics, 2004.

[85] Han Wang, Hossein Sayadi, Sai Manoj Pudukotai Dinakarrao, Avesta Sasan, Setareh
Rafatirad, and Houman Homayoun. Enabling micro ai for securing edge devices at
hardware level. IEEE Journal on Emerging and Selected Topics in Circuits and Sys-
tems (JETCAS), 11(4):803–815, 2021.

[86] Xueyang Wang, Sek Chai, Michael Isnardi, Sehoon Lim, and Ramesh Karri. Hardware
performance counter-based malware identification and detection with adaptive com-
pressive sensing. ACM Transactions on Architecture and Code Optimization (TACO),
13(1):1–23, 2016.

44



[87] Vincent M Weaver and Sally A McKee. Can hardware performance counters be
trusted? In Proceedings of the IEEE International Symposium on Workload Charac-
terization (IISWC), pages 141–150, 2008.

[88] Boyou Zhou, Anmol Gupta, Rasoul Jahanshahi, Manuel Egele, and Ajay Joshi. Hard-
ware performance counters can detect malware: Myth or fact? In Proceedings of
the ACM Asia Conference on Computer and Communications Security (ASIA-CCS),
pages 457–468, 2018.

45



APPENDICES

.1 Appendix

In this section, the subsequent two tables are presented for the comparison of previous
studies on the detection of malware related to hardware events. Table 1 illustrates the
methods for feature selection and machine learning classifiers employed in earlier studies.
Following that, Table 2 outlines the hardware events utilized in various studies.

We have used abbreviations in Table 1, including Not Clear (NC), Principle Com-
ponent Analysis (PCA), Decision Trees (DT), Convolutional Neural Network (CNN),
Random Forest (RF), Neural Networks (NN), Deep Neural Network (DNN), K-Nearest
Neighbour(KNN), Long Short-Term Memory (LSTM), Support Vector Machine (SVM),
Multilayer Perceptron (MLP), Stochastic Gradient Descent (SGD), Control Flow Graphs
(CFG), Correlation Attribute Evaluation (CAE), Mutual Information (MI), Logistic Re-
gression (LR), Recursive Feature Elimination (RFE), Gaussian Naive Bayes(GNB), Ex-
traTreeClassifier (ExtraTree), RidgeClassifier (Ridge), Repeated Incremental Pruning to
Produce Error Reduction (JRip), Fully Convolutional Network (FCN), Sequential Minimal
Optimization(SMO), One Rule (OneR), Repeated Incremental Pruning to Produce Error
Reduction (RepTree)
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Ref. No. Be-
nignware /
Malware

FS Method Classification Method

[35] N/A / 515 M/S CNN-based
[45] 293 / 322 PCA DT, RF, NN, AdaBoost, KNN
[10] N/A N/A LSTM-Autoencoder
[74] N/A / 3000 PCA, AE SVM, BN, MLP, DT
[88] N/A / 962 PCA DT, RF, NN, KNN, AdaBoost, NB
[29] 210 / 503 N/A KNN, DT
[57] N/A M/S CFG
[37] >100 N/A BN, JRip, OneR, REPTree, SGD, MLP, SMO
[41] >5000 MI RF, DT, GNB, LR, ExtraTree, Ridge, KNN, SVM,

DNN, BaggedDT
[56] 200 / 200 CAE BN, LR, MLP, PART, SMO
[85] 100 / 200 CAE NB, LR, MLP, SGD, JRip, OneR, J48
[72] >100 CAE LR, BayesNet, MLP, J48, JRip, AdaBoost
[73] 3000 CAE , PCA MLP, J48, JRip, OneR, Ensemble learning
[75] >100 CAE AdaBoost, Bagging
[71] 3500 CAE , PCA FCN-based
[40] >5000 RFE RF, DT, GNB, SGD, LR, ExtraTree, AdaBoost
[39] >5000 RFE and MI JRip, J48, OneR, MLP, LR, RepTree

Table 1: Evaluation of previous research on malware detection using hardware events.
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Feature Used in tag

Branches [45, 10, 74, 57, 56, 85, 72, 73, 75, 71, 40] Branch
Branch-misses [35, 10, 74, 73, 71] Branch
Branch-loads [37, 72, 75] Branch

Branch-reference [35] Branch
Instructions [35, 45, 10, 57] Ins

Cache-references [35, 10, 74, 73, 71] Cache
Cache-misses [35, 10, 72] Cache

L1-dcache-store [45, 56, 85, 72, 39] L1-dcache
L1-dcache-loads [56, 85, 39] L1-dcache

L1-dcache-load-misses [41] L1-dcache
L1-icache-load-misses [45, 56] L1-icache
LLC-prefetch-misses [72] LLC

Node-stores [74, 73, 71, 39] Node
Node-loads [41, 40, 39] Node
ITLB-loads [56, 85] ITLB

ITLB-load-misses [37, 56, 72, 75] ITLB
dTLB-load-misses [37, 72, 75] dTLB

dTLB-stores [40] dTLB
dTLB-store-misses [37, 72] dTLB
ls-mab-alloc-stores [41] Mem

cycles -ct [40] Cyc

Table 2: Hardware events employed in prior studies.
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Feature tag

Branches Branch
Branch-misses Branch
Branch-loads Branch

Branch-load-misses Branch
Cache-references Cache
Cache-misses Cache
Node-stores Node
Node-loads Node

L1-dcache-loads L1-dcache
L1-dcache-load-misses L1-dcache
L1-icache-load-misses L1-icache
ls-mab-alloc-stores Mem

ls-dc-accesses dcache
ITLB-loads ITLB

ITLB-load-misses ITLB
dTLB-load-misses dTLB
L1-dtlb-misses L1-dTLB
L2-dtlb-misses L2-dTLB
L2-itlb-misses L2-ITLB

L2-cache-accesses-from-ic-misses L2-dcache
L2-cache-accesses-from-dc-misses L1-icache

ls-l1-d-tlb-miss-all L1-dTLB
all-dc-accesses dcache

Table 3: Hardware events employed in this study.
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