
Navigating Unsignalized
Intersections: Deep RL-Based
Decision-Making and Control

Framework for Autonomous Vehicles
with Pedestrian Integration

by

Faizan Sana

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2024

© Faizan Sana 2024

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

This thesis consists in part of one manuscript written for publication.

Research presented in Chapters 1 and 2:

In collaboration with Dr. Nasser Lashgarian Azad and Dr. Kaamran Raahemifar, I
led the investigation presented in these chapters, which has been published in [1]. My
role encompassed designing the study, conducting the literature survey, and drafting and
revising the manuscript. I received valuable guidance and feedback from my co-authors
throughout this process.

iii

Abstract

Unprotected left turns at unsignalized intersections, alongside pedestrians and adver-
sarial vehicles, pose significant challenges for Autonomous Vehicle (AV)s. These challenges
stem from the absence of traffic signals or signs, the dynamic nature of the environment
shaped by human interactions at crosswalks, and the variability in intersection layouts.
This thesis delves into addressing these challenges through the application of a hierarchical
Deep Reinforcement Learning (DRL) approach, where the DRL policy governs high-level
decision-making (or planning), and low-level Proportional-Integral-Derivative (PID) con-
trollers handle actuation.

To evaluate and train DRL policies, it was necessary to create a simulation environ-
ment within a high-fidelity environment with realistic behaviors and dynamic vehicle mod-
els. To the best of our knowledge, this research marks a pioneering effort in simulat-
ing pedestrian interactions within a high-fidelity environment, coexisting alongside ad-
versarial vehicles within the CARLA simulation platform. We have dedicated extensive
efforts to the development of this simulation, enabling straightforward customization of
parameters such as the number of pedestrians, adversarial vehicles, and reward functions
amongst others. This is made available open-source at https://github.com/faizansana/
intersection-carla-gym.

The study evaluates five distinct model-free DRL algorithms, namely Deep Q-Learning
(DQN), Deep Deterministic Policy Gradient (DDPG), Proximal Policy Optimization (PPO),
Recurrent PPO, and Soft Actor Critic (SAC). The primary focus of this work is to con-
duct a comprehensive comparative analysis of these DRL algorithms within a hierarchical
framework to enhance AV decision-making in complex and uncontrolled intersection sce-
narios. The training code, with its versatile software architecture is made available at
https://github.com/faizansana/intersection-driving.

Our findings reveal that Recurrent PPO, coupled with a discretized action space, out-
performs the other algorithms, displaying the highest success rate and the lowest accident
rate for executing unprotected left turns in chaotic intersections. This outcome underscores
the potential of Recurrent PPO to navigate such complex traffic scenarios effectively.

The thesis concludes by discussing potential extensions of the proposed hierarchical
DRL system and outlining promising avenues for future research in the field of autonomous
vehicle navigation at challenging and dynamic intersections.

iv

https://github.com/faizansana/intersection-carla-gym
https://github.com/faizansana/intersection-carla-gym
https://github.com/faizansana/intersection-driving

Acknowledgements

In the name of Allah, the Most Gracious, the Most Merciful.

I would like to express my sincere gratitude to my supervisors Professor Nasser Lash-
garian Azad and Professor Kaamran Raahemifar for their invaluable support, guidance,
and encouragement throughout my masters journey. Their expertise, patience, and contin-
uous inspiration have been instrumental in shaping this research and my personal growth
as a student.

Special thanks to Professor Siby Samuel and Professor Gennaro Notomista for their
dedicated reading and constructive feedback on my thesis. Your insights and suggestions
have greatly contributed to the refinement of this work.

I extend my heartfelt appreciation to my parents and family members for their unwa-
vering love, prayers, and unwavering belief in my abilities. Their constant encouragement
and sacrifices have been a source of strength and motivation, pushing me to strive for
excellence.

I also wish to extend my thanks to my esteemed teachers and mentors who have played
a significant role in shaping my knowledge and intellectual curiosity. Your teachings and
mentorship have been instrumental in my academic and personal development.

I am indebted to my friends and colleagues in the Automation and Intelligent Sys-
tems (AIS) group for their companionship, stimulating discussions, and support during
challenging times. Your camaraderie has made this journey more meaningful and enjoy-
able. Equally, my heartfelt gratitude goes to the friends who have joined me on this path,
enriching it with shared experiences and cherished memories.

I am grateful to the Department of Systems Design Engineering at the University of
Waterloo for providing me with the necessary resources, facilities, and opportunities to
pursue my studies and conduct this research.

To all those who have contributed directly or indirectly, your support and encourage-
ment have been invaluable, and I am deeply thankful for your presence in my life.

In conclusion, I offer my profound thanks to everyone who has been part of my journey,
from the bottom of my heart. May our paths continue to intersect and our bonds grow
stronger with time.

v

Dedication

To my parents and family, whose love and unwavering support have been my constant
motivation, this work is dedicated with heartfelt gratitude.

vi

Table of Contents

Author’s Declaration ii

Statement of Contributions iii

Abstract iv

Acknowledgements v

Dedication vi

List of Figures xi

List of Tables xiii

List of Abbreviations xiv

List of Symbols xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Levels of Automation . 4

1.3 Contributions . 6

1.4 Organization . 7

vii

2 Related Work 8

2.1 Graph-Based Approaches . 9

2.2 Optimization-Based Approaches . 11

2.3 Machine Learning-Based Approaches . 12

2.4 Fusion-Based Approaches . 14

2.5 Summary . 17

3 Reinforcement Learning 18

3.1 Q-learning . 18

3.2 Deep Q-Learning . 19

3.3 Deep Deterministic Policy Gradient . 20

3.4 Proximal Policy Optimization . 21

3.4.1 Surrogate Objective Function . 21

3.4.2 Dual Neural Networks: Policy and Value Function 21

3.4.3 Balancing Exploration and Exploitation 22

3.5 Recurrent Proximal Policy Optimization 22

3.5.1 Recurrent Neural Networks . 22

3.5.2 Training Procedure . 23

3.6 Soft Actor Critic . 24

3.6.1 Entropy Maximization and Stochastic Policies 24

3.6.2 Value Networks and Entropy Regularization 24

4 High-Fidelity Simulation Environment & Software Architecture 26

4.1 Adversarial Vehicles . 27

4.2 Pedestrians . 27

4.3 Software Architecture . 30

viii

5 Methodology 35

5.1 Problem Formulation . 35

5.2 Algorithm Architecture . 36

5.2.1 Feature Extractor Module . 37

5.2.2 PID Controllers for Longitudinal and Lateral Control 38

5.3 Observation/State Representation . 38

5.4 Action Representations . 41

5.4.1 Continuous Action Space . 41

5.4.2 Discrete Action Space . 41

5.5 Reward Function . 42

5.5.1 Dense Components . 42

5.5.2 Sparse Components . 43

5.6 Hyperparameters . 44

5.7 Strategic Training: Unprotected Left Turns and Comprehensive Intersection
Scenarios . 44

6 Results 46

6.1 Distributed Training Environment and Machine Specifications 47

6.2 Training on Unprotected Left Turns Only 48

6.2.1 With Pedestrians . 48

6.2.2 Without Pedestrians . 50

6.3 Training in All Intersection Scenarios . 51

6.3.1 With Pedestrians . 51

6.3.2 Without Pedestrians . 52

6.4 Evaluation Metrics . 54

6.4.1 Training on Unprotected Left Turns Only 54

6.4.2 Training on All Intersection Scenarios 55

ix

7 Conclusion and Future Work 57

7.1 Conclusion . 57

7.2 Future Work . 58

References 60

Glossary 66

x

List of Figures

1.1 California AV collision statistics for 2014–2019 based on the defined 8 types
of collisions [2, 3]. 3

1.2 Levels of driving automation as defined by Society of Automotive Engineers
(SAE) J3016 (2021). Figure courtesy of [4]. Copyright ©2021, SAE Inter-
national. 5

2.1 Flowchart of the Rapidly Exploring Random Tree (RRT) algorithm [5]. . . 10

4.1 Top-down view of the simulation environment consisting of the ego vehi-
cle (in red), adversarial vehicles (in blue) and pedestrians (in green). The
locations of the pedestrians, adversarial vehicles, and ego vehicle are ran-
domly initialized for each episode. In this case, 3 adversarial vehicles were
spawned in each lane, totaling to 9 other vehicles and 10 pedestrians for
each crosswalk totaling to 40 pedestrians. Hence there were a total of 50
traffic participants in this scene including the ego vehicle. 29

4.2 Screeenshot of top down view of the CARLA simulation environment within
the container, accessible via a Virtual Network Computing (VNC) client
software. 32

4.3 Illustration showcasing the Dockerized containers, comprising N instances
of CARLA servers alongside a singular main container, with the added ca-
pability of establishing a connection to the main container through Secure
Shell (SSH). 33

4.4 An illustrative representation displaying multiple instances of the service
shown in Figure 4.3, highlighting the architecture’s versatility in being uti-
lized on a single machine. Furthermore, this adaptability extends to repli-
cation, allowing instances to operate on individual development machines
with seamless integration and robust functionality. 34

xi

5.1 Proposed architecture for the ego vehicle decision-making and control. . . . 37

6.1 Episode mean length and reward during training for unprotected left turns
only with four pedestrians. Recurrent PPO has the lowest episode mean
length while SAC demonstrates the highest. Recurrent PPO demonstrates
the highest episode mean reward while DDPG demonstrates the lowest.
DDPG could potentially benefit from further training since the reward is
seen to be increasing. 49

6.2 Episode length and reward during training for unprotected left turns only
without pedestrians. Recurrent PPO demonstrates the lowest episode length
alongside DQN and PPO while DDPG has the highest. PPO has the highest
episode mean reward although there is a significant drop during the train-
ing. This is likely due to the retraining when the simulation environment
segmentation faults due to a bug in CARLA. 50

6.3 Episode length and reward during training for all intersection scenarios with
four pedestrians. PPO has the lowest episode mean length although, in all
algorithms, there seem to be significant oscillations. All algorithms have a
similar mean episode reward with SAC potentially benefiting from further
training. 51

6.4 Episode length and reward during training for all intersection scenarios
without pedestrians. Recurrent PPO has the lowest episode length with all
algorithms having a mean episode length less than the one observed in the
case when training with pedestrians (see Figure 6.3). The mean episode
reward is highest for DDPG with DQN being the lowest. As compared to
Figure 6.3, the reward is higher for all algorithms due to the absence of
pedestrians, as expected. 53

xii

List of Tables

2.1 Results of the unsignalized intersection experiments conducted in [6]. . . . 14

2.2 Summary of the papers. 15

3.1 Comparison of Reinforcement Learning Algorithms 25

4.1 Parameters for Simulation Environment . 28

4.2 Reward Weights within Simulation Environment 30

5.1 PID Controller Parameters . 38

5.2 PID Controller Limits . 40

5.3 Values of Reward Constants . 43

5.4 Training Hyperparameters for the DRL Architectures 44

5.5 The different environmental configurations used to train the DRL algorithms. 45

6.1 System specification for main server machine. 47

6.2 System specification for local development machines. 48

6.3 Comparison of the DRL algorithms within the hierarchical approach when
trained for unprotected left turns only with four pedestrians. 54

6.4 Comparison of the DRL algorithms within the hierarchical approach when
trained for unprotected left turns only with no pedestrians. 55

6.5 Comparison of the DRL algorithms within the hierarchical approach when
trained for all intersection scenarios with four pedestrians. 56

xiii

List of Abbreviations

ACG Automatic Curriculum Generation 12, 13

AGC Autonomous Golf Cart 59

AIS Automation and Intelligent Systems v

AV Autonomous Vehicle iv, xi, 1–4, 8, 12, 13, 26, 27, 35–37, 41, 42, 57, 59

CAV Connected and Autonomous Vehicle 8

CL-RRT Closed-Loop RRT 9

CPU Control Processing Unit 47, 48

CTR Collision-to-Timeout Ratio 14

DARPA Defense Advanced Research Projects Agency 9

DDPG Deep Deterministic Policy Gradient iv, xii, 6, 12, 20, 21, 24, 25, 44, 46, 48–50,
52, 53, 55, 57

DMV Department of Motor Vehicles 1

DNN Deep Neural Network 19, 25, 36–38, 57

DQN Deep Q-Learning iv, xii, 6, 12–14, 16, 19, 25, 44, 46, 48, 50, 53, 56–58

DRL Deep Reinforcement Learning iv, xiii, 6, 7, 13, 17, 18, 31, 36, 38, 44–46, 50, 52,
54–58

GPR Gaussian Process Regression 11

xiv

GPU Graphical Processing Unit 47, 48

IRL Inverse Reinforcement Learning (RL) 13, 16

LSTM Long Short-Term Memory 22, 44

MDP Markov Decision Process xvii, 17, 35, 36

MIT Massachusetts Institute of Technology 9

MPC Model Predictive Control 11, 13–16, 59

NHTSA National Highway Traffic Safety Administration 1, 2, 8

OS Operating System 47, 48

PID Proportional-Integral-Derivative iv, xiii, 6, 27, 36, 38, 40, 41, 57

PPO Proximal Policy Optimization iv, xii, 6, 21–23, 25, 44, 46, 48–53, 55–58

RAM Random Access Memory xvi, 47, 48

ReLU Rectified Linear Unit 44

RL Reinforcement Learning xv, 12–14, 16, 18, 21–26, 42

RNN Recurrent Neural Network 22, 23, 25

RRT Rapidly Exploring Random Tree xi, xiv, 9–11, 15

SAC Soft Actor Critic iv, xii, 6, 24, 25, 44, 46, 48, 49, 51, 52, 55, 57

SAE Society of Automotive Engineers xi, 4, 5

SM Sliding-Mode Control 14

SSH Secure Shell xi, 33

TD3 Twin Delayed Deep Deterministic Policy Gradient 13, 16

TTC Time-to-Collision 12, 27

xv

V2V Vehicle-to-Vehicle 11, 15

VNC Virtual Network Computing xi, 31, 32

VRAM Video Random Access Memory (RAM) 47

WHO World Health Organization 1

xvi

List of Symbols

at Action taken at time t xvii, 18, 20, 24

A set of all possible actions that an agent can take in the Markov Decision Process (MDP).
An action is a decision or choice made by the agent to influence the environment.
18, 35

α Learning rate of the neural network 19

Rt Expected return which is the sum of discounted rewards over a certain time horizon T
18

γ Discount factor 18, 35, 44

π Policy function which maps the states deterministically to actions 18, 24

rt Reward given to a policy at each timestep t 18

R Reward function, which maps a triple of elements (st, at, s
′
t to a real-valued reward

value R(s, a, s
′
) 18, 35

s
′
t Next state after taking action at in state st xvii, 18

st State at time t xvii, 18, 20, 23, 24

P State transition probability function that describes the likelihood of transitioning from
one state to another given a specific action. It is defined as P (s

′ |s, a) 18, 35

S Set of all possible states in the MDP. Each state represents a specific situation or
configuration of the environment. 18, 35

θ Weights of the neural network 19

t Continuous time xvii, 18

xvii

Chapter 1

Introduction

1.1 Motivation

Several organizations, both in academia and industry, are rigorously working towards de-
veloping AVs which have the potential to save thousands of lives every year and create
significant societal benefits [7, 8]. According to a report by the World Health Organization
(WHO), approximately 1.35 million road traffic deaths occur every year with an additional
20–50 million people suffering nonfatal injuries [7]. A study carried out by the National
Highway Traffic Safety Administration (NHTSA) in the United States concluded that 94%
of accidents occurred due to human errors while only 2% were caused by vehicle failures
[9]. Hence, encouragingly, the increased adoption of AVs will likely reduce vehicle acci-
dents and hence decrease the fatalities due to road traffic. If their widespread deployment
is successful, the projected annual social benefits of AVs—which include reducing traffic
congestion and the number of accidents on the road, consuming less energy, and boosting
productivity as a result of reallocating driving time—will reach nearly $800 billion by 2050
[10].

Although the technology for vehicles moving in static environments is well developed
[11], the dynamic nature of the real-world environment has made it extremely challenging
for widespread AV adoption [12]. To experiment with AV technologies in the real world,
the Department of Motor Vehicles (DMV) in California started issuing permits to manu-
facturers in 2014 under the Autonomous Vehicle Tester program [13]. California’s DMV
requires manufacturers to test AVs and report any collision that resulted in bodily injury,
property damage, or death. As of 24 June 2022, 483 collision reports have been filed since
the start of the program in 2014 [2].

1

Since these reports are individually filed by each manufacturer, an analysis needs to be
conducted to understand the trends. Based on the analysis conducted by [3] on the data
between 2014 and 2019, it was realized that the most challenging situation for AVs occurred
when there were changes in the road surface conditions. For instance, when the road is
wet, AVs are more vulnerable to accidents. The study used the Pearson chi-square test
for calculating the relation between various elements and considered both manual override
and autonomous modes. Although the authors did discuss hit-and-run cases, there was
no mention of how AVs respond to such situations. The study also demonstrated that
none of the AVs struck any stationary vehicle or object, regardless of the weather and road
conditions. Although this is remarkable, it is also expected due to the extensive research
being conducted on AV perception tasks as well as improvements in perception data acqui-
sition technologies (camera, LiDAR, etc.). Moreover, 38% of the accidents occurred when
AVs were in manual mode since the driver often disengaged the autonomous mode during
erratic situations. It should also be noted that [3] found that 62% of the collisions were
rear-ended, implying that the following vehicle was at fault. A chart showing the types of
collisions and their percentages for the years 2014–2019 is indicated in Figure 1.1. A more
recent study [14] suggests that these rear-ended crashes are likely due to the conservative
behavior of AVs. An analysis combining the collision and disengagement statistics will
provide further insight into the performance of AVs and their shortcomings.

One of the most complicated and difficult situations for AV navigation is intersections
in urban areas. According to several studies on road accidents, junctions account for 60% of
serious traffic injuries in Europe [15]. According to the NHTSA report on traffic accidents,
29% of all car crashes and 18% of pedestrian fatalities occurred at intersections in 2019
[16]. Furthermore, Cruise, the self-driving division of General Motors, revealed that their
currently deployed AVs in San Francisco make 1400 unprotected left turns every 24 hours,
claiming it to be one of the most difficult maneuvers [17]. They also had to recall their
entire fleet in early September 2022 due to these left turns [18]. Similarly, Waymo, the
Google self-driving car company also struggled with taking left turns in Phoenix.

This is due to the highly interactive nature of intersections which requires AVs to
perceive and take into account large amounts of information from the environment. In
particular, the AV needs to pay attention to traffic indicators such as stop signs and traffic
lights while also being mindful of other vehicles, estimating their speeds and intentions
as well as other road users including pedestrians. As a result, implementing a rule-based
agent that allows for safe as well as reliable decisions is extremely challenging.

2

4
 (2.9%)

30
(21.7%)

85
(61.6%)

7
 (5.1%)

7
 (5.1%) 0

 (0.0%)

1
 (0.7%)

4
 (2.9%)

0

10

20

30

40

50

60

70

80

90

N
u

m
b

er
 o

f
C

o
lli

si
o

n
s

Type of Collision

Figure 1.1: California AV collision statistics for 2014–2019 based on the defined 8 types of
collisions [2, 3].

3

1.2 Levels of Automation

In 2014, the SAE released a seminal document that outlined a comprehensive framework for
categorizing the levels of automation in AVs. Over the years, this document has undergone
several revisions, with the most recent update occurring in April 2021 [4].

The SAE’s classification system divides automation into six distinct levels, each de-
lineating the extent of human involvement in the driving process. Levels 0–2 place the
primary responsibility on the human driver, with automation providing supplementary
support. In contrast, levels 3–5 introduce advanced automated driving features, wherein
the vehicle assumes a more dominant role. Figure 1.2 provides a visual representation of
these levels, while a brief description of each level is presented below:

• Level 0: No driving automation. The vehicle relies entirely on the human driver,
with no automated assistance available.

• Level 1: Driver assistance. The vehicle offers limited assistance, such as steering
or brake/acceleration support, to the driver.

• Level 2: Partial automation. The vehicle provides both steering and brake or ac-
celeration support simultaneously, but the driver remains responsible for monitoring
the driving environment.

• Level 3: Conditional automation. The vehicle can manage most aspects of
driving under specific conditions, but the driver must be ready to intervene when
necessary.

• Level 4: High driving automation. The vehicle is capable of operating without
driver input or intervention but is limited to predefined conditions and environments.

• Level 5: Full automation. The vehicle operates autonomously without requiring
any driver input, functioning in all conditions and environments.

More detailed information about each level can be found in the official SAE J3016 doc-
ument [4]. In the context of this research study, our focus lies on evaluating the capabilities
of AVs at the highest level of automation, namely, SAE level 5.

4

SAE J3016TM LEVELS OF DRIVING AUTOMATIONTM

DRAFT- Stand alone

• lane centering

 OR

• adaptive cruise
control

• local driverless
taxi

• pedals/
steering
wheel may or
may not be
installed

• lane centering

 AND

• adaptive cruise
control at the
same time

• same as
level 4,
but feature
can drive
everywhere
in all
conditions

• automatic
emergency
braking

• blind spot
warning

• lane departure
warning

• traffic jam
chauffeur

You are driving whenever these driver support features
are engaged – even if your feet are off the pedals and

you are not steering

You are not driving when these automated driving
features are engaged – even if you are seated in

“the driver’s seat”

These automated driving features
will not require you to take

over driving

You must constantly supervise these support features;
you must steer, brake or accelerate as needed to

maintain safety

What does the
human in the
driver’s seat
have to do?

Example
Features

When the feature
requests,

you must drive

These are automated driving features
These features

provide
steering

OR brake/
acceleration
support to
the driver

These features
provide
steering

AND brake/
acceleration
support to
the driver

These features can drive the vehicle
under limited conditions and will

not operate unless all required
conditions are met

This feature
can drive the
vehicle under
all conditions

These features
are limited

to providing
warnings and
momentary
assistance

These are driver support features

What do these
features do?

SAE
 LEVEL 0TM

SAE
 LEVEL 1TM

SAE
 LEVEL 2TM

SAE
 LEVEL 3TM

SAE
 LEVEL 4TM

SAE
 LEVEL 5TM

Copyright © 2021 SAE International.

Copyright © 2021 SAE International. The summary table may be freely copied and distributed AS-IS provided that SAE International is acknowledged as the source of the content.

Learn more here: sae.org/standards/content/j3016_202104

Figure 1.2: Levels of driving automation as defined by SAE J3016 (2021). Figure courtesy
of [4]. Copyright ©2021, SAE International.

5

1.3 Contributions

The main contributions of this thesis are as follows:

1. An advanced hierarchical framework is developed, comprising a global planner, high-
level decision-making policy, and low-level PID controllers. The A* algorithm sets
the global plan, while the DRL algorithm sets the high-level decision making policy,
particularly the target speed, and the low level PID controllers attempt to follow
this target speed. The following state-of-the-art discrete and continuous action space
DRL algorithms are used: DQN, DDPG, PPO, Recurrent PPO and SAC.

2. A high-fidelity simulation environment consisting of crosswalks, pedestrians, and
adversarial vehicles is developed using CARLA [19]. The environment is designed
to be stochastic with the pedestrian behavior also controlled by an artificial agent,
in particular, the AIController within the Unreal Engine. The entire simulation
environment is made publicly available for further research and experimentation at
https://github.com/faizansana/intersection-carla-gym.

3. Catering to individual driver preferences, a customizable speed parameter is inte-
grated into both continuous and discrete action spaces. This parameter can be ad-
justed during deployment, offering flexibility to accommodate various driving styles.

4. All algorithms are trained and evaluated within the high-fidelity simulation environ-
ment with extensive testing and analysis. Each algorithm is trained for one million
time steps and tested for 1000 episodes which translates to approximately 12 hours
of training and 2 hours of test time per algorithm. The total time commitment would
be 70 hours if all of the algorithms were to be trained and tested one after the other.

5. A containerized software architecture is carefully crafted to fulfill the dual functions
of testing and training, allowing for quick and iterative experimentation on a variety
of server systems. This carefully designed framework offers a smooth and flexible
environment for thorough analysis and validation, laying the groundwork for rigorous
research endeavors. This is demonstrated in the algorithm repository available at
https://github.com/faizansana/intersection-driving.

It is important to note that unsignalized intersections in this context refer to fully
uncontrolled intersections.

6

https://github.com/faizansana/intersection-carla-gym
https://github.com/faizansana/intersection-driving

1.4 Organization

This thesis is organized as follows:

• Chapter 2 reviews existing research in the field, categorized into graph-based ap-
proaches, optimization-based approaches, machine learning-based approaches, and
fusion-based methods.

• Chapter 3 gives a brief overview of reinforcement learning and discusses in details
the DRL approaches.

• Chapter 4 explains the details and uniqueness of the CARLA simulation environ-
ment design that is used to train the algorithm. This chapter offers researchers
looking to easily repeat and evaluate results a deep investigation of the subtleties
of the simulation environment as well as an in-depth look at the containerized soft-
ware architecture. The thorough explanation guarantees an open and repeatable
experimental design for the research and future work.

• Chapter 5 delves into the technical aspects of the research, starting with problem
formulation and defining the observation and action spaces. It also discusses the hi-
erarchical algorithm, reward function design as well as the defined metrics, providing
a comprehensive overview of the methodological framework employed in this study.

• Chapter 6 discusses the training and test results in simulation.

7

Chapter 2

Related Work

In metropolitan locations, driving across unsignalized, fully uncontrolled, intersections is
always a challenging problem for AVs. The vehicle should decide when and how to cross
the junction safely instead of just being cautious in these circumstances as there typically
is not a traffic light to regulate priorities. Furthermore, these crossroads are frequently
obstructed, making the vehicle’s decision-making task more complex. This is also evident
in the 2019 Traffic Safety report by the NHTSA [16] in which it is observed that 25% of
the accidents occurred at intersections. To tackle intersection scenarios, research on the
proposed solutions can be roughly classified into two categories: (a) research on traffic
elements, and (b) research on AV navigation. Research about part (a) focuses on signal
control at intersections and topological characteristics of the road infrastructure. Some
researchers have proposed using different intersection topologies through demonstrating
their effectiveness to improve traffic flow while ensuring safety [20], while others focus on
optimizing the control of traffic lights at intersections [21, 22, 23]. These control strategies
improve traffic flow if all approaches to an intersection are not equally congested. However,
regardless of the level of traffic, these methods cannot completely eliminate the stop delay of
vehicles [24]. Hence, to increase traffic efficiency and reduce pollution to a greater extent,
several studies focus on the autonomous driving strategy at intersections. Since AVs and
human-driven vehicles are expected to be on the roads in mixed traffic conditions for the
foreseeable future, only research within mixed traffic conditions is considered. Also, those
studies focusing on Connected and Autonomous Vehicle (CAV)s are ignored as part of this
review. The reader is referred to [25, 26, 27] for further discussions on the navigation of
CAVs.

These navigation algorithms to traverse unsignalized intersections can be broadly cat-
egorized into four groups, namely, graph-based, optimization-based approaches, machine-

8

learning-based methods, and approaches that combine two or more of these methods. These
approaches are discussed below.

2.1 Graph-Based Approaches

Graph-based methods such as A* search [28], Dijkstra, and other search algorithms are
commonly used in mobile robotics for path planning purposes [11]. Since dynamic path
planning is required in the case of intersections, the RRT algorithm [5] is commonly used.
RRT is a sampling-based method that can find a possible path within a comparatively
short amount of time and react to changes in the environment. The tree expansion phase
and the path construction step are two fundamental components of the RRT method. The
algorithm generates an initial random configuration and attempts to link it to the current
tree during the tree expansion stage. The distance measure is used to first locate the node
in the tree that is closest to the new configuration which is then used to generate a new
configuration. If the new arrangement avoids collisions, it is linked to the closest node
and inserted as a new node to the tree. During the path construction step, the algorithm
attempts to find a path from the start configuration to the goal configuration. Starting
with the goal configuration, the algorithm locates the node in the tree that is closest to the
goal. It then moves upwards, being terminated when the start configuration is reached.
This algorithm is shown in Figure 2.1.

Since the proposal of RRT, several variants have been developed, including the RRT*
algorithm [29] and Closed-Loop RRT (CL-RRT) [30] which are often used as benchmarks.
CL-RRT was developed by the Massachusetts Institute of Technology (MIT) team for the
2007 Defense Advanced Research Projects Agency (DARPA) Grand Challenge for their
motion planning and control subsystem. As compared to the traditional RRT, the vehicle
model is used to generate more feasible paths considering the kinematics during the path
generation process. In [31], a faster version of the RRT algorithm was introduced by
developing a rule-template set based on traffic scenes and an aggressive extension strategy
of the search tree itself. These rules were generated offline based on the context of the traffic
scenes and saved as templates to be selected based on the short-term goal state. The search
tree was repeatedly regenerated at high frequency to enable obstacle avoidance. In [32],
the authors proposed a spline-based RRT* approach where the minimum turning radius
(or kinematics) of vehicles was satisfied using cubic Bezier curves. They approximated the
shape of the vehicle as an oriented rectangle and used it to confirm the required space of a
moving vehicle. By using Bezier curves, they were able to ensure that the generated paths
were continuous and satisfied the constraints of the vehicle motion [33]. In [34], a prediction

9

Figure 2.1: Flowchart of the RRT algorithm [5].

10

algorithm based on Gaussian Process Regression (GPR) to predict the future locations
of vehicles was combined with the RRT algorithm for motion planning. The proposed
method was evaluated in simulations at a four-way intersection and the capabilities of
fusing probabilistic maps with sampling-based planning methods was demonstrated.

Overall, the main issue of graph search algorithms is that, although they work well
in static environments, with intricacies and swift transitions in intersection environments,
they usually produce conservative decisions. The refresh rate of the planner can also be
challenging, particularly in critical corner-case scenarios. Nonetheless, algorithms based
on graph search methods are interpretable when failures occur.

2.2 Optimization-Based Approaches

Another common idea for navigation at unsignalized intersections is to formulate the situa-
tion as a real-time optimization problem. This involves setting up a cost function, boundary
conditions, and constraints. One of the most popular methods used in this category is the
Model Predictive Control (MPC) approach. The key components of an MPC problem
formulation include obstacle models, ego vehicle models, and a proper optimization solver.

In [35], a Monte Carlo simulation was created to predict the probabilistic occupancy of
other objects on the map, and then, MPC was used to optimize the reference trajectory
based on the current state of the vehicle in a hierarchical fashion. The probabilistic occu-
pancies of the road traffic users were computed offline and the results were subsequently
used to reduce the real-time computational load. In [36], a bilevel controller was described,
consisting of (a) a coordination level and (b) a vehicle level. At the coordination level, the
occupancy time slots at an intersection were calculated while the control commands were
given at the vehicle level. However, they made use of Vehicle-to-Vehicle (V2V) commu-
nications to coordinate that planning. A unified path planning approach using MPC was
devised in [37] with the capability of automatically selecting appropriate parameters for
various types of maneuvers. By modeling the surrounding vehicles as polygons and devel-
oping a lane-associated potential field, the authors could provide better driving comfort
while ensuring safety.

Other optimal control techniques such as the Bezier curve optimization method have
also been implemented for intersection traversing. In [38], the Bezier curve optimization
method was used to cope with the constraints of obstacles at an intersection and solve an
optimization problem through a combination of Lagrangian and gradient-based methods.
To consider kinematic constraints, the authors used a nonlinear kinematic model with

11

slip-free rolling conditions and formalized it into an optimization problem. They used the
Bezier curve parameters to find a new path in the presence of an obstacle via minimizing
quadratic errors between an initial reference path and the newly generated path.

Although these optimization-based approaches are deterministic, several unrealistic as-
sumptions have to be made to formulate the optimization problem and solve it efficiently.

2.3 Machine Learning-Based Approaches

Another common methodology is to use machine learning, particularly neural networks,
due to their universal approximation property. The authors of [39] presented a RL-based
approach, namely, DQN, to drive an AV through occluded intersections. Instead of using
a sparse rewarding scheme in which rewards are based on collisions, they proposed the
use of a risk-based reward function for punishing risky situations. The risk was defined as
follows: a safe stop condition where the ego vehicle could stop behind a conflict zone, and
a safe leave condition wherein the ego vehicle could enter the conflict zone before another
vehicle or if another vehicle had already left the zone. The RL agent learned a high-level
policy where the action space only consisted of stop, drive fast, and drive slow actions. The
actuation was handled by the low-level controllers, which the authors claimed improved
the quality of learning and allowed for lower update rates by the RL policy. The risk-
aware DQN approach was compared against collision-aware DQN and a rule-based policy
in CARLA [19]. More information on the rule-based policy can be found in [39]. It was
found that the collision-aware DQN approach was less stable during the training, which
was done for 400 thousand training steps. During their experiments, it was seen that the
rule-based policy was the most conservative while the collision-aware DQN approach was
the most aggressive. They also assessed these algorithms on more challenging scenarios
with dense traffic, severe occlusion, increased sensor noise, and a shorter sensor range (40
m). Risk-aware DQN had the highest success rate in all scenarios with the lowest being
80% in dense traffic. However, the intersections used in that work did not have crosswalks
and every vehicle was assumed to be of the same length.

In [40], curriculum learning was used to learn driving behavior at four-way urban inter-
sections. Curriculum learning was first introduced in [41] to speed up the learning process
by first training a model with a simpler task and gradually increasing the complexity of
the problem. Since designing the curriculum itself is a challenging task, the authors pro-
posed an Automatic Curriculum Generation (ACG) algorithm. They trained a DQN and
a DDPG algorithm using the ACG and random curricula. They also used a rule-based
algorithm and the Time-to-Collision (TTC) to compare the results. The algorithms were

12

evaluated in two scenarios: (a) intersection approaching in which the ego vehicle had to
stop at the stop line and (b) intersection traversing. The algorithm trained using the ACG
had the best mean reward with a success rate of 98.7% for the intersection-approaching
scenario and 82.1% during the intersection traversing. It is also important to note that
the ACG-based curricula required the lowest number of training steps, implying a more
efficient training. However, the algorithm needed to be tested in other complex scenarios
to show more robustness. Moreover, the authors only considered other vehicles as road
users.

In [42], an RL agent was introduced that was aware of the effects that the ego vehicle
would have on other human-driven vehicles and leveraged that information to improve
efficiency. The authors trained a model of a human driver using Inverse RL (IRL) which
was used to signify how a human driver would react to the actions of other vehicles. That
model was then used as part of the reward function of the AV’s RL agent. They tested
their algorithm in simulations and demonstrated that the RL agent could be taught to
let human participants go first by reversing itself at an intersection. This was a human-
interpretable result that was not explicitly programmed. However, they assumed that the
agent had a bird’s-eye view of the environment and therefore had access to all the states.
They also only considered interaction with a single human driver and argued that modeling
interactions with multiple road users was not immediately clear.

In [43], a DRL agent using DQN was trained using CARLA to control the AV within
a complex scenario involving motorcycles, pedestrians and adversarial vehicles. The input
data comprised four consecutive frames from a frontal camera, resized to 144x144, along
with a 2x1 vector specifying the AV’s destination. The action space encompassed nine
discrete actions, allowing for variations in steering, throttle, and brake combinations. The
reward function was designed to penalize crashes, invasion of other lanes and rewarded
positively for reaching the destination. The agent was tested within five different scenarios
involving various number of pedestrians and adversarial vehicles. However, the destination
was always set to a waypoint which involved the ego vehicle only going straight. Although
training was done for 3,000 episodes, testing was only done for a mere 10 episodes for each
scenario. It was also realized that the different scenarios, although containing increasing
number of pedestrians and vehicles, were spawned in different parts of the town randomly
rather than at the intersection itself. Authors of [44], combine a DRL agent with MPC to
derive the optimal policy. The coupled RL and MPC architecture is run in parallel and
control output is selected depending on the safety discrete controller. They trained a Twin
Delayed Deep Deterministic Policy Gradient (TD3) to output longitudinal control and a
path selector for lateral control.

13

2.4 Fusion-Based Approaches

To deal with the drawbacks of the individual methods, some researchers have focused on
combining them.

For instance, in [45], a hierarchical algorithm was introduced in which a high-level
decision-maker made decisions for how the vehicle had to drive through an intersection and
a low-level planner optimized the motion trajectories to be safe. The high-level decision-
maker was implemented using DQN, an RL framework, while the low-level planner used
MPC. The MPC method was not used directly since it would significantly add to the
computational complexity due to an increasing number of vehicles at an intersection. Using
the traffic configuration, the MPC module optimized the trajectory while the high-level
decision-maker solved the planning problem. The authors in [6] examined their algorithm
in simulations and compared it using Sliding-Mode Control (SM). They performed two
experiments, an intersection with a single crossing and one with a double crossing, and
benchmarked it using the success rate and the Collision-to-Timeout Ratio (CTR). Table 2.1
shows the results of their experiments.

Table 2.1: Results of the unsignalized intersection experiments conducted in [6].

Controller Success Rate CTR

Single Double Single Double
SM 96.1% 90.9% 72% 93%
MPC 97.3% 95.2% 45% 76%

As seen in Table 2.1, the algorithm with MPC outperformed the SM in both cases.
In addition, they found that the agent involving MPC converged much faster due to the
immediate reward available to the RL policy (104 vs. 4.104 training episodes). However,
they limited the scope of the problem by only considering at most four vehicles at any
moment. They also focused on the longitudinal control while assuming the lateral con-
trol already existed. Additionally, they only considered other vehicles although they did
mention that the method could be extended to other road users. An enhancement to the
model would be the incorporation of a safety layer after the decision-making algorithm to
limit the acceleration values for the system to stay safe. A collision avoidance system that
uses the environment status and desired accelerations to determine if the present path has
a collision risk and enables much better bounds to prevent the collision would also likely
enhance the outcomes. A summary of the papers discussed is shown in Table 2.2.

14

Table 2.2: Summary of the papers.

Paper Pros Cons

[31] Allowed for obstacle avoidance
due to the high-frequency regen-
eration of a tree.

Computationally expensive. Re-
quired much offline computa-
tion.

[32] Ensured that paths generated
were continuous and satisfied ve-
hicle constraints. Tested in the
real world.

Assumed that vehicles followed
the path exactly with minimal
error.

[34] Fused stochastic maps with a
sampling-based RRT algorithm.
Tested at a 4-way unsignalized
intersection.

The model was created for pre-
dicting other vehicle’s future lo-
cations and could not account
for varying vehicle speeds.

[35] Incorporated a safety process
within the decision-making
stage. The whole process of
planning and safety assessment
took less than 100 ms.

Assumed other vehicles kept a
constant velocity along the road
section. They did not account
for unusual events such as jay-
walking, sudden reversing, etc.

[36] Improved stability and perfor-
mance at intersections by us-
ing a bilevel controller. Demon-
strated that the controller had a
high performance even in cases
of high positioning error.

Used V2V communication which
does not always exist in current
systems. Controller needs to be
tested in the situation of contin-
uously oncoming vehicles.

[37] Allowed maneuvers such as ramp
merging, lane change, etc., to be
determined by the MPC gener-
ated path. Infused both safety as
well as comfort within the MPC
constraints.

Assumed fully observable envi-
ronment.

[38] Low computational cost of re-
planning.

Assumed no noise in perception.

Continued on next page

15

Table 2.2 – continued from previous page

Paper Pros Cons

[39] Accounted for occlusions that
occur at intersections. De-
fined a risk-based reward func-
tion instead of a sparse reward-
ing scheme.

Discretized action space (3 ac-
tions). Assumed all other vehi-
cles were of the same length.

[40] Used curriculum learning [41] to
speed up training. High suc-
cess rate for both intersection-
traversing and -approaching sce-
narios.

Considered traffic users to only
consist of vehicles. Required fur-
ther testing in more complex sce-
narios.

[42] Used IRL and incorporated a
policy into the reward function
while training the RL agent.

Assumed a fully observable envi-
ronment with a bird’s-eye view
of the environment. Only con-
sidered interaction with a single
other human driver.

[43] Trained a DQN agent within
CARLA to go straight at a
complex intersection including
pedestrians, cyclists and adver-
sarial vehicles. Outputted both
lateral and longitudinal control.

Testing was limited to only 10
episodes. Variation of pedes-
trians and adversarial vehicles
was in entire region rather than
specifically at intersection.

[44] Trained a TD3 algorithm in
parallel with MPC where each
model was selected based on a
binary safety controller.

Trained and tested within cus-
tom environment.

[45] Used a hierarchical controller
to separate high-level decision-
making from lower-level control.
Faster model convergence.

No safety layers. Only out-
putted longitudinal control, as-
suming lateral control existed.

16

2.5 Summary

A couple of key issues in the above studies along with a possible solution are summarized
as follows:

• Complexity of Intersection Scenarios:

– Many existing studies employ overly simplistic intersection scenarios for algo-
rithm testing and development. Pedestrian dynamics are often neglected, and
simple kinematic models are used, leading to a lack of realism in the simulated
environment.

– Solution: Develop a more realistic and dynamic environment using a high-
fidelity physics engine, incorporating pedestrian presence at each crosswalk.

• Limited Accessibility and Collaboration:

– Most studies customarily develop unique environments, restricting accessibility
for other researchers to test and validate findings. This hinders the ability to
benchmark between algorithms and impedes collaborative progress in the field.

– Solution: Develop an open-source simulation environment, fostering collabo-
ration and advancement in the field.

• Challenges with Model-Based Techniques:

– Model-based techniques, while deterministic, pose challenges in real-world appli-
cability due to the necessity of an MDP formulation and therefore the accurate
estimation of transition probabilities.

– Solution: Propose a balanced approach by combining the deterministic nature
of traditional control algorithms with the adaptability and learning capabili-
ties of DRL. This hybrid solution aims to address the complexity of real-world
scenarios, ensuring both predictability and adaptability in algorithmic decision-
making.

17

Chapter 3

Reinforcement Learning

This chapter provides a brief overview of RL and explains the DRL algorithms used for
training. Within the RL framework, an agent is trained to take an action at at time t
within a state st. The policy is normally referred to as π. The agent then transitions to
state s

′
t receiving a reward of rt. The state transition probability P : S × A × S → [0, 1]

represents the system dynamics, the reward function R : S × A × S → R gives the real
valued reward at each time step, and γ ∈ (0, 1] is the discount factor which prioritizes
earlier rewards and provides stability in the cases of infinite time horizon problems [46].

The goal of RL is to select a sequence of actions to maximize the expected return Rt

=
∑T

k=0 γ
trt+k according to a policy π : S → A on state st.

In essence, the overarching objective of RL is to devise a policy π that strategically
guides the agent through the environment to maximize the expected return Rt, thus achiev-
ing the underlying goal with optimal efficiency. This endeavor entails striking a balance
between exploring new avenues and exploiting acquired knowledge to secure the best pos-
sible long-term rewards.

3.1 Q-learning

In Q-learning, the state-action value function Qπ(s, a) = E[
∑∞

t=1 γ
trt|s0 = s] for a policy π

represents the discounted accumulated reward obtained by the agent when taking action at
from state st and then following policy π. Given an optimal policy defined by the following
Bellman equation:

Q∗(s, a) = Es′ [r(s, a) + γmax
a′

Q∗(s, a)|s, a] (3.1)

18

the optimal policy can then be found using the maximum Q value at every time step.

π∗(s) = argmax
a′

Q∗(s, a) (3.2)

Q-learning is a model-free reinforcement learning algorithm, meaning it does not require
a model of the environment’s dynamics. Instead, it directly learns the Q-values through
interactions with the environment. Once the Q-values are sufficiently learned, the agent
can select actions by choosing the one with the highest Q-value in a given state, resulting
in effective decision-making.

Although equation 3.1 can be solved using value iteration for finite state and action
space, approximate methods must be used for continuous and high dimensional state
spaces. This is the reason behind the development of DQN [47].

3.2 Deep Q-Learning

In order to be able to approximate the optimal state-action value function for continuous
state spaces, Deep Neural Network (DNN)s are used where Q∗(s, a) ≈ Q(s, a; θ) where θ
represents the weights of the network [48]. Therefore, the solution to equation 3.1 can be
approximated by this neural network by minimizing the following loss function:

L(θ) = Es′ [(r(s, a) + γmax
a′

Q∗(s, a; θ−)−Q(s, a; θ))2] (3.3)

where θ− represents the parameters of a fixed and separate target network. This is required
in order to ensure stability and convergence of the training along with a experience replay
buffer that is used to generate batches of training samples. This algorithm is known as
DQN. Given an experience sample (s, a, r, s

′
), the neural network weights are updated as

follows:
θ ← θ + α(r + γmax

a′
Q∗(s, a; θ−)−Q(s, a; θ))∇θQ(s, a; θ) (3.4)

where α is the learning rate.

As seen in this case, although DQNs can handle continuous state spaces, they can only
output a discrete set of actions. Although a continuous state space can be discretized, this
leads to the problem of the curse of dimensionality [49].

19

3.3 Deep Deterministic Policy Gradient

To address the challenges posed by high-dimensional continuous action spaces in reinforce-
ment learning, a breakthrough approach was introduced by Lillicrap et al. in their work
[50], where they presented the DDPG algorithm. This method extends the Q-learning
framework to continuous action domains, offering a potent solution for a wide range of
real-world applications.

The DDPG algorithm is characterized by its utilization of an actor-critic architecture,
which involves two distinct neural networks: an actor network represented by µ(s, θµ),
where θµ denotes the network parameters, and a critic network denoted as Q(s, a; θQ),
with θQ being its associated parameters. In practice, when provided with a state st, the
actor network produces an action at, which is subsequently passed to the critic network.
Given the current state st and the action at, the critic network evaluates the quality of the
action by predicting its state-action value or Q value.

To ensure training stability and convergence, the DDPG algorithm employs the concept
of target networks, denoted as µ− andQ−. In essence, these target networks are periodically
updated to track the learning progress. Consequently, the DDPG architecture is comprised
of four neural networks: two actor networks and two critic networks.

The target policy network is updated using the following equation:

θµ
′

= τθµ + (1− τ)θµ
−

(3.5)

Similarly, the target critic network is updated using a similar equation:

θQ
′

= τθQ + (1− τ)θQ
−

(3.6)

Here τ << 1 is a hyperparameter used for the target update rate.

To balance the trade-off between exploration and exploitation, an exploratory noise
term ζt is commonly added to the deterministic action derived from the actor network:

at = µ(st|θµ) + ζt (3.7)

This noise introduces a controlled level of randomness, allowing the agent to explore differ-
ent regions of the action space while leveraging its learned policy. The interplay between
deterministic and stochastic actions enables effective learning and adaptation in complex
and continuous environments.

20

In summary, the DDPG algorithm provides a powerful framework for addressing the
challenges of continuous action spaces in RL. By employing an actor-critic architecture,
target networks, and a balanced exploration strategy, DDPG facilitates the training of
agents in real-world scenarios that involve intricate and high-dimensional action spaces
[51].

3.4 Proximal Policy Optimization

PPO represents a significant advancement in RL, specifically within the realm of on-policy
policy gradient methods. This approach offers a robust and efficient framework for training
agents in complex environments by optimizing a surrogate objective function. PPO tackles
the fundamental challenge of achieving a balance between exploration and exploitation, a
pivotal aspect in RL [52].

3.4.1 Surrogate Objective Function

At the core of PPO lies the optimization of a surrogate objective function, which serves
as an approximation of the true objective—maximizing the expected cumulative reward.
The surrogate objective guides the updates to the agent’s policy in a manner that ensures
gradual and consistent improvement.

The cornerstone of PPO’s effectiveness is the use of a clipped surrogate objective, given
by the following equation:

LCLIP(θ) = min(rt(θ) · At, clip(rt(θ), 1− ϵ, 1 + ϵ) · At) (3.8)

In this equation, rt(θ) denotes the probability ratio between the new and old policies for a
specific action taken in a particular state. This probability ratio provides a measure of how
much the policy has changed. The term At represents the Advantage, a value indicating
the relative advantage of taking an action in a particular state. The clipping operation
constrains the policy update to a range defined by (1− ϵ) and (1+ ϵ). This prevents overly
large policy updates that could destabilize the learning process.

3.4.2 Dual Neural Networks: Policy and Value Function

Similar to the DDPG approach, PPO employs a dual-network architecture consisting of
two essential components: the policy network and the value function network.

21

1. Policy Network (Actor): The policy network, often referred to as the actor, plays
a pivotal role in determining the agent’s action selection policy. Given a state, the
policy network outputs a probability distribution over available actions, guiding the
agent’s decision-making process.

2. Value Function Network (Critic): The value function network, or critic, serves
as an essential component for estimating the expected cumulative reward associated
with a particular state. By approximating the value of states, the critic assists the
agent in evaluating the desirability of various actions.

3.4.3 Balancing Exploration and Exploitation

PPO’s strength lies in its ability to balance exploration and exploitation effectively. The
clipped surrogate objective enforces controlled policy updates, preventing drastic shifts that
might hinder the learning process. This measured approach to policy updates ensures that
the agent gradually improves its performance while mitigating the risks of destabilization
[53].

In conclusion, PPO presents a powerful paradigm for training agents in RL. Through its
surrogate objective optimization and clipped policy updates, PPO achieves a delicate equi-
librium between exploration and exploitation. By utilizing dual neural networks for policy
and value function estimation, PPO tackles the challenges posed by complex environments,
contributing significantly to the advancement of RL techniques.

3.5 Recurrent Proximal Policy Optimization

Although PPO has gained prominence due to its ability to effectively optimize policies for
sequential decision-making tasks, it still may fall short in capturing underlying dynamics
in environments where temporal dependencies and sequential patterns are prevalent. Re-
current PPO is an extension of PPO that incorporates Recurrent Neural Network (RNN)s
(also known as Long Short-Term Memory (LSTM) networks) into the policy network ar-
chitecture.

3.5.1 Recurrent Neural Networks

RNNs are a class of neural networks well-suited for processing sequential data. Unlike
traditional feedforward networks, RNNs possess a hidden state that maintains memory

22

of past inputs, enabling them to capture temporal dependencies. In Recurrent PPO, the
policy network is transformed from a conventional feedforward structure to an RNN-based
architecture. The RNN takes both the current state and the previous hidden state as
inputs and produces a probability distribution over actions as output.

Mathematically, the hidden state update in the RNN can be described as follows:

ht+1 = f(ht, st) (3.9)

where ht+1 represents the updated hidden state at time t + 1, f is the recurrent function
capturing the temporal relationships, and st denotes the current state at time t.

3.5.2 Training Procedure

The training procedure of Recurrent PPO follows the fundamental principles of the original
PPO algorithm. The primary distinction lies in the utilization of the RNN-based policy
network. The surrogate objective function remains a cornerstone of optimization, and
clipped policy updates continue to be employed to ensure stability during training. The
modified policy network enhances the agent’s ability to capture sequential dependencies
within the observed data.

An essential feature of Recurrent PPO is its ability to handle variable-length sequences
of observations, a characteristic particularly useful in tasks with sequential data. The
recurrent architecture empowers the agent to effectively process and interpret data points
in a sequential manner. This adaptability is especially advantageous in scenarios such as
time-series analysis or tasks with partial observability.

Mathematically, the recurrent state update equation (equation 3.9) enables the agent
to maintain contextual information across time steps, ensuring that the agent benefits from
historical observations.

In conclusion, Recurrent PPO presents a valuable extension of the PPO algorithm,
introducing RNNs to handle sequential data in RL. The integration of RNNs into the
policy network architecture equips the agent with the ability to model temporal dependen-
cies and effectively process variable-length sequences. Through the utilization of a clipped
surrogate objective function and an enhanced policy network, Recurrent PPO strikes a bal-
ance between exploration and exploitation while accommodating the demands of temporal
data. The algorithm’s potential impact spans across various applications, demonstrating
its significance in advancing the capabilities of RL in dynamic and sequential contexts.

23

3.6 Soft Actor Critic

The SAC algorithm represents a notable advancement in the realm of RL, particularly
within the domain of model-free methods. Similar to its counterparts, SAC employs actor
and critic networks to facilitate optimal policy learning. However, what sets SAC apart is
its distinctive approach to policy optimization, where the maximization of both expected
cumulative reward and entropy are paramount.

3.6.1 Entropy Maximization and Stochastic Policies

In contrast to DDPG, SAC introduces an essential modification in its policy optimization
objective. SAC explicitly aims to maximize the entropy of the policy distribution. Entropy
serves as a measure of the randomness or uncertainty in the policy’s action selection,
effectively quantifying the diversity of actions chosen in a given state.

The key motivation behind maximizing entropy is twofold. First, it encourages the
policy to explore a wider range of actions, which is particularly valuable in environments
with multiple optimal solutions or where exploration is crucial. Second, the entropy term
contributes to a more fine-grained trade-off between exploration and exploitation, allowing
the algorithm to adapt its exploration strategy dynamically based on the current state.

Mathematically, the entropy of the policy distribution π is defined by the expression:

H(π) = −Ea∼π(a|s) [log π(a|s)] (3.10)

Here, π(a|s) represents the probability of selecting action at in state st according to the
policy network π.

3.6.2 Value Networks and Entropy Regularization

SAC introduces another innovation by adopting stochastic policies, which means that the
policy network outputs a probability distribution over actions, rather than deterministically
selecting a single action. This stochastic nature contributes to the exploration-enhancing
properties of the algorithm and aligns well with the goal of entropy maximization.

Furthermore, SAC employs two separate value networks, often referred to as critics,
to estimate the state values. These value networks assist in entropy regularization by
providing a more comprehensive understanding of the environment’s dynamics. By utilizing

24

two critics, SAC leverages their ensemble predictions to mitigate overestimation bias and
enhance the accuracy of value estimation.

The SAC algorithm’s distinctive features make it particularly well-suited for scenar-
ios that demand a balance between exploration and exploitation. Applications involving
robotic control, continuous control tasks, and scenarios where exploration is vital can
greatly benefit from SAC’s enhanced exploration capabilities. Furthermore, SAC’s adapt-
ability to different levels of exploration and its potential for handling complex action spaces
contribute to its effectiveness in real-world applications.

In summary, SAC represents a pioneering advancement in reinforcement learning that
prioritizes both expected cumulative reward and entropy maximization. Through the uti-
lization of stochastic policies and the incorporation of two value networks, SAC introduces a
nuanced exploration-exploitation trade-off, making it a powerful tool for tackling a diverse
range of challenges in autonomous decision-making and control systems.

Table 3.1 shows the comparison of the RL algorithms in this research.

Algorithm Type Action Space Function Approx. Exploration Continuous Temporal
Q-learning Model-Free Discrete No Epsilon-Greedy No No

DQN Model-Free Discrete Yes (DNN) Epsilon-Greedy No No
DDPG Model-Free Continuous Yes (DNN) Exploration Noise Yes No
PPO Model-Free Continuous Yes (DNN) Clipped Surrogate Yes No

Recurrent PPO Model-Free Continuous Yes (RNN) Clipped Surrogate Yes Yes
SAC Model-Free Continuous Yes (DNN) Entropy Regularization Yes No

Table 3.1: Comparison of Reinforcement Learning Algorithms

25

Chapter 4

High-Fidelity Simulation
Environment & Software
Architecture

A pivotal cornerstone of this research lies in the creation of a sophisticated simulation
environment utilizing a high-fidelity simulation tool. This undertaking plays a vital role
in enabling comprehensive comparisons and training of the proposed algorithms. The
selection of a high-fidelity environment, encompassing realistic pedestrian and adversarial
vehicle behaviors, is paramount for accurate assessment and robust learning.

A notable challenge within the realm of AV control research pertains to the inherent
diversity of simulation tools adopted by researchers, often hampering effective result com-
parisons. Particularly concerning RL algorithms, where agent policies are refined through
interactions with the environment, the need for a realistic and intricate simulation setup
is of utmost importance.

Addressing these challenges, this research leverages CARLA [19], a widely acclaimed
high-fidelity AV simulation tool renowned for its dedication to replicating real-world intri-
cacies. CARLA emulates a meticulously detailed and accurate environment, incorporating
physics, sensor models, and graphical attributes. The simulation environment, embracing
both pedestrians and vehicles, is constructed using CARLA v0.9.10.1, crafted in alignment
with OpenAI’s gym format [54]. The containerized solution development ensures that the
simulation environment created is independent of CARLA versions, allowing for rapid in-
stantiation of new instances, thereby enhancing adaptability and expediting the setup of
the simulation environment.

26

To imbue the environment with essential variability, a robust randomization strategy
is employed. The initiation of the ego vehicle’s starting position, alongside the positioning
of other vehicles and pedestrians, undergoes randomization. This deliberate randomness
augments the richness of the simulation, capturing the stochastic nature inherent in real-
world driving scenarios. Apart from crosswalks, pedestrian compliance infrastructure is
absent, granting pedestrians unequivocal right of way.

In essence, the development of this high-fidelity simulation environment signifies a
pivotal advancement in this research, affording a standardized and realistic platform for
algorithm assessment and training, thereby catalyzing meaningful progress in the domain
of AV control. This environment has been made open-source and can be found at the
following link https://github.com/faizansana/intersection-carla-gym.

4.1 Adversarial Vehicles

The deployment of adversarial vehicles within the simulation environment is strategically
orchestrated. Specifically, these adversarial vehicles materialize randomly across the three
lanes distinct from the ego vehicle’s lane, a design choice harmonizing with the inherent
structure of the four-way intersection. Notably, the starting position of each adversarial
vehicle is subject to randomized selection within its designated lane.

The dynamic movement of adversarial vehicles is fueled by a randomized route assign-
ment for every instance, a feature meticulously achieved through the fusion of the TTC
algorithm and a pair of PID controllers—one dedicated to lateral control and the other
steering the longitudinal aspect. To encapsulate a spectrum of driving behaviors, the min-
imum permissible distance maintained between the adversarial vehicles and other road
users is stochastically drawn from a range spanning 5m to 10m. This parameterization
ensures that higher values signify a cautious driving approach, in stark contrast to the
more assertive demeanor embodied by lower values. Each adversarial vehicle is controlled
by CARLA’s traffic manager.

4.2 Pedestrians

The intricate integration of pedestrians into the simulation fabric follows a thoughtfully
curated methodology. Each crosswalk becomes the stage for a pedestrian’s entry, with their

27

https://github.com/faizansana/intersection-carla-gym

precise emergence points carefully randomized within the crosswalk boundaries. The selec-
tion of pedestrians’ physical attributes—height and body mass—is inherently stochastic,
anchored in pre-established blueprints available within the CARLA library.

The pedestrians’ velocity profile adheres to a specified cap of 1.4m/s, a parameterization
designed to emulate a realistic walking pace. The orchestration of pedestrian movements
rests upon the capable shoulders of the Unreal Engine’s AIController, adept at assimilating
environmental perception cues to inform its course of action. Notably, these pedestrians
collaborate harmoniously, sharing objectives and knowledge to synchronize their move-
ments and collectively pursue cooperative tasks.

A visual insight into this is shown in Figure 4.1, presenting a top-down view that show-
cases the interplay between the ego vehicle (in red), adversarial vehicles (in blue), and
pedestrians (in green). Each episode ushers in a new symphony of randomness, config-
uring the positions of pedestrians, adversarial vehicles, and the ego vehicle, culminating
in a dynamic tableau of motion and interaction. The route’s trajectory is delineated in
black, while the ego vehicle’s orientation is highlighted by an arrow for visual clarity. This
composite portrayal encapsulates the intricate choreography of vehicular and pedestrian
dynamics within the simulation milieu.

Table 4.1 shows the various parameters that can be changed within the configuration
file and Table 4.2 shows the reward function weights.

Table 4.1: Parameters for Simulation Environment

Parameter Type Description
obs space String Observation space type ("dict" or "normal")
continuous Boolean Whether the action space is continuous
target speeds List[float] List of discrete target speeds for speed control (m/s)
desired speed Float Desired speed for continuous speed control (m/s)
dt Float Time step duration (s)
port Integer Port for communication with server
render Boolean Whether to render the simulation (True/False)
ego vehicle filter String Filter for selecting ego vehicle
num veh Integer Number of adversarial vehicles
num ped Integer Number of pedestrians
max steps Integer Maximum number of simulation steps
CAM RES Integer Camera resolution for rendering
max waypt Integer Maximum number of waypoints in the route
pedestrian proximity threshold Float Threshold for proximity to pedestrians (m)
vehicle proximity threshold Float Threshold for proximity to vehicles (m)

28

Figure 4.1: Top-down view of the simulation environment consisting of the ego vehicle
(in red), adversarial vehicles (in blue) and pedestrians (in green). The locations of the
pedestrians, adversarial vehicles, and ego vehicle are randomly initialized for each episode.
In this case, 3 adversarial vehicles were spawned in each lane, totaling to 9 other vehicles
and 10 pedestrians for each crosswalk totaling to 40 pedestrians. Hence there were a total
of 50 traffic participants in this scene including the ego vehicle.

29

Table 4.2: Reward Weights within Simulation Environment

Reward Component Description
completion Route completion reward
terminal collision Collision penalty with vehicle
terminal pedestrian collision Collision penalty with pedestrian
terminal timeout Timeout penalty
v eff under limit Velocity reward for being under speed limit
v eff over limit Velocity penalty for exceeding speed limit
step Penalty for needing another step
action reg Penalty for non-smooth actions
yaw delta Penalty for yaw delta w.r.t. road heading
lat dev Penalty for lateral deviation
dist from goal Penalty for distance from goal
progress Progress reward
pedestrian proximity Penalty for being close to pedestrians
vehicle proximity Penalty for being close to vehicles

4.3 Software Architecture

One of the key works in this research was designing a modular containerized solution with
Docker that not only facilitates seamless development but also enables multiple developers,
whether on the same machine or different machines, to collaboratively work on and test
various software versions with the CARLA backend, ensuring flexibility and efficiency in
the development and testing processes. This was done due to the following reasons:

• Conducting simultaneous training for five distinct algorithms necessitates the ini-
tiation of five separate CARLA instances. This imperative arises from the need to
isolate the internal state of the physics engine within each CARLA instance, ensuring
independent and accurate runs for each algorithm.

• Enabling collaborative use of the simulation environment among research team mem-
bers poses a substantial setup challenge. Without containerization, this involves con-
figuring binary packages, installing CUDA and its dependencies, setting up Python
packages, and meticulously following installation instructions for the specific ver-
sion of CARLA, among other tasks. However, with Docker, all these previously
time-consuming and error-prone steps are consolidated into a single, straightforward
command, vastly simplifying and expediting the setup process.

30

• Executing the training process for five algorithms across four configurations, espe-
cially in this case, proves to be an exceptionally demanding task, necessitating sub-
stantial computational power. To streamline and distribute this intensive workload
across multiple server machines with minimal setup effort, the implementation of
this architecture becomes indispensable. The architecture chosen enables efficient
parallelization and utilization of resources, facilitating the intricate task of training
complex algorithms on diverse configurations while optimizing the use of available
compute power.

While the comprehensive adoption of a Dockerized setup provides numerous advantages,
it does come with a notable drawback – the immediate lack of support for desktop-based
visualization. To overcome this limitation, a strategic solution has been implemented by
exposing a VNC server, enabling the execution of desktop-based visualization software.
This functionality proves invaluable for researchers, as it allows for the visual inspection,
debugging, and interactive exploration of the simulation environment. This qualitative
observation capability enhances the understanding of the simulated scenarios and facilitates
more effective troubleshooting and refinement of the overall system. Figure 4.2 shows
a screenshot of the VNC instance that developers can use for qualitative views of the
simulation environment.

A detailed illustration of the training process for DRL algorithms within this software
architecture is depicted for a singular developer in Figure 4.3. In this particular scenario,
where five DRL algorithms undergo training, the initiation of five separate CARLA con-
tainers is initiated. These containers establish communication with the main container
through TCP/IP, engineered to ensure complete isolation between the CARLA instances.
This strategic setup allows for the concurrent training of five DRL algorithms, thereby sig-
nificantly accelerating the pace of development and testing. The orchestrated interaction
among the containers not only optimizes computational resources but also enhances the
efficiency of the entire development and testing pipeline. It is also important to note that
number of CARLA instances can be easily adjusted based on the requirements by setting a
single environment variable. It also allows for switching between various CARLA versions
with a singular command.

In scenarios involving multiple developers, an exemplar utilizing a single cloud server
is demonstrated in Figure 4.4, wherein multiple developers can instantiate instances of the
architecture illustrated in Figure 4.3, ensuring complete isolation. This versatile approach
extends beyond cloud servers and can seamlessly be implemented on individual machines or
a singular machine, emphasizing the architecture’s capability to facilitate complete isolation
across diverse development environments.

31

Figure 4.2: Screeenshot of top down view of the CARLA simulation environment within
the container, accessible via a VNC client software.

32

CARLA
Server 1

Main Container

CARLA
Server 2

CARLA
Server 3

CARLA
Server 4

CARLA
Server N

Developer

Figure 4.3: Illustration showcasing the Dockerized containers, comprising N instances of
CARLA servers alongside a singular main container, with the added capability of estab-
lishing a connection to the main container through SSH.

33

Developer 1 Developer NDeveloper 2

CARLA
Server 1

Main
Container

CARLA
Server 2

CARLA
Server 3

CARLA
Server 4

CARLA
Server N

CARLA
Server 1

Main
Container

CARLA
Server 2

CARLA
Server 3

CARLA
Server 4

CARLA
Server N

CARLA
Server 1

Main
Container

CARLA
Server 2

CARLA
Server 3

CARLA
Server 4

CARLA
Server N

Figure 4.4: An illustrative representation displaying multiple instances of the service shown
in Figure 4.3, highlighting the architecture’s versatility in being utilized on a single machine.
Furthermore, this adaptability extends to replication, allowing instances to operate on
individual development machines with seamless integration and robust functionality.

34

Chapter 5

Methodology

In this chapter, an overview of the problem formulation including the observation and
action spaces, algorithm as well as software architecture are presented.

5.1 Problem Formulation

Navigating through an intersection poses a complex challenge for AVs, demanding effective
decision-making amidst the uncertainty surrounding the behavior of other road users, in-
cluding pedestrians and vehicles. To execute junction navigation tasks safely and efficiently,
AVs must interact with traffic participants, discern viable gaps, and assertively yield or
advance. Balancing the often-conflicting objectives of efficiency, safety, and congestion
avoidance adds further intricacy, a challenge not exclusive to human drivers.

In this context, the primary objective of the ego vehicle is to determine an optimal
speed profile for traversing a designated route. Achieving this entails generating speed
trajectories that adapt to evolving driver intents, intricate interactions, and a landscape
of inherent uncertainties.

The intricate nature of these sequential decision-making challenges finds a suitable
mathematical representation in MDPs. MDPs offer a formal framework captured by the
tuple ⟨S,A, P,R, γ⟩. Here, S denotes the set of states, A encompasses the available actions
for the agent, P encapsulates the state transition probabilities (the transition model), R
embodies the reward function, and γ represents the discount factor. MDPs are grounded
in the Markov assumption, which stipulates that the probability of transitioning to a new

35

state relies solely on the present state and action, independent of all prior states and
actions. Formally, this is expressed as

p(st+1|s0:t, a0:t) = p(st+1|st, at) (5.1)

Consequently, the intricate task of traversing an intersection is aptly modeled as an MDP.
By encapsulating the interplay of states, actions, uncertainties, and rewards within the
MDP framework, the AV’s decision-making process becomes amenable to systematic anal-
ysis and algorithmic treatment. This approach enables AVs to tackle the multifaceted
challenge of intersection decision-making and control while adhering to safety, efficiency,
and fluid traffic flow objectives.

5.2 Algorithm Architecture

Since DRL algorithms suffer from sample efficiency issues and require lots of training, a
hierarchical approach for AV control is employed. The DRL algorithm is responsible for
high-level decision-making, which gives the desired forward speed that provides a setpoint
for a (longitudinal) PID controller to output the throttle and brake signals for the lon-
gitudinal control. Using the DRL algorithms for selecting the appropriate vehicle speed
reduces the sample space size and therefore the algorithms converge faster. In the case
of the lateral control, the desired waypoints are ingested by another PID controller. This
lateral PID controller outputs the steering angle. Finally, the safety and comfort check
limit the maximum throttle, brake, and steering angle based on the following:

• Minimizing jerk to promote passenger comfort.

• Keeping steering changes within 10% of the entire limit.

• Ensuring current road speed limits are followed.

The proposed architecture is shown in Figure 5.1.

It has been found that using a feature extractor module for each actor separately
improved performance [55]. Hence, a feature extractor module which consists of a separate
DNN for each actor type (adversary vehicles, pedestrians, and the ego vehicle) is used.

36

DRL Algorithm

Desired

Tangential speed

v

Longitudinal

PID

Controller

Lateral PID

Controller

Decision–Making & Control

Desired waypoints

Brake

Throttle

Steering

Angle

Environment

States

Global Route

Plan

Safety and

Comfort

Checks

Figure 5.1: Proposed architecture for the ego vehicle decision-making and control.

5.2.1 Feature Extractor Module

A critical aspect of the proposed control architecture involves the integration of a fea-
ture extractor module. This module plays a pivotal role in enhancing the decision-making
process within the autonomous vehicle’s control system. By leveraging individual DNNs
tailored for distinct actor types—adversary vehicles, pedestrians, and the ego vehicle—the
feature extractor significantly contributes to the system’s overall performance and adapt-
ability.

The feature extractor serves as a cognitive filter, dynamically processing raw sensor
data and generating informative abstractions for each actor category. Each dedicated
DNN within the module specializes in extracting relevant features from the sensor inputs
that pertain to a specific type of entity. This adaptive approach ensures that the AV’s
decision-making process is finely tuned to the characteristics and behaviors of different
road users.

By tailoring feature extraction to the distinct characteristics of each actor type, this
module empowers the AV’s decision-making capabilities. For example, when interacting
with adversary vehicles, the module may extract essential features such as relative speed
and distance, facilitating informed responses to changing traffic dynamics. Similarly, when
dealing with pedestrians, the module can focus on pedestrian movement patterns and
potential collision risks. Utilizing separate DNNs for individual actor types introduces
a strategic partitioning that capitalizes on the inherent strength of DNNs in handling

37

specialized and analogous behaviors. It is widely recognized that DNNs exhibit enhanced
performance when dedicated to specific, akin scenarios.

5.2.2 PID Controllers for Longitudinal and Lateral Control

For longitudinal control, a PID controller operates in conjunction with the high-level
decision-making of the DRL algorithm. The DRL algorithm determines the desired forward
speed, which serves as the setpoint for the longitudinal PID controller. By continuously
comparing the desired speed with the vehicle’s actual speed, the PID controller computes
a control signal that efficiently modulates the throttle and brake, ensuring precise speed
tracking and optimal acceleration and deceleration profiles.

In lateral control, another PID controller takes center stage to govern the vehicle’s
steering angle. This controller processes desired waypoints—representing the vehicle’s in-
tended path—and continuously adjusts the steering input to accurately follow the desired
trajectory. By comparing the vehicle’s lateral position to the intended path, the PID con-
troller generates corrective commands that maintain trajectory accuracy, enabling smooth
and responsive lane-keeping behavior.

The following Tables 5.1 and 5.2 summarize the proportional (Kp), integral (Ki) and
derivative (Kd) gains for both lateral and longitudinal control alongside the maximum
limits. ∆t was set to 0.05 s. It is important to note that the minimum and maximum
values set by CARLA are [0, 1] for throttle, and brake while it is [−1, 1] for steering.

The presented algorithm outlines the control strategy used f

Table 5.1: PID Controller Parameters

Controller Proportional Gain (Kp) Derivative Gain (Kd) Integral Gain (Ki)

Longitudinal 1.0 0.0 0.05
Lateral 1.95 0.2 0.07

5.3 Observation/State Representation

The state space for the ego vehicle and other entities is thoughtfully designed to enable
informed decision-making and facilitate safe decision-making and control.

For the ego vehicle, the observation state encompasses the following key variables:

38

Algorithm 1 Control Strategy

1: Input: target speed, waypoint, max throttle, max brake, max steer, past steering
2: acceleration← Longitudinal PID (target speed)
3: current steering ← Lateral PID (waypoint)
4: if acceleration ≥ 0.0 then
5: throttle← min(acceleration,max throttle)
6: brake← 0.0
7: else
8: throttle← 0.0
9: brake← min(|acceleration|,max brake)
10: end if
11: if current steering > past steering + 0.1 then
12: current steering ← past steering + 0.1
13: else if current steering < past steering− 0.1 then
14: current steering ← past steering− 0.1
15: end if
16: if current steering ≥ 0 then
17: steering ← min(max steer, current steering)
18: else
19: steering ← max(−max steer, current steering)
20: end if
21: past steering← steering
22: return current steering, throttle, brake

39

Table 5.2: PID Controller Limits

Control Variable Maximum Limits

Throttle 0.75
Brake 0.3
Steering 0.8

• Velocity (vx, vy): The ego vehicle’s linear velocity components in the longitudinal
and lateral directions.

• Acceleration (ax, ay): The ego vehicle’s acceleration in the longitudinal and lateral
directions.

• Heading Angle: The orientation of the ego vehicle with respect to its reference frame.

• Change in Heading Angle (∆θ): The rate of change of the ego vehicle’s heading angle.

• Angular Velocity (ω): The rotational velocity of the ego vehicle.

• Lateral Distance from Center of Road (d): The lateral offset of the ego vehicle from
the center of the road.

• Progress (Distance to Destination (ddest)): The distance remaining to the destination,
indicating the vehicle’s progress.

For adversarial vehicles and pedestrians, the observation space encompasses the follow-
ing informative attributes:

• Distance in the x-direction to the ego vehicle (xrel): Horizontal distance between the
ego vehicle and the observed entity.

• Distance in the y-direction to the ego vehicle (yrel): Vertical distance between the
ego vehicle and the observed entity.

• Tangential Velocity (vtan): The component of velocity along the direction tangential
to the entity’s trajectory.

It is noteworthy that this study assumes the availability of a robust perception system
capable of providing the aforementioned state information for other vehicles and pedes-
trians. Moreover, the study context excludes intersections with stop signs, focusing on
intersections where continuous traffic flow is presumed.

40

5.4 Action Representations

The action representations are formulated for both continuous and discrete action spaces.

5.4.1 Continuous Action Space

The output range is intentionally confined to [−1, 1], aligning with recommendations from
existing literature. This symmetrical range is then mapped to the desired speed range
[0, desired speed], where the desired speed is user-set and remains adaptable.

5.4.2 Discrete Action Space

Diverging from the conventional dichotomy of slow and go faster decisions prevalent in the
literature, this study employs a nuanced approach by introducing a triad of actions: {go
slower, idle, go faster}. This expansion not only aligns with the intricacies of real-world
driving scenarios but also contributes to more nuanced and sophisticated decision-making.

The discretization of action space facilitates seamless integration with user preferences
and real-time dynamics. The choice of desired speed undergoes a meticulous process, where
it is adjusted to the nearest feasible value within a discretized range of speed increments
([0, 3, 6, 9, 12] m/s). For instance, upon selecting the go faster decision with an existing de-
sired speed of 3 m/s, the desired speed would be smoothly adjusted to 6 m/s. Analogously,
the idle decision maintains the existing desired speed, while go slower results in a gradual
reduction by shifting leftward within the discretized speed options. This nuanced approach
not only promotes smoother acceleration and deceleration but also mitigates abrupt and
discomforting transitions alongside the PID controllers, ensuring a harmonious AV-user
interaction.

It’s important to emphasize that the incorporation of the desired speed parameter in
both discrete and continuous action spaces introduces an element of personalization, ele-
vating the user experience by offering the flexibility to tailor the AV’s speed characteristics
according to individual preferences. The dynamic nature of the desired speed parame-
ter enables continual adaptation, even post-training, reflecting the study’s commitment to
user-centric AV control.

41

5.5 Reward Function

Developing an appropriate reward function stands as one of the paramount challenges in the
realm of RL. The meticulous design of this function serves the dual purpose of preventing
collisions while simultaneously fostering efficient, high-speed decision-making and control.
The reward function comprises a blend of sparse and dense components, each strategically
calibrated to incentivize safe, goal-oriented AV behavior. Sparse components represent the
rewards given at the end of the episode while dense rewards signify those rewards given at
each timestep. The reward function R(s, a) ∈ R is:

R(s, a) = Rseff +Rdg +Rpcl +Radvcl +Rgoal +Rtout +Radvcol +Rpedcol (5.2)

where Rseff , Rdg, Rpcl, Radvcl, Rgoal, Rtout, Radvcol, Rpedcol are the rewards based on ego vehi-
cle speed efficiency, distance to the goal, pedestrian closeness, adversarial vehicle closeness,
reaching the goal, timeout, adversarial vehicle collision, and pedestrian collision, respec-
tively.

5.5.1 Dense Components

The continuous nature of the dense components contributes to fine-grained, step-by-step
guidance towards goal attainment.

Rseff =

{
r1 · (vdesired − vcurrent) if v > vlimit

vcurrent

Rdg = r2 · (−1 +
index of current waypoint

len(waypoints)
)

Rpcl =

{
r3 · (dprox-ped − dped) if dped < dprox-ped

0, otherwise

Radvcl =

{
r4 · (dprox-adv − dadv) if dadv < dprox-adv

0 otherwise

Moreover, safety considerations play an integral role in shaping the AV’s decision-making.
The Euclidean distances between the leading edge of the ego vehicle’s bounding box and
other pedestrians and adversarial vehicles are continuously assessed. A safety buffer of
2.5m is established for vehicles, and 2m for pedestrians, with negative penalties of -5 and
-10 imposed respectively in case of proximity.

42

To refine the learning dynamics, reward weights are normalized to reside within the
interval of [-1, 1]. This normalization procedure contributes to stable and effective learning,
aligning with the overarching goal of achieving robust, user-centric AV control.

5.5.2 Sparse Components

The sparse reward components are formulated as follows:

Rgoal = r5 · 1(disgoal < δ)

Rtout = r6 · 1(t > 500)

Radvcol = r7 · 1(collisionadv)

Rpedcol = r8 · 1(collisionped)

where ri, I ∈ {1, ..., 8}, dprox−ped and dprox−adv are constants, dped and dadv are the Euclidean
distance from the front center of the ego vehicle to the closest pedestrian and adversarial
vehicle, respectively and 1(·) represents the indicator function which is true when the
corresponding condition (·) is true. Table 5.3 lists these constants.

When the agent successfully attains the goal, a substantial positive reward of 100
is bestowed. In scenarios of timeouts or collisions, the agent faces punitive measures,
incurring negative rewards of -10 and -100, respectively. A heightened negative penalty of
-200 is assigned in case of pedestrian collisions. This configuration not only reinforces goal
achievement but also emphasizes collision avoidance as a critical priority.

Table 5.3: Values of Reward Constants

Variable Value
r1 −2
r2 3.5
r3 −10
r4 −5
r5 100
r6 −10
r7 −100
r8 −200

dprox-ped 2
dprox-adv 2.5

43

5.6 Hyperparameters

To ensure a rigorous and equitable evaluation, a consistent neural network architecture is
adopted across all cases, featuring a fully connected layer comprising 400 neurons, followed
by an additional 300 neurons layer activated by the Rectified Linear Unit (ReLU) activation
function. This was only different in the case of Recurrent PPO in which an LSTM network
was used.

Table 5.4 comprehensively presents the harmonized training hyperparameters employed
for the diverse DRL architectures under scrutiny. While the majority of these hyperpa-
rameters are unified across the architectures, it’s noteworthy that certain parameters are
architecture-specific, accounting for the nuanced variations inherent in each DRL configu-
ration.

Table 5.4: Training Hyperparameters for the DRL Architectures

Hyperparameter DQN DDPG SAC PPO Recurrent PPO

Batch Size 32 100 256 64 128
Buffer Size 100,000 - -
Discount Factor (γ) 0.98
Gradient Steps Same as Environment - -
Learning Rate 0.0001
Learning Starts (α) 1000 - -
Training Frequency Every Episode - -

5.7 Strategic Training: Unprotected Left Turns and

Comprehensive Intersection Scenarios

The DRL algorithms were trained in two different goal settings:

1. Specialized Training for Unprotected Left Turns. In this particular training
scenario, the agents underwent focused training exclusively for executing unprotected
left turns. Notably, the training objectives consistently directed the agents towards a

44

predefined destination waypoint positioned on the left side. This specialized training
approach aimed to enhance the agents’ proficiency in safely and effectively executing
the complex maneuver of unprotected left turns, addressing the intricacies associated
with varying traffic densities, speeds, and potential obstacles. It’s worth noting that
such a focused training approach may result in agents that excel at unprotected left
turns but might not perform as well in other driving scenarios.

2. Comprehensive Training in All Intersection Scenarios. In this scenario, the
agent undergoes extensive training encompassing a wide array of intersection sce-
narios, ranging from left, straight, to right turns. This training regimen has been
implemented to facilitate a more thorough and comprehensive learning experience,
enhancing the agent’s ability to generalize effectively. The ultimate goal is to equip
the agent with the proficiency required to navigate seamlessly in diverse real-world
scenarios.

For both scenarios, the algorithms were trained within an environment of exclusively
vehicles and one which consisted of both vehicles and four pedestrians. Hence, a total of
four different configurations were run. The following Table 5.5 demonstrates this:

Table 5.5: The different environmental configurations used to train the DRL algorithms.

Intersection Goal Number of Pedestrians Number of Adversarial Vehicles

Left turn
0

3 (1 in each lane)
4 (1 at each crosswalk)

All scenarios (left turn, right turn, straight)
0

4 (1 at each crosswalk)

45

Chapter 6

Results

This section presents the results obtained from our simulations for five distinct DRL algo-
rithms: DQN, DDPG, PPO, Recurrent PPO, and SAC algorithms. In the context of our
experiments, it is important to note that PPO and Recurrent PPO, which can perform in
continuous and discrete action spaces, are exclusively trained using discrete action spaces.
The algorithms are trained for 1 million time steps corresponding to approximately 6,000
episodes. The choice of using time steps for continuous control tasks ensures a standardized
benchmark, despite variations in episode durations. The algorithms underwent training in
two distinct environments: the first exclusively comprised instances of left turns, whereas
the second encompassed the entirety of intersection scenarios, including straight, left, and
right maneuvers.

To establish performance benchmarks, we assessed the algorithm with the highest
episode reward every 2000 time steps and saved it for reference. For the comparative
analysis of training performance, both the episode mean reward per timestep and the
episode length per timestep graphs are used. A smoothing factor of 0.99 is applied to
enhance trend identification in conjunction with the raw graphs. This smoothing factor
aids in providing a clearer representation of the underlying trends by reducing noise and
highlighting the overall trajectory of the training process.

46

6.1 Distributed Training Environment and Machine

Specifications

To expedite the training process, a distributed approach utilizing multiple machines was
implemented. This orchestration was made possible by the adoption of a containerized
software architecture, as detailed in Chapter 4. The primary machine, whose specifications
are predominantly outlined in Table 6.1, assumed the central role during the majority of
the training sessions. Two additional machines, mirroring the configuration summarized
in Table 6.2, complemented the main server, primarily serving as dedicated environments
for testing the trained algorithms.

The main server, running Ubuntu 22.04.3 LTS, boasts an AMD Ryzen Threadripper
PRO 3995WX with 64 cores and 120 logical processors. Accompanied by 442 GiB RAM,
this powerful server integrates multiple NVIDIA Graphical Processing Unit (GPU)s, in-
cluding GeForce RTX 4090 and RTX 3090 models, each equipped with substantial Video
RAM (VRAM) capacities.

Detailed specifications for the primary server are encapsulated in Table 6.1, providing
a comprehensive overview of its Operating System (OS), Control Processing Unit (CPU)
architecture, logical processors, RAM, and GPU configurations.

Table 6.1: System specification for main server machine.

Property Details

OS Ubuntu 22.04.3 LTS
CPU AMD Ryzen Threadripper PRO 3995WX 64-Cores
Logical Processors 120
RAM 442 GiB
GPUs NVIDIA GeForce RTX 4090 (24564 MiB VRAM)

NVIDIA GeForce RTX 3090 (24576 MiB VRAM)
NVIDIA GeForce RTX 4090 (24564 MiB VRAM)
NVIDIA GeForce RTX 3090 (24576 MiB VRAM)
NVIDIA GeForce RTX 3090 (24576 MiB VRAM)
NVIDIA GeForce RTX 3090 (24576 MiB VRAM)

For local development purposes, two machines, also operating on Ubuntu 22.04.3 LTS,
house 13th Gen Intel Core i7-13700K CPUs, 24 logical processors, and 32 GiB of RAM.
The GPU on these machines, an NVIDIA GeForce RTX 4080, boasts 16376 MiB of VRAM.

47

These specifications are encapsulated in Table 6.2 and were primarily employed for algo-
rithm testing during the developmental stages.

Table 6.2: System specification for local development machines.

Property Details

OS Ubuntu 22.04.3 LTS
CPU 13th Gen Intel(R) Core(TM) i7-13700K
Logical Processors 24
RAM 32 GiB
GPU NVIDIA GeForce RTX 4080 (16376 MiB VRAM)

On the system specified in Table 6.1, each algorithm requires an approximate training
duration of 12 hours. Subsequent testing adds an additional 2 hours to the process. To
demonstrate the computational complexity, the total time commitment would be 70 hours if
all of the algorithms were to be trained and tested one after the other. This is equivalent to
about three days, highlighting the importance of distributed computing and parallelization
in accelerating the entire process of testing and assessment.

6.2 Training on Unprotected Left Turns Only

In this scenario, the goal was set to be left turns only and the agent was only trained
for that case. A thorough analysis of Figure 6.1 reveals that all algorithms converge after
approximately 600,000 time steps. However, an interesting observation is that DDPG may
benefit from further training since the mean episode reward demonstrates an ascending
trend. In terms of average episode length, DQN, PPO, and Recurrent PPO consistently
maintain an average duration of around 130 time steps. In contrast, DDPG exhibits a
slightly longer duration of approximately 150 time steps, while SAC exhibits the longest
episode length at around 180 time steps.

6.2.1 With Pedestrians

The training results are shown in Figure 6.1.

48

0.0M 0.2M 0.5M 0.8M 1.0M
Timesteps

100

200

300

400

500

Ep
is

od
e

Le
ng

th

Episode Length

0.0M 0.2M 0.5M 0.8M 1.0M
Timesteps

−8

−6

−4

−2

0

Ep
is

od
e

R
ew

ar
d

Episode Reward

DDPG PPO DQN SAC RecurrentPPO

Figure 6.1: Episode mean length and reward during training for unprotected left turns
only with four pedestrians. Recurrent PPO has the lowest episode mean length while
SAC demonstrates the highest. Recurrent PPO demonstrates the highest episode mean
reward while DDPG demonstrates the lowest. DDPG could potentially benefit from further
training since the reward is seen to be increasing.

49

6.2.2 Without Pedestrians

Training results are shown in Figures 6.2. Similar to the scenario with pedestrians, PPO
maintains the distinction of having the lowest episode length, with DDPG recording the
highest. An interesting observation is made of a sudden drop in the episode length for the
case of PPO and Recurrent PPO which needs further investigation. The episode length
remains consistent with that observed during training within an environment featuring
pedestrians, as seen in the Episode Length graph.

In terms of the reward, as anticipated, all DRL policies demonstrate significantly higher
average rewards per episode when compared to training within environments featuring
pedestrians. This aligns with the expectations as the absence of pedestrian interactions
makes the navigation task considerably less challenging, leading to improved performance
across all algorithms.

0.0M 0.2M 0.5M 0.8M 1.0M
Timesteps

100

200

300

400

500

Ep
is

od
e

Le
ng

th

Episode Length

0.0M 0.2M 0.5M 0.8M 1.0M
Timesteps

−8

−6

−4

−2

0

2

4

Ep
is

od
e

R
ew

ar
d

Episode Reward

DDPG PPO DQN SAC RecurrentPPO

Figure 6.2: Episode length and reward during training for unprotected left turns only
without pedestrians. Recurrent PPO demonstrates the lowest episode length alongside
DQN and PPO while DDPG has the highest. PPO has the highest episode mean reward
although there is a significant drop during the training. This is likely due to the retraining
when the simulation environment segmentation faults due to a bug in CARLA.

50

6.3 Training in All Intersection Scenarios

In this case, the agent was trained for all intersection scenarios (right turn, left turn and
going straight).

6.3.1 With Pedestrians

Training results are shown in Figure 6.3.

0.0M 0.2M 0.5M 0.8M 1.0M
Timesteps

200

300

400

500

Ep
is

od
e

Le
ng

th

Episode Length

0.0M 0.2M 0.5M 0.8M 1.0M
Timesteps

−8

−6

−4

−2

0
Ep

is
od

e
R

ew
ar

d

Episode Reward

DDPG PPO DQN SAC RecurrentPPO

Figure 6.3: Episode length and reward during training for all intersection scenarios with
four pedestrians. PPO has the lowest episode mean length although, in all algorithms, there
seem to be significant oscillations. All algorithms have a similar mean episode reward with
SAC potentially benefiting from further training.

As illustrated in Figure 6.3, it is evident that PPO achieves the lowest episode length,
while SAC records the highest. A notable observation is the increased variability in episode
length compared to the focused training within unprotected left turns with pedestrians, as
depicted in Figure 6.1. The raw graphs reveal more pronounced fluctuations, indicating a
higher degree of complexity when the agent is exposed to a broader range of intersection

51

scenarios. Furthermore, it becomes apparent that the episode length is generally longer in
the context of training for all intersection scenarios as opposed to the specialized training for
unprotected left turns exclusively. This extension in episode length suggests that navigating
various intersection scenarios introduces additional challenges, potentially requiring more
intricate decision-making processes as well as waiting from the trained agent.

A parallel trend, similar to the one observed during training within unprotected left
turns (see Figure 6.1), is evident in the current scenario depicted in Figure 6.3 Episode
Reward graph. Notably, SAC appears to exhibit a potential for improvement, as evidenced
by the increasing trend in its episode mean reward. This suggests that additional training
steps might contribute to further refinement in the performance of the SAC algorithm.

In contrast, Recurrent PPO displays a significant drop in the episode mean reward at
around 600,000 timestep, attributed to a restart in training at that specific step due to
a CARLA server failure. Despite this setback, the algorithm demonstrates resilience by
recovering to its previous performance state. This emphasizes the robustness and adapt-
ability of Recurrent PPO in overcoming unexpected challenges during the training process.

6.3.2 Without Pedestrians

The training results are shown in Figure 6.4 which shows the episode length per timestep
and the episode mean reward per timestep.

Figure 6.4 indicates that all algorithms reach convergence at approximately 500,000
timesteps, mirroring the observed convergence patterns in the training scenarios presented
in Figure 6.1. Delving into the reward patterns showcased in Figure 6.4, a noteworthy ob-
servation emerges: In both training settings, whether with or without pedestrians, Recur-
rent PPO consistently performs at a comparable level. This suggests a robust adaptability
of Recurrent PPO across diverse intersection scenarios.

In contrast, the remaining algorithms exhibit a substantial increase in mean reward per
episode. Notably, DDPG stands out with the most significant surge, registering a remark-
able 280% increase. This observed augmentation aligns with expectations, considering the
reduction in stochasticity within the environment due to the absence of pedestrians. The
findings demonstrate the adaptability of continuous DRL algorithms to such variations in
the training environment.

52

0.0M 0.2M 0.5M 0.8M 1.0M
Timesteps

200

300

400

500

Ep
is

od
e

Le
ng

th

Episode Length

0.0M 0.2M 0.5M 0.8M 1.0M
Timesteps

−8

−6

−4

−2

0

2

Ep
is

od
e

R
ew

ar
d

Episode Reward

DDPG PPO DQN SAC RecurrentPPO

Figure 6.4: Episode length and reward during training for all intersection scenarios without
pedestrians. Recurrent PPO has the lowest episode length with all algorithms having a
mean episode length less than the one observed in the case when training with pedestrians
(see Figure 6.3). The mean episode reward is highest for DDPG with DQN being the
lowest. As compared to Figure 6.3, the reward is higher for all algorithms due to the
absence of pedestrians, as expected.

53

6.4 Evaluation Metrics

Five metrics are used to evaluate each of these methods, which are obtained by running
each DRL method for 1,000 episodes. The metrics are described as follows:

• Average Episode Length: how long each successful trial runs for in terms of
episode time steps.

• Average Reward: the amount of reward obtained by the policy in each episode.

• Collision Rate: the percentage of episodes that result in a collision occurring due
to the ego vehicle.

• Pedestrian Collision Rate: the percentage of accidents that consist of a pedestrian
collision.

• Success Rate: the percentage of the runs where the ego vehicle successfully reaches
the goal. In all cases, the goal is to make an unprotected left turn.

The metrics are only evaluated on the scenarios trained with pedestrians. It is important
to note that if an episode timed out, it was not counted as part of the metrics and hence
some of the collision rates when combined with the success rates fall short of 100%.

6.4.1 Training on Unprotected Left Turns Only

The defined evaluation metrics are shown in Table 6.3, obtained by running the DRL
algorithms on 1,000 episodes.

Table 6.3: Comparison of the DRL algorithms within the hierarchical approach when
trained for unprotected left turns only with four pedestrians.

Metric DQN DDPG SAC PPO Recurrent PPO

Average Episode Length (time steps) 143.45 166.04 161.47 144.87 122.33
Average Reward (per episode) 0.7567 0.5811 0.4581 0.7001 1.085
Collision Rate 53.5% 52.8% 53.1% 54.1% 33.6%
Pedestrian Collision Rate 93.0% 92.0% 93.0% 93.0% 46.0%
Success Rate 46.2% 47.1% 46.7% 45.9% 66.1%

54

As seen in Table 6.3, DDPG has the highest average episode length, while Recurrent
PPO has the lowest collision rate, pedestrian collision rate, and average episode length,
along with having the highest success rate and average reward. However, it is seen that all
the methods have relatively high collision rates, particularly concerning pedestrian collision
rates. Except for Recurrent PPO, it is observed that over 90% of the accidents consist of a
pedestrian collision. This is likely due to the stochastic nature of the pedestrians and needs
further investigations into other possible reasons behind such high collision rates. Also, an
interesting observation is that all policies demonstrate human-like behavior wherein the ego
vehicle creeps, causing the pedestrian to also slightly slow down, wait for the adversarial
vehicle within the intersection to pass, and move up slowly to indicate (or “interact”) with
the adversary vehicle and pedestrian to signal that it is going to pass. It’s important to
highlight that the majority of collisions involve pedestrians.

It is important to note that when testing the algorithms within no pedestrian scenarios,
they demonstrate a success rate of close to 100% as shown in Table 6.4. This further
demonstrates the complexity of the environment with pedestrians. In this case, DDPG and
SAC appear to be the top-performing algorithms in terms of safety (lowest collision rates)
and reliability (highest success rates). However, Recurrent PPO outperforms others in
terms of average reward per episode, suggesting potentially more efficient decision-making
or better optimization of the learning process.

Table 6.4: Comparison of the DRL algorithms within the hierarchical approach when
trained for unprotected left turns only with no pedestrians.

Metric DQN DDPG SAC PPO Recurrent PPO

Average Episode Length (time steps) 181.12 174.42 222.22 174.10 187.51
Average Reward (per episode) 2.8654 3.2432 2.9679 3.3145 3.3589
Collision Rate 1.4% 0.0% 0.0% 0.1% 1.3%
Pedestrian Collision Rate - - - - -
Success Rate 98.6% 100.0% 100.0% 99.9% 98.7%

6.4.2 Training on All Intersection Scenarios

The evaluation metrics for all five DRL algorithms are presented in Table 6.5. Notably,
while these algorithms undergo training for various intersection scenarios, for the purpose
of test evaluation, they are exclusively assessed in the context of making unprotected
left turns. This ensures a consistent and comparable evaluation setting, allowing for a

55

focused analysis of each algorithm’s performance specifically within the unprotected left
turn scenario.

Table 6.5: Comparison of the DRL algorithms within the hierarchical approach when
trained for all intersection scenarios with four pedestrians.

Metric DQN DDPG SAC PPO Recurrent PPO

Average Episode Length (time steps) 171.26 172.30 184.62 142.14 145.33
Average Reward (per episode) -0.3477 0.9022 0.7561 0.4529 1.155
Collision Rate 70.9% 51.7% 49.8% 70.3% 31.4%
Pedestrian Collision Rate 41.0% 92.0% 94.0% 41.0% 42.0%
Success Rate 21.6% 48.3% 49.0% 29.5% 6 8.1%

As illustrated in Table 6.5, the performance metrics reveal that PPO stands out with
the lowest episode length, while Recurrent PPO, similar to its efficacy in exclusive training
for unprotected left turns, exhibits the most resilient performance across scenarios. A
noteworthy observation emerges when contrasting these results with the unprotected left
turns scenario (refer to Table 6.3): there is an approximate 4% increase in the average
episode length across all algorithms. This increase can be attributed to a heightened sense
of caution adopted by the algorithms.

Moreover, a deeper analysis unveils a considerable decline in the success rate of both
DQN and PPO in comparison to the unprotected left turns scenario. This decrease is likely
attributed to the inaccurate initialization of neural network parameters, a well-documented
factor influencing the training dynamics of DRL. This underscores the importance of care-
fully selecting a predetermined seed number for consistent initialization across all DRL
algorithms during training.

56

Chapter 7

Conclusion and Future Work

This chapter concludes by summarizing the work and contributions presented within this
thesis as well as discussing future directions. The main focus of this thesis was demon-
strating the complexity of pedestrian environments and development of a hierarchical DRL-
based approach for AVs to traverse unsignalized intersections using state-of-the-art DRL
algorithms in continuous and discrete action spaces. This study employed five DRL al-
gorithms as part of the hierarchical approach: DDPG, DQN, PPO, Recurrent PPO and
SAC.

7.1 Conclusion

The hierarchical approach involved two separate controllers for lateral and longitudinal
control wherein the DRL was employed within longitudinal control. The DRL algorithms
outputted the desired speed while a low-level PID controller, followed by a safety and com-
fort module, outputted the low-level control commands. The safety and comfort module
limited the acceleration and steering rate to avoid jerks and rapid directional changes. A
custom DNN based feature extractor was used to extract the pedestrian, adversarial vehi-
cles, and ego vehicle observation states individually, which were then used by the considered
DRL algorithms to output the associated longitudinal action. The lateral control was also
performed by a PID controller based on the physical constraints of the AV and the final
destination given by the ego vehicle’s global planner. In the case of the discrete action
space, a list of discrete speeds was provided to the considered algorithms, which would
then shift through the decision made compared to the traditional stop-and-go methods
in the literature. It is important to note that all networks were trained in an end-to-end

57

manner in four different configurations. It was found that the proposed decision-making
and control architecture with Recurrent PPO had the highest success rate of 68.1% and
the lowest pedestrian collision rate of 42.0% of collisions. It was observed that maneuver-
ing through chaotic environments posed a significant challenge, with over 90% of collisions
involving pedestrians. With no pedestrians, the success rate of all DRL algorithms was
close to 100%. Notably, the Recurrent PPO approach emerged as the most time-efficient,
requiring the fewest time steps to reach the destination when trained exclusively for unpro-
tected left turns. When trained for all intersection scenarios, most DRL algorithms showed
a slight increase in performance metrics with the exception of DQN and PPO. This was
likely due to neural network parameter initialization which is random between runs. The
hierarchical algorithm with the training, test and analysis scripts has been made available
at https://github.com/faizansana/intersection-driving.

A key contribution of this research is the environment used for the training and test-
ing, which consisted of both pedestrians and adversarial vehicles in a complex, high-fidelity
simulation tool, CARLA. Notably, the flexibility of adjusting the number of adversarial
vehicles and pedestrians facilitates seamless customization for coherent training and test-
ing procedures. This adaptable environment accommodates both discrete and continuous
action spaces, presenting observations in the standardized OpenAI Gym format. Fur-
thermore, it supports the training of agents in specific scenarios, encompassing straight,
left, or right turns, and their combinations. For accessibility and collaboration, the de-
veloped environment is open source and available at https://github.com/faizansana/
intersection-carla-gym.

To foster collaboration and streamline development processes, a containerized software
architecture using Docker was crafted. This architecture was designed to expedite the
setup of development environments with minimal effort, promoting efficient collaboration
among team members. This can be found within the GitHub repositories.

7.2 Future Work

To further improve the accuracy of the proposed framework in this study, it is suggested
to do the following:

i) Fine-tune the hyperparameters to optimize the model’s performance and adaptability.

ii) Explore the application of curriculum learning techniques to progressively improve
the obtained reward, potentially accelerating the learning process.

58

https://github.com/faizansana/intersection-driving
https://github.com/faizansana/intersection-carla-gym
https://github.com/faizansana/intersection-carla-gym

iii) Evaluate the robustness of the considered algorithms by testing their performance
under conditions of perception noise, ensuring resilience in real-world scenarios.

iv) Iteratively enhance the design of the reward function, aligning it more precisely with
the desired objectives.

A comprehensive investigation of the elevated pedestrian collision rates is also essential.
Since the ultimate goal of this research is to develop a suitable navigation algorithm for
an experimental AV, the Autonomous Golf Cart (AGC), it was important to perform the
training in a high-fidelity simulation environment like CARLA. The future steps include:

i) Incorporating swarms of pedestrians into the simulation, thereby enhancing the re-
alism and complexity of the environment.

ii) Implementing a robust safety layer within the considered algorithms to fortify the
system against unforeseen challenges and potential risks.

iii) Exploring the potential integration of model-based controllers such as MPC to aug-
ment the precision and adaptability of the autonomous agent.

iv) Broadening the scope of training and testing by exposing the agent to diverse envi-
ronmental conditions, including scenarios involving rain, which introduces variations
in the coefficient of road friction.

v) Assessing the performance of the autonomous agent in real-world scenarios, specifi-
cally on the AGC, to validate its adaptability and effectiveness in practical applica-
tions.

vi) Enhancing test metrics with the utilization of near-collisions to assess safety concerns
for vulnerable road users.

vii) Expanding the study to train and test the performance within four-way intersections
with different travel lanes

59

References

[1] F. Sana, N. L. Azad, and K. Raahemifar, “Autonomous vehicle decision-making and
control in complex and unconventional scenarios-a review,” Machines, vol. 11, no. 7,
2023.

[2] California Department of Motor Vehicles, “Autonomous vehicle collision reports,” jun
2022.

[3] S. H. Leilabadi and S. Schmidt, “In-depth analysis of autonomous vehicle collisions
in california,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC),
pp. 889–893, IEEE, 2019.

[4] “Taxonomy and definitions for terms related to driving automation systems for on-
road motor vehicles,” standard, Society of Automotive Engineers, 2021.

[5] S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for path planning,”
1998.

[6] T. Tram, A. Jansson, R. Grönberg, M. Ali, and J. Sjöberg, “Learning negotiating be-
havior between cars in intersections using deep q-learning,” in 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), pp. 3169–3174, IEEE, 2018.

[7] World Health Organization, “Global status report on road safety 2018,” tech. rep.,
World Health Organization, 2018.

[8] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous vehicles: op-
portunities, barriers and policy recommendations,” Transportation Research Part A:
Policy and Practice, vol. 77, pp. 167–181, 2015.

[9] S. Singh, “Critical reasons for crashes investigated in the national motor vehicle crash
causation survey,” tech. rep., National Highway Traffic Safety Administration, 2018.

60

[10] W. D. Montgomery, R. Mudge, E. L. Groshen, S. Helper, J. P. MacDuffie, and C. Car-
son, “America’s workforce and the self-driving future: Realizing productivity gains
and spurring economic growth,” 2018.

[11] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents). The MIT Press, 2005.

[12] P. Koopman and M. Wagner, “Autonomous vehicle safety: An interdisciplinary chal-
lenge,” IEEE Intelligent Transportation Systems Magazine, vol. 9, no. 1, pp. 90–96,
2017.

[13] California Department of Motor Vehicles, “Autonomous vehicles testing with a
driver,” jun 2022.

[14] R. L. McCarthy, “Autonomous vehicle accident data analysis: California ol 316 re-
ports: 2015–2020,” ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg,
vol. 8, no. 3, 2022.

[15] M. Simon, T. Hermitte, and Y. Page, “Intersection road accident causation: A eu-
ropean view,” in 21st International Technical Conference on the Enhanced Safety of
Vehicles, pp. 1–10, 2009.

[16] National Highway Traffic Safety Administration, “Traffic safety facts 2019: A com-
pilation of motor vehicle crash data,” tech. rep., NHTS Administration, Washington,
DC, USA, 2019.

[17] M. Burns, “GM’s Cruise Recalls Self-Driving Software Involved in June Crash,”
TechCrunch, 2019.

[18] A. Marshall, “GM’s Cruise Recalls Self-Driving Software Involved in June Crash,”
Wired, 2022.

[19] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open
urban driving simulator,” in Proceedings of the 1st Annual Conference on Robot Learn-
ing, pp. 1–16, 2017.

[20] M. S. M. Al-Dabbagh, A. Al-Sherbaz, and S. Turner, “The impact of road intersec-
tion topology on traffic congestion in urban cities,” in Proceedings of SAI Intelligent
Systems Conference, pp. 1196–1207, Springer, 2018.

61

[21] F. Lian, B. Chen, K. Zhang, L. Miao, J. Wu, and S. Luan, “Adaptive traffic signal
control algorithms based on probe vehicle data,” Journal of Intelligent Transportation
Systems, vol. 25, no. 1, pp. 41–57, 2021.

[22] T. Wu, P. Zhou, K. Liu, Y. Yuan, X. Wang, H. Huang, and D. O. Wu, “Multi-agent
deep reinforcement learning for urban traffic light control in vehicular networks,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 8, pp. 8243–8256, 2020.

[23] S. P. Sahu, D. K. Dewangan, A. Agrawal, and T. Sai Priyanka, “Traffic light cycle
control using deep reinforcement technique,” in 2021 International Conference on
Artificial Intelligence and Smart Systems (ICAIS), pp. 697–702, 2021.

[24] M. A. S. Kamal, J.-i. Imura, T. Hayakawa, A. Ohata, and K. Aihara, “A vehicle-
intersection coordination scheme for smooth flows of traffic without using traffic
lights,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 3,
pp. 1136–1147, 2015.

[25] S. Li, K. Shu, C. Chen, and D. Cao, “Planning and decision-making for connected
autonomous vehicles at road intersections: A review,” Chinese Journal of Mechanical
Engineering, vol. 34, no. 1, pp. 1–18, 2021.

[26] J. Guanetti, Y. Kim, and F. Borrelli, “Control of connected and automated vehicles:
State of the art and future challenges,” Annual reviews in control, vol. 45, pp. 18–40,
2018.

[27] W. Liu, M. Hua, Z. Deng, Z. Meng, Y. Huang, C. Hu, S. Song, L. Gao, C. Liu, B. Shuai,
et al., “A systematic survey of control techniques and applications in connected and
automated vehicles,” IEEE Internet of Things Journal, 2023.

[28] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determina-
tion of minimum cost paths,” IEEE transactions on Systems Science and Cybernetics,
vol. 4, no. 2, pp. 100–107, 1968.

[29] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion plan-
ning,” The international journal of robotics research, vol. 30, no. 7, pp. 846–894,
2011.

[30] Y. Kuwata, J. Teo, S. Karaman, G. Fiore, E. Frazzoli, and J. How, “Motion planning
in complex environments using closed-loop prediction,” in AIAA Guidance, Navigation
and Control Conference and Exhibit, p. 7166, 2008.

62

[31] L. Ma, J. Xue, K. Kawabata, J. Zhu, C. Ma, and N. Zheng, “Efficient sampling-based
motion planning for on-road autonomous driving,” IEEE Transactions on Intelligent
Transportation Systems, vol. 16, no. 4, pp. 1961–1976, 2015.

[32] S. Yoon, D. Lee, J. Jung, and D. H. Shim, “Spline-based rrt* using piecewise continu-
ous collision-checking algorithm for car-like vehicles,” Journal of Intelligent & Robotic
Systems, vol. 90, pp. 537–549, 2018.

[33] K. Yang and S. Sukkarieh, “An analytical continuous-curvature path-smoothing algo-
rithm,” IEEE Transactions on Robotics, vol. 26, no. 3, pp. 561–568, 2010.

[34] X. Wu, A. Nayak, and A. Eskandarian, “Motion planning of autonomous vehicles
under dynamic traffic environment in intersections using probabilistic rapidly explor-
ing random tree,” SAE International Journal of Connected and Automated Vehicles,
vol. 4, no. 12-04-04-0029, pp. 383–399, 2021.

[35] Y. Wang, Z. Liu, Z. Zuo, Z. Li, L. Wang, and X. Luo, “Trajectory planning and safety
assessment of autonomous vehicles based on motion prediction and model predictive
control,” IEEE Transactions on Vehicular Technology, vol. 68, no. 9, pp. 8546–8556,
2019.

[36] R. Hult, M. Zanon, S. Gros, and P. Falcone, “Optimal coordination of automated
vehicles at intersections: Theory and experiments,” IEEE Transactions on Control
Systems Technology, vol. 27, no. 6, pp. 2510–2525, 2019.

[37] C. Liu, S. Lee, S. Varnhagen, and H. E. Tseng, “Path planning for autonomous vehicles
using model predictive control,” in 2017 IEEE Intelligent Vehicles Symposium (IV),
pp. 174–179, 2017.

[38] J. Moreau, P. Melchior, S. Victor, M. Moze, F. Aioun, and F. Guillemard, “Reactive
path planning for autonomous vehicle using bézier curve optimization,” in 2019 IEEE
Intelligent Vehicles Symposium (IV), pp. 1048–1053, 2019.

[39] D. Kamran, C. F. Lopez, M. Lauer, and C. Stiller, “Risk-aware high-level decisions
for automated driving at occluded intersections with reinforcement learning,” in 2020
IEEE Intelligent Vehicles Symposium (IV), pp. 1205–1212, IEEE, 2020.

[40] Z. Qiao, K. Muelling, J. M. Dolan, P. Palanisamy, and P. Mudalige, “Automatically
generated curriculum based reinforcement learning for autonomous vehicles in urban
environment,” in 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1233–1238,
IEEE, 2018.

63

[41] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in
Proceedings of the 26th annual international conference on machine learning, pp. 41–
48, 2009.

[42] D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for autonomous cars
that leverage effects on human actions.,” in Robotics: Science and Systems, vol. 2,
pp. 1–9, Ann Arbor, MI, USA, 2016.

[43] B. B. Elallid, M. Bagaa, N. Benamar, and N. Mrani, “A reinforcement learning based
approach for controlling autonomous vehicles in complex scenarios,” in 2023 Inter-
national Wireless Communications and Mobile Computing (IWCMC), pp. 1358–1364,
IEEE, 2023.

[44] R. Bautista-Montesano, R. Galluzzi, K. Ruan, Y. Fu, and X. Di, “Autonomous nav-
igation at unsignalized intersections: A coupled reinforcement learning and model
predictive control approach,” Transportation research part C: emerging technologies,
vol. 139, p. 103662, 2022.

[45] T. Tram, I. Batkovic, M. Ali, and J. Sjöberg, “Learning when to drive in intersections
by combining reinforcement learning and model predictive control,” in 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), pp. 3263–3268, IEEE, 2019.

[46] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press,
2018.

[47] J. Fan, Z. Wang, Y. Xie, and Z. Yang, “A theoretical analysis of deep q-learning,” in
Learning for dynamics and control, pp. 486–489, PMLR, 2020.

[48] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
q-learning,” in Proceedings of the AAAI conference on artificial intelligence, vol. 30,
2016.

[49] E. Debie and K. Shafi, “Implications of the curse of dimensionality for supervised
learning classifier systems: theoretical and empirical analyses,” Pattern Analysis and
Applications, vol. 22, pp. 519–536, 2019.

[50] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

64

[51] C.-C. Chang, J. Tsai, J.-H. Lin, and Y.-M. Ooi, “Autonomous driving control using
the ddpg and rdpg algorithms,” Applied Sciences, vol. 11, no. 22, p. 10659, 2021.

[52] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[53] J. Zhang, Z. Zhang, S. Han, and S. Lü, “Proximal policy optimization via enhanced
exploration efficiency,” Information Sciences, vol. 609, pp. 750–765, 2022.

[54] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” 2016.

[55] R. Gutiérrez-Moreno, R. Barea, E. López-Guillén, J. Araluce, and L. M. Bergasa, “Re-
inforcement learning-based autonomous driving at intersections in carla simulator,”
Sensors, vol. 22, no. 21, p. 8373, 2022.

65

Glossary

adversarial vehicle Other vehicles present within the ego vehicle’s environment. iv, xi,
13, 16, 26–29, 55, 58

CARLA An open source urban driving simulator. See https://carla.org/ for details. iv,
xi, xii, 6, 7, 12, 13, 16, 26–28, 30–33, 38, 50, 52, 58, 59

Docker Docker is a container platform that allows for the efficient development, shipping,
and running of applications by separating them from the underlying infrastructure.
See https://www.docker.com/ for more details. xi, 30, 31, 33, 58

ego vehicle The vehicle that is the subject of interest which is being controlled through
the environment. xi, xii, 11–13, 27–29, 35–38, 40, 55, 57, 66

TCP/IP Transmission Control Protocol/Internet Protocol (TCP/IP) is a suite of proto-
cols that specify communications standards between computers and detail conven-
tions for routing and interconnecting networks. 31

unsignalized intersection A fully uncontrolled intersection devoid of any traffic control
devices such as yield signs, stop signs, or traffic lights, where vehicles must navigate
based on the right of way and caution. iv, 6, 8, 11, 57

66

https://carla.org/
https://www.docker.com/

	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Motivation
	Levels of Automation
	Contributions
	Organization

	Related Work
	Graph-Based Approaches
	Optimization-Based Approaches
	Machine Learning-Based Approaches
	Fusion-Based Approaches
	Summary

	Reinforcement Learning
	Q-learning
	Deep Q-Learning
	Deep Deterministic Policy Gradient
	Proximal Policy Optimization
	Surrogate Objective Function
	Dual Neural Networks: Policy and Value Function
	Balancing Exploration and Exploitation

	Recurrent Proximal Policy Optimization
	Recurrent Neural Networks
	Training Procedure

	Soft Actor Critic
	Entropy Maximization and Stochastic Policies
	Value Networks and Entropy Regularization

	High-Fidelity Simulation Environment & Software Architecture
	Adversarial Vehicles
	Pedestrians
	Software Architecture

	Methodology
	Problem Formulation
	Algorithm Architecture
	Feature Extractor Module
	PID Controllers for Longitudinal and Lateral Control

	Observation/State Representation
	Action Representations
	Continuous Action Space
	Discrete Action Space

	Reward Function
	Dense Components
	Sparse Components

	Hyperparameters
	Strategic Training: Unprotected Left Turns and Comprehensive Intersection Scenarios

	Results
	Distributed Training Environment and Machine Specifications
	Training on Unprotected Left Turns Only
	With Pedestrians
	Without Pedestrians

	Training in All Intersection Scenarios
	With Pedestrians
	Without Pedestrians

	Evaluation Metrics
	Training on Unprotected Left Turns Only
	Training on All Intersection Scenarios

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	Glossary

