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Abstract

The advent of data-driven approaches in healthcare has opened new horizons for patient
care, disease management, and medical research. However, one of the significant challenges
is the availability of large-scale, high-quality datasets. Accessing health data that contains
sensitive information requires lengthy approval processes and stringent restrictions. Syn-
thetic data effectively addresses this dilemma by replicating the statistical properties of real
datasets, offering a viable solution. Due to privacy concerns and regulatory restrictions as-
sociated with health data, there is a growing need for highly realistic synthetic health data,
particularly in health data science initiatives. While significant advancements have been
achieved in establishing recognized evaluation methods for synthetic data models, there re-
mains a notable gap in understanding the optimal approaches to enhance the quality and
usefulness of synthetic data. This thesis aims to bridge this gap by conducting a systematic
evaluation of objective functions for hyperparameter tuning of synthetic data generation
and studying the efficacy of synthetic data in predictive models. We evaluate synthetic
data using three criteria: Fidelity, assessing how well it mirrors real-world data statisti-
cally; Utility, measuring its effectiveness for machine learning applications; and Privacy,
evaluating the risk of re-identification. We examine the usefulness of synthetic data for the
hyperparameter optimization process of predictive models, particularly in scenarios where
access to real data is constrained. We found a notable correlation between model perfor-
mance accuracy using real data and synthetic data, suggesting that parameters optimized
with synthetic data are applicable to real data for optimal results. Our study confirms
the feasibility of using synthetic data on external computing resources to optimize models,
effectively addressing healthcare’s computing constraints.
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Chapter 1

Introduction

In the growing era of artificial intelligence (AI) and machine learning (ML), the poten-
tial for transforming healthcare through advanced applications is immense. These tech-
nologies promise to revolutionize disease diagnosis, treatment optimization, patient care,
and health system management, underscoring a paradigm shift towards more personalized
and efficient healthcare systems. However, the fuel that powers these advanced AI and
ML algorithms—data—is often stuck in complexities surrounding accessibility and privacy
concerns.

Despite the vast amounts of health-related data generated through Electronic Health
Records (EHRs), patient self-reported information, and healthcare service transactions,
harnessing this wealth of data for research and development poses significant challenges [1].
The difficulties in leveraging such data do not arise from the lack of it but are primarily due
to the rigorous protective measures established to safeguard sensitive and personal health
information. These datasets, abundant in valuable insights for advancing healthcare, are
subject to comprehensive approval processes and access restrictions [2]. This is to ensure
that even de-identified data is utilized in a manner that is secure and ethical, and respects
patient confidentiality. The safeguards in place, while necessary for protecting patient
privacy, often slow the pace at which health data can be made available for research
purposes, thus affecting the speed and scope of advancements in healthcare technology.
Regulations like the Health Insurance Portability and Accountability Act (HIPAA) and
Personal Information Protection and Electronic Documents Act (PIPEDA) impose strict
guidelines to ensure patient data privacy and security, further complicating the research
and development process [3].

The emphasis on data sharing and accessibility has never been more critical, especially



with the growth of digital healthcare [1]. Open data initiatives have increasingly recognized
health data as a cornerstone for fostering innovation and enhancing the efficacy of Al and
ML applications in healthcare. These initiatives aim to navigate the delicate balance
between making data broadly available to researchers and developers and maintaining the
inviolability of patient privacy [5]. The importance of this equilibrium cannot be overstated,
as it directly impacts the pace of technological advancements and the realization of Al’s
full potential in healthcare.

Moreover, the protection of data privacy and the implications of confidential patient
information breaches underscore the ethical dimensions of data accessibility. According to
a 2020 study on ‘Healthcare data breaches’, the rate of data breaches has increased even
more rapidly in the last five years [0]. The repercussions of such breaches extend beyond
individual privacy violations, potentially eroding public trust in healthcare systems. Thus,
as we advance into a future where Al and ML play pivotal roles in healthcare, addressing
these challenges becomes paramount.

Synthetic health data emerges as a promising solution to the delicate balance between
protecting patient privacy and maintaining the utility of data for advancing ML applica-
tions in healthcare. By generating data that mirrors real patient information in structure
and statistical properties, yet does not correspond to any actual individuals, synthetic
data holds the potential to revolutionize patient care. This innovative approach not only
safeguards against privacy breaches (by enabling secure data sharing) but also offers a rich
dataset for researchers and developers to train and refine AI models, thereby accelerating
the pace of healthcare innovation without compromising on confidentiality.

This work aims to explore the utilization of synthetic health data as a means to navigate
the intricacies between data accessibility and privacy preservation. Specifically, the focus
is on assessing the effectiveness of synthetic data for predictive modelling in healthcare
applications.

1.1 Problem Definition

While significant progress has been made in the development of recognized evaluation
methodologies for synthetic data generation models, a deficiency exists in pinpointing the
most effective strategies and objective functions for hyperparameter optimization, which is
critical for enhancing the quality of synthetic health data. Additionally, much of the exist-
ing literature and frameworks are designed to optimize synthetic data performance within
narrow, predefined use cases rather than for general applicability across diverse healthcare



analytics applications. To tackle this we develop a methodology for Hyperparameter Tun-
ing (HPT) of Synthetic Data Generation (SDG) for use-case agnostic synthetic data by
optimizing different quality metrics along with multi-objective optimization.

Historically, the utilization of synthetic health data has predominantly been focused on
two major use cases: 1) privacy-enhancing technique and 2) data augmentation, serving
as a mechanism to augment the robustness of predictive analytics models. However, the
broader applications of synthetic health data, particularly in its utility of building highly
realistic machine models and model optimization, remain underexplored. Prior research
has highlighted the importance of hyperparameter tuning in maximizing the efficacy of
predictive analytics models [7]. Entities with access to voluminous healthcare datasets
frequently encounter computational resource constraints, impeding their capacity for ex-
tensive model training and the computationally very expensive hyperparameter optimiza-
tion necessary for achieving superior model performance. The second phase of this study
delves into conducting hyperparameter optimization on synthetic data for subsequent ap-
plication to real-world datasets through a series of experiments using diverse datasets, a
broad spectrum of models, and various scenarios. This methodical approach allows us to
assess the viability and impact of leveraging optimized synthetic data in enhancing models’
performance and predictive accuracy when applied to genuine healthcare data. The use
of synthetic data in explaining the models trained on real data has also been explored by
comparing the explainability of real and synthetic data-trained models.

1.2 Contributions and Outline

The objective of this thesis is to advance open data science efforts in the healthcare sec-
tor through a comprehensive assessment of hyperparameters to enhance the quality of
synthetic data, as well as evaluate the effectiveness of utilizing synthetic data during the
hyperparameter optimization phase of ML algorithms.

Given the gap in research and the importance of improving synthetic data generation to
enhance predictive model performance, this thesis focuses on the following key questions.
Firstly, how can objective functions for hyperparameter tuning be systematically evaluated
to improve the generation of synthetic data? Secondly, how can we assess the quality of
synthetic data using fidelity, utility, and privacy metrics, and what is the impact of these
measurements on the data’s overall effectiveness? Lastly, considering the constraints on
access to real data and computational resources, how can synthetic data be optimized to
enhance the hyperparameter optimization process of predictive models?



The rest of the thesis is organized as follows: Chapter 2 provides background infor-
mation about Al and ML applications in healthcare, synthetic data generation methods,
and their evaluation metrics. Chapter 3 details datasets used, their preprocessing and the
model used for generating synthetic health tabular data. It also includes the methodology
for hyperparameter tuning of synthetic data generation and use of synthetic data for hy-
perparameter tuning of predictive models. Results and their implications are discussed in
Chapter 4. Chapter 5 will summarize the main findings and impact of this research. In
the same section, we also present future works. Some of the code supporting this research
is available at the GitHub repository: Usefulness-of-Synthetic-Health-Data.


https://github.com/mohammadbasri/Usefulness-of-Synthetic-Health-Data

Chapter 2

Literature Review

The advent of data-driven approaches in healthcare has opened new horizons for patient
care, disease prediction, and medical research. However, one of the significant challenges
in this domain is the availability of large-scale, high-quality datasets. Due to privacy
concerns and regulatory restrictions associated with patient data, there is a growing need
for synthetic data that can replicate the statistical properties of real healthcare datasets
without compromising patient privacy. This thesis explores the various methodologies
employed in generating synthetic tabular data for healthcare applications, a field that
stands at the crossroads of data privacy, machine learning, and healthcare innovation.

The healthcare industry generates vast amounts of data, ranging from patient records
and clinical trial data to disease registries and insurance claims. This data is inherently
tabular, with rows representing individual patients and columns corresponding to various
attributes, such as demographic details, diagnoses, treatment information, and outcomes.
The potential of this data is immense, particularly for training machine learning models
that can predict patient outcomes, personalize treatments, and improve healthcare delivery.
However, the sensitive nature of this data imposes stringent constraints on its accessibility
and use, thus necessitating the creation of synthetic datasets that are realistic enough to
be useful but do not contain any real patient information.

This thesis delves into the core methodologies for generating synthetic tabular data,
with a particular focus on their application in the healthcare sector. It critically analyzes
the effectiveness of various approaches, evaluates their performance in terms of data fidelity
and privacy preservation, and discusses their practical implications in healthcare analytics
and research. Through a comprehensive review and experimental investigations, this work
aims to contribute to the evolving field of synthetic data generation, offering insights and



guidance for researchers and practitioners in healthcare data science.

2.1 Applications of AI and ML in Health and the Im-
portance of Data

Recently there has been a tremendous amount of growth in machine learning. A major
field of application of AI and ML is for health and medical data. With the tremendous
growth in this field, researchers have taken leverage of ML and DL models for the abun-
dant and complex medical data [¢]. In the rapidly evolving field of healthcare, Artificial
Intelligence (AI) and Machine Learning (ML) technologies are revolutionizing how we col-
lect, analyze, and interpret a wide variety of data types to improve patient outcomes,
streamline operations, and unlock new insights. From the detailed imagery capturing the
intricacies of human anatomy to the rich genetic data offering a blueprint of life, each
data type presents unique challenges and opportunities for innovation. Electronic Health
Records (EHR) provide a digital history of patient interactions with healthcare systems,
encapsulating a wealth of information for analysis. Meanwhile, the advent of wearable
technology and Internet of Things (IoT) devices has unleashed plethora of real-time health
data, offering unprecedented monitoring capabilities outside traditional healthcare settings.
Additionally, the vast, unstructured datasets from social media and online interactions of-
fer a new lens through which to view public health trends and patient wellness. Together,
these diverse data streams form the backbone of Al and ML applications in health, each
requiring specialized approaches to harness their full potential for advancing healthcare.

Convolutional Neural Network (CNN) has been extensively used with image-based data
for cancer detection. [9]. Spanhol et al. effectively utilize the AlexNet CNN architecture
to classify breast cancer images from the BreaKHis dataset, achieving superior accuracy
over traditional models without the need for hand-crafted features [10]. This approach
demonstrates the potential of repurposing existing CNN models for complex medical image
analysis. Paul et al. explores lung tumor feature extraction using transfer learning from
a pre-trained CNN, significantly improving lung cancer survival time prediction accuracy
beyond traditional methods [!1]. This study underscores the benefit of combining deep
learning with quantitative analysis in cancer prognosis. Zhao et al. presents innovative
CNN architectures for brain tumor segmentation, adeptly handling multimodal MR images
and surpassing existing segmentation methods [12]. By converting the 3D challenge into
a 2D analysis, this work showcases the adaptability and efficiency of CNNs in medical
imaging, paving the way for future advancements in multimodal image processing and
tumor classification. Together, these studies highlight the transformative impact of CNNs



and deep learning techniques in advancing medical imaging and diagnostics across various
domains.

The integration of machine learning (ML) with tabular health data has opened new
avenues in healthcare, transforming how patient information is analyzed and utilized for
clinical decision-making. By leveraging structured datasets that encapsulate diverse pa-
tient attributes, such as demographics, laboratory results, and medical histories, ML algo-
rithms can uncover intricate patterns and relationships. This capability not only enhances
the accuracy of diagnoses and prognoses but also tailors preventive and therapeutic in-
terventions to individual patient needs [13]. Consequently, the synergy between ML and
tabular health data is instrumental in advancing personalized medicine, optimizing health-
care delivery, and ultimately improving patient outcomes. Chang et al investigated the
prediction of outcomes in hypertensive patients using a novel method that combines clas-
sifiers (Support Vector Machine, Decision Tree, Random Forest, XGBoost) with recursive
feature elimination with cross-validation, focusing on essential physical examination indi-
cators [14]. Their study revealed that indicators like limb and ambulatory blood pressure
play significant roles in hypertension outcomes. The research highlighted XGBoost’s supe-
rior prediction accuracy and its potential for telemedicine applications, enabling efficient,
targeted interventions for patients at higher risk. In their work, Rahimian et al presented
an improvement in predicting the risk of emergency hospital admissions, showing machine
learning models’ superiority over traditional statistical models by enhancing model dis-
crimination and calibration [15]. The study emphasized the value of adding variables and
timing information to the models, which maintained high performance over longer pre-
diction windows. This advancement in using EHR data for predictive modeling is based
on a dataset of 4.6 million patients, showcasing a significant leap forward in healthcare
analytics. Liao et al aimed to improve the management of COPD patients by develop-
ing prediction models for acute respiratory failure, ventilator dependence, and mortality
post-hospitalization, using machine learning algorithms [16]. The models, validated on a
dataset of 5061 COPD patients from three hospitals, demonstrated excellent predictive
quality with algorithms like XGBoost, random forest, and Light GBM. The integration of
the best models into a web service application for hospital use underscores the potential of
these algorithms in supporting physicians’ decision-making processes. Miotto et al intro-
duced "Deep Patient,” a deep learning approach for deriving predictive patient descriptors
from EHRs [17]. Their method outperformed traditional feature learning models and the
use of raw EHR data by capturing complex data patterns through deep sequence of non-
linear transformations. This approach not only enhances disease prediction but also offers a
scalable solution to the growing volume of hospital data, marking a significant contribution
to the field of clinical predictive modeling. Jaotombo et al explored the use of Machine



Learning models to predict Prolonged Hospital Length of Stay (PLOS), identifying the
GB classifier as the most effective based on a dataset of 73,182 hospitalizations [18]. The
study pinpointed the destination of the patient post-hospitalization as a critical predictor
of PLOS, providing valuable insights into the risk profile of elderly patients with specific
conditions. This research contributes to the ongoing efforts to improve healthcare quality
and efficiency by identifying key predictors of PLOS.

2.1.1 Privacy in Health Data Management

The imperative for stringent privacy measures in healthcare data management highlights
a critical aspect of modern medical practice, balancing the need for data accessibility with
the protection of individual privacy rights. In the context of growing public interest in
healthcare quality, cost, and accessibility, the Institute of Medicine (IOM) underscores the
urgent need for enhanced privacy protection in health data management [19]. With the
digital era enabling vast data collection and management opportunities, the IOM advocates
for a federal statute to standardize privacy protections, superseding varied state laws.
This proposed legislation would not only ensure data confidentiality across state lines but
also establish a Code of Fair Health Information Practices, allowing individuals to review
and dispute their health information. It emphasizes the importance of perceiving data
sensitivity based on potential harm, advocating for universal stringent data protection.

Chong et al. present a thorough investigation into the burgeoning realm of Electronic
Health Records (EHRs), emphasizing their critical role in enhancing healthcare service
delivery while highlighting the concomitant privacy challenges associated with the pub-
lication of sensitive patient data [20]. It delves into state-of-the-art privacy-enhancing
methodologies, with a particular focus on data anonymization and differential privacy
techniques, designed to ensure the secure sharing of healthcare data. These methods are
critically examined for their strengths and limitations, offering a roadmap for navigating
the complexities of healthcare data privacy. Amidst the exploration of data collection and
publication processes within the healthcare sector, Chong et al. categorize data attributes
into explicit identifiers, quasi-identifiers, and sensitive, and non-sensitive attributes [20].

e Identifiers (ID): Attributes that can uniquely pinpoint the identity of a patient.
These include, but are not limited to, an individual’s name, Social Security number,
national identification numbers, mobile phone numbers, and driver’s license numbers.

e Quasi-Identifiers (QID): Attributes that, on their own, do not reveal the identity
of a patient but could do so when combined with other information. Examples are
date of birth, gender, residential address, postal code, and personal interests.



e Sensitive Attributes (SA): Personal data that individuals prefer to keep confi-
dential. This category encompasses medical diagnosis codes, genetic data, financial
earnings, specific health conditions, insurance details, and social relationships.

e Non-Sensitive Attributes (NSA): Information that, when disclosed, does not
compromise the privacy of the individual. This includes information such as cookie

identifiers, anonymized email addresses, and mobile advertising identifiers derived
from Electronic Medical Records (EMR).

This classification underpins the discussion on the necessity of Privacy-Preserving Data
Publishing to prevent unauthorized access to personal patient information.

Privacy disclosure emerges as a critical concern in the realm of healthcare data publi-
cation, defined as the unauthorized release of personal information that individuals wish
to keep confidential [20]. This phenomenon manifests in three distinct forms: identity
disclosure, attribute disclosure, and membership disclosure. Identity disclosure, or reiden-
tification, represents a significant risk, occurring when an adversary can match a published
record to its corresponding individual with notable accuracy, effectively unveiling the per-
son’s identity. Attribute disclosure involves the unauthorized linkage of a person to specific
confidential attributes, such as medical conditions, disclosed within the data. Membership
disclosure, on the other hand, pertains to the ability of an adversary to ascertain an individ-
ual’s presence within a particular dataset, such as identifying someone within a database
of individuals tested positive for a disease. Each of these disclosure types underscores
the paramount importance of implementing robust privacy-preserving mechanisms in the
dissemination of healthcare data to mitigate the risks of personal information exposure.

The Health Insurance Portability and Accountability Act of 1996 (HIPAA) introduced
the Privacy Rule, targeting health providers, plans, and clearinghouses by standardizing
health information privacy practices [3, 21]. While the rule limits how covered entities
can use health information, it allows health plans to require authorizations for enrollment
and does not restrict noncovered entities like employers and life insurers from demanding
authorizations for employment or insurance purposes. The Personal Information Protec-
tion and Electronic Documents Act (PIPEDA) is a Canadian federal law that governs how
private sector organizations collect, use, and disclose personal information in the course of
commercial business [22]. Enacted in April 2000, PIPEDA aims to balance an individual’s
right to privacy with the need for organizations to use personal information for legitimate
business purposes. This delineates a framework for the privacy and authorization of health
information, balancing patient privacy with operational necessities. In Canada, the im-
plementation of PIPEDA for health data is under the competence of the provinces, with



examples like the Personal Health Information Protection Act (PHIPA) in Ontario. Such
a regulatory framework can generate challenges for healthcare research, particularly in sce-
narios involving cross-province data linkage. In this context, the utility of synthetic data
becomes even more significant.

2.2 Generation and Application of Synthetic Data

De-identification or anonymization is the process of removing or altering personally iden-
tifiable information from data sets so that the people whom the data describes remain
anonymous. However, this approach alone is insufficient to guarantee the privacy of in-
dividuals in real-world health data. De-identified datasets can often be susceptible to
re-identification through methods such as linkage attacks, which leverage external data
sources to match anonymized records to specific individuals. The distinct patterns and at-
tributes within health data can inadvertently serve as identifiers, especially when dealing
with rare conditions or demographic specifics. The growing availability of varied datasets
and advancements in data analytics exacerbate the vulnerability of de-identified data to
privacy breaches.

Despite a growing interest in synthetic data, there is a lack of a unified definition of
what represents synthetic data. Earlier definitions defined synthetic data as the generation
of novel data points that reflect the statistical features of the source data. The Royal
Society alongside The Alan Turing Institute has recently suggested a provisional definition,
characterizing synthetic data as the outcome of data generated by specifically designed
mathematical models or algorithms, intended to address certain data science challenges

[23].

Synthetic data can accelerate research by enabling quicker access to sensitive data [24].
Synthetic health data not only enhances data accessibility but also significantly stream-
lines the research timeline, as depicted in Figure 2.1. It reveals that when synthetic data is
employed, the data analysis timeline, including data governance (encompassing ethical and
legal considerations), and data preprocessing is substantially shortened. This compression
of the timeline enables researchers to swiftly transition to the data preprocessing and anal-
ysis stage. As a result, researchers can dedicate more time to the analytical work itself,
fine-tuning their methods and ultimately expediting the journey to the Results. When
delays in accessing real data occur—a common occurrence given the stringent privacy pro-
tections required—researchers equipped with synthetic data can develop comprehensive
analysis plans, write analysis code, and troubleshoot potential issues in advance. However,
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it is important to acknowledge that the initial setup for creating synthetic data involves ad-
ditional time and resources for model development and data generation. Furthermore, the
need for periodic updates to the models to ensure the synthetic data remains representative
of current datasets adds another layer of complexity.

Time
[y . ]
' I
o Data Governance |
Data analysis | I
timeline | : |
| Data Preproce_ssmg Results |
| and analysis I
A VOO O | === e S ) 1

e |
[ Data Governance 1
With Synthetic = o

|
|
|
Health Data :
|
|

|
|
|
g | Time Saved
Data Preprocessing Results |
and analysis :

Figure 2.1: Impact of using Synthetic Data to Accelerate Data Analysis

Synthetic data can be utilized in various healthcare tasks to enhance machine learn-
ing algorithms, including those used in image classification workflows. It can also serve
as a foundational basis for pre-training these models. These pre-trained models can
subsequently be refined for distinct patient demographics. Additionally, synthetic data
can bolster public health models, aiding in the prediction of infectious disease outbreaks
[25, 26, 27].

In a 2020 study, Julia et al. showcased the use of synthetic data in training a Natural
Language Processing (NLP) model with datasets derived from patient discharge notes
[28]. This approach proved effective in identifying and predicting mental health conditions
and phenotypes. By using Electronic Health Records (EHRs) for NLP data, the model
could pinpoint key disease characteristics and progressions. Specifically for mental health,
leveraging synthetic unstructured text helps train models on complex conditions while
safeguarding patient privacy, as mental health data is particularly sensitive.

Synthetic data is instrumental in advancing digital twins within healthcare, offering a
way to create customized patient models that enhance treatment optimization and patient
outcomes [29, 30]. Its application extends to improving hospital efficiency and operations,
allowing for the simulation of various scenarios such as changes in patient intake, staff
competency, and equipment access. This enables effective resource allocation and staffing
adjustments, leading to cost reductions and better patient care.
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Synthetic health data serves as a valuable resource for data augmentation, significantly
enhancing the robustness and generalizability of machine learning models in healthcare.
By generating diverse and realistic datasets, synthetic data helps to overcome limitations
posed by small or imbalanced real-world datasets, facilitating more comprehensive training
environments [31, 32]. This approach not only improves model performance but also aids
in achieving better diagnostic accuracy and predictive analytics in varied clinical scenarios.

The burgeoning field of synthetic data generation has witnessed a variety of models
and approaches, particularly geared towards tabular data, which is predominant in health-
care datasets. An ideal Synthetic data generation models learn complex multidimensional
patterns from real data by training on the underlying distributions and features, allowing
them to generate new samples based on the learned parameters of the model.

Early methods for privacy protection relied on anonymization, replacing values and
removing sensitive variables. These methods did not use data modelling for data generation
[33]. Simple random sampling and bootstrapping techniques were foundational but often
struggled to capture complex correlations between variables, a challenge in the multi-
dimensional space of healthcare data.

More recently, advanced machine learning techniques, including generative adversarial
networks (GANs) and variational autoencoders (VAESs), have shown promise in generating
high-fidelity synthetic data [34, 35, 36]. These methods leverage the power of deep learning
to model the intricate relationships within healthcare datasets, offering a balance between
data utility and privacy.

Traditional machine learning models offer a pragmatic approach to generating synthetic
tabular data, blending the benefits of simplicity and effectiveness. These models, including
decision trees, Bayesian networks, and k-nearest neighbours, are adept at capturing the
intricate relationships within datasets, ensuring the synthetic data maintains statistical
fidelity to the original. Their versatility and capacity for integrating privacy-preserving
techniques make them invaluable tools in the creation of synthetic datasets across various
domains.

Within the context of synthetic data generation techniques, the Classification and Re-
gression Trees (CART) method is employed to create anonymized health datasets by con-
structing decision trees that model the relationships between variables. This method can
manage both continuous and categorical data, making it suitable for the multifaceted na-
ture of health data. The primary function of CART in synthetic data generation is to
facilitate the derivation of datasets that can be used for research while ensuring individual
data points remain non-identifiable [31].

Bayesian networks model the probabilistic relationships among variables and have been
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used to generate synthetic datasets that preserve the statistical properties of the original
data [35]. The conditional probabilities inherent in Bayesian networks can adeptly handle
the intricacies of healthcare data, which often includes a mix of discrete and continuous
variables.

Among the deep learning methods of synthetic data, the most commonly used is a
Generative Adversarial Network (GAN) model. The adversarial process within GANs,
involving a generator and a discriminator, has proven adept at generating complex, high-
dimensional data [37]. Adaptations of GANs for healthcare data have addressed the chal-
lenge of generating synthetic patient records that are both realistic and diverse.

One of the initial works on using GAN for Electronic Health Records (EHR) was by
Choi et al. in their work medGAN [36]. medGAN represents an innovative approach to ad-
dressing the issue of mode collapse in the generation of medical binary and categorical data.
By integrating an Autoencoder (AE) with a Generative Adversarial Network (GAN), this
model effectively manages binary variables. Additionally, it incorporates a minibatch av-
eraging technique and batch normalization to enhance its performance and stability. Park
et al. developed the table-GAN method which builds upon DCGAN (Deep Convolutional
GAN). Table-GAN utilizes a Discriminator (D) structured as a Convolutional Neural Net-
work (CNN) with various layers, applying a series of 3x3 learning filters throughout. The
final layer employs a sigmoid activation function while preceding layers benefit from batch
normalization and the use of LeakyReLU activation functions. Conversely, the Generator
(G) is constructed from de-convolutional layers within a neural network framework, utiliz-
ing a loss function termed ’information loss’ [38]. The novel architecture of Sequentially
Coupled GAN (SC-GAN) incorporates dual generators, intricately linking the generation
of patient states with that of medication dosages to reflect their real-world interdepen-
dence. This model is intricately designed with a two-layer bidirectional LSTM for the
Discriminator (D), and two separate two-layer LSTMs for generating patient status and
medication dosage, respectively. The medication dosage generator is particularly innova-
tive, synthesizing data based on the sequential patient status and injected noise, while the
patient-status generator integrates previous states, medication dosages, and noise. Empir-
ical evaluation on actual medical tasks demonstrates SC-GAN’s superiority in generating
data that enhances model performance over other generative approaches, highlighting its
potential in circumventing privacy concerns and data scarcity in healthcare analytics [32].

The Wasserstein distance loss function solves the mode collapse problem in GANs. The
Wasserstein GAN (WGAN) model [39] has been used in various works, along with some
modifications for tabular health data. Chin-Cheong et al explores the use of Generative Ad-
versarial Networks (GANSs) to generate synthetic, heterogeneous Electronic Health Records
(EHRs), incorporating differential privacy (DP) to enhance data privacy and shareability
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[10]. The authors report that while synthetic data without DP closely mirrors the original
data within a 6.4% margin, DP synthetic data exhibits a 20% performance drop but remains
viable for machine learning purposes. Using a Wasserstein GAN (WGAN) approach, the
research demonstrates the model’s ability to accurately replicate EHR statistical proper-
ties, highlighting its potential for creating privacy-compliant, synthetic healthcare datasets
with minimal divergence from real data characteristics. Another implementation of WGAN
is HealthGAN, a Generative Adversarial Network designed for generating synthetic health
data that meets privacy and quality needs for education and research [11]. Through a
unique set of evaluation metrics, HealthGAN is shown to excel in producing data that
closely resembles real datasets, while ensuring privacy and maintaining utility and com-
pactness. Its training within a secure environment and subsequent availability for external
generation offers a practical solution to the challenges of data de-identification.Health-GAN
claims to solve the compatibility and divergence problems of med GAN.

The Synthetic Data Vault (SDV) emerges as a pioneering framework in the realm of
synthetic data generation, designed to address the pressing need for privacy-preserving
synthetic datasets across various sectors [12]. Within the SDV, the Conditional Tabular
Generative Adversarial Network (CTGAN) is featured as a key synthetic data generation
model [13], specifically tailored to tackle the complexities of tabular data which is preva-
lent in fields such as healthcare and finance. CTGAN distinguishes itself by adopting
a unique training methodology that conditions on the column-wise distribution of data,
thereby capturing the intricate, multi-modal nature of real-world data distributions more
effectively. This approach enables the generation of synthetic data that is not only diverse
and accurate but also maintains the statistical characteristics of the original datasets. By
integrating CTGAN within its suite of generative models, the Synthetic Data Vault signif-
icantly enhances the ability to produce high-fidelity synthetic datasets, thereby facilitating
research and development activities while strictly adhering to data privacy and ethical
standards

Differential privacy is a technique designed to ensure that the privacy of individuals in a
dataset is protected, such that the output of any analysis does not allow an observer to reli-
ably determine whether any one individual was included in the original dataset. The appli-
cation of differential privacy to synthetic data generation added a robust privacy-preserving
layer to the process. The Renyi-differentially private-GAN (RDP-GAN) advances the field
of generative adversarial networks by focusing on privacy protection without sacrificing
sample quality [/1]. By introducing random Gaussian noises to the loss function during
training, RDP-GAN offers a novel approach to ensure differential privacy. This method
not only enhances the privacy of sensitive data, such as medical or financial records, but
also maintains model stability and eliminates the need for parameter value clipping. The

14



effectiveness of RDP-GAN is demonstrated through its ability to generate high-quality
samples while achieving superior privacy levels compared to traditional DP-GAN models
that rely on gradient noise perturbation.

2.3 Evaluation Metrics for Synthetic Data

In the realm of synthetic data generation within healthcare, assessing the quality of syn-
thetic data requires a multifaceted approach, including utility, privacy, and fidelity metrics.
Utility measures, such as propensity scores and classification accuracy, examine the syn-
thetic data’s ability to preserve the statistical properties and analytical patterns of the
original dataset, enabling meaningful research [15]. Privacy metrics, particularly the risk
of re-identification, are crucial for evaluating the synthetic data’s effectiveness in safe-
guarding individual identities, a critical aspect of healthcare data management [33]. Fi-
delity, meanwhile, assesses the accuracy with which synthetic data mirrors the statistical
characteristics of the original dataset, ensuring it reflects the real-world complexities and
distributions without introducing biases [16].

Focusing on fidelity within the context of synthetic health data, the evaluation involves
two primary measures: univariate and bivariate [31]. The univariate approach emphasizes
maintaining the distinct distributions of each attribute as found in the original dataset,
through a detailed column-by-column comparison between the original and synthetic data.
On the other hand, the bivariate measure expands this analysis by examining the asso-
ciations between pairs of attributes, thereby adopting a pairwise approach to assess the
inter-attribute relationships and ensure a more comprehensive fidelity evaluation.

The most common univariate Fidelity metric used for synthetic data is Hellinger Dis-
tance [17, 18]. Hellinger distance (HD) quantifies the similarity between two probability
distributions [19]. Quantifiable and standard measures such as HD provide open data pol-
icymakers additional context alongside visual comparisons of real and synthetic data prob-
ability distributions. Bivariate measures are also important considering the fact that the
synthetic data must preserve the interdependency between variables. Differential Pairwise
correlation (DPC) is a bivariate fidelity metric that measures the strength of correlation
between the variables for the real data and synthetic data [50]. Multivariate measures
like Kullback-Leibler (KL) Divergence [51] is employed to measure the similarity between
the probability distributions of real and synthetic datasets, providing insights into how
well the synthetic data represents the underlying statistical properties of the original data.
The Log-cluster [51] method evaluates the clustering structure within the data, comparing
the log-likelihood of real and synthetic datasets being generated from the same cluster
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distribution, thus assessing the preservation of data patterns and groupings. Propensity
scores [52], often used in observational studies for causal inference, can be adapted to
measure the likelihood of each record belonging to the synthetic dataset versus the real
dataset, effectively evaluating the balance and representativeness of the synthetic data.
The Kolmogorov-Smirnov (KS) Type Statistic [53] is a non-parametric test that compares
the distributions of individual variables between the real and synthetic datasets, identify-
ing discrepancies in cumulative distribution functions to pinpoint variables that may not
be accurately modelled.

Utility is a measure employed to evaluate the effectiveness of synthetic data in predictive
modeling and analysis. This concept revolves around assessing whether synthetic data can
substitute real data for the purpose of developing predictive models. This involves training
predictive models using both real and synthetic data, then comparing their performances.
Current research in the field of synthetic data highlights three primary methods for gauging
synthetic data utility, as discussed by El Emam et al. [17] and El Emam et al. [15]:
workload-aware evaluation, generic utility measurement of data, and subjective utility
assessments. Specifically, within workload-aware evaluation, the focus is on gauging the
suitability of synthetic data for predictive machine learning models, an approach referred
to as Machine Learning Efficacy (MLE). In exploring the MLE of synthetic data, various
machine learning models are utilized, including XGBoost, Logistic Regression, K-Nearest
Neighbors (KNN), Support Vector Machine (SVM), Decision Trees, and Random Forest.

XGBoost is an optimized distributed gradient boosting library designed to be highly
efficient and flexible. It implements machine learning algorithms under the Gradient Boost-
ing framework. XGBoost provides a parallel tree boosting that solves many data science
problems in a fast and accurate way [51]. The key features of XGBoost include handling
sparse data, tree pruning, and an efficient implementation of the gradient boosting algo-
rithm. Logistic Regression is a statistical method for analyzing a dataset in which there
are one or more independent variables that determine an outcome. [55]. The outcome is
measured with a dichotomous variable (in which there are only two possible outcomes).
It is used for prediction of the probability of occurrence of an event by fitting data to a
logistic curve. K-Nearest Neighbors is a simple, versatile, and easy-to-implement super-
vised machine learning algorithm used for both classification and regression [56]. It works
by finding the k-nearest data points in the training dataset to the point that needs to be
predicted and then infers its classification or value from these nearest neighbors. KNN
makes predictions based on how its neighbors are categorized. Support Vector Machine is
a powerful and versatile supervised machine learning algorithm used for both classification
and regression challenges [57]. SVM works by finding the hyperplane that best divides
a dataset into classes. It is particularly useful for high-dimensional data and is known
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for its accuracy and the ability to handle non-linear data. A Decision Tree [58] is a non-
parametric supervised machine learning algorithm which has a flowchart-like tree structure
where an internal node represents a feature, the branch represents a decision rule, and each
leaf node represents the outcome. The topmost node in a decision tree is known as the
root node. It learns to partition on the basis of the attribute value. It partitions the tree
in recursively manner call recursive partitioning. Random Forest [59] is an ensemble learn-
ing method for classification, regression, and other tasks that operates by constructing a
multitude of decision trees at training time and outputting the class that is the mode of
the classes (classification) or mean prediction (regression) of the individual trees. Random
decision forests correct for decision trees’ habit of overfitting to their training set, offering
more accuracy through averaging the results of numerous trees. These machine learning
models will be used to assess how well synthetic data can be used to replace real data for
the training of predictive models. The next section talks about the methods employed to
answer the research questions discussed earlier.
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Chapter 3

Methodology

3.1 Data Collection and Preprocessing

3.1.1 Datasets

In this study, we analyzed three datasets: the MIMIC dataset from Physionet [60], the
Diabetes Dataset from the UCI Machine Learning Repository [01], and the Adult Income
dataset, also from UCI [62]. Table 3.1 outlines the specific characteristics of these datasets.
These datasets were selected based on their varying sizes, the number of features they
contain, the class ratio of the feature being predicted, and their incorporation of both
categorical and continuous features, offering a diverse range of data types for analysis.
This variability across datasets is crucial for validating the hypothesis’s generalizability
across different data scenarios.

As a preliminary step to employing the synthetic data generation pipeline, thorough
preprocessing of the datasets is undertaken to ensure data readiness. This preprocessing
involves several steps, universally applicable across all datasets, alongside a set of dataset-
specific procedures. Initially, the process entails distinguishing between categorical and
continuous variables within each dataset. For continuous variables, an examination for
missing values is conducted, leading to the removal of rows where such values are absent in
less than 5% of cases. Concurrently, categorical variables undergo transformation through
LabelEncoder, facilitating their subsequent analysis.

MIMIC-IIT stands as a substantial and publicly accessible database that contains de-
identified health-related information of more than forty thousand individuals who were

18



admitted to the critical care units at Beth Israel Deaconess Medical Center during the
period from 2001 to 2012 [60]. The Fields of ethnicity, gender, death, religion, marital
status, insurance, and age are sampled from MIMIC-III to create a profile for each patient.
Additional binary flags for select diagnoses of sepsis, birth, chest pain, hypertension, and
overdose are recorded for each patient over all their admissions.

The UCI Diabetes dataset encapsulates a decade of clinical records from 1999 to 2008,
sourced from 130 hospitals and integrated delivery networks across the United States [01].
It comprises individual rows that detail the hospitalization records of diabetes patients,
including their laboratory tests, medication details, and hospital stays of up to 14 days. In
the UCI Diabetes dataset, readmission data is categorized based on the timeframe of patient
readmissions: ’j30” denotes readmission within less than 30 days, ;30" signifies readmission
after more than 30 days, and ‘No’ indicates no record of readmission. For the purposes of
analysis, this dataset was preprocessed to consolidate the readmission information into two
distinct categories. These categories include patients readmitted within a 30-day period
(incorporating the ’j30" classification) and those not readmitted (encompassing both ’;30’
and 'No’ readmission records). This simplification aids in a clearer analysis of readmission
patterns within the patient population studied.

The UCI Adult Income dataset underwent preprocessing that necessitated less special-
ized techniques. Barry Becker extracted this dataset from the 1994 Census database. It is
designed to facilitate the prediction of whether an individual’s income surpasses $50,000
per year, based on census data. This dataset is also referred to as the ”Census Income”
dataset.
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Table 3.1: Summary of Datasets

Attribute MIMIC Diabetes Adult
Income
Number of Records 58,976 101,766 48,842
Number of Attributes 13 47 14
Primary Attributes ethnicity, race, gender,  age,
gender, diagnosis, workclass,
expire_flag, time_in_hospital,education,
religion, readmit- education-
time_in_hospital,ted_flag num,
age in-
come_category
Number of Categorical Variables 11 40 9
Number of Continuous Variables 2 7 5
Class Ratio 0-61%,1 - 0-88%, 1 - 0-75%,1-
39% 12% 25%
Source [00] [61] [02]

3.2 Conditional Generative Adversarial Networks (GANs)

The state-of-the-art model under conditional GANs is Conditional Tabular GAN (CT-
GAN), which is widely used for generating synthetic tabular data for various applications.
Among various machine learning algorithms to generate synthetic data, Generative Ad-
versarial Networks (GANSs) gained considerable prominence [37]. One of the most popular
applications of GAN was the creation of fake images. However, traditional GAN models
do not work well with tabular data, such as EHR data, which are mostly tabular data with
mixed data types, including continuous and categorical variables. CTGAN is a modified
version of the traditional GAN model [13, 63].
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Figure 3.1: Training Process of CTGAN Using MIMIC Dataset as Reference

As illustrated in Figure 3.1, the CTGAN architecture consists of two dense neural
networks, the Generator and the Discriminator. The Generator creates a fake/synthetic
version of the data, which looks like the real data, while the Discriminator tries to identify
if the generated data is fake or real. Although the training data is first preprocessed
(for example, categorical variables encoded) before feeding into the pipeline, the CTGAN
model performs its own preprocessing before starting the training process. CTGAN has a
unique way of handling mixed data types using a mode-specific normalization technique.
The continuous variables are normalized to have zero mean and unit variance, whereas the
categorical variables are represented in an embedded space [(1].

To begin the training process, the model first takes random noise as input and a con-
ditional vector based on the real data containing information about the conditions or con-
straints under which the synthetic data should be generated. The Generator creates some
synthetic samples using this set of information which are sent to the Discriminator along
with samples from the real data with the desired columns. The Discriminator then assigns
a label to these samples as ’synthetic’ and 'real’. The Discriminator sends the learned in-
formation back to the Generator using backpropagation. The Generator incorporates this
feedback from the Discriminator and tries to improve its performance by creating samples
that are fake but close to the real data. During the training process, the Generator aims
to create more real-looking synthetic data, and the Discriminator tries to distinguish how
to classify the real and synthetic data better. This process continues till the Generator
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becomes efficient in creating synthetic samples that the Discriminator classifies as real.

The training process can be controlled using different hyperparameters, such as the
number of epochs, the number of iterations/loops of the training process, the learning
rate, and the batch size. After each iteration of training, the weights in the neural network
within the Discriminator and the Generator get updated.

After completing the training process, the Generator and Discriminator weights get
fixed. The next step is called the Generator Forward Pass (Figure 3.2), where the Generator
with learned weight takes the random noise and the conditional vector to generate synthetic
data. At this stage, the Generator has learned to map this input to a distribution that
closely resembles the real data distribution. As illustrated in Figure 3.2, the generated
synthetic data retains the same columns as the real data and the same categories for the
categorical columns.

The next step in the synthetic data generation process was to check how closely the
candidate synthetic data matches with that of the real data (utility and fidelity), while
preserving privacy and addressing re-identification risk concerns.
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Figure 3.2: Generator Forward Pass of the CTGAN model

3.3 RealTabFormer

In the domain of synthetic data generation, particularly concerning the production of rela-
tional datasets, the REaLTabFormer (Realistic Relational and Tabular Transformer) model
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represents a significant advancement [65]. This innovative model adeptly manages the com-
plexities associated with simulating relational databases, where it’s essential to accurately
model not only a "parent” table but also the intricate relationships spanning multiple ta-
bles. The REaLTabFormer operates by initially constructing a parent table through an
autoregressive mechanism based on the GPT-2 model, followed by the generation of the
relational dataset, which is contingent upon the previously created parent table, utilizing
a sequence-to-sequence (Seq2Seq) approach. To enhance its functionality and ensure the
integrity of the generated data, the model incorporates target masking as a novel regulariza-
tion technique to mitigate the direct replication of training data. Additionally, it employs
the Quantile difference statistic alongside statistical bootstrapping as innovative methods
to rigorously assess and prevent overfitting. In real-world dataset evaluations, REalTab-
Former has demonstrated superior ability in capturing relational structures when compared
to baseline models, achieving unprecedented performance on predictive tasks across exten-
sive non-relational datasets directly, without the necessity for model fine-tuning. Moreover,
in addressing the critical aspect of privacy preservation within synthetic data generation,
the model integrates the distance to closest record (DCR) metric and statistical bootstrap-
ping to robustly identify and prevent the model from inadvertently ”memorizing” and
replicating exact observations from the training data.

3.4 Evaluation Metrics for Synthetic Data

3.4.1 Utility

Utility is a metric used to determine the usefulness of synthetic data for predictive and
modelling purposes. The idea is to understand if the generated synthetic data can be
used for developing predictive models, in replacement of the real data. It is done by
using the real data and synthetic data for training the predictive models, and comparing
their performance. Existing literature on the synthetic data domain suggests three main
approaches to assessing the utility of synthetic data ([17] and [15]),

(a) Workload-aware evaluation: In this evaluation, various metrics are generated to
analyze specific feasibility analyses that are performed on real and synthetic datasets and
then compared.

(b) Generic data utility assessment: In this type of assessment, the focus is not on
any particular analysis that would be conducted on the synthetic data. Rather, generic
structural properties, such as the distance between the real and synthetic data, are evalu-
ated. The metrics generated are usually set to be constrained within a specific range (for
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example, 0 to 1), and based on empirical evidence from past studies and existing literature,
an interpretation is assigned to the defined range (i.e., does 0 represent high or low? Or,
does 0 represent close or distant).

(c) Subjective assessments of data utility: In this type of assessment, domain experts
are asked to assess a random mix of real and synthetic records and to classify whether
the data is real or synthetic. Standard classification accuracy metrics (such as the F-
score or the area under the receiver operating characteristic curve) are used to assess the
classification accuracy.

Although these metrics were developed to assess the utility, the three approaches could
also be applied to assess the fidelity. For example, the Generic data utility assessment
yields scores that indicate how close or far the real and synthetic data are in terms of
structure or distribution. These same metrics also give an idea of how closely synthetic
data resembles.

Within the workload evaluation, the performance of synthetic data is measured in terms
of their ability to be used for predictive machine learning models. This evaluation is termed
as Machine Learning Efficiacy (MLE).

Figure 3.3 outlines the procedure for evaluating MLE of synthetic data, aimed at de-
termining the viability of synthetic data for predictive modeling. The process begins with
generating synthetic data from real data. Subsequently, two ML models are developed:
one trained on real data (M,) and another on synthetic data (M), both employing 5-fold
cross-validation to ensure robustness. Each model is then tested on unseen real data to
compare their performance. The percentage difference in performance metrics between M,
and M, quantifies the effectiveness of using synthetic data for training ML models. The
percentage difference between the two metrics can be calculated as:

M, — M;
Percentage Difference = —r X 100% (3.1)
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Figure 3.3: Measuring Machine Learning Efficacy of Synthetic Data

For Deep Learning models, we apply hyperparameter tuning using TPE optimizer from
the Optuna library, to optimize the results and then calculate the evaluation metrics for
the different data scenarios (Figure 3.4). The scenarios considered are: Train on real and
test on Real, Train on Synthetic and Test on Synthetic, Train on Synthetic and Test on
Real, and Train on balanced synthetic data and test on real data.

Hyperparameter
Tuning

Learning
Predictive
Model (ANN)

Best
Parameters

Calculate Evaluation Metrics
Accuracy, Precision, Recall, F1 Score,
AUC-ROC, and Specificity, ROC curve

Figure 3.4: Evaluation of Utility of Synthetic Data using Deep Learning model
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3.4.2 Fidelity

For assessing the quality of the synthetic data, the statistical distribution of the synthetic
and real data is measured. The metric used to compare the distribution is Hellinger
Distance (HD). The HD provides a summary statistic, which is a measure of the difference
in distribution between each variable in the real (P) and synthetic (Q) datasets. More
specifically, it is a probabilistic score that measures between 0 and 1, where 0 indicates
no difference in the distribution between real and synthetic datasets [17, 18]. Given two
probability distributions P = {p1,p2,...,pn} and Q = {q1,¢2, ..., ¢, }, the HD between P
and @ is defined as ((Equation 3.2)):

H(PQ) = %\/Dm— Vi 32

e p; and ¢; are the probabilities of event ¢ in the distributions of P and @), respectively.

° \/Li is the normalization factor to bind the Hellinger Distance values between 0 and

e n represents the number of distinct events or outcomes for which the probability
distributions P and () are defined.

After calculating HD for each variable for the real and synthetic datasets, we carried
out an overall assessment of the HD for all variables, the median and the interquartile
range for the real and synthetic data were computed and assessed to check their proximity
to 0. A high-utility dataset should have overall HD score closer to 0.

In order to assess the fidelity of the synthetic data, bivariate statistics were computed
from both the real and the synthetic datasets, and the absolute differences were computed.
If the real and synthetic datasets had high fidelity (i.e., the synthetic dataset closely re-
sembled the real dataset), then the absolute difference would be close to 0 or very small.

For any two continuous variables, the absolute differences between Pearson correlations
in the real and synthetic data were evaluated to obtain fidelity in terms of bivariate statistics
(Equation 3.3).

(3.3)

AXY = ‘pXYReal - pXYSynthetic
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Here, X and Y denote the two continuous variables, whereas pxy is the Pearson cor-
relation coefficient for X and Y.

In contrast, for categorical variables, the absolute differences for Chi-square statistics
in the real and synthetic data were evaluated as given in Equation 3.4.

AX2 = X%{eal - X%ynthetic (34)

3.4.3 Privacy Protection

The first level of privacy protection is to remove the directly identifiable variables, such as
names, phone numbers or personal IDs, that can be used to directly identify the individual.
These variables are chosen from the HIPAA Safe Harbor standards [3]

The second level of privacy protection is to remove the unique combinations of quasi-
identifiers. Indirect or quasi-identifiers refer to data elements that, either in isolation or
when combined with other indirect or quasi-identifiers or additional information, have the
potential to indirectly recognize an individual [66]. Tt is important to remove the small
cell sizes of these quasi-identifiers which can act as outliers and therefore pose a high risk
of reidentification. For this work, quasi-identifier combinations with counts less than 5 are
removed from the real data, taking reference from Simon et al [67], however, this threshold
can be changed based on the stakeholders. The methodology for removing the outliers is
mentioned below.

In light of the understanding that it is impossible to entirely eliminate privacy [68] and
reidentification risks, this study integrates the privacy and identity disclosure risk assess-
ment framework devised by Khaled et al [17]. This model is instrumental in quantifying
the residual risk associated with data anonymization processes. The assessment of risk is
bifurcated into two primary categories: the risk of identifying real individuals from syn-
thetic data (Real-to-Synthetic Identification Risk) and the risk of constructing synthetic
profiles that can be traced back to real individuals (Synthetic-to-Real Identification Risk)
as shown in Equation 3.5. The overarching risk score attributed to the synthetic dataset is
determined by considering the higher value between these two risks. Following recommen-
dations from the European Medicines Agency and Health Canada, a predetermined risk
threshold, denoted as 0.09 [69], serves as the benchmark for acceptable risk levels in this
context.

e (130 (et 13 (f ) 33)

s=1
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Where,

e N = The number of records in the real data.
e n = The number of records in the synthetic data.
e s = An index to count records in the synthetic data.

e f, = The equivalence class group size in the synthetic data for a particular record s
in the synthetic data. The equivalence class is defined as the set of records with the
same values on the quasi-identifiers.

e F, = The equivalence class group size in the real data for a particular record s in the
real data. The equivalence class is defined as the set of records with the same values
as the quasi-identifiers.

e ). = Adjustment to account for errors in matching and a verification rate that is not
perfect.

e [, = A binary indicator of whether records in the real data match a record in the
synthetic data.

e R, = A binary indicator of whether the adversary would learn something new if
records in the real data match a record in the synthetic data.

Despite the various measures to ensure privacy and minimize reidentification risk, there
is always a residual risk that needs to be ascertained, as the risk can never be minimized
to zero [08]. Therefore, the privacy and identity disclosure risk assessment model proposed
by Khaled et al. (2020) was adopted to evaluate the privacy and reidentification risk. The
risk score under this model could be defined using the equation below [17]. The risk score
can be simplified to two parts: Real-to-Synthetic Identification Risk, and Synthetic-to-
Real identification Risk. The maximum of both of these risks is taken to be the overall
risk of the synthetic dataset. Under the guidance of the European Medicines Agency and
Health Canada, an acceptable risk threshold of 0.09 is used. Other approaches for privacy
protection include Membership Inference Attack and Attribute Inference Attack, which are
not explored in this study but can be studied in future works.
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3.5 Hyperparameter Tuning in Synthetic Data Gen-
eration

Deep learning (DL) algorithms such as GAN, transformers, and gradient boosting for SDG
involve a number of parameters to be set before training. Hyperparameter tuning (HPT)
strategies are second-level optimization procedures that try to minimize the expected gen-
eralization error of an algorithm over a hyperparameter search space using an objective
function [70, 71]. In contrast to model parameters, which are learned during training,
these tuning parameters (hyperparameters) have to be carefully selected to optimize model
performance. Users have typically 3 choices for selecting an appropriate hyperparameter
configuration for a specific dataset: (1) use default hyperparameter values as designed,
(2) manually configure hyperparameter values based on recommendations from literature,
experience, or trial-and-error, or (3) use HPT strategies [70].

The main goal of HPT is to automatically tune hyperparameters for users to apply
machine learning models to practical problems effectively [72, 73]. Although HPT for
classification and regression tasks often have a clear choice for objective functions such
as any of the metrics computed from the confusion matrix, the choice of the objective
function is not so clear for SDG models. As synthetic data is evaluated in a multitude of
different ways such as MLE, univariate distribution comparisons, discriminator measures,
multivariate correlations, and privacy metrics [74, 75, 76, 65, 77], it is unclear what are the
best strategies to tune SDG hyperparameters. Equation 3.6 represents the hyperparameter
optimization problem where z* is the set of hyperparameters of X that minimizes the
objective function f(z). It is to be noted that we can maximize the objective function as
well, instead of minimizing it. It depends on the nature of the objective function.

z* = argmin f(x) (3.6)
zeX

Recent literature states the importance of hyperparameters on the performance of SDG
models but there still lacks a clear framework for HPT [75, 76, 78]. In addition, it is equally
important to have a HPT strategy that can be efficiently applied. Although machine
learning efficacy is an important metric for SDG models, it can be expensive to compute
as an objective function in a multi-objective HPT framework. To tackle the problem of
inefficiencies of MLE as an HPT objective function, we propose to use differential pairwise
correlation (DPC) as an alternative objective to MLE, aiming to reduce computational
costs.
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For HPT of CTGAN, the hyperparameters considered are batch size, generator learn-
ing rate, and discriminator learning rate, generator decay, discriminator decay, generator
dimension, discriminator dimension, epochs. The batch size is crucial as it determines the
number of data samples processed in a single training step, affecting the model’s learn-
ing dynamics and memory requirements. The learning rates for both the generator and
discriminator, denoted as generator_Ir and discriminator_lr respectively, are pivotal in de-
termining the speed at which these components of the GAN learn and adapt. These rates
dictate the size of the steps taken in the optimization process, where smaller steps can lead
to more precise convergence, albeit at a potentially slower rate.

Equally important are the decay rates for the generator and discriminator, referred to
as generator_decay and discriminator_decay. These parameters are integral to the Adam
optimizer, introducing a regularization aspect that helps in curbing overfitting by penaliz-
ing larger weights. This is crucial in maintaining a balance in the learning process, ensuring
that neither the generator nor the discriminator becomes too dominant.

The dimensions of the generator and discriminator, termed as generator_dim and dis-
criminator_dim, define the size of the output samples for each of their respective layers.
These dimensions are not just numbers; they significantly influence the capacity of the
generator to create diverse and complex samples and the ability of the discriminator to
accurately classify these samples.

Lastly, the number of epochs plays a vital role. This parameter sets the total number
of complete passes the model makes through the entire training dataset. The right number
of epochs is a delicate balance — too few might result in underfitting, while too many
might lead to the model memorizing the training data, known as overfitting. Each of these
parameters, when finely tuned, contributes to a harmonious balance in the CTGAN model,
ensuring an effective and efficient training process.

Three choices are provided for each of the three hyperparameters chosen: batch size
can be one of 50, 100, or 200, generator learning rate can be one of le-3, le-4, or le-5,
and discriminator learning rate can be one of 1e-3, le-4, or le-5. These hyperparameter
values result in a grid of 3x3x3 with 27 unique combinations. As there are 27 unique
combinations, under grid search, a total of 27 corresponding trials are run.

Grid search is the conventional method of hyperparameter optimization, where the
model is trained across all combinations of all hyperparameters[79]. The method forms
a grid of all the hyperparameters and their values and then creates unique combinations
of these hyperparameters. For each trial of optimization, the aim is to find an optimal
value of the objective function. The objective functions are discussed in the next section,
which can be minimized or maximized based on the nature of the function. The gird search
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algorithm is easy to implement but is computationally expensive considering the number
of hyperparameter combinations considered for each trial. Additionally, with the increas-
ing number of hyperparameters and the search space, the computational cost increases
exponentially.

In contrast to Grid search, Random search [$0] algorithm does not consider all com-
binations of hyperparameters. Instead, a fixed number of combinations are used for the
set of trials. The number of combinations to be considered is chosen randomly. First,
a search space is defined, and points are sampled randomly within the search space. In
case of Random search, the search space is defined in a continuous distribution within the
specified range to take advantage of the random sampling of points. This process is less
computationally expensive than the Grid Search because it does not consider all the hyper-
parameters. On the other hand, there is a chance that some hyperparameter combinations
might be missed in the random search method.

Another state-of-the-art algorithm for hyperparameter tuning is probability-based opti-
mization models, which include Bayesian Optimization models such as Gaussian Processes
(GP), Sequential Model-Based Optimization (SMBO), and notably, the Tree-structured
Parzen Estimator (TPE). TPE [81] stands out by utilizing a non-parametric approach,
modeling the search space using conditional probabilities to intelligently navigate towards
optimal hyperparameter settings. This strategy is particularly adept at handling complex
and high-dimensional spaces where traditional methods falter due to computational con-

straints or the curse of dimensionality. For this research work we use a combination of
Random search and TPE search method for HPT.

As discussed above, there are primarily three ways to measure the quality of synthetic
data, utility, fidelity and privacy. To generate the best quality of synthetic data, it is
important to choose the best objective function based on these quality metrics which will
be minimized or maximized (depending on the nature of the objective function) during the
HPT process. Utility-based objective functions (MLE) are generally considered for HPT
of synthetic data generation [32].

We perform experiments to find out if fidelity-based metrics can be used for HPT of
synthetic data generation. The benefit of this approach is two-fold. Firstly, Utility-based
objective functions require more computational resources, compared to the fidelity-based
metrics. Therefore, the total time required for the HPT will be reduced. Secondly, the use
of fidelity-based metrics will enable the development of use-case agnostic synthetic data.
In real world, the synthetic tabular data maybe used for more than one use case, and
therefore using fidelity based metrics might be a better approach to create synthetic data
that can be used for multiple use cases. To validate this, we perform a correlation between
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the fidelity and utility metrics for different hyperparameter combinations. Hyperparameter
tuning of the synthetic data generation is performed using fidelity metrics (HD, and DPC)
as the objective function. During HPT, for each hyperparameter combination, the utility
metric is calculated and stored.

Since there are two fidelity-based metrics: Fidelity - Hellinger Distance (uni-variate
measure) and Differential Pairwise Correlation (bi-variate measure), we perform multi-
objective optimization to get the Pareto front that gives the best fidelity measurement.

For this thesis, the computational work was carried out on a system powered by an
AMD EPYC 7543 32-Core Processor and supported by 512 GB of RAM, ensuring efficient
processing for extensive datasets. The system has an NVIDIA A30 GPU with 24576MiB
capacity, running on Windows OS with an AMDG64 architecture. This setup, equipped
with NVIDIA driver version 537.70 and CUDA Version 12.2, provided a robust platform
for advanced computational tasks and deep learning algorithms essential for the research.

For the hyperparameter tuning of the synthetic data generation, Stratified Random
Sampling technique is used which is a method to develop a subset dataset that represents
the entire dataset[$3]. This method is important considering the size of larger datasets in
the real world. For high-dimensional datasets, the hyperparameter tuning of the synthetic
generation method is computationally expensive, since, for each combination of hyper-
parameters, the synthetic generation will take place for the entire dataset, followed by
the calculation of evaluation metrics. Therefore, a method like stratified random sam-
pling helps save computational resources and time and makes the hyperparameter tuning
method more efficient. The algorithm for random sampling is shown in Algorithm 1.

Algorithm 1 Create stratified sample based on one variable

Initialize stratified_sample as an empty DataFrame
Define n_samples as per requirements
Calculate strata_proportions as the normalized value counts of ‘variable’” in real_data
Determine samples_per_stratum by rounding up the product of strata_proportions and
n_samples to the nearest integer
for each stratum, n in samples_per_stratum.items() do
Filter the original DataFrame df for the current stratum
stratum_sample < df[df[‘variable’] == stratum/.sample(n, random_state=1)
stratified_sample < pd.concat([stratified_sample, stratum_sample))
end for
10: return stratified_sample
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3.6 Hyperparameter Tuning of Predictive Models Us-
ing Synthetic Data

When building predictive models using health data that contains sensitive information
about individuals, the training data may not leave the premises of data sources. However,
these health organizations may lack the computational resources to train and optimize the
performance of these predictive models.

The hypothesis of the research posits that HPT in predictive modelling can be achieved
by leveraging synthetic data. If proven, this methodology could circumvent the challenges
associated with the inaccessibility of real data for external analysis. Synthetic data could
offer a viable solution for resource-intensive HPT of predictive models using external com-
puting resources of an organization, as illustrated in 3.5.

Synthetic
Real Data Synthetic Predictive
Data Generation Data Model

Hyperparameter Tuning
o Optimized
Predictive - Resul
Model esults
[ Optimized ]
Inside Organization I Hyperpalrameters

Figure 3.5: Hyperparameter tuning of predictive model using Synthetic Data

Therefore, in this study, we use synthetic data for HPT of the predictive model, and
then use the best hyperparameters for the predictive model using real data.

Let M be a machine learning model parameterized by a set of hyperparameters 6 € O,
where © is the hyperparameter space. The model’s performance is evaluated by a function
f, such that f(M, D) = p, where p is the performance metric (e.g., accuracy, F1 score) of
the model M with hyperparameters 6 on dataset D.

Hyperparameter tuning involves finding the optimal set of hyperparameters 6* that
maximizes (or minimizes) the performance metric on the synthetic dataset D’:
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0" = argmax f(My-, D") (3.7)
0cO

The selected hyperparameters 6* are then used to train the model on the real dataset
D, and the performance is evaluated:

Preal = f(M0*7 D) (38)

The correlation between the metrics obtained from the synthetic data tuning and the
real data application can be evaluated to validate the effectiveness of the synthetic tuning
process. Let peynen be the performance metric on the synthetic data, and pyea be the metric
on the real data:

Correlation = p(Psynth, Preal) (3.9)

where p denotes a correlation coefficient (e.g., Pearson, Spearman). For our study we
have used Pearson Correlation coefficient.

Utilizing synthetic data for hyperparameter tuning before applying these parameters
to models trained on real data has significant implications for data security and model
optimization. It enables organizations to exploit external computational resources and
expertise for model enhancement while adhering to data protection regulations. This
approach is especially beneficial in industries dealing with highly sensitive information,
such as healthcare or finance, where data sharing is heavily regulated. By validating the
effectiveness of hyperparameter settings with synthetic data, researchers can enhance the
predictive performance of their models on real datasets, thereby bridging the gap between
data privacy concerns and the need for advanced analytical techniques.

3.7 Explainability Using Synthetic Data

Explainability in machine learning refers to the ability to understand and interpret how
predictive models make decisions [31]. Explainability is an important consideration when
using predictive models for applications that have high-stakes example finance and health-
care. White box models like linear regression, and random forest, are explainable at some
levelS. However, it is difficult to explain the predictions obtained using black box models
like deep learning models including neural networks. Explainable AT (XAI) aims to make
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the operations of Al systems transparent and comprehensible to human users, shedding
light on how models process input data to make predictions or decisions.

This study aims to explore the consistency of feature importance across models trained
on real and synthetic datasets. The hypothesis posits that there exists a strong correlation
between the mean SHAP (SHapley Additive exPlanations) values of variables in models
trained on real data and their counterparts in models trained on synthetically generated
data. SHAP values provide a robust, game-theory-based method for quantifying the con-
tribution of each feature to model predictions. By comparing these values across real
and synthetic datasets, we aim to assess the viability of using synthetic data for model
explanation and validation.

Similar to the approach used in the utility, to validate the hypothesis on explainability
we train a prediction model on real data and test it on real data, then we train a model on
synthetic data, and test it using real data. In both cases the SHAP values of all the feature
variables, for all the predictions are calculated. Thereafter, the mean of the SHAP values
for each feature variable is taken for real and synthetic data. They are plotted together on
one graph to study their correlation. The second approach is to explore the use of synthetic
data to explain the models trained and tested on real data [35]. In scenarios where data
cannot be released to the public, however the pre-trained models are shared with other
organizations, it is difficult to prove explainability of the synthetic data.
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Chapter 4

Results and Discussion

4.1 Fidelity Metrics - Representativeness

The synthetic data should statistically represent the real data and its characteristics. To
evaluate the ability of the synthetic data to accurately represent the statistics, we compare
the frequency and probability distribution of different features from the synthetic and real
data. In addition to the fidelity metrics to evaluate the representativeness, we also compare
the cohort characteristics of the real and synthetic data.

4.1.1 Adult Income Dataset

In evaluating the statistical representativeness of synthetic data, a critical assessment in-
volves contrasting the distribution—both in terms of frequency and density—of features
between the synthetic and real datasets. This comparative analysis is illustrated in Fig-
ure 4.1 and Figure 4.2, which delineate the distribution patterns of a continuous variable
(‘Hours-per-week’) and a categorical variable (‘Sex’) generated by the CTGAN and Re-
alTabFormer respectively. These figures elucidate that the distributions of both variables
from the CTGAN and RealTabFormer models exhibit a remarkable similarity to those of
the original data.
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Figure 4.1: Distribution (Frequency and Probability) for ‘Hours per week’ and ‘Sex’ vari-
able for real and synthetic data for Adult Income dataset from CTGAN
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Figure 4.2: Distribution (Frequency and Probability) for ‘Hours per week’ and ‘Sex’ vari-
able for real and synthetic data for Adult Income dataset from RealTabFormer

In the evaluation of synthetic data fidelity, both univariate and bivariate metrics were
employed, with Hellinger Distance (HD) utilized for univariate assessment and Differential
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Pairwise correlations for bivariate analysis. This dual approach facilitated a detailed exami-
nation of the synthetic data’s quality, especially in the context of the Adult Income dataset.
As illustrated in Figure 4.3, and 4.4, the analysis yielded significant insights. Specifically,
features such as sex and education recorded the lowest HD values, indicating high fidelity
in these aspects of the synthetic data. On the other hand, continuous variables like hours-
per-week showed the highest HD, revealing a potential challenge for the model in capturing
extreme values accurately. Nonetheless, the HD values across all features were found to
be within an acceptable range, affirming the overall quality of the synthetic data generated.
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Figure 4.5 presents a comparative analysis of differential pairwise correlations for the
Adult Income dataset, contrasting synthetic data generated by CTGAN and RealTab-
Former methods against real-world data. The visualizations are displayed in the form of
matrices, where each cell represents the difference in correlation between the synthetic and
real data for each pair of variables. In the CTGAN matrix (a), higher discrepancies are
observed in pairs involving the ‘occupation’ and ‘income_category’ variables, with some
notable differences also seen with ‘workclass’ and ‘sex’. In contrast, the RealTabFormer
matrix (b) exhibits relatively smaller differences across the board, suggesting a closer ap-
proximation to the real data’s correlation structure. Noteworthy is the ‘native-country’
variable, which shows a more consistent correlation pattern with other variables in the Re-
alTabFormer method compared to CTGAN. Overall, the RealTabFormer approach appears
to yield a synthetic dataset that more closely mirrors the correlation characteristics of the
original data, indicating its potential superiority in maintaining the statistical properties
of the dataset for the analyzed variables.
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Figure 4.5: Differential Pairwise Correlation (DPC) Heatmap for real and synthetic data
for Adult Income dataset from CTGAN and RealTabFormer

Continuing from the examination of fidelity metrics, the comparative analysis of pre-
dicted class counts between real and synthetic data offers further insights, pivotal for
applications in binary classification models. As detailed in Table 4.1, this comparison re-
veals notable variances in class distribution between the original dataset and its synthetic
counterparts generated by CTGAN and RealTabFormer.
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For Class 0 (Income category <50K),, which represents the majority class in the Adult
Income dataset, the real data count stands at 24,720. The CTGAN model slightly under-
represents this class, generating 22,681 instances, marking an 8.2% decrease. In contrast,
RealTabFormer overestimates Class 0 with 25,692 instances, an increase of 3.93%. This
discrepancy indicates a variance in each model’s ability to replicate the majority class’s
distribution accurately. On the other hand, Class 1 (Income category >50K), the minority
class, is represented by 7,841 instances in the real data. CTGAN significantly overestimates
this class with 9,880 instances, resulting in a 26% increase. Conversely, RealTabFormer
underestimates Class 1 with 6,869 instances, showing a decrease of 12.39%. This variance
highlights each model’s differing capacity to capture the minority class’s nuances.

Table 4.1: Class Counts for Real and Synthetic Data - Adult Income Dataset

Class Counts - Adult Dataset
Real Data Synthetic Data
CTGAN RealTabFormer

Class 0 24720 22681 (-8.2%) 25692 (3.93%)
Class 1 7841 9880 (26%) 6869 (-12.39%)

Total 32561 32561 32561

4.1.2 MIMIC Dataset

The distributions of the continuous variable ‘Length of Stay’ and the categorical variable
‘Age’ from the CTGAN and RealTabFormer, as illustrated in Figures 4.6 and 4.7, exhibit
a high resemblance to those in the original MIMIC dataset. This alignment in frequency
and density indicates the synthetic data’s statistical representativeness. Both models’
capacity to accurately mimic the complex distribution patterns of ‘Length of Stay’ and
‘Age’ highlights their effectiveness in generating synthetic datasets. Such datasets not
only preserve the essential statistical properties of real healthcare data but also serve as
a reliable basis for further analysis and modeling in the context of sensitive healthcare
research. The HD for each feature is shown in Figure 4.8 and 4.9, with the minimum HD
value for ‘EXPIRE _FLAG’, and the maximum HD value for ‘Age’.
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Figure 4.6: Distribution (Frequency and Probability) for ‘Length of Stay’ and ‘Age’ variable
for real and synthetic data for MIMIC dataset from CTGAN
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Figure 4.8: Hellinger Distance for MIMIC Dataset
0.056 Feature Variables
mEm 1 ETHNICITY
0.05 B 2: GENDER
= 3: EXPIRE_FLAG
4: RELIGION
0.04 5: TIME
6: AGE
7: SEPSIS_FLAG
0.032 8: NEWBORN_FLAG

9: CHEST_PAIN_FLAG
10: HYPERTENSION_FLAG

Hellinger Distance
o
o
w

mem 11: OVERDOSE_FLAG
0.02 0.018 0017 0017 | M 12: MARITAL_STATUS

2010 BN 13: INSURANCE
0.01 0.009 0.010

— 0.005 0.005 0.005
0.001

0.00

1 2 3 4 5 6 7 8 9 10 11 12 13

Feature Variables

Figure 4.9: Hellinger Distance for MIMIC Dataset - RealTabFormer

Figure 4.10 illustrates the differential pairwise correlation matrices for the MIMIC
dataset, contrasting the synthetic data generated by CTGAN (a) and RealTabFormer (b)
against the original data. The matrices show the correlation difference for each variable
pairing, with color intensities reflecting the magnitude of the differential. The CTGAN ma-
trix indicates more significant variances, especially in pairs involving ‘- MARITAL_STATUS’
and ‘INSURANCE’, where the correlations in synthetic data differ substantially from those
in the real dataset. Conversely, the RealTabFormer matrix demonstrates tighter corre-
lation differentials, with most variable pairs showing marginal discrepancies.
‘NEWBORN_FLAG’ and ‘CHEST_PAIN_FLAG’ exhibit relatively closer correlations to

42

Notably,



the real data when generated by RealTabFormer. This suggests that the RealTabFormer
method may be more adept at replicating the underlying statistical relationships within
the MIMIC dataset, potentially making it more suitable for applications that require high
fidelity to the original data’s correlation structure.
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Figure 4.10: Differential Pairwise Correlation (DPC Heatmap for real and synthetic data
for MIMIC dataset from CTGAN and RealTabFormer

Table 4.2: Class Counts for Real and Synthetic Data - MIMIC Dataset

Class Counts - MIMIC Dataset
Real Data Synthetic Data
CTGAN RealTabFormer

Class 0 35924 37079 (1.89%) 36390 (1.28%)
Class 1 23052 21897 (-3.05%) 22586 (2.06%)

Total 58976 598976 98976

4.1.3 Diabetes Dataset

The distributions of the continuous variable ‘Number of medications’ and the categorical
variable ‘Diagnosis 17 from the CTGAN and RealTabFormer, as demonstrated in Figures
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4.11 and 4.12, closely match those in the original UCI Diabetes dataset. This congruence
in both frequency and density underscores the synthetic data’s accuracy in reflecting the
dataset’s statistical properties. The ability of the CTGAN and RealTabFormer models to
replicate the intricate distribution patterns of ‘Number of medications’ and ‘Diagnosis 1’
attests to their efficiency in generating synthetic datasets that maintain critical statistical
characteristics of the real diabetes data, thus providing a solid foundation for subsequent
data analyses and modeling efforts in diabetes research. Additionally, the HDs for Diabetes
dataset as shown in Figure 4.13 and 4.14, show small values of HD for all variables, with
exceptionally low values for ‘readmitted_flag’ feature.
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Figure 4.11: Distribution (Frequency and Probability) for ‘Diagnosis 1’ and ‘Number of
medications’ variable for real and synthetic data for Diabetes dataset from CTGAN
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Figure 4.15: Differential Pairwise Correlation Heatmap for real and synthetic data for
Diabetes dataset from CTGAN and RealTabFormer

Figure 4.15 shows the differential pairwise correlation of the variables between synthetic
and real data. The heatmap comparison between the CTGAN (a) and RealTabFormer (b)
models shows that each model has a different pattern of pairwise correlation values among
the variables. This suggests that the underlying algorithms in each model capture and
represent the inter-variable relationships in distinct ways. Both models demonstrate some
challenges in accurately replicating the correlation between ‘diag_1" and other variables.
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In CTGAN, there is a notable differential correlation with ‘change’ and ‘diabetesMed’,
whereas in RealTabFormer, the largest discrepancy is again with ‘change’, but to a lesser
extent. The differential pairwise correlation represents the difference in the Pearson corre-
lation coefficients between the corresponding variables in the synthetic and real datasets.
The differential correlations for ‘race’” and ‘max_glu_serum’ are relatively low across both
models, suggesting that the synthetic data generated by CTGAN and RealTabFormer ad-
equately captures the correlation structure between these variables and others in the real
dataset. On the contrary, the heatmap for RealTabFormer shows that the most substantial
differential correlations do not exceed 0.05, with most values clustered around 0 or below
0.03. This implies a closer alignment with the real data’s correlation structure, indicating
that RealTabFormer may be more effective in maintaining the statistical properties of this
dataset.

The comparison of class distributions between real and synthetic datasets, as presented
in Table 4.3, offers valuable insights for binary classification model development within the
MIMIC Dataset context. The CTGAN model closely mirrors the real data with slight vari-
ances, showing a minimal decrease in Class 0 counts and a moderate increase for Class 1.
Conversely, RealTabFormer demonstrates a slight overestimation for Class 0 but a notable
underrepresentation of Class 1. These differences underscore the importance of selecting
an appropriate synthetic data generation method that aligns with the specific goals of the
classification task, emphasizing the potential and challenges of employing synthetic data
for model training.

Table 4.3: Class Counts for Real and Synthetic Data - MIMIC Dataset

Class Counts - Diabetes Dataset
Real Data Synthetic Data
CTGAN RealTabFormer

Class 0 90409 90002 (-0.45%) 92004 (1.76%)
Class 1 11357 11764 (3.58%) 9740 (-14.24%)

Total 101766 101766 101766

The boxplot in Figure 4.16 compares the Hellinger Distance (HD) across three distinct
datasets: Diabetes, MIMIC, and Adult Income. The Diabetes dataset shows a compact
interquartile range (IQR) with a median HD value near 0.05, indicating a relatively tight
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clustering of distances. The MIMIC dataset’s boxplot displays a slightly higher median
HD than the Diabetes dataset, along with a larger IQR, suggesting greater variability in
the HD measurements. The Adult Income dataset presents the widest IQR and the highest
median HD, close to 0.10, reflecting the most significant disparity among the three. For
the Diabetes and MIMIC datasets, the HD values are largely consistent, as evidenced by
the few outliers.
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Figure 4.16: Hellinger Distance for Adult Income, Diabetes, MIMIC Dataset

4.1.4 Comparative Analysis of Fidelity Metrics

The fidelity of synthetic data generation was evaluated for CTGAN and RealTabFormer
across Adult Income, MIMIC, and Diabetes datasets using Mean HD and Mean Differential
Pairwise Correlation (DPC) as summarized in Table 4.4. RealTabFormer outperformed
CTGAN in all cases, showing lower Mean HD and Mean DPC values. For instance, in
the Adult Income dataset, RealTabFormer reduced the Mean HD from 0.139 (CTGAN)
to 0.084 and the Mean DPC from 0.077 to 0.029. This pattern of superior performance by
RealTabFormer was consistent across the MIMIC and Diabetes datasets, underscoring its
effectiveness in producing higher-fidelity synthetic data.
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Table 4.4: Fidelity Comparison of Datasets and SDG Models

Adult Income MIMIC Diabetes
Metric CTGAN RealTabFormer CTGAN RealTabFormer CTGAN RealTabFormer
Mean HD 0.139 0.084 0.062 0.014 0.041 0.010
Mean DPC 0.077 0.029 0.043 0.009 0.031 0.013

4.2 Utility Metrics - Machine Learning Efficacy (MLE)

4.2.1 Adult Income Dataset

For this study, the usefulness of the synthetic data has been evaluated across different
machine-learning models. Table 4.5 shows the difference between the performance of ML
models on synthetic and real data. The XGBoost model shows the most significant decline
in Recall (-26.58%) and F1 Score (-15.49%), indicating a particularly reduced ability to
correctly identify positive cases and a decrease in the harmonic mean of precision and re-
call, respectively, when trained on synthetic data. Logistic Regression shows an increase in
Precision (+10.87%) when using synthetic data. This is an anomaly as precision improves,
suggesting that for this model, synthetic data might be leading to more conservative pre-
dictions that are more often correct when they predict the positive class. Decision Tree
and Random Forest models show a moderate decline across most metrics, with a notice-
able decrease in Recall, suggesting a difficulty in identifying all positive instances correctly.
The over-representation of Class 1 in synthetic data could be causing models to perform
better in predicting positive instances in some cases (e.g., improved precision in Logistic
Regression) but also leading to overall performance degradation due to imbalanced training
data.

Table 4.5: MLE for all models for Adult Income Dataset

Model Accuracy Precision Recall F1 Score Specificity
Difference (%) Difference (%) Difference (%) Difference (%) Difference (%)
XGBoost 0.08 (-9.09%) 0.03 (-4.62%) 0.21 (-26.58%)  0.11 (-15.49%) 0.09 (-9.47%)
Logistic Regression 0.02 (-2.38%) -0.05 (10.87%) 0.11 (-14.47%) 0.00 (0%) 0.05 (-5.21%)
Decision Tree 0.03 (-3.57%) 0.06 (13.04%)  0.16 (-20.78%) 0.02 (-3.45%) 0.07 (-7.29%)
Random Forest 0.03 (-3.53%) 0.00 (0%) 0.14 (-17. 28%) 0.04 (-6.56%) 0.04 (-4.17%)
MLP 0.02 (-2.35%) -0.02 (3.7%) 0.10 (-12.99%) 0.03 (-4.69%) 0.04 (-4.21%)
SVM 0.02 (-2.35%) 0.04 (-7.41%) 0.09 (-11.54%) 0.06 (-9.38%) 0.02 (-2.11%)

Table 4.6 shows the performance metrics for different scenarios for training and testing
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a deep learning model (Feed-forward Neural Network) using real and synthetic data. The
first scenario, Train on Real Data, Test on Real Data (No Synthetic Data), provides a
baseline performance metric for comparison. High accuracy (84.96%), precision (70.47%),
and recall (64.54%) indicate the model performs well on real data.

The model achieves a high AUC_ROC (90.17%) and specificity (91.43%), showing strong
capability in distinguishing between classes and correctly identifying negative cases. For
Train on Synthetic Data, Test on Synthetic Data (No Real Data), gives slightly lower ac-
curacy (81.12%) and recall (62.25%) compared to training on real data suggest synthetic
data might not capture all nuances of the real dataset. Precision is slightly higher (71.76%)
than in the real-data scenario, indicating good positive prediction value when the model
is kept within the synthetic domain. AUC-ROC (86.53%) and specificity (89.33%) are
slightly lower but still strong, indicating the model’s effectiveness in class separation and
identifying negatives is somewhat diminished but still good in the synthetic domain. Train-
ing a model on synthetic data and testing it on real data presents challenges, evidenced
by decreased accuracy (75.84%), precision (49.85%), and F1 Score (55.21%). Despite a
reasonable recall rate (61.86%), the model’s effectiveness in class differentiation and iden-
tifying negative cases significantly diminishes, as shown by drops in AUC-ROC (79.01%)
and specificity (80.27%).

For the last scenario, training with synthetic data which is balanced (1:1 class ratio), we
get an improved accuracy (81.95%), precision (59.40%), and F1 Score (67.80%) compared
to training on unbalanced synthetic data suggest that balancing the synthetic dataset helps
in generalizing the model to real data.A significant increase in recall (78.95%) indicates
that balancing the dataset greatly improves the model’s ability to identify positive cases in
real data.The AUC-ROC (90.04%) is nearly restored to the baseline of real data training,
suggesting excellent overall model performance (Also shown in Figure 4.17).

Table 4.6: Performance Metrics for Deep Learning model (ANN) for different scenarios -
Adult Income dataset

Metric/Scenario Train on Real, Train on Synthetic, Train on Synthetic, Train on Synthetic_balanced,

Test on Real Test on Synthetic Test on Real Test on Real
Accuracy (%) 84.96 81.12 75.84 81.95
Precision (%) 70.47 71.76 49.85 59.40
Recall (%) 64.54 62.25 61.86 78.95
F1 Score (%) 67.38 66.67 55.21 67.80
AUC_ROC (%) 90.17 86.53 79.01 90.04
Specificity (%) 91.43 89.33 80.27 82.90
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As shown in Figure 4.17, we see the change in ROC curves for the different scenarios.
We see that with entire synthetic data, the AUC-ROC reduces a bit, and when training
with synthetic, and testing with real, it reduces further. However, for balanced synthetic
data training, the AUC-ROC is restored to that with entirely real data.
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Figure 4.17: ROC curves for different training and testing scenarios - Adult Income Dataset

4.2.2 MIMIC Dataset

The Machine Learning Efficacy of synthetic data for the MIMIC dataset is shown in Table
4.7. The comparative analysis of various machine learning models trained on synthetic data



and subsequently tested on real data reveals significant insights into the models’ generaliza-
tion capabilities and their sensitivity to class distribution changes. Our findings indicate
that the generalization capability from synthetic to real data varies significantly across
different models. Notably, XGBoost exhibited the largest decline in performance metrics,
particularly in recall and specificity. This substantial decrease suggests a sensitivity to the
over-representation of Class 0 and under-representation of Class 1 in the synthetic data.
Conversely, Logistic Regression and SVM demonstrated remarkable resilience, with slight
improvements in several performance metrics. These improvements suggest that these
models are less affected by the slight shifts in class distribution, showcasing a robustness
that makes them suitable for applications where class distribution between synthetic and
real data may not align perfectly. The results underscore the critical role of model selec-
tion and synthetic data preparation in achieving effective generalization to real-world data.
Models with inherent robustness to class distribution changes (e.g., Logistic Regression,
SVM) are preferred in scenarios where exact class ratio replication is challenging.

Table 4.7: MLE for binary classification models for MIMIC Dataset

Model Accuracy Precision Recall F1 Score Specificity
Difference (%) Difference (%) Difference (%) Difference (%) Difference (%)
XGBoost 0.1574 (-16.9%)  -0.0485 (-5.1%)  -0.2325 (-26.5%)  -0.16 (-17.5%)  -0.2249 (-24.5%)

Logistic Regression
Decision Tree
Random Forest
MLP

SVM

0.0019 (0.24%)
-0.0037 (-0.41%)
-0.0082 (-0.91%)
-0.0008 (-0.08%)

0.0041 (0.45%)

0.0335 (4.92%)
-0.0331 (-3.35%)
-0.047 (-5.07%)
-0.0006 (-0.06%)
-0.002 (-0.21%)

-0.0121 (-1.64%)
0.0089 (1.14%)
0.013 (1.56%)

-0.0012 (-0.14%)
0.0092 (1.09%)

0.0117 (1.65%)
-0.0078 (-0.89%)
-0.0149 (-1.69%)
-0.001 (-0.11%)
0.0043 (0.48%)

-0.0177 (-2.09%)
0.0146 (1.77%)
0.0159 (1.79%)
-0.0009 (-0.10%)
0.0079 (0.89%)

The performance metrics of deep learning model for different training and testing sce-
nario for MIMIC dataset are listed in Table 4.8.In all real data scenario, the model exhibits
excellent performance across all metrics when both trained and tested on real data. With
an accuracy of 92.40%, precision at 86.12%, and an impressive recall of 95.57%, the model
demonstrates its robustness in handling real-world data. The F1 Score of 90.60% indicates
a strong balance between precision and recall, while the AUC-ROC of 97.62% signifies
superior ability in distinguishing between classes. The specificity metric at 90.44% further
confirms the model’s effectiveness in correctly identifying negative cases.

When trained and tested on synthetic data, the model’s performance declines notably
from the real-data scenario. Accuracy reduces to 78.70% and precision to 69.57%, reflect-
ing challenges in accurate predictions. A significant drop in recall to 53.02% shows the
model’s struggles with identifying true positives. The F1 Score and AUC-ROC decrease
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to 60.18% and 84.21%, indicating overall diminished effectiveness. Yet, with a specificity
of 89.90%, the model retains its ability to correctly identify true negatives. the scenario
where model is trained on Synthetic Data and tested on real data, tests the model’s ability
to generalize from synthetic to real data. Here, accuracy slightly decreases to 78.50%, but
precision sees a significant increase to 89.36%), highlighting an improved positive predictive
value.

The recall, however, drops to 49.80%, indicating the model struggles to identify true posi-
tives in real data. The F1 Score and AUC-ROC at 63.96% and 89.54% suggest moderate
overall performance. Notably, specificity increases to 96.32%, showing excellent perfor-
mance in identifying true negatives.In the last scenario, balancing the synthetic data results
in improved model performance when tested on real data. Accuracy increases to 89.95%,
and precision to 80.34%, indicating better overall predictive performance. Remarkably,
recall jumps to 97.65%, showing the model’s enhanced ability to identify true positives.
The F1 Score and AUC-ROC also see increases to 88.15% and 96.87%, reflecting improved
balance and discriminatory power. However, specificity drops to 85.16%, suggesting a
slight decrease in the model’s ability to identify true negatives compared to the real-data
scenario.

Table 4.8: Performance Metrics for Deep Learning models for different scenarios - MIMIC
dataset

Metric/Scenario Train on Real, Train on Synthetic, Train on Synthetic, Train on Synthetic_balanced,

Test on Real Test on Synthetic Test on Real Test on Real
Accuracy (%) 92.40 78.70 78.50 89.95
Precision (%) 86.12 69.57 89.36 80.34
Recall (%) 95.57 53.02 49.80 97.65
F1 Score (%) 90.60 60.18 63.96 88.15
AUC_ROC (%) 97.62 84.21 89.54 96.87
Specificity (%) 90.44 89.90 96.32 85.16

As shown in Figure 4.18, we see the change in ROC curves for the different scenarios.
We see that with entire synthetic data, the AUC-ROC reduces a bit, and when training
with synthetic, testing with real, it increases. However, for training balanced synehtic data
and testing with real data, the AUC-ROC is restored to almost that with entirely real
data.
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Figure 4.18: ROC curves for different training and testing scenarios - MIMIC Dataset

4.2.3 Diabetes Dataset

Table 4.9 shows the Machine Learning Efficacy of Diabetes dataset for different ML mod-
els. The comparative performance analysis of machine learning models trained on synthetic
versus real Diabetes Dataset reveals nuanced differences directly linked to minor variances

in class distribution.

The Decision Tree model shows negligible performance changes,

demonstrating robustness to class ratio shifts, while Logistic Regression exhibits signifi-
cant variability, notably a 15.51% increase in Precision, likely due to its sensitivity to the
slight increase in Class 1 representation in the synthetic data. Other models like XG-



Boost, Random Forest, and SVM display moderate discrepancies, hinting at their varied
response to class distribution adjustments. This underscores the synthetic data’s potential
utility, contingent on careful model selection and tuning to account for its impact on per-
formance metrics, emphasizing the importance of aligning synthetic data closely with real
data distributions for effective training outcomes.

Table 4.9: Machine Learning Efficacy (MLE) for binary classification models for Diabetes
Dataset

Model Accuracy Precision Recall F1 Score Specificity
Difference (%) Difference (%) Difference (%) Difference (%) Difference (%)
XGBoost -0.016 (-1.75%) 0.0036 (0.37%) -0.0273 (-3.10%)  -0.0135 (-1.47%)  -0.0357 (-4.11%)
Logistic Regression  -0.0255 (-3.73%) 0.107 (15.51%) -0.0574 (-8.43%) 0.0142 (2.07%) -0.1578 (-23.32%)
Decision Tree 0 (0%) 0.0009 (0.09%) -0.0005 (-0.06%) 1E-04 (0.01%) -0.0008 (-0.10%)
Random Forest -0.0065 (-0.72%) -0.002 (-0.21%) -0.0084 (-0.99%)  -0.0056 (-0.62%)  -0.0111 (-1.35%)
SVM -0.0083 (-0.93%)  0.0023 (0.25%)  -0.0144 (-1.67%)  -0.0068 (-0.76%)  -0.0189 (-2.22%)

The performance indicators of a deep learning model for different training and testing
settings on the Diabetes dataset are outlined in Table 4.10.In the all real data scenario,
the model achieves an accuracy of 87.87% when trained and tested on real data, indicating
a relatively high overall performance. However, the precision (25.98%) and recall (4.67%)
are low, highlighting a challenge in accurately identifying the minority class (Class 1) in
the presence of a substantial majority class (Class 0), as shown by the very high specificity
(98.33%). This suggests that the model is biased towards predicting the majority class
correctly at the expense of the minority class, which is also reflected in a modest F1 Score
(7.91%) and AUC-ROC (62.44%).

For the all synthetic data scenario, accuracy slightly improves to 88.44%, indicating
that the model performs well in the synthetic domain where the class distribution closely
mirrors that of the real data. However, precision, recall, and F1 Score all drop to 0.00%,
showing the model’s complete failure to identify the minority class within the synthetic
environment. This is further evidenced by a specificity of 100%, demonstrating a perfect
identification of the majority class while completely missing the minority class, leading to
a decreased AUC-ROC (59.32%).When trained on synthetic data and tested on real data,
the model maintains a relatively high accuracy (86.73%). Yet, the precision (12.06%),
recall (2.99%), and F1 Score (4.80%) are extremely low, underscoring significant difficulties
in generalizing the detection of the minority class from synthetic to real settings. This
scenario highlights the model’s inclination towards the majority class, as indicated by a
high specificity (97.26%) but poor ability to distinguish the minority class, as shown by a
lower AUC-ROC (52.90%).
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Finally, adjusting the synthetic data to balance the class ratio leads to notable im-
provements. The accuracy stands at 87.04%, with significant enhancements in precision
(41.58%), recall (39.79%), and F1 Score (40.67%), indicating a marked improvement in
identifying the minority class. The rise in AUC-ROC to 78.72% reflects better discrimina-
tion between classes. Specificity decreases to 92.98%, suggesting a reduced bias towards
the majority class and a more balanced approach in predicting both classes. This scenario
demonstrates the critical impact of class ratio adjustments in synthetic data on model
performance, especially for minority class detection.

These modifications underscore the influence of class distribution in training datasets on
the predictive performance of models, particularly in relation to class imbalance. Adjusting
the synthetic data to more closely reflect or balance the class distribution proves crucial
for enhancing model sensitivity towards the minority class and achieving a more balanced
prediction capability.

Table 4.10: Performance Metrics for Deep Learning models for different scenarios - Diabetes
Dataset

Metric/Scenario Train on Real, Train on Synthetic, Train on Synthetic, Train on Synthetic_balanced,

Test on Real Test on Synthetic Test on Real Test on Real
Accuracy (%) 87.87 88.44 86.73 87.04
Precision (%) 25.98 0.00 12.06 41.58
Recall (%) 4.67 0.00 2.99 39.79
F1 Score (%) 7.91 0.00 4.80 40.67
AUC_ROC (%) 62.44 59.32 52.90 78.72
Specificity (%) 98.33 100.00 97.26 92.98

As shown in Figure 4.19, we see the change in ROC curves for the different scenarios
for Diabetes dataset. We see that with entire synthetic data, the AUC-ROC reduces by
(around 3% value), and when training with synthetic, testing with real, it reduces even
further. However, for training balanced synthetic data and testing with real data, the
AUC-ROC enhances and even surpasses to that with entire data. This exhibits the use of
synthetic data for data augmentation and improving the performance of model by balancing
the classes.
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Figure 4.19: ROC curves for different training and testing scenarios - Diabetes Dataset

4.2.4 Synthetic Data for Augmentation of Real Data

Synthetic Data has also been commonly used to augment the data to enhance the perfor-
mance of the predictive models [31]. We conducted experiments to study the change in
the metrics for different combinations of synthetic and real data.

Since class ratio of a dataset plays a crucial role in the performance of a machine learn-
ing model, a study is done to compare the performance for the real data with original class
ratio and the real data augmented with synthetic data that makes the class ratio 1:1. The
performances of the ML models are compared in Table 4.11 and shown in Figure 4.20.

57



The accuracy changes were minimal across most models, with XGBoost showing a slight
improvement of 4.55% and Logistic Regression experiencing the most significant decrease
of -8.43%. This variance indicates that while balancing class distribution through synthetic
data augmentation can enhance model accuracy in certain cases (e.g., XGBoost), it might
detriment others (e.g., Logistic Regression). Notably, all models saw an improvement in
precision, with Random Forest exhibiting the highest increase of 62.96%. This substan-
tial precision enhancement suggests that synthetic data augmentation effectively addresses
the class imbalance issue, leading to a higher rate of correct positive predictions across
models.Recall scores varied, with the Decision Tree model benefiting the most, showing a
26.58% improvement. F1 scores, which harmonize the precision and recall metrics, gener-
ally saw improvements, with the Decision Tree model again standing out with a 33.33%
increase. These improvements suggest that for certain models, synthetic data augmenta-
tion can enhance the overall balance between precision and recall. Specificity saw declines
in several models, with Logistic Regression marking the most notable decrease of -19.15%.

Table 4.11: Performance difference for Augmentation using Synthetic Data (Class Ratio
= 1:1) for Adult Dataset

Model Accuracy Precision Recall F1 Score Specificity
XGBoost 0.04 (4.55%) 0.21 (30.43%)  0.15 (19.23%)  0.19 (26.03%)  -0.01 (-1.06%)
Logistic Regression  -0.07 (-8.43%)  0.26 (53.06%)  0.04 (5.56%)  0.18 (31.03%) -0.18 (-19.15%)
KNN -0.03 (-3.57%)  0.25 (47.17%) 0.13 (18.31%) 0.19 (31.15%) -0.08 (-8.6%)
Decision Tree 0.01 (1.18%) 0.21 (40.38%) 0.21 (26.58%) 0.21 (33.33%) 0.04 (4.17%)
Random Forest 0.03 (3.49%) 0.34 (62.96%) 0.06 (7.23%)  0.24 (36.92%)  -0.07 (-7.22%)
MLP -0.04 (-4.71%)  0.23 (38.98%) 0.06 (8.0%) 0.16 (24.24%) -0.14 (-14.89%)
SVM -0.04 (-4.65%)  0.29 (51.79%) 0.04 (5.19%)  0.18 (27.69%) -0.15 (-15.79%)
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Balancing classes through synthetic data augmentation has shown to notably improve
precision across all machine learning models tested, with effects on other metrics being
model-dependent. This strategy contributes to creating more generalized models by miti-
gating the skewness inherent in imbalanced datasets. Despite mixed impacts on accuracy,
recall, and specificity, the overall trend towards improved model robustness and generaliz-
ability highlights the value of class balancing in enhancing machine learning performance.

4.3 Privacy Metrics - Reidentification Risks

The outcomes of the privacy analysis are indicative of the efficacy of the adopted de-
identification procedures across the three distinct datasets under scrutiny. The evaluation
employed the reidentification risk assessment model proposed by Khaled et al., which
facilitates a nuanced appraisal of the privacy risks associated with both real and synthetic
tabular data. The calculated reidentification scores serve as a testament to the robustness of
the privacy-preserving methodologies implemented. For the Adult Income dataset, a score
of 0.00024 was obtained, whereas the MIMIC dataset was associated with a reidentification
score of 0.0326. The Diabetes dataset demonstrated a score of 0.00098. It is noteworthy
that all these values fall below the acceptable risk threshold set forth by the European
Medicines Agency and Health Canada, denoted as 0.09 in this context. The results thus
underscore a satisfactory alignment with regulatory standards for privacy, substantiating
the datasets’ readiness for subsequent use in research while ensuring the maintenance of
individual privacy.

4.4 Hyperparamater Tuning for the Synthetic Data
Generation

For developing a use-case agnostic framework of HPT of synthetic data generation, the
correlation between Utility and Fidelity metrics for different hyperparameter combinations
is studied and shown in Table 4.12.
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Table 4.12: Correlation between Fidelity and Utility Metrics for HPT of SDG

Datasets
Adult Income Diabetes MIMIC
Pearson p-value Pearson p-value Pearson p-value
-0.81 5.01E-08 -0.61 3.00E-04 -0.69 2.35E-05
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Figure 4.21: Correlation of Fidelity and Utility Metrics

As shown in Figure 4.21 and listed in Table 4.12, there is a notable negative corrrelation
between the fidelity and utility metrics for the hyperparameter tuning of the synthetic data
generation process across all datasets, indicating that as one metric increases, the other
tends to decrease. For fidelity metrics (HD and DPC), lower values are desirable, which
represent the statistical closeness of the real and synthetic data.

On the other hand, larger values of MLE metrics are desirable, since they represent
the performance of the synthetic data to train machine learning models in replacement
of real data. The Adult Income dataset exhibits negative correlation (Pearson coefficient
= -0.81) with a significant p-value (5.01E-08), suggesting a robust inverse relationship
between the two metrics. The Diabetes dataset shows a moderate negative correlation
(Pearson coefficient = -0.61) with a significant p-value (3.00E-04), indicating a notable but
less pronounced inverse relationship compared to the Adult Income dataset. The MIMIC
dataset presents a negative correlation (Pearson coefficient = -0.69) with a significant
p-value (2.35E-05), which is stronger than the Diabetes dataset but still less than the
Adult Income dataset. The significant p-values across all datasets represent the statistical
significance of the observed correlations.
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4.5 Hyperparameter Tuning of Predictive Models us-
ing Synthetic Data

4.5.1 Mortality Prediction- HPT Binary Classification (ANN) -
MIMIC Dataset

Figure 4.13 shows the comparison of Pearson correlation coefficients and p-values for the
MIMIC dataset when tuning the hyperparameters using the synthetic data and then using
the same parameters to evaluate the performance on the real data. To confirm the hypothe-
sis, the experiments are also applied to synthetic data generated using a transformer-based
model - RealTabFormer.

Table 4.13: Pearson correlation coefficients and p-values for MIMIC dataset HPT using
Synthetic data for a feed-forward ANN binary classifier

MIMIC dataset - Binary Classification - ANN
CTGAN RealTabFormer

Metric Pearson p-value Pearson p-value
Accuracy 0.86 1.07E-30 0.89 4.42E-18
Precision 0.41 1.86E-05 0.86 2.05E-15
Recall 0.77 3.78E-21 0.53 8.52E-05
F1 0.75 3.71E-19 0.87 2.35E-16

For both synthetic data generation methods, most metrics show a high Pearson cor-
relation coefficient with real data performance, particularly in the cases of Accuracy and
F1 Score. This suggests a strong linear relationship between the performance metrics
achieved with synthetic data and those achieved with real data, indicating that synthetic
data can be effectively used for hyperparameter tuning in deep learning models. Both
methods demonstrate high Pearson correlation coefficients for Accuracy and F1 Score,
with RealTabFormer slightly outperforming CTGAN. The Pearson correlation coefficients
and p-values for performance metrics using synthetic data in the MIMIC dataset reveal
insightful trends for hyperparameter tuning in a feed-forward ANN binary classifier.
Accuracy demonstrates a high correlation (0.86 for CTGAN and 0.89 for RealTabFormer),
indicating synthetic data’s effectiveness in mirroring overall classification performance.
Precision varies markedly between CTGAN (0.41) and RealTabFormer (0.86), highlighting
the dependency of synthetic data quality on the generation method, with RealTabFormer
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being particularly adept at replicating the positive predictive value. Recall shows a mod-
erate to high correlation (0.77 for CTGAN and 0.53 for RealTabFormer), pointing out
the challenges in accurately capturing the model’s sensitivity using synthetic data. The
F1 Score, balancing precision and recall, also exhibits high correlation (0.75 for CTGAN
and 0.87 for RealTabFormer), underscoring synthetic data’s capability to simulate the real
data’s balanced metric performance. These findings collectively underscore the potential
of synthetic data, to effectively replicate real dataset characteristics across various perfor-
mance metrics, making it a valuable tool for model development and optimization.
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Figure 4.22: Correlation of performance on synthetic and real data - CTGAN - MIMIC
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Figure 4.23: Correlation of performance on synthetic and real data - RealTabFormer -
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Figure 4.22 and 4.23 show the correlation graphs for the metrics with the best cor-
relations between real and synthetic data hyperparameter tuning. The 45 degrees line
from the origin shows the best correlation. The inferences from these graphs are two-fold,
first, we can study the correlation between the hyperparameter tuning using synthetic and
real data, and second, we can see the change in the metrics when a model is trained on
real data compared to when it is trained on synthetic data (Machine Learning Efficacy).
Additionally, the red point represents the metric value for the best hyperparameter combi-
nations when hyperparameter tuning is done on synthetic data. HPT aims to find the best
hyperparameters that give the best performance metrics. Therefore, this point is a good
measure of the correlation study between real and synthetic data for HPT. The optimized
metric for HPT using synthetic data should correlate with the optimized metric for HPT
using real data.

In Figure 4.22 (a), the correlation line is parallel to the best-fit line which indicates a
strong correlation, which is also evident by the Pearson coefficient of 0.86 and p-value of
1.07e-3. Secondly, since the correlation line is a bit far from the best-fit line, it indicates the
reduction of the accuracy when the model is trained on synthetic data compared to when
trained on real data. In Figure 4.22 (b), the observed correlation is of a moderate level,
indicating a balanced relationship. The observed reduction in correlation is not considered
to be of significant concern for the analysis. In both of the figures, the optimized metric for
the synthetic data HPT is located at the top of the correlation line and also corresponds
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to the largest metric for the real data HPT.

4.5.2 Readmission Prediction- HPT Binary Classification (ANN)
- Diabetes Dataset

4.14 shows the comparison of Pearson correlation coefficients and p-values for the Diabetes
dataset when tuning the hyperparameters using the synthetic data and then using the
same parameters to evaluate the performance on the real data.

Table 4.14: Pearson correlation coefficients and p-values for Diabetes dataset HPT using
Synthetic data for a feed-forward ANN binary classifier

Diabetes - Binary Classification - ANN
CTGAN RealTabFormer
Metric  Pearson p-value Pearson p-value
Accuracy 0.92315 1.78E-42  0.94667 2.96E-25
Precision -0.204 0.041771  -0.2217 1.22E-01
Recall 0.79128  1.17E-22  0.85285 3.80E-15
F1 0.76588  1.67E-20 0.80498 1.85E-12

Both CTGAN and RealTabFormer demonstrate strong positive Pearson correlation
coefficients with respect to accuracy (0.92315 and 0.94667, respectively), suggesting that
hyperparameters optimized on synthetic data translate well to real data, leading to high
accuracy in the ANN binary classifier. The extremely low p-values indicate a statistically
significant correlation, reinforcing the effectiveness of using synthetic data (generated by
both CTGAN and RealTabFormer) for HPT.

The negative correlation coefficients for precision (-0.204 with CTGAN and -0.2217 with
RealTabFormer) might initially seem counterintuitive. However, given the hypothesis, this
suggests that there may be a disparity in how well the precision-focused hyperparame-
ters optimized on synthetic data perform when applied to real data. Positive correlation
coefficients for recall (0.79128 with CTGAN and 0.85285 with RealTabFormer) indicate
that hyperparameters optimized for recall on synthetic data are effective when applied to
real data. Similarly, the strong positive Pearson correlation coefficients for the F1 score
(0.76588 with CTGAN and 0.80498 with RealTabFormer) suggest that hyperparameters
that optimize the F'1 score on synthetic data have a similar optimizing effect on real data.

Figures 4.24 and 4.25 show the visual representation of the metrics with the best cor-
relations for the Diabetes dataset.
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Figure 4.24: Correlation of performance on synthetic and real data - CTGAN - Diabetes
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Figure 4.25: Correlation of performance on synthetic and real data - RealTabFormer -
Diabetes

4.5.3 Income Category Prediction - HPT Binary Classification
(ANN) - Adult Income Dataset

4.15 shows the comparison of Pearson correlation coefficients and p-values for the Diabetes
dataset when tuning the hyperparameters using the synthetic data and then using the
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same parameters to evaluate the performance on the real data.

Table 4.15: Pearson correlation coefficients and p-values for Adult Income dataset HPT
using Synthetic data for a feed-forward ANN binary classifier

Adult Income - Binary Classification - ANN

CTGAN RealTabFormer
Metric  Pearson p-value Pearson p-value
Accuracy 0.79 1.09E-11 0.96 7.79E-31
Precision -0.28 0.053 0.97 9.85E-32
Recall 0.35 0.013 0.97 3.48E-35
F1 0.55 3.08E-05 0.97 2.91E-33

The Pearson correlation coefficients and p-values for performance metrics using syn-
thetic data in the Adult dataset, as applied in hyperparameter tuning for a feed-forward
ANN binary classifier, present a nuanced picture of the utility and effectiveness of syn-
thetic data. Accuracy displays strong correlations for both methods, particularly high for
RealTabFormer (0.96), suggesting an excellent capability of synthetic data to predict over-
all classification success. The significant correlation, coupled with extremely low p-values,
confirms the statistical robustness of these results, indicating that synthetic data, espe-
cially from RealTabFormer, can closely mimic real-world data outcomes in terms of overall
model accuracy.

Precision and recall metrics underscore the disparity in performance between CTGAN
and RealTabFormer with synthetic data. CTGAN’s precision shows a slight negative cor-
relation (-0.28), hinting at challenges in mimicking real data’s positive predictive value,
whereas RealTabFormer excels with a near-perfect correlation (0.97), effectively reflect-
ing real data precision in synthetic datasets. On the recall front, CTGAN achieves a
moderate positive correlation (0.35), showing some effectiveness in model sensitivity. Con-
versely, RealTabFormer’s recall correlation soars at 0.97, indicating its superior capability
in accurately identifying true positives. F1 Score, which harmonizes precision and recall,
underscores the high efficacy of RealTabFormer (0.97) in creating synthetic data that re-
flects the balanced metric performance seen in real data, evidenced by the statistically
significant p-values. CTGAN shows a moderate correlation (0.55), indicating a somewhat
effective balance but not nearly as closely aligned with real data as RealTabFormer. The
stronger correlations when using RealTabFormer directly relate to the better fidelity met-
rics as shown earlier in Table 4.4. This indicates that synthetic data with superior fidelity
metrics, implying enhanced statistical representativeness, leads to stronger correlations in
hyperparameter tuning outcomes between synthetic and real data, underscoring the value
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of high-quality synthetic datasets. Figures 4.26 and 4.27 shows the visual representation
of the metrics with the best correlations for the Adult Income dataset.
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4.5.4 HPT Binary Classification (Random Forest)

Table 4.16: Adult Income - Binary Classification - Random Forest

Metric CTGAN RealTabFormer
Pearson  p-value Pearson p-value
Accuracy 0.97437 9.37E-33 0.99111 1.05E-43
Precision 0.93433 3.81E-23 0.96131 1.58E-28
Recall 0.97090 7.46E-35 0.99236 2.80E-45
F1 0.97645 1.25E-33 0.99294 4.14E-46
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Table 4.17: MIMIC dataset - Binary Classification - Random Forest

Metric CTGAN RealTabFormer
Pearson p-value Pearson p-value
Accuracy 0.99751 6.15E-57 0.9855  1.22E-38
Precision 0.98098 7.84E-36 0.96263 6.98E-29
Recall 0.99462 6.15E-49 0.9851  2.34E-38
F1 0.9971 2.40E-55 0.98516 2.11E-38
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Figure 4.29: Correlation of performance on synthetic and real data - CTGAN - MIMIC

4.5.5 HPT Regression model (ANN)

To validate the generalizability of the hypothesis, we perform hyperparameter tuning of
a feed-forward neural network for a regression model. For this, we consider the MIMIC
dataset and use the remaining variables to predict the length of stay’ in the hospital. Figure
4.30 shows the correlation of the Root Mean Squared Error (RMSE) for the prediction.
We perform another experiment using the Adult Income dataset, to predict the hours-per-
week (continuous variable) using the rest variables. Figure 4.31 shows the correlation of
the Root Mean Squared Error (RMSE) for the prediction.
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Figure 4.30: Correlation of RMSE (Root Mean Squared Error) for predicting Length of
stay in hospital using MIMIC synthetic data
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Figure 4.31: Correlation of RMSE (Root Mean Squared Error) for predicting hours-per-
week using Adult Income synthetic data

In Figure 4.30, the correlation line is parallel to the best-fit line, indicating a strong
correlation between the RMSE for HPT using real and synthetic data. This is also evi-
dent by a Pearson correlation coefficient of 0.63, and p-value jle-8. Both datasets show
strong Pearson correlation coefficients for RMSE (0.77 for Adult Income, 0.63 for MIMIC)
and R2 (0.75 for Adult Income, 0.76 for MIMIC), with highly significant p-values. This
suggests that ANNs have a robust predictive capability in both contexts, with predictions
closely aligned with actual outcomes. The relatively low RMSE values indicate good model
accuracy. The MAE presents a mixed outcome, with a relatively low Pearson coefficient
for Adult Income (0.34) and an even lower one for MIMIC (0.03). The p-value for Adult
Income suggests that this result is statistically significant, whereas the high p-value for
MIMIC indicates a lack of statistical significance. The significant p-values for RMSE and
R2 across both datasets reinforce the utility of synthetic data in creating effective predictive
models.

71



Table 4.18: Continuous Prediction Efficacy Using ANN

Metric Adult Income MIMIC
Pearson p-value Pearson p-value

RMSE 0.77 5.62E-11 0.63 9.89E-07
R2 0.75 1.88E-10 0.76 1.78E-09
MAE 0.34 1.30E-02 0.03 8.18E-01

4.5.6 HPT on Real Data and Correlation with Synthetic Data
(ANN)

To validate the hypothesis of applying the parameter tuning from synthetic data to real
data, we reverse the process by tuning the hyperparameters on real data and then applying
those parameters to the synthetic data. The results in Table 4.19 reveal that there is a
strong correlation between the Accuracy, and F1 score, a moderate correlation for Recall,
and a weak to moderate correlation for Precision. Figure 4.32 also shows the regression
lines for the correlation of Accuracy/F1 on synthetic and real data is parallel to the best-fit
line, and the best point indicating the best performance of real data corresponds to the
best point when using synthetic data.

Table 4.19: Income Category prediction - Binary Classification - ANN (Real to synthetic)
- Adult Income dataset

Metric Pearson  p-value

Accuracy 0.92534 7.47E-22
Precision 0.28518 0.044702
Recall 0.62122 1.48E-06
F1 0.81035 1.01E-12
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Figure 4.32: Correlation of performance on synthetic and real data - CTGAN - Adult
Income

4.6 Effect of Stratification in Synthetic Data Genera-
tion

Since HPT is a computationally expensive process, we study the use of stratified random
sampling to save computational time, and accelerate SDG. We perform the stratified ran-
dom sampling approach for hyperparameter tuning of SDG to the Adult Income Dataset,
based on the variable ‘work-class’ and reduce the dataset size from 32561 to 3000. Figure
4.33 shows the distribution of the HD for different hyperparameter combinations for orig-
inal data and stratified samples. As mentioned in Table 4.20, with the stratified sample
we see that we save 261 minutes of computational time for the Synthetic Data Generation
hyperparametes tuning, with a difference of 0.0059 in Mean HD value. Next, to validate
this hypothesis, we applied the best parameters from the stratified sample HPT to the
original real data and we get a Mean HD of 0.1059. Therefore, the Mean HD reduces by a
value of 0.0098, which is not a significant reduction compared to the computational time
saved.
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Table 4.20: Minimum Mean Hellinger Distance and Computational Time for HPT on
stratified real data

Data Minimum Mean Computational
Hellinger Distance Time (Minutes)
Original Data Size 0.0952 293
Stratified Sample 0.1011 74
Computational Time Saved 261
(6]
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Figure 4.33: Boxplot for the Mean Hellinger Distance for HPT using Original and Stratified
Data
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4.7 Explainability using Synthetic Data

Another use of synthetic data is to explain the models trained on real data. Models
which are trained on real data, are often shared with other organizations for testing and
deployment, however, the original data is not shared. In these cases, synthetic data can
help understand how these machine learning models are achieving a specific prediction.
We study the correlation between Mean SHAP values of all features of synthetic and real
data as shown in Table 4.21. The results show that there is a good correlation between
the synthetic and real data mean SHAP values.

Table 4.21: Pearson Correlation Coefficients and p-values of Mean SHAP values between
synthetic and real data

Dataset Pearson Correlation Coefficient P-value

MIMIC 0.99 2.10e — 10
Adult Income 0.81 3.84e — 4
Diabetes 0.85 7.87e — 14

Mean Absolute SHAP Value

Pearson Coefficient: 0.81, p-value: 0.00038 [ ]
p-valu Comparison of Mean Absolute SHAP Values Between Real and Synthetic Data
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Figure 4.34: Comparison of Mean Absolute SHAP Values Between Real and Synthetic
Data - Adult Income Dataset
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Figure 4.36: Comparison of Mean Absolute SHAP Values Between Real and Synthetic
Data - Diabetes Dataset

In a comprehensive analysis spanning three datasets—MIMIC, Adult Income, and Dia-
betes—Pearson correlation coefficients between mean SHAP values of features in synthetic
versus real data reveal significant congruence. For MIMIC, a near-perfect correlation (0.99)
with a p-value of 2.10e — 10 is observed. The Adult Income dataset demonstrates a robust
correlation of 0.81 (p-value: 3.84e — 4), while the Diabetes dataset exhibits a very strong
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correlation of 0.85 (p-value: 7.87e — 14).

These results suggest that synthetic data accurately mirrors the feature importance of
real datasets across diverse fields, including medical, socioeconomic, and health research.
The almost perfect correlation in the MIMIC dataset underscores the potential of syn-
thetic data to serve as a reliable substitute for real data in sensitive or privacy-constrained
research environments. Similarly, the strong correlations in Adult Income and Diabetes
datasets validate the utility of synthetic data for predictive modeling and risk factor anal-
ysis, where real data may be limited.

A limitation to be addressed is the observable differences at the individual feature level
within the SHAP values, which potentially impacts the interpretability of models developed
from such data. Moreover, this analysis primarily utilizes mean SHAP values; however, a
deeper exploration into the width of SHAP value distributions per variable and the ranking
of these variables for feature importance would provide a more nuanced understanding.

The statistical significance of the various correlations presented in the results section,
indicated by low p-values, confirms that the observed linear relationships are not by chance,
enhancing the credibility of synthetic data in high-stakes research settings. This alignment
not only validates the use of synthetic data for training machine learning models where
privacy or data availability concerns exist but also underscores the potential of synthetic
data to provide meaningful insights comparable to real data.
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Chapter 5

Conclusions

5.1 Summary of Contributions

This thesis has made several noteworthy contributions to the field of synthetic data gen-
eration and its application in healthcare, underpinned by the development and implemen-
tation of innovative optimization strategies that balance data fidelity, utility, privacy, and
computational efficiency.

Firstly, we have established notable correlations between fidelity and utility metrics. We
demonstrated the usefulness of synthetic data using various healthcare analytics scenarios,
focusing on computational efficiency. The HPT strategy employed in this thesis reduces
the reliance on utility metrics—indicators of machine learning efficacy—that typically de-
mand substantial computational resources. This efficiency is a pivotal step towards making
synthetic data generation more accessible and practicable for a wider range of applications
within healthcare analytics and beyond.

Secondly, the adoption of the stratified random sampling method has notably reduced
the computational time required for HPT in the Synthetic Data Generation process by up
to 75%. This reduction in time and resource expenditure represents a critical advancement
in streamlining the process of generating high-quality synthetic data, making it a more
feasible option for healthcare organizations of varying sizes and capabilities.

Through various experiments, we have validated the hypothesis that HP'T performed on
synthetic data is effectively transferrable to real data. This finding opens up new avenues
for healthcare organizations to generate synthetic versions of their sensitive patient data
and share the synthetic data with external entities for not only building analytics pipelines
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but also optimization of predictive models via hyperparameter tuning on synthetic data
and using external computing resources. Such a practice not only fosters open data science
initiatives within the healthcare sector but also promotes inter-organizational data sharing
without compromising patient privacy. Our findings confirm that synthetic data, used for
data augmentation to balance class ratios, significantly improves model performance and
generalizability. This method effectively addresses data scarcity and imbalance challenges,
highlighting synthetic data’s role in enhancing model performance and robustness across
different contexts.

Our research demonstrates that synthetic data exhibiting higher fidelity metrics—thus
ensuring better statistical representativeness—show a stronger correlation between the
HPT of predictive models using synthetic and real data. This observation validates our
secondary contribution of optimizing synthetic data using Fidelity as the objective function.
The implications of this finding are profound, suggesting that the quality of synthetic data,
as quantified by its fidelity, is directly linked to the success of hyperparameter tuning and,
by extension, the overall effectiveness and reliability of predictive models trained on this
synthetic data.

Furthermore, this thesis underscores the potential of synthetic data to catalyze open
data science initiatives, extending its impact beyond healthcare to other fields where data
privacy and utility are of paramount concern. By enabling secure data sharing between
organizations, this work contributes to a broader cultural shift towards collaborative inno-
vation and collective advancement in healthcare analytics.

5.2 Limitations

The evaluation of synthetic data’s efficacy in hyperparameter tuning of predictive models
has been limited to binary classification and regression (continuous prediction) models.
This leaves a significant opportunity to extend the investigation into additional analytical
use cases, such as multi-class classification, among others, to provide a more comprehensive
assessment of synthetic data’s utility in diverse modeling challenges.

This research primarily investigates synthetic data produced via CTGANs and Re-
alTabFormer, pinpointing a focused area within the vast landscape of synthetic data gener-
ation (SDG) methodologies. Consequently, this study underscores the necessity for further
exploration into alternative SDG techniques to broaden our understanding and application
of synthetic data across different contexts.

The study’s exploration of use-case agnostic HPT for SDG, focusing on the correlation
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between fidelity and utility metrics, requires further experimentation for comprehensive
validation. Specifically, optimizing the SDG process using the fidelity metric as the objec-
tive function and subsequently examining its correlation across various MLE could enhance
the robustness of the findings. This approach will enable a deeper understanding of how
adjustments to hyperparameters impact the balance between the fidelity of the synthetic
data to the original dataset and its utility across different scenarios.

Regarding dataset scalability, the current study’s experiments are confined to datasets
containing up to 100,000 records. This limitation suggests that conducting experiments
with larger datasets, including real-world hospital data, could offer more robust validation
of the hypotheses. Engaging with extensive, real-world datasets from healthcare facilities
may unveil nuanced insights into the scalability, efficiency, and applicability of synthetic
data methods. This exploration is essential for understanding how synthetic data performs
in the context of complex, real-world healthcare data environments, thereby potentially
identifying unique benefits or uncovering unforeseen challenges that smaller or less diverse
datasets might not reveal.

5.3 Future work

Future research directions will encompass an extensive exploration of privacy metrics,
specifically focusing on Membership Inference Attacks and Attribute Inference Attacks.
These metrics will play a pivotal role in the multi-objective optimization process during
HPT of SDG algorithms. The goal is to achieve a harmonious balance between three
critical aspects: fidelity, utility, and privacy of the generated synthetic data. This nuanced
approach aims to refine the quality of synthetic data while ensuring stringent privacy
protections.

Additionally, the application of HPT strategies to state-of-the-art SDG models, such as
diffusion models, will be explored across diverse data types, including time series and multi-
relational datasets. This expansion will test the versatility and effectiveness of HPT in
enhancing the performance of advanced SDG models across a wider array of data structures,
thereby broadening the applicability of synthetic data in complex healthcare scenarios.

Furthermore, targeted efforts will be directed towards refining the capabilities of CT-
GAN. A significant focus will be on overcoming the challenges associated with generating
synthetic data for datasets containing high cardinality categorical variables. Incorporat-
ing mechanisms for differential privacy into these models will also be a priority, aiming
to bolster the privacy assurances of the synthetic data further. These enhancements are
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expected to substantially improve the utility of GAN-generated synthetic data, making it
more applicable and reliable for a broader range of healthcare data analytics and research
purposes.

Although the data governance for the generation and sharing of synthetic data is out of
scope for this thesis, it is of vital importance to establish such policies to ensure the privacy
protection and ethical use of synthetic data. Collaborations with healthcare organizations,
data custodian agencies, academics and industries are critical to enable the practical vali-
dation and refinement of synthetic data generation and sharing within healthcare settings.
Engaging with real-world data will not only test the theoretical models in diverse, live en-
vironments but also facilitate the translation of research findings into actionable healthcare
solutions. This collaborative approach will bridge the gap between synthetic data research
and its implementation, potentially leading to significant advancements in the use of Al
and ML in healthcare.
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